

FCC/IC Class II Test Report

Report No.: AGC01110190510FE03

FCC ID : 2AOKB-A3024

IC : 23451-A3024

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Soundcore Life Q20

BRAND NAME : Soundcore

MODEL NAME : A3025

CLIENT : Anker Innovations Limited

DATE OF ISSUE : May 30, 2019

STANDARD(S) FCC Part 15 Subpart C Section 15.247, ANSI C63.10: 2013;

RSS-GEN: Issue 5, RSS-247: Issue 2

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Page 2 of 26

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	CO Marie	May 30, 2019	Valid	Initial release	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CE), this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed et attp://www.agc.gett.com.

Attestation of Global Compliance

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
2.2. TABLE OF CARRIER FREQUENCYS	5
2.3. RECEIVER INPUT BANDWIDTH	6
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	6
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	
2.6. TEST METHOD	
2.7. EQUIPMENT MODIFICATIONS	
3. MEASUREMENT UNCERTAINTY	7
4. DESCRIPTION OF TEST MODES	8
5. SYSTEM TEST CONFIGURATION	9
5.1. CONFIGURATION OF EUT SYSTEM	
5.2. EQUIPMENT USED IN EUT SYSTEM	9
5.3. SUMMARY OF TEST RESULTS	10
6. TEST FACILITY	11
7. TEST EQUIPMENT LIST	11
8. RADIATED EMISSION	
8.1. TEST LIMIT	
8.2. MEASUREMENT PROCEDURE	
8.3. TEST SETUP	14
8.4. TEST RESULT	16
9. BAND EDGE EMISSION	21
9.1. MEASUREMENT PROCEDURE	21
9.2. TEST SETUP	
9.3. TEST RESULT	22
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	26
ADDENDIX BY BUOTOCD ADUS OF EUT	26

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed

Report No.: AGC01110190510FE03 Page 4 of 26

1. VERIFICATION OF CONFORMITY

Applicant	Anker Innovations Limited		
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong		
Manufacturer	Anker Innovations Limited		
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong		
Factory	TCL Technoly Electronics(Huizhou) Co., Ltd		
Address	Section 37, Zhongkai High-tech Development Zone, Huizhou City, Guangdong Province, P.R.China		
Product Designation	Soundcore Life Q20		
Brand Name	Soundcore		
Test Model	A3025		
Date of test	May 16, 2019 to May 28, 2019		
Deviation	None		
Condition of Test Sample	Normal		
Report Template	AGCRT-US-BR/RF (2013-03-01)		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.247 and IC Rules RSS-247. The test results of this report relate only to the tested sample identified in this report.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 5 of 26

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is "Soundcore Life Q20" designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

7 Thajor toomiloar accompti	on of Eet to decembed de following
Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	1.982dBm(Max)
Bluetooth Version	V5.0
Modulation	GFSK, π /4-DQPSK, 8DPSK for BR/EDR
Number of channels	79 for BR/EDR
Hardware Version	40-AK3024-MAE4G
Software Version	V1.06
Antenna Designation	PCB Antenna
Antenna Gain	1.6dBi
Power Supply	DC 3.7V by battery
N. C. A. TI. LIOD.	- 16 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Note: 1. The USB port only used for charging and can't be used to transfer data with PC.

2. The BT function of EUT didn't work when charging.

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
Total Complance	00	2402MHz
C Museumon CC Mill	01	2403MHz
IGO YOU		Katerians : @ Manager de com
那	38	2440 MHz
2402~2480MHz	39	2441 MHz
· 100 10	40	2442 MHz
illi		Solution 20 Million Color
The terminal of the second	77 60	2479 MHz
CC in	78	2480 MHz

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Report No.: AGC01110190510FE03 Page 6 of 26

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ,In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations) are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

VGC 8

Page 7 of 26

2.6. TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

The results spowfill this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gott.com.

Attestation of Global Compliance

Page 8 of 26

4. DESCRIPTION OF TEST MODES

VIII.		
	NO.	TEST MODE DESCRIPTION
Ka Alin	1 Kingdone	Low channel GFSK
(C) (S)	2	Middle channel GFSK
60	3	High channel GFSK
. **	4	Low channel π /4-DQPSK
The salion of Global	5 A Colonia Colonia	Middle channel π /4-DQPSK
Prop	6	High channel π /4-DQPSK
	7	Low channel 8DPSK
® #	8	Middle channel 8DPSK
CO"	9 66	High channel 8DPSK
	10	BT Link

Note: 1. Only the result of the worst case was recorded in the report, if no other cases.

- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The EUT used fully-charged battery when tested.
- 4. The BT function of EUT didn't work when charging.

Page 9 of 26

5. SYSTEM TEST CONFIGURATION 5.1. CONFIGURATION OF EUT SYSTEM

Configure:

EUT	

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	Remark
1	Soundcore Life Q20	Soundcore	A3025	EUT
2	battery	VDL	902532	Accessory
3	Control box	GZUT	USB_TTL	A.E
4	USB Cable	N/A	N/A	A.E

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Attestation of Global Compliance

Page 10 of 26

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247 d §15.209, §RSS-Gen 8.9	Radiated Emission	Compliant
§15.247 d, §RSS-Gen 8.10	Band Edges	Compliant

Note: Comparing the internal photos of the original with the modified device, the mainbord's PCB input current different. The conducted test data may refer to the AGC01110190219FE03. We retest radiated emission and band edges and recorded in the test report.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Attestation of Global Compliance

Page 11 of 26

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd			
Location	-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, uhai Street, Bao'an District, Shenzhen, Guangdong, China			
Designation Number	CN1259			
FCC Test Firm Registration Number	975832			
A2LA Cert. No.	5054.02			
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA			

7. TEST EQUIPMENT LIST

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2018	Jun. 11, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gett.com.

Page 12 of 26

8. RADIATED EMISSION

8.1. TEST LIMIT

Frequency	Distance	Field Strengths Limit		
(MHz)	Meters	μ V/m	dB(μV)/m	
0.009 ~ 0.490	300	2400/F(kHz)	Mills	
0.490 ~ 1.705	30	24000/F(kHz)	-C	
1.705 ~ 30	30	30		
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	地震 3 环境	200	46.0	
960 ~ 1000	3 Mashillon of Glob	500	54.0	
Above 1000	3	Other:74.0 dB(µV)/m (Peak)) 54.0 dB(μV)/m (Averag	

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m.
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

8.2. MEASUREMENT PROCEDURE

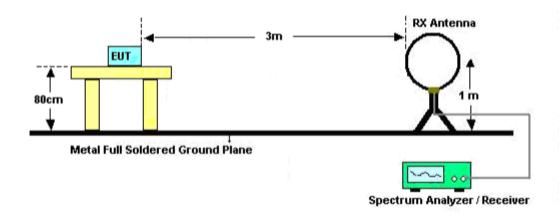
- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

The results spowning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gott.com.

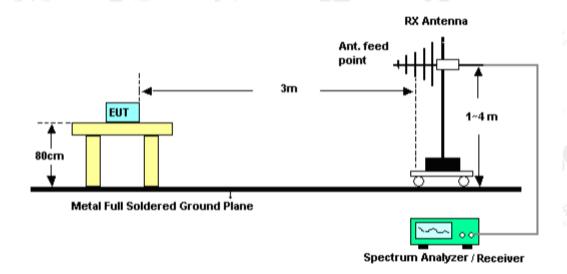
Page 13 of 26

The following table is the setting of spectrum analyzer and receiver.

200		200 (00
	Spectrum Parameter	Setting
K Kilmolaros	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
(B) And the second seco	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
CC "	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
150 A	A STORY OF THE STO	1GHz~26.5GHz
E Global Co	Start ~Stop Frequency	RBW 1MHz/ VBW 3MHz for Peak,
8) Mestalion of	© Francisco C	RBW 1MHz/ VBW 10Hz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

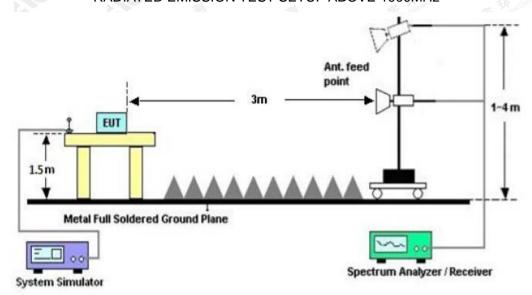
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confir



