

Intel® Manycore Platform
Software Stack (Intel® MPSS)
User's Guide

September 2015

Copyright © 2013-2015 Intel Corporation

All Rights Reserved

US

Revision: 3.6

World Wide Web: http://www.intel.com

http://www.intel.com/

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
2

Disclaimer and Legal Information

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted

which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or by visiting: http://www.intel.com/design/literature.htm

Intel, the Intel logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

3

Revision History

Revision
Number

Description Revision Date

Version 3.6 Release of the 3.6 Intel® MPSS User’s Guide September 2015

Version 3.6 Initial draft of the 3.6 Intel® MPSS User’s Guide August 2015

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
4

Table of Contents
1 About This Manual .. 10

1.1 Overview of this Document ... 10
1.2 Intel® MPSS Release History ... 11

1.2.1 Technology Previews in this Release .. 11
1.3 Notational Conventions ... 11

1.3.1 Symbols within Normal Text ... 11
1.3.2 Code conventions ... 12

1.4 Terminology .. 14

2 Intel® MPSS at a Glance ... 16

2.1 Intel® Xeon Phi™ Hardware and System Architecture .. 16
2.2 Programming Models and the Intel® MPSS Architecture 18

2.2.1 Programming Models ... 18
2.2.2 Intel® MPSS Software Architecture and Components 20
2.2.3 Intel® Xeon Phi™ Coprocessor Networking .. 23

2.3 Supported Intel® Productivity Tools ... 26
2.4 Related Documentation... 27

2.4.1 SCIF documentation .. 27
2.4.2 COI Documentation ... 27
2.4.3 MYO Documentation .. 28
2.4.4 Micperf Documentation .. 28
2.4.5 Intel® Xeon Phi™ Coprocessor Collateral ... 28

3 Intel® Xeon Phi™ Coprocessor Installation Process 30

3.1 Hardware and Software Prerequisites ... 30
3.1.1 Host System HW... 30
3.1.2 BIOS Configuration ... 30
3.1.3 Supported Host Operating Systems ... 31
3.1.4 Host Operating System Configuration .. 31
3.1.5 Root Access ... 31
3.1.6 SSH Access to the Intel® Xeon Phi™ Coprocessor 32
3.1.7 Init Scripts ... 32
3.1.8 Network Manager ... 33

3.2 Intel® Xeon Phi™ Coprocessor Card Physical Installation 34
3.2.1 Workstation Considerations .. 35
3.2.2 Cluster Considerations ... 37
3.2.3 Validate Intel® Xeon Phi™ Coprocessor physical installation 38

3.3 Base Intel® MPSS Installation ... 39
3.3.1 Get the Intel® MPSS Distribution .. 39
3.3.2 Uninstall Previous Intel® MPSS Installation Prior to Upgrade 39
3.3.3 Rebuild Intel® MPSS Host Drivers .. 40
3.3.4 Update Intel® Xeon Phi™ Coprocessor Flash & SMC Firmware 41
3.3.5 Initialize Intel® MPSS default configuration settings. 44
3.3.6 Start Intel® MPSS .. 45
3.3.7 Validate Base Intel® MPSS Installation .. 45

3.4 Basic Workstation Installation is Complete .. 49
3.5 Network Configuration .. 50

3.5.1 MAC Address Assignment ... 50
3.5.2 IP Address Considerations for External Bridging 50

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

5

3.5.3 Configuring a Basic External Bridge ... 51
3.5.4 Defining and Implementing Exported/Mounted File Systems 52
3.5.5 Configuring the Host Firewall .. 53
3.5.6 How to Install Lustre* on the Intel® Xeon Phi™ Coprocessor Card 53

3.6 Installing OFED with Intel® MPSS Support (optional) ... 54
3.6.1 Supported OFED distros ... 56
3.6.2 Tips for OFED distributions ... 57
3.6.3 Install OFED+ .. 58
3.6.4 Install OFED 1.5.4.1 .. 59
3.6.5 Install OFED-3.5-2-MIC ... 60
3.6.6 Install OFED-3.12-1 .. 60
3.6.7 Install OFED 3.18 ... 61
3.6.8 Install Mellanox* OFED 2.x .. 61
3.6.9 Starting OFED .. 62
3.6.10 Stopping/restarting OFED .. 62
3.6.11 Validate OFED Installation .. 63

4 Configuring and Booting the Intel® Xeon Phi™ Coprocessor Operating System
 ... 69

4.1 Assisted Configuration and Control ... 70
4.1.1 Configuration Files .. 70
4.1.2 Initializing, Updating and Resetting the Configuration Files 75
4.1.3 micctrl Directory Path Modifiers .. 75
4.1.4 Boot Configuration .. 79
4.1.5 Assisted Boot Process .. 80

4.2 Manual Configuration and Control .. 82
4.2.1 Directly Editing (and persisting) Card /etc Files 83
4.2.2 NFS Mounting the Root and Other File Systems 84
4.2.3 Driver sysfs Settings ... 85
4.2.4 Card-side Kernel Commandline Parameters .. 85
4.2.5 Controlling the card .. 85

5 Networking Configuration... 88

5.1 Assisted Configuration .. 88
5.1.1 Host SSH Keys ... 88
5.1.2 Name Resolution Configuration ... 89
5.1.3 Host Name Assignment ... 89
5.1.4 MAC Address Assignment ... 89
5.1.5 Network Topologies ... 90

5.2 Manual Configuration ... 96
5.2.1 Host Name ... 96
5.2.2 MAC Addresses ... 97
5.2.3 Network Topologies ... 97

5.3 IPoIB Networking Configuration ... 101
5.3.1 Managing the IPoIB Interface ... 102
5.3.2 IP Addressing ... 102
5.3.3 Datagram vs. Connected Modes .. 102

6 User Credentialing and Authentication ... 103

6.1 Assisted Configuration of User Credentials .. 103
6.1.1 Local Configuration ... 103
6.1.2 Enabling LDAP Service ... 104
6.1.3 Enabling NIS Service ... 105

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
6

6.2 Manual Configuration of User Credentials .. 105
6.2.1 Configuration File Based Credentialing ... 106
6.2.2 How to Enable SSH Host Based Authentication 108

7 Adding Software to the Intel® Xeon Phi™ Coprocessor File System 110

7.1 Adding Individual Files to a Host Resident File System Image 110
7.1.1 Assisted Configuration ... 110
7.1.2 Manual Configuration .. 111
7.1.3 Installing RPMs ... 112

7.2 Adding Software to a Coprocessor File System .. 113
7.2.1 Installing RPMs ... 113
7.2.2 Preserving the Modified File System .. 116

8 Compilation for the Intel® Xeon Phi™ Coprocessor 118

8.1 Cross Compiling Software with the Intel® MPSS SDK 118
8.1.1 SDK overview ... 118
8.1.2 Cross Compilation of GNU Build System Based Packages 118
8.1.3 Example case: zsh .. 119
8.1.4 Cross compiling with icc ... 124

8.2 Native Compilation ... 124
8.2.1 Create and attach to a repo ... 125
8.2.2 Install the development tool chain .. 125
8.2.3 Configure the build directory .. 125
8.2.4 Make and install the package ... 126

9 Intel® MPSS Component Configuration and Tuning 128

9.1 Intel® Xeon Phi™ Coprocessor Operating System Configuration and Tuning 128
9.1.1 Clock Source for the Intel® Xeon Phi™ Coprocessor 128
9.1.2 Process Oversubscription ... 128
9.1.3 Verbose Logging ... 129
9.1.4 Cgroup memory control ... 129
9.1.5 Power Management control .. 130
9.1.6 VFS Optimizations ... 130

9.2 Host Driver Configuration .. 130
9.2.1 Lost Node Watchdog ... 130
9.2.2 Watchdog Auto-Reboot .. 131
9.2.3 Crash Dump Capture ... 131

9.3 SCIF Configuration ... 131
9.3.1 Peer to Peer (P2P) Support .. 131
9.3.2 Peer to Peer Proxy Control ... 132
9.3.3 Ulimit Checks for Max Locked Memory in SCIF 132
9.3.4 Registration Caching ... 132
9.3.5 Registration Caching Limit ... 133
9.3.6 Huge Page Support ... 133

9.4 COI Configuration .. 133
9.4.1 COI Offload User Options ... 133

9.5 Virtual Console Configuration and Access .. 135
9.6 Intel® Xeon Phi™ Coprocessor Virtio Block Device Configuration and Use. 136

9.6.1 Using a Virtio Block Device as an ext2 File System 136
9.6.2 Use the Virtblk Device as a Swap Device File System 137

 Intel® MPSS Configuration Parameters .. 138

 Meta Configuration ... 138

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

7

 Configuration Version .. 138
 Including Other Configuration Files ... 138

 Boot Control .. 139
 What to Boot .. 139
 When to Boot ... 139

 Kernel Configuration... 140
 ExtraCommandLine ... 140
 Console Device ... 140
 Power Management ... 140
 ShutdownTimeout ... 141
 CrashDump .. 141
 Cgroup .. 142
 VerboseLogging .. 142

 File System Configuration Parameters .. 142
 RootDevice .. 142
 File Locations ... 143
 Intel® MPSS RPM Location... 145

 Network Configuration .. 146
 Host Name Assignment ... 146
 MAC Address Assignment ... 146
 Static Pair (Default) Topology ... 147
 Internal Bridge Topology ... 148
 External Bridge Topology ... 149

 Deprecated Configuration Parameters ... 151
 User Access ... 151
 Service Startup .. 151

 The micctrl Utility ... 153

 micctrl Command Line Format ... 153
 Global Options ... 154

 --destdir, -d ... 154
 --configdir, -c ... 154

 Suboptions .. 154
 Global Suboptions ... 154
 Common SubOptions ... 155

 micctrl Command Descriptions... 159
 Card State Control .. 159
 Configuration Initialization and Propagation ... 161
 Setting the Root Device ... 163
 Configuring the Intel® Xeon Phi™ Coprocessor File System 167
 Networking Configuration .. 170
 User Credentialing .. 177
 Configuring the Intel® Xeon Phi™ Coprocessor Linux* Kernel 182
 Deprecated micctrl Commands ... 184

 Intel® MPSS Host Driver Sysfs Entries ... 186

 The Global Mic.ko Driver SYSFS Entries .. 186
 Revision Information ... 186
 Other Global Entries .. 186

 The Intel® Xeon Phi™ Mic.ko Driver SYSFS Entries .. 186
 Hardware Information ... 186
 State Entries .. 187

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
8

 lStatistics ... 188
 Debug Entries .. 188
 Flash Entries .. 189
 Power Management Entries .. 189
 Other Entries .. 189

 micrasd ... 191

 micnativeloadex ... 192

 Optional Intel® MPSS Components ... 193

 Intel® MPSS GANGLIA Support (optional) ... 193
 Requirements ... 193
 Steps to Install GANGLIA on the Host .. 194
 Installing Intel® MPSS GANGLIA RPMs in the Card 195
 Starting Intel® MPSS with GANGLIA Support 196
 Stopping Intel® MPSS with GANGLIA Support 196

 Intel® Xeon Phi™ Coprocessor Performance Workloads (optional) 196
 Installation Requirements .. 196
 Distributed Files.. 197
 RPM Installation.. 197
 Python Installation .. 198
 Alternative to Python Installation .. 199

 Intel® MPSS Reliability Monitor Support (optional) .. 199
 Requirements ... 199
 Steps to Install Intel® MPSS with Reliability Monitor Support 199
 Starting Intel® MPSS with Reliability Monitor Support 199
 Stopping Intel® MPSS with Reliability Monitor Support 200
 Reliability Monitor Configuration File and Log 200

 Rebuilding Intel® MPSS Components ... 201

 Recompiling the Intel® MPSS GANGLIA Modules .. 201
 Recompiling the Intel® MPSS MIC Management Modules 202
 How to Extract and Use the COI Open Source Distribution 203

 Building COI Libraries and Binaries ... 203
 Installing Host Library ... 203
 Installing Card-side Binaries and Libraries .. 203
 COI Tutorial Build and Execution Instructions 204

 How to Extract and Use the MYO Open Source Distribution 204

 General Services Tutorial .. 205

 Service Startup by Priorities (RHEL* 6.x) .. 205
 Service Startup by Dependencies (SUSE* Linux* Enterprise Server 11 SP3) 206
 Intel® Xeon Phi™ Coprocessor Method for Service Start Priority 207

 Troubleshooting and Debugging ... 208

 Log Files ... 208
 Dmesg Output .. 208
 Syslog Output .. 208

 Coprocessor Post Codes .. 209
 Kernel Crash Dump Support .. 212
 GNU Debugger (GDB) for the Intel® Xeon Phi™ Coprocessor 213

 Running natively on the Intel® Xeon Phi™ Coprocessors 213
 Running remote GDB on the Intel® Xeon Phi™ Coprocessors 213

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

9

 GDB remote support for data race detection ... 213
 Debugging heterogeneous/offload applications 213
 Enabling MIC GDB Debugging for Offload Processes 214

List of Figures
Figure 1: Typical Intel® Xeon Phi™ Based Workstation Configuration .. 16
Figure 2: Intel® Xeon Phi™ Based Compute Node within a Cluster ... 17
Figure 3: Intel® Xeon Phi™ Architecture Ring and Cores ... 18
Figure 4: Spectrum of Programming Models ... 19
Figure 5: Intel® MPSS Architecture ... 20
Figure 6: Static Pair Configuration .. 24
Figure 7: Internal bridge network ... 25
Figure 8: External bridge network ... 26
Figure 9: Uniform distribution of Intel® Xeon Phi™ coprocessors .. 35
Figure 10: Two Intel® Xeon Phi™ coprocessors Installed in the Same IO Hub 36
Figure 11: Intel(R) Xeon Phi(TM) and InfiniBand* HCA sharing an I/O hub 37
Figure 12: Symmetric Distribution of Coprocessors and HCAs ... 38
Figure 13: One-to-One IB Device (HCA, Port) Mapping between Host and Coprocessor 101

List of Tables
Table 1: Intel® Productivity Tools Supported by Intel® MPSS 3.6 .. 26
Table 2: Supported Host Operating Systems .. 31
Table 3: System V format commands .. 33
Table 4: File System Characteristics .. 52
Table 5: OFED Distribution vs. Supported Features ... 56

About This Manual

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
10

1 About This Manual

This manual is intended to provide you with an understanding of the Intel® Manycore Platform
Software Stack (Intel® MPSS), what it is, how to configure it, and how to use its components.

This chapter begins with an overview of the remainder of the document, presents notation
used in this document, lists further documentation available for selected Intel® MPSS
components, and concludes with a table of terminology.

It is recommended that the reader review at least Chapters 1-3 prior to a first installation of

the software stack.

1.1 Overview of this Document

Chapter 2: Provides a high level overview of Intel® Xeon Phi™ architecture and then gives an

overview of Intel® MPSS architecture.

Chapter 3: Is a thorough, step-by-step guide to installing Intel® MPSS, including basic
configuration steps and considerations for both workstation and cluster environments.

Chapter 4: Is an in-depth discussion of the concepts and processes for configuring an Intel®
Xeon Phi™ coprocessor installation.

Chapter 5: Describes how to configure user credentials on the Intel® Xeon Phi™ coprocessor.

Chapter 6: Describes supported network configurations, when each might be used, and how
to configure each. It also discusses how to configure NFS mounts, as well as DHCP

configuration.

Chapter 7: Presents methods for adding software to the Intel® Xeon Phi™ coprocessor file
system.

Chapter 8: Explains how to cross-compile software for execution on Intel® Xeon Phi™

coprocessor, as well as how to compile and build on the Intel® Xeon Phi™ coprocessor itself
(native build).

Chapter 9: Presents configuration options for Intel® MPSS components, including the Intel®
Xeon Phi™ coprocessor Linux* kernel, the host driver, the SCIF communication API, the COI

offload interface, the virtual console, and the Virtio block device.

Appendix A: Describes each of the Intel® MPSS-specific configuration parameters.

Appendix B: Describes each Intel® MPSS micctrl command.

Appendix C: Presents sysfs entries exposed by the Intel® MPSS host driver.

Appendix D: Provides some details on the micrasd daemon.

Appendix E: Describes the micnativeloadex utility.

Appendix F: Provides detailed instructions on installing several optional Ganglia, Micperf and

Reliability Monitor components.

About This Manual

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

11

Appendix G: Provides instructions for rebuilding selected Intel® MPSS components.

Appendix H: Is a tutorial describing how services are started on supported Linux* host

Operating Systems and the Intel® Xeon Phi™ coprocessor.

Appendix I: Presents some tools and techniques that can be used in troubleshooting and
debugging Intel® Xeon Phi™ coprocessor issues.

1.2 Intel® MPSS Release History

This version of the Intel® MPSS User’s Guide covers the release 3.6.

Beginning with the Intel® MPSS 3.2 release, the significant new features in each release are

described in a document entitled Prominent features of the Intel® Manycore Platform Software
Stack (Intel® MPSS) version M.N, where M.N is the software stack release number. These
documents can be found by searching on https://software.intel.com/en-us/mic-developer.

1.2.1 Technology Previews in this Release

1.2.1.1 CCL-Direct for Kernel Mode Clients

This release includes a technology preview of CCL-Direct for kernel mode clients. This includes

an experimental version of kernel mode InfiniBand* verbs and RDMA_CM and an experimental
version of IPoIB. This experimental version of CCL-Direct kernel mode support was tested with
a Lustre* client. Refer to the document (/usr/share/doc/ofed-driver-*/lustre-phi.txt) for
information on how to build and install a Lustre* client on the Intel® Xeon Phi™ coprocessor.

This preview only supports the Mellanox* mlx4 driver and associated hardware, and currently
only supports the OFED-1.5.4.1 and OFED-3.5-2-MIC versions of OFED software. See Section
5.3 for information on IPoIB networking configuration.

1.2.1.2 File IO Performance Improvements

This Intel® MPSS technology preview is intended to improve the performance of system calls

that read and write to files on tmpfs and ramfs mount points. In addition to a set of kernel
configuration parameters that enable these optimizations (ON by default in the release),
kernel command line options provide additional control to enable or disable the read and write
optimizations.

See Section 9.1.6 for configuration instructions.

1.3 Notational Conventions

This document uses the following notational conventions.

1.3.1 Symbols within Normal Text

This guide Italicizes commands and their arguments when they appear in prose sections of the
document. For example: micctrl now executes ifup micN for each of the coprocessors.

This guide also italicizes the software stack configuration parameter names when they appear

in prose sections. For example: When the RootDevice parameter <type> is NFS or SplitNFS…

https://software.intel.com/en-us/mic-developer

About This Manual

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
12

Files and directories in prose sections are italicized. For example: /etc/mpss/default.conf.

micN denotes any coprocessor name of the form mic0, mic1, etc. where N=0, 1, 2, etc,

typically used in file names. For example, the file name micN.conf denotes any of the file
names mic0.conf, mic1.conf, etc.

Emboldened text indicates the exact characters you type as input. It is also used to highlight
the elements of a graphical user interface such as buttons and menu names. For example:

Select the ENTER button, Select Copy from the Edit menu.

1.3.2 Code conventions

There are code snippets throughout this document.

COURIER text denotes code and commands entered by the user.

Italic COURIER text denotes terminal output by the computer.

“[host]$” at the beginning of a line denotes a command entered on the host with user or root

privileges.

“[host]#” at the beginning of a line denotes a command entered on the host with root

privileges.

“[micN]$” at the beginning of a line denotes a command entered on a coprocessor with user

or root privileges.

“[micN]#” at the beginning of a line denotes a command entered on a coprocessor with root

privileges.

For example the following shows the micctrl --config command executed as a non-root user,

and the truncated output generated by micctrl:

[host]$ micctrl --config

mic0:

===

 Config Version: 1.1

 Linux Kernel: /usr/share/mpss/boot/bzImage-knightscorner:

1.3.2.1 Directory Symbols

For convenience, we define several symbols that denote commonly referenced directories.

$MPSS36 is the top directory into which the mpss-3.6-linux.tar file has been expanded.

$MPSS36_K1OM is the directory into which the mpss-3.6-k1om.tar file has been expanded.

Normally this will be $MPSS36/k1om.

$MPSS36_SRC is the directory into which the mpss-src-3.6.tar file has been expanded.
Normally this will be $MPSS36/src.

$DESTDIR is a symbol that indicates the directory path variable that micctrl prepends to all

micctrl accesses of micctrl created files. Refer to Appendix B.2.1 for details.

About This Manual

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

13

$CONFIGDIR is a symbol that indicates the directory path variable at which micctrl creates

MPSS-specific configuration files. Refer to Appendix B.2.1 for details.

$VARDIR is a symbol that indicates the directory path variable at which micctrl --initdefaults

and --resetconfig commands create the common and micN overlay hierarchies, and at which
the micctrl --rootdev command places a ramfs file system image or NFS file system hierarchy.
Refer to Appendix B.3.2.1 for details.

$SRCDIR is a symbol that indicates the directory path at which the micctrl --initdefaults, --

resetdefaults, --resetconfig, and --cleanconfig commands look for the coprocessor’s Linux*
kernel image and default file system image. Refer to Appendix B.3.2.2 for details.

$NETDIR is a symbol that indicates the directory path at which the micctrl --initdefaults, --
resetdefaults, --resetconfig, and --cleanconfig commands create and/or edit control files. Refer

to Appendix B.3.2.3 for details.

1.3.2.2 Command Syntax

Following are conventions used in micctrl command syntax and Intel® MPSS configuration

parameter syntax:

<…> indicates a variable value to be supplied.

[…] indicates an optional component.

(x|y|…|z) is used in micctrl command syntax and the software stack configuration parameter

syntax to indicate a choice of values.

The syntax of the Overlay configuration parameter is:

Overlay (Filelist|Simple|File) <source> <target> (on|off)

Overlay RPM <source> (on|off))

It indicates that there are two basic forms. The first takes a Filelist or Simple or File type,

followed by <source> and <target> values to be provided, followed by a choice of on or off.
The second form takes the RPM type, followed by only a <source> value to be provided,
followed by a choice of on or off.

The syntax of the micctrl --userupdate command:

micctrl --userupdate=(none|overlay|merge|nochange) \

[(-a |--pass=)(none|shadow)] [--nocreate]

It indicates that the userupdate method must be set to one of none, overlay, merge, or
nochange. An optional argument can be invoked using either -a or --pass and must specify
one of none or shadow (For Example: -a none or --pass=none). Finally, there is an optional -

-nocreate command.

The --nocreate option is italicized, indicating that it is a common suboption. These are

suboptions of multiple commands, which, for brevity, are defined once in Appendix B.3.2.

About This Manual

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
14

1.4 Terminology

ABI Application binary interface

CCL Coprocessor Communication Link

COI Coprocessor Offload Infrastructure

Coprocessor An Intel® Xeon Phi™ coprocessor

DHCP Dynamic Host Configuration Protocol

Ganglia A distributed monitoring system

GDB Gnu debugger

HCA Host Channel Adapter

IPoIB Internet Protocol over InfiniBand*

K1OM Architecture of the Intel® Xeon Phi™ coprocessor x100 Product Family

LDAP Lightweight Directory Access Protocol

Lustre A parallel, distributed file system

MAC Media Access Control

MIC Many Integrated Cores, an informal name for the KNC architecture

MPI Message Passing Interface

MPSS Intel® Manycore Platform Software stack

MYO Mine, Yours, Ours shared memory infrastructure

NIS Network Information System

OFED Open Fabric Enterprise Distribution

PCIe PCI Express

About This Manual

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

15

PCIe2 PCI Express 2.0

QPI Intel® QuickPath Interconnect, a point-to-point processor interconnect

RHEL Red Hat* Enterprise Linux*

RPM RPM package manager

SCIF Symmetric Communication Interface

SLES SUSE* Linux* Enterprise Server

SMP Symmetric Multi-Processor

SSD Solid state drive

SSH Secure Shell

Sysfs A virtual file system

VEth Virtual Ethernet

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
16

2 Intel® MPSS at a Glance

This chapter provides an overview of Intel® MPSS. It begins with a very high level description
of Intel® Xeon Phi™ hardware and system architecture. The chapter also discusses the

programming models that the software stack is designed to support, how the various stack
components support those programming models, and provides a description of the supported
network configurations. It concludes with a subsection describing other available
documentation.

2.1 Intel® Xeon Phi™ Hardware and System Architecture

The Intel® Xeon Phi™ coprocessor is a PCIe add-in card that has been designed to be installed
into an Intel® Xeon™-based platform. A typical platform configuration consists of one or two

Intel® Xeon™ processors and one or two Intel® Xeon Phi™ coprocessors. A typical
configuration is shown in Figure 1.

Figure 1: Typical Intel® Xeon Phi™ Based Workstation Configuration

When one or more PCIe based InfiniBand* host channel adapters, such as Intel® True Scale

HCAs are installed in the platform, Intel® Xeon Phi™ coprocessors can communicate at high
speed with Intel® Xeon™ processors and coprocessors in other platforms in a cluster

configuration. Figure 2 shows a typical Intel® Xeon Phi™ coprocessor based compute node
within a cluster. Within a single system, the coprocessors can communicate with each other
through the PCIe peer-to-peer interconnect without any intervention from the host. Other
configurations are discussed in Section 3.2.

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

17

Figure 2: Intel® Xeon Phi™ Based Compute Node within a Cluster

The Intel® Xeon Phi™ coprocessor is composed of more than 50 processor cores, caches,
memory controllers, PCIe client logic, and a very high bandwidth, bidirectional ring

interconnect (Figure 3). Each of the cores comes complete with a private L2 cache that is kept
fully coherent by a global-distributed tag directory. The Intel® Xeon Phi™ coprocessor K1OM
architecture cores support an X86 instruction set with additional vector instructions that are

unique to its architecture, and the Intel® Xeon Phi™ coprocessor K1OM ABI differs from the
Intel® Xeon™ ABI. For these reasons, Intel® Xeon™ binaries cannot be run on the
coprocessor, and vice versa.

The memory controllers and the PCIe client logic provide a direct interface to the GDDR5
memory on the coprocessor and the PCIe bus, respectively. All these components are
connected together by the ring interconnect.

Intel® Xeon Phi™ coprocessor cards do not have permanent file system storage, such as an

SSD. Instead the file system is maintained in RAM and/or is remotely (for instance: NFS)
mounted.

Each Intel® Xeon Phi™ coprocessor runs a standard Linux* kernel (2.6.38 as of this writing)

with some minor accommodations for the MIC hardware architecture. Because it runs its own
OS, the coprocessor is not hardware cache coherent with the host Intel® Xeon™ processors or
other PCIe devices.

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
18

Figure 3: Intel® Xeon Phi™ Architecture Ring and Cores

For more information on Intel® Xeon Phi™ coprocessor architecture, visit the Intel® Xeon
Phi™ Product Family page.

2.2 Programming Models and the Intel® MPSS
Architecture

To understand the software stack architecture, it helps to understand the range of
programming models supported by Intel® MPSS and the Intel® Xeon Phi™ coprocessor.

2.2.1 Programming Models

The Offload, Symmetric and Native (MIC-hosted) programming models offer a diverse range of

usage models and an overview of these options are depicted in Figure 4.

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

19

Figure 4: Spectrum of Programming Models

General purpose
serial and parallel

computing

Xeon® CPU-Centric Intel® Xeon Phi™-Centric
Xeon-hosted Offload Symmetric Native

Codes with highly
parallel phases

Highly parallel
codes

main()
MPI_*()

work()

main()
work()
MPI_*()

main()
MPI_*()

main()
MPI_*()

main()
MPI_*()

Codes with
balanced needs

Xeon

Xeon
Phi

2.2.1.1 Offload Programming Model

In the Offload model, one or more processes of an application are launched on one or more

Intel® Xeon™ host processors. These processes, represented in the figure by main(), can
offload computation, represented by work(), to one or more attached Intel® Xeon Phi™

coprocessors, to take advantage of the many-core architecture with its wide vector units and
high memory bandwidth. In the case where the application is composed of more than one
process, the processes often communicate using some form of message passing, such as
Message Passing Interface (MPI) thus we also show MPI_*(), on the host. This offload process

is programmed via the use of offload pragmas supported by the Intel® C/C++ and FORTRAN
compilers. When an application is created with one of these compilers, offloaded execution will
fall back to the host in the event that a coprocessor is not available. This is why an instance of
work() is shown on the host as well as on the Intel® Xeon Phi™ coprocessor.

2.2.1.2 Symmetric Programming Model

The Symmetric programming model is convenient for an existing HPC application that is
composed of multiple processes, each of which could run on the host or coprocessor, and use
some standard communication mechanism such as MPI. In this model, computation is not
offloaded, but rather remains within each of the processes comprising the application. In such
cases, where the application is MPI based, the OFED distributions enable high bandwidth/low

latency communication using installed Intel® True Scale or Mellanox* InfiniBand* Host
Communication Adapters.

2.2.1.3 Native Programming Model

The Native (MIC-hosted) programming model is just a variant of the Symmetric model in

which the one or more processes of an application are launched only on MIC coprocessors.

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
20

From the software stack architecture perspective, these programming models typically depend

on SCIF and the VEth (Virtual Ethernet) driver to launch processes on an Intel® Xeon Phi™
coprocessor.

2.2.2 Intel® MPSS Software Architecture and Components

Figure 5 provides a high level representation of Intel® MPSS and its relation to other

important software components. The host software stack is shown to the left and the Intel®
Xeon Phi™ coprocessor software stack to the right. While the stacks are mostly symmetric,
host and coprocessor components (including applications) are not binary compatible.

Figure 5: Intel® MPSS Architecture

PCI Express* Bus

Intel® Xeon Phi™

InfiniBand* HCA (PCIe card)

Standard Linux* kernel
Linux* kernel with MIC

accomodations

SCIF Driver
vEthernet

Driver
SCIF Driver

vEthernet

Driver

InfiniBand*

Fabric

MPSS delivered components

Host

Host

Driver

Other Intel® component

Open source components

Kernel

Space

User

Space

TrueScale* or

Mellanox Driver

COI & MYO

Libraries

DAPL

OFED verbs

HCA Lib

User SCIF

Library
IB Proxy

Daemon

Sockets

TCP/IP

UDP/IP

Intel® Tools (C++/Fortran

runtime, Intel® MPI, MKL,

vTune, other libraries)

Intel® MPSS Utilities

(micctrl, micinfo,

micflash,…)

Applications

mpssd

TrueScale* or

Mellanox Driver

COI & MYO

Libraries

DAPL

OFED verbs

HCA Lib

User SCIF

Library

Sockets

TCP/IP

UDP/IP

Intel® Tools (C++/Fortran

runtime, Intel® MPI, MKL,

vTune, other libraries)

Intel® MPSS Utilities

(micctrl, micinfo,

micflash,…)

Applications

micmpssd

virttblk

2.2.2.1 Intel® Xeon Phi™ Coprocessor Operating System

Underlying all computation on Intel® Xeon Phi™ coprocessors is the Intel® Xeon Phi™ Linux*

kernel. This is a standard Linux* kernel (2.6.38 as of this writing) with some minor
accommodations for the MIC architecture, such as for saving the state of the extended MIC

register set on a context switch. The Linux* kernel and initial file system image for the Intel®
Xeon Phi™ coprocessors are installed into the host file system as part of Intel® MPSS
installation. After installation the Intel® Xeon Phi™ coprocessor Linux* installation will need to

be configured according to the expected workload/application. Configuration will be covered in
detail starting in Chapter 4.

The Linux* environment on the coprocessor utilizes BusyBox* to provide a number of Linux*
utilities. These utilities may have limited functionality when compared to similar tools provided

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

21

with the host Linux* distribution. For more information regarding BusyBox*, see the link

http://www.busybox.net/.

2.2.2.2 Intel® MPSS Middleware Libraries

The compiler runtimes depend on the Coprocessor Offload Infrastructure (COI) library to

offload executables and data for execution on an Intel® Xeon Phi™ coprocessor, and uses
Mine Your Ours (MYO) shared memory infrastructure to provide a virtual shared memory
model that simplifies data sharing between processes on the host and coprocessor(s).
Similarly, some functions in the Intel® Math Kernel Library (MKL) automatically offload work
to coprocessors using the COI library.

COI, MYO, and other Intel® MPSS components rely on the Symmetric Communication
Interface (SCIF) user mode API for PCIe communication services between the host processor,
Intel® Xeon Phi™ coprocessor, and installed InfiniBand* host channel adapters. SCIF delivers
very high bandwidth data transfers and sub-sec write latency to memory shared across PCIe,

while abstracting the details of communication over PCIe.

The COI, MYO, and SCIF libraries are also available for use by other applications. Section 2.4

lists additional documentation on these libraries.

2.2.2.3 Intel® MPSS Modules and Daemons

The host driver (mic.ko) is the component of Intel® MPSS that initializes, boots, and manages

the Intel® Xeon Phi™ coprocessor. To boot a coprocessor, mic.ko injects the Linux* kernel
image and a kernel command line into the coprocessor’s memory and signals it to begin
execution. SCIF functionality is largely implemented in kernel mode SCIF drivers on the host
and the coprocessor.

Virtual Ethernet (VEth) drivers on the host and coprocessor implement a virtual Ethernet

transport between them. This supports a standard TCP/UDP/IP stack and standard tools, such
as ssh, scp, etc., across PCIe. A virtual console driver is built into mic.ko. Finally, mic.ko

directs power management of the installed coprocessors.

The virtio block device (virtblk) uses the Linux* virtio data transfer mechanism to implement a

block device on the Intel® Xeon Phi™ coprocessor. The device stores data on a specified
storage location on the host and can therefore be persistent across rebooting of the
coprocessor.

The Intel® True Scale and Mellanox* drivers enable direct data transfers between Intel® Xeon

Phi™ coprocessor memory and an installed Intel® True Scale or Mellanox* InfiniBand* HCA.
Intel® MPSS also includes an optional InfiniBand* over SCIF (ibscif) driver which emulates an
InfiniBand* HCA to the higher levels of the OFED stack. This driver uses SCIF to provide high
BW, low latency communication between multiple Intel® Xeon Phi™ coprocessors in an Intel®
Xeon™ host platform, for example between MPI ranks on separate coprocessors.

An mpssd daemon runs on the host, and directs the initialization and booting of the Intel®
Xeon Phi™ coprocessors based on a set of configuration files. The mpssd daemon is started

and stopped with the Linux* mpss service, and instructs the cards to boot or shutdown. In the
event that the coprocessor’s OS crashes, mpssd will reboot the coprocessor or bring it to a

ready (to be booted) state. A micmpssd daemon on the coprocessor communicates with
mpssd to perform operations, such as dynamically modifying user credentials, on behalf of
micctrl.

http://www.busybox.net/

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
22

micrasd is an application that runs on the Host to handle and log hardware errors reported by

Intel® Xeon Phi™ coprocessors. It is normally controlled through the micras service. Refer to
Appendix D for additional information.

2.2.2.4 Tools and Utilities

Intel® MPSS includes several system management tools and utilities:

micctrl is a utility with which the user can control (boot, shutdown, reset) each of the installed

Intel® Xeon Phi™ coprocessors. micctrl also offers numerous options to simplify the process of
configuring each coprocessor. Configuration tasks can include controlling user access to
coprocessors, adding coprocessors to a TCP/IP network, and installing software into the
software stack-supplied default coprocessor file system (the default initramfs). A substantial
portion of this document is devoted to creating an optimized configuration, which can be
accomplished by use of micctrl and by directly editing configuration files. micctrl is discussed

at length throughout this document. micctrl commands are described in detail in Appendix B.

The same information is available online from micctrl help:

[host]$ micctrl -h

micinfo and mpssinfo display information about the Intel® Xeon Phi™ coprocessors installed in
the system as well as information about the host operating system and Intel® MPSS host
driver. mpssinfo is a POSIX compliant version of micinfo. For detailed information, refer to the
micinfo or mpssinfo man page.

[host]$ man micinfo

[host]$ man mpssinfo

micflash and mpssflash are used to update a coprocessor’s flash image, save a coprocessor’s
flash image to a file on the host, and to display the current flash version that is loaded on a
coprocessor. mpssflash is a POSIX-compliant version of micflash. For detailed information

about micflash or mpssflash, refer to the micflash or mpssflash man page:

[host]$ man micflash

[host]$ man mpssflash

The micsmc tool is used to monitor Intel® Xeon Phi™ coprocessor statistics such as core
utilization, temperature, memory usage, power usage statistics, and error logs. micsmc can
function in two modes: GUI mode and command-line (CLI) mode. GUI mode provides real-

time monitoring of all detected coprocessors installed in the system. The CLI mode produces a
snap-shot view of the status, which allows CLI mode to be used in cluster scripting
applications. For detailed information about micsmc, refer to the micsmc man page:

[host]$ man micsmc

The miccheck utility executes a suite of diagnostic tests that verify the configuration and
current status of the Intel® Xeon Phi™ coprocessor software stack. For detailed information
about miccheck, refer to the miccheck man page:

[host]$ man miccheck

The micnativeloadex utility copies an Intel® Xeon Phi™ coprocessor native binary to a

specified coprocessor and executes it. Refer to Appendix E for additional information.

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

23

2.2.2.5 Optional Packages

The software stack distribution includes several packages that are optionally installed.

Additional information and installation instructions can be found in Appendix F:

Reliability Monitor, is an optional service that runs on the head node of a cluster, and monitors
the health of MIC based compute nodes in the cluster.

The coprocessor Performance Workloads package can be used to evaluate the performance of
an Intel® Xeon Phi™ coprocessor based installation.

An optional Ganglia support package to enable Ganglia based monitoring of Intel® Xeon Phi™

coprocessors, is also included. (Ganglia is an open source cluster monitoring system).

2.2.2.6 gcc Toolchain

The Intel® MPSS distribution includes both a cross-compile gcc toolchain and a native gcc

toolchain. The cross compile gcc toolchain is used from the host to build components for
execution on Intel® Xeon Phi™ coprocessors. Similarly, the native gcc toolchain executes on a
coprocessor to build components for execution on a coprocessor. The native gcc toolchain is
not installed into the default coprocessor file system image, but is available in a separate
tarball that contains hundreds of binary RPMs that can be used to customize the default file
system image. Among them are system daemons including cron, rpcbind, and xinetd;

performance and debugging tools including gperf, lsof, perf, and strace; utilities including
bzip2, curl, rsync, and tar; scripting languages including awk, perl, and python; and
development tools including autotools, bison, cmake, flex, git, make, patch, and subversion,
and the GCC toolchain mentioned above.

2.2.3 Intel® Xeon Phi™ Coprocessor Networking

There are three basic network configuration options that enable Intel® Xeon Phi™

coprocessors to operate in a wide range of networking environments. These are briefly
described below. Network configuration is described in depth in Chapter 5.

2.2.3.1 Static Pair Configuration

The static pair configuration creates a separate private network between the host and each

Intel® Xeon Phi™ coprocessor. It assigns an IP address to each of the network endpoints.
Various options for selecting the IP addresses (as seen by the host) and the host’s IP address
(as seen by the coprocessor) are available.

Figure 6 depicts a host, on the left, with two Intel® Xeon Phi™ coprocessors. A private

network was configured between the host and each coprocessor. Notice that mic0 and mic1
are on separate subnets.

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
24

Figure 6: Static Pair Configuration

This network configuration is established by default when micctrl --initdefaults is called for the
first time. This configuration is sufficient for Intel® C++ and FORTRAN compiler pragma-

based offload computation on a standalone (non-clustered) host platform and other program
models where a coprocessor only needs a network connection to the host.

Additional information about this network configuration is in Chapter 5.

2.2.3.2 Bridged Network Configurations

A network bridge is a way to connect two Ethernet segments or collision domains in a protocol
independent way. It is a Link Layer device which forwards traffic between networks based on
MAC addresses and is therefore also referred to as a Layer 2 device.

Two types of bridged networks are directly supported by Intel® MPSS.

2.2.3.2.1 Internal Bridge Configuration

Some distributed applications running on Intel® Xeon Phi™ coprocessors on a single node
need to communicate between coprocessors, and perhaps with the host. An internal bridge

allows for the connection of one or more coprocessors within a single host system as a
subnetwork. In this configuration, each coprocessor can communicate with the host and with
other coprocessors in the platform. Figure 7 shows an example of an internal bridge
configuration.

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

25

Figure 7: Internal bridge network

Such a network configuration could, for example, be used to support communication between
the ranks of an MPI application that is distributed across the Intel® Xeon Phi™ coprocessors

and host. (However, use of the IBSCIF virtual InfiniBand* HCA driver will likely provide better
performance.)

The additional considerations and steps to configure this network topology are described in
Chapter 5.

2.2.3.2.2 External Bridge Configuration

The external bridge configuration bridges Intel® Xeon Phi™ coprocessors to an external

network. This is the typical configuration required when the coprocessors are deployed in a
cluster to support remote communication among them and/or Xeon™ processors across

different compute nodes.

Figure 8 depicts a cluster in which the Intel® Xeon Phi™ coprocessors on each host node are
bridged to the external network. The IP addresses in such a configuration can be assigned
statically by the system administrator or by a DHCP server on the network, but must generally
be on the same subnet.

InfiniBand* based networking is not shown in this figure. InfiniBand* based networking will

usually provide significantly higher bandwidth than the IP networking supported by the Intel®
MPSS Virtual Ethernet driver. Many clusters use Ethernet* networking for low bandwidth
communication such as command and control and use InfiniBand* networking for high
bandwidth communication as application data transfer.

Host

mic0

 mic0
mic0

172.31.1.1

mic1 mic1
mic1

172.31.1.2

eth0

b
r0

 1
7

2
.3

1
.1

.25
4

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
26

Figure 8: External bridge network

To prepare for configuring this network topology, you should ensure that you have provided a
large enough IP address space to accommodate the nodes of the externally bridged networks.

These topics and steps to configure this network topology are described in Chapter 5.

2.3 Supported Intel® Productivity Tools

The following table lists compatible versions of Intel® productivity tools that are supported
with Intel® MPSS release 3.6.

 Table 1: Intel® Productivity Tools Supported by Intel® MPSS 3.6

Name of Tool Supported Version

Intel® Composer XE 2015

Intel® C++ Compiler 15.0

Intel® Integrated Performance Primitives for Linux* 8.2

Intel® Math Kernel Library for Linux* 11.2

Intel® Threading Building Blocks for Linux* 4.3

Intel® VTune™ Amplifier XE 2015

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

27

Name of Tool Supported Version

Intel® SEP 3.11

Note: The intel-composerxe-compat-k1om RPM temporarily provides backward compatibility to ICC
compiler versions prior to 14.0.0 via the soft links to /opt/mpss/3.6/sysroot. It is not a separate set

of binaries for the x86_64-k1om-linux architecture used in Intel® MPSS 2.1.6720.

2.4 Related Documentation

The Intel® Xeon Phi™ Coprocessor Developer Zone website has a wealth of information on all
aspects of Intel® Xeon Phi™ coprocessor programming.

The following documentation specific to Intel® MPSS and Intel® Xeon Phi™ coprocessors is

listed below.

2.4.1 SCIF documentation

The following SCIF documentation is installed during base Intel® MPSS installation

$MPSS36/docs/SCIF_UserGuide.pdf -SCIF User Guide

/usr/share/man/man3/scif* -Man pages for SCIF API user mode

/usr/share/man/man9/scif* -Man pages for SCIF API kernel mode

2.4.1.1 SCIF Tutorials Location

/usr/share/doc/scif/tutorials -SCIF tutorial source files

/usr/share/doc/scif/tutorials/README.txt -Instructions for building and running the SCIF
tutorials

$MPSS36/mpss-sciftutorials-doc-*.rpm -SCIF tutorial source package

$MPSS36/mpss-sciftutorials-3.*.rpm -SCIF tutorial binaries package

$MPSS36/mpss-sciftutorials-3.*.rpm -Debuggable SCIF tutorial binaries package

2.4.2 COI Documentation

The following COI documentation is installed during base Intel® MPSS installation

/usr/share/doc/intel-coi-3.6-1/ -release_notes.txt

/usr/share/doc/intel-coi-3.6-1/ -MIC_COI_API_Reference_Manual_1_0.pdf

/usr/share/doc/intel-coi-3.6-1/ -coi_getting_started.pdf

/usr/include/intel-coi/ -header files containing full API descriptions

/usr/share/doc/intel-coi-3.6-1/tutorials/ -Full tutorials source and Makefiles

/usr/share/man/man3/COI* -man pages

https://software.intel.com/en-us/mic-developer

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
28

2.4.3 MYO Documentation

The following MYO documentation is installed during base Intel® MPSS installation

/usr/share/doc/myo -MYO tutorials and other documents

/usr/include/ -header files containing full API descriptions

/usr/share/man/man3/myo* -man pages

2.4.4 Micperf Documentation

Intel® Xeon Phi™ coprocessor Performance Workload (Micperf) documentation is found at
/usr/share/doc/micperf-3.6 when micperf is installed (see Appendix F.2).

2.4.5 Intel® Xeon Phi™ Coprocessor Collateral

The following documents provide additional information on various aspects of Intel® Xeon
Phi™ hardware and software.

Intel® Xeon Phi™ coprocessor Specification Update:

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
specification-update.html

Intel® Xeon Phi™ coprocessor Safety and Compliance Guide:

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-safety-
compliance-guide.html

Intel® Xeon Phi™ coprocessor Datasheet:

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
datasheet.html

Intel® Xeon Phi™ coprocessor Software Users Guide:

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-

software-users-guide.html

Intel® Xeon Phi™ coprocessor System Software Developers Guide:

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-

system-software-developers-guide.html

Intel® Xeon Phi™ coprocessor Developers Quick Start Guide:

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-

guide

Intel® Xeon Phi™ coprocessor Instruction Set Architecture Reference Manual:

http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

Information on platforms that support the Intel® Xeon Phi™ coprocessor.

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-specification-update.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-specification-update.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-safety-compliance-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-safety-compliance-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-software-users-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-software-users-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

Intel® MPSS at a Glance

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

29

http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-

coprocessor

Intel® MPSS Performance Guide

https://software.intel.com/sites/default/files/managed/72/db/mpss-performance-guide.pdf

http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-coprocessor
http://software.intel.com/en-us/articles/which-systems-support-the-intel-xeon-phi-coprocessor
https://software.intel.com/sites/default/files/managed/72/db/mpss-performance-guide.pdf

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
30

3 Intel® Xeon Phi™ Coprocessor

Installation Process

This chapter describes the steps for installing and configuring Intel® Xeon Phi™ coprocessor
hardware and software. Most of these steps through Section 3.3 are common to both
workstation and cluster configurations. Section 3.5 and later are primarily of interest to cluster
administrators and those with advanced workstation programming configuration requirements.

Caution: It is strongly recommended that you read through this chapter before actually proceeding

with installation to ensure that all required components and facilities are available. It is also

strongly recommended that these installation steps be performed in the order in which they

are presented.

3.1 Hardware and Software Prerequisites

3.1.1 Host System HW

A system that supports the Intel® Xeon Phi™ coprocessor is required to run Intel® MPSS. You

can find information on such platforms at the Intel® Developer Zone for Intel® Xeon Phi™
coprocessors: https://software.intel.com/en-us/mic-developer. Search for an article entitled
Which systems support the Intel® Xeon Phi™ coprocessor?

3.1.2 BIOS Configuration

Several BIOS settings are important to the proper functioning of the software stack.

3.1.2.1 Enable Large Base Address Registers (BAR) Support in the
 Host Platform BIOS

BIOS and OS support for large (8GB+) Memory Mapped I/O Base Address Registers (MMIO

BAR's) above the 4GB address limit must be enabled.

In some instances, motherboard BIOS implementations have this feature set to disabled and it
must be enabled manually.

Contact your platform and/or BIOS vendor to determine whether changing this setting applies
for the platform being used.

3.1.2.2 Enable Intel® Turbo Boost on the Host Platform

For best performance, it is recommended that Intel® Turbo Boost is enabled. Enabling this
setting in the BIOS is vendor specific. Contact your platform vendor for instructions.

https://software.intel.com/en-us/mic-developer

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

31

3.1.3 Supported Host Operating Systems

Intel® MPSS 3.6 has been validated against specific versions of Red Hat* Enterprise Linux*
(RHEL*) and SUSE* Linux* Enterprise Server (SLES*) as the host operating system. Table 2

lists the supported versions of these operating systems.

To obtain the version of the kernel running on the host, execute:

[host]$ uname -r

Table 2: Supported Host Operating Systems

Supported Host OS Versions Kernel Version

Red Hat* Enterprise Linux* 64-bit 6.5 2.6.32-431

Red Hat* Enterprise Linux* 64-bit 6.6 2.6.32-504

Red Hat* Enterprise Linux* 64-bit 6.7 2.6.32-573

Red Hat* Enterprise Linux* 64-bit 7.0 3.10.0-123

Red Hat* Enterprise Linux* 64-bit 7.1 3.10.0-229

SUSE* Linux* Enterprise Server 11 SP3 64-bit 3.0.76-0.11-default

SUSE* Linux* Enterprise Server 11 SP4 64-bit 3.0.101-63-default

SUSE* Linux* Enterprise Server 12 64-bit 3.12.28-4-default

Section 3.3.3 and Section 3.3.4 discuss rebuilding the Intel® MPSS host drivers and Intel®
MPSS OFED drivers in the event that the host kernel has been patched/upgraded.

3.1.4 Host Operating System Configuration

1. The SUSE* Linux* Enterprise Server release kernel must be configured to allow non-

SUSE* driver modules to be loaded. Edit the file "/etc/modprobe.d/unsupported-modules"
and set the value of "allow_unsupported_modules" to 1.

