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3The Parallel Universe

Intel to Acquire Codeplay Software
Earlier this month, Intel signed an agreement to acquire Codeplay. Why does this matter? Codeplay is 
a leader in open-standard, cross-architecture development. This acquisition will help drive adoption of 
SYCL* and the oneAPI ecosystem. From Intel to Acquire Codeplay Software:

“Codeplay is globally recognized for its expertise and leadership in SYCL, the Khronos open 
standard programming models used in oneAPI, and its significant contributions to the industry 

ranging from open ecosystem activities like SYCL and OpenCL* to RISC V* ... Codeplay has 
extensively delivered products supporting diverse hardware platforms globally, embracing the 

mission of bringing oneAPI to the masses.”

To celebrate, our first two articles, including one from Codeplay, cover SYCL. The feature article, 
SYCLomatic: A New CUDA*-to-SYCL Code Migration Tool, describes this new open-source project. 
SYCLomatic will give users an opportunity to contribute and provide feedback to improve the tool. 
It enables community collaboration to advance adoption of the SYCL standard, a key step in freeing 
developers from a single-vendor proprietary ecosystem. This is followed by Free Your Software from 
Vendor Lock-in Using SYCL and oneAPI, in which Rob Burns and Joe Todd from Codeplay demonstrate 
how SYCLomatic performs in practice.

The SigOpt Intelligent Experimentation Platform discusses the challenges of running modern 
recommender systems and shows how to democratize the end-to-end process of creating such systems. 
Distributed Training on Intel® Xeon® Scalable Processors presents a case study with our collaborators 
at Tencent on training an AI model for the Tencent AI Arena platform.

Some of you may know that my academic background is in life sciences, so it’s gratifying to have two 
genetics articles. I coauthored Delivering Cost-Effective Genomics for Precision Medicine with 
Don Freed and Zhipan Li from Sentieon Inc. We used a genomics benchmark from the U.S. Food and 
Drug Administration to show that Intel Xeon processors give superior performance and TCO than the 
competition. In Accelerating Single-Cell Genetics Analysis, Intel Labs and a team of collaborators show 
how Intel Xeon processors deliver superior performance for an end-to-end genetics pipeline. These 
articles also describe how our competition sometimes hobbles Intel Xeon processor performance to 
inflate their speed-up results.

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and 
parallel computing practitioner who has published numerous articles on parallel programming. He 
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach” 
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.
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We close this issue with an interesting demonstration of building oneAPI for Linux* and Windows* using 
the Windows subsystem for Linux 2* and Visual Studio Code*. There are plenty of interesting tidbits in 
Leveraging Tools for Cross-Platform Software Development, but seeing Linux and Windows running 
side-by-side in the same Visual Studio Code instance stands out for me. I hate switching between Linux 
and Windows on dual-boot systems. This article shows that it might finally be a thing of the past.

As always, don’t forget to check out Tech.Decoded for more information on Intel® solutions for code 
modernization, visual computing, data center and cloud computing, data science, systems and IoT 
development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb 
July 2022

If you’re an animator, digital content creator, architectural engineer, or skilled 
gamer, push the boundaries of visualization with the Intel oneAPI + Rendering 
Toolkit. Learn More >

PODCAST

On a Mission of Disaster Management 
& Scientific Discoveries

LISTEN NOW

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://techdecoded.intel.io/
https://sfederation.intel.com/affwebservices/public/saml2sso?SPID=software.intel.com&ProtocolBinding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST&RelayState=
https://connectedsocialmedia.com/19208/on-a-mission-of-disaster-management-scientific-discoveries/ 


Code for the Future.
Grow beyond proprietary boundaries.

Expand your code’s reach with a single, open programming model that supports 
multiple languages to deliver heterogeneous computing performance.

 
Rooted in open standards, oneAPI offers cross-architecture libraries, compilers and 
tools that open your code to more hardware choices—for unparalleled performance. 

Discover oneAPI  �

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html


Sign up for future issues*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice. 
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To achieve high performance and efficient developer productivity across CPUs, GPUs, FPGAs, and other 
architectures, developers need a unified programming model that enables them to select the optimal 
hardware for the task at hand. They need a high-level, open-standard, heterogeneous programming 
language that’s both built on standards and extensible. It must boost developer productivity while 
providing consistent performance across architectures. SYCL*, a C++-based Khronos Group standard, 
addresses these challenges by extending C++ capabilities to support multiarchitecture and disjoint 
memory configurations.

Kent Moffat, Senior Product Manager, Intel Corporation

Contributions to this Open-Source Project Wanted!

SYCLomatic: A New 
CUDA*-to-SYCL* Code 
Migration Tool
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7The Parallel Universe

To make it easier to adopt SYCL, developers may want to migrate their existing CUDA* GPU code so they 
don’t have to start their SYCL development from a blank page. We’ve previously published articles on 
using the Intel® DPC++ Compatibility Tool to migrate CUDA to SYCL. This tool is included in the Intel® 
oneAPI Base Toolkit and supported by Intel technical consulting engineers.

SYCLomatic Open-Source Project
In response to developer requests, the compatibility tool has now been released as an open-source 
project under the name “SYCLomatic.” Many organizations have successfully used the tool, and some also 
wanted to enhance and customize its capabilities to tune it to their needs. One of those organizations 
was Argonne National Laboratory.

“CRK-HACC is an N-body cosmological simulation code actively under development. To prepare 
for Aurora, the Intel DPC++ Compatibility Tool allowed us to quickly migrate over 20 [CUDA] 

kernels to SYCL. Since the current version of the code migration tool does not support migration 
to functors, we wrote a simple Clang tool to refactor the resulting SYCL source code to meet 
our needs. With the open-source SYCLomatic project, we plan to integrate our previous work 
for a more robust solution and contribute to making functors part of the available migration 

options,” said Steve (Esteban) Rangel of HACC (Hardware/Hybrid Accelerated Cosmology Code), 
Cosmological Physics & Advanced Computing (anl.gov).

Utilizing the Apache* 2.0 license with LLVM exception, the SYCLomatic project hosted on GitHub 
offers a community for developers to contribute and provide feedback to further open heterogeneous 
development across CPUs, GPUs and FPGAs. The GitHub portal includes a “contributing.md” guide, 
describing the steps for technical contributions to the project. Developers are encouraged to use the 
tool and provide feedback and contributions to advance the tool’s evolution. This open-source project 
enables community collaboration to advance adoption of the SYCL standard, a key step in freeing 
developers from a single-vendor proprietary ecosystem. Improvements made to SYCLomatic will also be 
incorporated in the Intel DPC++ Compatibility Tool product.

How the SYCLomatic Tool Works
SYCLomatic assists developers in porting CUDA code to SYCL, typically migrating 90–95% of CUDA code 
automatically to SYCL code.1 To finish the process, developers complete the rest of the coding manually 
and then tune to the desired level of performance for the target architecture (Figure 1).

1�Intel estimates as of September 2021. Based on measurements on a set of 70 HPC benchmarks and samples, with 
examples like Rodinia, SHOC, PENNANT. Results may vary.
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Successful Code Migrations
Research organizations and Intel customers have successfully used the Intel DPC++ Compatibility Tool, 
which has the same technologies as SYCLomatic, to migrate CUDA code to SYCL (or Data Parallel C++, 
oneAPI’s implementation of SYCL) on multiple vendors’ architectures. Examples include the University 
of Stockholm with GROMACS 2022, Zuse Institute Berlin (ZIB) with easyWave, Samsung Medison, and 
Bittware. (Go to oneAPI DevSummit content for more examples.) Multiple customers are also testing 
code on current and upcoming Intel® Iris® Xe architecture-based GPUs, including the Argonne National 
Laboratory Aurora supercomputer, Leibniz Supercomputing Centre (LRZ), GE Healthcare*, and others.

Example: Migrating CUDA Vector Addition to SYCL
To provide a practical overview of the migration process, this article uses a simple implementation of 
vector addition in CUDA*. We take a closer look at the code that SYCLomatic generates. Mainly, we focus 
on the code sections where CUDA and SYCL differ the most.

