FR-A800
INSTRUCTION MANUAL (DETAILED)

High functionality and high performance
FR-A820-00046(0.4K) to 04750(90K)(-GF)
FR-A840-00023(0.4K) to 06830(280K)(-GF)
FR-A842-07700(315K) to 12120(500K)(-GF)
FR-A846-00023(0.4K) to 03610(132K)

Safety instructions 9
Chapter 1 INTRODUCTION 16
1.1 Product checking and accessories 17
1.2 Component names 19
1.3 Operation steps 21
1.4 About the related manuals. 23
Chapter 2 INSTALLATION AND WIRING 26
2.1 Peripheral devices 27
2.1.1 Inverter and peripheral devices. 27
2.1.2 Peripheral devices. 29
2.2 Removal and reinstallation of the operation panel or the front covers 33
2.3 Installation of the inverter and enclosure design 37
2.3.1 Inverter installation environment. 37
2.3.2 Amount of heat generated by the inverter. 40
2.3.3 Cooling system types for inverter enclosure 41
2.3.4 Inverter installation 42
2.3.5 Protruding the heat sink through a panel 44
2.4 Terminal connection diagrams. 46
2.5 Main circuit terminals 54
2.5.1 Details on the main circuit terminals 54
2.5.2 Terminal layout of the main circuit terminals, wiring of power supply and the motor 55
2.5.3 Applicable cables and wiring length 57
2.5.4 Earthing (grounding) precautions 66
2.6 Control circuit 68
2.6.1 Details on the control circuit terminals 68
2.6.2 Control logic (sink/source) change 72
2.6.3 Wiring of control circuit 73
2.6.4 Wiring precautions 76
2.6.5 When using separate power supplies for the control circuit and the main circuit 76
2.6.6 When supplying 24 V external power to the control circuit 78
2.6.7 Safety stop function 80
2.7 Communication connectors and terminals. 83
2.7.1 PU connector 83
2.7.2 USB connector 84
2.7.3 RS-485 terminal block. 85
2.8 Connection to a motor with encoder (Vector control) 86
2.9 Parameter settings for a motor with encoder 93
2.10 Connection of stand-alone option units 96
2.10.1 Connection of the brake resistor 96
2.10.2 Connection of the brake unit (FR-BU2) 100
2.10.3 Connection of the brake unit (FR-BU). 101
2.10.4 Connection of the brake unit (BU type) 102
2.10.5 Connection of the high power factor converter (FR-HC2) 103
2.10.6 Connection of the power regeneration common converter (FR-CV). 103
2.10.7 Connection of the power regeneration converter (MT-RC). 105
2.10.8 Connection of the DC reactor (FR-HEL) 105
2.11 Wiring for use of the CC-Link IE Field Network (FR-A800-GF) 107
2.11.1 System configuration example 107
2.11.2 Network configuration 107
2.11.3 Network components 107
2.11.4 Component names of the CC-Link IE Field Network communication circuit board. 108
2.11.5 Wiring method 109
2.11.6 Operation status LEDs 110
Chapter 3 PRECAUTIONS FOR USE OF THE INVERTER 114
3.1 Electro-magnetic interference (EMI) and leakage currents 114
3.1.1 Leakage currents and countermeasures. 114
3.1.2 Countermeasures against inverter-generated EMI 116
3.1.3 Built-in EMC filter 118
3.2 Power supply harmonics 121
3.2.1 Power supply harmonics 121
3.2.2 Harmonic suppression guidelines in Japan 121
3.3 Installation of a reactor 125
3.4 Power shutdown and magnetic contactor (MC) 126
3.5 Countermeasures against deterioration of the 400 V class motor insulation 128
3.6 Checklist before starting operation 129
3.7 Failsafe system which uses the inverter 132
Chapter 4 BASIC OPERATION 136
4.1 Operation panel (FR-DU08) 136
4.1.1 Components of the operation panel (FR-DU08) 136
4.1.2 Basic operation of the operation panel 138
4.1.3 Correspondences between digital and actual characters 139
4.1.4 Changing the parameter setting value 139
4.2 Monitoring the inverter 141
4.2.1 Monitoring of output current and output voltage 141
4.2.2 First priority monitor screen. 141
4.2.3 Displaying the set frequency 141
4.3 Easy setting of the inverter operation mode 142
4.4 Frequently-used parameters (simple mode parameters) 144
4.4.1 Simple mode parameter list 144
4.5 Basic operation procedure (PU operation) 147
4.5.1 Setting the frequency on the operation panel (example: operating at 30 Hz) 147
4.5.2 Perform PU operation using the setting dial like a potentiometer 148
4.5.3 Setting the frequency with switches (multi-speed setting) 149
4.5.4 Setting the frequency using an analog signal (voltage input) 150
4.5.5 Setting the frequency using an analog signal (current input) 151
4.6 Basic operation procedure (External operation) 153
4.6.1 Setting the frequency on the operation panel 153
4.6.2 Setting the frequency and giving a start command with switches (multi-speed setting) (Pr. 4 to Pr.6) 154
4.6.3 Setting the frequency using an analog signal (voltage input) 155
4.6.4 Changing the frequency (60 Hz , initial value) at the maximum voltage input (5 V , initial value). 156
4.6.5 Setting the frequency using an analog signal (current input) 157
4.6.6 Changing the frequency (60 Hz , initial value) at the maximum current input (at 20 mA , initial value) 158
4.7 Basic operation procedure (JOG operation) 159
4.7.1 Giving a start command by using external signals for JOG operation 159
4.7.2 Giving a start command from the operation panel for JOG operation. 160
Chapter 5 PARAMETERS 162
5.1 Parameter list. 162
5.1.1 Parameter list (by parameter number) 162
5.1.2 Use of a function group number for the identification of parameters 195
5.1.3 Parameter list (by function group number) 197
5.2 Control method 210
5.2.1 Vector control and Real sensorless vector control 212
5.2.2 Changing the control method and mode 215
5.2.3 Selecting the Advanced magnetic flux vector control 222
5.2.4 Selecting the PM sensorless vector control 224
5.2.5 Low-speed range torque characteristics 227
5.3 Speed control under Real sensorless vector control, vector control, PM sensorless vector control 229
5.3.1 Setting procedure of Real sensorless vector control (speed control) 232
5.3.2 Setting procedure of Vector control (speed control) 233
5.3.3 Setting procedure of PM sensorless vector control (speed control) 233
5.3.4 Setting the torque limit level 235
5.3.5 Performing high-accuracy, fast-response control (gain adjustment for Real sensorless vector control, Vector control, and PM
sensorless vector control) 244
5.3.6 Troubleshooting in the speed control 251
5.3.7 Speed feed forward control, model adaptive speed control 253
5.3.8 Torque bias 255
5.3.9 Avoiding motor overrunning 259
5.3.10 Notch filter 261
5.4 Torque control under Real sensorless vector control and Vector control 263
5.4.1 Torque control 263
5.4.2 Setting procedure of Real sensorless vector control (torque control). 267
5.4.3 Setting procedure for Vector control (torque control) 268
5.4.4 Torque command 270
5.4.5 Speed limit 274
5.4.6 Torque control gain adjustment. 280
5.4.7 Troubleshooting in torque control 281
5.4.8 Torque control by variable-current limiter control 282
5.5 Position control under vector control and PM sensorless vector control 284
5.5.1 About position control 284
5.5.2 Setting procedure of Vector control (position control) 286
5.5.3 Setting procedure of PM sensorless vector control (position control) 287
5.5.4 Simple positioning function by parameters 288
5.5.5 Position control by the FR-A8AL pulse train input. 301
5.5.6 To perform position control by pulse input to the inverter 304
5.5.7 Clear signal selection 305
5.5.8 Pulse monitor 306
5.5.9 Electronic gear settings 309
5.5.10 Position adjustment parameter settings 311
5.5.11 Position control gain adjustment 312
5.5.12 Troubleshooting in position control 313
5.6 Adjustment during Real sensorless vector control, Vector control, PM sensorless vector control 316
5.6.1 Speed detection filter and torque detection filter 316
5.6.2 Excitation ratio 316
5.6.3 Gain adjustment of current controllers for the d axis and the q axis 317
5.7 (E) Environment setting parameters 318
5.7.1 Real time clock function 318
5.7.2 Reset selection/disconnected PU detection/PU stop selection 320
5.7.3 PU display language selection 322
5.7.4 Buzzer control 322
5.7.5 PU contrast adjustment 322
5.7.6 Display-off mode 323
5.7.7 Direct setting 323
5.7.8 Resetting USB host errors 324
5.7.9 Setting dial potentiometer mode/key lock operation selection 324
5.7.10 Frequency change increment amount setting 325
5.7.11 Multiple rating setting 326
5.7.12 Using the power supply exceeding 480 V 327
5.7.13 Parameter write selection 328
5.7.14 Password 331
5.7.15 Free parameter 333
5.7.16 Setting multiple parameters as a batch 333
5.7.17 Extended parameter display and user group function. 337
5.7.18 PWM carrier frequency and Soft-PWM control 339
5.7.19 Inverter parts life display 341
5.7.20 Maintenance timer alarm 345
5.7.21 Current average value monitor signal 346
5.8 (F) Setting of acceleration/deceleration time and acceleration/deceleration pattern 349
5.8.1 Setting the acceleration and deceleration time 349
5.8.2 Acceleration/deceleration pattern 354
5.8.3 Remote setting function 359
5.8.4 Starting frequency and start-time hold function 363
5.8.5 Minimum motor speed frequency and hold function at the motor start up 364
5.8.6 Shortest acceleration/deceleration and optimum acceleration/deceleration (automatic acceleration/deceleration) 365
5.8.7 Lift operation (automatic acceleration/deceleration) 368
5.9 (D) Operation command and frequency command 370
5.9.1 Operation mode selection 370
5.9.2 Startup in Network operation mode at power-ON 378
5.9.3 Start command source and frequency command source during communication operation 380
5.9.4 Reverse rotation prevention selection. 386
5.9.5 Frequency setting via pulse train input 386
5.9.6 JOG operation. 390
5.9.7 Operation by multi-speed setting 391
5.10 (H) Protective function parameter 394
5.10.1 Motor overheat protection (electronic thermal O/L relay) 394
5.10.2 Fault definition 401
5.10.3 Cooling fan operation selection 402
5.10.4 Earth (ground) fault detection at start 403
5.10.5 Varying the activation level of the undervoltage protective function 403
5.10.6 Initiating a protective function 404
5.10.7 I/O phase loss protection selection 404
5.10.8 Retry function 405
5.10.9 Limiting the output frequency (maximum/minimum frequency). 407
5.10.10 Avoiding machine resonance points (frequency jump) 408
5.10.11 Stall prevention operation 409
5.10.12 Load characteristics fault detection 417
5.10.13 Motor overspeeding detection 421
5.11 (M) Item and output signal for monitoring 422
5.11.1 Speed indication and its setting change to rotations per minute 422
5.11.2 Monitor item selection on operation panel or via communication 424
5.11.3 Monitor display selection for terminals FM/CA and AM 435
5.11.4 Adjustment of terminal FM/CA and terminal AM 440
5.11.5 Energy saving monitoring 444
5.11.6 Output terminal function selection 450
5.11.7 Output frequency detection 461
5.11.8 Output current detection function 464
5.11.9 Output torque detection function 465
5.11.10 Remote output function. 466
5.11.11 Analog remote output function 467
5.11.12 Fault code output selection 469
5.11.13 Pulse train output to announce cumulative output energy 470
5.11.14 Detection of control circuit temperature 471
5.11.15 Encoder pulse dividing output 472
5.12 (T) Multi-function input terminal parameters 473
5.12.1 Analog input selection 473
5.12.2 Analog input terminal (terminal 1, 4) function assignment 477
5.12.3 Analog input compensation. 478
5.12.4 Response level of analog input and noise elimination 480
5.12.5 Frequency setting voltage (current) bias and gain 482
5.12.6 Torque (magnetic flux) setting voltage (current) bias and gain 487
5.12.7 Checking of current input on analog input terminal. 492
5.12.8 Input terminal function selection 496
5.12.9 Inverter output shutoff 500
5.12.10 Selecting the condition to activate the Second function selection (RT) signal or the Third function selection (X9) signal 5015.12.11 Start signal operation selection.503
5.13 (C) Motor constant parameters 506
5.13.1 Applied motor 506
5.13.2 Offline auto tuning 510
5.13.3 Offline auto tuning for a PM motor (motor constant tuning) 520
5.13.4 Online auto tuning 528
5.13.5 Signal loss detection of encoder signals 531
5.14 (A) Application parameters 532
5.14.1 Electronic bypass function 533
5.14.2 Self power management 539
5.14.3 Brake sequence function 542
5.14.4 Start count monitor 546
5.14.5 Stop-on-contact control. 547
5.14.6 Load torque high-speed frequency control 550
5.14.7 Traverse function 552
5.14.8 Anti-sway control 554
5.14.9 Orientation control 555
5.14.10 PID control 571
5.14.11 Changing the display increment of numerical values used in PID control 585
5.14.12 PID Pre-charge function 588
5.14.13 Dancer control 591
5.14.14 Automatic restart after instantaneous power failure/flying start with an induction motor 598
5.14.15 Automatic restart after instantaneous power failure/flying start with an IPM motor 605
5.14.16 Offline auto tuning for a frequency search 607
5.14.17 Power failure time deceleration-to-stop function 611
5.14.18 PLC function 615
5.14.19 Trace function 617
5.15 (N) Communication operation parameters 626
5.15.1 Wiring and configuration of PU connector. 626
5.15.2 Wiring and configuration of RS-485 terminals 628
5.15.3 Initial setting of operation via communication 631
5.15.4 Initial settings and specifications of RS-485 communication 637
5.15.5 Mitsubishi inverter protocol (computer link communication) 638
5.15.6 MODBUS RTU communication specification 653
5.15.7 CC-Link IE Field Network function setting (FRA800-GF) 666
5.15.8 USB device communication 667
5.15.9 Automatic connection with GOT 668
5.15.10 Backup/restore 669
5.16 (G) Control parameters 672
5.16.1 Manual torque boost 673
5.16.2 Base frequency voltage. 674
5.16.3 Load pattern selection. 675
5.16.4 Excitation current low-speed scaling factor 678
5.16.5 Energy saving control 679
5.16.6 Adjustable 5 points V/F 680
5.16.7 SF-PR slip amount adjustment mode 681
5.16.8 DC injection brake, zero speed control, and servo lock 682
5.16.9 Output stop function 687
5.16.10 Stop selection 689
5.16.11 Regenerative brake selection and DC feeding mode 690
5.16.12 Regeneration avoidance function 697
5.16.13 Increased magnetic excitation deceleration 700
5.16.14 Slip compensation 701
5.16.15 Encoder feedback control 701
5.16.16 Droop control. 703
5.16.17 Speed smoothing control 706
5.17 Parameter clear / All parameter clear 708
5.18 Copying and verifying parameters on the operation panel 709
5.18.1 Parameter copy 709
5.18.2 Parameter verification 710
5.19 Copying and verifying parameters using a USB memory 712
5.20 Checking parameters changed from their initial values (initial value change list) 716
5.21 CC-Link IE Field Network (FR-A800-GF) 717
5.21.1 Cyclic transmission 717
5.21.2 I/O signal list 718
5.21.3 Details of the remote input and output signals 721
5.21.4 Details of the remote register 723
5.21.5 Programming examples 728
5.21.6 Instructions 734
Chapter 6 PROTECTIVE FUNCTIONS 738
6.1 Inverter fault and alarm indications 738
6.2 Reset method for the protective functions 739
6.3 Check and clear of the faults history 740
6.4 List of fault displays 742
6.5 Causes and corrective actions. 745
6.6 Check first when you have a trouble 765
6.6.1 Motor does not start 765
6.6.2 Motor or machine is making abnormal acoustic noise 768
6.6.3 Inverter generates abnormal noise 768
6.6.4 Motor generates heat abnormally 769
6.6.5 Motor rotates in the opposite direction 769
6.6.6 Speed greatly differs from the setting 769
6.6.7 Acceleration/deceleration is not smooth 770
6.6.8 Speed varies during operation 771
6.6.9 Operation mode is not changed properly 772
6.6.10 Operation panel (FR-DU08) display is not operating 772
6.6.11 The motor current is too large 772
6.6.12 Speed does not accelerate 773
6.6.13 Unable to write parameter setting 774
6.6.14 Power lamp is not lit 774
Chapter 7 PRECAUTIONS FOR MAINTENANCE AND INSPECTION. 776
7.1 Inspection item 776
7.1.1 Daily inspection. 776
7.1.2 Periodic inspection 776
7.1.3 Daily and periodic inspection 777
7.1.4 Checking the inverter and converter modules. 778
7.1.5 Cleaning 779
7.1.6 Replacement of parts 779
7.1.7 Inverter replacement 783
7.2 Measurement of main circuit voltages, currents, and powers 784
7.2.1 Measurement of powers 786
7.2.2 Measurement of voltages and use of PT 786
7.2.3 Measurement of currents 786
7.2.4 Use of CT and transducer 787
7.2.5 Measurement of inverter input power factor 787
7.2.6 Measurement of converter output voltage (between terminals P and N) 787
7.2.7 Measurement of inverter output frequency 787
7.2.8 Insulation resistance test using megger 788
7.2.9 Pressure test. 788
Chapter 8 SPECIFICATIONS 790
8.1 Inverter rating 790
8.2 Motor rating 794
8.2.1 Vector control dedicated motor SF-V5RU ($1500 \mathrm{r} / \mathrm{min}$ series) 794
8.2.2 Vector control dedicated motor SF-THY 797
8.2.3 IPM motor MM-CF ($2000 \mathrm{r} / \mathrm{min}$ series) 798
8.3 Common specifications 800
8.4 Outline dimension drawings 802
8.4.1 Inverter outline dimension drawings 802
8.4.2 Dedicated motor outline dimension drawings 810
Chapter 9 APPENDIX 820
9.1 For customers replacing the conventional model with this inverter 820
9.1.1 Replacement of the FR-A700 series 820
9.1.2 Replacement of the FR-A500(L) series 821
9.2 Specification comparison between PM sensorless vector control and induction motor control 823
9.3 Parameters (functions) and instruction codes under different control methods 824
9.4 For customers using HMS network options 851

Safety instructions

Thank you for choosing Mitsubishi Electric inverter.
This Instruction Manual (Detailed) provides detailed instructions for advanced settings of the FR-A800 series inverters. Incorrect handling might cause an unexpected fault. Before using this product, read the Instruction Manual (Startup, Detailed) carefully to ensure proper use of this product.
Do not attempt to install, operate, maintain or inspect this product until you have read the Instruction Manuals and appended documents carefully. Do not use this product until you have a full knowledge of this product mechanism, safety information and instructions.
Installation, operation, maintenance and inspection must be performed by qualified personnel. Here, qualified personnel means a person who meets all the following conditions:

- A person who possesses a certification in regard with electric appliance handling, or person took a proper engineering training. Such training may be available at your local Mitsubishi Electric office. Contact your local sales office for schedules and locations.
- A person who can access operating manuals for the protective devices (for example, light curtain) connected to the safety control system, or a person who has read these manuals thoroughly and familiarized himself/herself with the protective devices.

In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".
\bigwedge WARNING Incorrect handling may cause hazardous conditions, resulting in death or severe injury.

\triangle CAUTION

Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

Note that even the
1 CAUTION level may lead to a serious consequence depending on conditions. Be sure to follow the instructions of both levels as they are critical to personnel safety.

- Electric shock prevention

WARNING

- Do not remove the front cover or the wiring cover while the inverter power is ON, and do not run the inverter with the front cover or the wiring cover removed as the exposed high voltage terminals or the charging part of the circuitry can be touched. Otherwise you may get an electric shock.
- Even if power is OFF, do not remove the front cover except for wiring or periodic inspection as the inside of the inverter is charged. Otherwise you may get an electric shock.
- Before wiring or inspection, check that the LED display of the operation panel is OFF. Any person who is involved in wiring or inspection shall wait for 10 minutes or longer after the power supply has been cut off, and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- The inverter must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 61140 class 1 and other applicable standards). A neutralpoint earthed (grounded) power supply must be used for 400 V class inverter to be compliant with EN standard.
- Any person who is involved in wiring or inspection of this product shall be fully competent to do the work.
- The product body must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Setting dial and key operations must be performed with dry hands to prevent an electric shock. Otherwise you may get an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Otherwise you may get an electric shock.
- Do not change the cooling fan while power is ON as it is dangerous.
- Do not touch the printed circuit board or handle the cables with wet hands. Otherwise you may get an electric shock.
- Never touch the motor terminals, etc. right after powering OFF as the DC voltage is applied to the motor for 1 second at powering OFF if the main circuit capacitor capacity is measured. Otherwise you may get an electric shock.
- Before wiring or inspection for a PM motor, confirm that the PM motor is stopped as a PM motor is a synchronous motor with high-performance magnets embedded inside and high-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. In an application, such as fan and blower, that the motor may be driven by the load, connect a low-voltage manual contactor at the inverter's output side and keep it open during wiring and inspection of the inverter. Otherwise you may get an electric shock.

-Fire prevention

CAUTION

- The inverter must be installed on a nonflammable wall without any through holes so that nobody touches the heatsink, etc. on the rear side of the inverter. Installing it on or near flammable material may cause a fire.
- If the inverter has become faulty, the inverter power must be switched OFF. A continuous flow of large current may cause a fire.
- When using a brake resistor, a sequence that will turn OFF power when a fault signal is output must be configured. Otherwise the brake resistor may excessively overheat due to damage of the brake transistor and such, causing a fire.
- Do not connect a resistor directly to the DC terminals P/+ and N/-. Doing so could cause a fire.
- Be sure to perform daily and periodic inspections as specified in the Instruction Manual. If this product is used without any inspection, a burst, breakage, or a fire may occur.

- Injury prevention

ACAUTION

- The voltage applied to each terminal must be as specified in the Instruction Manual. Otherwise burst, damage, etc. may occur.
- The cables must be connected to the correct terminals. Otherwise burst, damage, etc. may occur.
- The polarity (+ and -) must be correct. Otherwise burst, damage, etc. may occur.
- While power is ON or for some time after power-OFF, do not touch the inverter as it will be extremely hot. Touching these devices may cause a burn.

- Additional instructions

The following instructions must be also followed. If the product is handled incorrectly, it may cause unexpected fault, an injury, or an electric shock.

CAUTION

Transportation and installing

- Any person who is opening a package using a sharp object, such as a knife or cutter, must wear gloves to prevent injuries caused by the edge of the sharp object.
- The product must be transported in correct method that corresponds to the weight. Failure to do so may lead to injuries.
- Do not stand or place any heavy object on the product.
- Do not stack the boxes containing products higher than the number recommended.
- When carrying the product, do not hold it by the front cover. Doing so may cause a fall or failure of the product.
- During installation, caution must be taken not to drop the inverter as doing so may cause injuries.
- The product must be installed on the surface that withstands the weight of the product.
- Do not install the product on a hot surface.
- The installing orientation of the inverter must be correct.
- The inverter must be installed on a strong surface securely with screws so that it does not drop.
- Do not install or operate the inverter if it is damaged or has parts missing.
- Foreign conductive objects must be prevented from entering the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- The surrounding air temperature must be between -10 and $+50^{\circ} \mathrm{C}^{* 1}$ (non-freezing) for the inverter at HD (heavy duty), ND (normal duty) (initial setting), or LD (light duty) rating, and between -10 and $+40^{\circ} \mathrm{C}^{* 2}$ (non-freezing) for the inverter at SLD (super light duty) rating. Otherwise the inverter may be damaged.
- The ambient humidity must be 95% RH or less (non-condensing) for the inverter. Otherwise the inverter may be damaged. (Refer to page 37 for details.)
- The temporary storage temperature (applicable to a short limited time such as a transportation time) must be between 20 and $+65^{\circ} \mathrm{C}$. Otherwise the inverter may be damaged.
- The inverter must be used indoors (without corrosive gas, flammable gas, oil mist, dust and dirt). Otherwise the inverter may be damaged.
- The inverter must be used at an altitude of 2500 m or less, with $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less vibration*3 at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes). Otherwise the inverter may be damaged. (Refer to page 37 for details.)
- If halogen-based materials (fluorine, chlorine, bromine, iodine, etc.), included in fumigants to sterilize or disinfect wooden packages, infiltrate into the product, the product may be damaged. Prevent residual fumigant components from being infiltrated into the product when packaging, or use an alternative sterilization or disinfection method (heat disinfection, etc.). Note that sterilization of disinfection of wooden package should be performed before packing the product.

Wiring

- Do not install a power factor correction capacitor, surge absorber, or radio noise filter on the inverter's output side. These devices on the inverter output side may be overheated or burn out.
- The output of the inverter (output terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$) must be correctly connected to a motor. Otherwise the motor rotates inversely.
- Even after the inverter power is turned OFF, a PM motor is running for a while and the inverter's output terminals U, V, and W wired to the PM motor hold high voltages all that while. To wire other terminals after the terminals U, V, and W were wired, be sure that the PM motor is stopped. Otherwise you may get an electric shock.
- Never connect a PM motor to the commercial power supply. Applying the commercial power to the input terminals (U, V, W) on a PM motor will burn the PM motor. The PM motor must be applied a power from the inverter with the output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$.

Test operation

- Before starting the test operation, confirm or adjust the parameter settings. A failure to do so may cause some machines to make unexpected motions.

[^0]
\WARNING

Usage

- Any person must stay away from the inverter after using the retry function as the inverter will restart suddenly after inverter output shutoff.
- It may happen depending on the inverter's function settings that the inverter does not stop its output even when the STOP/RESET key on the operation panel is pressed. To prepare for it, provide a separate circuit and switch (to turn the inverter power OFF, or apply a mechanical brake, etc.) for an emergency stop.
- Be sure to turn OFF the start (STF/STR) signal before clearing the fault as the inverter will restart the motor suddenly after a fault clear.
- Do not use a PM motor for an application that the motor may be driven by the load and run at a speed higher than the maximum motor speed.
- Use only a three-phase induction motor or PM motor as a load on this inverter. Connection of any other electrical equipment to the inverter output may damage the equipment.
- Performing pre-excitation (by using the LX or X13 signal) during torque control (under Real sensorless vector control) may rotate a motor at a low speed even though a start command (STF or STR) is not given. The inverter at a start command ON may also rotate the motor at a low speed even though a speed limit value is set to zero Therefore, confirm that the motor running does not cause any safety problem before performing pre-excitation.
- Do not modify the product.
- Do not remove any part which is not instructed to be removed in the Instruction Manuals. Doing so may lead to a failure or damage of the product.

CAUTION

Usage

- The electronic thermal O/L relay function may not be enough for protection of a motor from overheating. It is recommended to install an external thermal relay or a PTC thermistor for overheat protection.
- Do not use a magnetic contactor on the inverter input side for frequent starting/stopping of the inverter. Otherwise the life of the inverter decreases.
- Use a noise filter or other means to minimize the electromagnetic interference with other electronic equipment used nearby the inverter.
- Appropriate measures must be taken to suppress harmonics. Otherwise harmonics in power systems generated from the inverter may heat/damage a power factor correction capacitor or a generator.
- For a 400 V class motor driven by the inverter, use an insulation-enhanced motor, or take measures to suppress surge voltage. Otherwise surge voltage attributable to the line constants may occur at the motor terminals, deteriorating the insulation of the motor.
- As all parameters return to their initial values after the Parameter clear or All parameter clear is performed, the needed parameters for the inverter operation must be set again before the operation is started.
- The inverter can be easily set for high-speed operation. Therefore, consider all things related to the operation such as the performance of a motor and equipment in a system before the setting change.
- The stop state of the inverter by the inverter's brake function (DC injection brake function) cannot be held. Install a device to apply brakes to a motor or equipment in a system for safety.
- Before running an inverter which have been stored and not been operated for a long period, perform an inspection and a test operation.
- To avoid damage to the product due to static electricity, static electricity in your body must be discharged before you touch the product.
- Only one PM motor can be connected to one inverter.
- A PM motor must be used under PM sensorless vector control. Do not use a synchronous motor, induction motor, or synchronous induction motor.
- Do not connect a PM motor to the inverter at a setting for the induction motor control (initial setting). Do not connect an induction motor to the inverter at a setting for PM sensorless vector control. Doing so will cause a failure.
- As a process of starting a PM motor, turn ON the inverter power first, and then close the contactor on the output side of the inverter.

Emergency stop

- A safety backup such as an emergency brake must be provided for devices or equipment in a system to prevent hazardous conditions in case of the inverter failure.
- If a breaker on the inverter input side is tripped, the wiring must be checked for a fault (such as short circuit), and internal parts of the inverter for a damage, etc. Identify and remove the cause of the trip before resetting the tripped breaker (or before applying the power to the inverter again).
- When any protective function is activated, take an appropriate corrective action before resetting the inverter to resume the operation.

Maintenance, inspection and parts replacement

- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. Doing so will cause a failure.

Disposal

- The product must be treated as industrial waste.

General instruction

- For clarity purpose, illustrations in this Instruction Manual may be drawn with covers or safety guards removed. Ensure all covers and safety guards are properly installed prior to starting operation. For details on the PM motor, refer to the Instruction Manual of the PM motor.

CHAPTER 1 INTRODUCTION

1.1 Product checking and accessories 17
1.2 Component names 19
1.3 Operation steps 21
1.4 About the related manuals 23

The contents described in this chapter must be read before using this product.
Always read the instructions before use.
For the separated converter type, refer to the "INTRODUCTION" in the FR-A802 (Separated Converter Type) Instruction Manual (Hardware).
For the IP55 compatible model, refer to the "INTRODUCTION" in the FR-A806 (IP55/UL Type 12 specification) Instruction Manual (Hardware).

- Abbreviations

Item	Description
DU	Operation panel (FR-DU08)
Operation panel	Operation panel (FR-DU08) and LCD operation panel (FR-LU08)
Parameter unit	Parameter unit (FR-PU07)
PU	Operation panel and parameter unit
Inverter	Mitsubishi Electric inverter FR-A800 series
FR-A800-GF	FR-A800 series inverter with built-in CC-Link IE Field Network communication function
Vector control compatible option	FR-A8AP/FR-A8AL/FR-A8APR/FR-A8APS (plug-in option), FR-A8TP (control terminal option)
Pr.	Parameter number (Number assigned to function)
PU operation	Operation using the PU (operation panel/parameter unit)
External operation	Operation using the control circuit signals
Combined operation	Combined operation using the PU (operation panel/parameter unit) and External operation
Mitsubishi Electric standard motor	SF-JR
Mitsubishi Electric constant- torque motor	SF-HRCA
Vector control dedicated motor	SF-V5RU
Mitsubishi Electric IPM motor	MM-CF

- Trademarks

- Microsoft and Visual C++ are registered trademarks of Microsoft Corporation in the United States and other countries.
- Ethernet is a registered trademark of Fuji Xerox Corporation in Japan.
- MODBUS is a registered trademark of SCHNEIDER ELECTRIC USA, INC.
- Other company and product names herein are the trademarks and registered trademarks of their respective owners.

- Notes on descriptions in this Instruction Manual

- Connection diagrams in this Instruction Manual appear with the control logic of the input terminals as sink logic, unless otherwise specified. (For the control logic, refer to page 72.)

- Harmonic Suppression Guidelines

All the models of the inverters used by specific consumers are covered by "the Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage". (For details, refer to page 121.)

Unpack the product and check the rating plate and the capacity plate of the inverter to ensure that the model agrees with the order and the product is intact.

- Inverter model

*1 Specification differs by the type. Major differences are shown in the following table.

Type	Monitor output	Initial setting			
		Built-in EMC filter	Control logic	Rated frequency	Pr. 19 Base frequency voltage
FM (terminal FM equipped model)	Terminal FM (pulse train output) Terminal AM (analog voltage output (0 to ± 10 VDC))	OFF	Sink logic	60 Hz	9999 (same as the power supply voltage)
CA (terminal CA equipped model)	Terminal CA (analog current output (0 to 20 mADC)) Terminal AM (analog voltage output (0 to ± 10 VDC))	ON	Source logic	50 Hz	8888 (95\% of the power supply voltage)

*2 Conforming to IEC60721-3-3 3C2/3S2
*3 Applicable for the FR-A820-00340(5.5K) or higher, and the FR-A840-00170(5.5K) or higher.

NOTE

- In this Instruction Manual, the inverter model name consists of the applicable motor capacity and the rated current.
(Example) FR-A820-00046(0.4K)

- Accessory

- Fan cover fixing screws

These screws are necessary for compliance with the EU Directives. (Refer to the Instruction Manual (Startup).)

Capacity	Screw size (mm)	Quantity
FR-A820-00105(1.5K) to FR-A820-00250(3.7K) FR-A840-00083(2.2K), FR-A840-00126(3.7K)	$\mathrm{M} 3 \times 35$	1
FR-A820-00340(5.5K), FR-A820-00490(7.5K) FR-A840-00170(5.5K), FR-A840-00250(7.5K)	$\mathrm{M} 3 \times 35$	2
FR-A820-00630(11K) to FR-A820-01250(22K) FR-A840-00310(11K) to FR-A840-00620(22K)	$\mathrm{M} 4 \times 40$	2

- Eyebolt for hanging the inverter

Capacity	Eyebolt size	Quantity
FR-A840-04320(160K) to FR-A840-06830(280K)		

- How to read the SERIAL number

Rating plate example

$\square \frac{\square}{\square} \underline{000000}$
Symbol Year Month Control number SERIAL

The SERIAL consists of one symbol, two characters indicating the production year and month, and six characters indicating the control number.
The last digit of the production year is indicated as the Year, and the Month is indicated by 1 to $9, \mathrm{X}$ (October), Y (November), or Z (December).

1.2

Component names are as follows.

Symbol	Name	Description	Refer to page
(a)	PU connector	Connects the operation panel or the parameter unit. This connector also enables the RS-485 communication.	83
(b)	USB A connector	Connects a USB memory device.	84
(c)	USB mini B connector	Connects a personal computer and enables communication with FR Configurator2.	84
(d)	RS-485 terminals	Enables RS-485, MODBUS RTU communication.	85
(e)	Terminating resistor selection switch (SW1)	Select whether or not to use the terminating resistor for RS-485 communication.	85
(f)	Plug-in option connector 1	Connects a plug-in option or a communication option. (For the FR-A800-GF, a CC-Link IE Field Network communication circuit board is installed to the connector 1. Refer to page 107.)	Instruction Manual of the option
(g)	Plug-in option connector 2		
(h)	Plug-in option connector 3		
(i)	Voltage/current input switches (SW2)	Selects between voltage and current for the input via terminals 2 and 4.	473
(j)	Control circuit terminal block	Connects cables for the control circuit.	68
(k)	EMC filter ON/OFF connector	Turns ON/OFF the EMC filter.	118
(l)	Main circuit terminal block	Connects cables for the main circuit.	54
(m)	Charge lamp	Stays ON while the power is supplied to the main circuit.	55
(n)	Wiring cover	This cover is removable without unplugging cables. (FR-A820-01250(22K) or lower, FR-A840-00620(22K) or lower)	57
(o)	Alarm lamp	Turns ON when the protective function of the inverter is activated.	55
(p)	Power lamp	Stays ON while the power is supplied to the control circuit (R1/L11, S1/L21).	55
(q)	Front cover (upper side)	Remove this cover for the installation of the product, installation of a plug-in (communication) option, RS-485 terminal wiring, switching of the voltage/ current input switches, etc. (The FR-A800-GF had a front cover with an LED display cover.)	33
(r)	Front cover (lower side)	Remove this cover for wiring.	33
(s)	Operation panel (FR-DU08)	Operates and monitors the inverter.	136
(t)	Cooling fan	Cools the inverter. (FR-A820-00105(1.5K) or higher, FR-A840-00083(2.2K) or higher)	780
(u)	Switches (SW3 and SW4) for manufacturer setting	Do not change the initial setting (OFF 圊Off ${ }_{\text {Of }}^{\text {af }}$).	-

Symbol	Overview	Refer to page
(a)	Install the inverter.	37
(b)	Perform wiring for the power supply and the motor.	55
(c)	Select the control method (V/F control, Advanced magnetic flux vector control, Vector control, or PM sensorless vector control).	215
(d)	Give the start command via communication.	625
(e)	Give both the start and frequency commands from the PU. (PU operation mode)	147
(f)	Give the start command from the PU and the frequency command via terminals RH, RM, and RL. (External/PU combined operation mode 2)	149
(g)	Give the start command from the PU and the frequency command by voltage input via terminal 2. (External/PU combined operation mode 2)	150
(h)	Give the start command from the PU and the frequency command by current input via terminal 4. (External/PU combined operation mode 2)	151
(i)	Give the start command via terminal STF or STR and the frequency command from the PU. (External/PU combined operation mode 1)	153
(j)	Give the start command via terminal STF or STR and the frequency command via terminals RH, RM, and RL. (External operation mode)	154
(k)	Give the start command via terminal STF or STR and the frequency command by voltage input via terminal 2. (External operation mode)	155
(l)	Give the start command via terminal STF or STR and the frequency command by current input via terminal 4. (External operation mode)	157

The manuals related to FR-A800 are as follows.

Manual name	
FR-A800 Instruction Manual (Startup)	IB-0600493
FR-A800-GF Instruction Manual (Startup)	IB-0600600
FR-A802 (Separated Converter Type) Instruction Manual (Hardware)	IB-0600533
FR-A802-GF (Separated Converter Type) Instruction Manual (Hardware)	IB-0600601
FR-CC2 (Converter unit) Instruction Manual	IB-0600542
FR-A806 (IP55/UL Type 12 specification) Instruction Manual (Hardware)	IB-0600531ENG
FR Configurator 2 Instruction Manual	IB-0600516ENG
FR-A800/F800 PLC Function Programming Manual	IB-0600492ENG
FR-A800/F800 Safety Stop Function Instruction Manual	BCN-A23228-001

MEMO

2.1 Peripheral devices 27
2.2 Removal and reinstallation of the operation panel or the front covers 33
2.3 Installation of the inverter and enclosure design 37
2.4 Terminal connection diagrams 46
2.5 Main circuit terminals 54
2.6 Control circuit 68
2.7 Communication connectors and terminals 83
2.8 Connection to a motor with encoder (Vector control) 86
2.9 Parameter settings for a motor with encoder 93
2.10 Connection of stand-alone option units 96
2.11 Wiring for use of the CC-Link IE Field Network (FR-A800-GF) 107

This chapter explains the installation and the wiring of this product.
Always read the instructions before use.
For the separated converter type, refer to the "INSTALLATION AND WIRING" in the FR-A802 (Separated Converter Type) Instruction Manual (Hardware).
For the IP55 compatible model, refer to the "INSTALLATION AND WIRING" in the FR-A806 (IP55/UL Type 12 specification) Instruction Manual (Hardware).

2.1.1 Inverter and peripheral devices

$\begin{gathered} \text { Symb } \\ \text { ol } \end{gathered}$	Name	Overview	Refer to page
(a)	Inverter (FR-A800)	The life of the inverter is influenced by the surrounding air temperature. The surrounding air temperature should be as low as possible within the permissible range. This must be noted especially when the inverter is installed in an enclosure. Incorrect wiring may lead to damage of the inverter. The control signal lines must be kept fully away from the main circuit lines to protect them from noise. The built-in EMC filter can reduce the noise.	$\begin{aligned} & 37,46, \\ & 118 \end{aligned}$
(b)	Three-phase AC power supply	Must be within the permissible power supply specifications of the inverter.	790
(c)	Molded case circuit breaker (MCCB), earth leakage circuit breaker (ELB), or fuse	Must be selected carefully since an inrush current flows in the inverter at power ON.	29
(d)	Magnetic contactor (MC)	Install this to ensure safety. Do not use this to start and stop the inverter. Doing so will shorten the life of the inverter.	126
(e)	AC reactor (FR-HAL)	Install this to suppress harmonics and to improve the power factor. An AC reactor (FR-HAL) (option) is required when installing the inverter near a large power supply system (1000 kVA or more). Under such condition, the inverter may be damaged if you do not use a reactor. Select a reactor according to the applied motor capacity.	125
(f)	DC reactor (FR-HEL)	Install this to suppress harmonics and to improve the power factor. Select a reactor according to the applied motor capacity. For the FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher, or a motor with a capacity of 75 kW or higher, always connect the FR-HEL. When using the DC reactor with the FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower, remove the jumper across terminals P/+ and P1 before connecting the $D C$ reactor to the inverter.	125
(g)	Noise filter (FR-BLF)	The FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower are equipped with the common mode choke.	116
(h)	High power factor converter (FR-HC2)	Suppresses the power supply harmonics significantly. Install this as required.	103
(i)	Power regeneration common converter (FR-CV ${ }^{* 1}$)	Provides a large braking capability. Install this as required.	103
(j)	Power regeneration converter (MT-RC*2)		105
(k)	Brake unit (FR-BU2, FR-BU*1, BU*1)	Allows the inverter to provide the optimal regenerative braking capability. Install this as required.	100
(I)	Resistor unit (FR-BR ${ }^{* 1}$, MT-BR5 ${ }^{*}$)		
(m)	USB connection	Connect between the inverter and a personal computer with a USB (ver. 1.1) cable. Use a USB memory device to copy parameter settings or use the trace function.	84
(n)	High-duty brake resistor (FR-ABR ${ }^{*}$)	Improves the braking capability of the inverter built-in brake. Remove the jumper across terminals PR and PX to connect this. (7.5K or lower) Always install a thermal relay when using a brake resistor whose capacity is 11 K or higher.	96
(0)	Noise filter (ferrite core) (FR-BSF01, FRBLF)	Install this to reduce the electromagnetic noise generated from the inverter. The noise filter is effective in the range from about 0.5 to 5 MHz . A wire should be wound four turns at maximum.	116
(p)	Induction motor	Connect a squirrel-cage induction motor.	-
(q)	Contactor Example) No-fuse switch (DSN type)	Connect this for an application where a PM motor is driven by the load even while the inverter power is OFF. Do not open or close the contactor while the inverter is running (outputting).	-
(r)	IPM motor (MM-CF)	Use the specified motor. An IPM motor cannot be driven by the commercial power supply.	798
*1 Compatible with the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower. *2 Compatible with the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher. *3 Compatible with the FR-A820-01250(22K) or lower and FR-A840-00620(22K) or lower.			

NOTE

- To prevent an electric shock, always earth (ground) the motor and inverter.
- Do not install a power factor correction capacitor or surge suppressor or capacitor type filter on the inverter's output side. Doing so will cause the inverter to be shut off or the capacitor and surge suppressor to be damaged. If any of the above devices is connected, immediately remove it. When installing a molded case circuit breaker on the output side of the inverter, contact the manufacturer of the molded case circuit breaker.
- Electromagnetic wave interference The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In this case, activating the EMC filter may minimize interference. (Refer to page 118.)
- For details of options and peripheral devices, refer to the respective Instruction Manual.
- A PM motor cannot be driven by the commercial power supply.
- A PM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before closing the contactor at the output side, make sure that the inverter power is ON and the motor is stopped.

2.1.2 Peripheral devices

Check the model of the inverter you purchased. Appropriate peripheral devices must be selected according to the capacity. Refer to the following table to prepare appropriate peripheral devices.

- Molded case circuit breaker / earth leakage circuit breaker

- This is a matrix showing the rated current of the molded case circuit breaker (MCCB) or earth leakage circuit breaker (ELB) (NF or NV type) according to the selected inverter and rating.

Voltage	Inverter model	Without AC/DC power factor improving reactor				With AC/DC power factor improving reactor			
		SLD	LD	ND	HD	SLD	LD	ND	HD
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { class } \end{aligned}$	FR-A820-00046(0.4K)	10 A	10 A	5 A	5 A	10 A	10 A	5 A	3 A
	FR-A820-00077(0.75K)	15 A	15 A	10 A	5 A	15 A	15 A	10 A	5 A
	FR-A820-00105(1.5K)	20 A	20 A	15 A	10 A	15 A	15 A	15 A	10 A
	FR-A820-00167(2.2K)	30 A	30 A	20 A	15 A	30 A	30 A	15 A	15 A
	FR-A820-00250(3.7K)	50 A	50 A	30 A	20 A	40 A	40 A	30 A	15 A
	FR-A820-00340(5.5K)	75 A	60 A	50 A	30 A	50 A	50 A	40 A	30 A
	FR-A820-00490(7.5K)	100 A	75 A	60 A	50 A	75 A	75 A	50 A	40 A
	FR-A820-00630(11K)	125 A	125 A	75 A	60 A	100 A	100 A	75 A	50 A
	FR-A820-00770(15K)	150 A	150 A	125 A	75 A	125 A	125 A	100 A	75 A
	FR-A820-00930(18.5K)	175 A	175 A	150 A	125 A	150 A	125 A	125 A	100 A
	FR-A820-01250(22K)	225 A	225 A	175 A	150 A	175 A	150 A	125 A	125 A
	FR-A820-01540(30K)	300 A	250 A	225 A	175 A	225 A	200 A	150 A	125 A
	FR-A820-01870(37K)	350 A	300 A	250 A	225 A	250 A	225 A	200 A	150 A
	FR-A820-02330(45K)	400 A	400 A	300 A	250 A	350 A	300 A	225 A	200 A
	FR-A820-03160(55K)	-	-	400 A	300 A	500 A	400 A	300 A	225 A
	FR-A820-03800(75K)	-	-	-	-	500 A	400 A	400 A	300 A
	FR-A820-04750(90K)	-	-	-	-	600 A	500 A	400 A	400 A
400 V class	FR-A840-00023(0.4K)	5 A	5 A	5 A	5 A	5 A	5 A	5 A	3 A
	FR-A840-00038(0.75K)	10 A	10 A	5 A	5 A	10 A	10 A	5 A	5 A
	FR-A840-00052(1.5K)	10 A	10 A	10 A	5 A	10 A	10 A	10 A	5 A
	FR-A840-00083(2.2K)	20 A	20 A	10 A	10 A	15 A	15 A	10 A	10 A
	FR-A840-00126(3.7K)	30 A	30 A	20 A	10 A	20 A	20 A	15 A	10 A
	FR-A840-00170(5.5K)	30 A	30 A	30 A	20 A	30 A	30 A	20 A	15 A
	FR-A840-00250(7.5K)	50 A	50 A	30 A	30 A	40 A	40 A	30 A	20 A
	FR-A840-00310(11K)	60 A	60 A	50 A	30 A	50 A	50 A	40 A	30 A
	FR-A840-00380(15K)	75 A	75 A	60 A	50 A	60 A	60 A	50 A	40 A
	FR-A840-00470(18.5K)	100 A	100 A	75 A	60 A	75 A	75 A	60 A	50 A
	FR-A840-00620(22K)	125 A	125 A	100 A	75 A	100 A	100 A	75 A	60 A
	FR-A840-00770(30K)	150 A	150 A	125 A	100 A	125 A	100 A	100 A	75 A
	FR-A840-00930(37K)	175 A	175 A	150 A	125 A	150 A	125 A	100 A	100 A
	FR-A840-01160(45K)	200 A	200 A	175 A	150 A	175 A	150 A	125 A	100 A
	FR-A840-01800(55K)	-	-	200 A	175 A	225 A	200 A	150 A	125 A
	FR-A840-02160(75K)	-	-	-	-	225 A	225 A	200 A	150 A
	FR-A840-02600(90K)	-	-	-	-	350 A	225 A	225 A	200 A
	FR-A840-03250(110K)	-	-	-	-	400 A	350 A	225 A	225 A
	FR-A840-03610(132K)	-	-	-	-	400 A	400 A	350 A	225 A
	FR-A840-04320(160K)	-	-	-	-	500 A	400 A	400 A	350 A
	FR-A840-04810(185K)	-	-	-	-	600 A	500 A	400 A	400 A
	FR-A840-05470(220K)	-	-	-	-	600 A	600 A	500 A	400 A
	FR-A840-06100(250K)	-	-	-	-	700 A	600 A	600 A	500 A
	FR-A840-06830(280K)	-	-	-	-	800 A	700 A	600 A	600 A

NOTE

- Select an MCCB according to the power supply capacity.
- Install one MCCB per inverter. For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware), and select an appropriate fuse or molded case circuit breaker (MCCB).
$--\sqrt[M]{M C C B}-I N V-M$
- When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.
- When the breaker installed at the inverter's input line is shut off, check for the wiring fault (short circuit), damage to internal parts of the inverter etc. The cause of the output shutoff must be identified and removed before turning ON the power of the breaker.

- Magnetic contactor at the inverter's input line

- This is a matrix showing the model name of the Mitsubishi magnetic contactor to be installed at the inverter's input line according to the selected inverter and rating.

Voltage	Inverter model	Without AC/DC power factor improving reactor				With AC/DC power factor improving reactor			
		SLD	LD	ND	HD	SLD	LD	ND	HD
$\begin{array}{\|l} 200 \mathrm{~V} \\ \text { class } \end{array}$	FR-A820-00046(0.4K)	S-T10							
	FR-A820-00077(0.75K)	S-T10							
	FR-A820-00105(1.5K)	S-T10							
	FR-A820-00167(2.2K)	S-T21	S-T21	S-T10	S-T10	S-T10	S-T10	S-T10	S-T10
	FR-A820-00250(3.7K)	S-T25	S-T25	S-T21	S-T10	S-T21	S-T21	S-T10	S-T10
	FR-A820-00340(5.5K)	S-T35	S-T35	S-T35	S-T21	S-T35	S-T25	S-T21	S-T10
	FR-A820-00490(7.5K)	S-T50	S-T35	S-T35	S-T35	S-T35	S-T35	S-T35	S-T21
	FR-A820-00630(11K)	S-T65	S-T50	S-T35	S-T35	S-T50	S-T50	S-T35	S-T35
	FR-A820-00770(15K)	S-T65	S-T65	S-T50	S-T35	S-T50	S-T50	S-T50	S-T35
	FR-A820-00930(18.5K)	S-T100	S-T100	S-T65	S-T50	S-T65	S-T65	S-T50	S-T50
	FR-A820-01250(22K)	S-N150	S-T100	S-T100	S-T65	S-T100	S-T100	S-T65	S-T50
	FR-A820-01540(30K)	S-N150	S-N150	S-T100	S-T100	S-N150	S-N125	S-T100	S-T65
	FR-A820-01870(37K)	S-N180	S-N180	S-N150	S-T100	S-N150	S-N150	S-N125	S-T100
	FR-A820-02330(45K)	S-N220	S-N220	S-N180	S-N150	S-N180	S-N180	S-N150	S-N125
	FR-A820-03160(55K)	-	-	S-N220	S-N180	S-N300	S-N300	S-N180	S-N150
	FR-A820-03800(75K)	-	-	-	-	S-N400	S-N300	S-N300	S-N180
	FR-A820-04750(90K)	-	-	-	-	S-N600	S-N400	S-N300	S-N300
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { class } \end{aligned}$	FR-A840-00023(0.4K)	S-T10							
	FR-A840-00038(0.75K)	S-T10							
	FR-A840-00052(1.5K)	S-T10							
	FR-A840-00083(2.2K)	S-T10							
	FR-A840-00126(3.7K)	S-T21	S-T21	S-T10	S-T10	S-T12	S-T12	S-T10	S-T10
	FR-A840-00170(5.5K)	S-T21	S-T21	S-T21	S-T10	S-T21	S-T21	S-T12	S-T10
	FR-A840-00250(7.5K)	S-T21	S-T12						
	FR-A840-00310(11K)	S-T35	S-T35	S-T21	S-T21	S-T21	S-T21	S-T21	S-T21
	FR-A840-00380(15K)	S-T35	S-T35	S-T35	S-T21	S-T35	S-T35	S-T21	S-T21
	FR-A840-00470(18.5K)	S-T35	S-T21						
	FR-A840-00620(22K)	S-T50	S-T50	S-T35	S-T35	S-T50	S-T50	S-T35	S-T35
	FR-A840-00770(30K)	S-T65	S-T65	S-T50	S-T35	S-T50	S-T50	S-T50	S-T35
	FR-A840-00930(37K)	S-T100	S-T100	S-T65	S-T50	S-T65	S-T65	S-T50	S-T50
	FR-A840-01160(45K)	S-N150	S-T100	S-T100	S-T65	S-T100	S-T100	S-T65	S-T50
	FR-A840-01800(55K)	-	-	S-T100	S-T100	S-N150	S-T100	S-T100	S-T65
	FR-A840-02160(75K)	-	-	-	-	S-N180	S-N150	S-T100	S-T100
	FR-A840-02600(90K)	-	-	-	-	S-N220	S-N180	S-N150	S-T100
	FR-A840-03250(110K)	-	-	-	-	S-N300	S-N220	S-N180	S-N150
	FR-A840-03610(132K)	-	-	-	-	S-N300	S-N300	S-N220	S-N180
	FR-A840-04320(160K)	-	-	-	-	S-N400	S-N300	S-N300	S-N220
	FR-A840-04810(185K)	-	-	-	-	S-N600	S-N400	S-N300	S-N300
	FR-A840-05470(220K)	-	-	-	-	S-N600	S-N600	S-N400	S-N300
	FR-A840-06100(250K)	-	-	-	-	S-N600	S-N600	S-N600	S-N400
	FR-A840-06830(280K)	-	-	-	-	S-N800	S-N600	S-N600	S-N600

- The matrix shows the magnetic contactor selected according to the standards of Japan Electrical Manufacturers' Association (JEM standards) for AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times. If using an MC for emergency stop during motor driving, select an MC for the inverter input current according to the rated current against JEM 1038 standards for AC-3 class. When installing an MC at the inverter output line to switch to the commercial-power supply operation while running a general-purpose motor, select an MC for the rated motor current according to the rated current against JEM 1038 standards for AC-3 class.
- When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.
- When the breaker installed at the inverter's input line is shut off, check for the wiring fault (short circuit), damage to internal parts of the inverter etc. The cause of the output shutoff must be identified and removed before turning ON the power of the breaker.

2.2 Removal and reinstallation of the operation panel or the front covers

- Removal and reinstallation of the operation panel

- Loosen the two screws on the operation panel.
(These screws cannot be removed.)

- Press the upper edge of the operation panel while pulling out the operation panel.

To reinstall the operation panel, align its connector on the back with the PU connector of the inverter, and insert the operation panel. After confirming that the operation panel is fit securely, tighten the screws. (Tightening torque: 0.40 to $0.45 \mathrm{~N} \cdot \mathrm{~m}$)
\checkmark Removal of the front cover (lower side) (FR-A820-01540(30K) or lower, FR-A840-00770(30K) or lower)
(a)

(c)

(a) Loosen the screws on the front cover (lower side). (These screws cannot be removed.)
(b) While holding the areas around the installation hooks on the sides of the front cover (lower side), pull out the front cover (lower side) using its upper side as a support.
(c) With the front cover (lower side) removed, wiring of the main circuit terminals and control circuit terminals can be performed.

\checkmark Removal of the front cover (upper side) (FR-A820-01540(30K) or lower, FR-A840-00770(30K) or lower)

(c)

(a) With the front cover (lower side) removed, loosen the mounting screws on the front cover (upper side). (These screws cannot be removed.)
(FR-A820-00340(5.5K) to FR-A820-01540(30K) and FR-A840-00170(5.5K) to FR-A840-00770(30K) have two mounting screws.)
(b) While holding the areas around the installation hooks on the sides of the front cover (upper side), pull out the cover using its upper side as a support.
(c) With the front cover (upper side) removed, wiring of the RS-485 terminals and installation of the plug-in option can be performed.
\checkmark Reinstallation of the front covers (FR-A820-01540(30K) or lower, FR-A840-00770(30K) or lower)

(a) Insert the upper hooks of the front cover (upper side) into the sockets of the inverter.

Securely install the front cover (upper side) to the inverter by fixing the hooks on the sides of the cover into place.
(b) Tighten the mounting screw(s) at the lower part of the front cover (upper side). (FR-A820-00340(5.5K) to FR-A82001540(30K) and FR-A840-00170(5.5K) to FR-A840-00770(30K) have two mounting screws.)
(c) Install the front cover (lower side) by inserting the upper hook into the socket of the front cover (upper side).
(d) Tighten the mounting screws at the lower part of the front cover (lower side).

- When installing the front cover (upper side), fit the connector of the operation panel securely along the guides of the PU connector.

\checkmark Removal of the front cover (lower side) (FR-A820-01870(37K) or higher, FR-A840-00930(37K) or higher)

(a) When the mounting screws are removed, the front cover (lower side) can be removed.
(b) With the front cover (lower side) removed, wiring of the main circuit terminals can be performed.

\checkmark Removal of the front cover (upper side) (FR-A820-01870(37K) or higher, FR-A840-00930(37K) or higher)

(a)

(b)

(a) With the front cover (lower side) removed, loosen the mounting screws on the front cover (upper side). (These screws cannot be removed.)
(b) While holding the areas around the installation hooks on the sides of the front cover (upper side), pull out the cover using its upper side as a support.
(c) With the front cover (upper side) removed, wiring of the RS-485 terminals and installation of the plug-in option can be performed.

\checkmark Reinstallation of the front covers (FR-A820-01870(37K) or higher, FR-A840-00930(37K) or higher)

(b)

(a) Insert the upper hooks of the front cover (upper side) into the sockets of the inverter.

Securely install the front cover (upper side) to the inverter by fixing the hooks on the sides of the cover into place.
(b) Tighten the mounting screw(s) at the lower part of the front cover (upper side).
(c) Fasten the front cover (lower side) with the mounting screws.

NOTE

- Fully make sure that the front cover has been reinstalled securely. Always tighten the installation screws of the front cover.

2.3 Installation of the inverter and enclosure design

When designing or manufacturing an inverter enclosure, determine the structure, size, and device layout of the enclosure by fully considering the conditions such as heat generation of the contained devices and the operating environment. An inverter unit uses many semiconductor devices. To ensure higher reliability and long period of operation, operate the inverter in the ambient environment that completely satisfies the equipment specifications.

2.3.1 Inverter installation environment

The following table lists the standard specifications of the inverter installation environment. Using the inverter in an environment that does not satisfy the conditions deteriorates the performance, shortens the life, and causes a failure. Refer to the following points, and take adequate measures.

- Standard environmental specifications of the inverter

*1 0 to $+50^{\circ} \mathrm{C}$ for the FR-A800-GF.
*2 0 to $+40^{\circ} \mathrm{C}$ for the FR-A800-GF.
*3 Temperature applicable for a short time, for example, in transit.
*4 For the installation at an altitude above 1000 m (up to 2500 m), consider a 3% reduction in the rated current per 500 m increase in altitude.
*5 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A840-04320(160K) or higher.

- Temperature

The permissible surrounding air temperature of the inverter is between $-10^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}\left(-10^{\circ} \mathrm{C}\right.$ and $+40^{\circ} \mathrm{C}$ at the SLD rating $)$. (The permissible surrounding air temperature of the FR-A800-GF is between 0 and $+50^{\circ} \mathrm{C}\left(0\right.$ and $+40^{\circ} \mathrm{C}$ for the SLD rating).) Always operate the inverter within this temperature range. Operation outside this range will considerably shorten the service lives of the semiconductors, parts, capacitors and others. Take the following measures to keep the surrounding air temperature of the inverter within the specified range.

Measures against high temperature

- Use a forced ventilation system or similar cooling system. (Refer to page 41.)
- Install the enclosure in an air-conditioned electric chamber.
- Block direct sunlight.
- Provide a shield or similar plate to avoid direct exposure to the radiated heat and wind of a heat source.
- Ventilate the area around the enclosure well.

Measures against low temperature

- Provide a space heater in the enclosure.
- Do not power OFF the inverter. (Keep the start signal of the inverter OFF.)

$■$ Sudden temperature changes

- Select an installation place where temperature does not change suddenly.
- Avoid installing the inverter near the air outlet of an air conditioner.
- If temperature changes are caused by opening/closing of a door, install the inverter away from the door.
- For the amount of heat generated by the inverter unit, refer to page 40.

\checkmark Humidity

Operate the inverter within the ambient air humidity of usually 45 to 90% (up to 95% with circuit board coating). Too high humidity will pose problems of reduced insulation and metal corrosion. On the other hand, too low humidity may cause a spatial electrical breakdown. The humidity conditions for the insulation distance defined in JEM 1103 standard "Insulation Distance from Control Equipment" is 45 to 85%.

■ Measures against high humidity

- Make the enclosure enclosed, and provide it with a hygroscopic agent.
- Provide dry air into the enclosure from outside.
- Provide a space heater in the enclosure.

■ Measures against low humidity

Air with proper humidity can be blown into the enclosure from outside. Also, when installing or inspecting the unit, discharge your body (static electricity) beforehand, and keep your body away from the parts and patterns.

■ Measures against condensation

Condensation may occur if frequent operation stops change the in-enclosure temperature suddenly or if the outside air temperature changes suddenly.
Condensation causes such faults as reduced insulation and corrosion.

- Take the measures against high humidity.
- Do not power OFF the inverter. (Keep the start signal of the inverter OFF.)

- Dust, dirt, oil mist

Dust and dirt will cause such faults as poor contacts, reduced insulation and cooling effect due to the moisture-absorbed accumulated dust and dirt, and in-enclosure temperature rise due to a clogged filter. In an atmosphere where conductive powder floats, dust and dirt will cause such faults as malfunction, deteriorated insulation and short circuit in a short time. Since oil mist will cause similar conditions, it is necessary to take adequate measures.

■ Countermeasure

- Place the inverter in a totally enclosed enclosure.

Take measures if the in-enclosure temperature rises. (Refer to page 41.)

- Purge air.

Pump clean air from outside to make the in-enclosure air pressure higher than the outside air pressure.

-Corrosive gas, salt damage

If the inverter is exposed to corrosive gas or to salt near a beach, the printed board patterns and parts will corrode or the relays and switches will result in poor contact.
In such places, take the measures given in the previous paragraph.

- Explosive, flammable gases

As the inverter is non-explosion proof, it must be contained in an explosion-proof enclosure. In places where explosion may be caused by explosive gas, dust or dirt, an enclosure cannot be used unless it structurally complies with the guidelines and has passed the specified tests. This makes the enclosure itself expensive (including the test charges). The best way is to avoid installation in such places and install the inverter in a non-hazardous place.

\bullet High altitude

Use the inverter at an altitude of within 1000 m . For use at an altitude above 1000 m (up to 2500 m), consider a 3% reduction in the rated current per 500 m increase in altitude.
If it is used at a higher place, it is likely that thin air will reduce the cooling effect and low air pressure will deteriorate dielectric strength.

- Vibration, impact

The vibration resistance of the inverter is up to $5.9 \mathrm{~m} / \mathrm{s}^{2}\left(2.9 \mathrm{~m} / \mathrm{s}^{2}\right.$ or less for the FR-A840-04320(160K) or higher) at 10 to 55 Hz frequency and 1 mm amplitude for the directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes. Applying vibration and impacts for a long time may loosen the structures and cause poor contacts of connectors, even if those vibration and impacts are within the specified values.
Especially when impacts are applied repeatedly, caution must be taken because such impacts may break the installation feet.

■ Countermeasure

- Provide the enclosure with rubber vibration isolators.
- Strengthen the structure to prevent the enclosure from resonance.
- Install the enclosure away from the sources of the vibration.

2.3.2 Amount of heat generated by the inverter

- Installing the heatsink inside the enclosure

When the heatsink is installed inside the enclosure, the amount of heat generated by the inverter unit is shown in the following tables.

Voltage	Inverter model	Amount of heat generated (W)			
		SLD	LD	ND	HD
200 V class	FR-A820-00046(0.4K)	60	55	40	30
	FR-A820-00077(0.75K)	95	85	60	40
	FR-A820-00105(1.5K)	140	130	110	70
	FR-A820-00167(2.2K)	200	185	130	100
	FR-A820-00250(3.7K)	310	285	190	135
	FR-A820-00340(5.5K)	355	320	240	160
	FR-A820-00490(7.5K)	525	480	350	230
	FR-A820-00630(11K)	570	515	370	280
	FR-A820-00770(15K)	770	700	590	450
	FR-A820-00930(18.5K)	950	850	720	600
	FR-A820-01250(22K)	1000	950	880	840
	FR-A820-01540(30K)	1450	1300	1050	880
	FR-A820-01870(37K)	1650	1480	1270	1050
	FR-A820-02330(45K)	2120	1900	1610	1300
	FR-A820-03160(55K)	2750	2450	1830	1450
	FR-A820-03800(75K)	3020	2710	2180	1700
	FR-A820-04750(90K)	3960	3530	2700	2220
400 V class	FR-A840-00023(0.4K)	55	50	40	30
	FR-A840-00038(0.75K)	75	70	55	40
	FR-A840-00052(1.5K)	85	80	70	50
	FR-A840-00083(2.2K)	130	120	100	75
	FR-A840-00126(3.7K)	175	160	130	90
	FR-A840-00170(5.5K)	245	230	170	135
	FR-A840-00250(7.5K)	345	315	220	165
	FR-A840-00310(11K)	370	345	280	210
	FR-A840-00380(15K)	450	415	390	285
	FR-A840-00470(18.5K)	565	520	450	385
	FR-A840-00620(22K)	740	675	520	450
	FR-A840-00770(30K)	930	825	690	560
	FR-A840-00930(37K)	1110	1020	840	700
	FR-A840-01160(45K)	1340	1220	1020	860
	FR-A840-01800(55K)	2000	1640	1290	1060
	FR-A840-02160(75K)	2520	2100	1790	1350
	FR-A840-02600(90K)	3150	2575	2200	1770
	FR-A840-03250(110K)	3600	2800	2300	1850
	FR-A840-03610(132K)	4050	3600	2800	2250
	FR-A840-04320(160K)	4650	3800	3450	2650
	FR-A840-04810(185K)	5300	4650	3850	3400
	FR-A840-05470(220K)	5850	5100	4550	3700
	FR-A840-06100(250K)	6650	5850	5100	4500
	FR-A840-06830(280K)	7550	6600	5900	5050

NOTE

- The amount of heat generated shown assumes that the output current is inverter rated current, power supply voltage is 440 V (400 V class), and carrier frequency is 2 kHz

- Installing the heatsink outside the enclosure

When the heatsink is installed outside the enclosure, the amount of heat generated by the inverter unit is shown in the following tables. (For the details on protruding the heatsink through a panel, refer to page 44.)

Voltage	Inverter model	Amount of heat generated (W)							
		Heatsink section (outside of enclosure)				Control section (inside of enclosure)			
		SLD	LD	ND	HD	SLD	LD	ND	HD
200 V class	FR-A820-00105(1.5K)	104	95	77	40	36	35	33	30
	FR-A820-00167(2.2K)	161	147	95	70	39	38	35	30
	FR-A820-00250(3.7K)	263	240	155	103	47	45	35	32
	FR-A820-00340(5.5K)	265	235	174	110	90	85	66	50
	FR-A820-00490(7.5K)	375	340	244	155	150	140	106	75
	FR-A820-00630(11K)	405	365	261	190	165	150	109	90
	FR-A820-00770(15K)	555	500	421	315	215	200	169	135
	FR-A820-00930(18.5K)	690	615	520	430	260	235	200	170
	FR-A820-01250(22K)	700	665	620	595	300	285	260	245
	FR-A820-01540(30K)	1035	925	745	615	415	375	305	265
	FR-A820-01870(37K)	1170	1040	895	735	480	440	375	315
	FR-A820-02330(45K)	1520	1360	1150	920	600	540	460	380
	FR-A820-03160(55K)	1960	1740	1280	1000	790	710	550	450
	FR-A820-03800(75K)	2165	1930	1530	1180	855	780	650	520
	FR-A820-04750(90K)	2860	2530	1925	1560	1100	1000	775	660
400 V class	FR-A840-00023(0.4K)	20	18	12	6	35	32	28	24
	FR-A840-00038(0.75K)	36	32	23	12	39	38	32	28
	FR-A840-00052(1.5K)	42	39	33	19	43	41	37	31
	FR-A840-00083(2.2K)	77	71	57	38	53	49	43	37
	FR-A840-00126(3.7K)	120	109	86	53	55	51	44	37
	FR-A840-00170(5.5K)	180	170	120	90	65	60	50	45
	FR-A840-00250(7.5K)	260	235	160	115	85	80	60	50
	FR-A840-00310(11K)	260	245	195	145	110	100	85	65
	FR-A840-00380(15K)	315	290	275	200	135	125	115	85
	FR-A840-00470(18.5K)	395	360	310	265	170	160	140	120
	FR-A840-00620(22K)	510	465	360	305	230	210	160	145
	FR-A840-00770(30K)	655	575	480	385	275	250	210	175
	FR-A840-00930(37K)	780	720	590	485	330	300	250	215
	FR-A840-01160(45K)	970	880	740	610	370	340	280	250
	FR-A840-01800(55K)	1400	1140	890	730	600	500	400	330
	FR-A840-02160(75K)	1780	1470	1250	925	740	630	540	425
	FR-A840-02600(90K)	2235	1820	1540	1230	915	755	660	540
	FR-A840-03250(110K)	2540	1960	1590	1260	1060	840	710	590
	FR-A840-03610(132K)	2830	2500	1950	1570	1220	1100	850	680
	FR-A840-04320(160K)	3250	2660	2410	1850	1400	1140	1040	800
	FR-A840-04810(185K)	3700	3250	2690	2380	1600	1400	1160	1020
	FR-A840-05470(220K)	4090	3570	3180	2590	1760	1530	1370	1110
	FR-A840-06100(250K)	4650	4090	3570	3150	2000	1760	1530	1350
	FR-A840-06830(280K)	5280	4620	4130	3530	2270	1980	1770	1520

[^1]
2.3.3 Cooling system types for inverter enclosure

From the enclosure that contains the inverter, the heat of the inverter and other equipment (transformers, lamps, resistors, etc.) and the incoming heat such as direct sunlight must be dissipated to keep the in-enclosure temperature lower than the permissible temperatures of the in-enclosure equipment including the inverter.
The cooling systems are classified as follows in terms of the cooling calculation method.

- Cooling by natural heat dissipation from the enclosure surface (totally enclosed type)
- Cooling by heat sink (aluminum fin, etc.)
- Cooling by ventilation (forced ventilation type, pipe ventilation type)
- Cooling by heat exchanger or cooler (heat pipe, cooler, etc.)

Cooling system		Enclosure structure	Comment
Natural	Natural ventilation (enclosed ventilated type)		This system is low in cost and generally used, but the enclosure size increases as the inverter capacity increases. This system is for relatively small capacities.
	Natural ventilation (totally enclosed type)		Being a totally enclosed type, this system is the most appropriate for hostile environment having dust, dirt, oil mist, etc. The enclosure size increases depending on the inverter capacity.
Forced air	Heat sink cooling	$\text { Heatsink } \sqrt[\square]{\sqrt{8-\frac{8-q}{\mid N V}}}$	This system has restrictions on the heat sink mounting position and area. This system is for relatively small capacities.
	Forced ventilation		This system is for general indoor installation. This is appropriate for enclosure downsizing and cost reduction, and often used.
	Heat pipe		This is a totally enclosed for enclosure downsizing.

2.3.4 Inverter installation

- Inverter placement

- Install the inverter on a strong surface securely with screws.
- Leave enough clearances and take cooling measures.
- Avoid places where the inverter is subjected to direct sunlight, high temperature and high humidity.
- Install the inverter on a nonflammable wall surface.
- When encasing multiple inverters in an enclosure, install them in parallel as a cooling measure.
- For heat dissipation and maintenance, keep clearance between the inverter and the other devices or enclosure surface. The clearance below the inverter is required as a wiring space, and the clearance above the inverter is required as a heat dissipation space.

*1 For the FR-A820-00250(3.7K) or lower and FR-A840-00126(3.7K) or lower, allow 1 cm or more clearance.
*2 When using the FR-A820-01250(22K) or lower and FR-A840-00620(22K) or lower at the surrounding air temperature of $40^{\circ} \mathrm{C}$ or less ($30^{\circ} \mathrm{C}$ or less for the SLD rated inverter), side-by-side installation (0 cm clearance) is available.
*3 For replacing the cooling fan of the FR-A840-04320(160K) or higher, 30 cm of space is necessary in front of the inverter. Refer to page 780 for fan replacement.

- Installation orientation of the inverter

Install the inverter on a wall as specified. Do not mount it horizontally or in any other way.

- Above the inverter

Heat is blown up from inside the inverter by the small fan built in the unit. Any equipment placed above the inverter should be heat resistant.

Arrangement of multiple inverters

When multiple inverters are placed in the same enclosure, generally arrange them horizontally as shown in the figure (a). When it is inevitable to arrange them vertically to minimize space, take such measures as to provide guides since heat from the bottom inverters can increase the temperatures in the top inverters, causing inverter failures.
When mounting multiple inverters, fully take caution not to make the surrounding air temperature of the inverter higher than the permissible value by providing ventilation and increasing the enclosure size.

(a) Horizontal arrangement

(b) Vertical arrangement

Arrangement of multiple inverters

- Arrangement of the ventilation fan and inverter

Heat generated in the inverter is blown up from the bottom of the unit as warm air by the cooling fan. When installing a ventilation fan for that heat, determine the place of ventilation fan installation after fully considering an air flow. (Air passes through areas of low resistance. Make an airway and airflow plates to expose the inverter to cool air.)

Arrangement of the ventilation fan and inverter

2.3.5 Protruding the heat sink through a panel

When encasing the inverter to an enclosure, the heat generated in the enclosure can be greatly reduced by protruding the heat sink of the inverter.
When installing the inverter in a compact enclosure, etc., this installation method is recommended.

- When using the panel through attachment (FR-A8CN)

For the FR-A820-00105(1.5K) to $04750(90 \mathrm{~K})$ and the FR-A840-00023(0.4K) to $03610(132 \mathrm{~K})$, a heat sink can be protruded outside the enclosure using a panel through attachment (FR-A8CN). (For the FR-A840-04320(160K) or higher, the attachment is not necessary when the heat sink is to be protruded.)
For a panel cut dimension drawing and an installation procedure of the panel through attachment (FR-A8CN) to the inverter, refer to a manual of FR-A8CN.

\bullet Protrusion of heat sink for the FR-A840-04320(160K) or higher

- Panel cutting

Cut the panel of the enclosure according to the inverter capacity.

Mount point change of installation frame from the rear to the front

The upper and lower installation frames are attached on the inverter (one for each position).
Change the mount point of the upper and lower installation frames from the rear to the front as shown in the figure.
When reattaching the installation frames, make sure that the installation orientation is correct.

■ Installation of the inverter on the enclosure
Push the inverter heat sink part outside the enclosure, and fix the inverter to the panel with upper and lower installation frames.

NOTE

- As the heat sink part protruded through the panel includes a cooling fan, this type of installation is not suitable for the environment of water drops, oil, mist, dust, etc.
- Be careful not to drop screws, dust etc. into the inverter and cooling fan section.

2.4 Terminal connection diagrams

- Type FM

*1 For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option. (To select a DC reactor, refer to page 790, and select one according to the applicable motor capacity.)
When a DC reactor is connected to the FR-A820-03160(55K) or lower or the FR-A840-01800(55K) or lower, if a jumper is installed across terminals P 1 and $\mathrm{P} /+$, remove the jumper before installing the DC reactor.
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 496.)
*4 Terminal JOG is also used as a pulse train input terminal. Use Pr. 291 to choose JOG or pulse.
*5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set each of the voltage/ current input switch OFF. To input a current, set each of the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to page 400.)
*6 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*7 Remove the jumper between terminals PR and PX to connect the brake resistor. (FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower).
*8 Connect a brake resistor across terminals $\mathrm{P} /+(\mathrm{P} 3)$ and PR . (Terminal PR is equipped in the $\mathrm{FR}-\mathrm{A} 820-00046(0.4 \mathrm{~K})$ to $01250(22 \mathrm{~K}$), and FR -A840$00023(0.4 \mathrm{~K})$ to $01800(55 \mathrm{~K})$.) Install a thermal relay to prevent overheating and damage of brake resistors. (Refer to page 96.$)$
*9 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
*10 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 450.)
*11 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 450.)
*12 Terminal FM can be used to output pulse trains as open collector output by setting Pr. 291.
*13 Not required when calibrating the scale with the operation panel.

NOTE

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
- Set the voltage/current input switches correctly. Incorrect setting may cause a fault, failure or malfunction.

- Type CA

*1 For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option. (To select a DC reactor, refer to page 790, and select one according to the applicable motor capacity.)
When a DC reactor is connected to the FR-A820-03160(55K) or lower or the FR-A840-01800(55K) or lower, if a jumper is installed across terminals P 1 and $\mathrm{P} /+$, remove the jumper before installing the DC reactor.
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 496.)
*4 Terminal JOG is also used as a pulse train input terminal. Use Pr. 291 to choose JOG or pulse.
*5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set each of the voltage/ current input switch OFF. To input a current, set each of the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to page 400.)
*6 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*7 Remove the jumper between terminals PR and PX to connect the brake resistor. (FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower).
*8 Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in the FR-A820-00046(0.4K) to 01250(22K), and FR-A840$00023(0.4 \mathrm{~K})$ to $01800(55 \mathrm{~K})$.) Install a thermal relay to prevent overheating and damage of brake resistors. (Refer to page 96.$)$
*9 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
*10 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 450.)
*11 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 450.)

NOTE

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
- Set the voltage/current input switches correctly. Incorrect setting may cause a fault, failure or malfunction.

\checkmark Type FM (FR-A800-GF)

*1 For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option. (To select a DC reactor, refer to page 790, and select one according to the applicable motor capacity.)
When a DC reactor is connected to the FR-A820-03160(55K) or lower or the FR-A840-01800(55K) or lower, if a jumper is installed across terminals P 1 and $\mathrm{P} /+$, remove the jumper before installing the DC reactor.
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 496.)
*4 Terminal JOG is also used as a pulse train input terminal. Use Pr. 291 to choose JOG or pulse.
*5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set each of the voltage/ current input switch OFF. To input a current, set each of the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to page 400.)
*6 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*7 Remove the jumper between terminals PR and PX to connect the brake resistor. (FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower).
*8 Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in the FR-A820-00046(0.4K) to 01250(22K), and FR-A840$00023(0.4 \mathrm{~K})$ to $01800(55 \mathrm{~K})$.) Install a thermal relay to prevent overheating and damage of brake resistors. (Refer to page 96.)
*9 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
*10 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 450.)
*11 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 450.)
*12 Terminal FM can be used to output pulse trains as open collector output by setting Pr. 291
*13 Not required when calibrating the scale with the operation panel.

NOTE

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Set the voltage/current input switches correctly. Incorrect setting may cause a fault, failure or malfunction.

\checkmark Type CA (FR-A800-GF)

*1 For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option. (To select a DC reactor, refer to page 790, and select one according to the applicable motor capacity.)
When a DC reactor is connected to the FR-A820-03160(55K) or lower or the FR-A840-01800(55K) or lower, if a jumper is installed across terminals P 1 and $\mathrm{P} /+$, remove the jumper before installing the DC reactor.
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 496.)
*4 Terminal JOG is also used as a pulse train input terminal. Use Pr. 291 to choose JOG or pulse.
*5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set each of the voltage/ current input switch OFF. To input a current, set each of the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to page 400.)
*6 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*7 Remove the jumper between terminals PR and PX to connect the brake resistor. (FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower).
*8 Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in the FR-A820-00046(0.4K) to 01250(22K), and FR-A840$00023(0.4 \mathrm{~K})$ to $01800(55 \mathrm{~K})$.) Install a thermal relay to prevent overheating and damage of brake resistors. (Refer to page 96.$)$
*9 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
*10 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 450.)
*11 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 450.)

NOTE

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, keep the cables of the main circuit for input and output separated.
- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
- Set the voltage/current input switches correctly. Incorrect setting may cause a fault, failure or malfunction.

2.5 Main circuit terminals

2.5.1 Details on the main circuit terminals

Terminal symbol	Terminal name	Terminal function description	Refer to page
R/L1, S/L2, T/L3	AC power input	Connect these terminals to the commercial power supply. Do not connect anything to these terminals when using the high power factor converter (FR-HC2) or the power regeneration common converter (FR-CV).	-
U, V, W	Inverter output	Connect these terminals to a three-phase squirrel cage motor or a PM motor.	-
R1/L11, S1/L21	Power supply for the control circuit	Connected to the AC power supply terminals R/L1 and S/L2. To retain the fault display and fault output, or to use a high power factor converter (FR-HC2) or a power regeneration common converter (FR-CV), remove the jumpers across terminals R/L1 and R1/L11 and across S/ L2 and S1/L21, and supply external power to these terminals. The power capacity necessary when separate power is supplied from R1/ L11 and S1/L21 differs according to the inverter capacity. FR-A820-00630(11K) or lower FR-A840-00380(15K) or lower: 60 VA FR-A820-00770(15K) or higher FR-A840-00470(18.5K) or higher: 80 VA	76
P/+, PR	Brake resistor connection for FR-A820-00630(11K) or lower, or FR-A840-00380(15K) or lower	Connect an optional brake resistor (FR-ABR) across terminals P/+ and PR. Remove the jumper across terminals PR and PX for the inverter capacity that has terminal PX. Connecting a brake resistor increases the regenerative braking capability.	96
P3, PR	Brake resistor connection for FR-A820-00770(15K) to 01250(22K) or FR-A840-00470(18.5K) to 01800(55K)	Connect an optional brake resistor across terminals P3 and PR. Connecting a brake resistor increases the regenerative braking capability.	
P/+, N/-	Brake unit connection	Connect the brake unit (FR-BU2, FR-BU, BU), power regeneration common converter (FR-CV), power regeneration converter (MT-RC), high power factor converter (FR-HC2), or DC power supply (under DC feeding mode). When connecting multiple inverters, FR-A820-00770(15K) to 01250(22K) or FR-A840-00470(18.5K) to 01800(55K), in parallel using the FR-CV or FR-HC2, always use either terminal P/+ or P3 for the connection. (Do not use terminals $\mathrm{P} /+$ and P 3 together.) Do not connect the DC power supply between terminals P3 and N/-. Use terminals P/+ and N/- for DC feeding.	
P3, N/-	Brake unit connection for FR-A820-00770(15K) to 01250(22K) or FR-A840-00470(18.5K) to 01800(55K)		100
P/+, P1	DC reactor connection for FR-A820-03160(55K) or lower, or FR-A840-01800(55K) or lower	Remove the jumper across terminals P/+ and P1, and connect a DC reactor. When a DC reactor is not connected, the jumper across terminals $\mathrm{P} /+$ and P 1 should not be removed. When using a motor with a capacity of 75 kW or higher, always connect a DC reactor, which is available as an option.	105
	DC reactor connection for FR-A820-03800(75K) or higher, or FR-A840-02160(75K) or higher	Always connect a DC reactor, which is available as an option.	
PR, PX	Built-in brake circuit connection	When the jumper is connected across terminals PX and PR (initial status), the built-in brake circuit is valid. The built-in brake circuit is equipped in the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.	-
$\frac{1}{=}$	Earth (ground)	For earthing (grounding) the inverter chassis. Be sure to earth (ground) the inverter.	66

NOTE

- When connecting an optional brake resistor (FR-ABR) or a brake unit (FR-BU2, FR-BU, BU), remove the jumpers across terminals PR and PX. For the details, refer to page 96 .

2.5.2 Terminal layout of the main circuit terminals, wiring of power supply and the motor

FR-A820-00046(0.4K), FR-A820-00077(0.75K)	FR-A820-00105(1.5K) to FR-A820-00250(3.7K) FR-A840-00023(0.4K) to FR-A840-00126(3.7K)
	FR-A820-00630(11K) FR-A840-00310(11K), FR-A840-00380(15K)
FR-A820-00770(15K) to FR-A820-01250(22K) FR-A840-00470(18.5K), FR-A840-00620(22K)	FR-A820-01540(30K) ${ }^{* 1}$, FR-A840-00770(30K)

*1 Terminals P3 and PR of the FR-A820-01540(30K) are not provided with a screw. Do not connect anything to these.

NOTE

- Make sure the power cables are connected to the R/L1, S/L2, and T/L3. (Phase need not be matched.) Never connect the power cable to the U, V, and W of the inverter. Doing so will damage the inverter.
- Connect the motor to U, V, and W . (The phases must be matched.)
- When wiring the inverter main circuit conductor of the FR-A840-05470(220K) or higher, tighten a nut from the right side of the conductor. When wiring two cables, place cables on both sides of the conductor. For wiring, use bolts (nuts) provided with the inverter. (Refer to the following figure.)

■ Handling of the wiring cover

(FR-A820-00630(11K) to 01250(22K), FR-A840-00310(11K) to 00620(22K))
For the hook of the wiring cover, cut off the necessary parts using a pair of needle-nose pliers etc.

NOTE

- Cut off the same number of lugs as wires. If parts where no wire is put through have been cut off (10 mm or more), protective structure (IEC60529) becomes an open type (IP00).

2.5.3 Applicable cables and wiring length

Select a recommended size cable to ensure that the voltage drop ratio is within 2%.
If the wiring distance is long between the inverter and motor, the voltage drop in the main circuit will cause the motor torque to decrease especially at a low speed.
The following table shows a selection example for the wiring length of 20 m .

\bullet For the ND rating

- 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }{ }^{* 4} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. ($\left.\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*} 2$		PVC cables, etc. ($\left.\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V},$	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	$\begin{array}{\|c} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \end{array}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	R/L1, S/L2, T/L3	$\begin{gathered} \mathrm{U}, \mathrm{~V}, \\ \mathbf{W} \end{gathered}$	$\begin{gathered} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \end{gathered}$
$\begin{aligned} & 00046(0.4 \mathrm{~K}) \text { to } \\ & 00167(2.2 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00250(3.7K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00340(5.5K)	M5 (M4)	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
00490(7.5K)	M5 (M4)	2.5	14-5	8-5	14	8	14	5.5	6	8	16	10	16
00630(11K)	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
00770(15K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(18.5K)	M8(M6)	7.8	38-8	22-8	38	22	38	14	2	4	35	25	25
01250(22K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
01540(30K)	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01870(37K)	M10(M8)	14.7	80-10	60-10	80	60	80	22	3/0	1/0	70	70	35
02330(45K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
03160(55K)	M12 (M8)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50

- 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{4} \end{aligned}$	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. (mm $\left.{ }^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}{ }^{2}$		PVC cables, etc. ($\left.\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathrm{w} \end{aligned}$	P/+, P1	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	R/L1, S/L2, T/L3	$\underset{\text { W, }}{\text { W, }}$	Earthing (grounding) cable
$\begin{aligned} & 00046(0.4 \mathrm{~K}) \text { to } \\ & 00167(2.2 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00250(3.7K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00340(5.5K)	M5 (M4)	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
00490(7.5K)	M5 (M4)	2.5	14-5	8-5	14	8	14	5.5	8	8	10	10	10
00630(11K)	M5	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
00770(15K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(18.5K)	M8(M6)	7.8	22-8	22-8	22	22	38	14	4	4	25	25	16
01250(22K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
01540(30K)	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01870(37K)	M10(M8)	14.7	60-10	60-10	60	60	80	22	1/0	1/0	70	70	35
02330(45K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
03160(55K)	M12 (M8)	24.5	100-12	100-12	100	100	125	38	4/0	4/0	95	95	50
03800(75K)	M12 (M8)	24.5	150-12	150-12	125	125	150	38	250	250	-	-	-
04750(90K)	M12 (M8)	24.5	150-12	150-12	150	150	2×100	60	300	300	-	-	-

- 400 V class (440 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size* } \end{aligned}$	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{v}, \mathrm{w}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	Earthing (grounding) cable
$\begin{aligned} & 00023(0.4 \mathrm{~K}) \\ & \text { to } \\ & 00126(3.7 \mathrm{~K}) \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00170(5.5K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	4
00250(7.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00310(11K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	10
00380(15K)	M5	2.5	8-5	5.5-5	8	5.5	8	5.5	8	10	10	6	10
00470(18.5K)	M6	4.4	14-6	8-6	14	8	14	8	6	8	16	10	16
00620(22K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00770(30K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(37K)	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01160(45K)	M8	7.8	38-8	38-8	38	38	38	22	1	2	50	50	25
01800(55K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25

- 400 V class (440 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size } \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{2}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	P/+, P1	$\underset{\substack{\text { Earthing } \\ \text { (grounding) } \\ \text { cable }}}{ }$	R/L1, S/L2, T/L3	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathbf{W} \end{aligned}$	R/L1, S/L2, T/L3	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathbf{W} \end{aligned}$	Earthing (grounding) cable
$\begin{array}{\|l} \hline 00023(0.4 \mathrm{~K}) \\ \text { to } \\ 00126(3.7 \mathrm{~K}) \\ \hline \end{array}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00170(5.5K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	4
00250(7.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00310(11K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	10
00380(15K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	8	5.5	10	10	6	6	10
00470(18.5K)	M6	4.4	8-6	8-6	8	8	14	8	8	8	10	10	16
00620(22K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00770(30K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(37K)	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01160(45K)	M8	7.8	38-8	38-8	38	38	38	22	2	2	50	50	25
01800(55K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
02160(75K)	M10	14.7	60-10	60-10	60	60	60	22	1/0	1/0	50	50	25
02600(90K)	M10	14.7	60-10	60-10	60	60	80	22	3/0	3/0	50	50	25
03250(110K)	M10(M12)	14.7	80-10	80-10	80	80	80	38	3/0	3/0	70	70	35
03610(132K)	M10(M12)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
04320(160K)	M12 (M10)	24.5	150-12	150-12	125	125	150	38	250	250	120	120	70
04810(185K)	M12 (M10)	24.5	150-12	150-12	150	150	150	38	300	300	150	150	95
05470(220K)	M12 (M10)	46	100-12	100-12	2×100	2×100	2×100	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
06100(250K)	M12 (M10)	46	100-12	100-12	2×100	2×100	2×125	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
06830(280K)	M12 (M10)	46	150-12	150-12	2×125	2×125	2×125	60	2×250	2×250	2×120	2×120	120

*1 For the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (HIV cable (600 V grade heat-resistant PVC insulated wire), etc.). It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher, it is the gauge of the cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ or higher. It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
*2 For all the 200 V class capacities and FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (THHW cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}(\mathrm{THHN}$ cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware).)
*3 For the FR-A820-00770(15K) or lower and the FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$ (PVC cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-00930(18.5K) or higher and the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ (XLPE cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring. (Selection example mainly for use in Europe.)
*4 The terminal screw size indicates the size of a terminal screw for $\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{PR}, \mathrm{PX}, \mathrm{P} /+, \mathrm{N} /-, \mathrm{P} 1$, and a screw for earthing (grounding).
The screw size for terminals PR and PX on FR-A820-00340(5.5K) and FR-A820-00490(7.5K) is indicated in parentheses.
The screw size for earthing (grounding) terminal on FR-A820-00930(18.5K) or higher and FR-A840-04320(160K) or higher is indicated in parentheses.
The screw size for terminal P/+ for option connection on the FR-A840-03250(110K) and FR-A840-03610(132K) is indicated in parentheses.

- For the SLD rating

- 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{*} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V}, \mathbf{W}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{aligned} & \text { P/+, } \\ & \text { P1 } \end{aligned}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\begin{gathered} \mathrm{U}, \mathrm{~V}, \\ \mathbf{w} \end{gathered}$	R/L1, S/L2, T/L3	$\underset{\mathrm{W}}{\mathrm{U}, \mathrm{~V}}$	Earthing (grounding) cable
00046(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00077(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00105(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00167(2.2K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(3.7K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
00340(5.5K)	M5 (M4)	2.5	14-5	8-5	14	8	14	5.5	6	8	16	10	16
00490(7.5K)	M5 (M4)	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{*} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}{ }^{2}$		PVC cables, etc. ($\left.\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V}, \mathbf{W}$	R/L1, S/L2, T/L3	$\underset{\mathrm{W}}{\mathrm{U}, \mathrm{~V}}$	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	$\begin{array}{\|c} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \end{array}$	R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{v},$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{array}{\|c} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \end{array}$
00630(11K)	M5	2.5	22-5	22-5	22	22	22	14	4	4	25	25	16
00770(15K)	M6	4.4	38-6	22-6	38	22	38	14	2	4	50	25	25
00930(18.5K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	50	50	25
01250(22K)	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01540(30K)	M8(M6)	7.8	80-8	80-8	80	80	80	22	3/0	3/0	70	70	35
01870(37K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
02330(45K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50

- 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{gathered} \text { Terminal } \\ \text { screw } \\ \text { size }{ }^{* 4} \end{gathered}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{v},$	P/+, P1	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\underset{\mathbf{W}}{\mathbf{U},}$	R/L1, S/L2, T/L3	$\begin{gathered} \mathbf{U}, \mathbf{v}, \\ \mathbf{w} \end{gathered}$	Earthing (grounding) cable
00046(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00077(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00105(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00167(2.2K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(3.7K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
00340(5.5K)	M5 (M4)	2.5	8-5	8-5	8	8	8	5.5	8	8	10	10	10
00490(7.5K)	M5 (M4)	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
00630(11K)	M5	2.5	22-5	22-5	22	22	22	14	4	4	25	25	16
00770(15K)	M6	4.4	22-6	22-6	22	22	38	14	4	4	25	25	25
00930(18.5K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	50	50	25
01250(22K)	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01540(30K)	M8(M6)	7.8	80-8	80-8	80	80	80	22	3/0	3/0	70	70	35
01870(37K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
02330(45K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
03160(55K)	M12 (M8)	24.5	150-12	150-12	125	125	150	38	250	250	-	-	-
03800(75K)	M12 (M8)	24.5	150-12	150-12	150	150	2×100	38	$2 \times 4 / 0$	$2 \times 4 / 0$	-	-	-
04750(90K)	M12 (M8)	24.5	100-12	100-12	2×100	2×100	2×100	60	$2 \times 4 / 0$	$2 \times 4 / 0$	-	-	-

- 400 V class (440 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size } \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. ($\left.\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	U, V,	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable 2	R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V},$	R/L1, S/L2, T/L3	$\underset{\mathbf{W}}{\mathrm{U}} \mathrm{~V},$	Earthing (grounding) cable
00023(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00038(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00052(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00083(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00126(3.7K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	4
00170(5.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(7.5K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	10
00310(11K)	M5	2.5	8-5	5.5-5	8	5.5	8	5.5	8	10	10	6	10
00380(15K)	M5	2.5	14-5	8-5	14	8	14	8	6	8	16	10	16
00470(18.5K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00620(22K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00770(30K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(37K)	M8	7.8	38-8	38-8	38	38	38	22	1	2	50	50	25
01160(45K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25

- 400 V class (440 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size } \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\underset{\mathbf{W}}{\mathrm{U}, \mathrm{~V}}$	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$ w	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{gathered} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \end{gathered}$
00023(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00038(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00052(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00083(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00126(3.7K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	14	14	2.5	2.5	4
00170(5.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(7.5K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	10
00310(11K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	8	5.5	10	10	6	6	10
00380(15K)	M5	2.5	8-5	8-5	8	8	14	8	8	8	10	10	16
00470(18.5K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00620(22K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00770(30K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(37K)	M8	7.8	38-8	38-8	38	38	38	22	2	2	50	50	25
01160(45K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01800(55K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
02160(75K)	M10	14.7	80-10	80-10	80	80	80	22	3/0	3/0	70	70	35
02600(90K)	M10	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
03250(110K)	M10(M12)	14.7	150-10	150-10	125	125	150	38	250	250	120	120	70
03610(132K)	M10(M12)	14.7	150-10	150-10	150	150	150	38	300	300	150	150	95
04320(160K)	M12 (M10)	24.5	100-12	100-12	2×100	2×100	2×100	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
04810(185K)	M12 (M10)	24.5	100-12	100-12	2×100	2×100	2×125	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
05470(220K)	M12 (M10)	46	150-12	150-12	2×125	2×125	2×125	60	2×250	2×250	2×120	2×120	120
06100(250K)	M12 (M10)	46	150-12	150-12	2×150	2×150	2×150	60	2×300	2×300	2×150	2×150	150
06830(280K)	M12 (M10)	46	150-12	150-12	2×200	2×200	2×200	100	2×350	2×350	2×185	2×185	2×95

*1 For the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (HIV cable (600 V grade heat-resistant PVC insulated wire), etc.). It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher, it is the gauge of the cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ or higher. It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
*2 For all the 200 V class capacities and FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (THHW cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}(\mathrm{THHN}$ cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware).)
*3 For the FR-A820-00770(15K) or lower and the FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$ (PVC cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-00930(18.5K) or higher and the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ (XLPE cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
(Selection example mainly for use in Europe.)
*4 The terminal screw size indicates the size of a terminal screw for $\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{PR}, \mathrm{PX}, \mathrm{P} /+, \mathrm{N} /-\mathrm{P} 1$, and a screw for earthing (grounding).
The screw size for terminals PR and PX on FR-A820-00340(5.5K) and FR-A820-00490(7.5K) is indicated in parentheses.
The screw size for earthing (grounding) terminal on FR-A820-00930(18.5K) or higher and FR-A840-04320(160K) or higher is indicated in parentheses.
The screw size for terminal P/+ for option connection on the FR-A840-03250(110K) and FR-A840-03610(132K) is indicated in parentheses.

- For the LD rating

- 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size } \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V}, \mathbf{w}$	R/L1, S/L2, T/L3	$\underset{\mathbf{W}}{\mathrm{U}} \mathbf{\mathrm { V }}$	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathbf{U}_{\mathbf{W}}^{\mathbf{V}}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	Earthing (grounding) cable
00046(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00077(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00105(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00167(2.2K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{*} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}{ }^{2}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \end{aligned}$ T/L3	$\underset{\mathbf{W}}{\mathbf{U}, ~}$	Earthing (grounding) cable
00250(3.7K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
00340(5.5K)	M5 (M4)	2.5	8-5	5.5-5	8	5.5	14	5.5	6	10	16	6	16
00490(7.5K)	M5 (M4)	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
00630(11K)	M5	2.5	22-5	22-5	22	22	22	14	4	4	25	25	16
00770(15K)	M6	4.4	38-6	22-6	38	22	38	14	2	4	35	25	25
00930(18.5K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
01250(22K)	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01540(30K)	M8(M6)	7.8	80-8	60-8	80	60	80	22	3/0	1/0	70	70	35
01870(37K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
02330(45K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50

- 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size } \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}{ }^{2}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	$\mathrm{U}, \mathbf{v},$	P/+, P1	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\underset{\mathbf{W}}{\mathrm{U}, \mathrm{~V}}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	Earthing (grounding) cable
00046(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00077(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00105(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00167(2.2K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(3.7K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
00340(5.5K)	M5 (M4)	2.5	5.5-5	5.5-5	5.5	5.5	14	5.5	10	10	6	6	6
00490(7.5K)	M5 (M4)	2.5	14-5	14-5	14	14	14	8	6	6	16	16	16
00630(11K)	M5	2.5	22-5	22-5	22	22	22	14	4	4	25	25	16
00770(15K)	M6	4.4	22-6	22-6	22	22	38	14	4	4	25	25	16
00930(18.5K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
01250(22K)	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01540(30K)	M8(M6)	7.8	60-8	60-8	60	60	80	22	1/0	1/0	70	70	35
01870(37K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
02330(45K)	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
03160(55K)	M12 (M8)	24.5	150-12	150-12	125	125	125	38	250	250	-	-	-
03800(75K)	M12 (M8)	24.5	150-12	150-12	150	150	150	38	$2 \times 4 / 0$	$2 \times 4 / 0$	-	-	-
04750(90K)	M12 (M8)	24.5	150-12	150-12	150	150	2×100	60	2×4/0	$2 \times 4 / 0$	-	-	-

- 400 V class (440 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size } \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{\text {2 }}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$ w	R/L1, S/L2, T/L3	$\underset{\mathrm{W}}{\mathrm{U}, \mathrm{~V}}$	Earthing (grounding) cable
00023(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00038(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00052(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00083(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00126(3.7K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	4
00170(5.5K)	M4	1.5	5.54	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(7.5K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	10
00310(11K)	M5	2.5	8-5	5.5-5	8	5.5	8	5.5	8	10	10	6	10
00380(15K)	M5	2.5	14-5	8-5	14	8	14	8	6	8	16	10	16
00470(18.5K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00620(22K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00770(30K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(37K)	M8	7.8	38-8	38-8	38	38	38	22	1	2	50	50	25
01160(45K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25

- 400 V class (440 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{* 4} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	$\mathbf{U}, \mathrm{V}, \mathrm{w}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{gathered} \text { P/+, } \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	Earthing (grounding) cable
00023(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00038(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00052(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00083(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00126(3.7K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	14	14	2.5	2.5	2.5
00170(5.5K)	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00250(7.5K)	M4	1.5	5.5-4	5.5-4	5.5	5.5	5.5	5.5	10	10	6	6	6
00310(11K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	8	5.5	10	10	6	6	6
00380(15K)	M5	2.5	8-5	8-5	8	8	14	8	8	8	10	10	10
00470(18.5K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00620(22K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00770(30K)	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
00930(37K)	M8	7.8	38-8	38-8	38	38	38	22	2	2	50	50	25
01160(45K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
01800(55K)	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
02160(75K)	M10	14.7	60-10	60-10	60	60	80	22	1/0	1/0	50	50	25
02600(90K)	M10	14.7	80-10	80-10	80	80	80	38	3/0	3/0	70	70	35
03250(110K)	M10(M12)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
03610(132K)	M10(M12)	14.7	150-10	150-10	125	125	150	38	250	250	120	120	70
04320(160K)	M12 (M10)	24.5	150-12	150-12	150	150	150	38	300	300	150	150	95
04810(185K)	M12 (M10)	24.5	100-12	100-12	2×100	2×100	2×100	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
05470(220K)	M12 (M10)	46	100-12	100-12	2×100	2×100	2×125	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
06100(250K)	M12 (M10)	46	150-12	150-12	2×125	2×125	2×125	60	2×250	2×250	2×120	2×120	120
06830(280K)	M12 (M10)	46	150-12	150-12	2×150	2×150	2×150	60	2×300	2×300	2×150	2×150	150

*1 For the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (HIV cable (600 V grade heat-resistant PVC insulated wire), etc.). It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher, it is the gauge of the cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ or higher. It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
*2 For all the 200 V class capacities and FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (THHW cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}(\mathrm{THHN}$ cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware).)
*3 For the FR-A820-00770(15K) or lower and the FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$ (PVC cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-00930(18.5K) or higher and the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ (XLPE cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
(Selection example mainly for use in Europe.)
*4 The terminal screw size indicates the size of a terminal screw for $\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{PR}, \mathrm{PX}, \mathrm{P} /+, \mathrm{N} /-\mathrm{P} 1$, and a screw for earthing (grounding).
The screw size for terminals PR and PX on FR-A820-00340(5.5K) and FR-A820-00490(7.5K) is indicated in parentheses.
The screw size for earthing (grounding) terminal on FR-A820-00930(18.5K) or higher and FR-A840-04320(160K) or higher is indicated in parentheses.
The screw size for terminal P/+ for option connection on the FR-A840-03250(110K) and FR-A840-03610(132K) is indicated in parentheses.