2. If SELinux* is installed, it must be disabled before installing Intel® MPSS software to

prevent SELinux* from overriding standard Linux* permissions settings.

3.1.5 Root Access

Many tasks described in this document require root access privileges. Verify that you have
such privileges to the machines which you will configure.

The use of sudo to acquire root privileges should be done carefully because there may be

subtle and undesirable side effects to its use. Sudo might not retain the non-root environment

of the caller. This could, for example, result in use of a different PATH environment variable
than was expected, resulting in execution of the wrong code.

When su is used to become root, the non-root environment is mostly retained. HOME, SHELL,

USER, and LOGNAME are reset unless the -m switch is given. See the su man page for details.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
32

3.1.6 SSH Access to the Intel® Xeon Phi™ Coprocessor

Secure Shell (SSH) is a connectivity tool for secure remote command-line login, command
execution, and other services between two networked computers. SSH is an important

capability for enabling users to move and launch native applications and data to Intel® Xeon
Phi™ coprocessors and move results back. Developers can use SSH to access coprocessor to
perform native compilation and other software development tasks.

Most Intel® Xeon Phi™ coprocessor configuration tasks can be done indirectly from the host,

as will be discussed later. However, some administrators may prefer to use SSH to log on to a
coprocessor to perform such configuration tasks directly or verify that a coprocessor’s
configuration is correct.

SSH access is generally not needed by users who will develop and/or execute offload
applications using the Intel® C++ and FORTRAN offload pragmas.

The Intel® Xeon Phi™ coprocessor Linux* OS supports network access using SSH keys or

password authentication; this requires that valid credentials exist on the coprocessor.

Depending on parameterization, the micctrl --initidefaults command, when performed

following base software stack installation (Section 3.3.3.3), creates a user account on each
coprocessor’s file system, for selected users and root in the host /etc/passwd file. In addition,
for each such user, if SSH key files are found in the user's ".ssh" directory, those keys may
also be propagated to the Intel® Xeon Phi™ coprocessor's file system. This allows ssh access
to the coprocessor without the need to enter a password.

Each user, including root, that will need SSH access should execute the ssh-keygen command:

[host]$ ssh-keygen

to generate a set of ssh keys.

Note: It is recommended to use default key names and not to provide key passphrases.

See Chapter 6 for information on customizing the user credentialing behavior.

3.1.7 Init Scripts

Red Hat* Enterprise Linux* 6 and SUSE* Linux* Enterprise Server 11 use the System V init
system, while Red Hat* Enterprise Linux* 7 and SUSE* 12 uses the systemd init system. The
System V init system uses the service command, which has the form:

service SCRIPT COMMAND [OPTIONS]

where the SCRIPT parameter specifies a System V init script, and the supported values of

COMMAND depend on the invoked script. Systemd uses the systemctl command, which has
the form:

systemctl [OPTIONS…] COMMAND [NAME…]

where [NAME…] is zero or more parameters to the COMMAND.

The systemctl command is also used on RHEL* 7 and SUSE* 12 instead of the chkconfig

command. Init commands in this document are in System V format. On host systems with
RHEL* 7 or SUSE* 12, those commands should be converted to system format as follows:

http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Login
http://en.wikipedia.org/wiki/Network_service

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

33

Table 3: System V format commands

RHEL* 6/SUSE 11 Command RHEL* 7/SUSE* 12 Command

service mpss unload systemctl stop mpss
modprobe -r mic

service SCRIPT COMMAND systemctl COMMAND SCRIPT

chkconfig NAME on systemctl enable NAME

chkconfig NAME off systemctl disable NAME

For example, the command:

[host]# service nfs restart

should be converted to:

[host]# systemctl restart nfs

on RHEL* 7/SLSE* 12. Similarly

[host]# chkconfig mpss on

becomes:

[host]# systemctl enable mpss

In the remainder of this document, service and systemctl are prepended with a superscript

that links back to this section:

[host]# 1service mpss start

3.1.8 Network Manager

Some configuration of the network manager is required. Configuration is host operating
system dependent.

3.1.8.1 RHEL* 6, RHEL* 7 and SLES* 11

Users have encountered issues in configuring the virtual network interfaces for Intel® Xeon
Phi™ coprocessors when NetworkManager is being used on RHEL* 6, RHEL* 7 and SLES* 11
platforms. It is strongly recommended to use the older and more server-oriented network
daemon instead with these operating systems.

To determine if NetworkManager is active, execute:

1 When running Intel® MPSS on RHEL* 7.0, please replace:

 service mpss unload
 with
 systemctl stop mpss
 modprobe -r mic
 For all other service commands, replace:
 service <daemon> <action>
 with
 systemctl <action> <daemon>

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
34

[host]# 1service NetworkManager status

To switch to network daemon, perform the following on the host:

[host]# 1chkconfig NetworkManager off

[host]# 1chkconfig network on

[host]# 1service NetworkManager stop

[host]# 1service network start

3.1.8.2 SLES* 12

The wicked network configuration framework should be enabled by default on SLES* 12. To

verify whether it is running execute:

[host]$ systemctl status network.service

If the output shows another service force wicked by executing:

[host]# systemctl stop network.service

[host]# systemctl enable --force wicked.service

For proper functioning of Intel® Xeon Phi™ coprocessors networking with wicked, the nanny

daemon should also be enabled. The recommended procedure is to create and/or edit the file
/etc/wicked/local.xml to include a line that enables the nanny daemon, for example:

<config>

 <use-nanny>true</use-nanny>

</config>

More information is available at: https://www.suse.com/documentation/sles-

12/book_sle_admin/data/sec_basicnet_manconf.html

After any change in network configuration, the wicked daemon should be restarted for

configuration changes to take effect:

[host]# 1systemctl restart wicked

It is also recommended to flush the DNS cache by issuing:

1systemctl restart nscd

3.2 Intel® Xeon Phi™ Coprocessor Card Physical
Installation

Note: You can skip this chapter if your host has just a single CPU socket because all PCIe slots are
equivalent.

When installing Intel® Xeon Phi™ coprocessor cards into a host platform, some consideration

should be given to the slot or slots where the cards are installed. The options depend on if a
coprocessor card is to communicate with another PCIe device, such as another coprocessor or
an InfiniBand* HCA. We refer to such communication between PCIe devices as peer-to-peer
(P2P).

An important factor is that when PCIe devices are plugged into I/O hubs of different CPU

sockets, communication between those devices will be across the Quick Path interconnect. The

https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_basicnet_manconf.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_basicnet_manconf.html

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

35

bandwidth of this communication will typically be lower than communication bandwidth when

the two devices are plugged into the same I/O hub. Therefore, if you expect P2P data
transfers between two PCIe devices, it is recommended to setup nodes with the above
considerations in mind. Contact your host platform OEM or refer to motherboard

documentation for information on bus/processor locality.

3.2.1 Workstation Considerations

Workstations typically do not have InfiniBand* HCAs. In this case, P2P communication
between Intel® Xeon Phi™ coprocessors will determine how cards are installed, and this is
somewhat determined by the programming model. Programming models were discussed

briefly in Section 2.2. If there is just a single coprocessor, it makes little difference into which
slot it is installed.

3.2.1.1 Offload Programming Model

Most workstation applications use the offload programming model support provided by the

Intel® C/C++ and FORTRAN compilers, and MKL libraries to offload work to one or more
Intel® Xeon Phi™ coprocessors. In this framework, the coprocessors communicate only with
the host processor, not with each other; P2P bandwidth is thus not important. Therefore it is
recommended that cards are installed as uniformly as possible among the I/O hubs. Figure 9
is an example of such an installation. Care, should be taken to ensure that the host side of the
offload program is running on the same NUMA node as the coprocessor to which it is offloading

work. Refer to the Intel® MPSS Performance Guide for additional information.

Figure 9: Uniform distribution of Intel® Xeon Phi™ coprocessors

https://software.intel.com/sites/default/files/managed/72/db/mpss-performance-guide.pdf

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
36

3.2.1.2 Symmetric and Native Programming Models

When an application is distributed across the Intel® Xeon Phi™ coprocessors it is likely that

communication bandwidth between them is important. This might be the case, for example,
when MPI ranks are instantiated on multiple coprocessors in a workstation. In this case, the
best performance might be achieved by installing pairs of Intel® Xeon Phi™ coprocessors into
each I/O hub as shown in Figure 10.

Figure 10: Two Intel® Xeon Phi™ coprocessors Installed in the Same IO Hub

 Experimentation to find the best configuration is recommended.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

37

3.2.2 Cluster Considerations

When both an Intel® Xeon Phi™ coprocessor and an InfiniBand* HCA are installed in the same
platform, it is important to maximize communication bandwidth between the two devices. This

suggests that, where there is one of each, they should be installed into the same I/O hub, as
the example in Figure 11 shows.

Figure 11: Intel(R) Xeon Phi(TM) and InfiniBand* HCA sharing an I/O hub

By extension, when there are equal numbers of Intel® Xeon Phi™ coprocessors and
InfiniBand* HCAs, we suggest installing the coprocessor and HCA pair into an I/O hub, as the

example in Figure 12 shows.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
38

Figure 12: Symmetric Distribution of Coprocessors and HCAs

For other ratios of Intel® Xeon Phi™ coprocessors and IB HCAs, consideration should be given
to how the devices are expected to inter-communicate, remembering the relative

communication BWs between the various PCIe slots in a platform.

3.2.3 Validate Intel® Xeon Phi™ Coprocessor physical installation

Before installing and using Intel® MPSS, it is advisable to check if the host OS is able to
enumerate and assign MMIO resources to the Intel® Xeon Phi™ coprocessors. The lspci
command, commonly found on Linux* installations, can be used to achieve this. The following

shows typical output indicating the presence of a single coprocessor:

[host]$ lspci | grep -i Co-processor

08:00.0 Co-processor: Intel Corporation Device 225c (rev 20)

To verify that the BIOS/OS is able to assign all the required resources to the Intel® Xeon
Phi™ coprocessor, execute the following, noting that the earlier command reported that the
coprocessor is on bus:slot number 08:00.

[host]# lspci -s 08:00.0 –vv

08:00.0 Co-processor: Intel Corporation Device 225c (rev 20)

 Subsystem: Intel Corporation Device 2500

 Physical Slot: 4

 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop-

ParErr+ Stepping- SERR+ FastB2B- DisINTx+

 Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast

>TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-

 Latency: 0, Cache Line Size: 64 bytes

 Interrupt: pin A routed to IRQ 56

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

39

 Region 0: Memory at 3c7e00000000 (64-bit, prefetchable)

[size=200000000]

 Region 4: Memory at ec000000 (64-bit, non-prefetchable)

[size=128K]

: <output truncated>

The output shows that both BAR0 (region 0) and BAR1 (region 4) have valid assigned values.

If the expected number of cards is not reported, it may help to reseat the cards before

continuing. If the cards are detected, but no resources have been assigned, check the system
BIOS for support of large BARs (see Section 3.1.4)

3.3 Base Intel® MPSS Installation

You are now ready to install the “Base Intel® MPSS”. Base software stack includes all
components that are needed to configure the Intel® MPSS environment, boot the installed

Intel® Xeon Phi™ coprocessors, and execute applications that use the offload or native
execution models. Optional stack components must be installed if application processes

running on the coprocessors are to communicate with supported InfiniBand* HCAs. This is
covered later in Section 3.6.

3.3.1 Get the Intel® MPSS Distribution

The Intel® MPSS distributions can be obtained from the Intel® Developer Zone website
(Intel® DZ). For the software stack 3.3 and newer, there is a single distribution for all
supported operating systems. Releases prior to 3.3 had a separate tar file for each supported

host OS.

Untar the Intel® MPSS package:

[host]$ tar xvf mpss-3.6-linux.tar

[host]$ cd mpss-3.6

As described in the Notational Conventions Section 1.3.2.1, we refer to the directory into

which files are placed as $MPSS36.

3.3.2 Uninstall Previous Intel® MPSS Installation Prior to Upgrade

Yum and zypper both support software upgrades and downgrades. However, it is necessary

that Intel® MPSS upgrades and downgrades be carried out by first completely uninstalling
existing Intel® MPSS components, followed by a clean installation of the replacement
software.

1. To check for a previously installed version of Intel® MPSS package:

[host]$ rpm -qa | grep -e intel-mic -e mpss

Skip to Section 3.3.3.3 if there is no previous installation.

Unload the software stack driver:

[host]# 1service mpss unload

Uninstall the software stack

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
40

a. To uninstall 3.x-based builds:

[host]$ cd $MPSS3X

[host]# ./uninstall.sh

b. To uninstall the pre-3.x builds:

i. Red Hat* Enterprise Linux*

[host]# yum remove intel-mic*

ii. SUSE* Linux* Enterprise Server

[host]# zypper remove intel-mic*

3.3.3 Rebuild Intel® MPSS Host Drivers

Both Red Hat* and SUSE* release minor kernel version updates. If an update of the kernel
occurs, this may create version incompatibilities with the Intel® MPSS* host and InfiniBand*

drivers, preventing these drivers from loading.

To determine if your host kernel has been updated, you can execute:

[host]$ uname -r

from the host console and compare the returned value to the default versions listed in Table 2.

If your host kernel is not updated, then proceed to Section 3.3.3.3. Otherwise it may be
required to rebuild Intel® MPSS drivers as follows for proper execution:

Note: If using InfiniBand* as an interconnect, you may also need to recompile the OFED drivers; this
is covered in Section 3.3.4.

3.3.3.1 Red Hat* Enterprise Edition (RHEL*)

1. Ensure the prerequisites are installed:

[host]# yum install kernel-headers kernel-devel

2. Regenerate the Intel® MPSS driver module package:

[host]$ cd $MPSS36/src/

[host]$ rpmbuild --rebuild mpss-modules*.src.rpm

3. The resulting mpss-modules binary rpms are located by default at
$HOME/rpmbuild/RPMS/x86_64. Copy the mpss-modules RPMs to the modules
directory:

[host]$ cp $HOME/rpmbuild/RPMS/x86_64/mpss-modules*`uname \

-r`*.rpm ../modules

4. Proceed to Section 3.3.3.3.

3.3.3.2 SUSE* Linux* Enterprise Server (SLES*)

1. Ensure the prerequisites are installed:

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

41

[host]# zypper install kernel-default-devel rpm-build

2. Regenerate the Intel® MPSS driver module package:

[host]$ cd $MPSS36/src/

[host]# rpmbuild --rebuild mpss-modules*.src.rpm

3. The resulting mpss-modules binary rpms are located by default at
/usr/src/packages/RPMS/x86_64 or $HOME/rpmbuild/RPMS/x86_64 (depending on the
OS version). Copy the mpss-modules RPMs to the modules directory:

[host]$ cp /usr/src/packages/RPMS/x86_64/mpss-modules*`uname \

-r`*.rpm ../modules

4. Proceed to Section 3.3.3.3.

3.3.3.3 Install Base Intel® MPSS

1. The modules directory contains packages for all supported host OS kernels, including

packages that were rebuilt in Section 3.3.3. Copy the modules corresponding to your host
kernel to $MPSS36:

[host]$ cd $MPSS36

[host]$ cp ./modules/*`uname -r`*.rpm .

Install the software stack:

a. Red Hat* Enterprise Linux*

[host]# yum install *.rpm

Note: Intel® MPSS packages are not GPG signed. If local package GPG check (localpkg_gpgcheck) is
enabled in yum.conf, or if RHEL* 6.0 gpgcheck is enabled, the --nogpgcheck option must be used:

[host]# yum install --nogpgcheck *.rpm

b. SUSE* Linux* Enterprise Server

[host]# zypper install *.rpm

2. Load the mic.ko driver:

[host]# modprobe mic

3.3.4 Update Intel® Xeon Phi™ Coprocessor Flash & SMC Firmware

Caution: After the base software stack is installed, it is strongly recommended to update the Intel®

Xeon Phi™ coprocessor flash and SMC firmware to the version distributed with the software

stack installation. The $MPSS36/docs/readme.txt file lists the versions of the Flash and SMC

firmware in the distribution.

Running Intel® MPSS with incorrect Flash or SMC firmware versions is not supported and
may lead to erratic behavior.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
42

Note: These steps will not work if the flash files (ending in .rom.smc) are moved to a location other

than the default install path.

Note: To verify what version of the flash is installed execute:

 [host]#micflash –getversion

Note: The current flash version must be >= 375. If not, contact your Intel® support representative.

1. Check the status of each coprocessor:

[host]$ micctrl -s

Note: In SLES* it might be necessary to provide absolute path to execute the above command
without root permissions. The default path to micctrl is /usr/sbin/micctrl.

If the status for all of the coprocessors shows 'ready', go to step 2; otherwise, set the
coprocessor(s) to a 'ready' state:

[host]# micctrl –rw

2. Determine the stepping and board SKU of each coprocessor to be updated. The micinfo

utility can be used if this information is not already known. For example:

[host]# micinfo -group Board

 Board

 Vendor ID : 0x8086

 Device ID : 0x225d

 Subsystem ID : 0x2500

 Coprocessor Stepping ID : 1

 PCIe Width : x16

 PCIe Speed : 5 GT/s

 PCIe Max payload size : 256 bytes

 PCIe Max read req size : 512 bytes

 Coprocessor Model : 0x01

 Coprocessor Model Ext : 0x00

 Coprocessor Type : 0x00

 Coprocessor Family : 0x0b

 Coprocessor Family Ext : 0x00

 Coprocessor Stepping : B0

 Board SKU : ES2-A1330

 ECC Mode : NotAvailable

 SMC HW Revision : NotAvailable

Note: Some data is not available while the coprocessor is not booted.

3. Update the flash image.

a. If the coprocessor to be updated is any C0 stepping SKU, or a 5110P B1 SKU with

a TA of G65758-253 or higher (for 5110P B1 SKUs, the TA is on a sticker affixed to
the coprocessor) then execute:

 [host]# micflash -update -device all

This will update all installed coprocessors. To update coprocessor micN, execute:

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

43

[host]# micflash -update -device N

For example:

[host]# micflash -update -device 0

No image path specified - Searching: /usr/share/mpss/flash

mic0: Flash image: /usr/share/mpss/flash/EXT_HP2_B1_0390-02.rom.smc

mic0: Flash update started

mic0: Flash update done

mic0: SMC update started

mic0: SMC update done

mic0: Transitioning to ready state

Please restart host for flash changes to take effect

b. Otherwise, execute:

[host]# micflash -update -device all -smcbootloader

This will update all installed coprocessors. To update coprocessor micN, execute:

[host]# micflash -update -device N -smcbootloader

 For Example:

[host]# micflash -update -device 0 -smcbootloader

No image path specified - Searching: /usr/share/mpss/flash

mic0: Flash image: /usr/share/mpss/flash/EXT_HP2_B0_0390-02.rom.smc

mic0: SMC boot-loader image:

/usr/share/mpss/flash/EXT_HP2_SMC_Bootloader_1_8_4326.css_ab

mic0: SMC boot-loader update started

mic0: SMC boot-loader update done

mic0: Transitioning to ready state

mic0: Flash update started

mic0: Flash update done

mic0: SMC update started

mic0: SMC update done

mic0: Transitioning to ready state

Please restart host for flash changes to take effect

4. Reboot the host system for all flash and SMC changes to take effect. Be sure to wait for

the flash update to complete before rebooting.

5. You will validate the flash update in Section 3.3.7.

mpssflash is a POSIX-compliant version of micflash. For detailed information about micflash or
mpssflash, refer to the micflash or mpssflash man page:

[host]$ man micflash

[host]$ man mpssflash

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
44

3.3.5 Initialize Intel® MPSS default configuration settings.

Intel® MPSS configuration is based on parameters in several configuration files. The
parameters in /etc/mpss/default.conf are treated as common to all coprocessors in the

system. In addition, there is a configuration file /etc/mpss/micN.conf for each coprocessor in
the system, where N is an integer number (0, 1, 2, 3, etc.) that identifies a coprocessor. Each
parameter in a coprocessor specific file takes precedence in configuring the corresponding
coprocessor, overriding default.conf if the same parameter is in that file.

The micctrl --initdefaults command creates these files if they do not already exist, and

populates them with default parameter values. In addition, if a previous configuration file
exists, but some parameter is not configured, this command will add a default configuration
value.

The micctrl --initdefaults command should be performed after the initial Intel® MPSS

installation and after each subsequent installation of a new software stack release:

[host]# micctrl --initdefaults

The micctrl --initdefaults command will not change existing configuration settings, with the
following exception: The Intel® MPSS configuration file format is versioned, with the version
indicated by a Version parameter in the configuration file. If a configuration already exists,
then micctrl --initdefaults will update the configuration format if necessary. The semantics of
the updated configuration should be invariant.

Some users switch between different versions of the software stack. When this is the case,
and because micctrl --initdefaults does not know how to downgrade a configuration from a
newer to an older format, it is recommended to make a copy of the configuration files before
calling micctrl --initdefaults.

The default configuration produced by the micctrl --initdefaults command is sufficient for
many users who will be using the offload programming model on a workstation. You can view
a summary of the current configuration parameters with:

[host]$ micctrl --config

The following is typical of the default configuration:

mic0:

===

 Config Version: 1.1

 Linux Kernel: /usr/share/mpss/boot/bzImage-knightscorner

 BootOnStart: Enabled

 Shutdowntimeout: 300 seconds

 ExtraCommandLine: highres=off

 PowerManagment: cpufreq_on;corec6_off;pc3_on;pc6_off

Root Device: Dynamic Ram Filesystem /var/mpss/mic0.image.gz from:

Base: CPIO /usr/share/mpss/boot/initramfs-

 knightscorner.cpio.gz

CommonDir: Directory /var/mpss/common

Micdir: Directory /var/mpss/mic0

 Network: Static Pair

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

45

 Hostname: snhondo-desktop7-mic0.dd.domain.com

 MIC IP: 172.31.1.1

 Host IP: 172.31.1.254

 Net Bits: 24

 NetMask: 255.255.255.0

 MtuSize: 64512

 MIC MAC: 4c:79:ba:15:00:1e

 Host MAC: 4c:79:ba:15:00:1f

 Cgroup:

 Memory: Disabled

 Console: hvc0

 VerboseLogging: Disabled

 CrashDump: /var/crash/mic 16GB

The micctrl tool can be used to modify the configuration, and it is also possible to modify the
configuration by directly editing the Intel® MPSS configuration files. Section 3.6.11.2 contains

an overview of the configuration process, while later sections discuss a variety of configuration
tasks.

3.3.6 Start Intel® MPSS

With Intel® MPSS installed and the flash and SMC versions up-to-date, it is time to boot the
Intel® Xeon Phi™ coprocessors you have installed. To boot the coprocessors, execute the

following:

[host]# 1service mpss start

Starting the mpss service launches the mpssd daemon, and also boots the installed Intel®

Xeon Phi™ coprocessors if the BootOnStart config option is set to enabled (default).

The following command configures the mpss service to start when the host OS boots:

[host]# 1chkconfig mpss on

This command disables the mpss service from starting when the host OS boots:

[host]# 1chkconfig mpss off

See the chkconfig man page for details.

Note: On RHEL* 7 and SLES* 12, starting the mpss service (systemctl start mpss) on a system with
a large number of coprocessors can take longer than the default value of five minutes of the

TimeoutSec parameter in the /etc/systemd/system/mpss.service file. In this case it is necessary to

increase TimeoutSec from its default value to some larger value.

3.3.7 Validate Base Intel® MPSS Installation

Having booted all the coprocessors in the system, Intel® MPSS provides utilities that can be

used to perform basic tests to validate that the installation was performed correctly.

Appendix I provides troubleshooting advice in the event that problems are encountered during
installation.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
46

3.3.7.1 Log into a Coprocessor Using SSH

At this point you should be able to ssh into a coprocessor. For example, to ssh into mic0:

[host]$ ssh mic0

[mic0]$

If the following message appears:

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

remove the mic0 RSA from the user’s known_hosts file, typically found in the $HOME/.ssh/
folder, and then try again.

Note: When running an ssh command in the background, it is preferable to use the -f option instead
of appending "&" to the command:

[host]$ ssh -f hostname "sleep 20; echo complete"

3.3.7.2 Validate Using Intel® MPSS Tools

miccheck is a utility which performs sanity checks on a host system in which Intel® Xeon Phi™

coprocessors are installed, by running a suite of diagnostic tests. The following example shows
miccheck output after a successful software stack installation:

[host]$ miccheck

MicCheck 3.6-r1

Copyright 2013 Intel Corporation All Rights Reserved

Executing default tests for host

 Test 0: Check number of devices the OS sees in the system ... pass

 Test 1: Check mic driver is loaded ... pass

 Test 2: Check number of devices driver sees in the system ... pass

 Test 3: Check mpssd daemon is running ... pass

Executing default tests for device: 0

 Test 4 (mic0): Check device is in online state and its postcode is

FF ... pass

 Test 5 (mic0): Check ras daemon is available in device ... pass

 Test 6 (mic0): Check running flash version is correct ... pass

 Test 7 (mic0): Check running SMC firmware version is correct ...

pass

Status: OK

Additionally, the micinfo tool provides information about the host and Intel® Xeon Phi™
coprocessor hardware and software. The following is example output from micinfo when
executed on a platform with a single coprocessor installed. Certain device information is only
available when executing micinfo with root privileges:

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

47

[host]# micinfo

MicInfo Utility Log

Created Tue Jan 27 20:49:53 2015

 System Info

 HOST OS : Linux

 OS Version : 2.6.32-431.17.1.el6.x86_64

 Driver Version : 3.6

 MPSS Version : 3.6

 Host Physical Memory : 24541 MB

Device No: 0, Device Name: mic0

 Version

 Flash Version : 2.1.03.0386

 SMC Firmware Version : 1.15.4830

 SMC Boot Loader Version : 1.8.4326

 Coprocessor OS Version : 2.6.38.8+mpss3.6

 Device Serial Number : ADKC31101193

 Board

 Vendor ID : 0x8086

 Device ID : 0x2250

 Subsystem ID : 0x5804

 Coprocessor Stepping ID : 2

 PCIe Width : x16

 PCIe Speed : 5 GT/s

 PCIe Max payload size : 256 bytes

 PCIe Max read req size : 4096 bytes

 Coprocessor Model : 0x01

 Coprocessor Model Ext : 0x00

 Coprocessor Type : 0x00

 Coprocessor Family : 0x0b

 Coprocessor Family Ext : 0x00

 Coprocessor Stepping : C0

 Board SKU : C0QS-5110P

 ECC Mode : Enabled

 SMC HW Revision : Product 225W Passive CS

 Cores

 Total No of Active Cores : 60

 Voltage : 972000 uV

 Frequency : 1052631 kHz

 Thermal

 Fan Speed Control : N/A

 Fan RPM : N/A

 Fan PWM : N/A

 Die Temp : 40 C

 GDDR

 GDDR Vendor : Elpida

 GDDR Version : 0x1

 GDDR Density : 2048 Mb

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
48

 GDDR Size : 7936 MB

 GDDR Technology : GDDR5

 GDDR Speed : 5.000000 GT/s

 GDDR Frequency : 2500000 kHz

 GDDR Voltage : 1501000 uV

See the miccheck and micinfo man pages for additional information.

3.3.7.3 Run “Hello World”

Now that the Intel® Xeon Phi™ coprocessors are up and running, run a simple program
several different ways.

3.3.7.3.1 “Hello World” Native Execution Using gcc

Shown below is a very simple example. The point of this exercise is to demonstrate the

simplicity with which code can be compiled and run on the Intel® Xeon Phi™ coprocessor. As
seen below, this is standard C code. In this example, the gcc cross compiler that is included in
the Intel® MPSS cross-compilation SDK is used. The gcc cross compiler is installed at
/opt/mpss/3.6/sysroots/x86_64-mpsssdk-linux/usr/bin/k1om-mpss-linux/k1om-mpss-linux-

gcc. Cross compiling using the SDK is described in detail in Section 8.1.

[host]$ cat hello_world.c

#include <stdio.h>

#include <stdlib.h>

void

main()

{

 printf("Hello World \n");

}

[host]$ /opt/mpss/3.6/sysroots/x86_64-mpsssdk-linux/usr/bin/k1om-

mpss-linux/k1om-mpss-linux-gcc hello_world.c -o hello_world

Next, copy the code to the file system on the coprocessor using scp:

[host]$ scp hello_world mic0:

hello_world 100% 10KB 10.2KB/s 00:00

Invoke the application on the coprocessor:

[host]$ ssh mic0 /home/<USER>/hello_world

Hello World

3.3.7.3.2 “Hello World” Native Execution Using the Intel® C Compiler

This is a repeat of the previous example, but this time using Intel® C Compiler for

compilation. Note that you will need to install the Intel® Compiler suite to build this example

(and the follow-on example highlighting offload directives.) See Intel® C and C++ Compilers
for details on licensing and installation.

Notice that the Intel® C compiler (icc) is used with an additional flag (-mmic) to indicate that

the target architecture in this case is the Intel® Xeon Phi™ coprocessor.

[host]$ cat hello_world.c

#include <stdio.h>

https://software.intel.com/en-us/c-compilers/

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

49

#include <stdlib.h>

void

main()

{

 printf("Hello World \n");

}

[host]$ icc -mmic hello_world.c -o hello_world

Next, copy the code to the file system on the coprocessor using scp

[host]$ scp hello_world mic0:

hello_world 100% 10KB 10.2KB/s 00:00

Invoke the application on the coprocessor.

[host]$ ssh mic0 /home/<USER>/hello_world

Hello World

3.3.7.3.3 “Hello World” via Compiler Based Offload Directives

This example demonstrates the use of offload directives to run code on the coprocessor.

[host]$ cat hello_offload.c

#include <stdio.h>

#include <stdlib.h>

void

main()

{

 #pragma offload target (mic:0)

 {

 printf("hello_world from offloaded code running on the

coprocessor \n");

 }

}

To build it, use the Intel® C compiler, as before with -offload flag.

[host]$ icc -offload hello_offload.c -o hello_offload

Finally, to run it, simply invoke the host side binary.

[host]$./hello_offload

hello_world from offloaded code running on the coprocessor

3.4 Basic Workstation Installation is Complete

At this point the host and Intel® Xeon Phi™ coprocessors are configured in the static pair

networking configuration. In this configuration, a separate private network was created
between the host and each coprocessor. As demonstrated in the previous “Hello World”

examples, this configuration supports both the Offload and Native programming models as
described in Section 2.2.1.

For users who will be developing and/or executing only Intel® C++/FORTRAN offload directive
based programming, basic installation is now complete. You may, however, want to consult

Chapter 6 to learn more about user credentials.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
50

Users who will be performing Native program execution on a standalone platform might also

wish to learn more about NFS mounting some or all of the coprocessor file system: see section
3.5.4 for a discussion on the tradeoffs of local vs. remote file system mounts. Building and
adding software to the coprocessor file system may also be of interest: see Chapters 7 and 8.

3.5 Network Configuration

This section touches briefly on criteria for choosing a network configuration type. It is
primarily of interest to cluster administrators and those with advanced workstation

programming models.

Although Intel® MPSS supports an Internal Bridge configuration, in which the host and all
Intel® Xeon Phi™ coprocessors in the host are on a single network, the External Bridge
configuration is more relevant for a cluster environment. This configuration was briefly
introduced in Section 2.2.3.2.2.

There are several important considerations.

3.5.1 MAC Address Assignment

Because Intel® Xeon Phi™ coprocessor networking is based on a Virtual Ethernet driver, MAC

addresses of network endpoints must be generated locally. There are several options available
including automatic generation by Intel® MPSS drivers based on device serial number, and
direct assignment of an externally specified address. Automatic MAC address generation is
sufficient for most configurations, but more information on MAC address assignment can be
found in Section 5.1

3.5.2 IP Address Considerations for External Bridging

In an external bridge configuration, IP addresses of all endpoints on the network, including the

bridge itself, and all Intel® Xeon Phi™ coprocessor endpoints, must be on the same subnet.
Generally speaking, IP addresses can be assigned statically by editing appropriate
configuration files, or appropriate configuration of a DHCP server made available on the local
network. In either case, in a cluster environment it is usually desirable for the IP address of
each endpoint to remain static over time so that there is easy correlation of IP address to

node.

Local cluster site administrators will want to adopt an IP address assignment pattern that is
amenable for their datacenter and local network configurations. To illustrate one example
scheme, the following highlights a scenario with two Xeon Phi™ coprocessors installed per

host. In this case, a simple IP ordering scheme is used to organize the host bridge interfaces
and endpoints within the same subnet such that the IP address of the coprocessors can be the
IP address of the host/bridge +1 and +2 respectively.

172.31.0.1 node0-eth0

172.31.0.2 node0-mic0

172.31.0.3 node0-mic1

172.31.0.4 node1-eth0

172.31.0.5 node1-mic0

172.31.0.6 node1-mic1

172.31.0.7 node2-eth0

:

:

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

51

A DHCP server can be configured to assign persistent static IP addresses to clients. This can

be done by directly editing DHCP server configuration files. Some cluster manager utilities (For
Instance: Warewulf) can also perform such DHCP assignments. Configuring the DHCP server
either indirectly through the cluster manager or by directly editing DHCP server configuration

files is beyond the scope of this document.

3.5.3 Configuring a Basic External Bridge

This section describes one approach to configuring the coprocessors and host as an external
bridge, enabling coprocessors to communicate with other nodes in a cluster. The goal of this
section is to configure the network such that InfiniBand* installation can be validated. There

are various options for configuring an external bridge which are described in more detail in
Chapter 5.

Note: You must manually add a gateway to the br0 config file.

Before you can change the network configuration, you must stop the mpss service:

[host]# 1service mpss stop

Assuming the IP address distribution shown above, an external bridge, br0, on node0 can be

configured as:

[host]# micctrl --addbridge=br0 --type=external --ip=172.31.0.1

[host]# micctrl --network=static --bridge=br0 --ip=172.31.0.2

and on node1 as:

[host]# micctrl --addbridge=br0 --type=external --ip=172.31.0.4

[host]# micctrl --network=static --bridge=br0 --ip=172.31.0.5

micctrl does not slave the physical Ethernet endpoint, for example eth0, to the bridge. This

must be done by the administrator by editing the Ethernet configuration file(s). For example,
on RHEL*, the eth0 Ethernet configuration file, /etc/sysconfig/network-scripts/ifcfg-eth0,
should typically have the following contents:

DEVICE=eth0

NM_CONTROLLED=no

ONBOOT=yes

BRIDGE=br0

MTU=1500

On SLES* host platforms, the physical port name must be added to the BRIDGE_PORTS entry
in the /etc/sysconfig/networks/ifcfg-br0 configuration file, for example:

BRIDGE_PORTS=’eth0 mic0 mic1’

At this point the network service must be restarted:

[host]# 1service network restart

Now start the coprocessors:

[host]# 1service mpss start

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
52

Communication with Intel® Xeon Phi™ coprocessors from other nodes on the network should

now be possible.

3.5.4 Defining and Implementing Exported/Mounted File Systems

As mentioned earlier, the Intel® Xeon Phi™ coprocessor root file system can be supported in

coprocessor memory, remotely mounted via NFS, or a combination of the two. For example,
sections of the file system that are common across multiple coprocessors might be mounted
from a common export on a remote node such as a cluster’s head node; in this case an
external bridge is required. On the other hand, some files might be coprocessor specific; these
files can be exported from the local host. It may also make sense to locate certain files in

coprocessor memory in order to minimize access latency.

The Intel® Xeon Phi™ coprocessor operating system includes a virtio block device (virtblk),
which uses the Linux* virtio data transfer mechanism to implement a block device. virtblk can
store data on the host processor in a regular file, Logical Volume Manager volume, or a

designated physical device. virtblk is expected to exhibit lower latency than NFS mounted

exports from the host.

One advantage of both NFS and virtblk file systems is persistence. That is, changes to virtblk
or NFS mounted files can persist after Intel® Xeon Phi™ coprocessors are shutdown, whereas
changes to files in coprocessor memory are lost unless steps are taken to capture those

changes.

Another advantage of NFS and virtblk file systems is capacity. Not only is the ram file system
limited by available Intel® Xeon Phi™ coprocessor memory, but allocating coprocessor
memory to the file system makes that memory unavailable to application processes executing
on the coprocessor.

Only NFS supports sharing of files among multiple devices. Sharing the same file to hold the
virtblk file system of more than one coprocessor is not supported by Intel® MPSS.

The following table summarizes the characteristics of the available file systems classes.

Table 4: File System Characteristics

 Latency Persistence Sharing Capacity Other

RAM FS Smallest No No Small Reduces
memory
available to
app

VIRTBLK Medium Yes No (not sup-
ported)

Large

NFS Largest Yes Yes (but not
cache co-
herent)

Large

NFS mounting is discussed throughout Chapter 4. Configuring the virtio block device is
discussed in Section 9.6.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

53

3.5.5 Configuring the Host Firewall

Client services running on the Intel® Xeon Phi™ coprocessor need access to services on a
host. If a host firewall is enabled, it may need to be configured to allow access to these

services.

3.5.5.1 NFS Client Access

NFS can be used to mount host exports on an Intel® Xeon Phi™ coprocessor. NFS generally

requires five services to be running:

portmapper
nfsd
mountd

lockd
statd

Of these, at least portmapper, nfsd and mountd must be accessible to the coprocessor’s NFS
client through the firewall to enable basic NFS operation. Access to the lockd and statd ports is
needed if file locking is required.

The ports for the portmapper and nfsd are statically assigned as follows:

tcp/udp port 111 - RPC 4.0 portmapper

tcp/udp port 2049 - nfs server

The ports for the other services are normally dynamically assigned. For firewall considerations,

it may be desirable to statically assign ports to these services.

Consult documentation for your host operating system for instructions on static port
assignment, and for instructions on allowing access to the NFS services ports through the

firewall.

3.5.5.2 Other Port Access Considerations

As described in Section 7.2.1.3, zypper can be used on the coprocessor to install rpms in a
repository on the host. That section suggests using the python SimpleHTTPServer. The port

which the server uses (8000 by default) must be accessible through the firewall.

Similarly, the ports used by the Ganglia daemon on the host (see Section F.1.2) may need to
be exposed through the firewall.

Consult documentation for your host operating system for instructions on allowing access to

these ports.

3.5.6 How to Install Lustre* on the Intel® Xeon Phi™ Coprocessor

Card

The following two RPMs should be installed on Intel® Xeon Phi™ coprocessor card:

[host]# rpm -ivh lustre-client-modules-<version>.k1om.rpm \

lustre-client-<version>.k1om.rpm

Now it's ready to configure and use.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
54

3.5.6.1 How to Configure Lustre* on the Intel® Xeon Phi™
 Coprocessor Card

You should execute the following commands on the Intel® Xeon Phi™ coprocessor card for
Lustre* client over Virtual Ethernet configuration:

echo 'options lnet networks="tcp0(mic0)"’ > /etc/modprobe.d/lustre.conf

modprobe lustre

This step assumes that IPoIB is correctly configured on the card. Please refer to appropriate

topic of the Intel® MPSS manuals for instructions on how to do this.

In this example, the card's IPoIB interface is ib0.

echo 'options lnet networks="o2ib0(ib0),tcp0(mic0)"'> \

/etc/modprobe.d/lustre.conf modprobe lustre

If you would like to make this configuration persistent across all card reboots you can do the
following on the host:

mkdir -p /var/mpss/mic0/etc/modprobe.d \

echo 'options lnet networks="o2ib0(ib0),tcp0(mic0)"' > \

/var/mpss/mic0/etc/modprobe.d/lustre.conf

After mpss service restart this configuration will be deployed to the Intel® Xeon Phi™

coprocessor cards.

3.5.6.2 How to Use Lustre* on the Intel® Xeon Phi™ Coprocessor
 Card

After proper configuration you can just mount Lustre FS share from your network. You can

execute the following commands on Intel® Xeon Phi™ coprocessor card:

mkdir -p /mnt/lustre \

/sbin/mount.lustre <MGS IP>@tcp0:/<lustreFS name> /mnt/lustre

or

/sbin/mount.lustre <MGS IP>@o2ib0:/<lustreFS name> /mnt/lustre

If you like to make this mount point persistent across all card reboots you can do the
following:

mkdir -p /var/mpss/mic0/mnt/lustre

and then you can add this mount point to /etc/fstab for automatic mount.

3.6 Installing OFED with Intel® MPSS Support (optional)

Intel® Xeon Phi™ coprocessors can communicate with external compute nodes over high-
bandwidth InfiniBand* when a supported Intel® True Scale or Mellanox* InfiniBand* host

adapter is installed in the platform.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

55

The section describes how to install the OFED components that support these capabilities.

The following installation processes assume that the mpss-3.6-linux.tar file was downloaded

and untarred as a step during Intel® MPSS installation. Specifically: the rpm files in
$MPSS36/ofed are needed during OFED installation.

Option 1:

The Offload computing model is characterized by MPI communication only between the host

processors in a cluster. In this model, Intel® Xeon Phi™ coprocessors are accessed exclusively
through the offload capabilities of products like the Intel® C, C++, and Fortran Compilers, and
the Intel® Math Kernel Library (MKL). This mode of operation does not require CCL, and
therefore the OFED version in a Red Hat* or SUSE* distribution can be used.

Option 2:

If MPI ranks are to be executed on Intel® Xeon Phi™ coprocessors, and if it is required that

these ranks communicate directly with an InfiniBand* adapter, then the following installation

should be performed. The ibscif virtual adapter will provide the best host-to-coprocessor and
coprocessor-to-coprocessor transfer performance on systems without an InfiniBand* adapter.

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
56

3.6.1 Supported OFED distros

Table 5: OFED Distribution vs. Supported Features

OFED
Distribution

(installation

section)

Mlx4

(kernel mode)

Mlx5

(kernel mode)

PSM-Direct ccl-proxy

OFED+ (cf.

3.6.3)

No (no) No (no) Yes No

OFED 1.5.4.1 (cf.

3.6.4)

Yes (yes) No (no) No Yes

OFED 3.5-2 MIC
(cf. 3.6.5)

Yes (yes) Yes (yes) Yes Yes

OFED-3.12-1 (cf.
3.6.6)

Yes (yes) Yes (no) Yes Yes

OFED 3.18 (cf.
3.6.7)

Yes (yes) Yes (no) Yes Yes

Mellanox* OFED
2.x (cf. 3.6.8)

Yes (yes) Yes (no) No Yes

Several different OFED distributions are supported. Select one which matches hardware and
software requirements, and install it using instructions from the accompanying section.

Each OFED distribution supports a subset of the Intel® MPSS supported OS distros; most

support SLES* 11 SP3 and RHEL* 6.2/3/4/5/6. Newer distros may not be officially supported
by any released OFED (at the time of this writing: RHEL* 6.7, SLES* 11 SP4). Check the
respective release notes for the exact supported distros.

To run MPI applications using Intel MPI over tmi2 fabric, the tmi.conf file should be copied to

the Intel® Xeon Phi™ coprocessor using following procedure:

a) Create a directory "etc" in "/var/mpss/common/" directory.

b) Copy the tmi.conf file from <impi_install_dir>/etc64/ directory to /var/mpss/common/etc

directory.

c) Start/restart the mpss service.

2 Intel MPI natively supports PSM using Tag Matching Interface (TMI)

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

57

3.6.2 Tips for OFED distributions

When installing a new OFED distribution, it is recommended to first uninstall the currently
installed distribution. Consult the current distribution’s documentation for instructions.

Both Red Hat* and SUSE* release minor kernel version updates. If an update of the kernel
occurs, this will create versioning incompatibilities with the OFED kernel modules, preventing
these drivers from loading. To determine if your host kernel has been updated execute:

[host]$ uname -r

from the host console and compare the returned value to the default versions listed in Table 2.
If your host kernel has not been updated, then proceed to install one of the OFED
distributions. Otherwise it may be required to rebuild the Intel® MPSS OFED drivers as

described in the next subsections for proper execution.

Caution: OFED installation may overlay some of the RDMA/InfiniBand* components in your
distribution. As a result the Linux* kernel will not load kernel mode software that was built

against the Red Hat* or SUSE* RDMA/InfiniBand* software in your distribution. This may

require that you rebuild such software against the installed OFED, or obtain a version of the
software that was so built. For example, an implementation of the Lustre* file system that
was built against a Red Hat* or SUSE* distribution will not be loaded by the Linux* kernel,
and must be rebuilt against the installed OFED. Note that user mode applications will not
need to be rebuilt due to this installation.

3.6.2.1 Red Hat* Enterprise Linux* systems

1) Install the kernel building prerequisites:

[host]# yum install kernel-headers kernel-devel

2) Rebuild the RPMs from the source RPMs:

[host]$ cd $MPSS36/src/

[host]$ rpmbuild --rebuild ofed-driver-*.src.rpm

3) The resulting mpss-modules binary rpms are located at $HOME/rpmbuild/RPMS/-

x86_64. Copy the ofed-driver RPMs to the $MPSS36/ofed/modules directory:

[host]$ cp $HOME/rpmbuild/RPMS/x86_64/ofed-driver*\

`uname -r`*.rpm ../ofed/modules

3.6.2.2 SUSE* Linux* Enterprise Server (SLES*) 11 systems

1) Install the kernel building prerequisites:

[host]# zypper install kernel-default-devel

2) Rebuild the RPMs from the source RPMs:

[host]$ cd $MPSS36/src/

[host]$ rpmbuild --rebuild ofed-driver-*.src.rpm

4) The resulting mpss-modules binary rpms are located at /usr/src/packages/-
RPMS/x86_64. Copy the ofed-driver RPMs to the $MPSS36/ofed/modules directory:

[host]$ cp /usr/src/packages/RPMS/x86_64/ofed-driver*\

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
58

`uname -r`*.rpm ../ofed/modules

3.6.3 Install OFED+

OFED+ is the Intel® True Scale Fabric Host Channel Adapter Drivers and Software stack.

OFED+ supports all Intel® MPSS-supported versions of RHEL* 6 (except 6.7) SLES* 11 SP3. If
using RHEL* 7 or SLES* 12, go to Section 3.6.6 or 3.6.7.

Caution: Installing OFED+ support will replace the OFED components in your standard distribution.
This section describes the steps to install Intel® True Scale Fabric Host Channel Adapter
Drivers and Software stack (OFED+), an enhanced implementation of OFED that supports

Intel® True Scale Fabric Host Channel Adapters (HCA), and enables communication between

an Intel® Xeon Phi™ coprocessor and an Intel® True Scale Fabric HCA. This installation
may overlay some of the RDMA/InfiniBand* components in your Red Hat* or SUSE*

distribution. As a result, the Linux* kernel will not load kernel mode software that was built

against the Red Hat* or SUSE* RDMA/InfiniBand* software in your distribution. This may
require that you rebuild such software against the installed OFED, or obtain a version of the

software that was so built. For example, an implementation of the Lustre* file system that

was built against a Red Hat* or SUSE* distribution will not be loaded by the Linux* kernel,
and must be rebuilt against the installed OFED.

Note: This section describes the steps to install Intel® True Scale Fabric Host Channel Adapter
Drivers and Software stack (OFED+), an enhanced implementation of OFED that supports PSM-
Direct. PSM-Direct enables direct communication between an Intel® Xeon Phi™ coprocessor and an

Intel® True Scale Fabric HCA, by default—no extra install steps are required.

User mode applications will not need to be rebuilt due to this installation.

The following installation should be performed on any compute node in which an Intel® True

Scale Fabric HCA is installed.

After a successful installation, an ibv_devices command issued on the host will show both qib0
and scif_0, while an ibv_devices command issued on the Intel® Xeon Phi™ coprocessor will
show only scif_0.

Note: When running MPI in Symmetric mode with more than 16 processes per node,
PSM_RANKS_PER_CONTEXT=<value> needs to be specified (the value can be 2, 3 or 4; the default

value is 1) so that the available 16 contexts can be shared by the ranks.

Intel® True Scale Fabric Host Channel Adapter Drivers and Software (OFED+), including the
PSM library, is available as a free download from http://downloadcenter.intel.com. It contains
OFED software bug fixes and enhanced performance.

1) Go to http://downloadcenter.intel.com

2) Under Search Downloads, type True Scale and hit Enter.

3) Narrow the results by selecting the appropriate operating system.

4) Select the version of Intel® True Scale Fabric Host Channel Adapter Host Drivers and
Software that supports your operating system. Details of the operating system can be

found by clicking on a version and then clicking the Release Notes (pdf) link.

5) Download the appropriate IB-Basic file as well as the related publications file.

http://downloadcenter.intel.com/
http://downloadcenter.intel.com/

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

59

6) The Software Installation Guide (IFS_FabricSW_InstallationGuide*.pdf) is contained in the

Publications_HCA_SW*.zip download. Chapter 4, Install OFED+ Host Software in the
Software Installation Guide provides detailed installation instructions.

7) After rebooting the system as recommended by the previous install step, stop the openibd

service and ensure that openibd does not start automatically after every reboot:

[host]# 1service openibd stop

[host]# 1chkconfig --level=123456 openibd off

8) If using OFED+ 7.2 version, ensure kernel-ib-devel, kernel-ib, and dapl packages are not

installed.

[host]# rpm -e kernel-ib-devel kernel-ib

[host]# rpm -e {dapl,dapl-{devel,devel-static,utils}}

If using OFED+ version 7.3 or higher, ensure compat-rdma-devel, compat-rdma and dapl

packages are not installed.