We’ll be using SYCLomatic and the Intel® oneAPI DPC++/C++ Compiler from the Intel oneAPI Base Toolkit 
for the task at hand. To install the toolkit, follow the Intel® oneAPI installation guide. Use the following 
workflow to migrate your existing CUDA* application to SYCL*:

1.	Use the intercept-build utility to intercept commands issued by the Makefile and save them in a JSON-
format compilation database file. This step is optional for single-source projects.

2.	Migrate your CUDA code to SYCL using SYCLomatic.

3.	Verify the generated code for correctness and complete the migration manually if warning messages 
indicate this explicitly. Check the Intel DPC++ Compatibility Tool Developer Guide and Reference to fix 
the warnings.

4.	Compile the code using the Intel oneAPI DPC++/C++ Compiler, run the program, and then check the 
output.

Figure 1. The SYCLomatic workflow.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/newsroom/news/gromacs-oneapi-aid-open-source-drug-discovery.html
https://www.ixpug.org/resources/download/from-cuda-to-dpc-back-to-nvidia-gpus-and-fpgas-an-oneapi-case-study-with-the-tsunami-simulation-easywave
https://www.youtube.com/watch?v=XBJVr5MzfBM
https://www.youtube.com/watch?v=8dNrStoJMwE
https://www.oneapi.io/events/
https://www.alcf.anl.gov/news/intel-s-oneapi-provides-tools-prepare-code-aurora
https://www.alcf.anl.gov/news/intel-s-oneapi-provides-tools-prepare-code-aurora
https://www.lrz.de/presse/ereignisse/2021-05-04-SuperMUC-NG-Phase-2_ENG/
https://www.youtube.com/watch?v=UJ2SclsFiIA
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You can then use Intel’s oneAPI analysis and debug tools, including Intel® VTune™ Profiler, to optimize 
your code further.

Let’s take vector addition as an example. Vector addition involves adding the elements from vectors A 
and B into vector C. A CUDA* kernel computes this as follows:

In CUDA, a group of threads is a thread block equivalent to a workgroup in SYCL; however, we compute 
thread indexing differently. In CUDA, we use built-in variables to identify a thread. (See how we calculated 
the idx variable in the code above.) Once migrated to SYCL, the same kernel looks like this:

Like a CUDA thread, a work item in SYCL has a global identifier in a global space or a local identifier within 
a workgroup. We can get these identifiers from the nd_item variable. So, we no longer need to compute 
the global identifier explicitly. However, this demonstration shows how we do it in SYCL, so we see the 
similarities to CUDA’s built-in variables. Notice that nd_item is three-dimensional because of the dim3 
type in CUDA. In this context, we can make nd_item one-dimensional. This action maps a work item 
to each element in the vector. To run a CUDA kernel, we must set the block size and how many blocks 
we need. In SYCL, we must define the execution range. As the code below shows, we do this with an 
nd_range variable that combines the global range and local range. The global range represents the total 
number of work items, while the local range is the size of a workgroup.

   __global__ void vector_sum(const float *A, 
                              const float *B, 
                              float *C, 
                              const int num_elements) 
   { 
       int idx = blockDim.x * blockIdx.x + threadIdx.x; 
       if (idx < num_elements) C[idx] = A[idx] + B[idx]; 
   } 

  void vector_sum(const float *A, 
                  const float *B, 
                  float *C, 
                  const int num_elements, 
                  sycl::nd_item<3> item_ct1) 
   { 
       int idx = item_ct1.get_local_range().get(2) * 
                 item_ct1.get_group(2) + 
                 item_ct1.get_local_id(2); 
       if (idx < num_elements) C[idx] = A[idx] + B[idx]; 
   }

https://software.seek.intel.com/parallel-universe-magazine
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To invoke our SYCL kernel, we use a parallel_for and the execution range to submit the kernel to a 
queue. Each work item invokes the kernel once. We have the same number of work items for each vector 
element in this context. Let’s see how this looks:

So far, we’ve explored how to implement and run a kernel. However, before running the kernel, we need 
to think about memory allocation and copy the data to the device.

1.	First, we allocate memory for the operand vectors in the host and initialize them.

2.	Then, we do the same on the device. CUDA uses the cudaMalloc routine. By default, the DPCT migrates 
this routine to malloc_device, which uses unified shared memory (USM).

3.	Now, we use the memcpy command to copy the vectors from the host memory to the device.

After these steps, we run our kernel. Once the execution completes, we copy the result back to the host. 
We then check the result for correctness. Finally, we free the memory in the host and device by calling 
free and sycl::free, respectively.

Conclusion
The Khronos SYCL C++ standard is the open path for developing heterogeneous code that runs across 
multiple architectures. SYCLomatic, the new open-source project, provides the same CUDA to SYCL 
code migration benefits as the Intel DPC++ Compatibility Tool that came before it. And now, anyone can 
contribute to help improve and/or tune the tool to their needs. Give it a try today.

dpct::get_default_queue().parallel_for(kernel_rng, [=](nd_item<1> item_ct1) 
{ 
    vector_sum(d_A, d_B, d_C, num_elements, item_ct1); 
});

const int num_elements = 512; 
dpct::device_info prop; 
dpct::dev_mgr::instance().get_device(0).get_device_info(prop); 
const size_t max_block_size = prop.get_max_work_group_size(); 
const size_t block_size = std::min<size_t>(max_block_size, num_elements);

range<1> global_rng(num_elements); 
range<1> local_rng(block_size); 
nd_range<1> kernel_rng(global_rng, local_rng);

https://software.seek.intel.com/parallel-universe-magazine
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Resources for Developers
	• Comparing programming models: CUDA and SYCL

	• Learn about SYCL

	• oneAPI specification

	• Intel oneAPI toolkits

	• SYCLomatic project on GitHub | Contributing.md guide

	• Get started developing: Book: Mastering Programming of Heterogeneous Systems using C++ & SYCL | 
Training: Essentials of SYCL

	• CodeProject: Using oneAPI to convert CUDA code to SYCL

	• Intel® DevCloud: A free environment to access Intel oneAPI tools and develop and test code across a 
variety of Intel® architectures (CPU, GPU, and FPGA).

Get the oneAPI GPU 
Optimization Guide for 
the best performance 
with everything from 
Parallelization to Kernels to 
memory.

LEARN MORE

Visit GitHub to get your 
oneAPI code samples.

GO TO GITHUB

The Intel oneAPI Base Toolkit empowers 
you to develop high-performance 
applications and solutions across a 
variety of architectures. 

LEARN MORE

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.codeproject.com/Articles/5324827/Comparing-Programming-models-SYCL-and-CUDA
https://www.khronos.org/sycl/
http://www.oneapi.io/
http://www.intel.com/oneapi
https://github.com/oneapi-src/SYCLomatic
https://github.com/oneapi-src/SYCLomatic/blob/SYCLomatic/CONTRIBUTING.md
https://protect-eu.mimecast.com/s/P9FyCjvlRipPPWgT5ya8e?domain=link.springer.com
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
https://protect-eu.mimecast.com/s/Whb3C026RU6ZZ1jTwUMjj?domain=codeproject.com
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://github.com/oneapi-src/oneAPI-samples
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
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The use of accelerators is increasing every year, with software developers taking advantage of GPUs 
in particular to run a variety of HPC and AI algorithms on highly parallel systems. The data center 
accelerator market is projected to grow from $13.7 billion in 2021 to $65.3 billion by 2026 according to 
research from MarketsandMarkets1.

During the past decade or so, software developers have largely been bound to CUDA* to write highly 
parallel software that can make use of GPUs that, whilst originally designed for graphics processing, are 
now being used in a wide range of disciplines that include AI and machine learning. The challenge with 
this approach for software developers is that CUDA is a proprietary programming interface and can only 
be used to run on processors from NVIDIA. This ties organizations into a single vendor and limits the 
ability to innovate with the latest processor architectures.