- For the HD rating

- 200 V class (220 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	Terminal screw size ${ }^{* 4}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{\mathbf{2}}\right)^{* 3}$		
			R/L1, S/L2, T/L3	$\mathbf{U}, \mathrm{V}, \mathrm{w}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathbf{V},$	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\underset{\mathrm{W}}{\mathrm{U}, \mathrm{~V}}$	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	Earthing (grounding) cable
00046(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00077(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00105(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00167(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{44} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}{ }^{2}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	$\mathrm{U}, \mathbf{V},$	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\underset{\mathbf{W}}{\mathrm{U}, \mathrm{~V}}$	R/L1, S/L2, T/L3	$\mathbf{U}, \mathbf{V},$	Earthing (grounding) cable
00250(3.7K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00340(5.5K)	M5 (M4)	2.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
00490(7.5K)	M5 (M4)	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
00630(11K)	M5	2.5	14-5	8-5	14	8	14	5.5	6	8	16	10	16
00770(15K)	M6	4.4	14-6	14-6	14	14	14	8	6	6	16	16	16
00930(18.5K)	M8(M6)	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01250(22K)	M8(M6)	7.8	38-8	22-8	38	22	38	14	2	4	35	25	25
01540(30K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
01870(37K)	M10(M8)	14.7	60-10	60-10	60	60	60	22	1/0	1/0	50	50	25
02330(45K)	M10(M8)	14.7	80-10	60-10	80	60	80	22	3/0	1/0	70	70	35
03160(55K)	M12 (M8)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50

- 200 V class (220 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A820-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{*} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{\text {2 }}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\underset{\mathbf{w}}{\mathbf{U},}$	R/L1, S/L2, T/L3	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathrm{w} \end{aligned}$	Earthinggrounding) cable
00046(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00077(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00105(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00167(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00250(3.7K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00340(5.5K)	M5 (M4)	2.5	5.5-5	5.5-5	3.5	3.5	3.5	3.5	12	12	4	4	4
00490(7.5K)	M5 (M4)	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
00630(11K)	M5	2.5	14-5	8-5	14	8	14	5.5	8	8	10	10	10
00770(15K)	M6	4.4	14-6	14-6	14	14	14	8	6	6	16	16	16
00930(18.5K)	M8(M6)	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01250(22K)	M8(M6)	7.8	22-8	22-8	22	22	38	14	4	4	25	25	16
01540(30K)	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
01870(37K)	M10(M8)	14.7	60-10	60-10	60	60	60	22	1/0	1/0	50	50	25
02330(45K)	M10(M8)	14.7	60-10	60-10	60	60	80	22	1/0	1/0	70	70	35
03160(55K)	M12 (M8)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50
03800(75K)	M12 (M8)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50
04750(90K)	M12 (M8)	24.5	150-12	150-12	125	125	125	38	250	250	-	-	-

- 400 V class (440 V input power supply, without a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }{ }^{*} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. ($\left.\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{v},$	$\begin{aligned} & \text { P/+, } \\ & \text { P1 } \end{aligned}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	$\mathrm{U}, \mathrm{~V},$	R/L1, S/L2, T/L3	U, V,	$\underset{\substack{\text { Earthing } \\ \text { (grounding) }}}{\text { cable }}$
00023(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00038(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00052(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00083(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00126(3.7K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00170(5.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00250(7.5K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	2.5
00310(11K)	M5	2.5	5.5-5	5.5-5	3.5	3.5	3.5	3.5	12	12	4	4	4
00380(15K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
00470(18.5K)	M6	4.4	8-6	5.5-6	8	5.5	8	5.5	8	10	10	6	10
00620(22K)	M6	4.4	14-6	8-6	14	8	14	8	6	8	16	10	16
00770(30K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00930(37K)	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01160(45K)	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01800(55K)	M8	7.8	38-8	38-8	38	38	38	22	1	2	50	50	25

- 400 V class (440 V input power supply, with a power factor improving AC or DC reactor)

Applicable inverter model FR-A840-[]	$\begin{aligned} & \text { Terminal } \\ & \text { screw } \\ & \text { size }^{* 4} \end{aligned}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal		Cable gauge								
					HIV cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 1}$				AWG/MCM ${ }^{*}$		PVC cables, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, w	R/L1, S/L2, T/L3	U, v,	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	$\underset{\substack{\text { Earthing } \\ \text { (grounding) } \\ \text { cable }}}{ }$	R/L1, S/L2, T/L3	$\mathrm{u}, \mathrm{~V},$	R/L1, S/L2, T/L3	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathrm{~W} \end{aligned}$	Earthing (grounding) cable
00023(0.4K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00038(0.75K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00052(1.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00083(2.2K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00126(3.7K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00170(5.5K)	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
00250(7.5K)	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	2.5
00310(11K)	M5	2.5	5.5-6	5.5-6	3.5	3.5	3.5	3.5	12	12	4	4	4
00380(15K)	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
00470(18.5K)	M6	4.4	5.5-6	5.5-6	5.5	5.5	8	5.5	10	10	6	6	6
00620(22K)	M6	4.4	8-6	8-6	8	8	14	8	8	8	10	10	10
00770(30K)	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
00930(37K)	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01160(45K)	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
01800(55K)	M8	7.8	38-8	38-8	38	38	38	22	2	2	50	50	25
02160(75K)	M10	14.7	60-10	60-10	60	60	60	22	1/0	1/0	50	50	25
02600(90K)	M10	14.7	60-10	60-10	60	60	60	22	1/0	1/0	50	50	25
03250(110K)	M10(M12)	14.7	60-10	60-10	60	60	80	22	3/0	3/0	50	50	25
03610(132K)	M10(M12)	14.7	80-10	80-10	80	80	80	38	3/0	3/0	70	70	35
04320(160K)	M12 (M10)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50
04810(185K)	M12 (M10)	24.5	150-12	150-12	125	125	150	38	250	250	120	120	70
05470(220K)	M12 (M10)	46	150-12	150-12	150	150	150	38	300	300	150	150	95
06100(250K)	M12 (M10)	46	100-12	100-12	2×100	2×100	2×100	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
06830(280K)	M12 (M10)	46	100-12	100-12	2×100	2×100	2×125	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95

*1 For the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (HIV cable (600 V grade heat-resistant PVC insulated wire), etc.). It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher, it is the gauge of the cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ or higher. It assumes a surrounding air temperature of $50^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
*2 For all the 200 V class capacities and FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ (THHW cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}(\mathrm{THHN}$ cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring.
(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware).)
*3 For the FR-A820-00770(15K) or lower and the FR-A840-01160(45K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$ (PVC cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and the wiring distance of 20 m or shorter.
For the FR-A820-00930(18.5K) or higher and the FR-A840-01800(55K) or higher, it is the gauge of a cable with the continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ (XLPE cable). It assumes a surrounding air temperature of $40^{\circ} \mathrm{C}$ or lower and in-enclosure wiring. (Selection example mainly for use in Europe.)
*4 The terminal screw size indicates the size of a terminal screw for R/L1, S/L2, T/L3, U, V, W, PR, PX, P/+, N/-, P1, and a screw for earthing (grounding).
The screw size for terminals PR and PX on FR-A820-00340(5.5K) and FR-A820-00490(7.5K) is indicated in parentheses.
The screw size for earthing (grounding) terminal on FR-A820-00930(18.5K) or higher and FR-A840-04320(160K) or higher is indicated in parentheses.
The screw size for terminal P/+ for option connection on the FR-A840-03250(110K) and FR-A840-03610(132K) is indicated in parentheses.

The line voltage drop can be calculated by the following formula:
Line voltage drop $[\mathrm{V}]=\frac{\sqrt{3} \times \text { wire resistance }[\mathrm{m} \Omega / \mathrm{m}] \times \text { wiring distance }[\mathrm{m}] \times \text { current }[\mathrm{A}]}{1000}$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

NOTE

- Tighten the terminal screw to the specified torque.

A screw that has been tightened too loosely can cause a short circuit or malfunction.
A screw that has been tightened too tightly can cause a short circuit or malfunction due to the unit breakage.

- Use crimp terminals with insulation sleeves to wire the power supply and motor.

- Total wiring length

■ With induction motor

Connect one or more general-purpose motors within the total wiring length shown in the following table. (The wiring length should be 100 m or shorter under Vector control.)

| $\begin{array}{c}\text { Pr.72 setting } \\ \text { (carrier frequency) }\end{array}$ | FR-A820-00046(0.4K) |
| :--- | :--- | :--- | :--- |
| FR-A840-00023(0.4K) | |\(\left.\quad \begin{array}{l}FR-A820-00077(0.75K)

FR-A840-00038(0.75K)\end{array} \quad $$
\begin{array}{c}\text { FR-A820-00105(1.5K) or higher } \\
\text { FR-A840-00052(1.5K) or higher }\end{array}
$$\right]\)

Total wiring length (FR-A820-00105(1.5K) or higher, FR-A840-00052(1.5K) or higher)

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. In this case, take one of the following measure.

- Use a "400 V class inverter-driven insulation-enhanced motor" and set Pr. 72 PWM frequency selection according to the wiring length.

Wiring length $\mathbf{5 0} \mathbf{~ m}$ or shorter	Wiring length $\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{m}$	Wiring length longer than $\mathbf{1 0 0} \mathbf{m}$
$\mathbf{1 5 (1 4 . 5 \mathrm { kHz }) \text { or lower }}$	$9(9 \mathrm{kHz})$ or lower	$4(4 \mathrm{kHz})$ or lower

- For the FR-A840-01800(55K) or lower, connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) at the output side of the inverter. For the FR-A840-02160(75K) or higher, connect a sine wave filter (MT-BSL/BSC) at the output side of the inverter.

- With PM motor

Use the wiring length of 100 m or shorter when connecting a PM motor.
Use one PM motor for one inverter. Multiple PM motors cannot be connected to an inverter.
When the wiring length exceeds 50 m for a 400 V class motor driven by an inverter under PM sensorless vector control, set " 9 " (6 kHz) or less in Pr. 72 PWM frequency selection.

NOTE

- Especially for long-distance wiring, the inverter may be affected by a charging current caused by stray capacitances of the wiring, leading to an activation of the overcurrent protection, malfunction of the fast-response current limit operation, or even to an inverter failure. It may also cause a malfunction or fault of the equipment connected ON the inverter output side. If the fast-response current limit function malfunctions, disable this function. (Refer to Pr. 156 Stall prevention operation selection on page 409.)
- A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control.
A sine wave filter (MT-BSL/BSC) can be used under V/F control. Do not use the filters under different control methods.
- For the details of Pr. 72 PWM frequency selection, refer to page 339.
- Refer to page 128 to drive a 400 V class motor by an inverter.
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 339.)

2.5.4 Earthing (grounding) precautions

Always earth (ground) the motor and inverter.

\bullet Purpose of earthing (grounding)

Generally, an electrical apparatus has an earth (ground) terminal, which must be connected to the ground before use.
An electrical circuit is usually insulated by an insulating material and encased. However, it is impossible to manufacture an insulating material that can shut off a leakage current completely, and actually, a slight current flows into the case. The purpose of earthing (grounding) the case of an electrical apparatus is to prevent operators from getting an electric shock from this leakage current when touching it.
To avoid the influence of external noises, this earthing (grounding) is important to audio equipment, sensors, computers and other apparatuses that handle low-level signals or operate very fast.

\bullet Earthing (grounding) methods and earthing (grounding) work

As described previously, earthing (grounding) is roughly classified into an electrical shock prevention type and a noiseinfluenced malfunction prevention type. Therefore, these two types should be clearly distinguished, and the following work must be done to prevent the leakage current having the inverter's high frequency components from entering the malfunction prevention type earthing (grounding):

- Whenever possible, use the independent earthing (grounding) for the inverter.

If independent earthing (grounding) (I) is not available, use (II) common earthing (grounding) in the following figure where the inverter is connected with the other equipment at an earthing (grounding) point. Do not use the other equipment's earthing (grounding) cable to earth (ground) the inverter as shown in (III).
A leakage current containing many high frequency components flows into the earthing (grounding) cables of the inverter and peripheral devices. Because of this, the inverter must be earthed (grounded) separately from EMI-sensitive devices.
In a high building, it may be effective to use the EMI prevention type earthing (grounding) connecting to an iron structure frame, and electric shock prevention type earthing (grounding) with the independent earthing (grounding) together.

- This inverter must be earthed (grounded). Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 61140 class 1 and other applicable standards). A neutralpoint earthed (grounded) power supply for 400 V class inverter in compliance with EN standard must be used.
- Use the thickest possible earthing (grounding) cable. The earthing (grounding) cable should be the size indicated in the table on page 57.
- The earthing (grounding) point should be as close as possible to the inverter, and the earth (ground) wire length should be as short as possible.
- Run the earthing (grounding) cable as far away as possible from the I/O wiring of equipment sensitive to noises and run them in parallel in the minimum distance.

(III) Common earthing (grounding) cable: Not allowed

(II) Common earthing (grounding): Good
(

NOTE

- To be compliant with the EU Directive (Low Voltage Directive), refer to the Instruction Manual (Startup).

2.6.1 Details on the control circuit terminals
 - Input signal

Type	Terminal symbol	Terminal name	Terminal function description	Rated specification	Refer to page
	10E	Frequency setting power supply	When connecting the frequency setting potentiometer at an initial status, connect it to terminal 10. Change the input specifications of terminal 2 using Pr. 73 when connecting it to terminal 10E.	$10 \pm 0.4 \mathrm{VDC},$ permissible load current: $10 \mathrm{~mA}$	473
	10			$\begin{array}{\|l\|} \hline 5 \pm 0.5 \mathrm{VDC} \\ \text { permissible load current: } \\ 10 \mathrm{~mA} \end{array}$	473
	2	Frequency setting (voltage)	Inputting 0 to 5 VDC (or 0 to $10 \mathrm{~V}, 0$ to 20 mA) provides the maximum output frequency at $5 \mathrm{~V}(10 \mathrm{~V}, 20 \mathrm{~mA})$ and makes input and output proportional. Use Pr. 73 to switch among input 0 to 5 VDC (initial setting), 0 to 10 VDC, and 0 to 20 mA . Set the voltage/current input switch 1 for terminal 2 in the ON position to select current input (0 to 20 mA). ${ }^{*}{ }^{2}$	For voltage input, input resistance: 10 ± 1 $\mathrm{k} \Omega$, maximum permissible voltage: 20 VDC. For current input, input resistance: 245 ± 5 Ω, permissible maximum current: 30 mA .	473
	4	Frequency setting (current)	Inputting 4 to 20 mADC (or 0 to $5 \mathrm{~V}, 0$ to 10 V) provides the maximum output frequency at 20 mA and makes input and output proportional. This input signal is valid only when the AU signal is ON (terminal 2 input is invalid). Use Pr. 267 to switch among input 4 to 20 mA (initial setting), 0 to 5 VDC , and 0 to 10 VDC. Set the voltage/current input switch 2 for terminal 4 in the OFF position to select voltage input (0 to 5 V/0 to 10 V$).{ }^{*}{ }^{*}$ Use Pr. 858 to switch terminal functions.		473
	1	Frequency setting auxiliary	Input 0 to $\pm 5 \mathrm{VDC}$ or 0 to ± 10 VDC to add this signal to the frequency setting signal input via terminal 2 or 4 . Use Pr. 73 to switch between input 0 to ± 5 VDC and 0 to ± 10 VDC (initial setting). Use Pr. 868 to switch terminal functions.	Input resistance: $10 \pm 1 \mathrm{k} \Omega \text {, }$ permissible maximum voltage: $\pm 20 \text { VDC }$	473
	5	Frequency setting common	Common terminal for the frequency setting signal (via terminal 2, 1, or 4) and for the analog output terminals AM and CA. Do not earth (ground).	-	473
	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	PTC thermistor input	For receiving PTC thermistor outputs. When PTC thermistor is valid (Pr. $561 \neq$ "9999"), terminal 2 is not available for frequency setting.	Applicable PTC thermistor specification, overheat detection resistance: 0.5 to $30 \mathrm{k} \Omega$ (Set by Pr.561)	394
	+24	24 V external power supply input	For connecting a 24 V external power supply. If a 24 V external power supply is connected, power is supplied to the control circuit while the main power circuit is OFF.	Input voltage: 23 to 25.5 VDC, input current: 1.4 A or less	78

[^2]
\checkmark Output signal

Type	Terminal symbol	Terminal name	Terminal function description		Rated specification	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \\ \hline \end{gathered}$
$\begin{gathered} \stackrel{\underset{\omega}{\infty}}{\substack{x}} \end{gathered}$	A1, B1, C1 ${ }^{* 1}$	Relay output 1 (fault output)	1 changeover contact output that indicates that an inverter's protective function has been activated and the outputs are stopped. Fault: discontinuity across B and C (continuity across A and C), Normal: continuity across B and C (discontinuity across A and C)		Contact capacity: 230 VAC 0.3 A (power factor $=0.4$), 30 VDC 0.3 A	450
	$\begin{aligned} & \mathrm{A} 2, \\ & \mathrm{~B} 2, \\ & \mathrm{C} 2^{* 1} \end{aligned}$	Relay output 2	1 changeover contact output			450
	RUN ${ }^{11}$	Inverter running	The output is in LOW state when the inverter output frequency is equal to or higher than the starting frequency (initial value: 0.5 Hz). The output is in HIGH state during stop or DC injection brake operation.		Permissible load: 24 VDC (27 VDC at maximum) 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.) The open collector transistor is ON (conductive) in LOW state. The transistor is OFF (not conductive) in HIGH state.	450
	SU*1	Up to frequency	The output is in LOW state when the output frequency is within the set frequency range $\pm 10 \%$ (initial value). The output is in HIGH state during acceleration/deceleration and at a stop. The output is in LOW state when stall prevention is activated by the stall prevention function. The output is in HIGH state when stall prevention is canceled.	Fault code (4 bits) output. (Refer to page 469.)		461
	OL* ${ }^{*}$	Overload warning				409
	IPF* ${ }^{1}$	Instantaneous power failure	The output is in LOW state when an instantaneous power failure occurs or when the undervoltage protection is activated.			$\begin{aligned} & 597, \\ & 604 \end{aligned}$
	$\mathrm{FU}^{* 1}$	Frequency detection	The output is in LOW state when the inverter output frequency is equal to or higher than the preset detection frequency, and is in HIGH state when it is less than the preset detection frequency.			461
	SE	Open collector output common	Common terminal for terminals RUN, SU, OL, IPF, FU		-	-
$\frac{\otimes}{\stackrel{\oplus}{\Sigma}}$	FM ${ }^{*}$	For meter	Among several monitor items such as output frequency, select one to output it via these terminals. The signal is not output during an inverter reset. The size of output signal is proportional to the magnitude of the corresponding monitor item. Use Pr.55, Pr.56, and Pr. 866 to set full scales for the monitoring output frequency, output current, and torque. (Refer to page 435.)	Output item: output frequency (initial setting)	Permissible load current: 2 mA For full scale 1440 pulses/s	435
		NPN open collector output		This terminal can be used for open collector outputs depending on the Pr. 291 setting.	Maximum output pulse: 50k pulses/s, permissible load current: 80 mA	386
$\begin{aligned} & \frac{0}{\square} \\ & \frac{0}{\omega} \\ & \frac{\pi}{4} \end{aligned}$	AM	Analog voltage output		Output item: output frequency (initial setting)	Output signal: 0 to ± 10 VDC, permissible load current: 1 mA (load impedance $10 \mathrm{k} \Omega$ or more), resolution: 8 bits	435
	$C A^{* 3}$	Analog current output			Load impedance 200 to 450Ω, output signal: 0 to 20 mADC	435

*1 The terminal function can be selected by Pr. 190 to Pr. 196 (Output terminal function selection). (Refer to page 450.)
*2 Terminal FM is provided in the FM-type inverter.
*3 Terminal CA is provided in the CA-type inverter.

- Communication

| Type | Terminal
 symbol | | Terminal name | Terminal function description |
| :--- | :--- | :--- | :--- | :--- | :--- |

-CC-Link IE Field Network (FR-A800-GF)

Type	Terminal name	Terminal function description	Refer to page
$\underline{\text { 凹 }}$	PORT 1		
	PORT 2	Communication can be made via the CC-Link IE Field Network.	107

Safety stop signal

| Terminal
 symbol | Terminal name | Terminal function description | Refer to
 page |
| :--- | :--- | :--- | :--- | :--- |
| S1 | Safety stop input
 (channel 1) | Use terminals S1 and S2 to receive the safety stop signal input
 from the safety relay module. Terminals S1 and S2 can be used
 at a time (dual channel).
 The Inverter judges the condition of the internal safety circuit from
 the status (shorted/opened) between terminals S1 and SIC, or
 between S2 and SIC. When the status is opened, the inverter
 output is shut off.
 In the initial status, terminal S1 and S2 are shorted with terminal
 PC by shorting wires. Terminal SIC is shorted with terminal SD.
 Remove the shorting wires and connect the safety relay module
 when using the safety stop function. | Input resistance: $4.7 \mathrm{k} \Omega$,
 input current: 4 to 6
 mADC (with 24 VDC
 input) |
| S2 | Safety stop input
 (channel 2) | Safety stop input
 terminal common | Common terminal for terminals S1 and S2. |

2.6.2 Control logic (sink/source) change

Switch the control logic of input signals as necessary.
To change the control logic, change the jumper connector position on the control circuit board.
Connect the jumper connector to the connector pin of the desired control logic.
The control logic of input signals is initially set to the sink logic (SINK) for the type FM inverter.
The control logic of input signals is initially set to the source logic (SOURCE) for the type CA inverter.
(The output signals may be used in either the sink or source logic independently of the jumper connector position.)

NOTE

- Make sure that the jumper connector is installed correctly.
- Never change the control logic while power is ON
- To change the control logic for the FR-A800-GF, remove the control circuit terminal block and change the jumper connector position. (Refer to page 783 for details on how to remove the terminal block.) After changing the jumper connector position, reinstall the control circuit terminal block securely in place.

- Sink logic and source logic

- In the sink logic, a signal turns ON when a current exits from the corresponding signal input terminal.

Terminal SD is common to the contact input signals. Terminal SE is common to the open collector output signals.

- In the source logic, a signal turns ON when a current enters into the corresponding signal input terminal.

Terminal PC is common to the contact input signals. Terminal SE is common to the open collector output signals.

- Current flow concerning the input/output signal when sink logic is selected

- When using an external power supply for transistor output

2.6.3 Wiring of control circuit

- Control circuit terminal layout

- Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

- Wiring method

■ Power supply connection

For the control circuit wiring, strip off the sheath of a cable, and use it with a blade terminal. For a single wire, strip off the sheath of the wire and apply directly.
Insert the blade terminal or the single wire into a socket of the terminal.

1. Strip off the sheath for the below length. If the length of the sheath peeled is too long, a short circuit may occur with neighboring wires. If the length is too short, wires might come off.
Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.
Cable sheath stripping length

2. Crimp the blade terminal.

Insert wires to a blade terminal, and check that the wires come out for about 0 to 0.5 mm from a sleeve.
Check the condition of the blade terminal after crimping. Do not use a blade terminal of which the crimping is inappropriate, or the face is damaged.

Blade terminals commercially available (as of January 2017)

- Phoenix Contact Co., Ltd.

Cable gauge (mm^{2})	Ferrule terminal model			Crimping tool name
	With insulation sleeve	Without insulation sleeve	For UL wire ${ }^{* 1}$	
0.3	AI 0,34-10TQ	-	-	CRIMPFOX 6
0.5	Al 0,5-10WH	-	AI 0,5-10WH-GB	
0.75	AI 0,75-10GY	A 0,75-10	AI 0,75-10GY-GB	
1	Al 1-10RD	A 1-10	Al 1-10RD/1000GB	
1.25, 1.5	Al 1, 5-10BK	A 1, 5-10	Al $1,5-10 \mathrm{BK} / 1000 \mathrm{~GB}^{*}{ }^{2}$	
0.75 (two-wire product)	AI-TWIN 2×0,75-10GY	-	-	

*1 A ferrule terminal with an insulation sleeve compatible with the MTW wire which has a thick wire insulation.
*2 Applicable for terminals A1, B1, C1, A2, B2, C2.

- NICHIFU Co., Ltd.

Cable gauge $\left(\mathbf{m m}^{2}\right)$	Blade terminal product number	Insulation cap product number	Crimping tool product number
0.3 to 0.75	BT $0.75-11$	VC 0.75	NH 69

3. Insert the wires into a socket.

When using a single wire or stranded wires without a blade terminal, push the open/close button all the way down with a flathead screwdriver, and insert the wire.

NOTE

- When using stranded wires without a blade terminal, twist enough to avoid short circuit with a nearby terminals or wires.
- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

- Wire removal

Pull the wire while pushing the open/close button all the way down firmly with a flathead screwdriver.

NOTE

- Pulling out the wire forcefully without pushing the open/close button all the way down may damage the terminal block.
- Use a small flathead screwdriver (tip thickness: $0.4 \mathrm{~mm} /$ tip width: 2.5 mm). If a flathead screwdriver with a narrow tip is used, terminal block may be damaged.
Commercially available products (as of February 2016)

Product name	Model	Manufacturer
Driver	SZF 0-0,4 $\times 2,5$	Phoenix Contact Co., Ltd.

- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

- Common terminals of the control circuit (SD, PC, 5, SE)

- Terminals SD (sink logic), PC (source logic), 5 , and SE are common terminals (0 V) for I/O signals. (All common terminals are isolated from each other.) Do not earth (ground) these terminals. Avoid connecting terminal SD (sink logic) with terminal 5, terminal PC (source logic) with terminal 5, and terminal SE with terminal 5.
- In the sink logic, terminal SD is a common terminal for the contact input terminals (STF, STR, STP (STOP), RH, RM, RL, JOG, RT, MRS, RES, AU, and CS) and the pulse train output terminal ($\mathrm{FM}^{* 1}$). The open collector circuit is isolated from the internal control circuit by photocoupler.
- In the source logic, terminal PC is a common terminal for the contact input terminals (STF, STR, STP (STOP), RH, RM, RL, JOG, RT, MRS, RES, AU, CS). The open collector circuit is isolated from the internal control circuit by photocoupler.
- Terminal 5 is a common terminal for the frequency setting terminals (1,2 , and 4) and the analog output terminals (AM and $C A^{* 2}$). It should be protected from external noise using a shielded or twisted cable.
- Terminal SE is a common terminal for the open collector output terminals (RUN, SU, OL, IPF, and FU). The contact input circuit is isolated from the internal control circuit by photocoupler.
*1 Terminal FM is provided in the FM-type inverter.
*2 Terminal CA is provided in the CA-type inverter.

- Signal inputs by contactless switches

The contact input terminals of the inverter (STF, STR, STP (STOP), RH, RM, RL, JOG, RT, MRS, RES, AU, and CS) can be controlled using a transistor instead of a contact switch as follows.

External signal input using transistor (sink logic)

External signal input using transistor
(source logic)

2.6.4 Wiring precautions

- It is recommended to use a cable of 0.3 to $0.75 \mathrm{~mm}^{2}$ for the connection to the control circuit terminals.
- The wiring length should be 30 m (200 m for terminal FM) at the maximum.
- Use two or more parallel micro-signal contacts or twin contacts to prevent contact faults when using contact inputs since the control circuit input signals are micro-currents.

Micro signal contacts

Twin contacts

- To suppress EMI, use shielded or twisted cables for the control circuit terminals and run them away from the main and power circuits (including the 200 V relay sequence circuit). For the cables connected to the control circuit terminals, connect their shields to the common terminal of the connected control circuit terminal. When connecting an external power supply to terminal PC, however, connect the shield of the power supply cable to the negative side of the external power supply. Do not directly earth (ground) the shield to the enclosure, etc.
- Always apply a voltage to the fault output terminals (A1, B1, C1, A2, B2, and C2) via a relay coil, lamp, etc.
- For the FR-A820-03160(55K) or higher and FR-A840-02160(75K) or higher, separate the wiring of the control circuit away from the wiring of the main circuit.
Make cuts in rubber bush of the inverter side and lead the wires through.

2.6.5 When using separate power supplies for the control circuit and the main circuit

- Cable size for the control circuit power supply (terminals R1/L11 and S1/ L21)

- Terminal screw size: M4
- Cable gauge: $0.75 \mathrm{~mm}^{2}$ to $2 \mathrm{~mm}^{2}$
- Tightening torque: $1.5 \mathrm{~N} \cdot \mathrm{~m}$

-Connection method

Connection diagram

If a fault occurs and the electromagnetic contactor (MC) installed at the inverter's input line is opened, power supply to the control circuit is also stopped and the fault signals cannot be output anymore. Terminals R1/L11 and S1/L21 of the control circuit are provided to keep outputting the fault signals in such a case. Follow the following steps to wire terminals R1/L11 and S1/L21 on the inverter to the power input lines of the MC. Do not connect the power cable to incorrect terminals. Doing so may damage the inverter.

- A820-00250(3.7K) or lower, FR-A840-00126(3.7K) or lower

(a)Remove the upper screws.
(b)Remove the lower screws.
(c)Remove the jumper.
(d)Connect the separate power supply cable for the control circuit to the lower terminals (R1/L11, S1/L21).
- A820-00340(5.5K) to FR-A820-00630(11K), FR-A840-00170(5.5K) to FR-A840-00380(15K)

(a)Remove the upper screws.
(b)Remove the lower screws.
(c)Remove the jumper.
(d)Connect the separate power supply cable for the control circuit to the upper terminals (R1/L11, S1/L21).
- FR-A820-00770(15K) or higher, FR-A840-00470(18.5K) or higher

(a)Remove the upper screws.
(b)Remove the lower screws.
(c)Pull the jumper toward you to remove.
(d)Connect the separate power supply cable for the control circuit to the upper terminals (R1/L11, S1/L21).

NOTE

- When using separate power supplies, always remove the jumpers across terminals R/L1 and R1/L11 and across S/L2 and S1/ L21. The inverter may be damaged if the jumpers are not removed.
- When the control circuit power is supplied from other than the input line of the MC, the voltage of the separate power supply must be the same as that of the main control circuit .
- The power capacity necessary when separate power is supplied from R1/L11 and S1/L21 differs according to the inverter capacity.

Inverter	Power supply capacity
FR-A820-00630(11K) or lower FR-A840-00380(15K) or lower	60 VA
FR-A820-00770(15K) or higher FR-A840-00470(18.5K) or higher	80 VA

- If the main circuit power is switched OFF (for 0.1 seconds or more) then ON again, the inverter is reset and a fault output will not be held.

2.6.6 When supplying 24 V external power to the control circuit

Connect the 24 V external power supply across terminals +24 and $S D$ to turn the I/O terminal ON/OFF operation, keep the operation panel ON, and carry out communication during communication operation even at power-OFF state of inverter's main circuit power supply. When the main circuit power supply is turned ON , the power supply is switched from the 24 V external power supply to the main circuit power supply.

Specification of the applied 24 V external power supply

Item	Rated specification
Input voltage	23 to 25.5 VDC
Input current	1.4 A or less

Commercially available products (as of February 15)

Model	Manufacturer
S8JX-N05024C*1 Specifications: Capacity 50 W , output voltage 24 VDC, output current 2.1 A Installation method: Front installation with cover	
S8VS-06024*1 Specifications: Capacity 60 W, output voltage 24 VDC, output current 2.5 A Installation method: DIN rail installation	OMRON Corporation

*1 For the latest information about OMRON power supply, contact OMRON corporation.

Starting and stopping the 24 V external power supply operation

- Supplying 24 V external power while the main circuit power is OFF starts the 24 V external power supply operation. Likewise, turning OFF the main circuit power while supplying 24 V external power starts the 24 V external power supply operation.
- Turning ON the main circuit power stops the 24 V external power supply operation and enables the normal operation.

NOTE

- When the 24 V external power is supplied while the main circuit power supply is OFF, the inverter operation is disabled.
- In the initial setting, when the main power supply is turned ON during the 24 V external power supply operation, a reset is performed in the inverter, then the power supply changes to the main circuit power supply. (The reset can be disabled using Pr.30. (Refer to page 689.))

-Confirming the 24 V external power supply input

- During the 24 V external power supply operation, "EV" blinks on the operation panel. The alarm lamp also blinks. Thus, the 24 V external power supply operation can be confirmed even when the operation panel is removed.

- During the 24 V external power supply operation, the 24 V external power supply operation (EV) signal is output. To use the EV signal, set "68 (positive logic) or 168 (negative logic)" in one of Pr. 190 to Pr. 196 (Output terminal function selection) to assign function to an output terminal.

Operation while the 24 V external power is supplied

- Faults history and parameters can be read and parameters can be written (when the parameter write from the operation panel is enabled) using the operation panel keys.
- The safety stop function is invalid during the 24 V external power supply operation.
- During the 24 V external power supply operation, the monitor items and signals related to inputs to main circuit power supply, such as the output current, converter output voltage, and IPF signal, are invalid.
- The alarms, which have occurred when the main circuit power supply is ON, continue to be output after the power supply is changed to the 24 V external power supply. Perform the inverter reset or turn OFF then ON the power to reset the faults.
- If the power supply changes from the main circuit power supply to the 24 V external power supply while measuring the main circuit capacitor's life, the measurement completes after the power supply changes back to the main circuit power supply (Pr. 259 = "3").
- The output data is retained when "1 or 11" is set in Pr. 495 Remote output selection.
- Inrush current equal to or higher than the 24 V external power supply specification may flow at power-ON. Confirm that the power supply and other devices are not affected by the inrush current and the voltage drop caused by it. Depending on the power supply, the inrush current protection may be activated to disable the power supply. Select the power supply and capacity carefully.
- When the wiring length between the external power supply and the inverter is long, the voltage often drops. Select the appropriate wiring size and length to keep the voltage in the rated input voltage range.
- In a serial connection of several inverters, the current increases when it flows through the inverter wiring near the power supply. The increase of the current causes voltage to drop further. When connecting different inverters to different power supplies, use the inverters after confirming that the input voltage of each inverter is within the rated input voltage range. Depending on the power supply, the inrush current protection may be activated to disable the power supply. Select the power supply and capacity carefully.
- "E.SAF" or "E.P24" may appear when the start-up time of the 24 V power supply is too long (less than $1.5 \mathrm{~V} / \mathrm{s}$) in the 24 V external power supply operation.
- "E.P24" may appear when the 24 V external power supply input voltage is low. Check the external power supply input.
- Do not touch the control circuit terminal block (circuit board) during the 24 V power supply operation (when conducted). Otherwise you may get an electric shock or burn.

2.6.7 Safety stop function

- Function description

The terminals related to the safety stop function are as follows.

Terminal symbol	Terminal function description	
S1 $^{* 1}$	Input terminal as the safety stop channel 1.	Between S1 and SIC, and between S2 and SIC Open: Safety stop function is activated. Shorted: Safety stop function is not activated.
S2 $^{* 1}$	Input terminal as the safety stop channel 2.	
SIC $^{* 1}$	Common terminal for S1 and S2.	OFF: Internal safety circuit fault ${ }^{* 2}$ ON: No internal safety circuit fault ${ }^{* 2}$
So (SO)	Outputs when an alarm or failure is detected. The signal is output when no internal safety circuit failure ${ }^{* 2}$ exists.	
SOC	Open collector output (terminal So (SO)) common	

*1 In the initial status, terminals S1 and PC, S2 and PC, and SIC and SD are respectively shorted with shorting wires. To use the safety stop function, remove all the shorting wires, and then connect to the safety relay module as shown in the connection diagram.
*2 An internal safety circuit failure represents that any fault listed on the next page occurs and the corresponding indication is shown on the operation panel.

NOTE

- Use terminal So (SO) to output a fault and to prevent restarting of the inverter. The signal output from terminal So (SO) cannot be used to input a safety stop signal to other devices.

- Connection diagram

To prevent restart at fault occurrence, connect terminals $\mathrm{So}_{(\mathrm{SO})}$ and SOC to the reset button, which are the feedback input terminals of the safety relay module.

Safety stop function operation

Input power	Internal safety circuit status	Input terminal ${ }^{* 1 * 2}$		Output terminal	$\begin{aligned} & \text { Output } \\ & \text { signal }{ }^{\star 8^{*} 9^{\star 10}} \end{aligned}$	Inverter operating status	Operation panel indication	
		S1	S2	So (SO)	SAFE		E.SAF* ${ }^{*}$	SA ${ }^{*}$
OFF	-	-	-	OFF	OFF	Output shutoff (Safe state)	Not displayed	Not displayed
ON	Normal	ON	ON	ON*3	OFF	Operation enabled	Not displayed	Not displayed
	Normal	ON	OFF	OFF*4	OFF*4	Output shutoff (Safe state)	Displayed	Displayed
	Normal	OFF	ON	OFF*4	OFF*4	Output shutoff (Safe state)	Displayed	Displayed
	Normal	OFF	OFF	ON*3	ON*3	Output shutoff (Safe state)	Not displayed	Displayed
	Fault	ON	ON	OFF	OFF	Output shutoff (Safe state)	Displayed	Not displayed ${ }^{*}$ 5
	Fault	ON	OFF	OFF	OFF	Output shutoff (Safe state)	Displayed	Displayed
	Fault	OFF	ON	OFF	OFF	Output shutoff (Safe state)	Displayed	Displayed
	Fault	OFF	OFF	OFF	OFF	Output shutoff (Safe state)	Displayed	Displayed

*1 The terminal ON state shows that the terminal is conducted (the line is closed), and the OFF state shows that the terminal is not conducted (the line is open).
*2 When not using the safety stop function, short across terminals S1 and PC, S2 and PC, and SIC and SD to use the inverter. (In the initial status, terminals S1 and PC, S2 and PC, and SIC and SD are respectively shorted with shorting wires.)
*3 If any of the protective functions shown in the following table is activated, terminal So (SO) and the SAFE signal turn OFF.

Fault type	Operation panel indication
Option fault	E.OPT
Communication option fault	E.OP1 to E.OP3
Parameter storage device fault	E.PE
Retry count excess	E.RET
Parameter storage device fault	E.PE2
Operation panel power supply short circuit/RS-485 terminals power supply short circuit	E.CTE
24 VDC power fault	E.P24
Safety circuit fault	E.SAF
Overspeed occurrence	E.OS

Fault type	Operation panel indication
Speed deviation excess detection	E.OSD
Signal loss detection	E.ECT
Excessive position fault	E.OD
Brake sequence fault	E.MB1 to E.MB7
CPU fault	E.CPU
	E. 5 to E.7
Encoder phase fault	E.EP
	E.MP
Internal circuit fault	E. 13

*4 If the internal safety circuit is operated normally, terminal So (SO) remains ON until "E.SAF" is displayed, and terminal So (SO) turns OFF when "E.SAF" is displayed.
*5 "SA" is displayed when terminals S1 and S2 are identified as OFF due to the internal safety circuit failure.
*6 If another fault occurs when the fault E.SAF occurs, the other fault indication may be displayed.
*7 If another warning occurs when the warning SA occurs, the other warning indication may be displayed.
*8 The ON/OFF state of the output signal is the one for the positive logic. The ON and OFF are reversed for the negative logic.
*9 For the SAFE signal, refer to the following table and use any of Pr. 190 to Pr. 196 (output terminal function selection) to assign the function to the output terminal.

Output signal	Pr. 190 to Pr. 196 settings	
	Positive logic	Negative logic
SAFE	80	180

*10 The use of SAFE signal has not been certified for compliance with safety standards.

For more details, refer to the Safety Stop Function Instruction Manual.
Find a PDF file of the manual in the CD-ROM enclosed with the product.

2.7 Communication connectors and terminals

2.7.1 PU connector

- Mounting the operation panel or the parameter unit on the enclosure surface

- Having an operation panel or a parameter unit on the enclosure surface is convenient. With a connection cable, the operation panel or the parameter unit can be mounted to the enclosure surface and connected to the inverter.

Use the option FR-CB2[], or connectors and cables available on the market.
(To mount the operation panel, the optional connector (FR-ADP) is required.)
Securely insert one end of the connection cable until the stoppers are fixed.

Parameter unit (FR-PU07) (option)

NOTE

- Refer to the following table when fabricating the cable on the user side. Keep the total cable length within 20 m .
- Commercially available products (as of February 2015)

Name	Model	Manufacturer
Communication cable	SGLPEV-T (Cat5e/300 m) $24 A W G ~$ 4 P	

-Communication operation

- Using the PU connector as a computer network port enables communication operation from a personal computer, etc. When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run to monitor the inverter or read and write parameters.
Communication can be performed with the Mitsubishi inverter protocol (computer link operation).
For the details, refer to page 625.

2.7.2 USB connector

Place a flathead screwdriver, etc. in a slot and push up the cover to open.

- USB host communication

Interface	Conforms to USB 1.1	
Transmission speed	12 Mbps	
Wiring length		Maximum 5 m
Connector		USB A connector (receptacle)
Compatible USB memory	Format	Capacity
	Encryption function	1 GB or more (used in the recorder mode of the trace function)

- Different inverter data can be saved in a USB memory device.

The USB host communication enables the following functions.

| Function | Description
 to
 page | |
| :--- | :--- | :--- | :--- |
| Parameter copy | - Copies the parameter settings from the inverter to the USB memory device. A maximum of 99 parameter
 setting files can be saved in a USB memory device.
 - The parameter setting data copied in the USB memory device can be copied to other inverters. This
 function is useful in backing up the parameter setting or for sharing the parameter setting among multiple
 inverters.
 - The parameter setting file can be copied onto a personal computer from the USB memory device and
 edited using FR Configurator2. | 711 |
| Trace | - The monitoring data and output status of the signals can be saved in a USB memory device.
 - The saved data can be imported to FR Configurator2 to diagnose the operating status of the inverter. | 616 |
| PLC function data
 copy | This function copies the PLC function project data to a USB memory device when the PLC function is
 - The PLC function project data copied in the USB memory device can be copied to other inverters.
 - This function is useful in backing up the parameter setting and for allowing multiple inverters to operate
 by the same sequence programs. | 614 |

- When the inverter recognizes the USB memory device without any problem, " operation panel.
- When the USB memory device is removed, "
- The operating status of the USB host can be checked on the LED display of the inverter.

LED display status	Operating status
OFF	No USB connection.
ON	The communication is established between the inverter and the USB device.
Fast blinking	The USB memory device is being accessed. (Do not remove the USB memory device.)
Slow blinking	Error in the USB connection.

- When a device such as a USB charger is connected to the USB connector and an excessive current (500 mA or higher) flows, USB host error "f_iF" (UF warning) is displayed on the operation panel.
- When the UF warning appears, the USB error can be canceled by removing the USB device and setting Pr. $1049=11$. (The UF warning can also be canceled by resetting the inverter power or resetting with the RES signal.)

NOTE

- Do not connect devices other than a USB memory device to the inverter.
- If a USB device is connected to the inverter via a USB hub, the inverter cannot recognize the USB memory device properly.

USB device communication

The inverter can be connected to a personal computer with a USB (ver. 1.1) cable. Parameter setting and monitoring can be performed by using FR Configurator2.

Interface	Conforms to USB 1.1
Transmission speed	12 Mbps
Wiring length	Maximum 5 m
Connector	USB mini B connector (receptacle)
Power supply	Self-powered

NOTE

- For the details of FR Configurator2, refer to the Instruction Manual of FR Configurator2.

2.7.3 RS-485 terminal block

-Communication operation

Conforming standard	EIA-485 (RS-485)
Transmission format	Multidrop link
Communication speed	maximum 115200 bps
Overall length	500 m
Connection cable	Twisted pair cable (4 pairs)

The RS-485 terminals enable communication operation from a personal computer, etc. When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run to monitor the inverter or read and write parameters.
Communication can be performed with the Mitsubishi inverter protocol (computer link operation) and MODBUS RTU protocol. For the details, refer to page 627.

2.8 Connection to a motor with encoder (Vector control)

Using encoder-equipped motors together with a Vector control compatible option enables speed, torque, and positioning control operations under orientation control, encoder feedback control, and full-scale Vector control.
This section explains wiring for use of the FR-A8AP.

Appearance and parts name of the FR-A8AP

Symbol	Name	Description	Refer to page
a	Mounting hole	Used for installation to the inverter.	-
b	Terminal block	Connected with the encoder.	90
c	Encoder type selection switch (SW3)	Switches the encoder type (differential line driver/complementary).	87
d	CON2 connector	Used for extension.	-
e	Terminating resistor selection switches (SW1)	Switch ON or OFF the internal terminating resistor.	87
f	Switches (SW2) for manufacturer setting	Do not change the initial setting (both SW2-1 and SW2-2 switches: OFF l罝总).	-
g	Connector	Connected to the option connector of the inverter.	-
h	LED for manufacturer check	Not used.	19

Terminals of the FR-A8AP

Terminal symbol	Terminal name	Description			

NOTE

- When the encoder's output voltage differs from its input power supply voltage, the signal loss detection (E.ECT) may occur.
- Incorrect wiring or faulty setting to the encoder will cause a fault such as an overcurrent (E.OC[]) and an inverter overload (E.THT). Correctly perform the encoder wiring and setting.

- Switches on the FR-A8AP

- Use the encoder type selection switch (SW3) to select the differential line driver or the complementary. It is initially set to the differential line driver. Switch its position according to the output circuit.

- Use the terminating resistor selection switches (SW1) to select ON/OFF of the internal terminating resistor.

Set the switches ON (initial status) when an encoder output type is differential line driver, and set OFF when complementary.
ON: With internal terminating resistor (initial status)
OFF: Without internal terminating resistor

NOTE

- Set all switches to the same setting (ON/OFF).
- Set the switches OFF when sharing an encoder with another unit (NC (computerized numerical controller), etc.) having a terminating resistor under the differential line driver setting.
- Motor and switch setting

Motor		Encoder type selection switch (SW3)	Terminating resistor selection switches (SW1)	Power supply specification ${ }^{*}$
Mitsubishi Electric standard motor with encoder Mitsubishi Electric high-efficiency motor with encoder	SF-JR	Differential	ON	5 V
	SF-HR	Differential	ON	5 V
	Others	*1	*1	*1*3
Mitsubishi Electric constant-torque motor with encoder	SF-JRCA	Differential	ON	5 V
	SF-HRCA	Differential	ON	5 V
	Others	*1	*1	*1*3
Vector control dedicated motor	SF-V5RU	Complementary	OFF	12 V
Other manufacturer's motor with encoder		*1	*1	*1*3

*1 Set according to the motor (encoder).
*2 Prepare the power supply ($5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$) for the encoder according to the encoder's output voltage. When the control terminal option FRA8TP is installed, 24 V power supply can be provided from the FR-A8TP.
*3 When the encoder output is the differential line driver type, only 5 V can be input.

NOTE

- The SW2 switches are for manufacturer setting. Do not change the setting.
- When the power supply of the inverter is turned OFF, also turn off the power supply of the encoder. Otherwise, the plug-in option may be damaged.
- Encoder specifications

Item	Encoder for SF-JR	Encoder for SF-V5RU
Resolution	1024 pulses/rev	2048 pulse/rev
Power supply voltage	$5 \mathrm{VDC} \pm 10 \%$	$12 \mathrm{VDC} \pm 10 \%, 24 \mathrm{VDC} \pm 10 \%$
Current consumption	150 mA	150 mA
Output signal form	A, B phases $\left(90^{\circ}\right.$ phase shift), Z phase: 1 pulse/rev	A, B phases (90 Z phase shift), Z phase: 1 pulse/rev
Output circuit	Differential line driver 74LS113 equivalent	Complementary
Output voltage	H level: 2.4 V or more, L level: 0.5 V or less	H level: (Power supply for encoder -3 V) or more, L level: 3 V or less

- Encoder cable

■SF-JR/HR/JRCA/HRCA with encoder

FR-A800

Positioning keyway

D/MS3106B20-29S
(As viewed from wiring side)

Model	Length L(m)
FR-JCBL5	5
FR-JCBL15	15
FR-JCBL30	30

■SF-V5RU, SF-THY

A P clip for earthing (grounding) a shielded cable is provided.

FR-A800

D/MS3106B20-29S
(As viewed from wiring side)

Model	Length L (m)
FR-V7CBL5	5
FR-V7CBL15	15
FR-V7CBL30	30

- When using an encoder cable (FR-JCBL, FR-V5CBL, etc.) dedicated to the conventional motor, the cables need to be treated as the terminal block of the FR-A8AP is an insertion type. Cut the crimp terminal of the encoder cable and strip its sheath to make its cable wires loose. Also, treat the shielding wires of the shielded twisted pair cable to ensure that they do not contact conductive areas.
Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.

NOTE

- Information on blade terminals

Commercially available products (as of January 2017)
Phoenix Contact Co., Ltd.

Terminal screw size	Cable gauge $\left(\mathbf{m m}^{\mathbf{2}}\right)$	Ferrule terminal model		Crimping tool name		
						Without insulation
:---:						
sleeve	\quad	CRIMPFOX 6				
:---:						
M2						

NICHIFU Co., Ltd.

Terminal screw size	Cable gauge $\left(\mathbf{m m}^{\mathbf{2}}\right)$	Blade terminal product number	Insulation cap product number	Crimping tool product number
M2	0.3 to 0.75	BT $0.75-7$	VC 0.75	NH 69

- When using a blade terminal (without insulation sleeve), take caution that the twisted wires do not come out.

- Connection terminal compatibility table

Motor		SF-V5RU, SF-THY	SF-JR/HR/JRCA/HRCA (with encoder)			
Encoder cable					FR-V7CBL	FR-JCBL
FR-A8AP terminal	PA1	PA	PA			
	PA2	Do not connect anything to this.	PAR			
	PB1	PB	PB			
	PB2	Do not connect anything to this.	PBR			
	PZ1	PZ	PZ			
	PZ2	Do not connect anything to this.	PZR			
	PG	PG	5E			
	SD	SD	AG2			

- Wiring example

- Speed control

Standard motor with encoder (SF-JR), 5 V differential line driver	Vector control dedicated motor (SF-V5RU, SF-THY), 12 V complementary

- Torque control

Standard motor with encoder (SF-JR), 5 V differential line driver	Vector control dedicated motor (SF-V5RU, SF-THY), 12 V complementary

*1 The pin number differs according to the encoder used.
Speed, control, torque control, and position control by pulse train input are available with or without the Z-phase being connected.
*2 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
*3 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 92.)
*4 For the complementary, set the terminating resistor selection switches in the OFF position. (Refer to page 87.)
*5 A separate power supply of $5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$ is necessary according to the encoder power specification.
When the encoder output is the differential line driver type, only 5 V can be input.
Make the voltage of the external power supply same as the encoder output voltage, and connect the external power supply between PG and SD.
*6 For terminal compatibility of the FR-JCBL, FR-V7CBL, and FR-A8AP, refer to page 89.
*7 Single-phase power supply ($200 \mathrm{~V} / 50 \mathrm{~Hz}, 200$ to $230 \mathrm{~V} / 60 \mathrm{~Hz}$) is used for the fan for a 7.5 kW or lower dedicated motor.
*8 Connect the recommended $2 \mathrm{~W} 1 \mathrm{k} \Omega$ resistor between terminals PC and OH. (Recommended product: MOS2C102J 2W1k Ω by KOA Corporation) Insert the input line and the resistor to a 2 -wire blade terminal, and connect the blade terminal to terminal OH . (For the recommended 2 -wire blade terminals, refer to page 73.)
Insulate the lead wire of the resistor, for example by applying a contraction tube, and shape the wires so that the resistor and its lead wire will not touch other cables. Caulk the lead wire securely together with the thermal protector input line using a 2 -wire blade terminal. (Do not subject the lead wire's bottom area to an excessive pressure.)
To use a terminal as terminal OH, assign the OH (External thermal relay input) signal to an input terminal. (Set "7" in any of Pr. 178 to Pr. 189. For details, refer to page 496.)

When OH signal is assigned to terminal RH (Pr. $182=$ " 7 ")

*9 Assign the function using Pr. 178 to Pr.184, Pr. 187 to Pr. 189 (Input terminal function selection).
*10 When position control is selected, terminal JOG function is invalid and simple position pulse train input terminal becomes valid.
*11 Assign the function using Pr. 190 to Pr. 194 (Output terminal function selection).

- Instructions for encoder cable wiring

- Use shielded twisted pair cables ($0.2 \mathrm{~mm}^{2}$ or larger) to connect the FR-A8AP. For the wiring to terminals PG and SD, use several cables in parallel or use a thick cable, according to the wiring length.
To protect the cables from noise, run them away from any source of noise (such as the main circuit and power supply voltage).

Wiring length	Parallel connection		Larger-size cable
Within 10 m	At least two cables in parallel	Cable gauge	$0.4 \mathrm{~mm}^{2}$ or larger
Within 20 m	At least four cables in parallel		$0.75 \mathrm{~mm}^{2}$ or larger
Within $100 \mathrm{~m}^{* 1}$	At least six cables in parallel		$1.25 \mathrm{~mm}^{2}$ or larger

*1 When differential line driver is set and a wiring length is 30 m or more.
The wiring length can be extended to 100 m by increasing the 5 V power supply (approximately to 5.5 V) while using six or more $0.2 \mathrm{~mm}^{2}$ gauge cables in parallel or a $1.25 \mathrm{~mm}^{2}$ or larger gauge cable. The voltage applied must be within power supply specifications of encoder.

- To reduce noise of the encoder cable, earth (ground) the encoder's shielded cable to the enclosure (as close as possible to the inverter) with a P-clip or U-clip made of metal.

- When one encoder is shared between the FR-A8AP and CNC (computerized numerical controller), its output signal should be connected as follows. In this case, the wiring length between the FR-A8AP and CNC should be as short as possible, within 5 m .

NOTE

- For the details of the optional encoder dedicated cable (FR-JCBL/FR-V7CBL), refer to page 88.
- The FR-V7CBL is provided with a P-clip for earthing (grounding) shielded cables.

2.9 Parameter settings for a motor with encoder

- Parameter for the encoder (Pr.359, Pr.369, Pr.851, Pr.852)

- Set the encoder specifications.

Pr.		Name	Initial value	Setting range	Description	
$\begin{aligned} & 359 \\ & \text { C141 } \end{aligned}$	$\begin{aligned} & 852 \\ & \mathrm{C} 241 \end{aligned}$	Encoder rotation direction	1	0	Set when using a motor (encoder) for which forward rotation is clockwise (CW) viewed from the shaft.	Set for the operation at 120 Hz or less.
				100		Set for the operation at a frequency higher than 120 Hz .
				1	Set when using a motor for which forward rotation (encoder) is counterclockwise (CCW) viewed from the shaft.	Set for the operation at 120 Hz or less.
				101		Set for the operation at a frequency higher than 120 Hz .
$\begin{aligned} & 369 \\ & \text { C140 } \end{aligned}$	$\begin{aligned} & 851 \\ & \mathrm{C} 240 \end{aligned}$	Number of encoder pulses	1024	0 to 4096	Set the number of encoder pulses. Set the number of pulses before it is	iplied by 4.

The parameters above can be set when a Vector control compatible option is installed.

- The following table shows parameters to be set according to the Vector control compatible option to be used.

Item	FR-A8AP/FR-A8AL parameter	FR-A8APR parameter	FR-A8APS parameter	FR-A8TP parameter
Encoder/Resolver rotation direction	Pr. 359	- (fixed pulses of 1024)	- (obtained via communication from the encoder)	Pr. 851
Number of detector pulses	Pr. 369		Pr. 852	

- Parameter settings for the motor under Vector control

Motor model		Pr. 9 Electronic thermal O/L relay	Pr. 71 Applied motor	$\text { Pr. } 80$ Motor capacity		$\begin{aligned} & \text { Pr. } 359 / \text { Pr. } 852 \\ & \text { Encoder } \\ & \text { rotation } \\ & \text { direction } \end{aligned}$	Pr.369/Pr. 851 Number of encoder pulses
Mitsubishi Electric standard motor	SF-JR	Rated motor current	0 (initial value)	Motor capacity	Number of motor poles	1 (initial value)	1024 (initial value)
	SF-JR 4P 1.5 kW or lower	Rated motor current	20	Motor capacity	4	1 (initial value)	1024 (initial value)
	SF-HR	Rated motor current	40	Motor capacity	Number of motor poles	1 (initial value)	1024 (initial value)
	Others	Rated motor current	$0(3)^{* 1}$	Motor capacity	Number of motor poles	*2	*2
Mitsubishi Electric constant-torque motor	SF-JRCA 4P	Rated motor current	1	Motor capacity	4	1 (initial value)	1024 (initial value)
	SF-HRCA	Rated motor current	50	Motor capacity	Number of motor poles	1 (initial value)	1024 (initial value)
	Others	Rated motor current	$1(13)^{* 1}$	Motor capacity	Number of motor poles	*2	*2
Vector control dedicated motor	SF-V5RU (1500 r/min series)	$0{ }^{*}$	30	Motor capacity	4	1 (initial value)	2048
	SF-V5RU (other than the 1500 $\mathrm{r} / \mathrm{min}$ series)	$0{ }^{* 3}$	$1(13){ }^{* 1}$	Motor capacity	4	1 (initial value)	2048
	SF-THY	$0^{* 3}$	$30(33){ }^{* 1}$	Motor capacity	4	1 (initial value)	2048
Other manufacturer's standard motor	-	Rated motor current	$0(3)^{* 1}$	Motor capacity	Number of motor poles	*2	*2
Other manufacturer's constant-torque motor	-	Rated motor current	$1(13)^{* 1}$	Motor capacity	Number of motor poles	*2	*2
PM motor		Refer to the Instruction Manual of the FR-A8APR.					

*1 Offline auto tuning is required. (Refer to page 509.)
*2 Set this parameter according to the motor.
*3 Use the thermal protector input provided with the motor.

- When using the inverter with the SF-V5RU ($1500 \mathrm{r} / \mathrm{min}$ series), refer to the following table to set Pr. 83 Rated motor voltage and Pr. 84 Rated motor frequency.

Motor capacity	200 V			400 V	
	Pr.83 (V)	Pr.84 (Hz)	Pr.83 (V)	Pr.84 (Hz)	
1.5 kW	188	52	345	52	
2.2 kW	188	52	360	52	
3.7 kW	190	52	363	52	
5.5 kW	165	51	322	51	
7.5 kW	164	51	331	51	
11 kW	171	51	320	51	
15 kW	164	51	330	51	

Motor capacity	200 V			400 V	
	Pr.83 (V)	Pr.84 (Hz)	Pr.83 (V)	Pr.84 (Hz)	
18.5 kW	171	51	346	51	
22 kW	160	51	336	51	
30 kW	178	51	328	51	
37 kW	166	51	332	51	
45 kW	171	51	342	51	
55 kW	159	51	317	51	

- When using the inverter with the SF-V5RU1, SF-V5RU3, or SF-V5RU4, refer to the following table to set Pr. 83 Rated motor voltage and Pr. 84 Rated motor frequency.

Motor model	Pr.83 setting		Pr. 84 setting
	$\mathbf{2 0 0}$ V class		

Combination with the Vector control dedicated motor

When using the inverter with a Vector control dedicated motor, refer to the following table.

- Combination with the SF-V5RU and SF-THY (ND rating)

Voltage	200 V class			400 V class		
Rated speed	1500 r/min					
Base frequency	50 Hz					
Maximum speed	3000 r/min					
Motor capacity	Motor frame No.	Motor model	Inverter model FR-A820-[]	Motor frame No.	Motor model	Inverter model FR-A840-[]
1.5 kW	90L	SF-V5RU1K	00167(2.2K)	90L	SF-V5RUH1K	00083(2.2K)
2.2 kW	100L	SF-V5RU2K	00250(3.7K)	100L	SF-V5RUH2K	00083(2.2K)
3.7 kW	112M	SF-V5RU3K	00340(5.5K)	112M	SF-V5RUH3K	00126(3.7K)
5.5 kW	132S	SF-V5RU5K	00490(7.5K)	132S	SF-V5RUH5K	00250(7.5K)
7.5 kW	132M	SF-V5RU7K	00630(11K)	132M	SF-V5RUH7K	00310(11K)
11 kW	160M	SF-V5RU11K	00770(15K)	160M	SF-V5RUH11K	00380(15K)
15 kW	160L	SF-V5RU15K	00930(18.5K)	160L	SF-V5RUH15K	00470(18.5K)
18.5 kW	180M	SF-V5RU18K	01250(22K)	180M	SF-V5RUH18K	00620(22K)
22 kW	180M	SF-V5RU22K	01540(30K)	180M	SF-V5RUH22K	00770(30K)
30 kW	200L*2	SF-V5RU30K	01870(37K)	200L*2	SF-V5RUH30K	00930(37K)
37 kW	200L*2	SF-V5RU37K	02330(45K)	200L*2	SF-V5RUH37K	01160(45K)
45 kW	200L*2	SF-V5RU45K	03160(55K)	200L*2	SF-V5RUH45K	01800(55K)
55 kW	225S*1	SF-V5RU55K	03800(75K)	225S*1	SF-V5RUH55K	02160(75K)
75 kW	250MD	SF-THY	04750(90K)	250MD	SF-THY	02600(90K)
90 kW	-	-	-	250MD	SF-THY	03250(110K)
110 kW	-	-	-	280MD	SF-THY	03610(132K)
132 kW	-	-	-	280MD	SF-THY	04320(160K)
160 kW	-	-	-	280MD	SF-THY	04810(185K)
200 kW	-	-	-	280L	SF-THY	05470(220K)
250 kW	-	-	-	315H	SF-THY	06830(280K)

- Combination with the SF-V5RU1, 3, 4, and SF-THY (ND rating)

	SF-V5RU[11 (1:2)			SF-V5RU[13 (1:3)			SF-V5RU[$] 4$ (1:4)		
Voltage	200 V class								
Rated speed	1000 r/min			1000 r/min			$500 \mathrm{r} / \mathrm{min}$		
Base frequency	33.33 Hz			33.33 Hz			16.6 Hz		
Maximum speed	2000 r/min			3000 r/min			2000 r/min		
Motor capacity	Motor frame No.	Motor model	$\left.\begin{array}{c}\text { Inverter } \\ \text { model } \\ \text { FR-A820-[] }\end{array}\right]$	Motor frame No.	Motor model	Inverter model FR-A820-[]	Motor frame No.	Motor model	Inverter model FR-A820-[]
1.5 kW	100L	SF-V5RU1K1(Y)	00167(2.2K)	112M	SF-V5RU1K3(Y)	00167(2.2K)	132M	SF-V5RU1K4(Y)	00167(2.2K)
2.2 kW	112M	SF-V5RU2K1(Y)	00250(3.7K)	132S	SF-V5RU2K3(Y)	00250(3.7K)	160M	SF-V5RU2K4(Y)	00250(3.7K)
3.7 kW	132S	SF-V5RU3K1(Y)	00340(5.5K)	132M	SF-V5RU3K3(Y)	00340(5.5K)	160L	SF-V5RU3K4	00490(7.5K) ${ }^{4}$
5.5 kW	132M	SF-V5RU5K1(Y)	00490(7.5K)	160M	SF-V5RU5K3(Y)	00490(7.5K)	180L	SF-V5RU5K4 (Y)	00490(7.5K)
7.5 kW	160M	SF-V5RU7K1(Y)	00630(11K)	160L	SF-V5RU7K3(Y)	00630(11K)	200L	SF-V5RU7K4(Y)	00630(11K)
11 kW	160L	SF-V5RU11K1(Y)	00770(15K)	180M	SF-V5RU11K3(Y)	00770(15K)	225S	SF-V5RU11K4(Y)	00770(15K)
15 kW	180M	SF-V5RU15K1(Y)	00930(18.5K)	180L	SF-V5RU15K3(Y)	00930(18.5K)	225S	SF-V5RU15K4	01250(22K) ${ }^{*} 4$
18.5 kW	180L	SF-V5RU18K1(Y)	01250(22K)	200L	SF-V5RU18K3(Y)	01250(22K)	250MD	SF-THY ${ }^{\text {5 }}$	01250(22K)
22 kW	200L	SF-V5RU22K1(Y)	01540(30K)	200L	SF-V5RU22K3(Y)	01540(30K)	280MD	SF-THY*5	01540(30K)
30 kW	200L*3	SF-V5RU30K1(Y)	01870(37K)	$225 \mathrm{~S}^{* 1}$	SF-V5RU30K3(Y)	01870(37K)	280MD	SF-THY* ${ }^{\text {5 }}$	01870(37K)
37 kW	225 S	SF-V5RU37K1(Y)	02330(45K)	250MD*1	SF-THY*5	02330(45K)	280MD	SF-THY*5	02330(45K)
45 kW	250MD	SF-THY* ${ }^{\text { }}$	03160(55K)	250MD*1	SF-THY*5	03160(55K)	280MD	SF-THY ${ }^{5}$	03160(55K)
55 kW	250MD	SF-THY*5	03800(75K)	280MD*1	SF-THY*5	03800(75K)	280L	SF-THY ${ }^{5}$	03800(75K)

400 V class are developed upon receipt of order.

[^3]
2.10 Connection of stand-alone option units

The inverter accepts a variety of stand-alone option units as required.
Incorrect connection will cause inverter damage or accident. Connect and operate the option unit carefully in accordance with the Instruction Manual of the corresponding option unit.

2.10.1 Connection of the brake resistor

- When an inverter-driven motor is driven by a load or requires rapid acceleration, install an external brake resistor. Connect the brake resistor to terminals $\mathrm{P} /+(\mathrm{P} 3)$ and PR . (For the locations of terminal $\mathrm{P} /+(\mathrm{P} 3)$ and PR , refer to the terminal block layout (page 55).)
- For the FR-A820-00490(7.5K) or lower and the FR-A840-00250(7.5K) or lower, the plug-in brake resistor is connected to terminals $\mathrm{P} /+$ and PX .
When the plug-in brake resistor does not have enough thermal capability for high-duty operation, install an external brake resistor. At this time, remove the jumper across terminals PR and PX and connect the brake resistor to terminals P/+ and PR. (For the locations of terminal P/+ and PR, refer to the terminal block layout (page 55).)
Removing jumpers across terminals PR and PX disables the plug-in brake resistor (power is not supplied). The plug-in brake resistor can be left connected to the inverter, and so is the plug-in brake resistor's lead wire connected to the terminal.

FR-A820-00046(0.4K), FR-A820-00077(0.75K)	FR-A820-00105(1.5K) to FR-A820-00250(3.7K) FR-A840-00023(0.4K) to FR-A840-00126(3.7K)
1) Remove the screws in terminals PR and PX and remove the jumper. 2) Connect the brake resistor across terminals P/+ and PR. (The jumper should remain disconnected.)	1) Remove the screws in terminals PR and PX and remove the jumper. 2) Connect the brake resistor across terminals P/+ and PR. (The jumper should remain disconnected.)

2) Connect the brake resistor across terminals P/+ and PR. (The jumper should remain disconnected.)

*1 Do not remove the jumper across terminals $\mathrm{P} /+$ and P 1 except when connecting a $D C$ reactor (FR-HEL).

NOTE

- For the FR-A820-00490(7.5K) or lower and the FR-A840-00250(7.5K) or lower, the jumper across terminals PR and PX must be disconnected before connecting the dedicated brake resistor. Doing so may damage the inverter.
- A brake resistor cannot be used with options such as brake units, high power factor converters, and power regeneration converters.

- Connection of the dedicated external brake resistor (FR-ABR)

The FR-ABR can be applied to the FR-A820-01250(22K) or lower and the FR-A840-00620(22K) or lower. Set parameters as follows:

- Pr. 30 Regenerative function selection = "1"
- Pr. 70 Special regenerative brake duty $=10 \%$ (for 7.5 K or lower) or 6% (for 11 K or higher)
(Refer to page 689.)
- When the regenerative brake transistor is damaged, the following sequence is recommended to prevent overheat and burnout of the brake resistor.

*1 Since the FR-A820-00630(11K) or higher and FR-A840-00310(11K) or higher are not provided with terminal PX, a jumper need not to be removed.
*2 Refer to the following table for the thermal relay models for each capacity. Refer to the following diagram for the connection. (Always install a thermal relay when using a brake resistor whose capacity is 11 K or higher.)

	High duty brake resistor model	$\begin{array}{\|c\|} \hline \text { Thermal relay } \\ \text { model } \\ \text { (Mitsubishi product) } \\ \hline \end{array}$	Contact rating
200 V	FR-ABR-0.4K	TH-N20CXHZ-0.7A	110 VAC 5 A, 220 VAC 2 A (AC11 class), 110 VDC 0.5 A, 220 VDC 0.25 A (DC11 class)
	FR-ABR-0.75K	TH-N20CXHZ-1.3A	
	FR-ABR-2.2K	TH-N20CXHZ-2.1A	
	FR-ABR-3.7K	TH-N20CXHZ-3.6A	
	FR-ABR-5.5K	TH-N20CXHZ-5A	
	FR-ABR-7.5K	TH-N20CXHZ-6.6A	
	FR-ABR-11K	TH-N20CXHZ-11A	
	FR-ABR-15K	TH-N20CXHZ-11A	
	FR-ABR-22K	TH-N60-22A	
400 V	FR-ABR-H0.4K	TH-N20CXHZ-0.24A	
	FR-ABR-H0.75K	TH-N20CXHZ-0.35A	
	FR-ABR-H1.5K	TH-N20CXHZ-0.9A	
	FR-ABR-H2.2K	TH-N20CXHZ-1.3A	
	FR-ABR-H3.7K	TH-N20CXHZ-2.1A	
	FR-ABR-H5.5K	TH-N20CXHZ-2.5A	
	FR-ABR-H7.5K	TH-N20CXHZ-3.6A	
	FR-ABR-H11K	TH-N20CXHZ-6.6A	
	FR-ABR-H15K	TH-N20CXHZ-6.6A	
	FR-ABR-H22K	TH-N20-9A	

To the inverter To the FR-ABR P/+ terminal

- Connection of a brake resistor other than the FR-ABR

A brake resistor can be used with the FR-A820-01250(22K) or lower and the FR-A840-01800(55K) or lower.

Use a brake resistor that has resistance and power consumption values higher than the following. Also, the brake resistor must have a sufficient capacity to consume the regenerative power.

Voltage class	Inverter	Minimum resistance (Ω)	Power consumption (kW)
200 V class	FR-A820-00046(0.4K)	100	1.44
	FR-A820-00077(0.75K)	80	1.81
	FR-A820-00105(1.5K)	50	2.89
	FR-A820-00167(2.2K)	33	4.38
	FR-A820-00250(3.7K)	30	4.81
	FR-A820-00340(5.5K)	18	8.02
	FR-A820-00490(7.5K)	18	8.02
	FR-A820-00630(11K)	12	12.0
	FR-A820-00770(15K)	8.5	17.0
	FR-A820-00930(18.5K)	6.5	22.2
	FR-A820-01250(22K)	6.5	22.2
400 V class	FR-A840-00023(0.4K)	371	1.66
	FR-A840-00038(0.75K)	236	2.61
	FR-A840-00052(1.5K)	190	3.24
	FR-A840-00083(2.2K)	130	4.74
	FR-A840-00126(3.7K)	83	7.42
	FR-A840-00170(5.5K)	66	9.34
	FR-A840-00250(7.5K)	45	13.7
	FR-A840-00310(11K)	34	18.1
	FR-A840-00380(15K)	34	18.1
	FR-A840-00470(18.5K)	21	29.3
	FR-A840-00620(22K)	21	29.3
	FR-A840-00770(30K)	13.5	45.6
	FR-A840-00930(37K)	13.5	45.6
	FR-A840-01160(45K)	13.5	45.6
	FR-A840-01800(55K)	13.5	45.6

Set parameters as follows:

- Pr. 30 Regenerative function selection = "1"
- Set Pr. 70 Special regenerative brake duty according to the amount and frequency of the regenerative driving, and make sure that the resistor can consume the regenerative power properly. (Refer to page 689.)
- When the regenerative brake transistor is damaged, install a thermal relay as shown in the following sequence to prevent overheat and burnout of the brake resistor. Properly select a thermal relay according to the regenerative driving frequency or the rated power or resistance of the brake resistor.

*1 Since the FR-A820-00630(11K) or higher and FR-A840-00310(11K) or higher are not provided with terminal PX, a jumper need not to be removed.

\triangle CAUTION

- If the resistor selection is incorrect, overcurrent may damage the inverter built-in brake transistor. Besides, the resistor may be burned due to overheat.
- If the selection of the thermal relay is incorrect, the resistor may be burned due to overheat.

2.10.2 Connection of the brake unit (FR-BU2)

Connect the brake unit (FR-BU2(H)) as follows to improve the braking capability during deceleration.

- Connection example with the GRZG type discharging resistor

*1 When wiring, make sure to match the terminal symbols ($\mathrm{P} /+, \mathrm{N} /-$) on the inverter and on the brake unit (FR-BU2). (Incorrect connection will damage the inverter and brake unit.)
*2 When the power supply is 400 V class, install a stepdown transformer.
*3 Be sure to remove the jumper across terminals PR and PX when using the FR-BU2 with the inverter of FR-A820-00490(7.5K) or lower, or FR-A840-00250(7.5K) or lower.
*4 The wiring distance between the inverter, brake unit (FR-BU2) and discharging resistor must be within 5 m . Even when the cable is twisted, the wiring length must be within 10 m .
*5 It is recommended to install an external thermal relay to prevent overheat of the discharging resistor.
*6 For the connection method of the discharging resistor, refer to the Instruction Manual of the FR-BU2.

- Recommended external thermal relay

Brake unit	Discharging resistor	Recommended external thermal relay
FR-BU2-1.5K	GZG 300W-50 (one)	TH-N20CXHZ 1.3A
FR-BU2-3.7K	GRZG 200-10 Ω (three in series)	TH-N20CXHZ 3.6A
FR-BU2-7.5K	GRZG 300-5 Ω (four in series)	TH-N20CXHZ 6.6A
FR-BU2-15K	GRZG 400-2 (six in series)	TH-N20CXHZ 11A
FR-BU2-H7.5K	GRZG 200-10 (six in series)	TH-N20CXHZ 3.6A
FR-BU2-H15K	GRZG 300-5 Ω (eight in series)	TH-N20CXHZ 6.6A
FR-BU2-H30K	GRZG 400-2 Ω (twelve in series)	TH-N20CXHZ 11A

NOTE

- Set "1" in Pr. 0 Brake mode selection in the FR-BU2 to use a GRZG type discharging resistor.
- Do not remove the jumper across terminals P/+ and P1 except when connecting a DC reactor (FR-HEL).

Connection example with the FR-BR-(H) resistor unit

*1 When wiring, make sure to match the terminal symbols ($\mathrm{P} /+, \mathrm{N} /-$) on the inverter and on the brake unit (FR-BU2). (Incorrect connection will damage the inverter and brake unit.)
*2 When the power supply is 400 V class, install a stepdown transformer.
*3 Be sure to remove the jumper across terminals PR and PX when using the FR-BU2 with the inverter of FR-A820-00490(7.5K) or lower, or FR-A840-00250(7.5K) or lower.
*4 The wiring distance between the inverter, brake unit (FR-BU2) and resistor unit (FR-BR) must be within 5 m . Even when the cable is twisted, the wiring length must be within 10 m .
*5 The contact between TH1 and TH2 is closed in the normal status and is open at a fault.

NOTE

- Do not remove the jumper across terminals $\mathrm{P} /+$ and P 1 except when connecting a DC reactor (FR-HEL).

- Connection example with the MT-BR5 type resistor unit

After making sure that the wiring is correct and secure, set Pr. 30 Regenerative function selection $=" 1$ " and Pr. 70 Special regenerative brake duty = " 0 (initial value)". Set Pr. 0 Brake mode selection = " 2 " in the brake unit FR-BU2.

*1 When wiring, make sure to match the terminal symbols ($\mathrm{P} /+, \mathrm{N} /-$) on the inverter and on the brake unit (FR-BU2). (Incorrect connection will damage the inverter and brake unit.)
*2 When the power supply is 400 V class, install a stepdown transformer.
*3 The wiring distance between the inverter, brake unit (FR-BU2) and resistor unit (FR-BR) must be within 5 m . Even when the cable is twisted, the wiring length must be within 10 m .
*4 The contact between TH1 and TH2 is open in the normal status and is closed at a fault.
*5 The CN8 connector used with the MT-BU5 type brake unit is not used.

NOTE

- The warning "oL" of the stall prevention (overvoltage) does not occur while Pr. 30 Regenerative function selection = "1" and Pr. 70 Special regenerative brake duty $=0 \%$ (initial value). (Refer to page 689.)

2.10.3 Connection of the brake unit (FR-BU)

Connect the brake unit (FR-BU(H)) as follows to improve the braking capability during deceleration.

The FR-BU is compatible with the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower.

*1 When wiring, make sure to match the terminal symbols ($\mathrm{P} /+, \mathrm{N} /-$) on the inverter and on the brake unit ($\mathrm{FR}-\mathrm{BU}(\mathrm{H}$)). (Incorrect connection will damage the inverter.)
*2 When the power supply is 400 V class, install a stepdown transformer.
*3 For the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower, be sure to remove the jumper across terminals PR and PX.
*4 The wiring distance between the inverter, brake unit (FR-BU) and resistor unit (FR-BR) must be within 5 m . Even when the cable is twisted, the wiring length must be within 10 m .

NOTE

- If the transistors in the brake unit should become faulty, the resistor will overheat. Install a magnetic contactor on the inverter's input side and configure a circuit that shut off the current in case of a fault.
- Do not remove the jumper across terminals P/+ and P1 except when connecting a DC reactor (FR-HEL).

2.10.4 Connection of the brake unit (BU type)

Connect the brake unit (BU type) correctly as follows. Incorrect connection will damage the inverter. Remove the jumpers across terminals $H B$ and PC and terminals TB and HC on the brake unit, and fit one across terminals PC and TB. The BU type brake unit is compatible with the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) and lower.

*1 When the power supply is 400 V class, install a stepdown transformer.
*2 For the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower, be sure to remove the jumper across terminals PR and PX.

NOTE

- The wiring distance between the inverter, brake unit, and discharging resistor must be within 2 m . Even when the cable is twisted, the wiring length must be within 5 m .
- If the transistors in the brake unit should become faulty, the resistor will overheat and result in a fire. Install a magnetic contactor on the inverter's input side and configure a circuit that shut off the current in case of a fault.
- Do not remove the jumper across terminals P/+ and P1 except when connecting a DC reactor (FR-HEL).

2.10.5 Connection of the high power factor converter (FRHC2)

When connecting the high power factor converter (FR-HC2) to suppress power harmonics, perform wiring securely as follows. Incorrect connection will damage the high power factor converter and the inverter.
After making sure that the wiring is correct and secure, set the rated motor voltage in Pr. 19 Base frequency voltage (under V/F control) or Pr. 83 Rated motor voltage (under other than V/F control) and "2" in Pr. 30 Regenerative function selection. (Refer to page 689.)

*1 Remove jumpers across terminals $R / L 1$ and $R 1 / L 11$ as well as across terminals $S / L 2$ and $S 1 / L 21$, and connect the power supply for the control circuit to terminals R1/L11 and S1/L21. Do not connect anything to power input terminals (R/L1, S/L2, and T/L3). Incorrect connection will damage the inverter. (The E.OPT fault (option fault) occurs. (Refer to page 757.))
*2 Do not install an MCCB across terminals $\mathrm{P} /+$ and $\mathrm{N} /$ - (between terminals P and $\mathrm{P} /+$ or between terminals N and $\mathrm{N} /-$). Connecting the opposite polarity of terminals $\mathrm{N} /-$ and $\mathrm{P} /+$ will damage the inverter.
*3 Use Pr. 178 to Pr. 189 (Input terminal function selection) to assign the terminals used for the X10 (X11) signal. (Refer to page 496.) For RS-485 or any other communication where the start command is only transmitted once, use the X 11 signal to save the operation mode at the time of an instantaneous power failure.
*4 Assign the IPF signal to a terminal on the FR-HC2. (Refer to the Instruction Manual of the FR-HC2.)
*5 Always connect terminal RDY on the FR-HC2 to a terminal where the X10 signal or MRS signal is assigned on the inverter. Always connect terminal SE on the FR-HC2 to terminal SD on the inverter. Not connecting these terminals may damage the FR-HC2.
*6 Always connect terminals R/L1, S/L2, and T/L3 on the FR-HC2 to the power supply. Operating the inverter without connecting them will damage the FR-HC2.
*7 Do not install an MCCB or MC across terminals (R/L1, S/L2, T/L3) on the reactor 1 and terminals (R4/L14, S4/L24, T4/L34) on the FR-HC2. Doing so disrupts proper operation.
*8 Securely perform grounding (earthing) by using the grounding (earthing) terminal.
*9 Installation of a fuse is recommended. (Refer to the Instruction Manual of the FR-HC2.)
*10 Outside box is not available for the FR-HC2-H280K or higher. Connect filter capacitors, inrush current limit resistors, and magnetic contactors. (Refer to the Instruction Manual of the FR-HC2.)

NOTE

- The voltage phases of terminals R/L1, S/L2, and T/L3 and the voltage phases of terminals R4/L14, S4/L24, and T4/L34 must be matched.
- The control logic (sink logic/source logic) of the high power factor converter and the inverter must be matched. (Refer to page 72.)
- Do not connect a DC reactor (FR-HEL) to the inverter when the FR-HC2 is connected.

2.10.6 Connection of the power regeneration common converter (FR-CV)

When wiring for connecting the power regeneration common converter (FR-CV) to the inverter, make sure to match the terminal symbols ($\mathrm{P} /+, \mathrm{N} /-$) on the inverter and on the power regeneration common converter.
The FR-CV is compatible with the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower.

After making sure that the wiring is correct and secure, set " 2 " in Pr. 30 Regenerative function selection. (Refer to page 689.)

*1 Remove jumpers across terminals R/L1 and R1/L11 as well as across terminals S/L2 and S1/L21, and connect the power supply for the control circuit to terminals R1/L11 and S1/L21. Do not connect anything to power input terminals (R/L1, S/L2, and T/L3). Incorrect connection will damage the inverter. (The E.OPT fault (option fault) occurs. (Refer to page 757.))
*2 Do not install an MCCB across terminals $\mathrm{P} /+$ and $\mathrm{N} /-$ (between terminals $\mathrm{P} / \mathrm{L}+$ and $\mathrm{P} /+$ or between $\mathrm{N} / \mathrm{L}-$ and $\mathrm{N} /-$). Connecting the opposite polarity of terminals $\mathrm{N} /-$ and $\mathrm{P} /+$ will damage the inverter.
*3 Use Pr. 178 to Pr. 189 (Input terminal function selection) to assign the terminals used for the X10 signal. (Refer to page 496 .)
*4 Be sure to connect the power supply and terminals R/L11, S/L21, and T/MC1. Operating the inverter without connecting them will damage the power regeneration common converter.
*5 Always connect terminal RDY on the FR-HC2 to a terminal where the X10 signal or MRS signal is assigned on the inverter. Always connect terminal SE on the FR-HC2 to terminal SD on the inverter. Not connecting these terminals may damage the FR-CV.

NOTE

- The voltage phases of terminals R/L11, S/L21, and T/MC1 and the voltage phases of terminals R2/L1, S2/L2, and T2/L3 must be matched.
- Use the sink logic (factory setting) when the FR-CV is connected. It cannot be connected when the source logic is selected.
- Do not connect a DC reactor (FR-HEL) to the inverter when the FR-CV is connected.

2.10.7 Connection of the power regeneration converter (MT-RC)

When connecting the power regeneration converter (MT-RC), perform wiring securely as follows. Incorrect connection will damage the power regeneration converter and the inverter. The MT-RC is compatible with FR-A840-02160(75K) or higher. After making sure that the wiring is correct and secure, set "1" in Pr. 30 Regenerative function selection and " 0 " in Pr. 70 Special regenerative brake duty.

NOTE

- When using the inverter with the MT-RC, install a magnetic contactor (MC) at the input side of the inverter so that power is supplied to the inverter after one second or more has elapsed after powering ON the MT-RC. When power is supplied to the inverter prior to the MT-RC, the inverter and the MT-RC may be damaged or the MCCB may be shut off or damaged.

- When connecting the power coordination reactor and others, refer to Instruction Manual of the MT-RC for precautions.

2.10.8 Connection of the DC reactor (FR-HEL)

- Keep the surrounding air temperature within the permissible range $\left(-10\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$. Keep enough clearance around the reactor because it heats up. (Take 10 cm or more clearance on top and bottom and 5 cm or more on left and right regardless of the installation direction.)

- When using the DC reactor (FR-HEL), connect it to terminals P/+ and P1.

For the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower, the jumper connected across terminals P/ + and P 1 must be removed. Otherwise, the reactor will not be effective.

- Select a DC reactor according to the applied motor capacity. (Refer to page 790.) For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor.
- Since the DC reactor (FR-HEL) is electrically connected to the enclosure through mounting screws, the DC reactor is earthed (grounded) by being securely mounted to the enclosure. However, if the DC reactor is not earthed (grounded) securely enough, an earthing (grounding) cable may be used.
When using an earthing (grounding) cable for the FR-HEL-(H)55K or lower, wire the cable to the installation hole where varnish is removed. (Refer to the Instruction Manual of the FR-HEL.)
For the FR-HEL-(H)75K or higher, use an earth (ground) terminal to perform earthing (grounding). (Refer to the Instruction Manual of the FR-HEL.)

NOTE

- The wiring distance must be within 5 m .
- As a reference, the cable gauge for the connection must be equal to or larger than that of the power supply cables (R/L1, S/ L2, T/L3) and the earthing (grounding) cable. (Refer to page 57.)

2.11 Wiring for use of the CC-Link IE Field Network (FR-A800-GF)

2.11.1 System configuration example

- Mount the "RJ71EN71", "RJ71GF11-T2", "QJ71GF11-T2", or "LJ71GF11-T2" type CC-Link IE Field Network master/local module on the main or extension base unit having the programmable controller CPU used as the master station.
- Connect the CC-Link IE Field Network programmable controller (master station) to the inverter with an Ethernet cable.

2.11.2 Network configuration

- Network topology

- The network can be wired into star topology, line topology, and ring topology.
- A network can consist of a combination of star and line topologies, but the ring topology cannot be combined with star or line topology.

Item	\quad Description
Star topology	Modules are configured into a star using a switching hub and Ethernet cables. Slave stations can be easily added in a star topology. Furthermore, data link continues among normally-operating stations in a star topology. ${ }^{* 1}$
Line topology	Modules are configured into a line with Ethernet cables and without a switching hub. If an error occurs, the station in error and the stations after that are disconnected from the network. ${ }^{* 1}$
Ring topology	Modules are configured into a ring using Ethernet cables. Data link continues with the stations that are operating normally. A switching hub is not required. ${ }^{* 1}$

*1 Add/remove slave stations one by one. If multiple slave stations are added/removed at a time, all stations on the network will be reconnected, resulting in a momentarily error in all the stations.

Station number and connection position

- Modules can be connected in any order regardless of the station number.

Cascade connection

- Up to 20-layer connection is available for the cascade connection.

Replacing CC-Link IE Field Network devices

- For star topology, slave stations can be replaced without powering off the whole system.

NOTE

- Refer to the MELSEC iQ-R, MELSEC-Q, or MELSEC-L CC-Link IE Field Network Master/Local Module User's Manual for the detailed network configurations.

2.11.3 Network components

This section describes components comprising the CC-Link IE Field Network.

-Connection cable

- For wiring, use the 1000BASE-T compliant Ethernet cables.

Ethernet cable	Connector	Type
Category 5e or higher straight cable (double shielded/STP)	RJ-45 connector	The following conditioning cables: • IEEE802.3 (1000BASE-T) - ANSI/TIA/EIA-568-B (Category 5e)

- Recommended products (as of February 2015)

Model	Manufacturer
SC-E5EW series $^{* 1}$	Mitsubishi Electric System \& Service Co., Ltd.

*1 SC-E5EW cable is for in-enclosure and indoor uses. SC-E5EW-L cable is for outdoor use.

NOTE

- For CC-Link IE Field Network wiring, use the recommended wiring components by CC-Link Partner Association.
- Cables for CC-Link IE Controller Network cannot be used for CC-Link IE Field Network.
- Depending on the cable connector shape, the cable may not be connected to the communication connector.

- Hubs

- Use hubs that meet the following conditions. Operation is not guaranteed if the hubs do not meet these conditions.
- Compliance with the IEEE802.3 (1000BASE-T)
- Support of the auto MDI/MDI-X function
- Support of the auto-negotiation function
- Switching hub (layer 2 switch)* ${ }^{* 1}$
*1 A repeater hub is not available.
- Industrial switching hub

Model	Manufacturer
NZ2EHG-T8	Mitsubishi Electric Corporation

2.11.4 Component names of the CC-Link IE Field Network communication circuit board

NOTE

- Do not remove the CC-Link IE Field Network communication circuit board or the earth plate.

2.11.5 Wiring method

- Ethernet cable connection

- Connect or remove an Ethernet cable after switching the power of the inverter OFF.
- When wiring the Ethernet cable to the communication connector, check the connecting direction of the Ethernet cable connector. Insert the connector to the communication connector until it clicks.
- When removing the Ethernet cable from the communication connector, hold down the latch on the Ethernet cable connector, and pull out the cable while holding the latch.

NOTE

- PORT 1 and PORT 2 do not need to be distinguished.
- When only one connector is used in star topology, either PORT 1 or PORT 2 is applicable.
- When using two connectors for line topology and ring topology, an Ethernet cable can be connected to the connectors in any combination For example, the cable can be connected across two of PORT 1 or across PORT 1 and PORT 2.

Connection between PORT1 and PORT1, PORT2 and PORT2

Connection between PORT1 and PORT2

To the next connector for communication (PORT2)

- Precautions

- Do not touch the core of the cable-side or module-side connector, and protect it from dirt or dust. If oil from your hand, dirt or dust is attached to the core, it can increase transmission loss, arising a problem in data link.
- Check the following:
- Is any Ethernet cable disconnected?
- Is any of the Ethernet cables shorted?
- Are the connectors securely connected?
- Do not use Ethernet cables with broken latches. Doing so may cause the cable to unplug or malfunction.
- Hold the connector part when connecting and disconnecting the Ethernet cable. Pulling a cable connected to the module may damage the module or cable, or result in malfunction due to poor contact.
- The maximum station-to-station distance is 100 m . However, the distance may be shorter depending on the operating environment of the cable. For details, contact your cable manufacturer.
- Check the instructions on page 107 before wiring, and perform correct wiring.
- When the operations listed below are performed, all stations on the network may be reconnected. At that time, a data link error may momentarily occur in all the stations, and the communication error E.OP1 may occur in the connected inverters.

Network configuration	Operation
Star topology	- Powering ON/OFF a slave station or the switching hub - Connecting/disconnecting an Ethernet cable connected to the switching hub - Disconnecting an Ethernet cable from a slave station and connecting it to another slave station or to the switching hub - Disconnecting ten stations or more, or disconnecting half the number of slave stations in the system or more - Changing the network topology when adding a slave station
Line topology / ring topology	- Simultaneously powering ON/OFF multiple stations - Simultaneously connecting/disconnecting Ethernet cables to/from multiple stations (When a data link faulty station returns, a data link error will occur in all the stations.) - Disconnecting ten stations or more, or disconnecting half the number of slave stations in the system or more - Changing the network topology when adding a slave station

At plug in/unplug or power ON/OFF

- To keep outputting a data link error (inverter communication error), set Pr. 500 Communication error execution waiting time or Pr. 502 Stop mode selection at communication error.

NOTE

- When wiring cables to the inverter's RS-485 terminals, take caution not to let the cables touch the CC-Link IE Field Network communication circuit board or of the inverter's circuit board. Otherwise, electromagnetic noises may cause malfunctions.
- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction.

2.11.6 Operation status LEDs

- Check the operation status LED to confirm the CC-Link IE Field Network operating status.

LED name	Description	ON	OFF
RUN	Operating status	Normal operation (normal 5 V internal voltage)	Hardware failure
SD	Transmission status	Data transmitting	No data transmitting
RD	Reception status	Data receiving	No data receiving
D.LINK	Cyclic communication status	Cyclic transmitting	No cyclic transmitting or disconnected
ERR	Node failure status ${ }^{* 2}$	Node failure	Normal operation
L.ERR	Link error	Received data error	Received data normal

*1 Also lit in no-communication state.
*2 This LED indicates a communication break between the master station and the inverter (due to cable disconnection or breakage, power-OFF of the master power supply, or reset, etc.).

MEMO

CHAPTER 3 PRECAUTIONS FOR USE OF THE INVERTER

3.1 Electro-magnetic interference (EMI) and leakage currents 114
3.2
Power supply harmonics 121
3.3
Installation of a reactor 125
$3.4 \quad$ Power shutdown and magnetic contactor (MC) 126
3.5 Countermeasures against deterioration of the 400 V class motor insulation 128
3.6 Checklist before starting operation 129
3.7 Failsafe system which uses the inverter 132

This chapter explains the precautions for use of this product.
Always read the instructions before use.
For the separated converter type, refer to the "PRECAUTIONS FOR USE OF THE INVERTER" in the FR-A802 (Separated Converter Type) Instruction Manual (Hardware).
For the IP55 compatible model, refer to the "PRECAUTIONS FOR USE OF THE INVERTER" in the FR-A806 (IP55/UL Type 12 specification) Instruction Manual (Hardware).

3.1 Electro-magnetic interference (EMI) and leakage currents

3.1.1 Leakage currents and countermeasures

Capacitances exist between the inverter I/O cables, other cables and earth and in the motor, through which a leakage current flows. Since its value depends on the static capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following countermeasures. Select the earth leakage current breaker according to its rated sensitivity current, independently of the carrier frequency setting.

To-earth (ground) leakage currents

Leakage currents may flow not only into the inverter's own line but also into the other lines through the earthing (grounding) cable, etc. These leakage currents may operate earth leakage circuit breakers and earth leakage relays unnecessarily.

■ Countermeasures

- If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting.

Note that motor noise increases. Selecting Pr. 240 Soft-PWM operation selection makes the sound inoffensive.

- By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise).

NOTE

- Long wiring will increase the leakage current.
- High motor capacity will increase the leakage current. The leakage current of the 400 V class is larger than that of the 200 V class.

- Line-to-line leakage currents

Harmonics of leakage currents flowing in static capacitances between the inverter output cables may operate the external thermal relay unnecessarily. When the wiring length is long (50 m or more) for the 400 V class small-capacity models (FR-A840-00250(7.5K) or lower), the external thermal relay is likely to operate unnecessarily because the ratio of the leakage current to the rated motor current increases.

■ Line-to-line leakage current example (200 V class)

Motor capacity (kW)	Rated motor current (A)	Leakage current (mA) ${ }^{* 1}$		Condition
		Wiring length 50 m	Wiring length 100 m	
0.4	1.8	310	500	- Motor: SF-JR 4P - Carrier frequency: 14.5 kHz - Cable: $2 \mathrm{~mm}^{2}, 4$ cores - Cabtyre cable
0.75	3.2	340	530	
1.5	5.8	370	560	
2.2	8.1	400	590	
3.7	12.8	440	630	
5.5	19.4	490	680	
7.5	25.6	535	725	

[^4]

Countermeasures

- Use Pr. 9 Electronic thermal O/L relay.
- If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting.

Note that motor noise increases. Selecting Pr. 240 Soft-PWM operation selection makes the sound inoffensive.
To ensure that the motor is protected against line-to-line leakage currents, it is recommended to use a temperature sensor to directly detect motor temperature.

■ Installation and selection of the molded case circuit breaker

Install a molded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the inverter input side. Select an MCCB according to the inverter input side power factor, which depends on the power supply voltage, output frequency and load. Especially for a completely electromagnetic MCCB, a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check it in the data of the corresponding breaker.) As an earth leakage current breaker, use the Mitsubishi earth leakage current breaker designed for harmonics and surge suppression.

Selecting the rated sensitivity current for the earth leakage circuit breaker

When using an earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency.

- Breaker designed for harmonic and surge suppression Rated sensitivity current

$$
\operatorname{l} \Delta \mathrm{n} \geq 10 \times(\lg 1+\lg n+\lg i+\lg 2+\operatorname{lgm})
$$

- Standard breaker

Rated sensitivity current
$\mid \Delta n \geq 10 \times\{\lg 1+\lg n+\lg i+3 \times(\lg 2+\lg m)\}$

Example of leakage current of cable path per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit (200 V 60 Hz)

Leakage current example of three-phase induction motor during the commercial power supply operation (200 V 60 Hz)

$\lg 1$, Ig2: Leakage currents in wire path during commercial power supply operation
Ign: Leakage current of inverter input side noise filter
Igm: Leakage current of motor during commercial power supply operation
Igi: Leakage current of inverter unit

Example of leakage current per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit
(Three-phase three-wire delta connection 400 V 60 Hz

Cable size (mm^{2})

Leakage current example of threephase induction motor during the commercial power supply operation
(Totally-enclosed fan-cooled type motor 400 V 60 Hz)

[^5]| Example | Item | Breaker designed for harmonic and surge suppression | Standard breaker |
| :---: | :---: | :---: | :---: |
| | Leakage current $\lg 1(m A)$ | $33 \times \frac{5 m}{1000 m}=0.17$ | |
| | Leakage current Ign (mA) | 0 (without noise filter) | |
| | Leakage current Igi (mA) | 1 (without EMC filter)
 For the leakage current of the inverter, refer to the following table. | |
| | Leakage current lg2 (mA) | $33 \times \frac{50 \mathrm{~m}}{1000 \mathrm{~m}}=1.65$ | |
| | Motor leakage current Igm (mA) | 0.18 | |
| | Total leakage current (mA) | 3.00 | 6.66 |
| | Rated sensitivity current (mA) $(\geq \lg \times 10)$ | 30 | 100 |

Inverter leakage current (with and without EMC filter)

	Voltage (V)	EMC filter		Remarks
		ON (mA)	OFF (mA)	
	200	22	1	Input power conditions $220 \mathrm{~V} / 60 \mathrm{~Hz}$ (200 V class) or $440 \mathrm{~V} / 60 \mathrm{~Hz}$ (400 V class), within 3% of power supply unbalance
(grounding)	400	35	2	
Earthed-neutral system i	400	2	1	

NOTE

- Install the earth leakage circuit breaker (ELB) on the input side of the inverter.
- In the 人 connection earthed-neutral system, the sensitivity current is blunt against a ground fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 61140 class 1 and other applicable standards)
- When the breaker is installed on the output side of the inverter, it may be unnecessarily operated by harmonics even if the effective value is within the rating.
In this case, do not install the breaker since the eddy current and hysteresis loss will increase, leading to temperature rise.
- The following models are standard breakers: BV-C1, BC-V, NVB, NV-L, NV-G2N, NV-G3NA, NV-2F, earth leakage relay (except NV-ZHA), and NV with AA neutral wire open-phase protection.
The other models are designed for harmonic and surge suppression: NV-C/NV-S/MN series, NV30-FA, NV50-FA, BV-C2, earth leakage alarm breaker (NF-Z), NV-ZHA, and NV-H.

3.1.2 Countermeasures against inverter-generated EMI

Some electromagnetic noises enter the inverter to cause the inverter malfunction, and others are radiated by the inverter to cause the peripheral devices to malfunction. Though the inverter is designed to have high immunity performance, it handles low-level signals, so it requires the following basic techniques. Also, since the inverter chops outputs at high carrier frequency, that could generate electromagnetic noises. If these electromagnetic noises cause peripheral devices to malfunction, EMI countermeasures should be taken to suppress noises. These techniques differ slightly depending on EMI paths.

- Basic techniques

- Do not run the power cables (I/O cables) and signal cables of the inverter in parallel with each other and do not bundle them.
- Use shielded twisted pair cables for the detector connecting and control signal cables and connect the sheathes of the shielded cables to terminal SD.
- Ground (Earth) the inverter, motor, etc. at one point.

- Techniques to reduce electromagnetic noises that enter and cause a malfunction of the inverter (EMI countermeasures)

When devices that generate many electromagnetic noises (which use magnetic contactors, electromagnetic brakes, many relays, for example) are installed near the inverter and the inverter may malfunction due to electromagnetic noises, the following countermeasures must be taken:

- Provide surge suppressors for devices that generate many electromagnetic noises to suppress electromagnetic noises.
- Install data line filters to signal cables (refer to page 118).
- Ground (Earth) the shields of the detector connection and control signal cables with cable clamp metal.

- Techniques to reduce electromagnetic noises that are radiated by the inverter to cause the peripheral devices to malfunction (EMI countermeasures)

Inverter-generated noises are largely classified into those radiated by the cables connected to the inverter and inverter main circuits (I/O), those electromagnetically and electrostatically induced to the signal cables of the peripheral devices close to the main circuit power supply, and those transmitted through the power supply cables.

Noise propagation path	Countermeasure
(a), (b), (c)	When devices that handle low-level signals and are liable to malfunction due to electromagnetic noises, e.g. instruments, receivers and sensors, are contained in the enclosure that contains the inverter or when their signal cables are run near the inverter, the devices may malfunction due to by air-propagated electromagnetic noises. The following countermeasures must be taken: - Install easily affected devices as far away as possible from the inverter. - Run easily affected signal cables as far away as possible from the inverter and its I/O cables. - Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them. - Set the EMC filter ON/OFF connector of the inverter to the ON position. (Refer to page 118.) - Inserting a line noise filter into the output suppresses the radiated noise from the cables. - Use shielded cables as signal cables and power cables and run them in individual metal conduits to produce further effects.
(d), (e), (f)	When the signal cables are run in parallel with or bundled with the power cables, magnetic and static induction noises may be propagated to the signal cables to cause malfunction of the devices and the following countermeasures must be taken: - Install easily affected devices as far away as possible from the inverter. - Run easily affected signal cables as far away as possible from the inverter and its I/O cables. - Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them. - Use shielded cables as signal cables and power cables and run them in individual metal conduits to produce further effects.
(g)	When the power supplies of the peripheral devices are connected to the power supply of the inverter in the same line, inverter-generated noises may flow back through the power supply cables to cause malfunction of the devices and the following countermeasures must be taken: - Set the EMC filter ON/OFF connector of the inverter to the ON position. (Refer to page 118.) - Install the line noise filter (FR-BLF, FR-BSF01) to the power cables (output cables) of the inverter.

Noise propagation path	Countermeasure
(h)	When a closed loop circuit is formed by connecting the peripheral device wiring to the inverter, leakage currents may flow through the earthing (grounding) cable of the inverter to cause the device to malfunction. In that case, disconnecting the earthing (grounding) cable from the device may stop the malfunction of the device.

■ Data line filter

Data line filter is effective as an EMI countermeasure. Provide a data line filter for the detector cable, etc.

- Commercially available data line filter: ZCAT3035-1330 (by TDK), ESD-SR-250 (by NEC TOKIN)
- Specification example (ZCAT3035-1330 by TDK)

The impedance values above are reference values, and not guaranteed values.

■EMI countermeasure example

Do not earth (ground) control cable.