[host]# rpm -e compat-rdma-devel compat-rdma

[host]# rpm -e {dapl,dapl-{devel,devel-static,utils}}

9) If using yum to install Intel® MPSS, it is also necessary to remove infinipath-libs and
infinipath-devel prior to installing the software stack:

[host]# rpm -e --nodeps --allmatches infinipath-libs \

infinipath-devel

10) Install Intel® MPSS OFED modules.

[host]$ cd $MPSS36

[host]$ cp ofed/modules/*`uname -r`*.rpm ofed

 Red Hat* Enterprise Linux*

[host]# yum install ofed/*.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install ofed/*.rpm

11) Install required PSM (Performance Scaled Messaging) libraries and drivers as follows:

 Red Hat* Enterprise Linux*

[host]# yum install psm/*.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install psm/*.rpm

3.6.4 Install OFED 1.5.4.1

1) Download the distribution tarball from:

https://www.openfabrics.org/downloads/OFED/ofed-1.5.4/OFED-1.5.4.1.tgz

2) Untar OFED 1.5.4.1 and access the untarred folder.

https://www.openfabrics.org/downloads/OFED/ofed-1.5.4/OFED-1.5.4.1.tgz

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
60

[host]$ tar xf OFED-1.5.4.1.tgz

[host]$ cd OFED-1.5.4.1

3) Install the OFED stack as instructed in OFED README.txt, with a few exceptions regarding
installed packages.

[host]$ less README.txt

[host]# perl install.pl

During installation, select:

 Option 2 (Install OFED Software)

 Option 4 (Customize)

 ...exclude kernel-ib* and dapl* packages...

 "Install 32-bit packages? [y/N]", answer N

 “Enable ROMIO support [Y/n]”, answer Y

 “Enable shared library support [Y/n]”, answer Y

 “Enable Checkpoint-Restart support [Y/n]”, answer N

4) Install Intel® MPSS OFED modules.

[host]$ cd $MPSS36

[host]$ cp ofed/modules/*`uname –r`*.rpm ofed

[host]# rpm –Uvh ofed/*.rpm

3.6.5 Install OFED-3.5-2-MIC

2) Download the distribution tarball from:

http://www.openfabrics.org/downloads/ofed-mic/ofed-3.5-2-mic/

3) Untar OFED-3.5* and access the untarred folder.

[host]$ tar xf OFED-3.5*.tgz

[host]$ cd OFED-3.5*

4) Install the OFED stack as instructed in OFED README.txt.

[host]$ less README.txt

[host]# perl install.pl

3.6.6 Install OFED-3.12-1

1) Download the distribution tarball from:

http://downloads.openfabrics.org/OFED/ofed-3.12-1/

2) Untar OFED-3.12* and access the untarred folder.

http://www.openfabrics.org/downloads/ofed-mic/ofed-3.5-2-mic/
http://downloads.openfabrics.org/OFED/ofed-3.12-1/

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

61

[host]$ tar xf OFED-3.12*.tgz

[host]$ cd OFED-3.12*

3) Install the OFED stack as instructed in OFED README.txt.

[host]$ less README.txt

[host]# perl install.pl --with-xeon-phi

3.6.7 Install OFED 3.18

1) Download the distribution tarball from:

https://www.openfabrics.org/downloads/OFED/ofed-3.18/

2) Untar OFED-3.18* and access the untarred folder.

[host]$ tar xf OFED-3.18*.tgz

[host]$ cd OFED-3.18*

3) Install the OFED stack as instructed in OFED README.txt.

[host]$ less README.txt

[host]# perl install.pl --with-xeon-phi

3.6.8 Install Mellanox* OFED 2.x

1) Download Mellanox* OFED from:

http://www.mellanox.com/page/products_dyn?product_family=26

2) Untar, read the documentation, follow the normal installation procedure.

3) Install Intel® MPSS OFED ibpd rpm:

[host]# rpm –U ofed/ofed-ibpd*.rpm

4) From the src/ folder of the Intel® MPSS installation, compile dapl, libibscif, and ofed-driver

source RPMs:

[host]$ cd $MPSS36/src

[host]$ rpmbuild –-rebuild -–define “MOFED 1” \

 dapl*.src.rpm libibscif*.src.rpm \

 ofed-driver*.src.rpm

5) Install the resultant RPMs:

 Red Hat* Enterprise Linux*

[host]# rpm –U ~/rpmbuild/RPMS/x86_64/dapl*rpm

[host]# rpm –U ~/rpmbuild/RPMS/x86_64/libibscif*rpm

[host]# rpm –U ~/rpmbuild/RPMS/x86_64/ofed-driver*rpm

 SUSE* Linux* Enterprise Server:

[host]# rpm –U /usr/src/packages/RPMS/x86_64/dapl*rpm

[host]# rpm –U /usr/src/packages/RPMS/x86_64/libibscif*rpm

https://www.openfabrics.org/downloads/OFED/ofed-3.18/
http://www.mellanox.com/page/products_dyn?product_family=26

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
62

[host]# rpm –U /usr/src/packages/RPMS/x86_64/ofed-driver*rpm

3.6.9 Starting OFED

1) Ensure that the mpss service is started by using the Linux* service command:

[host]# 1service mpss status

If the service is not running, refer to Section 3.3.6 for instructions on starting the service.

2) If using Intel® True Scale Fabric HCAs, or using Mellanox* InfiniBand* adapters and/or

the ibscif virtual adapter, start the IB and HCA services by doing the following:

[host]# 1service openibd start

3) If needed, start an opensmd service to configure the fabric:

[host]# 1service opensmd start

If using Intel® True Scale Fabric HCAs and Intel® True Scale Fabric Switches, it is
recommended to use the Intel® Fabric Manager, rather than the opensm. Visit
http://www.intel.com/infiniband for information on Intel’s fabric management and
software tools, downloads and support contacts.

4) If using CCL-Direct and IPoIB with Mellanox* InfiniBand* adapters, you can enable the
IPoIB module to be loaded as part of the ofed-mic service (see Section 5.3) and configure
the IP Address and Netmask by editing the /etc/mpss/ipoib.conf file which contains
instructions for how to make these changes. See the example ipoib.conf script in Section

5.3.

IPoIB is a technology preview. It currently is supported by OFED-1.5.4.1 and OFED-3.5-2-
MIC on the Mellanox* mlx4 driver and hardware. See Section 1.2.1.1.

5) If using Intel® True Scale Fabric HCAs, or using Mellanox* InfiniBand* adapters and/or

the ibscif virtual adapter, then start the Intel® Xeon Phi™ coprocessor specific OFED
service on the host using:

[host]# 1service ofed-mic start

6) The use of ccl-proxy service is applicable only if using Mellanox* InfiniBand* adapters. To
start the ccl-proxy service (see configuration in: /etc/mpxyd.conf):

[host]# 1service mpxyd start

The use of PSM-Direct which is applicable only if using Intel® True Scale Fabric HCAs, is

enabled by default and does not require to start any services.

3.6.10 Stopping/restarting OFED

To stop all OFED support on all variants, stop the following services in order:

[host]# 1service mpxyd stop

[host]# 1service opensmd stop

[host]# 1service ofed-mic stop

[host]# 1service openibd stop

http://www.intel.com/infiniband
http://www.intel.com/content/www/us/en/infiniband/truescale-infiniband-software-and-tools.html
http://www.intel.com/content/www/us/en/infiniband/truescale-infiniband-software-and-tools.html

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

63

To restart all OFED components: follow instructions for stopping then starting.

3.6.11 Validate OFED Installation

Several commands are available to validate OFED installation on the host and on Intel® Xeon

Phi™ coprocessors.

3.6.11.1 Validate OFED Installation on the host

1. openibd status reports whether or not the driver is loaded.

2. ibv_devices and ibv_devinfo will report whether the device and ports are up or down. On
Mellanox* OFED installations ibv_devinfo will not show the scif device, but ibv_devices
should list it.

3. ofed_info reports the OFED version that is installed including installed packages.

The following are examples of the output generated by these commands when OFED is
successfully installed. (The output from ofed_info has been truncated.):

[host]# 1service openibd status

 HCA driver loaded

Configured IPoIB devices:

ib0

Currently active IPoIB devices:

The following OFED modules are loaded:

 rdma_ucm

 ib_sdp

 rdma_cm

 ib_addr

 ib_ipoib

 mlx4_core

 mlx4_ib

 mlx4_en

 ib_mthca

 ib_uverbs

 ib_umad

 ib_sa

 ib_cm

 ib_mad

 ib_core

 iw_cxgb3

 iw_cxgb4

 iw_nes

 ib_qib

[host]$ ibv_devices

 device node GUID

 ------ ----------------

 scif0 4c79bafffe18168b

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
64

 qib0 0011750000791882

[host]# ibv_devinfo

hca_id: scif0

 transport: iWARP (1)

 fw_ver: 0.0.1

 node_guid: 4c79:baff:fe18:168b

 sys_image_guid: 4c79:baff:fe18:168b

 vendor_id: 0x8086

 vendor_part_id: 0

 hw_ver: 0x1

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 4096 (5)

 sm_lid: 1

 port_lid: 1000

 port_lmc: 0x00

 link_layer: InfiniBand

hca_id: qib0

 transport: InfiniBand (0)

 fw_ver: 0.0.0

 node_guid: 0011:7500:0079:1882

 sys_image_guid: 0011:7500:0079:1882

 vendor_id: 0x1175

 vendor_part_id: 29474

 hw_ver: 0x2

 board_id: InfiniPath_QLE7342

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 2048 (4)

 sm_lid: 14

 port_lid: 16

 port_lmc: 0x00

 link_layer: InfiniBand

[host]$ ofed_info | grep OFED

OFED-3.5-2:

[host]$ ofed_info

OFED-3.5-2:

compat-rdma:

git://git.openfabrics.org/compat-rdma/compat-rdma.git ofed_3_5

commit a5bbb7655356750939d8864091b1316cfd7dcc10

dapl:

http://www.openfabrics.org/downloads/dapl/dapl-2.0.39.tar.gz

ib-bonding:

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

65

http://www.openfabrics.org/downloads/ib-bonding/ib-bonding-0.9.0-

43.src.rpm

ibacm:
http://www.openfabrics.org/downloads/rdmacm/ibacm-1.0.8.tar.gz

ibsim:

http://www.openfabrics.org/downloads/ibsim/ibsim-0.5-

0.1.g327c3d8.tar.gz

ibutils:

http://www.openfabrics.org/downloads/ibutils/ibutils-1.5.7-

0.1.g05a9d1a.tar.gz

 :

3.6.11.2 Validate OFED Installation on Intel® Xeon Phi™
 Coprocessor

The same ibv_devinfo command can be used to validate OFED installation on a coprocessor

after starting the ofed-mic service. The following shows typical output when using an Intel®
True Scale Fabric InfiniBand* HCA:

[host]# ssh mic0

[mic0]# ibv_devinfo

hca_id: scif0

 transport: SCIF (2)

 fw_ver: 0.0.1

 node_guid: 4c79:baff:fe18:16a0

 sys_image_guid: 4c79:baff:fe18:16a0

 vendor_id: 0x8086

 vendor_part_id: 0

 hw_ver: 0x1

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 4096 (5)

 sm_lid: 1

 port_lid: 1001

 port_lmc: 0x00

 link_layer: SCIF

The following is typical output when using a Mellanox* InfiniBand* HCA:

[root@node02-mic0 ~]# ibv_devinfo

hca_id: mlx4_0

 transport: InfiniBand (0)

 fw_ver: 2.30.8000

 node_guid: 0002:c903:003d:5890

 sys_image_guid: 0002:c903:003d:5893

 vendor_id: 0x02c9

 vendor_part_id: 4099

 hw_ver: 0x0

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
66

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 4096 (5)

 sm_lid: 6

 port_lid: 8

 port_lmc: 0x00

 link_layer: InfiniBand

hca_id: scif0

 transport: SCIF (2)

 fw_ver: 0.0.1

 node_guid: 4c79:baff:fe16:23ac

 sys_image_guid: 4c79:baff:fe16:23ac

 vendor_id: 0x8086

 vendor_part_id: 0

 hw_ver: 0x1

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 4096 (5)

 sm_lid: 1

 port_lid: 1001

 port_lmc: 0x00

 link_layer: SCIF

3.6.11.3 Run the Intel MPI Benchmark

You can further validate the installation by running the IMB-IMPI1 Intel MPI Benchmark. Here
we assume that External Bridging is configured on two compute nodes, each having one or

more Intel® Xeon Phi™ coprocessors installed.

Refer to the Intel® MPI Library page for details on licensing and installing the Intel® MPI
Library on the hosts and coprocessors. IMB-IMP1 is included in the Intel® MPI distribution.

The following syntax can be used on a multinode configuration in which either Intel® True

Scale or Mellanox* InfiniBand* HCAs are installed. The mpiexec.hydra process manager will
attempt to use the Intel® True Scale supported tmi (tag matching) fabric, but will failover to
the Mellanox*-supported dapl fabric if the tmi fabric fails.

Define the I_MPI_ROOT environment variable, and establish other environment settings for

the Intel MPI Library:

[host]$ source <mpi_installdir>/intel64/bin/mpivars.sh

Configure MPI to detect Intel® Xeon Phi™ coprocessors:

[host]$ export I_MPI_MIC=1

Use tmi if available, or fallback to dapl:

[host]$ export I_MPI_FABRICS_LIST=tmi,dapl

https://software.intel.com/en-us/intel-mpi-library

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

67

Establish connections dynamically:

[host]$ export I_MPI_DYNAMIC_CONNECTION=1

Execute the alltoall component of the MPI test. In this example, the test program is run on
two Intel® Xeon nodes (node01 and node02) and two Intel® Xeon Phi™ coprocessor nodes

(node01-mic0 and node02-mic0). In this example, tmi is not available so fabric selection fails
over to dapl.

[host]$ mpiexec.hydra -o -ppn 1 \

-n 2 -hosts node01,node02 $I_MPI_ROOT/intel64/bin/IMB-MPI1 alltoall

: \

-n 2 -hosts node01-mic0,node02-mic0 $I_MPI_ROOT/mic/bin/IMB-MPI1

alltoall

/opt/intel/impi/5.0.0.028/intel64/etc/tmi.conf: No such file or

directory

/opt/intel/impi/5.0.0.028/intel64/etc/tmi.conf: No such file or

directory

benchmarks to run alltoall

#--

Intel (R) MPI Benchmarks 4.0, MPI-1 part

#--

Date : Tue Dec 9 17:53:01 2014

Machine : x86_64

System : Linux

Release : 2.6.32-431.el6.x86_64

Version : #1 SMP Fri Nov 22 03:15:09 UTC 2013

MPI Version : 3.0

MPI Thread Environment:

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down

dynamically when a certain run time (per message size sample)

is expected to be exceeded. Time limit is defined by variable

"SECS_PER_SAMPLE" (=> IMB_settings.h)

or through the flag => -time

Calling sequence was:

/opt/intel/impi/5.0.0.028/intel64/bin/IMB-MPI1 alltoall

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

List of Benchmarks to run:

Alltoall

Intel® Xeon Phi™ Coprocessor Installation Process

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
68

#--

Benchmarking Alltoall

#processes = 2

(2 additional processes waiting in MPI_Barrier)

#--

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 1000 <remainder of output truncated>

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

69

4 Configuring and Booting

the Intel® Xeon Phi™

Coprocessor Operating System

Like any Linux* based system, booting Linux* on an Intel® Xeon Phi™ coprocessor requires a

Linux* kernel and a file system image. (This document does not cover coprocessor’s firmware
because it is not configurable.) Because the coprocessor does not have a permanent file
storage system, these components cannot be installed directly onto a coprocessor. Instead,
they are installed into the host’s file system as part of Intel® MPSS installation. Unlike
standard boot loaders, the kernel command line is constructed based on a set of configuration

files on the host and provided to the coprocessor kernel at boot time. While any of these

components can be changed as needed, the most common usage scenarios will involve
changing the file system image (initramfs) and/or the kernel command line.

The initial file system and kernel command line can be configured by modifying various Intel®

MPSS specific files and certain host configuration files. These files can be edited directly or

modified using the micctrl utility. Configuration of other software stack components, such as
the host driver, is described in later sections of this document.

Section 3.3.4 briefly discussed some basic configuration tasks. In this section we present
coprocessor configuration in more detail: which files typically need modification, different

approaches and tools to aid configuration, and what goes on “under the hood” as a result of
setting configuration parameters.

Configuration tasks range from specifying the location in the host’s file system of the Intel®
Xeon Phi™ coprocessor Linux* kernel, to managing user accounts on the coprocessor and

configuring network characteristics. Configuration also includes installing packages into the file

system. That topic is covered in Chapter 7.

The micctrl utility is a multi-purpose tool that provides two classes of functionality:

 Card state control – Boot, shutdown and reset of attached Intel® Xeon Phi™ coprocessors

 Configuration – Some micctrl configuration commands modify parameters in Intel®

MPSS-specific configuration files. Other micctrl commands process those software stack
configuration files to generate standard Linux* configuration files that replace
corresponding files in the default file system. Still other micctrl commands modify
standard configuration files on the host. The configuration files can also be edited directly.

We refer to the use of micctrl as assisted configuration and control, or just assisted

configuration, and discuss it in Section 4.1

Alternatively, an Intel® Xeon Phi™ coprocessor can also be controlled through the
coprocessor’s sysfs nodes. Configuration can be performed by directly editing or otherwise

modifying the initial file system image while it is stored on the host or on a coprocessor, and

by directly composing a coprocessor Linux* kernel command line. Similarly, host configuration
files can be edited to complete networking and similar configuration requirements.
We call this manual configuration and control, or just manual control, and discuss it in Section
4.2.

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
70

4.1 Assisted Configuration and Control

In its most basic form, the assisted configuration process has the following steps:

1. Call micctrl --initdefaults after each Intel® MPSS installation to create and/or upgrade

a set of configuration files specific for the software stack.

2. Call additional micctrl commands to tailor the configuration as necessary.

3. Boot Intel® Xeon Phi™ coprocessors.

For simple configuration tasks, a basic understanding of the usage of micctrl configuration
commands may be sufficient; the micctrl commands are described in detail in Appendix B. For
more complex configurations, a deeper understanding of the overall assisted configuration

process can be very helpful.

4.1.1 Configuration Files

There are several different groups of files that contribute to the final configuration. The
following subsections describe these groups, how and when they are created, and how they
are identified.

4.1.1.1 Intel® MPSS Specific Configuration Files

micctrl --initdefaults creates several Intel® MPSS specific configuration files, if they do not
already exist, and populates them with default parameter values. There are two primary
configuration files of interest here:

1. The parameters in default.conf are treated as common to all coprocessors in the
system.

2. There is a micN.conf file for each coprocessor in the system. Each parameter in this

file takes precedence in configuring the corresponding coprocessor, overriding
default.conf if the same parameter is in that file. You can think of these as “meta-
configuration” files in that they guide the completion of the configuration process.

By default, these files are created in /etc/mpss.

Each of these files contains a list of configuration parameters and their arguments. Each
parameter must be on a single line. Comments begin with the ‘#’ character and terminate at
the first Newline/Carriage return. There are several configuration parameter categories:

1) Parameters that control the Intel® Xeon Phi™ boot process.

2) Parameters that select the Intel® Xeon Phi™ coprocessor Linux* kernel to be booted.

3) Parameters that configure the Intel® Xeon Phi™ coprocessor file system.

4) Parameters that configure the Intel® Xeon Phi™ coprocessor boot command line.

5) Parameters that configure the Virtual Ethernet connection to each coprocessor.

6) Parameters that control some aspects of user accounts.

For example, here is a portion of the contents of default.conf when initially created:

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

71

Boot MIC card when MPSS stack is started

BootOnStart Enabled

Root device for MIC card

RootDevice ramfs /var/mpss/mic0.image.gz

Control card power state setting

cpufreq: P state

corec6: Core C6 state

pc3: Package C3 state

pc6: Package C6 state

PowerManagement "cpufreq_on;corec6_off;pc3_on;pc6_off"

Cgroup memory=disabled

In this fragment, BootOnStart configures the boot process, RootDevice defines where the

coprocessor file system lives on the host before it is provided to the coprocessor kernel, and

PowerManagement and Cgroup configure the boot command line.

Intel® MPSS-specific configuration file parameters are described in detail in Appendix A.

4.1.1.2 Host Files

Several networking related host configuration files are optionally created and/or modified by

micctrl commands. These include /etc/hosts, as well as /etc/sysconfig/network-scripts/ifcfg-
micN on a RHEL* host and /etc/sysconfig/network/ifcfg-micN on a SLES* host.

Lines that micctrl adds to /etc/hosts are appended by the comment “#Generated-by-micctrl”.

See Chapter 5 for details.

4.1.1.3 Overlay Sets

micctrl does not directly modify the installed Intel® MPSS file system image. Instead, one or

more file hierarchies overlay corresponding files in the file system image during the boot
process. That is, each file in a hierarchy will replace the corresponding file in the base file
system image if that file already exists, or will be added to the file system image if the
corresponding file does not already exist.

We refer to these hierarchies, collectively, as overlay sets or just overlays. There are several

types of overlay sets.

The configuration files described previously include parameters that point to the various
overlay sets described below. Because there can be multiple sets of the software stack

configuration files, there can be multiple unique overlay sets.

4.1.1.3.1 Base File System

The overlay process begins with the Base file system. The Base configuration file parameter:

Base <type> <location>

specifies the file system to be used. <type> can be CPIO to indicate a compressed CPIO
archive at <location>, or DIR to indicate an expanded file system hierarchy rooted at

<location>. By default, this parameter is in /etc/mpss/micN.conf and set to:

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
72

Base CPIO /usr/share/mpss/boot/initramfs-knightscorner.cpio.gz

See Appendix A.4.2 for details.

The Base parameter can be modified using the micctrl --base command:

micctrl --base=<default|cpio|dir> [--new=<location>] [mic card list]

or by directly editing Intel® MPSS configuration files. See Appendix B.4.4.1 for details.

4.1.1.3.2 Common Overlay Set

The common overlay set, by default rooted at /var/mpss/common, can be populated with

files that will overlay the file system of all coprocessors. For example, if administrator creates

the file /var/mpss/common/etc/foo, it will overlay /etc/foo in the file system of each

coprocessor.

The CommonDir parameter:

CommonDir <commondir>

is typically found in the default.conf configuration file, and specifies the common overlay set,

where <commondir> is the root of the overlay hierarchy. By default, this parameter is set to:

CommonDir /var/mpss/common

No files are created in this directory by default. See Appendix A.4.2 for details.

Overlay parameters can be created or modified using the micctrl --commondir command:

micctrl --commondir=<commondir> [mic card list]

or by directly editing MPSS configuration files. See Appendix B.4.4.3 for details.

4.1.1.3.3 Per-coprocessor Overlay Set

micctrl --initdefaults creates and populates an overlay set of files for each installed

coprocessor. However, if a file already exists, it is not changed. By default, these overlays are
rooted at /var/mpss/micN. The per-processor overlay set includes the following files:
/etc

/etc/fstab

/etc/group

/etc/hostname

/etc/hosts

/etc/localtime

/etc/nnswitch.conf

/etc/passwd

/etc/resolv.conf

/etc/shadow

/etc/init.d/

/etc/network/

/etc/network/interfaces

/etc/pam.d/

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

73

/etc/pam.d/common-account

/etc/pam.d/common-auth

/etc/pam.d/common-session

/etc/ssh/

/etc/ssh/ssh_host_dsa_key

/etc/ssh/ssh_host_dsa_key.pub

/etc/ssh/ssh_host_rsa_key

/etc/ssh/ssh_host_rsa_key.pub

/etc/ssh/ssh_host_key

/etc/ssh/ssh_host_key.pub

/etc/ssh/ssh_host_ecdsa_key

/etc/ssh/ssh_host_ecdsa_key.pub

/etc/rc1.d/

/etc/rc5.d

/home

/home/micuser

/home/micuser/.profile

/home/micuser/.ssh

/home/micuser/.ssh /id_dsa

/home/micuser/.ssh /id_dsa.pub

/home/micuser/.ssh /id_rsa

/home/micuser/.ssh /id_rsa.pub

/home/micuser/.ssh /authorized_keys

/root

/root /.profile

/root /.ssh

/root /.ssh/id_dsa

/root /.ssh/id_dsa.pub

/root /.ssh/id_rsa

/root /.ssh/id_rsa.pub

/root /.ssh/authorized_keys

(The .ssh key files are created depending on which key files the user or root has created.)

Thus, for each of the above files, there is a corresponding file rooted at /var/mpss/micN. For

example, micctrl --initdefaults creates and initializes the file /var/mpss/mic0/etc/fstab,

which, at boot time, will replace /etc/fstab in the file system of coprocessor mic0.

The MicDir parameter in each micN.conf configuration file:

MicDir <micdir>

specifies the coprocessor specific overlay set for the corresponding coprocessor, where

<micdir> is the root of the overlay hierarchy. By default, this parameter is set to:

MicDir /var/mpss/micN

for coprocessor micN. See Appendix A.4.2 for details.

Micdir parameters can be created or modified using the micctrl --micdir command:

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
74

micctrl --micdir=<micdir> [mic card list]

or by directly editing Intel® MPSS configuration files. See Appendix B.4.4.3 for details.

4.1.1.3.4 User Defined Overlay Sets

Arbitrary sets of files can be defined by the user to overlay corresponding files in the file

systems of one or more coprocessor. The Intel® MPSS configuration file Overlay parameter

describes a single such overlay set:

Overlay (Simple|File|RPM) <source> <target>

(on|off)

The <Simple,File,RPM> type parameter determines how the contents of the <source> and

<target> are interpreted. No Overlay parameters are created by default. See Appendix

A.4.2 for details.

Overlay parameters can be created or modified using the micctrl --overlay command or by

directly editing Intel® MPSS configuration files:

micctrl --overlay=<type> --source=<dir>

[--target=<target>] --state=(on|off|delete)

[mic card list]

A default.conf or micN.conf configuration file can have multiple Overlay parameters. See
Appendix A.4.2 for details.

The RPM overlay type is a special case that identifies rpm based packages that are to be

installed into one or more coprocessor file systems at boot time. See Section 7.2.1.1 and
Appendix B.4.4.5 for details. The mpss-3.6-k1om.tar file is comprised of over 1800 rpm files
that were built for installation into the Intel® Xeon Phi™ coprocessor file system.

Note: It is strongly recommended that you NOT do the following:

[host]# micctrl --overlay=RPM --source=$MPSS36_K1OM --state=on

The coprocessor will attempt to install all 1800+ rpms from the mpss-3.6-k1om.tar file. In
general, care should be taken to install only rpms that are actually needed.

4.1.1.4 Constructing the File System

micctrl constructs the coprocessor file system hierarchy for each coprocessor from the overlay

sets described above. The process has the following steps:

1) If the Base file system is in the form of a compressed CPIO archive, it is first
decompressed and extracted to a temporary location, before files are overlaid.

2) The Base file system is then overlaid by the CommonDir overlay set.

3) The resulting hierarchy is overlaid by any hierarchies indicated by Overlay parameters in
default.conf.

4) The result is then overlaid by the coprocessor-specific MicDir hierarchy for that
coprocessor, as specified by the MicDir parameter in the corresponding micN.conf file.

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

75

5) The resulting hierarchy is then overlaid by file hierarchies specified by Overlay parameters

in the corresponding micN.conf file.

6) The resulting hierarchy is re-archived and compressed if the file system will be resident in

coprocessor memory, as specified by the RootDevice RamFS or RootDevice SplitRamFS
parameter. It is left as an expanded file hierarchy on the host if it is to be NFS mounted.

4.1.2 Initializing, Updating and Resetting the Configuration Files

As discussed previously, micctrl --initdefaults is used to create and initialize a set of

configuration files. The same micctrl --initdefaults command should also be called after
installing a revision of Intel® MPSS so that micctrl can perform any upgrades to a
configuration file set in the event that some software stack configuration file parameters were
deprecated. In that case micctrl will replace the deprecated parameter with equivalent
replacement parameterization. To aid this process, each micN.conf configuration file includes a
version parameter:

Version <major number> <minor number>

This parameter should not be manually edited.

micctrl --initdefaults can also be parameterized to perform some additional user
authentication, network, and coprocessor configuration operations. Refer to Appendix B.4.2.1
for details.

As mentioned earlier, create a copy of the existing configuration before calling micctrl --

initdefaults, if you might want to use that configuration again, for example with an earlier
Intel® MPSS release.

Many micctrl operations directly modify files in the per-coprocessor overlay file sets (Section

4.1.1.3.2). However network configuration can be a multistep process and directly editing the
various network configuration files is not feasible. Instead, network configuration settings are

accumulated in micN.conf configuration files, and the accumulated settings are propagated to
the per-processor files set and host configuration files.

Several micctrl commands are intended to help the user recover when a configuration is

problematic for some reason. micctrl --resetdefaults attempts to restore configuration
parameters and the associated Intel® Xeon Phi™ coprocessor file systems back to the default

state. It shuts down the current network, removes several files in the /etc directories in the

per-coprocessor overlay sets, removes the old configuration files default.conf and

micN.conf, and effectively calls micctrl --initdefaults. micctrl --resetdefaults does not remove

files that the user has added to the various overlay sets. See Appendix B.4.2.2 for details.

Finally, if micctrl --resetdefaults fails to resolve configuration problems, micctrl --cleanconfig
can be called to completely remove all software stack created files and overlay sets, include
files that the user has created in an Intel® MPSS per-device or common overlay set. See
Appendix B.4.2.3 for details.

4.1.3 micctrl Directory Path Modifiers

micctrl supports several directory path modifiers that override the default directory locations

that it accesses. These modifiers enable building and maintaining multiple Intel® MPSS
configurations.

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
76

In the remainder of this document, we almost always assume the default values of these

modifiers. That is, we typically describe the default.conf and micN.conf configuration files as
being in the /etc/mpss directory. It should be understood that the correct location of these
files is $DESTDIR/$CONFIGDIR/default.conf (see below).

Similarly, we typically assume that per-coprocessor overlay hierarchy is rooted at the default
/var/mpss/micN, which is the default value of the MicDir configuration parameter.

4.1.3.1 $DESTDIR

We use the symbol $DESTDIR to indicate a directory path that micctrl prepends to all accesses
of files which it creates. By default $DESTDIR is “/”. The default can be overridden by defining
the MPSS_DESTDIR environment variable to some value, for instance:

[host]$ export MPSS_DESTDIR=<destdir>

The $DESTDIR default and MPSS_DESTDIR environment variable can be overridden with the

--destdir=<destdir> micctrl global option.

$DESTDIR is applied dynamically. That is, micctrl prepends the current value of $DESTDIR to
each file path at the time of file access. This means that the same $DESTDIR value must be
used consistently to access a particular set of files.

For example, given the following command sequence:

[host]# export MPSS_DESTDIR=/destdir1

[host]# micctrl --initdefaults

micctrl will create a new configuration, if one does not exist, rooted at /destdir1. However, for

the command sequence:

[host]# export MPSS_DESTDIR=/destdir1

[host]# micctrl --destdir=/destdir2 --initdefaults

micctrl will create a new configuration, if one does not exist, rooted at /destdir2 because the --
destdir global option overrides the value of $DESTDIR that was set by MPSS_DESTDIR

environment variable.

When the current value of $DESTDIR is not the default “/”, micctrl will not make any changes
to the host’s network configuration. In particular, it will not create network configuration files
(For Instance: /etc/sysconfig/network-scripts/ifcfg-micN), nor will it bring a network interface
up or down.

4.1.3.2 $CONFIGDIR

We use the symbol $CONFIGDIR to indicate the directory path at which micctrl creates and/or
accesses the default.conf and micN.conf configuration files, and the conf.d configuration

directory. By default $CONFIGDIR is /etc/mpss.

The default can be overridden by defining the MPSS_CONFIGDIR parameter:

MPSS_CONFIGDIR <confdir>

 in the /etc/sysconfig/mpss.conf file. For example:

MPSS_CONFIGDIR /home/mic/configdir

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

77

Note: /etc/sysconfig/mpss.conf is not created by default, and must be created by the user.

The $CONFIGDIR default and MPSS_CONFIGDIR parameter can be overridden by defining the
MPSS_CONFIGDIR environment variable to some value, for example:

[host]# export MPSS_CONFIGDIR=<confdir>

The $CONFIGDIR default, MPSS_CONFIGDIR parameter, and MPSS_CONFIGDIR environment

variable can be overridden by the --configdir=<confdir> or -c <confdir> micctrl global option.

$CONFIGDIR is applied dynamically. That is, micctrl prepends the current
$DESTDIR/$CONFIGDIR value to each access of a default.conf or micN.conf configuration file,
or conf.d directory. Consequently the same $DESTDIR/$CONFIGDIR value must be used
consistently to access a particular set of files.

4.1.3.3 $VARDIR

We use the symbol $VARDIR to indicate the directory path variable at which the micctrl --
initdefaults and --resetconfig commands create the common and micN overlay hierarchies,

and at which the micctrl --rootdev command places a ramfs file system image or NFS file
system hierarchy. By default $VARDIR is /var/mpss. The default can be overridden by
defining the MPSS_VARDIR environment variable to some value, for example:

[host]# export MPSS_VARDIR=<vardir>

The $VARDIR default and MPSS_VARDIR environment variable can be overridden by the --
vardir=<vardir> suboption to the micctrl --initdefaults, --resetconfig, and --rootdev
commands.

$VARDIR is applied persistently. That is, when micctrl --initdefaults or --resetconfig adds or
modifies a CommonDir or MicDir parameter to an Intel® MPSS configuration file, the
parameter values has the $VARDIR path prepended.

For example, assuming a configuration does not currently exist, then the command sequence:

[host]# export MPSS_VARDIR=/vardir1

[host]# micctrl --initdefaults

will add the following parameter to $DESTDIR/$CONFIGDIR/default.conf:

CommonDir /vardir1/common

and the following parameters to $DESTDIR/$CONFIGDIR/mic0.conf:

Micdir /vardir1/mic0

RootDevice Ramfs /vardir1/mic0.image.gz

The above paths are not prepended by the value of $DESTDIR, which is applied dynamically.

In the above example, micctrl will also populate a per-coprocessor overlay set at

$DESTDIR/vardir1/micN rather than at the default $DESTDIR/var/mpss/micN.

4.1.3.4 $SRCDIR

We use the symbol $SRCDIR to indicate the directory path at which the micctrl --initdefaults, -

-resetdefaults, --resetconfig, and --cleanconfig commands look for the coprocessor’s Linux*
kernel image and default file system image. By default $SRCDIR is /usr/share/mpss/boot. The

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
78

default can be overridden by defining the MPSS_SRCDIR environment variable to some value,

for example:

export MPSS_SRCDIR=<srcdir>

The $SRCDIR default and MPSS_SRCDIR environment variable can be overridden by the ---

srcdir suboption to the micctrl -- initdefaults, --resetdefaults, --resetconfig, and --cleanconfig
commands.

$SRCDIR is applied persistently. For example, assuming that the Base and OSimage
parameters are not currently defined in the $DESTDIR/$CONFIGDIR/micN.conf configuration
file, then the command:

[host]# micctrl --initdefaults

or

[host]# micctrl --initdefaults --srcdir=srcdir1

adds the following parameters to $DESTDIR/$CONFIGDIR/micN.conf:

Base CPIO srcdir1/initramfs-knightscorner.cpio.gz

OSimage srcdir1/bzImage-knightscorner srcdir1/System.map-

knightscorner

to the $DESTDIR/$CONFIGDIR/micN.conf configuration file of each specified coprocessor. The
above path is not prepended by $DESTDIR, which is applied dynamically.

4.1.3.5 $NETDIR

We use the symbol $NETDIR to indicate the directory path at which the micctrl --initdefaults, -
-resetdefaults, --resetconfig, --cleanconfig, --mac, --network, --addbridge, --modbridge and --
delbridge commands create and/or edit network control files. By default $NETDIR is

/etc/sysconfig/network-scripts on RHEL* host platforms and /etc/sysconfig/network on SLES*
host platforms. The default can be overridden by defining the MPSS_NETDIR environment

variable to some value, for example:

export MPSS_NETDIR=<netdir>

The $NETDIR default and MPSS_NETDIR environment variable can be overridden by the --
netdir suboption to the micctrl --initdefaults, --resetdefaults, --resetconfig, and --cleanconfig
commands.

For example, the command:

[host]# micctrl --network=static --mcu=1500 mic0

or

[host]# micctrl --network=static --netdir=<netdir>\

 --mcu=1500 mic0

creates a ifcfg-mic0 network control file in <netdir>, where <netdir> is the current value of

$NETDIR.

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

79

4.1.4 Boot Configuration

To boot an Intel® Xeon Phi™ coprocessor, the mpssd daemon needs to:

 Determine the kernel to be booted.

 Identify and/or build the file system image.

 Build the kernel command line.

Parameters in the default.conf and micN.conf Intel® MPSS configuration files are

evaluated for this purpose. The default.conf and micN.conf configuration files to be

consulted are determined by the configdir specification hierarchy described earlier in Section
4.1.3.2.

The following sections describe the parameters that are evaluated for this purpose.

4.1.4.1 Specifying the Linux* kernel

The OSimage parameter:

OSimage <linux_kernel_image> <system_address_map_file>

specifies the Intel® Xeon Phi™ coprocessor Linux* OS kernel image and associated system

address map file.

By default, this parameter is set to:

OSimage /usr/share/mpss/boot/bzImage-knightscorner

 /usr/share/mpss/boot/System.map-knightscorner

in the /etc/mpss/micN.conf configuration file of each specified coprocessor.

The micctrl --osimage command:

micctrl --osimage=<osimage> [mic card list]

can be used to modify the --osimage parameter, or the parameter can be edited directly.

4.1.4.2 Specifying and Building the File System Image

The RootDevice parameter specifies both where the root file system resides, as well as how

and when it is constructed:

RootDevice <type> <location> [<usr_location>]

By default, this parameter is set to:

RootDevice Ramfs /var/mpss/micN.image.gz

in the /etc/mpss/micN.conf configuration file of each specified coprocessor.

When <type> is Ramfs, a compressed cpio ram disk image is first constructed from overlay

sets, as described in Section 4.1.1.4, and placed at <location> when a boot request is

given. This image is pushed to coprocessor memory, where it is expanded into coprocessor

memory.

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
80

When <type> is StaticRamfs, there must already be a compressed cpio ram disk image at

<location>. The specified image will be used without rebuilding when the coprocessor is

booted.

If <type> is NFS, the booting coprocessor will mount its root file system from the NFS export

specified by <location>. The <location> must be a fully qualified NFS mount location with the
format “server:location”. At boot time, there must already be a root file system hierarchy at
<location>.

If <type> is SplitNFS, the booting coprocessor will mount its root file system, /, from the

NFS export specified by <location> and its /usr file system from the NFS export specified by

<usr_location>. Both <location> and <usr_location> must be a fully qualified NFS

mount locations with the format “server:location”. At boot time, there must already be a root

file system hierarchy (minus /usr) at <location>, and a /usr hierarchy at <usr_location>.

The micctrl --rootdev command:

micctrl --rootdev=<type> --target=<location> --server=<name>

[--usr=<usr_location> [-c] [-d] [mic card list]

can be used to modify the RootDevice parameter in one or more micN.conf configuration files,

or the parameter can be directly edited in a configuration file.

Refer to Appendix B.4.3 for details.

4.1.4.3 Building the kernel commandline

The mpssd daemon constructs a kernel command line based on several parameters in the

Intel® MPSS configuration files. Most of these are described in Appendix A.3. For each such
parameter, there is a corresponding micctrl command that can be used to modify the
parameter, or these parameters can be modified directly.

4.1.5 Assisted Boot Process

This section describes the key steps that are performed during the Intel® MPSS boot process

on the Intel® Xeon Phi™ coprocessor.

4.1.5.1 Instruct the Driver to Boot the Intel® Xeon Phi™
 Coprocessor

On many Linux* based systems the grub boot loader loads and executes a Linux* kernel
image selected from the grub configuration file. The grub configuration file lists available
kernels as well as parameters to be passed through the kernel command line. The mpssd host
daemon and Intel® MPSS configuration files play a similar role in directing the Intel® Xeon

Phi™ coprocessor boot process

The mpssd daemon first constructs a (partial) kernel command line for each coprocessor being
booted, based on parameters in the Intel® MPSS configuration files. These parameters are
described throughout this document, and in Appendices A.3 and A.4.1. The resulting command

line is written to the /sys/class/mic/micN/cmdline sysfs node, where the mic.ko driver will
retrieve it.

Next, mpssd requests that the mic.ko driver start an Intel® Xeon Phi™ coprocessor by writing
a boot string to the /sys/class/mic/micN/state sysfs node. The format of this string depends

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

81

on whether the coprocessor file system is to be a RAM file system or is to be NFS mounted.

For the RAM file system, the format is:

boot:linux:<linux_kernel_image>:<ram_disk_file>

and for NFS, it is:

boot:linux:<linux_kernel_image>

The linux:<linux_kernel_image> part of the boot argument specifies the location of the

Linux* image which is used to boot the coprocessor. mpssd obtains this value from the
OSimage parameter.

The <ram_disk_file> part specifies the file system image. mpssd obtains this file name

from the RootDevice parameter.

When the mic.ko host driver receives the boot request, it first verifies that the card is in the

ready state, indicating that it has finished its HW initialization sequence and is ready to receive
a kernel and file system image to continue the boot process.

If the card is not ready to boot, the driver will report an error when the sysfs state entry is

read and will not attempt to boot the card. Otherwise, the coprocessor state is set to booting.

Next the mic.ko host driver copies the specified Linux* image and file system image to the
coprocessor memory and writes the constructed command line via the standard Linux* kernel
boot protocol structure.

The driver’s last step is to write to a coprocessor register, effectively instructing it to jump to

the provided bzImage to finish the kernel boot process.

4.1.5.2 Coprocessor Linux* Kernel Initial Phases

The Intel® Xeon Phi™ coprocessor Linux* kernel goes through virtually the same startup

process as on any Intel® based machine. It initializes the bootstrap processor, starts kernel
services, including various built-in modules, and brings up all the application processors (APs)
to full SMP state. The final step in the boot process involves mounting the root file system so
that /init can be executed.

The initial ram disk image contains the loadable modules required for the real root file system.

Some of the arguments passed in the kernel command line are host memory addresses
required by those modules. The init program parses the kernel command line for needed
information and creates a /etc/modprobe.d/modprobe.conf file needed by the card’s init
process.

In the next step, the root command line parameter determines whether init mounts the file

system image that mic.ko previously copied to coprocessor memory, or NFS mounts a remote
file system.

4.1.5.2.1 Root is a Ram Disk Image

If the root is set to be a ram file system, the init program creates a tmpfs (Linux* ram disk file

system type) in Intel® Xeon Phi™ coprocessor memory. It then copies all the files from the
initial ram disk image into the new tmpfs mount.

If any RPM files exist in the /RPMS-to-install directory, they will be installed. After installation,

this directory is removed to free disk space.

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
82

The ram disk image is activated as the root device by calling the Linux* switch_root utility.

This command instructs the Linux* kernel to remount the root device on the tmpfs mount
directory, release all file system memory references to the old initial ram disk and start
executing the new /sbin/init function. /sbin/init then performs the normal Linux* user level

initialization.

4.1.5.2.2 Root is an NFS Export

If an NFS mounted root file system is indicated, the init program initializes the mic0 virtual

network interface to the IP address supplied on the kernel command line and mount the NFS
export from the host.

As in the ram disk image, the NFS mount is activated as the root device by calling the Linux*
switch_root utility. This special utility instructs the Linux* kernel to remount the root device on
the NFS mount directory, release all file system memory references to the old initial ram disk
and start executing the new /sbin/init function.

/sbin/init performs the normal Linux* user level initialization. All the information required must

have already been in the NFS export.

4.1.5.3 Notify the Host that the Intel® Xeon Phi™ Coprocessor
 System is Ready

The last step is to notify the host that the coprocessor is ready for access. It does this by
writing to its /sys/class/micnotify/notify/host_notified entry. This causes an interrupt into the
host driver which, in turn, updates the card’s state to online.

4.1.5.4 Coprocessor Shutdown

The mpssd daemon writes reset or shutdown respectively to the /sys/class/mic/micN/state
sysfs node request a reset or orderly shutdown of a coprocessor. The mic.ko driver, in turn,

implements the request operation.

4.2 Manual Configuration and Control

This section describes, at a high level, the considerations and steps in configuring and booting
an Intel® Xeon Phi™ coprocessor without use of the micctrl tool or mpssd daemon.

In general, this requires:

 Editing configuration files in the default file system image as needed. Typical areas

that require attention are networking and user access, the same as for assisted
configuration.

 Adding additional software to the coprocessor file system.

 Constructing a coprocessor boot command line.

 Initiating the coprocessor boot and shutdown processes by directly interacting with the
mic.ko driver.

The default installation automatically loads the mic.ko kernel module and starts the

mpss/ofed-mic services. If this behavior is not desired, switch off the services and remove
/etc/sysconfig/modules/mic.modules:

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

83

[host]# 1chkconfig --del ofed-mic

[host]# 1chkconfig --del mpss

[host]# rm /etc/sysconfig/modules/mic.modules

4.2.1 Directly Editing (and persisting) Card /etc Files

As described in Section 4.1, assisted configuration of the coprocessor file system is based on

overlaying the default file system with a collection of overlay file sets. In that case, the default
file system image that is installed as part of Intel® MPSS installation is not modified by the
assisted configuration process.

While a similar overlay process could be employed as part of manual configuration, we will

assume that the user directly edits the installed default file system.

The default file system image is a compressed CPIO archive, and is installed at
/usr/share/mpss/boot/initramfs-knightscorner.cpio.gz. To edit files, extract them from the

archive:

[host]$ gunzip -c /usr/share/mpss/boot/initramfs-

knightscorner.cpio.gz | cpio -ivd

If the file system is to be NFS mounted, it is, left in this format. Otherwise, it should be re-
archived and compressed for uploading to coprocessor memory:

[host]$ find . | cpio -o -H newc | gzip > <ramfs_location>

4.2.1.1 /init

The default file system’s /init script was briefly mentioned in Section 4.1.5.2, and is typical of

Linux* /init scripts. /init parses the command line parameters passed to it by the kernel, and
performs the following major steps:

 Creates and configures /etc/modules and /etc/modprobe.d/modprobe.conf.

 Depending on command line parameters, mounts the file system image that the
mic.ko pushed to coprocessor memory as tmpfs, or NFS mounts a remote export
specified in the command line.

 Optionally rpm installs packages that it finds in a special /RPMS_to_install directory in

the file system image.

 Finally, /init switches the root file system to the newly mounted file system image.

If /init is edited, for example, to support additional command line options, those changes will
need to be propagated to any new version of /init in subsequent versions of Intel® MPSS.

4.2.1.2 Network Configuration and User Authentication

Network configuration and user authentication are the most significant configuration tasks,
particularly for cluster administration. These topics are treated in detail in Chapters 5 and 6
respectively.

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
84

4.2.1.3 Adding software to coprocessor file system

One way to add software is to add files to the file system image, but generally users will want

to install rpm based packages. A simple way to do this is to create a /RPMs-to-install directory
in the file system image, and place packages to be installed in that directory. The /init script,
described above, will rpm install any .rpm packages that it finds in the directory as the last
step before performing switch_root.

See Chapter 7 for more information on this topic.

4.2.2 NFS Mounting the Root and Other File Systems

/init will NFS mount a remote export if the command line includes the root=nfs command.

This command has the syntax:

root=nfs:<server>:<export>

where <server> is the IP address of the exporting node and <export> is the exported

directory. For example, the command:

root=nfs:172.31.1.254:/var/mpss/mic0.export

will cause the directory at /var/mpss/mic0.export on node 172.31.1.254 (the default static

pair host IP address) to be NFS mounted as root.

The file system to be NFS mounted as root, as well as any other file systems to be NFS

mounted, must be described in the /etc/exports file of the exporting host. For example,
assume the coprocessor virtual endpoint IP address is 172.31.1.1. To export the host directory
/var/mpss/mic0.export, add a descriptor to the host’s /etc/exports such as:

/var/mpss/mic0.export 172.31.1.1 (rw,async,no_root_squash)

Next call exportfs to update NFS export tables:

[host]# exportfs -a

NFS mounting file systems other than root is done as on any standard Linux* systems. The file
system to be exported is described in /etc/exports as shown above, and the mount point is

described in the coprocessor’s /etc/fstab file. The NFS mounted root file system mount point
does not need to be explicitly added to the coprocessor’s /etc/fstab because /init mounts it.

For example, assume the host IP address is 172.31.1.254. To mount another host directory
/var/mpss/usr.export as /usr on the coprocessor, add a descriptor to the coprocessor’s
/etc/fstab, for example:

172.31.1.254:/var/mpss/usr.export /usr nfs defaults 1 1

The mount point, in this case /usr, must exist in the coprocessor file system.

After the coprocessor is rebooted, the remote file system(s) will be mounted onto the
coprocessor’s files system.

The standard mount command can also be called interactively while the user is logged onto a

coprocessor to mount an exported file system.

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

85

4.2.3 Driver sysfs Settings

The mic.ko driver exports information about installed Intel® Xeon Phi™ coprocessors via
/sys/class/mic. As described in Section 4.1.5 and below, /sys/class/mic/micN/cmdline and

/sys/class/mic/micN/state entries are also used in booting and controlling coprocessors.

Appendix C describes these sysfs entries.