Rod Burns and Joe Todd, Codeplay Software

Migrating from CUDA* to SYCL Just Got Easier

Free Your Software from 
Vendor Lock-in Using 
SYCL* and oneAPI

1� https://www.marketsandmarkets.com/Market-Reports/data-center-accelerator-market-48984803.html

https://software.seek.intel.com/parallel-universe-magazine
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The market is changing, and there is increasing choice from a wide range of processor vendors, including 
Intel (especially with the upcoming Intel® Iris® Xe GPU), and new specialized processors, such as those 
harnessing the RISC-V instruction set architecture. Software developers need to be able to not only take 
maximum advantage of the existing processor targets but also adapt and capitalize on this explosion of 
new architectures and innovations — but how is this possible without writing new code for each of these 
new processors from different vendors?

This is where SYCL* and oneAPI offer a flexible and non-proprietary alternative. SYCL is an industry 
defined, royalty free, open standard interface for writing software that runs on highly parallel processor 
targets. SYCL is already widely adopted: it is being used to enable performance portability on some of the 
fastest supercomputers in the world. Argonne, Lawrence Berkeley and Oak Ridge National Laboratories 
in the United States are using SYCL to enable their researchers to write software that can be run on 
Aurora (using Intel® GPUs); Perlmutter, Polaris, and Summit (using NVIDIA GPUs); and Frontier (using AMD 
GPUs) supercomputers whilst achieving the best performance. In Europe, the Lumi supercomputer team 
have chosen SYCL as a primary programming model to enable performance portability with existing and 
future machines across the continent. Other government and commercial organizations are using SYCL to 
deploy complex software to their multi-vendor systems.

SYCL sits at the heart of oneAPI, an open and standards-based programming environment for accelerator 
architectures. oneAPI defines and implements a set of commonly used libraries and frameworks that 
enable highly parallel software to run with performance and portability across architectures. oneAPI 
includes libraries for common math and neural network algorithms alongside the building blocks 
required to write highly optimized applications. Together, this provides software developers with 
everything they need to write HPC and AI applications.

You may be thinking, SYCL sounds great but how difficult is it going to be to move all my code from 
CUDA to SYCL? To understand how straightforward it is, let’s walk through an N-body simulation project 
we have been working on and demonstrate how to migrate this from CUDA to SYCL.

An N-body simulation is used to show gravitational interaction in a fictional galaxy using a defined set 
of equations (Figure 1). This project is based on an existing open-source N-body simulation written by 
Sarah Le Luron using C++. This code was adapted to implement a kernel to run some of the simulation 
calculations in parallel on an NVIDIA GPU, helping to achieve a faster execution time compared to 
running on a CPU.

https://software.seek.intel.com/parallel-universe-magazine
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14The Parallel Universe

How do we port this kernel code to SYCL? Whilst this project has a single kernel, other applications may 
have hundreds of CUDA kernels in a code base, and this next step will remove a lot of the heavy lifting 
and save significant development time.

The first step involves using the recently open-sourced SYCLomatic tool, which provides a semi-
automated way to port CUDA to SYCL. Given one or more CUDA source files, it converts the source code 
to SYCL. Simply tell the tool what source files need to be converted, and it will produce a C++ source file 
containing the ported code. Figure 2 shows how simple the steps are at this stage using the intercept-
build script. This tracks and saves the commands and flags in a JSON file, which is useful for projects with 
multiple source files. By pointing the tool at the source files that need to be ported, it produces a set of 
SYCL code files alongside some helper classes and functions that are used to simplify the porting at this 
stage.

Figure 1. N-body simulation of a fictional galaxy.

Figure 2. SYCLomatic workflow.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
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Let’s look at some of the code that SYCLomatic generates (Figure 3). This comparison shows a portion of 
the code that was converted by the tool. One of the changes made is to the built-in square root method. 
This is a simple translation from the CUDA version to the SYCL equivalent. You can also see that the tool 
generates comments that help to give the developers guidance and hints on further changes that they 
might need to make to optimize or ensure accuracy in their application. There are other changes to the 
kernel code that can be examined in the project repository. It’s worth noting that, for this N-body project, 
no further changes were required to the SYCLomatic-generated source code. This demonstrates the 
effectiveness of this tool, but it’s worth understanding that usually developers will need to do some level 
of manual code changes for their project.

Now that the porting is done, it’s possible to run this SYCL code on a range of processors. Let’s focus on 
using an NVIDIA GPU target with the DPC++ compiler. DPC++ is an open-source SYCL compiler that is 
part of the oneAPI initiative. It includes support for Intel® processors, NVIDIA GPUs and AMD GPUs. There 
are instructions on how to set up your environment to use the NVIDIA and AMD targets on the Codeplay 
website and the open source DPC++ repository.

Running the N-body simulation using CUDA and SYCL on the same NVIDIA hardware shows comparable 
performance (Figure 4). Running the CUDA and SYCL versions of this N-body simulation on the same 
NVIDIA GeForce* GPU demonstrates it is possible to achieve comparable performance using either 
native CUDA or SYCL. The times in the images show the kernel time for the N-body gravity simulation 
is close, and in this instance the SYCL version is slightly faster compared to the native CUDA code. It’s 
worth noting that your mileage will vary, but there are examples across both research and commercial 
organizations that show performance results using SYCL that closely match CUDA. See the Zuse Institute 
Berlin’s video presentation showing how their Tsunami simulation code was able to achieve this.

Figure 3. Converting CUDA* (left) to SYCL* (right) using SYCLomatic.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
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https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
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Whilst performance portability is achievable with SYCL on NVIDIA GPUs using DPC++, there will be times 
when it’s necessary to figure out where your code needs to be fine-tuned to bring out the best from 
the hardware. Alongside the ability to run SYCL code on NVIDIA hardware, it’s also possible to enjoy 
the benefits of the NVIDIA profiling tooling including NVIDIA Nsight* (Figure 5). Without any code or 
configuration changes, these same familiar tools can be used to help you fine tune and optimize your 
application to get the absolute best performance.

Figure 4. The original CUDA* N-body code (top) and the converted SYCL* code 
(bottom) give comparable performance.

Figure 5. NVIDIA Nsight* can be used to profile SYCL* applications when using the 
CUDA* backend.
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17The Parallel Universe

By examining the information from these tools, it is possible to track down kernel and memory 
optimizations, making it easier to pinpoint the area of your code to focus on. If you are wanting to get 
into the very fine details, it’s also possible to examine the generated low-level PTX instructions using 
the compiler output. What this means is that developers can use the tools most suitable for their target 
architecture using SYCL, whether that’s NVIDIA Nsight for NVIDIA GPUs or Intel® VTune™ for Intel® 
platforms. The path from CUDA to SYCL is not as daunting as it seems, and the benefits are clear to see. 
Code written with SYCL enables a future-proofed software development environment, allowing software 
development teams to target existing accelerator processors, such as those from Intel, NVIDIA, and AMD, 
and be ready to adopt the latest architectures, such as novel RISC-V based accelerators.

Take some time to examine the open-source N-body project code we have developed, use SYCLomatic 
to port your CUDA code to SYCL and future-proof your software for the next generation of processors.

Intel® DPC++ Compatibility Tool
LEARN MORETransform Your CUDA Applications into Standards-Based 

Data Parallel C++ Code

https://software.seek.intel.com/parallel-universe-magazine
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As everything from streaming services to e-commerce platforms and social networks grows, so does the 
available data and the need for efficient algorithms. To power these platforms and engage the end users, 
an increasing number of companies are investing in recommendation systems. Modern recommendation 
systems require a complex pipeline to handle both data processing and feature engineering at 
tremendous scale, while promising high service-level agreements for complex deep learning (DL) models. 
Additionally, these complex DL models also need to be constantly updated and retrained to guarantee 
the best possible performance, while keeping the training price point down.

In this article, we introduce some of the challenges of running modern recommender systems. To tackle 
these challenges, we propose an end-to-end (E2E) democratization solution that includes optimized 
parallel data processing based on Apache Spark*, and user-guided automatic model democratization 

Jian Zhang, AI Software Engineering Manager, Intel Corporation; and Tobias Andreasen, 
Machine Learning Specialist, SigOpt, an Intel company

Democratizing End-to-End Recommendation 
Systems 

The SigOpt Intelligent 
Experimentation Platform
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via SigOpt AutoML. We present how the solution improves the E2E pipeline efficiency on commodity 
clusters for common recommender system workloads.