NOTE

- For compliance with the EU EMC Directive, refer to the Instruction Manual (Startup).

3.1.3 Built-in EMC filter

This inverter is equipped with a built-in EMC filter (capacitive filter) and a common mode choke.
These filters are effective in reducing air-propagated noise on the input side of the inverter.
To enable the EMC filter, fit the EMC filter ON/OFF connector to the ON position. The FM type is initially set to "disabled" (OFF), and the CA type to "enabled" (ON).

The input side common mode choke, which is built in the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower inverter, is always enabled regardless of the EMC filter ON/OFF connector setting.

- How to enable or disable the filter

■ For FR-A820-00105(1.5K) or higher and FR-A840-00023(0.4K) or higher

- Before removing a front cover, check to make sure that the indication of the inverter operation panel is OFF, wait for at least 10 minutes after the power supply has been switched OFF, and check that there is no residual voltage using a tester or the like.
- When disconnecting the connector, push the fixing tab and pull the connector straight without pulling the cable or forcibly pulling the connector with the tab fixed.
When installing the connector, also engage the fixing tab securely.
(If it is difficult to disconnect the connector, use a pair of needle-nose pliers, etc.)

EMC filter ON/OFF connector (Side view)

Disengage connector fixing tab.
 pull up the connector straight.

■ For FR-A820-00077(0.75K) or lower

- Before removing a front cover, check to make sure that the indication of the inverter operation panel is OFF, wait for at least 10 minutes after the power supply has been switched OFF, and check that there is no residual voltage using a tester or the like.
- Remove the control circuit terminal block. (Refer to page 783.)
- Connect the shorting wire to the corresponding terminal to enable or disable the filter. Connect the wire to the terminal in the same way as general wiring of the control circuit terminal block. (Refer to page 73.)
- After switching, reinstall the control circuit terminal block as it was.

NOTE

- Fit the connector or shorting wire to either ON or OFF position.
- Enabling (turning ON) the EMC filter increases leakage current. (Refer to page 115.)
- While power is ON or when the inverter is running, do not open the front cover. Otherwise you may get an electric shock.

3.2

3.2.1 Power supply harmonics

The inverter may generate power supply harmonics from its converter circuit to affect the power generator, power factor correction capacitor etc. Power supply harmonics are different from noise and leakage currents in source, frequency band and transmission path. Take the following countermeasure suppression techniques.

- Differences between harmonics and noises

Item	Harmonics	Noise
frequency	Normally 40th to 50th degrees or less (3 kHz or less).	High frequency (several 10 kHz to 1 GHz order).
Location	To-electric channel, power impedance.	To-space, distance, wiring path.
Quantitative understanding	Theoretical calculation possible.	Random occurrence, quantitative grasping difficult.
Generated amount	Nearly proportional to the load capacity.	Changes with the current variation ratio. (Gets larger as switching speed increases.)
Affected equipment immunity	Specified by standards per equipment.	Different depending on maker's equipment specifications.
Countermeasure	Provide a reactor.	Increase distance.

- Countermeasures

The harmonic current generated from the inverter to the input side differs according to various conditions such as the wiring impedance, whether a reactor is used or not, and output frequency and output current on the load side.
For the output frequency and output current, we understand that this should be calculated in the conditions under the rated load at the maximum operating frequency.

NOTE

- The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not provide a capacitor and surge suppressor on the inverter output side when the motor is driven by the inverter. For power factor improvement, install a reactor on the inverter input side or in the DC circuit.

3.2.2 Harmonic suppression guidelines in Japan

Inverters have a converter section (rectifier circuit) and generate a harmonic current.
Harmonic currents flow from the inverter to a power receiving point via a power transformer. The Harmonic Suppression Guidelines was established to protect other consumers from these outgoing harmonic currents.

The three-phase 200 V input specifications 3.7 kW or lower were previously covered by "the Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" and other models were covered by "the Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage". However, the transistorized inverter has been excluded from the target products covered by "the Harmonic Suppression Guidelines for Household Appliances and Generalpurpose Products" in January 2004 and "the Harmonic Suppression Guideline for Household Appliances and General-purpose Products" was repealed on September 6, 2004.
All capacity and all models of general-purpose inverter used by specific consumers are now covered by "the Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage" (hereinafter referred to as "the Specific Consumer Guidelines").

- "Specific Consumer Guidelines"

This guideline sets forth the maximum harmonic currents outgoing from a high-voltage or especially high-voltage receiving consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.

- Maximum values of outgoing harmonic currents per 1 kW contract power

Received power voltage	5th	7th	11th	13th	17th	19th	23rd	Over 23rd
6.6 kV	3.5	2.5	1.6	1.3	1.0	0.9	0.76	0.70
22 kV	1.8	1.3	0.82	0.69	0.53	0.47	0.39	0.36
33 kV	1.2	0.86	0.55	0.46	0.35	0.32	0.26	0.24

- Application of the specific consumer guidelines

■ Conversion factor

Classification	Circuit type		Conversion factor Ki
3	Three-phase bridge (capacitor smoothing)	Without reactor	K31 $=3.4$
		With reactor (AC side)	$\mathrm{K} 32=1.8$
		With reactor (DC side)	$\mathrm{K} 33=1.8$
		With reactors (AC, DC sides)	$\mathrm{K} 34=1.4$
5	Self-excitation three-phase bridge	When a high power factor converter is used	$\mathrm{K} 5=0$

Equivalent capacity limit

Received power voltage	Reference capacity
6.6 kV	50 kVA
$22 / 33 \mathrm{kV}$	300 kVA
66 kV or more	2000 kVA

■ Harmonic content (when the fundamental current is considered as 100%)

Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
Not used	65	41	8.5	7.7	4.3	3.1	2.6	1.8
Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
Used (DC side)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
Used (AC, DC sides)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

■ Calculation of equivalent capacity P0 of harmonic generating equipment

"Equivalent capacity" is the capacity of a 6-pulse converter converted from the capacity of consumer's harmonic generating equipment and is calculated by the following equation. If the sum of equivalent capacities is higher than the limit (refer to the list of the equivalent capacity limits), harmonics must be calculated by the equation in next subheading.
$\mathrm{P} 0=\Sigma(\mathrm{Ki} \times \mathrm{Pi})[\mathrm{kVA}]$
$\mathrm{Ki}:$ Conversion coefficient (Refer to the list of the conversion factors.)
Pi: Rated capacity of harmonic generating equipment [kVA]
i: Number indicating the conversion circuit type
*1 Rated capacity: Determined by the capacity of the applied motor and found in the table "Rated capacities and outgoing harmonic currents of inverter-driven motors". The rated capacity used here is used to calculate the generated harmonic amount and is different from the power supply capacity required for actual inverter drive.

\square Calculation of outgoing harmonic current

Outgoing harmonic current $=$ fundamental wave current (value converted from received power voltage) \times operation ratio \times harmonic content

- Operation ratio: actual load factor \times operation time ratio during 30 minutes
- Harmonic content: Refer to the list of the harmonic content.

■ Rated capacities and outgoing harmonic currents of inverter-driven motors

Applicable motor (kW)	Fundamental wave current (A)		Fundamental wave current converted from 6.6 kV (mA)	Rated capacity (kVA)	Outgoing harmonic current converted from $6.6 \mathrm{kV}(\mathrm{mA})$ (No reactor, 100\% operation ratio)							
	200 V	400 V			5th	7th	11th	13th	17th	19th	23rd	25th
0.4	1.61	0.81	49	0.57	31.85	20.09	4.165	3.773	2.107	1.519	1.274	0.882
0.75	2.74	1.37	83	0.97	53.95	34.03	7.055	6.391	3.569	2.573	2.158	1.494
1.5	5.50	2.75	167	1.95	108.6	68.47	14.20	12.86	7.181	5.177	4.342	3.006
2.2	7.93	3.96	240	2.81	156.0	98.40	20.40	18.48	10.32	7.440	6.240	4.320
3.7	13.0	6.50	394	4.61	257.1	161.5	33.49	30.34	16.94	12.21	10.24	7.092
5.5	19.1	9.55	579	6.77	376.1	237.4	49.22	44.58	24.90	17.95	15.05	10.42
7.5	25.6	12.8	776	9.07	504.4	318.2	65.96	59.75	33.37	24.06	20.18	13.97
11	36.9	18.5	1121	13.1	728.7	459.6	95.29	86.32	48.20	34.75	29.15	20.18
15	49.8	24.9	1509	17.6	980.9	618.7	128.3	116.2	64.89	46.78	39.24	27.16
18.5	61.4	30.7	1860	21.8	1209	762.6	158.1	143.2	79.98	57.66	48.36	33.48
22	73.1	36.6	2220	25.9	1443	910.2	188.7	170.9	95.46	68.82	57.72	39.96
30	98.0	49.0	2970	34.7	1931	1218	252.5	228.7	127.7	92.07	77.22	53.46
37	121	60.4	3660	42.8	2379	1501	311.1	281.8	157.4	113.5	95.16	65.88
45	147	73.5	4450	52.1	2893	1825	378.3	342.7	191.4	138.0	115.7	80.10
55	180	89.9	5450	63.7	3543	2235	463.3	419.7	234.4	169.0	141.7	98.10

Applicable motor (kW)	Fundamental wave current (A)		Fundamental wave current converted from 6.6 kV (mA)	Rated capacity (kVA)	Outgoing harmonic current converted from 6.6 kV (mA) (with a DC reactor, 100% operation ratio)							
	200 V	400 V			5th	7th	11th	13th	17th	19th	23rd	25th
75	245	123	7455	87.2	2237	969	626	373	350	239	224	164
90	293	147	8909	104	2673	1158	748	445	419	285	267	196
110	357	179	10848	127	3254	1410	911	542	510	347	325	239
132	-	216	13091	153	3927	1702	1100	655	615	419	393	288
160	-	258	15636	183	4691	2033	1313	782	735	500	469	344
220	-	355	21515	252	6455	2797	1807	1076	1011	688	645	473
250	-	403	24424	286	7327	3175	2052	1221	1148	782	733	537
280	-	450	27273	319	8182	3545	2291	1364	1282	873	818	600
315	-	506	30667	359	9200	3987	2576	1533	1441	981	920	675
355	-	571	34606	405	10382	4499	2907	1730	1627	1107	1038	761
400	-	643	38970	456	11691	5066	3274	1949	1832	1247	1169	857
450	-	723	43818	512	13146	5696	3681	2191	2060	1402	1315	964
500	-	804	48727	570	14618	6335	4093	2436	2290	1559	1462	1072
560	-	900	54545	638	16364	7091	4582	2727	2564	1746	1636	1200
630	-	1013	61394	718	18418	7981	5157	3070	2886	1965	1842	1351

■ Determining if a countermeasure is required

A countermeasure for harmonics is required if the following condition is satisfied: outgoing harmonic current > maximum value per 1 kW contract power \times contract power.

■ Harmonic suppression techniques

No.	Item	Description
1	Reactor installation (FRHAL or FR-HEL)	Install an AC reactor (FR-HAL) on the AC side of the inverter or a DC reactor (FR-HEL) on its DC side, or install both to suppress outgoing harmonic currents.
2	High power factor converter (FR-HC2)	This converter trims the current waveform to be a sine waveform by switching the rectifier circuit (converter module) with transistors. Doing so suppresses the generated harmonic amount significantly. Connect it to the DC area of an inverter. Use the high power factor converter (FR-HC2) with the accessories that come as standard.
3	Installation of power factor improving capacitor	When used with a reactor connected in series, the power factor improving correction capacitor can absorb harmonic currents.
4	Transformer multi-phase operation	Use two transformers with a phase angle difference of 30 in combinations of λ to Δ and Δ to Δ, to provide an effect corresponding to 12 pulses, reducing low-degree harmonic currents.
5	Passive filter (AC filter)	A capacitor and a reactor are used together to reduce impedances at specific frequencies. Harmonic currents are expected to be absorbed greatly by using this technique.
6	Active filter (Active filter)	This filter detects the current in a circuit generating a harmonic current and generates a harmonic current equivalent to a difference between that current and a fundamental wave current to suppress the harmonic current at the detection point. Harmonic currents are expected to be absorbed greatly by using this technique.

3.3 Installation of a reactor

When the inverter is connected near a large-capacity power transformer (1000 kVA or more) or when a power factor correction capacitor is to be switched over, an excessive peak current may flow in the power input circuit, damaging the converter circuit. To prevent this, always install an AC reactor (FR-HAL), which is available as an option.

3.4 Power shutdown and magnetic contactor (MC)

- Inverter input side magnetic contactor (MC)

On the inverter input side, it is recommended to provide an MC for the following purposes. (Refer to page 29 for selection.)

- To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.).
For example, an MC prevents overheat or burnout of the brake resistor when heat capacity of the resistor is insufficient or brake regenerative transistor is damaged with short while connecting an optional brake resistor.
- To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure.
- To separate the inverter from the power supply to ensure safe maintenance and inspection work.

To use an MC to perform an emergency stop during operation, select the MC by applying the inverter's input-side current to the rated current specified in the JEM1038-AC-3 class.

NOTE

- Since repeated inrush currents at power ON will shorten the life of the converter circuit (switching life is about $1,000,000$ times), frequent starts and stops of the magnetic contactor must be avoided. Turn ON or OFF the start (STF/STR) signal for the inverter start control to run or stop the inverter.
- Inverter start/stop circuit example

As shown in the following figure, always use the start signal (turn ON or OFF the STF/STR signal) to make a start or stop.

*1 When the power supply is 400 V class, install a stepdown transformer.
*2 Connect the power supply terminals R1/L11, S1/L21 of the control circuit to the input side of the MC to hold an alarm signal when the inverter's protective circuit is activated. At this time, remove jumpers across terminals R/L1 and R1/L11 and S/L2 and S1/L21. (Refer to page 76 for removal of the jumper.)

- Handling of the magnetic contactor on the inverter's output side

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to use the electronic bypass function Pr. 135 to Pr. 139 (refer to page 532). (The commercial power supply operation is not available with Vector control dedicated motors (SF-V5RU, SF-THY) nor with PM motors.)

- Handling of the manual contactor on the inverter's output side

A PM motor is a synchronous motor with high-performance magnets embedded inside. High-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. In an application where the PM motor is driven by the load even after the inverter is powered OFF, a low-voltage manual contactor must be connected at the inverter's output side.

NOTE

- Before wiring or inspection for a PM motor, confirm that the PM motor is stopped. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.
- Do not open or close the contactor while the inverter is running (outputting).

3.5 Countermeasures against deterioration of the 400 V class motor insulation

In the PWM type inverter, a surge voltage attributable to wiring constants is generated at the motor terminals. Especially in a 400 V class motor, the surge voltage may deteriorate the insulation. When the 400 V class motor is driven by the inverter, consider the following countermeasures:

- Countermeasures (with induction motor)

It is recommended to take one of the following countermeasures:

■ Rectifying the motor insulation and limiting the PWM carrier frequency according to the wiring length

For the 400 V class motor, use an insulation-enhanced motor.
Specifically,

- Order a " 400 V class inverter-driven insulation-enhanced motor".
- For the dedicated motor such as the constant-torque motor and low-vibration motor, use an "inverter-driven dedicated motor".
- Set Pr. 72 PWM frequency selection as indicated below according to the wiring length.

	Wiring length		
	Shorter than $\mathbf{5 0} \mathbf{~ m}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m}$	Longer than $\mathbf{1 0 0} \mathbf{~ m}$
	$15(14.5 \mathrm{kHz})$ or lower	$9(9 \mathrm{kHz})$ or lower	$4 \mathrm{kHz})$ or lower

$■$ Suppressing the surge voltage on the inverter side

- For the FR-A840-01800(55K) or lower, connect the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) to the output side.
- For the FR-A840-02160(75K) or higher, connect the sine wave filter (MT-BSL/BSC) to the output side.

- Countermeasures (with PM motor)

When the wiring length exceeds 50 m , set " 9 " (6 kHz) or less in Pr. 72 PWM frequency selection.

NOTE

- For the details of Pr. 72 PWM frequency selection, refer to page 339. (When using an optional sine wave filter (MT-BSL/BSC), set " 25 " (2.5 kHz) in Pr.72.)
- For the details of the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) and the sine wave filter (MT-BSL/BSC), refer to the Instruction Manual of each option.
- A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control. A sine wave filter (MT-BSL/BSC) can be used under V/F control. Do not use the filters under different control methods.
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 339.)

3.6 Checklist before starting operation

The FR-A800 series inverter is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product. Before starting operation, always recheck the following points.

Checkpoint	Countermeasure	Refer to page	Check by user
Crimp terminals are insulated.	Use crimp terminals with insulation sleeves to wire the power supply and the motor.	-	
The wiring between the power supply (terminals R/L, S/L2, T/ L3) and the motor (terminals U, V, W) is correct.	Application of power to the output terminals (U,V, W) of the inverter will damage the inverter. Never perform such wiring.	55	

Checkpoint	Countermeasure	Refer to page	Checkby user
When using the electronic bypass operation, electrical and mechanical interlocks are provided between the electronic bypass contactors MC1 and MC2.	When using a switching circuit as shown below, chattering due to misconfigured sequence or arc generated at switching may allow undesirable current to flow in and damage the inverter. Miswiring may also damage the inverter. (The commercial power supply operation is not available with Vector control dedicated motors (SF-V5RU, SF-THY) nor with PM motors.) If switching to the commercial power supply operation while a failure such as an output short circuit has occurred between the magnetic contactor MC2 and the motor, the damage may further spread. If a failure has occurred between the MC2 and the motor, a protection circuit such as using the OH signal input must be provided.	-	
A countermeasure is provided for power restoration after a power failure.	If the machine must not be restarted when power is restored after a power failure, provide an MC in the inverter's input side and also make up a sequence which will not switch ON the start signal. If the start signal (start switch) remains ON after a power failure, the inverter will automatically restart as soon as the power is restored.	-	
For Vector control, the encoder is properly installed.	The encoder must be directly connected to a motor shaft without any backlash. (Real sensorless vector control or PM sensorless vector control do not require an encoder.)	86	
A magnetic contactor (MC) is installed on the inverter's input side.	On the inverter's input side, connect an MC for the following purposes: - To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.). - To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure. - To separate the inverter from the power supply to ensure safe maintenance and inspection work. If using an MC for emergency stop during operation, select an MC regarding the inverter input side current as JEM1038-AC-3 class rated current.	126	
The magnetic contactor on the inverter's output side is properly handled.	Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop.	126	
When using a PM motor, a lowvoltage manual contactor is installed on the inverter's output side.	A PM motor is a synchronous motor with high-performance magnets embedded inside. High-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.	126	
An EMI countermeasure is provided for the frequency setting signals.	If electromagnetic noise generated from the inverter causes the frequency setting signal to fluctuate and the motor rotation speed to be unstable when changing the motor speed with analog signals, the following countermeasures are effective: - Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them. - Run the signal cables as far away as possible from the power cables (inverter I/O cables). - Use shielded cables. - Install a data line filter to signal cable (example: ZCAT3035-1330 by TDK).	116	
A countermeasure is provided for an overload operation.	When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity (up to two ranks). For a PM motor, use an inverter and PM motor of higher capacities.	-	
The specifications and rating match the system requirements.	Make sure that the specifications and rating match the system requirements.	790	

Checkpoint	Countermeasure	Refer to page	Check by user
	When a motor is driven by the inverter, axial voltage is generated on the motor shaft, which may cause electrical corrosion of the bearing in rare cases depending on the wiring, load, operating conditions of the motor or specific inverter settings (high carrier frequency and EMC filter ON). Contact your sales representative to take appropriate countermeasures for the motor. The following shows examples of countermeasures for the inverter. - Decrease the carrier frequency. Countermeasures are taken against electrical corrosion on the motor bearing.	Turn OFF the EMC filter. - Provide a common mode choke*1 on the output side of the inverter. (This is effective regardless of the EMC filter ON/OFF connector setting.) $* 1$ Recommended common mode choke: FT-3KM F series FINEMET® common mode choke cores manufactured by Hitachi Metals, Ltd.	

3.7 Failsafe system which uses the inverter

When a fault is detected by the protective function, the protective function activates and outputs the Fault signal. However, the Fault signal may not be output at an inverter's fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi assures the best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to the machine when the inverter fails for some reason. Also at the same time consider the system configuration where a failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.

- Interlock method which uses the inverter status output signals

By combining the inverter output signals to provide an interlock as shown below, an inverter failure can be detected.

No.	Interlock method	Check method	Used signals	Refer to page
a	Inverter protective function operation	Operation check of an alarm contact. Circuit error detection by negative logic.	Fault output (ALM) signal	460
b	Inverter operating status	Operation ready signal check.	Inverter operation ready (RY) signal	456
C	Inverter running status	Logic check of the start signal and running signal.	Start (STF or STR) signal Inverter running (RUN) signal	456, 502
d	Inverter running status	Logic check of the start signal and output current.	Start (STF or STR) signal Output current detection (Y12) signal	464, 502

- When using various signals, assign the functions to Pr. 190 to Pr. 196 (Output terminal function selection) referring to the table on the left.

Output signal	Pr.190 to Pr.196 setting	
	Positive logic	Negative logic
ALM	99	199
RY	11	111
RUN	0	100
Y12	12	112

NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

■ Checking by the output of the inverter fault signal ... (a)

When the inverter's protective function activates and the inverter trips, the Fault (ALM) signal is output. (The ALM signal is assigned to terminal A1B1C1 in the initial setting). With this signal, check that the inverter operates properly. In addition, negative logic can be set. (ON when the inverter is normal, OFF when the fault occurs.)

■ Checking the inverter operating status by the Inverter operation ready signal output from the inverter ... (b)

The Inverter operation ready (RY) signal is output when the inverter power is ON and the inverter becomes operative. Check if the RY signal is output after powering ON the inverter.

$■$ Checking the inverter operating status by the start signal input to the inverter and by the Inverter running signal output from the inverter ... (c)

The Inverter running (RUN) signal is output when the inverter is running. (The RUN signal is assigned to terminal RUN in the initial setting.) Check if the RUN signal is output while a start signal (the STF/STR signal for forward/reverse rotation command) is input to the inverter. Even after the start signal is turned OFF, the RUN signal is kept output until the inverter makes the motor to decelerate and to stop. For the logic check, configure a sequence considering the inverter's deceleration time.

■ Checking the motor operating status by the start signal input to the inverter and by the Output current detection signal output from the inverter ..

The Output current detection (Y12) signal is output when the inverter operates and currents flows into the motor.
Check if the Y12 signal is output while a start signal (the STF/STR signal for forward/reverse rotation command) is input to the inverter. The Y12 signal is initially set to be output at 150% inverter rated current. Adjust the level to around 20% using no load current of the motor as reference with Pr. 150 Output current detection level.
Like the Inverter running (RUN) signal, even after the start signal is turned OFF, the Y12 signal is kept output until the inverter stops the output to a decelerating motor. For the logic check, configure a sequence considering the inverter's deceleration time.

- Backup method which does not use the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, if an inverter CPU fails in a system interlocked with the inverter's Fault, start, and RUN signals, no Fault signals will be output and the RUN signal will be kept ON because the inverter CPU is down.
Provide a speed detector to detect the motor speed and current detector to detect the motor current, and consider the backup system such as performing a check as follows according to the level of importance of the system.

Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the current is flowing through the motor while the motor coasts to stop, even after the inverter's start signal is turned OFF. For the logic check, configure a sequence considering the inverter's deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.

■ Command speed and actual operation check

Check for a gap between the actual speed and commanded speed by comparing the inverter's speed command and the speed detected by the speed detector.

CHAPTER 4 BASIC OPERATION

4.1 Operation panel (FR-DU08) 136
4.2 Monitoring the inverter 141
4.3 Easy setting of the inverter operation mode 142
4.4 Frequently-used parameters (simple mode parameters) 144
$4.5 \quad$ Basic operation procedure (PU operation) 147
4.6 Basic operation procedure (External operation) 153
$4.7 \quad$ Basic operation procedure (JOG operation). 159

This chapter explains the basic operation of this product.
Always read the instructions before use.

4.1 Operation panel (FR-DU08)

4.1.1 Components of the operation panel (FR-DU08)

To mount the operation panel (FR-DU08) on the enclosure surface, refer to page 83.

No.	Appearance	Name	Description
(a)	-PU -EXT -NET	Inverter operation mode LED indicator	PU: ON when the inverter runs in the PU operation mode. EXT: ON when the inverter runs in the External operation mode. (ON when the inverter in the initial setting is powered ON.) NET: ON when the inverter runs in the Network operation mode. PU and EXT: ON when the inverter runs in the External/PU combined operation mode 1 or 2.
(b)	$\begin{aligned} & \text {-MON } \\ & \text {-PRM } \end{aligned}$	Operation panel mode LED indicator	MON: ON when the operation panel is in the monitor mode. Quickly blinks twice intermittently while the protective function is activated. Slowly blinks when the display-off function of the operation panel is valid. PRM: ON when the operation panel is in the parameter setting mode.
(c)	$\begin{aligned} & \text { ©IM } \\ & \text { oPM } \end{aligned}$	Controlled motor type LED indicator	IM : ON when the inverter is set to control the induction motor. PM: ON when the inverter is set to control the PM motor. Blinks during test operation.
(d)	Hz	Frequency unit LED indicator	ON when the actual frequency is monitored. (Blinks when the set frequency is monitored.)
(e)		Monitor (5-digit LED)	Shows a numeric value (readout) of a monitor item such as the frequency or a parameter number. (The monitor item can be changed according to the settings of Pr.52, Pr. 774 to Pr.776.)
(f)	OP.RUN	PLC function LED indicator	ON when the PLC function of the inverter is valid.
(g)		FWD key, REV key	FWD key: Starts forward rotation operation. Its LED is ON during forward rotation operation. REV key: Starts reverse rotation operation. Its LED is ON during reverse rotation operation. Either LED blinks under the following conditions. - When the frequency command is not given even if the forward/reverse command is given. - When the frequency command is equal to the starting frequency or lower. - When the MRS signal is being input.
(h)	STM	STOP/RESET key	Stops the operation commands. Used to reset the inverter when the protective function is activated.
(i)		Setting dial	The setting dial of the Mitsubishi Electric inverters. Turn the setting dial to change the setting of frequency or parameter, etc. Press the setting dial to perform the following operations: - To display a set frequency on the LED display in the monitor mode. (The monitor item shown on the display can be changed by using Pr.992.) - To display the present setting during calibration. - To display a fault history number on the LED display in the faults history mode.
(j)	MODE	MODE key	Switches the operation panel to a different mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with \square PU Every key on the operation panel becomes inoperable by holding this key for 2 seconds. The key inoperable function is invalid when Pr. 161 = " 0 (initial setting)". (Refer to page 324.)
(k)	SET	SET key	Confirms each selection. Initial setting in the monitor mode Switches the monitor screen in the monitor mode. (The monitor item on each screen can be changed according to the settings of Pr.52, Pr. 774 to Pr.776.)
(I)	ESC	ESC key	Goes back to the previous display. Holding this key for a longer time changes the display back to the monitor mode.
(m)	$\begin{array}{\|l\|} \hline \mathrm{PU} \\ \hline \mathrm{EXT} \\ \hline \end{array}$	PU/EXT key	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode. Switches to the easy setting mode by pressing simultaneously with \square Also cancels the PU stop warning.

4.1.2 Basic operation of the operation panel

Basic operation

*1 For the details of operation modes, refer to page 370.
*2 The monitor item can be changed. (Refer to page 424.)
*3 For the details of the trace function, refer to page 616.
*4 For the details of faults history, refer to page 745.
*5 The USB memory mode indication appears while a USB memory device is connected. (Refer to page 84.)

－Parameter setting mode

In the parameter setting mode，inverter functions（parameters）are set．
The following table explains the indications in the parameter setting mode．
$\left.\begin{array}{ll|l|l|}\hline \text { Refer } \\ \text { to } \\ \text { page }\end{array}\right\}$

4．1．3 Correspondences between digital and actual characters

There are the following correspondences between the actual alphanumeric characters and the digital characters displayed on the operation panel：

0	1	2	3	4	5	6	7	8	9	A	B（b）	C	c	D（d）
［1	1	$\underline{\underline{I}}$	－	－1	气	E	7	回	G	F	保	$1-$	E	－1
E（e）	F（f）	G（g）	H（h）	$1(\mathrm{i})$	J（j）	K（k）	L（I）	M（m）	N	n	0	\bigcirc	$\mathrm{P}(\mathrm{p})$	Q（q）
E	F	亩	$1-1$	1	－i	－	L	M	介	17	Íd	口	$\underline{\square}$	－
R	r	S（s）	$\mathrm{T}(\mathrm{t})$	U	u	v	v	W	w	$\mathrm{X}(\mathrm{x})$	$Y(y)$	Z（z）		
官	－	合	$1{ }^{-}$	íl	－1	I＇	＂	ind	M	\because	$\underline{-1}$	－		

4．1．4 Changing the parameter setting value

The following shows the procedure to change the setting of Pr． 1 Maximum frequency．

Operating procedure

1．Turning ON the power of the inverter
The operation panel is in the monitor mode．
2．Changing the operation mode
Press $\frac{\text { PU }}{\mathrm{PXT}}$ to choose the PU operation mode．［PU］indicator turns ON．
3．Selecting the parameter setting mode
Press MODE to choose the parameter setting mode．（The parameter number read previously appears．）
4.

Selecting the parameter
Turn 12 until " $F=1$ " 1 (Pr.1) appears. Press SET to read the present set value.

5. Changing the setting value

Turn to the the set value to " are displayed alternately.

- Turn E_{1}^{2} to read another parameter.
- Press SET to show the setting again on the LCD display.
- Press set twice to show the next parameter.
- Press MODE three times to return the monitor display to the indication of the frequency.

NOTE

- If a parameter write condition is not satisfied, a parameter write error appears on the LCD display. (Refer to page 745.)

| Error indication | Description |
| :--- | :--- | :--- |
| | Parameter write error |

- When Pr. 77 Parameter write selection = " 0 (initial setting)," the parameter setting change is only available while the inverter is stopped and under the PU operation mode. To enable the parameter setting change while the inverter is running or under the operation mode other than PU operation mode, change the Pr. 77 setting. (Refer to page 328.)

4.2 Monitoring the inverter

4.2.1 Monitoring of output current and output voltage

Point P

- Press SET on the operation panel in the monitor mode to switch the monitor item between output frequency, output current, and output voltage.

Operating procedure

1. Press MODE during inverter operation to monitor the output frequency. $[\mathrm{Hz}]$ indicator turns ON .
2. Press SET to monitor the output current. This operation is valid under any operation mode of the inverter and whether the inverter is running or at a stop. The unit of current "A" appears.
3. Press SET to monitor the output voltage. The unit of voltage "V" appears.

NOTE

- Other monitor item, such as output power or set frequency, is also available. Use Pr. 52 Operation panel main monitor selection or Pr. 774 Operation panel monitor selection 1 to Pr. 776 Operation panel monitor selection 3 to change the setting. (Refer to page 424.)

4.2.2 First priority monitor screen

The first priority monitor screen, which is displayed first when the operation panel becomes in the monitor mode, is selectable. To set it, press SET for a while when the desired monitor item is displayed on a monitor screen.
The following show the procedure to set the monitor screen displaying the output current as the first priority monitor screen.

Operating procedure

1. Change the mode of the operation panel to the monitor mode, and switch the monitor screen to the one on which the output current can be monitored.
2. Press SET for a while (1 second). The output current monitor screen is set as the first priority monitor screen.
3. When the operation panel is in the monitor mode next time, the output current monitored value is displayed first.

NOTE

- Use Pr. 52 Operation panel main monitor selection or Pr. 774 Operation panel monitor selection 1 to Pr. 776 Operation panel monitor selection 3 to change the monitor item. (Refer to page 424.)

4.2.3 Displaying the set frequency

To display the present set frequency, change the mode of the operation panel to the monitor mode and press the setting dial

NOTE

- Use Pr. 992 Operation panel setting dial push monitor selection to change the item to be displayed. (Refer to page 424.)

The operation mode suitable for start and speed command combinations can be set easily using Pr. 79 Operation mode selection.
The following shows the procedure to operate with the external start command (STF/STR) and the frequency command by using

Operating procedure

1. Press $\frac{\text { PU }}{E X T}$ and MODE for 0.5 seconds.

2. Turn until " - - - ヨ" (External/PU combined operation mode 1) appears. (For other settings, refer to the following table.)

3. Press SET $^{\text {SE }}$ to confirm the selection. External/PU combined operation mode $1(\operatorname{Pr} .79=$ " 3 ") is set.

Operation panel indication	Operation method		Operation mode
	Start command	Frequency command	
	FWW, REV	(21) *	PU operation mode
	External (STF, STR)	Analog voltage input	External operation mode
	External (STF, STR)		External/PU combined operation mode 1
		Analog voltage input	External/PU combined operation mode 2

*1 To use the setting dial as a potentiometer, refer to page 324.

NOTE

 the user group are read $(\operatorname{Pr} .160=" 1 ")$ but $\operatorname{Pr} .79$ is not included in the user group.

- "L" appears if a setting change is attempted during inverter operation. Turn OFF the start command ($\mathrm{FWD} /$ REV , or STF/STR signal).
- If MODE is pressed before pressing SET , the easy setting is terminated and the operation panel returns to the monitor mode. If the easy setting is terminated while Pr. $79=$ " 0 (initial value)", check the inverter operation mode because the inverter may switch its operation mode between the PU operation mode and the External operation mode.
- Reset by pressing $\frac{\text { STOP }}{\text { RESET }}$ is enabled.
- The priorities of the frequency commands while Pr. $79=$ " 3 " are "Multi-speed operation (RL/RM/RH/REX) > PID control (X14) $>$ terminal 4 analog input (AU) > digital input from the operation panel".

Frequently-used parameters (simple mode parameters)

Parameters that are frequently used for the FR-A800 series are grouped as simple mode parameters.
When Pr. 160 User group read selection = "9999", only the simple mode parameters are displayed on the operation panel. This section explains the simple mode parameters.

4.4.1 Simple mode parameter list

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter's setting, change and check can be made on the operation panel (FR-DU08).

Point ${ }^{\rho}$

- Pr. 160 User group read selection can narrow down the displayed parameters to only the simple mode parameters. (In the initial setting, all parameters are displayed.) Set Pr. 160 User group read selection as required. (To change the parameter setting, refer to page 139.)

Pr. 160 setting	Description
9999	Only simple mode parameters are displayed.
0 (initial value)	All parameters (simple mode parameters and extended parameters) are displayed.
1	Only parameters registered in user groups are displayed.

Simple mode parameter

Pr.	Pr. group	Name	Increme nt	Initial value ${ }^{\text {*11 }}$		Range	Application	Refer to page
				FM	CA			
0	G000	Torque boost	0.1\%	6\%**		0 to 30\%	Set this parameter to obtain a higher starting torque under V/F control. Also set this when a loaded motor cannot be driven, the warning "OL" occurs, and the inverter output is shut off with the fault indication "E.OC1".	672
				4\%**				
				3\%*3				
				2\%*4				
				1\%*5				
1	H400	Maximum frequency	0.01 Hz	$120 \mathrm{~Hz}{ }^{*}$		0 to 120 Hz	Sets the upper limit for the output frequency.	407
				$60 \mathrm{~Hz}^{*}{ }^{\text {a }}$				
2	H401	Minimum frequency	0.01 Hz	0 Hz		0 to 120 Hz	Sets the lower limit for the output frequency.	
3	G001	Base frequency	0.01 Hz	60 Hz	50 Hz	0 to 590 Hz	Set this parameter when the rated motor frequency is 50 Hz . Check the rating plate of the motor.	673
4	D301	Multi-speed setting (high speed)	0.01 Hz	60 Hz	50 Hz	0 to 590 Hz	Pre-sets the speeds that will be switched among by terminals.	$\begin{aligned} & 149,15 \\ & 4,391 \end{aligned}$
5	D302	Multi-speed setting (middle speed)	0.01 Hz	30 Hz		0 to 590 Hz		
6	D303	Multi-speed setting (low speed)	0.01 Hz	10 Hz		0 to 590 Hz		
7	F010	Acceleration time	0.1 s	$5 \mathrm{~s}^{* 9}$		0 to 3600 s	Sets the acceleration time.	349
				$15 \mathrm{~s}{ }^{* 10}$				
8	F011	Deceleration time	0.1 s	$5 \mathrm{~s}^{* 9}$		0 to 3600 s	Sets the deceleration time.	
				$15 \mathrm{~s}^{* 10}$				
9	$\begin{aligned} & \mathrm{H} 000 \\ & \mathrm{C} 103 \end{aligned}$	Electronic thermal O/L relay	$0.01 \mathrm{~A}^{*} 6$	Inverter rated current ${ }^{*} 8$		0 to $500 \mathrm{~A}^{*} 6$	Protects the motor from heat. Set the rated motor current.	394
			$0.1 \mathrm{~A}^{* 7}$			0 to $3600 \mathrm{~A}^{* 7}$		
79	D000	Operation mode selection	1	0		0 to 4, 6, 7	Select the start and frequency command sources.	370
125	T022	Terminal 2 frequency setting gain frequency	0.01 Hz	60 Hz	50 Hz	0 to 590 Hz	Allows the frequency at the maximum potentiometer setting (5 V in the initial setting) to be changed.	$\begin{aligned} & 156, \\ & 482 \end{aligned}$
126	T042	Terminal 4 frequency setting gain frequency	0.01 Hz	60 Hz	50 Hz	0 to 590 Hz	Allows the frequency at the maximum current input (20 mA in the initial setting) to be changed.	$\begin{aligned} & 158, \\ & 482 \end{aligned}$
160	E440	User group read selection	1	0		0, 1, 9999	This function restricts the parameters that are read by the operation panel and parameter unit.	337
998	E430	PM parameter initialization	1	0		$\begin{aligned} & 0,3003, \\ & 3103,8009, \\ & 8109,9009, \\ & 9109 \end{aligned}$	Selects the PM sensorless vector control and set the parameters that are required to drive a PM motor.	224
999	E431	Automatic parameter setting	1	9999		$\begin{aligned} & 1,2,10,11, \\ & 12,13,20, \\ & 21,9999 \end{aligned}$	Changes parameter settings as a batch. The target parameters include communication parameters for the Mitsubishi Electric human machine interface (GOT) connection and the parameters for the rated frequency settings of $50 / 60 \mathrm{~Hz}$.	333

*1 Initial value for the FR-A820-00077(0.75K) or lower and FR-A840-00038(0.75K) or lower.
*2 Initial values for the FR-A820-00105(1.5K) to FR-A820-00250(3.7K), FR-A840-00052(1.5K) to FR-A840-00126(3.7K).
*3 Initial values for the FR-A820-00340(5.5K), FR-A820-00490(7.5K), FR-A840-00170(5.5K), FR-A840-00250(7.5K).
*4 Initial values for the FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K).
*5 Initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) and higher.
*6 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*7 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.
*8 The initial value for the FR-A820-00077(0.75K) or lower and FR-A840-00038(0.75K) or lower is set to the 85% of the inverter rated current.
*9 The initial value for the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.
*10 Initial value for the FR-A820-00630(11K) or higher and FR-A840-00310(11K) and higher.
*11 The initial value in "FM" column is for the FM-type inverter that has terminal FM, and that in "CA" column is for the CA-type inverter that has terminal CA.

- Parameters for the CC-Link IE Field Network communication (FR-A800GF)

Pr.	Pr. group	Name	Unit	Initial value	Range	Application	Refer to page
313	M410	DOO output selection	1	9999	0 to 8,10 to 20,22 , 25 to 28,30 to 36 , 38 to 57, 60, 61, 63, 64, 68, 70, 79, 80, 84 to 99,100 to		
314	M411	DO1 output selection	1	9999	108, 110 to 116, 120, 122, 125 to 128, 130 to 136, 138, to 157, 160, 161, 163, 164,	Assign signals to the remote registers RX10 to RX12.	$\begin{aligned} & 450, \\ & 722 \end{aligned}$
315	M412	DO2 output selection	1	9999	$\begin{aligned} & 168,170,179 \\ & 180,184 \text { to } 199, \\ & 200 \text { to } 208,300 \text { to } \\ & 308,9999 \end{aligned}$		
349	N010	Communication reset selection	1	0	0	Enables the error reset function in any operation mode.	630
					1	Enables the error reset function only in the Network operation mode.	
434	N110	Network number (CCLink IE)	1	0	0 to 255	Set the inverter network number.	716
435	N111	Station number (CC-Link IE)	1	0	0 to 255	Set the inverter station number.	
500	N011	Communication error execution waiting time	0.1 s	0 s	0 to 999.8 s	Set the time from when the communication line error occurs until the inverter starts the operation for the communication error.	
501	N012	Communication error occurrence count display	1	0	0	Displays the communication error occurrence count.	630
502	N013	Stop mode selection at communication error	1	0	0 to 4	Set the operations when the communication line error occurs and when the communication line error is removed.	
541	N100	Frequency command sign selection	1	0	0	Signed frequency command value	716
					1	Unsigned frequency command value	
779	N014	Operation frequency during communication error	0.01 Hz	9999	0 to 590 Hz	Set the frequency to be run at a communication error occurrence.	630
					9999	The motor runs at the frequency used before the communication error.	

NOTE

- When Pr. 160 in the FR-A800-GF is set to "9999", the parameters for the CC-Link IE Field Network communication, as well as the simple mode parameters, are displayed.

4.5

 Basic operation procedure (PU operation)Select a method to give the frequency command from the list below, and refer to the specified page for its procedure.

Method to give the frequency command	Refer to page
Setting the frequency on the operation panel in the frequency setting mode	147
Give commands by turning the setting dial like a potentiometer	148
Give commands by turning ON/OFF switches wired to inverter's terminals (multi- speed setting)	149
Setting the frequency by inputting voltage signals	150
Setting the frequency by inputting current signals	151

4.5.1 Setting the frequency on the operation panel (example: operating at 30 Hz)

Point ρ

[^6]

The following shows the procedure to operate at 30 Hz .

Operating procedure

1. Turning ON the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press $\begin{aligned} & \text { PU } \\ & \text { EXT }\end{aligned}$ to choose the PU operation mode. [PU] indicator turns ON.
3. Setting the frequency

Turn (10) until the target frequency "
While the indication is flashing, press SET to confirm the selection for the frequency. " displayed alternately. After about three seconds of alternate display, the monitor display goes back to "م®" (the indication of a monitored value).
(If SET is not pressed during the flashing for about five seconds, the monitor display goes back to "Cl|lol (0.00
Hz). In that case, turn again and set the frequency.)
4. Start \rightarrow acceleration \rightarrow constant speed

Press FWD or REV to start running. The frequency value on the monitor increases according to the setting of Pr. 7 Acceleration time, and "캑ำ" $(30.00 \mathrm{~Hz})$ appears on the monitor.
(To change the set frequency, return to step 3 . The previously set frequency appears.)

5．Deceleration \rightarrow stop
Press
 to stop．The frequency value on the monitor decreases according to the setting of Pr． 8 Deceleration time，the monitor displays＂

NOTE

－To display the set frequency under PU operation mode or External／PU combined operation mode 1 （Pr． $79=$＂ 3 ＂），press （Refer to page 424．）
－ 12 can also be used like a potentiometer to perform inverter operation．（Refer to page 148．）

4．5．2 Perform PU operation using the setting dial like a potentiometer

Point ${ }^{\rho}$

－Set Pr． 161 Frequency setting／key lock operation selection＝＂1＂（setting dial potentiometer）．

The following shows the procedure to change the frequency from 0 Hz to 60 Hz during operation．

Operating procedure

1．Turning ON the power of the inverter
The operation panel is in the monitor mode．
2．Changing the operation mode
Press $\frac{\text { PU }}{\text { EXT }}$ to choose the PU operation mode．［PU］indicator turns ON．
3．Changing the parameter setting
Change Pr． 161 setting to＂1＂．（To change the setting，refer to page 139．）
4．Start
Press FWD or REV to start the inverter operation．
5．Setting the frequency
Turn until＂ indication blinks for about five seconds）．SET needs not to be pressed．

NOTE

－If the indication changes from the blink of＂ 60.00 ＂to the display of＂ 0.00 ＂，Pr． 161 Frequency setting／key lock operation selection may be set to a value other than＂1＂．
－Simply turning
－The newly－set frequency is saved as the set frequency in EEPROM after 10 seconds．
－With the setting dial，the frequency can go up to the setting value of Pr． 1 Maximum frequency．Check the Pr． 1 Maximum frequency setting，and adjust the setting according to the application．

4．5．3 Setting the frequency with switches（multi－speed setting）

Point P

－Use FWD or REV on the operation panel（FR－DU08）to give a start command．
－Turn ON the RH，RM，or RL signal to give a frequency command（multi－speed setting）．
－Set Pr． 79 Operation mode selection＝＂4＂（External／PU combination operation mode 2 ）．
［Connection diagram］

The following shows the procedure to operate at a low speed $(10 \mathrm{~Hz})$ ．

Operating procedure

1．Turning $O N$ the power of the inverter
The operation panel is in the monitor mode．
2．Changing the operation mode
Set＂4＂in Pr．79．［PU］and［EXT］indicators are ON．（To change the setting，refer to page 142．）
3．Setting the frequency
Turn ON the low－speed switch（RL signal）．
4．Start \rightarrow acceleration \rightarrow constant speed
Press FWD or REV to start running．The frequency value on the monitor increases according to the setting of Pr． 7
Acceleration time，and＂
5．Deceleration \rightarrow stop
Press $\frac{\text { STOP }}{\frac{5}{R E S G E T E}}$ to stop．The frequency value on the monitor decreases according to the setting of Pr． 8 Deceleration
 signal）．

NOTE

－Initially，the high－speed switch（RH signal）is set to 60 Hz for the FM type inverter or 50 Hz for the CA type inverter．The middle－ speed switch（RM signal）is set to 30 Hz ，and the low－speed switch（RL signal）is set to 10 Hz ．（To change the settings，use Pr．4，Pr．5，and Pr．6，respectively．）
－In the initial setting，if two or more speed switches（signals）are simultaneously turned ON，priority is given to the switch（signal） for the lower speed．For example，when both RH and RM signals turn ON，the RM signal（Pr．5）has the higher priority．
－Up to 15 －speed switching operation can be performed．

4．5．4 Setting the frequency using an analog signal （voltage input）

Point ${ }^{9}$

－Use FWD or REV on the operation panel（FR－DU08）to give a start command．
－Use the frequency setting potentiometer to give a frequency command（by connecting it to terminals 2 and 5 （voltage input））．
－Set Pr． 79 Operation mode selection＝＂4＂（External／PU combination operation mode 2 ）．
［Connection diagram］（The inverter supplies 5 V power to the frequency setting potentiometer via terminal 10．）

The following shows the procedure to operate at 60 Hz ．

Operating procedure

1．Turning $O N$ the power of the inverter
The operation panel is in the monitor mode．
2．Changing the operation mode
Set＂4＂in Pr．79．［PU］and［EXT］indicators are ON．（To change the setting，refer to page 139．）
3．Start
Press FWD or REV．［FWD］or［REV］indicator blinks as no frequency command is given．
4．Acceleration \rightarrow constant speed
Turn the frequency setting potentiometer clockwise slowly to full．The frequency value on the monitor increases according to the setting of Pr． 7 Acceleration time，and＂曰に！に＂$(60.00 \mathrm{~Hz}$ ）appears on the monitor．

5．Deceleration
Turn the frequency setting potentiometer counterclockwise slowly to full．The frequency value on the monitor decreases according to the setting of Pr． 8 Deceleration time，the monitor displays＂回＂（ 0.00 Hz ），and the motor stops rotating．［FWD］or［REV］indicator blinks．
6．Stop
Press \square STOP ［FWD］or［REV］indicator turns OFF．

NOTE

－To change the frequency $(60 \mathrm{~Hz})$ at the maximum voltage input（initial value： 5 V ），adjust Pr． 125 Terminal 2 frequency setting gain frequency．
To change the frequency（ 0 Hz ）at the minimum voltage input（initial value： 0 V ），adjust the calibration parameter $\mathbf{C 2}$ Terminal 2 frequency setting bias frequency．

[^7]
4．5．5 Setting the frequency using an analog signal （current input）

Point ${ }^{9}$

－Use FWD or REV on the operation panel（FR－DU08）to give a start command．
－Use the current regulator which outputs 4 to 20 mA to give a frequency command（by connecting it across terminals 4 and 5 （current input））．
－Turn ON the AU signal．
－Set Pr． 79 Operation mode selection＝＂4＂（External／PU combination operation mode 2 ）．
［Connection diagram］

The following shows the procedure to operate at 60 Hz ．

Operating procedure

1．Turning $O N$ the power of the inverter The operation panel is in the monitor mode．
2．Changing the operation mode
Set＂4＂in Pr．79．［PU］and［EXT］indicators are ON．（To change the setting，refer to page 139．）
3．Selecting the input via terminal 4
Turn ON the Terminal 4 input selection（AU）signal．Input via terminal 4 to the inverter is enabled．
4．Start
Press FWD or REV．［FWD］or［REV］indicator blinks as no frequency command is given．
5．Acceleration \rightarrow constant speed
Input a current of 20 mA to the inverter from the regulator．The frequency value on the monitor increases according to the setting of Pr． 7 Acceleration time，and＂曰ำ亿＂（ 60.00 Hz ）appears on the monitor．
6．Deceleration
Input a current of 4 mA or less．The frequency value on the monitor decreases according to the setting of Pr． 8
Deceleration time，the monitor displays＂RIT＂$(0.00 \mathrm{~Hz})$ ，and the motor stops rotating．［FWD］or［REV］indicator blinks．
7．Stop
Press $\frac{\frac{\text { STIOP }}{\text { RTSETV }}}{}$ ．［FWD］or［REV］indicator turns OFF．

NOTE

－Pr． 184 AU terminal function selection must be set to＂4（initial value）＂（AU signal）．
－To change the frequency $(60 \mathrm{~Hz})$ at the maximum current input（initial value： 20 mA ），adjust Pr． 126 Terminal 4 frequency setting gain frequency．
－To change the frequency（ 0 Hz ）at the minimum current input（initial value： 4 mA ），adjust the calibration parameter C5 Terminal 4 frequency setting bias frequency．

[^8]
4.6 Basic operation procedure (External operation)

Select a method to give the frequency command from the list below, and refer to the specified page for its procedure.

Method to give the frequency command	Refer to page
Setting the frequency on the operation panel in the frequency setting mode	153
Turning ON/OFF switches wired to inverter's terminals (multi-speed setting)	154
Setting the frequency by inputting voltage signals	155
Setting the frequency by inputting current signals	157

4.6.1 Setting the frequency on the operation panel

Point ρ

- Turn ON the STF/STR signal to give a start command.
- Use $5=15$ on the operation panel (FR-DU08) to give a frequency command.
- Set Pr. 79 = "3" (External/PU combined operation mode 1).
[Connection diagram]

The following shows the procedure to operate at 30 Hz .

Operating procedure

1. Changing the operation mode

Set "3" in Pr.79. [PU] and [EXT] indicators are ON. (To change the setting, refer to page 139.)
2. Setting the frequency

Turn 01.2) until the target frequency "
While the indication is flashing, press SET to confirm the selection for the frequency. "F" and "analan
 indication of a monitored value). (If SET is not pressed during the flashing for about five seconds, the monitor display goes back to "風" $(0.00 \mathrm{~Hz})$. In that case, turn
3. Start \rightarrow acceleration \rightarrow constant speed

Turn ON the start switch (STF/STR signal). The frequency value on the monitor increases according to the setting of Pr. 7 Acceleration time, and "تصに" $(30.00 \mathrm{~Hz})$ appears on the monitor. [FWD] indicator is ON during the forward rotation, and [REV] indicator is ON during the reverse rotation. (To change the set frequency, return to step 2. The previously set frequency appears.)
4. Deceleration \rightarrow stop

Turn OFF the start switch (STF/STR signal). The frequency value on the monitor decreases according to the setting of Pr. 8 Deceleration time, the monitor displays " [10)" $(0.00 \mathrm{~Hz})$, and the motor stops rotating.
－When both the forward rotation start switch（STF signal）and the reverse rotation start switch（STR signal）are turned ON，the motor cannot be started．If both are turned ON while the inverter is running，the inverter decelerates to a stop．
－Pr． 178 STF terminal function selection must be set to＂ 60 ＂（or Pr． 179 STR terminal function selection must be set to＂61＂） （initial value）．
－Setting Pr． 79 Operation mode selection＝＂3＂enables multi－speed operation．
－If $\frac{\text { STOP }}{\text { RESEE }}$ on the operation panel is pressed during the External operation，the inverter stops and the PU stop warning is activated（＂Fノ＂appears on the LCD display of the operation panel）．To reset the PU stop warning，turn OFF the start switch （STF or STR signal），and then press $\frac{\text { PU }}{\mathrm{EXT}}$（refer to page 321）．

4．6．2 Setting the frequency and giving a start command with switches（multi－speed setting）（Pr． 4 to Pr．6）

Point／

－Turn ON the STF／STR signal to give a start command．
－Turn ON the RH，RM，or RL signal to give a frequency command（multi－speed setting）．
［Connection diagram］

The following shows the procedure to operate at a high speed（ 60 Hz ）．

Operating procedure

1．Turning $O N$ the power of the inverter
The operation panel is in the monitor mode．
2．Setting the frequency
Turn ON the high－speed switch（RH signal）．
3．Start \rightarrow acceleration \rightarrow constant speed
Turn ON the start switch（STF／STR signal）．The frequency value on the monitor increases according to the setting of Pr． 7 Acceleration time，and＂ER＂ forward rotation，and［REV］indicator is ON during the reverse rotation．When the RM signal is turned $\mathrm{ON}, 30 \mathrm{~Hz}$ is displayed．When the RL signal is turned $\mathrm{ON}, 10 \mathrm{~Hz}$ is displayed．
4．Deceleration \rightarrow stop
Turn OFF the start switch（STF／STR signal）．The frequency value on the monitor decreases according to the setting of Pr． 8 Deceleration time，the monitor displays＂？llo＂（ 0.00 Hz ），and the motor stops rotating．［FWD］or［REV］ indicator turns OFF．Turn OFF the high－speed switch（RH signal）．

NOTE

- When both the forward rotation start switch (STF signal) and the reverse rotation start switch (STR signal) are turned ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- Initially, the high-speed switch (RH signal) is set to 60 Hz for the FM type inverter or 50 Hz for the CA type inverter. The middlespeed switch (RM signal) is set to 30 Hz , and the low-speed switch (RL signal) is set to 10 Hz . (To change the settings, use Pr.4, Pr.5, and Pr.6, respectively.)
- In the initial setting, if two or more speed switches (signals) are simultaneously turned ON, priority is given to the switch (signal) for the lower speed. For example, when both RH and RM signals turn ON, the RM signal (Pr.5) has the higher priority.
- Up to 15 -speed switching operation can be performed.

4.6.3 Setting the frequency using an analog signal (voltage input)

Point P

- Turn ON the STF/STR signal to give a start command.
- Use the frequency setting potentiometer to give a frequency command (by connecting it across terminals 2 and 5 (voltage input)).
[Connection diagram]
(The inverter supplies 5 V power to the frequency setting potentiometer via terminal 10.)

The following shows the procedure to operate at 60 Hz .

Operating procedure

1. Turning $O N$ the power of the inverter

The operation panel is in the monitor mode.
2. Start

Turn ON the start switch (STF/STR signal). [FWD] or [REV] indicator blinks as no frequency command is given.
3. Acceleration \rightarrow constant speed

Turn the frequency setting potentiometer clockwise slowly to full. The frequency value on the monitor increases according to the setting of Pr. 7 Acceleration time, and "回俭" $(60.00 \mathrm{~Hz}$) appears on the monitor. [FWD] indicator is ON during the forward rotation, and [REV] indicator is ON during the reverse rotation.
4. Deceleration

Turn the frequency setting potentiometer counterclockwise slowly to full. The frequency value on the monitor decreases according to the setting of Pr. 8 Deceleration time, the monitor displays "R! (1)" 0.00 Hz), and the motor stops rotating. [FWD] or [REV] indicator blinks.
5. Stop

Turn OFF the start switch (STF/STR signal). [FWD] or [REV] indicator turns OFF.
－When both the forward rotation start switch（STF signal）and the reverse rotation start switch（STR signal）are turned ON，the motor cannot be started．If both are turned ON while the inverter is running，the inverter decelerates to a stop．
－Pr． 178 STF terminal function selection must be set to＂60＂（or Pr． 179 STR terminal function selection must be set to＂61＂） （initial value）．

4．6．4 Changing the frequency（ 60 Hz ，initial value）at the maximum voltage input（ 5 V ，initial value）

Point ${ }^{\rho}$

－Change the maximum frequency．

The following shows the procedure to change the frequency at 5 V from 60 Hz （initial value）to 50 Hz using a frequency setting potentiometer for 0 to 5 VDC input．Set 50 Hz in Pr． 125 so that the inverter outputs 50 Hz at 5 V input．

Operating procedure

1．Selecting the parameter

Press 5 SET to read the present set value．$(60.00 \mathrm{~Hz})$
2．Changing the maximum frequency
Turn to change the set value to＂GR＂．$(50.00 \mathrm{~Hz})$

3．Selecting the mode and the monitor item
Press MODE three times to select the monitor mode，and change the monitor item to the frequency．
4．Start
Turn ON the start switch（STF／STR signal），and turn the frequency setting potentiometer clockwise slowly to full．
（Refer to steps 2 and 3 in 4．6．3．）
The motor is operated at 50 Hz ．

NOTE

－To change the frequency at the input of 0 V （minimum voltage），use the calibration parameter $\mathbf{C 2}$ ．

－Other adjustment methods for the frequency setting voltage gain are the following：adjustment by applying a voltage directly across terminals 2 and 5 ，and adjustment using a specified point without applying a voltage across terminals 2 and 5 ．（Refer to page 482．）

《｜Parameters referred to 》》

Pr． 125 Terminal 2 frequency setting gain frequency page 482
C2（Pr．902）Terminal 2 frequency setting bias frequency page 482
C4（Pr．903）Terminal 2 frequency setting gain page 482

4．6．5 Setting the frequency using an analog signal （current input）

```
Point \({ }^{\circ}\)
－Turn ON the STF／STR signal to give a start command．
－Turn ON the AU signal．
－Set Pr． 79 Operation mode selection＝＂2＂（External operation mode）．
```

［Connection diagram］

The following shows the procedure to operate at 60 Hz ．

Operating procedure

1．Turning ON the power of the inverter
The operation panel is in the monitor mode．
2．Selecting the input via terminal 4
Turn ON the Terminal 4 input selection（AU）signal．Input via terminal 4 to the inverter is enabled．
3．Start
Turn ON the start switch（STF／STR signal）．［FWD］or［REV］indicator blinks as no frequency command is given．
4．Acceleration \rightarrow constant speed
Input a current of 20 mA to the inverter from the regulator．The frequency value on the monitor increases according to the setting of Pr． 7 Acceleration time，and＂ERI＂$(60.00 \mathrm{~Hz}$ ）appears on the monitor．［FWD］indicator is ON during the forward rotation，and［REV］indicator is ON during the reverse rotation．

5．Deceleration
Input a current of 4 mA or less．The frequency value on the monitor decreases according to the setting of Pr． 8 Deceleration time，the monitor displays＂RIN＂ 0.00 Hz ），and the motor stops rotating．［FWD］or［REV］indicator blinks．

6．Stop
Turn OFF the start switch（STF／STR signal）．［FWD］or［REV］indicator turns OFF．

NOTE

－When both the forward rotation start switch（STF signal）and the reverse rotation start switch（STR signal）are turned ON，the motor cannot be started．If both are turned ON while the inverter is running，the inverter decelerates to a stop．
－Pr． 184 AU terminal function selection must be set to＂4（initial value）＂（AU signal）．

4．6．6 Changing the frequency（ 60 Hz ，initial value）at the maximum current input（at 20 mA ，initial value）

Point？

－Change the maximum frequency．

The following shows the procedure to change the frequency at 20 mA from 60 Hz （initial value）to 50 Hz using a frequency setting potentiometer for 4 to 20 mA input．Set 50 Hz in Pr． 126 so that the inverter outputs 50 Hz at 20 mA input．

Operating procedure

1．Selecting the parameter

Press SET to read the present set value $(60.00 \mathrm{~Hz})$ ．
2．Changing the maximum frequency
Turn 0 to change the set value to＂ك，

3．Selecting the mode and the monitor item
Press MODE three times to select the monitor mode and to monitor a frequency．
4．Start
Turn ON the start switch（STF or STR）to apply a 20 mA current（refer to steps 3 and 4 in 4．6．5）．
Operate at 50 Hz ．

NOTE

－To change the frequency at the input of 4 mA （minimum current），use the calibration parameter $\mathbf{C 5}$ ．

－Other adjustment methods for the frequency setting current gain are the following：adjustment by applying a current through terminals 4 and 5 ，and adjustment using a specified point without applying a current through terminals 4 and 5 ．（Refer to page 482．）

4．7．1 Giving a start command by using external signals for JOG operation

Point ρ

－JOG operation is performed while the JOG signal is ON．
－Use Pr． 15 Jog frequency to set a frequency，and set Pr． 16 Jog acceleration／deceleration time to set the acceleration／ deceleration time for JOG operation．
－Set Pr． 79 Operation mode selection＝＂2＂（External operation mode）．
［Connection diagram］

The following shows the procedure to operate at 5 Hz ．

Operating procedure

1．Turning $O N$ the power of the inverter The operation panel is in the monitor mode．
2．Turning $O N$ the JOG signal
Turn ON the JOG switch（JOG signal）．The inverter is set ready for the JOG operation．
3．Start \rightarrow acceleration \rightarrow constant speed
Turn ON the start switch（STF／STR signal）．The frequency increases according to the setting of Pr． 16 Jog acceleration／deceleration time，and＂GIN＂（ 5.00 Hz ）appears on the LCD display．［FWD］indicator is ON during the forward rotation，and［REV］indicator is ON during the reverse rotation．
4．Deceleration \rightarrow stop
Turn OFF the start switch（STF／STR signal）．The frequency decreases according to the setting of Pr． 16 Jog acceleration／deceleration time．＂R10＂$(0.00 \mathrm{~Hz})$ appears on the LCD display，and the motor stops rotating． ［FWD］or［REV］indicator turns OFF．Turn OFF the JOG switch（JOG signal）．

NOTE

－To change the running frequency，change the setting of Pr． 15 Jog frequency（initial value： 5 Hz ）．
－To change the acceleration／deceleration time，change the setting of Pr． 16 Jog acceleration／deceleration time（initial value： 0.5 seconds）．

[^9]
4．7．2 Giving a start command from the operation panel for JOG operation

Point 8

－JOG operation is performed while FWD or REV on the operation panel is pressed．

The following shows the procedure to operate at 5 Hz ．

Operating procedure

1．Turning ON the power of the inverter
The operation panel is in the monitor mode．
2．Changing the operation mode
Press $\frac{\text { PU }}{E X T}$ twice to choose the PUJOG operation mode．The display shows＂，
3．Start \rightarrow acceleration \rightarrow constant speed
Hold FWD or REV down to keep the JOG operation．The frequency increases according to the setting of Pr． 16 Jog acceleration／deceleration time，and＂GIal $(5.00 \mathrm{~Hz})$ appears on the LCD display．

4．Deceleration \rightarrow stop
Release FWD or REV．The frequency decreases according to the setting of Pr． 16 Jog acceleration／ deceleration time．＂Tllo＂$(0.00 \mathrm{~Hz})$ appears on the LCD display，and the motor stops rotating．

NOTE

－To change the running frequency，change the setting of Pr． 15 Jog frequency（initial value： 5 Hz ）．
－To change the acceleration／deceleration time，change the setting of Pr． 16 Jog acceleration／deceleration time（initial value： 0.5 seconds）．

[^10]
CHAPTER 5 PARAMETERS

5.1 Parameter list 162
5.2 Control method 210
5.3 Speed control under Real sensorless vector control, vector control, PM sensorless vector control 229
5.4 Torque control under Real sensorless vector control and Vector control 263
5.5 Position control under vector control and PM sensorless vector control 284
5.6 Adjustment during Real sensorless vector control, Vector control, PM sensorless vector control 316
5.7 (E) Environment setting parameters 318
5.8 (F) Setting of acceleration/deceleration time and acceleration/deceleration pattern 349
5.9 (D) Operation command and frequency command 370
5.10 (H) Protective function parameter 394
5.11 (M) Item and output signal for monitoring 422
5.12 (T) Multi-function input terminal parameters 473
5.13 (C) Motor constant parameters 505
5.14 (A) Application parameters 531
5.15 (N) Communication operation parameters 625
5.16 (G) Control parameters 671
5.17 Parameter clear / All parameter clear 707
5.18 Copying and verifying parameters on the operation panel 708
5.19 Copying and verifying parameters using a USB memory 711
$5.20 \quad$ Checking parameters changed from their initial values (initial value change list) 715
5.21 CC-Link IE Field Network (FR-A800-GF) 716

This chapter explains the function setting for use of this product.
Always read the instructions before use.
The following marks are used to indicate the controls. (Parameters without any mark are valid for all the controls.)

Mark	Control method	Applied motor
V/F	V/F control	Three-phase induction motor
Magneticflux	Advanced magnetic flux vector control	
Sensorless	Real sensorless vector control	
Vector	Vector control	Three-phase induction motor, PM motor
PMM	PM sensorless vector control	PM motor

The setting range and the initial value of parameters differ depending on the structure or functions of the inverter. The following common designations are used for each type of the inverter models.

Inverter model	Common designation
FR-A8[]0	Standard model
FR-A8[]2	Separated converter type
FR-A8[]6	IP55 compatible model

5.1 Parameter list

5.1.1 Parameter list (by parameter number)

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter's setting, change and check can be made on the operation panel (FR-DU08).

NOTE

- Simple indicates simple mode parameters. Use Pr. 160 User group read selection to indicate the simple mode parameters only (initial setting is to indicate the extended mode parameters).
- The changing of the parameter settings may be restricted in some operating statuses. Use Pr. 77 Parameter write selection to change the setting of the restriction.
- Refer to page 824 for instruction codes for communication and availability of Parameter clear, all clear, and Parameter copy.

	Pr.	Pr. group	Name	Setting range	Minimumsettingincrements	Initial value		Refer to page	Customer setting
						FM	CA		
	22	H500	Stall prevention operation level (Torque limit level)	0 to 400\%	0.1\%	150\%		235, 409	
	23	H610	Stall prevention operation level compensation factor at double speed	0 to 200\%, 9999	0.1\%	9999		409	
	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \end{aligned}$	D304 to D307	Multi-speed setting (4 speed to 7 speed)	0 to 590 Hz, 9999	0.01 Hz	9999		391	
-	28	D300	Multi-speed input compensation selection	0, 1	1	0		391	
-	29	F100	Acceleration/deceleration pattern selection	0 to 6	1	0		354	
-	30	E300	Regenerative function selection	$\begin{aligned} & 0 \text { to } 2,10,11,20 \\ & 21,100 \text { to } 102,110, \\ & 111,120,121^{* 11} \end{aligned}$	1	0		689	
				$\begin{aligned} & \hline 2,10,11,102, \\ & 110,111^{* 12} \end{aligned}$	1	10			
				$\begin{aligned} & 0,2,10,20,100,102 \\ & 110,120 * 13 \end{aligned}$	1	0			
	31	H420	Frequency jump 1A	0 to 590 Hz, 9999	0.01 Hz	9999		408	
	32	H421	Frequency jump 1B	0 to 590 Hz, 9999	0.01 Hz	9999		408	
	33	H422	Frequency jump 2A	0 to 590 Hz, 9999	0.01 Hz	9999		408	
	34	H423	Frequency jump 2B	0 to 590 Hz, 9999	0.01 Hz	9999		408	
	35	H424	Frequency jump 3A	0 to 590 Hz, 9999	0.01 Hz	9999		408	
	36	H425	Frequency jump 3B	0 to 590 Hz, 9999	0.01 Hz	9999		408	
-	37	M000	Speed display	0, 1 to 9998	1	0		422	
	41	M441	Up-to-frequency sensitivity	0 to 100\%	0.1\%	10\%		461	
	42	M442	Output frequency detection	0 to 590 Hz	0.01 Hz	6 Hz		461	
	43	M443	Output frequency detection for reverse rotation	0 to 590 Hz, 9999	0.01 Hz	9999		461	
	44	F020	Second acceleration/ deceleration time	0 to 3600 s	0.1 s	5 s		349, 590	
	45	F021	Second deceleration time	0 to 3600 s, 9999	0.1 s	9999		349, 590	
	46	G010	Second torque boost	0 to 30\%, 9999	0.1\%	9999		672	
	47	G011	Second V/F (base frequency)	0 to 590 Hz, 9999	0.01 Hz	9999		673	
	48	H600	Second stall prevention operation level	0 to 400\%	0.1\%	150\%		409	
	49	H601	Second stall prevention operation frequency	0 to 590 Hz, 9999	0.01 Hz	0 Hz		409	
	50	M444	Second output frequency detection	0 to 590 Hz	0.01 Hz	30 Hz		461	
	51	$\begin{aligned} & \mathrm{H} 010 \\ & \mathrm{C} 203 \end{aligned}$	Second electronic thermal O/L relay Rated second motor current	0 to 500 A, 9999 *2	$0.01 \mathrm{~A}^{* 2}$	9999		$\begin{aligned} & 394,509, \\ & 519 \end{aligned}$	
				0 to 3600 A, 9999 *3	$0.1 \mathrm{~A}^{* 3}$				

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[b]{2}{*}{Pr.} \& \multirow[t]{2}{*}{Pr. group} \& \multirow[b]{2}{*}{Name} \& \multirow[b]{2}{*}{Setting range} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{Initial value} \& \multirow[t]{2}{*}{Refer to page} \& \multirow[t]{2}{*}{Customer setting}

\hline \& \& \& \& \& \& FM \& CA \& \&

\hline \multirow{5}{*}{} \& 52 \& M100 \& Operation panel main monitor selection \& $$
\begin{aligned}
& 0,5 \text { to } 14,17 \text { to } 20,22 \\
& \text { to } 36,38 \text { to } 46,50 \text { to } 57 \text {, } \\
& 61,62,64,67,71 \text { to } 75 \text {, } \\
& 87 \text { to } 98,100
\end{aligned}
$$ \& 1 \& 0 \& \& 424 \&

\hline \& 54 \& M300 \& FM/CA terminal function selection \& $$
\begin{aligned}
& 1 \text { to } 3,5 \text { to } 14,17,18, \\
& 21,24,32 \text { to } 34,36,46, \\
& 50,52,53,61,62,67, \\
& 70,87 \text { to } 90,92,93,95, \\
& 97,98
\end{aligned}
$$ \& 1 \& 1 \& \& 435 \&

\hline \& 55 \& M040 \& Frequency monitoring reference \& 0 to 590 Hz \& 0.01 Hz \& 60 Hz \& 50 Hz \& 435 \&

\hline \& \multirow[t]{2}{*}{56} \& \multirow[t]{2}{*}{M041} \& \multirow[t]{2}{*}{Current monitoring reference} \& 0 to $500 \mathrm{~A}^{* 2}$ \& $0.01 \mathrm{~A}^{* 2}$ \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Inverter rated current}} \& \multirow[t]{2}{*}{435} \&

\hline \& \& \& \& 0 to $3600 \mathrm{~A}^{*}$ \& 0.1 A ${ }^{*}$ \& \& \& \&

\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{57
58} \& \multirow[t]{2}{*}{A702
A703} \& \multirow[t]{2}{*}{Restart coasting time

Restart cushion time} \& \multirow[t]{2}{*}{$0,0.1$ to $30 \mathrm{~s}, 9999$
0 to 60 s} \& \multirow[t]{2}{*}{0.1 s

0.1 s} \& \multicolumn{2}{|l|}{9999} \& \multirow[t]{2}{*}{597,604
597} \&

\hline \& \& \& \& \& \& \multicolumn{2}{|l|}{1 s} \& \&

\hline - \& 59 \& F101 \& Remote function selection \& 0 to 3, 11 to 13 \& 1 \& \multicolumn{2}{|l|}{0} \& 359 \&

\hline - \& 60 \& G030 \& Energy saving control selection \& 0, 4, 9 \& 1 \& \multicolumn{2}{|l|}{0} \& 678 \&

\hline \multirow[t]{5}{*}{} \& \multirow[b]{2}{*}{61} \& \multirow[t]{2}{*}{F510} \& \multirow[t]{2}{*}{Reference current} \& 0 to 500 A, 9999 *2 \& $0.01 \mathrm{~A}^{*}$ \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{9999}} \& \multirow[t]{2}{*}{365, 368} \&

\hline \& \& \& \& 0 to 3600 A, 9999 *3 \& $0.1 \mathrm{~A}^{* 3}$ \& \& \& \&

\hline \& 62 \& F511 \& Reference value at acceleration \& 0 to 400\%, 9999 \& 0.1\% \& \multicolumn{2}{|l|}{9999} \& 365 \&

\hline \& 63 \& F512 \& Reference value at deceleration \& 0 to 400\%, 9999 \& 0.1\% \& \multicolumn{2}{|l|}{9999} \& 365 \&

\hline \& 64 \& F520 \& Starting frequency for elevator mode \& 0 to $10 \mathrm{~Hz}, 9999$ \& 0.01 Hz \& \multicolumn{2}{|l|}{9999} \& 368 \&

\hline - \& 65 \& H300 \& Retry selection \& 0 to 5 \& 1 \& \multicolumn{2}{|l|}{0} \& 405 \&

\hline - \& 66 \& H611 \& Stall prevention operation reduction starting frequency \& 0 to 590 Hz \& 0.01 Hz \& 60 Hz \& 50 Hz \& 409 \&

\hline \multirow{3}{*}{$$
\begin{aligned}
& \text { Z } \\
& \text { © }
\end{aligned}
$$} \& 67 \& H301 \& Number of retries at fault occurrence \& 0 to 10, 101 to 110 \& 1 \& \multicolumn{2}{|l|}{0} \& 405 \&

\hline \& 68 \& H302 \& Retry waiting time \& 0.1 to 600 s \& 0.1 s \& \multicolumn{2}{|l|}{1 s} \& 405 \&

\hline \& 69 \& H303 \& Retry count display erase \& 0 \& 1 \& \multicolumn{2}{|l|}{0} \& 405 \&

\hline - \& 70*14 \& G107 \& Special regenerative brake duty \& 0 to 100\% \& 0.1\% \& 0\% \& \& 689 \&

\hline - \& 71 \& C100 \& Applied motor \& 0 to 6,13 to 16,20 , $23,24,30,33,34,40$, 43, 44, 50, 53, 54, 70, 73, 74, 330, 333, 334, 8090, 8093, 8094, 9090, 9093, 9094 \& 1 \& \multicolumn{2}{|l|}{0} \& $$
\begin{aligned}
& 505,509, \\
& 519
\end{aligned}
$$ \&

\hline - \& 72 \& E600 \& PWM frequency selection \& $$
\begin{array}{|l|}
\hline 0 \text { to } 15^{* 2} \\
\hline 0 \text { to } 6,25^{* 3} \\
\hline
\end{array}
$$ \& 1 \& \multicolumn{2}{|l|}{2} \& 339 \&

\hline - \& 73 \& T000 \& Analog input selection \& 0 to 7, 10 to 17 \& 1 \& 1 \& \& 473, 478 \&

\hline - \& 74 \& T002 \& Input filter time constant \& 0 to 8 \& 1 \& 1 \& \& 480 \&

\hline \multirow{5}{*}{-} \& \multirow{5}{*}{75} \& - \& Reset selection/ disconnected PU detection/PU stop selection \& | 0 to 3,14 to $17^{* 2}$ |
| :--- |
| 0 to 3,14 to 17,100 to |
| 103,114 to $117^{* 3}$ | \& \multirow[t]{4}{*}{1} \& \multicolumn{2}{|l|}{14} \& \multirow{5}{*}{320} \&

\hline \& \& E100 \& Reset selection \& \multirow{3}{*}{0, 1} \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0}} \& \&

\hline \& \& E101 \& Disconnected PU detection \& \& \& \& \& \&

\hline \& \& E102 \& PUStop selection \& \& \& 1 \& \& \&

\hline \& \& E107 \& Reset limit \& $$
\begin{array}{|l|}
\hline 0^{* 2} \\
\hline 0,1^{* 3} \\
\hline
\end{array}
$$ \& 1 \& \multicolumn{2}{|l|}{0} \& \&

\hline
\end{tabular}

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting
						FM	CA		
-	76	M510	Fault code output selection	0 to 2	1	0		469	
-	77	E400	Parameter write selection	0 to 2	1	0		328	
-	78	D020	Reverse rotation prevention selection	0 to 2	1	0		386	
-	79	D000	Operation mode selectionSimple	0 to 4, 6, 7	1	0		370, 378	
	80	C101	Motor capacity	0.4 to $55 \mathrm{~kW}, 999{ }^{* 2}$ 0 to $3600 \mathrm{~kW}, 9999$	 $0.01 \mathrm{~kW}^{*} 2$ $0.1 \mathrm{~kW}^{* 3}$	9999		$\begin{aligned} & 215,509, \\ & 519 \end{aligned}$	
	81	C102	Number of motor poles	$2,4,6,8,10,12,9999$	1	9999		$\begin{aligned} & 215,509, \\ & 519 \end{aligned}$	
	82	C125	Motor excitation current	0 to 500 A, 9999*2	$0.01 \mathrm{~A}^{*}$	9999		509	
				0 to 3600 A, 9999*3	$0.1 \mathrm{~A}^{* 3}$				
	83	C104	Rated motor voltage	0 to 1000 V	0.1 V	$200 \mathrm{~V}^{*}{ }^{\text {7 }}$		$\begin{aligned} & 215,509, \\ & 519 \end{aligned}$	
						400 V* ${ }^{\text {* }}$			
	84	C105	Rated motor frequency	10 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		$\begin{aligned} & 215,509, \\ & 519 \end{aligned}$	
	85	G201	Excitation current break point	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		677	
	86	G202	Excitation current low speed scaling factor	0 to 300\%, 9999	0.1\%	9999		677	
	89	G932	Speed control gain (Advanced magnetic flux vector)	0 to 200\%, 9999	0.1\%	9999		222	
	90	C120	Motor constant (R1)	0 to 50Ω, $9999{ }^{*} 2$	$0.001 \Omega^{* 2}$	9999		$\begin{aligned} & 509,519, \\ & 606 \end{aligned}$	
				0 to $400 \mathrm{~m} \Omega, 9999 * 3$	$0.01 \mathrm{~m} \Omega^{* 3}$				
	91	C121	Motor constant (R2)	0 to $50 \Omega, 9999{ }^{*}$	$0.001 \Omega^{* 2}$	9999		509	
				0 to $400 \mathrm{~m} \Omega, 9999{ }^{*}$	$0.01 \mathrm{~m} \Omega^{* 3}$				
	92	C122	Motor constant (L1)/d-axis inductance (Ld)	0 to $6000 \mathrm{mH}, 9999 * 2$	$0.1 \mathrm{mH}^{*}$	9999		509, 519	
				0 to $400 \mathrm{mH}, 999{ }^{*} 3$	$0.01 \mathrm{mH}^{*} 3$				
	93	C123	Motor constant (L2)/q-axis inductance (Lq)	0 to $6000 \mathrm{mH}, 9999 * 2$	$0.1 \mathrm{mH}^{*}$	9999		509, 519	
				0 to $400 \mathrm{mH}, 999{ }^{*} 3$	$0.01 \mathrm{mH}^{* 3}$				
	94	C124	Motor constant (X)	0 to 100\%, 9999	0.1\%*2	9999		509	
					0.01\% *3				
	95	C111	Online auto tuning selection	0 to 2	1	0		527	
	96	C110	Auto tuning setting/status	0, 1, 11, 101	1	0		$\begin{aligned} & 509,519, \\ & 606 \end{aligned}$	
a/^ słulod s әqełsnipy	100	G040	V/F1 (first frequency)	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		679	
	101	G041	V/F1 (first frequency voltage)	0 to 1000 V	0.1 V	0 V		679	
	102	G042	V/F2 (second frequency)	0 to 590 Hz, 9999	0.01 Hz	9999		679	
	103	G043	V/F2 (second frequency voltage)	0 to 1000 V	0.1 V	0 V		679	
	104	G044	V/F3 (third frequency)	0 to 590 Hz, 9999	0.01 Hz	9999		679	
	105	G045	V/F3 (third frequency voltage)	0 to 1000 V	0.1 V	0 V		679	
	106	G046	V/F4 (fourth frequency)	0 to 590 Hz, 9999	0.01 Hz	9999		679	
	107	G047	V/F4 (fourth frequency voltage)	0 to 1000 V	0.1 V	0 V		679	
	108	G048	V/F5 (fifth frequency)	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		679	
	109	G049	V/F5 (fifth frequency voltage)	0 to 1000 V	0.1 V	0 V		679	

	Pr.	Pr. group	Name	Setting range	\qquad	Initial value		Refer to page	Customer setting
						FM	CA		
	110	F030	Third acceleration/ deceleration time	0 to 3600 s, 9999	0.1 s	9999		349	
	111	F031	Third deceleration time	0 to 3600 s, 9999	0.1 s	9999		349	
	112	G020	Third torque boost	0 to 30\%, 9999	0.1\%	9999		672	
	113	G021	Third V/F (base frequency)	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		673	
	114	H602	Third stall prevention operation level	0 to 400\%	0.1\%	150\%		409	
	115	H603	Third stall prevention operation frequency	0 to 590 Hz	0.01 Hz	0 Hz		409	
	116	M445	Third output frequency detection	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	461	
	117	N020	PU communication station number	0 to 31	1	0		636	
	118	N021	PU communication speed	$\begin{aligned} & 48,96,192,384,576 \\ & 768,1152 \end{aligned}$	1	192		636	
	119	-	PU communication stop bit length / data length	0, 1, 10, 11	1	1		636	
		N022	PU communication data length	0, 1		0			
		N023	PU communication stop bit length	0, 1		1			
	120	N024	PU communication parity check	0 to 2	1	2		636	
	121	N025	PU communication retry count	0 to 10, 9999	1	1		636	
	122	N026	PU communication check time interval	$0,0.1$ to 999.8 s, 9999	0.1 s	9999		636	
	123	N027	PU communication waiting time setting	0 to $150 \mathrm{~ms}, 9999$	1 ms	9999		636	
	124	N028	PU communication CR/LF selection	0 to 2	1	1		636	
-	125	T022	Terminal 2 frequency setting gain frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	482	
-	126	T042	Terminal 4 frequency setting gain frequency Simple.	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	482	
은껳응음	127	A612	PID control automatic switchover frequency	0 to 590 Hz, 9999	0.01 Hz	9999		570	
	128	A610	PID action selection	$0,10,11,20,21,40$ to 43, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0		570,590	
	129	A613	PID proportional band	0.1 to 1000\%, 9999	0.1\%	100\%		570, 590	
	130	A614	PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s		570, 590	
	131	A601	PID upper limit	0 to 100\%, 9999	0.1\%	9999		570, 590	
	132	A602	PID lower limit	0 to 100\%, 9999	0.1\%	9999		570, 590	
	133	A611	PID action set point	0 to 100\%, 9999	0.01\%	9999		570, 590	
	134	A615	PID differential time	0.01 to 10 s, 9999	0.01 s	9999		570, 590	
$\begin{aligned} & \text { n } \\ & \text { Ø̀ } \\ & \text { D } \\ & \text { n } \end{aligned}$	135	A000	Electronic bypass sequence selection	0, 1	1	0		532	
	136	A001	MC switchover interlock time	0 to 100 s	0.1 s	1 s		532	
	137	A002	Start waiting time	0 to 100 s	0.1 s	0.5 s		532	
	138	A003	Bypass selection at a fault	0, 1	1	0		532	
	139	A004	Automatic switchover frequency from inverter to bypass operation	0 to $60 \mathrm{~Hz}, 9999$	0.01 Hz	9999		532	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
әanseәu पseןyэeg	140	F200	Backlash acceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz		354	
	141	F201	Backlash acceleration stopping time	0 to 360 s	0.1 s	0.5 s		354	
	142	F202	Backlash deceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz		354	
	143	F203	Backlash deceleration stopping time	0 to 360 s	0.1 s	0.5 s		354	
-	144	M002	Speed setting switchover	$\begin{aligned} & 0,2,4,6,8,10,12,102 \\ & 104,106,108,110,112 \end{aligned}$	1	4		422	
$\stackrel{\square}{\square}$	145	E103	PU display language selection	0 to 7	1	-		322	
-	147	F022	Acceleration/deceleration time switching frequency	0 to 590 Hz, 9999	0.01 Hz	9999		349	
	148	H620	Stall prevention level at 0 V input	0 to 400\%	0.1\%	150\%		409	
	149	H621	Stall prevention level at 10 V input	0 to 400\%	0.1\%	200\%		409	
	150	M460	Output current detection level	0 to 400\%	0.1\%	150\%		464	
	151	M461	Output current detection signal delay time	0 to 10 s	0.1 s	0 s		464	
	152	M462	Zero current detection level	0 to 400\%	0.1\%	5\%		464	
	153	M463	Zero current detection time	0 to 10 s	0.01 s	0.5 s		464	
-	154	H631	Voltage reduction selection during stall prevention operation	0, 1, 10, 11	1	1		409	
-	155	T730	RT signal function validity condition selection	0, 10	1	0		500	
-	156	H501	Stall prevention operation selection	0 to 31, 100, 101	1	0		409	
-	157	M430	OL signal output timer	0 to $25 \mathrm{~s}, 9999$	0.1 s	0 s		235, 409	
-	158	M301	AM terminal function selection	$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14,17,18 \text {, } \\ & 21,24, \\ & 32 \text { to } 34,36,46, \\ & 50,52 \text { to } 54,61 \text {, } \\ & 62,67,70, \\ & 87 \text { to } 90,91 \text { to } 98 \end{aligned}$	1	1		435	
-	159	A005	Automatic switchover frequency range from bypass to inverter operation	0 to $10 \mathrm{~Hz}, 9999$	0.01 Hz	9999		532	
-	160	E440	User group read selectionSimple	0, 1, 9999	1	0		337	
-	161	E200	Frequency setting/key lock operation selection	$0,1,10,11$	1	0		324	
	162	A700	Automatic restart after instantaneous power failure selection	0 to 3, 10 to 13	1	0		$\begin{array}{\|l} 597,604, \\ 606 \end{array}$	
	163	A704	First cushion time for restart	0 to 20 s	0.1 s	0 s		597	
	164	A705	First cushion voltage for restart	0 to 100\%	0.1\%	0\%		597	
	165	A710	Stall prevention operation level for restart	0 to 400\%	0.1\%	150\%		597	
	166	M433	Output current detection signal retention time	0 to $10 \mathrm{~s}, 9999$	0.1 s	0.1 s		464	
	167	M464	Output current detection operation selection	0, 1, 10, 11	1	0		464	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting				
						FM	CA						
-	168	E000	Parameter for manufacturer setting. Do not set.										
		E080											
	169	E001											
-		E081											
	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999		424					
	171	M030	Operation hour meter clear	0,9999	1	9999		424					
$\begin{aligned} & \therefore \text { 을 } \\ & \text { S } \\ & \cline { 1 - 1 } \end{aligned}$	172	E441	User group registered display/batch clear	9999, (0 to 16)	1	0		337					
	173	E442	User group registration	0 to 1999, 9999	1	9999		337					
	174	E443	User group clear	0 to 1999, 9999	1	9999		337					
	178	T700	STF terminal function selection	0 to 20, 22 to 28,37 to 42,48 to $50,53,57$ to 60, 62 to $64,74,76,80$, 85,87 to 89,92 to 96 , 9999	1	60		496					
	179	T701	STR terminal function selection	0 to 20, 22 to 28, 37, 42 to 48,50 to 53,57 to 59 , 61, 62, 64 to 74,76 to 80, 85, 87 to 89,92 to 96, 9999	1	61		496					
	180	T702	RL terminal function selection	0 to 20, 22 to 28, 37, 42 to 48,50 to 53,57 to 59 , 62, 64 to 74,76 to 80 , 85,87 to 89,92 to 96 , 9999	1	0		496					
	181	T703	RM terminal function selection		1	1		496					
	182	T704	RH terminal function selection		1	2		496					
	183	T705	RT terminal function selection		1	3		496					
	184	T706	AU terminal function selection		1	4		496					
	185	T707	JOG terminal function selection		1	5		496					
	186	T708	CS terminal function selection		1	6		496					
	187	T709	MRS terminal function selection		1	$\begin{array}{\|l\|} \hline 24^{* 11^{*} 13} \\ \hline 10^{* 12} \end{array}$		496					
	188	T710	STOP terminal function selection		1	25		496					
	189	T711	RES terminal function selection		1	62		496					

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
	252	T050	Override bias	0 to 200\%	0.1\%	50\%		478	
	253	T051	Override gain	0 to 200\%	0.1\%	150\%		478	
-	254	A007	Main circuit power OFF waiting time	0 to 3600 s, 9999	1 s	600 s		538	
	255	E700	Life alarm status display	(0 to 31)	1	0		341	
	256*15	E701	Inrush current limit circuit life display	(0 to 100\%)	1\%	100\%		341	
	257	E702	Control circuit capacitor life display	(0 to 100\%)	1\%	100\%		341	
	$258{ }^{* 15}$	E703	Main circuit capacitor life display	(0 to 100\%)	1\%	100\%		341	
	259*15	E704	Main circuit capacitor life measuring	0, 1	1	0		341	
-	260	E602	PWM frequency automatic switchover	0, 1	1	1		339	
	261	A730	Power failure stop selection	0 to 2, 11, 12, 21, 22	1	0		610	
	262	A731	Subtracted frequency at deceleration start	0 to 20 Hz	0.01 Hz	3 Hz		610	
	263	A732	Subtraction starting frequency	0 to 590 Hz, 9999	0.01 Hz	60 Hz	50 Hz	610	
	264	A733	Power-failure deceleration time 1	0 to 3600 s	0.1 s	5 s		610	
	265	A734	Power-failure deceleration time 2	0 to 3600 s, 9999	0.1 s	9999		610	
	266	A735	Power failure deceleration time switchover frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	610	
-	267	T001	Terminal 4 input selection	0 to 2	1	0		473	
-	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999		424	
-	269	E023	Parameter for manufacturer setting. Do not set.						
-	270	A200	Stop-on contact/load torque high- speed frequency control selection	0 to 3, 11, 13	1	0		546, 549	
	271	A201	High-speed setting maximum current	0 to 400\%	0.1\%	50\%		549	
	272	A202	Middle-speed setting minimum current	0 to 400\%	0.1\%	100\%		549	
	273	A203	Current averaging range	0 to 590 Hz, 9999	0.01 Hz	9999		549	
	274	A204	Current averaging filter time constant	1 to 4000	1	16		549	
	275	A205	Stop-on contact excitation current low-speed scaling factor	0 to 300\%, 9999	0.1\%	9999		546	
	276	A206	PWM carrier frequency at stop-on contact		1	9999		546	

	Pr.	Pr. group	Name	Setting range	\qquad	Initial value		Refer to page	Customer setting
						FM	CA		
	278	A100	Brake opening frequency	0 to 30 Hz	0.01 Hz	3 Hz		541	
	279	A101	Brake opening current	0 to 400\%	0.1\%	130\%		541	
	280	A102	Brake opening current detection time	0 to 2 s	0.1 s	0.3 s		541	
	281	A103	Brake operation time at start	0 to 5 s	0.1 s	0.3 s		541	
	282	A104	Brake operation frequency	0 to 30 Hz	0.01 Hz	6 Hz		541	
	283	A105	Brake operation time at stop	0 to 5 s	0.1 s	0.3 s		541	
	284	A106	Deceleration detection function selection	0, 1	1	0		541	
	285	A107	Overspeed detection frequency Speed deviation excess detection frequency	0 to $30 \mathrm{~Hz}, 9999$	0.01 Hz	9999		$\begin{aligned} & 259,541, \\ & 700 \end{aligned}$	
$\begin{aligned} & \bar{o} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \\ & 0.0 \end{aligned}$	286	G400	Droop gain	0 to 100\%	0.1\%	0\%		702	
	287	G401	Droop filter time constant	0 to 1 s	0.01 s	0.3 s		702	
	288	G402	Droop function activation selection	0 to 2, 10, 11, 20 to 22	1	0		702	
-	289	M431	Inverter output terminal filter	5 to $50 \mathrm{~ms}, 9999$	1 ms	9999		450	
-	290	M044	Monitor negative output selection	0 to 7	1	0		424, 435	
-	291	D100	Pulse train I/O selection	[FM type] $0,1,10,11,20$, 21, 100 [CA type] 0, 1	1	0		386, 435	
-	292	A110	Automatic acceleration/ deceleration	0, 1, 3, 5 to 8, 11	1	0		$\begin{aligned} & 365,368, \\ & 541 \end{aligned}$	
-	293	F513	Acceleration/deceleration separate selection	0 to 2	1	0		365	
-	294	A785	UV avoidance voltage gain	0 to 200\%	0.1\%	100\%		610	
-	295	E201	Frequency change increment amount setting	$\begin{aligned} & 0,0.01,0.1 \\ & 1,10 \end{aligned}$	0.01	0		325	
응 3	296	E410	Password lock level	$\begin{aligned} & 0 \text { to } 6,99,100 \text { to } 106 \text {, } \\ & 199,9999 \end{aligned}$	1	9999		331	
$\begin{aligned} & \text { यु } \\ & \text { ๗ } \\ & 0 \end{aligned}$	297	E411	Password lock/unlock	$\begin{aligned} & (0 \text { to } 5), 1000 \text { to } 9998 \text {, } \\ & 9999 \end{aligned}$	1	9999		331	
-	298	A711	Frequency search gain	0 to 32767, 9999	1	9999		606	
-	299	A701	Rotation direction detection selection at restarting	0, 1, 9999	1	0		597	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
	$313^{* 17}$	M410	DOO output selection	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to 57 , 60, 61, 63, 64, 68, 70, $79,80,84$ to 99,100 to 108, 110 to 116, 120, 122, 125 to 128,130 to 136, 138 to 157, 160, 161, 163, 164, 168, 170, 179, 180, 184 to 199, 200 to 208, 211 to 213, 300 to 308,311 to 313, 9999	1	9999		450	
	$314^{* 17}$	M411	D01 output selection		1	9999		450	
	$315{ }^{* 17}$	M412	DO2 output selection		1	9999		450	
	$316{ }^{* 16}$	M413	DO3 output selection		1	9999		450	
	$317^{* 16}$	M414	DO4 output selection		1	9999		450	
	$318^{* 16}$	M415	DO5 output selection		1	9999		450	
	$319 * 16$	M416	DO6 output selection		1	9999		450	
	320*16	M420	RA1 output selection	0 to 8,10 to 20, 22, 25 to 28,30 to 36,38 to 57 , 60, 61, 63, 64, 68, 70, $79,80,84$ to 91,94 to 99, 200 to 208, 211 to 213, 9999	1	9999		450	
	$321 * 16$	M421	RA2 output selection		1	9999		450	
	322*16	M422	RA3 output selection		1	9999		450	
	331	N030	RS-485 communication station number	0 to 31 (0 to 247)	1	0		636	
	332	N031	RS-485 communication speed	$\begin{aligned} & \hline 3,6,12,24,48 \\ & 96,192,384,576,768 \\ & 1152 \end{aligned}$	1	96		636	
	333	-	RS-485 communication stop bit length / data length	0, 1, 10, 11	1	1		636	
		N032	RS-485 communication data length	0, 1	1	0			
		N033	RS-485 communication stop bit length	0, 1	1	1			
	334	N034	RS-485 communication parity check selection	0 to 2	1	2		636	
	335	N035	RS-485 communication retry count	0 to 10, 9999	1	1		636	
	336	N036	RS-485 communication check time interval	0 to 999.8 s, 9999	0.1 s	0 s		636	
	337	N037	RS-485 communication waiting time setting	0 to $150 \mathrm{~ms}, 9999$	1 ms	9999		636	
	338	D010	Communication operation command source	0, 1	1	0		380	
	339	D011	Communication speed command source	0 to 2	1	0		380	
	340	D001	Communication startup mode selection	0 to 2, 10, 12	1	0		378	
	341	N038	RS-485 communication CR/LF selection	0 to 2	1	1		636	
	342	N001	Communication EEPROM write selection	0, 1	1	0		630	
	343	N080	Communication error count	-	1	0		652	
-	$349 * 17$	N010	Communication reset selection	0, 1	1	0		630	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
	350*9	A510	Stop position command selection	0, 1,9999	1	9999		554	
	351*9	A526	Orientation speed	0 to 30 Hz	0.01 Hz	2 Hz		554	
	352*9	A527	Creep speed	0 to 10 Hz	0.01 Hz	0.5 Hz		554	
	$353{ }^{* 9}$	A528	Creep switchover position	0 to 16383	1	511		554	
	354*9	A529	Position loop switchover position	0 to 8191	1	96		554	
	355*9	A530	DC injection brake start position	0 to 255	1	5		554	
	356*9	A531	Internal stop position command	0 to 16383	1	0		554	
	357*9	A532	Orientation in-position zone	0 to 255	1	5		554	
	358*9	A533	Servo torque selection	0 to 13	1	1		554	
	359*9	C141	Encoder rotation direction	0, 1, 100, 101	1	1		$\begin{aligned} & 93,554, \\ & 700 \end{aligned}$	
	360*9	A511	16-bit data selection	0 to 127	1	0		554	
	$361{ }^{* 9}$	A512	Position shift	0 to 16383	1	0		554	
	$362 * 9$	A520	Orientation position loop gain	0.1 to 100	0.1	1.0		554	
	363*9	A521	Completion signal output delay time	0 to 5 s	0.1 s	0.5 s		554	
	364*9	A522	Encoder stop check time	0 to 5 s	0.1 s	0.5 s		554	
	$365 * 9$	A523	Orientation limit	0 to 60 s, 9999	1 s	9999		554	
	366*9	A524	Recheck time	0 to $5 \mathrm{~s}, 9999$	0.1 s	9999		554	
	$367{ }^{* 9}$	G240	Speed feedback range	0 to 590 Hz , 9999	0.01 Hz	9999		700	
	$368{ }^{* 9}$	G241	Feedback gain	0 to 100	0.1	1		700	
	369*9	C140	Number of encoder pulses	0 to 4096	1	1024		$\begin{aligned} & 93,554, \\ & 700 \end{aligned}$	
	374	H800	Overspeed detection level	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		421	
	$376{ }^{*}$	C148	Encoder signal loss detection enable/disable selection	0, 1	1	0		530	
	380	F300	Acceleration S-pattern 1	0 to 50\%	1\%	0\%		354	
	381	F301	Deceleration S-pattern 1	0 to 50\%	1\%	0\%		354	
	382	F302	Acceleration S-pattern 2	0 to 50\%	1\%	0\%		354	
	383	F303	Deceleration S-pattern 2	0 to 50\%	1\%	0\%		354	
	384	D101	Input pulse division scaling factor	0 to 250	1	0		386	
	385	D110	Frequency for zero input pulse	0 to 590 Hz	0.01 Hz	0 Hz		386	
	386	D111	Frequency for maximum input pulse	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	386	

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting
						FM	CA		
인 0	$393 * 9$	A525	Orientation selection	0 to 2,10 to 12	1	0		554	
	394*9	A540	Number of machine side gear teeth	0 to 32767	1	1		554	
	$395 * 9$	A541	Number of motor side gear teeth	0 to 32767	1	1		554	
	$396{ }^{*}$	A542	Orientation speed gain (P term)	0 to 1000	1	60		554	
	$397 * 9$	A543	Orientation speed integral time	0 to 20 s	0.001 s	0.333 s		554	
	$398 * 9$	A544	Orientation speed gain (D term)	0 to 100	0.1	1		554	
	399*9	A545	Orientation deceleration ratio	0 to 1000	1	20		554	
-	413*9	M601	Encoder pulse division ratio	1 to 32767	1	1		472	
	414	A800	PLC function operation selection	0 to 2	1	0		614	
0	415	A801	Inverter operation lock mode setting	0, 1	1	0		614	
	416	A802	Pre-scale function selection	0 to 5	1	0		614	
	417	A803	Pre-scale setting value	0 to 32767	1	1		614	
$\begin{aligned} & \text { 은 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	419	B000	Position command source selection	$\begin{aligned} & 0 \text { to } 2,10,100,110, \\ & 1110 \end{aligned}$	1	0		288, 304	
	420	B001	Command pulse scaling factor numerator (electronic gear numerator)	1 to 32767	1	1		309	
	421	B002	Command pulse multiplication denominator (electronic gear denominator)	1 to 32767	1	1		309	
	422	B003	Position control gain	0 to $150 \mathrm{~s}^{-1}$	$1 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$		312	
	423	B004	Position feed forward gain	0 to 100\%	1\%	0\%		312	
	424	B005	Position command acceleration/deceleration time constant	0 to 50 s	0.001 s	0 s		309	
	425	B006	Position feed forward command filter	0 to 5 s	0.001 s	0 s		312	
	426	B007	In-position width	0 to 32767 pulses	1 pulse	100 pulses		311	
	427	B008	Excessive level error	0 to 400k pulses, 9999	1k pulses	40k pulses		311	
	428	B009	Command pulse selection	0 to 5	1	0		304	
	429	B010	Clear signal selection	0, 1	1	1		305	
	430	B011	Pulse monitor selection	0 to $5,12,13,100$ to 105, 112, 113, 1000 to 1005, 1012, 1013, 1100 to 1105, 1112, 1113, 8888, 9999	1	9999		306	
-	432*9	D120	Pulse train torque command bias	0 to 400\%	1\%	0\%		270	
-	$433 * 9$	D121	Pulse train torque command gain	0 to 400\%	1\%	150\%		270	
$\underset{\text { ■ }}{\underline{\text { w }}}$	$434 * 17$	N110	Network number (CC-Link IE)	0 to 255	1	0		665	
ָ̄	$435 * 17$	N111	Station number (CC-Link IE)	0 to 255	1	0		665	
-	446	B012	Model position control gain	0 to $150 \mathrm{~s}^{-1}$	$1 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$		312	