4.2.4 Card-side Kernel Commandline Parameters

As mentioned in Section 4.1.5, a partial command line is written to the mic.ko driver sysfs

node /sys/class/mic/micN/cmdline at boot time. The driver will augment that command line
with additional commands. For example, in assisted configuration, the mpssd writes a
command line similar to:

quiet root=ramfs console=hvc0 cgroup_disable=memory highres=off

micpm=cpufreq_on;corec6_off;pc3_on;pc6_off

and a typical augmented command line is:

card=0 vnet=dma scif_id=1 scif_addr=0x835c6cd540

vnet_addr=0x831a428118 vcons_hdr_addr=0x831a727540

virtio_addr=0x835c35a9c0 mem=8192M ramoops_size=16384

ramoops_addr=0x8669284000 p2p=1 p2p_proxy=1 etc_comp=1499

reg_cache=1 ulimit=0 huge_page=1 crashkernel=1M@80M quiet root=ramfs

console=hvc0 cgroup_disable=memory highres=off

micpm=cpufreq_on;corec6_off;pc3_on;pc6_off

The augmented command line can be read at /sys/class/mic/micN/kernel_cmdline.

The mic.ko driver expanded the original kernel command line. The entries card, vnet, scif_id,

scif_addr, vnet_addr, cons_hdr_addr, virtio_addr, mem, ramoops_size, ramoops_addr, and

crashkernel are automatically generated by the driver. These options are non-configurable.

Chapter 9 describes a range of configuration options, many of which are conveyed to the

coprocessor as kernel command line parameters.

4.2.5 Controlling the card

This section describes how to boot a coprocessor manually, not using micctrl. The mic.ko
driver must be loaded:

[host]# modprobe mic

It is not necessary to start the mpss service (mpssd daemon).

Controlling a coprocessor is then done through the /sys/class/mic/micN/state sysfs node.

When the state node:

[host]$ cat /sys/class/mic/micN/state

is read, one of the following state values is reported:

 ready card is ready for a boot command

 booting card is currently booting

Configuring and Booting
the Intel® Xeon Phi™

Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
86

 no response card is not responding

 boot failed card failed to boot

 online card is currently booted

 shutdown card is currently shutting down

 lost booted card is not responding

 resetting card is processing soft reset

 reset failed card cannot be reset – non recoverable

In order to boot or reboot the coprocessor, it must first be in the ready state. If it is in the

online state from a previous boot, it can be shut down by writing shutdown to the state node:

[host]# echo shutdown > /sys/class/mic/micN/state

[host]$ cat /sys/class/mic/micN/state

shutdown

It can be reset by writing reset to the state node:

[host]# echo reset > /sys/class/mic/micN/state

[host]$ cat /sys/class/mic/micN/state

resetting

Shutting down the coprocessor rather than resetting it is generally recommended particularly

if there might be I/O data that must be flushed to some external device.

Both shutdown and reset may take several seconds, so the user must continue to check the
state until the coprocessor is reported to be ready:

[host]$ cat /sys/class/mic/micN/state

ready

Submit the command line:

[host]# echo "quiet root=ramfs console=hvc0 cgroup_disable=memory

highres=off micpm=cpufreq_on;corec6_off;pc3_on;pc6_off " >

/sys/class/mic/micN/cmdline

Now boot the coprocessor. For example:

[host]# echo "boot:linux:/usr/share/mpss/boot/bzImage-

knightscorner:/var/mpss/mic0.image.gz" > /sys/class/mic/mic0/state

[host]$ cat /sys/class/mic/mic0/state

booting

Wait until it is out of the booting state and in the online state:

[host]$ cat /sys/class/mic/micN/state

Online

The coprocessor is now ready for use. For example you can ssh to it:

[host]$ ssh mic0

[micN]$ dmesg | tail -n 5

[9.529093] blcr: Supports kernel interface version 0.10.3.

Configuring and Booting
the Intel® Xeon Phi™
Coprocessor Operating System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

87

[9.529103] blcr: Supports context file format versions 8

though 9.

[9.529111] blcr: http://ftg.lbl.gov/checkpoint

[9.600401] MPSSBOOT Boot acknowledged

[17.830104] mic0: no IPv6 routers present

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
88

5 Networking Configuration

The Intel® Xeon Phi™ coprocessor does not have a hardware Ethernet capability. Instead
Virtual Ethernet drivers on the host and coprocessors emulate Ethernet devices to enable the

standard TCP/UDP IP stack on the coprocessor. This chapter describes configuring these
endpoints and the construction of networks of Intel® Xeon Phi™ coprocessors. Finally,
configuration of IP networking over InfiniBand* is discussed.

Assisted and manual networking configurations are addressed separately.

5.1 Assisted Configuration

The Intel® MPSS micctrl utility supports static pair, internal bridge and external bridge

topologies. These were described in Section 2.2.3. Using a combination of the Bridge and

Network configuration parameters allows a diverse and robust network setup.

Each Linux* system in a network uses a host name to identify itself. The Hostname Intel®

MPSS configuration parameter is used to configure the host name of Intel® Xeon Phi™
coprocessor.

Each network interface is identified by its MAC address. Each virtual network endpoint on the

host and on a coprocessor requires its own unique address. These addresses are configured
using the MacAddrs parameter.

For the purpose of network configuration, several files are added or modified, based on the

host OS type (Red Hat* or SUSE*). These may include:

 /etc/hosts
 /etc/network/interfaces # SUSE*

 /etc/sysconfig/network-scripts/ifcfg-*; # RHEL*: various depending on network topology

 On the card file systems the files added are:

/etc/network/interfaces

/etc/hostname
/etc/ssh/ssh_host_key
/etc/ssh/ssh_host_key.pub
/etc/ssh/ssh_host_rsa_key
/etc/ssh/ssh_host_rsa_key.pub
/etc/ssh/ssh_host_dsa_key

/etc/ssh/ssh_host_dsa_key.pub
/etc/ssh/ssh_host_ecdsa_key # if present
/etc/ssh/ssh_host_ecdsa_key.pub # if present
/etc/resolv.conf
/etc/nsswitch.conf
/etc/hosts

All network configuration parameters take effect upon executing 1service mpss start.

5.1.1 Host SSH Keys

The secure shell utilities recognize a Linux* system on the network by its “host key files”.
These files are found in the /etc/ssh directory. The host key values, like the MAC addresses,

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

89

are considered to be highly persistent, and the micctrl command will retain their values if they

exist.

In some clusters, detecting and protecting against “man in the middle” and other such attacks

might not be required. In this case, the system administrator may use the micctrl --hostkeys
command to set the host SSH keys to be the same cluster wide.

5.1.2 Name Resolution Configuration

micctrl --initdefaults configures name resolution on the coprocessors by creating an

/etc/nsswitch.conf file and copying the /etc/resolv.conf file from the host to the Intel® Xeon
Phi™ coprocessor file systems.

5.1.3 Host Name Assignment

Each Intel® Xeon Phi™ coprocessor needs its own host name. The Intel® MPSS Hostname
parameter in each micN.conf configuration file defines the host name of the corresponding
coprocessor. Parameter syntax is:

Hostname <name>

The default value set by the micctrl --initdefaults command is:

Hostname <short_host_name>-micN.<domain>

where <short_host_name> is the name returned by:

[host]$ hostname --short

<domain> is the host’s domain name. For example, if the host’s hostname is abc.xyz.com,
then the coprocessor hostname will be abc-micN.xyz.com. The host name string may be

changed by editing the micN.conf configuration file.

5.1.4 MAC Address Assignment

Because the Intel® Xeon Phi™ coprocessor does not have a hardware network interface, its
network endpoint does not have a pre-assigned MAC address. Therefore a MAC address must
be generated and assigned to each virtual network device; several options are available to
facilitate this operation.

At driver load time, the host and coprocessor drivers generate MAC addresses for their
respective endpoints, setting the first three octets to 4C:97:BA. This occurs regardless of
whether configuration is assisted or manual.

Normally, these MAC addresses are based on the coprocessor serial number and are consistent

across Intel® MPSS service restart. Some early coprocessors lacked serial numbers; for those

coprocessors, the host and coprocessor drivers generate random MAC addresses.

It is recommended to use the default serial number based MAC addresses, but these can be

overridden if necessary.

MAC assignment is controlled by the MacAddrs configuration parameter in the micN.conf
configuration file:

MacAddrs Serial|Random|<host MAC>:<card MAC>

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
90

The initial parameter created by micctrl --initdefaults is:

MacAddrs Serial

This specifies serial number based MAC address generation. In addition to random MAC
address generation, explicit host and card can be assigned. See Appendix A.5.2 for details.

The micctrl --mac command:

micctrl --mac=serial|random|<MAC address>

can be used to modify the MacAddrs parameter in one or more micN.conf configuration files,
or the parameter can be directly edited in a configuration file. See Appendix B.4.5.1 for
details.

5.1.5 Network Topologies

This section describes configuration of each of the basic network topologies.

Note: The mpss service must be stopped before using micctrl to configure the network topology:

[host]# 1service mpss stop

5.1.5.1 Static Pair Configuration

In the static pair topology, an Intel® Xeon Phi™ coprocessor is assigned to a separate subnet

known only to the host. Only static IP address assignment is supported. The Network
configuration parameter format for static pair networking is described in detail in Appendix
A.5.3.

5.1.5.1.1 Static Pair Configuration Using Micctrl

Although a static pair network topology can be partially configured by editing the Network
configuration parameter directly, other steps are required. Therefore the recommended

method of changing the network configuration is to use the micctrl --network command.
Specifically, the micctrl --network command will edit configuration files as needed to remove
the current network configuration before implementing the new configuration. micctrl --
network also creates and/or modifies host and coprocessor network configuration files, and
brings network endpoints on the host down and up as needed.

Configuring a static pair network using the micctrl --network command is described in detail in

Appendix B.4.5.3.

5.1.5.1.2 Micctrl Based Static Pair Configuration Implementation

This section describes in some detail the edits and other operations that micctrl performs

when the micctrl --network command is used to configure a static pair network topology. The

information in this section is not required in order to use these micctrl commands. The reader
can skip this section unless a deeper understanding of the configuration process is needed.

For explanatory purposes we will assume the following command is executed on a host system
with two Intel® Xeon Phi™ coprocessors installed:

 [host]# micctrl --network=static --ip=172.31

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

91

In this case, micctrl will set the third quad of each IP address to N+1 for each coprocessor

with a name specified to micN. The fourth quad of the host endpoint IP address will be 254,
and the coprocessor endpoint IP address will be 1. MTU will default to 64512, and modhost
and modcard will both default to yes.

micctrl first parses the Network configuration parameter in each of the /etc/mpss/micN.conf
files to determine the existing network configuration.

micctrl next shuts down the current virtual network connections using the ifdown micN

command for each of the coprocessors, deletes existing /etc/sysconfig/network-scripts/ifcfg-
micN files, removes the micN entries from /etc/hosts, and then creates a new
/etc/sysconfig/network-scripts/ifcfg-micN file for each coprocessor. The ifcfg-mic0 will now
have contents similar to:

DEVICE="mic0"

TYPE=Ethernet

ONBOOT=yes

NM_CONTROLLED="no"

BOOTPROTO=static

IPADDR=172.31.1.254

NETMASK=255.255.255.0

MTU=64512

In general, an identical /etc/sysconfig/network-scripts/ifcfg-micN file is created for each micN

with DEVICE=micN and IPADDR=172.31.1+N.254

micctrl now executes ifup micN for each of the coprocessors. At this time, the ifconfig
command relevant output should be similar to:

mic0 Link encap:Ethernet

inet addr:172.31.1.254 Bcast:172.31.1.255 Mask:255.255.255.0

mic1 Link encap:Ethernet

inet addr:172.31.2.254 Bcast:172.31.2.255 Mask:255.255.255.0

showing that the two host endpoints have the IP address specified by the micctrl --network

command.

micctrl then creates/updates the network configuration files for the Intel® Xeon Phi™
coprocessor file system. It will first create/update the network interface configuration file

/var/mpss/mic0/etc/network/interfaces with the contents:

/etc/network/interfaces -- configuration file for ifup(8),

ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

MIC virtual interface

auto mic0

iface mic0 inet static

 address 172.31.1.1

 gateway 172.31.1.254

 netmask 255.255.255.0

 mtu 64512

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
92

The /var/mpss/mic1/etc/network/interfaces file is similar.

Next, micctrl --network replaces the Network configuration parameter in each coprocessor’s

configuration file with a new parameter. For example the /etc/mpss/mic0.conf file will now
have the Network configuration parameter:

Network class=StaticPair micip=172.31.1.1 hostip=172.31.1.254

modhost=yes modcard=yes netbits=24 mtu=64512

micctrl now updates the /etc/hosts file to include descriptors of the remote endpoints:

172.31.1.1 blutune-mic0.music.local mic0 #Generated-by-micctrl

172.31.1.2 blutune-mic1.music.local mic1 #Generated-by-micctrl

and then creates/updates the /var/mpss/micN/etc/hosts files to have content similar to the
following (/var/mpss/mic0/etc/hosts shown):

127.0.0.1 localhost.localdomain localhost

::1 localhost.localdomain localhost

172.31.1.254 host blutune.music.local

172.31.1.1 mic0 blutune-mic0.music.local mic0

172.31.2.1 blutune-mic1.music.local mic1

The next boot of the Intel® Xeon Phi™ coprocessors, by either 1service mpss start or micctrl -
b will use the new network configuration.

5.1.5.2 Internal Bridge Configuration

Linux* provides a mechanism for bridging network devices to a common network. The term
internal bridge, in the context of Intel® Xeon Phi™ coprocessor configuration, refers to a
network of multiple coprocessor virtual network endpoints that are connected through a host
bridge endpoint. Only static IP address assignment is supported.

This network topology depends on a Bridge in the default.conf configuration file and a Network
parameter micN.conf configuration file of each coprocessor to be included in the bridge. The
Bridge and Network parameters for the internal bridge configuration are described in detail in
Appendix A.5.4.

5.1.5.2.1 Internal Bridge Configuration File Parameters

Although an internal bridge network can be partially configured by editing the Bridge and

Network configuration parameters directly, other steps are required. Therefore the
recommended method of changing the network configuration is to use the micctrl --network
command. Specifically, the micctrl --network command will edit configuration files as needed
to remove the current network configuration before implementing the new configuration.

micctrl --network also creates and/or modifies host and coprocessor network configuration
files, and brings network endpoints on the host up and down as needed.

Configuring an internal bridge network using the micctrl --network command is described in
detail in Appendix B.4.5.4.

5.1.5.2.2 micctrl Based Internal Bridge Configuration Implementation

This section describes in some detail the edits and other operations that micctrl performs

when the micctrl --network and --addbridge commands are used to configure an internal
bridge network topology. The information in this section is not required in order to use these

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

93

micctrl commands. The reader can skip this section unless a deeper understanding of the

configuration process is needed.

For explanatory purposes we will assume the following commands are executed on a host

system with two Intel® Xeon Phi™ coprocessors installed:

[host]# micctrl --addbridge=br0 --type=internal --ip=172.31.1.254

[host]# micctrl --network=static --bridge=br0 --ip=172.31.1.1

The micctrl --addbridge command performs a series of steps starting with removal of the

current network configuration. micctrl first parses the Network configuration parameter in
each of the /etc/mpss/micN.conf files and the Bridge parameter in the /etc/mpss/default.conf
file to determine the existing network configuration.

micctrl then adds/modifies the Bridge parameter in the /etc/mpss/default.conf file to contain:

Bridge br0 Internal 172.31.1.254 24 64512

The value 24 in this parameter is the default netbits value, defining a netmask of FFFFFF00.

The value 64512 is the default MTU value.

Then, the host configuration file, /etc/sysconfig/network-scripts/ifcfg-br0, is created or
modified to describe the bridge with contents similar to:

DEVICE=br0

TYPE=Bridge

ONBOOT=yes

DELAY=0

NM_CONTROLLED="no"

BOOTPROTO=static

IPADDR=172.31.1.254

NETMASK=255.255.255.0

The micctrl utility then executes the ifup br0 command to bring up the bridge interface.

The micctrl --network command slaves the host ends of the virtual networks to the designated
bridge br0, and replaces the network configuration files for the Intel® Xeon Phi™ coprocessors
with a configuration for the new IP addresses. micctrl again parses the Network configuration
parameter in each of the /etc/mpss/micN.conf files to determine the existing network
configuration.

micctrl next shuts down the current virtual network connections using the ifdown micN
command for each of the coprocessors, deletes existing /etc/sysconfig/network-scripts/ifcfg-
micN files, removes the micN entries from /etc/hosts, and then creates a new
/etc/sysconfig/network-scripts/ifcfg-micN file for each coprocessor. The ifcfg-mic0 will now

have contents similar to:

DEVICE=mic0

ONBOOT=yes

NM_CONTROLLED="no"

BRIDGE=br0

MTU=64512

where BRIDGE=br0 causes the new endpoint to be added to the bridge. In general, an

identical /etc/sysconfig/network-scripts/ifcfg-micN file is created for each micN with

DEVICE=micN.

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
94

When this is complete micctrl executes ifup micN, for each coprocessor. At the end of this

process, the brctl show command can be used to check the status of the bridge. Its output
should be similar to:

bridge name bridge id STP enabled interfaces

br0 8000.66a8476a8f15 no mic0

 mic1

The ifconfig command relevant output should be:

br0 Link encap:Ethernet

 inet addr: 172.31.1.254 Bcast: 172.31.1.255

 Mask:255.255.255.0

mic0 Link encap:Ethernet

mic1 Link encap:Ethernet

These commands show that the mic0 and mic1 virtual network interfaces are slaved to bridge

br0. Bridge br0 has been assigned the IP address specified by the micctrl --addbridge
command, and the slaves do not have their host IP addresses.

micctrl then creates the network configuration files for the Intel® Xeon Phi™ coprocessor file
system. It will first create/update the network interface configuration file
/var/mpss/mic0/etc/network/interfaces with the contents:

/etc/network/interfaces -- configuration file for ifup(8),

ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

MIC virtual interface

auto mic0

iface mic0 inet static

 address 172.31.1.1

 gateway 172.31.1.254

 netmask 255.255.255.0

The /var/mpss/mic1/etc/network/interfaces file is similar.

The existing Network configuration parameter in each coprocessor’s configuration file is then

replaced with a new parameter. For example the /etc/mpss/mic0.conf file now has the
Network configuration line:

Network class=StaticBridge bridge=br0 micip=172.31.1.1 modhost=yes

modcard=yes

The /etc/mpss/mic1.conf file will have the same line with the exception that the IP address is

172.31.1.2.

micctrl now updates the /etc/hosts file to include descriptors of the remote endpoints:

172.31.1.1 blutune-mic0.music.local mic0 #Generated-by-micctrl

172.31.1.2 blutune-mic1.music.local mic1 #Generated-by-micctrl

and then creates/updates the /var/mpss/micN/etc/hosts files to have content similar to the
following (/var/mpss/mic0/etc/hosts shown):

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

95

127.0.0.1 localhost.localdomain localhost

::1 localhost.localdomain localhost

172.31.1.254 host blutune.music.local

172.31.1.1 mic0 blutune-mic1.music.local mic0

172.31.1.2 mic1 blutune-mic1.music.local mic1

In general, each coprocessor’s /etc/hosts file includes the IP addresses and host names of all
coprocessors on the internal bridge network.

The next boot of the Intel® Xeon Phi™ coprocessors, by either 1service mpss start or micctrl -
b will use the new network configuration.

5.1.5.3 External Bridge Configuration

The Linux* bridging mechanism can also bridge the Intel® Xeon Phi™ coprocessor virtual
connections to a physical Ethernet device. In this topology, the virtual network interfaces

become configurable to the wider subnet. Both static IP address assignment and DHCP based
IP address assignment/reservation are supported.

This network topology depends on a Bridge in the default.conf configuration file and a Network
parameter micN.conf configuration file of each coprocessor to be included in the bridge. The
Bridge and Network parameters for the external bridge configuration are described in detail in
Appendix A.5.5.

5.1.5.3.1 External Bridge Configuration Using Micctrl

Although an external bridge network can be partially configured by editing the Bridge and

Network configuration parameters directly, other steps are required. Therefore the
recommended method of changing the network configuration is to use the micctrl --network
command. Specifically, the micctrl --network command will edit configuration files as needed
to remove the current network configuration before implementing the new configuration.

micctrl --network also creates and/or modifies host and coprocessor network configuration

files, and brings network endpoints on the host up and down as needed.

Configuring an external bridge network using the micctrl --network command is described in
detail in Appendix B.4.5.5.

5.1.5.3.2 micctrl Based External Bridge Configuration Implementation

This section describes in some detail the edits and other operations that micctrl performs

when the micctrl --network and --addbridge commands are used to configure an external
bridge network topology. The information in this section is not required in order to use these
micctrl commands. The reader can skip this section unless a deeper understanding of the
configuration process is needed.

When IP address assignment is static, micctrl performs the same steps as for the Internal
Bridge configuration, except that the default MTU size is 1500 bytes.

For dhcp based IP address assignment, the steps are similar except that the bridge descriptor

file, for example /etc/sysconfig/network-scripts/ifcfg-br0, will specify dhcp address
assignment. For example:

DEVICE=br0

TYPE=Bridge

ONBOOT=yes

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
96

DELAY=0

NM_CONTROLLED="no"

BOOTPROTO=dhcp

NETMASK=255.255.255.0

MTU=1500

BOOTPROTO is set to dhcp rather than static, and there is no IPADDR parameter. Similarly,

each coprocessor endpoint must be described in that comprocessor’s
/var/mpss/micN/etc/network/interfaces file with contents similar to:

/etc/network/interfaces -- configuration file for ifup(8),

ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

MIC virtual interface

auto mic0

iface mic0 inet dhcp

 pre-up /bin/ip link set $IFACE mtu 1500

 hostname bjhondo-desktop7-mic0.dd.domain.com

This configures the mic0 coprocessor endpoint for DHCP IP address assignment and configures
the endpoint mtu to 1500 bytes for compatibility with other devices.

Because IP addresses are assigned by the dhcp server, the host and coprocessor /etc/hosts

files are not modified.

5.2 Manual Configuration

Manual network configuration is mostly just a process of editing standard configuration files on

the host and on the coprocessor file systems. Generally speaking, this includes the host and
coprocessor configuration files listed in Section 4.1.1.2. To edit or add files to the default file
system image, refer to Section 4.2.1.

Note: Network configuration on the coprocessor is Debian* based. In particular, a single
/etc/network/interfaces file describes all endpoints. Because each coprocessor has only a single

network endpoint, this file is generally quite simple.

The default files system image, as installed, already includes several of these files, specifically:

/etc/network/interfaces

/etc/hostname
/etc/nsswitch.conf
/etc/hosts

Each of these must be modified to complete network configuration.

5.2.1 Host Name

The /etc/hostname file in the coprocessor’s file system image should contain the coprocessor

host name.

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

97

5.2.2 MAC Addresses

For manual configuration, nothing needs to be done in the case that serial number based MAC
address generation is acceptable. To assign an explicit MAC address to a coprocessor, add

hwaddress ether XX:XX:XX:XX:XX:XX

in the section describing the micN endpoint of the /etc/network/interfaces file in the

coprocessor file system image.

Standard Linux* utilities such as ifconfig can be used to change the MAC address of host
endpoints. For example:

[host]# ifconfig mic0 hw ether 4A:79:BA:15:00:21

will set the mic0 host endpoint MAC address to 4A:79:BA:15:00:21.

Such a direct assignment is not persistent. When the host driver is restarted, the MAC address
will revert to the default value.

5.2.3 Network Topologies

This section describes in some detail the edits and other operations to manually configure

each of the basic network topologies. Because IP address assignment is an intrinsic part of the
network configuration, it is described in the following sections.

We assume a platform with two Intel® Xeon Phi™ coprocessors installed, and that virtual

network endpoints are given micN names, for instance mic0 for coprocessor 0. We also
assume that the coprocessors have been reset and are in the ready state, and that previous

network endpoints and bridges have been shut down, for example, by using the ifdown

command.

5.2.3.1 Static Pair

To define the host endpoint of each static pair, create and/or edit the /etc/sysconfig/network-
scripts/ifcfg-micN file for each coprocessor to be paired, and assign the chosen device name,

IP address, netmask, and MTU value. The ifcfg-mic0 file should then have content similar to
the following example:

DEVICE="mic0"

TYPE=Ethernet

ONBOOT=yes

NM_CONTROLLED="no"

BOOTPROTO=static

IPADDR=172.31.1.254

NETMASK=255.255.255.0

MTU=64512

In general, an identical /etc/sysconfig/network-scripts/ifcfg-micN file is created for each micN

with DEVICE=micN and IPADDR=172.31.1+N.254.

Each coprocessor endpoint must be described in that coprocessor’s /network/interfaces file

with contents similar to:

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
98

/etc/network/interfaces -- configuration file for ifup(8),

ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

MIC virtual interface

auto mic0

iface mic0 inet static

 address 172.31.1.1

 gateway 172.31.1.254

 netmask 255.255.255.0

 mtu 64512

The host and coprocessor IP addresses must be from the same subnet.

A descriptor of each coprocessor endpoint should be added to the host’s /etc/hosts file to

associate IP addresses with the coprocessor hostnames. For example:

172.31.1.1 blutune-mic0.music.local mic0

172.31.1.2 blutune-mic1.music.local mic1

Similarly, a descriptor of the corresponding host endpoint should be added to each
coprocessor’s /etc/hosts file to associate the host’s endpoint IP address with the host’s
hostnames. For example, mic0’s /etc/hosts might contain:

127.0.0.1 localhost.localdomain localhost

::1 localhost.localdomain localhost

172.31.1.254 host blutune.music.local

172.31.1.1 mic0 blutune-mic0.music.local mic0

172.31.2.1 blutune-mic1.music.local mic1

For this example, /etc/hosts includes descriptors of both the host endpoint and the local
endpoint.

Each of these endpoints can now be brought up by calling the ifup micN command for each

bridged coprocessor. At this point the ifconfig command relevant output should be similar to:

mic0 Link encap:Ethernet

inet addr:172.31.1.254 Bcast:172.31.1.255 Mask:255.255.255.0

mic1 Link encap:Ethernet

inet addr:172.31.2.254 Bcast:172.31.2.255 Mask:255.255.255.0

The next boot of the Intel® Xeon Phi™ coprocessors will use the new network configuration.

5.2.3.2 Internal Bridge

To define the host bridge endpoint, create and/or edit a standard interface configuration file
with the chosen bridge name, for example /etc/sysconfig/network-scripts/ifcfg-br0, assigning
the chosen device name, IP address, netmask, and mtu value. For example, ifcfg-br0 should

have content similar to:

DEVICE=br0

TYPE=Bridge

ONBOOT=yes

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

99

DELAY=0

NM_CONTROLLED="no"

BOOTPROTO=static

IPADDR=172.31.1.254

NETMASK=255.255.255.0

A standard host interface file, /etc/sysconfig/network-scripts/ifcfg-micN, must be created for
each coprocessor that is to be slaved to the bridge. File contents should be similar to:

DEVICE=mic0

ONBOOT=yes

NM_CONTROLLED="no"

BRIDGE=br0

MTU=64512

Note: Bridged host endpoints do not have IP addresses.

Each coprocessor endpoint must be described in that coprocessor’s /var/mpss/micN/etc-
/network/interfaces file with contents similar to:

/etc/network/interfaces -- configuration file for ifup(8),

ifdown(8)

The loopback interface

auto lo

iface lo inet loopback

MIC virtual interface

auto mic0

iface mic0 inet static

 address 172.31.1.1

 gateway 172.31.1.254

 netmask 255.255.255.0

The bridge and coprocessor IP addresses must be from the same subnet.

The host’s /etc/hosts file must contain a descriptor of coprocessor endpoint to associate IP
addresses with the coprocessor hostnames. For example:

172.31.1.1 blutune-mic0.music.local mic0

172.31.1.2 blutune-mic1.music.local mic1

Similarly, a descriptor of the corresponding host bridge endpoint should be added to each

coprocessor’s /etc/hosts file to associate the host’s endpoint IP address with the host’s
hostnames. For example, mic0’s /etc/hosts might contain:

127.0.0.1 localhost.localdomain localhost

::1 localhost.localdomain localhost

172.31.1.254 host blutune.music.local

172.31.1.1 mic0 blutune-mic1.music.local mic0

172.31.1.2 mic1 blutune-mic1.music.local mic1

In this example /etc/hosts includes descriptors of the local endpoint, the host endpoint, and
the other coprocessors.

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
100

The bridge interface can now be brought up using the ifup br0 command, and each host

endpoint can now be brought up by calling the ifup micN command for each bridged
coprocessor. At this point the brctl show command can be used to check the status of the
bridge. Its output should be similar to:

bridge name bridge id STP enabled interfaces

br0 8000.66a8476a8f15 no mic0

 mic1

The ifconfig command relevant output should be similar to:

br0 Link encap:Ethernet

 inet addr: 172.31.1.254 Bcast: 172.31.1.255

 Mask:255.255.255.0

mic0 Link encap:Ethernet

mic1 Link encap:Ethernet

These commands show that the mic0 and mic1 virtual network interfaces are slaved to bridge
br0.

The next boot of the Intel® Xeon Phi™ coprocessors, by either 1service mpss start or micctrl -
b will use the new network configuration.

5.2.3.3 External Bridge

The External Bridge configuration requires that the physical Ethernet endpoint is slaved to the
bridge.

When IP address assignment is static, configuration is the same as for the Internal Bridge

configuration, except that the default mtu size is 1500 bytes.

If DHCP based IP address assignment is dynamic, the steps are similar except that the bridge

descriptor file, for example, /etc/sysconfig/network-scripts/ifcfg-br0, will be similar to:

DEVICE=br0

TYPE=Bridge

ONBOOT=yes

DELAY=0

NM_CONTROLLED="no"

BOOTPROTO=dhcp

NETMASK=255.255.255.0

MTU=1500

with BOOTPROTO now set to dhcp rather than static, and no IPADDR parameter.

In both the static and dynamic IP address assignment cases, it is the system administrator’s
responsibility to add the gateway to the host network bridge configuration. For example add
GATEWAY=10.23.185.1 to /etc/sysconfig/network-scripts/ifcfg-br0.

Similarly, each coprocessor endpoint must be described in that coprocessor’s
/var/mpss/micN/etc/network/interfaces file with contents similar to:

/etc/network/interfaces -- configuration file for ifup(8),

ifdown(8)

The loopback interface

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

101

auto lo

iface lo inet loopback

MIC virtual interface

auto mic0

iface mic0 inet dhcp

 pre-up /bin/ip link set $IFACE mtu 1500

 hostname whsniddo-desktop8-mic0.dd.domain.com

This configures the mic0 coprocessor endpoint for DHCP IP address assignment and configures

the endpoint MTU to 1500 bytes for compatibility with other devices.

5.3 IPoIB Networking Configuration

The OFED IPoIB driver is an implementation of the IP over InfiniBand* protocol as specified by

RFC 4391 and 4392, issued by the IETF IPoIB working group. It is a native implementation in
the sense of setting the interface type to ARPHRD_INFINIBAND and the hardware address
length to 20 versus implementations that are masqueraded to the kernel as Ethernet
interfaces.

The code base is a direct port from OFED 1.5.4.1, without change. The module runs on top of

Intel® Xeon Phi™ CCL-Direct Kernel IB Verbs. As a result, most of the functional and
performance characteristics are bound by CCL-Direct restrictions. The driver is released to
enable InfiniBand*-based Lustre* solutions that require IPoIB interface regardless of LNET
configurations.

Figure 13: One-to-One IB Device (HCA, Port) Mapping between Host and

Coprocessor

TCP

InfiniBand Interconnect

Networking Configuration

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
102

5.3.1 Managing the IPoIB Interface

The Intel® Xeon Phi™ coprocessor IPoIB currently manages the virtual IB devices via CCL-
Direct IBP proxy drivers. Its existing configuration parameters are inherited from OFED

settings without change.

To enable the IPoIB interface on the Intel® Xeon Phi™ coprocessor from the host, edit
/etc/mpss/ipoib.conf to bring up the ib0 interface on a coprocessor with the default hostname
(mic0):

ipoib_enabled=yes

mic0_ib0=192.168.100.100

5.3.2 IP Addressing

Unlike the Intel® Xeon Phi™ coprocessor Ethernet virtual driver, IPoIB does not require
bridging or routing to be configured. In the default case, there is an automatically created
one-to-one mapping of the (HCA, Port) pairs between the host and coprocessor. Figure 13
shows an example configuration with two 2-port HCAs on the host. All 8 ports (host and
coprocessor combined) can be individually configured by net-if commands. On the Intel®

Xeon Phi™ node, the setting is configured by ifconfig command, by adding a configuration file
in /etc/sysconfig/network, or by editing /etc/mpss/ipoib.conf. The host side follows the host
OS conventions.

5.3.3 Datagram vs. Connected Modes

The driver supports two modes of operation: datagram and connected. The mode is set and

read through the interface’s /sys/class/net/<intf name>/mode file. Datagram is the default

mode.

In datagram mode, the CCL-Direct IB UD transport is used, and the IPoIB MTU is equal to the
IB L2 MTU minus the IPoIB encapsulation header (4 bytes). For example, in a typical IB fabric
with a 2K MTU, the IPoIB MTU will be 2048 - 4 = 2044 bytes.

In connected mode, the IB RC transport is used. Connected mode takes advantage of the
connected nature of the IB transport that allows an MTU up to the maximal IP packet size of
64K. This reduces the number of IP packets needed for handling large UDP datagrams and
TCP segments, and increases the performance for large messages.

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

103

6 User Credentialing and

Authentication

The Intel® Xeon Phi™ coprocessor’s Linux* operating system supports SSH access using SSH
keys and/or password authentication, requiring that valid credentials are available to the
coprocessor OS. In addition, some offload options require that specific user credentials are
configured on the coprocessor; see the discussion on COI _Authorized user ownership in

Section 9.4.1.1.2 for details.

The coprocessor OS obtains user credentials from standard configuration files such as
/etc/passwd and /etc/shadow in the coprocessor filesystem, or from an LDAP or NIS server.
The OS looks for a user’s ssh keys in the .ssh directory in the user’s home directory.

micctrl can be used to populate /etc/passwd, /etc/shadow and ssh key files in the
coprocessor’s file system, or those files can be edited directly. In addition, micctrl can be used
to configure the coprocessor OS to access an LDAP or NIS server for user credentials, or that
configuration can be performed by directly editing LDAP or NIS configuration files.

6.1 Assisted Configuration of User Credentials

Assisted configuration of user credentialing is entirely through micctrl operations. There are no
parameters in the Intel® MPSS default.conf and micN.conf files that apply.

6.1.1 Local Configuration

Several micctrl commands support configuring user credentials. The micctrl --initdefaults

command creates and initializes /var/mpss/micN/etc/passwd and /var/mpss/micN/etc/shadow

in the per-coprocessor /var/mpss/micN overlay set of each specified coprocessor if those files
did not previously exist. The --users and --pass parameters control which user accounts
populate those files and whether passwords are copied to the coprocessor. In the event that

those files already exist, micctrl --initdefaults will not change these files unless the --users
and/or --pass parameters require that these files be deleted and recreated with a different set
of data. micctrl always creates these files if they did not previously exist, and the --users and -
-pass parameters control how these files are populated.

micctrl --initdefaults also populates /var/mpss/micN/etc/group with the group attributes of

each user in /var/mpss/micN/etc/passwd.

When micctrl --initdefaults (re)creates /var/mpss/micN/etc/passwd, for each <user> in
/var/mpss/micN/etc/passwd, it also copies the files /home/<user>/.ssh/* to
/var/mpss/micN/home/<user>/.ssh. Similarly it will copy files from /root/.ssh/* to

/var/mpss/micN/root/.ssh. The users sshd, nobody, nfsnobody and micuser do not have ssh
keys.

The --nocreate parameter to micctrl --initdefaults suppresses population of
/var/mpss/micN/home/<user> directories. This can save ram file system memory when LDAP
home directory auto mount is enabled or the /home directories are NFS mounted.

Other micctrl --initdefaults parameters are unrelated to user credentialing. Refer to Appendix
B.4.2.1 for additional details on micctrl --initdefaults.

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
104

micctrl --initdefaults is designed to establish an initial user credential configuration. Other

micctrl commands are intended to support adding, modifying, and/or removing user
credentials as needed. The default user credentialing behavior on the coprocessor can be
customized with the micctrl --userupdate command. This command duplicates the semantics

of micctrl --initdefaults with respect to user credentials and ssh keys. Refer to Appendix
B.4.6.1 for additional details.

The micctrl --useradd command can be used to add a specified users attributes to
/var/mpss/micN/etc/passwd and /var/mpss/micN/etc/shadow. This command would typically

be called after a new user is added on the host. In the case that a specified coprocessor is in
the online (running) state, the corresponding changes are made dynamically on the
coprocessor. Refer to Appendix B.4.6.2 for additional details.

The micctrl --userdel command removes user credentials, and optionally the user’s home
directory, from the current configuration. Specifically, the user is removed from

/var/mpss/micN/etc/passwd and /var/mpss/micN/etc/shadow of the specified coprocessors,
and /var/mpss/micN/home/<user> is optionally deleted. In the case that a specified

coprocessor is in the online state, the corresponding changes are made dynamically on the
coprocessor. Refer to Appendix B.4.6.3 for additional details.

The micctrl --passwd command allows a non-privileged user to change his/her password on

both host and in the current configuration. Root can use this command to change the
password of any user. In the case that a specified coprocessor is in the online state, the
corresponding changes are made dynamically on the coprocessor. Refer to Appendix B.4.6.4
for additional details.

The micctrl --groupadd and --groupdel commands enable adding and/or removing a specified

group from the configuration. In the case that a specified coprocessor is in the online state,
the corresponding changes are made dynamically on the coprocessor. Refer to Appendix
B.4.6.5 and Appendix B.4.6.6 for additional details.

The micctrl --hostkeys command can be used to populate the /var/mpss/micN/etc/ssh

directory with some previously created keys. For example, the keys in /var/mpss/micN/etc/ssh

might be copied, using the standard cp command, to some temporary directory before calling
micctrl --cleanconfig and micctrl --initdefaults. Then micctrl --hostkeys can be called to restore
those keys, overwriting the new host keys which micctrl --initdefaults generated. By doing this
the corresponding micN coprocessor will continue to be recognized as a known host. Refer to
Appendix B.4.6.7 for additional details.

The micctrl --sshkeys command copies the *.pub public ssh keys of a user, <user>, to
/var/mpss/micN/home/<user>/.ssh. This command might be called in the event that a user’s
ssh keys are created or changed after the initial configuration is established. Refer to Appendix
B.4.6.8 for additional details.

6.1.2 Enabling LDAP Service

The coprocessor can use the LDAP service for user authentication.

The network must be configured to enable access to the LDAP server, which typically will not

be on the local host. Thus, to be able to access the LDAP server from the coprocessor, the
external bridge configuration should be used. See Section 5.1.5.3 for details.

An LDAP client is not preinstalled in the coprocessor default file system and therefore must be

added. The micctrl --rpmdir command:

[host]# micctrl --rpmdir=$MPSS36_K1OM

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

105

creates a configuration parameter that tells the micctrl --ldap command where to find the

rpms that it will need to install the LDAP service, so that it can configure the needed RPM

overlay parameters.

The micctrl --ldap command:

[host]# micctrl --ldap=(<server>|default) --base=<domain> [mic card

list]

is then used to configure the coprocessor OS to use LDAP for user authentication. The

<server> value specifies the LDAP authentication server to be used, and the base argument
specifies the domain to be used. For example:

[host]# micctrl --ldap=192.168.122.129 --base=”example.com”

In the case of --ldap=disable, LDAP authentication is disabled.

6.1.3 Enabling NIS Service

The coprocessor can use the NIS service for user authentication.

Since the NIS server will not be running on the local host, the network must be configured to
enable access to a remote NIS server. To be able to access the NIS server from the
coprocessor, the external bridge configuration should be used. See Section 5.1.5.3 for details.

The NIS client is not preinstalled in the coprocessor default file system and, therefore must be
installed. The micctrl --rpmdir command

micctrl --rpmdir=$MPSS36_K1OM

creates a configuration parameter that the needed rpms can be found in the $MPSS36_K1OM
directory.

The micctrl --nis command:

micctrl --nis=(<server>|default) --domain=<domain> [mic card list]

is then used to configure the coprocessor OS to use NIS for user authentication. The <server>
value specifies the NIS authentication server to be used, and the domain argument specifies
the domain to be used. For example:

[host]# micctrl --nis=192.168.122.129 --domain=”example.com”

In the case of --nis=disable, NIS authentication is disabled.

6.2 Manual Configuration of User Credentials

Micctrl provides credentialing support that is sufficient for many situations. However,

particularly in a cluster environment, configuring services such as LDAP may require cluster-
specific configuration. This section briefly discusses basic file based credentialing and then
provides step by step instructions for enabling LDAP, NIS and SSH based authentication.
These latter instructions are intended as a starting reference; it is expected that the system
administrator may wish to refine or customize these configurations.

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
106

6.2.1 Configuration File Based Credentialing

Section 4.2.1 discussed how to directly edit configuration files that will be in a coprocessor’s
file system. The same general guidelines apply to creating and editing a coprocessor’s

/etc/passwd, /etc/shadow, ~/.profile, and files in ~/.ssh for each user, including root, that is
to have access to the coprocessor.

As described in Section 4.2, one must reboot a coprocessor in order for changes to user
credentialing to take effect. Alternatively, credentialing can be changed dynamically via ssh.

6.2.1.1 Enabling LDAP Service for Credentialing

LDAP service on a coprocessor can be configured manually.

The network must be configured to enable access to the LDAP server, which typically will not

be on the host. In that case the network should be configured as an external bridge so the

LDAP server can be reached from the coprocessor. See Section 5.2.3.3 for details.

The following steps document enabling LDAP service. This particular configuration does not

allow changing the user’s password from the coprocessor.

1) Install nss-ldap and pam-ldap RPM files into the coprocessor file system. These rpms are
included in the mpss-3.6-k1om.tar file. There are several ways to install these. See
Chapter 7 to learn about other approaches to adding software. In this example, required
rpms are copied from $MPSS36_K1OM to a booted coprocessor micN:

[host]$ scp $MPSS36_K1OM/nss-ldap-265-r0.k1om.rpm micN:/tmp

[host]$ scp $MPSS36_K1OM/pam-ldap-186-r0.k1om.rpm micN:/tmp

and rpm installed:

[micN]# rpm -ivh /tmp/nss-ldap-265-r0.k1om.rpm

[micN]# rpm -ivh /tmp/pam-ldap-186-r0.k1om.rpm

2) Configure nss-ldap. Edit /etc/nsswitch.conf to add LDAP to the services you want to have

enabled, and add the coprocessor host information to /etc/hosts.

[micN]# cp /etc/nsswitch.ldap /etc/nsswitch.conf

[micN]# sed -ie"/^hosts:/s/dns ldap/files/" /etc/nsswitch.conf

[micN]# SelfIp=`/sbin/ifconfig mic0 | grep "inet addr" | \

 cut -d":" -f2 | cut -d" " -f1`

[micN]# echo ${SelfIp} `hostname` `hostname -s` >> /etc/hosts

3) Configure LDAP. Add the LDAP server and base domain name to /etc/ldap.conf

[micN]# cp /etc/openldap/ldap.conf /etc

[micN]# echo "URI ldap://<LDAP server IP address>/" \

 >>/etc/ldap.conf

[micN]# echo "BASE dc=example,dc=com" >> /etc/ldap.conf

4) Configure PAM to allow the LDAP module for SSH and others.

[micN]# sed -ie"s/^$/auth sufficient pam_ldap.so/" \

 /etc/pam.d/common-auth

[micN]# sed -ie"/session/s/required/optional/" /etc/pam.d/sshd

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

107

6.2.1.2 Enabling NIS/YP Service for Credentialing

The NIS service on a coprocessor can be configured manually.

The network must be configured to enable the coprocessor to access the NIS server, which
typically will not be on the host. In that case the network should be configured as an external
bridge. See Section 5.2.3.3 for details.

The following steps document enabling NIS service. This particular configuration does not
allow changing the user’s password from the coprocessor.

1) Install rpcbind, ypbind-mt, yp-tools, and glibc-extra-nss RPM files on the coprocessor.
These rpms are included in the mpss-3.6-k1om.tar file. There are several ways to install

these. See Chapter 7 to learn about other approaches to adding software.
In this example, required rpms are copied from $MPSS36_K1OM to a booted coprocessor
micN:

[host]$ scp $MPSS36_K1OM/rpcbind-0.*.k1om.rpm micN:/tmp

[host]$ scp $MPSS36_K1OM/yp-tools-*.k1om.rpm micN:/tmp

[host]$ scp $MPSS36_K1OM/ypbind-mt-*.k1om.rpm micN:/tmp

[host]$ scp $MPSS36_K1OM/glibc-extra-nss-*.k1om.rpm micN:/tmp

and rpm installed:

[micN]# rpm -ivh /tmp/rpcbind-0.*.k1om.rpm

[micN]# rpm -ivh /tmp/yp-tools-*.k1om.rpm

[micN]# rpm -ivh /tmp/ypbind-mt-*.k1om.rpm

[micN]# rpm -ivh /tmp/glibc-extra-nss-2.*.k1om.rpm

2) Start the rpcbind daemon.

[micN]# /etc/init.d/rpcbind start

3) Add the NIS/YP server to /etc/yp.conf and start the ypbind daemon.

[micN]# echo "domain <domain name> server <server IPaddress>"\

 >>/etc/yp.conf

[micN]# domainname <domain name>

[micN]# /etc/init.d/ypbind start

4) Configure nss.

[micN]# cat <<EOF >>/etc/nsswitch.conf

passwd: nis files

shadow: nis files

group: nis files

EOF

 Configure sshd.

[micN]# echo "UsePAM yes" >>/etc/ssh/sshd_config

5) Configure PAM.

[micN]# sed -ie"s/pam_unix.so/pam_unix.so nis/" \

/etc/pam.d/common-auth

[micN]# sed -ie"s/pam_unix.so/pam_unix.so nis/" \

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
108

/etc/pam.d/common-account

[micN]# sed -ie"/session/s/required/optional/" /etc/pam.d/sshd

6) Restart sshd (the above changes will take effect).

[micN]# /etc/init.d/sshd restart

6.2.1.3 Enabling NFS Auto Mount with NIS/YP Service

autofs can be installed on a coprocessor and configured to dynamically mount the NIS server.

The following steps modify steps 1) and 6) in the previous Section 6.2.1.2:

1) Copy and install additional rpms:

[host]$ scp $MPSS36_K1OM/nfs-utils-client-*.k1om.rpm mic0:/tmp

[host]$ scp $MPSS36_K1OM/autofs-5.*.k1om.rpm mic0:/tmp

and rpm install them:

[micN]# rpm -ivh /tmp/nfs-utils-client-*.k1om.rpm

[micN]# rpm -ivh /tmp/autofs-5.*.k1om.rpm

6) After configuring PAM, and before restarting sshd, configure autofs and re-start the

autofs/automount daemon:

[micN]# echo "/home /etc/auto.misc " >>/etc/auto.master

[micN]# /etc/init.d/autofs stop

[micN]# sleep 2

[micN]# /etc/init.d/autofs start

6.2.2 How to Enable SSH Host Based Authentication

1) Configure sshd to enable host based authentication.

[host]# cat <<EOF >>/etc/ssh/sshd_config

HostbasedAuthentication yes

IgnoreRhosts no

EOF

2) Register SSH client to a user.

[host]# cat <<EOF >><home directory>/.shosts

<micN>

<server IP address>

EOF

[host]# chmod 600 <home directory>/.shosts

[host]# chown <owner:group> <home directory>/.shosts

3) Create an entry for SSH client in user’s known_hosts.

[host]# ssh -X <user>:<HostBasedAuthClient>

Are you sure you want to continue connecting (yes/no)? yes

<user>@<server IP address>’s password:

^D

exit

User Credentialing and Authentication

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

109

4) Restart SSH daemon.

[mic]# /etc/init.d/sshd restart

5) Remove SSH key to ensure that user based authentication is not used.

[host]$ cd <home directory>/.ssh

[host]$ rm -f authorized_keys id_rsa*

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
110

7 Adding Software to the Intel®

Xeon Phi™ Coprocessor File

System

Typical installations are not static, and often require the system administrator to add

additional files or directories to the Intel® Xeon Phi™ root file system. This chapter describes
a range of techniques and considerations for performing such additions.

The mpss-3.6-k1om.tar file, which can be obtained from the Intel® Developer Zone website

(Intel® DZ), is composed of over 1900 rpm packages built for installation into the Intel®
Xeon Phi™ coprocessor file system. This chapter will describe options for installing these rpms.

For those cases where some component or application is not included in mpss-3.6-k1om.tar,
refer to Chapter 8 to learn how to build software packages for the Intel® Xeon Phi™
coprocessor.

Most software can be added to a file system while it is resident on the host or another node

from which it is NFS exported, or while it is resident on an Intel® Xeon Phi™ coprocessor. In
all of these cases, the software to be added might be in the form of an rpm, a tarred
installation package, or another form.

7.1 Adding Individual Files to a Host Resident File System
Image

7.1.1 Assisted Configuration

The process of creating the file system image is driven by the Base, CommonDir, MicDir, and

Overlay configuration parameters. These were previously described in Section 4.1.1.3. The
overlay process can be used to add individual files as well as directory hierarchies to the
coprocessor file system. Software added to directories indicated by these parameters is
persistent from one boot to the next.