Motivations

Challenges of Recommendation Systems
The goal of a recommendation system is to automatically predict a user's preference based on context 
about the user and context about all possible preferences. The use of recommendation systems has been 
growing steadily in retail and e-commerce, healthcare, transportation, and more. For some platforms, 
recommendations from automated recommendation systems account for as much as 30% of revenue. It 
is said that 35% of what consumers buy on Amazon comes from automated recommendations, and that 
75% of what users watch on Netflix comes from automated recommendations (source: How Retailers 
Can Keep Up with Consumers).1

Figure 1 shows the architecture of a modern recommendation system consisting of two major 
workstreams: data processing and modeling. Data processing handles data collection and processing, 
and uses feature engineering to generate features for model training. Modeling can be divided into two 
subcategories: model training and model serving.

Figure 1. Recommendation system architecture.

1�https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
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Accuracy is critical when building an E2E recommendation system, but challenges arise with excessively 
large models and datasets:

	• Huge datasets: Recommendation systems are often trained on large datasets (terabytes and sometime 
even petabytes), which require large clusters to store and process the data. Slow data movement 
between the data processing and training/inference clusters can be challenging. 

	• Data preprocessing: Datasets need to be loaded, cleaned, preprocessed, and transformed into a 
suitable format for DL models and frameworks. This requires complex data processing technologies, like 
batch/streaming data processing based on the type of data being processed. 

	• Feature engineering: Numerous sets of features need to be created, engineered, and tested, which is 
error-prone and time-consuming.

	• Models and algorithms: Companies develop complex models and algorithms to generate the best 
business predictions. Those models require deep expertise and unique capabilities.

	• Repeated experiments: Building and maintaining the best performing models is an iterative process 
that requires multiple experiments.

	• Huge embedding tables: Categorical features require embedding and a large amount of memory, 
something that tends to be very bandwidth intensive.

	• Distributed training: The heavy models usually require extreme computing power, so distributed 
training is a must, which makes both hardware and software scalability a critical challenge to be 
resolved.

Artificial Intelligence (AI) Democratization
The purpose of AI democratization is to make it accessible and affordable to every organization and end-
user. Currently, AI is restricted to data scientists and data analysts who are specifically trained in this field. 
Therefore, making AI accessible to a wider user base is one of the goals of AI democratization. Moreover, 
AI requires hardware that can be expensive, so another goal of AI democratization is to make AI scale on 
commodity hardware that exists in most data centers.

There are multiple areas to be democratized:

	• Data: Data democratization is a priority because AI cannot generate insights without data. Besides the 
amount of data, improving data quality and making data access easier and faster is also critical.

	• Infrastructure: The effectiveness of AI relies on the infrastructure. Architecting the software and 
hardware platform, efficiently managing resource allocation, and auto-scaling are all important factors 
for infrastructure democratization.

	• Hardware: The compute-intensive nature of AI requires specialized, and sometimes expensive, 
accelerators. Democratization aims to migrate AI frameworks from expensive accelerators to commodity 
hardware to reduce cost.

	• Algorithms: To get an accurate prediction or inference, the models and algorithms can be very complex. 
Democratization tries to simplify the use, development, and sharing of AI algorithms to reduce the entry 
barriers.

https://software.seek.intel.com/parallel-universe-magazine
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SigOpt 
The SigOpt intelligent experimentation platform helps users produce the best models. SigOpt is 
completely agnostic to the modeling framework. It automatically tracks and logs everything that has 
been done throughout the modeling process. This allows the user to visualize everything in a hosted 
dashboard. SigOpt also offers a set of proprietary optimization algorithms that help users optimize their 
models for the best performance. It gives modelers the ability to optimize multiple metrics and add both 
thresholds and constraints to guardrail these metrics and their impact on the final model.

Smart Democratization Advisor
After seeing customers struggle to bring deep learning recommendation models (DLRM) into production, 
we decided to democratize them to remove the common pain points like slow training times, large 
memory consumption, slow convergence, and communication overhead. We developed Smart 
Democratization Advisor (SDA), a human intelligence enhanced toolkit to generate recipes for SigOpt 
AutoML with parametrized configuration files (Figure 2). SDA uses SigOpt to automatically make the 
training faster through intelligent optimization, reduce the size of the model, find the optimal gradient 
descend method, and reduce the need for looking through massive look-up tables.

SDA facilitates the generation of a SigOpt recipe based on expert-level knowledge of how a particular 
model, like DLRM, can be parametrized. SDA takes input choices around data, feature shapes, and 
models, and then uses this information to automatically generate all the information needed to start a 

Figure 2. SDA overview.
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SigOpt experiment. Through built-in expert-level knowledge — such as the best suited number of layers, 
optimizers, and hyperparameters — SDA automatically generates a parameterized configuration to 
facilitate SigOpt AutoML.

The generated configuration includes target features, models, model metrics, and some training-specific 
parameters, like epochs, steps, etc. SDA converts the time-consuming, manual model-tuning and 
optimization process to automated hyperparameter optimization (HPO), which simplifies the process of 
AI democratization, increases efficiency, and empowers data scientists to deliver more value.

SDA Examples 
SDA automatically generates a parameter configuration for all built-in models in YAML format that 
contains model parameters, training parameters, SigOpt parameters, etc. Figure 3 shows an example 
for a wide and deep model that includes model parameters (e.g., number of layers, hidden units per 
layer, size of embeddings, and dropout rate), training parameters (e.g., learning rate, learning rate decay, 
warmup steps, batch size, and optimizer), and SigOpt parameters (e.g., observation budget and parallel 
bandwidth). Users also have the freedom to add or remove parameters in any of the categories. 

Figure 3. SDA-generated YAML file for a wide and deep model.
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Once the YAML file has been generated, the user can start the SigOpt optimization loop. With SDA-
generated model parameters, SigOpt experiments budget can be greatly reduced. Meanwhile, SDA 
can leverage SigOpt multimetric optimizations to further improve AutoML efficiency. The joint solution 
reduces the time needed to get the desired models into production.

Performance Evaluation 
To evaluate how SDA performs, we designed several experiments to show whether SDA can democratize 
typical recommendation systems automatically, and how it performs compared with original models. 

DLRM is a personalization model open-sourced by Meta (Figure 4). It was conceived by the union of 
the two perspectives in recommendation systems: both collaborative filtering and predictive analytics-
based approaches. DLRM is able to work efficiently with production-scale data while delivering state-of-
the-art results. It leverages embeddings to process sparse features and adopts multilayer perceptron 
(MLP) to process dense (numerical) features, and then it interacts with features explicitly using statistical 
techniques. Finally, it predicts the event probability by postprocessing the interactions with another MLP.

DLRM on commodity CPUs can be challenging. The initial NumPy data processing and model training 
can take several days. For data processing, the single-threaded NumPy data processing becomes a 
bottleneck. To resolve this issue, Intel developed and open-sourced RecDP, a parallel data processing 
toolkit for recommendation systems based on PySpark. RecDP can fully utilize multithreading and multi-
node benefits when doing data processing, and can deliver up to a 100x speed-up over the original data 
processing solution.

The tests were conducted on a four-node cluster, each node equipped with two Intel® Xeon® Platinum 
8358 processors, 512GB memory, and connected with 40GB Ethernet. A 1TB Intel® SSD DC P4500 
NVMe was used as a data drive. Table 1 shows a detailed configuration.

Figure 4. DLRM model architecture.

https://software.seek.intel.com/parallel-universe-magazine
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To evaluate the improvement from SDA, we designed four test cases (Table 2):

	• Original DLRM: The original DLRM model, using E2E model training time as metrics 

	• SDA-assisted DLRM: The SDA-optimized model, including all model tunings and optimizations 

	• SigOpt AutoML: The total execution time of five SigOpt experiments 

	• SDA-assisted SigOpt AutoML: The total execution time of SigOpt experiments, using SDA-generated 
configurations

Table 1. System configuration.

https://software.seek.intel.com/parallel-universe-magazine
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The DLRM performance comparison of the four test cases is shown in Figure 5. It shows that SDA can 
deliver a 5.4x performance improvement over the original DLRM model and a 5.2x speed-up for SigOpt 
AutoML of five experiments while maintaining the same AUC (area under the ROC curve) as the original 
model.