8.3. TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz



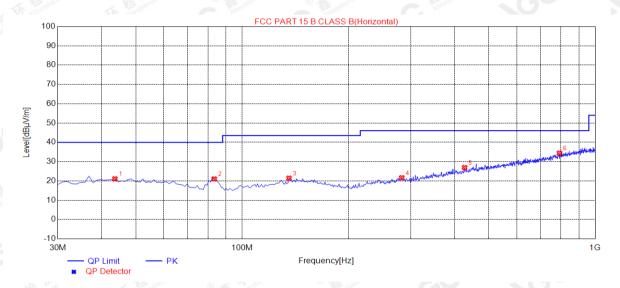
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Page 16 of 26

8.4. TEST RESULT


(Worst Modulation: GFSK)

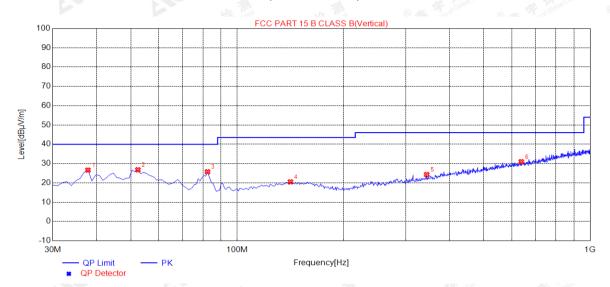
RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

	NO.₽	Freq.↵ [MHz]ቭ	Level⊬ [dBµV/m]∂	Factor⊬ [dB]∂	Limit⊬ [dBµV/m]∉	Margin↵ [dB]↵	Height⊬ [cm]∉	Angle∉ [°]∉	Polarity₽
	1₽	43.5800₽	21.08₽	14.84₽	40.00₽	18.92₽	150₽	340₽	Horizontal₽
	2₽	83.3500₽	21.02₽	10.18₽	40.00₽	18.98₽	100₽	200₽	Horizontal₽
	3₽	135.7300₽	21.42₽	14.56↩	43.50₽	22.08₽	150₽	40₽	Horizontal₽
	4₽	283.1700₽	21.644	16.26₽	46.00₽	24.36₽	200₽	180₽	Horizontal₽
10	5₽	426.7300₽	26.91₽	20.45₽	46.00₽	19.09₽	100₽	110₽	Horizontal₽
	6₽	792.4200₽	34.43₽	28.33₽	46.00₽	11.57₽	150₽	30₽	Horizontal₽


RESULT: PASS

The results shown this lest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 17 of 26

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

	NO.₽	Freq.↵ [MHz]괻	Level⊬ [dBµV/m]∂	Factor⊍ [dB]∂	Limit⊬ [dBµV/m]∂	Margin↵ [dB]↵	Height⊬ [cm]⊬	Angle√ [°]√	Polarity₽
ė	1₽	37.7600₽	26.60₽	14.39₽	40.00₽	13.40₽	200₽	250₽	Vertical₽
STS	2₽	52.3100₽	26.77₽	14.49₽	40.00₽	13.23₽	100₽	230₽	Vertical₽
	3₽	82.3800₽	25.74₽	10.17₽	40.00₽	14.26₽	200₽	310₽	Vertical₽
	4₽	141.5500₽	20.52₽	14.88₽	43.50₽	22.98₽	100₽	30₽	Vertical₽
3	5₽	344.2800₽	24.30₽	17.64₽	46.00₽	21.70₽	200₽	30₽	Vertical₽
12	6₽	638.1900₽	30.98₽	24.93₽	46.00₽	15.02₽	200₽	230₽	Vertical₽

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All modes were tested, and only the data of worst case mode 1 was recorded in this report.

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 18 of 26

RADIATED EMISSION ABOVE 1GHZ FOR BR/EDR

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization:	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	L Jance ®
4804.026	47.98	3.76	51.74	74	-22.26	peak
4804.026	44.94	3.76	48.70	54	-5.30	AVG
7206.039	37.54	8.17	45.71	74	-28.29	peak
7206.039	33.53	8.17	41.70	54	-12.30	AVG
Remark:		利	。 下极剂	10° (S) (# 17°)	(S)	station of Glob
Factor = Ante	enna Factor + Cabl	e Loss – Pre-amp	olifier.	Alfesta		

