www.goodnet.com/~mflom, (602) 926-3100, FAX: 926-3598 M. Flom Associates, Inc. - Global Compliance Center 3356 North San Marcos Place, Suite 107, Chandler, Arizona 85224-1571

:(5)8601.5 Sub-part

EQUIPMENT IDENTIFICATION

ECC ID: B2DHS11

NAMEPLATE DRAWING

ATTACHED, EXHIBIT 1.

LOCATION

YZ LEK TYBET DKYMING(2)

DATE OF REPORT

October 21, 1998

Morton Flom, P. Eng.

SOMERAISED BK:

THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

RULE	DESCRIPTION	PAGE
	Test Report	1
2.1033(c)	General Information Required	2
2.1033(c)(14)	Rule Summary	4
	Standard Test Conditions and Engineering Practices	5
2.1046(a)	Carrier Output Power (Radiated)	6
2.1051	Unwanted Emissions (Transmitter Conducted)	8
2.1053(a)	Field Strength of Spurious Radiation	11
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	15
2.1047(a)	Audio Frequency Response	20
2.1047 (b)	Modulation Limiting	22
2.1055(a)(1)	Frequency Stability (Temperature Variation)	25
2.1055(b)(1)	Frequency Stability (Voltage Variation)	28
2.202(g)	Necessary Bandwidth and Emission Bandwidth	29

1 of 29.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a)

TEST REPORT

b) Laboratory: (FCC: 31040/SIT)

M. Flom Associates, Inc.

3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85224

c) Report Number:

d98a0043

d) Client:

Telex Communications, Inc. 8601 E. Cornhusker Highway

P.O. Box 5579

Lincoln, NE 68505-5579

e) Identification:

Electro-Voice HTU

FCC ID: B5DH211

Description:

UHF FM Handheld Transmitter

f) EUT Condition:

Not required unless specified in individual

tests.

g) Report Date:

October 21, 1998

EUT Received:

October 14, 1998

h, j, k):

As indicated in individual tests.

i) Sampling method: No sampling procedure used.

1) Uncertainty:

In accordance with MFA internal quality manual.

m) Supervised by:

n) Results:

The results presented in this report relate

only to the item tested.

o) Reproduction:

This report must not be reproduced, except in full, without written permission from this

laboratory.

2 of 29.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

74H, 74.861, 74.802, 74.861(d)(2), 74.861(d)(3), 740861(e)(1)(ii), 74.861(e)(3), 74.861(e)(4), 74.861(e)(5), 74.861(e)(6)

Sub-part 2.1033

(c)(1): NAME AND ADDRESS OF APPLICANT:

Telex Communications, Inc. 8601 E. Cornhusker Highway P.O. Box 5579 Lincoln, NE 68505-5579

VENDOR:

Applicant

(c)(2): FCC ID:

B5DH211

MODEL NO:

Electro-Voice HTU

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION:

182KF3E

FREQUENCY RANGE, MHz: 690 to 725 (c)(5):

POWER RATING, Watts: (c)(6):

0.05, 0.004 (Radiated)

____ Switchable ____ Variable ____ x N/A

(c)(7): MAXIMUM POWER RATING, Watts: 0.250

3 of 29.

Subpart 2.1033 (continued)

(c)(8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vdc = 9

(c)(9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(c)(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c) (11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c) (12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c) (13): DIGITAL MODULATION DESCRIPTION:

X N/A ATTACHED EXHIBITS

(c) (14): TEST AND MEASUREMENT DATA:

FOLLOWS

4 of 29.

Sub-part

2.1033(c) (14): TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

21 - Domestic Public Fixed Radio Services 22 - Public Mobile Services 22 Subpart H - Cellular Radiotelephone Service 22.901(d) - Alternative technologies and auxiliary services 23 - International Fixed Public Radiocommunication services 24 - Personal Communications Services X 74 Subpart H - Low Power Auxiliary Stations 80 - Stations in the Maritime Services 80 Subpart E - General Technical Standards 80 Subpart F - Equipment Authorization for Compulsory Ships 80 Subpart K - Private Coast Stations and Marine Utility Stations 80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act 80 Subpart V - Emergency Position Indicating Radiobeacons (EPIRB'S) 80 Subpart W - Global Maritime Distress and Safety System
20 Cultural 1

5 of 29.