For example, assume that you have cross-compiled an autotools-based software package.

(Cross compiling is discussed in Section 8.1.) The last step in that process is to make install
the resulting components. One option is to make install into the CommonDir overlay directory.
The CommonDir parameter syntax is:

CommonDir <source>

Assuming that the CommonDir parameter has the value /var/mpss/common, for example:

CommonDir /var/mpss/common

then the command:

[host]# make install DESTDIR=/var/mpss/common

installs the component into that overlay. On booting an Intel® Xeon Phi™ coprocessor, the

software will be available on all coprocessors because the CommonDir overlay is common to
all coprocessors.

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

111

The Overlay parameter:

Overlay (Filelist|Simple|File) <source> <target> (on|off)

Overlay RPM <source> (on|off)

can be used to add software to the coprocessor file system. The Overlay parameter(s) can be

unique to each coprocessor.

As an example of using the Overlay Simple option, you could perform the sequence:

[host]$ mkdir <component>

[host]# make install DESTDIR=<component>

to install software into a directory that is specific to that component, and then use the Simple
overlay type to add the component to the coprocessor file system:

[host]# micctrl --overlay=simple --source=<component>/* \

--target=/ --state=on

In this way, a collection of components can be built, each in its own directory, which can be

selectively added to the coprocessor file system:

[host]# micctrl --overlay=simple --source=<component1>/* \

--target=/ --state=on

[host]# micctrl --overlay=simple --source=<component2>/* \

--target=/ --state=on

 :

 :

[host]# micctrl --overlay=simple --source=<componentN>/* \

--target=/ --state=on

Note: The Filelist overlay type might be deprecated in a future Intel® MPSS release. Use the Simple
and File overlay types instead.

7.1.2 Manual Configuration

When doing manual configuration, you can directly install individual files or tarred groups of

files directly into a coprocessor file system hierarchy. Assuming the file system is maintained
as a compressed CPIO archive (the form in which it is installed), you must first expand it. Here
we expand the installed file system image to <some directory>:

[host]$ mkdir <some directory>; cd <some directory>

[host]# gunzip -c /usr/share/mpss/boot/\

initramfs-knightscorner.cpio.gz | cpio -ivd

After adding software, and if the file system is to be pushed to coprocessor memory, then it
must first be re-archived and compressed:

[host}$ cd <some directory>

[host]# find . | cpio -o -H newc | gzip > <some_ramfs.cpio.gz>

Boot the Intel® Xeon Phi™ coprocessor(s) specifying this new file system image as described

in Section 4.2.5. If the coprocessor file system is to be NFS mounted, then there is no need to
perform the re-archive step.

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
112

7.1.3 Installing RPMs

Many of the RPMs in the mpss-3.6.-k1om.tar file can be installed into the Intel® Xeon Phi™
coprocessor file system while it is resident on the host. Some rpm installations require

execution of a binary, such as a program to validate the installation. Since rpms in the mpss-
3.6-k1om.tar file are built for execution on the coprocessor, no such binary can execute on an
Intel® Xeon™ host processor. Generally, library rpms can be installed on the host, while
application rpms are more likely to require installation on an Intel® Xeon Phi™ coprocessor.

As discussed in more detail in Chapter 8, the rpm database in the default file system is built

with rpm v5, and rpm v5 should thus be used to add software to that file system. The MPSS
SDK includes an rpm v5 implementation that can be used for that purpose. Sourcing the file
/opt/mpss/3.6/environment-setup-k1om-mpss-linux prepends your PATH with
/opt/mpss/3.6/sysroots/x86_64-mpsssdk-linux/usr/bin so that the rpm command resolves to
the rpm v5 executable in the Intel® MPSS SDK. It’s recommended to use su to become root
when doing this.

[host]$ su

[host]# source /opt/mpss/3.6/environment-setup-k1om-mpss-linux

Note: The resulting PATH will cause other binaries, such as python, to be found in /opt/mpss/3.6-
/sysroots/x86_64-mpsssdk-linux/usr/bin. It is therefore recommended that /opt/mpss/3.6-
/environment-setup-k1om-mpss-linux is only sourced into the environment in which cross

compilation is being performed.

Verify that you will execute the rpm from the Intel® MPSS sdk:

[host]# which rpm \

/opt/mpss/3.6/sysroots/x86_64-mpsssdk-linux/usr/bin/rpm

7.1.3.1 Assisted Configuration

Rpms can be installed into a Base file system, for example into the default file system image
that is installed at /usr/share/mpss/boot/initramfs-knightscorner.cpio.gz. The default file
system includes the database of rpms that are already installed.

Use the micctrl --base command to extract the default filesystem compressed CPIO image to

some directory:

[host]# micctrl --base=DIR --new=<some directory>

Note: micctrl only extracts files to <some directory> if that directory does not already exist. If
<some directory> already exists, micctrl will only change the Base configuration parameter.

You can now install k1om rpms into the file system at <some directory>. For example:

[host]# rpm --root=<some directory> --dbpath=/var/lib/rpm \

-i $MPSS36_K1OM/<some.rpm>

The --dbpath option tells rpm to use the database at /var/lib/rpm relative to --root. Thus it will

use the rpm data base in the coprocessor file system.

You can leave the file system in <some directory>. It will be used when constructing either an
NFS mounted file system or ram file system according to the RootDevice parameter. For
example:

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

113

[host]# micctrl --rootdev=NFS -c

builds the NFS exported file system using the Base at <some directory>. Alternatively, if

RootDevice is set to RamFS:

[host]# micctrl --rootdev=RAMFS

then the CPIO image will be built at boot time from the file system at <some directory>.

7.1.3.2 Manual Configuration

If doing Manual Configuration, expand a CPIO compressed image such as the default file
system /usr/share/mpss/boot/initramfs-knightscorner.cpio.gz:

[host]$ mkdir <some directory>; cd <some directory>

[host]# gunzip -c <some ramfs> | cpio -ivd

Install k1om rpms as needed:

[host]# rpm --root=<some directory> --dbpath=/var/lib/rpm \

-i $MPSS36_K1OM/<some.rpm>

If not NFS exporting the file system, re-archive the image:

[host}$ cd <some directory>

[host]# find . | cpio -o -H newc | gzip > <some other ramfs>

Boot as described in Section 4.2.5.

7.2 Adding Software to a Coprocessor File System

Installing software to a coprocessor file system while mounted on the coprocessor is much like

adding software to any Linux* file system. Individual files can be directly copied to the target
directory on the coprocessor using scp. Tar files can be copied to the coprocessor using scp
and untarred into the appropriate directory.

The rest of this chapter discusses different ways to install rpms and how to preserve the

modified file system

7.2.1 Installing RPMs

To install rpms into a coprocessor mounted file system, you can use one of the following
procedures.

Note: These instructions assume that mpss-3.6-k1om.tar has been untarred to some
$MPSS36_K1OM directory. The mpss-3.6-k1om.tar is available at the website (Intel® DZ):

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss.

7.2.1.1 Using the Overlay RPM Configuration Parameter or Micctrl --
overlay Utility

The Overlay RPM configuration parameter has the form:

Overlay RPM <source> (on|off)

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
114

If <source> is an rpm file, then it is copied to a special /RPMs-to-install directory in the file

system image that is pushed to one or more coprocessors, depending on whether the
parameter is added to micN.conf or the default.conf configuration file. If <source> is a
directory, then all the rpm files in that directory are copied to /RPMS-to-install. Multiple

Overlay parameters are allowed. These parameters can be edited directly or the micctrl --
overlay command can be used to add, modify or remove such parameters; see Appendix A.4.2
and Appendix B.4.4.4 for additional details.

The rpms in /RPMS-to-install are installed during the early phase of booting a coprocessor.

Some rpms cannot be successfully installed during early boot phase, due to dependencies that
cannot be satisfied during that phase. If rpms are not installed successfully, log files (refer to
Appendix I.1) may provide helpful information.

7.2.1.2 Manually Install RPMs on a Coprocessor Using SCP

An alternative is to copy rpms to a coprocessor and rpm install them.

SCP the RPMs to the card:

[host]$ scp <rpm_packages> micN:<some directory>

SSH to the card as root:

[host]# ssh micN

Install the RPMs using the rpm utility:

[micN]# cd <some directory>

[micN]# rpm -ihv <rpm_packages>

For example, to install man, copy the man rpm to a coprocessor:

[host]$ scp $MPSS36_K1OM/man-1.6f-r2.k1om.rpm micN:/tmp

man-1.6f-r2.k1om.rpm 100% 130KB 129.7KB/s 00:00

On micN, attempt to install the rpm. Here we assume that /tmp only holds rpm files that we

have copied for this example:

[micN]# cd /tmp

[micN]# rpm -ihv *.rpm

error: Failed dependencies:

 less is needed by man-1.6f-r2.k1om

 groff is needed by man-1.6f-r2.k1om

By iteratively copying rpms and attempting to install them, less, groff, perl and libperl5 rpms

are copied to the coprocessor, where installation can now complete successfully:

[micN]# rpm -ihv *.rpm

Preparing... ### [100%]

 1:libperl5 ### [20%]

 2:man ### [40%]

 3:less ### [60%]

update-alternatives: Linking //usr/bin/less to less.less

 4:perl ### [80%]

 5:groff ### [100%]

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

115

7.2.1.3 Installing RPMs Using an HTTP Repo with Zypper

One obvious disadvantage of the previous method is that, where there are dependencies, the

user must install rpms in the correct order. This can be solved by creating a repo on the host
that zypper can access from a coprocessor. Zypper is preinstalled in the Intel® Xeon Phi™
coprocessor default file system.

The steps in this section are for creating a repository of rpms and using the Python

SimpleHTTPServer for serving them; we assume that these tools have been previously
installed on the host. Though other repository creation tools and HTTP servers are available,
we only provide instructions for using createrepo and Python SimpleHTTPServer. The host
firewall or iptables may need to be configured to allow zypper to access the repository on the
host.

Change to the folder where the Intel® MPSS k1om rpms were extracted:

[host]$ cd $MPSS36_K1OM

Use the createrepo tool to create a new repo:

[host]$ createrepo .

Start an http server as follows:

[host]# python -m SimpleHTTPServer ${PORT_NUMBER}

From another terminal, add the repo on a coprocessor:

[host]$ ssh root@micN -R ${SOME_PORT}:host:${PORT_NUMBER}

[micN]# zypper addrepo http://host:${PORT_NUMBER} mpss

If no port is specified, python -m SimpleHTTPServer defaults to port 8000. In that case, the

following is sufficient:

[host]$ ssh root@micN

[micN]# zypper addrepo http://host:8000 mpss

Now install rpms as needed:

[micN]# zypper install <rpm file>…

For example, to install man:

[micN]# zypper install man

File 'repomd.xml' from repository 'mpss' is unsigned, continue?

[yes/no] (no): yes

Building repository 'mpss' cache [done]

Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following NEW packages are going to be installed:

 groff less libperl5 man perl

5 new packages to install.

Overall download size: 2.8 MiB. After the operation, additional 8.4

MiB will be used.

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
116

Continue? [y/n/?] (y): y

Retrieving package libperl5-5.14.2-r7.k1om (1/5), 709.0 KiB (1.5 MiB

unpacked)

Retrieving: libperl5-5.14.2-r7.k1om.rpm [done]

Retrieving package less-444-r2.k1om (2/5), 78.0 KiB (163.0 KiB

unpacked)

Retrieving: less-444-r2.k1om.rpm [done]

Retrieving package perl-5.14.2-r7.k1om (3/5), 16.0 KiB (36.0 KiB

unpacked)

Retrieving: perl-5.14.2-r7.k1om.rpm [done]

Retrieving package groff-1.20.1-r1.k1om (4/5), 1.9 MiB (6.4 MiB

unpacked)

Retrieving: groff-1.20.1-r1.k1om.rpm [done]

Retrieving package man-1.6f-r2.k1om (5/5), 130.0 KiB (266.0 KiB

unpacked)

Retrieving: man-1.6f-r2.k1om.rpm [done]

Installing: libperl5-5.14.2-r7 [done]

Installing: less-444-r2 [done]

Additional rpm output:

update-alternatives: Linking //usr/bin/less to less.less

Installing: perl-5.14.2-r7 [done]

Installing: groff-1.20.1-r1 [done]

Installing: man-1.6f-r2 [done]

We see that zypper takes care of all the dependencies when those dependencies can be

satisfied by the rpms in the repo.

The directory containing such a repository can also be NFS mounted. Zypper can then access
it as in a local directory.

7.2.2 Preserving the Modified File System

An important consideration in adding software to a file system in coprocessor memory is

persistence. Assuming the file system is exported from a permanent storage device,
modifications to an NFS mounted file system are persistent. Conversely, when the file system
is in coprocessor memory (RAMFS), any modifications to the file system are lost when the
coprocessor is shut down unless steps are taken to capture the file system image to

permanent storage.

The following command, executed from the host, captures the current file system of a
specified coprocessor to host file /usr/share/mpss/boot/custom.cpio.gz:

[host]# ssh root@micN 'cd / ; find . /dev -xdev ! -path

"./etc/modprobe.d*" ! -path "./var/volatile/run*"| cpio -o -H newc |

gzip -9' > /usr/share/mpss/boot/custom.cpio.gz

Note: /dev is specified as a path because the -xdev option would otherwise prevent capturing that

path.

To use the captured file system image, change the RootDevice parameter to StaticRamFS, and
target the captured file. For example:

[host]# micctrl --rootdev=StaticRamFS \

--target=/usr/share/mpss/boot/custom.cpio.gz

Adding Software to the Intel® Xeon Phi™ Coprocessor File System

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

117

and restart the coprocessor:

[host]# micctrl -Rw

If doing manual configuration, the captured image is specified in the boot string. For example:

[host]# micctrl -rw

[host]# echo \

"boot:linux:/usr/share/mpss/boot/bzImage-knightscorner:/usr/share/mp

ss/boot/custom.cpio.gz" > /sys/class/mic/micN/state

See Section 4.2.5 for details on manual configuration control of the coprocessor.

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
118

8 Compilation for the Intel® Xeon

Phi™ Coprocessor

This chapter takes you through using some of the techniques and tools that you will need to
know in order to compile software for native execution on Intel® Xeon Phi™ coprocessors. We
begin by describing how to cross compile software using the Intel® MPSS SDK. We then
discuss native compilation on the Intel® Xeon Phi™ coprocessor.

This document does not cover Intel® Composer XE support of offload programming. There are
numerous other documents and books that cover this topic. For more information, see
Programming and Compiling for Intel® Many Integrated Core Architecture.

8.1 Cross Compiling Software with the Intel® MPSS SDK

Intel® MPSS includes an SDK that supports cross compilation of software for execution on an
Intel® Xeon Phi™ coprocessor. In this section we will discuss the components of the SDK, and
general recommendations for cross compiling software components to be added to the
coprocessor file system. We will illustrate this process by building the zsh shell for execution

on the Intel® Xeon Phi™ coprocessor.

8.1.1 SDK overview

The cross-compilation SDK is installed at /opt/mpss/3.6/sysroots/x86-64-mpsssdk-linux. It
includes a gcc cross compiler as well as standard utilities such as ar, as, ld, nm, objcopy,
objdump, ranlib, rpm (v5) and strip. Generally speaking, the SDK only includes tools that

must be aware of the format of Intel® Xeon Phi™ coprocessor binary executables. For
example, make has no dependence on binary executable formats, and thus does not need to

be in the SDK; the version of make that is installed on the build machine can be used.

The /opt/mpss/3.6/sysroots/k1om-mpss-linux subtree contains header files and libraries that

are built for the Intel® Xeon Phi™ coprocessor, and that are expected to be needed during the
build process. Additional dependencies can be added as illustrated later in an example.

The rpm databases in both sysroots:

 /opt/mpss/3.6/sysroots/k1om-mpss-linux/var/lib/rpm

 /opt/mpss/3.6/sysroot/x86-64-mpsssdk-linux/var/lib/rpm

and the default initramfs are in rpm v5 format. This format differs from the format generated

by rpm v4. Therefore rpm v5 (rpm5) must be used to install packages into
/opt/mpss/3.6/sysroots/k1om-mpss-linux and into the coprocessor file system. The
/opt/mpss/3.6/environment-setup-k1om-mpss-linux script sets PATH so that rpm v5, as well

as the other sdk utilities mentioned above, will be found.

8.1.2 Cross Compilation of GNU Build System Based Packages

The GNU Build System, also known as the Autotools, is the part of the GNU toolchain that is

used for making source code packages portable to a wide range of Unix*-like systems. A vast
number of source code packages are based on the GNU Build System. In fact, virtually every

https://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

119

rpm package in mpss-3.6-k1om.tar was built from an open source GNU Build System source

code package.

On many platforms, native compilation - building a GNU Build System package for execution

on the same platform - only requires unpacking the package, and changing to the newly
created directory to run the configure script. configure probes the system for various features

to create the Makefile needed to build the package on the local system. make is then
executed to create libraries, executables and other files that comprise the package, followed
by make install to copy the resulting files to their proper location on the system. In the case of
native compilation, the configure script can determine the compiler and other build tools to
use by probing the system.

When cross compiling a GNU Build System package, however, configure must be told explicitly
about the build platform: where compilation is performed, and the host platform: where the
executable will be run. This is done via the configure options:

 The system on which the package is built.

--build=build

 The system where built programs and libraries will run.

--host=host

 When building compiler tools, the system for which the tools will create output:

--target=target

Specifying the --host option tells configure that this is a cross compilation build. configure, in

turn, searches for the cross-compiling suite for the named host platform. In the case of cross-
compiling for the Intel® Xeon Phi™ coprocessor on an x86_64 Linux* platform, the following
configure options are required:

--build=x86_64-linux

--host=k1om-mpss-linux

--target=k1om-mpss-linux

Cross-compilation tools commonly have their target architecture as a prefix of their name,
thus configure will search for k1om-mpss-linux-gcc, etc.

The /opt/mpss/3.6/environment-setup-k1om-mpss-linux script, mentioned earlier, sets up for

GNU Build System based builds, defining environment variables as needed by configure and
make, and by rpm installation into the SDK. In particular, it defines the configure options
described above and prepends to PATH such that configure will find the cross tools.

Note: The resulting PATH will cause certain binaries, such as python, to be found in /opt/mpss/3.6-
/sysroots/x86_64-mpsssdk-linux/usr/bin. It is therefore recommended that only cross-compilation be

performed in an environment in which /opt/mpss/3.6/environment-setup-k1om-mpss-linux has been
sourced. This will avoid executing a binary in /opt/mpss/3.6/sysroots/x86_64-mpsssdk-linux/usr/bin

when it was intended to execute the version installed on the host, for example in /usr/bin.

8.1.3 Example case: zsh

mpss-3.6-k1om.tar includes prebuilt rpm packages for many components. These packages can
be directly installed into the coprocessor file system as described in Chapter 7. It does not,

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
120

however, include a package for the zsh shell. To illustrate the cross-compilation process, we

will step through building zsh, and installing it into the coprocessor file system.

Note: We assume that the rpms in mpss-3.6-k1om.tar were extracted to $MPSS36_K1OM.

8.1.3.1 Download and untar the zsh source distribution from the internet

[host]$ tar xvf zsh-5.0.5.tar.bz2

[host]$ cd zsh-5.0.5

[host]$ export ZSH=`pwd`

8.1.3.2 Setup the environment, and try to generate a Makefile

Source the environment-setup-k1om-mpss-linux script and invoke gnu-configize:

[host]# source /opt/mpss/3.6/environment-setup-k1om-mpss-linux

[host]# gnu-configize

gnu-configize is an Autotools generated binary whose purpose is to update config.sub, which,

for most software packages, is sufficient to teach it to understand ‘--host=k1om-mpss-linux’.
If gnu-configize doesn’t work, the most likely reason is that the software package wasn’t
generated by autotools—perhaps the configure script was hand-written; in this case you’ll
probably have to read the code to determine how to properly cross compile it. Cross compiling
software that doesn’t use autotools is beyond the scope of this document.

Now invoke the zsh configure script. In this example, configure fails due to an unresolved

dependency on ncurses and ncurses_devel. The output from configure is abbreviated:

[host]# ./configure $CONFIGURE_FLAGS --prefix=/usr \

 --libdir=/usr/lib64

configure: WARNING: unrecognized options: --with-libtool-sysroot

configure: loading site script /opt/mpss/3.6/site-config-k1om-mpss-

linux

:

checking for library containing tigetflag... no

checking for library containing tgetent... no

configure: error: in '/home/mic/Downloads/zsh-5.0.5':

configure: error: "No terminal handling library was found on your

system.

This is probably a library called 'curses' or 'ncurses'. You may

need to install a package called 'curses-devel' or 'ncurses-devel'

on your

system."

See 'config.log' for more details

8.1.3.3 Resolve dependency issues

The next step is to satisfy dependencies; this is an iterative process. Prebuilt packages for

both ncurses and ncurses-dev are included in mpss-3.6-k1om.tar.

Install ncurses and ncurses-dev:

[host]# rpm --root $OECORE_TARGET_SYSROOT --dbpath /var/lib/rpm \

-i $MPSS36_K1OM/ncurses-5.9-r8.1.k1om.rpm \

-i $MPSS36_K1OM/ncurses-dev-5.9-r8.1.k1om.rpm

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

121

error: Failed dependencies:

libform5 is needed by ncurses-dev-5.9-r8.1.k1om

libtic5 is needed by ncurses-dev-5.9-r8.1.k1om

libpanel5 is needed by ncurses-dev-5.9-r8.1.k1om

libmenu5 is needed by ncurses-dev-5.9-r8.1.k1om

/usr/lib64/libform.so.5 is needed by ncurses-dev-5.9-r8.1.k1om

/usr/lib64/libmenu.so.5 is needed by ncurses-dev-5.9-r8.1.k1om

/usr/lib64/libpanel.so.5 is needed by ncurses-dev-5.9-r8.1.k1om

/usr/lib64/libtic.so.5 is needed by ncurses-dev-5.9-r8.1.k1om

We now see that libform5, libtic5, libpanel5, and libmenu5 are also needed. Adding them to
the command reveals that libncurses is also needed:

[host]# rpm --root $OECORE_TARGET_SYSROOT --dbpath /var/lib/rpm \

-i $MPSS36_K1OM/ncurses-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/ncurses-dev-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libform5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libtic5-5.9-r8.1.k1om.rpm \ $MPSS36_K1OM/libpanel5-5.9-

r8.1.k1om.rpm \

$MPSS36_K1OM/libmenu5-5.9-r8.1.k1om.rpm

error: Failed dependencies:

libncurses5 >= 5.9 is needed by libform5-5.9-r8.1.k1om

libncurses.so.5()(64bit) is needed by libform5-5.9-r8.1.k1om

libncurses5 >= 5.9 is needed by libpanel5-5.9-r8.1.k1om

libncurses.so.5()(64bit) is needed by libpanel5-5.9-r8.1.k1om

libncurses5 >= 5.9 is needed by libmenu5-5.9-r8.1.k1om

libncurses.so.5()(64bit) is needed by libmenu5-5.9-r8.1.k1om

When libncurses is added to the command, it reveals that pkgconfig is needed:

[host]# rpm --root $OECORE_TARGET_SYSROOT --dbpath /var/lib/rpm -i \

$MPSS36_K1OM/ncurses-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/ncurses-dev-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libform5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libtic5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libpanel5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libmenu5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libncurses5-5.9-r8.1.k1om.rpm

error: Failed dependencies:

 pkgconfig is needed by ncurses-dev-5.9-r8.1.k1om

When pkgconfig is added to the command, we see that libpopt0 is also needed:

[host]# rpm --root $OECORE_TARGET_SYSROOT --dbpath /var/lib/rpm –I \

$MPSS36_K1OM/ncurses-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/ncurses-dev-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libform5-5.9-r8.1.k1om.rpm \

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
122

$MPSS36_K1OM/libtic5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libpanel5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libmenu5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libncurses5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/pkgconfig-0.25-r3.k1om.rpm

error: Failed dependencies:

 libpopt0 >= 1.16 is needed by pkgconfig-0.25-r3.k1om

 libpopt.so.0()(64bit) is needed by pkgconfig-0.25-r3.k1om

 libpopt.so.0(LIBPOPT_0)(64bit) is needed by pkgconfig-0.25-

r3.k1om

So we add libpopt0 to the command, and rpm installation completes:

[host]# rpm --root $OECORE_TARGET_SYSROOT --dbpath /var/lib/rpm -i \

$MPSS36_K1OM/ncurses-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/ncurses-dev-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libform5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libtic5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libpanel5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libmenu5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/libncurses5-5.9-r8.1.k1om.rpm \

$MPSS36_K1OM/pkgconfig-0.25-r3.k1om.rpm \

$MPSS36_K1OM/libpopt0-1.16-r0.k1om.rpm

Now, try to configure the build again (abridged output shown):

[host]$ cd $ZSH

[host]$./configure $CONFIGURE_FLAGS --prefix=/usr \

--libdir=/usr/lib64

configure: WARNING: unrecognized options: --with-libtool-sysroot

configure: loading site script /opt/mpss/3.6/site-config-k1om-mpss-linux

configuring for zsh 5.0.5

:

:

zsh configuration

zsh version : 5.0.5

host operating system : k1om-mpss-linux-gnu

source code location : .

compiler : k1om-mpss-linux-gcc

preprocessor flags : -m64 --sysroot=/opt/mpss/3.6/sysroots/k1om-mpss-

linux

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

123

executable compiler flags : -m64 --sysroot=/opt/mpss/3.6/sysroots/k1om-

mpss-linux

executable linker flags : --sysroot=/opt/mpss/3.6/sysroots/k1om-mpss-

linux -rdynamic

library flags : -ldl -ltinfo -lrt -lm -lc

installation basename : zsh

binary install path : /usr/bin

man page install path : ${prefix}/share/man

info install path : ${prefix}/share/info

functions install path : ${prefix}/share/zsh/5.0.5/functions

See config.modules for installed modules and functions.

Configuration was successful, and a Makefile has been generated.

8.1.3.4 Build the binaries with the generated Makefile

You can now build zsh:

[host]$ make

make[1]: Entering directory `/home/mic/Downloads/zsh-5.0.5/Src'

 :

 :

make[1]: Nothing to be done for `all'.

make[1]: Leaving directory `/home/mic/Downloads/zsh-5.0.5/Doc'

8.1.3.5 Install the Component

You are now ready to install zsh. Where and how you install it depends to some extent on
whether you are doing assisted configuration or manual configuration (see Chapter 4), and

other considerations. If doing assisted configuration, one approach is to install the files into
the CommonDir overlay directory, that is, the directory identified by the CommonDir

configuration parameter. On booting a coprocessor, the CommonDir directory overlays the
Base file system of each coprocessor (see Section 4.1.1). Here we assume the default location
for CommonDir:

[host]# make install DESTDIR=/var/mpss/common

If doing manual configuration, you might install directly into a file system image. To do this,

you must first expand the compressed cpio archive. Here we expand some ramfs image to
$HOME/initramfs:

[host]$ mkdir $HOME/initramfs; cd $HOME/initramfs

[host]# gunzip -c <current_ramfs_location> | cpio -ivd

where <current_ramfs_location> is the path to some compressed CPIO file system archive.

Then install zsh into the file system image:

[host]# make install DESTDIR=$HOME/initramfs

Finally re-archive the file system image:

[host]# find . | cpio -o -H newc | gzip > <new_ramfs_location>

where <new_ramfs_location> is the name of the file system archive to be created.

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
124

Of course, you can also install into an empty directory and then tar the resulting hierarchy for

later use.

8.1.4 Cross compiling with icc

For many tools and components, such as zsh, execution performance is not critical, and cross

compiling with gcc is recommended. However, when building performance critical applications,
cross compiling with icc is likely to result in better performance. Generally speaking, if an
application can be compiled for x86_64 using icc, then it can be cross compiled for the Intel®
Xeon Phi™ coprocessor using icc. Since such performance sensitive applications are almost
always ported to x86_64 and icc, it follows that most such applications can be cross compiled

for execution on the coprocessor.

The process for cross compiling with icc is as described above except that some variables need
to be modified when calling configure:

 CC needs to be set to icc

 CFLAGS needs to be extended by –mmic

 CXXFLAGS needs to be extended by -mmic

A complete example might look like:

[host]$./configure $CONFIGURE_FLAGS --prefix=/usr \

--libdir=/usr/lib64 LDFLAGS='' LD=k1om-mpss-linux-ld \

CPPFLAGS='' CC=icc CFLAGS='-mmic' -I/opt/include CXX=icpc \

CXXFLAGS='-mmic'

There is no special cross compiling version of icc that generates code for the Intel® Xeon Phi™
coprocessor. Instead, the -mmic option to icc instructs it to cross compile for the coprocessor.
Therefore icc is not included in the Intel® MPSS SDK, but rather must be installed on the host

as part of Intel® Composer XE installation. The k1om-mpss-linux-ld cross linker is still
needed.

8.2 Native Compilation

Native compilation on the Intel® Xeon Phi™ coprocessor can often be easier than cross
compilation. As we did for cross compilation, we focus here on building software packages

created using the autotools.

As mentioned previously, the coprocessor does not have a hard disk based file system, so all
tools, source code and temporary files need to fit into its memory. Large projects might
require you to use alternatives, such as an NFS mounted file system.

Because there is no native version of the Intel® ICC compiler, native compilation uses gcc and

is thus generally limited to components that are not particularly performance sensitive;

performance oriented applications should be cross compiled using the Intel® ICC compiler.

In order to perform native compilation, gcc, the GNU binutils, and other common development

tools must be installed into the coprocessor’s file system. These components are not already
installed in the initramfs to save space. This is performed by installing a single rpm, task-
mpss-toolchain.

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

125

You can then perform the same autotools build process previously described, installing

additional dependent rpms as needed. When you have successfully built the component, you
will have to decide what you will do with the build results. For example, make installing the

result into a local ramfs file system is not persistent unless the resulting file system image is
captured for subsequent reuse. Alternatively, make installing the result into an NFS

mounted file system captures the component for subsequent invocations.

To illustrate native compilation, we’ll build and install emacs. We’ll assume that you have

already booted the coprocessor on which you will perform the build.

8.2.1 Create and attach to a repo

The first step is to create a repository of the rpms in the mpss-3.6-k1om.tar and start an http

server to serve the repo data:

[host]$ tar -xf mpss-3.6-k1om.tar

[host]$ cd $MPSS36_K1OM

[host]$ createrepo .

[host]$ python -m SimpleHTTPServer

Next, ssh to the selected coprocessor and add the repo:

[host]$ ssh root@micN

[mic]# zypper ar http://host:8000 mpss

8.2.2 Install the development tool chain

The default coprocessor file system does not include software development tools, so these

must now be installed:

 [micN]# zypper install task-mpss-toolchain

Installing the task-mpss-toolchain-3.6-0.1.rc4.all.rpm causes the following components to be
installed as dependencies:

cpp-symlinks, flex, byacc, cmake, makedepend, gperf, g++-symlinks, gcov-symlinks, gnu-

config, pkgconfig, patch, automake, m4, bison, gccmakedep, gcc-symlinks, autoconf,
libtool, elfutils, binutils-symlinks, and make

Because building task-mpss-toolchain-3.6-0.1.rc4.all.rpm takes considerable time and adds

significantly to the size of the file system, consider capturing the file system at this point for
later reuse in building other components. See Sections 7.1 and 7.2 for help.

8.2.3 Configure the build directory

Next, from the host, copy the software package that is to be built to the coprocessor file

system. We will build emacs to illustrate this process:

[host]$ scp emacs-24.3.tar.gz mic0:/tmp

Now, on the coprocessor, try to configure the build directory:

[host]$ ssh micN

[micN]$ cd /tmp

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
126

[micN]$ tar xvf emacs-24.3.tar.gz

[micN]$ cd emacs-24.3

[micN]$ gnu-configize

[micN]$./configure --prefix=/usr --libdir=/usr/lib64

checking for a BSD-compatible install... build-aux/install-sh -c

checking whether build environment is sane... yes

:

configure: error: The required function `tputs' was not found in any

library.

The following libraries were tried (in order):

 libtinfo, libncurses, libterminfo, libtermcap, libcurses

Please try installing whichever of these libraries is most

appropriate

for your system, together with its header files.

For example, a libncurses-dev(el) or similar package.

Just as in cross-compiling zsh, we need to install ncurses. Assuming that the repo is still
attached, this can be done easily with zypper (as root):

[micN]# zypper install ncurses-dev

We can now successfully configure the build directory:

[micN]$./configure --prefix=/usr --libdir=/usr/lib64

Note: In the case that configure has failed, it is sometimes helpful to execute:

[micN]$ make distclean

before executing configure again.

8.2.4 Make and install the package

Make the software package:

[mic]$ make

You can now just install the package into the current file system:

[mic]# make install

Alternatively, you can capture the results for later installation into some other file system
image. For example, the following installs the package to some specified subdirectory, then
creates a tarfile, emacs.tar, of that subdirectory:

[mic]# make install DESTDIR=`pwd`/tarhere

[mic]# tar –cf emacs.tar –C tarhere .

Copy the tar file to the host to save it:

[host]$ scp mic0:/tmp/emacs.tar .

The tar file can later be expanded onto an NFS mounted file system on the host, for example:

[host]# tar –xf emacs.tar –C /var/mpss/mic0.export

Compilation for the Intel® Xeon Phi™ Coprocessor

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

127

or copied to a coprocessor and expanded, for example:

[host]$ scp emacs.tar micN:/tmp

[host]$ ssh micN

[mic]$ cd /tmp

[mic]# tar –xf emacs.tar –C /

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
128

9 Intel® MPSS Component

Configuration and Tuning

9.1 Intel® Xeon Phi™ Coprocessor Operating System
Configuration and Tuning

9.1.1 Clock Source for the Intel® Xeon Phi™ Coprocessor

By default, the Time Stamp Counter (TSC) is the clock source on the Intel® Xeon Phi™
coprocessor. The power management software for the coprocessor will keep the TSC clock
source calibrated even when deep sleep states are enabled. Calibration of the TSC avoids clock
drift.

Each coprocessor core also has an Elapsed Time Counter (MICETC). However, when MICETC is
the clock source, the getttimeofday() access time is on the order of 100x slower than when
TSC is the clock source.

The available clock sources can be queried from sysfs on a coprocessor:

[micN]$ cat /sys/devices/system/clocksource/clocksource0/\

available_clocksource

tsc micetc

and the current clock source can be queried from sysfs, for example:

[micN]$ cat /sys/devices/system/clocksource/clocksource0/\

current_clocksource

tsc

The clock source can be changed by writing to sysfs, for example:

[micN]# echo micetc > /sys/devices/system/clocksource/clocksource0/\

current_clocksource

9.1.2 Process Oversubscription

Only configure concurrent processing when there is a real need for this feature. Otherwise,

any workload running with the concurrent active processes on the device will likely result in

performance degradation.

To run more concurrent processes, set the limit of file descriptors to 10 for each offload

process. Depending on the memory usage of each process, a large number of concurrent
offload processes may exhaust memory on the device.

To run 200 concurrent processes, users will need to modify the following parameters. Changes
to the configuration will not persist when modifying the files directly on the card; a reboot will

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

129

reset these settings. To permanently change the configuration, refer to the documentation on

micctrl and file overlays.

1) On the host, log into the card as superuser.

[host]# ssh micN

2) Locate and terminate the Intel® COI active process.

[micN]# ps axf | grep coi

5147 ? Sl 0:00 /usr/bin/coi_daemon --coiuser=micuser

[micN]# killall coi_daemon

3) Set the concurrent process to 200.

[micN]# ulimit -n 200

[micN]# /usr/bin/coi_daemon --coiuser=micuser \

--max-connections=200 &

[micN]# exit

For the complete list of coi_daemon parameters, refer to the coi_daemon help option:

[micN]$ /usr/bin/coi_daemon -h

9.1.3 Verbose Logging

Verbose output of coprocessor kernel boot messages can be disabled or enabled.

Assisted Configuration of verbose logging is controlled by the VerboseLogging configuration
parameter in /etc/mpss/default.conf or /etc/mpss/micN.conf configuration files:

VerboseLogging <Disabled|Enabled>

The default is:

VerboseLogging Disabled

For Manual Configuration, the quiet kernel command line parameter disables verbose logging.

9.1.4 Cgroup memory control

The cgroups memory controller can be disabled or enabled. The cgroups memory controller,
when enabled, can limit the amount of memory available to an application or group of
applications.

Assisted Configuration of cgroups is controlled by the Cgroup parameter in
/etc/mpss/default.conf or /etc/mpss/micN.conf configuration files:

Cgroup [memory=(disabled|enabled)]

The default is:

Cgroup memory=disabled

For Manual Configuration, the cgroup_disable=memory kernel command line parameter

disables cgroups memory control. The absence of this parameter enables control.

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
130

9.1.5 Power Management control

Power management control can be disabled or enabled.

Assisted Configuration of power management is accomplished by the presence of the

PowerManagement parameter in /etc/mpss/default.conf or /etc/mpss/micN.conf configuration
files:

PowerManagement cpufreq_(on|off);corec6_(on|off):

pc3_(on|off):pc6_(on|off)

The default varies by Intel® Xeon Phi™ coprocessor stepping.

For Manual Configuration, the

micpm=cpufreq_(on|off);corec6_(on|off);pc3_(on|off);pc6_(on|off)

kernel command line parameter controls power management.

Note: Default power management settings are recommended unless directed by an Intel®
representative to change them.

9.1.6 VFS Optimizations

As described in Section 1.2.1.2, a VFS technology preview is intended to improve the

performance of system calls for reading and writing files on tmpfs and ramfs mount points.
The following kernel command line options provide additional control to enable or disable the
read and write optimizations:

 vfs_read_optimization - on/off. If not specified, it is off by default. When on, it enables

read side optimizations for files in the above file systems.

 vfs_write_optimization - on/off. If not specified, it is off by default. When on, it
enables write side optimizations for files in the above file systems.

As an example, to enable read optimizations, add vfs_read_optimization to the

ExtraCommandLine as follows:

1. Edit /etc/mpss/default.conf

2. Append "vfs_read_optimization=on" to the ExtraCommandLine parameter.

3. Restart the mpss service

For more information on the ExtracommandLine parameter, see Section A.3.1

9.2 Host Driver Configuration

9.2.1 Lost Node Watchdog

The host driver includes a watchdog intended to detect and report to the host when another

coprocessor (node) in the SCIF network is not responding.

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

131

 The watchdog is controlled by the “watchdog” parameter in the host’s

/etc/modprobe.d/mic.conf module parameter control file.

 If the host driver is loaded it must be reloaded. Follow the procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

The watchdog is enabled by default.

9.2.2 Watchdog Auto-Reboot

On detecting a lost node, the host driver will either reset the node back to the ready state, or

reboot the node to the online state.

 Watchdog auto-reboot is controlled by the watchdog_auto_reboot parameter in the host’s

/etc/modprobe.d/mic.conf module parameter control file.

 To change this parameter, the Intel® MPSS host driver must be reloaded if it is currently
running. Follow the procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Watchdog auto-reboot reboots the node to the online state by default.

9.2.3 Crash Dump Capture

The host driver can capture a coprocessor OS kernel crash dump to a file on the host.

 Crash dump capture is controlled by the crash_dump parameter in the host’s

/etc/modprobe.d/mic.conf module parameter control file.

 To change this parameter, the Intel® MPSS host driver must be reloaded if it is currently

running. Follow the procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Crash dump capture is enabled by default.

9.3 SCIF Configuration

9.3.1 Peer to Peer (P2P) Support

SCIF supports the direct transfer of data from one Intel® Xeon Phi™ coprocessor directly into
the physical memory of another coprocessor on the same host. This capability is referred to as
Peer to Peer or P2P.

 P2P is controlled by the p2p parameter in the host’s /etc/modprobe.d/mic.conf module

parameter control file.

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
132

 To change this parameter, the Intel® MPSS host driver must be reloaded if it is currently

running. Follow this procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

P2P support is enabled by default.

9.3.2 Peer to Peer Proxy Control

Under certain circumstances, SCIF implements peer-to-peer DMA reads (reading data from
some remote peer coprocessor to the local coprocessor) into a peer-to-peer DMA write from

the remote coprocessor to the local coprocessor. This is done to improve performance.

 P2P proxy is controlled by the p2p_proxy parameter in the host’s
/etc/modprobe.d/mic.conf module parameter control file.

 To change this parameter, the Intel® MPSS host driver must be reloaded if it is currently

running. Follow this procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

P2P proxy is enabled by default.

9.3.3 Ulimit Checks for Max Locked Memory in SCIF

SCIF can enforce ulimit checks of the memory that scif_register() locks. Pages locked using
scif_register() are counted towards the ulimit.

 P2P proxy is controlled by the ulimit parameter in the host’s /etc/modprobe.d/mic.conf

module parameter control file.

 To change this parameter, the Intel® MPSS host driver must be reloaded if it is currently
running. Follow this procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Ulimit checking is disabled by default.

Note: In kernel versions later than 3.1.0, the kernel has two different limits for locked pages: one
limit for pages locked using standard system calls and another limit for pages locked by kernel

modules on behalf of user processes.

9.3.4 Registration Caching

Note: The mechanism for specifying the pinned pages limit may change in a future release.

Registration caching is a SCIF feature intended to improve the performance of

scif_vreadfrom()/scif_vwriteto(). When registration caching is enabled, SCIF caches virtual to
physical address translations of the virtual addresses passed to
scif_vreadfrom()/scif_vwriteto(), thus eliminating the overhead of pinning pages when the
same virtual range is specified in future calls.

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

133

 Registration caching is controlled by the “reg_cache” parameter in the host’s

/etc/modprobe.d/mic.conf module parameter control file.

 To change this parameter, the Intel® MPSS host driver must be reloaded if it is currently

running. Follow the procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Registration caching is enabled by default.

9.3.5 Registration Caching Limit

There is a per-node tunable limit on the maximum number of pinned pages per SCIF endpoint.
This limit can only be modified by the root user.

 Set the maximum number of pinned pages by writing to the coprocessor’s

/proc/scif/reg_cache_limit node:

[host]# echo <limit> > /proc/scif/reg_cache_limit

where <limit> is the decimal number of 4K pages.

 To disable caching at runtime, set the <limit> to 0 on each node.

9.3.6 Huge Page Support

SCIF has support for Huge Pages. Huge Pages should not to be confused with Transparent
Huge Pages (THP); SCIF support of THP is always enabled.

 Huge Page support is controlled by the “huge_page” parameter in the host’s

/etc/modprobe.d/mic.conf module parameter control file.

 If the host driver is loaded it must be reloaded. Follow this procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Huge Page support is enabled by default.

9.4 COI Configuration

9.4.1 COI Offload User Options

The coi_daemon on an Intel® Xeon Phi™ processor spawns processes on behalf of client

processes on the host processor.

9.4.1.1 Ownership Modes

The coi_daemon has several options for assigning ownership of these COI processes.

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
134

9.4.1.1.1 micuser Ownership

When operating in micuser mode, each COI process spawned by the coi_daemon is owned by
user micuser.

9.4.1.1.2 _Authorized User Ownership

When operating in _Authorized mode, each COI process spawned by the coi_daemon is owned

by same user as the corresponding host client process. Authentication of user credentials
occurs using an .mpsscookie file located in the user’s home directory. The cookie is created
and managed by the host’s mpss daemon.

9.4.1.1.3 _Dynamic User Ownership

When operating in _Dynamic mode, each COI process spawned by the coi_daemon is owned

by a new, unique user created by the coi_daemon. Files and directories created by such a

process cannot be accessed by other COI processes. This effectively isolates all COI Processes
from each other for better security.

Note: the _Dynamic mode will be removed in future release.

9.4.1.2 Configuring the Ownership Mode

The Ownership mode is configured by the presence of the parameter:

coiparams='--coiuser=<mode>'

in one of the following files in the Intel® Xeon Phi™ coprocessor file system:

/etc/init.d/coi

/etc/coi.conf

/etc/sysconfig/coi.conf

and where <mode> is one of micuser, _Authorized, or _Dynamic.

micuser ownership mode is configured, by default, in the coprocessor’s /etc/init.d/coi file:

coiparams='--coiuser=micuser' #default parameters at boot

When /etc/coi.conf contains the coiparams parameter, it takes precendence over

/etc/init.d/coi. When /etc/sysconfig/coi.conf contains the coiparams parameter, it takes

precedence over /etc/coi.conf and /etc/init.d/coi.

A change to the ownership mode only occurs when the coi daemon is restarted:

[micN]# /etc/init.d/coi restart

Note: Changes to files that reside in coprocessor memory are not retained when the coprocessor is
shut down or restarted. Refer to Chapter 7 for information on preserving changes to the coprocessor

file system.

Alternatively, the --coiuser option can be passed to the coi_daemon when it is started:

[micN}# coi_daemon --coiuser=<mode>

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

135

9.4.1.3 Example

The following configures for the _Authenticated user mode, overriding whatever is configured

in /etc/init.d/coi and /etc/coi.conf:

[micN]# echo coiparams='--coiuser=_Authorized' > \

 /etc/sysconfig/coi.conf

[micN]# /etc/init.d/coi restart

For detailed information about the --coiuser and other coi_daemon parameters, run the
coi_daemon on the card with the --help option:

[micN]$ coi_daemon --help

9.5 Virtual Console Configuration and Access

On a SLES* host, minicom prompts for a username and password when logging into the

coprocessor. Use micctrl --passwd<=user> to set the password for a user before using the

virtual console on minicom.

The virtual console devices are /dev/ttyMICN for the each Intel® Xeon Phi™ coprocessor
micN.

To configure minicom for virtual console access, perform the following instructions for each

coprocessor:

1. Start minicom:

[host]# minicom -s

2. Select "Serial Port Setup"

a. Choose option: A - Serial Device

b. Edit Serial Device to /dev/ttyMIC0

c. Hit <Enter> twice.

3. Select “Modem and dialing”

a. Choose option: A - Init string

b. Erase the entire line

c. Hit <Enter> twice

4. Select “Save setup as..”

Enter the preferred name, for example: mic0<enter>

5. Select “Exit from Minicom”

Each coprocessor should have its own configuration name.

To open the virtual console for a coprocessor:

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
136

[host]# minicom <configname>

where <configname> is the name entered in step 4.

To exit minicom, enter: <CTRL+a> <x> <Enter>

9.6 Intel® Xeon Phi™ Coprocessor Virtio Block Device
Configuration and Use.

The virtio block device (virtblk) uses the Linux* virtio data transfer mechanism to implement a
block device on the Intel® Xeon Phi™ coprocessor. The virtblk device stores data on the host
processor, and therefore can be persistent like a hard or solid-state disk mounted on the
coprocessor.

 The virtio block device can be one of the following:

 A regular file, for instance: /srv/my_k1om_filesys, or

 A Logical Volume Manager (LVM) volume, or

 A physical device such as /dev/sda4

The block device to be used is communicated to the mic.ko driver by writing its path to the
/sys/class/mic/micN/virtblk_file sysfs node after coprocessor micN has been booted. The
virtblk driver supports only one virtio block device file on the host at any time. Once a virtio
block device file is specified by writing to /sys/class/mic/micN/virtblk_file, it cannot be
changed until the coprocessor is rebooted. To use multiple virtio block devices, create multiple

partitions in a virtio block device file. Those partitions are referenced as /dev/vda1, /dev/vda2.

If a virtio block device file is not assigned, then unloading the Intel® MPSS host driver will
trigger the message "request comes in while coprocessor side driver is not loaded yet. Ignore"

in dmesg and /var/log/messages.

If the coprocessor side driver, mic_virtblk, is loaded without assigning a virtio block device file,
the error message "Have set virtblk file?" will be displayed in dmesg and /var/log/messages.

9.6.1 Using a Virtio Block Device as an ext2 File System

1) Host side:

Identify the file or block device on which the virtblk file system will reside.

[host]# echo <path_to_dev> > /sys/class/mic/micN/virtblk_file

2) Coprocessor side:

a) Load the virtblk driver.

[micN]# modprobe mic_virtblk

b) Create ext2 file system on virtblk and mount it on /mnt/vda.

[micN]# mkdir -p /mnt/vda

[micN]# mkfs.ext2 /dev/vda

[micN]# mount -t ext2 /dev/vda /mnt/vda

Intel® MPSS Component Configuration and Tuning

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

137

You can now access /mnt/vda as a file structured device.

9.6.2 Use the Virtblk Device as a Swap Device File System

1) Host side:

[host]# echo <path_to_dev> > /sys/class/mic/micN/virtblk_file

2) Coprocessor side:

a) Load the virtblk driver:

[micN]# modprobe mic_virtblk

b) Assign a swap device and confirm:

[micN]# swapon /dev/vda

[micN]# cat /proc/swaps

c) You can now use /dev/vda as a swap device.

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
138

 Intel® MPSS Configuration

Parameters

This Appendix describes the parameters in Intel® MPSS configuration files. The Parameter
Syntax in the following sections sometimes extends to more than one line. However, each
parameter in an actual software stack configuration file must be free of NewLines.

The first line of each parameter description is either:
 Parameter Syntax (default.conf):
or:
 Parameter Syntax (micN.conf):

indicating whether the parameter is created by default in a default.conf or micN.conf
configuration file.

The line following Initial Value: in the descriptions below is the parameter value initially set by
micctrl --initdefaults. Not all parameters have an initial value set by micctrl --initdefaults.