	Pr.	Pr. group	Name	Setting range	Minimumsettingincrements	Initial value		Refer to page	Customer setting
						FM	CA		
H 0	450	C200	Second applied motor	$\begin{aligned} & 0,1,3 \text { to } 6,13 \text { to } 16,20, \\ & 23,24,30,33,34,40, \\ & 43,44,50,53,54,70, \\ & 73,74,330,333,334, \\ & 8090,8093,8094, \\ & 9090,9093,9094, \\ & 9999 \end{aligned}$	1	9999		505	
	451	G300	Second motor control method selection	$\begin{aligned} & 0 \text { to } 6,10 \text { to } 14,20, \\ & 100 \text { to } 106,110 \text { to } 114, \\ & 9999 \end{aligned}$	1	9999		215	
	453	C201	Second motor capacity	0.4 to $55 \mathrm{~kW}, 9^{\text {9999*2 }}$	$0.01 \mathrm{~kW}^{*} 2$	9999		509, 519	
				0 to $3600 \mathrm{~kW}, 9999{ }^{*}$	0.1 kW*3				
	454	C202	Number of second motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999		509, 519	
	455	C225	Second motor excitation current	0 to $500 \mathrm{~A}, ~ 9999 * 2$	$0.01 \mathrm{~A}^{* 2}$	9999		509	
				0 to 3600 A, 9999*3	$0.1 \mathrm{~A}^{* 3}$				
	456	C204	Rated second motor voltage	0 to 1000 V	0.1 V	$200 \mathrm{~V}^{*}{ }^{7}$		509, 519	
						$400 \mathrm{~V}^{*} 8$			
	457	C205	Rated second motor frequency	10 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		509, 519	
	458	C220	Second motor constant(R1)	0 to 50Ω, $9999{ }^{*} 2$	$0.001 \Omega^{* 2}$	9999		$\begin{aligned} & 509,519, \\ & 606 \end{aligned}$	
				0 to $400 \mathrm{~m} \Omega, 9999^{*} 3$	$0.01 \mathrm{~m} \Omega^{* 3}$				
	459	C221	Second motor constant(R2)	0 to 50Ω, 9999*2	$0.001 \Omega^{*} 2$	9999		509	
				0 to $400 \mathrm{~m} \Omega, 9999 * 3$	$0.01 \mathrm{~m} \Omega^{* 3}$				
	460	C222	Second motor constant (L1) / d-axis inductance (Ld)	0 to $6000 \mathrm{mH}, 9999 * 2$	$0.1 \mathrm{mH}^{*} 2$	9999		509, 519	
				0 to $400 \mathrm{mH}, 9999{ }^{*}$	$0.01 \mathrm{mH}^{* 3}$				
	461	C223	Second motor constant (L2) / q-axis inductance (Lq)	0 to $6000 \mathrm{mH}, 9999 * 2$	$0.1 \mathrm{mH}^{*}$	9999		509, 519	
				0 to $400 \mathrm{mH}, 9999^{*}$	$0.01 \mathrm{mH}^{* 3}$				
	462	C224	Second motor constant (X)	0 to 100\%, 9999	0.1\% ${ }^{*}$	9999		509	
					0.01\% ${ }^{*}{ }^{3}$				
	463	C210	Second motor auto tuning setting/status	0, 1, 11, 101	1	0		$\begin{aligned} & 509,519, \\ & 606 \end{aligned}$	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
	464	B020	Digital position control sudden stop deceleration time	0 to 360 s	0.1 s	0 s		288	
	465	B021	First target position lower 4 digits	0 to 9999	1	0		288	
	466	B022	First target position upper 4 digits	0 to 9999	1	0		288	
	467	B023	Second target position lower 4 digits	0 to 9999	1	0		288	
	468	B024	Second target position upper 4 digits	0 to 9999	1	0		288	
	469	B025	Third target position lower 4 digits	0 to 9999	1	0		288	
	470	B026	Third target position upper 4 digits	0 to 9999	1	0		288	
	471	B027	Fourth target position lower 4 digits	0 to 9999	1	0		288	
	472	B028	Fourth target position upper 4 digits	0 to 9999	1	0		288	
	473	B029	Fifth target position lower 4 digits	0 to 9999	1	0		288	
	474	B030	Fifth target position upper 4 digits	0 to 9999	1	0		288	
	475	B031	Sixth target position lower 4 digits	0 to 9999	1	0		288	
	476	B032	Sixth target position upper 4 digits	0 to 9999	1	0		288	
	477	B033	Seventh target position lower 4 digits	0 to 9999	1	0		288	
	478	B034	Seventh target position upper 4 digits	0 to 9999	1	0		288	
	479	B035	Eighth target position lower 4 digits	0 to 9999	1	0		288	
	480	B036	Eighth target position upper 4 digits	0 to 9999	1	0		288	
	481	B037	Ninth target position lower 4 digits	0 to 9999	1	0		288	
	482	B038	Ninth target position upper 4 digits	0 to 9999	1	0		288	
	483	B039	Tenth target position lower 4 digits	0 to 9999	1	0		288	
	484	B040	Tenth target position upper 4 digits	0 to 9999	1	0		288	
	485	B041	Eleventh target position lower 4 digits	0 to 9999	1	0		288	
	486	B042	Eleventh target position upper 4 digits	0 to 9999	1	0		288	
	487	B043	Twelfth target position lower 4 digits	0 to 9999	1	0		288	
	488	B044	Twelfth target position upper 4 digits	0 to 9999	1	0		288	
	489	B045	Thirteenth target position lower 4 digits	0 to 9999	1	0		288	
	490	B046	Thirteenth target position upper 4 digits	0 to 9999	1	0		288	
	491	B047	Fourteenth target position lower 4 digits	0 to 9999	1	0		288	
	492	B048	Fourteenth target position upper 4 digits	0 to 9999	1	0		288	
	493	B049	Fifteenth target position lower 4 digits	0 to 9999	1	0		288	
	494	B050	Fifteenth target position upper 4 digits	0 to 9999	1	0		288	

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting	
						FM	CA			
	495	M500	Remote output selection	0, 1, 10, 11	1	0		466		
	496	M501	Remote output data 1	0 to 4095	1	0		466		
	497	M502	Remote output data 2	0 to 4095	1	0		466		
-	498	A804	PLC function flash memory clear	0,9696 (0 to 9999)	1	0		614		
-	500*17	N011	Communication error execution waiting time	0 to 999.8 s	0.1 s	0 s		630		
-	501*17	N012	Communication error occurrence count display	0	1	0		630		
-	502	N013	Stop mode selection at communication error	0 to 4, 11, 12	1	0		630		
	503	E710	Maintenance timer 1	0 (1 to 9998)	1	0		345		
	504	E711	Maintenance timer 1 warning output set time	0, 9998, 9999	1	9999		345		
-	505	M001	Speed setting reference	1 to 590 Hz	0.01 Hz	60 Hz	50 Hz	422		
	516	F400	S-pattern time at a start of acceleration	0.1 to 2.5 s	0.1 s	0.1 s		354		
	517	F401	S-pattern time at a completion of acceleration	0.1 to 2.5 s	0.1 s	0.1 s		354		
	518	F402	S-pattern time at a start of deceleration	0.1 to 2.5 s	0.1 s	0.1 s		354		
	519	F403	S-pattern time at a completion of deceleration	0.1 to 2.5 s	0.1 s	0.1 s		354		
-	522	G105	Output stop frequency	0 to 590 Hz, 9999	0.01 Hz	9999		686		
-	539	N002	MODBUS RTU communication check time interval	0 to 999.8 s, 9999	0.1 s	9999		652		
-	541*17	N100	Frequency command sign selection	0, 1	1	0		665		
¢	547	N040	USB communication station number	0 to 31	1	0		666		
\bigcirc	548	N041	USB communication check time interval	0 to 999.8 s, 9999	0.1 s	9999		666		
	549	N000	Protocol selection	0, 1	1	0		630		
	550	D012	NET mode operation command source selection	0, 1, 9999	1	9999		380		
	551	D013	PU mode operation command source selection	1 to 3, 9999	1	9999		380		
-	552	H429	Frequency jump range	0 to $30 \mathrm{~Hz}, 9999$	0.01 Hz	9999		408		
$\begin{aligned} & \overline{0} \\ & \text { 르 } \\ & 0 \\ & 0 \\ & \text { 믕 } \end{aligned}$	553	A603	PID deviation limit	0 to 100\%, 9999	0.1\%	9999		570		
	554	A604	PID signal operation selection	0 to 3, 10 to 13	1	0		570		
$\begin{aligned} & \text { Average current } \\ & \text { monitoring } \end{aligned}$	555	E720	Current average time	0.1 to 1 s	0.1 s	1 s		346		
	556	E721	Data output mask time	0 to 20 s	0.1 s	0 s		346		
			Current average value monitor signal output reference current	0 to $500 \mathrm{~A}^{*}$	$0.01 \mathrm{~A}^{* 2}$	Inverter rated current		346		
	557	E722		0 to $3600 \mathrm{~A}^{*}$	$0.1 \mathrm{~A}^{* 3}$					
-	560	A712	Second frequency search gain	0 to 32767, 9999	1	9999			606	
-	561	H020	PTC thermistor protection level	0.5 to $30 \mathrm{k} \Omega$, 9999	$0.01 \mathrm{k} \Omega$	9999		394		
-	563	M021	Energization time carryingover times	(0 to 65535)	1	0		424		

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting
						FM	CA		
-	564	M031	Operating time carryingover times	(0 to 65535)	1	0		424	
-	565	G301	Second motor excitation current break point	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		677	
-	566	G302	Second motor excitation current low-speed scaling factor	0 to 300\%, 9999	0.1\%	9999		677	
	569	G942	Second motor speed control gain	0 to 200\%, 9999	0.1\%	9999		222	
올				0 to $3^{* 11^{*} 12}$		2		326	
	570	E301	Multiple rating setting	1, $2^{* 13}$	1				
-	571	F103	Holding time at a start	0 to $10 \mathrm{~s}, 9999$	0.1 s	9999		363	
-	573	$\begin{array}{\|l\|} \hline \text { A680 } \\ \hline \text { T052 } \\ \hline \end{array}$	4 mA input check selection	1, 4, 9999	1	9999		492	
-	574	C211	Second motor online auto tuning	0 to 2	1	0		527	
$\bar{\square}$	575	A621	Output interruption detection time	0 to 3600 s, 9999	0.1 s	1 s		570	
$\stackrel{\pi}{0}$	576	A622	Output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz		570	
믐	577	A623	Output interruption cancel level	900 to 1100\%	0.1\%	1000\%		570	
	592	A300	Traverse function selection	0 to 2	1	0		551	
	593	A301	Maximum amplitude amount	0 to 25\%	0.1\%	10\%		551	
	594	A302	Amplitude compensation amount during deceleration	0 to 50\%	0.1\%	10\%		551	
	595	A303	Amplitude compensation amount during acceleration	0 to 50\%	0.1\%	10\%		551	
	596	A304	Amplitude acceleration time	0.1 to 3600 s	0.1 s	5 s		551	
	597	A305	Amplitude deceleration time	0.1 to 3600 s	0.1 s	5 s		551	
-	598	H102	Undervoltage level	175 to 215 VDC $^{* 7} / 350$ to 430 VDC* 8,9999	0.1 V	9999		403	
-	599	T721	X10 terminal input selection	0, 1	1	$0^{* 11 * 13}$		689	
	600	H001	First free thermal reduction frequency 1	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		394	
	601	H002	First free thermal reduction ratio 1	1 to 100\%	1\%	100\%		394	
	602	H003	First free thermal reduction frequency 2	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		394	
	603	H004	First free thermal reduction ratio 2	1 to 100\%	1\%	100\%		394	
	604	H005	First free thermal reduction frequency 3	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		394	
-	606	T722	Power failure stop external signal input selection	0, 1	1	1		610	
-	607	H006	Motor permissible load level	110 to 250\%	1\%	150\%		394	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
-	608	H016	Second motor permissible load level	110 to 250\%, 9999	1\%	9999		394	
윤00000	609	A624	PID set point/deviation input selection	1 to 5	1	2		570, 590	
	610	A625	PID measured value input selection	1 to 5	1	3		570,590	
-	611	F003	Acceleration time at a restart	0 to 3600 s, 9999	0.1 s	9999		597, 604	
-	617	G080	Reverse rotation excitation current low-speed scaling factor	0 to 300\%, 9999	0.1\%	9999		677	
	635*9	M610	Cumulative pulse clear signal selection	0 to 3	1	0		306	
	636*9	M611	Cumulative pulse division scaling factor	1 to 16384	1	1		306	
	$637{ }^{* 9}$	M612	Control terminal optionCumulative pulse division scaling factor	1 to 16384	1	1		306	
	$638{ }^{*}$	M613	Cumulative pulse storage	0 to 3	1	0		306	
	639	A108	Brake opening current selection	0, 1	1	0		541	
	640	A109	Brake operation frequency selection	0, 1	1	0		541	
	641	A130	Second brake sequence operation selection	0, 7, 8, 9999	1	0		541	
	642	A120	Second brake opening frequency	0 to 30 Hz	0.01 Hz	3 Hz		541	
	643	A121	Second brake opening current	0 to 400\%	0.1\%	130\%		541	
	644	A122	Second brake opening current detection time	0 to 2 s	0.1 s	0.3 s		541	
	645	A123	Second brake operation time at start	0 to 5 s	0.1 s	0.3 s		541	
	646	A124	Second brake operation frequency	0 to 30 Hz	0.01 Hz	6 Hz		541	
	647	A125	Second brake operation time at stop	0 to 5 s	0.1 s	0.3 s		541	
	648	A126	Second deceleration detection function selection	0, 1	1	0		541	
	650	A128	Second brake opening current selection	0, 1	1	0		541	
	651	A129	Second brake operation frequency selection	0, 1	1	0		541	
	653	G410	Speed smoothing control	0 to 200\%	0.1\%	0\%		705	
	654	G411	Speed smoothing cutoff frequency	0 to 120 Hz	0.01 Hz	20 Hz		705	
	655	M530	Analog remote output selection	0, 1, 10, 11	1	0		467	
	656	M531	Analog remote output 1	800 to 1200\%	0.1\%	1000\%		467	
	657	M532	Analog remote output 2	800 to 1200\%	0.1\%	1000\%		467	
	658	M533	Analog remote output 3	800 to 1200\%	0.1\%	1000\%		467	
	659	M534	Analog remote output 4	800 to 1200\%	0.1\%	1000\%		467	

	Pr.	Pr. group	Name	Setting range	\qquad	Initial value		Refer to page	Customer setting
						FM	CA		
	660	G130	Increased magnetic excitation deceleration operation selection	0, 1	1	0		699	
	661	G131	Magnetic excitation increase rate	0 to 40\%, 9999	0.1\%	9999		699	
	662	G132	Increased magnetic excitation current level	0 to 300\%	0.1\%	100\%		699	
-	663	M060	Control circuit temperature signal output level	0 to $100^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$		471	
-	665	G125	Regeneration avoidance frequency gain	0 to 200\%	0.1\%	100\%		696	
-	668	A786	Power failure stop frequency gain	0 to 200\%	0.1\%	100\%		610	
-	673	G060	SF-PR slip amount adjustment operation selection	2 to 4, 6, 9999	1	9999		680	
-	674	G061	SF-PR slip amount adjustment gain	0 to 500\%	0.1\%	100\%		680	
	679	G420	Second droop gain	0 to 100\%, 9999	0.1\%	9999		702	
	680	G421	Second droop filter time constant	0 to $1 \mathrm{~s}, 9999$	0.01 s	9999		702	
	681	G422	Second droop function activation selection	$\begin{aligned} & 0 \text { to } 2,10,11,20 \text { to } 22 \text {, } \\ & 9999 \end{aligned}$	1	9999		702	
	682	G423	Second droop break point gain	0.1 to 100\%, 9999	0.1\%	9999		702	
	683	G424	Second droop break point torque	0.1 to 100\%, 9999	0.1\%	9999		702	
-	684	C000	Tuning data unit switchover	0, 1	1	0		509, 519	
	686	E712	Maintenance timer 2	0 (1 to 9998)	1	0		345	
	687	E713	Maintenance timer 2 warning output set time	0 to 9998, 9999	1	9999		345	
	688	E714	Maintenance timer 3	0 (1 to 9998)	1	0		345	
	689	E715	Maintenance timer 3 warning output set time	0 to 9998, 9999	1	9999		345	
-	690	H881	Deceleration check time	0 to 3600 s, 9999	0.1 s	1 s		259	
	692	H011	Second free thermal reduction frequency 1	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		394	
	693	H012	Second free thermal reduction ratio 1	1 to 100\%	1\%	100\%		394	
	694	H013	Second free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999		394	
	695	H014	Second free thermal reduction ratio 2	1 to 100\%	1\%	100\%		394	
	696	H015	Second free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999		394	
-	699	T740	Input terminal filter	5 to $50 \mathrm{~ms}, 9999$	1 ms	9999		496	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
H0000000000	702	C106	Maximum motor frequency	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		519	
	706	C130	Induced voltage constant (phi f)	$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s}), \\ & 9999 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{mV} \\ & (\mathrm{rad} / \mathrm{s}) \end{aligned}$	9999		519	
	707	C107	Motor inertia (integer)	10 to 999, 9999	1	9999		519	
	711	C131	Motor Ld decay ratio	0 to 100\%, 9999	0.1\%	9999		519	
	712	C132	Motor Lq decay ratio	0 to 100\%, 9999	0.1\%	9999		519	
	717	C182	Starting resistance tuning compensation	0 to 200\%, 9999	0.1\%	9999		519	
	721	C185	Starting magnetic pole position detection pulse width	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, \\ & 10000 \text { to } 16000 \mu \mathrm{~s}, \\ & 9999 \end{aligned}$	$1 \mu \mathrm{~s}$	9999		519	
	724	C108	Motor inertia (exponent)	0 to 7, 9999	1	9999		519	
	725	C133	Motor protection current level	100 to 500\%, 9999	0.1\%	9999		519	
	738	C230	Second motor induced voltage constant (phi f)	$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s}) \text {, } \\ & 9999 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{mV} \\ & (\mathrm{rad} / \mathrm{s}) \end{aligned}$	9999		519	
	739	C231	Second motor Ld decay ratio	0 to 100\%, 9999	0.1\%	9999		519	
	740	C232	Second motor Lq decay ratio	0 to 100\%, 9999	0.1\%	9999		519	
	741	C282	Second starting resistance tuning compensation	0 to 200\%, 9999	0.1\%	9999		519	
	742	C285	Second motor magnetic pole detection pulse width	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, \\ & 10000 \text { to } 16000 \mu \mathrm{~s}, \\ & 9999 \end{aligned}$	$1 \mu \mathrm{~s}$	9999		519	
	743	C206	Second motor maximum frequency	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		519	
	744	C207	Second motor inertia (integer)	10 to 999, 9999	1	9999		519	
	745	C208	Second motor inertia (exponent)	0 to 7, 9999	1	9999		519	
	746	C233	Second motor protection current level	100 to 500\%, 9999	0.1\%	9999		519	
-	747	G350	Second motor low-speed range torque characteristic selection	0,9999	1	9999		227	
$\overline{3}$릉0000	753	A650	Second PID action selection	$\begin{aligned} & 0,10,11,20,21, \\ & 50,51,60,61,70, \\ & 71,80,81,90,91,100, \\ & 101,1000, \\ & 1001,1010,1011, \\ & 2000,2001,2010, \\ & 2011 \end{aligned}$	1	0		570	
	754	A652	Second PID control automatic switchover frequency	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		570	
	755	A651	Second PID action set point	0 to 100\%, 9999	0.01\%	9999		570	
	756	A653	Second PID proportional band	0.1 to 1000%, 9999	0.1\%	100\%		570	
	757	A654	Second PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s		570	
	758	A655	Second PID differential time	0.01 to 10 s, 9999	0.01 s	9999		570	
	759	A600	PID unit selection	0 to 43, 9999	1	9999		584	

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting	
						FM	CA			
PID Pre-charge	760	A616	Pre-charge fault selection	0, 1	1	0		587		
	761	A617	Pre-charge ending level	0 to 100\%, 9999	0.1\%	9999		587		
	762	A618	Pre-charge ending time	0 to 3600 s, 9999	0.1 s	9999		587		
	763	A619	Pre-charge upper detection level	0 to 100\%, 9999	0.1\%	9999		587		
	764	A620	Pre-charge time limit	0 to 3600 s, 9999	0.1 s	9999		587		
	765	A656	Second pre-charge fault selection	0, 1	1	0		587		
	766	A657	Second pre-charge ending level	0 to 100\%, 9999	0.1\%	9999		587		
	767	A658	Second pre-charge ending time	0 to 3600 s, 9999	0.1 s	9999		587		
	768	A659	Second pre-charge upper detection level	0 to 100\%, 9999	0.1\%	9999		587		
	769	A660	Second pre-charge time limit	0 to 3600 s, 9999	0.1 s	9999		587		
	774	M101	Operation panel monitor selection 1	1 to 3,5 to 14,17 to 20 , 22 to 36,38 to 46,50 to 57, 61, 62, 64, 67, 71 to 75,87 to $98,100,9999$	1	9999		424		
	775	M102	Operation panel monitor selection 2		1	9999		424		
	776	M103	Operation panel monitor selection 3		1	9999		424		
-	777	A681	4 mA input fault operation frequency	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		492		
		T053								
-	778	A682	4 mA input check filter	0 to 10 s	0.01 s	0 s			492	
		T054								
-	779	N014	Operation frequency during communication error	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999		630		
-	788	G250	Low speed range torque characteristic selection	0,9999	1	9999		227		
-	791	F070	Acceleration time in lowspeed range	0 to 3600 s, 9999	0.1 s	9999		349		
-	792	F071	Deceleration time in lowspeed range	0 to 3600 s, 9999	0.1 s	9999		349		
-	799	M520	Pulse increment setting for output power	$\begin{aligned} & 0.1,1,10,100,1000 \\ & \text { kWh } \end{aligned}$	0.1 kWh	1 kWh		470		
-	800	G200	Control method selection	$\begin{aligned} & 0 \text { to } 6,9 \text { to } 14,20 \text {, } \\ & 100 \text { to } 106,109 \text { to } 114 \end{aligned}$	1	20		215		
-	801	H704	Output limit level	0 to 400\%, 9999	0.1\%	9999		235, 270		
-	802	G102	Pre-excitation selection	0, 1	1	0		681		
	803	G210	Constant output range torque characteristic selection	0 to 2, 10, 11	1	0		235, 270		
	804	D400	Torque command source selection	0 to 6	1	0		270		
	805	D401	Torque command value (RAM)	600 to 1400\%	1\%	1000\%		270		
	806	D402	Torque command value (RAM, EEPROM)	600 to 1400\%	1\%	1000\%		270		
	807	H410	Speed limit selection	0 to 2	1	0		274		
	808	H411	Forward rotation speed limit/speed limit	0 to 400 Hz	0.01 Hz	60 Hz	50 Hz	274		
	809	H412	Reverse rotation speed limit/reverse-side speed limit	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999		274		

	Pr.	Pr. group	Name	Setting range	Minimumsettingincrements	Initial value		Refer to page	Customer setting
						FM	CA		
	810	H700	Torque limit input method selection	0 to 2	1	0		235	
	811	D030	Set resolution switchover	0, 1, 10, 11	1	0		235, 422	
	812	H701	Torque limit level (regeneration)	0 to 400\%, 9999	0.1\%	9999		235	
	813	H702	Torque limit level (3rd quadrant)	0 to 400\%, 9999	0.1\%	9999		235	
	814	H703	Torque limit level (4th quadrant)	0 to 400\%, 9999	0.1\%	9999		235	
	815	H710	Torque limit level 2	0 to 400\%, 9999	0.1\%	9999		235	
	816	H720	Torque limit level during acceleration	0 to 400\%, 9999	0.1\%	9999		235	
	817	H721	Torque limit level during deceleration	0 to 400\%, 9999	0.1\%	9999		235	
	818	C112	Easy gain tuning response level setting	1 to 15	1	2		244	
	819	C113	Easy gain tuning selection	0 to 2	1	0		244	
	820	G211	Speed control P gain 1	0 to 1000\%	1\%	60\%		244	
	821	G212	Speed control integral time 1	0 to 20 s	0.001 s	0.333 s		244	
	822	T003	Speed setting filter 1	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999		480	
	823*9	G215	Speed detection filter 1	0 to 0.1 s	0.001 s	0.001 s		316	
	824	G213	Torque control P gain 1 (current loop proportional gain)	0 to 500\%	1\%	100\%		280, 317	
	825	G214	Torque control integral time 1 (current loop integral time)	0 to 500 ms	0.1 ms	5 ms		280, 317	
	826	T004	Torque setting filter 1	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999		480	
	827	G216	Torque detection filter 1	0 to 0.1 s	0.001 s	0 s		316	
	828	G224	Model speed control gain	0 to 1000\%	1\%	60\%		253, 312	
	829*9	A546	Number of machine end encoder pulses	0 to 4096, 9999	1	9999		554	
	830	G311	Speed control P gain 2	0 to 1000\%, 9999	1\%	9999		244	
	831	G312	Speed control integral time 2	0 to $20 \mathrm{~s}, 9999$	0.001 s	9999		244	
	832	T005	Speed setting filter 2	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999		480	
	833*9	G315	Speed detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	0.001 s	9999		316	
	834	G313	Torque control P gain 2	0 to 500\%, 9999	1\%	9999		280	
	835	G314	Torque control integral time 2	0 to $500 \mathrm{~ms}, 9999$	0.1 ms	9999		280	
	836	T006	Torque setting filter 2	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999		480	
	837	G316	Torque detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	0.001 s	9999		316	
	840	G230	Torque bias selection	0 to 3, 24, 25, 9999	1	9999		255	
	841	G231	Torque bias 1	600 to 1400\%, 9999	1\%	9999		255	
	842	G232	Torque bias 2	600 to 1400\%, 9999	1\%	9999		255	
	843	G233	Torque bias 3	600 to 1400\%, 9999	1\%	9999		255	
	844	G234	Torque bias filter	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999		255	
	845	G235	Torque bias operation time	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999		255	
	846	G236	Torque bias balance compensation	0 to $10 \mathrm{~V}, 9999$	0.1 V	9999		255	
	847	G237	Fall-time torque bias terminal 1 bias	0 to 400\%, 9999	1\%	9999		255	
	848	G238	Fall-time torque bias terminal 1 gain	0 to 400\%, 9999	1\%	9999		255	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting	
						FM	CA			
	849	T007	Analog input offset adjustment	0 to 200\%	0.1\%	100\%		480		
	850	G103	Brake operation selection	0 to 2	1	0		681		
	$851{ }^{*} 9$	C240	Control terminal optionNumber of encoder pulses	0 to 4096	1	2048		93		
	$852^{*} 9$	C241	Control terminal optionEncoder rotation direction	0, 1, 100, 101	1	1		93		
	853 * ${ }^{\text {a }}$	H417	Speed deviation time	0 to 100 s	0.1 s	1 s		259		
	854	G217	Excitation ratio	0 to 100\%	1\%	100\%		316		
	855^{*}	C248	Control terminal optionSignal loss detection enable/disable selection	0, 1	1	0		530		
	858	T040	Terminal 4 function assignment	0, 1, 4, 9999	1	0		$\begin{aligned} & 235,409, \\ & 477 \end{aligned}$		
			Torque current/Rated PM	0 to 500 A, 9999*2	$0.01 \mathrm{~A}^{* 2}$	9999		509, 519		
	859	C	motor current	0 to 3600 A, 9999*3	$0.1 \mathrm{~A}^{*}$					
	860	C226	Second motor torque current/Rated PM motor current	0 to 500 A, 9999*2	$0.01 \mathrm{~A}^{* 2}$	9999			509, 519	
				0 to 3600 A, 9999*3	$0.1 \mathrm{~A}^{* 3}$					
	$862 * 9$	C242	Encoder option selection	0, 1	1	0		220		
	863 *9	M600	Control terminal optionEncoder pulse division ratio	1 to 32767	1	1		472		
	864	M470	Torque detection	0 to 400\%	0.1\%	150\%		465		
	865	M446	Low speed detection	0 to 590 Hz	0.01 Hz	1.5 Hz		461		
	866	M042	Torque monitoring reference	0 to 400\%	0.1\%	150\%		435		
-	867	M321	AM output filter	0 to 5 s	0.01 s	0.01 s		440		
-	868	T010	Terminal 1 function assignment	0 to 6, 9999	1	0		$\begin{aligned} & 235,409, \\ & 477 \end{aligned}$		
-	869	M334	Current output filter	0 to 5 s	0.01 s	-	0.02 s	440		
-	870	M440	Speed detection hysteresis	0 to 5 Hz	0.01 Hz	0 Hz		461		
	872*15	H201	Input phase loss protection selection	0, 1	1	0		404		
	$873 * 9$	H415	Speed limit	0 to 400 Hz	0.01 Hz	20 Hz		259		
	874	H730	OLT level setting	0 to 400\%	0.1\%	150\%		235		
	875	H030	Fault definition	0, 1	1	0		401		
-	$876{ }^{*} 9$	H022	Thermal protector input	0, 1	1	1		394		
	877	G220	Speed feed forward control/model adaptive speed control selection	0 to 2	1	0		253, 312		
	878	G221	Speed feed forward filter	0 to 1 s	0.01 s	0 s		253		
	879	G222	Speed feed forward torque limit	0 to 400\%	0.1\%	150\%		253		
	880	C114	Load inertia ratio	0 to 200 times	0.1 times	7 times		$\begin{aligned} & 244,253, \\ & 312 \end{aligned}$		
	881	G223	Speed feed forward gain	0 to 1000\%	1\%	0\%		253		

	Pr.	Pr. group	Name	Setting range	\qquad	Initial value		Refer to page	Customer setting
						FM	CA		
	$\begin{aligned} & \text { C0 } \\ & (900)^{*} 10 \end{aligned}$	M310	FM/CA terminal calibration	-	-	-		440	
	$\begin{aligned} & \text { C1 } \\ & (901)^{* 10} \end{aligned}$	M320	AM terminal calibration	-	-	-		440	
	$\begin{aligned} & \text { C2 } \\ & (902)^{* 10} \end{aligned}$	T200	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz		482	
	$\begin{aligned} & \hline \text { C3 } \\ & \left(\mathbf{9 0 2)}{ }^{*} 10\right. \end{aligned}$	T201	Terminal 2 frequency setting bias	0 to 300\%	0.1\%	0\%		482	
	$\begin{aligned} & 125 \\ & (903)^{* 10} \end{aligned}$	T202	Terminal 2 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	482	
	$\begin{aligned} & \hline \text { C4 } \\ & (903)^{*} 10 \\ & \hline \end{aligned}$	T203	Terminal 2 frequency setting gain	0 to 300\%	0.1\%	100\%		482	
	$\begin{aligned} & \text { C5 } \\ & (904)^{* 10} \end{aligned}$	T400	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz		482	
	$\begin{aligned} & \hline \text { C6 } \\ & (904)^{*} 10 \\ & \hline \end{aligned}$	T401	Terminal 4 frequency setting bias	0 to 300\%	0.1\%	20\%		482	
	$\begin{aligned} & 126 \\ & (905)^{* 10} \\ & \hline \end{aligned}$	T402	Terminal 4 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	482	
	$\begin{aligned} & \hline \text { C7 } \\ & (905)^{*} 10 \\ & \hline \end{aligned}$	T403	Terminal 4 frequency setting gain	0 to 300\%	0.1\%	100\%		482	
	$\begin{aligned} & \text { C12 } \\ & (917)^{* 10} \end{aligned}$	T100	Terminal 1 bias frequency (speed)	0 to 590 Hz	0.01 Hz	0 Hz		482	
	$\begin{aligned} & \text { C13 } \\ & (917)^{* 10} \end{aligned}$	T101	Terminal 1 bias (speed)	0 to 300\%	0.1\%	0\%		482	
	$\begin{aligned} & \text { C14 } \\ & (918)^{* 10} \end{aligned}$	T102	Terminal 1 gain frequency (speed)	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	482	
	$\begin{aligned} & \text { C15 } \\ & (918)^{* 10} \end{aligned}$	T103	Terminal 1 gain (speed)	0 to 300\%	0.1\%	100\%		482	
	$\begin{aligned} & \hline \text { C16 } \\ & (919)^{* 10} \end{aligned}$	T110	Terminal 1 bias command (torque)	0 to 400\%	0.1\%	0\%		487	
	$\begin{aligned} & \text { C17 } \\ & (919)^{* 10} \end{aligned}$	T111	Terminal 1 bias (torque)	0 to 300\%	0.1\%	0\%		487	
	$\begin{aligned} & \hline \mathbf{C} 18 \\ & (920)^{* 10} \\ & \hline \end{aligned}$	T112	Terminal 1 gain command (torque)	0 to 400\%	0.1\%	150\%		487	
	$\begin{aligned} & \text { C19 } \\ & (920)^{* 10} \end{aligned}$	T113	Terminal 1 gain (torque)	0 to 300\%	0.1\%	100\%		487	
	$\begin{aligned} & \text { C8 } \\ & (930)^{* 10} \end{aligned}$	M330	Current output bias signal	0 to 100\%	0.1\%	-	0\%	440	
	$\begin{aligned} & \text { C9 } \\ & (930)^{* 10} \end{aligned}$	M331	Current output bias current	0 to 100\%	0.1\%	-	0\%	440	
	$\begin{aligned} & \hline \text { C10 } \\ & (931)^{* 10} \\ & \hline \end{aligned}$	M332	Current output gain signal	0 to 100\%	0.1\%	-	100\%	440	
	$\begin{aligned} & \hline \text { C11 } \\ & (931)^{\star 10} \\ & \hline \end{aligned}$	M333	Current output gain current	0 to 100\%	0.1\%	-	100\%	440	
	$\begin{aligned} & \hline \text { C38 } \\ & \text { (932) }^{* 10} \\ & \hline \end{aligned}$	T410	Terminal 4 bias command (torque)	0 to 400\%	0.1\%	0\%		487	
	$\begin{aligned} & \hline \text { C39 } \\ & \text { (932) }^{* 10} \\ & \hline \end{aligned}$	T411	Terminal 4 bias (torque)	0 to 300\%	0.1\%	20\%		487	
	$\begin{aligned} & \hline \text { C40 } \\ & (933)^{* 10} \\ & \hline \end{aligned}$	T412	Terminal 4 gain command (torque)	0 to 400\%	0.1\%	150\%		487	
	$\begin{aligned} & \text { C41 } \\ & (933)^{*} 10 \end{aligned}$	T413	Terminal 4 gain (torque)	0 to 300\%	0.1\%	100\%		487	

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting
						FM	CA		
$\begin{aligned} & \text { シ } \\ & \text { © } \\ & \text { 트 } \end{aligned}$	1020	A900	Trace operation selection	0 to 4	1	0		616	
	1021	A901	Trace mode selection	0 to 2	1	0		616	
	1022	A902	Sampling cycle	0 to 9	1	2		616	
	1023	A903	Number of analog channels	1 to 8	1	4		616	
	1024	A904	Sampling auto start	0, 1	1	0		616	
	1025	A905	Trigger mode selection	0 to 4	1	0		616	
	1026	A906	Number of sampling before trigger	0 to 100\%	1\%	90\%		616	
	1027	A910	Analog source selection (1ch)			201		616	
	1028	A911	Analog source selection (2ch)			202		616	
	1029	A912	Analog source selection (3ch)	1 to 3,5 to 14,17 to 20 ,		203		616	
	1030	A913	Analog source selection (4ch)	22 to 24,32 to 36,39 to 42, 46, 52 to 54, 61, 62,	1	204		616	
	1031	A914	Analog source selection (5ch)	98, 201 to 213,222 to 227, 230 to 232, 235 to	1	205		616	
	1032	A915	Analog source selection (6ch)			206		616	
	1033	A916	Analog source selection (7ch)			207		616	
	1034	A917	Analog source selection (8ch)			208		616	
	1035	A918	Analog trigger channel	1 to 8	1	1		616	
	1036	A919	Analog trigger operation selection	0, 1	1	0		616	
	1037	A920	Analog trigger level	600 to 1400	1	1000		616	
	1038	A930	Digital source selection (1ch)	1 to 255	1	1		616	
	1039	A931	Digital source selection (2ch)			2		616	
	1040	A932	Digital source selection (3ch)			3		616	
	1041	A933	Digital source selection (4ch)			4		616	
	1042	A934	Digital source selection (5ch)			5		616	
	1043	A935	Digital source selection (6ch)			6		616	
	1044	A936	Digital source selection (7ch)			7		616	
	1045	A937	Digital source selection (8ch)			8		616	
	1046	A938	Digital trigger channel	1 to 8	1	1		616	
	1047	A939	Digital trigger operation selection	0, 1	1	0		616	
-	1048	E106	Display-off waiting time	0 to 60 min	1 min	0		323	
-	1049	E110	USB host reset	0, 1	1	0		324	
	1072	A310	DC brake judgment time for anti-sway control operation	0 to 10 s	0.1 s	3 s		553	
	1073	A311	Anti-sway control operation selection	0, 1	1	0		553	
	1074	A312	Anti-sway control frequency	0.05 to 3 Hz , 9999	0.001 Hz	1 Hz		553	
	1075	A313	Anti-sway control depth	0 to 3	1	0		553	
	1076	A314	Anti-sway control width	0 to 3	1	0		553	
	1077	A315	Rope length	0.1 to 50 m	0.1 m	1 m		553	
	1078	A316	Trolley weight	1 to 50000 kg	1 kg	1 kg		553	
	1079	A317	Load weight	1 to 50000 kg	1 kg	1 kg		553	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
-	1103	F040	Deceleration time at emergency stop	0 to 3600 s	0.1 s	5 s		349	
$\begin{aligned} & \text { 온 } \\ & \text { 른 } \\ & \text { 을 } \end{aligned}$	1106	M050	Torque monitor filter	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999		424	
	1107	M051	Running speed monitor filter	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999		424	
	1108	M052	Excitation current monitor filter	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999		424	
-	1113	H414	Speed limit method selection	0 to 2, 10, 9999	1	0		274	
-	1114	D403	Torque command reverse selection	0, 1	1	1		270	
-	1115	G218	Speed control integral term clear time	0 to 9998 ms	1 ms	0 s		244	
-	1116	G206	Constant output range speed control P gain compensation	0 to 100\%	0.1\%	0\%		244	
-	1117	G261	Speed control P gain 1 (per-unit system)	0 to 300, 9999	0.01	9999		244	
-	1118	G361	Speed control P gain 2 (per-unit system)	0 to 300, 9999	0.01	9999		244	
-	1119	G262	Model speed control gain (per-unit system)	0 to 300, 9999	0.01	9999		253	
-	1121	G260	Per-unit speed control reference frequency	0 to 400 Hz	0.01 Hz	$\begin{array}{\|l\|} \hline 120 \mathrm{~Hz}^{*} 2 \\ \hline 60 \mathrm{~Hz}^{* 3} \\ \hline \end{array}$		244	
$\overline{0}$릉0000	1134	A605	PID upper limit manipulated value	0 to 100\%	0.1\%	100\%		590	
	1135	A606	PID lower limit manipulated value	0 to 100\%	0.1\%	100\%		590	
	1136	A670	Second PID display bias coefficient	0 to 500, 9999	0.01	9999		584	
	1137	A671	Second PID display bias analog value	0 to 300\%	0.1\%	20\%		584	
	1138	A672	Second PID display gain coefficient	0 to 500, 9999	0.01	9999		584	
	1139	A673	Second PID display gain analog value	0 to 300\%	0.1\%	100\%		584	
	1140	A664	Second PID set point/ deviation input selection	1 to 5	1	2		570	
	1141	A665	Second PID measured value input selection	1 to 5	1	3		570	
	1142	A640	Second PID unit selection	0 to 43, 9999	1	9999		570	
	1143	A641	Second PID upper limit	0 to 100\%, 9999	0.1\%	9999		570	
	1144	A642	Second PID lower limit	0 to 100\%, 9999	0.1\%	9999		570	
	1145	A643	Second PID deviation limit	0 to 100\%, 9999	0.1\%	9999		570	
	1146	A644	Second PID signal operation selection	0 to 3, 10 to 13	1	0		570	
	1147	A661	Second output interruption detection time	0 to 3600 s, 9999	0.1 s	1		570	
	1148	A662	Second output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz		570	
	1149	A663	Second output interruption cancel level	900 to 1100\%	0.1\%	1000\%		570	
$\underset{\text { U }}{\substack{0}}$	$\begin{aligned} & 1150 \text { to } \\ & 1199 \end{aligned}$	$\begin{array}{\|l} \hline \text { A810 to } \\ \text { A859 } \end{array}$	PLC function user parameters 1 to 50	0 to 65535	1	0		614	
-	1220	B100	Target position/speed selection	0 to 2	1	0		853	

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting
						FM	CA		
	1221	B101	Start command edge detection selection	0, 1	1	0		288	
	1222	B120	First positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1223	B121	First positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1224	B122	First positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1225	B123	First positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1226	B124	Second positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1227	B125	Second positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1228	B126	Second positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1229	B127	Second positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1230	B128	Third positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1231	B129	Third positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1232	B130	Third positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1233	B131	Third positioning subfunction	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		288	
	1234	B132	Fourth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1235	B133	Fourth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1236	B134	Fourth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1237	B135	Fourth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1238	B136	Fifth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1239	B137	Fifth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1240	B138	Fifth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1241	B139	Fifth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1242	B140	Sixth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1243	B141	Sixth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1244	B142	Sixth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1245	B143	Sixth positioning subfunction	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		288	
	1246	B144	Seventh positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1247	B145	Seventh positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1248	B146	Seventh positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1249	B147	Seventh positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1250	B148	Eighth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1251	B149	Eighth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1252	B150	Eighth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	

	Pr.	Pr. group	Name	Setting range	Minimumsettingincrements	Initial value		Refer to page	Customer setting
						FM	CA		
	1253	B151	Eighth positioning subfunction	0 to 2,10 to 12,100 to 102, 110 to 112	1	10		288	
	1254	B152	Ninth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1255	B153	Ninth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1256	B154	Ninth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1257	B155	Ninth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1258	B156	Tenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1259	B157	Tenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1260	B158	Tenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1261	B159	Tenth positioning subfunction	0 to 2,10 to 12,100 to 102, 110 to 112	1	10		288	
	1262	B160	Eleventh positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1263	B161	Eleventh positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1264	B162	Eleventh positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1265	B163	Eleventh positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1266	B164	Twelfth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1267	B165	Twelfth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1268	B166	Twelfth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1269	B167	Twelfth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1270	B168	Thirteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1271	B169	Thirteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1272	B170	Thirteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1273	B171	Thirteenth positioning sub-function	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10		288	
	1274	B172	Fourteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1275	B173	Fourteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1276	B174	Fourteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1277	B175	Fourteenth positioning sub- function	0 to 2, 10 to 12,100 to 102, 110 to 112	1	10		288	
	1278	B176	Fifteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1279	B177	Fifteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		288	
	1280	B178	Fifteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		288	
	1281	B179	Fifteenth positioning subfunction	$\begin{aligned} & 0,2,10,12,100,102 \\ & 110,112 \end{aligned}$	1	10		288	
	1282	B180	Home position return method selection	0 to 6	1	4		288	
	1283	B181	Home position return speed	0 to 30 Hz	0.01 Hz	2 Hz		288	

	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer to page	Customer setting
						FM	CA		
Simple position control	1284	B182	Home position return creep speed	0 to 10 Hz	0.01 Hz	0.5 Hz		288	
	1285	B183	Home position shift amount lower 4 digits	0 to 9999	1	0		288	
	1286	B184	Home position shift amount upper 4 digits	0 to 9999	1	0		288	
	1287	B185	Travel distance after proximity dog ON lower 4 digits	0 to 9999	1	2048		288	
	1288	B186	Travel distance after proximity dog ON upper 4 digits	0 to 9999	1	0		288	
	1289	B187	Home position return stopper torque	0 to 200\%	0.1\%	40\%		288	
	1290	B188	Home position return stopper waiting time	0 to 10 s	0.1 s	0.5 s		288	
	1292	B190	Position control terminal input selection	0, 1	1	0		288	
	1293	B191	Roll feeding mode selection	0, 1	1	0		288	
	1294	B192	Position detection lower 4 digits	0 to 9999	1	0		311	
	1295	B193	Position detection upper 4 digits	0 to 9999	1	0		311	
	1296	B194	Position detection selection	0 to 2	1	0		311	
	1297	B195	Position detection hysteresis width	0 to 32767	1	0		311	
-	1298	B013	Second position control gain	0 to $150 \mathrm{~s}^{-1}$	$1 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$		312	
-	1299	G108	Second pre-excitation selection	0, 1	1	0		681	
-	$\begin{aligned} & 1300 \text { to } \\ & 1343 \end{aligned}$	$\begin{aligned} & \text { N500 to } \\ & \text { N543 } \end{aligned}$	Communication option parameters. For details, refer to the Instruction Manual of the option.						
-	1348	G263	P/PI control switchover frequency	0 Hz	0.01 Hz	0 to 400		244	
-	1349	G264	Emergency stop operation selection	0	1	0, 1, 10		349	
-	$\begin{aligned} & 1350 \text { to } \\ & 1359 \end{aligned}$	N550 to N559	Communication option parameters. For details, refer to the Instruction Manual of the option.						
-	1410	A170	Starting times lower 4 digits	0 to 9999	1	0		545	
-	1411	A171	Starting times upper 4 digits	0 to 9999	1	0		545	
-	1412	C135	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999		519	
-	1413	C235	Second motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999		519	

	Pr.	Pr. group	Name	Setting range		Initial value		Refer to page	Customer setting
						FM	CA		
	1480	H520	Load characteristics measurement mode	0, 1 (2 to 5, 81 to 85)	1	0		417	
	1481	H521	Load characteristics load reference 1	0 to 400\%, 8888, 9999	0.1\%	9999		417	
	1482	H522	Load characteristics load reference 2	0 to 400\%, 8888, 9999	0.1\%	9999		417	
	1483	H523	Load characteristics load reference 3	0 to 400\%, 8888, 9999	0.1\%	9999		417	
	1484	H524	Load characteristics load reference 4	0 to 400\%, 8888, 9999	0.1\%	9999		417	
	1485	H525	Load characteristics load reference 5	0 to 400\%, 8888, 9999	0.1\%	9999		417	
	1486	H526	Load characteristics maximum frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	417	
	1487	H527	Load characteristics minimum frequency	0 to 590 Hz	0.01 Hz	6 Hz		417	
	1488	H531	Upper limit warning detection width	0 to 400\%, 9999	0.1\%	20\%		417	
	1489	H532	Lower limit warning detection width	0 to 400\%, 9999	0.1\%	20\%		417	
	1490	H533	Upper limit fault detection width	0 to 400\%, 9999	0.1\%	9999		417	
	1491	H534	Lower limit fault detection width	0 to 400\%, 9999	0.1\%	9999		417	
	1492	H535	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	0.1 s	1 s		417	
-	1499	E415	Parameter for manufacturer setting. Do not set.						
	Pr.CLR		Parameter clear	(0), 1	1	0		707	
	ALL.CL		All parameter clear	(0), 1	1	0		707	
	Err.CL		Fault history clear	(0), 1	1	0		740	
-	Pr.CPY		Parameter copy	(0), 1 to 3	1	0		708	
-	Pr.CHG		Initial value change list	-	1	0		715	
-	IPM		IPM initialization	0,3003	1	0		224	
-	AUTO		Automatic parameter setting	-	-	-		333	
-	Pr.MD		Group parameter setting	(0), 1, 2	1	0		195	

*1 Differs according to the capacity.
6\%: FR-A820-00077(0.75K) or lower, FR-A840-00038(0.75K) or lower
4\%: FR-A820-00105(1.5K) to FR-A820-00250(3.7K), FR-A840-00052(1.5K) to FR-A840-00126(3.7K)
3\%: FR-A820-00340(5.5K), FR-A820-00490(7.5K), FR-A840-00170(5.5K), FR-A840-00250(7.5K)
2\%: FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K)
1\%: FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher
*2 The setting range or initial value for the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower.
*3 The setting range or initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher.
*4 The initial value for the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.
*5 Initial value for the FR-A820-00630(11K) or higher and FR-A840-00310(11K) and higher.
*6 Differs according to the capacity.
4\%: FR-A820-00490(7.5K) or lower, FR-A840-00250(7.5K) or lower
2\%: FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K)
1\%: FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher
*7 The value for the 200 V class.
*8 The value for the 400 V class.
*9 The setting is available only when a plug-in option that supports Vector control is installed. For the corresponding parameters of each option, refer to the detail page.
*10 The parameter number in parentheses is that used (displayed) on the LCD operation panel and the parameter unit.
*11 The setting range or initial value for the standard model.
*12 The setting range or initial value for the separated converter type.
*13 The setting range or initial value for the IP55 compatible model.
*14 The setting is available only for standard models.
*15 The setting is available only for standard models and IP55 compatible models.
*16 The setting is available when the PLC function is enabled.
*17 The setting is available only for the FR-A800-GF or when a compatible plug-in option is installed.

5.1.2 Use of a function group number for the identification of parameters

A parameter identification number shown on the PU can be switched from a parameter number to a function group number. As parameters are grouped by function and displayed by the group, the related parameters can be set continually at a time.

- Changing a parameter identification number to a function group number

Pr.MD setting	Description
0	The setting of parameter identification number remains the same as the last setting.
1	The parameter number is used for the identification of parameters, and displayed in numerical order.
2	The function group number is used for the identification of parameters, and displayed in alphanumeric order.

Operating procedure

1. Turning $O N$ the power of the inverter

The operation panel is in the monitor mode.
2. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears on the 12segment LCD display.)
3. Selecting a parameter

Turn
Press SET to confirm the selection. The setting "
4. Selecting the use of the function group number

Turn (1) to change the set value to " setting. "

Selecting a parameter by function group number to change its setting

The following shows the procedure to change the setting of P.H400 (Pr.1) Maximum frequency.

Operating procedure

1. Turning ON the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press $\begin{gathered}\text { PU } \\ \text { EXT }\end{gathered}$ to choose the PU operation mode. [PU] indicator turns ON.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears on the 12segment LCD display.)
4. Enabling the function group selection

5. Enabling the function group selection

Turn *) until "F-1-1-1 $1-1$. . (Protective function parameter 4) appears. Press 5 SET to confirm the selection. " $=1-1-1-1-1---{ }^{1}-$ " will appear, which shows that the operation panel is ready for selection of a number in the group of Protective function parameter 4.
6. Selecting a parameter

Turn $\%$ until "-10) value."
7. Changing the setting value
 "

5.1.3 Parameter list (by function group number)

- E: Environment setting parameters

Parameters for the inverter operating environment.

Pr. group	Pr.	Name	Refer to page
E000	168	Parameter for manufacturer setting. Do not set.	
E001	169	Parameter for manufacturer setting. Do not set.	
E020	1006	Clock (year)	318
E021	1007	Clock (month, day)	318
E022	1008	Clock (hour, minute)	318
E023	269	Parameter for manufacturer setting. Do not set.	
E080	168	Parameter for manufacturer setting. Do not set.	
E081	169	Parameter for manufacturer setting. Do not set.	
E100	75	Reset selection	320
E101	75	Disconnected PU detection	320
E102	75	PUStop selection	320
E103	145	PU display language selection	322
E104	990	PU buzzer control	322
E105	991	PU contrast adjustment	322
E106	1048	Display-off waiting time	323
E107	75	Reset limit	320
E108	1000	Direct setting selection	323
E110	1049	USB host reset	324
E200	161	Frequency setting/key lock operation selection	324
E201	295	Frequency change increment amount setting	325
E300	30	Regenerative function selection	689
E301	570	Multiple rating setting	326
E302	977	Input voltage mode selection	327
E400	77	Parameter write selection	328
E410	296	Password lock level	331
E411	297	Password lock/unlock	331
E415	1499	Parameter for manufacturer setting. Do not set.	
E420	888	Free parameter 1	333
E421	889	Free parameter 2	333
E430	998	PM parameter initializationSimple.	224
E431	999	Automatic parameter setting Simple	333
E440	160	User group read selection Simple	337
E441	172	User group registered display/ batch clear	337
E442	173	User group registration	337
E443	174	User group clear	337
E490	989	Parameter copy alarm release	708
E600	72	PWM frequency selection	339
E601	240	Soft-PWM operation selection	339
E602	260	PWM frequency automatic switchover	339

Pr. group	Pr.	Name	Refer to page
E700	255	Life alarm status display	341
E701	$256^{* 4}$	Inrush current limit circuit life display	341
E702	257	Control circuit capacitor life display	341
E703	$258^{* 4}$	Main circuit capacitor life display	341
E704	$259^{* 4}$	Main circuit capacitor life measuring	341
E710	503	Maintenance timer 1	345
E711	504	Maintenance timer 1 warning output set time	345
E712	686	Maintenance timer 2	345
E713	687	Maintenance timer 2 warning output set time	345
E714	688	Maintenance timer 3	345
E715	689	Maintenance timer 3 warning output set time	345
E720	555	Current average time	346
E721	556	Data output mask time	346
E722	557	Current average value monitor signal output reference current	346

- F: Parameters for the settings of the acceleration/deceleration time and the acceleration/deceleration pattern

Parameters for the motor acceleration/deceleration characteristics.

Pr. group	Pr.	Name	Refer to page
F000	$\mathbf{2 0}$	Acceleration/deceleration reference frequency	349
F001	$\mathbf{2 1}$	Acceleration/deceleration time increments	349
F002	$\mathbf{1 6}$	Jog acceleration/deceleration time	390
F003	$\mathbf{6 1 1}$	Acceleration time at a restart	597, 604
F010	$\mathbf{7}$	Acceleration time Simple.	349
F011	$\mathbf{8}$	Deceleration time Simple.	349
F020	$\mathbf{4 4}$	Second acceleration/ deceleration time	349, 590
F021	$\mathbf{4 5}$	Second deceleration time	349, 590
F022	$\mathbf{1 4 7}$	Acceleration/deceleration time\| switching frequency	349
F030	$\mathbf{1 1 0}$	Third acceleration/ deceleration time	349
F031	$\mathbf{1 1 1}$	Third deceleration time	349
F040	$\mathbf{1 1 0 3}$	Deceleration time at emergency stop	349
F070	$\mathbf{7 9 1}$	Acceleration time in low-speed range	349

Pr. group	Pr.	Name	Refer to page
F071	792	Deceleration time in low-speed range	349
F100	29	Acceleration/deceleration pattern selection	354
F101	59	Remote function selection	359
F102	13	Starting frequency	$\begin{aligned} & 363, \\ & 364 \end{aligned}$
F103	571	Holding time at a start	363
F200	140	Backlash acceleration stopping frequency	354
F201	141	Backlash acceleration stopping time	354
F202	142	Backlash deceleration stopping frequency	354
F203	143	Backlash deceleration stopping time	354
F300	380	Acceleration S-pattern 1	354
F301	381	Deceleration S-pattern 1	354
F302	382	Acceleration S-pattern 2	354
F303	383	Deceleration S-pattern 2	354
F400	516	S-pattern time at a start of acceleration	354
F401	517	S-pattern time at a completion of acceleration	354
F402	518	S-pattern time at a start of deceleration	354
F403	519	S-pattern time at a completion of deceleration	354
F500	292	Automatic acceleration/ deceleration	$\begin{aligned} & 365, \\ & 368, \\ & 541 \end{aligned}$
F510	61	Reference current	$\begin{aligned} & 365, \\ & 368 \end{aligned}$
F511	62	Reference value at acceleration	365
F512	63	Reference value at deceleration	365
F513	293	Acceleration/deceleration separate selection	365
F520	64	Starting frequency for elevator mode	368

- D: Parameters for the setting of operation command and frequency command

Parameters for setting the command source to the inverter, and the motor driving frequency and torque.

Pr. group	Pr.	Name	Refer to page
D000	79	Operation mode selectionSimple	370, 378
D001	340	Communication startup mode selection	378
D010	338	Communication operation command source	380
D011	339	Communication speed command source	380
D012	$\mathbf{5 5 0}$	NET mode operation command source selection	380

Pr. group	Pr.	Name	Refer to page
D013	551	PU mode operation command source selection	380
D020	78	Reverse rotation prevention selection	386
D030	811	Set resolution switchover	$\begin{aligned} & 235, \\ & 422 \end{aligned}$
D100	291	Pulse train I/O selection	$\begin{aligned} & 386, \\ & 435 \end{aligned}$
D101	384	Input pulse division scaling factor	386
D110	385	Frequency for zero input pulse	386
D111	386	Frequency for maximum input pulse	386
D120	432*1	Pulse train torque command bias	270
D121	433*1	Pulse train torque command gain	270
D200	15	Jog frequency	390
D300	28	Multi-speed input compensation selection	391
D301	4	Multi-speed setting (high speed) Simple	391
D302	5	Multi-speed setting (middle speed)Simple	391
D303	6	Multi-speed setting (low speed)Simple	391
$\begin{array}{\|l} \hline \text { D304 to } \\ \text { D307 } \\ \hline \end{array}$	24 to 27	Multi-speed setting (4 speed to 7 speed)	391
$\begin{aligned} & \text { D308 to } \\ & \text { D315 } \end{aligned}$	$\begin{aligned} & 232 \text { to } \\ & 239 \end{aligned}$	Multi-speed setting (8 speed to 15 speed)	391
D400	804	Torque command source selection	270
D401	805	Torque command value (RAM)	270
D402	806	Torque command value (RAM, EEPROM)	270
D403	1114	Torque command reverse selection	270

H: Protective function parameter

Parameters to protect the motor and the inverter.

Pr. group	Pr.	Name	Refer to page
H000	$\mathbf{9}$	Electronic thermal O/L relay Simple.	394, 509, 519
H001	$\mathbf{6 0 0}$	First free thermal reduction frequency 1	394
H002	$\mathbf{6 0 1}$	First free thermal reduction ratio 1	394
H003	$\mathbf{6 0 2}$	First free thermal reduction frequency 2	394
H004	$\mathbf{6 0 3}$	First free thermal reduction ratio 2	394
H005	$\mathbf{6 0 4}$	First free thermal reduction frequency 3	394
H006	$\mathbf{6 0 7}$	Motor permissible load level	394
H010	$\mathbf{5 1}$	Second electronic thermal O/L relay	394, 509, 519
H011	$\mathbf{6 9 2}$	Second free thermal reduction frequency 1	394

Pr. group	Pr.	Name	Refer to page
H012	693	Second free thermal reduction ratio 1	394
H013	694	Second free thermal reduction frequency 2	394
H014	695	Second free thermal reduction ratio 2	394
H015	696	Second free thermal reduction frequency 3	394
H016	608	Second motor permissible load level	394
H020	561	PTC thermistor protection level	394
H021	1016	PTC thermistor protection detection time	394
H022	876*1	Thermal protector input	394
H030	875	Fault definition	401
H100	244	Cooling fan operation selection	402
H101	249	Earth (ground) fault detection at start	403
H102	598	Undervoltage level	403
H103	997	Fault initiation	404
H200	251	Output phase loss protection selection	404
H201	872*4	Input phase loss protection selection	404
H300	65	Retry selection	405
H301	67	Number of retries at fault occurrence	405
H302	68	Retry waiting time	405
H303	69	Retry count display erase	405
H400	1	Maximum frequency Simple.	407
H401	2	Minimum frequency Simple	407
H402	18	High speed maximum frequency	407
H410	807	Speed limit selection	274
H411	808	Forward rotation speed limit/ speed limit	274
H412	809	Reverse rotation speed limit/ reverse-side speed limit	274
H414	1113	Speed limit method selection	274
H415	$873{ }^{* 1}$	Speed limit	259
H416	285	Speed deviation excess detection frequency	$\begin{aligned} & 259 \\ & 700 \end{aligned}$
H417	$853{ }^{* 1}$	Speed deviation time	259
H420	31	Frequency jump 1A	408
H421	32	Frequency jump 1B	408
H422	33	Frequency jump 2A	408
H423	34	Frequency jump 2B	408
H424	35	Frequency jump 3A	408
H425	36	Frequency jump 3B	408
H429	552	Frequency jump range	408
H500	22	Stall prevention operation level (Torque limit level)	$\begin{array}{\|l} 235, \\ 409 \end{array}$
H501	156	Stall prevention operation selection	409
H520	1480	Load characteristics measurement mode	417
H521	1481	Load characteristics load reference 1	417

Pr. group	Pr.	Name	Refer to page
H522	1482	Load characteristics load reference 2	417
H523	1483	Load characteristics load reference 3	417
H524	1484	Load characteristics load reference 4	417
H525	1485	Load characteristics load reference 5	417
H526	1486	Load characteristics maximum frequency	417
H527	1487	Load characteristics minimum frequency	417
H531	1488	Upper limit warning detection width	417
H532	1489	Lower limit warning detection width	417
H533	1490	Upper limit fault detection width	417
H534	1491	Lower limit fault detection width	417
H535	1492	Load status detection signal delay time / load reference measurement waiting time	417
H600	48	Second stall prevention operation level	409
H601	49	Second stall prevention operation frequency	409
H602	114	Third stall prevention operation level	409
H603	115	Third stall prevention operation frequency	409
H610	23	Stall prevention operation level compensation factor at double speed	409
H611	66	Stall prevention operation reduction starting frequency	409
H620	148	Stall prevention level at 0 V input	409
H621	149	Stall prevention level at 10 V input	409
H631	154	Voltage reduction selection during stall prevention operation	409
H700	810	Torque limit input method selection	235
H701	812	Torque limit level (regeneration)	235
H702	813	Torque limit level (3rd quadrant)	235
H703	814	Torque limit level (4th quadrant)	235
H704	801	Output limit level	$\begin{aligned} & 235, \\ & 270 \end{aligned}$
H710	815	Torque limit level 2	235
H720	816	Torque limit level during acceleration	235
H721	817	Torque limit level during deceleration	235
H730	874	OLT level setting	235
H800	374	Overspeed detection level	421
H881	690	Deceleration check time	260

- M: Monitoring and its output signal

Parameters for the settings regarding the monitoring to check the inverter's operating status and the output signals for the monitoring

Pr. group	Pr.	Name	$\begin{aligned} & \text { Refer } \\ & \text { to } \\ & \text { page } \end{aligned}$
M000	37	Speed display	422
M001	505	Speed setting reference	422
M002	144	Speed setting switchover	422
M020	170	Watt-hour meter clear	424
M021	563	Energization time carryingover times	424
M022	268	Monitor decimal digits selection	424
M023	891	Cumulative power monitor digit shifted times	$\begin{aligned} & 424, \\ & 444 \end{aligned}$
M030	171	Operation hour meter clear	424
M031	564	Operating time carrying-over times	424
M040	55	Frequency monitoring reference	435
M041	56	Current monitoring reference	435
M042	866	Torque monitoring reference	435
M043	241	Analog input display unit switchover	482
M044	290	Monitor negative output selection	$\begin{aligned} & 424, \\ & 435 \end{aligned}$
M045	1018	Monitor with sign selection	424
M050	1106	Torque monitor filter	424
M051	1107	Running speed monitor filter	424
M052	1108	Excitation current monitor filter	424
M060	663	Control circuit temperature signal output level	471
M100	52	Operation panel main monitor selection	424
M101	774	Operation panel monitor selection 1	424
M102	775	Operation panel monitor selection 2	424
M103	776	Operation panel monitor selection 3	424
M104	992	Operation panel setting dial push monitor selection	$\begin{aligned} & 435, \\ & 424 \end{aligned}$
M200	892	Load factor	444
M201	893	Energy saving monitor reference (motor capacity)	444
M202	894	Control selection during commercial power-supply operation	444
M203	895	Power saving rate reference value	444
M204	896	Power unit cost	444
M205	897	Power saving monitor average time	444
M206	898	Power saving cumulative monitor clear	444
M207	899	Operation time rate (estimated value)	444
M300	54	FM/CA terminal function selection	435

Pr. group	Pr.	Name	Refer to page
M301	158	AM terminal function selection	435
M310	$\begin{aligned} & \text { C0 } \\ & (900)^{* 2} \end{aligned}$	FM/CA terminal calibration	440
M320	$\begin{aligned} & \text { C1 } \\ & (901)^{* 2} \end{aligned}$	AM terminal calibration	440
M321	867	AM output filter	440
M330	$\begin{aligned} & \text { C8 } \\ & (930)^{*} 2 \end{aligned}$	Current output bias signal	440
M331	$\begin{aligned} & \text { C9 } \\ & (930)^{* 2} \end{aligned}$	Current output bias current	440
M332	$\begin{aligned} & \text { C10 } \\ & (931)^{\star 2} \end{aligned}$	Current output gain signal	440
M333	$\begin{aligned} & \text { C11 } \\ & (931)^{* 2} \end{aligned}$	Current output gain current	440
M334	869	Current output filter	440
M400	190	RUN terminal function selection	450
M401	191	SU terminal function selection	450
M402	192	IPF terminal function selection	450
M403	193	OL terminal function selection	450
M404	194	FU terminal function selection	450
M405	195	ABC1 terminal function selection	450
M406	196	ABC2 terminal function selection	450
M410	$313^{*} 5^{*} 6$	DO0 output selection	450
M411	$314{ }^{*}{ }^{*} 6$	DO1 output selection	450
M412	$315 * 5{ }^{*} 6$	DO2 output selection	450
M413	$316{ }^{*}$	DO3 output selection	450
M414	317*5	DO4 output selection	450
M415	318*5	DO5 output selection	450
M416	319*5	DO6 output selection	450
M420	320*5	RA1 output selection	450
M421	$321 * 5$	RA2 output selection	450
M422	322*5	RA3 output selection	450
M430	157	OL signal output timer	$\begin{aligned} & 235, \\ & 409 \end{aligned}$
M431	289	Inverter output terminal filter	450
M433	166	Output current detection signal retention time	464
M440	870	Speed detection hysteresis	461
M441	41	Up-to-frequency sensitivity	461
M442	42	Output frequency detection	461
M443	43	Output frequency detection for reverse rotation	461
M444	50	Second output frequency detection	461
M445	116	Third output frequency detection	$\begin{aligned} & 465, \\ & 461 \end{aligned}$
M446	865	Low speed detection	461
M460	150	Output current detection level	464
M461	151	Output current detection signal delay time	464
M462	152	Zero current detection level	464
M463	153	Zero current detection time	464
M464	167	Output current detection operation selection	464

Pr. group	Pr.	Name	Refer to page
M470	864	Torque detection	465
M500	495	Remote output selection	466
M501	496	Remote output data 1	466
M502	497	Remote output data 2	466
M510	76	Fault code output selection	469
M520	799	Pulse increment setting for output power	470
M530	655	Analog remote output selection	467
M531	656	Analog remote output 1	467
M532	657	Analog remote output 2	467
M533	658	Analog remote output 3	467
M534	659	Analog remote output 4	467
M600	$863 * 1$	Control terminal optionEncoder pulse division ratio	472
M601	413*1	Encoder pulse division ratio	472
M610	635*1	Cumulative pulse clear signal selection	306
M611	636*1	Cumulative pulse division scaling factor	306
M612	$637{ }^{* 1}$	Control terminal optionCumulative pulse division scaling factor	306
M613	638*1	Cumulative pulse storage	306

- T: Multi-function input terminal parameters

Parameters for the setting of the input terminals via which commands are given to the inverter.

Pr. group	Pr.	Name	Refer to page
T000	73	Analog input selection	$\begin{aligned} & 473, \\ & 478 \end{aligned}$
T001	267	Terminal 4 input selection	473
T002	74	Input filter time constant	480
T003	822	Speed setting filter 1	480
T004	826	Torque setting filter 1	480
T005	832	Speed setting filter 2	480
T006	836	Torque setting filter 2	480
T007	849	Analog input offset adjustment	480
T010	868	Terminal 1 function assignment	$\begin{aligned} & 235, \\ & 409, \\ & 477 \end{aligned}$
T021	242	Terminal 1 added compensation amount (terminal 2)	478
T022	125	Terminal 2 frequency setting gain frequency Simple.	482
T040	858	Terminal 4 function assignment	$\begin{array}{\|l\|} \hline 235, \\ 409, \\ 477 \\ \hline \end{array}$
T041	243	Terminal 1 added compensation amount (terminal 4)	478
T042	126	Terminal 4 frequency setting gain frequencySimple	482
T050	252	Override bias	478
T051	253	Override gain	478

Pr. group	Pr.	Name	Refer to page
T052	573	4 mA input check selection	492
T053	777	4 mA input fault operation frequency	492
T054	778	4 mA input check filter	492
T100	$\begin{aligned} & \text { C12 } \\ & (917)^{* 2} \end{aligned}$	Terminal 1 bias frequency (speed)	482
T101	$\begin{aligned} & \text { C13 } \\ & (917)^{* 2} \end{aligned}$	Terminal 1 bias (speed)	482
T102	$\begin{aligned} & \text { C14 } \\ & (918)^{* 2} \end{aligned}$	Terminal 1 gain frequency (speed)	482
T103	$\begin{aligned} & \text { C15 } \\ & (918)^{\star 2} \end{aligned}$	Terminal 1 gain (speed)	482
T110	$\begin{aligned} & \text { C16 } \\ & (919)^{* 2} \end{aligned}$	Terminal 1 bias command (torque)	487
T111	$\begin{aligned} & \text { C17 } \\ & (919)^{* 2} \end{aligned}$	Terminal 1 bias (torque)	487
T112	$\begin{aligned} & \text { C18 } \\ & (920)^{* 2} \end{aligned}$	Terminal 1 gain command (torque)	487
T113	$\begin{aligned} & \text { C19 } \\ & (920)^{* 2} \end{aligned}$	Terminal 1 gain (torque)	487
T200	$\begin{aligned} & \text { C2 } \\ & (902)^{* 2} \end{aligned}$	Terminal 2 frequency setting bias frequency	482
T201	$\begin{aligned} & \text { C3 } \\ & (902)^{* 2} \end{aligned}$	Terminal 2 frequency setting bias	482
T202	$\begin{aligned} & 125 \\ & (903)^{* 2} \end{aligned}$	Terminal 2 frequency setting gain frequency	482
T203	$\begin{aligned} & \hline \text { C4 } \\ & (903)^{* 2} \end{aligned}$	Terminal 2 frequency setting gain	482
T400	$\begin{aligned} & \text { C5 } \\ & (904)^{*} 2 \end{aligned}$	Terminal 4 frequency setting bias frequency	482
T401	$\begin{aligned} & \hline \text { C6 } \\ & (904)^{* 2} \end{aligned}$	Terminal 4 frequency setting bias	482
T402	$\begin{aligned} & 126 \\ & (905)^{* 2} \end{aligned}$	Terminal 4 frequency setting gain frequency	482
T403	$\begin{aligned} & \text { C7 } \\ & (905)^{*} 2 \end{aligned}$	Terminal 4 frequency setting gain	482
T410	$\begin{aligned} & \text { C38 } \\ & (932)^{* 2} \end{aligned}$	Terminal 4 bias command (torque)	487
T411	$\begin{aligned} & \text { C39 } \\ & (932)^{* 2} \end{aligned}$	Terminal 4 bias (torque)	487
T412	$\begin{aligned} & \text { C40 } \\ & (933)^{* 2} \end{aligned}$	Terminal 4 gain command (torque)	487
T413	$\begin{aligned} & \text { C41 } \\ & (933)^{*} 2 \end{aligned}$	Terminal 4 gain (torque)	487
T700	178	STF terminal function selection	496
T701	179	STR terminal function selection	496
T702	180	RL terminal function selection	496
T703	181	RM terminal function selection	496
T704	182	RH terminal function selection	496
T705	183	RT terminal function selection	496
T706	184	AU terminal function selection	496
T707	185	JOG terminal function selection	496
T708	186	CS terminal function selection	496
T709	187	MRS terminal function selection	496

Pr. group	Pr.	Name	Refer to page
T710	188	STOP terminal function selection	496
T711	189	RES terminal function selection	496
T720	17	MRS input selection	499
T721	599	X10 terminal input selection	689
T722	$\mathbf{6 0 6}$	Power failure stop external signal input selection	610
T730	$\mathbf{1 5 5}$	RT signal function validity condition selection	500
T740	$\mathbf{6 9 9}$	Input terminal filter	496

-C: Motor constant parameters

Parameters for the applied motor setting.

Pr. group	Pr.	Name	Refer to page
C000	684	Tuning data unit switchover	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C100	71	Applied motor	$\begin{aligned} & 505, \\ & 509 \end{aligned}$
C101	80	Motor capacity	$\begin{aligned} & 215, \\ & 509, \\ & 519 \end{aligned}$
C102	81	Number of motor poles	$\begin{aligned} & 215, \\ & 509, \\ & 519 \\ & \hline \end{aligned}$
C103	9	Rated motor current Simple	$\begin{aligned} & 394, \\ & 509, \\ & 519 \end{aligned}$
C104	83	Rated motor voltage	$\begin{aligned} & 215, \\ & 509 \\ & 519 \\ & \hline \end{aligned}$
C105	84	Rated motor frequency	$\begin{aligned} & 215, \\ & 509, \\ & 519 \end{aligned}$
C106	702	Maximum motor frequency	519
C107	707	Motor inertia (integer)	519
C108	724	Motor inertia (exponent)	519
C110	96	Auto tuning setting/status	$\begin{aligned} & 509, \\ & 519, \\ & 606 \end{aligned}$
C111	95	Online auto tuning selection	527
C112	818	Easy gain tuning response level setting	244
C113	819	Easy gain tuning selection	244
C114	880	Load inertia ratio	$\begin{aligned} & 244, \\ & 253 \end{aligned}$
C120	90	Motor constant (R1)	$\begin{aligned} & \hline 509, \\ & 519, \\ & 606 \\ & \hline \end{aligned}$
C121	91	Motor constant (R2)	509
C122	92	Motor constant (L1)/d-axis inductance (Ld)	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C123	93	Motor constant (L2)/q-axis inductance (Lq)	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C124	94	Motor constant (X)	509
C125	82	Motor excitation current	509
C126	859	Torque current/Rated PM motor current	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C130	706	Induced voltage constant (phi f)	519

Pr. group	Pr.	Name	Refer to page
C131	711	Motor Ld decay ratio	519
C132	712	Motor Lq decay ratio	519
C133	725	Motor protection current level	519
C135	1412	Motor induced voltage constant (phi f) exponent	519
C140	369*1	Number of encoder pulses	$\begin{aligned} & 93,554, \\ & 700 \end{aligned}$
C141	$359{ }^{* 1}$	Encoder rotation direction	$\begin{aligned} & 93,554, \\ & 700 \end{aligned}$
C148	376*1	Encoder signal loss detection enable/disable selection	530
C150	1002	Lq tuning target current adjustment coefficient	519
C182	717	Starting resistance tuning compensation	519
C185	721	Starting magnetic pole position detection pulse width	519
C200	450	Second applied motor	505
C201	453	Second motor capacity	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C202	454	Number of second motor poles	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C203	51	Rated second motor current	$\begin{aligned} & 394, \\ & 509, \\ & 519 \end{aligned}$
C204	456	Rated second motor voltage	$\begin{aligned} & 509 \\ & 519 \end{aligned}$
C205	457	Rated second motor frequency	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C206	743	Second motor maximum frequency	519
C207	744	Second motor inertia (integer)	519
C208	745	Second motor inertia (exponent)	519
C210	463	Second motor auto tuning setting/status	$\begin{aligned} & \hline 509, \\ & 519, \\ & 606 \\ & \hline \end{aligned}$
C211	574	Second motor online auto tuning	527
C220	458	Second motor constant (R1)	$\begin{aligned} & \hline 509, \\ & 519, \\ & 606 \\ & \hline \end{aligned}$
C221	459	Second motor constant (R2)	509
C222	460	Second motor constant (L1) / d-axis inductance (Ld)	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C223	461	Second motor constant (L2) / q-axis inductance (Lq)	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C224	462	Second motor constant (X)	509
C225	455	Second motor excitation current	509
C226	860	Second motor torque current/ Rated PM motor current	$\begin{aligned} & 509, \\ & 519 \end{aligned}$
C230	738	Second motor induced voltage constant (phi f)	519
C231	739	Second motor Ld decay ratio	519
C232	740	Second motor Lq decay ratio	519
C233	746	Second motor protection current level	519
C235	1413	Second motor induced voltage constant (phi f) exponent	519
C240	$851^{* 1}$	Control terminal optionNumber of encoder pulses	93

Pr. group	Pr.	Name	Refer to page
C241	$852^{* 1}$	Control terminal option- Encoder rotation direction	93
C242	$862^{* 1}$	Encoder option selection	220
C248	$\mathbf{8 5 5 ^ { * 1 }}$	Control terminal option-Signal loss detection enable/disable selection	530
C282	$\mathbf{7 4 1}$	Second starting resistance tuning compensation	519
C285	$\mathbf{7 4 2}$	Second motor magnetic pole detection pulse width	519

- A: Application parameters

Parameters for the setting of a specific application.

Pr. group	Pr.	Name	Refer to page
A000	135	Electronic bypass sequence selection	532
A001	136	MC switchover interlock time	532
A002	137	Start waiting time	532
A003	138	Bypass selection at a fault	532
A004	139	Automatic switchover frequency from inverter to bypass operation	532
A005	$\mathbf{1 5 9}$	Automatic switchover frequency range from bypass to inverter operation	532
A006	$\mathbf{2 4 8}$	Self power management selection	538
A007	$\mathbf{2 5 4}$	Main circuit power OFF waiting time	538
A100	$\mathbf{2 7 8}$	Brake opening frequency	541
A101	279	$\mathbf{B 4 7}$	Brake opening current

Pr. group	Pr.	Name	Refer to page
A126	648	Second deceleration detection function selection	541
A128	650	Second brake opening current selection	541
A129	651	Second brake operation frequency selection	541
A130	641	Second brake sequence operation selection	541
A170	1410	Starting times lower 4 digits	545
A171	1411	Starting times upper 4 digits	545
A200	270	Stop-on contact/load torque high- speed frequency control selection	$\begin{aligned} & 546, \\ & 549 \end{aligned}$
A201	271	High-speed setting maximum current	549
A202	272	Middle-speed setting minimum current	549
A203	273	Current averaging range	549
A204	274	Current averaging filter time constant	549
A205	275	Stop-on contact excitation current low-speed scaling factor	546
A206	276	PWM carrier frequency at stopon contact	546
A300	592	Traverse function selection	551
A301	593	Maximum amplitude amount	551
A302	594	Amplitude compensation amount during deceleration	551
A303	595	Amplitude compensation amount during acceleration	551
A304	596	Amplitude acceleration time	551
A305	597	Amplitude deceleration time	551
A310	1072	DC brake judgment time for anti-sway control operation	553
A311	1073	Anti-sway control operation selection	553
A312	1074	Anti-sway control frequency	553
A313	1075	Anti-sway control depth	553
A314	1076	Anti-sway control width	553
A315	1077	Rope length	553
A316	1078	Trolley weight	553
A317	1079	Load weight	553
A510	$350{ }^{* 1}$	Stop position command selection	554
A511	360*1	16-bit data selection	554
A512	$361{ }^{* 1}$	Position shift	554
A520	362*1	Orientation position loop gain	554
A521	$363{ }^{* 1}$	Completion signal output delay time	554
A522	$364{ }^{* 1}$	Encoder stop check time	554
A523	$365{ }^{* 1}$	Orientation limit	554
A524	$366{ }^{* 1}$	Recheck time	554
A525	393*1	Orientation selection	554
A526	351*1	Orientation speed	554
A527	352*1	Creep speed	554
A528	353*1	Creep switchover position	554
A529	$354{ }^{* 1}$	Position loop switchover position	554

Pr. group	Pr.	Name	Refer to page
A530	$355^{* 1}$	DC injection brake start position	554
A531	356*1	Internal stop position command	554
A532	357*1	Orientation in-position zone	554
A533	358*1	Servo torque selection	554
A540	$394 * 1$	Number of machine side gear teeth	554
A541	$395{ }^{* 1}$	Number of motor side gear teeth	554
A542	396*1	Orientation speed gain (P term)	554
A543	397*1	Orientation speed integral time	554
A544	$398{ }^{* 1}$	Orientation speed gain (D term)	554
A545	399*1	Orientation deceleration ratio	554
A546	829 ${ }^{* 1}$	Number of machine end encoder pulses	554
A600	759	PID unit selection	584
A601	131	PID upper limit	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A602	132	PID lower limit	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A603	553	PID deviation limit	570
A604	554	PID signal operation selection	570
A605	1134	PID upper limit manipulated value	590
A606	1135	PID lower limit manipulated value	590
A607	1015	Integral stop selection at limited frequency	570
A610	128	PID action selection	$\begin{aligned} & 570 \\ & 590 \end{aligned}$
A611	133	PID action set point	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A612	127	PID control automatic switchover frequency	570
A613	129	PID proportional band	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A614	130	PID integral time	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A615	134	PID differential time	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A616	760	Pre-charge fault selection	587
A617	761	Pre-charge ending level	587
A618	762	Pre-charge ending time	587
A619	763	Pre-charge upper detection level	587
A620	764	Pre-charge time limit	587
A621	575	Output interruption detection time	570
A622	576	Output interruption detection level	570
A623	577	Output interruption cancel level	570
A624	609	PID set point/deviation input selection	$\begin{aligned} & 570, \\ & 590 \end{aligned}$
A625	610	PID measured value input selection	$\begin{aligned} & 570 \\ & 590 \end{aligned}$
A630	$\begin{aligned} & \text { C42 } \\ & (934)^{* 2} \end{aligned}$	PID display bias coefficient	584

Pr. group	Pr.	Name	Refer to page
A631	$\begin{aligned} & \text { C43 } \\ & (934)^{* 2} \end{aligned}$	PID display bias analog value	584
A632	$\begin{aligned} & \text { C44 } \\ & (935)^{\star 2} \end{aligned}$	PID display gain coefficient	584
A633	$\begin{aligned} & \text { C45 } \\ & (935)^{\star 2} \end{aligned}$	PID display gain analog value	584
A640	1142	Second PID unit selection	570
A641	1143	Second PID upper limit	570
A642	1144	Second PID lower limit	570
A643	1145	Second PID deviation limit	570
A644	1146	Second PID signal operation selection	570
A650	753	Second PID action selection	570
A651	755	Second PID action set point	570
A652	754	Second PID control automatic switchover frequency	570
A653	756	Second PID proportional band	570
A654	757	Second PID integral time	570
A655	758	Second PID differential time	570
A656	765	Second pre-charge fault selection	587
A657	766	Second pre-charge ending level	587
A658	767	Second pre-charge ending time	587
A659	768	Second pre-charge upper detection level	587
A660	769	Second pre-charge time limit	587
A661	1147	Second output interruption detection time	570
A662	1148	Second output interruption detection level	570
A663	1149	Second output interruption cancel level	570
A664	1140	Second PID set point/deviation input selection	570
A665	1141	Second PID measured value input selection	570
A670	1136	Second PID display bias coefficient	584
A671	1137	Second PID display bias analog value	584
A672	1138	Second PID display gain coefficient	584
A673	1139	Second PID display gain analog value	584
A680	573	4 mA input check selection	492
A681	777	4 mA input fault operation frequency	492
A682	778	4 mA input check filter	492
A700	162	Automatic restart after instantaneous power failure selection	$\begin{aligned} & 597, \\ & 604, \\ & 606 \end{aligned}$
A701	299	Rotation direction detection selection at restarting	597
A702	57	Restart coasting time	$\begin{aligned} & 597, \\ & 604 \end{aligned}$
A703	58	Restart cushion time	597
A704	163	First cushion time for restart	597
A705	164	First cushion voltage for restart	597

Pr. group	Pr.	Name	Refer to page
A710	165	Stall prevention operation level for restart	597
A711	298	Frequency search gain	606
A712	560	Second frequency search gain	606
A730	261	Power failure stop selection	610
A731	262	Subtracted frequency at deceleration start	610
A732	263	Subtraction starting frequency	610
A733	264	Power-failure deceleration time 1	610
A734	265	Power-failure deceleration time 2	610
A735	266	Power failure deceleration time switchover frequency	610
A785	294	UV avoidance voltage gain	610
A786	668	Power failure stop frequency gain	610
A800	414	PLC function operation selection	614
A801	415	Inverter operation lock mode setting	614
A802	416	Pre-scale function selection	614
A803	417	Pre-scale setting value	614
A804	498	PLC function flash memory clear	614
$\begin{aligned} & \text { A810 to } \\ & \text { A859 } \end{aligned}$	$\begin{aligned} & 1150 \text { to } \\ & 1199 \end{aligned}$	PLC function user parameters 1 to 50	614
A900	1020	Trace operation selection	616
A901	1021	Trace mode selection	616
A902	1022	Sampling cycle	616
A903	1023	Number of analog channels	616
A904	1024	Sampling auto start	616
A905	1025	Trigger mode selection	616
A906	1026	Number of sampling before trigger	616
A910	1027	Analog source selection (1ch)	616
A911	1028	Analog source selection (2ch)	616
A912	1029	Analog source selection (3ch)	616
A913	1030	Analog source selection (4ch)	616
A914	1031	Analog source selection (5ch)	616
A915	1032	Analog source selection (6ch)	616
A916	1033	Analog source selection (7ch)	616
A917	1034	Analog source selection (8ch)	616
A918	1035	Analog trigger channel	616
A919	1036	Analog trigger operation selection	616
A920	1037	Analog trigger level	616
A930	1038	Digital source selection (1ch)	616
A931	1039	Digital source selection (2ch)	616
A932	1040	Digital source selection (3ch)	616
A933	1041	Digital source selection (4ch)	616
A934	1042	Digital source selection (5ch)	616
A935	1043	Digital source selection (6ch)	616
A936	1044	Digital source selection (7ch)	616
A937	1045	Digital source selection (8ch)	616
A938	1046	Digital trigger channel	616
A939	1047	Digital trigger operation selection	616

B: Position control parameters

Parameters for the position control setting.

Pr. group	Pr.	Name	Refer to page
B000	419	Position command source selection	$\begin{aligned} & 288 \\ & 304 \end{aligned}$
B001	420	Command pulse scaling factor numerator (electronic gear numerator)	309
B002	421	Command pulse multiplication denominator (electronic gear denominator)	309
B003	422	Position control gain	312
B004	423	Position feed forward gain	312
B005	424	Position command acceleration/deceleration time constant	309
B006	425	Position feed forward command filter	312
B007	426	In-position width	311
B008	427	Excessive level error	311
B009	428	Command pulse selection	304
B010	429	Clear signal selection	304
B011	430	Pulse monitor selection	304
B012	446	Model position control gain	312
B013	1298	Second position control gain	312
B020	464	Digital position control sudden stop deceleration time	288
B021	465	First target position lower 4 digits	288
B022	466	First target position upper 4 digits	288
B023	467	Second target position lower 4 digits	288
B024	468	Second target position upper 4 digits	288
B025	469	Third target position lower 4 digits	288
B026	470	Third target position upper 4 digits	288
B027	471	Fourth target position lower 4 digits	288
B028	472	Fourth target position upper 4 digits	288
B029	473	Fifth target position lower 4 digits	288
B030	474	Fifth target position upper 4 digits	288
B031	475	Sixth target position lower 4 digits	288
B032	476	Sixth target position upper 4 digits	288
B033	477	Seventh target position lower 4 digits	288
B034	478	Seventh target position upper 4 digits	288
B035	479	Eighth target position lower 4 digits	288
B036	480	Eighth target position upper 4 digits	288
B037	481	Ninth target position lower 4 digits	288

Pr. group	Pr.	Name	Refer to page
B038	482	Ninth target position upper 4 digits	288
B039	483	Tenth target position lower 4 digits	288
B040	484	Tenth target position upper 4 digits	288
B041	485	Eleventh target position lower 4 digits	288
B042	486	Eleventh target position upper 4 digits	288
B043	487	Twelfth target position lower 4 digits	288
B044	488	Twelfth target position upper 4 digits	288
B045	489	Thirteenth target position lower 4 digits	288
B046	490	Thirteenth target position upper 4 digits	288
B047	491	Fourteenth target position lower 4 digits	288
B048	492	Fourteenth target position upper 4 digits	288
B049	493	Fifteenth target position lower 4 digits	288
B050	494	Fifteenth target position upper 4 digits	288
B100	1220	Target position/speed selection	853
B101	1221	Start command edge detection selection	288
B120	1222	First positioning acceleration time	288
B121	1223	First positioning deceleration time	288
B122	1224	First positioning dwell time	288
B123	1225	First positioning sub-function	288
B124	1226	Second positioning acceleration time	288
B125	1227	Second positioning deceleration time	288
B126	1228	Second positioning dwell time	288
B127	1229	Second positioning subfunction	288
B128	1230	Third positioning acceleration time	288
B129	1231	Third positioning deceleration time	288
B130	1232	Third positioning dwell time	288
B131	1233	Third positioning sub-function	288
B132	1234	Fourth positioning acceleration time	288
B133	1235	Fourth positioning deceleration time	288
B134	1236	Fourth positioning dwell time	288
B135	1237	Fourth positioning subfunction	288
B136	1238	Fifth positioning acceleration time	288
B137	1239	Fifth positioning deceleration time	288
B138	1240	Fifth positioning dwell time	288
B139	1241	Fifth positioning sub-function	288

Pr. group	Pr.	Name	Refer to page
B140	1242	Sixth positioning acceleration time	288
B141	1243	Sixth positioning deceleration time	288
B142	1244	Sixth positioning dwell time	288
B143	1245	Sixth positioning sub-function	288
B144	1246	Seventh positioning acceleration time	288
B145	1247	Seventh positioning deceleration time	288
B146	1248	Seventh positioning dwell time	288
B147	1249	Seventh positioning subfunction	288
B148	1250	Eighth positioning acceleration time	288
B149	1251	Eighth positioning deceleration time	288
B150	1252	Eighth positioning dwell time	288
B151	1253	Eighth positioning subfunction	288
B152	1254	Ninth positioning acceleration time	288
B153	1255	Ninth positioning deceleration time	288
B154	1256	Ninth positioning dwell time	288
B155	1257	Ninth positioning sub-function	288
B156	1258	Tenth positioning acceleration time	288
B157	1259	Tenth positioning deceleration time	288
B158	1260	Tenth positioning dwell time	288
B159	1261	Tenth positioning sub-function	288
B160	1262	Eleventh positioning acceleration time	288
B161	1263	Eleventh positioning deceleration time	288
B162	1264	Eleventh positioning dwell time	288
B163	1265	Eleventh positioning subfunction	288
B164	1266	Twelfth positioning acceleration time	288
B165	1267	Twelfth positioning deceleration time	288
B166	1268	Twelfth positioning dwell time	288
B167	1269	Twelfth positioning subfunction	288
B168	1270	Thirteenth positioning acceleration time	288
B169	1271	Thirteenth positioning deceleration time	288
B170	1272	Thirteenth positioning dwell time	288
B171	1273	Thirteenth positioning subfunction	288
B172	1274	Fourteenth positioning acceleration time	288
B173	1275	Fourteenth positioning deceleration time	288
B174	1276	Fourteenth positioning dwell time	288

Pr. group	Pr.	Name	Refer to page
B175	1277	Fourteenth positioning subfunction	288
B176	1278	Fifteenth positioning acceleration time	288
B177	1279	Fifteenth positioning deceleration time	288
B178	1280	Fifteenth positioning dwell time	288
B179	1281	Fifteenth positioning subfunction	288
B180	1282	Home position return method selection	288
B181	1283	Home position return speed	288
B182	1284	Home position return creep speed	288
B183	1285	Home position shift amount lower 4 digits	288
B184	1286	Home position shift amount upper 4 digits	288
B185	1287	Travel distance after proximity dog ON lower 4 digits	288
B186	1288	Travel distance after proximity dog ON upper 4 digits	288
B187	1289	Home position return stopper torque	288
B188	1290	Home position return stopper waiting time	288
B190	1292	Position control terminal input selection	288
B191	1293	Roll feeding mode selection	288
B192	1294	Position detection lower 4 digits	311
B193	1295	Position detection upper 4 digits	311
B194	1296	Position detection selection	311
B195	1297	Position detection hysteresis width	311

- N : Communication operation parameters

Parameters for the setting of communication operation such as the communication specifications or operating characteristics.

Pr. group	Pr.	Name	Refer to page
N000	549	Protocol selection	630
N001	342	Communication EEPROM write selection	630
N002	539	MODBUS RTU communication check time interval	652
N010	$349^{* 6}$	Communication reset selection	630
N011	$500^{* 6}$	Communication error execution waiting time	630
N012	$501^{* 6}$	Communication error occurrence count display	630
N013	502	Stop mode selection at communication error	630

Pr. group	Pr.	Name	Refer to page
N014	779	Operation frequency during communication error	630
N020	117	PU communication station number	636
N021	118	PU communication speed	636
N022	119	PU communication data length	636
N023	119	PU communication stop bit length	636
N024	120	PU communication parity check	636
N025	121	PU communication retry count	636
N026	122	PU communication check time interval	636
N027	123	PU communication waiting time setting	636
N028	124	PU communication CR/LF selection	636
N030	331	RS-485 communication station number	636
N031	332	RS-485 communication speed	636
N032	333	RS-485 communication data length	636
N033	333	RS-485 communication stop bit length	636
N034	334	RS-485 communication parity check selection	636
N035	335	RS-485 communication retry count	636
N036	336	RS-485 communication check time interval	636
N037	337	RS-485 communication waiting time setting	636
N038	341	RS-485 communication CR/LF selection	636
N040	547	USB communication station number	666
N041	548	USB communication check time interval	666
N080	343	Communication error count	652
N100	541**	Frequency command sign selection	665
N110	$434 * 6$	Network number (CC-Link IE)	665
N111	435*6	Station number (CC-Link IE)	665
N500 to N543, N550 to N559	$\begin{aligned} & \hline 1300 \text { to } \\ & 1343, \\ & 1350 \text { to } \\ & 1359 \end{aligned}$	Communication option parameters. For details, refer to the Instruction Manual of the option.	

- G: Control parameters

Parameters for motor control.

Pr. group	Pr.	Name	Refer to page
G000	$\mathbf{0}$	Torque boost Simple	672
G001	$\mathbf{3}$	Base frequency Simple	673
G002	$\mathbf{1 9}$	Base frequency voltage	673
G003	$\mathbf{1 4}$	Load pattern selection	674
G010	$\mathbf{4 6}$	Second torque boost	672
G011	$\mathbf{4 7}$	Second V/F (base frequency)	673
$\mathbf{G 0 2 0}$	$\mathbf{1 1 2}$	Third torque boost	672

Pr. group	Pr.	Name	Refer to page
G021	113	Third V/F (base frequency)	673
G030	60	Energy saving control selection	678
G040	100	V/F1 (first frequency)	679
G041	101	V/F1 (first frequency voltage)	679
G042	102	V/F2 (second frequency)	679
G043	103	V/F2 (second frequency voltage)	679
G044	104	V/F3 (third frequency)	679
G045	105	V/F3 (third frequency voltage)	679
G046	106	V/F4 (fourth frequency)	679
G047	107	V/F4 (fourth frequency voltage)	679
G048	108	V/F5 (fifth frequency)	679
G049	109	V/F5 (fifth frequency voltage)	679
G060	673	SF-PR slip amount adjustment operation selection	680
G061	674	SF-PR slip amount adjustment gain	680
G080	617	Reverse rotation excitation current low-speed scaling factor	677
G100	10	DC injection brake operation frequency	681
G101	11	DC injection brake operation time	681
G102	802	Pre-excitation selection	681
G103	850	Brake operation selection	681
G105	522	Output stop frequency	686
G106	250	Stop selection	688
G107	70^{*}	Special regenerative brake duty	689
G108	1299	Second pre-excitation selection	681
G110	12	DC injection brake operation voltage	681
G120	882	Regeneration avoidance operation selection	696
G121	883	Regeneration avoidance operation level	696
G122	884	Regeneration avoidance at deceleration detection sensitivity	696
G123	885	Regeneration avoidance compensation frequency limit value	696
G124	886	Regeneration avoidance voltage gain	696
G125	665	Regeneration avoidance frequency gain	696
G130	660	Increased magnetic excitation deceleration operation selection	699
G131	661	Magnetic excitation increase rate	699
G132	662	Increased magnetic excitation current level	699
G200	800	Control method selection	215
G201	85	Excitation current break point	677
G202	86	Excitation current low speed scaling factor	677
G203	245	Rated slip	700

Pr. group	Pr.	Name	Refer to page
G204	246	Slip compensation time constant	700
G205	247	Constant output range slip compensation selection	700
G206	1116	Constant output range speed control P gain compensation	244
G210	803	Constant output range torque characteristic selection	$\begin{aligned} & 235, \\ & 270 \end{aligned}$
G211	820	Speed control P gain 1	244
G212	821	Speed control integral time 1	244
G213	824	Torque control P gain 1 (current loop proportional gain)	$\begin{aligned} & 280, \\ & 317 \end{aligned}$
G214	825	Torque control integral time 1 (current loop integral time)	$\begin{aligned} & 280, \\ & 317 \end{aligned}$
G215	$823{ }^{* 1}$	Speed detection filter 1	316
G216	827	Torque detection filter 1	316
G217	854	Excitation ratio	316
G218	1115	Speed control integral term clear time	244
G220	877	Speed feed forward control/ model adaptive speed control selection	253
G221	878	Speed feed forward filter	253
G222	879	Speed feed forward torque limit	253
G223	881	Speed feed forward gain	253
G224	828	Model speed control gain	253
G230	840	Torque bias selection	255
G231	841	Torque bias 1	255
G232	842	Torque bias 2	255
G233	843	Torque bias 3	255
G234	844	Torque bias filter	255
G235	845	Torque bias operation time	255
G236	846	Torque bias balance compensation	255
G237	847	Fall-time torque bias terminal 1 bias	255
G238	848	Fall-time torque bias terminal 1 gain	255
G240	$367^{* 1}$	Speed feedback range	700
G241	$368{ }^{* 1}$	Feedback gain	700
G250	788	Low speed range torque characteristic selection	227
G260	1121	Per-unit speed control reference frequency	244
G261	1117	Speed control P gain 1 (perunit system)	244
G262	1119	Model speed control gain (perunit system)	253
G263	1348	P/PI control switchover frequency	244
G264	1349	Emergency stop operation selection	349
G300	451	Second motor control method selection	215
G301	565	Second motor excitation current break point	677
G302	566	Second motor excitation current low-speed scaling factor	677

Pr. group	Pr.	Name	Refer to page
G311	830	Speed control P gain 2	244
G312	831	Speed control integral time 2	244
G313	834	Torque control P gain 2	280
G314	835	Torque control integral time 2	280
G315	$833^{* 1}$	Speed detection filter 2	316
G316	837	Torque detection filter 2	316
G350	747	Second motor low-speed range torque characteristic selection	227
G361	$\mathbf{1 1 1 8}$	Speed control P gain 2 (per- unit system)	244
G400	286	Droop gain	702
G401	$\mathbf{2 8 7}$	Droop filter time constant	702
G402	$\mathbf{2 8 8}$	Droop function activation selection	702
G403	994	Droop break point gain	702
G404	995	Droop break point torque	702
G410	653	Speed smoothing control	705
G411	$\mathbf{6 5 4}$	Speed smoothing cutoff frequency	705
G420	$\mathbf{6 7 9}$	Second droop gain	702
G421	$\mathbf{6 8 0}$	Second droop filter time constant	702

Pr. group	Pr.	Name	Refer to page
G422	681	Second droop function activation selection	702
G423	682	Second droop break point gain	702
G424	683	Second droop break point torque	702
G601	1003	Notch filter frequency	261
G602	1004	Notch filter depth	261
G603	1005	Notch filter width	261
G932	89	Speed control gain (Advanced magnetic flux vector)	222
G942	569	Second motor speed control gain	222

*1 The setting is available when a plug-in option for Vector control is installed.
*2 On the LCD operation panel or the parameter unit used as the command source, the parameter number in parentheses appears instead of that starting with the letter C.
*3 The setting is available for the standard model.
*4 The setting is available for the standard model and the IP55 compatible model.
*5 The setting is available when the PLC function is enabled.
*6 The setting is available for the FR-A800-GF or when a compatible plug-in option is installed.

5.2 Control method

V/F control (initial setting), Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and PM sensorless vector control are available with this inverter.

- V/F control

The inverter controls the output frequency (F) and the output voltage (V) so that the ratio of frequency to voltage (V/F) is kept constant when the frequency is changed.

- Advanced magnetic flux vector control

The inverter performs vector calculation and divide its output current into the excitation current and the torque current. The inverter compensates the frequency and the voltage to output a current that meets the load torque to the motor, which improves the motor torque at low speed. The output frequency is further compensated (slip compensation) to bring the actual motor speed closer to the commanded speed. This control method is useful when the load fluctuates are severe.

NOTE

- Advanced magnetic flux vector control requires the following conditions.

If these conditions are not satisfied, select V/F control. Otherwise, malfunctions such as insufficient torque, uneven rotation may occur.

- For the motor capacity, the rated motor current should be equal to or less than the rated inverter current. (It must be 0.4 kW or higher.)
If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about 40% or higher of the inverter rated current.
- The motor described in the following table is used.

Motor	Condition
Mitsubishi Electric standard motor (SF-JR)	The offline auto tuning is not required.
Mitsubishi Electric high-efficiency motor (SFHR)	
Mitsubishi Electric constant-torque motor (SFJRCA 4P, SF-HRCA)	
Mitsubishi Electric high-performance energysaving motor (SF-PR)	
Other motor (Mitsubishi motor SF-TH, etc. or other manufacturer's motor)	The offline auto tuning is required.

- Single-motor operation (one motor to one inverter) is performed.
- The wiring length from inverter to motor is 30 m or less. (When the wiring length exceeds 30 m , perform offline auto tuning with the wiring in place.)
- A sine wave filter (MT-BSL/BSC) is not used.

- Real sensorless vector control

- As the inverter estimates the motor speed and controls the output current more accurately, a high-level control of the speed and the torque is enabled. Select Real sensorless vector control for a high-accuracy, fast-response control. The offline auto tuning is required initially.
- This control method is useful for the following purposes:
- To minimize the speed fluctuation even at a severe load fluctuation
- To generate a low speed torque
- To prevent machine from damage due to a too large torque (To set the torque limit)
- To control the torque

NOTE

- Real sensorless vector control requires the following conditions.

If these conditions are not satisfied, select V/F control. Otherwise, malfunctions such as insufficient torque, uneven rotation may occur.

- For the motor capacity, the rated motor current should be equal to or less than the rated inverter current. (It must be 0.4 kW or higher.)
If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about 40% or higher of the inverter rated current.
- Offline auto tuning is performed.

Offline auto tuning is necessary under Real sensorless vector control even when the Mitsubishi Electric motor is used.

- Single-motor operation (one motor to one inverter) is performed.
- A surge voltage suppression filter (FR-ASF/FR-BMF) or sine wave filter (MT-BSL/BSC) is not used.

- Vector control

- With a Vector control compatible option installed, full-scale Vector control operation of a motor with encoder can be performed. Speed control (zero speed control, servo lock), torque control, and position control can be performed with fast response and high accuracy. With the FR-A8APR installed, Vector control operation of a motor with resolver can be performed.
- Vector control has excellent control characteristic compared to other control methods such as V/F control. Its control characteristic is equal to those of DC machines.
- This control method is useful for the following purposes:
- To minimize the speed fluctuation even at a severe load fluctuation
- To generate a low speed torque
- To prevent machine from damage due to a too large torque (To set the torque limit)
- To control the torque or position
- To control a torque generated in a motor in a servo-lock state (the motor with its shaft stopped)

NOTE

- Vector control requires the following conditions.