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104° F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10° to 90° relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

6 of 29.

NAME OF TEST:

Carrier Output Power (Radiated)

SPECIFICATION:

47 CFR 2.1046(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

TEST EQUIPMENT:

As per attached page

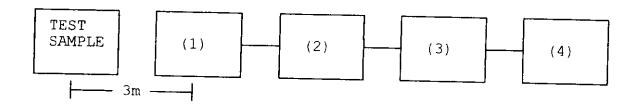
MEASUREMENT PROCEDURE (RADIATED)

- 1. The EUT was placed on an open-field site and its radiated field strength at a known distance was measured by means of a spectrum analyzer. Equivalent loading of a dipole was calculated from the equation $P_t = ((E \times R)^2/49.2)$ watts, where R = 3m.
- 2. Measurement accuracy is ± 1.5 dB.

MEASUREMENT RESULTS

FREQUENCY OF CARRIER, MHz = 714.7

POWER SETTING High	R. F. POWER, ERP, WATTS
Radiated	0.050
	0.004


SUPERVISED BY:

Morton Flom, P. Eng.

MFA p98a0007, d98a0043

7 of 29.

TRANSMITTER RADIATED MEASUREMENTS

Asset Description

s/n

(1) TRANSDUCER

x i00091 Emco 3115 x i00089 Aprel Log Periodic

001469

001500

(2) HIGH PASS FILTER

 \times i00 Narda μPAD (In-Band Only)

x i00 Trilithic

(Out-Of-Band Only)

(3) PREAMP

x i00028 HP 8449 (+30 dB)

2749A00121

(4) SPECTRUM ANALYZER

 x
 i00048
 HP 8566B
 2511A01467

 i00043
 HP 8558B
 2004A02076

 i00057
 HP 8557A
 1531A00191

 x
 i00029
 HP 8563E
 3213A00104

8 of 29.

NAME OF TEST:

Unwanted Emissions (Transmitter Conducted)

SPECIFICATION:

47 CFR 2.1051

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

The emissions were measured for the worst case as follows: 1.

(a): within a band of frequencies defined by the carrier

frequency plus and minus one channel.

(b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

3. MEASUREMENT RESULTS:

ATTACHED FOR WORST CASE

FREQUENCY OF CARRIER, MHz = 714.7

SPECTRUM SEARCHED, GHz = 0 to 10 x F_C

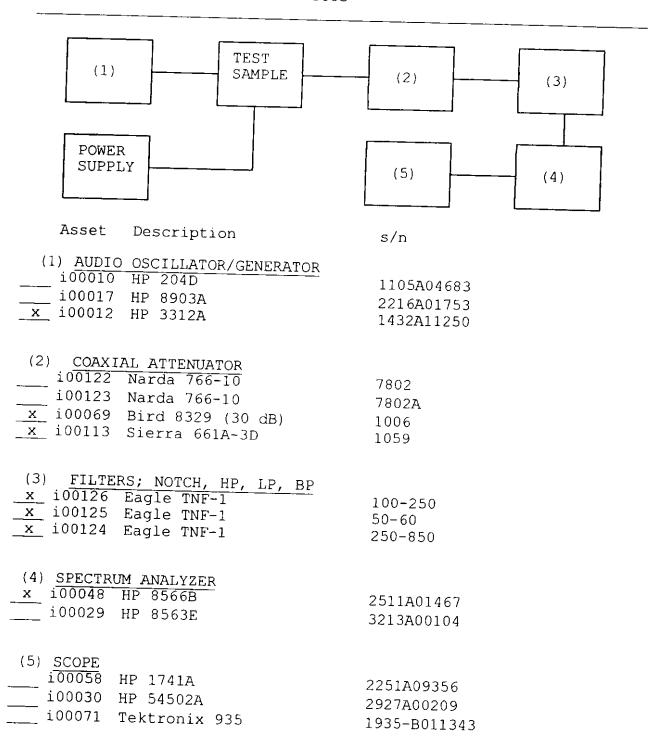
MAXIMUM RESPONSE, Hz = 17800

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT

LIMIT(S), dBc

 $-(43+10 \times LOG P) = -30 (0.05 \text{ Watts})$

SUPERVISED BY:


Morton Flom, P. Eng.