Intel® configuration file text lines beginning with the # character are treated as comments.

 Meta Configuration

 Configuration Version

Parameter Syntax (micN.conf):

Version <major number> <minor number>

Initial Value:

Version 1 1

(At this writing.)

Description:

The Version parameter sets the coprocessor configuration file version. As new releases are
produced, the version is used by the micctrl --initdefaults command to identify where to
update configuration files. This parameter should NOT be manually edited.

 Including Other Configuration Files

Parameter Syntax (micN.conf):

Include <config_file_name>

Initial Value:

Include default.conf

Include “conf.d/*.conf”

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

139

Description:

Each configuration file can include other configuration files. The Include parameter lists
configuration file(s) to be included. The configuration file(s) to be included must be in
/etc/mpss. The configuration parser processes each parameter sequentially. When the Include
parameter is encountered, the included configuration file(s) are immediately processed. If a

parameter is set multiple times, the last instance of the parameter setting will be applied.

Each Include parameter should identify a single file to be included.

By default, the /etc/mpss/default.conf file is included at the beginning of each micN.conf

coprocessor specific file. This allows parameters in the coprocessor specific file to override any
parameter set in default.conf.

The second entry in the micN.conf files is typically (and by default) the line:

Include “conf.d/*.conf”

This is a special rule, specifying that any configuration file that is placed in the

/etc/mpss/conf.d directory will be included.

 Boot Control

 What to Boot

Parameter Syntax (micN.conf):

OSimage <linux_kernel_image> <system_address_map_file>

Initial Value:

OSimage /usr/share/mpss/boot/bzImage-knightscorner

/usr/share/mpss/boot/System.map-knightscorner

Description:

The OSimage parameter specifies the Intel® Xeon Phi™ coprocessor Linux* OS boot image

and its associated system address map file.

OSimage may be changed using the micctrl --osimage command or by editing this parameter

directly.

 When to Boot

Parameter Syntax (micN.conf):

BootOnStart (Enabled|Disabled)

Initial Value:

BootOnStart Enabled

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
140

Description:

The BootOnStart parameter controls whether the Intel® Xeon Phi™ coprocessor is booted

when the mpss service starts. If set to Enabled, the mpssd daemon will attempt to boot the

Intel® Xeon Phi™ coprocessor when 1service mpss start is called.

BootOnStart may be changed using the micctrl --autoboot command or by editing this

parameter directly.

 Kernel Configuration

These parameters influence or control the execution of the Intel® Xeon Phi™ coprocessor

Linux* kernel through values passed to the kernel in the startup command line.

 ExtraCommandLine

Parameter Syntax (default.conf):

ExtraCommandLine "<commands>"

Initial Value:

ExtraCommandLine "highres=off"

Description:

The ExtraCommandLine parameter specifies additional kernel command line parameters to be

passed to the Intel® Xeon Phi™ coprocessor kernel on boot.

ExtraCommandLine may be changed by editing the parameter directly.

 Console Device

Parameter Syntax (default.conf):

Console "<console device>"

Initial Value:

Console "hvc0"

Description:

Intel® MPSS software supports a PCIe bus virtual console driver. Its device node (hvc0) is the
default value assigned to the Console parameter, and should not be changed.

 Power Management

Parameter Syntax (micN.conf):

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

141

PowerManagement

“cpufreq_(on|off);corec6_(on|off);pc3_(on|off);pc6_(on|off)”

Initial Value:

PowerManagement "cpufreq_on;corec6_off;pc3_on;pc6_on"

Description:

The PowerManagement parameter is a string of four attributes passed directly to the kernel
command line for the card’s power management driver. The mpssd daemon and micctrl utility
do not validate any of the parameters in this string or its format.

PowerManagement may be changed using the micctrl --pm command or by editing this

parameter directly.

Intel® Xeon Phi™ coprocessor power states are described in the Intel® Xeon Phi™

Coprocessor Datasheet

Note: It is recommended to use the default power management settings unless directed by an Intel
representative to change them.

 ShutdownTimeout

Parameter Syntax (default.conf):

ShutdownTimeout <value>

Initial Value:

ShutdownTimeout 300

Description:

Setting value to a positive integer specifies the maximum number of seconds to wait for the

coprocessor to shut down. If shut down time exceeds the value, the coprocessor is reset.

Setting value to any negative value indicates to wait indefinitely for the card to shut down.

Setting value to zero indicates to reset the coprocessor without waiting for it to shut down.

ShutdownTimeout can be changed by editing the parameter directly.

 CrashDump

Parameter Syntax (default.conf):

CrashDump <dirname> <limit>

Initial Value:

CrashDump /var/crash/mic 16

Description:

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
142

The CrashDump parameter specifies the host directory, <dirname>, in which to place

coprocessor crash dump files, and the maximum size, <limit>, in gigabytes of such files.

CrashDump can be changed by editing the parameter directly.

 Cgroup

Parameter Syntax (micN.conf):

Cgroup [memory=(disabled|enabled)]

Initial Value:

Cgroup memory=disabled

Description:

The Cgroup parameter configures cgroups categories. cgroups configuration is currently
limited to controlling the status of the memory cgroup.

The memory cgroup is disabled by default. Enabling cgroup memory support may reduce

performance.

Cgroup may be changed using the micctrl --cgroup command or by editing the parameter
directly.

 VerboseLogging

Parameter Syntax (micN.conf):

VerboseLogging (Enabled|Disabled)

Initial Value:

VerboseLogging Disabled

Description:

The VerboseLogging parameter specifies whether the quiet kernel command line parameter is
passed to the Intel® Xeon Phi™ coprocessor on boot. The quiet kernel parameter suppresses
most kernel messages during kernel boot. VerboseLogging is disabled by default. Enabling
VerboseLogging will increase boot times.

VerboseLogging may be changed by editing the parameter directly.

Note: This parameter may be deprecated in future releases.

 File System Configuration Parameters

 RootDevice

Parameter Syntax (micN.conf):

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

143

RootDevice (Ramfs|StaticRamfs) <ramfs_location>

RootDevice NFS <share>

RootDevice SplitNFS <share> <usr_share>

Initial Value:

RootDevice Ramfs /var/mpss/mic0.image.gz

Description:

The RootDevice parameter defines the type of root device to mount. Supported types are
RamFS, StaticRamFS, NFS, and SplitNFS.

The RamFS type builds a compressed cpio ram disk image when a request to boot is received.
<ramfs_location> is the directory path and file name of the resulting ram disk image. The
image is used as the contents to be loaded into the root tmpfs file system.

The StaticRamFS type causes the compressed cpio image <ramfs_location> to be used as the

contents of the root file system for the booting coprocessor. The StaticRamFS boot will fail if
the image file is not already present at <ramfs_location>.

The static ramfs image may have been previously created by booting with RootDevice set to

RamFS. Optionally, when RootDevice is StaticRamFS, the micctrl --updateramfs command
causes a compressed cpio image to be built and placed at the <ramfs_location> of the
StaticRamFS parameter. System administrators may also supply their own initial ram disk
image.

The NFS type instructs the booting coprocessor to mount the NFS share specified by the

<share> argument as the root file system. <share> must be a fully qualified NFS mount
location with the format “server:location”, for example 10.10.10.12:/export/mic0.

The SplitNFS type is the same as NFS except it also provides a separate NFS share at
<usr_share> to mount as the /usr directory on the card.

RootDevice may be changed using the micctrl --rootdev command or by editing the parameter
directly.

 File Locations

The mpssd daemon and micctrl command require the location of the files to be placed in the

final root disk image to be used on the card. The files are located using the four configuration
parameters Base, CommonDir, Overlay, and MicDir. Of the four, the Overlay parameter is the
only one allowed to be specified multiple times.

These parameters collectively specify all the files from which a root file system cpio image is to

be built.

 Base

Parameter Syntax (micN.conf):

Base (CPIO|DIR) <target>

Initial Value:

Base CPIO /usr/share/mpss/boot/initramfs-knightscorner.cpio.gz

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
144

Description:

The Base parameter specifies the file system hierarchy over which other hierarchies are

overlaid to produce the initial file system of an Intel® Xeon Phi™ coprocessor. When the Base
type is CPIO, <target> is interpreted as the file name of a CPIO file system archive. When the
Base type is DIR, <target> is interpreted as the root of an expanded (non-archived) file
system.

Base may be changed using the micctrl --base command or by editing the parameter directly.

 CommonDir

Parameter Syntax (default.conf):

CommonDir <source> <target>

Initial Value:

CommonDir /var/mpss/common

Description:

The CommonDir parameter defines a directory at <source> whose contents overlay the Base
file system at /. Thus if CommonDir is /var/mpss/common and there is a file

/var/mpss/common/foo/bar, then that file will be found as /foo/bar in the resulting file
system.

Intel® MPSS installation does not create or populate the CommonDir directory. It is typically
created by the micctrl --initdefaults command. Files that are added to this directory are

maintained between updates to the Intel® MPSS installation.

<target> is a deprecated argument, which will be ignored. If present when micctrl --
resetdefaults is executed, the <target> argument will be removed.

CommonDir may be changed using the micctrl --commondir command or by editing the

parameter directly.

 MicDir

Parameter Syntax (micN.conf):

MicDir <location>

Initial Value:

MicDir /var/mpss/micN

Description:

The MicDir parameter defines a directory at <location> whose contents overlay the

CommonDir file system at / to create file system unique each coprocessor. Intel® MPSS
installation does not create or populate. It is typically created by the micctrl --initdefaults
command. Files that are added to this directory are maintained between updates to the
Intel® MPSS installation.

MicDir may be changed using the micctrl --micdir command or editing the parameter directly.

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

145

Note: In some previous Intel® MPSS versions, MicDir took a <descriptor file> parameter:

 MicDir <location> <descriptor file>

The <descriptor file> parameter identified a file that described where files in the directory
subtree at <location> were to be placed in the Intel® Xeon Phi™ coprocessor’s file system,

and the permissions of those files. The <descriptor file> parameter to MicDir has been

deprecated. New configuration files generated with the micctrl --initdefaults command do not
include it. If the micctrl --resetdefaults command is executed, the <descriptor file> argument

will be removed wherever it is found.

 Overlay

Parameter Syntax (micN.conf):

Overlay (Filelist|Simple|File) <source> <target> (on|off)

Overlay RPM <source> (on|off))

Initial Value:

<None>

Description:

The Overlay parameter specifies a file or set of files that are to be added to the initial file

system, overlaying the Base, CommonDir, and MicDir specified directory hierarchies. There
can be multiple Overlay parameters. If the Overlay state value is off, the parameter is
ignored. The Overlay parameter is obeyed if the state value is on.

Overlay File overlays the file <source> onto the initial file system image at <target>.

Directory and file ownership and permissions are preserved.

Overlay Simple overlays the file system hierarchy at <source> onto the initial file system
image at <target>. Directory and file ownership and permissions are preserved.

Overlay RPM copies the <source> file to a special /RPMs-to-install directory in the initial file
system. During the coprocessor boot process, the init program will attempt to install any RPMs
which it finds in that directory. Other types of files are ignored.

Overlay Filelist overlays files in the directory <source> onto the initial file system image based

on specifications in the <target> file. Use of Overlay Filelist is deprecated.

Overlay may be changed using the micctrl --overlay command or editing the parameter
directly.

Note: Do not overlay $MPSS36_K1OM. That is, do not define a parameter similar to:

Overlay RPM $MPSS36_K1OM on

Doing so will cause micctrl to attempt to upload and install all the rpms in the $MPSS36_K1OM,
and will likely result in the coprocessor running out of memory or hanging.

 Intel® MPSS RPM Location

Parameter Syntax (micN.conf):

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
146

K1omRpms <location>

Initial Value:

<None>

Description:

The implementation of some micctrl commands, specifically those which configure for use of

LDAP and NIS services, needs to know where to find the set of RPM files that it needs to
complete installation of LDAP and NIS in the coprocessor file system. The K1omRpms
parameter should point to such a <location>. This parameter is not defined by default. In
general, it can be set to the directory which we refer to symbolically as $MPSS36_K1OM.

K1omRpms may be changed using the micctrl --rpmdir command or by editing the parameter

directly.

 Network Configuration

 Host Name Assignment

Parameter Syntax (micN.conf):

Hostname <name>

Initial Value:

<host name>-micN.<domain>

or

<host name>-micN

where <host name> is the “short” hostname of the host platform, as returned by calling
hostname -s, micN is the coprocessor name, and <domain> is the host’s domain name as
return by hostname -d.

Description:

The Hostname parameter specifies the host name value to be inserted in the hostname.conf

file of coprocessor micN.

HostName may be changed by editing the parameter directly.

 MAC Address Assignment

Parameter Syntax (micN.conf):

MacAddrs (Serial|Random|<host MAC>:<card MAC>)

Initial Value:

MacAddrs Serial

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

147

Description:

MAC addresses must be generated for the virtual network interfaces of the host and Intel®

Xeon Phi™ coprocessors. However, as a prerequisite, both ends of the virtual network need to
have MAC addresses assigned.

By default, MAC addresses are generated based on the serial number of the Intel® Xeon Phi™
coprocessor. Some older coprocessors do not have a usable serial number; in that case the

MAC address is generated randomly.

The least significant bit is set in MAC addresses generated for host endpoints, and clear in
MAC addresses generated for coprocessor endpoints. In addition, the top three octets of
generated MAC addresses have the IEEE assigned value 4C:79:BA to enable identifying Intel®
Xeon Phi™ coprocessor interfaces.

The system administrator may override the default Serial behavior with the MacAddrs
configuration parameter. For MacAddrs Random, random addresses are generated.

For MacAddrs <host MAC>:<card MAC>, the specified MAC addresses are statically assigned

to the host and coprocessor network endpoints of micN.

MacAddrs may be changed using the micctrl --mac command or by editing the parameter
directly.

 Static Pair (Default) Topology

Parameter Syntax (micN.conf):

Network class=StaticPair micip=<cardIP> hostip=<hostIP>

mtu=<mtu size> netbits=<netbits> modhost=(yes|no)

modcard=(yes|no|<path_to_file>)

Initial Value:

Network class=StaticPair micip=172.31.<N+1>.1

hostip=172.31.<N+1>.254 mtu=64512 netbits=24 modhost=yes modcard=yes

for coprocessor micN.

Description:

In the static pair network topology, every Intel® Xeon Phi™ coprocessor is assigned to a

separate subnet known only to the host.

<cardIP> and <hostIP> are the IP addresses of the coprocessor and host endpoints. They
must each be a fully qualified IP address, and the first three quads of the address must match.

The mtu parameter specifies the packet size to use over the virtual network connection.

The netbits argument specifies the number of high order bits that are set in the Netmask. The
<hostIP> and <cardIP> must be identical over the high order <netbits> bits. The default

value is 24, defining a netmask of 255.255.255.0. For a static pair configuration it should
never be necessary to change this parameter. It is up to the system administrator to correctly
route the virtual Ethernet nodes to the external network or each other.

If modhost is set to yes, the coprocessor’s 'IPaddress hostname' pair is appended to the
contents of the host's /etc/host file with the comment '#Generated-by-micctrl'. If modhost is

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
148

set to no the entry matching the coprocessor’s IP address with the comment '#Generated-by-

micctrl' will be removed from the host's /etc/hosts file.

If modcard is set to yes, an /etc/hosts file is created in the coprocessors file system,

containing the ‘IPaddress hostname’ pair of both the host (bridge) and of the coprocessor. If
modcard is set to no, the /etc/hosts will not be created. User may also provide a path to a file
which content will be copied to <vardir>/etc/hosts.

Note: The modhost and modcard options, if present, override the deprecated hosts parameter. The
hosts=(yes|no) option may still be used; setting is equivalent to setting modhost and modcard with

the specified (yes|no|<path_to_file>) value.

Although the static pair network configuration can be changed by editing micN.conf and
default.conf configuration files, the recommended method of changing the network
configuration is to use the micctrl --network command. Specifically, the micctrl --network
command will edit configuration files as needed to remove the current network configuration
before implementing the new configuration.

Linux* networking supports routing a static pair to the external network and or to another
static pair. It is the responsibility of the system administrator to configure such routing.

 Internal Bridge Topology

Parameter Syntax:

Bridge <name> Internal <bridgeIP> <netbits> <mtu>

Network class=StaticBridge bridge=<name> micip=<cardIP>

modhost=(yes|no) modcard=(yes|no|<path_to_file>)

Initial Value:

<None>

Description:

Linux* provides a mechanism for bridging network devices to a common network. The term
“internal bridge”, in the context of Intel® Xeon Phi™ coprocessor, refers to a configuration in

which the host and one or more coprocessors on that host are connected through a bridge.

The internal bridge configuration is specified by a pair of parameters: a Bridge parameter in
the default.conf file to specify the bridge information, and a Network parameter, in the
micN.conf file of each coprocessor to be bridged, which specifies the bridge to which the

coprocessor is connected and other information.

The same bridge name, <name>, must be given to both the Bridge and Network parameters.

<bridgeIP> and <cardIP> are the IP addresses of the bridge and coprocessor endpoints

respectively. The <netbits> argument to Bridge specifies the number of high order bits that

are set in the Netmask. The <bridgeIP> and <cardIP> must be identical over the high order
<netbits> bits. For example, if <netbits> is 24, then the Netmask is 255.255.255.0, and IP
addresses must be identical over the first three quads.

The <mtu> argument to Bridge specifies the packet size to use over the virtual network

connection. The value of 64k has been shown to provide the highest network performance.

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

149

If modhost is set to yes, the coprocessor’s 'IPaddress hostname' pair is appended to the host's

/etc/host file with the comment '#Generated-by-micctrl'. If modhost is set to no the entry
matching the coprocessor’s IP address with the comment '#Generated-by-micctrl' will be
removed from the host's /etc/hosts file.

If modcard is set to yes, an /etc/hosts file is created in the coprocessors file system,
containing the ‘IPaddress hostname’ pair of both the host (bridge) and of the coprocessor. If
modcard is set to no, the /etc/hosts will not be created. User may also provide a path to a file
which content will be copied to <vardir>/etc/hosts.

Note: The modhost and modcard options, if present, override the deprecated hosts parameter. The
hosts=(yes|no) option may still be used; setting is equivalent to setting modhost and modcard with
the specified (yes|no|<path_to_file>) value.

The resulting configuration files will use the Bridge parameters for <mtu> and <netbits>
values for the coprocessor endpoints.

The recommended method of changing the Bridge and Network parameters is to use the

micctrl --bridge and --network commands (see the micctrl section of this document), rather
than by directly editing. The --bridge and --network commands evaluate the current network
configuration and can remove it before creating the new one. In either case, all the network
control files will be created when the operation is done.

 External Bridge Topology

Parameter Syntax:

Bridge <name> External <bridgeIP> <netbits> <mtu>

Network class=StaticBridge bridge=<name> micip=<cardIP>

[mtu=<mtu size>] [netbits=<netbits>] modhost=(yes|no)

modcard=(yes|no|<path_to_file>)

Bridge <name> External dhcp

Network class=Bridge bridge=<name>

Initial Value:

<None>

Description:

The Linux* bridging mechanism can bridge the Intel® Xeon Phi™ coprocessor virtual
connections to a physical Ethernet device. In this topology, the virtual network interfaces

become configurable to the wider subnet.

The external bridge configuration is specified by a pair of parameters: a Bridge parameter in
the default.conf file to specify the bridge information, and a Network parameter, in the
micN.conf file of each coprocessor to be bridged, which specifies the bridge to which the

coprocessor is connected.

The same bridge name, <name>, must be used in both the Bridge and Network parameters.

IP addresses of the bridge and coprocessor endpoints can be statically assigned or configured

for DHCP dynamic assignment.

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
150

The bridge IP address is assigned statically by specifying the <bridgeIP> argument to Bridge.

The <mtu> argument to Bridge specifies the packet size to use over the virtual network
connection. The default value is 1500 bytes to match default physical network settings. If
attaching to a pre-existing external bridge configuration, the specified mtu value must match

the setting in the system configuration file. For example, if, on a RHEL* based host, the
/etc/sysconfig/network-scripts/ifcfg-br0 file contains the line “MTU=9000”, then the MTU field
must be set to 9000 to match. The <netbits> argument to Bridge specifies the number of high
order bits that are set in the Netmask. It must be a value between 8 and 24. By default it is
set to 24 by default and will rarely need to be changed.

Coprocessor IP address assignment is static when the Network class=StaticBridge; the

coprocessor IP address is specified by <cardIP>. The <bridgeIP> and <cardIP> must be
identical over the high order <netbits> bits. The resulting configuration will use the bridge’s
<mtu> and <netbits> values to ensure they match.

If modhost is set to yes, the coprocessor’s 'IPaddress hostname' pair is appended to the host's

/etc/host file with the comment '#Generated-by-micctrl'. If modhost is set to no the entry

matching the coprocessor’s IP address with the comment '#Generated-by-micctrl' will be
removed from the host's /etc/hosts file.

If modcard is set to yes, an /etc/hosts file is created in the coprocessors file system,

containing the ‘IPaddress hostname’ pair of both the host (bridge) and of the coprocessor. If
modcard is set to no, the /etc/hosts will not be created. User may also provide a path to a file
which content will be copied to <vardir>/etc/hosts.

Note: The modhost and modcard options, if present, override the deprecated hosts parameter. The
hosts=(yes|no) option may still be used; setting is equivalent to setting modhost and modcard with

the specified (yes|no|<path_to_file>) value.

The bridge IP address is configured for dynamic assignment by including value dhcp instead of

a static IP address in the Bridge parameter. The DHCP server will also assign the mtu and
Netmask values.

Coprocessor IP address assignment is dynamic by DHCP when Network class=Bridge.

The modhost and modcard parameters are not required because it is assumed the IP address
for each coprocessor will be retrievable from a name server on the network.

If the corresponding bridge networking configuration file (ex: ifcfg-br0) does not exist then

this parameter will cause it to be generated.

The Intel® configuration will not generate or modify the physical interface file to attach the
physical network to the bridge. The system administrator must perform this step. For

example, on a RHEL* host, a file /etc/sysconfig/network-scripts/ifcfg-eth0 to link the eth0
interface to bridge br0 might have the following contents:

DEVICE=eth0

NM_CONTROLLED=no

TYPE=Ethernet

ONBOOT=yes

BRIDGE=br0

On SLES* host platforms, the physical port name must be added to the BRIDGE_PORTS entry

in the /etc/sysconfig/networks/ifcfg-br0 configuration file, for example:

BRIDGE_PORTS=’eth0 mic0 mic1’

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

151

The recommended method of changing the Bridge and Network parameters is to use the

micctrl --bridge and --network commands (see the micctrl section of this document), rather
than by directly editing. The --bridge and --network commands evaluate the current network
configuration and can remove it before creating the new one. In either case, all the network

control files will be created when the operation is done.

 Deprecated Configuration Parameters

 User Access

Parameter Syntax (micN.conf):

UserAuthentication None

UserAuthentication Local <low uid> <high uid>

Description:

The UserAuthentication parameter has been removed. Refer to the sections on micctrl

specification of users for the cards for configuration user access.

 Service Startup

Note: This parameter is still functional but there are no longer default services using it. It may be
fully deprecated and removed in the future.

Parameter Syntax (micN.conf):

Service <name> <start> <stop> <state>

Description:

During boot, the embedded Linux* OS on the Intel® Xeon Phi™ coprocessor executes the

script files in the /etc/rc5.d directory. These entries are links to the actual script files in the
/etc/init.d directory. The links are named with the standard Linux* custom starting with an ‘S’
for start or ‘K’ for stop followed by the position parameter and then the file name from the
init.d directory. The position parameter is a number from 01 to 99 establishing the order in
which the scripts are executed.

The Intel® MPSS installs several pieces of software with various service scripts. The system

administration may not want all of them to start at boot. To support this functionality, the
configuration files specify the creation of the files in /etc/rc5.d based on the Service
configuration parameter. Each file in /etc/init.d will require a Service entry in an Intel® Xeon
Phi™ coprocessor configuration file.

The name argument is the name of the actual script found in the /etc/init.d directory.

The start argument defines the order the service start relevant to other scripts. It will be a
value from 1 to 99. As an example the network interface must be initialized before the secure

shell daemon can be started. The network script is assigned a start value of 21 and sshd is
assigned 80.

The stop argument is the opposite of the start parameter and is generally set to 100 minus
the start value. This will assure that on shutdown the secure shell daemon at 5 will shut down

before the network is unconfigured at 79.

Intel® MPSS Configuration Parameters

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
152

The state argument determines whether the links specifies an ‘S’ for start or ‘K’ for stop. It

follows the chkconfig utility convention of on for start and off for stop.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

153

 The micctrl Utility

The micctrl utility is a multi-purpose tool for the system administrator. It provides these

categories of functionality.

 Card state control – boot, shutdown and reset control while the mpssd daemon is running.

 Configuration file initialization and propagation of values.

 Helper functions for modifying configuration parameters.

 Helper functions for modifying the root file system directory or associated download
image.

 micctrl Command Line Format

The micctrl command line format is:

micctrl GlobalOptions Command SubOptions Coprocessors

GlobalOptions is a space separated list of 0 or more of the global options documented in

Appendix B.2. GlobalOptions list elements can appear in any order.

Command is one of the commands documented in Appendix B.4 through Appendix B.4.8.

SubOptions is a space separated list of 0 or more suboptions. A suboption can be one of the

Global SubOptions described in Appendix B.3.1, or one of the Common SubOptions
documented in Appendix B.3.2 or a command-specific suboption described in the
documentation of the specified command. SubOptions list elements can appear in any order.

Coprocessors is a space separated list of 0 or more coprocessor identifiers of the form micN.

Coprocessors list elements can appear in any order. If the Coprocessors list is empty, and the

mic.ko driver is loaded, the command is applied to all discovered coprocessors. If the mic.ko
driver is not loaded, then the Coprocessors list must be non-empty.

For brevity, the command-specific syntax of each command in Appendix B.4 through Appendix

B.4.8 does not include GlobalOptions, Coprocessors or Global SubOptions. For example, the
syntax of the micctrl wait command is shown as:

micctrl (-w|--wait)

rather than the full syntax:

micctrl [(-d |--destdir=)<destdir>] [(-c |--configdir=)<confdir>]\

(-w|--wait) [(-h|--help)] [(-v|-vv|-v -v|-vvv|-v -v -v)] \

 Coprocessors

Note: Some aspects of network configuration are operating system dependent. By default, micctrl
performs network configuration operations according to the operating system of the local host. The
distrib suboption can used to force micctrl to perform network configuration for a specified operating

system. It is typically used with other options such as --destdir and --netdir when creating a

configuration to be pushed to another system.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
154

 Global Options

Global options are common to all micctrl commands.

 --destdir, -d

Option Syntax:

[(-d |--destdir=)<destdir>]

Description:

The --destdir global option, if specified, overrides the current value of the implicit $DESTDIR
variable.

We use the symbol $DESTDIR to indicate the directory path that micctrl prepends to all micctrl

accesses of micctrl created files.

$DESTDIR is described in Section 4.1.3.1.

 --configdir, -c

Option Syntax:

[(-c |--configdir=)<confdir>]

Description:

The --configdir global option, if specified, overrides the current value of the implicit

$CONFIGDIR variable.

We use the symbol $CONFIGDIR to indicate the directory path at which micctrl creates Intel®

MPSS-specific configuration files, specifically default.conf and micN.conf.

$CONFIGDIR is described in Section 4.1.3.2.

 Suboptions

Some suboptions are unique to each micctrl command; these are described with each of the

commands. Other suboptions are common to some or all commands.

 Global Suboptions

Global suboptions are common to all commands. For brevity, command syntax does not show

these global suboptions. For example, the syntax of the micctrl --status command is shown as

micctrl (-s|--status)

rather than:

micctrl (-s|--status) [(-h|--help)] \

 [(-v|-vv|-v -v|-vvv|-v -v -v)]

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

155

 Help

Suboption Syntax:

[(-h |--help)]

Description:

The --help suboption cause micctrl to ignore all other options and output help for the specified

Command. For example to get help on the micctrl --initdefaults, use the -h option:

micctrl --initdefaults -h

 Verbose Output

Suboption Syntax:

[(-v|-vv|-v -v|-vvv|-v -v -v)]

Description:

By default micctrl only outputs errors and warnings.

The -v suboption causes micctrl to output additional informational messages. The -vv or -v -v
suboptions add notification of changes to all files micctrl is creating, deleting or changing. The

-vvv or -v -v -v suboptions add notification of calls to the host's networking utilities, for
instance: ifup.

 Common SubOptions

Some suboptions are common to several commands. For brevity, we define these suboptions
once here. When an individual command supports a particular common suboption, the

command syntax shows that suboption in italicized text , but does not include a

description of the suboption.

For example, the syntax of the micctrl --rootdev command is given as:

micctrl --rootdev=(RamFS|StaticRamFS) [--vardir=<vardir>] \

[(-t |--target=)<location>] [(-d|--delete)]

The description of the micctrl --rootdev command does not include a description of the --vardir

suboption, which is common to several commands and is described in this section.

 --vardir

Suboption Syntax:

[--vardir=<vardir>]

Description:

The --vardir suboption, if specified, overrides the current value of the implicit $VARDIR
variable.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
156

We use the symbol $VARDIR to indicate the directory path at which the micctrl --initdefaults, -

-resetdefaults, --resetconfig, and --cleanconfig commands create the common and micN
overlay hierarchies, and at which the micctrl --rootdev command places a ramfs file system
image or NFS file system hierarchy. By default $VARDIR is /var/mpss.

$VARDIR is described in Section 4.1.3.3.

 --srcdir

Suboption Syntax:

[--srcdir=<srcdir>]

Description:

The --srcdir suboption, if specified, overrides the current value of the implicit $SRCDIR

variable.

We use the symbol $SRCDIR to indicate the directory path at which the micctrl --initdefaults, -
-resetdefaults, --resetconfig, and --cleanconfig commands look for the coprocessor’s Linux*
kernel image and default file system image.

$SRCDIR is described in Section 4.1.3.4.

 --netdir, -n

Suboption Syntax:

[(-n |--netdir=)<netdir>]

Description:

The --netdir suboption, if specified, overrides the current value of the implicit $NETDIR

variable.

We use the symbol $NETDIR to indicate the directory path at which the micctrl --initdefaults, -
-resetdefaults, --resetconfig, and --cleanconfig commands create and/or edit network control
files.

$NETDIR is described in Section 4.1.3.5.

 --distrib, -d

Suboption Syntax:

[(-d |--distrib=)(redhat|suse)]

Description:

Some aspects of network configuration are operating system dependent. By default, micctrl
performs network configuration operations according to the operating system of the local host.

The --distrib suboption can used to force micctrl to perform network configuration for a
specified operating system. It is typically used with other options such as --destdir and --
netdir when creating a configuration to be pushed to another system.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

157

 --gw, -g

Suboption Syntax:

[(-g |--gw=)<gateway>]

Description:

The --gw suboption sets the gateway of a coprocessor network interface. If not specified, the

gateway of the local host is assigned to the network. The --gw option is typically used with
other options such as --destdir and --netdir when creating a configuration to be pushed to
another system.

 --users, -u

Suboption Syntax:

[(-u |--users=)(none|overlay|merge|nochange)]

Description:

The --users suboption controls creation and/or modification of the /etc/passwd and
/etc/shadow files of each specified coprocessor. The MicDir parameter specifies the directory in

which these files are created and/or modified.

For --users=none, the /etc/passwd and /etc/shadow files are deleted and recreated to include
only the minimal set of users required by Linux*, which are the root, ssh, nobody, nfsnobody
and micuser.

For --users=overlay, the /etc/passwd and /etc/shadow files are deleted and recreated to
include the users from the 'none' option and any regular users found in the /etc/passwd file of
the host.

For --users=nochange, behavior is as for --users=overlay if no configuration exists for the

specified coprocessor. Otherwise the /etc/passwd and /etc/shadow files are unchanged.

For --users=merge, any users in the host’s /etc/passwd file but not in the coprocessor’s
/etc/passwd file are added to the coprocessor’s /etc/passwd and /etc/shadow files.

If the --users suboption is not given, behavior is as for --users=nochange.

 --pass, -a

Suboption Syntax:

[(-a |--pass=)(none|shadow)]

Description:

The --pass suboption selects the policy for copying passwords from the host’s /etc/shadow file

to the specified coprocessor’s /etc/shadow file. For --users=none and --users=overlay, the
policy is applied to all users in the newly created /etc/shadow file. For --users=merge, the
policy is only applied to users that are added to the /etc/shadow file.

For --pass=shadow, the host's /etc/shadow file is parsed and values of the affected users are

written to the coprocessor’s /etc/shadow file. It should be noted that --pass=shadow is

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
158

disabled on SLES* host systems; SLES* uses Blow Fish encryption, which is not supported on

the coprocessor.

For --pass=none, the passwords in the coprocessor’s /etc/shadow file are set to the '*'

character.

If the --pass suboption is not given, behavior is as for --pass=shadow on a RHEL* based host,
and as for --pass=none on a SLES* based host.

 --modhost, -c

Suboption Syntax:

[(-c |--modhost=)(yes|no)]

Description:

For --modhost=yes, the coprocessor’s 'IPaddress hostname' pair is appended to the contents
of the host's /etc/host file with the comment '#Generated-by-micctrl'.

For --modhost=no, the host's /etc/hosts file is unchanged.

Note: The --modhost suboption behaves as for --modcard=no if the configuration files already exist.
In this case, use the micctrl --modbridge or --network command to change the host’s /etc/hosts.

 --modcard, -e

Suboption Syntax:

[(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

For --modcard=yes, an /etc/hosts file is created and populated in directory defined by the

MicDir parameter of each specified coprocessor.

For --modcard=no, /etc/hosts files are not created.

For --modcard=<path_to_file> the content of a specified file will be copied to
<vardir>/etc/hosts

If the --modcard option is not given, behavior is as for --modcard=yes.

The --modcard suboption behaves as for --modcard=no if the configuration files already exist.
In this case, use the micctrl --modbridge or --network command to change the host’s
/etc/hosts.

 --nocreate

Suboption Syntax:

 [--nocreate]

Description:

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

159

By default, a home directory is created in the coprocessor file system for each user in a

coprocessor’s /etc/passwd and /etc/shadow files. The --nocreate suboption disables the
creation of such home directories. Doing so can reduce ram file system memory usage when
LDAP home directory auto mount is enabled or the /home directory is NFS mounted.

 --pm, -p

Suboption Syntax:

[(-p |--pm=)(default|defaultb)]

Description:

The --pm suboption modifies the PowerManagement parameter of each specified coprocessor.

For --pm=default, the PowerManagement parameter of each specified coprocessor is reset to

default setting for the coprocessor’s stepping. If the stepping cannot be determined, the power

management parameters are set to the default for the Intel® Xeon Phi™ coprocessor C
stepping.

For --pm=defaultb, the PowerManagement parameter of each specified coprocessor is reset to

the default setting for the Intel® Xeon Phi™ coprocessor B stepping.

If the --pm suboption is not given, behavior is as for --pm=default.

 micctrl Command Descriptions

This section describes each of the micctrl commands.

The $DESTDIR, $CONFIGDIR, $VARDIR, $SRCDIR and $NETDIR directory path modifiers can
alter the default directory paths of files which micctrl accesses. For brevity, the following

description assumes default values for these intrinsic variables. See Section 4.1.3 for details.

 Card State Control

Several commands are available for controlling the state of Intel® Xeon Phi™ coprocessors.

 Booting Intel® Xeon Phi™ Coprocessors

Command Syntax:

micctrl (-b|--boot) [(-w|--wait) [(-t |--timeout=)<timeout>]]

Description:

The micctrl --boot command requests that the specified Intel® Xeon Phi™ coprocessors be

booted. micctrl uses configuration parameters to prepare and boot coprocessors. The process
depends on the root device type specified by the RootDevice parameter. Refer to Appendices
A.4.1 and B.4.3 for details on root device types. Refer to Section 4.1.5 for a detailed
description of the boot process.

By default, control returns before booting is complete. If the --wait suboption is specified,

control returns after booting is complete, or after a timeout period, which ever is first.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
160

If the --timeout suboption is specified, the timeout period is <timeout> seconds. If not

specified, timeout period defaults to 300 seconds.

 Shutting Down Intel® Xeon Phi™ Coprocessors

Command Syntax:

micctrl (-S|--shutdown) [(-w|--wait) \

 [(-t |--timeout=)<timeout>]]

Description:

The micctrl --shutdown command requests that the specified Intel® Xeon Phi™ coprocessors
be shut down.

This command brings down the specified coprocessors in a safe way, and is equivalent to

executing the Linux* shutdown command on each of the specified coprocessors.

By default, control returns before shutting down is complete. If the --wait suboption is
specified, control returns after shutting down is complete, or after a timeout period, which

ever is first.

If the --timeout suboption is specified, the timeout period is <timeout> seconds. If not
specified, timeout period defaults to 300 seconds.

 Rebooting Intel® Xeon Phi™ Coprocessors

Command Syntax:

micctrl (-R|--reboot) [(-w|--wait) \

 [(-t |--timeout=)<timeout>]]

Description:

The micctrl --reboot command requests that the specified Intel® Xeon Phi™ coprocessors be
rebooted. This command effectively performs the micctrl --shutdown followed by the micctrl --
boot command.

By default, control returns before rebooting is complete. If the --wait suboption is specified,
control returns after rebooting is complete, or after a timeout period, which ever is first.

If the --timeout suboption is specified, the timeout period is <timeout> seconds. If not

specified, timeout period defaults to 300 seconds.

 Resetting Intel® Xeon Phi™ Coprocessors

Command Syntax:

micctrl (-r|--reset) [(-f|--force)] [(-i|--ignore)] \

 [(-w|--wait) [(-t |--timeout=)<timeout>]]

Description:

The micctrl --reset command requests that the specified Intel® Xeon Phi™ coprocessors be

reset. The coprocessors can be in any state.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

161

The --force suboption forces the coprocessors to go through the reset process. Normally the

driver will not reset a coprocessor that is already in the reset or 'ready' state and micctrl will
return an error.

The --ignore suboption prevents micctrl from returning an error if a coprocessor is in the reset

or ready state.

By default, control returns before resetting is complete. If the --wait suboption is specified,

control returns after resetting is complete, or after a timeout period, which ever is first.

If the --timeout suboption is specified, the timeout period is <timeout> seconds. If not
specified, timeout period defaults to 300 seconds.

Note: Performing a reset may result in the loss of file data that has not been flushed to a remote file
system. It is therefore recommended to perform a shutdown when this would not be desired.

 Waiting for Intel® Xeon Phi™ Coprocessor State Change

Command Syntax:

micctrl (-w|--wait) [(-t |--timeout=)<timeout>]

Description:

The micctrl --wait command returns after the previous state change command is complete or

after a timeout period, which ever is first.

If the --timeout suboption is specified, the timeout period is <timeout> seconds. If not
specified, the timeout period defaults to 300 seconds.

 Intel® Xeon Phi™ Coprocessor Status

Command Syntax:

micctrl (-s|--status)

Description:

The micctrl --status command displays the status of the specified Intel® Xeon Phi™

coprocessors. If the status is “online” or "booting" it also displays the name of the associated
boot image.

 Configuration Initialization and Propagation

This section discusses the micctrl command options for initializing, propagating, resetting, and

cleaning configuration parameters.

 Initializing the Configuration Files

Command Syntax:

micctrl --initdefaults [--vardir=<vardir>] [--srcdir=<srcdir>]

[(-d |--netdir=)<netdir>] \

[(-u |--users=)(none|overlay|merge|nochange)] \

[(-a |--pass=)(none|shadow)] [--nocreate] \

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
162

[(-c |--modhost=)(yes|no)] [(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

The Intel® MPSS distribution does not include the software stack configuration files (For
Instance: default.conf, micN.conf) and overlay hierarchies (For Instance: /var/mpss/micN).

The micctrl --initdefaults command creates those files with default values, and can ensure that
they are complete.

--initdefaults first creates the /etc/mpss/default.conf configuration file with default
parameters, if such a file does not already exist.

Then, for each specified coprocessor, micctrl --initdefaults creates the /etc/mpss/micN.conf

configuration file with default parameters, if such a file does not already exist.

If such a default.conf or micN.conf file already exists, it is parsed for missing parameters, and

default parameter values are added as needed. In addition, --initdefaults checks for

deprecated parameters and replaces them with updated parameters. For example: the
deprecated FileSystem parameter is updated to RootDevice RamFS. micctrl --initdefaults will
not otherwise change an existing configuration if --users, --pass, --nocreate, --modhost, and -
-modcard suboptions are not specified.

--initdefaults then creates the common directory /var/mpss/common and creates and

populates the per-coprocessor overlay hierarchy /var/mpss/micN for each specified
coprocessor if these directories do not already exist.

If a /var/mpss/micN overlay hierarchy exists, it is parsed for missing files, and any missing

files are added with values determined by the current configuration and micctrl --initdefaults
suboptions.

For each user indicated by the --users suboption, and subject to the --nocreate suboption, --
initdefaults copies ssh key files from the user’s host file system $HOME/.ssh to

/var/mpss/micN/$HOME/.ssh. Next --initdefaults adds the user’s .pub keys (For Instance:

from id_rsa.pub) to the /var/mpss/micN/$HOME/authorized_keys file.

 Resetting Configuration Parameters

Command Syntax:

micctrl --resetdefaults [--vardir=<vardir>] [--srcdir=<srcdir>]

[(-d |--netdir=)<netdir>]

[(-u |--users=)(none|overlay|merge|nochange)] \

[(-a |--pass=)(none|shadow)] [--nocreate] \

[(-c |--modhost=)(yes|no)] [(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

The micctrl --resetdefaults command attempts to restore configuration parameters and the

associated Xeon Phi file systems to the default state. It shuts down the current network,

removes a several files in the /etc directory of each specified coprocessor, removes the old
configuration files and then calls the --initdefaults command. This process is intended to leave
files created by the user untouched.

 Cleaning Configuration Parameters

Command Syntax:

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

163

micctrl --cleanconfig [--vardir=<vardir>] [--srcdir=<srcdir>]

[(-d |--netdir=)<netdir>]

The micctrl --cleanconfig command is intended to completely remove all Intel® MPSS
configuration artifacts.

B.4.2.3.1 Valid configuration file found

If a valid configuration is found, a series of steps are performed:

1. Shutdown the network and remove micctrl created network configuration files typically in
/etc/sysconfig/network-scripts on RHEL* hosts and /etc/sysconfig/networks on SLES*
hosts.

2. Remove all the files in the directory defined by the MicDir configuration parameter.
Warning: this will also remove all the files in that directory not created by micctrl.

3. Remove the ramfs file or the NFS export directory associated with the NFS type in the
RootDevice configuration parameter.

4. Remove the configuration file in /etc/mpss directory (or the directory defined by
$CONFIGDIR).

5. If there are no more configuration files in the /etc/mpss directory, then remove the
contents of the directory defined by the CommonDir parameter and remove the

default.conf file from the /etc/mpss directory.

B.4.2.3.2 No valid configuration files

If no valid configuration file is found for a coprocessor, the following method of cleanup is

performed:

1. Remove the entire contents of /var/mpss/micN for each specified coprocessor.

2. Delete file /var/mpss/micN.image.gz, for each specified coprocessor.

3. Delete file /var/mpss/micN.export, for each specified coprocessor.

4. Delete the /etc/mpss/micN.conf file for each specified coprocessor.

5. Delete the contents of the directory specified by the CommonDir parameter in the

/etc/mpss/default.conf file.

6. Delete the /etc/mpss/default.conf file.

 Setting the Root Device

The micctrl --rootdev command changes the configured RootDevice parameter which controls

whether the Intel® Xeon Phi™ coprocessor file root system will be mounted from a ram disk,
or an NFS export.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
164

 RAM Root File System

Command Syntax:

micctrl --rootdev=(RamFS|StaticRamFS) [--vardir=<vardir>] \

[(-t |--target=)<location>] [(-d|--delete)]

Description:

When the RootDev parameter type is either RamsFS or StaticRamFS, micctrl pushes a

compressed CPIO archive to coprocessor memory at boot time, where it is uncompressed to
become the coprocessor’s RAM file system.

For --rootdev=RamFS, micctrl sets the RootDevice parameter in the micN.conf of each

specified coprocessor to:

RootDevice RamFS <location>

if --target is specified, or, otherwise, to

RootDevice RamFS /var/mpss/micN.image.gz

At boot time, micctrl builds a ram disk image from the files specified by the Base, CommonDir,
Micdir, and Overlay configuration parameters. The resulting archive is saved as
<ramfs_location>.

For --rootdev=StaticRamFS, micctrl sets the RootDevice parameter in the micN.conf of each
specified coprocessor to:

RootDevice StaticRamFS <location>

if --target is specified, or, otherwise, to

RootDevice StaticRamFS /var/mpss/micN.image.gz

At boot time, there must be a previously created compressed CPIO archive at <ramfslocation>

which will be used as the ram disk with which to boot the specified coprocessor(s).

If the current RootDevice parameter type is NFS or SplitNFS when micctrl --RamFS or micctrl -
-StaticRamFS is called with the --delete suboption, then the root and/or user file system
hierarchies specified by the RootDevice configuration parameter are deleted.

 NFS Root File System

Command Syntax:

micctrl --rootdev=NFS [--vardir=<vardir>] \

[(-t |--target=)[<host>:]<location>] [(-c|--create)] \

[(-d|--delete)]

micctrl --rootdev=SplitNFS [--vardir=<vardir>] \

[(-t |--target=)[<host>:]<location>] \

[(-u |--usr=)[<host>:]<usr_location>] [(-c|--create)] \

[(-d|--delete)]

Description:

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

165

When the RootDevice parameter type is either NFS or SplitNFS, the file system of the specified

coprocessors are remotely mounted from an NFS server(s).

For --rootdev=NFS, micctrl sets the RootDevice parameter in the micN.conf of each specified

coprocessor to:

RootDevice NFS <share>

where <share> is set to:

<host>:<location>

if --target=<host>:<location>, or to:

<hostip>:<location>

if --target=<location>, or to:

<hostIP>:/var/mpss/micN.export

if --target is not specified, and where <hostIP> is the IP address of the local host.

For --rootdev=SplitNFS, micctrl sets the RootDevice parameter in the micN.conf of each
specified coprocessor to:

RootDevice SplitNFS <share> <usr_share>

where <share> is set is as for --rootdev=NFS, and where <usr_share> is set to:

<host>:<usr_location>

if --usr=<host>:<location>, or to:

<hostip>:<usr_location>

if --usr=<location>, or to:

<hostIP>:/var/mpss/usr.export

if --usr is not specified, and where <hostIP> is the IP address of the local host.

It is the user’s responsibility to configure the specified or default location or locations for NFS

export, typically in the specified host’s /etc/exports file. Generally each export specification
should include rw and no_root_squash options.

If the --create suboption is specified, micctrl builds a root file system hierarchy from the files

specified by the Base, CommonDir, Micdir, and Overlay configuration parameters and roots it
at <share>. For --rootdev=SplitNFS, a file system hierarchy is also created and is rooted at
<usr_share> it is a duplicate of <share>/usr. These hierarchies are only created if <host> is
the local host. micctrl will not create these hierarchies on a remote host.

If the --delete suboption is specified, micctrl deletes the current root and user file system

hierarchies.

Note: A --server suboption was previously used to enable specification of the <server> IP
addressed. It has been deprecated and is only supported for backward compatibility.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
166

 Rootdev Configuration

Command Syntax:

micctrl --rootdev

Description:

When no type is specified, micctrl --rootdev outputs the current RootDevice configuration.

 Adding an NFS Mount

Command Syntax:

micctrl --addnfs=[<host>:]<location> (-d |--dir=)<mount dir> \

[--options=<option>[,<option>]+]

Description:

The micctrl --addnfs command adds an NFS mount entry, <host>:<location>, to the
/etc/fstab file of each specified coprocessor. The optional <host>, if specified, must be a valid

host name or host IP address. If <host> is not specified, it defaults to the local host.

The export will be mounted on the <mount dir> directory of each specified coprocessor.
micctrl ensures that the mount directory is created on the coprocessor file system image.

The --options suboption specifies a list of NFS mount options. It must be a comma separated

list in the standard form of the /etc/fstab fs_mntops field. Check NFS documentation for more
information. The string supplied is placed into the options field in the coprocessors /etc/fstab
file that micctrl creates for the added mount.

As with other NFS exports, it is the users responsibility to configure the specified <location>

for NFS export.

Additional configuration for SUSE* based host systems: If NFS file system mounts have
been added and the chckconfig utility has been used to indicate starting the Intel® MPSS at

host boot time, edit the /etc/init.d/mpss file and change the “# Required-Start:” line to read

“# Required-Start: nfsserver”.

to ensure that NFS is started before the mpss service.

Note: A --server suboption was previously used to enable specification of the <server> IP
addressed. It has been deprecated and is only supported for backward compatibility.

 Removing an NFS Mount

Command Syntax:

micctrl --remnfs=<mount dir>

Description:

The 'micctrl --remnfs' command searches the /etc/fstab files of the specified coprocessors for
the entry corresponding to mount <mount dir>, and removes the mount point from the files.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

167

 Updating the Compressed CPIO Image

Command Syntax:

micctrl --updateramfs

Description:

When the RootDevice parameter of a specified coprocessor is RamFS or StaticRamFS, the

micctrl --updateramfs command updates the coprocessor’s current ram disk image with a new
image built from the files specified by the Base, CommonDir, Micdir and Overlay configuration
parameters. The new image will be used the next time the card boots. The image file is saved
at the location specified by the RootDevice parameter’s <ramfs_location> value.