Table 2. Test configuration.

Figure 5. DLRM performance comparison.
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SDA cannot deliver such results without the help of SigOpt multi-metrics and metrics thresholds. To 
evaluate the effect of multi-metrics (accuracy and training time) in the SigOpt tuning process, we compare 
the performance of SigOpt AutoML plus SDA with or without multiple metrics. Figure 6 shows that  
multi-metrics and metrics thresholds were able to reduce training time, delivering up to a 1.26x speed-up 
for the best metrics.

To analyze the effect of multiple metrics, we explored both the time and AUC metrics for with and 
without multi-metrics (Figure 7). With multi-metric and metric thresholds, the number of experiments 
that delivered the same AUC but with lower training time increased.

Figure 6. Multiple metrics performance.

Figure 7. Best metrics comparison with and without multi-metrics and metrics thresholds.
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Summary 
Recommendation systems are becoming increasingly popular because they bring genuine business value, 
but they also pose a lot of challenges due to their unique nature. E2E AI democratization is targeted to 
address those challenges, and to make AI accessible and affordable to every organization and every 
user. This article introduced SDA, one component of the Intel AI democratization kit, to simplify and 
automate AI democratization. SDA is a toolkit to generate SigOpt recipes for AutoML with parametrized 
configuration files generated by built-in expertise. Performance evaluation showed SDA-assisted SigOpt 
AutoML delivers very promising results — up to a 5x performance speed-up for a DLRM model while 
remaining at the same AUC. Meanwhile, SigOpt multi-metrics and metrics thresholds further improve 
efficiency.

SDA is our first attempt toward AI democratization. If you want to use it, please check out the RecDP repo 
and stay tuned for future articles. If you want to use SigOpt for your own projects, visit sigopt.com/signup 
and sign up for free.
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It is a general misconception that GPUs are necessary to train deep learning (DL) models. There are many 
complex DL models that train more efficiently on CPUs using distributed training configurations. Intel® 
Xeon® Scalable processors have built-in AI acceleration with Intel® Deep Learning Boost instructions. This 
article describes how to set up distributed training on a cluster using TensorFlow* and Horovod*.

TensorFlow is a widely used DL framework that is optimized for Intel® processors and other architectures 
using Intel® oneAPI Deep Neural Network (oneDNN), an open-source, cross-platform library for DL 
applications. The TensorFlow optimizations enabled by oneDNN accelerate key performance-intensive 
operations, such as convolution, matrix multiplication, batch normalization, and many more. Horovod is 
an open-source package that facilitates distributed DL with TensorFlow and other popular frameworks, 
such as PyTorch*. It is widely used to train models across multiple GPUs and CPUs.

Ashiq Imran, Wenyue Hu, Ashraf Bhuiyan, AG Ramesh, and Geetanjali Krishna, Intel 
Corporation; and Wenxi Zhu and Minwen Deng, Tencent

A Case Study of Training the AI Model on Tencent AI 
Arena Platform 

Distributed Training on Intel® 
Xeon® Scalable Processors
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AI Arena is an open platform presented by Tencent for the research of multi-agent intelligence and 
complex decision-making. The platform includes a wide range of services that can help AI researchers 
to build their experiment environment conveniently. Tencent has shown a real-world case of building an 
AI agent in the smash-hit mobile game Honor of Kings with the AI Arena platform, which involves multi-
agent competition and cooperation, imperfect information, complex action control, and massive state-
action space. This AI agent could make players have more fun to enhance game playability. We present a 
case study of using Tencent* production-level model training on a 16-node cluster comprising Intel Xeon 
Scalable processors, achieving up to a 15.2x speed-up over a single node.

Running Distributed Deep Learning (DL) Training
You can either use a prebuilt Docker* container with TensorFlow with oneDNN enabled, which has 
everything you need:

docker pull intel/intel-optimized-tensorflow:2.6.0-ubuntu-18.04-mpi-horovod

Or you can manually install TensorFlow (v2.6 or later) with oneDNN enabled, Horovod (v0.22.1 or later), 
and Open MPI (v4.0 or later). Be sure to check your GCC version. If you are using Ubuntu* 16.04 or older, 
install GCC v8.4.1 or later.

Use the following commands to run distributed TensorFlow using the Horovod framework on a Linux* 
cluster. First, set the following environment variables:

export LD_LIBRARY_PATH=<path to OpenMP lib>:$LD_LIBRARY_PATH 
export PATH=<path to Open MPI bin>:$PATH 
export OMP_NUM_THREADS=#of_cores of the machine [e.g., lscpu | grep "Core"] 
export KMP_AFFNITY=granularity=fine,compact,1,0 
export KMP_BLOCKTIME=1

Before starting the training, we can find out how many sockets are in the system by using the following 
command:

lscpu | grep "Socket"

Use the following command to run the training on one server with two sockets. Here, the total number of 
workers is two:

horovodrun -np 2 -H localhost:2 --autotune python train.py

To run the training across four servers, each with two sockets, use this command. Here, the total number 
of workers is eight (one worker on each socket):

horovodrun -np 8 -H server1:2,server2:2,server3:2,server4:2 --autotune python train.py

https://software.seek.intel.com/parallel-universe-magazine
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To run on eight servers, each with one socket, use this command. Here, the total number of workers is 
also eight:

horovodrun -np 8 \ 
-H server1:1,server2:1,server3:1,server4:1,server5:1,server6:1,server7:1,server8:1 \ 
--autotune python train.py

As you can see, you can scale the number of servers up or down depending on the time-to-train that you 
want to achieve for your model. Time-to-train is expected to scale almost linearly with the number of 
servers used. Hyperparameter optimization is also done, as it would be for training on multiple GPUs. The 
learning rate and effective batch size can often be scaled by the number of workers. An increase in the 
learning rate can often compensate for the increased batch size.

Case Study: Training Wukong AI*
Wukong AI*, an artificial intelligence program, playing Honor of Kings, a popular MOBA game published 
by Tencent, exceeds the performance of top-professional players. Wukong AI uses reinforcement learning 
(RL). The goal of RL is to select and optimize appropriate policies to strengthen the AI agent. Selection 
of these policies can be optimized in deep RL training. Distributed training is used to scale the training 
process to multiple RL learners on the cluster of 2nd Generation Intel Xeon Scalable processors.

We started off on a single node and with a single worker to measure the baseline performance, and 
then scaled up to more workers until we reached the desired time-to-train. We achieved the required 
performance with 16 nodes. In this case study, distributed training gave up to a 15.2x speed-up over the 
baseline performance (Figure 1). This is nearly linear speedup with distributed training on our Intel Xeon 
processor-based cluster.

Figure 1. Distributed training gives significant speed-up over baseline performance.
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Intel Xeon Scalable processors provide the performance required to train a variety of production 
workloads. Using Horovod* for distributed training reduces the time-to-train. In this blog, we shared a 
recent case study used by Tencent AI Lab.

Stay tuned for more blogs and articles as Intel adds more hardware acceleration in the next generation of 
Intel Xeon Scalable processors and software acceleration to continue to meet users’ needs.

Resources and Support
You can get more information from the following sites:

	• TensorFlow

	• Intel TensorFlow optimizations on PyPI*

	• Intel oneAPI Deep Neural Network Library

For help with technical questions, visit the following communities and forums to find answers and get 
support:

	• TensorFlow issues (GitHub)

	• Intel Optimized AI Frameworks

	• Horovod

System Configuration
TensorFlow source code https://github.com/tensorflow/tensorflow

TensorFlow version 2.6.0

CPU 76

Threads per core 2

Cores per socket 19

Sockets 2

NUMA nodes 2

Vendor ID GenuineIntel

BIOS vendor ID Smdbmds

CPU family 6

Model 85

Model name Intel Xeon Platinum 8255C Processor @ 2.50 GHz

BIOS model name 3.0

Stepping 5

Hyper-threading ON

Turbo ON

Memory 256 GB

OS Red Hat Enterprise CentOS Linux* version 8.2 (Core) 

kernel 4.18.0-305.3.1.el8.x86_64 x86_64
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Next-generation sequencing (NGS) technologies have significantly reduced the cost and time required 
to sequence whole genomes and exomes. NGS and efficient secondary analysis have brought precision 
medicine to the clinical setting and even to the point of care. Sentieon optimized their genome analytics 
software for 3rd Gen Intel® Xeon® Scalable processors and the 4th Gen Intel Xeon Scalable processor 
(formerly code-named Sapphire Rapids). It is designed to scale on multicore systems to achieve best-
in-class performance — whether the clinical requirement is fast turnaround (e.g., in the emergency 
department to predict adverse drug reactions from a single patient genome) or high throughput (e.g., in 
an oncology lab to analyze multiple samples from the same tumor or from different patients).