Midme berg

9 of 29.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)
TEST B. OUT-OF-BAND SPURIOUS

10 of 29.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

g98a0081: 1998-Oct-15 Thu 13:34:00

STATE: 2:High Power

FREQUENCY TUNED,	FREQUENCY	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
MHz	EMISSION, MHz			
714.700000	178.850000	-34.5	-51.4	-21.5
714.700000	893.540000	-32.9	-49.8	-19.9
714.700000	1429.529000	-30.6	-47.5	
714.700000	1608.340000	-25.4	-42.3	-17.6
714.700000	2144.293000	-32.2	-42.3 -49.1	-12.4
714.700000	2858.510000	-43.4		-19.2
714.700000	3573.802000	-54.3	-60.3	-30.4
714.700000	4287.854000	• •	-71.2	-41.3
714.700000	5002.468000	-55.9	-72.8	-42.9
714.700000		-55.5	-72.4	-42.5
714.700000	5717.413000	-55.6	-72.5	-42.6
-	6432.620000	-49.7	-66.6	-36.7
714.700000	7147.494000	-46.9	-63.8	-33.9
714.700000	7861.254000	-49.5	-66.4	-36.5
714.700000	8576.357000	-49.7	-66.6	-36.7
714.700000	9291.496000	-50.4	-67.3	-37.4
714.700000	10005.419000	-49.8	-66.7	
714.700000	10720.498000	-47.7	•	-36.8
	20 • 130000	-41.1	-64.6	-34.7

11 of 29.

NAME OF TEST:

Field Strength of Spurious Radiation

SPECIFICATION:

47 CFR 2.1053(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.12

TEST EQUIPMENT:

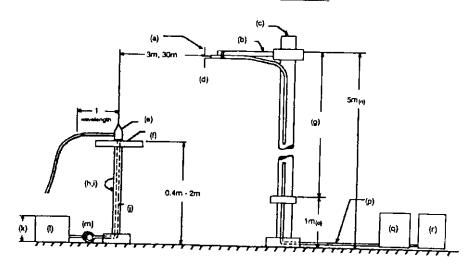
As per attached page

MEASUREMENT PROCEDURE

- 1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- 2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- 3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply.

The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.

- 4. Step 3 was repeated, using a horizontally polarized search antenna. The higher of the two observations was noted.
- 5. The worst case for all channels is shown.
- 6. Measurement Summary:


FREQUENCY OF CARRIER, MHz = 714.7

SPECTRUM SEARCHED, GHz = 0 to 10 x F_c

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT

7. Measurement Results: ATTACHED FOR WORST CASE

RADIATED TEST SETUP

NOTES:

- (a) Search Antenna Rotatable on boom
- (b) Non-metallic boom
- (c) Non-metallic mast
- (d) Adjustable horizontally
- (e) Equipment Under Test
- (f) Turntable
- (g) Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i) Rotatable

- (j)Cables routed through hollow turntable center
- (k) 30 cm or less
- (1) External power source
- (m) 10 cm diameter coil of excess
 cable
- (n) 25 cm (V), 1 m-7 m (V, H)
- (0) 25 cm from bottom end of 'V', 1m normally
- (p) Calibrated Cable at least 10m
 in length
- (q) Amplifier (optional)
- (r) Spectrum Analyzer

Asset	Description	s/n	Cycle	Last Cal
TRANSDUCER	EMCO 3109B 100Hz-50MHz Singer 94593-1 10kHz-32MHz EMCO 3109-B 25MHz-300MHz Aprel 2001 200MHz-1GHz EMCO 3115 1GHz-18GHz EMCO 3116 10GHz-40GHz	2336 0219 2336 001500 9208-3925 2076	12 mo. 12 mo. 12 mo. 12 mo. 12 mo. 12 mo.	Oct-98 Oct-98 Oct-98
AMPLIFIER 100028 SPECTRUM AN	HP 8449A VALYZER	2749A00121	12 mo.	Mar-98
i00029 x i00033 i00048	HP 8563E HP 85462A HP 8566B	3213A00104 3625A00357 2511AD1467	12 mo. 12 mo. 6 mo.	Dec-97 Mar-98

PAGE NO. 13 of 29.