 Updating NFS Root Exports

Command Syntax:

micctrl --updatenfs

micctrl --updateusr

Description:

When the RootDevice parameter of a specified coprocessor is NFS or SplitNFS, the micctrl --
updatenfs command updates or builds a root file system hierarchy from the files specified by
the Base, CommonDir, Micdir and Overlay configuration parameters and roots it at the location
specified by the RootDevice parameters <share> value.

When the RootDevice parameter of a specified coprocessor is SplitNFS, the micctrl --updateusr

command updates or builds a /usr file system hierarchy from the files specified by the Base,
CommonDir, Micdir, and Overlay configuration parameters and roots it at the location specified
by the RootDevice parameters <usr_share> value.

 Configuring the Intel® Xeon Phi™ Coprocessor File System

 Base File System Location

Command Syntax:

micctrl --base

micctrl --base=default

micctrl --base=(cpio|dir) --new=<location>

Description:

The micctrl --base command modifies the Base parameter in the /etc/mpss/micN.conf

configuration files of the specified coprocessors.

For --base=cpio, micctrl sets the Base parameter to:

Base CPIO <location>

where <location> must be a compressed CPIO archive.

For --base=dir, micctrl sets the Base parameter to:

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
168

Base DIR <location>

where <location> is a ram file system hierarchy. If <location> does not exist, and the current

Base type is currently CPIO, then the corresponding CPIO image is expanded and files are
extracted to <location>. If <location> does not exist, and the current Base type is DIR, then
the corresponding directory is copied to <location>.

For --base=default, micctrl resets the Base parameter to the default:

Base CPIO /usr/share/mpss/boot/initramfs-knightscorner.cpio.gz

For --base (For Example: a value is not specified), micctrl outputs the current Base,
CommonDir and MicDir parameter values.

 Common Files Location

Command Syntax:

micctrl --commondir

micctrl --commondir=<commondir>

Description:

The micctrl --commdir command modifies the CommonDir configuration parameter for each
specified coprocessor.

For --commondir=<commondir>, micctrl adds or modifies the CommonDir parameter in the

/etc/mpss/micN.conf configuration file of each specified coprocessors. As a result, it overrides
the CommonDir parameter in /etc/mpss/default.conf. The resulting parameter has the form:

CommonDir <commondir>

If the <commondir> directory does not exist, then it is created and the contents of the

previous CommonDir directory are copied to the new location.

After the files have been copied, the configurations for all known coprocessors in the host are

checked for references to the old CommonDir <commondir> directory. If no references exist,
the files in that directory are deleted.

For --commondir (For Example: <commondir> is not specified), micctrl outputs the current

Base, CommonDir and MicDir parameter values.

Note: Previously, this command included a suboption to set a corresponding filelist associated with
the files. The use of this file has been removed.

 Coprocessor Specific Files Location

Command Syntax:

micctrl --micdir

micctrl --micdir=<micdir>

Description:

The micctrl --micdir command modifies the MicDir parameter in the /etc/mpss/micN.conf
configuration file of each specified coprocessor.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

169

For --micdir=<micdir>, micctrl modifies the MicDir parameter in the micN.conf configuration

files of the specified coprocessors to:

MicDir <micdir>

If the <micdir> directory does not exist, it is created and the contents of the previous MicDir

directory are copied to the new location. Finally, the previous MicDir directory is deleted.

For --micdir (For Example: <micdir> is not specified), micctrl outputs the current Base,
CommonDir and MicDir parameter values.

Note: Previously, this command included a suboption to set a corresponding filelist associated with
the files. The use of this file has been removed.

 Additional File System Overlays

Command Syntax:

micctrl --overlay

micctrl --overlay=(simple|file) (-s |--source=)<source> \

(-t |--target=)<target> (-d |--state=)(on|off|delete)

micctrl --overlay=rpm (-s |--source=)<source> \

(-d |--state=)(on|off|delete)

Description:

The micctrl --overlay command creates, modifies or deletes an Overlay parameter in the
/etc/mpss/micN.conf configuration file of each specified coprocessor. The Overlay parameter
describes a file or directory of files that are added to the coprocessors file system. There may
be multiple Overlay parameters.

Note: Do not add overlays to the /tmp directory on the card, as it is cleared each time the card

boots.

For --overlay=file and --state=on, micctrl appends a parameter:

Overlay File <source> <target> on

to each /etc/mpss/micN.conf file. For --overlay=file and --state=off, micctrl appends a

parameter:

Overlay File <source> <target> off

to each /etc/mpss/micN.conf file. For --overlay=file and --state=delete, micctrl searches
/etc/mpss/micN.conf for the parameter:

Overlay File <source> <target> (on|off)

and removes it if found.

For --overlay=simple and --state=on, micctrl appends a parameter:

Overlay Simple <source> <target> on

to each /etc/mpss/micN.conf file. For --overlay=simple and --state=off, micctrl appends a
parameter:

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
170

Overlay Simple <source> <target> off

to each /etc/mpss/micN.conf file. For --overlay=file and --state=delete, micctrl searches

/etc/mpss/micN.conf for the parameter:

Overlay Simple <source> <target> (on|off)

and removes it if found.

For --overlay=rpm and --state=on, micctrl appends a parameter:

Overlay RPM <source> on

to each /etc/mpss/micN.conf file. For --overlay=rpm and --state=off, micctrl appends a

parameter:

Overlay RPM <source> off

to each /etc/mpss/micN.conf file. For --overlay=rpm and --state=delete, micctrl searches
/etc/mpss/micN.conf for the parameter:

Overlay RPM <source> (on|off)

and removes it if found.

For --overlay (no overlay type specified), micctrl outputs the currently defined overlays.

You can also add Overlay parameters to a user created configuration file by directly editing the

file. The Include configuration parameter can be used to include such a file. micctrl does not
modify such user created configuration files. To override an Overlay parameter in such a
configuration file without editing the file, you can call micctrl --overlay to add an Overlay
parameter to micN.conf that changes the state of a specified overlay to off or on as needed.

Note: The filelist overlay type has been deprecated and is only supported for backward compatibility;
only files owned by root are supported. Use the simple and file overlay types instead.

Note: The state=off suboption has been deprecated and is only supported for backward
compatibility.

 Location of Additional RPMs for the Intel® Xeon Phi™
Coprocessor File System

Command Syntax:

micctrl –-rpmdir=<location>

Description:

The micctrl --rpmdir command sets the K1omRpms configuration parameter in the micN.conf
configuration file of the specified coprocessors to the specified <location>. See Appendix A.4.3

for information on the K1omRpms parameter.

 Networking Configuration

Several micctrl commands aid in configuring Intel® Xeon Phi™ coprocessor networking.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

171

Note: On SUSE* hosts, run 1service networking restart upon completion of all network change

commands.

 MAC Address Assignment

Command Syntax:

micctrl --mac=(serial|random|<MAC address>) \

[(-d |--netdir=)<netdir>] [(-w |--distrib=)(redhat|suse)]

Description:

The micctrl --mac command modifies the MacAddrs configuration parameter in the micN.conf
configuration file of each specified coprocessor. The MacAddrs parameter defines the method
for setting the MAC addresses of both the host and coprocessor endpoints.

For --mac=serial, micctrl sets MacAddrs to:

MacAddrs Serial

For --mac=random, micctrl sets MacAddrs to:

MacAddrs Random

For --mac=<MAC address>, and where <MAC address> is any valid MAC address in the
format XX:XX:XX:XX:XX:XX, and X is an ASCII hex digit (0..F), micctrl sets the MacAddrs

parameter of the first specified coprocessor to:

MacAddrs XX:XX:XX:XX:XX:(XX+1) XX:XX:XX:XX:XX:XX

the MadAddrs parameter of the second specified coprocessor to:

MacAddrs XX:XX:XX:XX:XX:(XX+3) XX:XX:XX:XX:XX:(XX+2)

the MadAddrs parameter of the Nth specified coprocessor to:

MacAddrs XX:XX:XX:XX:XX:(XX+2*(N-1)+1) XX:XX:XX:XX:XX:(XX+2*(N-1))

For example, if the least significant octet of <MAC address> is '08', then micctrl sets the
MacAddrs parameter of the first specified coprocessor to:

MacAddrs XX:XX:XX:XX:XX:09 XX:XX:XX:XX:XX:08

the MadAddrs parameter of the second specified coprocessor to:

MacAddrs XX:XX:XX:XX:XX:0B XX:XX:XX:XX:XX:0A

the MadAddrs parameter of the Nth specified coprocessor to:

MacAddrs XX:XX:XX:XX:XX:(08+2*(N-1)+1) XX:XX:XX:XX:XX:(08+2*(N-1))

 Resetting the Network to a Default Configuration

Command Syntax:

micctrl --network=default

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
172

Description:

The micctrl --network=default command restores the network configuration for the specified

coprocessors to the default (Static Pair).

 Static Pair

Command Syntax:

micctrl --network=static [(-d |--netdir=)<netdir>] \

[(-w |--distrib=)(redhat|suse)] [(-i |--ip=)<ip>] \

[(-n |--netbits=)<netbits>] [(-m |--mtu=)<mtu>] \

[(-c |--modhost=)(yes|no)] [(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

The static pair network topology is configured using the micctrl --network command. This

topology is described in Section 2.2.3.1.

The micctrl --network command modifies the Network parameter of each specified
coprocessor. This command also creates and/or modifies host and coprocessor network
configuration files, and brings network endpoints on the host down and up as needed. That
process is described in detail in Section 5.1.5.1.2

When the --bridge suboption is not specified, the micctrl --network=static command
configures the static pair network topology between the host and each specified coprocessor.

There are several alternatives for setting IP addresses. If the --ip suboption is not given, then

IP addresses are as assigned by micctrl --initdefaults. Refer to Appendix A.5.3 for details.

If the --ip suboption is given and <ip> is two quads (XX.XX), then micctrl uses those as the
high order quads of IP addresses which it constructs. The third quad of each such address is N
+ 1 for each coprocessor with a name specified to micN. The fourth quad of each coprocessor

endpoint address is 1, and the fourth quad of each host endpoint address is 254. For
example, on a two coprocessor system, the suboption --ip=172.31 will result in addresses

172.31.1.1 and 172.31.1.254 for mic0’s coprocessor and host endpoints, and 172.31.2.1 and
172.31.2.254 for mic1’s coprocessor and host endpoints.

Fully qualified IP addresses can be assigned. In this case <ip> must have the format
cardIP,hostIP:cardIP,hostIP:… and so on. Each cardIP,hostIP pair specifies the IP address for

one static pair network, where the first pair is the IP address of the network between the host
and the first specified coprocessor. For example, if there are two cards in the system, the
suboption --ip=172.31.10.1, 172.31.10.2: 172.3.11.1,172.31.11.2 results in the first

specified coprocessor and host endpoints having addresses 172.31.10.1 and 172.31.10.2 and
the second specified coprocessor and host endpoints having addresses 172.31.11.1 and
172.31.11.2.

The --mtu suboption sets the virtual network packet size to <mtu> bytes. The default mtu

size of mtu is 64KB. Testing has shown that the default value yields the best performance for

this network type.

The --netbits suboption defines a netmask. If fully qualified IP addresses are assigned, the

addresses must be identical over the high order <netbits> bits. The default value is 24,
defining a netmask of 255.255.255.0. There is rarely any need to change this parameter.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

173

 Internal Bridging

Command Syntax:

micctrl --addbridge=<brname> --type=internal

 (-i |--ip=)<bridge_ip> [(-d |--netdir=)<netdir>] \

 [(-w |--distrib=)(redhat|suse)] \

 [(-n |--netbits=)<netbits>] \

 [(-m |--mtu=)<mtu>]

micctrl --network=static --bridge=<name> --ip=<mic_ip> \

 [(-c |--modhost=)(yes|no)] [(-e |--

modcard=)(yes|no|<path_to_file>)]

Description:

The internal bridge network topology is configured using the micctrl --addbridge and --network
commands. This topology is described in Section 2.2.3.2.1. The bridge interface is created

first, and is then connected to the virtual network interfaces of each specified coprocessor.

--addbridge suboptions:

The micctrl --addbridge and --network commands modify the Bridge parameter common to all

specified coprocessors, and the Network parameter of each specified coprocessor. These
commands also create and/or modify host and coprocessor network configuration files, and
bring network endpoints on the host down and up as needed. That process is described in
detail in Section 5.1.5.2.2.

The micctrl --addbridge command creates the bridge interface. The bridge name, <brname>,

of the bridge must be specified. The --type=internal suboption causes micctrl to create the
correct network configuration files for an internal bridge.

The bridge IP address, <bridge_ip>, must be a fully qualified dot notated address.

The --mtu suboption sets the virtual network packet size to <mtu> bytes. The default mtu

size of mtu is 64KB. Testing has shown that the default value yields the best performance for
this network type.

The --netbits suboption defines a netmask. The bridge IP address and all coprocessor endpoint

IP addresses must be identical over the high order <netbits> bits. The default value is 24,
defining a netmask of 255.255.255.0. There is rarely any need to change this parameter.

micctrl --addbridge creates the bridge configuration file, for example $NETDIR/ifcfg-br0, if it

does not already exist. If the bridge configuration file already exists, then <bridge_ip>,
<netbits>, and <mtu> must match the corresponding values of the specified bridge.

--network suboptions:

The micctrl --network command adds coprocessor virtual network interfaces to the bridge.

The --bridge=<name> argument is required, and the <name> must be the same as the

<brname>, the name specified to --addbridge.

The bridge’s mtu and netbits values are used in configuring coprocessor virtual network

interfaces.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
174

 External Bridging

The external bridge network topology is configured using the micctrl --addbridge and

--network commands. This topology is described in Section 2.2.3.2.2. The bridge interface is
created first, and is then connected to the virtual network interfaces of each specified
coprocessor.

The micctrl --addbridge and --network commands modify the Bridge parameter common to all

specified coprocessors, and the Network parameter of each specified coprocessor. These
commands also creates and/or modifies host and coprocessor network configuration files, and
brings network endpoints on the host down and up as needed. That process is described in
detail in Section 5.1.5.3.2.

Because external bridging gives coprocessors access to the external network, DHCP based IP

address assignment is supported for this topology.

B.4.5.5.1 External Bridging, Static IP Address Assignment

Command Syntax:

micctrl --addbridge=<brname> --type=external \

 (-i |--ip=)<bridge_ip> [(-d |--netdir=)<netdir>] \

 [(-w |--distrib=)(redhat|suse)] \

 [(-n |--netbits=)<netbits>] \

 [(-m |--mtu=)<mtu>]

micctrl --network=static --bridge=<name> --ip=<mic_ip> \

[(-c |--modhost=)(yes|no)] [(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

--addbridge suboptions:

For the static IP address assignment case, micctrl --addbridge and micctrl --network
commands are the same as for internal bridging with the exception that the bridge type is
external.

The --type=external suboption causes micctrl to create the correct network configuration files

for an external bridge.

The bridge IP address, <bridge_ip>, must be a fully qualified dot notated address.

The --mtu suboption sets the virtual network packet size to <mtu> bytes. The default mtu

size of mtu is 1500B for compatibility with typical external networks.

The --netbits suboption defines a netmask. The bridge IP address and all coprocessor endpoint

IP addresses must be identical over the high order <netbits> bits. The default value is 24,
defining a netmask of 255.255.255.0. There is rarely any need to change this parameter.

micctrl --addbridge creates the bridge configuration file, for example $NETDIR/ifcfg-br0, if it

does not already exist. If the bridge configuration file already exists, then <bridge_ip>,

<netbits>, and <mtu> must match the corresponding values of the specified bridge.

--network suboptions:

The micctrl --network command adds coprocessor virtual network interfaces to the bridge.

The --bridge=<name> argument is required, and the <name> must be the same as the
<brname>, the name specified to --addbridge. The --ip argument to --network is also

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

175

required, and <mic_ip> must be a fully qualified dot notated IP address in which the first 3

quads match those of the bridge IP address, <bridge_ip>. If more than one coprocessor is
specified, each will be assigned the specified <mic_ip> with the coprocessor’s number added
to the fourth quad. For example, for --ip=172.31.10.12, mic0 will be assigned the address

172.31.10.12 and mic1 will be assigned the address 172.31.10.13.

The bridge’s mtu and netbits values are used in configuring coprocessor virtual network
interfaces.

It is the user’s responsibility to slave the physical Ethernet endpoint to the bridge. For

example, on RHEL*, the line “BRIDGE=br0” is added to the eth0 Ethernet configuration file,

/etc/sysconfig/network-scripts/ifcfg-eth0 to connect endpoint eth0 to bridge br0:

DEVICE=eth0

NM_CONTROLLED=no

TYPE=Ethernet

ONBOOT=yes

BRIDGE=br0

On SLES* host platforms, the physical port name must be added to the BRIDGE_PORTS entry

in the /etc/sysconfig/networks/ifcfg-br0 configuration file, for example:

BRIDGE_PORTS=’eth0 mic0 mic1’

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
176

B.4.5.5.2 External Bridging, DHCP Address Assignment

Command Syntax:

micctrl --addbridge=<brname> --type=external --ip=dhcp \

[(-d |--netdir=)<netdir>] [(-w |--distrib=)(redhat|suse)]

micctrl --network=dhcp --bridge=<name>

[(-c |--modhost=)(yes|no)] [(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

--addbridge suboptions:

DCHP address assignment is configured by setting both the micctrl --addbridge command’s --

ip value and the --network type to dhcp. During coprocessor boot, the Intel® Xeon Phi™
coprocessor Linux* OS will attempt to retrieve an IP address from a DHCP server. The DHCP
server will also configure netbits and mtu values.

micctrl --addbridge creates the bridge configuration file, for example $NETDIR/ifcfg-br0, if it

does not already exist.

It is the user’s responsibility to slave the physical Ethernet endpoint to the bridge. For
example, on RHEL*, the line “BRIDGE=br0” is added to the eth0 Ethernet configuration file,

/etc/sysconfig/network-scripts/ifcfg-eth0 to connect endpoint eth0 to bridge br0:

DEVICE=eth0

NM_CONTROLLED=no

TYPE=Ethernet

ONBOOT=yes

BRIDGE=br0

On SLES* host platforms, the physical port name must be added to the BRIDGE_PORTS entry
in the /etc/sysconfig/networks/ifcfg-br0 configuration file, for example:

BRIDGE_PORTS=’eth0 mic0 mic1’

The modhost and modcard parameters are not needed for configuring host and coprocessor

/etc/hosts files in the case that a name server is available from which coprocessor and host IP
addresses can be retrieved.

 Changing Network Parameters

Command Syntax:

micctrl --network [(-d |--netdir=)<netdir>] \

[(-w |--distrib=)(redhat|suse)] [(-i |--ip=)<ip>] \

[(-n |--netbits=)<netbits>] [(-m |--mtu=)<mtu>] \

[(-c |--modhost=)(yes|no)] [(-e |--modcard=)(yes|no|<path_to_file>)]

Description:

The micctrl --network command (with no network type specified) may be used to change the

parameters for a set of interfaces.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

177

 Modifying a Bridge

Command Syntax:

micctrl --modbridge=<brname> [(-d |--netdir=)<netdir>] \

[(-w |--distrib=)(redhat|suse)] [(-i |--ip=)<ip>] \

[(-n |--netbits=)<bits>] [(-m |--mtu=)<mtu>]

Description:

The micctrl --modbridge command modifies the IP address, netbits and/or MTU values of the

specified network bridge. In addition any changed netbits or MTU values are propagated to
any of the attached virtual network configuration files.

The --ip suboption sets the bridge’s IP address. <bridge_ip> must be a fully qualified dot

notated address.

The --mtu suboption sets the virtual network packet size to <mtu> bytes. The default mtu
size of mtu is 64KB. Testing has shown that the default value yields the best performance for
this network type.

The --netbits suboption defines a netmask. The bridge IP address and all coprocessor endpoint

IP addresses must be identical over the high order <netbits> bits. The default value is 24,
defining a netmask of 255.255.255.0. There is rarely any need to change this parameter.

 Deleting a Bridge

Command Syntax:

micctrl --delbridge=<brname> [(-d |--netdir=)<netdir>] \

[(-w |--distrib=)(redhat|suse)]

Description:

The micctrl --delbridge command removes a specified bridge from the Intel® Xeon Phi™
coprocessor configuration. If the specified bridge is marked as internal, the corresponding
host network configuration file will be deleted.

All coprocessors must have been detached from the bridge before the bridge can be deleted.

The micctrl --network=default command can be used for this purpose.

 User Credentialing

 Update User Credentials

Command Syntax:

micctrl --userupdate=(none|overlay|merge|nochange) \

[(-a |--pass=)(none|shadow)] [--nocreate]

Description:

The micctrl --userupdate command enables updating certain user credential information.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
178

For --userupdate=none, the /etc/passwd and /etc/shadow files are recreated with the minimal

set of users required by Linux*, which are the root, ssh, nobody, nfsnobody and micuser.

For --userupdate=overlay, the /etc/passwd and /etc/shadow files are recreated with the users

from the --userupdate=none suboption and any regular users found in the /etc/passwd file of
the host.

For --userupdate=nochange, behavior is as for --userupdate=overlay if no configuration exists

for the specified coprocessor. Otherwise the /etc/passwd and /etc/shadow files are
unchanged.

For --userupdate=merge, any users in the host’s /etc/passwd file but not in the specified
coprocessor’s /etc/passwd file are added to the coprocessor’s /etc/passwd and /etc/shadow
files.

 Adding Users to the Intel® Xeon Phi™ Coprocessor File
System

Command Syntax:

micctrl --useradd=<user> [(-u |--uid=)<uid>] \

[(-g |--gid=)<gid>] [(-d |--home=)<dir>] \

[(-c |--comment=)<string>] [--shell=<shell>] \

[(-k |--sshkeys=)<keydir>] [--nocreate] [--non-unique]

Description:

The micctrl --useradd command adds the user named <user> to the /etc/passwd and

/etc/shadow files in the directory identified by the MicDir parameter of each specified
coprocessor.

The --uid suboption specifies the user ID of user <user>. By default, the user ID of user

<user> on the host is used.

The --gid suboption specifies the group ID of user <user>. By default, the group ID of user
<user> on the host is used.

The --home suboption specifies the home directory in the coprocessor file system of user

<user>. By default, the home directory is /home/<user>.

The --comment suboption specifies a comment string to be added to the comment field of the
/etc/passwd entry for user <user>. The default comment string is <user>.

The --shell suboption replaces the default shell used to login. If it is not specified and user
exists on the host system shell will be copied from the host. Otherwise it will set The default to
/bin/bash shell.

The --sshkeys suboption specifies the host directory in which the user’s secure shell key files

are to be found. The default is /home/<user>/.ssh. The *.pub public ssh keys are copied to

the .ssh directory in the user’s home directory of the coprocessor file system.

The --non-unique suboption will allow the user to be added to the coprocessor’s /etc/passwd

and /etc/shadow files with the specified uid even if a user with that uid already exists.

A default .profile file is created in the user’s home directory of the coprocessor file system
home directory.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

179

The user is also added to the /etc/passwd and /etc/shadow files of each specified coprocessor

that is in the online state. In addition, a home directory is created if the --nocreate suboption
is not specified, and the user’s ssh keys are pushed to the user’s home directory.

 Removing Users from the Intel® Xeon Phi™ Coprocessor
File System

Command Syntax:

micctrl --userdel=<user> [(-r |--remove)]

Description:

The micctrl --userdel command removes the user named <user> from the /etc/passwd and
/etc/shadow files in the directory identified by the MicDir parameter of each specified
coprocessor.

By default, --userdel does not remove the user’s home directory on the coprocessor; this is
intended to prevent the inadvertent removal of a user’s remote mounted home directory.
Home directory removal can be forced by including the --remove suboption.

 Changing the Password for Users on the Intel® Xeon Phi™

Coprocessor File System

Command Syntax:

micctrl --passwd

micctrl --passwd=<user> [(-s |--stdin)]

Description:

Phi file systems /etc/ssh directory. The micctrl --passwd command changes a user’s password
in the /etc/shadow file in the directory identified by the MicDir parameter of each specified
coprocessor.

A non-superuser calls micctrl --passwd with no name, and is prompted for the current

password and then for the new password.

The superuser specifies a user’s name, <user>, when calling micctrl --passwd. If the --stdin
suboption is not specified then micctrl will be prompted to provide a new password for a user

and to confirm it.

The -p --pass option was deprecated, superuser may use the --stdin suboption to pass a new
password in the standard input:

micctrl --passwd=username --stdin <<< password

or using pipe from a different program:

echo “newPassword” | micctrl --passwd=username --stdin

echo should be a shell built-in. If it resolves to /bin/echo the password may be visible to other
users.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
180

The --stdin option is considered as less secure and should be used only in justified cases. It is

also advidsed to pass the password using pipe from different program.

The user account on each specified coprocessor that is in the online state will be updated with

the password.

 Adding Groups to the Intel® Xeon Phi™ Coprocessor File
System

Command Syntax:

micctrl --groupadd=<name> (-g |--gid=)<gid>

Description:

The micctrl --groupadd command adds the specified group name and ID to the /etc/group file

in the directory identified by the MicDir parameter of each specified coprocessor.

The group will also be added to the /etc/group file of each specified coprocessor that is in the
online state.

 Removing Groups from the Intel® Xeon Phi™ Coprocessor
File System

Command Syntax:

micctrl --groupdel=<name>

The micctrl --groupdel command removes the specified group name, along with its ID, from

the /etc/group file in the directory identified by the MicDir parameter of each specified
coprocessor.

The group will also be deleted from the /etc/group file of each specified coprocessor that is in

the online state.

 Specifying the Host Secure Shell Keys

Command Syntax:

micctrl --hostkeys=<keydir>

Description:

The micctrl --hostkeys command copies files from the <keydir> directory to the
$MICDIR/etc/ssh file of each specified coprocessor.

micctrl --initdefaults generates a set of ssh key files in the /etc/ssh directory of each specified
coprocessor, in the directory identified by the MicDir parameter. The keys in this directory

identify aniIntel® Xeon Phi™ coprocessor as a “known host” during ssh operations if there is a
match to the user’s known_hosts file (typically in $HOME/.ssh).

If a configuration is completely regenerated, such as by calling micctrl --cleanconfig followed
by micctrl --initdefaults, the user’s known_hosts will have to be revised to match the new
set(s) of host keys. To avoid the need to do this, the existing sets of host keys can be saved
before regenerating the configuration to some <keydir> directory, and then restored
afterward using the micctrl --hostkeys command.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

181

 Updating a User’s SSH Keys on the Intel® Xeon Phi™
Coprocessor File System

Command Syntax:

micctrl --sshkeys [(-d |--dir=)<dir>]

micctrl --sshkeys=<user> [(-d |--dir=)<dir>]

Description:

The micctrl --sshkeys command copies a set of *.pub public ssh keys to the $HOME/.ssh
directory of some user in the file system of each specified coprocessor.

A non-root user does not specify a <user> to micctrl --sshkeys. Any *.pub public Keys are

copied to that user’s $HOME/.ssh directory. Key files are copied from <dir> if specified,
otherwise from the user’s $HOME/.ssh directory on the host. Only files owned by the user are
copied.

A root-user specifies a <user> to micctrl --sshkeys. Any *.pub Keys are copied to that user’s

$HOME/.ssh directory. Key files are copied from <dir> if specified, otherwise from the user’s
$HOME/.ssh directory on the host. Only files owned by the specified user are copied.

micctrl --sshkeys will also use add any *.pub files to the 'authorized_keys' file if not already

present.

 Configuring LDAP on the Intel® Xeon Phi™ Coprocessor File
System

Command Syntax:

micctrl --ldap=(<server>|disable) (-b |--base=)<domain>

Description:

The micctrl --ldap command configures the coprocessor to use LDAP for user authentication.

For --ldap=<server>, micctrl configures LDAP to use the <server> as the authentication
server and configures <domain> as the domain.

For --ldap=disable, micctrl disables LDAP service on each specified coprocessor.

When this command is called, the K1omRpms configuration parameter must be set as needed.

 Configuring NIS on the Intel® Xeon Phi™ Coprocessor File
 System

Command Syntax:

micctrl --nis=(<server>|disable) (-d |--domain=)<domain>

Description:

The micctrl --nis command configures the coprocessor to use NIS for user authentication.

For --nis=<server>, micctrl configures NIS to use the <server> as the NIS/YP server and

configures <domain> as the domain.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
182

For --nis=disable, micctrl disables NIS service on each specified coprocessor.

When this command is called, the K1omRpms configuration parameter must be set as needed.

 Configuring the Intel® Xeon Phi™ Coprocessor Linux* Kernel

 Coprocessor Linux* Image Location

Command Syntax:

micctrl --osimage

micctrl --osimage=<osimage> (-s |--sysmap=)<sysmapfile>

Description:

The micctrl --osimage command sets the OSimage parameter in the micN.conf configuration

file of each specified coprocessor to <osimage> <sysmapfile>. The <osimage> argument is
the Linux* operating system image to be booted, and <sysmapfile> identifies the matching
system map file which holds values used by the mpssd daemon.

For --osimage (For Example: no <osimage> value is specified), micctrl outputs the current
OSimage parameter value for each specified coprocessor.

 Boot On Intel® MPSS Service Start

Command Syntax:

micctrl --autoboot

micctrl --autoboot=(yes|no)

Description:

The micctrl --autoboot command sets the BootOnStart configuration parameter to the

specified value.

For --autoboot (For Example: no --autoboot value is specified), micctrl outputs the current
BootOnStart value for each specified coprocessor.

 Power Management Configuration

Command Syntax:

micctrl --pm

micctrl --pm=(set|default|defaultb|off) [(-c |--corec6=)(on|off)] \

[(-t |--pc3=)(on|off)] [(-s |--pc6=)(on|off)] \

[(-f |--cpufreq=)(on|off)]

Description:

The micctrl --pm command sets the PowerManagement configuration parameter for each
specified coprocessor.

For --pm=set, the power management parameters are set as specified by the optional

arguments --corec6, --pc3, --pc6, and --cpufreq. Each optional parameter can be individually
enabled or disabled by setting the on or off values.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

183

For --pm=default, the power management configuration is set to the default for each card for

which the card’s stepping can be determined. If the stepping of a coprocessor cannot be
determined, its power management configuration is set to the default for C stepping Intel®
Xeon Phi™ coprocessors.

For --pm=defaultb, the power management configuration for each specified coprocessor is set
to the default for B stepping Intel® Xeon Phi™ coprocessors.

For --pm=off, all parameters other than cpufreq are set to the off state.

For --pm (For Example: no --pm value is specified), micctrl outputs the current Power-
Management value for each specified coprocessor.

It is recommended to use the default power management settings unless directed by an Intel®
representative to change them.

 Cgroups Configuration

Command Syntax:

micctrl --cgroup [(-m |--memory=)(enable|disable)]

Description:

The micctrl --cgroup command modifies the Cgroup parameter for each specified coprocessor

to value of the --memory suboption.

If the --memory suboption is not specified, micctrl outputs the current value of the Cgroup
parameter of each specified coprocessor.

 Syslog Configuration

Command Syntax:

micctrl –-syslog

micctrl –-syslog=buffer [(-l |--loglevel=)<loglevel>]

micctrl –-syslog=file [(-f |--logfile=)<location>] \

[(-l |--loglevel=)<loglevel>]

micctrl –-syslog=remote (-s |--host=)<targethost[:port]> \

[(-l |--loglevel=)<loglevel>]

Description:

The micctrl --syslog command creates and/or modifies the /etc/syslog-startup.conf file in the

filesystem of each specified coprocessor.

For --syslog=buffer, syslog is only available from the kmesg buffer.

For --syslog=file, the syslog daemon logs to the optional <location> or to the

/var/log/messages log file.

For --syslog=remote, the syslog daemon is instructed to log to the remote node specified by

the optional host argument. The port value defaults to 514. If the --host suboption is not
specified then the remote host defaults to host:514.

For --syslog (no --syslog type is specified), the current syslog configuration is output.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
184

Changes to the logfile location take effect immediately on each specified coprocessor that is in

the online state.

NOTE: micctrl --syslog only configures syslog on the coprocessor. Remote host may need
additional configuration. Please refer to the documentation of your host logger daemon

to determine how to enable collecting logs from remote hosts.

 Deprecated micctrl Commands

 --service Command

Command Syntax:

micctrl --service

micctrl --service=<name> --state=(on|off) [--start=<num>] \

[--stop=<num>] [mic card list]

Description:

The Intel® Xeon Phi™ coprocessor Linux* OS, like any Linux* OS, executes a series of scripts

on boot, which are located in /etc/init.d. To determine which of the installed scripts are
executed on any boot, links to these scripts are created in runlevel directory. The card’s OS
runs at level 5, defining the runlevel directory to be /etc/rc5.d.

On most Linux* systems, the service scripts to be executed are enabled or disabled using the

chkconfig command. On the MPSS stack this is performed by the micctrl --service command.

The --state suboption must be set to on or off and determines whether the script will execute

on boot. Services already included in the configuration may have their state changed without
specifying new start or stop values.

The start and stop parameters must be between 1 and 100, and determine the order in which
the services are executed. If stop is not specified, then it will be set to 100 – start.

Add on software containing a service script will include the Service parameter associated with

it. Modifying the default value included in its own configuration file will cause an overriding
entry to be set in the micN.conf file.

micctrl --service may be called with no arguments and will display a list of current service

settings. Currently, no services are configured by default.

 --configuser Command

Command Syntax:

micctrl --configuser=none [-ids] [mic card list]

micctrl --configuser=local [--low=<low uid>] [--high=<high uid>] \

[-ids] [mic card list]

Description:

This command has been removed. Refer to the section on the micctrl --userupdate command
for its functional replacement.

The micctrl Utility

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

185

 --resetconfig Command

Command Syntax:

micctrl --resetconfig [--users=(none|overlay|merge|nochange) \

[--pass=<none|shadow>] [--nocreate] [--modhost=(yes|no)] \

[--modcard=(yes|no|<path_to_file>)] [mic card list]

Description:

Changes to the configuration files are propagated with the micctrl --resetconfig command.
The --resetconfig command first removes the files in MicDir created by the configuration
process, with the exception of the highly persistent ssh host key files. It then regenerates

those files according to the parameters in the /etc/mpss/micN.conf and /etc/mpss/default.conf
files. This process will not add default parameters, but only causes the changed parameters to
be propagated.
The --resetconfig command added several new options with the 3.2 release. Consult the

previous documentation for the --initdefaults command.

Intel® MPSS Host Driver Sysfs Entries

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
186

 Intel® MPSS Host Driver Sysfs

Entries

The mic.ko driver supplies configuration and control information to host software through the
Linux* Sysfs file system. The driver presents two sets of information:

 Driver global information is presented in the /sys/class/mic/ctrl directory.

 Information unique to an Intel® Xeon Phi™ coprocessor instance is presented in the
/sys/class/mic/micN directories.

 The Global Mic.ko Driver SYSFS Entries

 Revision Information

Sysfs Entries:

/sys/class/mic/ctrl/version

This entry is read-only. The version sysfs entry displays a string containing the ID of the build

producing the current installed software.

 Other Global Entries

Sysfs Entries:

/sys/class/mic/ctrl/peer2peer

/sys/class/mic/ctrl/vnet

These entries are read-only.

The peer 2 peer reports the state, enable or disable, of Symmetric Communication Interface
(SCIF) based communication between Intel® Xeon Phi™ coprocessors, referred to as peer-to-
peer (p2p) communication.

On reading, the vnet entry returns the number of active links to the virtual Ethernet.

 The Intel® Xeon Phi™ Mic.ko Driver SYSFS Entries

 Hardware Information

Sysfs Entries:

/sys/class/mic/micN/family

/sys/class/mic/micN/sku

Intel® MPSS Host Driver Sysfs Entries

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

187

/sys/class/mic/micN/stepping

/sys/class/mic/micN/active_cores

/sys/class/mic/micN/memsize

These sysfs entries are all read-only.

The family node reports the Intel® Xeon Phi™ coprocessor family. At this time the family
should always report the string x100.

The sku node returns a string defining the device type, for example: C0-3120/3120A.

The stepping node returns the processor stepping, for example: B0, B1, or C0.

The active_cores node reports (base 16) the number of working cores on the card.

The memsize node returns the size of memory (in hexadecimal) on the Intel® Xeon Phi™
coprocessor.

 State Entries

Sysfs Entries:

/sys/class/mic/micN/state

/sys/class/mic/micN/mode

/sys/class/mic/micN/image

/sys/class/mic/micN/cmdline

/sys/class/mic/micN/kernel_cmdline

The state and cmdline nodes are read/write. The others are read-only.

On reading, the state node reports one of the following values:

 ready card is ready for a boot command

 booting card is currently booting

 no response card is not responding

 boot failed card failed to boot

 online card is currently booted

 shutdown card is currently shutting down

 lost booted card is not responding

 resetting card is processing soft reset

 reset failed card cannot be reset – non recoverable

Additionally, if the state is booting, online or shutdown, the state is modified by the
information from the mode and image sysfs nodes. The mode will be either linux or elf. The
image file will report the name of the file used to boot into the associated mode.

Intel® MPSS Host Driver Sysfs Entries

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
188

Writing to the state node requests the driver to initiate a change in state. The allowable

requests are to boot, reset or shutdown the Intel® Xeon Phi™ coprocessor.

To boot a card, the string to write has the format “boot:linux:<image name>”. The mpssd

daemon uses its OSimage parameter to fill in the image name. For example the default
Linux* image for the Intel® Xeon Phi™ coprocessor will create the string
“boot:linux:/usr/share/mpss/boot/bzImage-2.6.38.8”. After a successful boot the state will be
online, mode will be linux, and image will be /usr/share/mpss/boot/bzImage-2.6.38.8.

The cmdline parameter is set by user software, normally the mpssd daemon or micctrl utility,

to pass kernel command line parameters to the Intel® Xeon Phi™ coprocessor Linux* boot
process. Current parameters include root file system, console device information, power
management options and verbose parameters. When the state sysfs node requests the card
to boot, the driver adds other kernel command line information to the string and records the
complete string that was passed to the booting embedded Linux* OS in the kernel_cmdline

sysfs node.

 lStatistics

Sysfs Entries:

/sys/class/mic/micN/boot_count

/sys/class/mic/micN/crash_count

These entries are read-only. The boot_count sysfs node returns the number of times that the

Intel® Xeon Phi™ coprocessor has booted to the online state. The crash_count sysfs node
records the number of times that the card has crashed.

 Debug Entries

Sysfs Entries:

/sys/class/mic/micN/platform

/sys/class/mic/micN/post_code

/sys/class/mic/micN/scif_status

/sys/class/mic/micN/log_buf_addr

/sys/class/mic/micN/log_buf_len

/sys/class/mic/micN/virtblk_file

The platform, post_code and scif_status entries are read-only; the log_buf_addr, log_buf_len,

and virtblk_file entries are read and write.

The platform sysfs node should always return a zero value.

The post_code sysfs node returns the contents of the hardware register containing the state of

the boot loader code. Reading it always returns two ASCII characters. Possible values of note
are the strings “12”, “FF” and any starting with the character ‘3’. A string of “12” indicates the
Intel® Xeon Phi™ coprocessor is in the ready state and waiting for a command to start
executing. A string of “FF” indicates the coprocessor is executing code. A string starting with

the character ‘3’ indicates the coprocessor is in the process of training memory. Any other

Intel® MPSS Host Driver Sysfs Entries

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

189

value should be transitory. Any other value remaining for any length of time indicates an

error and should be reported to Intel.

The log_buf_addr and log_buf_len parameters inform the host driver of the memory address

in the Intel® Xeon Phi™ coprocessor memory at which to read its Linux* kernel log buffer.
The correct values to set are found by looking for the strings “log_buf_addr” and log_buf_len”
in the Linux* system map file associated with the file in the OSimage parameter, and are
typically set by the mpssd daemon.

The virtblk_file sysfs node indicates the file assigned to the virtio block interface.

 Flash Entries

Sysfs Entries:

/sys/class/mic/micN/flashversion

/sys/class/mic/micN/flash_update

/sys/class/mic/micN/fail_safe_offset

These nodes are all read-only. The flashversion sysfs node returns the current version of the
flash image installed on the card by the micflash utility. The other two are used by the
micflash command. Root privileges are required to read flash_update and fail_safe_offset

entries.

 Power Management Entries

Sysfs Entries:

/sys/class/mic/micN/pc3_enabled

/sys/class/mic/micN/pc6_enabled

The pc3_enabled node reports the current setting of the pc3 power management setting. If

pc3 power management is causing errors, writing a “0” to this setting will disable pc3 power
management.

The pc6_enabled node reports the current setting of the pc6 power management setting. If
pc6 power management is causing errors, writing a “0” to this setting will disable pc6 power

management.

 Other Entries

Sysfs Entries:

/sys/class/mic/micN/extended_family

/sys/class/mic/micN/extended_model

/sys/class/mic/micN/fuse_config_rev

/sys/class/mic/micN/meminfo

/sys/class/mic/micN/memoryfrequency

Intel® MPSS Host Driver Sysfs Entries

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
190

/sys/class/mic/micN/memoryvoltage

/sys/class/mic/micN/model

/sys/class/mic/micN/stepping

/sys/class/mic/micN/stepping_data

These sysfs nodes are all read-only and return the contents of a particular hardware register.
They are used by the micinfo command.

micrasd

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

191

 micrasd

micrasd is a Linux* host side daemon that monitors for and logs Intel® Xeon Phi™

coprocessor hardware errors (MCEs). Normally, micrasd is run as a service:

[host]# 1service micras start

[host]# 1service micras stop

To start micrasd with secure communications to Reliability Monitor, use:

For RHEL* 6.x and SLES* 11.x:

[host]# 1service micras start-with-security

For RHEL* 7.x and SLES* 12.x you have to set

START_WITH_SECURITY=true on /etc/mpss/micrasrelmond.conf

and then start micras normally.

The micras service has a dependency on the mpss service. The micras service must be started
after the mpss service, and stopped prior to stopping the mpss service. To automatically start
the micras service in boot time, use the command:

[host]# 1chkconfig micras on

To disable automatically starting the micras service, use the command:

[host]# 1chkconfig micras off

Intel® Xeon Phi™ coprocessor hardware errors are logged into Linux* syslog under

/var/log/messages with the micras tag.

micrasd log messages are logged into /var/log/micras.log. These messages can be useful in

tracing micras functional flow for diagnostic purposes.

If micrasd is executed with no arguments, it runs at the console prompt, connects to devices,
and waits for errors. For more information about micrasd refer to:

[host]# micrasd -help

micnativeloadex

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
192

 micnativeloadex

The micnativeloadex utility will copy an Intel® Xeon Phi™ coprocessor native binary to a

specified coprocessor and execute it. The utility automatically checks library dependencies for
the application. If they are found in the default search path (set using the
SINK_LD_LIBRARY_PATH environment variable), the libraries are copied to the card prior to
execution. This simplifies running Intel® Xeon Phi™ coprocessor native applications.

In addition, the utility can also redirect output from an application running remotely on the

Intel® Xeon Phi™ coprocessor back to the local console. This feature is enabled by default but
can be disabled with a command line option.

Note: If the application has any library dependencies, then the SINK_LD_LIBRARY_PATH

environment variable must be set to include those directories. This environment variable works just

like LD_LIBRARY_PATH for normal Linux* applications. To help determine the required libraries,
execute micnativeloadex with the -l command line option:

[host]$ micnativeloadex -l Appname

This will display the list of dependencies and which ones have been found. Any dependencies
not found will likely need to be included in the SINK_LD_LIBRARY_PATH.

Refer to micnativeloadex help for more information:

[host]$ micnativeloadex -help

The SINK_LD_LIBRARY_PATH must include the directory path for libcoi_host.so library

For example:

[host]$ export LD_LIBRARY_PATH=/usr/lib64:$LD_LIBRARY_PATH

Note: When linking in libraries installed in /lib64, do not add /lib64 to the LD_LIBRARY_PATH
environment variable. This path is already implicit in the dynamic linker/loader's search path, and
modifying the path variable will result in breaking the order in which library paths are searched for

offload compilation.

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

193

 Optional Intel® MPSS Components

This chapter provides detailed instructions on installing several optional MPSS components.

 Intel® MPSS GANGLIA Support (optional)

This section describes how to install Ganglia components on the host and Intel® Xeon Phi™
coprocessor for host platforms running RHEL* 6, RHEL* 7 or SLES* 11. Due to 3rd party

incompatibilities Ganglia is not supported on SLES* 12.

 Requirements

The following software components must be installed on the host.

1) Red Hat* Enterprise

 apr

 apr-devel

 expat

 expat-devel

 gcc-c++

 libconfuse

 libconfuse-devel

 libtool

 rpm-build

 rrdtool

 rrdtool-devel

2) SUSE* Linux* Enterprise Server (SLES*)

 gcc-c++

 libapr1

 libapr1-devel

 libconfuse0

 libconfuse-devel

 libexpat0

 libexpat-devel

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
194

 libtool

 rpmbuild

 rrdtool

 rrdtool-devel

 Steps to Install GANGLIA on the Host

Note: Only GANGLIA 3.1.7 is currently supported.

Note: For additional information on the installation of GANGLIA, consult the documentation at
http://ganglia.sourceforge.net

Note: The default path for the GANGLIA web page is /usr/share/ganglia. If the ganglia-web RPM was
installed, the files conf.php, get_context.php and host_view.php will be overwritten.

Steps:

1. Create working directories. For example:

[host]# mkdir -p /var/lib/ganglia/rrds

[host]# mkdir -p /var/www/html

2. Download GANGLIA 3.1.7 from http://ganglia.info/?p=269.

3. Untar GANGLIA 3.1.7 package and access the untar folder:

[host]$ tar xf ganglia-3.1.7.tar.gz

[host]$ cd ganglia-3.1.7

4. Execute the configure tool:

[host]$./configure --with-gmetad \

--with-libpcre=no --sysconfdir=/etc/ganglia

5. Build GANGLIA content and install binaries:

[host]$ make

[host]# make install

6. Generate default configuration for gmond:

[host]# gmond --default_config > /etc/ganglia/gmond.conf

7. Edit (as root) the host’s /etc/ganglia/gmond.conf and confirm that a udp_recv_channel is

defined and that it assigns a port value. For example:

udp_recv_channel {

 : /*other parameters */

 port = <port>

 : /*other parameters */

}

http://ganglia.sourceforge.net/
http://ganglia.info/?p=269

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

195

If a udp_recv_channel is not defined, or if the port is not assigned, then define it. The

standard ganglia port is 8649:

udp_recv_channel {

 : /*other parameters */

 port = 8649

 : /*other parameters */

}

8. Edit (as root) the host’s /etc/ganglia/gmetad.conf to configure the cluster name in the
"data_source" line. For example:

data_source "mic_cluster" localhost

9. Change the owner of the RRDS folder:

[host]# chown -R nobody /var/lib/ganglia/rrds

10. Copy GANGLIA web content to local web path.:

[host]# cp -r web <web_path>/ganglia

11. Start the gmond and gmetad daemons:

[host]# gmond

[host]# gmetad

12. Install web front end for Intel® MPSS GANGLIA.

 Red Hat* Enterprise Linux*

[host]# yum install $MPSS36/ganglia/mpss-ganglia*.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install $MPSS36/ganglia/mpss-ganglia*.rpm

13. Copy the web content under /usr/share/mpss/ganglia to the GANGLIA web path:

[host]$ cp -r /usr/share/mpss/ganglia/* <web_path>/ganglia/

 Installing Intel® MPSS GANGLIA RPMs in the Card

The following rpms must be installed: ganglia-3.1.7-r0.k1om.rpm, libapr-1-0-1.4.6-

r0.k1om.rpm, libconfuse0-2.7-r1.k1om.rpm, and mpss-ganglia-mpss-r0.k1om.rpm

You can use any of the methods described earlier in this chapter to install Intel® MPSS
Ganglia rpms into the coprocessor file system. In the example below we will use micctrl to add
an Overlay RPM parameter for each rpm:

[host]# micctrl --overlay=rpm \

--source=$MPSS36_K1OM/libconfuse0-2.7-r1.k1om.rpm --state=on

[host]# micctrl --overlay=rpm \

--source=$MPSS36_K1OM/libapr-1-0-1.4.6-r0.k1om.rpm --state=on

[host]# micctrl --overlay=rpm \

--source=$MPSS36_K1OM/ganglia-3.1.7-r0.k1om.rpm --state=on

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
196

[host]# micctrl --overlay=rpm \

--source=$MPSS36_K1OM/mpss-ganglia-mpss-r0.k1om.rpm --state=on

Restart the mpss service:

[host]# 11service mpss restart

 Starting Intel® MPSS with GANGLIA Support

1) Configure the /etc/ganglia/gmond.conf files on the both the host and the coprocessors as

needed.

Note: The collection of several CPU metrics is disabled by default in the coprocessor’s
/etc/ganglia/gmond.conf. Enabling their collection will cause a performance penalty. To enable these
metrics, search for the comment:

/*CPU metrics are disabled by default, uncommenting this block will have a

performance penalty*/
and uncomment the following collection groups.