When the conditions are not satisfied, malfunctions such as insufficient torque, uneven rotation may occur.

- The rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. As a reference, select the motor with the rated motor current that is 40% or higher of the inverter rated current.
- The Vector control of PM motors can be performed when a PM motor with resolver is used together with the FR-A8APR. (Torque control is not available for a PM motor.)
- The motor described in the following table is used.

Motor	Condition
Vector control dedicated motor SF-V5RU (1500 r/min series)	
Mitsubishi Electric standard motor with encoder (SF-JR)	The offline auto tuning is not required.
Mitsubishi Electric high-efficiency motor with encoder (SF-HR)	
Mitsubishi Electric constant-torque motor with encoder (SF- JRCA 4P, SF-HRCA)	
Other motors (motors other than SF-V5RU 1500 r/min series, other manufactures' motors, etc.)	The offline auto tuning is required.

- Single-motor operation (one motor to one inverter) is performed.
- The wiring length from inverter to motor is 30 m or less. (When the wiring length exceeds 30 m , perform offline auto tuning with the wiring in place.)
- A surge voltage suppression filter (FR-ASF/FR-BMF) or sine wave filter (MT-BSL/BSC) is not used.

- PM sensorless vector control

- The inverter enables highly efficient motor control and highly accurate motor speed control of a PM (permanent magnet embedded) motor, which is more efficient than an induction motor.
- A speed detector such as an encoder is not required as the inverter estimates the motor speed by the calculation from the inverter output voltage and current. The inverter drives the PM motor with the least required current for a load in order to achieve the highest motor efficiency.
- Performing the IPM parameter initialization makes the IPM motor MM-CF ready for the PM sensorless vector control.

NOTE

- The PM sensorless vector control requires the following conditions.
- The motor described in the following table is used.

Motor	Condition
Mitsubishi Electric IPM motor (MM-CF)	The offline auto tuning is not required.
IPM motor (other than MM-CF), SPM motor	The offline auto tuning is required.

- For the motor capacity, the rated motor current should be equal to or less than the rated inverter current. (It must be 0.4 kW or higher.)
If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about 40% or higher of the inverter rated current.
- Single-motor operation (one motor to one inverter) is performed.
- The wiring length from the inverter to the motor is 100 m or less. (Refer to page 66.) (When the wiring length from the inverter to the IPM motor MM-CF exceeds 30 m , perform offline auto tuning.)
- A surge voltage suppression filter (FR-ASF/FR-BMF) or sine wave filter (MT-BSL/BSC) is not used.

5.2.1 Vector control and Real sensorless vector control

Vector control is one of the control techniques for driving an induction motor. To help explain Vector control, the fundamental equivalent circuit of an induction motor is shown below.

In the above diagram, currents flowing in the induction motor can be classified into a current id (excitation current) for making a magnetic flux in the motor and a current iq (torque current) for causing the motor to develop torque.

In Vector control, the voltage and output frequency are calculated to control the motor so that the excitation current and torque current flow to the optimum as described below:

- The excitation current is controlled to place the internal magnetic flux of the motor in the optimum status.
- The torque command value is derived so that the difference between the motor speed command and the actual speed (speed estimated value for Real sensorless vector control) obtained from the encoder connected to the motor shaft is zero. Torque current is controlled so that torque as set in the torque command is developed.

Motor-generated torque (TM), slip angular velocity ($\omega \mathrm{s}$) and the motor's secondary magnetic flux ($\Phi 2$) can be found by the following calculation:
$T M \propto \Phi 2 \cdot$ iq
$\Phi 2=M \cdot i d$
$\omega \mathrm{s}=\frac{\mathrm{r} 2}{\mathrm{~L} 2} \cdot \frac{\mathrm{iq}}{\mathrm{id}}$
where, L2: secondary inductance
$L 2=\ell 2+M$

Vector control provides the following advantages:

- Vector control has excellent control characteristic compared to V/F control and other controls. The control characteristic of the Vector control is equal to those of DC machines.
- It is applicable to fast response applications with which induction motors were previously regarded as difficult to use. Applications requiring a wide variable-speed range from extremely low speed to high speed, frequent acceleration/ deceleration operations, continuous four-quadrant operations, etc.
- Torque control is enabled (when an induction motor is used).
- It allows servo-lock torque control which generates a torque in the motor shaft while stopped. (Not available under Real sensorless vector control.)

Block diagram of Real sensorless vector control

Block diagram of Vector control

Speed control	Speed control operation is performed to zero the difference between the speed command (ω^{*}) and actual rotation value detected by encoder ($\omega \mathrm{FB}$). At this time, the motor load is found and its result is transferred to the torque current controller as a torque current command (iq*).
Torque current control	A voltage (Vq) is calculated to flow a current (iq) which is identical to the torque current command (iq*) found by the speed controller.
Magnetic flux control	The magnetic flux ($\Phi 2$) of the motor is derived from the excitation current (id). The excitation current command (id*) is calculated to use that motor magnetic flux (\$2) as a predetermined magnetic flux.
Excitation current control	A voltage (Vd) is calculated to flow a current (id) which is identical to the excitation current command (id*).
Output frequency calculation	Motor slip ($\omega \mathrm{s}$) is calculated on the basis of the torque current value (iq) and magnetic flux (\$2). The output frequency $(\omega 0)$ is found by adding that slip ($\omega \mathrm{s}$) to the feedback ($\omega \mathrm{FB}$) found by a feedback from the encoder.

The above results are used to make PWM modulation and run the motor.

5.2.2 Changing the control method and mode

Set the control method and the control mode.
V/F control, Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and PM sensorless vector control are the control methods available for selection.
The available control modes are speed control, torque control, and position control modes.
Select a control mode under Real sensorless vector control, Vector control, and PM sensorless vector control. Under Real sensorless vector control, select a control mode from the speed control, torque control, and position control modes. Under Vector control, select a control mode from the speed control, torque control, and position control modes. The control method is initially set to V/F control.
When using an IPM motor MM-CF, simply performing the IPM parameter initialization enables the PM sensorless vector control and selects the speed control and position control.

- Select a control method and a control mode by setting Pr.800(Pr.451) Control method selection.
- The control mode can be switched using a mode switching signal (MC).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	0 to 6, 13 to 16, 20, $23,24,30,33,34,40$, $43,44,50,53,54,70$, $73,74,330,333,334$, 8090, 8093, 8094, 9090, 9093, 9094	By selecting a standard motor or constant-torque motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \text { C101 } \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}^{* 1}$	Set the applied motor capacity.
			0 to $3600 \mathrm{~kW}^{*}{ }^{2}$	
			9999	V/F control
$\begin{aligned} & 81 \\ & C 102 \end{aligned}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & \hline 83 \\ & \text { C104 } \end{aligned}$	Rated motor voltage	200/400 V ${ }^{\text {3 }}$	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \text { C105 } \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency (Hz).
			9999	The setting value of Pr. 3 Base frequency is used. ${ }^{* 4}$
$\begin{aligned} & 800 \\ & \text { G200 } \end{aligned}$	Control method selection	20	0 to 6	Vector control
			9	Vector control, PM sensorless vector control test operation
			10 to 12	Real sensorless vector control
			13, 14	PM sensorless vector control
			20	V/F control / Advanced magnetic flux vector control / PM sensorless vector control
			100 to 106	Vector control
			109	Vector control, PM sensorless vector control test operation Fast-response
			110 to 112	Real sensorless vector control operation
			110, 113, 114	PM sensorless vector control
$\begin{array}{\|l\|} \hline 451 \\ \text { G300 } \end{array}$	Second motor control method selection	9999	0 to 6	Vector control
			10 to 12	Real sensorless vector control
			13, 14	PM sensorless vector control
			20	V/F control (Advanced magnetic flux vector control)
			100 to 106	Vector control
			110 to 112	Real sensorless vector control $\begin{aligned} & \text { Fast-response } \\ & \text { operation }\end{aligned}$
			110, 113, 114	PM sensorless vector control operation
			9999	Advanced magnetic flux vector control when the induction motor is selected in Pr. 71. As set in Pr. 800 when the PM motor is selected in Pr. 71 .

*1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.
*3 The initial value differs according to the inverter's voltage class (200/400 V class).
*4 When the IPM motor MM-CF is selected in Pr. 71 Applied motor, the rated frequency of the MM-CF is used. When a PM motor other than the MM-CF is selected for Pr.71, 75 Hz (for the motor capacity 15 kW or lower) or $100 \mathrm{~Hz}(18.5 \mathrm{~kW}$ or higher) is used.

\checkmark Setting the motor capacity and the number of motor poles (Pr.80, Pr.81)

- Motor specifications (the motor capacity and the number of motor poles) must be set to select Advanced magnetic flux vector control, Real sensorless vector control, Vector control, or PM sensorless vector control.
- Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles in Pr. 81 Number of motor poles.

NOTE

- Setting the number of motor poles in Pr. 81 changes the Pr. 144 Speed setting switchover setting automatically. (Refer to page 422.)

- Selection of the control method and the control mode

- Select a control method (and a control mode) from V/F control (speed control), Advanced magnetic flux vector control (speed control), Real sensorless vector control (speed control or torque control), Vector control (speed control, torque control, or position control), or PM sensorless vector control (speed control or position control).

Settings of Pr. 80 (Pr.453) and Pr. 81 (Pr.454)	$\begin{gathered} \text { Pr. } 71 \\ \text { (Pr. } 450 \text {) } \end{gathered}$	$\begin{aligned} & \text { Pr. } 800 \\ & \text { setting }{ }^{* 1} \end{aligned}$	$\begin{aligned} & \text { Pr. } 451 \\ & \text { setting } \end{aligned}$	Control method	Control mode	Remarks
Other9999	Induction motor ${ }^{* 3}$	0,100		Vector control ${ }^{*} 2$	Speed control	-
		1,101			Torque control	-
		2, 102			Speed control / torque control switchover	MC signal ON: torque control MC signal OFF: speed control
		3,103			Position control	-
		4, 104			Speed control / position control switchover	MC signal ON: position control MC signal OFF: speed control
		5,105			Position control / torque control switchover	MC signal ON: torque control MC signal ON: position control
		6, 106			Torque control (variable-current limiter control)	-
		9,109	-	Vector control test operation		
		10, 110		Real sensorless vector control	Speed control	-
		11, 111			Torque control	-
		12, 112			Speed control / torque control switchover	MC signal ON: torque control MC signal OFF: speed control
		20 (initial value)	20	Advanced magnetic flux vector control	Speed control	-
		-	9999 (initial value)	Advanced magnetic flux vector control for the second motor		
	IPM motor $(\mathrm{MM}-\mathrm{CF})^{*}{ }^{4}$	9, 109	-	PM sensorless vector control test operation		
		13, 113		PM sensorless vector control	Position control ${ }^{*} 7$	-
		14, 114			Speed control / position control switchover ${ }^{\star}{ }^{*}$	MC signal ON: position control MC signal OFF: speed control
		20 (initial value), 110	20, 110		Speed control	-
	IPM motor (other than MM-CF) / SPM motor ${ }^{* 5}$	9, 109	-	PM sensorless vector con	test operation	
		20 (initial value), 110	20, 110	PM sensorless vector control	Speed control	-
		0 to 6, 100 to 106		Vector control (Refer to the Instruction Manual of the FR-A8APR.)		
	IPM/SPM motor	-	9999 (initial value)	The setting value of Pr. 800 is used for the second motor. (PM sensorless vector control (speed control) when Pr. $800=$ "9 or 109")		
9999*6	-	-		V/F control		

*1 The setting values of 100 and above are used when the fast-response operation is selected.
*2 Advanced magnetic flux vector control is applied if a Vector control compatible option is not installed.
*3 For an induction motor, the setting "13, 14, 113, or 114" in Pr. 800 (Pr.451) has the same meaning as the setting "10 or 110" in Pr. 800 (Pr. 451) (speed control under Real sensorless vector control).
*4 For the IPM motor MM-CF, the setting other than "9, 13, 14, 109, 113, 114, or 9999" in Pr. 800 (Pr .451) has the same meaning as the setting " 20 or 110 " in Pr. 800 (Pr.451) (speed control under PM sensorless vector control).
*5 For an IPM motor other than the MM-CF or a SPM motor, the setting other than "9, 109, or 9999" in Pr. 800 (Pr.451) has the same meaning as the setting "20 or 110" in Pr. 800 (Pr.451) (speed control under PM sensorless vector control).
*6 V/F control is applied when Pr. 80 or Pr. 81 is " 9999 ", regardless of the Pr. 800 setting. When Pr. 71 is set to the IPM motor MM-CF, PM sensorless vector control is enabled even if Pr. 80 = "9999" or Pr. 81 = "9999".
*7 Setting Pr. 788 (Pr.747) = "0" (low-speed range torque characteristic disabled) selects speed control.

－Selecting the fast－response operation（Pr． 800 （Pr．451）＝＂100 to 106，or 109 to 114＂）

－Setting Pr． 800 （Pr．451）＝＂any of 100 to 106 or 109 to 114 ＂selects the fast－response operation．The fast－response operation is available during Vector control，Real sensorless vector control，and PM sensorless vector control．

Control method	Speed response	
	$\begin{gathered} \text { Fast-response operation } \\ \text { Pr. } 800(\text { Pr. } 451)=\text { " } 100 \text { to } 106 \text {, or } 109 \text { to } \\ 114 " \end{gathered}$	Normal－response operation Pr． 800 （Pr．451）＝＂0 to 6，or 9 to 14＂
Vector control	130 Hz at maximum	50 Hz at maximum
Real sensorless vector control	50 Hz at maximum＊${ }^{* 1}$	20 Hz at maximum ${ }^{*}{ }^{2}$
		10 Hz at maximum ${ }^{*} 3$
PM sensorless vector control	50 Hz at maximum	30 Hz at maximum

＊1 When driving a 3.7 kW no－load motor．
＊2 For the FR－A820－03160（55K）or lower，and FR－A840－01800（55K）or lower．
＊3 For the FR－A820－03800（75K）or higher，and FR－A840－02160（75K）or higher．

NOTE

－During fast－response operation，the carrier frequency is always 4 kHz ．（Refer to page 339．）
－The inverter overload trip（E．THT）is more likely to occur when fast－response operation is set at the SLD or LD rating．

Vector control test operation，PM sensorless vector control test operation（Pr． $800=$＂ 9 or 109＂）

－A test operation for speed control is available without connecting a motor to the inverter．
The speed calculation changes to track the speed command，and such speed changes can be checked on the operation panel or by outputting it as analog signals to terminal FM／CA or AM．

NOTE

－Since current is not detected and voltage is not output，monitors related to current and voltage such as output current and output voltage，etc．and output signals do not function．
－For speed calculation，speed is calculated in consideration of Pr． 880 Load inertia ratio．
－Since current synchronization operation occurs during the test operation for PM sensorless vector control，the output frequency becomes the same value as the command frequency．

－I／O signal status during the test operation

－During the test operation，the following signals are disabled．

Input terminal function selection（Pr．178 to Pr．189）	Output terminal function selection（Pr．190 to Pr．196）
	－Electronic thermal O／L relay pre－alarm（THP）
－Brake opening completion（BRI）	－Brake opening request（BOF）
－Load pattern selection forward／reverse rotation boost（X17）	－Second brake opening request（BOF2）
－V／F switchover（X18）	－Orientation complete（ORA）
－Orientation command（X22）	－Orientation fault（ORM）
－Control mode switchover（MC）	－Regenerative status output（Y32）
－Start－time tuning start external input（X28）	－In－position（Y36）
－Torque bias selection 1，Torque bias selection 2（X42，X43）	－Travel completed（MEND）
－Second brake sequence open completion（BRI2）	－Start time tuning completion（Y39）
－Torque limit selection（X93）	－Home position return failure（ZA）
	－Position detection level（FP）
	－During position command operation（PBSY）
	－Home position return completed（ZP）

《＜Parameters referred to 》》

Pr． 178 to Pr． 189 （Input terminal function selection）
Pr． 190 to Pr． 196 （Output terminal function selection）page 450

Status of the monitoring during the test operation

०：Enabled
\times ：Disabled（ 0 is displayed at any time．）
Δ ：A cumulative total before the test operation is displayed．

Monitor item	Monitoring on DU/PU	Output via FM/ CA/AM
Output frequency	\circ	\circ
Fault indication	\circ	-
Frequency setting value	\circ	\circ
Motor speed	\circ	\circ
Converter output voltage	\circ	\circ
Electronic thermal O/L relay load factor	$x^{* 2}$	$\times^{* 2}$
Output current peak value	$x^{* 2}$	$x^{* 2}$
Converter output voltage peak value	\circ	\circ
Load meter	\circ	\circ
Cumulative energization time	\circ	-
Reference voltage output	-	\circ
Actual operation time	\circ	-
Cumulative energy	Δ	-
Trace status	\circ	\times
Station number (RS-485 terminals)	\circ	-
Station number (PU connector)	\circ	-
Station number (CC-Link)	\circ	-
Energy saving effect	\circ	-
Cumulative energy saving	Δ	-
PID set point	\circ	-
PID measured value	\circ	-
	0	

Monitor item	Monitoring on DU/PU	Output via FM/ CA/AM
PID deviation	\bigcirc	$0^{* 3}$
Input terminal status	\bigcirc	-
Output terminal status	\bigcirc	-
Option input terminal status	\bigcirc	-
Option output terminal status	\bigcirc	-
Motor thermal load factor	$0^{* 4}$	$0^{* 4}$
Inverter thermal load factor	-*4	${ }^{*} 4$
PTC thermistor value	\bigcirc	-
PID measured value 2	\bigcirc	\bigcirc
Remote output 1	\bigcirc	\bigcirc
Remote output 2	\bigcirc	\bigcirc
Remote output 3	\bigcirc	\bigcirc
Remote output 4	\bigcirc	\bigcirc
PID manipulated variable	\bigcirc	$0^{* 3}$
Second PID set point	-	-
Second PID measured value	-	\bigcirc
Second PID deviation	\bigcirc	$0^{* 3}$
Second PID measured value 2	\bigcirc	-
Second PID manipulated variable	\bigcirc	$0^{* 3}$
Dancer main speed setting	\bigcirc	-

*1 The monitoring-enabled items differ depending on the output interface (operation panel, parameter unit, terminal FM/CA, or terminal AM). For the details, refer to page 435.
*2 When the inverter operation is switched to the test operation, the indication is changed to 0 . When PM sensorless vector control is selected again after the test operation, the output current peak value and the electronic thermal relay load factor from the last operation are displayed.
*3 The output is enabled via terminal AM only.
*4 When the inverter operation is switched to the test operation, the accumulated thermal value is reduced because the output current is considered as 0 .

《Parameters referred to 》
Pr. 52 Operation panel main monitor selection page 424
Pr. 158 AM terminal function selection $\$$ page 435

- Changing the control method with external terminals (RT signal, X18 signal)

- Control method (V/F control, Advanced magnetic flux vector control, Real sensorless vector control, Vector control) can be switched using external terminals.
The control method can be switched using either the Second function selection (RT) signal or the V/F switchover (X18) signal.
- When using the RT signal, set the second motor in Pr. 450 Second applied motor and set the second motor's control method in Pr. 451 Second motor control method selection. Turning ON the RT signal enables the second function, enabling the switchover of the control method.
- When using the X18 signal, turning ON the X18 signal switches the presently-selected control method (Advanced magnetic flux vector control, Real sensorless vector control, Vector control) to the V/F control. Use this method to switch the control method for one motor. At this time, the second functions including the electronic thermal O / L relay characteristic are not changed. (To switch the second functions, use the RT signal.)
To input the X18 signal, set "18" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.

First motor control method	Second motor control method (RT signal-ON)	Pr. 450 setting	$\text { Pr.453, Pr. } 454$ settings	Pr. 451 setting
V/F control	V/F control	9999	-	-
		-	-	9999
		-	9999*2	-
	Advanced magnetic flux vector control	Induction motor	Other than 9999	20
	Real sensorless vector control			10 to 14
	Vector control	Induction motor		$\begin{aligned} & 0 \text { to } 6,100 \text { to } \\ & 106 \end{aligned}$
		IPM/SPM motor		0, 3, 4, 6
	PM sensorless vector control	IPM/SPM motor		Other than 9999
Advanced magnetic flux vector control ${ }^{* 1}$ Real sensorless vector control ${ }^{* 1}$ Vector control ${ }^{* 1}$ PM sensorless vector control	Same control as the first motor*1	9999	-	-
	V/F control	-	9999*2	-
	Advanced magnetic flux vector control	Induction motor	Other than 9999	20,9999
	Real sensorless vector control			10 to 14
	Vector control	Induction motor		$\begin{aligned} & 0 \text { to } 6,100 \text { to } \\ & 106 \end{aligned}$
		IPM/SPM motor		0, 3, 4, 6
	PM sensorless vector control	IPM/SPM motor		Other than 9999

*1 V/F control is set by turning ON the X 18 signal. If the X 18 signal is unassigned, RT signal performs the same function; Turning ON the RT signal selects V/F control.
*2 V/F control when Pr. 453 or Pr. 454 is set to " 9999 " regardless of the Pr. 451 setting. When Pr. 450 is set to the IPM motor MM-CF, PM sensorless vector control is enabled even if Pr. $453 \neq$ "9999" or Pr. $454=$ "9999".

NOTE

- The RT signal is assigned to the terminal RT in the initial status. Set "3" in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 500.)
- The control method could be changed by external terminals (RT signal, X18 signal) while the inverter is stopped. If a signal is switched during the operation, the control method changes after the inverter stops.

- Switching between two encoder-equipped motors (Pr.862)

- Using the Vector control compatible plug-in options together with the control terminal option (FR-A8TP) enables the Vector control operation by switching between two encoder-equipped motors according to the RT signal. Use Pr. 862 Encoder option selection to set the combination of the motors (first/second), plug-in option, and control terminal option.

Pr.862 Encoder option selection	RT signal-OFF (First motor)	RT signal-ON (Second motor)
0 (initial value)	Plug-in option	Control terminal option
1	Control terminal option	Plug-in option

*1 When Pr. 450 Second applied motor $=$ " 9999 ", the first motor is selected even if the RT signal turns ON.

NOTE

- Pr. 862 setting is valid even when either the plug-in option or control terminal option is installed. For using the control terminal option alone, the motor does not run when Pr. 862 is the initial value as it is. (When the RT signal is OFF)

－Changing the control mode with external terminals（MC signal）

－To use ON／OFF of the MC signal to switch the control mode，set Pr． 800 or Pr．451．Refer to page 217 and set Pr． 800 or Pr． 451.
To input the MC signal，set＂26＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function．
－When using an analog input terminal（terminal 1，4）for torque limit and torque command，switching of the control mode changes the terminal function as follows：
－Functions of the terminal 1 under different control modes

| Pr．868
 setting | Speed control／torque control
 switchover | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

－Terminal 4 functions by control

$\begin{aligned} & \text { Pr. } 858 \\ & \text { setting } \end{aligned}$	Speed control／torque control switchover ${ }^{* 1}$		Speed control／position control switchover ${ }^{*}{ }^{2}$		Position control／torque control switchover ${ }^{* 3}$	
	Speed control （MC signal－OFF）	Torque control （MC signal－ON）	Speed control （MC signal－OFF）	Position control （MC signal－ON）	Position control （MC signal－OFF）	Torque control （MC signal－ON）
0 （initial value）	Speed command （AU signal－ON）	Speed limit （AU signal－ON）	Speed command （AU signal－ON）	－	－	Speed limit （AU signal－ON）${ }^{*} 4$
1	Magnetic flux command ${ }^{*}{ }^{*} 5$	Magnetic flux command ${ }^{*} 4 * 5$	Magnetic flux command ${ }^{*} 4 * 5$	Magnetic flux command ${ }^{* 4 * 5}$	Magnetic flux command ${ }^{* 5}$	Magnetic flux command ${ }^{* 5}$
4	Torque limit $(\operatorname{Pr} .810=1)^{*} 6$	－	Torque limit $(\operatorname{Pr} .810=1)^{*} 6$	Torque limit $(\operatorname{Pr} .810=1)^{*} 6$	Torque limit $(\operatorname{Pr} .810=1)^{*} 6$	－
9999	－	－	－	－	－	－

－：No function
＊1 Real sensorless vector control（Pr． $800=" 12 ")$ ，vector control（Pr． $800=$＂2＂）
＊2 Vector control（Pr． $800=$＂4＂），PM sensorless vector control（Pr．800＝＂14＂）
＊3 Vector control（Pr． $800=$＂ 5 ＂）
＊4 This function is valid under vector control．
＊5 Invalid when Pr． $868=$＂ 1 ＂．
＊6 Invalid when Pr． $868=$＂ 4 ＂．

NOTE

－Switching between the speed control and the torque control is always enabled regardless of the motor status：in a stop，in running，or in DC injection brake（during pre－excitation）．
－During operation，switching between speed control and position control or between torque control and position control occurs when the output frequency reaches Pr． 865 Low speed detection or lower with no position command given．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

5.2.3 Selecting the Advanced magnetic flux vector control

Magneticicflux

Point ${ }^{\rho}$

- To use the Advanced magnetic flux vector control, set the motor capacity, the number of motor poles, and the motor type using Pr. 80 and Pr. 81

Advanced magnetic flux vector control

Operating procedure

1. Perform secure wiring. (Refer to page 46.)
2. Make the motor setting (Pr.71).

Motor		Pr. 71 setting ${ }^{* 1}$	Remarks
Mitsubishi Electric standard motor Mitsubishi Electric highefficiency motor	SF-JR	0 (initial value) $(3,4)$	
	SF-JR 4P 1.5 kW or lower	20	
	SF-HR	40	
	Others	0 (3)	Offline auto tuning is required.*2
Mitsubishi Electric constanttorque motor	SF-JRCA 4P	1	
	SF-HRCA	50	
	Other (SF-JRC, etc.)	1 (13)	Offline auto tuning is required. ${ }^{* 2}$
Mitsubishi Electric highperformance energy-saving motor	SF-PR	70	
Other manufacturer's standard motor	-	0 (3)	Offline auto tuning is required. ${ }^{2}$
Other manufacturer's constant-torque motor	-	1 (13)	Offline auto tuning is required.*2

*1 For the other setting values of Pr.71, refer to page 505.
*2 For offline auto tuning, refer to page 509.
3. Set the motor overheat protection (Pr.9). (Refer to page 394.)
4. Set the motor capacity and number of motor poles (Pr.80, Pr.81). (Refer to page 215.) V/F control is performed when the setting is "9999" (initial value).
5. Set the rated motor voltage and frequency (Pr.83, Pr.84). (Refer to page 509.)
6. Set the operation command. (Refer to page 370.)

Select the start command and speed command.
7. Perform the test operation.

As required

- Perform the offline auto tuning (Pr.96). (Refer to page 509.)
- Select the online auto tuning (Pr.95). (Refer to page 527.)

NOTE

－To perform driving in a better accuracy，perform offline auto tuning，then set the online auto tuning，and select Real sensorless vector control．
－Under this control，rotations are more likely to be uneven than under V／F control．（This control method is not suitable for grinder，wrapping machine，etc．，which require even rotation at a low speed．）
－For the FR－A820－03160（55K）or lower and the FR－A840－01800（55K）or lower，the operation with a surge voltage suppression filter（FR－ASF－H／FR－BMF－H）installed between the inverter and the motor may reduce the output torque．
－The optional sine wave filter（MT－BSL／BSC）cannot be used between the inverter and the motor．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

－Keeping the motor speed constant when the load fluctuates（speed control gain）

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 89 \\ & \text { G932 } \end{aligned}$	Speed control gain （Advanced magnetic flux vector）	9999	0 to 200\％	Makes adjustments to keep the motor speed constant during variable load operation under Advanced magnetic flux vector control．The reference value is 100% ．
			9999	The gain set by Pr．71．（The gain set in accordance with the motor．）
$\begin{aligned} & 569 \\ & \text { G942 } \end{aligned}$	Second motor speed control gain	9999	0 to 200\％	Makes adjustments to keep the second motor speed constant during variable load operation under Advanced magnetic flux vector control．The reference value is 100% ．
			9999	The gain set by Pr．450．（The gain set in accordance with the motor．）

－Use Pr． 89 to keep the motor speed constant during variable load operation．
（This parameter is useful to make adjustments on the motor speed after replacing a conventional model with an FR－A800 series model．）

Driving two motors under Advanced magnetic flux vector control

－Turning ON the Second function selection（RT）signal enables the second motor operation．
－Set a second motor in Pr． 450 Second applied motor．（In the initial setting，＂9999＂（no second applied motor）is selected． Refer to page 505．）

Function	RT signal－ON（second motor）	RT signal－OFF（first motor）
Applied motor	Pr． 450	Pr． 71
Motor capacity	Pr． 453	Pr． 80
Number of motor poles	Pr． 454	Pr． 81
Speed control gain（Advanced magnetic flux vector）	Pr． 569	Pr． 89
Control method selection	Pr． 451	Pr． 800

NOTE

－The RT signal is a Second function selection signal．The RT signal also enables other second functions．（Refer to page 500．） The RT signal is assigned to the terminal RT in the initial status．Set＂ 3 ＂in one of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal

5.2.4 Selecting the PM sensorless vector control

- Setting for the PM sensorless vector control by selecting parameter initialization ("| F-|") on the operation panel

Point 9

- The parameters required to drive an MM-CF IPM motor are automatically changed as a batch. (Refer to page 225.)
- [PM] indicator on the operation panel (FR-DU08) is turned ON when the PM sensorless vector control is set

The following shows the procedure to initialize the parameter settings for an MM-CF IPM motor by selecting IPM parameter initialization on the operation panel.

Operating procedure

1. Turning ON the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press $\frac{\text { PU }}{\text { EXT }}$ to choose the PU operation mode.
[PU] indicator turns ON.
3. Selecting the parameter setting mode

Press mode to choose the parameter setting mode.
[PRM] indicator is ON.
4. IPM initialization selection

5. Displaying the set value

Press SET to read the present set value.
"
6. Changing the setting value

Turn to change the value to "ヨifin

Setting	Description
0	Parameter settings for an induction motor
3003	Parameter settings for MM-CF IPM motor (rotations per minute)

NOTE

- If parameters are initialized for a PM motor in the IPM initialization mode, the Pr. 998 PM parameter initialization setting is automatically changed.
- In the initial parameter setting, the capacity same as the inverter capacity is set in Pr. 80 Motor capacity. To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity by selecting the mode on the operation panel.
- To set a speed by adjusting frequencies or to monitor it, use Pr.998. (Refer to page 225.)

\bullet Initializing the parameters required for the PM sensorless vector control (Pr.998)

- PM parameter initialization sets parameters required for driving an IPM motor MM-CF.
- The offline auto tuning enables the operation with an IPM motor other than MM-CF and with SPM motors.
- Two MM-CF PM parameter initialization methods are available; setting Pr. 998 PM parameter initialization, and selecting IPM initialization (")

Pr.	Name	Initial value	Setting range	Description	
$\begin{array}{\|l\|} \hline 998 \\ \text { E430 } \end{array}$	PM parameter initialization	0	0	Parameter settings for an induction motor (frequency)	The parameter settings required to drive an induction motor are set.
			3003	parameter settings for MM-CF IPM motor (rotations per minute)	The parameters settings required to drive an IPM motor are set.
			3103	parameter settings for MM-CF IPM motor (frequencies)	
			8009	The parameter settings required to drive an IPM motor other than MM-CF are set. (rotations per minute) (after tuning)	The parameters settings required to drive an IPM motor are set. (Set Pr. 71 Applied motor and perform offline auto tuning in advance. (Refer to page 519.))
			8109	The parameter settings required to drive an IPM motor other than MM-CF are set. (frequency) (after tuning)	
			9009	The parameters settings required to drive an SPM motor are set. (rotations per minute) (after tuning)	The parameters settings required to drive an SPM motor are set. (Set Pr. 71 Applied motor and perform offline auto tuning in advance. (Refer to page 519.))
			9109	The parameters settings required to drive an SPM motor are set. (frequency) (after tuning)	

- To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity before performing PM parameter initialization.
- When Pr. $998=$ " 3003,8009 , or 9009 ", the monitor is displayed and the frequency is set using the motor rotations per minute. To use frequency to display or set, set Pr. $998=$ " 3103,8109 , or 9109 ".
- Set Pr. $998=$ " 0 " to change the PM sensorless vector control parameter settings to the parameter settings required to drive an induction motor.
- When using an IPM motor or SPM motor other than MM-CF, set Pr. 998 = "8009, 8109, 9009, or 9109".

NOTE

- Make sure to set Pr. 998 before setting other parameters. If the Pr. 998 setting is changed after setting other parameters, some of those parameters are initialized too. (Refer to "PM parameter initialization list" for the parameters that are initialized.)
- To change back to the parameter settings required to drive an induction motor, perform Parameter clear or All parameter clear.
- If the setting of Pr. 998 PM parameter initialization is changed between " $3003,8009,9009$ (rotations per minute)" \leftrightarrow " 3103 , 8109, 9109 (frequency)", the target parameters are respectively set to their initial values.
The purpose of Pr. 998 is not to change the display units. Use Pr. 144 Speed setting switchover to change the display units between rotations per minute and frequency. The parameter enables switching of display units between rotations per minute and frequency without initializing the parameter settings.
Example) Changing the Pr. 144 setting between " 6 " and "106" switches the display units between frequency and rotations per minute.
- For an inverter out of the capacity range of the IPM motor MM-CF, "3003 or 3103" cannot be set. (Refer to page 798 for the capacities of MM-CF motors.)
- The PM parameter initialization (Pr.998) changes parameter settings for the first motor. When a PM motor is used as the second motor, parameters for the second motor must be set individually.

- PM parameter initialization list

- The parameter settings in the following table are changed to the settings required to perform PM sensorless vector control by selecting the IPM initialization on the operation panel or by using Pr. 998 PM parameter initialization. The changed settings differ according to the specification (capacity) of the PM motor used.
- Performing the Parameter clear or the All parameter clear resets these parameter settings to the settings required to drive an induction motor.

Pr.	Name	Setting						Setting increments		
		Induction motor		PM motor (rotations per minute)		PM motor (frequency)				
		0 (initial value)		$\begin{gathered} 3003 \\ \text { (MM-CF) } \end{gathered}$	8009, 9009 (other than MMCF)	$\begin{gathered} 3103 \\ \text { (MM-CF) } \end{gathered}$	$\begin{aligned} & 8109, \\ & 9109 \end{aligned}$ (other than MMCF)	3003, 8009, 9009	$\begin{gathered} 0,3103 \\ 8109 \\ 9109 \end{gathered}$	
		FM	CA							
1	Maximum frequency	$120 \mathrm{~Hz}{ }^{* 1}$		3000 r/min	Maximum motor rotations per minute*8	200 Hz	Maximum motor frequency* 8	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
		$60 \mathrm{~Hz}{ }^{*}$								
4	Multi-speed setting (high speed)	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
9	Electronic thermal O/L relay	Inverter rated current		Rated motor current ${ }^{* 10}$	-	Rated motor current ${ }^{*}{ }^{10}$	-	$0.01 \mathrm{~A}^{* 1}$		
				$0.1 \mathrm{~A}^{* 2}$						
13	Starting frequency	0.5 Hz			$8 \mathrm{r} / \mathrm{min}^{*} 5$	$\begin{aligned} & \text { Pr. } 84 \times \\ & 10 \% \end{aligned}$	$0.5 \mathrm{~Hz}{ }^{*}$	$\begin{aligned} & \text { Pr. } 84 \times \\ & 10 \% \end{aligned}$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
15	Jog frequency	5 Hz		200 r/min	$\begin{aligned} & \text { Pr. } 84 \times \\ & 10 \% \end{aligned}$	13.33 Hz	$\begin{aligned} & \text { Pr. } 84 \times \\ & 10 \% \end{aligned}$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
18	High speed maximum frequency	$120 \mathrm{~Hz}^{* 1}$		3000 r/min	-	200 Hz	-	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
		$60 \mathrm{~Hz}^{*}{ }^{2}$								
20	Acceleration/deceleration reference frequency	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
22	Stall prevention operation level	$150 \%{ }^{*}{ }^{7}$		150\%** ${ }^{\text {7 }}$				0.1\%		
37	Speed display	0		0				1		
55	Frequency monitoring reference	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
56	Current monitoring reference	Inverter rated current		Rated motor current ${ }^{* 10}$	Pr. 859	Rated motor current ${ }^{* 10}$	Pr. 859	$0.01 \mathrm{~A}^{* 1}$		
				$0.1 \mathrm{~A}^{* 2}$						
71	Applied motor	0			$330{ }^{*}$	-	$330{ }^{*}$	-	1	
		9999		Motor capacity $(\mathrm{MM}-\mathrm{CF})^{*} 4$	-	Motor capacity $(\mathrm{MM}-\mathrm{CF})^{*} 4$	-	$0.01 \mathrm{~kW}^{* 1}$		
80	Motor capacity			0.1 kW *2						
81	Number of motor poles	9999			$8^{* 4}$	-	$8^{* 4}$	-	1	
84	Rated motor frequency	9999		2000 r/min	-	133.33 Hz	-	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
116	Third output frequency detection	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
125 (903)	Terminal 2 frequency setting gain frequency	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
126 (905)	Terminal 4 frequency setting gain frequency	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
144	Speed setting switchover	4		108	Pr. 81 +100	8	Pr. 81	1		
240	Soft-PWM operation selection	1		0				1		
263	Subtraction starting frequency	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
266	Power failure deceleration time switchover frequency	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
374	Overspeed detection level	9999		3150 r/min	Maximum motor rotations per minute $+10 \mathrm{~Hz}^{* *}{ }^{*} 9$	210 Hz	Maximum motor frequency $+10 \mathrm{~Hz}^{*} 8$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
386	Frequency for maximum input pulse	60 Hz	50 Hz	2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz	
505	Speed setting reference	60 Hz	50 Hz	133.33 Hz	Pr. 84	133.33 Hz	Pr. 84	0.01 Hz		

Pr.	Name	Setting						Setting increments					
		Induction motor		PM motor (rotations per minute)		PM motor (frequency)							
		0 (initial value)		$\begin{gathered} 3003 \\ \text { (MM-CF) } \end{gathered}$	8009, 9009 (other than MMCF)	$\begin{gathered} 3103 \\ (M M-C F) \end{gathered}$	$\begin{gathered} 8109, \\ 9109 \\ \text { (other } \\ \text { than MM- } \\ \text { CF) } \end{gathered}$	3003, 8009, 9009	$\begin{gathered} 0,3103 \\ 8109 \\ 9109 \end{gathered}$				
		FM	CA										
557	Current average value monitor signal output reference current	Inverter rated current		Rated motor current ${ }^{* 10}$	Pr. 859	Rated motor current ${ }^{* 10}$	Pr. 859	0.01 A*1					
				$0.1 \mathrm{~A}^{* 2}$									
820	Speed control P gain 1	60\%			30\%				1\%				
821	Speed control integral time 1	0.333 s		0.333 s				0.001 s					
824	Torque control P gain 1 (current loop proportional gain)	100\%		100\%				1\%					
825	Torque control integral time 1 (current loop integral time)	5 ms		20 ms				0.1 ms					
870	Speed detection hysteresis	0 Hz		$8 \mathrm{r} / \mathrm{min}$	$0.5 \mathrm{~Hz}^{*} 9$	0.5 Hz		$1 \mathrm{r} / \mathrm{min}$	0.01 Hz				
885	Regeneration avoidance compensation frequency limit value	6 Hz		200 r/min	$\begin{aligned} & \text { Pr. } 84 \times \\ & 10 \% \end{aligned}$	13.33 Hz	$\begin{aligned} & \text { Pr. } 84 \times \\ & 10 \% \end{aligned}$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz				
893	Energy saving monitor reference (motor capacity)	Inverter rated current		Motor capacity (Pr.80)				$0.01 \mathrm{~kW}^{* 1}$					
				$0.1 \mathrm{~kW}^{*} 2$									
$\begin{array}{\|l} \hline \text { C14 } \\ (918) \\ \hline \end{array}$	Terminal 1 gain frequency (speed)	60 Hz	50 Hz					2000 r/min	Pr. 84	133.33 Hz	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
1121	Per-unit speed control reference frequency	$120 \mathrm{~Hz}^{* 1}$		3000 r/min	Maximum motor rotations per minute*8	200 Hz	Maximum motor frequency* 8	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz				
		$60 \mathrm{~Hz}^{*}$											

- : Not changed

*1 Initial value for the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower.
*2 Initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) and higher.
*3 When Pr. 71 Applied motor = "333, 334, 8093, 8094, 9093, or 9094", the Pr. 71 setting are not changed.
*4 When a value other than "9999" is set, the set value is not changed.
*5 $200 \mathrm{r} / \mathrm{min}$ when Pr. 788 Low speed range torque characteristic selection $=$ " 0 ".
*6 13.33 Hz when Pr. 788 Low speed range torque characteristic selection = " 0 ".
*7 110% for SLD, 120% for LD, 150% for ND, and 200% for HD (Refer to Pr. 570 Multiple rating setting on page 326.)
*8 The Pr. 702 Maximum motor frequency is used as the maximum motor frequency (rotations per minute). When Pr. 702 ="9999 (initial value)", the Pr. 84 Rated motor frequency is used as the maximum motor frequency (rotations per minute).
*9 The setting value is converted from frequency to rotations per minute. (It differs according to the number of motor poles.)
*10 Refer to page 798 for the rated motor current of MM-CF.

NOTE

- If IPM parameter initialization is performed in rotations per minute (Pr. $998=$ " 3003,8009 , or 9009 "), the parameters not listed in the table and the monitor items are also set and displayed in rotations per minute.

5.2.5 Low-speed range torque characteristics PM

The torque characteristics in a low-speed range under PM sensorless vector control can be changed.

Pr.	Name	Initial value	Setting range	Operation status
$\begin{aligned} & 788 \\ & \text { G250 } \end{aligned}$	Low speed range torque characteristic selection	9999	0	Disables the low-speed range torque characteristic (current synchronization operation).
			9999*1	Enables the low-speed range torque characteristic (high frequency superposition control)
$\begin{aligned} & 747 \\ & \text { G350 } \end{aligned}$	Second motor low-speed range torque characteristic selection	9999	0	Disables the low-speed range torque characteristic (current synchronization operation) while the RT signal is ON.
			9999*1	Enables the low-speed range torque characteristic (high frequency superposition control) while the RT signal is ON.

＊1 The low－speed range high－torque characteristic（current synchronization operation）is disabled for PM motors other than MM－CF，even if＂9999＂ is set．

－When the low－speed range torque characteristic is enabled（Pr． $788=$ ＂9999（initial value）＂）

－The high frequency superposition control provides enough torque in the low－speed range operation．
－The low－speed range high－torque characteristic is only valid with an MM－CF motor．

－When the low－speed range high－torque characteristic is disabled（Pr． 788 ＝＂0＂）

－The current synchronization operation reduces much motor noise compared with the high frequency superposition control．
－Since the torque in a low－speed range is low，use this setting for an operation with light start－up load．

Low－speed range high－torque characteristic is set for the second motor

 （Pr．747）－Use Pr． 747 Second motor low－speed range torque characteristic selection to switch the torque characteristic in a low－ speed range according to the application or to switch among motors connected to one inverter．
－The Pr． 747 becomes valid when the RT signal turns ON．

NOTE

－Position control under PM sensorless vector control is not available when the current synchronization operation is selected． Zero speed and servo lock are also disabled during current synchronization operation．
－For torque characteristics，refer to page 798.
－The RT signal is assigned to the terminal RT in the initial status．Set＂ 3 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

[^11]
5.3 Speed control under Real sensorless vector control, vector control, PM sensorless vector control

Purpose	Parameter to set			Refer to page
To limit the torque during speed control	Torque limit	$\begin{aligned} & \text { P.H500, P.H700 } \\ & \text { to P.H704, } \\ & \text { P.H710, P.H720, } \\ & \text { P.H721, P.H730, } \\ & \text { P.T010, P.T040, } \\ & \text { P.G210 } \end{aligned}$	Pr.22, Pr.801, Pr.803, Pr.810, Pr. 812 to Pr.817, Pr.858, Pr.868, Pr. 874	235
To adjust the gain for speed control	Easy gain tuning gain adjustment	$\begin{aligned} & \text { P.C112 to } \\ & \text { P.C114, P.G206, } \\ & \text { P.G211, P.G212, } \\ & \text { P.G218, P.G260, } \\ & \text { P.G261, P.G311, } \\ & \text { P.G312, P.G361 } \end{aligned}$	Pr. 818 to Pr.821, Pr.830, Pr.831, Pr.880, Pr. 1115 to Pr.1118, Pr. 1121	244
To improve the motor trackability for the speed command changes	Speed feed forward control, model adaptive speed control	$\begin{aligned} & \text { P.G220 to } \\ & \text { P.G224, P.G262, } \\ & \text { P.C114 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 828 \text {, Pr. } 877 \\ & \text { to Pr. } 881 \text {, } \\ & \text { Pr. } 1119 \end{aligned}$	253
To stabilize the speed detection signal	Speed detection filter	P.G215, P.G315	Pr.823, Pr. 833	316
To make starting torque start-up faster	Torque bias	$\begin{aligned} & \text { P. G230 to } \\ & \text { P.G238 } \end{aligned}$	$\begin{aligned} & \hline \text { Pr. } 840 \text { to } \\ & \text { Pr. } 848 \end{aligned}$	255
To avoid motor overrunning	Speed deviation excess, speed limit, deceleration check	$\begin{aligned} & \text { P.H415 to } \\ & \text { P.H417, P.H881 } \end{aligned}$	$\begin{aligned} & \text { Pr.285, Pr.690, } \\ & \text { Pr.853, Pr. } 873 \end{aligned}$	259
To avoid mechanical resonance	Notch filter	$\begin{aligned} & \text { P.G601 to } \\ & \text { P.G603 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 1003 \text { to } \\ & \text { Pr. } 1005 \end{aligned}$	261
To adjust the gain during PM sensorless vector control	Speed control gain adjustment	P.G211, P.G212	Pr.820, Pr. 821	244

Speed control performs control so that the speed command and the actual motor rotation speed match.

Control block diagram

5.3.1 Setting procedure of Real sensorless vector control (speed control)

Sensorless

Operating procedure

1. Perform secure wiring. (Refer to page 46.)
2. Set the motor (Pr.71). (Refer to page 505.)

Set Pr. 71 Applied motor to "0" (standard motor) or "1" (constant-torque motor).
3. Set the overheat protection of the motor (Pr.9). (Refer to page 394.)
4. Set the motor capacity and number of motor poles (Pr. 80 and Pr.81). (Refer to page 215.)

V/F control is performed when the setting is " 9999 " (initial value).
5. Set the rated motor voltage and the rated motor frequency (Pr. 83 and Pr.84). (Refer to page 509.)
6. Select the control method (Pr.800). (Refer to page 215.)

Select Pr. $800=$ " 10 " (speed control) or "12" (speed/torque switchover) to enable speed control.
7. Set the operation command. (Refer to page 370.)

Select the start command and speed command.
8. Set the torque limit (Pr.810). (Refer to page 235.)
9. Perform the offline auto tuning (Pr.96). (Refer to page 509.)
10. Perform the test operation.

As required

- Select online auto tuning (Pr.95). (Refer to page 527.)
- Perform easy gain tuning. (Refer to page 246.)
- Adjust the speed control gain manually. (Refer to page 247.)

NOTE

- During Real sensorless vector control, offline auto tuning must be performed properly before starting operations.
- The speed command setting range under Real sensorless vector control is 0 to 400 Hz .
- The carrier frequency is limited during Real sensorless vector control. (Refer to page 339.)
- Torque control is not available in a low-speed (about 10 Hz or lower) regenerative range, or with a low speed and light load (about 5 Hz or lower and rated torque about 20% or lower). Vector control must be selected.
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start signal (STF or STR) is not input. The inverter at a start command ON may also rotate the motor at a low speed even though a speed limit value is set to zero Therefore, confirm that the motor running will not cause any safety problem before performing pre-excitation.
- Switching between the Forward rotation command (STF) and Reverse rotation command (STR) must not be performed during operations under torque control. An overcurrent trip (E.OC[]) or opposite rotation deceleration fault (E.11) will occur.
- When performing continuous operations under Real sensorless vector control in FR-A820-00250(3.7K) or lower or FR-A840$00126(3.7 \mathrm{~K})$ or lower, the speed fluctuation increases when the value is 20 Hz or less, and in the low-speed range of less than 1 Hz , there may be torque shortage. In such case, stop the inverter and restart it to improve the situation.
- In case of starting the motor while the motor is coasting under Real sensorless vector control, the frequency search must be set for the automatic restart after instantaneous power failure function (Pr. $57 \neq " 9999 "$ Pr. $162=$ "10"). (Refer to page 597.)
- When Real sensorless vector control is applied, there may not be enough torque provided in the ultra low-speed range of about 2 Hz or lower.
Generally, the speed control range is as follows.
For power driving, 1:200 (2, 4 or 6 poles) (available at 0.3 Hz or higher when the rating is 60 Hz), 1:30 (8 or 10 poles) (available at 60 Hz or higher when the rating is 60 Hz).
For regenerative driving, 1:12 (2 to 10 poles) (available at 5 Hz or higher when the rating is 60 Hz).

5.3.2 Setting procedure of Vector control (speed control)

Vector

Operating procedure

1. Perform secure wiring. (Refer to page 90 .)

Install a Vector control compatible option.
2. Set the option to be used (Pr.862).

Set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 220.)
3. Set the applied motor and encoder (Pr.71, Pr. 359 (Pr. 852), and Pr. 369 (Pr. 851)). (Refer to page 93.)
4. Set the overheat protection of the motor (Pr.9). (Refer to page 394.)

When using the SF-V5RU or a motor equipped with a thermal sensor, set Pr. $9=0 \mathrm{~A}$.
5. Set the motor capacity and number of motor poles (Pr. 80 and Pr.81). (Refer to page 215.)

V/F control is performed when the setting is "9999" (initial value).
6. Set the rated motor voltage and the rated motor frequency (Pr. 83 and Pr.84). (Refer to page 509.)
7. Select the control method (Pr.800). (Refer to page 215.)

Select Pr. 800="0" (speed control), "2" (speed/torque switchover), or "4" (speed/position switchover) to enable speed control.
8. Set the operation command. (Refer to page 370.)

Select the start command and speed command.
9. Set the torque limit (Pr.810). (Refer to page 235.)
10. Perform the test operation.

As required

- Perform offline auto tuning (Pr.96). (Refer to page 509.)
- Select online auto tuning (Pr.95). (Refer to page 527.)
- Perform easy gain tuning. (Refer to page 246.)
- Adjust the speed control gain manually. (Refer to page 247.)

NOTE

- The speed command setting range under Vector control is 0 to 400 Hz .
- The carrier frequency is limited during Vector control. (Refer to page 339.)
- For Vector control for a motor with a resolver, refer to the Instruction Manual of the FR-A8APR.

5.3.3 Setting procedure of PM sensorless vector control (speed control)

PM

This inverter is set for a general-purpose motor in the initial setting. Follow the following procedure to change the setting for the PM sensorless vector control.

\bullet Driving an MM-CF IPM motor

Operating procedure

1. Perform IPM parameter initialization. (Refer to page 224.)

Set "3003 or 3103" in Pr. 998 PM parameter initialization, or select "3003" in "| FM" (IPM initialization).

Setting	Description
3003	Parameter settings for MM-CF IPM motor (rotations per minute)
3103	Parameter settings for MM-CF IPM motor (frequencies)

2. Set parameters such as the acceleration/deceleration time and multi-speed setting.

Set parameters such as the acceleration/deceleration time and multi-speed setting as required.
3. Set the operation command. (Refer to page 370.)

Select the start command and speed command.
4. Perform the test operation.

As required

- Perform offline auto tuning for a PM motor. (Refer to page 519.)

NOTE

- To change to the PM sensorless vector control, perform PM parameter initialization at first. If parameter initialization is performed after setting other parameters, some of those parameters are initialized too. (Refer to page 225 for the parameters that are initialized.)
- To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity before performing PM parameter initialization.
- The speed setting range for an MM-CF IPM motor is between 0 and 200 Hz .
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 339.)
- Constant-speed operation cannot be performed in the low-speed range of $200 \mathrm{r} / \mathrm{min}$ or less under current synchronization operation. (Refer to page 227.)
- During PM sensorless vector control, the RUN signal is output about 100 ms after turning ON the start command (STF, STR). The delay is due to the magnetic pole detection.
- During PM sensorless vector control, the automatic restart after instantaneous power failure function operates only when an MM-CF IPM motor is connected

When a built-in brake or a regeneration unit is used, the frequency search may not be available at $2200 \mathrm{r} / \mathrm{min}$ or higher.
The restart operation cannot be performed until the motor speed drops to a frequency where the frequency search is available.

Driving a PM motor other than MM-CF

Operating procedure

1. Set the motor (Pr.9, Pr.71, Pr.80, Pr.81, Pr.83, and Pr.84). (Refer to page 505, page 519.)

Set "8093 (IPM motor other than MM-CF) or 9093 (SPM motor)" in Pr. 71 Applied motor. Set Pr. 9 Rated motor current, Pr. 80 Motor capacity, Pr. 81 Number of motor poles, Pr. 83 Rated motor voltage, and Pr. 84 Rated motor frequency according to the motor specifications. (Setting "9999 (initial value)" in Pr. 80 or Pr. 81 selects V/F control.)
2. Perform the offline auto tuning for a PM motor (Pr.96). (Refer to page 519.)

Set "1" (offline auto tuning without rotating motor (for other than MM-CF)) in Pr.96, and perform tuning.
3. Configure the initial setting for the PM sensorless vector control using Pr.998. (Refer to page 225.)

When the setting for the PM motor is selected in Pr. 998 PM parameter initialization, the PM sensorless vector control is selected. [PM] on the operation panel (FR-DU08) is lit when the PM sensorless vector control is set.

Setting	Description
8009	Parameter settings for an IPM motor other than MM-CF (rotations per minute)
8109	Parameter settings for an IPM motor other than MM-CF (frequency)
9009	Parameter settings for an SPM motor (rotations per minute)
9109	Parameter settings for an SPM motor (frequency)

4. Set parameters such as the acceleration/deceleration time and multi-speed setting.

Set parameters such as the acceleration/deceleration time and multi-speed setting as required.
5. Set the operation command. (Refer to page 370.)

Select the start command and speed command.
6. Perform the test operation.

NOTE

- To change to the PM sensorless vector control, perform PM parameter initialization at first. If parameter initialization is performed after setting other parameters, some of those parameters are initialized too. (Refer to page 225 for the parameters that are initialized.)
- To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity before performing PM parameter initialization.
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 339.)
- Constant-speed operation cannot be performed in the low-speed range of $200 \mathrm{r} / \mathrm{min}$ or less under current synchronization operation. (Refer to page 227.)
- During PM sensorless vector control, the RUN signal is output about 100 ms after turning ON the start command (STF, STR). The delay is due to the magnetic pole detection.

5.3.4 Setting the torque limit level

Sensorless Vector PM

Limit the output torque not to exceed the specified value.
The torque limit level can be set in a range of 0 to 400%. The TL signal can be used to switch between two types of torque limit. The torque limit level can be selected by setting it with a parameter, or by using analog input terminals (terminals 1, 4). Also, the torque limit levels of forward rotation (power driving/regenerative driving) and reverse rotation (power driving/regenerative driving) can be set individually.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 22 \\ & \mathrm{H} 500 \end{aligned}$	Stall prevention operation level (Torque limit level)	150/200\%**	0 to 400\%	Set the torque limit level as a percentage with regards to the rated torque as 100%.
85 G201	Excitation current break point	9999	0 to 400 Hz	Set a frequency of the low-speed range in the constant output range torque characteristic selection.
			9999	SF-PR/SF-HR/SF-HRCA motor: The predetermined frequency is applied. Motor other than the above: 10 Hz is applied.
$\begin{aligned} & 86 \\ & \text { G202 } \end{aligned}$	Excitation current low speed scaling factor	9999	0 to 300\%	Set a torque scaling factor applied to the operation in the lowspeed range in the constant output range torque characteristic selection.
			9999	SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. Motor other than the above: 130% is applied.
$\begin{aligned} & 157 \\ & \text { M430 } \end{aligned}$	OL signal output timer	0 s	0 to 25 s	Set the OL signal output start time at the activation of torque limit operation.
			9999	No OL signal output.

Pr.	Name	Initial value	Setting range	Description	
$\begin{array}{\|l\|} \hline 801 \\ \text { H704 } \end{array}$	Output limit level	9999	0 to 400\%	Set the torque current limit level.	
			9999	The torque limit setting value is used for limiting the torque current level.	
$\begin{aligned} & 803 \\ & \text { G210 } \end{aligned}$	Constant output range torque characteristic selection	0	0	The torque rises in the lowspeed range.	The motor power output is limited to be constant in the constant power range.
			1	The torque is kept constant in the low-speed range.	The torque is limited to be constant in the constant power range.
			2	The torque is kept constant in the low-speed range. (The torque current is limited.)	The torque is limited to be constant in the constant power range unless the output limit of the torque current is reached. (The torque current is limited.)
			10	The torque is kept constant in the low-speed range.	The motor power output is limited to be constant in the constant power range.
			11	The torque rises in the lowspeed range.	The torque is limited to be constant in the constant power range.
$\begin{aligned} & 804 \\ & \text { D400 } \end{aligned}$	Torque command source selection	0	0	The internal torque limit 2 cannot be used.	
			1	Torque limit by the parameter setting (Pr. 805 or Pr.806) (-400 to 400\%)	
			2	The internal torque limit 2 cannot be used.	
			3	Torque limit through the CC-Link/CC-Link IE Field Network communication (FR-A8NC, FR-A8NCE, FR-A800-GF)	
			4	The internal torque limit 2 cannot be used	
			5	Torque limit through the CC-Link/CC-Link IE Field Network communication (FR-A8NC, FR-A8NCE, FR-A800-GF)	
			6		
$\begin{array}{\|l\|} \hline 805 \\ \text { D401 } \end{array}$	Torque command value (RAM)	1000\%	$\begin{array}{\|l} \hline 600 \text { to } \\ 1400 \% \end{array}$	Writes the torque limit value in RAM. Regards 1000% as 0%, and set torque command by an offset of 1000%.	
$\begin{array}{\|l\|} \hline 806 \\ \text { D402 } \end{array}$	Torque command value (RAM, EEPROM)	1000\%	600 to 1400\%	Writes the torque limit value in RAM and EEPROM. Regards 1000% as 0%, and set torque command by an offset of 1000\%.	
	Torque limit input method selection	0	0	Internal torque limit 1 (torque limited by parameter settings)	
$\begin{array}{\|l} 810 \\ \mathrm{H} 700 \end{array}$			1	External torque limit (torque limited by terminals 1 and 4)	
			2	Internal torque limit 2 (torque limited by communication options)	
$\begin{aligned} & 811 \\ & \text { D030 } \end{aligned}$	Set resolution switchover	0	0	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments0.1%
			1	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	
			10	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.01\%
			11	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	
812	Torque limit level	9999	0 to 400\%	Set the torque limit level for forward rotation regenerative driving.	
H701	(regeneration)		9999	Limit using Pr. 22 or the analog terminal values.	
813	Torque limit level (3rd	9999	0 to 400\%	Set the torque limit level for reverse rotation power driving.	
H702	quadrant)		9999	Limit using Pr. 22 or the analog terminal values.	
814	Torque limit level (4th quadrant)	9999	0 to 400\%	Set the torque limit level for reverse rotation regenerative driving.	
H703			9999	Limit using Pr. 22 or the analog terminal values.	
815	Torque limit level 2	9999	0 to 400\%	When the torque limit selection (TL) signal is ON, Pr. 815 is the torque limit value regardless of Pr. 810 .	
			9999	The torque limit set to Pr. 810 is valid.	
816	Torque limit level during acceleration	9999	0 to 400\%	Set the torque limit value during acceleration.	
H720			9999	The same torque limit as constant speed.	
817	Torque limit level during deceleration	9999	0 to 400\%	Set the torque limit value during deceleration.	
H721			9999	The same torque limit as constant speed.	
$\begin{array}{\|l} 858 \\ \text { T040 } \end{array}$	Terminal 4 function assignment	0	0, 1, 4, 9999	The torque limit level can be changed with setting value "4" and the signal to terminal 4.	
$\begin{aligned} & 868 \\ & \text { T010 } \end{aligned}$	Terminal 1 function assignment	0	0 to 6, 9999	The torque limit level can be changed with setting value "4" and the signal to terminal 1.	

Pr.	Name	Initial value	Setting range	Description
874 H730	OLT level setting	150%	0 to 400%	The inverter can be set to be shut off at activation of torque limit and stalling of the motor. Set the output to be shut off.

*1 When changing from V/F control or Advanced magnetic flux vector control to Real sensorless vector control or Vector control in FR-A820$00250(3.7 \mathrm{~K})$ or lower or FR-A840-00126(3.7K) or lower, 150% changes to 200%.

NOTE

- The lower limit for the torque limit level under Real sensorless vector control is set to 30% even if a value lower than 30% is set.
- When the low-speed range high-torque characteristic is disabled under PM sensorless vector control ($\mathrm{Pr} .788=$ " 0 "), the torque limit is not activated in a low-speed range with a rated frequency of less than 10\%.
- Under PM sensorless vector control, the torque limit level is reduced inversely proportional to the output frequency in the constant output range of the rated motor frequency or higher.

Block diagram of torque limit

\checkmark Selecting the torque limit input method (Pr.810)

- Use Pr. 810 Torque limit input method selection to select the method to limit the output torque for speed control. The method in the initial setting is use of the parameter settings.

Pr.810 setting	Torque limit input method	Operation status
0 (initial value)	Internal torque limit 1	Perform the torque limit operation using the parameter (Pr.22, Pr.812 to Pr.814) settings. If changing the torque limit parameters via communication is enabled, the torque limit input can be performed via communication.
1	External torque limit	Torque limit using analog voltage (current) to terminal 1 or terminal 4 is valid.
2	Internal torque limit 2	The torque limit through the CC-Link (FR-A8NC) or CC-Link IE Field Network (FR-A8NCE/ FR-A800-GF) communication is valid.

Torque limit level using parameter settings (Pr. $810=$ " 0 ", Pr. 812 to Pr.814)

- The torque is limited by parameter setting (Internal torque limit 1).
- In the initial value, a limit is applied to all quadrants by Pr. 22 Stall prevention operation level (Torque limit level).
- To set individually for each quadrant, use Pr. 812 Torque limit level (regeneration), Pr. 813 Torque limit level (3rd quadrant), Pr. 814 Torque limit level (4th quadrant). When " 9999 " is set, Pr. 22 setting is regarded as torque limit level in all the quadrants.

- Torque limit level using analog input (terminals 1, 4) (Pr. 810 = "1", Pr.858, Pr.868)

- The torque is limited with the analog input of terminal 1 or terminal 4. (External torque limit)
- Torque limit using analog input is valid with a limit value lower than the internal torque limit (Pr.22, Pr. 812 to Pr.814). (If the torque limit using analog input exceeds the internal torque limit, the internal torque limit is valid.)
- When inputting the torque limit value from terminal 1, set Pr. 868 Terminal 1 function assignment = " 4 ". When inputting from terminal 4, set Pr. 858 Terminal 4 function assignment = "4".
- When Pr. $858=$ " 4 " and Pr. $868=$ " 2 ", the torque for regenerative driving is limited with the terminal 1 analog input, and the torque for power driving is limited with the terminal 4 analog input.

* Analog input (terminal 1, 4) or internal torque control (Pr. 22 etc.) whichever is smaller

- The torque limit using analog input can be corrected with the calibration parameters C16 (Pr.919) to C19 (Pr.920), and C38 (Pr.932) to C41 (Pr.933). (Refer to page 487.)

Calibration example of terminal 1

NOTE

- When inputting an analog signal to the terminal 1 , give a positive voltage (0 to $+10 \mathrm{~V}(+5 \mathrm{~V})$).

When a negative voltage (0 to $-10 \mathrm{~V}(-5 \mathrm{~V})$) is input, the torque limit value set by the analog signal becomes " 0 ".

- Functions of terminals 1 and 4 by control (—: no function)

Pr. 858 setting ${ }^{* 1}$	Terminal 4 function	Pr. 868 setting ${ }^{*}{ }^{\text {2 }}$	Terminal 1 function
0 (initial value)	Speed command (AU signal-ON)	0 (initial value)	Speed setting assistance
		$1^{*} 4$	Magnetic flux command* ${ }^{*}$
		2	-
		3	-
		4	Torque limit (Pr. $810=1$)
		5	-
		6	Torque bias (Pr.840 = 1 to 3)
		9999	-
$1^{* 4}$	Magnetic flux command* ${ }^{*}$	0 (initial value)	Speed setting assistance
	-*3	$1^{*} 4$	Magnetic flux command* ${ }^{*}$
	Magnetic flux command*4	2	-
		3	-
		4	Torque limit (Pr. $810=1$)
		5	-
		6	Torque bias (Pr.840 = 1 to 3)
		9999	-
$4^{* 2}$	Torque limit (Pr. $810=1$)	0 (initial value)	Speed setting assistance
		$1^{*} 4$	Magnetic flux command*4
	Power driving torque limit (Pr.810 = 1)	2	Regenerative torque limit (Pr.810=1)
	Torque limit (Pr.810 = 1)	3	-
	- *3	4	Torque limit (Pr. $810=1$)
	Torque limit (Pr. $810=1$)	5	-
		6	Torque bias (Pr.840=1 to 3)
		9999	-
9999	-	-	-

*1 When Pr. $868 \neq$ " 0 ", the other functions of terminal 1 (auxiliary input, override function, PID control) do not operate.
*2 When Pr. $858 \neq " 0$ ", PID control and speed commands using terminal 4 do not operate even when the AU signal is ON.
*3 When both Pr. 858 and Pr. 868 are "1" (magnetic flux command) or "4" (torque limit), the function of terminal 1 has higher priority, and terminal 4 does not function.
*4 Valid when Vector control compatible options are installed and the Vector control is selected.

\rightarrow Torque limit level through the CC-Link/CC-Link IE Field Network communication (Pr. $810={ }^{2} 2 "$, Pr.805, Pr.806)

- When the CC-Link (FR-A8NC) or CC-Link IE Field network (FR-A8NCE/FR-A800-GF) communication is used, the Pr. 805 or Pr. 806 setting is used as the torque limit value. (Internal torque limit 2)
- When the CC-Link communication (ver. 2) is used in the quadruple or octuple setting (Pr.544 = "14, 18, 114, or 118"), the torque limit value can be input using a remote register (RWwC).
- When the CC-Link IE Field Network is used, the torque limit value can be input using a remote register (RWw2).

$\begin{aligned} & \text { Pr. } 804 \\ & \text { setting } \end{aligned}$	Torque limit input		Setting range ${ }^{* 1}$	Setting increments
	CC-Link/PLC function	CC-Link IE		
1	Torque limit by Pr.805, Pr.806*2	Torque limit by remote register $(\mathrm{RWW} 2)^{* 3}$	$\begin{aligned} & 600 \text { to } 1400 \\ & (-400 \% \text { to } 400 \%) \end{aligned}$	1\%
3	Torque limit by remote register (RWw2) ${ }^{* 3}$			
5	Torque limit by remote register (RWw2) ${ }^{* 3}$	Torque limit by remote register $(R W W 2)^{* 3}$	-32768 to 32767 (two's complement)$(-327.68 \% \text { to } 327.67 \%)^{* 4}$	0.01\% ${ }^{*}{ }^{4}$
6	Torque limit by Pr.805, Pr.806*2			

*1 The torque limit setting is defined as an absolute value.
*2 Can also be set from operation panel or parameter unit.
*3 The torque can also be limited by setting a value in Pr. 805 or Pr.806.
*4 If set by operation panel or parameter unit, setting range is " 673 to 1327 (-327% to 327%)", setting increment is 1%.

- When the CC-Link communication (Ver. 2) is used in the quadruple or octuple setting (Pr. $544=$ " 24,28 , or 128 "), the torque limit value can be input using a remote register (RWwC to RWwF) for each of the four quadrants.

NOTE

- When "2" is set in Pr. 810 while the communication option is not connected, a protective function (E.OPT) is activated. (PLC function disabled)
- For the details of the FR-A8NC and the FR-A8NCE, refer to the Instruction Manual of each option. For the details of the CCLink IE Field Network, refer to page 716.

- Second torque limit level (TL signal, Pr.815)

- For Pr. 815 Torque limit level 2, when the Torque limit selection (TL) signal is ON, the setting value of Pr. 815 is the limit value regardless of the setting of Pr. 810 Torque limit input method selection.
- To assign the TL signal, set "27" in any of Pr. 178 to Pr. 189 (input terminal function selection).

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

Setting the torque limit values during acceleration/deceleration individually (Pr.816, Pr.817)

- The torque limit during acceleration and deceleration can be set individually. Torque limit using the setting values of Pr. 816 Torque limit level during acceleration and Pr. 817 Torque limit level during deceleration is as follows.
- If 1 s elapses while the difference between the set speed and rotation speed is within $\pm 2 \mathrm{~Hz}$, the torque limit level during acceleration/deceleration (Pr. 816 or Pr.817) changes to the torque control level during constant speed (Pr.22).
- When the difference between the set speed and rotation speed is -2 Hz or less, the torque limit level during deceleration Torque limit level during deceleration (Pr.817) activates.

- The Pr. 816 and Pr. 817 settings are invalid under position control.

- Changing the setting increments of the torque limit level (Pr.811)

- The setting increments of Pr. 22 Torque limit level, Pr. 801 Output limit level, and Pr. 812 to Pr. 817 Torque limit level can be changed to 0.01% by setting Pr. 811 Set resolution switchover="10 or 11".

Pr. 811 setting	Increments of speed setting and running speed monitoring	Torque limit setting increments
0	$1 \mathrm{r} / \mathrm{min}$	0.1%
1	$0.1 \mathrm{r} / \mathrm{min}$	0.01%
10	$1 \mathrm{r} / \mathrm{min}$	$0.1 \mathrm{r} / \mathrm{min}$

*1 For the details of the increments of speed setting and running speed monitoring, refer to page 422.

NOTE

- The internal resolution of the torque limit is $0.024 \%\left(100 / 2^{12}\right)$, and fractions below this resolution are rounded off.
- When Real sensorless vector control is selected, fractions below a resolution equivalent to 0.1% are rounded off even if Pr. 811 = "10 or 11 " is set.
- For details on changing the speed setting increments, refer to page 422.

\checkmark Changing the torque characteristic of the constant-power range (Pr.801, Pr.803)

- Under Real sensorless vector control or Vector control, the torque characteristic can be changed between in the low-speed range and in the constant power range.
- Use Pr. 85 Excitation current break point to change the low-speed range, and use Pr. 86 Excitation current low speed scaling factor to change the torque in the low-speed range. When Pr. $85=$ " 9999 (initial value)", a predetermined frequency is used. When Pr. $86=$ "9999 (initial value)", a predetermined scaling factor is used (refer to page 677).

Pr. 803 setting	Torque characteristic in low- speed range	Torque characteristic in constant-power range	
		Torque characteristic	Output limit
0 (initial value)	The torque changes according to the scaling factor set in Pr.86. ${ }^{*}$	Constant motor output	-
1	Constant torque	Constant torque	Without
2	Constant torque	Constant torque	With
10	Constant torque	Constant motor output	-
11	The torque changes according to the scaling factor set in Pr.86. ${ }^{*}$	Constant torque	Without

*1 This is applicable only under Real sensorless vector control. The upper limit of the torque at 0 Hz is determined by multiplying the torque limit in the constant-torque range by the scaling factor set in Pr. 86.

- To avoid overload or overcurrent of the inverter or motor, use Pr. 801 Output limit level to limit the torque current.

Pr. 801 setting	Description
0 to 400%	Set the torque current limit level.
9999	The torque limit setting value (Pr.22, Pr.812 to Pr.817, etc.) is used for limiting the torque current.

Pr.803=1
Torque

Pr.803=11

Torque

NOTE

- When the torque limit setting value (Pr.22, Pr. 812 to Pr.817, etc.) is less than the value set in Pr.801, the Pr. 801 setting is used for limiting the torque current.

- Trip during torque limit operation (Pr.874)

- The inverter can be set to be shut off at activation of torque limit and stalling of the motor.
－When a high load is applied and the torque limit is activated under speed control or position control，the motor stalls．At this time，if a state where the rotation speed is lower than the value set in Pr． 865 Low speed detection and the output torque exceeds the level set in Pr． 874 OLT level setting continues for 3 seconds，Stall prevention stop（E．OLT）is activated and the inverter output is shut off．

NOTE

－Under V／F control or Advanced magnetic flux vector control，if the output frequency drops to 0.5 Hz due to the stall prevention operation and this state continues for 3 seconds，a fault indication（E．OLT）appears，and the inverter output is shut off．This operation is activated regardless of the Pr． 874 setting．
－This fault does not occur under torque control．

Adjusting the signal output under torque limit operation and output timing（OL signal，Pr．157）

－If the output torque exceeds the torque limit level and the torque limit is activated，the overload warning（OL signal）is turned ON for 100 ms or longer．When the output torque drops to the torque limit level or lower，the output signal also turns OFF．
－Pr． 157 OL signal output timercan be used to set whether to output the OL signal immediately，or whether to output it after a certain time period has elapsed．

Pr．157 setting	Description
0 （initial value）	Output immediately．
0.1 to 25	Output after the set time（s）．
9999	Not output．

－The OL signal is also output during the regeneration avoidance operation（＂夙＂display（overvoltage stall））．

NOTE

－OL signal is assigned to the terminal OL in the initial status．The OL signal can also be assigned to other terminals by setting ＂3（positive logic）or 103 （negative logic）＂in any of Pr． 190 to Pr． 196 （output terminal function selection）．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

5.3.5 Performing high-accuracy, fast-response control (gain adjustment for Real sensorless vector control, Vector control, and PM sensorless vector control)

Sensorless Vector PMM

The load inertia ratio (load moment of inertia) for the motor is calculated in real time from the torque command and rotation speed during motor driving by the Vector control. Because the optimum gain for speed control and position control is set automatically from the Load inertia ratio and the response level, the work required for gain adjustment is reduced. (Easy gain tuning)
If the load inertia ratio cannot be calculated due to load fluctuations, or under Real sensorless vector control or PM sensorless vector control, the control gain can be set automatically by entering the load inertia ratio manually.
Manual gain adjustment is useful for achieving optimum machine performance or improving unfavorable conditions, such as vibration and acoustic noise during operation with high load inertia or gear backlash.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 818 \\ & \text { C112 } \end{aligned}$	Easy gain tuning response level setting	2	1 to 15	Set the response level. 1 (Slowest) to 15 (Fastest)
$\begin{aligned} & 819 \\ & \text { C113 } \end{aligned}$	Easy gain tuning selection	0	0	No easy gain tuning
			1	Gain is calculated with load calculation (This function is valid under Vector control.)
			2	Gain is calculated with load (Pr.880) manual input
$\begin{aligned} & 820 \\ & \text { G211 } \end{aligned}$	Speed control P gain 1	60\%	0 to 1000\%	The proportional gain during speed control is set. (Setting this parameter higher improves the trackability for speed command changes. It also reduces the speed fluctuation caused by external disturbance.)
$\begin{aligned} & 821 \\ & \text { G212 } \end{aligned}$	Speed control integral time 1	0.333 s	0 to 20 s	The integral time during speed control is set. (Setting this parameter lower shortens the return time to the original speed when the speed fluctuates due to external disturbance.)
$\begin{aligned} & 830 \\ & \text { G311 } \end{aligned}$	Speed control P gain 2	9999	0 to 1000\%	Second function of Pr. 820 (valid when RT signal is ON)
			9999	The Pr. 820 setting is applied to the operation.
$\begin{aligned} & 831 \\ & \text { G312 } \end{aligned}$	Speed control integral time 2	9999	0 to 20 s	Second function of Pr. 821 (enabled when the RT signal is ON)
			9999	The Pr. 821 setting is applied to the operation.
$\begin{aligned} & 880 \\ & \text { C114 } \end{aligned}$	Load inertia ratio	7-fold	0 to 200-fold	Set the load inertia ratio for the motor.
$\begin{aligned} & 1115 \\ & \text { G218 } \end{aligned}$	Speed control integral term clear time	0 ms	0 to 9998 ms	Set time until the integral term is reduced and cleared after P control switching.
$\begin{aligned} & 1116 \\ & \text { G206 } \end{aligned}$	Constant output range speed control P gain compensation	0\%	0 to 100\%	Set a compensation amount of the speed control P gain in the constant output range (rated speed or higher).
$\begin{aligned} & 1117 \\ & \text { G261 } \end{aligned}$	Speed control P gain 1 (per-unit system)	9999	0 to 300	Set a proportional gain under speed control in the per-unit system.
			9999	The Pr. 820 setting is applied to the operation.
$\begin{aligned} & 1118 \\ & \text { G361 } \end{aligned}$	Speed control P gain 2 (per-unit system)	9999	0 to 300	Second function of Pr. 1117 (valid when RT signal ON)
			9999	The Pr. 1117 setting is applied to the operation.
$\begin{aligned} & 1121 \\ & \text { G260 } \end{aligned}$	Per-unit speed control reference frequency	$120 \mathrm{~Hz}^{* 1}$	0 to 400 Hz	Set the speed at 100% when setting speed control P gain or model speed control gain in the per-unit system.
		$60 \mathrm{~Hz}{ }^{*}$		
$\begin{aligned} & 1348 \\ & \text { G263 } \end{aligned}$	P/PI control switchover frequency	0 Hz	0 to 400 Hz	Set the motor speed for the P/PI control switchover.

*1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.

Block diagram of easy gain tuning function

Speed/position feedback

NOTE

- Easy gain tuning is valid for the first motor. When applying the second motor (RT signal is ON), tuning is not performed.

- Execution procedure for easy gain tuning (Pr. 819 = "1" Load inertia ratio automatic calculation)

Easy gain tuning (load inertia ratio automatic calculation) is only valid in the speed control and position control modes of Vector control. It is invalid under torque control, V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.

1. Set the response level in Pr. 818 Easy gain tuning response level setting.

Setting this parameter higher improves the trackability for commands, but setting it too high causes vibration. The following figure shows the relationship between the setting and the response level.

2. The load inertia ratio is calculated during acceleration/deceleration, and from this value and the value of Pr. 818 Easy gain tuning response level setting, the gain for each control is set automatically.
Pr. 880 Load inertia ratio is used as the initial value of the load inertia ratio when performing tuning. During tuning, the estimated value is set in Pr.880.
The calculation of the load inertia ratio may take excessive time or otherwise not be performed properly if the following conditions are not satisfied.

- The time in acceleration/deceleration driving until $1500 \mathrm{r} / \mathrm{min}$ is reached in 5 s or less.
- The rotation speed in driving is $150 \mathrm{r} / \mathrm{min}$ or higher.
- The acceleration/deceleration torque is 10% or higher.
- No sudden external disturbances during acceleration/deceleration.
- The load inertia ratio is about 30-fold or lower.
- No gear backlash or belt sagging.

3. Press or ${ }^{\text {REDV }}$ to calculate the continuous load inertia ratio, or calculate the gain.
(The operation command during External operation is the STF or STR signal.)

Execution procedure for easy gain tuning (Pr. 819 = "2" Load inertia ratio manual input)

Easy gain tuning (Load inertia ratio manual input) is valid in the speed control mode under Real sensorless vector control, the speed control and position control modes under Vector control, and the speed control mode under PM sensorless vector control.

1. Set the load inertia ratio for the motor in Pr. 880 Load inertia ratio.
2. Set "2" (easy gain tuning enabled) in Pr. 819 Easy gain tuning selection. After setting, Pr. 820 Speed control P gain 1 and Pr. 821 Speed control integral time 1 are set automatically.
Operation is performed with the adjusted gain from the next operation.
3. Perform the test operation, and set the response level in Pr. 818 Easy gain tuning response level setting. Setting this parameter higher improves the trackability for commands, but setting it too high causes vibration. (The response level can be adjusted during operation when Pr. 77 Parameter write selection ="2" (parameters can be written during operation).)

NOTE

- When Pr. $819=$ "1 or 2 " is set, even if the Pr. 819 setting value is returned to " 0 " after tuning is performed, the data that was set in each parameter is retained in the tuning results.
- If good precision cannot be obtained even after executing easy gain tuning, because of external disturbances or other reasons, perform fine adjustment manually. At this time, set the setting value of Pr. 819 to "0" (no easy gain tuning).

Parameters set automatically by easy gain tuning

The following table shows the relationship between the easy gain tuning function and gain adjustment parameters.

NOTE

- If easy gain tuning is executed at an inertia equal to or higher than the specified value under Vector control, a fault such as hunting may occur. Also, if the motor shaft is fixed by the servo lock or position control, the bearing may be damaged. In this case, do not perform easy gain tuning. Adjust the gain manually.
- The load inertia ratio is only calculated under Vector control.

- Adjusting the speed control gain manually (Pr. 819 = "0" No easy gain tuning)

- The speed control gain can be adjusted for the conditions such as abnormal machine vibration, acoustic noise, slow response, and overshoot.
- Setting 60\% (initial value) in Pr. 820 Speed control P gain 1 is equivalent to $120 \mathrm{rad} / \mathrm{s}$ (speed response of a single motor). (Equivalent to the half the rad/s value during Real sensorless vector control or with the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher during Vector control.) Setting this parameter higher speeds up the response, but setting this too high causes vibration and acoustic noise.
- Setting Pr. 821 Speed control integral time 1 lower shortens the return time to the original speed during speed fluctuation, but setting it too low causes overshoot.

*1 The value in parentheses is applicable during Real sensorless vector control or with the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher during Vector control.
*2 Performing PM parameter initialization changes the settings. (Refer to page 225.)
- Actual speed gain is calculated as follows when load inertia is applied.

Actual speed gain $=$ Speed gain of a single motor $\times \frac{\mathrm{JM}}{\mathrm{JM}+\mathrm{JL}}$

JM: Motor inertia
JL : Load inertia converted as the motor axis inertia

- Adjustment procedure

1. Change the Pr. 820 setting while checking the conditions.
2. If it cannot be adjusted well, change Pr. 821 setting, and perform step 1 again.

No.	Movement / condition	Adjustment method	
1	Load inertia is too high.	Set Pr. 820 and Pr. 821 higher.	
		Pr. 820	If acceleration is slow, raise the setting by 10% and then set the value to 80 to 90% of the setting immediately before vibration/noise starts occurring.
		$\text { Pr. } 821$	If overshoots occur, set about 80 to 90% of the maximum value without overshooting while increasing the setting value by twice.
2	Vibration or acoustic noise are generated from machines.	Set Pr. 820 lower and Pr. 821 higher.	
		Pr. 820	Set about 80 to 90% of the maximum value without any vibration/noise while decreasing the setting value by 10%.
		Pr. 821	If overshoots occur, set about 80 to 90% of the maximum value without overshooting while increasing the setting value by twice.
3	Response is slow.	Set Pr. 820 higher.	
		Pr. 820	If acceleration is slow, set about 80 to 90% of the maximum value without any vibration/ acoustic noise while increasing the setting value by 5%.
4	Return time (response time) is long.	Set Pr. 821 lower.	
		Set about 80 to 90% of the maximum value without overshooting or unstable movements while decreasing the setting value of Pr. 821 by half.	
5	Overshoots or unstable movements occur. or unstable movements occur.	Set Pr. 821 higher.	
		Set about 80 to 90% of the maximum value without overshooting or unstable movements while increasing the setting value of Pr. 821 by double.	

NOTE

- When adjusting the gain manually, set Pr. 819 Easy gain tuning selection to " 0 " (no easy gain tuning) (initial value).
- Pr. 830 Speed control P gain 2 and Pr. 831 Speed control integral time 2 are valid when terminal RT is ON. In this case, replace them for Pr. 820 and Pr. 821 in the description above.

- When using a multi-pole motor (8 poles or more)

- If the motor inertia is known, set Pr. 707 Motor inertia (integer) and Pr. 724 Motor inertia (exponent). (Refer to page 509.)
- Under Real sensorless vector control or Vector control, adjust Pr. 820 Speed control P gain 1 and Pr. 824 Torque control P gain 1 (current loop proportional gain) to suit the motor, by referring to the following methods.
- Setting the parameter of Pr. 820 Speed control P gain 1 higher speeds up the response, but setting this too high causes vibration and acoustic noise.
- Setting the parameter of Pr. 824 Torque control P gain 1 (current loop proportional gain) too low causes current ripple, and a noise synchronous with this will be emitted from the motor.
- Adjustment method:

No.	Movement / condition	Adjustment method
1	Motor rotation speed in the lowspeed range is unstable.	Pr. 820 Speed control P gain 1 must be set higher according to the motor inertia. For multi-pole motors, because the inertia of the motor itself tends to be large, first perform broad adjustment to improve the unstable movements, and then perform fine adjustment by referring to the response level based on this setting. Also, for Vector control, gain adjustment appropriate for the inertia can be easily performed by using easy gain tuning (Pr. $819=1$).
2	Rotation speed trackability is poor.	Set Pr. 820 Speed control P gain 1 higher. Raise the setting by 10\%s and set a value that approximately 80% to 90% of the setting right before vibration/noise starts occurring. If it cannot be adjusted well, double Pr. 821 Speed control integral time 1 and perform the adjustment of Pr. 820 again.
3	Large fluctuation of the rotation speed relative to load fluctuation.	
4	Torque shortage or motor backlash occurs when starting or passing a low-speed range under Real sensorless vector control.	Set the speed control gain higher. (The same as No.1.) If this cannot be prevented through gain adjustment, raise Pr. 13 Starting frequency for a fault that occurs when starting, or shorten the acceleration time and avoid continuous operation in a low-speed range.
5	Unusual vibration, noise and overcurrent of the motor or machine occurs.	Set Pr. 824 Torque control \mathbf{P} gain 1 (current loop proportional gain) lower. Lower the setting by 10% and set a value that is approximately 80% to 90% of the setting immediately before the condition improves.
6	Overcurrent or overspeed (E.OS) occurs when starting under Real sensorless vector control.	

\rightarrow Compensating the speed control P gain in the constant output range (Pr.1116)

- In the constant output range (rated speed or higher), the response of speed control is reduced due to weak field. Thus, the speed control P gain is needed to be compensated using Pr. 1116 Constant output range speed control \mathbf{P} gain compensation.
- In Pr.1116, set a compensation amount for the doubled rated speed regarding the speed control P gain at the rated speed or lower as 100\%.
$($ Speed control P gain at rated speed or higher) $=($ Speed control P gain at rated speed or lower $) \times(100 \%+$ compensation amount)

Compensation amount $=$ Pr.1116/Rated speed \times (Speed - Rated speed $)$

- Setting the speed control P gain in the per-unit system (Pr.1117, Pr.1118, Pr.1121)

- The speed control P gain can be set in the per-unit (pu) system.
- In the per-unit system:

When " 1 " is set, the torque (Iq) command is 100% (rated Iq) when the speed deviation is 100%. When "10" is set, the torque (lq) command is 10% (rated Iq) when the speed deviation is 100%.
Set the 100\% speed in Pr. 1121 Per-unit speed control reference frequency.

- The speed control P gain becomes as follows according to Pr. 1117 Speed control P gain 1 (per-unit system), Pr. 1118 Speed control P gain 2 (per-unit system), and the RT signal.

Pr. 1117	Pr. 1118	Pr. 830	RT signal	Speed control P gain
9999	9999	-	OFF	Pr. 820
		9999	ON	Pr. 820
		ON	Pr. 830	
Other than 9999	9999	-	-	Pr. 1117
9999	Other than 9999	-	OFF	Pr. 820
		ON	Pr. 1118	
Other than 9999	Other than 9999	-	OFF	Pr. 1117
		ON	Pr. 1118	

NOTE

- The per-unit system setting is available only under Real sensorless vector control or Vector control.
- When the speed control P gain or model speed control gain is set in the per-unit system, the easy gain tuning selection (Pr.819="1 or 2") becomes invalid.

- Switching over P/PI control (Pr.1115, X44 signal)

- In speed control under Real sensorless vector control or Vector control, whether or not to add the integral time (I) when performing gain adjustment with P gain and integral time can be performed with the P/PI control switchover signal (X44). When X 44 signal is OFF...PI control When X 44 signal is ON...P control
- To input the X44 signal, set "44" in any of Pr. 178 to Pr. 189 (input terminal function selection) to assign the function to a terminal.
- The shock of P/PI control switchover is absorbed by setting Pr. 1115 Speed control integral term clear time. When the X 44 signal is turned ON , integration is stopped and the accumulated integral term is reduced and cleared according to the setting of Pr. 1115 Speed control integral term clear time (initial value is 0 ms).
In Pr.1115, set time when the integral term is reduced from 100% to 0% regarding the rated torque current (lq) as 100%. Turning OFF the X44 signal resumes the integral operation.
[Function block diagram]

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- The speed loop integration can be disabled at the emergency stop using Pr. 1349 Emergency stop operation selection. (Refer to page 349.)

- P/PI control switchover according to the motor speed (Pr.1348)

- When the motor speed falls below the Pr. 1348 setting during speed control under Real sensorless vector control or Vector control, speed loop integration is stopped and the accumulated integral term is cleared.
Pr. 1348 setting or more: PI control
Less than the Pr. 1348 setting: P control
- The shock of P/PI control switchover is absorbed by setting Pr.1115?Speed control integral term clear time. When the motor speed falls below the Pr. 1348 setting, speed loop integration is stopped and the accumulated integral term is reduced and cleared according to the Pr. 1115 setting (initial value is 0 ms). In Pr.1115, set time when the integral term is reduced from 100% to 0% regarding the rated torque current (Iq) as 100%. When the motor speed is increased to the Pr. 1348 setting plus 2 Hz or more, integral operation is resumed.

NOTE

- The speed loop integration can be disabled at the emergency stop using Pr. 1349 Emergency stop operation selection. (Refer to page 349.)

5.3.6 Troubleshooting in the speed control

Sensorless Vector PMM

No.	Condition	Possible cause	Countermeasure
1	The motor does not rotate. (Vector control)	Motor wiring is incorrect.	- Check the wiring. Set V/F control (set Pr. 80 Motor capacity or Pr. 81 Number of motor poles to "9999") and check the motor rotation direction. For SF-V5RU ($1500 \mathrm{r} / \mathrm{min}$ series), set Pr. 19 Base frequency voltage to $170 \mathrm{~V}(340 \mathrm{~V})$ when the value is 3.7 kW or lower, and set it to $160 \mathrm{~V}(320 \mathrm{~V})$ when the value is higher, and set Pr. 3 Base frequency to 50 Hz . - When a forward signal is input, rotation in the counterclockwise direction as viewed from the motor shaft direction is correct. (Clockwise rotation means that the phase sequence of the inverter secondary side wiring is different.)
		Encoder type selection switch (Vector control compatible option) is incorrect.	- Check the encoder specifications. Check the encoder type selection switch of differential/complementary (Vector control compatible option).
		The wiring of the encoder is incorrect.	- When using the system where the motor shaft can be rotated by an external force other than the motor without any safety troubles at Vector control setting, rotate the motor counterclockwise and check if FWD is indicated. If REV is indicated, the phase sequence of the encoder is incorrect. Check the wiring, and set Pr. 359 (Pr.852) Encoder rotation direction in accordance with the motor specification. (Refer to page 86.) If the clockwise direction is forward as viewed from the motor shaft side, set Pr.359(Pr.852)="0". If the clockwise direction is forward as viewed from the motor shaft side, set Pr.359(Pr.852) = "1".
		The parameter setting and the number of encoder pulses used are different.	- If the parameter setting value is lower than the number of encoder pulses used, the motor does not rotate. Set Pr. 369 (Pr.852) Number of encoder pulses correctly. (Refer to page 86.)
		Encoder power specifications are incorrect. Alternatively, power is not input.	- Check the encoder power specifications ($5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$), and input the external power supply. When the encoder output is the differential line driver type, only 5 V can be input. Make the voltage of the external power supply same as the encoder output voltage, and connect the external power supply between PG and SD.
		The option to be used and parameter settings do not match.	- Correctly set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 220.)
2	Motor does not run at the correct speed. (Command speed and actual speed differ.)	Speed command from the controller is different from the actual speed. The speed command is affected by noise.	- Check that the speed command sent from the controller is correct. (Take EMC measures.) - Lower the setting of Pr. 72 PWM frequency selection.
		The command speed and the speed recognized by the inverter are different.	- Adjust the bias and gain Pr.125, Pr.126, C2 to C7, C12 to C15 of the speed command again.
		The setting for the number of encoder pulses is incorrect.	- Check the settings of Pr. 369 (Pr.851) (under Vector control). (Refer to page 86.)
		The motor constant varies due to increase in the motor temperature.	Enable the online auto tuning at startup (set Pr. 95 (Pr.574) = "1") (under Real sensorless vector control). (Refer to page 527.) To perform the online auto tuning at startup to a lift, use of the Start-time tuning start external input (X28) signal is recommended.
3	The speed does not accelerate to the command speed.	Torque shortage. The torque limit is operating.	- Raise the torque limit. (Refer to the torque limit for speed control on page 235.) - Increase the capacity.
		Only P (proportional) control is performed.	- Speed deviation occurs under P (proportional) control when the load is heavy. Select PI control.

No．	Condition	Possible cause	Countermeasure
4	Motor speed fluctuates．	Speed command varies．	－Check that the speed command sent from the controller is correct．（Take EMC measures．） －Set Pr． 72 lower． －Set Pr． 822 Speed setting filter 1 higher．（Refer to page 480．）
		Torque shortage．	－Raise the torque limit． （Refer to the torque limit for speed control on page 235．）
		Speed control gain is not suitable for the machine． （Resonance occurs．）	－Perform easy gain tuning． －Adjust Pr． 820 Speed control P gain 1 and Pr． 821 Speed control integral time 1. －Perform speed feed forward control or model adaptive speed control．
5	Hunting（vibration or acoustic noise） occurs in the motor or the machine．	Speed control gain is too high．	－Perform easy gain tuning． －Set Pr． 820 lower and Pr． 821 higher． －Perform speed feed forward control or model adaptive speed control．
		Torque control gain is too high．	－Set Pr． 824 Torque control P gain 1 （current loop proportional gain）lower．
		Motor wiring is incorrect．	－Check the wiring．
6	Acceleration／ deceleration time is different from the setting．	Torque shortage．	－Raise the torque limit． （Refer to the torque limit for speed control on page 235．） －Perform speed feed forward control．
		Load inertia is too high．	－Set acceleration／deceleration time suitable for the load．
7	Machine movement is unstable．	Speed control gain is not suitable for the machine．	－Perform easy gain tuning． －Adjust Pr． 820 and Pr． 821. －Perform speed feed forward control or model adaptive speed control．
		Response is slow because of the inverter＇s acceleration／ deceleration time setting．	－Set the optimum acceleration／deceleration time．
8	Rotation ripple occurs during the low－speed operation．	High carrier frequency is affecting the motor rotation．	－Set Pr． 72 lower．
		Speed control gain is too low．	－Set Pr． 820 higher．

《＜Parameters referred to 》》
Pr． 3 Base frequency，Pr． 19 Base frequency voltage page 673
Pr． 72 PWM frequency selection page 339
Pr． 80 Motor capacity，Pr． 81 Number of motor poles page 215
Pr． 125 Terminal 2 frequency setting gain frequency，Pr． 126 Terminal 4 frequency setting gain frequency page 482
Pr． 359 Encoder rotation direction，Pr． 369 Number of encoder pulses，Pr． 851 Control terminal option－Number of encoder pulses，Pr． 852 Control terminal option－Encoder rotation direction page 86
Pr． 822 Speed setting filter 1 page 480
Pr． 824 Torque control P gain 1 （current loop proportional gain）\longmapsto page 280

5.3.7 Speed feed forward control, model adaptive speed control

Sensorless Vector PM

- Speed feed forward control or model adaptive speed control can be selected using parameter settings.

Under speed feed forward control, the motor trackability for speed command changes can be improved.
Under model adaptive speed control, the speed trackability and the response level to motor external disturbance torque can be adjusted individually.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{\|l\|} \hline 828 \\ \text { G224 } \\ \hline \end{array}$	Model speed control gain	60\%	0 to 1000\%	Set the gain for the model speed controller.
$\begin{aligned} & 877 \\ & \text { G220 } \end{aligned}$	Speed feed forward control/model adaptive speed control selection	0	0	Perform normal speed control.
			1	Perform speed feed forward control.
			2	Model adaptive speed control becomes valid.
$\begin{array}{\|l\|} \hline 878 \\ \text { G221 } \end{array}$	Speed feed forward filter	0 s	0 to 1 s	Set the primary delay filter for the result of the speed feed forward calculated from the speed command and load inertia ratio.
$\begin{aligned} & 879 \\ & \text { G222 } \end{aligned}$	Speed feed forward torque limit	150\%	0 to 400\%	Set a maximum limit for the speed feed forward torque.
$\begin{aligned} & 880 \\ & \text { C114 } \end{aligned}$	Load inertia ratio	7-fold	0 to 200-fold	Set the load inertia ratio for the motor.
$\begin{aligned} & 881 \\ & \text { G223 } \end{aligned}$	Speed feed forward gain	0\%	0 to 1000\%	Set the calculation result for speed feed forward as the gain.
$\begin{aligned} & 1119 \\ & \text { G262 } \end{aligned}$	Model speed control gain(per-unit system)	9999	0 to 300	Set the gain for the model speed controller in the per-unit system.
			9999	The Pr. 828 setting is applied to the operation.
$\begin{aligned} & 1121 \\ & \text { G260 } \end{aligned}$	Per-unit speed control reference frequency	$120 \mathrm{~Hz}^{* 1}$	0 to 400 Hz	Set the speed at 100% when setting speed control P gain or model speed control gain in the per-unit system.
		$60 \mathrm{~Hz}^{*}$		

Point ${ }^{\rho}$

- When using model adaptive speed control, use the data obtained from the easy gain tuning for Pr. 828 Model speed control gain setting. Make the setting with easy gain tuning (at the same time). (Refer to page 244.)

Speed feed forward control (Pr. 877 = "1")

- When the load inertia ratio is set in Pr.880, the required torque for the set inertia is calculated according to the acceleration and deceleration commands, and the torque is generated quickly.
- When the speed feed forward gain is 100%, the calculation result for speed feed forward is applied as is.
- If the speed command changes suddenly, the torque is increased by the speed feed forward calculation. The maximum limit for the speed feed forward torque is set in Pr. 879.
- The speed feed forward result can also be lessened with a primary delay filter in Pr.878.

NOTE

- The speed feed forward control is enabled for the first motor.
- Even if the driven motor is switched to the second motor while Pr. $877=11$ ", the second motor is operated as Pr. $877=$ " 0 ".
- Under PM sensorless vector control, the notch filter is available when low-speed range high-torque characteristic is enabled by Pr. 788 Low speed range torque characteristic selection ="9999 (initial value)". (Refer to page 227.)

- Model adaptive speed control (Pr. 877 = "2", Pr.828, Pr.1119)

- The model speed of the motor is calculated, and the feedback is applied to the speed controller on the model side. Also, this model speed is set as the command of the actual speed controller.
- The inertia ratio of Pr. 880 is used when the speed controller on the model side calculates the torque current command value.
- The torque current command of the speed controller on the model side is added to the output of the actual speed controller, and set as the input of the iq current control.
Pr. 828 is used for the speed control on the model side (P control), and first gain Pr. 820 is used for the actual speed controller.
- The model speed control gain can be set in the per-unit (pu) system in Pr. 1119.
- In the per-unit system:

When " 1 " is set, the torque (Iq) command is 100% (rated Iq) when the speed deviation is 100%.
When " 1 " is set, the torque (lq) command is 100% (rated Iq) when the speed deviation is 100%.
Set the 100% speed in Pr. 1121 Per-unit speed control reference frequency.

NOTE

- The model adaptive speed control is enabled for the first motor.
- Even if the driven motor is switched to the second motor while Pr. $877=$ " 2 ", the second motor is operated as Pr. $877=$ " 0 ".
- Under PM sensorless vector control, the notch filter is available when low-speed range high-torque characteristic is enabled by Pr. 788 Low speed range torque characteristic selection ="9999 (initial value)". (Refer to page 227.)
- Under model adaptive speed control, because the appropriate gain values for the model and actual loop sections are based on the response that was set for easy gain tuning, when raising the response level, Pr. 818 Easy gain tuning response level setting must be re-evaluated (raised).
- The per-unit system setting(Pr.1119) is available only under Real sensorless vector control or Vector control.
- When the speed control P gain or model speed control gain is set in the per-unit system, the easy gain tuning selection (Pr. 819 = "1 or 2") becomes invalid.

Combining with easy gain tuning

- The following table shows the relationship between speed feed forward and model adaptive speed control, and the easy gain tuning function.