NAME OF TEST: Field Strength of Spurious Radiation

ALL OTHER EMISSIONS = \geq 20 dB BELOW LIMIT

EMISSION, MHZ/HARMONIC	SPURIOUS LEVEL, dBc
2nd to 10th	High <-45

SUPERVISED BY:

14 of 29.

NAME OF TEST: Field Strength of Spurious Radiation 998a0097: 1998-Oct-16 Fri 11:26:00

STATE: 2:High Power

FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	ERP,	MARGIN,
TUNED, MHz	EMISSION, MHz	dBuV	dB	3m	dBm	•
714.700000	1429.393000	37.52				dB
714.700000				5559.04	-22.45	-9.5
	2144.141666	68	14	12589.25	-15.35	-2.4
714.700000	2858.761666	62	20.86	13899.53		-1.5
714.700000	3573.498332	62.17	10.19			
714.700000				4149.54		-12
	4288.201665	48.67	11.28	994.26	-37 45	-24.5
714.700000	5002.921665	59.5	13.41	4420.79		
714.700000	5717.574998				-24.45	-11.5
		52.17	15.46	2407.13	-29.75	-16.8
714.700000	6432.178331	44.33	16.41	1088.93	-36.65	* =
714.700000	7146.881664					-23.7
	7140.001004	43.17	18.44	1203.65	-35.75	-22.8

15 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECIFICATION:

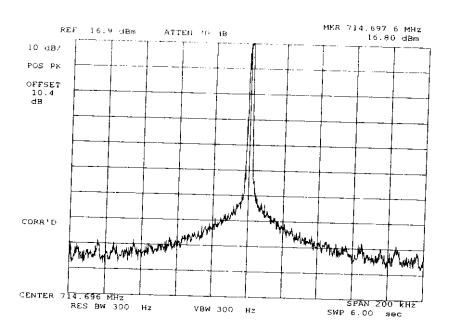
47 CFR 2.1049(c)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE


- The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- For EUTs supporting audio modulation, the audio signal 2. generator was adjusted to the frequency of maximum response and with output level set for ± 6.0 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- For EUTs supporting digital modulation, the digital modulation 3. mode was operated to its maximum extent.
- The Occupied Bandwidth was measured with the Spectrum Analyzer 4. controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

16 of 29.

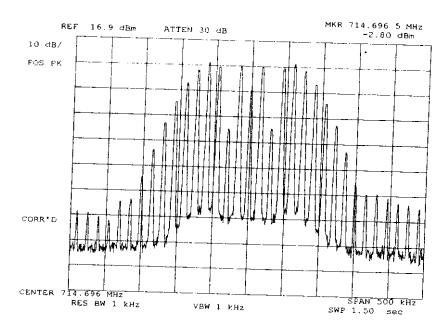
NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0074: 1998-Oct-15 Thu 10:08:00

STATE: 2:High Power

POWER: MODULATION:

HIGH NONE


SUPERVISED BY:

M. Sher P. Eug Morton Flom, P. Eng.

17 of 29.

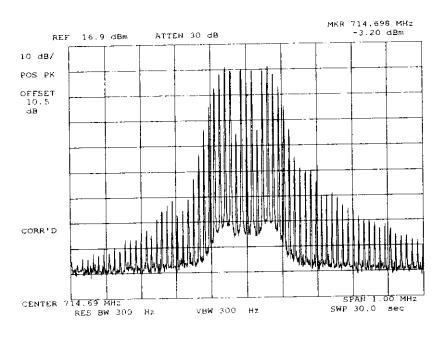
NAME OF TEST: Emission Masks (Occupied Bandwidth) g98a0078: 1998-Oct-15 Thu 11:43:00

STATE: 2:High Power

POWER: MODULATION:

HIGH 15KHZ TONE 20DB ABOVE REFERENCE

SUPERVISED BY:


18 of 29.