The Sentieon software is vectorized for modern processors, particularly Intel Xeon processors, to achieve 
high performance without proprietary programming languages or specialized hardware, which eliminates 
vendor lock-in and reduces software development, deployment, and maintenance costs. We wanted 

Henry A Gabb, Intel Corporation; and Don Freed and Zhipan Li, Sentieon Inc.
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to compare Sentieon performance and accuracy to alternatives, like NVIDIA Clara Parabricks*, to see if 
specialized hardware is cost-effective or even necessary.

Recent performance data is available for comparison: Benchmarking the NVIDIA Clara Parabricks 
Germline Pipeline on AWS. This article reports performance and cost data for the following HG001 tests:

	• Whole exome sequencing (WES) @ 50x, 75x, and 100x coverage

	• Whole genome sequencing (WGS) @ 30x and 50x coverage

We will focus on the HG001 WGS 30x test from the PrecisionFDA Truth Challenge. A Parabricks vs. 
Genome Analysis Toolkit (GATK) performance comparison is provided for this test (Figure 1). GATK is 
the standard by which variant calling accuracy is judged, but it is written in Java*, so it is not the gold 
standard of performance. The University of Illinois and the Mayo Clinic have already established that 
Sentieon significantly outperforms GATK with no loss of accuracy: Sentieon DNASeq* Variant Calling 
Workflow Demonstrates Strong Computational Performance and Accuracy. Therefore, we will not bother 
with a GATK comparison. Our goal is to compare the Sentieon software (written in C++ and optimized for 
modern vector CPUs) to Parabricks (written in CUDA* and optimized for NVIDIA GPUs).

We used the benchmark description and performance data from Figure 1 to get as close as possible 
to an apples-to-apples performance comparison of Sentieon and Parabricks. We mapped the 
haplotypecaller, post-processing, and fq2bam steps from Figure 1 to the typical stages of the variant 
calling pipeline (Table 1). Our mapping is based on the following description from the Parabricks 
benchmarks:

Figure 1. Comparison of NVIDIA Clara Parabricks* execution time (in minutes) against a GATK 
baseline on various AWS EC2* instance types (source: Benchmarking the NVIDIA Clara Parabricks 

Germline Pipeline on AWS, Figure 4).
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“The fq2bam step includes bwa-mem and parts of coordinate sorting, post-processing includes 
parts of coordinate sorting, marking duplicates followed by bqsr. haplotypecaller the applybqsr step 

applied on the input bam, which is then fed to the variant calling step.” 

Pipeline Stage Parabricks* Sentieon

Alignment
fq2bam BWA MEM + Sort utility

Sorting

Deduplication
post-processing LocusCollector + Dedup, QualCal

BQSR

Apply BQSR
haplotypecaller Haplotyper

Variant Calling

The side-by-side competitive performance of Sentieon vs. Parabricks on a variety of computing 
platforms is shown in Figure 2 and Table 2. The platforms and pricing details are shown in Table 3. 
3rd Gen Intel Xeon Scalable processors deliver competitive performance, with the 4th Gen Intel Xeon 
Scalable processor (formerly code-named Sapphire Rapids) giving the best overall performance. 
However, performance is only part of the story. Cost-per-genome and power consumption must also be 
considered.

The cost-per-genome is substantially lower for the Intel Xeon processor ($1.54) compared to the NVIDIA 
A100 Tensor Core processor ($4.59) (Table 3). If the 4th Gen Intel Xeon Scalable processor has similar 
AWS EC2* pricing, the cost-per-genome falls to less than a dollar ($2.1635/h * 26.8 minutes = $0.97). It 
is also worth noting that the 4th Gen Intel Xeon Scalable processors used in these benchmarks are pre-
release hardware, so the performance of the final product could improve.

In terms of power consumption, the two Intel Xeon Platinum 8352M processors in the c6i.metal instance 
require 370W, whereas the eight NVIDIA A100 Tensor Core processors in the p4d.24xlarge instance 
require 3,200W. The best Parabricks performance requires 8.6x the power and 3.0x the cost, but only 
delivers 1.5x the performance of the 3rd Gen Intel Xeon 8352M processor.

Table 1. Stages of the variant calling pipeline and their Parabricks* and Sentieon 
equivalents for performance comparisons.

https://software.seek.intel.com/parallel-universe-magazine
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Pipeline 
Stages

NVIDIA Clara Parabricks* Sentieon

AWS EC2* Instance Type Intel® Xeon® Scalable Processors

g4dn.12xlarge g4dn.metal p3dn.24xlarge p4d.24xlarge c6i.metal 3rd Gen 4th Gen

Alignment, 
sorting

60 35 22 17 33.0 31.3 21.1

Deduplication, 
BQSR

5 5 3 5 4.5 3.2 2.2

Apply BQSR, 
variant calling

15 10 10 6 5.2 5.3 3.5

Total time 80 50 35 28 42.7 39.8 26.8

Figure 2. Side-by-side competitive performance of Sentieon vs. Parabricks* on a variety 
of cloud and on-premises platforms. Note that the Parabricks times are taken from the 

published results or approximated from visual inspection of Figure 1.
Performance measurements were performed by Sentieon in March 2022. The 3rd Gen Intel Xeon Scalable processor-based system is a two-socket 

2.4 GHz Intel Xeon Platinum 8368 processor (152 cores, HyperThreading enabled), 256 GB DDR4-3200 memory, and 1 TB Intel® 660p and 2 TB Intel 

DC P4510 SSDs. The 4th Gen Intel Xeon Scalable processor-based system is an Intel® pre-production platform with two 4th Gen Intel Xeon Scalable 

processors (formerly code-named Sapphire Rapids), >40 cores, Hyper-Threading enabled), Intel pre-production BIOS, 256 GB DDR memory 

(16(1DPC)/16 GB/4800 MT/s), and 1 TB Intel D3-S4610 SSD. Ubuntu Linux* 20.04 was installed on both systems. Performance varies by use, configu-

ration, and other factors so results may vary.

Table 2. Execution time (in minutes) for Parabricks* and Sentieon on a variety of 
cloud and on-premises platforms. Note that the Parabricks times are taken from the 

published results or approximated from visual inspection of Figure 1.

https://software.seek.intel.com/parallel-universe-magazine
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AWS EC2* instance Processor On-Demand 
Price (USD/

hour)

Spot Price 
(USD/
hour)

Cost-per-Genome (USD)

c6i.metal Intel® Xeon® Platinum 8352M $5.44 $2.1635 $2.1635/h * 42.7 minutes = $1.54

g4dn.12xlarge NVIDIA T4 Tensor Core $3.912 $1.2439 $1.2439/h * 80 minutes = $1.66

g4dn.metal NVIDIA T4 Tensor Core $7.824 $2.3472 $2.3472/h * 50 minutes = $1.96

p3dn.24xlarge NVIDIA Tesla V100 $31.212 $9.3636 $9.3626/h * 35 minutes = $5.46

p4d.24xlarge NVIDIA A100 Tensor Core $32.7726 $9.8318 $9.8318/h * 28 minutes = $4.59

The Parabricks blog cited above reports variant calling accuracy (F1 scores) comparable to GATK. 
Sentieon, however, is a consistent winner in the PrecisionFDA Truth Challenge administered by the U.S. 
Food and Drug Administration (Figure 3). The HG001 benchmark comes from this challenge. In the more 
recent PrecisionFDA Truth Challenge V2, Sentieon competed against 19 other teams and won four of the 
12 categories. Parabricks was not among the entries. 