	Easy gain tuning selection (Pr.819) setting		
	0	1	2
Pr. 880 Load inertia ratio .	Manual input	The inertia ratio value calculated by easy gain tuning is displayed. Manual input is available only during a stop.	Manual input
Pr. 820 Speed control P gain 1	Manual input	The tuning result is displayed. Write is not available.	The tuning result is displayed. Write is not available.
Pr. 821 Speed control integral time 1	Manual input	The tuning result is displayed. Write is not available.	The tuning result is displayed. Write is not available.
Pr. 828 Model speed control gain	Manual input	The tuning result is displayed. Write is not available.	The tuning result is displayed. Write is not available.
Pr. 881 Speed feed forward gain	Manual input	Manual input	Manual input

《|Parameters referred to ${ }^{\text {|》 }}$

Pr. 820 Speed control P gain 1, Pr. 830 Speed control P gain 2 page 244
Pr. 821 Speed control integral time 1, Pr. 831 Speed control integral time 2 5 page 244
Pr. 788 Low speed range torque characteristic selection page 227

5.3.8 Torque bias

Sensorless Vector

The torque bias function can be used to make the starting torque start-up faster. At this time, the motor starting torque can be adjusted with a contact signal or analog signal.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 840 \\ & \text { G230 } \end{aligned}$	Torque bias selection	9999	0	Set the torque bias amount using contact signals (X42, X43) in Pr. 841 to Pr. 843.
			1	Set the torque bias amount using terminal 1 in any of C16 to C19. (When the squirrel cage rises during forward motor rotation.)
			2	Set the torque bias amount using terminal 1 in any of C16 to C19. (When the squirrel cage rises during reverse motor rotation.)
			3	The torque bias amount using terminal 1 can be set automatically in C16 to C19 and Pr. 846 according to the load.
			24	Torque bias command via PROFIBUS-DP communication (FR-A8NP) (400% to 400%)
			25	Torque bias command via PROFIBUS-DP communication (FR-A8NP) (327.68% to 327.67%)
			9999	No torque bias, rated torque 100\%
$\begin{aligned} & \hline 841 \\ & \text { G231 } \end{aligned}$	Torque bias 1	9999	$\begin{aligned} & \hline 600 \text { to } \\ & 999 \% \end{aligned}$	Negative torque bias amount (-400\% to -1\%)
$\begin{array}{\|l\|} \hline 842 \\ \text { G232 } \\ \hline \end{array}$	Torque bias 2		$\begin{array}{\|l\|} \hline 1000 \text { to } \\ 1400 \% \end{array}$	Positive torque bias amount (0 to 400\%)
$\begin{array}{\|l\|} \hline 843 \\ \text { G233 } \end{array}$	Torque bias 3		9999	No torque bias setting
844	Torque bias filter	9999	0 to 5 s	The time until the torque starts up.
G234			9999	The same operation as 0 s .
$\begin{array}{\|l\|} \hline 845 \\ \text { G235 } \end{array}$	Torque bias operation time	9999	0 to 5 s	The time for retaining the torque of the torque bias amount.
			9999	The same operation as 0 s .
$\begin{array}{\|l\|} \hline 846 \\ \text { G236 } \end{array}$	Torque bias balance compensation	9999	0 to 10 V	Set the voltage for the balanced load.
			9999	The same operation as 0 V . (Fixed to $0 \mathrm{~V} / 0 \%$.
$\begin{array}{\|l\|} \hline 847 \\ \text { G237 } \end{array}$	Fall-time torque bias terminal 1 bias	9999	0 to 400\%	The bias value setting in the torque command.
			9999	The same as (C16, C17(Pr.919)) when ascending
$\begin{array}{\|l\|} \hline 848 \\ \text { G238 } \\ \hline \end{array}$	Fall-time torque bias terminal 1 gain	9999	0 to 400\%	The gain value setting in the torque command.
			9999	The same as (C18, C19(Pr.920)) when ascending

- Block diagram

Setting the torque bias amount using contact input (Pr. $840=$ " 0 ", Pr. 841 to Pr.843)

- Select the torque bias amount shown in the following table using the corresponding contact signal combination.
- To input the X42 signal, set "42" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal, and to input the X43 signal, set "43".

Torque bias selection1 (X42)	Torque bias selection2 (X43)	Torque bias amount
OFF	OFF	0%
ON	OFF	Pr. $841-400 \%$ to $+400 \%$ (Setting value: 600 to $1400 \%)$
OFF	ON	Pr.842 -400\% to $+400 \%$ (Setting value: 600 to $1400 \%)$
ON	ON	Pr.843 -400% to $+400 \%$ (Setting value: 600 to $1400 \%)$

When Pr. $841=1025$, the torque bias is 25%. When $\operatorname{Pr} .842=975$, the torque bias is -25%. When $\operatorname{Pr} .843=925$, the torque bias is -75%.

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

\bullet Setting the torque bias amount using terminal 1 (Pr. $840=" 1,2 ", \operatorname{Pr} .847$, Pr.848)

- Calculate the torque bias from the load input to terminal 1 as shown in the following diagram, and then apply the torque bias.
- To set the torque bias amount with a voltage input to terminal 1, set Pr. 868 Terminal 1 function assignment ="6".
- The torque bias amount (Pr.847) and gain amount (Pr.848) when descending (reverse motor rotation when the Pr. 840 setting is "1", forward motor rotation when the setting is "2") can be set in a range of 0 to 400%. When Pr. 847 or Pr. $848=$ " 9999 ", the setting is the same for both descending and ascending (C16 to C19).

$\begin{aligned} & \text { Pr. } 840 \\ & \text { setting } \end{aligned}$	When ascending	When descending
1	(Forward motor rotation)	(Reverse motor rotation)
2	(Reverse motor rotation)	(Forward motor rotation)

NOTE

- Input 0 to 10 V (torque command) to the terminal 1 that is used for the torque bias function. Any negative input voltage is regarded as 0 V .

- Setting the torque bias amount automatically using terminal 1 (Pr. $840=$ "3", Pr.846)

- The settings of C16 Terminal 1 bias command (torque), C17 Terminal 1 bias (torque), C18 Terminal 1 gain command (torque), C19 Terminal 1 gain (torque) and Pr. 846 Torque bias balance compensation can be set automatically according to the load.
- To set the torque bias amount with a voltage input to terminal 1 , set Pr. 868 Terminal 1 function assignment = " 6 ".
- Set the terminal 1 to accept inputs of load detection voltage, set " 3 " in Pr. 840 Torque bias selection, and adjust the parameter settings according to the following procedures.

Setting C16, C17 (Pr.919)

Setting C18, C19 (Pr.920)

Setting Pr. 846

NOTE

- To perform a torque bias operation after the automatic setting is completed, set Pr. 840 to "1" or " 2 ".

- Torque bias command via PROFIBUS-DP communication (Pr. $840=$ " 24 or 25")

- A torque bias command value can be set using the FR-A8NP (PROFIBUS-DP communication).

Pr.840 setting	Method to give torque bias command	Setting range	Setting increments
24	Torque bias command from the buffer memory of PROFIBUS (REF1 to 7)	600 to $1400(-400 \%$ to $400 \%)$	1%
25	Torque bias command from the buffer memory of PROFIBUS (REF1 to 7)	-32768 to 32767 (two's complement) $(-327.68 \%$ to $327.67 \%)$	0.01%

NOTE

- For the details of the FR-A8NP setting, refer to the Instruction Manual of the FR-A8NP.

- Torque bias operation (Pr.844, Pr.845)

- The torque start-up can be made slower by setting Pr. 844 Torque bias filter $=$ "9999". The torque start-up operation at this time is the time constant of the primary delay filter.
- Set the time for continuing the output torque simply by using the command value for the torque bias in Pr. 845 Torque bias operation time.

*1 When pre-excitation is not performed, the torque bias functions at the same time as the start signal.

NOTE

- When torque bias is enabled and Pr. $868=" 6 "$, terminal 1 operates as a torque command instead of a frequency setting auxiliary. When override compensation is selected using Pr. 73 Analog input selection and terminal 1 is the main speed, no main speed (main speed $=0 \mathrm{~Hz}$) is set.
- The torque bias is valid for the first motor. When applying the second motor (RT signal is ON), the torque bias function is not performed.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

《 Parameters referred to 》

Pr. 73 Analog input selection page 473
Pr. 178 to Pr. 189 (Input terminal function selection) page 496
C16 to C19 (Pr.919, Pr.920) (torque setting voltage (current) bias/gain) \lessgtr page 487

5.3.9 Avoiding motor overrunning

Vector

Motor overrunning due to excessive load torque or an error in the setting of the number of encoder pulses can be avoided.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 285 \\ & \mathrm{H} 416 \end{aligned}$	Speed deviation excess detection frequency* ${ }^{*}$	9999	0 to 30 Hz	Set the speed deviation excess detection frequency (difference between the actual rotation speed and speed command value) at which the protective function (E.OSD) activates.
			9999	No speed deviation excess
$\begin{aligned} & 853^{* 2} \\ & \mathrm{H} 417 \end{aligned}$	Speed deviation time	1.0 s	0 to 100 s	Set the time from when the speed deviation excess state is entered to when the protective function (E.OSD) activates.
$\begin{aligned} & \hline 873^{* 2} \\ & \text { H415 } \end{aligned}$	Speed limit	20 Hz	0 to 400 Hz	Set the frequency limit with the set frequency + Pr. 873 value.
$\begin{array}{\|l\|} \hline 690 \\ \text { H881 } \end{array}$	Deceleration check time	1.0 s	0 to 3600 s	Set the time required to shut off output due to deceleration check after the start signal is OFF.
			9999	No deceleration check

*1 This is the overspeed detection frequency under encoder feedback control. (Refer to page 700.)
*2 The setting is available when a Vector control compatible option is installed.

Speed deviation excess detection (Pr.285, Pr.853)

- A shutoff can be set for when the deviation between the set frequency and actual rotation speed is large, such as when the load torque is excessive.
- When the difference (absolute value) between the speed command value and actual rotation speed in speed control under Vector control is equal to higher than the setting value in Pr. 285 Speed deviation excess detection frequency for a continuous time equal to or longer than the setting value in Pr. 853 Speed deviation time, the speed deviation excess detection (E.OSD) activates to shut off the inverter output.

- Speed limit(Pr.873)

- This function prevents overrunning even when the setting value for and the value of the actual number of pulses are different. When the setting value for the number of encoder pulses is lower than the actual number of pulses, because the motor may increase speed, the output frequency is limited with the frequency of (set frequency + Pr.873).

NOTE

- When the automatic restart after instantaneous power failure function is selected (Pr. 57 Restart coasting time \neq "9999") and the setting value for the number of encoder pulses is lower than the actual number of pulses, the output speed is limited with the synchronous speed of the value of Pr. 1 Maximum frequency + Pr. 873 .
- When a regenerative driving torque limit is applied and the speed limit function activates, the output torque may drop suddenly. Also, when the speed limit function activates during pre-excitation operation, output phase loss (E.LF) may occur. If the setting for the number of encoder pulses is confirmed as correct, it is recommended that Pr. 873 be set to the maximum value (400 Hz).
- Even if the set frequency is lowered after inverter operation, the speed limit value is not lowered. During deceleration, the speed is limited at frequency command value + Pr. 873 .

- Deceleration check (Pr.690)

- When performing a deceleration stop on the motor, accidental acceleration can cause the inverter to be shut off. This can prevent a malfunction due to an incorrect encoder pulse setting, when the motor has stopped.
- When the difference between the actual motor speed and the speed command value exceeds 2 Hz after the start signal (STF, STR) is OFF, the deceleration check starts.
- If the motor has not decelerated in the time period between the start signal (STF, STR) OFF and the Pr. 690 setting, the protective function (E.OSD) is activated to shut off the inverter output.

NOTE

－The deceleration check is enabled in the speed control of the Vector control．
－If the protective function（E．OSD）operates due to deceleration check，check whether the Pr． 369 Number of encoder pulses setting is correct．

5．3．10 Notch filter

Sensorless Vector PM

The response level of speed control in the resonance frequency band of mechanical systems can be lowered to avoid mechanical resonance．

Pr．	Name	Initial value	Setting range	Description
1003 G601	Notch filter frequency	0	0	8 to 1250 Hz
1004 G602	Notch filter depth	0	0 to 3 3	0 （Deep）$\rightarrow 3$（Shallow）
1005 G603	Notch filter width	0	0 to 3	0 （Narrow）$\rightarrow 3$（Wide）

－Pr． 1003 Notch filter frequency

－This sets the frequency for the center when attenuating the gain．If the mechanical resonance frequency is unknown，lower the notch frequency in order from the highest．The point where the resonance is smallest is the optimum setting for the notch frequency．

－Pr． 1004 Notch filter depth

－A deeper notch depth has a greater effect in reducing mechanical resonance，but because the phase delay is larger， swinging may increase．Adjust by starting from the shallowest value．

Setting	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Gain （Deep）	-4 dB （Shallow）	-8 dB	-14 dB	-40 dB （Deep）

－Pr． 1005 Notch filter width

－This sets the width of the frequency to which to apply the notch filter．The setting can be adjusted according to the width of the frequency range to be excluded．
－If the width is too wide，the response level of speed control will drop，and the system may become unstable．

NOTE

－If a value higher than 500 Hz is set in Pr． 1003 while the response speed is normal（ $\operatorname{Pr} .800=$ any of＂ 0 to 5 and 9 to 14＂），the inverter operates at 500 Hz

5.4
 Torque control under Real sensorless vector control and Vector control

Purpose	Parameter to set		Refer to page	
Torque command source selection or torque command value setting	Torque command	P.D400 to P.D403, P.G210, P.H704	Pr.801, Pr.803 to Pr.806, Pr.1114	270
To prevent the motor from overspeeding	Speed limit	P.H410 to P.H412, P.H414	Pr.807 to Pr.809, Pr.1113	274
To raise precision of torque control	Torque control gain adjustment	P.G213, P.G214, P.G313, P.G314	Pr.824, Pr.825, Pr.834, Pr.835	280
To stabilize torque detection signal	Torque detection filter	P.G216, P.G316	Pr.827, Pr.837	316

5.4.1 Torque control

- Under torque control, output torque is controlled to output the torque as commanded.
- Motor rotation speed is steady when the motor output torque and load torque are balanced. Thus, motor speed during torque control is determined by the load.
- Under torque control, motor speed accelerates so motor output torque does not exceed motor load. In order to prevent the motor from overspeeding, set a speed limit. (Speed control is performed instead of torque control during speed limit.)
- If speed limit is not set, speed limit value setting is regarded as 0 Hz and torque control is not enabled.

- Block diagram

- Operation transition

- If the setting value of Pr. 7 and Pr. 8 is " 0 ", turning OFF the start signal enables speed control, and the output torque is controlled by the torque limit value.

Item	Description	
Start signal	External operation	STF, STR signal
	PU operation	FWD or REV of operation panel/ parameter unit
	Select the method to give the torque command, and give the torque command.	
Speed limit	Select the method to give the speed limit command, and input the speed limit value.	

- Operation example (when Pr. 804 = "0")

Torque control is possible when actual rotation speed does not exceed the speed limit value.
When the actual speed reaches or exceeds the speed limit value, speed limit is activated, torque control is stopped and speed control (proportional control) is performed.

The following diagram indicates operation relative to commands given by analog input via terminal 1 .

- At the STF signal ON, the speed limit value is raised in accordance with the setting of Pr.7.
- Speed control is performed when the actual speed exceeds the speed limit value.
- At the STF signal OFF, the speed limit value is lowered in accordance with the setting of Pr.8.
- Under torque control, the actual operation speed is a constant speed when the torque command and load torque are balanced.
- The direction of motor torque generation is determined by a combination of the input torque command polarity and the start signal, as given in the following table.

$\left.$| Polarity of torque
 command | Torque generation direction | |
| :--- | :--- | :--- |
| | STF signal ON | STR signal ON |
| Forward direction (forward | | |
| power driving / reverse | | |
| regenerative driving) | | |\quad| Reverse direction (forward |
| :--- |
| regenerative driving / reverse |
| power driving) | \right\rvert\,

NOTE

- Once the speed limit is activated, speed control is performed and internal torque limit (Pr. 22 Torque limit level) is enabled. (Initial value) In this case, it may not be possible to return to torque control.
Torque limit should be external torque limit (terminals 1 and 4). (Refer to page 235.)
- Under torque control, the undervoltage avoidance function (Pr. $261=" 11$ " or "12"), which is one of the power failure time deceleration-to-stop function, is invalid.
When Pr. 261 = "11 (12)", the operation is performed in the same manner as if Pr. 261 = "1 (2)".
- Under torque control, perform linear acceleration/deceleration (Pr. $29=$ " 0 (initial value)"). When acceleration/deceleration patterns other than the linear acceleration/deceleration are selected, the protective function of the inverter may be activated. (Refer to page 354.)
- Performing pre-excitation (by using the LX or X13 signal) during torque control (under Real sensorless vector control) may rotate a motor at a low speed even though a start command (STF or STR) is not given. The inverter at a start command ON may also rotate the motor at a low speed even though a speed limit value is set to 0 . It must be confirmed that the motor running does not cause any safety problem before performing pre-excitation.

5.4.2 Setting procedure of Real sensorless vector control (torque control)

Sensorless

Operating procedure

1. Perform secure wiring. (Refer to page 46.)
2. Make the motor setting (Pr.71). (Refer to page 505.)

Set Pr. 71 Applied motor to "0" (standard motor) or "1" (constant-torque motor).
3. Set the motor overheat protection (Pr.9). (Refer to page 394.)
4. Set the motor capacity and the number of motor poles (Pr. 80 and Pr.81). (Refer to page 215.) V/F control is performed when the setting is "9999" (initial value).
5. Set the rated motor voltage and frequency (Pr. 83 and $\operatorname{Pr} .84$). (Refer to page 509.)
6. Select the control method (Pr.800). (Refer to page 215.)

Select Pr. 800 Control method selection = "11" (torque control) or "12" (speed/torque switchover) to enable torque control.
7. Set the torque command (Pr.804). (Refer to page 270.)
8. Set the speed limit (Pr.807). (Refer to page 274.)
9. Perform the offline auto tuning (Pr.96). (Refer to page 509.)
10. Perform the test operation.

As required

- Select online auto tuning (Pr.95). (Refer to page 527.)
- Adjust the torque control gain manually. (Refer to page 280.)

NOTE

- During Real sensorless vector control, offline auto tuning must be performed properly before starting operations.
- The carrier frequency is limited during Real sensorless vector control. (Refer to page 339.)
- Torque control is not available in a low-speed (about 10 Hz or lower) regenerative range, or with a low speed and light load (about 5 Hz or lower and rated torque about 20% or lower).
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start signal (STF or STR) is not input. The inverter at a start command ON may also rotate the motor at a low speed even though a speed limit value is set to 0 . Confirm that the motor running does not cause any safety problem before performing pre-excitation.
- Switching between the forward rotation command (STF) and reverse rotation command (STR) must not be performed during operations under torque control. An overcurrent trip (E.OC[]) or opposite rotation deceleration fault (E.11) will occur.
- When performing continuous operations under Real sensorless vector control in FR-A820-00250(3.7K) or lower or FR-A840$00126(3.7 \mathrm{~K})$ or lower, the speed fluctuation increases when the value is 20 Hz or less, and in the low-speed range of less than 1 Hz , there may be torque shortage. In such case, stop the inverter and restart it to improve the situation.
- If starting may occur while the motor is coasting under Real sensorless vector control, the frequency search must be set for the automatic restart after instantaneous power failure function (Pr. $57 \neq " 9999 "$ Pr. $162=$ "10").
- When Real sensorless vector control is applied, there may not be enough torque provided in the ultra low-speed range of about 2 Hz or lower.
Generally, the speed control range is as follows.
For power driving, 1:200 (2, 4 or 6 poles) (available at 0.3 Hz or higher when the rating is 60 Hz), 1:30 (8 or 10 poles) (available at 60 Hz or higher when the rating is 2 Hz).
For regenerative driving, 1:12 (2 to 10 poles) (available at 5 Hz or higher when the rating is 60 Hz).

5.4.3 Setting procedure for Vector control (torque control)

Vector

Operating procedure

1. Perform secure wiring. (Refer to page 90 .)

Install a Vector control compatible option.
2. Set the option to be used (Pr.862).

Set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 220.)
3. Set the motor and the encoder (Pr.71, Pr. 359 (Pr.852), and Pr. 369 (Pr.851)). (Refer to page 93.)
4. Set the overheat protection of the motor (Pr.9). (Refer to page 394.)

When using the SF-V5RU or a motor equipped with a thermal sensor, set Pr. $9=0 \mathrm{~A}$.
5. Set the motor capacity and the number of motor poles (Pr. 80 and Pr.81). (Refer to page 215.) V/F control is performed when the setting is "9999" (initial value).
6. Set the rated motor voltage and frequency (Pr. 83 and Pr.84). (Refer to page 93.)
7. Select the control method (Pr.800). (Refer to page 215.)

Select Pr. 800 Control method selection = "1" (torque control), "2" (speed/torque switchover), or "5" (position/ torque switchover) to enable torque control.
8. Set the torque command (Pr.804). (Refer to page 270.)
9. Set the speed limit (Pr.807). (Refer to page 274.)
10. Perform the test operation.

As required

- Perform offline auto tuning (Pr.96). (Refer to page 509.)
- Select the online auto tuning (Pr.95). (Refer to page 527.)
- Adjust the torque control gain manually. (Refer to page 280.)

NOTE

- The carrier frequency is limited during Vector control. (Refer to page 339.)
- Torque control is not available under the Vector control with PM motors with a resolver.

5.4.4 Torque command

Sensorless Vector

For torque control selection, the torque command source can be selected.

Pr.	Name	Initial value	Setting range	Description		
$\begin{array}{\|l\|} \hline 432 \\ \text { D120*1 } \end{array}$	Pulse train torque command bias	0\%	0 to 400\%	For 0 pulses/s, set the torque to be used during stall prevention operation.		
$\begin{aligned} & \hline 433 \\ & \text { D121 }^{* 1} \end{aligned}$	Pulse train torque command gain	150\%	0 to 400\%	For 400k pulses/s, set the torque command to be used during stall prevention operation.		
801	Output limit level	9999	0 to 400\%	Set the torque current limit level.		
H704			9999	The torque limit setting value is used for limiting the torque current level.		
$\begin{aligned} & 803 \\ & \text { G210 } \end{aligned}$	Constant output range torque characteristic selection	0	0, 10	Constant motor output command	In the torque command setting, select torque command for the constant output area .	
			1, 11	Constant torque command		
			2	The torque is constant unless the output limit of the torque current is reached. (The torque current is limited.)		
$\begin{aligned} & 804 \\ & \text { D400 } \end{aligned}$	Torque command source selection	0	0	Torque command given by analog input via terminal 1		
			1	Torque command (-400\% to 400%) given by the parameter setting (Pr. 805 or Pr.806)		
			2	Torque command given by the pulse train input (FR-A8AL)		
			3	Torque limit through the CC-Link/CC-Link IE Field Network communication (FR-A8NC, FR-A8NCE, FR-A800-GF) Torque command given through PROFIBUS-DP communication (FRA8NP)		
			4	12/16-bit digital input (FR-A8AX)		
			5	Torque limit through the CC-Link/CC-Link IE Field Network communication (FR-A8NC, FR-A8NCE, FR-A800-GF) Torque command given through PROFIBUS-DP communication (FRA8NP)		
			6			
$\begin{aligned} & \hline 805 \\ & \text { D401 } \end{aligned}$	Torque command value (RAM)	1000\%	600 to 1400\%	Writes the torque command value in RAM. Regards 1000% as 0%, and set torque command by an offset of 1000%.		
$\begin{array}{\|l\|} \hline 806 \\ \text { D402 } \end{array}$	Torque command value (RAM, EEPROM)	1000\%	600 to 1400\%	Writes the torque command value in RAM and EEPROM Regards 1000% as 0%, and set torque command by an offset of 1000%.		
	Torque command reverse selection	1	0	Not reversed	Select whether to reverse the torque command polarity or not when the reverse rotation command (STR) is turned ON.	
$\begin{aligned} & 1114 \\ & \text { D403 } \end{aligned}$			1	Reversed		

[^12]
- Control block diagram

NOTE

- When the torque command exceeding the torque limit value (Pr.22, Pr.810, Pr. 812 to Pr.817) is given, the output torque is within the torque limit value. (Refer to page 263.)

- Torque command given by analog input (terminal 1) (Pr. $804=0$ (initial value)")

- Torque commands are given by voltage (current) input via terminal 1.
- Set Pr. 868 Terminal 1 function assignment $=" 3$ or 4 " to give the torque command via terminal 1 .
- Torque commands given by analog inputs can be calibrated by the calibration parameters C16 (Pr.919) to C19 (Pr.920) (Refer to page 487.)

- Torque command given by parameter (Pr. $804=$ "1")

- Set Pr. 805 Torque command value (RAM) or Pr. 806 Torque command value (RAM, EEPROM)to set the torque command value.
For Pr. 805 or Pr. 806, regard 1000\% as 0\%, and set torque command by offset from 1000%.
The following diagram shows relation between the Pr. 805 or Pr. 806 setting and the actual torque command value.
- To change the torque command value frequently, write it in Pr.805. To change torque command value frequently, write in Pr. 805.
- When the CC-Link IE Field Network communication (FR-A8NCE/FR-A800-GF) is used, the torque command given from the remote register (RWw2) is valid.

NOTE

- When the torque command is set by Pr. 805 (RAM), powering OFF the inverter erases the changed parameter value. Therefore, the parameter set value is the one saved by Pr. 806 (EEPROM) when the power is turned back on.
- If giving torque command by parameter setting, set the speed limit value properly to prevent overspeeding. (Refer to page 274.)

- Torque command using pulse train (Pr. 804 = "2")

- Torque command given by the pulse train input to the FR-A8AL is available.
－Use Pr． 428 Command pulse selection to select a type of pulse train input to the FR－A8AL．

Pr． 428 setting	Command pulse train type		During forward rotation	During reverse rotation
0 （initial value）	Negative logic	Forward pulse train Reverse pulse train	PP もたたも NP	ましたた
1		Pulse train＋sign		
2		A phase pulse train B phase pulse train	PP \square NP \qquad \square \square	
3	Positive logic	Forward pulse train Reverse pulse train	PP \＆\＆\＆ NP \qquad	ヶ4 そG
4		Pulse train＋sign	$\mathrm{PP} \frac{4 G \square}{\mathrm{NP}}$	ARAG L
5		A phase pulse train B phase pulse train	$\begin{aligned} & \mathrm{PP} \square \square \\ & \mathrm{NP} \cdot \square \square \end{aligned}$	

－Use Pr． 432 Pulse train torque command bias and Pr． 433 Pulse train torque command gain to set the bias and gain values for the torque command respectively．

NOTE

－For the details of the FR－A8AL，refer to the Instruction Manual of the FR－A8AL．

－Torque command given through the CC－Link／CC－Link IE Field Network／ PROFIBUS－DP（Pr． 804 ＝＂3，5，6＂）

－Set the torque command value via the CC－Link communication（FR－A8NC／PLC function），CC－Link IE Field Network communication（FR－A8NCE／FR－A800－GF），or PROFIBUS－DP communication（FR－A8NP）．
－For speed limit when＂3 or 5＂is set in Pr． 804 via the CC－Link communication，Pr． 807 Speed limit selection becomes invalid and Pr． 808 Forward rotation speed limit／speed limit and Pr． 809 Reverse rotation speed limit／reverse－side speed limit become valid for speed limit．（When Pr． 544 CC－Link extended setting＝＂ $0,1,12,100$ ，or 112＂）
－For the CC－Link communication，Pr． 807 is valid when the extended cyclic setting of CC－Link communication is quadruple or octuple．For CC－Link IE Field Network，Pr． 807 is always valid．

Pr． 804 setting	Torque command input			Setting range	Setting increments
	CC－Link／PLC function	CC－Link IE	PROFIBUS－DP		
1	Torque command by Pr．805，Pr．806＊${ }^{* 1}$	Torque command by remote register $(R W w 2)^{*}{ }^{2}$	Torque command by Pr．805，Pr．806＊${ }^{*}$	$\begin{aligned} & 600 \text { to } 1400 \\ & (-400 \% \text { to } 400 \%) \end{aligned}$	1\％
3	Torque command by remote register（RWw1 or RWwC）${ }^{*}{ }^{2}$		Torque command by the buffer memory of PROFIBUS－DP（REF1 to 7）${ }^{*}$		
5	Torque command by remote register（RWw1 or RWwC）${ }^{*}{ }^{2}$	Torque command by remote register$(R W w 2)^{*} 2$	Torque command by the buffer memory of PROFIBUS－DP（REF1 to 7）${ }^{*}$	$\begin{aligned} & -32768 \text { to } 32767 \text { (complement of 2) } \\ & (-327.68 \% \text { to } 327.67 \%)^{* 3} \end{aligned}$	0．01\％＊3
6	Torque command by Pr．805，Pr．806＊${ }^{* 1}$		Torque command by Pr．805，Pr．806＊${ }^{*}$		

＊1 The torque command can also be given from operation panel or parameter unit．
*2 The torque command can also be given by setting a value in Pr. 805 or Pr. 806.
*3 Setting range if set by operation panel or parameter unit is " 673 to 1327 (-327% to 327%)"; setting increment is 1%.

NOTE

- For the details of the FR-A8NC, FR-A8NCE, and FR-A8NP setting, refer to the Instruction Manual for the respective communication options.
For the details of the CC-Link IE Field Network, refer to page 716.
- For the details of the setting using the PLC function, refer to the PLC Function Programming Manual.

- Torque command given by 16 -bit digital input (Pr. 804 = "4")

- Give the torque command by 12-bit or 16-bit digital input using FR-A8AX (plug-in option).

NOTE

- For the details of FR-A8AX setting, refer to the Instruction Manual of FR-A8AX

- Changing the torque characteristic of the constant-power range (Pr.801, Pr.803)

- According to the motor's characteristics, base frequency or higher decreases the torque. To give the constant torque command in base frequency or higher, set "1 or 11" in Pr. 803 Constant output range torque characteristic selection.
- Torque in a low-speed range is constant during torque control regardless of the setting of Pr.803. However, when " 2 " is set in Pr. 803 under Real sensorless vector control, the torque may not be kept constant in the low-speed range.

Pr. 803 setting	Torque characteristic in constant-power range	
	Torque characteristic	Output limit
0 (initial value), 10	Constant motor output	-
1,11	Constant torque	Without
2	Constant torque	With

- To avoid overload or overcurrent of the inverter or motor, use Pr. 801 Output limit level to limit the torque current in the constant power range.

Pr. 801 setting	\quad Description
0 to 400%	Set the torque current limit level.
9999	The torque limit setting value (Pr.22, Pr.812 to Pr.817, etc.) is used for limiting the torque current.

- Reverse selection of the torque command (Pr.1114)

- The Pr. 1114 Torque command reverse selection setting determines whether or not the torque command polarity is reversed when the reverse rotation command (STR) is turned ON.

Pr. 1114 setting	Torque command polarity at STR signal ON				
(sign)		$	$	0	Not reversed
:---	:---				
1 (Initial value)	Reversed				

Calibration parameter C16 (Pr.919) to C19 (Pr.920) (terminal 1 bias, gain torque)

5.4.5 Speed limit

Sensorless Vector

When operating under torque control, motor overspeeding may occur if the load torque drops to a value less than the torque command value, etc. Set the speed limit value to prevent overspeeding.
If the actual speed reaches or exceeds the speed limit value, the control method switches from torque control to speed control, preventing overspeeding.

Pr.	Name	Initial value		Setting range	Description
		FM	CA		
$\begin{aligned} & 807 \\ & \text { H410 } \end{aligned}$	Speed limit selection	0		0	Uses the speed command during speed control as the speed limit.
				1	Sets speed limits for forward and reverse directions individually by using Pr. 808 and Pr. 809.
				2	Forward/reverse rotation speed limit Applies speed limit by analog voltage input to the terminal 1 . Speed limit for forward/reverse side is switched by its polarity.
$\begin{array}{\|l\|} \hline 808 \\ \mathrm{H} 411 \end{array}$	Forward rotation speed limit/speed limit	60 Hz	50 Hz	0 to 400 Hz	Sets the forward side speed limit.
$\begin{aligned} & 809 \\ & \text { H412 } \end{aligned}$	Reverse rotation speed limit/reverse-side speed limit	9999		0 to 400 Hz	Sets the reverse side speed limit.
				9999	Pr. 808 setting value is effective.
$\begin{aligned} & 1113 \\ & \text { H414 } \end{aligned}$	Speed limit method selection	0		9999	Speed limit mode 1
				0	Speed limit mode 2
				1	Speed limit mode 3
				2	Speed limit mode 4
				10	X93 signal OFF: Speed limit mode 3 X93 signal ON: Speed limit mode 4

Speed limit method selection (Pr.1113)

Pr. 1113 setting	Speed limit method	Speed limit value
9999	Speed limit mode 1	Forward rotation speed limit Pr. 807 = 0: Speed command during speed control Pr. 807 = 1: Pr. 808 Pr. $807=2$ 2: Analog input at analog input of 0 to 10 V , or Pr. 1 at analog input of -10 to 0 V Reverse rotation speed limit Pr. 807 = 0: Speed command during speed control Pr. 807 = 1: Pr. 809 , or Pr. 808 when Pr. 809 = "9999" $\operatorname{Pr} .807$ = 2: Pr. 1 at analog input of 0 to 10 V , or analog input at analog input of -10 to 0 V
0 (initial value)	Speed limit mode 2	Speed limit Pr. $807=0$ or 2: Speed command during speed control $\text { Pr. } 807 \text { = 1: Pr. } 808$ Reverse-side speed limit $\text { Pr.809, or Pr. } 808 \text { when Pr. } 809=9999$
1	Speed limit mode 3	
2	Speed limit mode 4	
10	Switching by external terminals	X93 signal OFF: Speed limit mode 3 X93 signal ON: Speed limit mode 4

- Control block diagram (speed limit mode 1)

- Using the speed command during speed control (Pr. 1113 = "9999", Pr. 807

 = "O").- Speed limit is set by the same method as speed setting during speed control. (Speed setting by PU (operation panel/ parameter unit), multi-speed setting, plug-in option, etc.)
- When the start signal turns ON, the limit level increases from 0 Hz to the set speed by taking the time set in Pr. 7 Acceleration time. When the start signal turns OFF, the limit level at the time decreases to the operation start level of Pr. 10 DC injection brake operation frequency, by taking the time set in Pr. 8 Deceleration time.

NOTE

- The second and third acceleration/deceleration time can be set.
- When speed limit command exceeds Pr. 1 Maximum frequency setting, the speed limit value becomes Pr. 1 setting. When speed limit command falls below Pr. 2 Minimum frequency setting, the speed limit value becomes Pr. 2 setting. Also, the speed limit command is smaller than Pr. 13 Starting frequency, the speed limit value becomes 0 Hz .
- To perform speed limit by analog input, calibrate analog input terminals 1, 2 and 4. (Refer to page 482.)
- To use analog inputs to perform speed limit, turn the external signals (RH, RM, RL) OFF. If any of the external signals (RH, $R M, R L$) is $O N$, speed limit by multi-speed are enabled.

Setting separately for forward and reverse rotation (Pr. 1113 = "9999", Pr. 807 = "1")

- Sets speed limits for forward and reverse directions individually by using Pr. 808 Forward rotation speed limit/speed limit Pr. 809 Reverse rotation speed limit/reverse-side speed limit.
- When Pr. 809 = "9999" (initial value), speed limit is determined by the setting value of Pr. 808 for both forward and reverse rotations.

- Forward/reverse rotation speed limit using analog input (Pr. 1113 = "9999", Pr. 807 = "2")

- When performing speed limit by analog inputs to terminal 1, speed limit can be switched between forward and reverse rotation by its voltage polarity.
- When Pr. 868 Terminal 1 function assignment = " 5 ", forward/reverse speed limit is enabled.
- If 0 to 10 V is input, forward rotation speed limit is applied. Reverse rotation speed limit at this time is the value of Pr .1 Maximum frequency.
- If -10 to 0 V is input, reverse rotation speed limit is applied. Forward rotation speed limit at this time is the value of Pr .1 Maximum frequency.
- Upper speed limit is the value of Pr. 1 for both forward and reverse rotations.
- When terminal 1 input is "-10 to 0 V "

- When terminal 1 input is " 0 to 10 V "

NOTE

- To perform speed limit by using terminal 1 , calibrate terminal 1. (Refer to page 482.)

- Speed limit mode 2 (Pr. 1113 = "0" initial value)

- Following the polarity change in the torque command, the polarity of the speed limit value changes. This prevents the speed from increasing in the torque polarity direction. (When the torque command value is 0 , the polarity of the speed limit value is positive.)
- When Pr. 807 Speed limit selection = "0, 2", the setting during speed control is applied for the speed limit. When Pr. 807 Speed limit selection = "1", Pr. 808 Forward rotation speed limit/speed limit is applied for the speed limit.
- When the load has reversed the rotation opposite to the torque polarity, the setting of Pr. 809 Reverse rotation speed limit/reverse-side speed limit is applied for the speed limit. (The speed limit value and reverse-side speed limit value are limited at Pr. 1 Maximum frequency (maximum 400 Hz under Vector control).)

- Speed limit mode 3 (Pr. 1113 = "1")

- Select this mode when the torque command is positive. The forward rotation command is for power driving (such as winding) and the reverse rotation command is for regenerative driving (such as unwinding). (Refer to each following figures.)
- When Pr. 807 Speed limit selection = "0, 2", the setting during speed control is applied for the speed limit. When Pr. 807 Speed limit selection = "1", Pr. 808 Forward rotation speed limit/speed limit is applied for the speed limit.
- When the torque command becomes negative, the setting of Pr. 809 Reverse rotation speed limit/reverse-side speed limit is applied to prevent the speed from increasing in the reverse rotation direction. (The speed limit value and reverseside speed limit value are limited at Pr. 1 Maximum frequency (maximum 400 Hz under Vector control).)

For forward rotation command

For reverse rotation command

For regenerative driving by reverse rotation command (unwinding)

- Speed limit mode 4 (Pr. 1113 = "2")

- Select this mode when the torque command is negative. The forward rotation command is for regenerative driving (such as unwinding) and the reverse rotation command is for power driving (such as winding). (Refer to each following figures.)
- When Pr. 807 Speed limit selection = "0, 2", the setting during speed control is applied for the speed limit. When Pr. 807 Speed limit selection = "1", Pr. 808 Forward rotation speed limit/speed limit is applied for the speed limit.
- When the torque command becomes negative, the setting of Pr. 809 Reverse rotation speed limit/reverse-side speed limit is applied to prevent the speed from increasing in the reverse rotation direction. (The speed limit value and reverseside speed limit value are limited at Pr. 1 Maximum frequency (maximum 400 Hz under Vector control).)

For reverse rotation command

For regenerative driving by forward rotation command (unwinding)

- Speed limit mode switching via external terminals (Pr. 1113 = "10")

- The speed limit mode can be switched between 3 and 4 using the Torque control selection (X93) signal.
- To assign the X93 signal, set "93" in any of Pr. 178 to Pr.189(Input terminal function selection).

X93 signal	Speed limit mode
OFF	Mode 3 (positive torque command, same status as setting Pr.1113 = 1)
ON	Mode 4 (negative torque command, same status as setting Pr. $1113=2)$

－During the speed limit operation，＂＂（SL）is displayed on the operation panel and the OL signal is output．
－OL signal is assigned to terminal OL in the initial status．Set＂3＂in one of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the RT signal to another terminal．Changing the terminal assignment using Pr． 190 to Pr． 196 may affect the other functions．Set parameters after confirming the function of each terminal．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

《｜Parameters referred to 》》

Pr． 1 Maximum frequency，Pr． 2 Minimum frequency page 407
Pr． 4 to Pr．6，Pr． 24 to 27，Pr． 232 to Pr． 239 （multi－speed operation） 3 page 391
Pr． 7 Acceleration time，Pr 8 Deceleration time page 349
Pr． 13 Starting frequency page 363
Pr． 190 to Pr． 196 （output terminal function selection）\leftrightarrows page 450
Pr． 868 Terminal 1 function assignment page 477
Pr．125，Pr．126，C2 to C7，C12 to C15（Frequency setting voltage（current）bias／gain）page 482

5．4．6 Torque control gain adjustment

Sensorless Vector

Operation is normally stable enough in the initial setting，but some adjustments can be made if abnormal vibration，noise or overcurrent occur for the motor or machinery．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{8 2 4}$ G213	Torque control P gain 1（current loop proportional gain）	100%	0 to 500%	Set the current loop proportional gain．
$\mathbf{8 2 5}$				
$\mathbf{G 2 1 4}$	Torque control integral time 1 （current loop integral time）	5 ms	0 to 500 ms	Set current loop integral compensation time．

Current loop proportional（P）gain adjustment（Pr．824）

－The 100% current loop proportional gain is equivalent to $1000 \mathrm{rad} / \mathrm{s}$ during Real sensorless vector control，and to 1400 rad／s during Vector control．
－For ordinary adjustment，try to set within the range of 50 to 500% ．
－Set the proportional gain for during torque control．
－If setting value is large，changes in current command can be followed well and current fluctuation relative to external disturbance is smaller．If the setting value is however too large，it becomes unstable and high frequency torque pulse is produced．

－Current control integral time adjustment（Pr．825）

－Set the integral time of current control during torque control．
－Torque response increases if set small；current however becomes unstable if set too small．
－If the setting value is small，it produces current fluctuation toward disturbance，decreasing time until it returns to original current value．

－Using two types of gain（Pr．834，Pr．835）

－Use Pr． 834 Torque control P gain 2，Pr． 835 Torque control integral time 2 if the gain setting needs to be switched according to application or if multiple motors are switched by a single inverter．
－Pr．834，Pr． 835 is enabled when the second function selection（RT）signal is turned ON．

NOTE

－The RT signal is a second function selection signal which also enables other second functions．（Refer to page 500．）
－The RT signal is assigned to terminal RT in the initial status．Set＂ 3 ＂in one of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the $R T$ signal to another terminal．

Adjustment procedure

Adjust if any of phenomena such as unusual vibration，noise，current or overcurrent is produced by the motor or machinery．
1．Change the Pr． 824 setting while checking the conditions．
2．If it cannot be adjusted well，change the Pr． 825 setting，and perform step 1 again．

Adjustment method

Set Pr． 824 lower and Pr． 825 longer．First，lower Pr． 824 and then check of there is still any abnormal vibration，noise or current from the motor If it still requires improvement，make Pr． 825 longer．

Lower the setting by 10% each time and set a value that is approximately 80 to 90% of the setting
Lengthen the current setting by doubling it each time and set a value that is approximately 80 to 90% of the

5．4．7 Troubleshooting in torque control

Sensorless
 Vector

	Condition	Possible cause	Countermeasure
1	Torque control does not operate properly．	－There is incorrect phase sequence between the motor wiring and encoder wiring．	－Check the wiring．（Refer to page 90．）
		－Pr． 800 Control method selection is not appropriate．	－Check the Pr． 800 setting．（Refer to page 215．）
		－The speed limit value has not been input．	－Set the speed limit value．（If speed limit value is not input，it becomes 0 Hz by default and the motor does not run．）
		－Torque command varies．	－Check that the torque command sent from the controller is correct． －Set Pr． 72 PWM frequency selection lower． －Set Pr． 826 Speed setting filter 1 higher．
		－The torque command and the torque recognized by the inverter are different．	－Re－calibrate the settings of C16 Terminal 1 bias command （torque），C17 Terminal 1 bias（torque），C18 Terminal 1 gain command（torque），C19 Terminal 1 gain（torque） （Refer to page 487．）
		－Torque fluctuation due to motor temperature variation	－Select the magnetic flux observer by Pr． 95 Online auto tuning selection．（Refer to page 527．）
		－The option to be used and parameter settings do not match．	－Correctly set Pr． 862 Encoder option selection according to the option to be used．（Refer to page 220．）
2	When a small torque command is given，the motor rotates in a direction opposite to the start signal．	－Torque offset calibration is inaccurate．	－Re－calibrate C16 and C17．（Refer to page 487．）
3	Torque control cannot operate normally during acceleration／ deceleration． The motor vibrates．	－Speed limit is operating． （Speed limit may operate because the speed limit value will increase or decrease according to acceleration／ deceleration time setting of Pr． 7 and Pr． 8 when Pr． 807 ＝＂ 0 or 2＂．）	－Set the acceleration／deceleration time shorter． Alternatively，set＂0＂for the acceleration／deceleration time． （Forward／reverse rotation speed limit at this time is the value at a constant speed．）
4	Output torque is nonlinear for the torque command．	Torque shortage．	Return Pr． 854 Excitation ratio to the initial value．

《｜Parameters referred to 》》

Pr． 72 PWM frequency selection page 339
Pr． 178 to Pr． 189 （Input terminal function selection）page 496
Pr． 800 Control method selection page 215
Pr． 807 Speed limit selection page 274

5.4.8 Torque control by variable-current limiter control

Vector

By changing the torque limit value for speed control, torque control can be performed.

Pr.	Name	Initial value	Setting range	Descriptio	
$\begin{aligned} & 800 \\ & \text { G200 } \end{aligned}$	Control method selection	20	6	Vector control	Variable-current limiter torque control)
			106	Torque control under Vector control (fast-response operation)	
			0 to 5, 100 to 105	Vector control	
			9, 109	Vector control test operation	
			10 to 12, 110 to 112	Real sensorless vector control	
			13 to 14, 113, 114	(PM sensorless vector control)	
			20	V/F control (Advanced magnetic flux vector control, PM sensorless vector control)	
$\begin{aligned} & 451 \\ & \text { G300 } \end{aligned}$	Second motor control method selection	9999	$\begin{aligned} & 0 \text { to } 6,10 \text { to } 14,20, \\ & 100 \text { to } 106,110 \text { to } 114 \end{aligned}$	Select the control method for the second motor. The second motor is enabled when the RT signal is ON. The setting range is the same as that of Pr. 800 .	
			9999	The setting value of Pr. 800 is used.	

- By adding the bias amount to the line speed (master speed) as the speed command value to saturate the speed controller and changing the torque limit value, torque control can be performed.
- For a positive bias amount (the speed command value faster than the line speed), power driving is applied, and for a negative bias amount (the speed command value slower than the line speed), regenerative driving is applied.
- Speed control is the basic control. For how to set the speed command and torque limit value, refer to the description of speed control (page 229).

- Under speed control with Pr. $800=$ " 0 or100", when the speed command value is changed by an external force, the torque limit is invalid during a change in the speed command value to adjust the internal speed command value to the actual speed.
Under variable speed limiter control with Pr. $\mathbf{8 0 0}=$ " 6 or 106 ", the process to adjust the speed command value to the actual speed is not performed, and thus the torque limit remains valid. This prevents torque from suddenly changing at a speed change.

NOTE

- When Pr. $800=$ " 6 or 106" (torque control by a variable-current limiter), Pr. 690 Deceleration check time and Pr. 873 Speed limit are ignored.

《<Parameters referred to 》
Pr. 690 Deceleration check time page 259
Pr. 873 Speed limit page 259
Pr. 800 Control method selection, Pr. 451 Second motor control method selection page 215

5.5 Position control under vector control and PM sensorless vector control

Purpose	Parameter to set			Referto page
To perform Simple position control by setting parameters	Parameter position command	$\begin{aligned} & \text { P.B000, P.B020 to P.B050, } \\ & \text { P.B101, P.B120 to P.B188, } \\ & \text { P.B190 to P.B195 } \end{aligned}$	Pr.419, Pr. 464 to Pr.494, Pr. 1221 to Pr.1290, Pr.1292, Pr. 1293	288
To perform position control by pulse input to the inverter	Simple pulse train position command	P.B000, P.B009, P.B010	Pr.419, Pr.428, Pr. 429	304
To adjust the gear ratio of the motor and machine	Electronic gear settings	P.B001, P.B002, P.B005	Pr.420, Pr.421, Pr. 424	309
To improve the precision of the position control	Position adjustment parameter settings	P.B007 to P.B008, P.B192 to P.B195	Pr. 426 to Pr.427, Pr. 1294 to Pr. 1297	311
	Position control gain adjustment	$\begin{aligned} & \text { P.B003, P.B004, P.B006, } \\ & \text { P.B012, P.B013, P.G220, } \\ & \text { P.G224, P.C114 } \end{aligned}$	$\begin{aligned} & \text { Pr.422, Pr.423, Pr.425, } \\ & \text { Pr.446, Pr.828, Pr. } 877 \text {, } \\ & \text { Pr. } 880, \text { Pr. } 1298 \\ & \hline \end{aligned}$	312
To monitor pulses	Pulse monitor selection	P.B011	Pr. 430	306
	Cumulative pulse monitoring	P.M610 to P.M613	Pr. 635 to Pr. 638	306

5.5.1 About position control

Vector PM

- In position control, speed commands, which are calculated to eliminate the difference between the command pulse (parameter setting) and the feedback pulse number, are output to rotate the motor.
- This inverter can perform simple positioning by contact input or position control by simple pulse input to the inverter.

Control block diagram

－Operation example

－Calculate the speed command so that the difference between the number of pulses of the internal pulse train（if Pr． $419=$ ＂ 0 ＂，command pulses are used in the inverter from the number of pulses defined by parameters（Pr． 465 to Pr．494））and the number of pulses in the feedback from the motor terminal encoder（estimated value when PM sensorless vector control is used）is 0 ，and then rotate the motor based on the calculation．
1）Once a pulse train is input，pulses are accumulated in the deviation counter，and the droop pulses in this counter become position control pulses and speed command．
2）When the motor starts to rotate in response to the speed command from the inverter，feedback pulses are also generated by the encoder at the same time．Subtract the encoder feedback pulses or feedback estimate value from the droop pulses in the deviation counter．The deviation counter keeps rotating the motor while keeping a certain droop amount．
3）If the command pulse input stops，the amount of droop pulses in the deviation counter decreases and thus the speed slows down．When there is no droop pulse，the motor stops．
4）If the number of droop pulses becomes smaller than the value set in Pr． 426 In－position width，the system determines that positioning is complete and the In－position（Y36）signal is turned ON．

－The pulses are slow during motor acceleration and fast at full speed．The pulses become slower during deceleration，and eventually reach 0 and the motor stops a little after the command pulse．
This time difference is necessary to ensure stop accuracy and is called stop setting time．

NOTE

－To assign the Pre－excitation／servo ON（LX）signal，set＂ 23 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）．
－To assign the In－position（Y36）signal，set＂36＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）．
－Changing the terminal functions with Pr． 178 to Pr． 189 and Pr． 190 to Pr． 196 may affect other functions．Set parameters after confirming the function of each terminal．

5.5.2 Setting procedure of Vector control (position control)

Vector

Operating procedure

1. Perform secure wiring. (Refer to page 86.)

Install a Vector control compatible option.
2. Set the option to be used (Pr.862).

Set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 215.)
3. Set the motor and the encoder (Pr.71, Pr. 359 (Pr.852), Pr. 369 (Pr.851)). (Refer to page 93.)
4. Set the overheat protection of the motor (Pr.9). (Refer to page 394.)

When using the SF-V5RU or a motor equipped with a thermal sensor, set Pr. $9=0 \mathrm{~A}$.
5. Set the motor capacity and number of motor poles (Pr.80, Pr.81). (Refer to page 215.)

V/F control is performed when the setting is "9999" (initial value).
6. Set the rated motor voltage and frequency (Pr.83, Pr.84). (Refer to page 94.)
7. Select the control method (Pr.800). (Refer to page 215.)

Set Pr. $800=$ "3" (position control), "4" (speed - position switching), or "5" (position - torque switching) to enable position control.
8. Select the position command source (Pr.419).

- For position command given by point table, set Pr. $419=$ " 0 (initial value), 10,100 , or 110 " to set the positioning parameters (Pr. 465 to Pr.494, Pr. 1222 to Pr.1281). (Refer to page 288.)
- For position command given by inverter pulse train input, set Pr. 419 = "2" to select a pulse train type for commands (Pr.428). (Refer to page 305.)
- For position command given from the positioning module of the programmable controller, set Pr.419 = "1" to select a pulse train type for commands (Pr.428). (Refer to page 301.)

9. Perform the test operation.

As required

- Set the electronic gear. (Refer to page 309.)
- Set the position adjustment parameters. (Refer to page 311.)
- Adjust the position control gain. (Refer to page 312.)
- Set the torque limit. (Refer to page 235.)

NOTE

- The carrier frequency is limited during Vector control. (Refer to page 339.)
- For Vector control for a motor with a resolver, refer to the Instruction Manual of the FR-A8APR.

5.5.3 Setting procedure of PM sensorless vector control (position control)

PM

Operating procedure

1. Perform IPM parameter initialization. (Refer to page 224.)
 settings).

Setting	Description
3003	Parameter settings for MM-CF IPM motor (rotations per minute)
3103	Parameter settings for MM-CF IPM motor (frequencies)

2. Select the control mode (Pr.800). (Refer to page 215.)

Set Pr. $800=$ "13" (position control) or "14" (speed/position switchover) to enable position control.
3. Select the position command source (Pr.419).

- For position command given by point table, set Pr. $419=" 0$ (initial value), 10,100 , or 110 " to set the positioning parameters (Pr. 465 to Pr.494, Pr. 1222 to Pr.1281). (Refer to page 288.)
- For position command given by inverter pulse train input, set Pr. $419=$ " 2 " to select a pulse train type for commands (Pr.428). (Refer to page 304.)
- For position command given from the positioning module of the programmable controller, set Pr. $419=$ " 1 " to select a pulse train type for commands (Pr.428). (Refer to page 301.)

4. Perform the test operation.

As required

- Set the electronic gear. (Refer to page 309.)
- Set the position adjustment parameters. (Refer to page 311.)
- Adjust the position control gain. (Refer to page 312)
- Set the torque limit. (Refer to page 235.)

NOTE

- The carrier frequency is limited during PM sensorless vector control. (Refer to page 339.)
- Position deviation may occur due to motor temperature changes. In such case, shut off the inverter outputs, and restart.
- Perform position control under PM sensorless vector control only when using an MM-CF IPM motor with low-speed range hightorque characteristic (Pr. 788 = "9999 (initial value)")
- Position control is performed on the assumption of 4096 pulses/motor rotation. The positioning accuracy is 200 pulses/rev for 1.5 K or lower, and 100 pulses/rev for 2 K or higher (under no load).

5.5.4 Simple positioning function by parameters

Vector PM

Set positioning parameters such as the number of pulses (position) and acceleration/deceleration time in advance to create a point table (point table method). Positioning operation is performed by selecting the point table.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 419 \\ & \text { B000 } \end{aligned}$	Position command source selection	0	0	Simple position control by point table (position command given by setting parameters)
			1	Position command given by the pulse train input to the FRA8AL* ${ }^{*}$
			2	Simple pulse train position command given by the pulse train input to the inverter
			10	Simple position control by point table (position command given by setting parameters) The home position data is retained at servo-OFF.
			100	Simple position control by point table (position command given by setting parameters) The monitor value of the current position 2 is cleared when the home position return is completed.
			110	Simple position control by point table (position command given by setting parameters) The home position data is retained at servo-OFF. The monitor value of the current position 2 is cleared when the home position return is completed.
			1110	Simple position control by point table (position command given by setting parameters) The absolute position control with the FR-A8APS is valid. ${ }^{* 2}$
$\begin{aligned} & 464 \\ & \text { B020 } \end{aligned}$	Digital position control sudden stop deceleration time	0 s	0 to 360 s	Set the time period until the inverter stops when the forward rotation (reverse rotation) command is turned OFF with the position feed forward function.
$\begin{array}{\|l\|} \hline 465 \\ \text { B021 } \end{array}$	First target position lower 4 digits	0	0 to 9999	Set the target position of the point table 1.
$\begin{array}{\|l} \hline 466 \\ \text { B022 } \end{array}$	First target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 467 \\ \text { B023 } \end{array}$	Second target position lower 4 digits	0	0 to 9999	Set the target position of the point table 2.
$\begin{array}{\|l\|} \hline 468 \\ \text { B024 } \\ \hline \end{array}$	Second target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 469 \\ \text { B025 } \end{array}$	Third target position lower 4 digits	0	0 to 9999	Set the target position of the point table 3 .
$\begin{array}{\|l} 470 \\ \text { B026 } \end{array}$	Third target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 471 \\ \text { B027 } \end{array}$	Fourth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 4.
$\begin{array}{\|l\|} \hline 472 \\ \text { B028 } \end{array}$	Fourth target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 473 \\ \text { B029 } \\ \hline \end{array}$	Fifth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 5 .
$\begin{array}{\|l} 474 \\ \text { B030 } \end{array}$	Fifth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 475 \\ & \text { B031 } \end{aligned}$	Sixth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 6.
$\begin{array}{\|l\|} \hline 476 \\ \text { B032 } \end{array}$	Sixth target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 477 \\ \text { B033 } \end{array}$	Seventh target position lower 4 digits	0	0 to 9999	Set the target position of the point table 7 .
$\begin{array}{\|l\|} \hline 478 \\ \text { B034 } \\ \hline \end{array}$	Seventh target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 479 \\ \text { B035 } \end{array}$	Eighth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 8.
$\begin{array}{\|l\|} \hline 480 \\ \text { B036 } \end{array}$	Eighth target position upper 4 digits	0	0 to 9999	

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 481 \\ & \text { B037 } \end{aligned}$	Ninth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 9.
$\begin{array}{\|l} 482 \\ \text { B038 } \end{array}$	Ninth target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 483 \\ \text { B039 } \end{array}$	Tenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 10.
$\begin{aligned} & \hline 484 \\ & \text { B040 } \end{aligned}$	Tenth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 485 \\ & \text { B041 } \end{aligned}$	Eleventh target position lower 4 digits	0	0 to 9999	Set the target position of the point table 11.
$\begin{array}{\|l} \hline 486 \\ \text { B042 } \end{array}$	Eleventh target position upper 4 digits	0	0 to 9999	
$\begin{array}{\|l\|} \hline 487 \\ \text { B043 } \end{array}$	Twelfth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 12.
$\begin{aligned} & \hline 488 \\ & \text { B044 } \end{aligned}$	Twelfth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & \hline 489 \\ & \text { B045 } \end{aligned}$	Thirteenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 13.
$\begin{aligned} & \hline 490 \\ & \text { B046 } \end{aligned}$	Thirteenth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & \hline 491 \\ & \text { B047 } \end{aligned}$	Fourteenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 14.
$\begin{aligned} & \hline 492 \\ & \text { B048 } \end{aligned}$	Fourteenth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 493 \\ & \text { B049 } \end{aligned}$	Fifteenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 15.
494 B050	Fifteenth target position upper 4 digits	0	0 to 9999	
1221	Start command edge	0	0	Turning OFF the forward (reverse) rotation command stops the motor in the setting time of Pr. 464.
B101	detection selection	0	1	Position forward is continued even if the forward (reverse) rotation command is turned OFF.
$\begin{aligned} & 1222 \\ & \text { B120 } \end{aligned}$	First positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 1.
$\begin{aligned} & 1223 \\ & \text { B121 } \end{aligned}$	First positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1224 \\ & \text { B122 } \end{aligned}$	First positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1225 \\ & \text { B123 } \end{aligned}$	First positioning subfunction	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	
$\begin{aligned} & 1226 \\ & \text { B124 } \end{aligned}$	Second positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 2.
$\begin{aligned} & 1227 \\ & \text { B125 } \end{aligned}$	Second positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1228 \\ & \text { B126 } \end{aligned}$	Second positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1229 \\ & \text { B127 } \end{aligned}$	Second positioning subfunction	10	0 to 2,10 to 12,100 to 102, 110 to 112	
$\begin{aligned} & 1230 \\ & \text { B128 } \end{aligned}$	Third positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 3.
$\begin{aligned} & 1231 \\ & \text { B129 } \end{aligned}$	Third positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1232 \\ & \text { B130 } \end{aligned}$	Third positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1233 \\ & \text { B131 } \end{aligned}$	Third positioning subfunction	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	
$\begin{aligned} & 1234 \\ & \text { B132 } \end{aligned}$	Fourth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 4.
$\begin{aligned} & 1235 \\ & \text { B133 } \end{aligned}$	Fourth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1236 \\ & \text { B134 } \end{aligned}$	Fourth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1237 \\ & \text { B135 } \end{aligned}$	Fourth positioning subfunction	10	0 to 2,10 to 12,100 to 102, 110 to 112	

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1238 \\ & \text { B136 } \end{aligned}$	Fifth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 5.
$\begin{aligned} & 1239 \\ & \text { B137 } \end{aligned}$	Fifth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1240 \\ & \text { B138 } \end{aligned}$	Fifth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1241 \\ & \text { B139 } \end{aligned}$	Fifth positioning subfunction	10	0 to 2,10 to 12,100 to 102, 110 to 112	
$\begin{aligned} & 1242 \\ & \text { B140 } \end{aligned}$	Sixth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 6.
$\begin{aligned} & 1243 \\ & \text { B141 } \end{aligned}$	Sixth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1244 \\ & \text { B142 } \end{aligned}$	Sixth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1245 \\ & \text { B143 } \end{aligned}$	Sixth positioning subfunction	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	
$\begin{aligned} & 1246 \\ & \text { B144 } \end{aligned}$	Seventh positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 7.
$\begin{aligned} & 1247 \\ & \text { B145 } \end{aligned}$	Seventh positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1248 \\ & \text { B146 } \end{aligned}$	Seventh positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1249 \\ & \text { B147 } \end{aligned}$	Seventh positioning sub-function	10	0 to 2, 10 to 12,100 to 102, 110 to 112	
$\begin{aligned} & 1250 \\ & \text { B148 } \end{aligned}$	Eighth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 8.
$\begin{aligned} & 1251 \\ & \text { B149 } \end{aligned}$	Eighth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1252 \\ & \text { B150 } \end{aligned}$	Eighth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1253 \\ & \text { B151 } \end{aligned}$	Eighth positioning subfunction	10	0 to 2,10 to 12,100 to 102, 110 to 112	
$\begin{aligned} & 1254 \\ & \text { B152 } \end{aligned}$	Ninth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 9.
$\begin{aligned} & 1255 \\ & \text { B153 } \end{aligned}$	Ninth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1256 \\ & \text { B154 } \end{aligned}$	Ninth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1257 \\ & \text { B155 } \end{aligned}$	Ninth positioning subfunction	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	
$\begin{aligned} & 1258 \\ & \text { B156 } \end{aligned}$	Tenth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 10.
$\begin{aligned} & 1259 \\ & \text { B157 } \end{aligned}$	Tenth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1260 \\ & \text { B158 } \end{aligned}$	Tenth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1261 \\ & \text { B159 } \end{aligned}$	Tenth positioning subfunction	10	0 to 2, 10 to 12,100 to 102, 110 to 112	
$\begin{aligned} & 1262 \\ & \text { B160 } \end{aligned}$	Eleventh positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 11.
$\begin{aligned} & 1263 \\ & \text { B161 } \end{aligned}$	Eleventh positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1264 \\ & \text { B162 } \end{aligned}$	Eleventh positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1265 \\ & \text { B163 } \end{aligned}$	Eleventh positioning sub-function	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	
$\begin{aligned} & 1266 \\ & \text { B164 } \end{aligned}$	Twelfth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 12.
$\begin{aligned} & 1267 \\ & \text { B165 } \end{aligned}$	Twelfth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1268 \\ & \text { B166 } \end{aligned}$	Twelfth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1269 \\ & \text { B167 } \end{aligned}$	Twelfth positioning subfunction	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	

Pr.	Name	Initial value	Setting range	
1270 B168	Thirteenth positioning acceleration time	5 s	0.01 to 360 s	
1271 B169	Thirteenth positioning deceleration time	5 s	0.01 to 360 s	Description
1272 B170	Thirteenth positioning dwell time	0 ms	0 to 20000 ms	Set the characteristics of the point table 13.
1273 B171	Thirteenth positioning sub-function	10	0	0 to 2,10 to 12,100 to
1274 B172	Fourteenth positioning acceleration time	5 s	102,110 to 112	

*1 During position control under Vector control, if "1" is set in Pr. 419 while the FR-A8AL is not installed (or is disabled), a protective function (E.OPT) is activated.
*2 During position control under Vector control, if "1110" is set in Pr. 419 while the FR-A8APS is not installed (or is disabled), a protective function (E.OPT) is activated.

Positioning by a point table (Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr.239, Pr. 465 to Pr.494, and Pr. 1222 to Pr.1281)

- Create a the point table by setting the following parameters.

Point table	Position data [command side]		Maximum speed	Acceleration time	Deceleration time	Dwell time	Auxiliary function	Point table selection signal			
	Upper	Lower						REX	RH	RM	RL
1	Pr. 466	Pr. 465	Pr. 4	Pr. 1222	Pr. 1223	Pr. 1224	Pr. 1225	OFF	ON	OFF	OFF
2	Pr. 468	Pr. 467	Pr. 5	Pr. 1226	Pr. 1227	Pr. 1228	Pr. 1229	OFF	OFF	ON	OFF
3	Pr. 470	Pr. 469	Pr. 6	Pr. 1230	Pr. 1231	Pr. 1232	Pr. 1233	OFF	OFF	OFF	ON
4	Pr. 472	Pr. 471	Pr. 24	Pr. 1234	Pr. 1235	Pr. 1236	Pr. 1237	OFF	OFF	ON	ON
5	Pr. 474	Pr. 473	Pr. 25	Pr. 1238	Pr. 1239	Pr. 1240	Pr. 1241	OFF	ON	OFF	ON
6	Pr. 476	Pr. 475	Pr. 26	Pr. 1242	Pr. 1243	Pr. 1244	Pr. 1245	OFF	ON	ON	OFF
7	Pr. 478	Pr. 477	Pr. 27	Pr. 1246	Pr. 1247	Pr. 1248	Pr. 1249	OFF	ON	ON	ON
8	Pr. 480	Pr. 479	Pr. 232	Pr. 1250	Pr. 1251	Pr. 1252	Pr. 1253	ON	OFF	OFF	OFF
9	Pr. 482	Pr. 481	Pr. 233	Pr. 1254	Pr. 1255	Pr. 1256	Pr. 1257	ON	OFF	OFF	ON
10	Pr. 484	Pr. 483	Pr. 234	Pr. 1258	Pr. 1259	Pr. 1260	Pr. 1261	ON	OFF	ON	OFF
11	Pr. 486	Pr. 485	Pr. 235	Pr. 1262	Pr. 1263	Pr. 1264	Pr. 1265	ON	OFF	ON	ON
12	Pr. 488	Pr. 487	Pr. 236	Pr. 1266	Pr. 1267	Pr. 1268	Pr. 1269	ON	ON	OFF	OFF
13	Pr. 490	Pr. 489	Pr. 237	Pr. 1270	Pr. 1271	Pr. 1272	Pr. 1273	ON	ON	OFF	ON
14	Pr. 492	Pr. 491	Pr. 238	Pr. 1274	Pr. 1275	Pr. 1276	Pr. 1277	ON	ON	ON	OFF
15	Pr. 494	Pr. 493	Pr. 239	Pr. 1278	Pr. 1279	Pr. 1280	Pr. 1281	ON	ON	ON	ON

Position data settings

- Set the position feed length to Pr. 465 to Pr. 494.
- The feed length set to each point table is selected by multi-speed terminals (RH, RM, RL and REX).
- Under Vector control with encoder, set the value calculated with the following formula as the position feed length: (encoder resolution \times number of rotations $\times 4$).
- For example, to stop the motor after 100 times of rotations using the SF-V5RU,

The value is calculated with 2048 (pulse/r) $\times 100$ (rotations per minute) $\times 4$ (multiplier) $=819200$ (feed length)

To set 819200 as the first feed length, separate the number into the upper and lower 4 digits as follows:

Pr. 466 (upper digits) = 81 (decimal), Pr. 465 (lower digits) = 9200 (decimal)

- The position feed length of PM sensorless vector control is fixed at 4096 for each motor rotation.

- Acceleration/deceleration time setting

- Set the acceleration/deceleration time for parameters corresponding to each point table.
- The frequency which is the basis of acceleration/deceleration time is Pr. 20 Acceleration/deceleration reference frequency. However, $1 \mathrm{~Hz} / \mathrm{s}$ is the minimum acceleration/deceleration rate (acceleration/deceleration frequency divided by acceleration/deceleration time). If the acceleration/deceleration rate is smaller than 1 , the motor runs at $1 \mathrm{~Hz} / \mathrm{s}$ or in the deceleration time.
- The maximum acceleration/deceleration time is limited at 360 s .
- During position control, acceleration/deceleration pattern is always the liner acceleration/deceleration, and the Pr. 29 Acceleration/deceleration pattern selection setting is ignored.

- Setting the waiting (dwell) time

- Set the waiting (dwell) time which is the interval from the completion of the position command of a selected point table to the start of the position command of the next point table.
- Set the dwell time from 0 to 20000 ms for parameters corresponding to each point table.

- Auxiliary function setting

- Set the handling and operation methods of the position data in each point table.
- Set the auxiliary function for parameters corresponding to each point table.

Auxiliary function parameter setting	Sign (100 s digit)	Command method (10 s digit)	Operation method (1 s digit)
0	Plus (0)	Absolute position command (0)	Individual (0)
1			Continuous (1)
2			Loop operation using the point table selected at the start of the operation (2)
10		Incremental position command (1)	Individual (0)
11			Continuous (1)
12			Loop operation using the point table selected at the start of the operation (2)
100	Minus (1)	Absolute position command (0)	Individual (0)
101			Continuous (1)
102			Loop operation using the point table selected at the start of the operation (2)
110			Individual (0)
111		Incremental position	Continuous (1)
112		command (1)	Loop operation using the point table selected at the start of the operation (2)

- For the sign, select the sign of position data.
- For the command method, select the absolute position command or incremental position command. For the absolute position command, specify the distance from the home position. For the incremental position command, specify the distance from the current position command.
- Position commands cannot be received until the completion of the home position return.
- For the operation method, select "individual", "continuous", or "loop operation using the point table selected at the start". When continuous operation is selected, next point table is executed after a command has been executed.
Set "individual" as the operation method for the point table which is the last of the continuous operation.
When "loop operation using the point table selected at the start" is selected, the positioning operation is the loop. To stop the operation, turn OFF the STF (STR) signal, or turn ON the X87 (sudden stop) input signal.
- Individual operation is only executed in the selected point table. The dwell time setting is disabled in individual operation.
- Continuous operation setting is not available for the point table 15 ("0, 2, 10, 12, 100, 102, 110 or 112" can be set to Pr.1281).

- Example 1 of positioning operation using point table (automatic continuous positioning operation)

The following figure shows an operation example using the following point table.

Point table	Target position		Maximum speed (Hz)		Acceleration time(s)	Deceleration time(s)	Dwell time $(\mathbf{m s})$
	100	0	60	5	5	1000	Auxiliary function Upper (absolute position, continuous)
2	50	0	30	6	6	0	10 (incremental position, individual)

- During continuous operation, the position command speed drops to 0 in each point table operation before starting the next point table operation.
- During continuous operation, no point table selection signal is received. Select the position feed length using point table before turning ON the start command. Only the maximum frequency can be changed during operation.

Example 2 of positioning operation using point table (Automatic loop positioning operation using the point table selected at the start of the operation)

The following figure shows a loop operation example using the point table 2 to point table 4 in the following point table. The operation is started from the point table 2 (start point). Set "12" in the auxiliary function of the point table 4 (end point).

Point table	Target position	Maximum $\mathbf{s p e e d}$ $\mathbf{(H z)}$	Acceleration time (s)	Deceleration time (s)	Dwell time $(\mathbf{m s})^{* 1}$	Auxiliary function
1	50000	60	1	1	100	1 (absolute position, continuous)
2	70000	20	2	2	100	11 (incremental position, continuous)
3	100000	10	4	4	100	1 (absolute position, continuous)
4	60000	5	3	100	12 (incremental position, continuous)	

*1 The positioning operation is the loop. To stop the operation, turn OFF the STF (STR) signal, or turn ON the X87 (sudden stop) input signal. Operation

1. The operation is started from the point table 2 (start point).
2. The operation is switched to the one using the point table 3.
3. The operation is switched to the one using the point table 4 (end point).
4. According to the setting in the auxiliary function for the point table 4 (Pr. $1237=" 12 ")$, the operation is switched to the one using the point table 2 selected at the start (loops back to the start point from the end point).
5. The loop of operations 1 to 4 executes.

- Example 3 of positioning operation using point table (variable speed operation)

- The maximum frequency can be changed during positioning operation. Use as many point tables as the number of maximum speeds to be set.
- The following figure shows an operation example using the following point table.

Point table	Target position		Maximum $\mathbf{s p e e d}(\mathbf{H z})$	Acceleration time (s)	Deceleration time (s)	Dwell time $(\mathbf{m s})$	Auxiliary function
	5	0	30	1	1	0	1 (absolute position, continuous)
2	3	0	20	Invalid	Invalid	0	11 (incremental position, individual)
3	10	0	10	Invalid	Invalid	0	1 (absolute position, continuous)
4	6	0	5	Invalid	Invalid	0	10 (incremental position, individual)

- Set "0" as the dwell time to perform variable speed operation.

- Return to home position during point table positioning

- Home position return is performed to match the command coordinates with the machine coordinates.
- The returned home position can be set as point 0 , and positioning operation is available using this.

■ Home position return procedure

1. Set parameters related to home position return.

- Set the home position return method (Pr.1282).
- Set the home position return speed (Pr.1283)
- Set the home position creep speed (Pr.1284)
- Set the home position return shift amount if necessary(Pr. $1286 \times 10000+$ Pr.1285).
- Set the post proximity dog travel distance if necessary. (Pr. $1288 \times 10000+$ Pr.1287)

2. Turn OFF all point table selections.

- Turn OFF all RH, RM, RL and REX signals.

3. Turn $O N$ the Pre-excitation/servo $O N(L X)$ signal.
4. Turn ON the start signal (STF or STR).

- Home position return is performed according to the settings.

NOTE

- The setting values of the point table 1 are used as acceleration/deceleration time
- After turning ON the start signal, only the setting values of Pr. 1283 Home position return speed, Pr. 1284 Home position return creep speed can be changed.
- Perform home position return at the motor switchover.

Selecting the home position return method (Pr. 1282 to Pr.1288)

Pr. 1282 setting	Home position return method	Description
0	Dog type*1 Vector	Deceleration starts when the Proximity dog signal is turned ON. For the home position after turn OFF of the Proximity dog signal, the position specified by the first Z-phase signal or the position of the first Z-phase signal shifted by the home position shift amount (Pr.1285, Pr.1286) is used.
1	Count type*1 Vector	Deceleration starts when the proximity dog signal is turned ON. After the proximity dog, the motor travels the specified travel distance (Pr.1287, Pr.1288). Then, it uses the position specified by the first Z-phase signal or position of the Z-phase signal shifted by the home position shift amount (Pr.1285, Pr.1286).
2	Data set type Vector PM	The position at which the start signal is input is used as the home position.

Pr. 1282 setting	Home position return method	Description
3	Stopper type Vector PMM	A workpiece is pressed to a mechanical stopper, and the position where it is stopped is set as the home position. Pressing is confirmed when the estimated speed value has fallen blow Pr. 865 Low speed detection for 0.5 s during activation of the torque limit operation. (While the stopper-type home position is performed, Pr. 1289 Home position return stopper torque is applied.) After Pr. 1290 Home position return stopper waiting time has passed after pressing is confirmed, the home position is shifted by the home position shift distance (Pr. 1285 and Pr.1286). After a position command is created and the absolute value of the droop pulse (after electronic gear) falls below the in-position width, the home position return is completed.
4 (initial value)	Ignoring the home position (Servo ON position as the home position) Vector PMM	The servo ON position is used as the home position.
5	Dog type back end reference Vector PM	Deceleration starts at the front end of the proximity dog. After the back end is passed, the position is shifted by the post-dog travel distance and home position shift amount. The position after the shifts is set as the home position. Set pulses required for deceleration from the creep speed or more as the total of the post-dog travel distance and home position shift amount.

Pr. 1282 setting	Home position return method	Description
6	Count type with front end reference Vector \square	Deceleration starts at the front end of the proximity dog, and the position is shifted by the post-dog travel distance and home position shift distance. The position after the shifts is set as the home position. Set pulses required for changing the speed from the home position speed to the creep speed or more as the total of the post-dog travel distance and home position shift amount.

*1 If it is set under PM sensorless vector control, Home position return parameter setting error (HP3) occurs.

NOTE

- Home position return automatic back-off function

In a system that uses home position return with proximity dog, if the home position return is commanded while the motor is in a position within the proximity dog, the motor moves out of the proximity dog once, then starts deceleration to stop when it comes to the proximity dog again. The home position return is performed automatically after that.

- Home position return error

- If home position return is not normally completed, the following warnings appear on the operation panel.

Operation panel indication	Name	Possible cause
HP1	Home position return setting error	- The home position setting has failed.
HP2 Home position return uncompleted	- Start signal for the point table positioning has turned ON without completing the home position return.	
- The proximity dog signal is turned OFF during transition from the home position		
return speed to the creep speed when home position return is performed in the		
dog type or dog type back end reference.		
- The position command is given for the motor to reach the post-dog travel		
distance during transition from the home position return speed to the creep speed		
when home position return is performed in the count type.		
- The position command is given for the motor to reach the total of the post-dog		
travel distance and home position shift distance during deceleration from the		
creep speed after the proximity dog signal is turned OFF in the dog type back end		
reference.		
- The speed did not reach the creep speed in the count type with front end		
reference.		

- The home position return failure (ZA) signal is output while the home position return warning is occurring. To use the ZA signal, set "56 (positive logic) or 156 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.

- Sudden stop (Pr.464, Pr.1221, and X87 signal)

- The operation performed during STF(STR)-OFF can be selected with Pr. 1221 Start command edge detection selection.
- If STF(STR) is turned OFF during positioning or home position returning when Pr. $\mathbf{1 2 2 1}=$ " 0 (initial value)" is set, it stops in the time set as Pr. 464 Digital position control sudden stop deceleration time.

- Turning ON the Sudden stop signal (X87) during positioning operation or home position return operation, the motor stops in the setting time of Pr.464. To assign the X87 signal, set "87" in any of Pr. 178 to Pr. 189(Input terminal function selection).

- The input logic of the X87 signal Pr. 1292 Position control terminal input selection can be set using.

Pr. 1292 setting	Input logic (X87)
0 (initial value)	Normally open input (NO contact input specification)
1	Normally closed input (NC contact input specification)

NOTE

- When deceleration time longer than the normal deceleration time (including Pr.1223) is set in Pr.464, the normal deceleration time is applied.
- The X87 signal is effective during position control JOG operation.

\rightarrow Roll feed mode (Pr.1293)

- If the roll feed mode is enabled in an application that needs repeated positioning in the same direction, such as a conveyor, positioning can be performed repeatedly without position command overflow.
- When the roll feed mode is enabled (Pr. $1293=$ " 1 "), the position where the first position command is created is set as the home position and the droop pulses are cleared.
When Pr. 1293 = "1", simple positioning is available even if home position return cannot be completed.
- Positioning modes which enables the roll feed mode are the point table mode, the home position return mode, and the JOG mode.
- Basic operation example

- Input/output signals for point table positioning

Input/ Output	Signal name		Function	$\begin{gathered} \text { Pr. } 178 \text { to } \\ \text { Pr. } 189 \text { setting } \end{gathered}$	$\begin{gathered} \text { Pr. } 190 \text { to } \\ \text { Pr. } 196 \text { setting } \end{gathered}$		
			Positive logic		Negative logic		
Input	X76	Proximity dog		$\begin{aligned} & \text { ON: dog ON } \\ & \text { OFF: dog OFF } \end{aligned}$	76	-	
	X87	Sudden stop	When turned ON, the motor decelerates and stops according to Pr. 464.	87	-		
Output	MEND	Travel completed	Turns ON when the position command operation has completed while the number of droop pulses is within the positioning completion width.	-	38	138	
	ZA	Home position return failure	Turns ON while the home position return warning occurs.	-	56	156	
	PBSY	During position command operation	Turns ON during position command operation.	-	61	161	
	ZP	Home position return completed	Turns ON after home position return operation is complete.	-	63	163	

- Output signal operation during positioning by point table

- Output signal operation during positioning with home position return

NOTE

- When the LX signal is turned OFF, the home position return completed (ZP) signal is turned OFF. When the LX signal is turned ON again while Pr. $419=$ "10", the ZP signal is also turned ON.

《 Parameters referred to 》
Pr. 20 Acceleration/deceleration reference frequency page 349
Pr. 29 Acceleration/deceleration pattern selection page 354

5.5.5 Position control by the FR-A8AL pulse train input

Vector PRM

Position control by the command from the positioning module of the programmable controller is available using the FR-A8AL.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 419 \\ & \text { B000 } \end{aligned}$	Position command source selection	0	0	Simple position control by point table (position command given by setting parameters)	
			1	Position command given by the FR-A8AL pulse train input ${ }^{* 1}$	
			2	Simple pulse train position command given by the pulse train input to the inverter	
			10	Simple position control by point by setting parameters) The home position data is retai	table (position command given ed at servo-OFF.
			100	Simple position control by point by setting parameters) The monitor value of the curren home position return is complet	table (position command given position 2 is cleared when the d.
			110	Simple position control by point by setting parameters) The home position data is retain The monitor value of the curren home position return is complet	table (position command given ned at servo-OFF. position 2 is cleared when the ed.
			1110	Simple position control by point by setting parameters) The absolute position control w	table (position command given th the FR-A8APS is valid. *2
$\begin{aligned} & 428 \\ & \text { B009 } \end{aligned}$	Command pulse selection	0	0	Forward/Reverse pulse train	Negative logic
			1	Pulse train + rotation direction sign	
			2	A/B phase pulse train	
			3	Forward/Reverse pulse train	Positive logic
			4	Pulse train + rotation direction sign	
			5	A/B phase pulse train	

*1 During position control under Vector control, if "1" is set in Pr. 419 while the FR-A8AL is not installed (or is disabled), a protective function (E.OPT) is activated.
*2 During position control under Vector control, if "1110" is set in Pr. 419 while the FR-A8APS is not installed (or is disabled), a protective function (E.OPT) is activated

-Connection diagram

- Connection with the positioning module of RD75P type MELSEC iQ-R series is also available.

*1 The pin number differs according to the encoder used. Speed control, torque control, and position control by pulse train input are available with or without the Z-phase being connected.
*2 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be $1: 1$.
*3 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 86.)
*4 For the complementary, set the terminating resistor selection switch to the OFF position (initial status). (Refer to page 86 .)
*5 A separate external power supply of 15 V is necessary according to the encoder power specification. When the encoder output is the differential line driver type, only 5 V can be input. When the 24 V power supply of the FR-A8AL is used, the power is supplied to the encoder through terminal PG24. When the $5 \mathrm{~V} / 12 \mathrm{~V}$ power supply of the FR-A8AL is used, the power is supplied to the encoder through terminal PGV. Do not use the external power supply simultaneously with the $5 \mathrm{~V} / 12 \mathrm{~V}$ power supply or the 24 V power supply. Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply between terminals PG and SD.
*6 Assign the function using Pr. 178 to Pr.184, Pr. 187 to Pr. 189 (input terminal function selection).
*7 The pulse signal from the position module is available for both open collector and differential line driver. However, the connections are different. (The following figure shows an example for differential line driver.) For the connection method, refer to the Instruction Manual of the FR-A8AL.

- Operation outline

- If the pre-excitation/servo ON (LX) signal is turned ON, output shutoff is canceled and the position control preparation ready (RDY) signal is turned ON after 0.1 seconds. When the STF signal (forward stroke end) or the STR signal (reverse stroke end) is turned ON, the motor rotates according to the command pulse. When the forward (reverse) stroke end signal is turned OFF, the motor does not rotate in the corresponding direction.

Interface between the position module and the inverter.

- To operate an inverter using a positioning module, the interfaces for the position command pulse train must agree with each other.

Output form	Hardware	Input pulse frequency
Open collector		Max 200k pulses/s
Differential line driver		Max 500k pulses/s

- Selecting the pulse train type (Pr.428)

- To select the pulse train input to the FR-A8AL, set "1" in Pr. 419 after installing the FR-A8AL on the inverter.
－The command pulse is switchable according to the position module as shown in the following table．

Command pulse train type		During forward rotation	During reverse rotation	Setting of Pr． 428	Remarks
Negative logic	Forward pulse train Reverse pulse train	PPもなたも NP		0 （initial value）	RD75（CW／CWW mode） （Note）When（CW／CWW mode）and（PULSE／ SIGN mode）are connected incorrectly，the motor moves only one direction．
	Pulse train＋sign	$\begin{gathered} \text { PP そもなも } \\ \text { NP } \frac{L}{2} \end{gathered}$	$\frac{\text { さもさを }}{\mathrm{H}}$	1	RD75（PULSE／SIGN mode）
	A phase pulse train B phase pulse train	$\begin{aligned} & \mathrm{PP}, \square \square \\ & \mathrm{NP}-\square \square \end{aligned}$		2	The number of pulses are multiplied by 4 to count．When differential line driver is used， the number of pulses after the number encoder pulses is quadruplicated should be 500k pulses／s or lower．When open collector is used，the number should be 200k pulses／s or lower．
Positive logic	Forward pulse train Reverse pulse train	PP \＆GGG NP \qquad	R	3	
	Pulse train＋sign	$\mathrm{PP} \frac{4 \rightarrow 4}{\mathrm{~N}}$	$\begin{gathered} \text { RGG } 4 \\ L \\ \hline \end{gathered}$	4	
	A phase pulse train B phase pulse train		$\square \square$	5	The number of pulses are multiplied by 4 to count．When differential line driver is used， the number of pulses after the number encoder pulses is quadruplicated should be 500 k pulses／s or lower．When open collector is used，the number should be 200k pulses／s or lower．

5．5．6 To perform position control by pulse input to the inverter

Vector PM
The simple position pulse train command can be input by pulse train input and simple position pulse train signal（NP）to the JOG terminal．

Pr．	Name	Initial value	Setting range	Description	
419 B000	Position command source selection	0	0	Simple position control by point table（position command given by setting parameters）	
428 B009	Command pulse selection	0	2	Simple pulse train position command given by the pulse train input to the inverter	

－Operation outline

－If the Pre－excitation／servo ON（LX）signal is turned ON，output shutoff is canceled and the Position control preparation ready（RDY）signal is turned ON after 0.1 s ．When STF（forward stroke end signal）or STR（reverse stroke end signal）is turned ON，the motor rotates according to the command pulse．When the forward（reverse）stroke end signal is turned OFF，the motor does not rotate in the corresponding direction．

Selecting the pulse train type（Pr． 428 and NP signal）

－Set Pr． 419 Position command source selection＝＂2＂（simple pulse train position command）．
－Set＂68＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the simple position pulse train sign signal （NP）to the input terminal．
－Select the command pulse train with Pr． 428 Command pulse selection．

Pr． 428 setting	Command pulse train type		During forward rotation	During reverse rotation
0 to 2	Negative logic	Pulse train＋rotation direction sign	JOG をもなも NP L	$\frac{\ddagger \downarrow \boxed{z} \text { H }}{\mathrm{H}}$
3 to 5	Positive logic	Pulse train＋rotation direction sign	$\operatorname{JOG}_{\mathrm{NP}} \frac{\mathrm{H}}{4}$	L

－Select Vector control or PM sensorless vector control to select the position control method．

NOTE

－If Pr． $419=$＂ 2 ＂（simple pulse train position command）is set，terminal JOG is used for the simple position pulse train input regardless of the Pr． 291 Pulse train I／O selection pulse train input／output selection setting．

5．5．7 Clear signal selection

Pr．	Name	Initial value	Setting range	Description

－This function is useful to reset the number of droop pulses to 0 when home position return is performed．
－The Simple position droop pulse clear（CLR）signal is valid when the inverter is in the External operation mode．The NET position pulse clear（CLRN）signal is valid when the inverter is in the Network operation mode（not applicable when the FR－A8NS is installed）．
－If the simple position droop pulse clear（CLR）signal is turned ON when Pr． 429 Clear signal selection＝＂ 0 ＂，the deviation counter is cleared at the edge of the signal．The CLR／CLRN signal is also turned ON in synchronization with the zero pulse signal of the encoder such as the home position return signal，and the deviation counter is cleared．
－For a terminal used for the CLR signal，set＂69＂in any of Pr． 178 to Pr． 189 （input terminal function selection）to assign the function．

- For a terminal used for the CLR signal, set "59" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.

NOTE

- The accumulated number of pulses is cleared at base shutoff or when the CLR/CLRN signal is turned ON.
- Refer to page 306 for the condition to clear the values of the position pulse.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

《 Parameters referred to 》

Pr. 178 to Pr. 189 (Input terminal function selection) page 496

5.5.8 Pulse monitor

Vector PMM

Various pulses can be monitored.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 430 \\ & \text { B011 } \end{aligned}$	Pulse monitor selection	9999	$\begin{aligned} & 0 \text { to } 5,12,13, \\ & 100 \text { to } 105,112,113,1000 \\ & \text { to } 1005,1012,1013,1100 \\ & \text { to } 1105,1112,1113 \end{aligned}$	Shows the various pulse conditions during operation as the number of pulses.
			8888, 9999	Shows the frequency monitor.
$\begin{aligned} & \hline 635^{* 1} \\ & \text { M610 } \end{aligned}$	Cumulative pulse clear signal selection	0	0 to 3	Select the clearing method for the cumulative pulse monitor.
$\begin{aligned} & 636^{* 1} \\ & \text { M611 } \end{aligned}$	Cumulative pulse division scaling factor	1	1 to 16384	Set the division scaling factor on the cumulative pulse for the Vector control compatible plug-in option (FR-A8AP).
$\begin{aligned} & 637^{* 1} \\ & \text { M612 } \end{aligned}$	Control terminal optionCumulative pulse division scaling factor	1	1 to 16384	Set the division scaling factor on the cumulative pulse for the control terminal option (FR-A8TP).
$\begin{aligned} & 638^{* 1} \\ & \text { M613 } \end{aligned}$	Cumulative pulse storage	0	0 to 3	Select the processing method for the cumulative pulse monitor value when the power is turned OFF or the inverter is reset.

*1 The setting is available when a Vector control compatible option is installed.

\rightarrow Pulse monitor selection (Pr.430)

- Shows the various pulse conditions during operation as the number of pulses. Set " 0 " in Pr. 52 Operation panel main monitor selection to display the output frequency monitor.
- Also, setting "26 to 31" in Pr.52, Pr. 774 to Pr.776, Pr. 992 (multifunction monitor) changes the electronic gear operation setting in the case of monitoring pulses. (Refer to page 424.)

Pr. 430 setting		Description
[][]]0	Pulse monitor selection	Displays the lower of the position command (accumulated value of command pulses).
[][]1		Displays the upper of the position command (accumulated value of command pulses).
[][][2		Displays the lower of the current position (accumulated value of feedback pulses ${ }^{* 1}$).
[][]]3		Displays the upper of the current position (accumulated value of feedback pulses ${ }^{* 1}$).
[][][4		Displays the lower of the accumulated value of droop pulses.
[][]5		Displays the upper of the accumulated value of droop pulses.
[][12		Displays the lower of the current position 2 (accumulated value of feedback pulses ${ }^{* 1}$).
[][13		Displays the upper of the current position 2 (accumulated value of feedback pulses ${ }^{* 1}$).
[]0[][]	For pulse monitor selection	Displays the monitor item selected in the pulse monitor selection after the electronic gear operation.
[]1[]]		Displays the monitor item selected in the pulse monitor selection before the electronic gear operation.
O[][]]	For the multifunction monitor/ PLC function special register	Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation.
1[][]]		Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation.
8888	Output frequency display	Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation.
9999		Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation.

- Position pulses are cleared according to the following conditions.

	Position command / current position / droop pulse				Current position 2					
	$\begin{gathered} \text { Pr. } 419= \\ 0,100 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 10,110 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 1,2 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 1110 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 0 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 10 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 100 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 110 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 1,2 \end{gathered}$	$\begin{gathered} \text { Pr. } 419= \\ 1110 \end{gathered}$
Servo-OFF (LX-OFF) (output shutoff)	\bigcirc	\times	\bigcirc	\times						
Clear signal input ${ }^{*}$	\bigcirc	-*3	-	$\times^{* 5}$	\bigcirc	${ }^{*} 3$	\bigcirc	o*3	\bigcirc	$x^{* 5}$
Home position return completed	$0^{* 1}$	$0^{* 1 * 4}$	--*	-*1*4	\times	\times	-*1	-*1	- **	-*1

\circ : cleared, \times : not cleared
*1 The droop pulses are not cleared.
*2 The CLR/CLRN signal is input when Pr. $419=" 0,2$, or 10 ", and the signal is input through terminal CR of the FR-A8AL when Pr. $419=" 1$ ".
*3 Pulses are cleared when a clear signal is input. (The home position information is not retained.)
*4 Pulses are cleared only when the home position return is completed. Once the pulses are cleared, they are not cleared even if the LX signal is turned ON
*5 The data is cleared when absolute position control is disabled.
*6 The home position return is not available.

NOTE

- The monitor value of the current position 2 is not cleared when switching between the first and second motors.
- For the details of the special register for the PLC function, refer to the PLC Function Programming Manual.

- Pulse monitoring on the operation panel (FR-DU08)

- The position command, current position and the status of droop pulses can be displayed on the operation panel.
- If displayed data has signs, minus signs appear for both upper and lower digits.
- If -99999999 or 99999999 is exceeded on the pulse monitor, the monitor value is reset to 0 .

Display data		Monitor display without signs	Monitor display with signs									
-10000	Lower monitor	「\|						- [\|		l		
	Upper monitor	1	- $\quad 1$									
-100	Lower monitor	M117	-- M1170\|									
	Upper monitor	!	--									

NOTE

- The pulse count starts at servo on.

- Cumulative pulse monitoring

- When the Vector control compatible plug-in option or the control terminal option (FR-A8TP) is used, the accumulated value of the encoder pulses can be monitored.
- The cumulative pulse monitor is available when " 71 to 74 " is set in the monitor selection parameters (Pr.52, Pr.774, Pr.775, Pr.776, and Pr.992).

Monitor item	Pr.52, Pr.774 to Pr.776, Pr.992	Display with minus sign	Description
Cumulative pulse	71	$o^{* 1}$	The cumulative number of pulses is displayed (monitor range: -32767 to 32767) (for Vector control compatible plug-in options)
Cumulative pulse overflow times	72	$o^{* 1}$	The number of the cumulative pulse overflow times is displayed (for Vector control compatible plug-in options)
Cumulative pulse (Control terminal option)	73	$o^{* 1}$	The cumulative number of pulses is displayed (monitor range: -32767 to $32767)$ (for FR-A8TP)
Cumulative pulse overflow times (Control terminal option)	74	$o^{* 1}$	The number of the cumulative pulse overflow times is displayed (for FR-A8TP).

*1 Negative values are not displayed on the operation panel. The values "-1 to -32767 " are displayed as " 65535 to 32769 " on the operation panel.

- Cumulative pulse division scaling factor (Pr.636, Pr.637)

- Set the division scaling factor on the cumulative pulse in Pr. 636 or Pr. 637.
- Cumulative pulse count value calculation method:

Cumulative pulse count value $=$ Cumulative pulse division scaling factor \times (Cumulative pulse overflow times $\times 32768+$ Cumulative pulse monitor value)
Cumulative pulse count value: Number of pulses multiplied by 4
Cumulative pulse division scaling factor: Pr.636, Pr. 637

- Cumulative pulse monitor value clear (Pr.635)

- The cumulative pulse monitor and the cumulative pulse overflow times can be cleared by X52 signal or X53 signal.
- To input the X52 or X53 signal, set "52 (X52)" or "53 (X53)" in any of Pr. 178 to Pr. 189 (input terminal function selection) to assign the function to a terminal.
- Use Pr. 635 Cumulative pulse division scaling factor to select the clearance method for the cumulative pulse monitor and the cumulative pulse overflow times.

Pr. 635 setting	X52 signal Cumulative pulse monitor value clear	X53 signal Cumulative pulse monitor clear (control terminal option)
0	Cleared at the edge when the signal is switched to ON.	Cleared at the edge when the signal is switched to ON.
1	Cleared while the signal is ON.	Cleared at the edge when the signal is switched to ON.
2	Cleared at the edge when the signal is switched to ON.	Cleared while the signal is ON.
3	Cleared while the signal is ON.	Cleared while the signal is ON.

－Cumulative pulse storage

－The cumulative pulse monitor value and cumulative pulse overflow times can be retained when the power is turned OFF or the inverter is reset．

Pr．638 setting	Cumulative pulse monitor／Cumulative pulse overflow times		Cumulative pulse monitor／Cumulative pulse overflow times （Control terminal option）	
	At power－OFF	At reset	At power－OFF	At reset
0	Not stored in the EEPROM	Cleared	Not stored in the EEPROM	Cleared
1	Stored in the EEPROM	Retained	Not stored in the EEPROM	Cleared
2	Not stored in the EEPROM	Cleared	Stored in the EEPROM	Retained
3	Stored in the EEPROM	Retained	Stored in the EEPROM	Retained

NOTE

－When the power is turned OFF during the reset process，the cumulative pulse monitor value and the cumulative pulse overflow times are not stored in the EEPROM
－For storing the cumulative pulse monitor value and the cumulative pulse overflow times，in the EEPROM at power OFF， connect R1／L11 with P／＋，and S1／L21 with N／－so that the control power is retained．When connecting the FR－HC2 high power factor converter or the converter unit（FR－CC2），assign the FR－HC2／FR－CC2 instantaneous power failure detection（X11） signal to an input terminal to input the IPF signal from the FR－HC2／FR－CC2 to the terminal for X11 signal．

《｜Parameters referred to 》》
Pr． 52 Operation panel main monitor selection page 424

5．5．9 Electronic gear settings

Vector PM

Set the gear ratio between the machine gear and motor gear．

Pr．	Name	Initial value	Setting range	Description
420 B001	Command pulse scaling factor numerator（electronic gear numerator）	1	1 to 32767	Set the electronic gear．
421 B002	Command pulse multiplication denominator（electronic gear denominator）	1	1 to 32767	Pr．420 is the numerator and Pr．421 is the denominator．
424 B005	Position command acceleration／ deceleration time constant	0 s	0 to 50 s	Use it when the rotation is not smooth because the electronic gear ratio is large（10 times or larger）and the rotation speed is slow．

－Gear ratio calculation（Pr．420，Pr．421）

The position resolution（travel distance per pulse $\Delta \ell[\mathrm{mm}]$ ）is the travel distance per motor rotation $\Delta \mathrm{s}[\mathrm{mm}]$ and the feedback pulse Pf［pulse／rev］of the detector．

$$
\Delta \ell=\frac{\Delta s}{\operatorname{Pf}} \quad \begin{aligned}
& \Delta \ell: \text { Travel distance per pulse }[\mathrm{mm}] \\
& \Delta \mathrm{s} \text { : Travel distance in one motor rotation }[\mathrm{mm}] \\
& \text { pf: Number of feedback pulses }[\text { pulse } / \text { rev }] \text { (the number of pulses after the number encoder } \\
& \text { pulses is quadruplicated) }
\end{aligned}
$$

The travel distance in 1 command pulse can be separately specified with a parameter and so an integer can be set as the travel distance in 1 command pulse．

$$
\Delta \ell=\frac{\Delta \mathrm{s}}{\operatorname{Pf}} \times \frac{\operatorname{Pr} .420}{\operatorname{Pr} .421}
$$

The following formula shows the relationship between the motor speed and internal command pulse frequency.

$$
\text { fo } \times \frac{\text { Pr. } 420}{\operatorname{Pr} .421}=\operatorname{Pf} \times \frac{\text { No }}{60} \quad \begin{aligned}
& \text { fo: internal command pulse frequency [pps] } \\
& \text { No: motor rotation speed [r/min] }
\end{aligned}
$$

NOTE

- Set the electronic gear ratio in the range of $1 / 50$ to 20 . Note that, if the setting value is too small, the speed command will also be too small; while if it is too large, the speed ripple will be too large.

Setting example 1	Setting example 2
In a driving system whose ball screw pitch is $\mathrm{PB}=10(\mathrm{~mm})$ and the reduction ratio is $1 / n=1$, the electronic gear ratio is $\Delta \mathrm{s}=10(\mathrm{~mm})$ when $\Delta \ell=0.01$ (mm) and $\mathrm{Pf}=4000$ (pulses/rev) is set as the number of feedback pulses. Based on this, use the following formula: $\begin{aligned} \Delta \ell & =\frac{\Delta s}{\operatorname{Pf}} \times \frac{\operatorname{Pr} .420}{\operatorname{Pr} .421} \\ \frac{\operatorname{Pr} .420}{\operatorname{Pr} .421} & =\Delta \ell \times \frac{\operatorname{Pf}}{\Delta \mathrm{s}} \\ & =0.01 \times \frac{4000}{10}=\frac{4}{1} \end{aligned}$ Thus, set the parameters as follows: Pr. 420="4", Pr. 421 = "1".	Find the internal command pulse frequency for the rated motor speed of the dedicated motor. However, the command pulse ratio is Pr. $420 / \mathrm{Pr} .421=$ "1". If the number of encoder pulses is 2048 (pulses/rev), (feedback pulse $\mathrm{pf}=2048 \times 4$) $\begin{aligned} \mathrm{fo} & =2048 \times 4 \times \frac{\mathrm{No}}{60} \times \frac{\operatorname{Pr} .421}{\operatorname{Pr} .420} \\ & =204800 \end{aligned}$ The internal command pulse is 204800 (pulses/s) in accordance with the above formula.

■ Relationship between the position resolution and system accuracy

The system accuracy (the positioning accuracy of the machine) is the sum of electric deviation and mechanical deviation. Normally try to prevent the total deviation from being affected by the electronic deviation. Refer to the following relationship as a reference.

$$
\Delta \ell<\left(\frac{1}{5} \text { to } \frac{1}{10}\right) \times \Delta \varepsilon \quad \Delta \varepsilon: \text { positioning accuracy }
$$

■ Motor stop characteristics

When running the motor by the parameter settings, the relationship between the internal command pulse frequency and the number of motor rotations is as shown in the figure on page 285. Pulses as much as the motor speed delay are accumulated in the deviation counter. These pulses are called droop pulses (ε). The relationship between the command frequency (fo) and position loop gain (Kp: Pr.422) is shown in the following formula.

$$
\varepsilon=\frac{\mathrm{fo}}{\mathrm{Kp}} \text { [pulse] } \frac{204800}{25} \text { [pulse] (with the rated motor speed) }
$$

The number of droop pulses (ε) is 8192 with the initial value $\mathrm{Kp}=25 \mathrm{~s}^{-1}$.

Since the inverter has droop pulses during operation, a stop settling time (ts), which is the time between the zero command output and the motor stop, is required. Set the operation pattern taking into the account the stop setting time.

$$
\mathrm{ts}=3 \times \frac{1}{\mathrm{Kp}}[\mathrm{~s}]
$$

The stop settling time (ts) is 0.12 s for the initial value $\mathrm{Kp}=25 \mathrm{~s}^{-1}$.
The accuracy of positioning $\Delta \varepsilon$ is (5 to 10) $\times \Delta \ell=\Delta \varepsilon[\mathrm{mm}]$

P Position command acceleration/deceleration time constant (Pr.424)

- If the electronic gear ratio is large (1:10 or larger) and the rotation speed is slow, the rotation is not smooth and the rotation shape becomes like a pulse.
Set this option in such a case to smoothen the rotation.
－If the command pulse frequency varies rapidly when no acceleration time can be assigned to the command pulse， overshoot or excessive error alarms may occur．Set this option in such a case to set the acceleration／deceleration time． Normally it is set to 0 ．

5．5．10 Position adjustment parameter settings

Vector PM

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 426 \\ & \text { B007 } \end{aligned}$	In－position width	100 pulses	0 to 32767 pulses	Set the number of droop pulses that triggers the In－position （Y36）signal．
$\begin{array}{\|l\|} \hline 427 \\ \text { B008 } \end{array}$	Excessive level error	40K	0 to 400K	Set the number droop pulses that activates Excessive position fault（E．OD）．
			9999	Function disabled
$\begin{aligned} & 1294 \\ & \text { B192 } \end{aligned}$	Position detection lower 4 digits	0	0 to 9999	Set the lower four digits of the position detection value．
$\begin{aligned} & 1295 \\ & \text { B193 } \end{aligned}$	Position detection upper 4 digits	0	0 to 9999	Set the upper four digits of the position detection value．
$\begin{aligned} & 1296 \\ & \text { B194 } \end{aligned}$	Position detection selection	0	0	The position is detected on both the plus and minus sides．
			1	The position is detected on the plus side only．
			2	The position is detected on the minus side only．
$\begin{aligned} & 1297 \\ & \text { B195 } \end{aligned}$	Position detection hysteresis width	0	0 to 32767	Set the hysteresis width for the detected position where the Position detection level（FP）signal turns ON．

\rightarrow In－position width（Pr．426，Y36 signal）

－The Y36 signal is used as the in－position signal．
－If the number of droop pulses is equal to or smaller than the Pr． 426 setting value，the In－position（Y36）signal turns ON．
－To use the Y36 signal，set＂36（positive logic）or 136 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function．

－Excessive level error（Pr．427）

－If the number of droop pulses exceeds the Pr． 427 setting，a position error is detected，Excessive position fault（E．OD）is activated and the inverter output is shut off．Increase the error threshold level when a small value is set as the Pr．422Position control gain setting value．Set a small value for early detection even when the load is heavy．
－If Pr． 427 ＝＂9999＂，E．OD is not activated regardless of the amount of droop pulses．

－Position detection signal（Pr． 1294 to Pr．1297，FP signal）

－The Position detection level（FP）signal is turned ON when the current position［before the electronic gear］exceeds the Pr． $1295 \times 10000+$ Pr． 1294 position detected．To use the FP signal，set＂60（positive logic）or 160 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function．
－Whether the position detection is determined on the plus side or minus side can be selected by Pr． 1296 Position detection selection．When＂ 0 ＂is set，the position is detected on both the plus and minus sides．When＂ 1 ＂is set，the position is detected on the plus side only．When＂2＂is set，the position is detected on the minus side only．

- When a current position varies, the Position detection level (FP) signal may repeat ON/OFF (chatter). Setting hysteresis to the detected position prevents chattering of the signal. Use Pr. 1297 Position detection hysteresis width to set a hysteresis width.