2) The Intel® Xeon Phi™ coprocessor specific GANGLIA stack is started by executing:

[host]# ssh mic0 gmond

 Stopping Intel® MPSS with GANGLIA Support

Stop the gmond for all installed coprocessors in the system, for Instance:

[host]# ssh mic0 killall gmond

[host]# ssh mic1 killall gmond

 Intel® Xeon Phi™ Coprocessor Performance
Workloads (optional)

The Intel® Xeon Phi™ coprocessor Performance Workloads component of Intel® MPSS
(micperf) can be used to evaluate the performance of coprocessor based installation. Micperf
incorporates a variety of benchmarks into a simple user experience with a single interface for

execution and a unified means of data inspection. The user interface to micperf consists of five
executables: one for execution of benchmarks (micprun), and four that interpret the output of
the first. These executables are documented with standard UNIX* style command line
interfaces. The results can be displayed as professional quality plots, human readable text or
comma separated value output that can be easily imported into a variety of other applications.
Results of different runs can be easily combined and compared. Documentation is installed at

/usr/share/doc/micperf-3.6.

The remainder of this chapter describes micperf installation.

 Installation Requirements

1) Intel® Composer XE Requirements

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

197

There are two options to installing the Intel® Composer XE requirements. The first option is to

install the full Intel® Composer XE package and source the compilervars.sh or
compilervars.csh script at run time.

If the full composer installation is not available, then two packages can be used instead. The

required shared object libraries can be installed via the Intel® Composer XE redistributable
package, freely distributed on the web at:

http://software.intel.com/en-us/articles/redistributable-libraries-for-the-intel-c-and-fortran-

composer-xe-2013-sp1-for-linux

This package has an install.sh script for installation. After installation, there are
compilervars.sh and compilervars.csh scripts which serve a similar purpose to those scripts in
the full Intel® Composer XE distribution and must be sourced at run time.

Besides the shared object libraries, the MKL Linpack benchmark is also a requirement. This is
also freely distributed on the web at:

http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download

This download is a tarball that can be unpacked anywhere, but the environment variable
MKLROOT must point to the top level directory of the untarred package. For instance, if the
user extracted the tarball into their home directory they should set MKLROOT as follows (in

bash or Bourne shell):

[host]$ export MKLROOT=<home_directory_path>/linpack_<version_num>

If MKLROOT is set in the user's shell environment at run time, then micprun will be able to

locate the linpack binaries. The version of linpack linked above may be newer than 11.1.2, and
MKLROOT variable should reflect this.

2) MATPLOTLIB Requirements

The micpplot and micprun applications use the MATPLOTLIB Python module to plot
performance statistics. The micprun application only creates plots when verbosity is set to two
or higher, and it only requires MATPLOTLIB for this use case. MATPLOTLIB must be installed in
order to create plots. Download it from:

matplotlib.sourceforge.net

 Distributed Files

This package is distributed as two RPM files:

$MPSS36/perf/micperf-3.*.rpm

$MPSS36/perf/micperf-data-3.*.rpm

The first of these packages contains everything except the reference performance
measurements, which are distributed in the second package.

 RPM Installation

To install the RPM files, cd to $MPSS36/perf, then:

 Red Hat* Enterprise Linux*

http://software.intel.com/en-us/articles/redistributable-libraries-for-the-intel-c-and-fortran-composer-xe-2013-sp1-for-linux
http://software.intel.com/en-us/articles/redistributable-libraries-for-the-intel-c-and-fortran-composer-xe-2013-sp1-for-linux
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://matplotlib.sourceforge.net/

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
198

[host]# yum install *.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install *.rpm

This installs files to the following directories:

 Source code: /usr/src/micperf

 Documentation and licenses: /usr/share/doc/micperf-3.6

 Benchmark binaries: /usr/libexec/micperf

 Reference data: /usr/share/micperf/micp

 Links to executables: /usr/bin

 Python Installation

Once the RPM packages have been installed, an additional step must be executed to access
the micp Python package: either install it to your global Python site packages, or set up your
environment to use the micp package from the installed location.

To install into the Python site packages:

[host]$ cd /usr/src/micperf/micp

[host]# python setup.py install

This method provides access to the micp package and executable scripts to all non-root users
who use the same Python version as the root user (sudoer). If Python is in the default location

and uses a standard configuration, setup.py installs the micp package to the directories:

/usr/bin

/usr/lib/pythonPYVERSION/site-packages/micp

An intermediate product of running "setup.py install" is the creation of the directory:

/usr/src/micperf/micp-<version>/build

None of the products of running setup.py discussed above will be removed by uninstalling the
micperf RPMs. The installation with setup.py uses Python's distutils module, and this module
does not support uninstall. If installing on a Linux* system where Python is configured in a
standard way, it should be possible to uninstall with the following commands:

[host]# sitepackages=`sudo python -c \

"from distutils.sysconfig import get_python_lib; \

print(get_python_lib())"`

[host]# rm -rf /usr/src/micperf/micp/build \

/usr/bin/micpcsv \

/usr/bin/micpinfo \

/usr/bin/micpplot \

/usr/bin/micpprint \

/usr/bin/micprun \

${sitepackages}/micp \

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

199

${sitepackages}/micp-[version number]*

 Alternative to Python Installation

Another way to access the micp package after installing the RPMs is to alter the shell run time

environment of a user. To set up your bash or Bourne shell environment:

[host]$ export PYTHONPATH=/usr/src/micperf/micp:${PYTHONPATH)

To set up your csh run time environment:

[host]$ setenv PYTHONPATH /usr/src/micperf/micp:${PYTHONPATH}

 Intel® MPSS Reliability Monitor Support (optional)

The Intel® MPSS Reliability Monitor is designed to monitor the overall health of compute

nodes in a cluster. It typically runs on a cluster’s head, or management, node. The Reliability
Monitor works closely with the RAS agent running on each compute node. Uncorrectable errors
or crash symptoms are reported to the Reliability Monitor.

 Requirements

Intel® MPSS and the micrasd daemon must be installed on each ode to be monitored. micrasd

is installed as part of normal software stack installation. Refer to Section 3.3.

 Steps to Install Intel® MPSS with Reliability Monitor Support

Only install Reliability Monitor on the head node, or management node.

The default path for the Reliability Monitor node configuration file is /etc/mpss.

Steps:

Install Intel® MPSS Reliability Monitor:

 Red Hat* Enterprise Linux*

[host]$ cd $MPSS36/relmon

[host]# yum install mpss-sysmgmt-relmon-3.*.rpm

 SUSE* Linux* Enterprise Server

[host]$ cd $MPSS36/relmon

[host]# zypper install mpss-sysmgmt-relmon-3.*.rpm

 Starting Intel® MPSS with Reliability Monitor Support

1) On each compute node, make sure mpss service and micras service are up and running. If

mpss service and micras service are not running, use:

[micN]# 1service mpss start

[micN]# 1service micras start

Optional Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
200

2) On head node, start Reliability Monitor service by using:

[host]# 1service relmon start

 Stopping Intel® MPSS with Reliability Monitor Support

On head node, stop Reliability Monitor service by using:

[host]# 1service relmon stop

 Reliability Monitor Configuration File and Log

The node configuration file mic_node.cfg for Reliability Monitor is located at /etc/mpss. The file

is in comma-separated values (CSV) format so it is supported by almost all spreadsheets and
database management systems.

Errors will be logged into Linux* syslog /var/log/messages. You can check the error log by
using:

[host]# cat /var/log/messages | grep relmon

Reliability Monitor is installed in /usr/bin. After relmon service is running, you can issue

commands to monitor node status and error information by using:

[host]$ relmond --cmd shownode

[host]$ relmond --cmd showerr

For more information about Reliability Monitor, refer to:

[host]$ relmond –-help

Rebuilding Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

201

 Rebuilding Intel® MPSS

Components

This appendix describes the steps to rebuild selected Intel® MPSS GPL libraries and
components. Rebuilding the host and OFED drivers was covered in Sections 3.3.3 and 3.3.4
respectively.

For any of these components, perform the following steps:

1) Install Intel® MPSS (see Section 3.3).

2) Download and untar the mpss-src-3.6.tar file:

a. Go to the Intel® Developer Zone website (Intel® DZ): http://software.intel.com/en-

us/articles/intel-manycore-platform-software-stack-mpss.

Download the mpss-src-3.6.tar file from the “SOURCE” link associated with your MPSS
release.

b. Extract the source archive:

[host]$ tar xvf mpss-src-3.6.tar

By definition, source rpms are extracted to the $MPSS36_SRC directory.

 Recompiling the Intel® MPSS GANGLIA Modules

Support enabled for RHEL* 6 and 7, and SLES* 11. Ganglia is not supported in SLES* 12.

3) Obtain and install Ganglia prerequisites (see F.1.1).

4) Obtain and install ganglia-devel-3.1.7 and apr-devel-1.3.9-3 on the host

5) Extract mpss-ganglia-mpss.tar.bz2.

[host]$ cd $MPSS36_SRC

[host]$ tar xvf mpss-ganglia-mpss.tar.bz2

[host]$ cd mpss-ganglia-mpss

6) Define the environment variable CROSS_COMPILE.

[host]$ export CROSS_COMPILE=/opt/mpss/3.6/sysroots/ \

 x86_64-mpsssdk-linux/usr/bin/k1om-mpss-linux/k1om-mpss-linux

For RHEL* 7.1:

An additional variable is required.

[host]# export C_INCLUDE_PATH=/usr/include/apr-1

7) Regenerate the GANGLIA modules.

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Rebuilding Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
202

[host]$ make

 Recompiling the Intel® MPSS MIC Management
Modules

1. Install Intel® MPSS™.

2. Ensure that the following packages are installed.

 mpss-modules-headers-3.6

 glibc2.12.2pkg-libmicmgmt0-3.6

 libscif0-3.6

 libscif-dev-3.6
 glibc2.12pkg-libmicmgmt-dev-3.6

 asciidoc

3. Download and untar the mpss-src-3.6.tar to $MPSS36_SRC
 [host]# tar xvf mpss-src-3.6.tar

4. Extract mpss-micmgmt-3.6.tar.bz2 and mpss-metadata-3.6.tar.bz2.
 [host]$ cd $MPSS36_SRC

 [host]# tar xvf mpss-micmgmt-3.6.tar.bz2
 [host]# tar xvf mpss-metadata-3.6.tar.bz2

5. Regenerate the Intel MPSS MIC management modules.
 [host]$ cd $MPSS36_SRC/mpss-micmgmt-3.6
 [host]# cp ../mpss-metadata-3.6/mpss-metadata.mk miclib/

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.c miclib/

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.mk apps/mpssinfo

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.c apps/mpssinfo

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.mk apps/mpssflash

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.c apps/mpssflash

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.mk apps/micsmc

 [host]# cp ../mpss-metadata-3.6/mpss-metadata.c apps/micsmc

Set the DESTDIR environment variable to the desired make install target path, for

example /usr/local.

 [host]# export DESTDIR=/usr/local

6. Build the micmgmt modules:

 [host]# make lib

 [host]# make install_lib

 [host]# make

 [host]# make install

A build directory will be created at $DESTDIR, and everything will be installed there.

Rebuilding Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

203

 How to Extract and Use the COI Open Source

Distribution

COI source is delivered in the file mpss-coi-3.6.tar.bz2. In the tar file, the files are packaged

with paths relative to the original source directory structure.

 Building COI Libraries and Binaries

1) Ensure that the asciidoc utility is installed.

2) Extract mpss-metadata.tar.bz2 and mpss-coi-3.6.tar.bz2:

[host]$ cd $MPSS36_SRC

[host]$ tar xvf mpss-metadata-3.6.tar.bz2

[host]$ tar xvf mpss-coi-3.6.tar.bz2

[host]$ cd mpss-coi-3.6

3) Rebuild COI, either the debug or release version as needed:

[host]$ make [debug|release] -I ../mpss-metadata-3.6/

 Installing Host Library

To install the host-side COI library, first make sure that the Intel® MPSS driver is running,

then do the following:

[host]# cp build/host-linux-[debug|release]/libcoi_host.so

/usr/lib64/

[host]# cd /usr/lib64/

[host]# ln -s libcoi_host.so libcoi_host.so.0

 Installing Card-side Binaries and Libraries

To install the COI library, first kill the coi_daemon so that the new one can be installed:

[host]# ssh micN

[micN]# killall -9 coi_daemon

[micN]# exit

Install the new components and start the COI daemon:

[host]# cd $MPSS36_SRC/mpss-coi-3.6

[host]# scp build/device-linux-[debug|release]/coi_daemon \

 micN:/usr/bin/coi_daemon

[host]# scp \

 build/device-linux-[debug|release]/libcoi_device.so \

 micN:/usr/lib64/libcoi_device.so

[host]# ssh micN

[host]# cd /usr/lib64/

[micN]# ln -s libcoi_device.so libcoi_device.so.0

[micN]# coi_daemon --coiuser=micuser&

[micN]# exit

Rebuilding Intel® MPSS Components

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
204

Once installed, and now that the new coi_daemon is running, the new COI binaries and

libraries will be in use in the current running driver.

Building the COI stack also builds the COI tools. If you wish to install the newly built tools

coitrace and micnativeloadex, do the following:

[host]# cp build/host-linux-[debug|release]/coitrace /usr/bin/

[host]# cp build/host-linux-[debug|release] \

 /libcoitracelib.so /usr/lib64/

[host]# cp build/host-linux-[debug|release] /micnativeloadex \

 /usr/bin/

[host]# cd /usr/lib64/

[host]# ln -s libcoitracelib.so libcoitracelib.so.0

 COI Tutorial Build and Execution Instructions

To build and run the COI tutorials, follow the instructions below:

1) Ensure all the Intel® Xeon Phi™ coprocessors are booted to the online state:

[host]$ micctrl -s

 mic0: online (mode: linux image:

 /usr/share/mpss/boot/bzImage-knightscorner)

2) Extract mpss-coi-3.6.tar.bz2:

[host]$ cd $MPSS36_SRC

[host]$ tar xvf mpss-coi-3.6.tar.bz2

3) Build a COI tutorial, <coi_tutorial>:

[host]$ cd mpss-coi-3.6/src/tutorial/<coi_tutorial>

[host]$ make

4) Execute the debug or release version of the tutorial

[host]$ cd [debug|release]

[host]$./<coi_tutorial>_source_host

 How to Extract and Use the MYO Open Source
Distribution

MYO source is delivered in the file mpss-myo-3.6.tar.bz2. In the tar file, the files are a tree

relative to the mpss-myo-3.6 directory.

Extract the MYO archive to the desired directory with the following steps.

[host]$ cd $MPSS36_SRC

[host]$ tar -xf mpss-myo-3.6.tar.bz2

[host]$ cd mpss-myo-3.6

The mpss-myo-3.6/src/README text file explains the purpose, content, and use of the MYO

Open Source Distribution. It includes information about compiler selection, building and
installing the MYO libraries, MYO system requirements, and the MYO tutorials.

General Services Tutorial

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

205

 General Services Tutorial

This chapter briefly describes how services are started on supported Linux* host Operating

Systems and the Intel® Xeon Phi™ coprocessor. This is intended for customers who are
adding custom services that may interact with the services supplied with Intel® MPSS. In all
cases the described priority only applies to initial boot and run level changes. The priority or
dependencies are not checked when services are manually started and stopped.

 Service Startup by Priorities (RHEL* 6.x)

Red Hat* traditionally uses this method of startup and shutdown. A line is added to the top of

the service script that defines the run levels and priority of when a service starts at boot time.

Here is an example snippet from the top of a service file:

 #!/bin/bash

 # chkconfig: 2345 10 90

 # ...

This tells the startup daemon in Linux* to shut down the service early (priority 10) and start

the service late (priority 90) when entering Linux* run levels 2, 3, 4, and 5. If a service A
depends on another service B the shutdown and startup priorities should reflect the relative
priorities sooner and later respectively:

 #!/bin/bash

 # Service B

 # chkconfig: 2345 10 90

and:

 #!/bin/bash

 # Service A

 # chkconfig: 2345 9 91

The priority increases in time for both shut down and startup of a service. Now service A will
start after service B and service B will shut down after service A.

When you have multiple dependencies make sure the new service’s shutdown time is the

minimum of the dependencies minus 1 and the start priority is max of dependencies + 1.

General Services Tutorial

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
206

There is a tool for managing services runlevels and priorities called chkconfig. For more

details please see:

https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-services-chkconfig.html

 Service Startup by Dependencies (SUSE*
Linux* Enterprise Server 11 SP3)

In addition to the chkconfig comment line from the Red Hat* distribution priority method,
SUSE* Linux* Enterprise Server 11 adds a new concept to the startup order, dependencies.

The chkconfig method is present for backward compatibility.

Here is a snippet we can refer to:

 #!/bin/bash

 # chkconfig: 35 75 54

Description: Novell Identity Manager User Application

BEGIN INIT INFO

Provides: userapp

Required-Start: $ndsd $network $time

Required-Stop:

Default-Start: 3 5

Default-Stop: 0 1 2 6

Short-Description: Novell IDM UserApp

Description: Novell Identity Manager User Application

END INIT INFO

Some short definitions:

Provides - The name used to identify this service in the init daemon

Required-Start - Space delimited Provides names of services to start before this

 service

Required-Stop - Space delimited Provides names of services to stop before this
 service

Default-Start - Space delimited list of run levels to start when transitioning run

 levels

Default-Stop - Space delimited list of run levels to stop when transitioning run levels

Short-Description - Short display name of service

Description - Full display name of service

To make sure the service start order is correct, pick the list of service dependencies and list
them on the Required-Start line. Make sure to fill in the start and stop run levels as
appropriate. Optionally list the services to stop after the service represented by this script.

Note: All names used for service reference must be the Provides name and not the file name of the
script!

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-services-chkconfig.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-services-chkconfig.html

General Services Tutorial

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

207

For more details on this method see:

http://www.novell.com/support/kb/doc.php?id=7002295

 Intel® Xeon Phi™ Coprocessor Method for Service
Start Priority

The Intel® Xeon Phi™ coprocessor’s init daemon using the SUSE* Linux* Enterprise Server 11
dependency system is described in the previous section.

http://www.novell.com/support/kb/doc.php?id=7002295

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
208

 Troubleshooting and Debugging

This appendix is a collection of tips and techniques that can be helpful in troubleshooting an

Intel® Xeon Phi™ coprocessor installation and/or coprocessor debugging execution.

 Log Files

The Intel® Xeon Phi™ coprocessor supports BusyBox* implementations of dmesg and syslogd.

 Dmesg Output

Viewing dmesg output can sometimes help in troubleshooting when a coprocessor fails to
boot.

First, verify that debugfs is mounted:

[host]$ mount | grep debugfs
none on /sys/kernel/debug type debugfs (rw)

Mount debugfs, if not already mounted:

[host}# mount -t debugfs none /sys/kernel/debug

Coprocessor dmesg output can be viewed during coprocessor boot (or later) at

/sys/kernel/debug/mic_debug/micN/log_buf. For example:

 [host]$ cat /sys/kernel/debug/mic_debug/micN/log_buf

 Syslog Output

By default, each coprocessor’s syslog messages are logged to the coprocessor’s
/var/log/messages file. The log target and other logging details, such as the log (severity)

level, can be changed using the micctrl --syslog command:

micctrl --syslog=(buffer|file|remote) \

 [--host=<targethost[:port]>] [--logfile=<location>] \

 [--loglevel=<loglevel> [mic card list]

Of particular note is that syslog messages can be forwarded to the host or another node

(when the coprocessor is bridged to the external network). For this purpose, the targethost
syslog or rsyslog daemon must be configured for UDP reception on the specified port. On
RHEL* 6, uncomment the following line in /etc/rsyslog.conf:

Provides UDP syslog reception

#$ModLoad imudp

#$UDPServerRun 514

For example:

Provides UDP syslog reception

$ModLoad imudp

$UDPServerRun 514

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

209

The syslog or rsyslog daemon then typically must be restarted in order to pick up this new

configuration. On RHEL* 6, the rsyslog daemon is restarted as follows:

[host]# /etc/rc.d/init.d/rsyslog restart

If a host firewall is enabled, it may need to be configured to allow forwarding of syslog

messages to the specified host. By default, the syslog or rsyslog daemon listens on UDP port
514. Consult your firewall documentation for configuration help.

Now use the micctrl --syslog=remote command to , for example:

[host]# micctrl --syslog=remote

In this case the <targethost[:port]> defaults to host:514. See Appendix B.4.7.5 for more

details on the micctrl --syslog command.

If not using micctrl (configuring manually), edit the /etc/syslog-startup.conf file in the default

ramfs image. Consult BusyBox* documentation on the parameters in this configuration file.

 Coprocessor Post Codes

Like any other Intel® IA-32, Intel® 64 or IA-64 platform, the Intel® Xeon Phi™ coprocessor
produces POST codes at power on and boot to identify the stage that the card is at during the
boot process. These POST codes can be viewed using the Linux* command "dmesg" after a
system power on. The POST codes can also be viewed during a boot cycle of the coprocessor

by "tailing" /var/log/messages:

[host]# tail -f /var/log/messages | grep “Post Code”

The current POST code of a coprocessor can be obtained from its sysfs node:

[host]$ cat /sys/class/mic/micN/post_code

The POST codes are defined as follow:

"01" LIDT

"02" SBOX initialization

"03" Set GDDR top

"04" Begin memory test

"05" Program E820 table

"06" Initialize DBOX

"09" Enable caching

"0b" Pass initialization parameters to APs

"0c" Cache C code

"0d" Program MP Table

"0E" Copy AP boot code to GDDR

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
210

"0F" Wake up APs

"10" Wait for APs to boot

"11" Signal host to download Coprocessor OS

"12" Wait for Coprocessor OS download - this is also known as the "ready"

 state. The coprocessor will be in this state after powering on,
 running "micctrl -r" or "1service mpss stop". It means that the
 coprocessor is ready to receive the coprocessor OS either by a

 "1service mpss start", "1service mpss restart" or "micctrl -b"

 depending on how the coprocessor got into this state. It is not an
 error condition for the coprocessor to be in this state. See the
 sections above to learn how to start Intel® MPSS when the card is showing
 POST code 12

"13" Signal received from host to boot Coprocessor OS

"15" Report platform information

"17" Page table setup

"30" Begin memory training

"31" Begin GDDR training to query memory modules

"32" Find GDDR training parameters in flash

"33" Begin GDDR MMIO training

"34" Begin GDDR RCOMP training

"35" Begin GDDR DCC disable training

"36" Begin GDDR HCK training

"37" Begin GDDR ucode training

"38" Begin GDDR vendor specific training

"39" Begin GDDR address training

"3A" Begin GDDR memory module identification

"3b" Begin GDDR WCK training

"3C" Begin GDDR read training with CDR enabled

"3d" Begin GDDR read training with CDR disabled

"3E" Begin GDDR write training

"3F" Finalize GDDR training

"40" Begin Coprocessor OS authentication

"50"-"5F" Coprocessor OS loading and setup

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

211

"6P" int 13 General Protection

"75" int 10 Invalid TSS

"87" int 16 x87 FPU Floating Point Error

"AC" int 17 Alignment Check

"bP" int 3 Breakpoint

"br" int 5 BOUND Range Exceeded

"CC" int 18 Machine Check

"co" int 9 Coprocessor Segment Overrun

"db" int 1 Debug

"dE" int 0 Divide Error

"dF" int 8 Double Fault

"EE" Memory test failed

"F0" GDDR parameters not found in flash

"F1" GBOX PLL lock failure

"F2" GDDR failed memory training

"F3" GDDR memory module query failed

"F4" Memory preservation failure

"F5" int 12 Stack Fault

"FF" Bootstrap finished execution

"FP" int 19 SIMD Floating Point

"Ld" Locking down hardware access

"nA" Coprocessor OS image failed authentication

"nd" int 7 Device Not Available

"no" int 2 Non-maskable Interrupt

"nP" int 11 Segment Not Present

"oF" int 4 Overflow

"PF" int 14 Page fault

"r5" int 15 reserved

"ud" int 6 Invalid opcode

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
212

 Kernel Crash Dump Support

1) The host driver configuration option to enable/disable coprocessor kernel crash dumps is
located in /etc/modprobe.d/mic.conf.

crash_dump enables Coprocessor OS Kernel Crash Dump Captures

1 to enable or 0 to disable

:

options mic reg_cache=1 huge_page=1 watchdog=1

watchdog_auto_reboot=1 crash_dump=1 p2p=1 p2p_proxy=1 ulimit=0

Crash dump support is enabled by default. Edit the options line to disable support.

2) The mpssd daemon configuration options to tune crash dump storage location and storage
limit (gigabytes) are typically in the /etc/mpss/default.conf Intel® MPSS configuration file.

Storage location and size for MIC kernel crash dumps

CrashDump /var/crash/mic/ 16

Edit the CrashDump parameter to change the crash dump storage location and limit.

3) If a coprocessor OS crash occurs, a gzipped kernel crash dump core file will be available at

the storage location configured in step 2.

4) Install the crash utility on the host to analyze the crash dump (RHEL* example shown):

[host]# yum install crash

5) An example showing how a crash dump can be analyzed is shown below:

[host]$ cd /var/crash/mic/mic0/

[host]# gunzip vmcore-xxxx.gz

[host]# cp /opt/mpss/3.6/sysroots/k1om-mpss-linux/boot/vmlinux-

2.6.38.8+mpss3.6 .

[host]# /opt/mpss/3.6/sysroots/k1om-mpss-linux/boot/x86_64-k1om-

linux-elfedit --output-mach x86-64 vmlinux-2.6.38.8+mpss3.6

[host]# crash vmlinux-2.6.38.8+mpss3.6 vmcore-2012-9-24-15\:50\:29

Useful commands include foreach, bt, ps, log, etc.

Refer to http://people.redhat.com/anderson/crash_whitepaper/#HELP

6) If a custom user space utility other than the mpssd daemon is being used, then a crash

dump can be obtained as follows:

a) Poll the sysfs entry /sys/devices/virtual/mic/ctrl/subsystem/mic0/state for coprocessor
state changes.

b) Upon detection of the "lost" state, read from /proc/mic_vmcore/ and write the

contents to a crash dump file.

c) Gzip the content of the file.

d) Now reset the card and reboot it if required.

http://people.redhat.com/anderson/crash_whitepaper/#HELP

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
September 2015 User’s Guide

213

 GNU Debugger (GDB) for the Intel® Xeon Phi™

Coprocessor

GDB can be used to debug applications on an Intel® Xeon Phi™ coprocessor. GDB supports

both native execution on a coprocessor as well as remote execution from a host processor.
The Debugging with GDB manual is installed as the file $MPSS36/docs/GDB.pdf; it provides
detailed instructions on the use of GDB. This section presents some additional information on
using GDB on Intel® Xeon Phi™ coprocessors.

 Running natively on the Intel® Xeon Phi™ Coprocessors

To execute GDB natively, the rpm file $MPSS36_K1OM/gdb-7.*+mpss3.6.k1om.rpm must be

installed into the Intel® Xeon Phi™ coprocessor file system. Refer to Chapter 7 for help on
installing rpms into the coprocessor file system.

 Running remote GDB on the Intel® Xeon Phi™ Coprocessors

The remote Intel® Xeon Phi™ coprocessor enabled GDB client is located on the host at:

/opt/mpss/3.6/sysroots/x86_64-mpsssdk-linux/usr/bin/k1om-mpss-

linux/k1om-mpss-linux-gdb

The GDB Server is pre-installed in the coprocessor file system by default at:

/usr/bin/gdbserver

For complete GDB remote debugging instructions, refer to the chapter “Debugging Remote

Programs” in the GDB manual.

 GDB remote support for data race detection

GDB supports data race detection based on Intel® PDBX data race detector for Intel® Many
Integrated Core (MIC) architecture. See the "Debugging data races" chapter in the GDB
manual.

Ensure that the environment is set up correctly and that GDB finds the correct version of the

Intel® compiler's run-time support libraries. See the PROBLEMS-INTEL file in the GDB source
package for additional help on troubleshooting.

 Debugging heterogeneous/offload applications

Heterogeneous application debugging is supported in Eclipse*. This requires the installation of

an Eclipse* plugin. Install mpss-eclipse-cdt-mpm-*.x86_64.rpm.

Installation steps for the Eclipse* plugin:

1) From the Eclipse* menu use "Help" -> "Install new Software".

2) Click on "Add...".

3) Click on "Local...".

Troubleshooting and Debugging

Intel® Manycore Platform Software Stack (Intel® MPSS)
User's Guide September 2015
214

4) Use the "/usr/share/eclipse/mic_plugin" path and click "OK".

5) Click “OK” again in the popup window.

6) Unselect the following two checkboxes: "Group items by category" and "Contact all
update sites during install...".

7) Select the plugin using the corresponding checkbox, then click “Next”.

8) Click “Next”.

9) Accept the license agreement and click "Finish".

10) In the “Security Warning” popup, click “OK”.

11) Restart the Eclipse* IDE.

 Enabling MIC GDB Debugging for Offload Processes

An environment variable must be set in order to allow the debugger to enable module name
mapping with the generated files needed to attach to the card side offload processes. To do
this, execute the following step:

 [host]$ export AMPLXE_COI_DEBUG_SUPPORT=TRUE

	1 About This Manual
	1.1 Overview of this Document
	1.2 Intel® MPSS Release History
	1.2.1 Technology Previews in this Release
	1.2.1.1 CCL-Direct for Kernel Mode Clients
	1.2.1.2 File IO Performance Improvements

	1.3 Notational Conventions
	1.3.1 Symbols within Normal Text
	1.3.2 Code conventions
	1.3.2.1 Directory Symbols
	1.3.2.2 Command Syntax

	1.4 Terminology

	2 Intel® MPSS at a Glance
	2.1 Intel® Xeon Phi™ Hardware and System Architecture
	2.2 Programming Models and the Intel® MPSS Architecture
	2.2.1 Programming Models
	2.2.1.1 Offload Programming Model
	2.2.1.2 Symmetric Programming Model
	2.2.1.3 Native Programming Model

	2.2.2 Intel® MPSS Software Architecture and Components
	2.2.2.1 Intel® Xeon Phi™ Coprocessor Operating System
	2.2.2.2 Intel® MPSS Middleware Libraries
	2.2.2.3 Intel® MPSS Modules and Daemons
	2.2.2.4 Tools and Utilities
	2.2.2.5 Optional Packages
	2.2.2.6 gcc Toolchain

	2.2.3 Intel® Xeon Phi™ Coprocessor Networking
	2.2.3.1 Static Pair Configuration
	2.2.3.2 Bridged Network Configurations
	2.2.3.2.1 Internal Bridge Configuration
	2.2.3.2.2 External Bridge Configuration

	2.3 Supported Intel® Productivity Tools
	2.4 Related Documentation
	2.4.1 SCIF documentation
	2.4.1.1 SCIF Tutorials Location

	2.4.2 COI Documentation
	2.4.3 MYO Documentation
	2.4.4 Micperf Documentation
	2.4.5 Intel® Xeon Phi™ Coprocessor Collateral

	3 Intel® Xeon Phi™ Coprocessor Installation Process
	3.1 Hardware and Software Prerequisites
	3.1.1 Host System HW
	3.1.2 BIOS Configuration
	3.1.2.1 Enable Large Base Address Registers (BAR) Support in the Host Platform BIOS
	3.1.2.2 Enable Intel® Turbo Boost on the Host Platform

	3.1.3 Supported Host Operating Systems
	3.1.4 Host Operating System Configuration
	3.1.5 Root Access
	3.1.6 SSH Access to the Intel® Xeon Phi™ Coprocessor
	3.1.7 Init Scripts
	3.1.8 Network Manager
	3.1.8.1 RHEL* 6, RHEL* 7 and SLES* 11
	3.1.8.2 SLES* 12

	3.2 Intel® Xeon Phi™ Coprocessor Card Physical Installation
	3.2.1 Workstation Considerations
	3.2.1.1 Offload Programming Model
	3.2.1.2 Symmetric and Native Programming Models

	3.2.2 Cluster Considerations
	3.2.3 Validate Intel® Xeon Phi™ Coprocessor physical installation

	3.3 Base Intel® MPSS Installation
	3.3.1 Get the Intel® MPSS Distribution
	3.3.2 Uninstall Previous Intel® MPSS Installation Prior to Upgrade
	3.3.3 Rebuild Intel® MPSS Host Drivers
	3.3.3.1 Red Hat* Enterprise Edition (RHEL*)
	3.3.3.2 SUSE* Linux* Enterprise Server (SLES*)
	3.3.3.3 Install Base Intel® MPSS

	3.3.4 Update Intel® Xeon Phi™ Coprocessor Flash & SMC Firmware
	3.3.5 Initialize Intel® MPSS default configuration settings.
	3.3.6 Start Intel® MPSS
	3.3.7 Validate Base Intel® MPSS Installation
	3.3.7.1 Log into a Coprocessor Using SSH
	3.3.7.2 Validate Using Intel® MPSS Tools
	3.3.7.3 Run “Hello World”
	3.3.7.3.1 “Hello World” Native Execution Using gcc
	3.3.7.3.2 “Hello World” Native Execution Using the Intel® C Compiler
	3.3.7.3.3 “Hello World” via Compiler Based Offload Directives

	3.4 Basic Workstation Installation is Complete
	3.5 Network Configuration
	3.5.1 MAC Address Assignment
	3.5.2 IP Address Considerations for External Bridging
	3.5.3 Configuring a Basic External Bridge
	3.5.4 Defining and Implementing Exported/Mounted File Systems
	3.5.5 Configuring the Host Firewall
	3.5.5.1 NFS Client Access
	3.5.5.2 Other Port Access Considerations

	3.5.6 How to Install Lustre* on the Intel® Xeon Phi™ Coprocessor Card
	3.5.6.1 How to Configure Lustre* on the Intel® Xeon Phi™ Coprocessor Card
	3.5.6.2 How to Use Lustre* on the Intel® Xeon Phi™ Coprocessor Card

	3.6 Installing OFED with Intel® MPSS Support (optional)
	3.6.1 Supported OFED distros
	3.6.2 Tips for OFED distributions
	3.6.2.1 Red Hat* Enterprise Linux* systems
	3.6.2.2 SUSE* Linux* Enterprise Server (SLES*) 11 systems

	3.6.3 Install OFED+
	3.6.4 Install OFED 1.5.4.1
	3.6.5 Install OFED-3.5-2-MIC
	3.6.6 Install OFED-3.12-1
	3.6.7 Install OFED 3.18
	3.6.8 Install Mellanox* OFED 2.x
	3.6.9 Starting OFED
	3.6.10 Stopping/restarting OFED
	3.6.11 Validate OFED Installation
	3.6.11.1 Validate OFED Installation on the host
	3.6.11.2 Validate OFED Installation on Intel® Xeon Phi™ Coprocessor
	3.6.11.3 Run the Intel MPI Benchmark

	4 Configuring and Booting the Intel® Xeon Phi™ Coprocessor Operating System
	4.1 Assisted Configuration and Control
	4.1.1 Configuration Files
	4.1.1.1 Intel® MPSS Specific Configuration Files
	4.1.1.2 Host Files
	4.1.1.3 Overlay Sets
	4.1.1.3.1 Base File System
	4.1.1.3.2 Common Overlay Set
	4.1.1.3.3 Per-coprocessor Overlay Set
	4.1.1.3.4 User Defined Overlay Sets

	4.1.1.4 Constructing the File System

	4.1.2 Initializing, Updating and Resetting the Configuration Files
	4.1.3 micctrl Directory Path Modifiers
	4.1.3.1 $DESTDIR
	4.1.3.2 $CONFIGDIR
	4.1.3.3 $VARDIR
	4.1.3.4 $SRCDIR
	4.1.3.5 $NETDIR

	4.1.4 Boot Configuration
	4.1.4.1 Specifying the Linux* kernel
	4.1.4.2 Specifying and Building the File System Image
	4.1.4.3 Building the kernel commandline

	4.1.5 Assisted Boot Process
	4.1.5.1 Instruct the Driver to Boot the Intel® Xeon Phi™ Coprocessor
	4.1.5.2 Coprocessor Linux* Kernel Initial Phases
	4.1.5.2.1 Root is a Ram Disk Image
	4.1.5.2.2 Root is an NFS Export

	4.1.5.3 Notify the Host that the Intel® Xeon Phi™ Coprocessor System is Ready
	4.1.5.4 Coprocessor Shutdown

	4.2 Manual Configuration and Control
	4.2.1 Directly Editing (and persisting) Card /etc Files
	4.2.1.1 /init
	4.2.1.2 Network Configuration and User Authentication
	4.2.1.3 Adding software to coprocessor file system

	4.2.2 NFS Mounting the Root and Other File Systems
	4.2.3 Driver sysfs Settings
	4.2.4 Card-side Kernel Commandline Parameters
	4.2.5 Controlling the card

	5 Networking Configuration
	5.1 Assisted Configuration
	5.1.1 Host SSH Keys
	5.1.2 Name Resolution Configuration
	5.1.3 Host Name Assignment
	5.1.4 MAC Address Assignment
	5.1.5 Network Topologies
	5.1.5.1 Static Pair Configuration
	5.1.5.1.1 Static Pair Configuration Using Micctrl
	5.1.5.1.2 Micctrl Based Static Pair Configuration Implementation

	5.1.5.2 Internal Bridge Configuration
	5.1.5.2.1 Internal Bridge Configuration File Parameters
	5.1.5.2.2 micctrl Based Internal Bridge Configuration Implementation

	5.1.5.3 External Bridge Configuration
	5.1.5.3.1 External Bridge Configuration Using Micctrl
	5.1.5.3.2 micctrl Based External Bridge Configuration Implementation

	5.2 Manual Configuration
	5.2.1 Host Name
	5.2.2 MAC Addresses
	5.2.3 Network Topologies
	5.2.3.1 Static Pair
	5.2.3.2 Internal Bridge
	5.2.3.3 External Bridge

	5.3 IPoIB Networking Configuration
	5.3.1 Managing the IPoIB Interface
	5.3.2 IP Addressing
	5.3.3 Datagram vs. Connected Modes

	6 User Credentialing and Authentication
	6.1 Assisted Configuration of User Credentials
	6.1.1 Local Configuration
	6.1.2 Enabling LDAP Service
	6.1.3 Enabling NIS Service

	6.2 Manual Configuration of User Credentials
	6.2.1 Configuration File Based Credentialing
	6.2.1.1 Enabling LDAP Service for Credentialing
	6.2.1.2 Enabling NIS/YP Service for Credentialing
	6.2.1.3 Enabling NFS Auto Mount with NIS/YP Service

	6.2.2 How to Enable SSH Host Based Authentication

	7 Adding Software to the Intel® Xeon Phi™ Coprocessor File System
	7.1 Adding Individual Files to a Host Resident File System Image
	7.1.1 Assisted Configuration
	7.1.2 Manual Configuration
	7.1.3 Installing RPMs
	7.1.3.1 Assisted Configuration
	7.1.3.2 Manual Configuration

	7.2 Adding Software to a Coprocessor File System
	7.2.1 Installing RPMs
	7.2.1.1 Using the Overlay RPM Configuration Parameter or Micctrl --overlay Utility
	7.2.1.2 Manually Install RPMs on a Coprocessor Using SCP
	7.2.1.3 Installing RPMs Using an HTTP Repo with Zypper

	7.2.2 Preserving the Modified File System

	8 Compilation for the Intel® Xeon Phi™ Coprocessor
	8.1 Cross Compiling Software with the Intel® MPSS SDK
	8.1.1 SDK overview
	8.1.2 Cross Compilation of GNU Build System Based Packages
	8.1.3 Example case: zsh
	8.1.3.1 Download and untar the zsh source distribution from the internet
	8.1.3.2 Setup the environment, and try to generate a Makefile
	8.1.3.3 Resolve dependency issues
	8.1.3.4 Build the binaries with the generated Makefile
	8.1.3.5 Install the Component

	8.1.4 Cross compiling with icc

	8.2 Native Compilation
	8.2.1 Create and attach to a repo
	8.2.2 Install the development tool chain
	8.2.3 Configure the build directory
	8.2.4 Make and install the package

	9 Intel® MPSS Component Configuration and Tuning
	9.1 Intel® Xeon Phi™ Coprocessor Operating System Configuration and Tuning
	9.1.1 Clock Source for the Intel® Xeon Phi™ Coprocessor
	9.1.2 Process Oversubscription
	9.1.3 Verbose Logging
	9.1.4 Cgroup memory control
	9.1.5 Power Management control
	9.1.6 VFS Optimizations

	9.2 Host Driver Configuration
	9.2.1 Lost Node Watchdog
	9.2.2 Watchdog Auto-Reboot
	9.2.3 Crash Dump Capture

	9.3 SCIF Configuration
	9.3.1 Peer to Peer (P2P) Support
	9.3.2 Peer to Peer Proxy Control
	9.3.3 Ulimit Checks for Max Locked Memory in SCIF
	9.3.4 Registration Caching
	9.3.5 Registration Caching Limit
	9.3.6 Huge Page Support

	9.4 COI Configuration
	9.4.1 COI Offload User Options
	9.4.1.1 Ownership Modes
	9.4.1.1.1 micuser Ownership
	9.4.1.1.2 _Authorized User Ownership
	9.4.1.1.3 _Dynamic User Ownership

	9.4.1.2 Configuring the Ownership Mode
	9.4.1.3 Example

	9.5 Virtual Console Configuration and Access
	9.6 Intel® Xeon Phi™ Coprocessor Virtio Block Device Configuration and Use.
	9.6.1 Using a Virtio Block Device as an ext2 File System
	9.6.2 Use the Virtblk Device as a Swap Device File System

	A Intel® MPSS Configuration Parameters
	A.1 Meta Configuration
	A.1.1 Configuration Version
	A.1.2 Including Other Configuration Files

	A.2 Boot Control
	A.2.1 What to Boot
	A.2.2 When to Boot

	A.3 Kernel Configuration
	A.3.1 ExtraCommandLine
	A.3.2 Console Device
	A.3.3 Power Management
	A.3.4 ShutdownTimeout
	A.3.5 CrashDump
	A.3.6 Cgroup
	A.3.7 VerboseLogging

	A.4 File System Configuration Parameters
	A.4.1 RootDevice
	A.4.2 File Locations
	A.4.2.1 Base
	A.4.2.2 CommonDir
	A.4.2.3 MicDir
	A.4.2.4 Overlay

	A.4.3 Intel® MPSS RPM Location

	A.5 Network Configuration
	A.5.1 Host Name Assignment
	A.5.2 MAC Address Assignment
	A.5.3 Static Pair (Default) Topology
	A.5.4 Internal Bridge Topology
	A.5.5 External Bridge Topology

	A.6 Deprecated Configuration Parameters
	A.6.1 User Access
	A.6.2 Service Startup

	B The micctrl Utility
	B.1 micctrl Command Line Format
	B.2 Global Options
	B.2.1 --destdir, -d
	B.2.2 --configdir, -c

	B.3 Suboptions
	B.3.1 Global Suboptions
	B.3.1.1 Help
	B.3.1.2 Verbose Output

	B.3.2 Common SubOptions
	B.3.2.1 --vardir
	B.3.2.2 --srcdir
	B.3.2.3 --netdir, -n
	B.3.2.4 --distrib, -d
	B.3.2.5 --gw, -g
	B.3.2.6 --users, -u
	B.3.2.7 --pass, -a
	B.3.2.8 --modhost, -c
	B.3.2.9 --modcard, -e
	B.3.2.10 --nocreate
	B.3.2.11 --pm, -p

	B.4 micctrl Command Descriptions
	B.4.1 Card State Control
	B.4.1.1 Booting Intel® Xeon Phi™ Coprocessors
	B.4.1.2 Shutting Down Intel® Xeon Phi™ Coprocessors
	B.4.1.3 Rebooting Intel® Xeon Phi™ Coprocessors
	B.4.1.4 Resetting Intel® Xeon Phi™ Coprocessors
	B.4.1.5 Waiting for Intel® Xeon Phi™ Coprocessor State Change
	B.4.1.6 Intel® Xeon Phi™ Coprocessor Status

	B.4.2 Configuration Initialization and Propagation
	B.4.2.1 Initializing the Configuration Files
	B.4.2.2 Resetting Configuration Parameters
	B.4.2.3 Cleaning Configuration Parameters
	B.4.2.3.1 Valid configuration file found
	B.4.2.3.2 No valid configuration files

	B.4.3 Setting the Root Device
	B.4.3.1 RAM Root File System
	B.4.3.2 NFS Root File System
	B.4.3.3 Rootdev Configuration
	B.4.3.4 Adding an NFS Mount
	B.4.3.5 Removing an NFS Mount
	B.4.3.6 Updating the Compressed CPIO Image
	B.4.3.7 Updating NFS Root Exports

	B.4.4 Configuring the Intel® Xeon Phi™ Coprocessor File System
	B.4.4.1 Base File System Location
	B.4.4.2 Common Files Location
	B.4.4.3 Coprocessor Specific Files Location
	B.4.4.4 Additional File System Overlays
	B.4.4.5 Location of Additional RPMs for the Intel® Xeon Phi™ Coprocessor File System

	B.4.5 Networking Configuration
	B.4.5.1 MAC Address Assignment
	B.4.5.2 Resetting the Network to a Default Configuration
	B.4.5.3 Static Pair
	B.4.5.4 Internal Bridging
	B.4.5.5 External Bridging
	B.4.5.5.1 External Bridging, Static IP Address Assignment
	B.4.5.5.2
	B.4.5.5.2 External Bridging, DHCP Address Assignment

	B.4.5.6 Changing Network Parameters
	B.4.5.7 Modifying a Bridge
	B.4.5.8 Deleting a Bridge

	B.4.6 User Credentialing
	B.4.6.1 Update User Credentials
	B.4.6.2 Adding Users to the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.3 Removing Users from the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.4 Changing the Password for Users on the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.5 Adding Groups to the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.6 Removing Groups from the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.7 Specifying the Host Secure Shell Keys
	B.4.6.8 Updating a User’s SSH Keys on the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.9 Configuring LDAP on the Intel® Xeon Phi™ Coprocessor File System
	B.4.6.10 Configuring NIS on the Intel® Xeon Phi™ Coprocessor File System

	B.4.7 Configuring the Intel® Xeon Phi™ Coprocessor Linux* Kernel
	B.4.7.1 Coprocessor Linux* Image Location
	B.4.7.2 Boot On Intel® MPSS Service Start
	B.4.7.3 Power Management Configuration
	B.4.7.4 Cgroups Configuration
	B.4.7.5 Syslog Configuration

	B.4.8 Deprecated micctrl Commands
	B.4.8.1 --service Command
	B.4.8.2 --configuser Command
	B.4.8.3 --resetconfig Command

	C Intel® MPSS Host Driver Sysfs Entries
	C.1 The Global Mic.ko Driver SYSFS Entries
	C.1.1 Revision Information
	C.1.2 Other Global Entries

	C.2 The Intel® Xeon Phi™ Mic.ko Driver SYSFS Entries
	C.2.1 Hardware Information
	C.2.2 State Entries
	C.2.3 lStatistics
	C.2.4 Debug Entries
	C.2.5 Flash Entries
	C.2.6 Power Management Entries
	C.2.7 Other Entries

	D micrasd
	E micnativeloadex
	F Optional Intel® MPSS Components
	F.1 Intel® MPSS GANGLIA Support (optional)
	F.1.1 Requirements
	F.1.2 Steps to Install GANGLIA on the Host
	F.1.3 Installing Intel® MPSS GANGLIA RPMs in the Card
	F.1.4 Starting Intel® MPSS with GANGLIA Support
	F.1.5 Stopping Intel® MPSS with GANGLIA Support

	F.2 Intel® Xeon Phi™ Coprocessor Performance Workloads (optional)
	F.2.1 Installation Requirements
	F.2.2 Distributed Files
	F.2.3 RPM Installation
	F.2.4 Python Installation
	F.2.5 Alternative to Python Installation

	F.3 Intel® MPSS Reliability Monitor Support (optional)
	F.3.1 Requirements
	F.3.2 Steps to Install Intel® MPSS with Reliability Monitor Support
	F.3.3 Starting Intel® MPSS with Reliability Monitor Support
	F.3.4 Stopping Intel® MPSS with Reliability Monitor Support
	F.3.5 Reliability Monitor Configuration File and Log

	G Rebuilding Intel® MPSS Components
	G.1 Recompiling the Intel® MPSS GANGLIA Modules
	G.2 Recompiling the Intel® MPSS MIC Management Modules
	G.3 How to Extract and Use the COI Open Source Distribution
	G.3.1 Building COI Libraries and Binaries
	G.3.2 Installing Host Library
	G.3.3 Installing Card-side Binaries and Libraries
	G.3.4 COI Tutorial Build and Execution Instructions

	G.4 How to Extract and Use the MYO Open Source Distribution

	H General Services Tutorial
	H.1 Service Startup by Priorities (RHEL* 6.x)
	H.2 Service Startup by Dependencies (SUSE* Linux* Enterprise Server 11 SP3)
	H.3 Intel® Xeon Phi™ Coprocessor Method for Service Start Priority

	I Troubleshooting and Debugging
	I.1 Log Files
	I.1.1 Dmesg Output
	I.1.2 Syslog Output

	I.2 Coprocessor Post Codes
	I.3 Kernel Crash Dump Support
	I.4 GNU Debugger (GDB) for the Intel® Xeon Phi™ Coprocessor
	I.4.1 Running natively on the Intel® Xeon Phi™ Coprocessors
	I.4.2 Running remote GDB on the Intel® Xeon Phi™ Coprocessors
	I.4.3 GDB remote support for data race detection
	I.4.4 Debugging heterogeneous/offload applications
	I.4.5 Enabling MIC GDB Debugging for Offload Processes