NAME OF TEST:

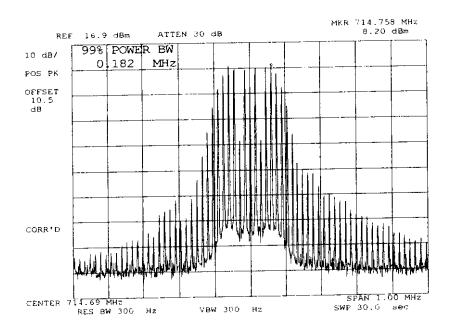
Emission Masks (Occupied Bandwidth)

g98a0079: 1998-Oct-15 Thu 12:20:00

STATE: 2: High Power

POWER: MODULATION:

HIGH 15KHZ TONE 20DB ABOVE REFERENCE


SUPERVISED BY:

19 of 29.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g98a0080: 1998-Oct-15 Thu 12:29:00

STATE: 2: High Power

POWER: MODULATION:

HIGH 15KHZ TONE 20DB ABOVE REFERENCE 99% POWER BANDWIDTH

SUPERVISED BY:

20 of 29.

NAME OF TEST:

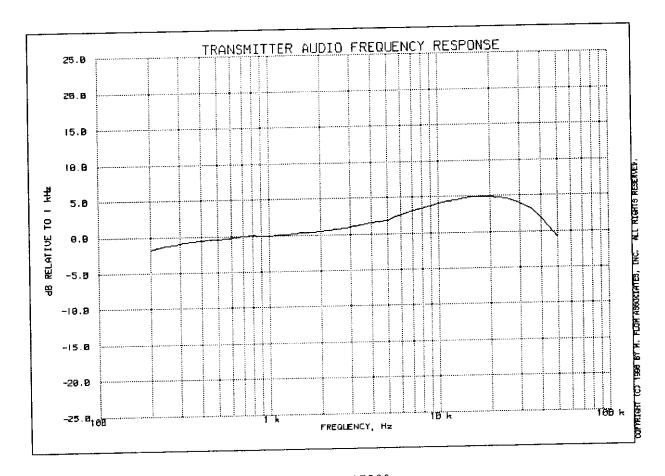
Audio Frequency Response

SPECIFICATION:

47 CFR 2.1047(a)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.6


TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to $50~\mathrm{kHz}$.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS:

ATTACHED

PEAK AUDIO FREQUENCY, Hz: 17800

TABLE VALUES:

FREQUENCY, LE	VEL, dB	FREQUENCY,	LEVEL, dB	FREQUENCY, LEVEL, Hz dB
300	9	30000	4.0	
20000	4.9	50000	-1.9	

22 of 29.

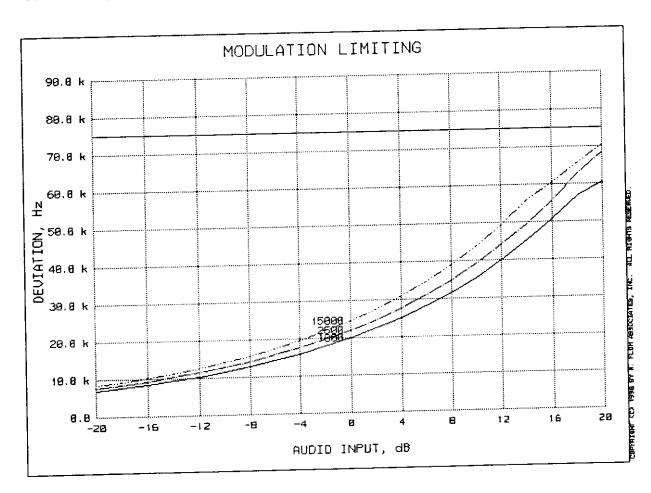
NAME OF TEST: Modulation Limiting

SPECIFICATION:

47 CFR 2.1047(b)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.3


TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- The signal generator was connected to the input of the EUT as 1. for "Frequency Response of the Modulating Circuit."
- The modulation response was measured for each of three 2. frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- The input level was varied from 30% modulation ($\pm 3.6~\mathrm{kHz}$ 3. deviation) to at least 20 dB higher than the saturation point.
- Measurements were performed for both negative and positive 4. modulation and the respective results were recorded.
- MEASUREMENT RESULTS: 5.