5.5.11 Position control gain adjustment

Vector PM

Easy gain tuning is provided as an easy tuning method. For details about easy gain tuning, refer to page 244. If easy gain tuning does not produce any effect, make fine adjustments by using the following parameters. Set "0" to Pr. 819 Easy gain tuning selection before setting the following parameters.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 422 \\ & \text { B003 } \end{aligned}$	Position control gain	$25 \mathrm{~s}^{-1}$	0 to $150 \mathrm{~s}^{-1}$	Set the gain for the position loop.
$\begin{aligned} & 1298 \\ & \text { B013 } \end{aligned}$	Second position control gain	$25 \mathrm{~s}^{-1}$	0 to $150 \mathrm{~s}^{-1}$	Set the position loop gain for the second motor.
$\begin{aligned} & 423 \\ & \text { B004 } \end{aligned}$	Position feed forward gain	0\%	0 to 100\%	Function to cancel a delay caused by the droop pulses in the deviation counter.
$\begin{array}{\|l\|} \hline 425 \\ \text { B006 } \end{array}$	Position feed forward command filter	0 s	0 to 5 s	Input the first delay filter for the feed forward command.
$\begin{aligned} & 446 \\ & \text { B012 } \end{aligned}$	Model position control gain	$25 \mathrm{~s}^{-1}$	0 to $150 \mathrm{~s}^{-1}$	Set the gain for the model position controller.
$\begin{array}{\|l\|} \hline 828 \\ \text { G224 } \end{array}$	Model speed control gain	60\%	0 to 1000\%	Set the gain for the model speed controller.
	Speed feed forward control/		0, 1	Perform position feed forward control.
G220	model adaptive speed control selection	0	2	Model adaptive position control becomes valid.
$\begin{array}{\|l\|} \hline 880 \\ \text { C114 } \end{array}$	Load inertia ratio	7-fold	0 to 200-fold	Set the load inertia ratio for the motor.

Position loop gain (Pr.422, Pr.1298)

- Make adjustment when any of such a phenomena as unusual vibration, noise and overcurrent of the motor/machine occurs.
- Increasing the setting improves traceability for the position command and also improves servo rigidity at a stop, but oppositely makes an overshoot and vibration more liable to occur.
- Normally set this parameter within the range about 5 to 50 .

Movement/ condition	How to adjust Pr.422
Response is slow.	Increase the setting value. Increase the setting value by $3 \mathrm{~s}^{-1}$ until immediately before an overshoot, stop-time vibration or other instable phenomenon does not occur, and set about 80 to 90% of that value.
Overshoot, stop-time vibration or other instable phenomenon occurs.	Lower the setting value. Lower the setting value by $3 \mathrm{~s}^{-1}$ until immediately before an overshoot, stop- time vibration or other instable phenomenon does not occur, and set about 80 to 90% of that value.

- Position feed forward gain (Pr.423)

- This function is designed to cancel a delay caused by the droop pulses in the deviation counter. Set this parameter when a sufficient position response cannot be obtained after setting Pr. 422.
- When a tracking delay for command pulses poses a problem, increase the setting gradually and use this parameter within the range where an overshoot or vibration will not occur.
- This function has no effects on servo rigidity at a stop.
- Normally set this parameter to 0 .
- When setting Pr.423, set Pr. $877=$ " 0 or 1 " to enable position feed forward control.

- Model adaptive position control (Pr.446)

- Set each response for position commands and for load and external disturbances individually.
- Set this parameter when a sufficient position response cannot be obtained after setting Pr. 422.
- When setting Pr.446, set Pr. 877 = "2" to enable the model adaptive position control, Pr. 828 Model speed control gain \neq " 0 ", and a load inertia ratio in Pr. 880 Load inertia ratio.
- Set a small value in Pr. 446 first, and then increase the setting gradually and use this parameter within the range where an overshoot or vibration will not occur.

5.5.12 Troubleshooting in position control
 Vector PMM

	Condition	Possible cause	Countermeasure
1	The motor does not rotate.	There is incorrect phase sequence between the motor wiring and encoder wiring.	Check the wiring. (Refer to page 86.)
		The setting of Pr. 800 Control method selection is not appropriate.	Check the Pr. 800 setting. (Refer to page 215.)
		No LX signal or STF/STR signal is input.	Check if the signals are properly input.
		A command pulse or NP signal is not correctly input.	Check if the command pulse is properly input. (check the accumulated value for command pulses in Pr. 430 Pulse monitor selection) Check the command pulse type in Pr. 428 Command pulse selection. Check that the position pulse sign (NP) is assigned to an input terminal. (inverter pulse input)
		The setting in Pr. 419 Position command source selection is incorrect.	Check the Pr. 419 Position command source selection.
		When simple position control by a point table (Pr. $419=$ " 0 ") is used, the position feed length set by Pr. 465 to Pr. 494 is not correct.	Check the position feed length in Pr. 465 to Pr. 494.
		The option to be used and parameter settings do not match.	Correctly set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 220.)
2	The position is unfavorably shifted.	A command pulse is not correctly input.	Check the command pulse type in Pr. 428 Command pulse selection. Check if the command pulse is properly input. (check the accumulated value of command pulses in Pr.430) Check that the position pulse sign (NP) is assigned to an input terminal. (inverter pulse input)
		The command is affected by noise. Noise is superpositioned on the encoder feedback signals.	Set Pr. 72 PWM frequency selection lower. Change the earthing (grounding) position of the shielded cable. Alternatively, do not connect it.
3	Hunting occurs in the motor or the machine.	Position loop gain is too high.	Set Pr. 422 Position control gain lower.
		Speed loop gain is too high.	Perform easy gain tuning. Set Pr. 821 Speed control integral time 1 lower and Pr. 821 Speed control integral time 1 higher.
4	Machine movement is unstable.	Acceleration/deceleration time settings are affecting adversely.	Set Pr. 7 Acceleration time, Pr. 8 Deceleration time lower.

- Flowchart

NOTE

- The speed command of position control is related to speed control. (Refer to page 229.)

Pr． 7 Acceleration time \lessgtr page 349 Pr． 8 Deceleration time \leqslant page 349 Pr． 72 PWM frequency selection page 339 Pr． 800 Control method selection \vDash page 215 Pr． 802 Pre－excitation selection page 681
Pr． 819 Easy gain tuning selection page 244
Pr． 820 Speed control P gain $1 \lessgtr$ page 244 Pr． 821 Speed control integral time 1 page 244

5.6 Adjustment during Real sensorless vector control, Vector control, PM sensorless vector control

Purpose		Parameter to set		Refer to page
To stabilize speed and torque feedback signal	Speed detection filter Torque detection filter	P.G215, P.G216, P.G315, P.G316	Pr.823, Pr.827, Pr.833, Pr.837	316
To change excitation ratio	Excitation ratio	P.G217	Pr.854	316

5.6.1 Speed detection filter and torque detection filter

Sensorless Vector PM

Set time constant of primary delay filter for speed feedback signal and torque feedback signal.
Speed loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is.

Pr.	Name	Initial value	Setting range	Description
823 G215* ${ }^{*}$	Speed detection filter 1	0.001 s	0	Without filter
			0.001 to 0.1 s	Set the time constant of primary delay filter for speed feedback signal.
$\begin{array}{\|l\|} \hline 827 \\ \text { G216 } \end{array}$	Torque detection filter 1	0 s	0	Without filter
			0.001 to 0.1 s	Set the time constant of primary delay filter torque feedback signal.
833 G315 ${ }^{* 1}$	Speed detection filter 2	9999	0 to 0.1 s	Second function of Pr. 823 (enabled when the RT signal is ON)
			9999	Same as Pr. 823 setting
$\begin{array}{\|l\|l} 837 \\ \text { G316 } \end{array}$	Torque detection filter 2	9999	0 to 0.1 s	Second function of Pr. 827 (enabled when the RT signal is ON)
			9999	Same as Pr. 827 setting

*1 The setting is available when a Vector control compatible option is installed.

Stabilizing speed detection (Pr.823, Pr.833)

- Speed loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is. If there is speed ripple due to high frequency disturbance, adjust until speed stabilizes by gradually raising the setting. Speed is oppositely destabilized if the setting value is too large.
- This setting is valid under Vector control only.

Stabilizing torque detection (Pr.827, Pr.837)

- Current loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is. If there is torque ripple due to high frequency disturbance, adjust until speed stabilizes by gradually raising the setting. Speed is oppositely destabilized if the setting value is too large.

- Employing multiple primary delay filters

- Use Pr. 833 and Pr. 837 if changing filter according to application. Pr.833, Pr. 837 is enabled when the second function selection (RT) signal is turned ON.

NOTE

- The RT signal is a second function selection signal which also enables other second functions. (Refer to page 500 .)
- The RT signal is assigned to the terminal RT in the initial status. Set "3" in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.

5.6.2 Excitation ratio

Sensorless Vector

The excitation ratio can be lowered to enhance efficiency for light loads. (Motor magnetic noise can be reduced.)

Pr.	Name	Initial value	Setting range	Description
854 G217	Excitation ratio	100%	0 to 100%	Set an excitation ratio when there is no load.

NOTE

- When excitation ratio is reduced, output torque startup is less responsive.
- The setting of Pr. 854 is invalid if Pr. 858 Terminal 4 function assignment or Pr. 868 Terminal 1 function assignment is set to "1" (flux command according to terminal).

5.6.3 Gain adjustment of current controllers for the d axis and the q axis

PM

The gain of the current controller can be adjusted.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{8 2 4}$ G213	Torque control P gain 1 (current loop proportional gain)	100%	0 to 500%	The proportional gain of the current controller is set.
$\mathbf{8 2 5}$ $\mathbf{G 2 1 4}$	Torque control integral time $\mathbf{1}$ (current loop integral time)	5 ms	0 to 500 ms	The integral time of the current controller is set.

- Use Pr. 824 Torque control P gain 1 (current loop proportional gain) to adjust the proportional gain of current controllers for the d axis and the q axis. The 100% gain is equivalent to $1000 \mathrm{rad} / \mathrm{s}$. Setting this parameter higher improves the trackability for current command changes. It also reduces the current fluctuation caused by external disturbances.
- Use Pr. 825 Torque control integral time 1 (current loop integral time) to set the integral time of current controllers for the d axis and the q axis. If the setting value is small, it produces current fluctuation against external disturbances, decreasing time until it returns to original current value.

NOTE

- Pr. 834 Speed control P gain 2 and Pr. 831 Speed control integral time 2 are valid when terminal RT is ON. In this case, replace them for Pr. 824 and Pr. 825 in the description above.

Purpose	Parameter to set			Refer to page
To set the time	Real time clock function	P.E020 to P.E022	Pr. 1006 to Pr. 1008	318
To set a limit for the reset function. To shut off output if the operation panel disconnects. To force deceleration to a stop on the operation panel.	Reset selection/ Disconnected PU detection/PUStop selection/Reset limit	P.E100 to P.E102, P.E107	Pr. 75	320
To select the display language of the parameter unit	PU display language selection	P.E103	Pr. 145	322
To control the buzzer of the parameter unit and operation panel	PU buzzer control	P.E104	Pr. 990	322
To adjust the LCD contrast of the parameter unit	PU contrast adjustment	P.E105	Pr. 991	322
To turn OFF the operation panel when not using it for a certain period of time	Display-off mode	P.E106	Pr. 1048	323
To switch the monitor display of the operation panel to the PID set point setting screen by simply turning the setting dial	Direct setting	P.E108	Pr. 1000	323
To use the USB memory	USB host reset	P.E110	Pr. 1049	324
To use the setting dial of the operation panel like a potentiometer to set the frequency. To disable the operation panel.	Operation panel operation selection	P.E200	Pr. 161	324
To change the frequency change increments which changes when using the setting dial of the operation panel.	Frequency change increment amount setting	P.E201	Pr. 295	325
To use the regeneration unit to increase the motor braking torque	Regenerative brake selection	P.E300, P.G107	Pr.30, Pr. 70	689
To change the overload current rating specification	Multiple rating setting	P.E301	Pr. 570	326
To input a voltage between 480 V and 500 V	Input voltage mode selection	P.E302	Pr. 977	327
To prevent parameter rewriting	Parameter write disable selection	P.E400	Pr. 77	328
To restrict parameters with a password	Password	P.E410, P.E411	Pr.296, Pr. 297	331
To use parameters freely	Free parameter	P.E420, P.E421	Pr.888, Pr. 889	333
To change parameter settings for an IPM motor as a batch	IPM parameter initialization	P.E430	Pr. 998	225
To set multiple parameters as a batch	Automatic parameter setting	P.E431	Pr. 999	333
To display the required parameters	Applicable parameter display and user group function	P.E440 to P.E443	Pr.160, Pr. 172 to Pr. 174	337
To release the Parameter copy warning (CP)	Parameter copy alarm release	P.E490	Pr. 989	708
To reduce the motor noise and EMI	PWM carrier frequency changing	P.E600 to P.E602	$\begin{aligned} & \text { Pr. } 72, \text { Pr. } 240, \\ & \text { Pr. } 260 \end{aligned}$	339
	Inverter parts life display	P.E700 to P.E704	Pr. 255 to Pr. 259	341
To understand the maintenance time of inverter parts and peripheral devices	Maintenance output function	P.E710 to P.E715	$\begin{aligned} & \text { Pr. } 503 \text { to Pr. } 504, \\ & \text { Pr. } 686 \text { to Pr. } 689 \end{aligned}$	345
	Current average monitor signal	P.E720 to P.E722	Pr. 555 to Pr. 557	346

5.7.1 Real time clock function

The time can be set. The time can only be updated while the inverter power is ON.

The real time clock function is enabled using an optional LCD operation panel (FR-LU08).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1006 \\ & \text { E020 } \end{aligned}$	Clock (year)	2000 years	2000 to 2099	Set the year.
$\begin{aligned} & 1007 \\ & \text { E021 } \end{aligned}$	Clock (month, day)	101 (January 1)	101 to 131, 201 to 228, (229), 301 to 331,401 to 430,501 to 531 , 601 to 630,701 to 731,801 to 831 , 901 to 930,1001 to 1031, 1101 to 1130,1201 to 1231	Set the month and day. 1000's and 100's digits: January to December, 10 's and 1 's digits: 1 to end of month ($28,29,30$ or 31). For December 31, set "1231".
$\begin{aligned} & 1008 \\ & \text { E022 } \end{aligned}$	Clock (hour, minute)	$\begin{aligned} & 0 \\ & (00: 00) \end{aligned}$	0 to 59, 100 to 159,200 to 259, 300 to 359,400 to 459,500 to 559 , 600 to 659,700 to 759,800 to 859,900 to 959, 1000 to 1059, 1100 to 1159,1200 to 1259 , 1300 to 1359,1400 to 1459 , 1500 to 1559,1600 to 1659 , 1700 to 1759,1800 to 1859 , 1900 to 1959, 2000 to 2059, 2100 to 2159, 2200 to 2259, 2300 to 2359	Set the hour and minute using the 24 -hour clock. 1000's and 100's digits: 0 to 23 hours, 10's and 1's digits: 0 to 59 minutes. For 23:59, set "2359".

Simple clock function

- When the year, month, day, time and minute are set in the parameters, the inverter counts the date and time. The date and time can be checked by reading the parameters.

NOTE

- The clock's count-up data is saved in the inverter's EEPROM every 10 minutes.
- The clock does not count up while the control circuit power supply is OFF. The clock function must be reset after turning ON the power supply. Use a separate power supply, such as an external 24 V power supply, for the control circuit of the simple clock function, and supply power continuously to this control circuit.
- In the initial setting, inverter reset is performed if supplying power to the main circuit is started when power is supplied only to the control circuit. Then, the clock information stored in EEPROM is restored. Reset at the start of supplying power to the main circuit can be disabled by setting Pr. 30 Regenerative function selection. (Refer to page 689.)
- The set clock is also used for functions such as faults history.

- Real time clock function

- When the FR-LU08 is connected to the inverter, the internal clock of the inverter can be synchronized with the clock of FRLU08. (Real time clock function) With a battery (CR1216), the FR-LU08 time count continues even if the main power of the inverter is turned OFF. (The time count of the inverter internal clock does not continue when the inverter power is turned OFF.)
- To adjust the clock of FR-LU08, use the FR-LU08 and set Pr. 1006 to Pr. 1008.

NOTE

- Time adjustment between the inverter internal clock and the FR-LU08 is performed every one minute.
- When the FR-LU08 clock is initialized after the battery is exhausted for example, the inverter internal clock is valid.

5.7.2 Reset selection/disconnected PU detection/PU stop selection

The reset input acceptance, disconnected PU (operation panel/parameter unit) connector detection function and PU stop function (PU stop) can be selected.

Pr.	Name	Initial value	Setting range	Description
75	Reset selection/ Disconnected PU detection/PU stop selection	14	0 to 3,14 to $17^{* 1}$	For the initial setting, reset is always enabled, without disconnected PU detection, and with the PU stop function.
			0 to 3,14 to 17,100 to 103, 114 to $117^{*}{ }^{2}$	
E100	Reset selection	0	0	Reset input is always enabled.
			1	Reset input is enabled only when the protective function is activated.
E101	Disconnected PU detection	0	0	Operation continues even when the PU is disconnected.
			1	The inverter output is shut off when the PU is disconnected.
E102	PU stop selection	1	0	Decelerates to a stop when the STOP key is pressed in PU operation mode only.
			1	Decelerates to a stop when the STOP key for PU is pressed in any of the PU, external and communication operation modes.
E107	Reset limit	0	0	Reset limit is disabled.
			$1^{*}{ }^{2}$	Reset limit is enabled.

The parameters above do not return to their initial values even if parameter (all) clear is executed.
*1 The setting range of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower
*2 The setting range of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher

$\begin{gathered} \text { Pr. } 75 \\ \text { setting }{ }^{*} 3 \end{gathered}$	Reset selection	Disconnected PU detection	PU stop selection
0, 100	Reset input always enabled	Operation continues even when PU is disconnected.	Decelerates to a stop when $\begin{gathered}\text { STOP } \\ \text { RESEIT }\end{gathered}$ is input in the PU
1,101	Reset input enabled only when the protective function activated.		
2, 102	Reset input always enabled	Inverter output shut off when PU is disconnected.	operation mode only.
3, 103	Reset input enabled only when the protective function activated.		
14 (initial value), 114	Reset input always enabled	Operation continues even when PU is disconnected.	Decelerates to a stop when $\frac{\text { STOP }}{\text { RESET }}$$\square$ is input in any of the PU, External and Network operation modes.
15, 115	Reset input enabled only when the protective function activated.		
16, 116	Reset input always enabled	Inverter output shut off when PU is disconnected.	
17, 117	Reset input enabled only when the protective function activated.		

*3 Setting Pr. 75 = any of "100 to 103 and 114 to 117 " enables the Reset limit. (The setting is available for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher.)

\rightarrow Reset selection (P.E100)

- When P.E100 $=$ " 1 " or Pr. $75=" 1,3,15,17,101,103,115$, or 117 " is set, reset (reset command via the RES signal or communication) input is enabled only when the protective function is activated.

NOTE

- When the RES signal is input during operation, the motor coasts since the inverter being reset shuts off the output. Also, the cumulative values of electronic thermal O / L relay and regenerative brake duty are cleared.
- The input of the PU reset key is only enabled when the protective function is activated, regardless of the P.E100 and Pr. 75 settings.

- Disconnected PU detection (P.E101)

- If the PU (FR-DU08/FR-PU07) is detected to be disconnected from the inverter for 1 s or longer while $\mathbf{P} . \mathrm{E} 101=" 1$ " or Pr .75 $=" 2,3,16,17,102,103,116$, or 117", PU disconnection (E.PUE) is displayed and the inverter output is shut off.

NOTE

- When the PU has been disconnected since before power-ON, the output is not shut off.
- To restart, confirm that the PU is connected and then reset.
- When P.E101 = "0" or Pr. $75=" 0,1,14,15,100,101,114$, or $115 "$ (operation continues even when PU disconnected), decelerates to a stop when PU is disconnected during PU JOG operation.
- When RS-485 communication operation is performed through the PU connector, the reset selection/PU stop selection function is valid but the disconnected PU detection function is invalid. (The communication is checked according to Pr. 122 PU communication check time interval.)

- PU stop selection (P.E102)

- The inverter operation can be stopped by pressing
 RESEIT on the PU in any of the operation modes of PU operation, External operation, and Network operation.
- When the operation is stopped by stop command from the PU, " is not provided.
- When P.E102 = "0" or Pr. $75=$ "0 to 3,100 to 103 " is set, deceleration stop using

SIOP

 is valid only in the PU operation mode.
NOTE

- When Pr. 551 PU mode operation command source selection = "1" (PU mode RS-485 terminal), deceleration stop (PU stop) is performed even when $\begin{aligned} & \frac{\text { STOP }}{\text { RESEI }} \\ & \text { RES }\end{aligned}$ is input during operation in PU mode via RS-485 communication.

- How to restart after stopping with stop input from the PU during External operation (PU stop (PS) release method)

- PU stop release method for operation panel (FR-DU08)

1. After completion of deceleration to a stop, switch OFF the STF and STR signal.
2. Press $\underset{\mathrm{PU}}{\mathrm{PXT}}$ three times. ("后
(When Pr. 79 Operation mode selection = "0 (initial value) or 6")
When Pr. 79 = "2, 3, or 7", PU stop can be released by pressing one time.

- PU stop release method for parameter unit (FR-PU07)

1. After completion of deceleration to a stop, switch OFF the STF or STR signal.

- The motor can be restarted by resetting the power supply or resetting with the RES signal.

NOTE

- Even when Pr. 250 Stop selection \neq "9999" is set and coasting stop is selected, deceleration stop and not coasting stop is performed in the PU stop function during External operation.

- Reset limit function (P.E107)

- When P.E107 = "1" or Pr. $75=$ any of "100 to 103 and 114 to 117 ", if an electronic thermal O/L relay or an overcurrent protective function (E.THM, E.THT, E.OC[]) is activated while one of them has been already activated within 3 minutes, the inverter does not accept any reset command (RES signal, etc.) for about 3 minutes from the second activation.
- The reset limit function is available with the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.

NOTE

- Resetting the inverter power (turning OFF the control power) clears the accumulated thermal value.
- When the retry function is set enabled (Pr. 67 Number of retries at fault occurrence \neq " 0 "), the reset limit function is disabled.

CAUTION

- Do not perform a reset while a start signal is being input. Doing so will cause a sudden start of the motor, which is dangerous.

《|Parameters referred to \》
Pr. 67 Number of retries at fault occurrence page 405
Pr. 79 Operation mode selection $\$ 370$
Pr. 250 Stop selection
Pr. 551 PU mode operation command source selection page 380

5.7.3 PU display language selection

You can switch the display language of the parameter unit (FR-PU07) to another.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 145 \\ & \text { E103 } \end{aligned}$	PU display language selection	-	0	Japanese
			1	English
			2	German
			3	French
			4	Spanish
			5	Italian
			6	Swedish
			7	Finnish

5.7.4 Buzzer control

The buzzer can be set to "beep" when the keys of the operation panel and the parameter unit are operated.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{9 9 0}$	PU buzzer control		0	Without buzzer
			1	With buzzer

NOTE

- When with buzzer is set, the buzzer sounds if an inverter fault occurs.

5.7.5 PU contrast adjustment

Contrast adjustment of the LCD of the LCD operation panel (FR-LU08) and the parameter unit (FR-PU07) can be performed. Decreasing the setting value lowers the contrast.

Pr.	Name	Initial value	Setting range	Description
991 E105	PU contrast adjustment	58	0 to 63	0: Low $\rightarrow 63:$ High

The above parameter is displayed as a simple mode parameter only when the LCD operation panel (FR-LU08) and the parameter unit (FR-PU07) is connected.

5．7．6 Display－off mode

The LED of the operation panel（FR－DU08）can be turned OFF when it has not been operated for a certain period of time．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{1 0 4 8}$	Display－off waiting time	0	0	Display－off mode is disabled．
		0	1 to 60 min	Set time until the LED of the operation panel is turned OFF．

－If the operation panel has not been operated for the time set in Pr．1048，the display－off mode is enabled and its LED is turned OFF．
－In the display－off mode，the＂MON＂LED blinks slowly．
－The count to display off is reset at installation／removal of the operation panel，power－ON／OFF of the inverter，or inverter reset．
－Display－off mode end condition
Operation of the operation panel
Occurrence of a warning，alarm，or fault
Installation／removal of the operation panel，power－ON／OFF of the inverter，or inverter reset
Connection／disconnection of the USB A connector

NOTE

－The＂P．RUN＂LED is ON in the display－off mode（when the PLC function is operating）．（During PLC function operation）

5．7．7 Direct setting

The PID set point setting screen（direct setting screen）can be displayed first on the LCD operation panel（FR－LU08）according to the parameter setting．

Pr．	Name	Initial value	Setting range	Description
1000		0	Displays the Frequency setting screen．	
		0	1	Displays the direct setting screen（for set point setting）．
		2	Displays the direct setting screen（for set point setting） and the frequency setting screen．	

－This function is useful for setting the PID set point by operation panel．
－The monitor display can be switched from the main monitor screen to the set point setting screen for the PID action simply by operation，according to the setting of Pr． 1000 Direct setting selection．On each setting screen，turn to input

Example of screen switching and shifting when the PID control is enabled（Pr． $128 \neq{ }^{\prime \prime} 0$＂）


```
*1 When Pr. 1000 = "0"
*2 When Pr. 1000 = "1"
*3 When Pr. 1000 = "2"
*4 Not displayed when PID control is disabled (Pr.128="0").
*5 Indication of "NEXT" is not displayed when Pr.1000 = "0".
```

－To switch back the monitor display from the Extended direct screen or the Frequency setting screen to the Main monitor screen，press ${ }_{(B A C K)}{ }^{\mathrm{FA} 1}$ ．
《〈Parameters referred to 》》
Pr． 128 PID action selection page 570

5.7.8 Resetting USB host errors

When a USB device is connected to the USB connector (connector A), the USB host error can be canceled without performing an inverter reset.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{1 0 4 9}$	ESB host reset	0	0	Read only
			Resets the USB host.	

- Parameter copy (refer to page 708) and the trace function (refer to page 616) can be used when a USB device (such as a USB memory) is connected to the USB connector (connector A).
- When a device such as a USB charger is connected to the USB connector and an excessive current (500 mA or higher) flows, USB host error "1_F" (UF warning) is displayed on the operation panel.
- When the UF warning appears, the USB error can be canceled by removing the USB device and setting Pr. $1049=11$. (The UF warning can also be canceled by resetting the inverter power or resetting with the RES signal.)

5.7.9 Setting dial potentiometer mode/key lock operation selection

The setting dial of the operation panel (FR-DU08) can be used for setting like a potentiometer. The key operation of the operation panel can be disabled.

Pr.	Name	Initial value	Setting range	Descrip	
$\begin{aligned} & 161 \\ & \text { E200 } \end{aligned}$	Frequency setting/key lock operation selection	0	0	Setting dial frequency setting mode	Key lock mode disabled
			1	Setting dial mode	
			10	Setting dial frequency setting mode	Key lock mode enabled
			11	Setting dial mode	

Using the setting dial like a potentiometer to set the frequency

- The frequency can be set by simply turning the setting dial of the operation panel (FR-DU08) during operation. (Dial mode)

Abstract

SET needs not to be pressed. (For the details of the operation method, refer to page 148.)

NOTE

- If the display changes from blinking " 60.00 " to " 0.00 ", the setting value of Pr. 161 may not be "1".
- The newly-set frequency is be saved as the set frequency in EEPROM after 10 s .
- When setting the frequency by turning the setting dial, the frequency goes up to the set value of Pr. 1 Maximum frequency. Be aware of what frequency Pr. 1 is set to, and adjust the setting of Pr. 1 according to the application.

- Disabling the setting dial and key operation of the operation panel (by holding down the MODE key for 2 seconds)

- Operation using the setting dial and keys of the operation panel (FR-DU08) can be disabled to prevent parameter changes, unexpected starts or frequency changes.
- Set Pr. 161 to " 10 or 11 " and then press MODE for 2 seconds to disable setting dial or key operations.
 operation is attempted while dial and key operations are disabled, "-an appears. (When a setting dial or key operation is not performed for 2 seconds, the monitor display appears.)
- To enable the setting dial and key operation again, press MODE for 2 seconds.
－Even if setting dial and key operations are disabled，the monitor indicator and
 are enabled．
－The PU stop cannot be released with key operations unless the operation lock is released first．

《 Parameters referred to 》》

Pr． 1 Maximum frequency page 407

5．7．10 Frequency change increment amount setting

When setting the set frequency with the setting dial of the operation panel（FR－DU08），the frequency changes in 0.01 Hz increments in the initial status．Setting this parameter to increase the frequency increment amount that changes when the setting dial is rotated can improve usability．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 295 \\ & \text { E201 } \end{aligned}$	Frequency change increment amount setting	0	0	Function disabled
			0.01	The minimum change width when the set frequency is changed with the setting dial can be set．
			0.10	
			1.00	
			10.00	

－Basic operation

－When Pr． $295 \neq$＂ 0 ＂，the minimum increment when the set frequency is changed with the setting dial can be set． For example，when Pr． $295=$＂ 1.00 Hz ＂，one click（one dial gauge）of the setting dial changes the frequency in increments of 1.00 Hz ，such as $1.00 \mathrm{~Hz} \rightarrow 2.00 \mathrm{~Hz} \rightarrow 3.00 \mathrm{~Hz}$ ．

When Pr．295＝＂1＂

NOTE

－When machine speed display is selected in Pr． 37 Speed display，the minimum increments of change are determined by Pr． 295 as well．Note that the setting value may differ as speed setting changes the set machine speed and converts it to the speed display again．
－For Pr．295，the increments are not displayed．
－The Pr． 295 setting is enabled only for the changes to the set frequency．It does not apply to the settings of other parameters related to frequency．
－When 10 is set，the frequency setting changes in 10 Hz increments．Be cautious of excessive speed（in potentiometer mode）．

5.7.11 Multiple rating setting

Four rating types of different rated current and permissible load can be selected. The optimal inverter rating can be chosen in accordance with the application, enabling equipment size to be reduced.

Pr.	Name	Initial value	Setting range	Description (overload current rating, surrounding air temperature)
$\begin{aligned} & 570 \\ & \text { E301 } \end{aligned}$	Multiple rating setting	2	$0{ }^{* 1}$	SLD rating, $110 \% 60$ s, $120 \% 3$ s (inverse-time characteristics) at surrounding air temperature of $40^{\circ} \mathrm{C}$
			1	LD rating, $120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$
			2	ND rating, $150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$
			3*1	HD rating, 200\% 60 s, $250 \% 3$ s (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$

*1 Not compatible with the IP55 compatible model.

\bullet Changing the parameter initial values and setting ranges

- When inverter reset and all parameter clear are performed after setting Pr.570, the parameter initial values are changed according to each rating, as shown below.

Pr.	Name	Pr. 570 setting				Refer to
		0	1	2 (initial value)	3	
0	Torque boost	*1	*1	*1	*1	672
7	Acceleration time	*1	*1	*1	*1	349
8	Deceleration time	*1	*1	*1	*1	349
9	Electronic thermal O/L relay	SLD rated current ${ }^{*}{ }^{2}$	LD rated current* ${ }^{2}$	ND rated current ${ }^{*}{ }^{*} 3$	HD rated current ${ }^{*}{ }^{*} 3$	394
12	DC injection brake operation voltage	*1	*1	*1	*1	681
22	Stall prevention operation level	110\%	120\%	150\%	200\%	235, 409
48	Second stall prevention operation level	110\%	120\%	150\%	200\%	409
56	Current monitoring reference	SLD rated current ${ }^{*}$	LD rated current ${ }^{*}{ }^{2}$	ND rated current ${ }^{*}{ }^{2}$	HD rated current ${ }^{*}{ }^{2}$	435
114	Third stall prevention operation level	110\%	120\%	150\%	200\%	409
148	Stall prevention level at 0 V input	110\%	120\%	150\%	200\%	409
149	Stall prevention level at 10 V input	120\%	150\%	200\%	250\%	409
150	Output current detection level	110\%	120\%	150\%	200\%	464
165	Stall prevention operation level for restart	110\%	120\%	150\%	200\%	597
557	Current average value monitor signal output reference current	SLD rated current ${ }^{*}$	LD rated current ${ }^{*}{ }^{2}$	ND rated current ${ }^{*} 2$	HD rated current ${ }^{*}{ }^{2}$	346
874	OLT level setting	110\%	120\%	150\%	200\%	235
893	Energy saving monitor reference (motor capacity)	SLD rated motor capacity ${ }^{*}$	LD rated motor capacity*2	ND rated motor capacity ${ }^{*}{ }^{2}$	HD rated motor capacity ${ }^{*}{ }^{2}$	444

*1 Initial values differ depending on the rating as follows.

Pr.	$\begin{aligned} & \text { Pr. } 570 \\ & \text { setting } \end{aligned}$	200 V class FR-A820-[]																
		$\begin{aligned} & 00046 \\ & (0.4 \mathrm{~K}) \end{aligned}$	$\begin{array}{\|c\|} \hline 00077 \\ (0.75 \mathrm{~K}) \end{array}$	$\begin{aligned} & 00105 \\ & (1.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00167 \\ & (2.2 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00250 \\ & (3.7 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00340 \\ & (5.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00490 \\ & (7.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00630 \\ & (11 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00770 \\ & (15 \mathrm{~K}) \end{aligned}$	$\begin{array}{\|c\|} \hline 00930 \\ (18.5 \mathrm{~K}) \end{array}$	$\begin{aligned} & 01250 \\ & (22 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01540 \\ & (30 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01870 \\ & (37 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 02330 \\ & (45 K) \end{aligned}$	$\begin{gathered} 03160 \\ (55 K) \end{gathered}$	$\begin{aligned} & 03800 \\ & (75 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & \hline 04750 \\ & (90 \mathrm{~K}) \end{aligned}$
		400 V class: FR-A840-[]																
		$\begin{aligned} & 00023 \\ & (0.4 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 00038 \\ (0.75 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00052 \\ & (1.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00083 \\ & (2.2 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00126 \\ & (3.7 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 00170 \\ (5.5 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00250 \\ & (7.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00310 \\ & (11 K) \end{aligned}$	$\begin{aligned} & 00380 \\ & (15 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 00470 \\ (18.5 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00620 \\ & (22 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00770 \\ & (30 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00930 \\ & (37 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01160 \\ & (45 K) \end{aligned}$	$\begin{aligned} & 01800 \\ & (55 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 02160 \\ & (75 \mathrm{~K}) \end{aligned}$	$\begin{array}{\|c\|} \hline 02600 \\ (90 \mathrm{~K}) \\ \text { or } \\ \text { higher } \end{array}$
$\begin{aligned} & 0 \\ & (\%) \end{aligned}$	0, 1	6	4	4	4	3	3	2	2	2	2	2	2	1.5	1.5	1	1	1
	2	6	6	4	4	4	3	3	2	2	2	2	2	2	2	2	1	1
	3	6	6	6	4	4	4	3	3	2	2	2	2	2	2	2	2	1

Pr．	$\begin{aligned} & \text { Pr. } 570 \\ & \text { setting } \end{aligned}$	200 V class FR－A820－［］																
		$\begin{array}{\|l\|} \hline 00046 \\ (0.4 \mathrm{~K}) \end{array}$	$\left\|\begin{array}{c} 00077 \\ (0.75 \mathrm{~K}) \end{array}\right\|$	$\begin{aligned} & 00105 \\ & (1.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00167 \\ & (2.2 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00250 \\ & (3.7 \mathrm{~K}) \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline 00340 \\ (5.5 K) \end{array}$	$\left\lvert\, \begin{aligned} & 00490 \\ & (7.5 \mathrm{~K}) \end{aligned}\right.$	$\begin{gathered} 00630 \\ (11 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00770 \\ & (15 \mathrm{~K}) \end{aligned}$	$\left\|\begin{array}{c} 00930 \\ (18.5 \mathrm{~K}) \end{array}\right\|$	$\begin{aligned} & 01250 \\ & (22 K) \end{aligned}$	$\begin{aligned} & 01540 \\ & (30 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01870 \\ & (37 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 02330 \\ (45 K) \end{gathered}$	$\begin{aligned} & 03160 \\ & (55 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 03800 \\ (75 K) \end{gathered}$	$\begin{aligned} & 04750 \\ & (90 \mathrm{~K}) \end{aligned}$
		400 V class：FR－A840－［］																
		$\begin{aligned} & 00023 \\ & (0.4 \mathrm{~K}) \end{aligned}$	$\left.\begin{array}{c} 00038 \\ (0.75 \mathrm{~K}) \end{array}\right)$	$\begin{aligned} & 00052 \\ & (1.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00083 \\ & (2.2 \mathrm{~K}) \end{aligned}$	$\begin{array}{\|l\|l} 00126 \\ (3.7 K) \end{array}$	$\begin{aligned} & 00170 \\ & (5.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00250 \\ & (7.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00310 \\ & (11 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & \mathbf{0 0 3 8 0} \\ & (15 K) \end{aligned}$	$\begin{gathered} 00470 \\ (18.5 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00620 \\ & (22 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00770 \\ & (30 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00930 \\ & (37 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01160 \\ & (45 K) \end{aligned}$	$\begin{aligned} & 01800 \\ & (55 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & \mathbf{0 2 1 6 0} \\ & \text { (75K) } \end{aligned}$	$\begin{gathered} 02600 \\ \text { (90K) } \\ \text { or } \\ \text { higher } \end{gathered}$
	0，1	5	5	5	5	5	5	15	15	15	15	15	15	15	15	15	15	15
	2	5	5	5	5	5	5	5	15	15	15	15	15	15	15	15	15	15
	3	5	5	5	5	5	5	5	5	15	15	15	15	15	15	15	15	15
$\begin{aligned} & 8 \\ & \text { (s) } \end{aligned}$	0，1	10	10	10	10	10	10	30	30	30	30	30	30	30	30	30	30	30
	2	5	5	5	5	5	5	5	15	15	15	15	15	15	15	15	15	15
	3	5	5	5	5	5	5	5	5	15	15	15	15	15	15	15	15	15
$\begin{aligned} & 12 \\ & (\%) \end{aligned}$	0，1	4	4	4	4	4	4	2	2	2	2	2	2	2	2	1	1	1
	2	4	4	4	4	4	4	4	2	2	2	2	2	2	2	2	1	1
	3	4	4	4	4	4	4	4	4	2	2	2	2	2	2	2	2	1

＊2 The rated current and motor capacity differ depending on the inverter capacity．Refer to the inverter rated specifications（page 790）．
＊3 The initial value for the FR－A820－00077（ 0.75 K ）or lower and FR－A840－00038（0．75K）or lower is set to the 85% of the inverter rated current．
－Setting Pr． 292 Automatic acceleration／deceleration＝＂5 or 6 （lift mode）＂changes the stall prevention operation level as shown below．

Pr．	Setting	Pr． 570 setting				Refer to page
		0	1	2 （initial value）	3	
292	5	110\％	120\％	150\％	200\％	365
	6	115\％	140\％	180\％	230\％	

NOTE

－When Pr． $570=$＂ 0 ＂（SLD rating），carrier frequency automatic reduction is enabled regardless of the setting in Pr． 260.
－To use the FR－A820－03160（55K）and the FR－A840－01800（55K）in the LD and SLD ratings，a DC reactor，which is available as an option，corresponding to the applied motor is required．
－Setting the LD or SLD rating to the FR－A820－03160（55K）and the FR－A840－01800（55K）changes their parameter setting increments and setting ranges in the same way as for the FR－A820－03800（75K）and the FR－A840－02160（75K）or higher．In an example of Pr．9，the setting increment changes from＂ 0.01 A ＂to＂ 0.1 A ＂and the setting range changes from＂ 0 to 500 A ＂to＂ 0 to 3600 A ＂．For the setting of each parameter，refer to the parameter list（on page 162）．

5．7．12 Using the power supply exceeding 480 V

To input a voltage between 480 V and 500 V to the 400 V class inverter，change the voltage protection level．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{9 7 7}$	Input voltage mode E302		0	400 V class voltage protection level
			500 V class voltage protection level	

－To use a voltage between 480 V and 500 V ，set Pr． 977 Input voltage mode selection＝＂1＂．The setting is applied after a reset．
－Setting Pr． $977=" 1 "$ changes the voltage protection level to the one for the 500 V class．
－The increased magnetic excitation deceleration operation level is 740 V ．Use Pr． 660 Increased magnetic excitation deceleration operation selection to select the increased magnetic excitation deceleration．）

NOTE

－Stand－alone options（except line noise filter）cannot be used when inputting a voltage between 480 and 500 V ．
－The voltage protection level of the 200 V class inverters is not affected by the Pr． 977 setting．

5.7.13 Parameter write selection

Whether to enable the writing to various parameters or not can be selected. Use this function to prevent parameter values from being rewritten by misoperation.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 77 \\ & \text { E400 } \end{aligned}$	Parameter write selection	0	0	Writing is enabled only during stop.
			1	Parameter writing is disabled.
			2	Parameter writing is enabled in any operation mode regardless of the operation status.

- Pr. 77 can be set at any time regardless of the operation mode or operation status. (Setting through communication is unavailable.)

- Writing parameters only during stop (Pr. 77 = "0" initial value)

- Parameters can be written only during a stop in the PU operation mode.
- The following parameters can always be written regardless of the operation mode or operation status.

Pr.	Name
4 to 6	(Multi-speed setting high-speed, middlespeed, low-speed)
22	Stall prevention operation level
24 to 27	(Multi-speed setting speed 4 to speed 7)
52	Operation panel main monitor selection
54	FM/CA terminal function selection
55	Frequency monitoring reference
56	Current monitoring reference
$72^{* 1}$	PWM frequency selection
75	Reset selection/Disconnected PU detection/ PU stop selection
77	Parameter write selection
$79^{*} 2$	Operation mode selection
129	PID proportional band
130	PID integral time
133	PID action set point
134	PID differential time
158	AM terminal function selection
160	User group read selection
232 to 239	(Multi-speed setting speed 8 to speed 15)
240*1	Soft-PWM operation selection
241	Analog input display unit switchover
268	Monitor decimal digits selection
271	High-speed setting maximum current
272	Middle-speed setting minimum current
273	Current averaging range
274	Current averaging filter time constant
$275{ }^{* 1}$	Stop-on contact excitation current low-speed scaling factor
290	Monitor negative output selection
295	Frequency change increment amount setting
296, 297	(Password setting)
306	Analog output signal selection
310	Analog meter voltage output selection
340 *2	Communication startup mode selection
345, 346	(DeviceNet communication)
416, 417	(PLC)

Pr.	Name
434, 435	(CC-Link communication)
496, 497	(Remote output)
498	PLC function flash memory clear
$550{ }^{*}$	NET mode operation command source selection
$551{ }^{*}{ }^{2}$	PU mode operation command source selection
555 to 557	(Current average value monitoring)
656 to 659	(Analog remote output)
663	Control circuit temperature signal output level
750, 751	Motor thermistor interface
755 to 758	(Second PID control)
759	PID unit selection
774 to 776	(PU/DU monitor selection)
805	Torque command value (RAM)
806	Torque command value (RAM, EEPROM)
838	DA1 terminal function selection
866	Torque monitoring reference
888, 889	(Free parameter)
891 to 899	(Energy saving monitoring)
C0 (900)	FM/CA terminal calibration
C1(901)	AM terminal calibration
C8 (930)	Current output bias signal
C9 (930)	Current output bias current
C10 (931)	Current output gain signal
C11 (931)	Current output gain current
990	PU buzzer control
991	PU contrast adjustment
992	Operation panel setting dial push monitor selection
997	Fault initiation
998*2	PM parameter initialization
999*2	Automatic parameter setting
1000	Direct setting selection
1006	Clock (year)
1007	Clock (month, day)
1008	Clock (hour, minute)
1018	Monitor with sign selection
1019	Analog meter voltage negative output selection
1048	Display-off waiting time
1142	Second PID unit selection
1150 to 1199	(PLC function user parameters)
1283	Home position return speed
1284	Home position return creep speed

*1 Writing during operation is enabled in PU operation mode, but disabled in External operation mode.
*2 Writing during operation is disabled. To change the parameter setting value, stop the operation.

- Disabling parameter write (Pr. $77=$ "1")

- Parameter write, Parameter clear, and All parameter clear are disabled. (Parameter read is enabled.)
- The following parameters can be written even if Pr. $77=$ "1".

Pr.	Name
22	Stall prevention operation level

Pr.	Name
75	Reset selection/Disconnected PU detection/PU stop selection
77	Parameter write selection
$79^{* 1}$	Operation mode selection
160	User group read selection
296	Password lock level
297	Password lock/unlock
345,346	(DeviceNet communication)
496,497	(Remote output)

Pr.	Name
656 to 659	(Analog remote output)
805	Torque command value (RAM)
806	Torque command value (RAM, EEPROM)
997	Fault initiation

*1 Writing during operation is disabled. To change the parameter setting value, stop the operation.

- Writing parameters during operation(Pr. 77 = "2")

- These parameters can always be written.
- The following parameters cannot be written during operation if Pr. 77 = "2". To change the parameter setting value, stop the operation.

Pr.	Name
23	Stall prevention operation level compensation factor at double speed
48	Second stall prevention operation level
49	Second stall prevention operation frequency
60	Energy saving control selection
61	Reference current
66	Stall prevention operation reduction starting frequency
71	Applied motor
79	Operation mode selection
80	Motor capacity
81	Number of motor poles
82	Motor excitation current
83	Rated motor voltage
84	Rated motor frequency
90 to 94	(Motor constant)
95	Online auto tuning selection
96	Auto tuning setting/status
135 to 139	(Electronic bypass sequence parameter)
178 to 196	(Input and output terminal function selection)
248	Self power management selection
254	Main circuit power OFF waiting time
261	Power failure stop selection
289	Inverter output terminal filter
291	Pulse train I/O selection
292	Automatic acceleration/deceleration
293	Acceleration/deceleration separate selection
298	Frequency search gain
313 to 322	(Extended output terminal function selection)
329	Digital input unit selection
373	Encoder position tuning setting/status
406	High resolution analog input selection
414	PLC function operation selection
415	Inverter operation lock mode setting
418	Extension output terminal filter
419	Position command source selection
420, 421	(Electronic gear)
450	Second applied motor
451	Second motor control method selection
453	Second motor capacity
454	Number of second motor poles
455	Second motor excitation current
456	Rated second motor voltage
457	Rated second motor frequency
458 to 462	(Second motor constant)

Pr.	Name
463	Second motor auto tuning setting/status
541	Frequency command sign selection
560	Second frequency search gain
561	PTC thermistor protection level
570	Multiple rating setting
574	Second motor online auto tuning
598	Undervoltage level
606	Power failure stop external signal input selection
639, 640	(Brake sequence)
641, 650, 651	(Second brake sequence)
660 to 662	Increased magnetic excitation deceleration
673	SF-PR slip amount adjustment operation selection
699	Input terminal filter
702	Maximum motor frequency
$\begin{aligned} & 706,707,711 \\ & 712,717,721, \\ & 724,725,1412 \end{aligned}$	(PM motor tuning)
738, 746, 1413	(Second PM motor tuning)
747	Second motor low-speed range torque characteristic selection
788	Low speed range torque characteristic selection
800	Control method selection
819	Easy gain tuning selection
858	Terminal 4 function assignment
859	Torque current/Rated PM motor current
860	Second motor torque current/Rated PM motor current
862	Encoder option selection
868	Terminal 1 function assignment
977	Input voltage mode selection
998	PM parameter initialization
999	Automatic parameter setting
1002	Lq tuning target current adjustment coefficient
1103	Deceleration time at emergency stop
1105	Encoder magnetic pole position offset
1292	Position control terminal input selection
1293	Roll feeding mode selection
1348	P/PI control switchover frequency

5.7.14 Password

Registering a 4-digit password can restrict parameter reading/writing.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 296 \\ & \text { E410 } \end{aligned}$	Password lock level	9999	$\begin{aligned} & 0 \text { to } 6,99,100 \\ & \text { to } 106,199 \end{aligned}$	Select restriction level of parameter reading/writing when a password is registered.
			9999	No password lock
$\begin{aligned} & 297 \\ & \text { E411 } \end{aligned}$	Password lock/unlock	9999	1000 to 9998	Register a 4-digit password
			$\left(0\right.$ to 5) ${ }^{1}$	Displays password unlock error count. (Reading only) (Valid when Pr. 296 = "100 to 106, or 199")
			9999*1	No password lock

The above parameters can be set when Pr. 160 User group read selection = "0". However, when Pr. $296 \neq 9999$ (password lock is set), Pr. 297 can always be set, regardless of the setting in Pr. 160.
*1 When Pr. 297 = " 0 or 9999", writing is always enabled, but setting is invalid. (The display cannot be changed.)

- Parameter reading/writing restriction level (Pr.296)

- The level of the reading/writing restriction using the PU/Network (NET) operation mode operation command can be selected with Pr. 296.

Pr. 296 setting	PU operation mode operation command ${ }^{* 3}$		NET operation mode operation command*4			
			RS-485 terminals / PLC function*7		Communication option	
	Read*1	Write ${ }^{*}$	Read	Write ${ }^{*}$	Read	Write ${ }^{*}$
9999	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0, 100*6	\times	\times	\times	\times	\times	\times
1, 101	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times
2, 102	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3, 103	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\times
4,104	\times	x	\times	\times	\bigcirc	\times
5, 105	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6,106	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times
99, 199	Only the parameters registered in the user group can be read/written. ${ }^{* 5}$ (For the parameters not registered in the user group, same restriction level as "4, 104" applies.)					

*1 If the parameter reading is restricted by the Pr. 160 User group read selection setting, those parameters are unavailable for reading even when "०" is indicated.
*2 If the parameter writing is restricted by the Pr. 77 Parameter write selection setting, those parameters are unavailable for writing even when "०" is indicated.
*3 This restricts parameter access from the command source that can write a parameter under the PU operation mode (initially the operation panel (FR-DU08) or the parameter unit). (For the PU operation mode command source selection, refer to page 380 .)
*4 This restricts parameter access from the command source that can write a parameter under the Network operation mode (initially the RS-485 terminals or a communication option). (For the NET operation mode command source selection, refer to page 380.)
*5 Read/write is enabled only for the simple mode parameters registered in the user group when Pr. $160=$ " 9999 ". Pr. 296 and Pr. 297 are always read/write enabled whether registered to a user group or not.
*6 If a communication option is installed, the Option fault (E.OPT) occurs, and the inverter output shuts off. (Refer to page 757.)
*7 The PLC function user parameters (Pr. 1150 to Pr.1199) can be written and read by the PLC function regardless of the Pr. 296 setting.

\bullet Registering a password (Pr.296, Pr.297)

- The following section describes how to register a password.

1. Set the parameter reading/writing restriction level. (Pr. $296 \neq$ "9999")

Pr.296 setting	Password unlock error restriction	Pr.297 display
0 to 6,99	No restriction	Always displays 0
100 to $106,199^{* 1}$	Restricted at fifth error	Displays the error count (0 to $5)$

*1 During Pr. 296 = any of "100 to 106, and 199", if password unlock error has occurred 5 times, correct password does not unlock the restriction. All parameter clear can unlock the restriction. (In this case, the parameters are returned to their initial values.)
2. Write a four-digit number (1000 to 9998) to Pr. 297 as a password. (Writing is disabled when Pr. $296=$ "9999".) When a password is registered, parameter reading/writing is restricted with the restriction level set in Pr. 296 until unlocking.

- After registering a password, the read value of Pr. 297 is always one of " 0 to 5 ".
-"
- Even if a password is registered, the parameters, which the inverter itself writes, such as inverter parts life are overwritten as needed.
- Even if a password is registered, reading/writing is enabled for Pr. 991 PU contrast adjustment when the parameter unit (FRPU07) is connected.

- Unlocking a password (Pr.296, Pr.297)

- There are two ways of unlocking the password.
- Enter the password in Pr.297. If the password matches, it unlocks. If the password does not match, an error occurs and the password does not unlock. During Pr. 296 = any of "100 to 106, or 199", if password unlock error has occurred 5 times, correct password does not unlock the restriction. (Password lock in operation.)
- Perform all parameter clear.

NOTE

- If the password is forgotten, it can be unlocked with all parameter clear, but doing so also clears the other parameters.
- All parameter clear cannot be performed during the operation.
- During the conditions where parameter reading is disabled (Pr. $296=$ any of "0, 4, 5, 99, 100, 104, 105, or 199"), do not use FR Configurator2. It may not operate correctly.
- The password unlocking method differs between the operation panel, parameter unit, RS-485 communication, and communication option.

	Operation panel/ Parameter unit	RS-485 communication	Communication option
All parameter clear	\circ	\circ	\circ
Parameter clear	\times	\times	\circ

\circ : Password can be unlocked, \times : Password cannot be unlocked

- For the parameter clear and parameter all clear methods for the communication option and parameter unit, refer to the Instruction Manual of each option. (For the operation panel (FR-DU08), refer to page 707 for the Mitsubishi inverter protocol of RS-485 communication, refer to page 637, and for the MODBUS-RTU communication protocol, refer to page 652.)

- Parameter operations during password locking/unlocking

Operation		Password unlocked		Password locked	Password lock in operation
		$\begin{aligned} & \text { Pr. } 296=9999 \\ & \text { Pr. } 297=9999 \end{aligned}$	$\begin{aligned} & \text { Pr. } 296 \neq 9999 \\ & \text { Pr. } 297=9999 \end{aligned}$	$\begin{gathered} \text { Pr. } 296 \neq 9999 \\ \text { Pr. } 297=0 \text { to } 4 \text { (read value) } \end{gathered}$	$\begin{aligned} & \hline \text { Pr. } 296=100,106,199 \\ & \text { Pr. } 297=5 \text { (read value) } \end{aligned}$
Pr. 296	Read	-*1	\bigcirc	\bigcirc	\bigcirc
	Write	-*1	-*1	\times	\times
Pr. 297	Read	-*1	\bigcirc	\bigcirc	\bigcirc
	Write	\times	-	\bigcirc	0 *3
Parameter clear execution		\bigcirc	-	$x^{* 4}$	$x^{* 4}$
All parameter clear execution		\bigcirc	-	$0^{* 2}$	$0^{* 2}$
Parameter copy execution		\bigcirc	-	\times	\times

*1 Reading/writing is disabled if reading is restricted by the Pr. 160 setting. (Reading is available in the Network operation mode regardless of the Pr. 160 setting.)
*2 All parameter clear cannot be performed during the operation.
*3 Correct password will not unlock the restriction.
*4 Parameter clear can only be performed from the communication option.
－When Pr． $296=" 4,5,104$ ，or 105＂（password lock），the setting screen for PU JOG frequency is not displayed in the parameter unit（FR－PU07）．
－When the password is being locked，parameter copy using the operation panel，parameter unit，and USB memory is not enabled．

《 Parameters referred to 》》

Pr． 77 Parameter write selection \vDash page 328
Pr． 160 User group read selection page 337
Pr． 550 NET mode operation command source selection page 380
Pr． 551 PU mode operation command source selection page 380

5．7．15 Free parameter

Any number within the setting range of 0 to 9999 can be input．
For example，these numbers can be used：
－As a unit number when multiple units are used．
－As a pattern number for each operation application when multiple units are used．
－As the year and month of introduction or inspection．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{8 8 8}$ E420	Free parameter 1	9999	0 to 9999	Any value can be input． The settings are retained even if the inverter power is turned OFF．
$\mathbf{8 8 9}$ E421	Free parameter 2	9999	0 to 9999	2

NOTE

－Pr． 888 and Pr． 889 do not influence the operation of the inverter．

5．7．16 Setting multiple parameters as a batch

Parameter settings are changed as a batch．Those include communication parameter settings for the Mitsubishi Electric human machine interface（GOT）connection，the parameter setting for the rated frequency settings of $50 / 60 \mathrm{~Hz}$ ，and the parameter setting for acceleration／deceleration time increment．
Multiple parameters are changed automatically．Users do not have to consider each parameter number（automatic parameter setting mode）．

Pr．	Name	Initial value	Setting range	Description	
$\begin{aligned} & 999 \\ & \text { E431 } \end{aligned}$	Automatic parameter setting	9999＊1	1	Standard PID display setting	
			2	Extended PID display setting	
			10	GOT initial setting（PU connector）	＂Controller Type＂in GOT： FREQROL 500／700／800， SENSORLESS SERVO
			11	GOT initial setting（RS－485 terminal）	
			12	GOT initial setting（PU connector）	＂Controller Type＂in GOT： FREQROL 800 （Automatic Negotiation）
			13	GOT initial setting（RS－485 terminal）	
			20	50 Hz rated frequency	
			21	60 Hz rated frequency	
			9999	No action	

[^13]
- Automatic parameter setting (Pr.999)

- Select which parameters to automatically set from the following table, and set them in Pr.999. Multiple parameter settings are changed automatically. Refer to page 335 for the list of parameters that are changed automatically.

$\begin{aligned} & \text { Pr. } 999 \\ & \text { setting } \end{aligned}$		Description	Operation in the automatic parameter setting mode
1	Sets the standard monitor indicator setting of PID control.		
2	Automatically sets the monitor indicator for PID control.		
10	Automatically sets the communication parameters for the GOT connection with a PU connector ("Controller Type" in GOT: FREQROL 500/700/800, SENSORLESS SERVO)		
11	Automatically sets the communication parameters for the GOT connection with RS-485 terminals ("Controller Type" in GOT: FREQROL 500/700/800, SENSORLESS SERVO)		-
12	Automatically sets the communication parameters for the GOT connection with a PU connector "Controller Type" in GOT: FREQROL 800 (Automatic Negotiation)		${ }^{\text {"Fill }}$
13	Automatically sets the communication parameters for the GOT connection with RS-485 terminals "Controller Type" in GOT: FREQROL 800 (Automatic Negotiation)		-
20	50 Hz rated frequency	Sets the related parameters of the rated frequency according to the power supply frequency	
21	60 Hz rated frequency		-

NOTE

- If the automatic setting is performed with Pr. 999 or the automatic parameter setting mode, the settings including the changed parameter settings (changed from the initial setting) will be automatically changed. Before performing the automatic setting, confirm that changing the parameters will not cause any problem.

- PID monitor indicator setting (Pr. 999 = "1 or 2")

Pr.	Name	Initial value	Pr. 999 = "1"	Pr. 999 = "2"	Refer to page
759	PID unit selection	9999	9999	4	584
1142	Second PID unit selection	9999	9999	4	
774	Operation panel monitor selection 1	9999	9999	52	424
775	Operation panel monitor selection 2	9999	9999	53	
776	Operation panel monitor selection 3	9999	9999	54	
C42 (934)	PID display bias coefficient	9999	9999	0	584
C44 (935)	PID display gain coefficient	9999	9999	100	
1136	Second PID display bias coefficient	9999	9999	0	
1138	Second PID display gain coefficient	9999	9999	100	
-	3 -line monitor setting	-	Invalid	Enabled ${ }^{* 1^{*} 2^{* 3}}$	-
-	Direct setting	-	Invalid	Enabled ${ }^{*}$	-
-	Dedicated parameter list function	-	Invalid	Enabled ${ }^{*}$	-

[^14]*2 Enabled when the FR-PU07 is used.
*3 Enabled when the FR-PU07-01 is used.

3-line monitor setting

On the operation panel or parameter unit, the 3-line monitor is used as the first monitor.

\square Direct setting

Pressing the [FUNC] key on the FR-PU07-01 displays the direct setting screen. The PID action set point can be directly set regardless of the operation mode or Pr. 77 Parameter write selection setting.
Pressing the [FUNC] key on the direct setting screen displays the function menu.

Direct setting	Parameter to be set
Direct setting 1	Pr. 133 PID action set point
Direct setting 2	Pr. 755 Second PID action set point

- Dedicated parameter list function

Pressing the [PrSET] key of the FR-PU07-01 displays the dedicated parameter list. Parameters that need to be set first for the PID extended display setting are listed.

Dedicated parameter list	Parameter to be set
No. 1	Pr. 999 Automatic parameter setting
No. 2	Pr. 934 PID display bias coefficient
No.3	Pr. 935 PID display bias analog value

NOTE

- The display of parameters other than the above may be changed due to changes in C42 or C44. Set the PID monitor indicator before changing the settings of other parameters.
- To use the direct setting on the LCD operation panel, set Pr.1000Direct setting selection. (Refer to page 323.)

- GOT initial setting (PU connector) (Pr. 999 = "10, 12")

Pr.	Name	Initial value	Pr. 999 = "10"	Pr. 999 = "12"	Refer to page
79	Operation mode selection	0	1	1	370
118	PU communication speed	192	192	1152	636
119	PU communication stop bit length / data length	1	10	0	
120	PU communication parity check	2	1	1	
121	PU communication retry count	1	9999	9999	
122	PU communication check time interval	9999	9999	9999	
123	PU communication waiting time setting	9999	0 ms	0 ms	
124	PU communication CR/LF selection	1	1	1	
340	Communication startup mode selection	0	0	0	378
414	PLC function operation selection	0	-	$2^{* 1}$	614

[^15]
■ Initial setting with the GOT2000 series

- When "FREQROL 500/700/800, SENSORLESS SERVO" is selected for "Controller Type" in the GOT setting, set Pr. 999 = "10" to configure the GOT initial setting.
- When "FREQROL 800(Automatic Negotiation)" is selected for "Controller Type" in the GOT setting, the GOT automatic connection can be used. When "FREQROL 800(Automatic Negotiation)" is selected for "Controller Type" in the GOT setting and the GOT automatic connection is not used, set Pr. $999=" 12$ " to configure the GOT initial setting. (Refer to page 667.)

\square Initial setting with the GOT1000 series

- Set Pr. 999 = "10" to configure the GOT initial setting.

NOTE

- Always perform an inverter reset after the initial setting.
- For the details of connection with GOT, refer to the Instruction Manual of GOT.

- GOT initial setting (RS-485 terminals) (Pr. 999 = "11, 13")

Pr.	Name	Initial value	Pr. 999 = "11"	Pr. 999 = "13"	Refer to page
79	Operation mode selection	0	0	0	370
332	RS-485 communication speed	96	192	1152	636
333	RS-485 communication stop bit length / data length	1	10	0	
334	RS-485 communication parity check selection	2	1	1	
335	RS-485 communication retry count	1	9999	9999	
336	RS-485 communication check time interval	0 s	9999	9999	
337	RS-485 communication waiting time setting	9999	0 ms	0 ms	
340	Communication startup mode selection	0	1	1	378
341	RS-485 communication CR/LF selection	1	1	1	636
414	PLC function operation selection	0	-	$2^{* 1}$	614
549	Protocol selection	0	0	0	652

*1 When Pr. $414=$ " 1 ", the setting value is not changed.

■ Initial setting with the GOT2000 series

- When "FREQROL 500/700/800, SENSORLESS SERVO" is selected for "Controller Type" in the GOT setting, set Pr. 999 = "11" to configure the GOT initial setting.
- When "FREQROL 800(Automatic Negotiation)" is selected for "Controller Type" in the GOT setting, the GOT automatic connection can be used. When "FREQROL 800(Automatic Negotiation)" is selected for "Controller Type" in the GOT setting and the GOT automatic connection is not used, set Pr. $999=" 13 "$ to configure the GOT initial setting. (Refer to page 667.)

■ Initial setting with the GOT1000 series

- Set Pr. $999=$ " 11 " to configure the GOT initial setting.

NOTE

- Always perform an inverter reset after the initial setting.
- For the details of connection with GOT, refer to the Instruction Manual of GOT.

*Rated frequency (Pr. 999 = "20" (50 Hz) or "21" (60 Hz))

Pr.	Name	Initial value		Pr. 999 = "21"	Pr. 999 = "20"	Refer to page
		FM type	CA type			
3	Base frequency	60 Hz	50 Hz	60 Hz	50 Hz	673
4	Multi-speed setting (high speed)	60 Hz	50 Hz	60 Hz	50 Hz	391
20	Acceleration/deceleration reference frequency	60 Hz	50 Hz	60 Hz	50 Hz	349
37	Speed display	0		0		422
55	Frequency monitoring reference	60 Hz	50 Hz	60 Hz	50 Hz	435
66	Stall prevention operation reduction starting frequency	60 Hz	50 Hz	60 Hz	50 Hz	409
116	Third output frequency detection	60 Hz	50 Hz	60 Hz	50 Hz	409
125 (903)	Terminal 2 frequency setting gain frequency	60 Hz	50 Hz	60 Hz	50 Hz	
126 (905)	Terminal 4 frequency setting gain frequency	60 Hz	50 Hz	60 Hz	50 Hz	
263	Subtraction starting frequency	60 Hz	50 Hz	60 Hz	50 Hz	
266	Power failure deceleration time switchover frequency	60 Hz	50 Hz	60 Hz	50 Hz	610
386	Frequency for maximum input pulse	60 Hz	50 Hz	60 Hz	50 Hz	386
505	Speed setting reference	60 Hz	50 Hz	60 Hz	50 Hz	422
808	Forward rotation speed limit/speed limit	60 Hz	50 Hz	60 Hz	50 Hz	274
C14 (918)	Terminal 1 gain frequency (speed)	60 Hz	50 Hz	60 Hz	50 Hz	482

5.7.17 Extended parameter display and user group function

This function restricts the parameters that are read by the operation panel and parameter unit.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 160 \\ & \text { E440 } \end{aligned}$	User group read selection	0	9999	Only simple mode parameters are displayed.
			0	Displays simple mode and extended parameters.
			1	Only parameters registered in user groups are displayed.
$\begin{aligned} & 172 \\ & \text { E441 } \end{aligned}$	User group registered display/batch clear	0	(0 to 16)	Displays the number of parameters that are registered in the user groups. (Read-only)
			9999	Batch clear of user group registrations
$\begin{array}{\|l\|} \hline 173 \\ \text { E442 } \end{array}$	User group registration	9999*1	0 to 1999, 9999	Sets the parameter number to register for the user group.
$\begin{array}{\|l\|} \hline 174 \\ \text { E443 } \end{array}$	User group clear	9999*1	0 to 1999, 9999	Sets the parameter number to clear from the user group.

*1 The read value is always "9999".

- Display of simple mode parameters and extended parameters (Pr.160)

- When Pr. 160 = "9999", only the simple mode parameters are displayed on the operation panel (FR-DU08) and parameter unit (FR-PU07). (For the simple mode parameters, refer to the parameter list page 162.)
- With the initial value ($\operatorname{Pr} .160=" 0 ")$, simple mode parameters and extended parameters can be displayed.

NOTE

- When a plug-in option in installed on the inverter, the option parameters can also be read
- Every parameter can be read regardless of the Pr. 160 setting when reading parameters via a communication option.
- When reading the parameters using the RS-485 terminals, all parameters can be read regardless of the Pr. 160 setting by setting Pr. 550 NET mode operation command source selection and Pr. 551 PU mode operation command source selection.