Table 3. AWS EC2* price comparisons for Intel® and NVIDIA instances. Prices are for on-
demand and spot instances in the U.S. West (Oregon) region as of March 11, 2022. (See 

Amazon EC2 Pricing.)

Figure 3. Results from the first PrecisionFDA Truth Challenge, showing Sentieon 
winning two of the six categories.

https://software.seek.intel.com/parallel-universe-magazine
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Sentieon does not use proprietary programming languages like CUDA, thus avoiding vendor lock-in. 
The software is written in standard C++. It is also optimized to take advantage of the vector processing 
capability of modern processors. Sentieon uses algorithmic improvements rather than expensive, 
power-hungry hardware to achieve performance. It supports and optimizes for all short- and long-read 
sequencing platforms, and it is a consistent winner in the FDA’s open challenges. This demonstrates that 
Sentieon on Intel Xeon Scalable processors is the leadership platform for genome secondary analysis.

https://software.seek.intel.com/parallel-universe-magazine
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Increasing the resolution of measurement has always revolutionized fields; for example, the incredible 
scientific impact of the invention of microscope and telescope. Single-cell analysis is a good example of a 
similar revolution unfolding in biology. The human body is made up of nearly 40 trillion cells. Historically, 
these cells have been examined in bulk, sometimes millions of cells at a time, which cannot capture the 
differences across cells. Single-cell analysis looks at the individuality of cells. It is beginning to unravel 
the mystery of cell differentiation by identifying novel cell types, revealing mechanisms that make these 
cells different from each other, and demonstrating how cells respond to certain diseases or drugs. This 
relatively new field is already showing immense potential for biological discoveries with applications 
ranging from cancer to Covid-19 related research.

Intel® Xeon® Processor Outperforms NVIDIA A100 
in an End-to-End Scanpy Pipeline

Accelerating Single-Cell 
Genetics Analysis

Sanchit Misra, Senior Research Scientist, and Narendra Chaudhaury, 
Research Scientist, Intel Labs

Additional contributions from Padmanabhan Pillai, Senior Research Scientist, Bharat Kaul, Director of the 
Parallel Computing Lab, Henry Gabb, Senior Principal Engineer, Andrey Gorshkov, AI Software Engineering 
Manager, and Pavel Yakovlev, AI Frameworks Engineer, Intel Corporation; and Gurbinder Gill, Senior 
Software Engineer, Katana Graph
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The amount of single-cell data is increasing at a rapid pace, thanks to the advancement of data 
measurement technologies. The size of individual datasets is increasing at a similar rate. Analysis of 
this data typically involves running a data science pipeline. Because the steps of the pipeline are often 
repeated with changes in parameters, it helps to have an interactive pipeline that can run in near real-
time.

ScRNA-seq Analysis of 1.3 Million Mouse Cells in Just Seven and 
a Half Minutes on a Single Intel® Xeon® Processor
There are many kinds of single-cell analyses studying various aspects of cell-differentiation. Single-cell 
RNA-seq (scRNA-seq) analysis studies the differences in gene expression profiles across cells. It relies 
on single-cell RNA sequencing, which is an advanced technique that enables measurement of the gene 
expression of individual cells.

A typical workflow to do scRNA-seq analysis begins with a matrix that consists of the expression 
levels of the genes in each cell (Figure 1). In the data preprocessing steps, noise is filtered out and the 
data is normalized to obtain the activity of every human gene in each individual cell of the dataset. 
During this step, machine learning is often used to correct artifacts from data collection. Subsequently, 
dimensionality reduction is performed, followed by clustering to group cells with similar genetic activity, 
and then visualization of the clusters. With over 800,000 downloads, Scanpy is one of the most widely 
used toolkits for this analysis.

For a dataset consisting of 1.3 million mouse brain cells, the pipeline depicted in Figure 1 would normally 
take nearly 5 hours on a single CPU instance (n1-highmem-64) on Google Cloud Platform* (GCP*) using 
the off-the-shelf (baseline) Scanpy implementation. For the same pipeline, NVIDIA has reported an end-
to-end runtime of 686 seconds on a single NVIDIA A100 GPU using NVIDIA RAPIDS*.

At Intel Labs, we collaborated with the Intel® oneAPI Data Analytics Library (oneDAL) team and Katana 
Graph to accelerate the pipeline using better parallel algorithms and tuning the performance to the 
underlying architecture. While this is still a work-in-progress, Table 1 and Figure 2 report our current 
performance and cloud usage costs. These results were recently presented at Intel Investor Day 2022. 
The whole pipeline can now be finished on the same single CPU instance (n1-highmem-64) on GCP 

Figure 1. Pipeline showing the steps in analysis of single-cell RNA sequencing data, starting from 
gene activity matrix to visualization of different cell clusters.

https://software.seek.intel.com/parallel-universe-magazine
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in just 626 seconds. This performance only gets better with the newer n2 instance types running 3rd 
Generation Intel® Xeon® Scalable processors (Ice Lake). We also reduced the memory requirement of 
the pipeline so that we can use the low-memory n2-highcpu-64 instances instead of high-memory n2-
highmem-64 instances. On a single instance of n2-highcpu-64 on GCP, the whole pipeline finishes in just 
459 seconds (7.65 minutes). This is nearly 40x faster than the 5-hour baseline that we started with. This 
is also nearly 1.5x faster than the NVIDIA* A100 GPU performance.

The speed-up and reduction in memory requirement has resulted in a significant reduction in cloud 
computing costs (Table 1). The n2-highcpu-64 instance on GCP costs only $0.29. This is nearly 66x 
cheaper than n1-highmem-64 running baseline Scanpy, and 2.4x cheaper than an NVIDIA A100 GPU.

Pipeline step CPU 
n1-highmem-64 
64 vCPUs 
(baseline Scanpy)

GPU 
a2-highgpu-1g 
Tesla A100 40GB 
GPU 
(GPU-accelerated 
Scanpy)

CPU 
n1-highmem-64 
64 vCPUs (CPU-
accelerated 
Scanpy)

CPU 
n1-highmem-64 
64 vCPUs (CPU-
accelerated 
Scanpy)

CPU  
n2-highcpu-64 
64 vCPUs (CPU-
accelerated 
Scanpy)

Data load + 
Preprocessing

1120 475 16.9 11.3 16.6

PCA 44 17.8 6.9 5.6 5.6

t-SNE 6509 37 216.2 175.6 172.8

k-means (single 
iteration)

148 2 11.1 7.8 8.1

KNN 154 62 73.8 60.0 64.2

UMAP 2571 21 167.4 100.8 96.2

Louvain clustering 1153 2.4 13.9 10.3 8.9

Leiden clustering 6345 1.7 52.8 36.4 34.5

Re-analysis of 
subgroup

255 17.9 23.9 20.8 19.2

Rest 39 49.2 42.7 33.6 32.8

End-to-end run 
time (seconds)

18338 686 625.7 462.1 458.8

On-demand Price 
(USD/hr)1 3.786 3.673 3.786 4.192 2.294

Total cost (USD) 19.284 0.700 0.658 0.538 0.292

Table 1. Execution time and cloud costs for scRNA-seq analysis of 1.3 million mouse brain cells 
on various GCP instances. The first two columns report published execution time and cloud 
costs of baseline Scanpy on a single CPU instance (n1-highmem-64) and GPU-accelerated 

Scanpy on a single GPU instance (a2-highgpu-1g). The last three columns report measured2  
execution time and cloud costs of CPU-accelerated Scanpy on single instances of two 

generations of CPU instance types (n1-highmem-64, n1-highmem-64, and n2-highcpu-64).

1As mentioned on this link on May 15, 2022: https://cloud.google.com/compute/vm-instance-pricing.
2Tests by Intel on May 25, 2022
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Figure 2. Execution time and speed-up for scRNA-seq analysis of 1.3 million mouse brain cells 
on various GCP instances. The chart uses (1) published execution time of baseline Scanpy on a 
single CPU instance (n1-highmem-64) and GPU-accelerated Scanpy on a single GPU instance 

(a2-highgpu-1g), and (2) measured3 execution time of CPU-accelerated Scanpy on single 
instances of two generations of CPU instance types (n1-highmem-64, n2-highmem-64 and  

n2-highcpu-64). In addition, the line graph shows the speed-up over baseline Scanpy running 
on n1-highmem-64 instance.