ATTACHED

PAGE 23 of 29.
MODULATION LIMITING
TELEX, Electro-Voice HTU
1998-OCT-15, 14:16

COMMENT

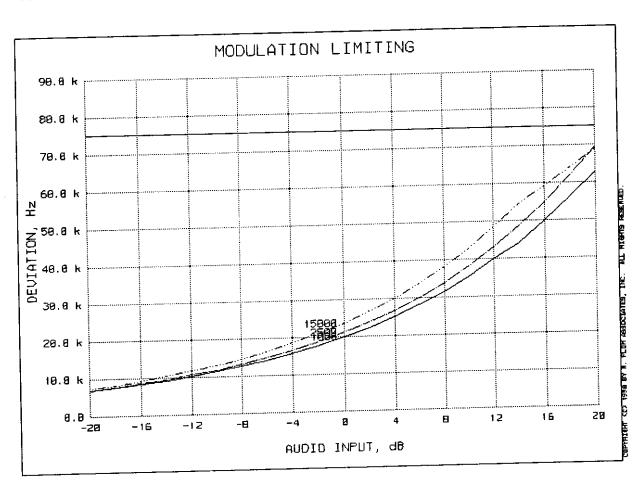
= LIMIT 75 kHz

REFERENCE DEVIATION, kHz

= 20

REFERENCE MODULATION, Hz

= 1000


PEAKS

= POSITIVE

AUDIO AMPLITUDE, mV

= 11.72

PAGE 24 of 29.
MODULATION LIMITING
TELEX, Electro-Voice HTU
1998-OCT-15, 14:16

COMMENT = LIMIT 75 kHz

REFERENCE DEVIATION, kHz = 20

REFERENCE MODULATION, Hz = 1000

PEAKS = NEGATIVE

AUDIO AMPLITUDE, mV = 11.72

25 of 29.

NAME OF TEST:

Frequency Stability (Temperature Variation)

SPECIFICATION:

47 CFR 2.1055(a)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST CONDITIONS:

As Indicated

TEST EQUIPMENT:

As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. MEASUREMENT RESULTS:

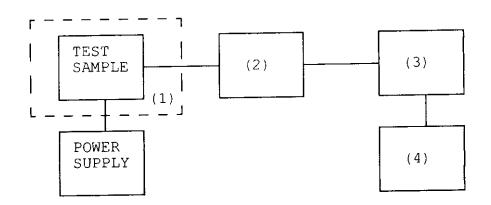
ATTACHED

26 of 29.

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY


TEST C. OPERATIONAL PERFORMANCE STABILITY

TEST D. HUMIDITY

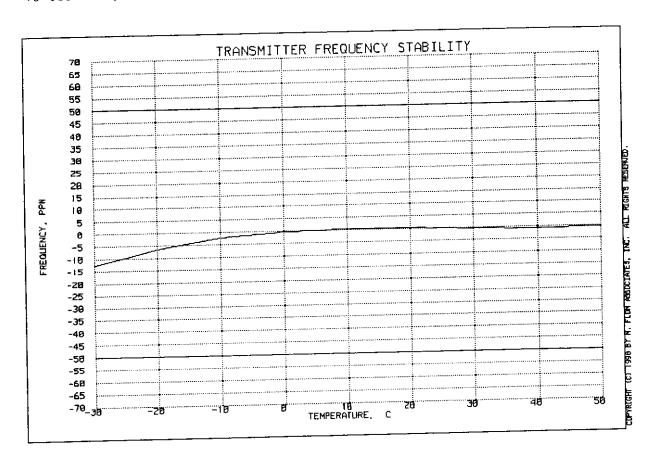
TEST E. VIBRATION

TEST F. ENVIRONMENTAL TEMPERATURE

TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

Asset Description

s/n


(1)	TEMPE	RATURE, HUMIDITY, VIBRATION	
x	i00027	Tenny Temp. Chamber	9083-765 - 234
		Weber Humidity Chamber	
	i00	L.A.B. RVH 18-100	