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature:	20 °C	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4804.026	48.74	3.76	52.50	74	-21.50	peak
4804.026	44.36	3.76	48.12	54	-5.88	AVG
7206.039	38.44	8.17	46.61	74	-27.39	peak
7206.039	37.08	8.17	45.25	54	-8.75	AVG
Remark:	, <g< td=""><td></td><td></td><td>:11</td><td>3</td><td>- FILL</td></g<>			:11	3	- FILL
Factor = Ante	enna Factor + Cabl	e Loss – Pre-an	nplifier.	TK Kinghanc	环	Combine

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC01110190510FE03 Page 19 of 26

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization:	Horizontal

			The solial	The man	The comp	C 32 Miori
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4882.032	47.12	3.78	50.90	74	-23.10	peak
4882.032	44.39	3.78	48.17	54	-5.83	AVG
7323.048	40.31	8.23	48.54	74	-25.46	peak
7323.048	39.28	8.23	47.51	54	-6.49	AVG
Remark:	C Avesti	60			III;	
actor = Ante	enna Factor + Cable	e Loss – Pre-amp	lifier.	M.	The Compliance	Z Thod Company

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization:	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4882.032	48.04	3.78	51.82	74	-22.18	peak
4882.032	45.11	3.78	48.89	54	-5.11	AVG
7323.048	39.50	8.23	47.73	74	-26.27	peak
7323.048	38.62	8.23	46.85	54	-7.15	AVG
Remark:	The Chopal Compile	@ # F of Global Co	(B) Altestation of Al	Allesta	30	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Report No.: AGC01110190510FE03 Page 20 of 26

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization:	Horizontal

			A Company of the Comp	The wall	17700 182	0.32
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960.042	46.97	3.81	50.78	74	-23.22	peak
4960.042	43.74	3.81	47.55	54	-6.45	AVG
7440.063	38.65	8.27	46.92	74	-27.08	peak
7440.063	37.59	8.27	45.86	54	-8.14	AVG
Remark:	C Allesto	60			1111	AND THE
Factor = Ante	enna Factor + Cable	Loss – Pre-am	nplifier.	A	The Compliance	Z Jobal Comp

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960.042	45.71	3.81	49.52	74	-24.48	peak
4960.042	44.67	3.81	48.48	54	-5.52	AVG
7440.063	40.36	8.27	48.63	74	-25.37	peak
7440.063	36.99	8.27	45.26	54	-8.74	AVG
Remark:	The Global Compile	(B) The sport Colonico	Ry Allestation of	Alleste		

Note: Other emissions from 8G to 25 GHz are considered as ambient noise. No recording in the test report. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

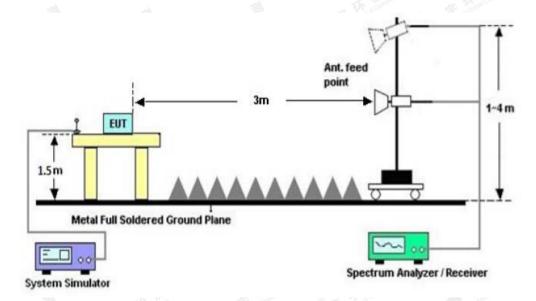
The "Factor" value can be calculated automatically by software of measurement system.

The GFSK modulation was the worst case and only the data of worst recorded in this report.

The results spowning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 21 of 26

9. BAND EDGE EMISSION


9.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- Set SPA Start or Stop Frequency=Operation Frequency
 For unrestricted band: RBW=100kHz, VBW=300kHz
 For restricted band: RBW=1MHz, VBW=3*RBW

Center frequency = Operation frequency

3. The band edges was measured and recorded.

9.2. TEST SETUP

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

9.3. TEST RESULT

FOR BR/EDR:

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

PK Value

AV Value

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization:	Vertical

PK Value

AV Value

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

IGC 8

EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization:	Horizontal

PK Value

AV Value

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



EUT:	Soundcore Life Q20	Model Name. :	A3025
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization :	Vertical

PK Value

AV Value

Note: 1.The GFSK modulation was the worst case and only the data of worst recorded in this report.

- 2. Test results(measurement)=Reading+ Factor(cable loss+ antenna factor-Amplifier gain)
- 3. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

(GC)

Page 26 of 26

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Refer to Attached file (Appendix I).

APPENDIX B: PHOTOGRAPHS OF EUT

Refer to Attached file (Appendix I).

----END OF REPORT----

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China