How Was the Data Science Pipeline Accelerated?
Detailed below is a brief summary of the steps we took to improve the performance of this pipeline:

	• To increase the efficiency of data preprocessing, we used a warm file cache and multithreading using 
Numba, a just-in-time (JIT) compiler. This improved the baseline preprocessing performance by more 
than 70x.

	• We also used the Intel® Extension for Scikit-learn*, which has efficient implementations of K-means 
clustering, KNN (K Nearest Neighbor), and PCA (Principal Component Analysis).

	• Scanpy originally used scikit-learn’s tSNE (t-distributed Stochastic Neighbor Embedding) 
implementation, which was inefficient for Intel Xeon processors. We achieved nearly 40x speed-up of 
tSNE by building an efficient implementation through:

	∘ A shared-memory parallel implementation of the Barnes-Hut algorithm 

	∘ Parallelization of quadtree building, sorting, and summarization steps using Morton codes

	• Continuing our efforts, we optimized (Uniform Manifold Approximation and Projection) by:

	∘ Converting the Python* source code to C++

	∘ Creating an efficient AVX512/AVX2-based implementation for a pseudo-random number generator 

	∘ Using Intel® oneAPI Math Kernel Library (oneMKL) for the eigenvalue computation step

	• As part of our collaboration, Katana Graph provided efficient implementations of the Louvain and Leiden 
community detection algorithms that were integrated into the pipeline. 

3Tests by Intel on May 25, 2022
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These developments significantly reduce the time it takes to analyze large datasets, allowing researchers 
to complete their work 40x faster than baseline on Intel Xeon processors and 1.5x faster than on NVIDIA* 
A100 GPUs.

Conclusions
Single-cell analysis has applications in many areas: oncology, microbiology, neurology, reproduction, 
immunology, and digestive and urinary systems. Hopefully, reduced working time will allow for a much 
deeper understanding of different cells, paving the way for medical advances that could have great 
collective benefits. We are working on further refining the scRNA-seq analysis pipeline. Specifically, our 
efforts are focused on making further improvements in the tSNE, UMAP, and Leiden steps.

Configuration Details
GCP n1-highmem-64: 1-instance GCP n1-highmem-64: 64 vCPUs (Skylake), 416 GB total memory, bios: 
Google, ucode: 0x1, Ubuntu* 20.04, 5.13.0-1024-gcp

GCP n2-highmem-64: 1-instance GCP n2-highmem-64: 64 vCPUs (Ice Lake), 512 GB total memory, bios: 
Google, ucode: 0x1, Ubuntu 20.04, 5.13.0-1024-gcp

GCP n2-highcpu-64: 1-instance GCP n2-highcpu-64: 64 vCPUs (Ice Lake), 64 GB total memory, bios: 
Google, ucode: 0x1, Ubuntu 20.04, 5.13.0-1024-gcp
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Hello, world! As a 19-year software engineer and software architect at Intel in performance and 
parallelization tools and AI system platforms, I am very lucky and excited to share some of my 
experiences with you and get your thoughts about software, technology, and Intel. My first focus is trying 
to tackle the dilemmas of the modern software developer.

Why tackle this first? For as long as I can remember, I have always loved programming and solving 
problems. I started programming using BASIC when I was in first grade in 1985, when it was still slightly 
less common. I’ve been fortunate enough (or unfortunate enough?) to have learned a few dozen 
programming languages, programmed in several IDEs, and developed software in both Windows* and 
Linux* environments. I’ve also had to develop in rapidly evolving areas, like web/UI frameworks, cloud 
development, deep learning, etc.

Tony Mongkolsmai, Technology Evangelist, Intel Corporation

How to Build oneAPI for Linux* and Windows* 
using Windows Subsystem for Linux 2* and Visual 
Studio Code*

Leveraging Tools for 
Cross-Platform Software 
Development
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One constant over this time is that engineers are always fighting their tools to be more productive. As 
a developer, I want to be as efficient as possible to get more work done or to free up my time to do 
something else in my life. So, this means a lot to me personally.

Narrowing the Scope
Unfortunately for us, there is no one modern software developer. When I write Go* code for 
microservices or Kubernetes*, I use a quite different toolchain than I do when I’m writing React/Angular/
Vue/JavaScript* code. There are also a lot of times I need cross-platform support between Windows/
Linux/Mac*.

Fortunately, there have been advances in cross-platform IDEs and support. I am a longtime Vi user (no 
offense, Emacs users; I know Emacs is more powerful), but I like modern IDEs. As an engineer, I love 
normalizing my workflow across platforms because it makes me more efficient. Luckily for me, the 
languages I typically use (C/C++, Python*, JavaScript, Go) all work reasonably well within Microsoft Visual 
Studio Code* (VSCode*), and recent updates to the Microsoft Window Subsystem for Linux* (WSL) also 
work well for cross-platform development.

Given that backdrop, I thought I’d see how well I can get some cross-platform oneAPI samples running on 
my Intel® Core™ i9 processor-based Alienware* R13 system (not purchased by Intel).

Setting up WSL and VSCode*
Setting up WSL was painless: I simply opened a Windows command prompt and ran:

> wsl --install

This installed the Ubuntu* 20.04 distro for WSL after a quick, required reboot.

For me the process was painless, but some of my colleagues mentioned that if you do run into issues, 
Microsoft has provided a handy troubleshooting guide that will guide you through the prerequisite steps 
to make your system WSL-ready.

The next step was setting up my VSCode. I initially tried to set up my VSCode in WSL using a Linux 
installation workflow, but it turns out that wasn’t the proper way to do it. Following the instructions from 
Microsoft, I simply had to enable the Remote WSL extension in VSCode following the instructions.

After enabling the extension, it was as easy as asking for a new WSL Window (Figure 1), which popped up 
as a VSCode WSL-connected window.

https://software.seek.intel.com/parallel-universe-magazine
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Installing the Intel® oneAPI Toolkits
Because I wanted to see if I could run both Linux and Windows oneAPI-based code on my system, I went 
to the Intel® oneAPI Toolkits release page (Figure 2), selected the toolkits that I wanted, and followed the 
instructions to install them on my system (Figure 3). I used an apt installation in a WSL terminal and the 
online installer for Windows.

Figure 1. Opening a new WSL window.

Figure 2. Selecting the desired Intel® oneAPI toolkits.
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Running Some Code
Now that I theoretically had a working development environment, I cloned the oneAPI-samples 
repository from GitHub.

This code is designed to be both Windows and Linux compatible, so I loaded the Libraries > oneMKL > 
matrix_mul_mkl directory in my WSL VSCode window and opened a bash terminal. I set up the oneAPI 
environment and built the sample code:

> source /opt/intel/oneapi/setvars.sh 
> make

This successfully built and ran the matrix multiplication example (Figure 4).

Figure 3. Installing the Intel® oneAPI toolkits.
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Creating and running the sample using a Windows binary ended up being a little more work, as this was 
a new system. I had to install the Microsoft Visual Studio* 2022 Community Edition and GNU Make. After 
that, it again was as simple as loading up VSCode and running:

> C:\Program Files (x86)\Intel\oneAPI\setvars.bat 
> make

But Wait, There’s More!
I’m sure many of you know this, but this next thing was an amazing discovery for me: I was playing with 
VSCode (Windows, not WSL-based) and saw that I could select a WSL prompt for my split terminal 
(Figure 5)! Doing that allowed me to build and run the sample for both Windows and Linux in the same 
VSCode instance. Cross-platform development on a single system in a single IDE! I cannot express the 
endorphin high from the magic of this after having spent years dealing with the pain of cross-platform 
development.

Figure 4. Building and running the example code.
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The End (For Now)
The nice thing about all of this is that I was able to set all of this up on a new system in just a couple 
of hours. I’ll be writing more on how well this works for Intel® Arc™ GPUs, discussing other developer 
workflows (like Jupyter Notebook*), diving into software topics like cloud computing and AI system 
platform development, and sharing my experiences as a software engineer in the technology industry. 
Thanks for reading!

Figure 5. Running Windows* and Linux* in the same VSCode* instance.
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