(2) COAXI	AL ATTENUATOR	
$i0\overline{0122}$	NARDA 766-10	7802
	NARDA 766-10	7802A
${x}$ i00113	SIERRA 661A-3D	1059
i00069	BIRD 8329 (30 dB)	10066

(3)	R.F.	POWER	
•	100014	HP 435A POWER METER	1733A05839
	i00039	HP 436A POWER METER	2709A26776
- ×	100020	HP 8901A POWER MODE	2105A01087

(4) FREQUENCY COUNTER	
i00042 HP 5383A	1628A00959
x i00019 HP 5334B	2704A00347
x i00020 HP 8901A	2105A01087

PAGE 27 of 29.
TRANSMITTER FREQUENCY STABILITY
TELEX, Electro-Voice HTU
15 OCT 1998, 16:20

FREQUENCY OF CARRIER, MHz = 714.69729

LIMIT, ppm = 50

LIMIT, Hz = 35735

28 of 29.

NAME OF TEST:

Frequency Stability (Voltage Variation)

SPECIFICATION:

47 CFR 2.1055(b)(1)

GUIDE:

ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- The EUT was placed in a temperature chamber at $25\pm5\,^{\circ}\text{C}$ and 1. connected as for "Frequency Stability - Temperature Variation" test.
- The power supply voltage to the EUT was varied from 85% to 115%of the nominal value measured at the input to the EUT.
- The variation in frequency was measured for the worst case. 3.

RESULTS:

Frequency Stability (Voltage Variation)

g98a0090: 1998-Oct-15 Thu 14:57:30

STATE: 0:General

= 50 LIMIT, ppm = 35735LIMIT, Hz BATTERY END POINT (Voltage) = 7

		<u> </u>		
% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
8 OT 21A			-360	-0.50
8.5	7.65	714.696640	-300	
100	ο.	714.697000	0	0.00
100	<i>9</i>	-	70	0.10
115	10.35	714.697070	7.0	
	7	714.696410	-590	-0.83
78	,	, 11.050120		

SUPERVISED BY:

29 of 29.

NAME OF TEST:

Necessary Bandwidth and Emission Bandwidth

SPECIFICATION:

47 CFR 2.202(g)

Rule 2.202(g)

MAXIMUM MODULATION (M), kHz = 15 = 75 MAXIMUM DEVIATION (D), kHz = 1

CONSTANT FACTOR (K)

 $= (2 \times M) + (2 \times D \times K)$ NECESSARY BANDWIDTH (BN), kHz

= 180

Rule 74.861(I)(3), Limit = $\leq \pm 75$ kHz

NECESSARY BANDWIDTH (B_N) , kHz = 180 TEMPERATURE VARIATION, kHz = 8.6 TEMPERATURE VARIATION, kHz 8.6

VOLTAGE VARIATION, kHz

EMISSION BANDWIDTH (B_N), kHz

0.3

= SUM OF ABOVE

= 189

SUPERVISED BY:

TESTIMONIAL AND STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

- THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- 3. THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER:

STATEMENT OF QUALIFICATIONS

EDUCATION:

- B. ENG. in ENGINEERING PHYSICS, 1949, McGill University, Montreal, Canada.
- Post Graduate Studies, McGill University & Sir George Williams University, Montreal.

PROFESSIONAL AFFILIATIONS:

- 1. ARIZONA SOCIETY OF PROFESSIONAL ENGINEERS (NSPE), #026 031 821.
- ORDER OF ENGINEERS (QUEBEC) 1949. #4534.
- 3. ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOPHYSICISTS & GEOLOGISTS OF ALBERTA #5916.
- 4. REGISTERED ENGINEERING CONSULTANT GOVERNMENT OF CANADA, DEPARTMENT OF COMMUNICATIONS. Radio Equipment Approvals.
- 5. IEEE, Lifetime Member No. 0417204 (member since 1947).

EXPERIENCE:

- Research/Development/Senior Project Engineer, R.C.A. LIMITED (4 years).
- Owner/Chief Engineer of Electronics.
 Design/Manufacturing & Cable TV Companies (10 years).
- CONSULTING ENGINEER (over 25 years).

MONTON FLOM, P. Eng.