Pr. 551	Pr. 550	Pr. 160 enabled/disabled
1 (RS-485)	-	Enabled
```2 (PU) 3 (USB) 9 9 9 9 ~ ( A u t o m a t i c ~ d e t e r m i n a t i o n ) (initial value)```	0 (Communication option)	Enabled
	1 (RS-485)	Disabled (All can be read)
	9999 (Automatic determination) (initial value)	With communication option: Enabled
		Without communication option: Disabled (All can be read)

- When the LCD operation panel (FR-LU08) or the parameter unit (FR-PU07) is installed, Pr. 15 Jog frequency, Pr. 16 Jog acceleration/deceleration time, C42(Pr.934) PID display bias coefficient, C43(Pr.934) PID display bias analog value, C44(Pr.935) PID display gain coefficient, C45(Pr.935) PID display gain analog value and Pr. 991 PU contrast adjustment are displayed as simple mode parameters.


## User group function (Pr.160, Pr. 172 to Pr.174)

- The user group function is a function for displaying only the parameters required for a setting.
- A maximum of 16 parameters from any of the parameters can be registered in a user group. When Pr. $160=$ " 1 ", reading/ writing is enabled only for the parameters registered in user groups. (Parameters not registered in user groups can no longer be read.)
- To register a parameter in a user group, set the parameter number in Pr. 173.
- To clear a parameter from a user group, set the parameter number in Pr.174. To batch clear all the registered parameters, set Pr. 172 = "9999".


## - Registering a parameter in a user group (Pr.173)

- To register Pr. 3 in a user group


## Operating procedure

1. Power ON

Make sure the motor is stopped.
2. Changing the operation mode

Press $\qquad$ to choose the PU operation mode. [PU] indicator turns ON.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears)
4. Selecting a parameter

5. Parameter read

Press SET. "ด日g" appears.
6. Parameter registration

Turn until " $\exists$ " (Pr.3) appears. Press SET to register the parameter.

To continue adding parameters, repeat steps 5 and 6.

## Clearing a parameter from a user group (Pr.174)

- To delete Pr. 3 from a user group.


## Operating procedure

1．Power ON
Make sure the motor is stopped．
2．Changing the operation mode
Press $\begin{aligned} & \text { PU } \\ & \text { EXT }\end{aligned}$ to choose the PU operation mode．［PU］indicator turns ON．
3．Selecting the parameter setting mode
Press MODE to choose the parameter setting mode．（The parameter number read previously appears）
4．Selecting a parameter
Turn 0 until＂
5．Parameter read
Press SET．＂日日ロ゙ appears．
6．Clearing the parameter
Turn $\left.{ }^{2} 2\right)$ until＂ 3 ＂（Pr．3）appears．Press SET to delete the parameter．
＂－… $\quad 1714$＂and＂ヨ＂are displayed alternately．
To continue deleting parameters，repeat steps 5 and 6 ．

## NOTE

－Pr． 77 Parameter write selection，Pr．160，Pr． 296 Password lock level，Pr． 297 Password lock／unlock and Pr． 991 PU contrast adjustment can always be read regardless of the user group setting．（For Pr．991，only when the FR－LU08 or the FR－PU07 is connected．）
－Pr．77，Pr．160，Pr． 172 to Pr．174，Pr．296，and Pr． 297 cannot be registered in a user group．
－When Pr． 174 is read，＂9999＂is always displayed．＂9999＂can be written，but it does not function．
－Pr． 172 is disabled if set to a value other than＂9999＂．

《＜Parameters referred to 》》
Pr． 15 Jog frequency，Pr． 16 Jog acceleration／deceleration time page 390
Pr． 77 Parameter write selection page 328
Pr． 296 Password lock level，Pr． 297 Password lock／unlock page 331
Pr． 550 NET mode operation command source selection page 380
Pr． 551 PU mode operation command source selection page 380
Pr． 991 PU contrast adjustment $\xi$ page 322

## 5．7．18 PWM carrier frequency and Soft－PWM control

The motor sound can be changed．

Pr．	Name	Initial   value	Setting range	Description

[^16]
## Changing the PWM carrier frequency（Pr．72）

－The PWM carrier frequency of the inverter can be changed．

- Changing the PWM carrier frequency can be effective for avoiding the resonance frequency of the mechanical system or motor, as a countermeasure against EMI generated from the inverter, or for reducing leakage current caused by PWM switching.
- Under Real sensorless vector control, vector control, and PM sensorless vector control, the following carrier frequencies are used.
(For the control method and fast-response mode selection, refer to Pr. 800 Control method selection on page 215.)

Pr. 72 setting	Carrier frequency (kHz)		
	Real sensorless vector control,   Vector control	PM sensorless vector control	Fast-response mode
0 to 5	2	$6^{* 1}$	
6 to 9	$6^{* 2}$	6	4
10 to 13	$10^{* 2}$	10	
14,15	$14^{* 2}$	14	

*1 When low-speed range high-torque characteristic is disabled ( $\mathbf{P r} .788=$ " 0 "), 2 kHz is used.
*2 In the low-speed range ( 3 Hz or lower) under Real sensorless vector control, the carrier frequency is automatically changed to 2 kHz . (For FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower)

- When using an optional sine wave filter (MT-BSL/BSC), set "25" ( 2.5 kHz ) in Pr.72. (FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher.)


## NOTE

- In the low-speed range (about 10 Hz or lower), the carrier frequency may be automatically lowered.

Motor noise increases, but not to the point of failure.

- When Pr. 72 = " 25 ", the following limitations apply.
- V/F control is forcibly set.
- Soft-PWM control is disabled.
- The maximum output frequency is 60 Hz .


## - Soft-PWM control (Pr.240)

- Soft-PWM control is a control method that changes the motor noise from a metallic sound into an inoffensive, complex tone.
- Setting Pr. $240=$ " 1 " will enable the Soft-PWM control.
- To enable the Soft-PWM control for the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower, set Pr. 72 to " 5 kHz or less". To enable it for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher, set Pr. 72 to "4 kHz or less".


## NOTE

- While a sine wave filter (Pr. $72=" 25 ")$ is being used, the Soft-PWM control is disabled.


## - PWM carrier frequency automatic reduction function (Pr.260)

- Setting Pr. $260=$ "1 (initial value)" will enable the PWM carrier frequency auto-reduction function. If a heavy load is continuously applied while the inverter carrier frequency is set to 3 kHz or higher ( $\mathrm{Pr} .72 \geq$ " 3 "), the carrier frequency is automatically reduced to prevent occurrence of the inverter overload trip (electronic thermal O/L relay function) (E.THT). The carrier frequency is reduced to as low as 2 kHz . Motor noise increases, but not to the point of failure.
－When the carrier frequency automatic reduction function is used，operation with the carrier frequency set to 3 kHz or higher （Pr． $72 \geq 3$ ）automatically reduces the carrier frequency for heavy－load operation as shown below．

$\begin{aligned} & \text { Pr. } 260 \\ & \text { setting } \end{aligned}$	Pr． 570 setting	Carrier frequency automatic reduction operation	
		FR－A820－04750（90K）or lower， FR－A840－02600（90K）or lower	FR－A840－03250（110K）or higher
1	0 （SLD）， 1 （LD）	The carrier frequency will reduce automatically with continuous operation of $85 \%$ of the inverter rated current or higher．	
	2 （ND）， 3 （HD）	The carrier frequency will reduce automatically with operation of $150 \%$ of the inverter ND rated current or higher．	Continuous operation with the $85 \%$ or higher inverter rated current for the ND rating reduces the carrier frequency automatically．
0	0 （SLD）	The carrier frequency will reduce automatically with continuous operation of $85 \%$ of the inverter rated current or higher．	
	1 （LD）	Without carrier frequency automatic reduction（Perform continuous operation with the carrier frequency set to 2 kHz or lower or with less than $85 \%$ of the inverter rated current for the ND rating．）	
	2 （ND）， 3 （HD）	Without carrier frequency automatic reduction	Without carrier frequency automatic reduction （Perform continuous operation with the carrier frequency set to 2 kHz or lower or with less than $85 \%$ of the inverter rated current for the ND rating．）

## NOTE

－Reducing the PWM carrier frequency is effective as a countermeasure against EMI from the inverter or for reducing leakage current，but doing so increases the motor noise．
－When the PWM carrier frequency is set to 1 kHz or lower（Pr． $72 \leq 1$ ），the increase in the harmonic current causes the fast－ response current limit to activate before the stall prevention operation，which may result in torque shortage．In this case， disable the fast－response current limit in Pr． 156 Stall prevention operation selection．
－The lower limit of carrier frequency after the reduction under PM sensorless vector control（low－speed range high－torque characteristic enabled）is 6 kHz ．
－During fast－response operation，the carrier frequency automatic reduction function is disabled．

## 《 Parameters referred to 》》

Pr． 156 Stall prevention operation selection page 409
Pr． 570 Multiple rating setting page 326
Pr． 788 Low speed range torque characteristic selection page 227
Pr． 800 Control method selection page 215

## 5．7．19 Inverter parts life display

The degree of deterioration of the control circuit capacitor，main circuit capacitor，cooling fan，and inrush current limit circuit can be diagnosed on the monitor．
When a part approaches the end of its life，an alarm can be output by self diagnosis to prevent a fault．
（Note that the life diagnosis of this function should be used as a guideline only，because with the exception of the main circuit capacitor，the life values are theoretical calculations．）

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 255 \\ & \text { E700 } \end{aligned}$	Life alarm status display	0	$\left(0\right.$ to 15）${ }^{* 1}$	Displays whether or not the parts of the control circuit capacitor，main circuit capacitor，cooling fan，and inrush current limit circuit have reached the life alarm output level．Read－only．
$\begin{aligned} & 256 \\ & \text { E701*2 } \end{aligned}$	Inrush current limit circuit life display	100\％	（0 to 100\％）	Displays the deterioration degree of the inrush current limit circuit．Read－only．
$\begin{array}{\|l\|} \hline 257 \\ \text { E702 } \end{array}$	Control circuit capacitor life display	100\％	（0 to 100\％）	Displays the deterioration degree of the control circuit capacitor．Read－only．
$\begin{aligned} & 258 \\ & \text { E703*2 } \end{aligned}$	Main circuit capacitor life display	100\％	（0 to 100\％）	Displays the deterioration degree of the main circuit capacitor．Read－only．   The value measured by Pr． 259 is displayed．
$\begin{aligned} & 259 \\ & E 704^{* 2} \end{aligned}$	Main circuit capacitor life measuring	0	$\begin{aligned} & 0,1 \\ & (2,3,8,9) \end{aligned}$	Setting＂1＂and turning the power supply OFF starts the measurement of the main circuit capacitor life．   If the setting value of Pr． 259 becomes＂ 3 ＂after turning the power supply ON again，it means that the measurement is completed．The deterioration degree is read to Pr． 258.

＊1 The setting range（reading only）for separated converter types is＂ 0,1 ，4，or 5 ＂．The setting range（reading only）for IP55 compatible modes is＂ 0 to 31 ＂．
*2 The setting is available only for standard models and IP55 compatible models.

## Life alarm display and signal output (Y90 signal, Pr.255)

## Point $\rho$

- In the life diagnosis of the main circuit capacitor, the alarm signal (Y90) is not output unless measurement by turning OFF the power supply is performed.
- Whether or not the parts of the control circuit capacitor, main circuit capacitor, cooling fan, inrush current limit circuit or internal air circulation fans have reached the life alarm output level can be checked with Pr. 255 Life alarm status display and the Life alarm (Y90) signal. (Internal air circulation fans are equipped with IP55 compatible models.)


Pr.255		bit4	bit3	bit2	bit1	bit0
Decimal	Binary					$\circ$
15	1111	$\times$	$\circ$	$\circ$	$\circ$	$\times$
14	1110	$\times$	$\circ$	$\circ$	$\times$	$\circ$
13	1101	$\times$	$\circ$	$\circ$	$\times$	$\times$
12	1100	$\times$	$\circ$	$\circ$	$\times$	
11	1011	$\times$	$\circ$	$\times$	$\circ$	$\circ$
10	1010	$\times$	$\circ$	$\times$	$\circ$	$\times$
9	1001	$\times$	$\circ$	$\times$	$\times$	$\circ$
8	1000	$\times$	$\circ$	$\times$	$\times$	$\times$
7	0111	$\times$	$\times$	$\circ$	$\circ$	$\circ$
6	0110	$\times$	$\times$	$\circ$	$\circ$	$\times$
5	0101	$\times$	$\times$	$\circ$	$\times$	$\circ$
4	0100	$\times$	$\times$	$\circ$	$\times$	$\times$
3	0011	$\times$	$\times$	$\times$	$\circ$	$\circ$
2	0010	$\times$	$\times$	$\times$	$\circ$	$\times$
1	0001	$\times$	$\times$	$\times$	$\times$	$\circ$
0	0000	$\times$	$\times$	$\times$	$\times$	$\times$


Pr.255		bit4	bit3	bit2	bit1	bit0
Decimal	Binary					
31	11111	$\circ$	$\circ$	$\circ$	$\circ$	$\circ$
30	11110	$\circ$	$\circ$	$\circ$	$\circ$	$\times$
29	11101	$\circ$	$\circ$	$\circ$	$\times$	$\circ$
28	11100	$\circ$	$\circ$	$\circ$	$\times$	$\times$
27	11011	$\circ$	$\circ$	$\times$	$\circ$	$\circ$
26	11010	$\circ$	$\circ$	$\times$	$\circ$	$\times$
25	11001	$\circ$	$\circ$	$\times$	$\times$	$\circ$
24	11000	$\circ$	$\circ$	$\times$	$\times$	$\times$
23	10111	$\circ$	$\times$	$\circ$	$\circ$	$\circ$
22	10110	$\circ$	$\times$	$\circ$	$\circ$	$\times$
21	10101	$\circ$	$\times$	$\circ$	$\times$	$\circ$
20	10100	$\circ$	$\times$	$\circ$	$\times$	$\times$
19	10011	$\circ$	$\times$	$\times$	$\circ$	$\circ$
18	10010	$\circ$	$\times$	$\times$	$\circ$	$\times$
17	10001	$\circ$	$\times$	$\times$	$\times$	$\circ$
16	10000	$\circ$	$\times$	$\times$	$\times$	$\times$

$\circ$ : With warnings, $\times$ : Without warnings

- The Life alarm (Y90) signal turns ON when any of the control circuit capacitor, main circuit capacitor, cooling fan, inrush current limit circuit or internal air circulation fans reaches the life alarm output level.
- For the terminal used for the Y90 signal, set "90" (positive logic) or "190" (negative logic) in any of Pr. 190 to Pr. 196 (output terminal function selection).


## NOTE

- When using an option (FR-A8AY, FR-A8AR, FR-A8NC, FR-A8NCE), the life can be output separately to the Control circuit capacitor life (Y86) signal, Main circuit capacitor life (Y87) signal, Cooling fan life (Y88) signal, and Inrush current limit circuit life (Y89) signal.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## Life display of the inrush current limit circuit (Pr.256) (Standard models and IP55 compatible models)

- The life of the inrush current limit circuit (relay, contactor and inrush resistor) is displayed in Pr. 256.
- The number of contact (relay, contactor, thyristor) ON times is counted, and it is counted down from $100 \%$ ( 0 time) every $1 \% / 10,000$ times. As soon as $10 \%$ ( 900,000 times) is reached, Pr. 255 bit 3 is turned ON and also a warning is output to the Y90 signal.


## - Life display of the control circuit capacitor (Pr.257)

- The deterioration degree of the control circuit capacitor is displayed in Pr. 257.
- In the operating status, the control circuit capacitor life is calculated from the energization time and temperature, and is counted down from $100 \%$. As soon as the control circuit capacitor life falls below 10\%, Pr. 255 bit 0 is turned ON and also a warning is output to the Y 90 signal.


## $\checkmark$ Life display of the main circuit capacitor (Pr.258, Pr.259) (Standard models and IP55 compatible models)

## Point ${ }^{\rho}$

- For accurate life measurement of the main circuit capacitor, wait three hours or longer after turning OFF. The temperature left in the main circuit capacitor affects measurement.
- The deterioration degree of the main circuit capacitor is displayed in Pr.258.
- With the main circuit capacitor capacity at factory shipment as $100 \%$, the capacitor life is displayed in Pr. 258 every time measurement is made. When the measured value falls to $85 \%$ or lower, $\operatorname{Pr} 255$ bit 1 is turned ON and also a warning is output to the Y90 signal.
- Measure the capacitor capacity according to the following procedure and check the deterioration degree of the capacitor capacity.

1. Check that the motor is connected and at a stop.
2. Set "1" (measuring start) in Pr. 259.
3. Switch the power OFF. The inverter applies DC voltage to the motor to measure the capacitor capacity while the inverter is OFF.
4. After confirming that the power lamp is OFF, turn ON the power again.
5. Check that "3" (measurement complete) is set in Pr.259, read Pr.258, and check the deterioration degree of the main circuit capacitor.

Pr. $\mathbf{2 5 9}$	Description	Remarks
0	No measurement	Start measurement
1	During measurement	Initial value
2	Measurement complete	Measurement starts when the power supply   is switched OFF.
3	Forced end	
8	Measurement error	Only displayed and cannot be set.
9		

- When the main circuit capacitor life is measured under the following conditions, "forced end" (Pr. $259=$ " 8 "), or "measurement error" (Pr. 259 = "9") may occur, or the status may remain in "measurement start" (Pr. $259=$ "1"). To perform measurement, first eliminate the following conditions. Under the following conditions, even if "measurement complete" (Pr. $259=$ " 3 ") is reached, measurement cannot be performed correctly.
- FR-HC2, FR-CV, MT-RC, or a sine wave filter is connected.
- Terminals R1/L11, S1/L21 or DC power supply is connected to terminals P/+ and N/-.
- The power supply is switched ON during measurement.
- The motor is not connected to the inverter.
- The motor is running (coasting).
- The motor capacity is smaller than the inverter capacity by two ranks or more.
- The inverter output is shut off or a fault occurred while the power was OFF.
- The inverter output is shut off with the MRS signal.
- The start command is given while measuring.
- The applied motor setting is incorrect.
- Operation environment: Surrounding air temperature (annual average of $40^{\circ} \mathrm{C}$ (free from corrosive gas, flammable gas, oil mist, dust and dirt)).
Output current: $80 \%$ of the inverter rating
- Since repeated inrush currents at power ON will shorten the life of the converter circuit, frequent starts and stops of the magnetic contactor must be avoided.


## WARNING

- When measuring the main circuit capacitor capacity (Pr. $259=$ "1"), the DC voltage is applied to the motor for about 1 second at power OFF. Never touch the motor terminal, etc. right after powering OFF to prevent an electric shock.


## - Life display of the cooling fan

- If a cooling fan speed of less than the specified speed (refer below) is detected, Fan alarm "F" (FN) is displayed on the operation panel and the parameter unit. As an alarm display, Pr. 255 bit 2 is turned ON and also a warning is output to the Y90 signal and Alarm (LF) signal.
- For the terminal used for the LF signal, set "98" (positive logic) or "198" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).

Capacity	Warning level
FR-A820-00250(3.7K) or lower,	Less than $50 \%$ of the rated   rotations per minute
FR-A820-03160(55K) or higher	Less than $70 \%$ of the rated
FR-A840-00126(3.7K) or lower	rotations per minute
FR-A820-00340(5.5K) to FR-A820-02330(45K)	Less than $1700 \mathrm{r} / \mathrm{min}$
FR-A840-00170(5.5K) to FR-A840-03610(132K)	
FR-A846-00250(7.5K) to FR-A846-00470(18.5K)	
FR-A840-04320(160K) or higher	

## NOTE

- When the inverter is mounted with two or more cooling fans, "FN" is displayed even only one of the fans is detected.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- For replacement of each part, contact the nearest Mitsubishi FA center.


## Life display of internal air circulation fans (IP55 compatible models)

- IP55 compatible models are equipped with the internal air circulation fan inside the inverter other than the cooling fan. The internal fan fault "F-゙N" (FN2) appears on the operation panel (FR-DU08) when the rotations per minute is less than $70 \%$ of the rated value for the internal air circulation fan. (FN is displayed on the parameter unit (FR-PU07).) As an alarm display, Pr. 255 bit 4 is turned ON and also a warning is output to the Y 90 signal and Alarm (LF) signal.
- For the terminal used for the LF signal, set "98 (positive logic) or 198" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).


## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- For replacement of each part, contact the nearest Mitsubishi FA center.


### 5.7.20 Maintenance timer alarm

The Maintenance timer (Y95) signal is output when the inverter's cumulative energization time reaches the time period set with the parameter.
MT1, MT2 or MT3 is displayed on the operation panel.
This can be used as a guideline for the maintenance time of peripheral devices.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 503 \\ & \text { E710 } \end{aligned}$	Maintenance timer 1	0	0 (1 to 9998)	Displays the inverter's cumulative energization time in increments of 100 h (read-only). Writing the setting of "0" clears the cumulative energization time while Pr. $503=$ "1 to 9998". (Writing is disabled when Pr. 503 = "0".)
504   E711	Maintenance timer 1 warning output set time	9999	0 to 9998	Set the time until the Maintenance timer (Y95) signal is output. MT1 is displayed on the operation panel.
			9999	Without the function
$\begin{aligned} & 686 \\ & \text { E712 } \end{aligned}$	Maintenance timer 2	0	0 (1 to 9998)	The same function as Pr.503.
687   E713	Maintenance timer 2 warning output set time	9999	0 to 9998	The same function as Pr.504. MT2 is displayed on the operation panel.
			9999	
$\begin{array}{\|l\|} \hline 688 \\ \text { E714 } \\ \hline \end{array}$	Maintenance timer 3	0	0 (1 to 9998)	The same function as Pr.503.
$689$   E715	Maintenance timer 3 warning output set time	9999	0 to 9998	The same function as Pr. 504. MT3 is displayed on the operation panel.
			9999	



Operation example of the maintenance timer 1 (Pr.503, Pr.504) (with both MT2 and MT3 OFF)

- The cumulative energization time of the inverter is stored in the EEPROM every hour and displayed in Pr. 503 (Pr.686, Pr.688) in 100 h increments. Pr. 503 (Pr.686, Pr.688) is clamped at 9998 (999800 h).
- When the value in Pr. 503 (Pr.686, Pr.688) reaches the time (100 h increments) set in Pr. 504 (Pr.687, Pr.689), the
 displayed on the operation panel.
- For the terminal used for the Y95 signal output, assign the function by setting "95 (positive logic)" or "195 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).


## NOTE

－The Y95 signal turns ON when any of MT1，MT2 or MT3 is activated．It does not turn OFF unless all of MT1，MT2 and MT3 are cleared．
－If all of MT1，MT2 and MT3 are activated，they are displayed in the priority of＂MT1＞MT2＞MT3＂．
－The cumulative energization time is counted every hour．Energization time of less than 1 h is not counted．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

《《 Parameters referred to 》
Pr． 190 to Pr． 196 （Output terminal function selection）$\longmapsto$ page 450

## 5．7．21 Current average value monitor signal

The output current average value during constant－speed operation and the maintenance timer value are output to the Current average value monitor（Y93）signal as a pulse．The output pulse width can be used in a device such as the I／O unit of a programmable controller as a guideline for the maintenance time for mechanical wear，belt stretching，or deterioration of devices with age．
The pulse is repeatedly output during constant－speed operation in cycles of 20 seconds to the Current average value monitor （Y93）signal．


Pr．	Name	Initial value	Setting range	Description
555   E720	Current average time	1 s	0.1 to 1 s	Set the time for calculating the average current during start   pulse output（1 second）．
556   E721	Data output mask time	0 s	0 to 20 s	Set the time for not obtaining（masking）transitional state   data．
$\mathbf{5 5 7}$	Current average value   monitor signal output   E722	Inverter rated   reference current	0 to $500 \mathrm{~A}^{* 1}$	Set the reference（100\％）for outputting the output current
		0 to $3600 \mathrm{~A}^{* 2}$	average value signal．	

＊1 Initial value for the FR－A820－03160（55K）or lower and FR－A840－01800（55K）or lower．
＊2 Initial value for the FR－A820－03800（75K）or higher and FR－A840－02160（75K）and higher．

## Operation example

－The pulse output of the Current average value monitor（Y93）signal is indicated below．

- For the terminal used for the Y93 signal output, assign the function by setting "93 (positive logic)" or "193 (negative logic)" in any of Pr. 190 to Pr. 194 (Output terminal function selection). (This cannot be assigned by setting in Pr. 195 ABC1 terminal function selection or Pr. 196 ABC2 terminal function selection.)


Output current average value pulse
The averaged current value is output as low pulse shape for 0.5 to 9 s ( 10 to $180 \%$ ) during start pulse output.

Signal output time $=\frac{\text { output current average value }(A)}{\operatorname{Pr} 557(A)} \times 5 \mathrm{~s}$

## -Pr. 556 Data output mask time setting

- Immediately after acceleration/deceleration is shifted to constant-speed operation, the output current is unstable (transitional state). Set the time for not obtaining (masking) transitional state data in Pr.556.


## Pr. 555 Current average time setting

- The output current average is calculated during start pulse (1 second) HIGH output. Set the time for calculating the average current during start pulse output in Pr. 555.


## $\checkmark$ Pr. 557 Current average value monitor signal output reference current setting

Set the reference (100\%) for outputting the output current average value signal. The signal output time is calculated with the following formula.
$\frac{\text { Output current average value }}{\text { Pr. } 557 \text { setting value }} \times 5 \mathrm{~s} \quad$ (Output current average value $100 \% / 5 \mathrm{~s}$ )

The output time range is 0.5 to 9 seconds. When the output current average value is less than $10 \%$ of the setting value in Pr.557, the output time is 0.5 seconds, and when it is more than $180 \%$, the output time is 9 seconds.
For example, when Pr. $557=10 \mathrm{~A}$ and the output current average value is 15 A :
$15 \mathrm{~A} / 10 \mathrm{~A} \times 5 \mathrm{~s}=7.5 \mathrm{~s}$, thus the current average value monitor signal is Low output in 7.5 s intervals.


## - Pr. 503 Maintenance timer 1 output

After LOW output of the output current value is performed, HIGH output of the maintenance timer value is performed. The maintenance timer value output time is calculated with the following formula.
$\frac{\text { Pr. } 530 \times 100}{40000 \mathrm{~h}} \times 5 \mathrm{~s} \quad$ (Maintenance timer value $100 \% / 5 \mathrm{~s}$ )

The output time range is 2 to 9 s ．When Pr． 503 is less than $16,000 \mathrm{~h}$ ，the output time is 2 seconds，and when it is more than $72,000 \mathrm{~h}$ ，the output time is 9 seconds．


## NOTE

－Masking of the data output and sampling of the output current are not performed during acceleration／deceleration．
－If constant speed changes to acceleration or deceleration during start pulse output，it is judged as invalid data，and HIGH output in 3.5 seconds intervals is performed for the start pulse and LOW output in 16.5 seconds intervals is performed for the end signal．After the start pulse output is completed，minimum 1－cycle signal output is performed even if acceleration／ deceleration is performed．

－If the output current value（inverter output current monitor）is 0 A at the completion of the 1－cycle signal output，no signal is output until the next constant－speed state．
－Under the following conditions，the Y93 signal is output with LOW output in 20 seconds intervals（no data output）．
－When acceleration or deceleration is operating at the completion of the 1－cycle signal output
－When automatic restart after instantaneous power failure（Pr． 57 Restart coasting time $\neq$＂9999＂）is set，and the 1－ cycle signal output is completed during the restart operation．
－When automatic restart after instantaneous power failure（Pr． $57 \neq$＂9999＂）is set，and the restart operation was being performed at the completion of data output masking．
－Pr． 686 Maintenance timer 2 and Pr． 688 Maintenance timer 3 cannot be output．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## 《＜Parameters referred to 》》

Pr． 57 Restart coasting time page 597，page 604
Pr． 190 to Pr． 196 （Output terminal function selection）page 450
Pr． 503 Maintenance timer 1，Pr． 686 Maintenance timer 2，Pr． 688 Maintenance timer 3 page 345

## 5.8 <br> (F) Setting of acceleration/deceleration time and acceleration/deceleration pattern

Purpose	Parameter to set			Refer to page
To set the motor acceleration/ deceleration time	Acceleration/deceleration time	P.F000 to P.F003, P.F010, P.F011,   P.F020 to P.F022,   P.F030, P.F031,   P.F040, P.F070,   P.F071, P.G264	$\begin{array}{\|l} \hline \text { Pr.7, Pr.8, Pr.16, } \\ \text { Pr.20, Pr.21, Pr.44, } \\ \text { Pr.45, Pr.110, } \\ \text { Pr.111, Pr.147, } \\ \text { Pr.611, Pr.791, } \\ \text { Pr.792, Pr.1103, } \\ \text { Pr. } 1349 \end{array}$	349
To set the acceleration/deceleration pattern suitable for an application	Acceleration/deceleration pattern and backlash measures	$\begin{aligned} & \text { P.F100, P.F200 to } \\ & \text { P.F203, P.F300 to } \\ & \text { P.F303, P.F400 to } \\ & \text { P.F403 } \end{aligned}$	Pr.29, Pr. 140 to Pr.143, Pr. 380 to Pr.383, Pr. 516 to Pr. 519	354
To command smooth speed transition with terminals	Remote setting function	P.F101	Pr. 59	359
To set the starting frequency	Starting frequency and starttime hold	P.F102, P.F103	Pr.13, Pr. 571	363, 364
To set optimum acceleration/ deceleration time automatically	Automatic acceleration/ deceleration	$\begin{aligned} & \text { P.F500, P.F510 to } \\ & \text { P.F513 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 61 \text { to Pr. } 63 \text {, } \\ & \text { Pr. } 292 \end{aligned}$	365
To set V/F pattern for lift automatically	Lift operation(Automatic acceleration/deceleration)	$\begin{aligned} & \text { P.F500, P.F510, } \\ & \text { P.F520 } \end{aligned}$	Pr.61, Pr.64, Pr. 292	368

### 5.8.1 Setting the acceleration and deceleration time

The following parameters are used to set motor acceleration/deceleration time.
Set a larger value for a slower acceleration/deceleration, and a smaller value for a faster acceleration/deceleration.

For the acceleration time at automatic restart after instantaneous power failure, refer to Pr. 611 Acceleration time at a restart (page 597, page 604).


[^17]
## - Control block diagram



## $\checkmark$ Acceleration time setting (Pr.7, Pr.20)

- Use Pr. 7 Acceleration time to set the acceleration time required to reach Pr. 20 Acceleration/deceleration reference frequency from stop status.
- Set the acceleration time according to the following formula.

Acceleration time setting $=$ Pr. $20 \times$ Acceleration time from stop status to maximum frequency / (maximum frequency -Pr.13)

- For example, the following calculation is performed to find the setting value for Pr. 7 when increasing the output frequency to the maximum frequency of 50 Hz in 10 s with $\operatorname{Pr} .20=" 60 \mathrm{~Hz}$ (initial value)" and Pr. $13=$ " $0.5 \mathrm{~Hz} "$.

Pr. $7=60 \mathrm{~Hz} \times 10 \mathrm{~s} /(50 \mathrm{~Hz}-0.5 \mathrm{~Hz}) \approx 12.1 \mathrm{~s}$


## Acceleration time setting (Pr.8, Pr.20)

- Use Pr. 8 Deceleration time to set the deceleration time required to reach a stop status from to Pr. 20 Acceleration/ deceleration reference frequency.
- Set the deceleration time according to the following formula.


## Deceleration time setting $=$ Pr. $20 \times$ deceleration time from maximum frequency to stop / (maximum frequency - Pr. 10 )

- For example, the following calculation is used to find the setting value for Pr. 8 when increasing the output frequency to the maximum frequency of 50 Hz in 10 s with $\operatorname{Pr} .20=120 \mathrm{~Hz}$ and Pr. $10=3 \mathrm{~Hz}$.

Pr. $8=120 \mathrm{~Hz} \times 10 \mathrm{~s} /(50 \mathrm{~Hz}-0.5 \mathrm{~Hz}) \approx 25.5 \mathrm{~s}$

## NOTE

- If the acceleration/deceleration time is set, the actual motor acceleration/deceleration time cannot be made shorter than the shortest acceleration/deceleration time determined by the mechanical system J (moment of inertia) and motor torque.
- If the Pr. 20 setting is changed, the Pr. 125 and Pr. 126 (frequency setting signal gain frequency) settings do not change. Set Pr. 125 and Pr. 126 to adjust the gains.
- Under PM sensorless vector control, if the protective function (E.OLT) is activated due to insufficient torque in the low-speed range, set longer acceleration/deceleration times only in the low-speed range in Pr. 791 Acceleration time in low-speed range and Pr. 792 Deceleration time in low-speed range.


## $\bullet$ Changing the minimum increment of the acceleration/deceleration time (Pr.21)

- Use Pr. 21 to set the minimum increment of the acceleration/deceleration time.

Setting value "0" (initial value): minimum increment 0.1 s
Setting value " 1 ": minimum increment 0.01 s

- Pr. 21 setting allows the minimum increment of the following parameters to be changed.

Pr.7, Pr.8, Pr.16, Pr.44, Pr.45, Pr.110, Pr.111, Pr.264, Pr.265, Pr.791, Pr. 792

## NOTE

- Pr. 21 setting does not affect the minimum increment setting of Pr. 611 Acceleration time at a restart.
- The parameter can be set in five digits including the numbers below decimal point for the FR-DU08 and the FR-PU07. A "1000" or more value is set in increments of 0.1 s even if $\operatorname{Pr} .21=" 1$ ".


## - Setting multiple acceleration/deceleration times (RT signal, X9 signal, Pr.44, Pr.45, Pr.110, Pr.111, Pr.147)

- Pr. 44 and Pr. 45 are valid when the RT signal is ON or when the output frequency is equal to or higher than the frequency set in Pr. 147 Acceleration/deceleration time switching frequency. Pr. 110 and Pr. 111 are valid when the X9 signal is ON.
- Even at the frequency lower than the Pr. 147 setting, turning ON the RT signal (X9 signal) switches the acceleration/ deceleration time to the second (third) acceleration/deceleration time. The priority of the signals and settings is X 9 signal > RT signal > Pr. 147 setting.
- To input the X9 signal, set "9" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to the terminal.
- When "9999" is set in Pr. 45 and Pr.111, the deceleration time becomes equal to the acceleration time (Pr.44, Pr.110).
- When Pr. $110=$ "9999" is set, the third acceleration/deceleration function is disabled.
- If the Pr. 147 setting is equal to or less than the Pr. 10 DC injection brake operation frequency or the Pr. 13 Starting frequency setting, the acceleration/deceleration time switches to the Pr. 44 (Pr.45) when the output frequency reaches or exceeds the Pr. 10 or Pr. 13 setting.

Pr. 147 setting	Acceleration/deceleration time	Description
9999 (initial value)	Pr.7, Pr.8	Acceleration/deceleration time is not   automatically changed.
0.00 Hz	Pr.44, Pr.45	Second acceleration/deceleration time is   applied from the start.
$0.01 \mathrm{~Hz} \leq$ Pr. $147 \leq$ Set frequency	Output frequency < Pr.147: Pr.7, Pr.8   Pr.147 $\leq$ Output frequency: Pr.44, Pr.45	Acceleration/deceleration time is   automatically changed.
Set frequency < Pr. 147	Pr.7, Pr.8	Not changed as the frequency has not   reached the switchover frequency.



## NOTE

- The reference frequency during acceleration/deceleration depends on the Pr. 29 Acceleration/deceleration pattern selection setting. (Refer to page 354.)
- The RT and X9 signals can be assigned to an input terminal by setting Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- The RT (X9) signal acts as the second (third) function selection signal and makes the other second (third) functions valid. (Refer to page 500.)
- The RT signal is assigned to terminal RT in the initial status. Set "3" in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.


## Setting the acceleration/deceleration time in the low-speed range (Pr.791, Pr.792)

- If torque is required in the low-speed range (less than $10 \%$ of the rated motor frequency) under PM sensorless vector control, set the Pr. 791 Acceleration time in the low-speed range and Pr. 792 Deceleration time in low-speed range settings higher than the Pr. 7 Acceleration time and Pr. 8 Deceleration time settings so that the mild acceleration/ deceleration is performed in the low-speed range. Such a setting is especially effective when the low-speed range hightorque characteristic is disabled (Pr. $788=$ " 0 "). (When RT signal or X9 signal is turned ON, the second or third acceleration/ deceleration time setting is prioritized.)



## NOTE

- Set Pr. 791 higher than Pr.7, and Pr. 792 higher than Pr.8. If set as Pr. $791<\operatorname{Pr} .7$, the operation is performed as Pr. $791=\operatorname{Pr} .7$. If set as Pr. 792 < Pr.8, the operation is performed as Pr. $792=$ Pr. 8 .
- Refer to page 798 for the rated motor frequency of MM-CF.


## - Emergency stop function (Pr.1103)

- When the Emergency stop (X92) signal is ON, the deceleration stop is performed according to the settings in the Pr. 1103 Deceleration time at emergency stop and Pr. 815 Torque limit level 2.
- To input the X92 signal, set "92" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.
- The X92 signal is a normally closed input (NC contact input).
- "PS" is displayed on the operation panel during activation of the emergency stop function.

- The droop control and the speed loop integration at the emergency stop by the Emergency stop (X92) signal can be enabled/disabled using Pr. 1349 Emergency stop operation selection.

Pr.1349   setting	Droop control	Sescription
	Enabled	Enabled loop integration
0	Enabled	Disabled
1	Disabled	Enabled
10	Disabled	Disabled
11		

## NOTE

- The X92 signals can be assigned to an input terminal by setting Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- Refer to page 702 for details of the droop control.
- Refer to page 244 for details of the speed loop integration.


### 5.8.2 Acceleration/deceleration pattern

The acceleration/deceleration pattern can be set according to the application.
In addition, the backlash measures that stop acceleration/deceleration by the frequency or time set with parameters at acceleration/deceleration can be set.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 29 \\ & \text { F100 } \end{aligned}$	Acceleration/deceleration pattern selection	0	0	Linear acceleration/deceleration
			1	S-pattern acceleration/deceleration A
			2	S-pattern acceleration/deceleration B
			3	Backlash measure
			4	S-pattern acceleration/deceleration C
			5	S-pattern acceleration/deceleration D
			6	Variable-torque acceleration/deceleration
$\begin{aligned} & 140 \\ & \text { F200 } \end{aligned}$	Backlash acceleration stopping frequency	1 Hz	0 to 590 Hz	Set the stopping frequency and time during backlash measures.   Valid by backlash measures (Pr. $29=$ " 3 ").
$\begin{aligned} & 141 \\ & \text { F201 } \end{aligned}$	Backlash acceleration stopping time	0.5 s	0 to 360 s	
$\begin{aligned} & 142 \\ & \text { F202 } \end{aligned}$	Backlash deceleration stopping frequency	1 Hz	0 to 590 Hz	
$\begin{array}{\|l\|} \hline 143 \\ \text { F203 } \end{array}$	Backlash deceleration stopping time	0.5 s	0 to 360 s	
$\begin{array}{\|l\|} \hline 380 \\ \text { F300 } \end{array}$	Acceleration S-pattern 1	0	0 to 50\%	Set the time for drawing the S-pattern from acceleration/ deceleration start to linear acceleration as a ratio (\%) of acceleration/deceleration time (Pr.7, 8, etc.). The acceleration/deceleration curve can be switched by the X20 signal.   Valid by S-pattern acceleration/deceleration C (Pr. 29 = "4").
$\begin{aligned} & 381 \\ & \text { F301 } \end{aligned}$	Deceleration S-pattern 1	0	0 to 50\%	
$\begin{aligned} & 382 \\ & \text { F302 } \end{aligned}$	Acceleration S-pattern 2	0	0 to 50\%	
$\begin{aligned} & \hline 383 \\ & \text { F303 } \end{aligned}$	Deceleration S-pattern 2	0	0 to 50\%	
$\begin{aligned} & 516 \\ & \text { F400 } \end{aligned}$	S-pattern time at a start of acceleration	0.1 s	0.1 to 2.5 s	Set the time required for acceleration (S-pattern) of Spattern acceleration/deceleration.   Valid by S-pattern acceleration/deceleration D (Pr. 29 = "5").
$\begin{aligned} & 517 \\ & \text { F401 } \end{aligned}$	S-pattern time at a completion of acceleration	0.1 s	0.1 to 2.5 s	
$\begin{aligned} & 518 \\ & \text { F402 } \end{aligned}$	S-pattern time at a start of deceleration	0.1 s	0.1 to 2.5 s	
$\begin{aligned} & 519 \\ & \text { F403 } \end{aligned}$	S-pattern time at a completion of deceleration	0.1 s	0.1 to 2.5 s	

## - Linear acceleration/deceleration (Pr. $29=00$ initial value)

- When the frequency is changed for acceleration, deceleration, etc. during inverter operation, the output frequency is changed linearly (linear acceleration/deceleration) to reach the set frequency without straining the motor and inverter. Linear acceleration/deceleration has a uniform frequency/time slope.



## S-pattern acceleration/deceleration A (Pr. 29 = "1")

- Use this when acceleration/deceleration is required for a short time until a high-speed area equal to or higher than the base frequency, such as for the main shaft of the machine.
- The acceleration/deceleration pattern has the Pr. 3 Base frequency (Pr. 84 Rated motor frequency under PM motor control) (fb) as the point of inflection in an S-pattern curve, and the acceleration/deceleration time can be set to be suitable for the motor torque reduction in the constant-power operation range at the base frequency (fb) or more.

- Acceleration/deceleration time calculation method when the set frequency is equal to or higher than the base frequency

Acceleration time $t=(4 / 9) \times\left(T / f^{2}\right) \times f^{2}+(5 / 9) \times T$
Where $T$ is the acceleration/deceleration time ( s ), f is the set frequency $(\mathrm{Hz}$ ), and fb is the base frequency (rated motor frequency)

- Reference ( 0 Hz to set frequency) of acceleration/deceleration time when Pr. $3=$ " 60 Hz "

Acceleration/deceleration time (s)	Set frequency (Hz)			
	60	120	200	400
5	5	12	27	102
15	15	35	82	305

## NOTE

- For the acceleration/deceleration time setting of the S-pattern acceleration/deceleration A, set the time to Pr. 3 (Pr. 84 under PM sensorless vector control) instead of Pr. 20 Acceleration/deceleration reference frequency.


## - S-pattern acceleration/deceleration B (Pr. 29 = "2")

- This is useful for preventing collapsing stacks such as on a conveyor. S-pattern acceleration/deceleration B can reduce the impact during acceleration/deceleration by accelerating/decelerating while maintaining an S-pattern from the present frequency (f2) to the target frequency (f1).

- When the RT or X9 signal turns ON during acceleration or deceleration with the S-pattern acceleration/deceleration B enabled, a pattern of acceleration or deceleration changes to linear at the moment.


## - Backlash measures (Pr. 29 = "3", Pr. 140 to Pr.143)

- Reduction gears have an engagement gap and have a dead zone between forward rotation and reverse rotation. This dead zone is called backlash, and this gap disables a mechanical system from following motor rotation. More specifically, a motor shaft develops excessive torque when the direction of rotation changes or when constant-speed operation shifts to deceleration, resulting in a sudden motor current increase or regenerative status.
- To avoid backlash, acceleration/deceleration is temporarily stopped. Set the acceleration/deceleration stopping frequency and time in Pr. 140 to Pr. 143.



## NOTE

- Setting the backlash measures increases the acceleration/deceleration time by the stopping time.


## - S-pattern acceleration/deceleration C (Pr. 29 = "4", Pr. 380 to Pr.383)

- Switch the acceleration/deceleration curve by the S-pattern acceleration/deceleration C switchover (X20) signal.
- To input the X20 signal, set "20" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to the terminal.

X20 signal	During acceleration	During deceleration
OFF	Pr. 380 Acceleration S-pattern 1	Pr. 381 Deceleration S-pattern 1
ON	Pr. 382 Acceleration S-pattern 2	Pr. 383 Deceleration S-pattern 2



C switchover
(X20)

- Set the ratio (\%) of time for drawing an S-shape in Pr. 380 to Pr. 383 with the acceleration time as 100\%.

Parameter setting (\%) $=$ Ts / T $\times 100 \%$


## NOTE

- At a start, the motor starts at Pr. 13 Starting frequency when the start signal turns ON
- If there is a difference between the speed command and speed at a start of deceleration due to torque limit operation etc., the speed command is matched with the speed to make deceleration.
- Change the X20 signal after the speed becomes constant. S pattern operation before switching continues even if the X20 signal is changed during acceleration or deceleration.
- The X20 signal can be assigned to an input terminal by setting any of Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- When the RT or X9 signal turns ON during acceleration or deceleration with the S-pattern acceleration/deceleration C enabled, a pattern of acceleration or deceleration changes to linear at the moment.


## - S-pattern acceleration/deceleration D (Pr. 29 = "5", Pr. 516 to Pr.519)

- Set the time required for S-pattern operation part of S-pattern acceleration/deceleration with Pr. 516 to Pr.519. Set each S-pattern operation time for acceleration start (Pr.516), acceleration completion (Pr.517), deceleration start (Pr.518), and deceleration completion(Pr.519).
- When S-pattern acceleration/deceleration D is set, the acceleration/deceleration time becomes longer, as shown below. The set acceleration/deceleration time T1 indicates the actual time taken for linear acceleration/deceleration as calculated based on Pr.7, Pr.8, Pr.44, Pr.45, Pr.110, and Pr. 111.

Actual acceleration time T2 $=$ set acceleration time T1 + (S-pattern time at start of acceleration + S-pattern time at completion of acceleration) / 2
Actual deceleration time T2 $=$ set deceleration time T1 + (S-pattern time at start of deceleration + S-pattern time at completion of deceleration) / 2


## NOTE

- Even if the start signal is turned OFF during acceleration, the inverter does not decelerate immediately to avoid sudden frequency change. (Likewise, the inverter does not immediately accelerate when deceleration is changed to re-acceleration by turning the start signal ON during deceleration, etc.)
- For example, the following table shows the actual acceleration time when starting the inverter by selecting S-pattern acceleration/deceleration D from a stop to 60 Hz , as shown below, with the initial parameter settings.


$$
\begin{aligned}
& \text { Set acceleration time T1 = (set frequency - Pr. 13) } \times \text { Pr. } 7 / \text { Pr. } 20 \\
& =(60 \mathrm{~Hz}-0.5 \mathrm{~Hz}) \times 5 \mathrm{~s} / 60 \mathrm{~Hz} \\
& \fallingdotseq 4.96 \text { s (actual acceleration time at linear acceleration) }
\end{aligned}
$$

Actual acceleration time T2 $=$ set acceleration time T1 + (Pr. 516 + Pr.517) / 2

$$
\begin{aligned}
& =4.96 \mathrm{~s}+(0.1 \mathrm{~s}+0.1 \mathrm{~s}) / 2 \\
& =5.06 \mathrm{~s} \text { (acceleration time at S-pattern acceleration) }
\end{aligned}
$$

- The following table shows the actual deceleration time when stopping the inverter by selecting S-pattern acceleration/ deceleration D from operation to 0 Hz , as shown below, with the initial parameter settings.


Set deceleration time T1 = (set frequency - Pr. 10 DC injection brake operation frequency $) \times$ Pr. $8 /$ Pr. 20
$=(60 \mathrm{~Hz}-3 \mathrm{~Hz}) \times 5 \mathrm{~s} / 60 \mathrm{~Hz}$
$\fallingdotseq 4.75 \mathrm{~s}$ (actual deceleration time at linear deceleration)
Actual deceleration time T2 $=$ set deceleration time T1 $+($ Pr. $518+\operatorname{Pr} .519) / 2$

$$
\begin{aligned}
& =4.75 \mathrm{~s}+(0.1 \mathrm{~s}+0.1 \mathrm{~s}) / 2 \\
& =4.85 \mathrm{~s} \text { (deceleration time at S-pattern deceleration) }
\end{aligned}
$$

## NOTE

- When acceleration/deceleration time (such as Pr. 7 and Pr.8) is set to " 0 s " under Real sensorless vector control, Vector control, and PM sensorless vector control (with MM-CF and Pr. 788 Low speed range torque characteristic selection ="9999 (initial value)"), linear acceleration and deceleration are performed for the S-pattern acceleration/deceleration A to D and backlash measures (Pr. $29=" 1$ to 5").
- Set linear acceleration/deceleration (Pr. $29=$ " 0 (initial setting)") when torque control is performed under Real sensorless vector control or Vector control. When acceleration/deceleration patterns other than the linear acceleration/deceleration are selected, the protective function of the inverter may be activated.


## - Variable-torque acceleration/deceleration (Pr. 29 = "6")

- This function is useful for variable-torque load such as a fan and blower to accelerate/decelerate in short time. Linear acceleration/deceleration is performed in the area where the output frequency $>$ base frequency.



## NOTE

- When the base frequency is out of the range 45 to 65 Hz , the linear acceleration/deceleration is performed even if Pr. $29=$ " 6 ".
- Even if Pr. 14 Load pattern selection = "1 (variable torque load)", variable torque acceleration/deceleration setting is prioritized and the inverter operates as Pr. 14 = "0 (constant torque load)".
- For the variable torque acceleration/deceleration time setting, set the time period to reach Pr. 3 Base frequency. (Not the time period to reach Pr. 20 Acceleration/deceleration reference frequency.)
- The variable torque acceleration/deceleration is disabled during PM sensorless vector control. (Linear acceleration/ deceleration is performed.)


## 《 Parameters referred to 》

Pr. 3 Base frequency page 673
Pr. 7 Acceleration time, Pr. 8 Deceleration time, Pr. 20 Acceleration/deceleration reference frequency $\vDash$ page 349
Pr. 10 DC injection brake operation frequency page 681
Pr. 14 Load pattern selection page 674
Pr. 178 to Pr. 189 (Input terminal function selection) page 496

### 5.8.3 Remote setting function

Even if the operation panel is located away from the enclosure, contact signals can be used to perform continuous variablespeed operation, without using analog signals.
By simply setting this parameter, the acceleration, deceleration and setting clear functions of the remote speed setter (FR-FK) become available.

Pr.	Name	Initial value	Setting range	Description		
				RH, RM, RL signal function	Frequency setting storage	Deceleration to the frequency lower than the set frequency
$\begin{aligned} & 59 \\ & \text { F101 } \end{aligned}$	Remote function selection	0	0	Multi-speed setting	-	Not available
			1	Remote setting	Displayed	
			2	Remote setting	Not used	
			3	Remote setting	Not used (Turning STF/STR OFF clears remotelyset frequency.)	
			11	Remote setting	Displayed	
			12	Remote setting	Not used	
			13	Remote setting	Not used (Turning STF/STR OFF clears remotelyset frequency.)	Available

## $\rightarrow$ Remote setting function

- Use Pr. 59 to enable/disable the remote setting function and enable/disable the frequency setting storage function during remote setting.
- When Pr. $59 \neq=0$ " (remote setting function valid), the functions of the RH, RM and RL signals are changed to acceleration $(R H)$, deceleration ( $R M$ ) and clear ( $R L$ ).



## Acceleration/deceleration operation

- When the acceleration signal $(\mathrm{RH})$ is turned $O N$, the set frequency increases. The increased speed at this time is determined by the setting of Pr. 44 Second acceleration/deceleration time. Turning OFF the RH signal stops increasing the set frequency and run the motor at the frequency at that time.
- When the deceleration signal (RM) is turned ON, the set frequency decreases. The decreased speed at this time is determined by the setting of Pr. 45 Second deceleration time. When Pr. $45=$ " 9999 ", the deceleration speed is the same as Pr. 44 setting. Turning OFF the RM signal stops decreasing the set frequency and runs the motor at the frequency at that time.
- By setting Pr. 59 = "11 to 13 ", the speed can be decelerated to the frequency lower than the main speed (set by the External operation frequency (except multi-speed setting) or PU operation frequency).
Pr. $59=" 1,2,3 "$
Decelerates to the main speed


## NOTE

- While the RT signal is OFF, Pr. 44 Second acceleration/deceleration time and Pr. 45 Second deceleration time are used as the set frequency accelerating/decelerating time at turn ON of the acceleration/deceleration signal. If the Pr. 7 and Pr. 8 settings are longer, the acceleration/deceleration time set by Pr. 7 and Pr. 8 are applied.
While the RT signal is ON, Pr. 44 and Pr. 45 settings are used as the acceleration/deceleration time regardless of the Pr. 7 and Pr. 8 settings.


## - Output frequency

- During External operation, the remotely-set frequency set with RH and RM signals is added to the terminal 4 input and External operation mode frequency (PU operation mode frequency when Pr. $79=$ " 3 " (External and PU combined operation)) except multi-speed setting. (When compensating analog input, set Pr. 28 Multi-speed input compensation selection = "1". If the RH and RM signals are used for acceleration/deceleration while the frequency is set by analog voltage input (terminal 2 or 4 , selected by Pr. $28=$ " 0 "), the auxiliary input via terminal 1 is disabled.)
- During PU operation, the remotely-set frequency set with RH and RM signal operation is added to the PU running frequency.


## - Frequency setting storage

- When Pr. $59=11,11 "$, the remotely-set frequency (frequency set by $R H / R M$ operation) is stored to the memory (EEPROM). When power is switched OFF once, then ON, operation is resumed with the stored set frequency.
-When Pr.59= " $2,3,12,13$ ", the set frequency is not stored, so when switching the power ON again after being switched OFF, the remotely-set frequency becomes 0 Hz .
- The remotely-set frequency is stored at the point when the start signal (STF or STR) turns OFF. Remotely-set frequency is stored every minute after turning OFF (ON) the RH and RM signals together. Every minute, the frequency is overwritten in the EEPROM if the latest frequency is different from the previous one when comparing the two. This cannot be written with $R L$ signals.


## NOTE

- When switching the start signal from ON to OFF, or changing frequency by the RH or RM signal frequently, set the frequency setting value storage function (write to EEPROM) invalid (Pr. $59=2,3,12,13 "$ ). If the frequency setting value storage function is valid (Pr. $59=" 1,11 "$ ), the frequency is written to EEPROM frequently, and this will shorten the life of the EEPROM.


## Clearing the settings

- When Pr. $59=" 1,2,11,12 "$ and the clear signal $(R L)$ is turned $O N$, the remotely-set frequency is cleared. When Pr. $59=$ " 3,13 " and the STF (STR) signal is turned OFF, the remotely-set frequency is cleared.
－The range of frequency changeable by acceleration signal（ RH ）and deceleration signal（ RM ）is 0 to maximum frequency（Pr． 1 or Pr． 18 setting）．Note that the maximum value of set frequency is（main speed＋maximum frequency）．

－Even if the start signal（STF or STR）is OFF，turning ON the RH or RM signal varies the preset frequency．
－The RH，RM，or RL signal can be assigned to an input terminal by setting Pr． 178 to Pr． 189 （Input terminal function selection）．Changing the terminal assignment may affect other functions．Set parameters after confirming the function of each terminal．
－The inverter can be used in the Network operation mode．
－The remote setting function is invalid during JOG operation and PID control operation．
－The multi－speed operation function is invalid when remote setting function is selected．


## Setting frequency is＂0＂．

－Even when the remotely－set frequency is cleared by turning ON the RL（clear）signal after turning OFF（ON）both the RH and RM signals，the inverter operates at the remotely－set frequency stored in the last operation if power is reapplied before one minute has elapsed since turning OFF（ON）both the RH and RM signals．

－When the remotely－set frequency is cleared by turning ON the RL（clear）signal after turning OFF（ON）both the RH and RM signals，the inverter operates at the frequency in the remotely－set frequency cleared state if power is reapplied before one minute has elapsed since turning OFF（ON）both the RH and RM signals．


## ．CAUTION

－When using the remote setting function，set the maximum frequency again according to the machine．

《｜Parameters referred to 》》
Pr． 1 Maximum frequency，Pr． 18 High speed maximum frequency page 407

## 5．8．4 Starting frequency and start－time hold function

V／F Magneticflux Sensorless Vector
It is possible to set the starting frequency and hold the set starting frequency for a certain period of time．
Set these functions when a starting torque is needed or the motor drive at start needs smoothing．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{1 3}$   F102	Starting frequency	0.5 Hz	0 to 60 Hz	Set the starting frequency at which the start signal is turned   ON．
$\mathbf{5 7 1}$   F103	Holding time at a start	9999	0 to 10 s	Set the holding time of Pr．13．
			The holding function at start is disabled．	

## －Starting frequency setting（Pr．13）

－The frequency at start can be set in the range of 0 to 60 Hz ．
－Set the starting frequency at which the start signal is turned ON．


## NOTE

－The inverter does not start if the frequency setting signal has a value lower than that of Pr． 13.
For example，while Pr． $13=5 \mathrm{~Hz}$ ，the inverter output starts when the frequency setting signal reaches 5 Hz ．

## Start－time hold function（Pr．571）

－This function holds during the period set in Pr． 571 and the output frequency set in Pr． 13 Starting frequency．
－This function performs initial excitation to smooth the motor drive at a start．


## NOTE

－When Pr． $13=" 0 \mathrm{~Hz}$＂，the starting frequency is held at 0.01 Hz ．
－When the start signal was turned OFF during start－time hold，deceleration is started at that point．
－At switching between forward rotation and reverse rotation，the starting frequency is valid but the start－time hold function is invalid．

## CAUTION

－Note that when Pr． 13 is set to any value equal to or lower than Pr． 2 Minimum frequency，simply turning ON the start signal runs the motor at the frequency set in Pr． 2 even if the command frequency is not given．

## 5．8．5 Minimum motor speed frequency and hold function at the motor start up

## PM

Set the frequency where the IPM motor starts running．
Set the deadband in the low－speed range to eliminate noise and offset deviation when setting a frequency with analog input．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{1 3}$   F102	Starting frequency	Minimum frequency／   minimum rotations per minute	0 to 60 Hz	Set the frequency where the motor starts   running．
$\mathbf{5 7 1}$   F103	Holding time at a start	9999	0 to 10 s	Set the time to hold 0.01 Hz.
		9999	The holding function at start is disabled．	

## Starting frequency setting（Pr．13）

－The frequency where the IPM motor starts running can be set in the range of 0 to 60 Hz ．
－While the frequency command is less than the Pr． 13 Starting frequency setting，the PM motor is stopped．
When the frequency command reaches the set frequency or higher，the PM motor accelerates according to the Pr． 7
Acceleration time setting．


## NOTE

－Under induction motor control（under V／F control，Advanced magnetic flux vector control，Real sensorless vector control，and Vector control），the output starts at the frequency set in Pr．13．Under PM sensorless vector control，the output always starts at 0.01 Hz ．
－The inverter does not start if the frequency setting signal has a value lower than that of Pr．13．For example，while Pr． $13=$＂ 20 $\mathrm{Hz}{ }^{\prime \prime}$ ，the inverter output starts when the frequency setting signal reaches 20 Hz ．

## - Start－time hold function（Pr．571）

－This function holds 0.01 Hz during the period set in Pr． 571 ．
－Pr． 571 is active when the low－speed range high－torque characteristic is enabled（ $\mathrm{Pr} .788=$＂9999＂）．


## $\triangle$ CAUTION

－Note that when Pr． 13 is set to any value equal to or lower than Pr． 2 Minimum frequency，simply turning ON the start signal runs the motor at the frequency set in Pr． 2 even if the command frequency is not given．

[^18]
# 5.8.6 Shortest acceleration/deceleration and optimum acceleration/deceleration (automatic acceleration/ deceleration) 

## V/F Magneticflux Sensorless Vector

The inverter can be operated with the same conditions as when the appropriate value is set to each parameter even when acceleration/deceleration time and V/F pattern are not set. This function is useful for operating the inverter without setting detailed parameters.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 292 \\ & \text { F500 } \end{aligned}$	Automatic acceleration/ deceleration	0	0	Normal operation
			1	Shortest acceleration/deceleration (without brakes)
			11	Shortest acceleration/deceleration (with brakes)
			3	Optimum acceleration/deceleration
			5,6	Lift operation 1, 2 (Refer to page 368.)
			7, 8	Brake sequence mode 1, 2 (Refer to page 541.)
61 F510	Reference current	9999	0 to $500 \mathrm{~A}^{* 1}$	Set the reference current during shortest (optimum) acceleration/deceleration.
			0 to $3600 \mathrm{~A}^{*}$	
			9999	Rated output current value reference of the inverter
$\begin{array}{\|l\|} \hline 62 \\ \text { F511 } \end{array}$	Reference value at acceleration	9999	0 to 400\%	Set the speed limit value (optimum value) during shortest (optimum) acceleration.
			9999	Shortest acceleration/deceleration: 150\% as the limit value Optimum acceleration/deceleration: 100\% as the optimum value
$\begin{array}{\|l\|} \hline 63 \\ \text { F512 } \end{array}$	Reference value at deceleration	9999	0 to 400\%	Set the speed limit value (optimum value) during shortest (optimum) deceleration.
			9999	Shortest acceleration/deceleration: 150\% as the limit value Optimum acceleration/deceleration: 100\% as the optimum value
$\begin{aligned} & 293 \\ & \text { F513 } \end{aligned}$	Acceleration/deceleration separate selection	0	0	Shortest (optimum) acceleration/deceleration for both acceleration and deceleration
			1	Shortest (optimum) acceleration/deceleration for acceleration only
			2	Shortest (optimum) acceleration/deceleration for deceleration only

*1 The setting range of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower
*2 The setting range of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher

## Shortest acceleration/deceleration (Pr. 292 = "1, 11", Pr.293)

- Set this parameter to accelerate/decelerate the motor at the shortest time. This function is useful when the motor needs to be accelerated/decelerated at a shorter time, such as for a machine, but the designed value of the machine constant is not known.
- At acceleration/deceleration, this function adjusts the motor to accelerate/decelerate with the maximum inverter output torque using the Pr. 7 Acceleration time and Pr. 8 Deceleration time setting as reference. (Pr. 7 and Pr. 8 settings are not changed.)
- Use Pr. 293 Acceleration/deceleration separate selection to apply the shortest acceleration/deceleration to one of acceleration and deceleration only.
When "0 (initial value)" is set, the shortest acceleration/deceleration is performed for both acceleration and deceleration.
- Since the FR-A820-00490(7.5K) or lower, FR-A840-00250(7.5K) or lower capacity inverters are equipped with built-in brake resistors, set Pr. 292 to "11". Set "11" also when a high-duty brake resistor or brake unit is connected. The deceleration time can further be shortened.
- When the shortest acceleration/deceleration is selected under V/F control and Advanced magnetic flux vector control, the stall prevention operation level during acceleration/deceleration becomes 150\% (adjustable using Pr. 61 to Pr.63). The setting of Pr. 22 Stall prevention operation level and stall level by analog input are used only during a constant speed operation.
Under Real sensorless vector control and Vector control, the torque limit level (Pr.22, etc.) is applied during acceleration/ deceleration. The adjustments by Pr. 61 to Pr. 63 are disabled.
- It is inappropriate to use for the following applications.
- Machines with large inertia ( 10 times or more), such as a fan. Since stall prevention operation is activated for a long time, this type of machine may be shut off due to motor overloading, etc.
- When the inverter is always operated at a specified acceleration/deceleration time.


## NOTE

- Even if automatic acceleration/deceleration has been selected, inputting the JOG signal (JOG operation), RT signal (Second function selection) or X9 signal (Third function selection) during an inverter stop switches to the normal operation and give priority to JOG operation, second function selection or third function selection. Note that during operation, an input of JOG and RT signal does not have any influence even when the automatic acceleration/deceleration is enabled.
- Since acceleration/deceleration is made with the stall prevention operation being activated, the acceleration/deceleration speed always varies according to the load conditions.
- By setting Pr. 7 and Pr. 8 appropriately, it is possible to accelerate/decelerate with a shorter time than when selecting the shortest acceleration/deceleration.


## Optimum acceleration/deceleration (Pr. 292 = " 3 ", Pr.293)

- The inverter operates at the most efficient level within the rated range that can be used continuously with reasonable inverter capacity. Using self-learning, the average current during acceleration/deceleration is automatically set so as to become the rated current. This is ideal for applications operated with a predetermined pattern and minimal load fluctuations, such as by an automatically operated conveyor.
- When the optimum acceleration/deceleration is selected, at first, the operation is performed with the values set in Pr. 0 Torque boost, Pr. 7 Acceleration time, and Pr. 8 Deceleration time. After the first operation is completed, average and peak currents are calculated based on the motor current during acceleration/deceleration, and the obtained values are compared with the reference current (initially set to the rated inverter current) to adjust the Pr.0, Pr.7, and Pr. 8 settings to their optimal values. The operation is the performed with the updated Pr.0, Pr.7, and Pr. 8 values onwards, and those parameters settings are adjusted each time. Under Advanced magnetic flux vector control, Real sensorless vector control and Vector control, however, the Pr. 0 setting is not changed.
- When a Regenerative overvoltage trip during deceleration or stop (E.OV3) occurs during deceleration, the setting of Pr. 8 is multiplied by 1.4.
- The optimum values of Pr.0, Pr. 7 and Pr. 8 are written to both the parameter RAM and EEPROM only three times of acceleration (deceleration) after the optimum acceleration/deceleration has been selected or after the power is switched ON or the inverter is reset. At or after the fourth attempt, they are not stored into EEPROM. Hence, after power-ON or inverter reset, the values changed at the third time are valid. However, the optimum values are calculated even for the fourth time and later, and Pr.0, Pr.7, and Pr. 8 are set to the RAM; therefore, these can be stored to the EEPROM by reading and writing the settings with the operation panel (FR-DU08).

Number of optimum value   changes		Pr.0, Pr.7, Pr.8	

- Either acceleration or deceleration can be made in the optimum acceleration/deceleration using Pr. 293 Acceleration/ deceleration separate selection. When the setting value is " 0 " (initial value), both acceleration and deceleration are made in the optimum acceleration/deceleration.
- It is inappropriate for machines which change in load and operation conditions. Optimum values are saved for the next operation. If the operating condition changes before the next operation, a fault such as overcurrent trip or a lack of acceleration/deceleration may occur.


## NOTE

－Even if automatic acceleration／deceleration has been selected，inputting the JOG signal（JOG operation），RT signal（Second function selection）or X9 signal（Third function selection）during an inverter stop will switch to the normal operation and give priority to JOG operation，second function selection or third function selection．Note that JOG and RT signal input is invalid even if JOG signal and RT signal are input during operation in the optimum acceleration／deceleration mode．
－Because of the learning method，the impact of the optimum acceleration／deceleration is not apparent in the first operation after setting to the optimum acceleration／deceleration mode．
－The optimum value are calculated for only acceleration from 0 to 30 Hz or higher or deceleration from 30 Hz or higher to 0 Hz ．
－The optimum acceleration／deceleration will not operate if the motor was not connected or the output current is less than $5 \%$ of the rated current of the inverter．
－A Regenerative overvoltage trip during deceleration or stop（E．OV3）may occur during deceleration even if the optimum acceleration／deceleration is selected with Pr． 293 ＝＂1（optimum acceleration／deceleration during acceleration only）＂setting．In such case，set Pr． 8 setting longer．

## －Shortest and optimum acceleration／deceleration mode adjustment（Pr． 61 to Pr．63）

－The application range can be expanded by setting the parameters for adjustment of Pr． 61 to Pr． 63.

Pr．	Name	Setting range	Description
$\mathbf{6 1}$		0 to $500 \mathrm{~A}^{* 1}$	Set the rated motor current value such as when the motor capacity and inverter capacity   differ．   Shortest acceleration／deceleration：Set the reference current（A）of the stall prevention   operation level during acceleration／deceleration．   Optimum acceleration／deceleration：Set the reference current（A）of the optimum current   during acceleration／deceleration．
		Reference current	0 to $3600 \mathrm{~A}^{* 2}$

＊1 The setting range of FR－A820－03160（55K）or lower and FR－A840－01800（55K）or lower
＊2 The setting range of FR－A820－03800（75K）or higher and FR－A840－02160（75K）or higher

## NOTE

－When Real sensorless vector control or Vector control is selected with the shortest acceleration／deceleration，Pr． 61 to Pr． 63 are invalid．
－Even if Pr． 61 to Pr． 63 are set once，changing the setting to other than the shortest acceleration／deceleration（Pr． $292 \neq 11$ or 11＂）automatically resets to the initial setting（9999）．Set Pr． 61 to Pr． 63 after setting Pr． 292.

### 5.8.7 Lift operation (automatic acceleration/ deceleration)

W/F
The inverter can be operated according to the load pattern of the lift with counterweight.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 292 \\ & \text { F500 } \end{aligned}$	Automatic acceleration/ deceleration	0	0	Normal operation
			1	Shortest acceleration/deceleration   (without brakes)
			11	Shortest acceleration/deceleration Refer to page   (with brakes)   365. )
			3	Optimum acceleration/deceleration
			5	Lift operation 1 (stall prevention operation level 150\%)
			6	Lift operation 2 (stall prevention operation level 180\%)
			7, 8	Brake sequence 1, 2 (Refer to page 541.)
$\begin{aligned} & 61 \\ & \text { F510 } \end{aligned}$	Reference current	9999	0 to $500 \mathrm{~A}^{* 1}$	Set the reference current during shortest (optimum) acceleration/deceleration.
			0 to 3600 A *	
			9999	Rated output current value reference of the inverter
64	Starting frequency for elevator mode	9999	0 to 10 Hz	Set the starting frequency for the lift operation.
F520			9999	Starting frequency is 2 Hz .

*1 The setting range of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower
*2 The setting range of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher

## - Lift operation (Pr. 292 = "5, 6")

- When Pr. 292 Automatic acceleration/deceleration is set to " 5 " or " 6 ", the lift operation is selected, and each setting is changed, as shown in the following table.
- During power driving, sufficient torque is generated, and during regenerative driving and during driving with no load, the torque boost setting is adjusted automatically so as not to activate the overcurrent protective function by overexcitation.

Name	Normal operation	Multi-rating (Pr.570)	Lift operation (Pr.292)	
			5	6
Torque boost	Pr. 0 (6/4/3/2/1\%)		Changes according to the output current (as shown below)	
Starting frequency	Pr. 13 (0.5 Hz)		Pr. 64 (2 Hz) Accelerate after 100 ms hold.	
Base frequency voltage	Pr. 19 (9999)		220 V class (440 V class)	
Stall prevention operation level	Pr. 22 (150\%), etc.	O( SLD)	110\%	115\%
		1 (LD)	120\%	140\%
		$2 \text { (ND) }$   Initial value	150\%	180\%
		3 (HD)	200\%	230\%


(\%)

- If the lift has a load in which the rated current of the inverter is exceeded, the maximum torque may be insufficient.

For a lift without counterweight, setting Pr. 14 Load pattern selection to " 2 or 3" (for lift load) and setting Pr. 19 Base frequency voltage appropriately give the maximum torque a greater advantage than when selecting the lift operation.

## NOTE

－The stall prevention operation level is automatically lowered according to the cumulative value of the electronic thermal O／L relay so as to prevent an inverter overload trip（E．THT，E．THM）from occurring．

## Lift operation adjustment（Pr．61，Pr．64）

－The application range can be expanded by setting the parameters for adjustment of Pr． 61 and Pr． 64.

Pr．	Name	Setting range	Description
$\mathbf{6 4}$	Reference current	0 to $500 \mathrm{~A}^{* 1}$	Set the rated motor current value such as when the motor capacity and   inverter capacity differ．   Set the reference current（A）of the stall prevention operation level．
		0 to $3600 \mathrm{~A}^{* 2}$	The rated inverter output current value is the reference．
		9999 （initial value）	Set the starting frequency for the lift operation．
$\mathbf{6 4}$	Starting frequency for   elevator mode	0 to 10 Hz	Starting frequency is 2 Hz.
			9999 （initial value）

＊1 The setting range of FR－A820－03160（55K）or lower and FR－A840－01800（55K）or lower
＊2 The setting range of FR－A820－03800（75K）or higher and FR－A840－02160（75K）or higher

## NOTE

－Even if the lift operation has been selected，inputting the JOG signal（JOG operation），RT signal（Second function selection） or X9 signal（Third function selection）during an inverter stop will disable the automatic acceleration／deceleration and give priority to JOG operation，second function selection or third function selection．Note that during operation，an input of JOG and RT signal does not have any influence even when the automatic acceleration／deceleration is enabled．
－Even if Pr． 61 and Pr． 64 are set，changing Pr． 292 automatically resets to the initial setting（9999）．Set Pr． 61 and Pr． 64 after setting Pr． 292.

Pr． 0 Torque boost page 672
Pr． 13 Starting frequency page 363
Pr． 14 Load pattern selection $\stackrel{\text { page }}{ } 674$
Pr． 19 Base frequency voltage page 673
Pr． 22 Stall prevention operation level
Pr． 570 Multiple rating setting page 326

Purpose	Parameter to set			Refer to page
To select the operation mode	Operation mode selection	P.D000	Pr. 79	370
To start up in Network operation mode at power-ON	Communication startup mode selection	P.D000, P.D001	Pr.79, Pr. 340	378
To select the command source during communication operation	Operation and speed command sources during communication operation, command source selection	P.D010 to P.D013	$\begin{aligned} & \text { Pr.338, Pr.339, Pr.550, } \\ & \text { Pr. } 551 \end{aligned}$	380
To prevent the motor from rotating reversely	Reverse rotation prevention selection	P.D020	Pr. 78	386
To change the setting resolution of speed	Set resolution switchover	P.D030	Pr. 811	422
To change the setting resolution of the torque limit	Set resolution switchover	P.D030	Pr. 811	422
To set the frequency by pulse train input	Pulse train input	$\begin{aligned} & \text { P.D100, P.D101, } \\ & \text { P.D110, P.D111 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 291 \text {, Pr. } 384 \text { to } \\ & \text { Pr. } 386 \end{aligned}$	386
To perform JOG operation	JOG operation	P.D200, P.F002	Pr.15, Pr. 16	390
To control the frequency with combinations of terminals	Multi-speed operation	P.D300 to P.D315	Pr.28, Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr. 239	391
To select the torque command method during torque control	Torque command source selection	$\begin{aligned} & \text { P.D120 to P.D121, } \\ & \text { P.D400 to P.D402 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 432 \text { to Pr. } 433 \text {, } \\ & \text { Pr. } 804 \text { to Pr. } 806 \end{aligned}$	270

### 5.9.1 Operation mode selection

Select the operation mode of the inverter.
The mode can be changed among operations using external signals (External operation), operation by the operation panel or the parameter unit (PU operation), combined operation of PU operation and External operation (External/PU combined operation), and Network operation (when RS-485 terminals or a communication option is used).

Pr.	Name	Initial value	Setting range	Description
79   D000	Operation mode selection	0	0 to $4,6,7$	Selects the operation mode.

The following table lists valid and invalid commands in each operation mode.

$\begin{aligned} & \text { Pr. } 79 \\ & \text { setting } \end{aligned}$	Description			LED display $\begin{aligned} & \text { : OFF } \\ & \text { : ON } \end{aligned}$	Refer to page
0 (initial value)	Use the External/PU switchover mode ( $\square$ PU ) to switch between the PU and External operation mode. At power ON, the inverter is in the External operation mode.			PU operation mode   -PU   - EXT   - NET   External operation mode   - PU   - EXT   - NET   NET operation mode opU   - EXT   - NET	373
1	Operation mode	Frequency command	Start command	PU operation mode	374
	PU operation mode fixed	Operation panel or parameter unit	$\square$ on operation panel or parameter unit		
2	External operation mode fixed   The operation can be performed by switching between the External and NET operation modes.	External signal input (terminal 2 and 4, JOG, multi-speed selection, etc.)	External signal input (terminal STF, STR)	External operation mode   NET operation mode PU EXT   - NET	373
3	External/PU combined operation mode 1	Operation panel/parameter unit or external signal input (multi-speed setting, terminal 4) ${ }^{* 1}$	External signal input (terminal STF, STR)	External/PU combined operation mode	374
4	External/PU combined operation mode 2	External signal input (terminal 2 and 4, JOG, multi-speed selection, etc.)	FWD or $\square$ REV on operation panel or parameter unit	$\begin{aligned} & \circ \text { EXT } \\ & \text { ONET } \end{aligned}$	374
6	Switchover mode   Switching of PU, External, and NET operation modes can be performed during operation.			PU operationmodeoPUoEXToNETExternal operationmodeoPU-EXT-NETNET operationmodeOPUOEXTONET	375
7	External operation mode (PU operation interlock)   X12 signal ON: Switchover to PU operation mode enabled (during External operation, output shutoff)   X12 signal OFF: Switchover to PU operation mode disabled				375

*1 The priorities of the frequency commands while Pr. $79=$ " 3 " are "Multi-speed operation (RL/RM/RH/REX) $>$ PID control (X14) $>$ terminal 4 analog input (AU) > digital input from the operation panel".

## - Operation mode basics

- The operation mode specifies the source of the start command and the frequency command for the inverter.
- Basically, there are following operation modes.

External operation mode: For giving a start command and a frequency command with an external potentiometer or switches which are connected to the control circuit terminal.
PU operation mode : For giving a start command and a frequency command from the operation panel, parameter unit, or RS-485 communication via the PU connector.
Network operation mode: For giving a start command and a frequency command via the RS-485 terminals or communication option. (NET operation mode)

- The operation mode can be selected from the operation panel or with the communication instruction code.



## NOTE

- There are two settings, "3" and "4", with PU/External combined operation. The startup method differs according to the setting value.
- In the initial setting, the stop function (PU Stop selection) by the operation panel or the parameter unit modes other than the PU operation mode. (Refer to Pr. 75 on page 320.)


## $\checkmark$ Operation mode switching method



When "10 or 12" is set in Pr. 340


## NOTE

- For details on switching by external terminals, refer to the following pages.

PU operation external interlock (X12 signal) page 375
PU/External operation switchover (X16 signal) page 376
PU/NET operation switchover (X65 signal), External/NET operation switchover (X66 signal) page 377 Pr. 340 Communication startup mode selection $\sqrt{3}$ page 378

## - Operation mode selection flow

Referring to the following table, select the basic parameter settings or terminal wiring related to the operation mode.

Method to give start command	Frequency setting method	Terminal wiring	Parameter setting	Operation method
External signal input (terminal STF, STR)	External (terminal 2 and 4, JOG, multi-speed, etc.)	STF (forward rotation)/STR (reverse rotation) (Refer to page 502.)   Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	Pr. 79 = "2" (External operation mode fixed)	- Frequency setting Frequency setting terminal ON   - Start command STF(STR)-ON
	PU (digital setting)	STF (forward rotation)/STR (reverse rotation) (Refer to page 502.)	$\text { Pr. } 79 \text { = "3" }$   (External/PU   combined operation mode 1)	- Frequency setting DU digital setting   - Start command STF(STR)-ON
	Communication (RS-485 terminals)	STF (forward rotation)/STR (reverse rotation) (Refer to page 502.)   RS-485 terminals (Refer to page 627.)	$\begin{aligned} & \text { Pr. } 338=\text { "1" } \\ & \text { Pr. } 340=\text { "1, } 2 " \end{aligned}$	- Frequency setting Transmit a frequency command via communication.   - Start command STF(STR)-ON
	Communication (communication option)	Terminals for communication option (Refer to the Instruction Manual of the communication option.)	$\begin{aligned} & \text { Pr. } 338=\text { = "1" } \\ & \text { Pr. } 340=\text { "1" } \end{aligned}$	- Frequency setting Transmit a frequency command via communication.   - Start command STF(STR)-ON
PU   (FWD/REV key)	External (terminal 2 and 4, JOG, multi-speed, etc.)	Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	$\text { Pr. } 79 \text { = "4" }$   (External/PU   combined operation mode 2)	- Frequency setting Frequency setting terminal ON   - Start command FWD/REV key ON
	PU (digital setting)	-	$\text { Pr. } 79 \text { = "1" }$   (PU operation mode fixed)	- Frequency setting Digital setting   - Start command FWD/REV key ON
	Communication (RS-485 terminals/communication option)	Not available		
Communication (RS-485 terminals)	External (terminal 2 and 4, JOG, multi-speed, etc.)	RS-485 terminals (Refer to page 627.)   Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	$\begin{aligned} & \text { Pr. } 339=\text { "1" } \\ & \text { Pr. } 340=\text { "1, } 2 " \end{aligned}$	- Frequency setting Frequency setting terminal ON   - Start command Transmit a start command via communication
	PU (digital setting)	Not available		
	Communication (RS-485 terminals)	RS-485 terminals (Refer to page 627.)	Pr. 340 = "1, 2"	- Frequency setting Transmit a frequency command via communication.   - Start command Transmit a start command via communication
Communication (Communication option)	External (terminal 2 and 4, JOG, multi-speed, etc.)	Terminals for communication option (Refer to the Instruction Manual of the communication option.) Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	$\begin{aligned} & \text { Pr. } 339=\text { = "1" } \\ & \text { Pr. } 340=\text { "1" } \end{aligned}$	- Frequency setting   Frequency setting terminal ON   - Start command Transmit a start command via communication
	PU (digital setting)	Not available		
	Communication (communication option)	Terminals for communication option (Refer to the Instruction Manual of the communication option.)	Pr. $340=11$	- Frequency setting Transmit a frequency command via communication.   - Start command Transmit a start command via communication

## - External operation mode (Pr. 79 = "0" (initial value), "2")

- Select the External operation mode when the start command and the frequency command are applied from a frequency setting potentiometer, start switch, etc. which are provided externally and connected to the control circuit terminals of the inverter.
- Generally, parameter change cannot be performed in the External operation mode. (Some parameters can be changed. Refer to Pr. 77 on page 328.)
- When Pr. 79 = " 0 or 2", the inverter starts up in the External operation mode at power-ON. (When using the Network operation mode, refer to page 378.)
- When parameter changing is seldom necessary, setting "2" fixes the operation mode to the External operation mode. When frequent parameter changing is necessary, setting "0" (initial value) allows the operation mode to be changed easily to the PU operation mode by pressing $\square$ PU of the operation panel. After switching to the PU operation mode, always return to the External operation mode.
- The STF and STR signal are used as a start command, and the voltage to terminal 2 and 4, current signal, multi-speed signal, and JOG signal are used as a frequency command.



## - PU operation mode (Pr. 79 = "1")

- Select the PU operation mode when giving start and frequency commands by only the key operation of the operation panel or the parameter unit.
Also select the PU operation mode when making communication using the PU connector.
- When Pr. 79 ="1", the inverter starts up in the PU operation mode at power-ON. The mode cannot be changed to other operation modes.
- The setting dial of the operation panel can be used for setting like a potentiometer. (Refer to Pr. 161 Frequency setting/ key lock operation selection on page 324.)
- When the PU operation mode is selected, the PU operation mode signal (PU) can be output.

For the terminal used for the PU signal, set "10 (positive logic)" or "110 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.


## - PU/External combined operation mode 1 (Pr. 79 = "3")

- Select the PU/External combined operation mode 1 when giving a frequency command from the operation panel or the parameter unit and giving a start command with the external start switches.
- Set "3" in Pr.79. The mode cannot be changed to other operation modes.
- When a frequency command is given from the external signal by multi-speed setting, it has a higher priority than the frequency command from the PU. Also, when AU is set to "ON", the command signal is output via terminal 4.



## - PU/External combined operation mode 2 (Pr. 79 = "4")

- Select the PU/External combined operation mode 2 when giving a frequency command from the external potentiometer, or multi-speed and JOG signals, and giving a start command by key operation of the operation panel or the parameter unit.
- Set "4" in Pr.79. The mode cannot be changed to other operation modes.



## - Switchover mode (Pr. 79 = "6")

- PU, External and Network operation (when RS-485 terminals or communication option is used) can be switched among during operation.

Operation mode switchover	Operation switchover/Operating status
External operation $\rightarrow \mathrm{PU}$ operation	Set to the PU operation mode on the operation panel and parameter unit.   - As the direction of rotation, the direction that was active by External operation is continued.   - For the setting frequency, the setting of the potentiometer (frequency command) is continued. (However, note that the setting disappears when the power is turned OFF or when the inverter is reset.)
External operation $\rightarrow$ NET operation	The switchover command to the Network operation mode is transmitted via communication.   - As the direction of rotation, the direction that was active by External operation is continued.   - The setting by the setting potentiometer (frequency command) is kept. (However, note that the setting disappears when the power is turned OFF or when the inverter is reset.)
PU operation $\rightarrow$ External operation	Press the External operation key on the operation panel and parameter unit.   - The direction of operation is determined by the External operation input signal.   - The setting frequency is determined by the external frequency command signal.
PU operation $\rightarrow$ NET operation	The switchover command to the Network operation mode is transmitted via communication.   - For the direction of operation and setting frequency, the status during PU operation is continued.
NET operation $\rightarrow$ External operation	The switchover command to the External operation mode is transmitted via communication.   - The direction of operation is determined by the External operation input signal.   - The setting frequency is determined by the external frequency command signal.
NET operation $\rightarrow \mathrm{PU}$ operation	Switch to the PU operation mode on the operation panel and parameter unit.   - For the direction of operation and frequency, the status during Network operation is continued.

## - PU operation interlock (Pr. 79 = "7")

- The operation mode can be forcibly switched to the External operation mode by input of the PU operation external interlock (X12) signal. This function prevents the operation mode from being accidentally unswitched from the PU operation mode. If the operation mode left unswitched from the PU operation mode, the inverter does not reply to the commands sent through external commands.
- To input the X12 signal, set "12" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function. (For details on Pr. 178 to Pr.189, refer to page 496.)
- Set Pr. 79 = "7" (PU operation interlock).
- If the X12 signal is not assigned, the function of the MRS signal is switched to the PU operation interlock signal from MRS (output stop).

X12 (MRS) signal	Function/Operation	
	Operation mode	Parameter writing ${ }^{* 1}$
ON	Switching of the operation mode (External, PU, and NET) is enabled   Output is stopped during External operation.	Parameter writing is enabled
OFF	Operation mode is forcefully changed to the External operation mode.   External operation is enabled.   Switching to the PU or NET operation mode from the External operation mode is disabled.	Writing of parameters other than Pr. 79 is disabled.

[^19]- Functions/operations by X12 (MRS) signal ON/OFF

Operating status		X12 (MRS) signal	Operation mode	Operating status	Switching to PU or NET operation mode
Operation mode	Status				
PU/NET	During stop	$\mathrm{ON} \rightarrow \mathrm{OFF}^{* 1}$	External ${ }^{*}{ }^{2}$	If frequency and start commands are given from external source, the inverter runs by those commands.	Not available
	During running	$\mathrm{ON} \rightarrow \mathrm{OFF}^{* 1}$			Not available
External	During stop	$\mathrm{OFF} \rightarrow \mathrm{ON}$	External ${ }^{*}{ }^{2}$	During stop	Available
		ON $\rightarrow$ OFF			Not available
	During running	$\mathrm{OFF} \rightarrow \mathrm{ON}$		Running $\rightarrow$ Output stop	Not available
		$\mathrm{ON} \rightarrow$ OFF		Output stop $\rightarrow$ Running	Not available

*1 The mode is switched to the External operation mode regardless of the ON/OFF state of the start signals (STF, STR). Thus, the motor runs under the External operation mode when the X12 (MRS) signal turns OFF with either of STF or STR in an ON state.
*2 When a fault occurs, the inverter can be reset by pressing $\frac{\frac{\text { STOP }}{\text { RESET }}}{}$ on the operation panel.

## NOTE

- The operation mode cannot be switched to the PU operation mode with the start signal (STF, STR) in an ON state even if the X 12 (MRS) signal is ON.
- If the MRS signal is ON and Pr. 79 is written to a value other than " 7 " when the MRS signal is used as the PU interlock signal, the MRS signal will act as a regular MRS function (output stop). Also, when Pr. $79=77$ ", the MRS signal becomes the PU interlock signal.
- The logic of the signal follows the setting of Pr. 17 MRS input selection also when the MRS signal is used as the PU operation interlock signal. When Pr. $17=$ " 2 ", ON and OFF in the above explanation are reversed.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Switching operation mode by external signal (X16 signal)

- When External operation and the operation from the operation panel are used together, the PU operation mode and External operation mode can be switched during a stop (during motor stop, start command OFF) by using the PU/External operation switchover (X16) signal.
- When Pr. $79=" 0,6$, or 7 ", switching between the PU operation mode and External operation mode is possible. (When Pr. 79 ="6", switchover is enabled during operation.)
- To input the X16 signal, set "16" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.

Pr. 79 setting		X16 signal status and operation mode		Remarks
		ON (External)	OFF (PU)	
0 (initial value)		External operation mode	PU operation mode	Switching among the External, PU, and NET operation modes is enabled
1		PU operation mode		PU operation mode fixed
2		External operation mode		External operation mode fixed (Switching to NET operation mode enabled)
3,4		External/PU combined operation mode		External/PU combined operation mode fixed
6		External operation mode	PU operation mode	Switching among the External, PU, and NET operation mode is enabled while running.
7	$\begin{aligned} & \text { X12 (MRS) } \\ & \text { ON } \end{aligned}$	External operation mode	PU operation mode	Switching among the External, PU, and NET operation mode is enabled. (In the External operation mode, output shutoff.)
	$\begin{aligned} & \text { X12 (MRS) } \\ & \text { OFF } \end{aligned}$	External operation mode		External operation mode fixed (Forcibly switched to External operation mode)

## NOTE

- The status of the operation mode follows the Pr. 340 Communication startup mode selection setting and the ON/OFF state of the X65 and X66 signals. (For the details, refer to page 377.)
- The priority of Pr. 79 and Pr. 340 and signals is Pr. $79>\mathrm{X} 12>\mathrm{X} 66>\mathrm{X} 65>\mathrm{X} 16>$ Pr. 340 .
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Switching the operation mode by external signals (X65, X66 signals)

- When Pr. $79=$ " 0,2 or 6 ", the PU operation mode and External operation modes can be changed to the Network operation mode during a stop (during motor stop, start command OFF) by the PU/NET operation switchover (X65) signal, or the External/NET operation switchover (X66) signal. (When Pr. $79=$ " 6 ", switchover is enabled during operation.)
- To switch between the Network operation mode and the PU operation mode

1. Set Pr. $79=" 0$ (initial value) or $6 "$.
2. Set Pr. 340 Communication startup mode selection $=$ " 10 or 12 ".
3. Set " 65 " in any of Pr. 178 to Pr. 189 to assign the PU/NET operation switchover (X65) signal to a terminal.
4. When the X65 signal is ON, the PU operation mode is selected. When the X65 signal is OFF, the NET operation mode is selected.

Pr. 340 setting	$\text { Pr. } 79$   setting		X65 signal state		Remarks
			ON (PU)	OFF (NET)	
10, 12	0 (initial value)		PU operation mode*1	NET operation mode*2	-
	1		PU operation mode		PU operation mode fixed
	2		NET operation mode		NET operation mode fixed
	3, 4		External/PU combined operation mode		External/PU combined operation mode fixed
	6		PU operation mode*1	NET operation mode*2	Switching between operation modes is enabled while running.
	7	$\begin{aligned} & \text { X12 (MRS) } \\ & \text { ON } \end{aligned}$	Switching between the External operation mode and PU operation mode is enabled. ${ }^{*}{ }^{2}$		Output is shutoff in the External operation mode.
		$\begin{aligned} & \text { X12 (MRS) } \\ & \text { OFF } \end{aligned}$	External operation mode		The operation mode is forcibly switched to the External operation mode.

- To switch between the Network operation mode and the External operation mode

1. Set Pr. $79=" 0$ (initial value), $2,6,7 "$. (When Pr. $79=" 7 "$ and the $X 12$ (MRS) signal is ON , the operation mode can be switched.)
2. Set Pr. 340 Communication startup mode selection $=$ " 0 " (initial value), " 1 " or " 2 ".
3. Set "66" in one of Pr. 178 to Pr. 189 to assign the NET-External operation switching signal (X66) to a terminal.
4. When the X66 signal is ON, the NET operation mode is selected. When the X66 signal is OFF, the External operation mode is selected.

Pr. 340 setting	$\begin{aligned} & \text { Pr. } 79 \\ & \text { setting } \end{aligned}$		X66 signal state		Remarks
			ON (NET)	OFF (External)	
0 (initial value), 1, 2	0 (initial value)		NET operation mode ${ }^{* 1}$	External operation mode*2	-
	1		PU operation mode		PU operation mode fixed
	2		NET operation mode*1	External operation mode	Switching to PU operation mode is disabled.
	3, 4		External/PU combined operation mode		External/PU combined operation mode fixed
	6		NET operation mode ${ }^{* 1}$	External operation mode ${ }^{* 2}$	Switching between operation modes is enabled while running.
	7	$\begin{aligned} & \text { X12 (MRS) } \\ & \text { ON } \end{aligned}$	NET operation mode ${ }^{* 1}$	External operation mode ${ }^{* 2}$	Output is shutoff in the External operation mode.
		$\begin{aligned} & \text { X12 (MRS) } \\ & \text { OFF } \end{aligned}$	External operation mode		The operation mode is forcibly switched to the External operation mode.

*1 When Pr. 550 NET mode operation command source selection = "0" (communication option control source) and no communication option is connected, the External operation mode is selected.
*2 When the X16 signal is OFF, the PU operation mode is selected. Also, when the X65 signal is assigned, the operation mode follows the ON/OFF state of the X 65 signal.
－The priority of Pr． 79 and Pr． 340 and signals is Pr． $79>$ X12 $>\mathrm{X} 66>\mathrm{X} 65>\mathrm{X} 16>\operatorname{Pr} .340$ ．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

## 《部arameters referred to 》》

Pr． 15 Jog frequency page 390
Pr． 4 to Pr．6，Pr． 24 to 27，Pr． 232 to Pr． 239 multi－speed operation ${ }^{3}$ page 391
Pr． 75 Reset selection／disconnected PU detection／PU stop selection page 320
Pr． 161 Frequency setting／key lock operation selection page 324
Pr． 178 to Pr． 189 （Input terminal function selection）page 496
Pr． 190 to Pr． 196 （Output terminal function selection）page 450
Pr． 340 Communication startup mode selection page 378
Pr． 550 NET mode operation command source selection page 380

## 5．9．2 Startup in Network operation mode at power－ON

When power is switched ON or when power comes back ON after an instantaneous power failure，the inverter can be started up in the Network operation mode．
After the inverter starts up in the Network operation mode，parameter writing and operation can be commanded from programs． Set this mode when performing communication operation using the RS－485 terminals or a communication option．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 79 \\ & \text { D000 } \end{aligned}$	Operation mode selection	0	0 to 4，6， 7	Selects the operation mode． （Refer to page 370．）
$\begin{aligned} & 340 \\ & \text { D001 } \end{aligned}$	Communication startup mode selection	0	0	Follows the Pr． 79 setting．
			1， 2	The drive unit starts up in the Network operation mode． If an instantaneous power failure occurs when＂ 2 ＂is set，the operating status before the instantaneous power failure is maintained．
			10， 12	The drive unit starts up in the Network operation mode． The operation mode can be changed between the PU operation mode and Network operation mode from the operation panel．If an instantaneous power failure occurs when＂12＂is set，running is continued at the condition before the instantaneous power failure．

## －Selecting the operation mode for power－ON（Pr．340）

－Depending on the Pr． 79 and Pr． 340 settings，the operation mode at power－ON（reset）changes as described below．

Pr． 340 setting	$\begin{aligned} & \text { Pr. } 79 \\ & \text { setting } \end{aligned}$	Operation mode at power－ON，at power restoration，or after a reset	Operation mode switching
$\begin{aligned} & 0 \\ & \text { (initial value) } \end{aligned}$		External operation mode	Switching among the External，PU，and NET operation modes is enabled＊2
	1	PU operation mode	PU operation mode fixed
	2	External operation mode	Switching among the External，NET operation modes is enabled Switching to PU operation mode is disabled．
	3， 4	External／PU combined operation mode	Operation mode switching is disabled
	6	External operation mode	Switching among the External，PU，and NET operation mode is enabled while running．
	7	X12（MRS）signal ON External operation mode	Switching among the External，PU，and NET operation modes is enabled＊2
		X12（MRS）signal OFF External operation mode	External operation mode fixed（Forcibly switched to External operation mode）
1， $2^{* 1}$	0	NET operation mode	Same as Pr． $340=$＂0＂setting
	1	PU operation mode	
	2	NET operation mode	
	3， 4	External／PU combined operation mode	
	6	NET operation mode	
	7	X12（MRS）signal ON NET operation mode	
		X12（MRS）signal OFF External operation mode	
10， $12{ }^{* 1}$	0	NET operation mode	Switching between the PU and NET operation mode is enabled．${ }^{*}$
	1	PU operation mode	Same as Pr．340＝＂0＂setting
	2	NET operation mode	NET operation mode fixed
	3， 4	External／PU combined operation mode	Same as Pr． 340 ＝＂0＂setting
	6	NET operation mode	Switching between the PU and NET operation mode is enabled while running．${ }^{*}$
	7	External operation mode	Same as Pr． $340=$＂0＂setting

＊1 Use Pr． 340 ＝＂2 or 12＂setting to perform communication with the RS－485 terminals．Even if an instantaneous power failure occurs while Pr． 57 Restart coasting time $\neq$＂9999＂，the inverter continues running at the condition before the instantaneous failure．When Pr． $340=$＂1 or 10 ＂，if a power failure occurs while the start signal is being input through communication，the start signal is OFF at power restoration．
＊2 The operation mode cannot be directly changed between the PU operation mode and Network operation mode．
＊3 Switching between the PU and NET operation modes is available with the $\frac{\mathrm{PU}}{\mathrm{EXT}}$ key on the operation panel and the X65 signal．

### 5.9.3 Start command source and frequency command source during communication operation

The start and frequency commands given from an external device can be made valid when using the RS-485 terminals or the communication option. The command source in the PU operation mode can also be selected.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 338 \\ & \text { D010 } \end{aligned}$	Communication operation command source	0	0	Start command source is communication.
			1	Start command source is external.
$\begin{aligned} & 339 \\ & \text { D011 } \end{aligned}$	Communication speed command source	0	0	Frequency command source is communication.
			1	Frequency command source is external.
			2	Frequency command source is external. (When there is no external input, the frequency command given via communication is valid, and the frequency command given via terminal 2 is invalid.)
$\begin{aligned} & 550 \\ & \text { D012 } \end{aligned}$	NET mode operation command source selection	9999	0	The communication option is the command source when in the NET operation mode.
			1	The RS-485 terminals are the command source when in the NET operation mode.
			9999	Communication option is recognized automatically.   Normally, the RS-485 terminals are the command source. When the communication option is mounted, the communication option is the command source.
$\begin{aligned} & 551 \\ & \text { D013 } \end{aligned}$	PU mode operation command source selection	9999	1	The RS-485 terminals are the command source when in the PU operation mode.
			2	The PU connector is the command source when in the PU operation mode.
			3	The USB connector is the command source when in the PU operation mode.
			9999	USB automatic recognition.   Normally, the PU connector is the command source. When the USB is connected, the USB connector is the command source.

## - Selection of command source in the network (NET) operation mode (Pr.550)

- Either of the RS-485 terminals or the communication option can be specified for the command source in the Network operation mode.
- For example, whether or not the communication option is installed, set Pr. $550=$ " 1 " to write parameters or give the start and frequency commands via RS-485 terminals in the Network operation mode.


## NOTE

- In the initial setting, "9999" (communication option automatic recognition) is set for Pr.550. Thus, if the communication option is mounted, parameters cannot be written or the start and frequency commands cannot be sent by communications that use the RS-485 terminals. (Monitoring or parameter reading can be performed.)


## - Selection of the command source of the PU operation mode (Pr.551)

- Any of the PU connector, RS-485 terminals, or USB connector can be specified as the command source in the PU operation mode.
- To write parameters or execute the start and frequency commands through communication in the PU operation mode, set Pr. 551 = "1" for communication via the RS-485 terminals, or set Pr. $551=" 3$ " or " 9999 " for communication via the USB connector.


## NOTE

- When Pr. $550=$ "1" (NET mode RS-485 terminals) and Pr. 551 ="1" (PU mode RS-485 terminals), the PU operation mode has a precedence. For this reason, if the communication option is not mounted, switching to the Network operation mode is no longer possible.
- Changed setting values are enabled at power-ON or inverter reset.

$\begin{aligned} & \text { Pr. } 550 \\ & \text { setting } \end{aligned}$	$\begin{aligned} & \text { Pr. } 551 \\ & \text { setting } \end{aligned}$	Command source				Remarks
		PU connector	USB connector	RS-485 terminals	Communication option	
0	1	$\times$	$\times$	PU operation mode ${ }^{* 1}$	NET operation mode*2	
	2	PU operation mode	$\times$	$\times$	NET operation mode*2	
	3	$\times$	PU operation mode	$\times$	NET operation mode*2	
	9999 (initial value)	PU operation mode ${ }^{* 3}$	PU operation mode ${ }^{*} 3$	$\times$	NET operation mode ${ }^{* 2}$	
1	1	$\times$	$\times$	PU operation mode ${ }^{* 1}$	$\times$	Switching to NET operation mode disabled
	2	PU operation mode	$\times$	NET operation mode	$\times$	
	3	$\times$	PU operation mode	NET operation mode	$\times$	
	9999 (initial value)	PU operation mode ${ }^{* 3}$	PU operation mode ${ }^{* 3}$	NET operation mode	$\times$	
9999 (initial value)	1	$\times$	$\times$	PU operation mode ${ }^{* 1}$	NET operation mode ${ }^{* 2}$	
	2	PU operation mode	$\times$	$x$	NET operation mode ${ }^{* 2}$	With communication option
				NET operation mode	$\times$	Without communication option
	3	$\times$	PU operation mode	$x$	NET operation mode ${ }^{* 2}$	With communication option
				NET operation mode	$\times$	Without communication option
	9999 (initial value)	PU operation mode*3	PU operation mode ${ }^{*}$	$\times$	NET operation mode ${ }^{* 2}$	With communication option
				NET operation mode	$\times$	Without communication option

*1 The MODBUS RTU protocol cannot be used in the PU operation mode. To use the MODBUS RTU protocol, set Pr. $551=$ " 2 ".
*2 If the communication option is not mounted, switching to the NET operation mode is not possible.
*3 When Pr.551= "9999", the priority of the PU command source is USB connector > PU connector.

## - Controllability through communication

Command interface	Condition (Pr. 551 setting)	Item	Controllability in each operation mode					
			PU operation	External operation	Combined operation mode 1 (Pr. 79 = "3")	Combined operation mode 2 $(\operatorname{Pr} 79=" 4 ")$	NET operation (via RS-485 terminals) ${ }^{*}$	NET operation (via option) ${ }^{* 8}$
PU connector* ${ }^{*}$	2   (PU   connector), 9999   (automatic recognition, without USB connection)	Operation (start) command	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	
		Operation (stop) command	$\bigcirc$	$\Delta^{* 4}$	$\Delta^{* 4}$	$\bigcirc$	$\Delta^{* 4}$	
		Running frequency	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	- *5	$\times^{*} 6$	$0{ }^{* 5}$	-*5	$x^{*} 6$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Terminals other than the above	Operation (start) command	$\times$	$\times$	$\times$	$\times$	$\times$	
		Operation (stop) command	$\Delta^{* 4}$	$\Delta^{* 4}$	$\Delta^{* 4}$	$\Delta^{* 4}$	$\Delta^{*} 4$	
		Running frequency	$\times$	$\times$	$\times$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$\times^{*} 6$	$\times^{*} 6$	$x^{*} 6$	$\times^{*} 6$	x*6	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
RS-485 terminals	$1$   (RS-485 terminals)	Operation command (start, stop)	$\bigcirc$	$\times$	$\times$	-	$\times$	
		Running frequency	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$0^{* 5}$	$\times^{*} 6$	$0^{* 5}$	$0^{* 5}$	x*6	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Terminals other than the above	Operation command (start, stop)	$\times$	$\times$	$\times$	$\times$	$0^{* 2}$	$\times$
		Running frequency	$\times$	$\times$	$\times$	$\times$	$0^{* 2}$	$\times$
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Parameter writing	$\times^{*} 6$	$\times^{*} 6$	$x^{*} 6$	$\times^{*} 6$	-*5	$\times^{*} 6$
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Inverter reset	$\times$	$\times$	$\times$	$\times$	$0^{* 3}$	$\times$
USB connector	3   (USB connector), 9999 (automatic recognition, with USB connection)	Operation command (start, stop)	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	
		Running frequency	$\bigcirc$	$\times$	$\bigcirc$	$\times$	x	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	-*5	$\times^{*} 6$	$x^{*} 6$	$x^{*} 6$	$x^{*} 6$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Terminals other than the above	Operation command (start, stop)	$\times$	$\times$	$\times$	$\times$	$\times$	
		Running frequency	$\times$	$\times$	$\times$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$x^{*} 6$	$x^{*} 6$	$x^{* 6}$	$x^{*} 6$	$x^{* 6}$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
Option	-	Operation command (start, stop)	$\times$	$\times$	$\times$	$\times$	$\times$	-*2
		Running frequency	$\times$	$\times$	$\times$	$\times$	$\times$	${ }^{*} 2$
		monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Parameter writing	$\times^{*} 6$	$\times^{*} 6$	$x^{*} 6$	$\times^{*} 6$	$x^{*} 6$	-*5
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Inverter reset	$\times$	$\times$	$\times$	$\times$	$\times$	$0^{* 3}$


Command interface	Condition (Pr. 551 setting)	Item	Controllability in each operation mode					
			PU operation	External operation	$\begin{gathered} \text { Combined } \\ \text { operation } \\ \text { mode } 1 \\ (\operatorname{Pr} .79=" 3 ") \end{gathered}$	Combined operation mode 2 $\text { (Pr. } 79 \text { = "4") }$	NET operation (via RS-485 terminals) ${ }^{* 7}$	NET operation (via option) ${ }^{* 8}$
External		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
control circuit	-	Operation command (start, stop)	$\times$	$\bigcirc$	-	$\times$	$\times^{* 2}$	
terminal		Frequency setting	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\times^{* 2}$	

$\circ$ : Valid, $\times$ : Invalid, $\Delta$ : Partially valid
*1 RS-485 communication via PU connector
*2 Follows the Pr. 338 Communication operation command source and Pr. 339 Communication speed command source settings. (Refer to page 380.)
*3 At occurrence of RS-485 communication error, the inverter cannot be reset from the computer.
*4 Only PU stop is enabled. "PS" is displayed on the operation panel during PU stop. Follows the Pr. 75 Reset selection/Disconnected PU detection/PUStop selection setting. (Refer to page 320.)
*5 Writing of some parameters may be disabled by the Pr. 77 Parameter write selection setting and the operating condition. (Refer to page 328 .)
*6 Some parameters are write-enabled independently of the operation mode and command source presence/absence. Writing is also enabled when Pr. 77 = "2".
(Refer to page 328.) Parameter clear is disabled.
*7 When Pr. 550 NET mode operation command source selection = "1" (RS-485 terminals enabled), or Pr. 550 NET mode operation command source selection = "9999" with no communication option connected.
*8 When Pr. 550 NET mode operation command source selection = "0" (communication option enabled), or Pr. 550 NET mode operation command source selection = "9999" with communication option connected.

## - Operation when a communication error occurs

Fault type	Condition (Pr. 551 setting)	Operation in each operation mode at error occurrences					
		PU operation	External operation	Combined operation mode 1 $\text { (Pr. } 79 \text { = 3) }$	$\begin{gathered} \text { Combined } \\ \text { operation } \\ \text { mode } 2 \\ (\text { Pr. } 79=" 4 ") \end{gathered}$	NET operation (via RS-485 terminals) ${ }^{*}$	$\begin{gathered} \text { NET } \\ \text { operation } \\ \text { (via option) }^{* 6} \end{gathered}$
Inverter fault	-	Stop					
PU connector disconnection	2 (PU connector) 9999 (automatic recognition)	Stop/continued ${ }^{* 1 * 4}$					
	Other than 2	Stop/continued*1					
Communication error at PU connector	2 (PU connector)	Stop/ continued*2	Continued		Stop/ continued ${ }^{*} 2$	Continued	
	Other than 2	Continued					
Communication error at RS-485 terminals	1 (RS-485 terminals)	Stop/ continued*2	Continued		Stop/ continued*2	Continued	
	Other than 1	Continued				Stop/ continued ${ }^{*}{ }^{2}$	Continued
Communication error at USB connector	3 (USB connector) 9999 (automatic recognition)	Stop/ continued ${ }^{*}$ 2	Continued				
	Other than 3	Continued					
Communication error at communication option	-	Continued					Stop/ continued *3

*1 Selectable with Pr. 75 Reset selection/disconnected PU detection/PU stop selection.
*2 Selectable with Pr. 122 PU communication check time interval, Pr. 336 RS-485 communication check time interval, and Pr. 548 USB communication check time interval.
*3 The operation depends on the communication option setting.
*4 In the PU JOG operation mode, operation always stops when the PU is disconnected. The operation of PU disconnection (E.PUE) follows the Pr. 75 Reset selection/Disconnected PU detection/PUStop selection setting.
*5 When Pr. 550 NET mode operation command source selection = "1" (RS-485 terminals enabled), or Pr. 550 NET mode operation command source selection = "9999" with no communication option connected.
*6 When Pr. 550 NET mode operation command source selection = "0" (communication option enabled), or Pr. 550 NET mode operation command source selection = "9999" with communication option connected.

## - Selection of control source in Network operation mode (Pr.338, Pr.339)

- There are two control sources: the start command source, which controls the signals related to the inverter stand command and function selection, and the speed command source, which controls signals related to frequency setting.
- The following table shows the commands given via the external terminals or given through communication (via the RS-485 terminals or the communication option) in the Network operation mode.

Operation location selection			Pr. 338 Communication operation command source		0: NET			1: EXT			Remarks
			Pr. 339 Communication speed command source		$\begin{gathered} \text { 0: } \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 0: } \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	
Fixed function (terminalequivalent function)			Running frequency command given through communication		NET	-	NET	NET	-	NET	
			Terminal 2		-	EXT	-	-	EXT	-	
			Terminal 4		-	EXT		-	EXT		
			Terminal 1		Compensation						
		0	RL	Low-speed operation command/Remote setting (setting clear)/Stop-on-contact selection 0	NET	External		NET	External		Pr. 59 = "0" (multispeed), Pr. $59 \neq " 0 "$ (remote), Pr. $270=11$, 3 , 11, or 13" (stop-on-contact)
		1	RM	Middle-speed operation command/ Remote setting (deceleration)	NET	External		NET	External		
		2	RH	High-speed operation command/ Remote setting (acceleration)	NET	External		NET	External		
		3	RT	Second function selection/ Stop-oncontact selection 1	NET			External			Pr. $270=$ ="1, 3, 11, or 13" (stop-on-contact)
		4	AU	Terminal 4 input selection	-	Combined		-	Combined		
		5	JOG	Jog operation selection	-			External			
		6	CS	Selection of automatic restart after instantaneous power failure / flying start	External						
		7	OH	External thermal relay input	External						
		8	REX	15 -speed selection	NET	External		NET	External		$\begin{aligned} & \text { Pr. } 59=" 0 " \text { (multi- } \\ & \text { speed) } \\ & \hline \end{aligned}$
		9	X9	Third function selection	NET			External			
		10	X10	Inverter run enable	External						
		11	X11	FR-HC2/FR-CC2 connection, instantaneous power failure detection	External						
		12	X12	PU operation external interlock	External						
		13	X13	External DC injection brake operation start	NET			External			
		14	X14	PID control valid	NET	External		NET	External		
		15	BRI	Brake opening completion	NET			External			
		16	X16	PU/External operation switchover	External						
		17	X17	Load pattern selection forward/reverse rotation boost	NET			External			
		18	X18	V/F switchover	NET			External			
		19	X19	Load torque high-speed frequency	NET			External			
		20	X20	S-pattern acceleration/deceleration C switchover	NET			External			
		22	X22	Orientation command	NET			External			
		23	LX	Pre-excitation/servo ON	NET			External			
		24	MRS	Output stop	Combined			External			Pr. 79 \# "7"
				PU operation interlock	External						$\text { Pr. } 79 \text { = "7" }$   When X 12 signal is not assigned.
		25	$\begin{aligned} & \text { STP } \\ & \text { (STOP) } \end{aligned}$	Start self-holding selection	-			External			
		26	MC	Control mode switchover	NET			External			
		27	TL	Torque limit selection	NET			External			
		28	X28	Start-time tuning start external input	NET			External			
		37	X37	Traverse function selection	NET			External			
		42	X42	Torque bias selection 1	NET			External			
		43	X43	Torque bias selection 2	NET			External			


Operation location selection			Pr. 338 Communication operation command source		0: NET			1: EXT			Remarks
			Pr. 339 Communication speed command source		$\begin{gathered} \text { 0: } \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 0: } \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	
		44	X44	P/PI control switchover	NET			Extern			
		45	BRI2	Second brake sequence open completion	NET			Exter			
		46	TRG	Trace trigger input	Combi			Extern			
		47	TRC	Trace sampling start/end	Combi			Extern			
		48	X48	Power failure stop external	Extern						
		50	SQ	Sequence start	Extern	NET		Exter			Pr. 414 = "1": Valid when there is external or network input $\text { Pr. } 414 \text { = "2": }$   External
		51	X51	Fault clear	Combi			Extern			
		52	X52	Cumulative pulse monitor clear	NET			Extern			
		53	X53	Cumulative pulse monitor clear (control terminal option)	NET			Extern			
		57	JOGF	JOG forward rotation command	-			Extern			
		58	JOGR	JOG reverse rotation command	-			Extern			
		59	CLRN	NET position pulse clear	NET						
		60	STF	Forward rotation command	NET			Extern			
		61	STR	Reverse rotation command	NET			Extern			
		62	RES	Inverter reset	Extern						
		64	X64	PID forward/reverse action switchover	NET	External		NET	Externa		
		65	X65	PU/NET operation switchover	Extern						
		66	X66	External/NET operation switchover	Extern						
		67	X67	Command source switchover	Extern						
		68	NP	Simple position pulse train sign	Extern						
		69	CLR	Simple position droop pulse clear	Extern						
		70	X70	DC feeding operation permission signal	NET			Extern			
		71	X71	DC feeding cancel signal	NET			Extern			
		72	X72	PID P control switchover	NET	External		NET	Externa		
		73	X73	Second PID P control switchover	NET	External		NET	Externa		
		74	X74	Magnetic flux decay output shutoff	NET			Extern			
		76	X76	Proximity dog	Extern						
		77	X77	Pre-charge end command	NET	External		NET	Externa		
		78	X78	Second pre-charge end command	NET	External		NET	Externa		
		79	X79	Second PID forward/reverse action switchover	NET	External		NET	Externa		
		80	X80	Second PID control valid	NET	External		NET	Externa		
		85	X85	SSCNET III communication disabled	Extern						
		87	X87	Sudden stop	Combi			Extern			
		88	LSP	Upper stroke limit	Extern						
		89	LSN	Lower stroke limit	Extern						
		92	X92	Emergency stop	Extern						
		93	X93	Torque control selection	NET			Extern			
		94	X94	Control signal input for main circuit power supply MC	Extern						
		95	X95	Converter unit fault input	Extern						
		96	X96	Converter unit fault (E.OHT, E.CPU) input	Extern						

## [Explanation of Terms in Table]

External (EXT): Only commands given via the external terminal are valid.
NET: Only commands given through communication are valid.
Combined: Any command given via the external terminals or given through communication is valid.
-: Any command given via the external terminals or given through communication is invalid.
Compensation: Only commands given via the external terminal are valid when Pr. 28 Multi-speed input compensation selection = "1".

## NOTE

－The command source of communication follows the Pr． 550 and Pr． 551 settings．
－The Pr． 338 and Pr． 339 settings can be changed while the inverter is running when Pr． $77=$＂ 2 ＂．Note that the setting change is applied after the inverter has stopped．Until the inverter has stopped，communication operation command source and communication speed command source before the setting change are valid．

## －Command source switchover via external terminals（X67）

－In the Network operation mode，the start command source and speed command source can be switched over by the command source switchover signal（X67）．This can be used to control signal inputs from both the external terminals and via communication．
－For the X67 signal，set＂67＂to any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function to a control terminal．
－When the X67 signal is OFF，the start command source and speed command source are given via control terminals．

X67 signal state	Start command source	Speed command source
Signal not assigned	According to Pr． 338	According to Pr． 339
ON		
OFF	Only commands given via the control terminals are valid．	

## NOTE

－The ON／OFF state of the X67 signal is applied only during a stop．When the terminals are switched during operation，the ON／ OFF state is reflected after a stop．
－When the X 67 is OFF，a reset via communication is disabled．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

《｜Parameters referred to 》》
Pr． 28 Multi－speed input compensation selection $\leftrightarrows$ page 391
Pr． 59 Remote function selection page 349
Pr． 79 Operation mode selection $\leqslant$ page 370

## 5．9．4 Reverse rotation prevention selection

This function can prevent reverse rotation fault resulting from the incorrect input of the start signal．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{7 8}$	Reverse rotation   D020	0	0	Both forward and reverse rotations allowed
			Reverse rotation disabled	
			Forward rotation disabled	

－Set this parameter to limit the motor rotation to only one direction．
－This parameter is valid for all of the reverse rotation and forward rotation keys of the operation panel and of the parameter unit，the start signals（STF，STR signals）via external terminals，and the forward and reverse rotation commands through communication．

## 5．9．5 Frequency setting via pulse train input

A pulse train input via terminal JOG can be used to set the inverter＇s speed command．

Moreover, speed synchronized operation of an inverter can be performed by using the pulse train output together with the terminal JOG.

Pr.	Name	Initial value		Setting range	Description	
		FM	CA		Pulse train input (terminal JOG)	Pulse train output (terminal FM)
$\begin{aligned} & 291 \\ & \text { D100 } \end{aligned}$	Pulse train I/O selection	0		0	JOG signal ${ }^{* 1}$	FM output ${ }^{*}$
				1	Pulse train input	FM output ${ }^{*}$
				$10^{*}$	JOG signal ${ }^{* 1}$	High-speed pulse train output (50\% duty)
				$11^{* 2}$	Pulse train input	High-speed pulse train output (50\% duty)
				$20^{*}$	JOG signal ${ }^{* 1}$	High-speed pulse train output (ON width fixed)
				$21^{*} 2$	Pulse train input	High-speed pulse train output (ON width fixed)
				$100{ }^{*}$	Pulse train input	High-speed pulse train output (ON width fixed)   Output the pulse train input without changes.
$\begin{aligned} & 384 \\ & \text { D101 } \end{aligned}$	Input pulse division scaling factor	0		0	Pulse train input disa	
				1 to 250	Division ratio on the i input pulse changes	ut pulse. The frequency resolution on the cording to this setting.
$\begin{array}{\|l\|} \hline 385 \\ \text { D110 } \end{array}$	Frequency for zero input pulse	0 Hz		0 to 590 Hz	Set the frequency when the input pulse is zero (bias).	
$\begin{array}{\|l\|} \hline 386 \\ \text { D111 } \end{array}$	Frequency for maximum input pulse	60 Hz	50 Hz	0 to 590 Hz	Set the frequency when the input pulse is maximum (gain).	

*1 Function assigned to Pr. 185 JOG terminal function selection.
*2 Valid only for the FM type inverters.

## Selection of pulse train input (Pr.291)

- Setting Pr. 291 Pulse train I/O selection = "1, 11, 21, 100" and Pr. 384 Input pulse division scaling factor $\neq$ " 0 " changes the function of terminal JOG to a pulse train input so that the frequency can be set to the inverter. In the initial setting, the JOG signal is assigned to terminal JOG. A maximum pulse train of 100 k pulses/s can be input.
- Connection with an open collector output system pulse generator

*1 When the wiring length is long with open collector outputs, the influence of stray capacitance causes the pulse to flatten out and prevents the input pulse from being recognized.
When the wiring length is long ( 10 m or longer of shielded twisted pair cable with a recommended cable gauge of $0.75 \mathrm{~mm}^{2}$ ), connect the open collector output signal to the power supply by an external pull-up resistor. The following table shows the reference resistance values for wiring length. The stray capacitance of the wiring changes considerably according to how the cable is laid, thus the above wiring lengths are not guaranteed values. When using a pull-up/down resistor, check the permissible load of the resistor and the permissible load current of the output transistor, and use within the permissible range.

Wiring length	Less than $\mathbf{1 0} \mathbf{m}$	$\mathbf{1 0}$ to $\mathbf{5 0} \mathbf{m}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{m}$
Pull-up/down resistor	Not required	$1 \mathrm{k} \Omega$	$470 \Omega$
Load current (reference)	10 mA	35 mA	65 mA

- Connection with a complementary output system pulse generator



## NOTE

- When pulse train input is selected, the function assigned to terminal JOG by Pr. 185 JOG terminal function selection is invalid.
- When "2" (simple position pulse train command given by pulse train input) is set to Pr. 419 Position command source selection, the JOG terminal becomes the simple position pulse train terminal regarding of the Pr. 291 setting.
- Pr. 291 is the selection parameter for pulse train output/FM output. Thus, before changing the setting, check the specifications of the device connected to the terminal FM. (For the pulse train output, refer to page 438.)


## Pulse train input specification

Item		Specification
Supported pulse method		Open collector output   (24 V power supply voltage)
HIGH input level		20 V or more (voltage between JOG and SD)
LOW input level		5 V or less (voltage between JOG and SD)
Maximum input pulse rate		100k pulses/s
Minimum input pulse width		$2.5 \mu \mathrm{~s}$
Input resistance/load current		$2 \mathrm{k} \Omega$ (typ) / 10 mA (typ)
Maximum wiring length (reference value)	Open collector output method	10 m (0.75 mm²/twisted pair)
	Complementary output method	100 m (output resistance $50 \Omega$ ) ${ }^{* 1}$
Detection resolution		1/3750

*1 The wiring length of complementary output is dependent on the output wiring specification of the complementary output unit. The stray capacitance of the wiring changes considerably according to how the cable is laid, so the maximum wiring length is not a guaranteed value.

## Adjustment of pulse train and frequency (Pr.385, Pr.386)

- The frequency during zero input pulse and maximum input pulse can be set with Pr. 385 Frequency for zero input pulse and Pr. 386 Frequency for maximum input pulse, respectively.



## - How to calculate the input pulse division scaling factor (Pr.384)

The maximum number of pulses can be calculated by the following formula with Pr. 384 Input pulse division scaling factor: Maximum number of pulses (pulse/s) $=$ Pr. $384 \times 400$ (maximum 100k pulses/s)
(number of detectable pulses $=11.45$ pulses $/ \mathrm{s}$ )
For example, to run the invert at 0 Hz when pulse train input is zero and at 30 Hz when pulse train is 4000 pulses/sec, set the inverter as follows:
Pr. $384=10$ (maximum number of input pulses 4000 pulses/s)
Pr. $385=0 \mathrm{~Hz}$, Pr. $386=30 \mathrm{~Hz}$ (pulse train limit value 33 Hz )

## NOTE

－The priority of the frequency command given by the external signals is＂JOG operation $>$ multi－speed operation $>$ terminal 4 analog input＂．When pulse train input is enabled（ $\operatorname{Pr} .291=" 1,11,21,100 "$ and $\operatorname{Pr} .384 \neq " 0 ")$ ，terminal 2 analog input becomes invalid．

## Speed synchronized operation by pulse input／output


＊1 When the wiring length between FM and JOG is long，the influence of stray capacitance causes the pulse to flatten out and prevents the input pulse from being recognized．When the wiring length is long（ 10 m or longer of shielded twisted pair cable with a recommended cable size of 0.75 $\mathrm{mm}^{2}$ ），connect between terminal JOG and terminal PC with an external pull－up resistor．The following table shows the reference resistance values for wiring length．

Wiring length	Less than $\mathbf{1 0} \mathbf{m}$	$\mathbf{1 0}$ to $\mathbf{5 0} \mathbf{~ m}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m ~}$
Pull－up resistor	Not required	$1 \mathrm{k} \Omega$	$470 \Omega$
Load current（reference）	10 mA	35 mA	65 mA

The stray capacitance of the wiring changes considerably according to how the cable is laid，thus the above wiring lengths are not guaranteed values．
When using a pull－up／down resistor，check the permissible load of the resistor and the permissible load current（terminal PC： 100 mA ，high－speed pulse train output： 85 mA ），and use within the permissible range
－Setting＂100＂in Pr． 291 enables out of the pulse train input as it is to the pulse train output（terminal FM）．
Connecting in a daisy chain enables speed synchronized operation of multiple inverters．
－Set Pr． 384 to＂ 125 ＂for inverters that receive pulse train since the maximum pulse train output is 50k pulses／s．
－The maximum number of input pulses should be 50k pulses／s．
－When performing synchronized operation，wire according to the following procedure．（This is to prevent contact input of 24 V being applied to terminal FM．）

1．Set pulse train output（setting other than＂ 0 or 1 ＂）to Pr． 291 on the master side inverter．
2．Inverter power OFF
3．Wire the slave side terminal JOG－SD to the master side terminal FM－SD．
4．Turn the inverter power supply ON．

## NOTE

－After changing the Pr． 291 setting，connect the JOG terminal to the terminal FM－SD．When FM output（voltage output）is taken as the pulse train，take caution to prevent voltage from being applied to the terminal FM．
－Use sink logic（factory setting）for the slave side inverter．The inverter does not operate properly with source logic．

## Speed synchronized operation specification

Item	Specification
Output pulse format	Pulse width fixed $(10 \mu \mathrm{~s})$
Pulse rate	0 to 50 k pulses／s
Pulse propagation delay	1 to $2 \mu \mathrm{~s} / 1$ unit $^{* 1}$

＊1 A pulse propagation delay of about 1 to $2 \mu \mathrm{~s}$ in the slave occurs and further increases when the wiring length is long．

[^20]
### 5.9.6 JOG operation

The frequency and acceleration/deceleration time for JOG operation can be set. JOG operation is possible in both External operation and PU.
JOG operation can be used for conveyor positioning, test operation, etc.

Pr.	Name	Initial   value	Setting range	Description
15   D200	Jog frequency	5 Hz	0 to 590 Hz	Set the frequency during JOG operation.
$\mathbf{1 6}$				
F002	Jog acceleration/   deceleration time	0.5 s	0 to 3600 s	Set the motor acceleration/deceleration time during JOG operation.   For the acceleration/deceleration time, set the time until the   frequency 1 set in Pr.20 Acceleration/deceleration reference   frequency is reached.   The acceleration/deceleration times cannot be set separately.

The above parameter is displayed as a simple mode parameter when the LCD operation panel (FR-LU08) or the parameter unit (FR-PU07) is mounted. Setting of this parameter is enabled when the operation panel (FR-DU08) is connected and "0" is set to Pr. 160 User group read selection. (Refer to page 337.)

## *1 The Pr. 20 initial value is set to 60 Hz for the FM type and to 50 Hz for the CA type.

## - JOG operation in the External operation

- Operation can be started and stopped by the start signals (STF and STR signals) when the Jog operation selection (JOG) signal is ON. (For the operation method, refer to page 159.)
- While the JOGF or JOGR signal is input, Jog frequency setting (Pr.15) is used for operation. The rotation is forward while the JOGF signal is input, and the rotation is reverse while the JOGR signal is input. (Direct JOG function)
- Use Jog acceleration/deceleration time (Pr.16) to set the acceleration/deceleration time during JOG operation.
- To use each signal, set the corresponding number selected from the following table in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an output terminal.

Input signal	Pr. 178 to Pr. 189 settings
JOG	5 (Pr. 185 initial value)
JOGF	57
JOGR	58



## - JOG operation in PU

- When the operation panel or parameter unit is in the JOG operation mode, the motor jogs only while the start button is pressed. (For the operation method, refer to page 160.)
－The reference frequency during acceleration／deceleration depends on the Pr． 29 Acceleration／deceleration pattern selection setting．（Refer to page 354．）
－The Pr． 15 setting should be equal to or higher than the Pr． 13 Starting frequency setting．
－The JOG signal can be assigned to an input terminal by setting Pr． 178 to Pr． 189 （Input terminal function selection）． Changing the terminal assignment may affect other functions．Set parameters after confirming the function of each terminal．
－During JOG operation，the second acceleration／deceleration cannot be selected via the RT signal．（Other second functions are enabled（refer to page 500）．）
－When the JOGR or STR signal is input while the JOGF signal is input，the motor is decelerated to stop．
－When the JOGF or STF signal is input while the JOGR signal is input，the motor is decelerated to stop．
－The three－wire type connection is not available for the JOGF and JOGR signals．
－When Pr． 79 Operation mode selection＝＂ 4 ＂，JOG operation is started by one push of FWD／REV on the operation panel and stopped by $\frac{\text { STOP }}{\text { RESET }}$
－This function is invalid when Pr． $79=$＂ 3 ＂．
－Under the position control，when the position command speed creation is completed and the droop pulse is within in－position width，the external JOG operation can be operated．（The JOG operation cannot be performed from PU．）
－For the external JOG operation，set Pr． 291 Pulse train I／O selectionto a value which enables the JOG signal input．（Refer to page 386．）


## 《 Parameters referred to 》》

Pr． 13 Starting frequency page 363
Pr． 20 Acceleration／deceleration reference frequency，Pr． 21 Acceleration／deceleration time increments page 349
Pr． 29 Acceleration／deceleration pattern selection page 354
Pr． 79 Operation mode selection page 370
Pr． 178 to Pr． 189 （Input terminal function selection）page 496

## 5．9．7 Operation by multi－speed setting

Use these parameters to change among pre－set operation speeds with the terminals．The speeds are pre－set with parameters．

Any speed can be selected by simply turning ON/OFF the contact signals (RH, RM, RL, and REX signals).

Pr.	Name	Initial value		Setting range	Description
		FM	CA		
28	Multi-speed input compensation	0		0	Without compensation
D300	selection			1	With compensation
$\begin{array}{\|l\|} \hline 4 \\ \text { D301 } \\ \hline \end{array}$	Multi-speed setting (high speed)	60 Hz	50 Hz	0 to 590 Hz	Sets the frequency when RH is ON .
$\begin{array}{\|l\|} \hline \text { D302 } \\ \hline \end{array}$	Multi-speed setting (middle speed)	30 Hz		0 to 590 Hz	Sets the frequency when RM is ON .
$\begin{array}{\|l\|} \hline 6 \\ \text { D303 } \\ \hline \end{array}$	Multi-speed setting (low speed)	10 Hz		0 to 590 Hz	Sets the frequency when RL is ON.
$\begin{aligned} & 24 \\ & \text { D304 } \end{aligned}$	Multi-speed setting (speed 4)	9999		0 to $590 \mathrm{~Hz}, 9999$	Frequency from 4th speed to 15 th speed can be set according to the combination of the RH, RM, RL and REX signals.   9999: Not selected
$\begin{array}{\|l\|} \hline 25 \\ \text { D305 } \end{array}$	Multi-speed setting (speed 5)				
$\begin{array}{\|l\|} \hline 26 \\ \text { D306 } \\ \hline \end{array}$	Multi-speed setting (speed 6)				
$\begin{aligned} & 27 \\ & \text { D307 } \end{aligned}$	Multi-speed setting (speed 7)				
$\begin{array}{\|l\|} \hline 232 \\ \text { D308 } \\ \hline \end{array}$	Multi-speed setting (speed 8)				
$\begin{array}{\|l\|} \hline 233 \\ \text { D309 } \\ \hline \end{array}$	Multi-speed setting (speed 9)				
$\begin{aligned} & 234 \\ & \text { D310 } \end{aligned}$	Multi-speed setting (speed 10)				
$\begin{aligned} & 235 \\ & \text { D311 } \end{aligned}$	Multi-speed setting (speed 11)				
$\begin{aligned} & 236 \\ & \text { D312 } \end{aligned}$	Multi-speed setting (speed 12)				
$\begin{array}{\|l\|} \hline 237 \\ \text { D313 } \\ \hline \end{array}$	Multi-speed setting (speed 13)				
$\begin{array}{\|l\|} \hline 238 \\ \text { D314 } \\ \hline \end{array}$	Multi-speed setting (speed 14)				
$\begin{aligned} & 239 \\ & \text { D315 } \end{aligned}$	Multi-speed setting (speed 15)				

## - Multi-speed setting (Pr. 4 to Pr.6)

- The inverter operates at frequencies set in Pr. 4 when RH signal is ON, Pr. 5 when RM signal is ON and Pr. 6 when RL signal is ON.




## NOTE

- In the initial setting, if two or more speed switches (signals) are simultaneously turned ON, priority is given to the switch (signal) for the lower speed. For example, when both RH and RM signals turn ON, the RM signal (Pr.5) has the higher priority.
- The RH, RM and RL signals are assigned to the terminals RH, RM and RL in the initial status. Set "0 (RL)", "1 (RM)", and "2 (RH)" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the signals to other terminals.


## - Multi-speed setting for 4th speed or more (Pr. 24 to Pr.27, Pr. 232 to Pr.239)

- The frequency from 4 th speed to 15 th speed can be set according to the combination of the RH, RM, RL, and REX signals. Set the running frequencies in Pr. 24 to Pr.27, Pr. 232 to Pr.239. (In the initial status, 4th to 15th speeds are invalid.)
- For the terminal used for REX signal input, set "8" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.

*1 When RH, RM and RL is set to OFF and REX is set to ON when "9999" is set to Pr. 232 Multi-speed setting (speed 8), the inverter runs by the frequency set to Pr. 6.


## $\bullet$ Input compensation of multi-speed setting (Pr.28)

- Speed (frequency) can be compensated for the multi-speed setting and the remote setting by inputting the frequency setting compensation signal (terminals 1, 2).


## NOTE

- The priority of the frequency commands given by the external signals are "JOG operation > multi-speed operation > terminal 4 analog input > pulse train input > terminal 2 analog input". (For details on frequency commands given by analog input, refer to page 482.)
- Valid in the External operation mode or PU/External combined operation mode (Pr. $79=$ " 3 or 4").
- Multi-speed parameters can also be set during PU operation or External operation.
- The Pr. 24 to Pr. 27 and Pr. 232 to Pr. 239 settings have no priority among them.
- When Pr. 59 Remote function selection $\neq$ " 0 ", the multi-speed setting is invalid since the RH, RM, and RL signals are for remote setting.
- When performing analog input compensation, set Pr. 28 Multi-speed input compensation selection to "1".
- Select the terminals (terminals 1, 2) to use for compensation input voltage ( 0 to $\pm 5 \mathrm{~V}, 0$ to $\pm 10 \mathrm{~V}$ ) at Pr. 73 Analog input selection.
- When using terminal 1 for compensation input, set Pr. 868 Terminal 1 function assignment = " 0 (initial value)".
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


### 5.10 (H) Protective function parameter

Purpose	Parameter to set			Refer to page
To protect the motor from overheating	Electronic thermal O/L relay	$\begin{aligned} & \text { P.H000, P.H006, } \\ & \text { P.H010, P.H016, } \\ & \text { P.H020 to P.H022 } \end{aligned}$	$\begin{aligned} & \text { Pr.9, Pr.51, Pr.561, } \\ & \text { Pr.607, Pr.608, } \\ & \text { Pr.876, Pr. } 1016 \end{aligned}$	394
To set the overheat protection characteristics for the motor	Free thermal O/L relay	P.H001 to P.H005, P.H011 to P.H015	$\begin{aligned} & \text { Pr. } 600 \text { to Pr. } 604 \text {, } \\ & \text { Pr. } 69 \text { to Pr. } 696 \end{aligned}$	401
To decelerate and stop when the motor thermal protection is activated	Fault definition	P.H030	Pr. 875	401
To extend the life of the cooling fan	Cooling fan operation selection	P.H100	Pr. 244	402
To detect an earth (ground) fault at start	Earth (ground) fault detection at start	P.H101	Pr. 249	403
To vary the operating level of the undervoltage protective function	Undervoltage level	P.H102	Pr. 598	403
To initiate an inverter protective function	Fault initiation	P.H103	Pr. 997	404
To disable the I/O phase loss protective function	I/O phase loss	P.H200, P.H201	Pr.251, Pr. 872	404
To restart using the retry function when the protective function is activated	Retry operation	P.H300 to P.H303	Pr.65, Pr. 67 to Pr. 69	405
To set the upper and lower limits of the output frequency	Maximum/minimum frequency	P.H400 to P.H402	Pr.1, Pr.2, Pr. 18	407
To prevent the motor from overspeeding under torque control	Speed limit	P.H410 to P.H412	Pr. 807 to Pr. 809	274
To avoid overdriving the motor during speed control	Overdriving prevention	P.H415 to P.H417	$\begin{aligned} & \text { Pr. } 285 \text {, Pr. } 853 \text {, } \\ & \text { Pr. } 873 \end{aligned}$	259
To operate avoiding resonance points	Frequency jump	$\begin{aligned} & \text { P.H420 to P.H425, } \\ & \text { P.H429 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 31 \text { to Pr. } 36 \text {, } \\ & \text { Pr. } 552 \end{aligned}$	408
To limit the output current so that the inverter protective function does not activate	Stall prevention	$\begin{aligned} & \text { P.H500, P.H501, } \\ & \text { P.H600 to P.H603, } \\ & \text { P.H610, P.H611, } \\ & \text { P.H620, P.H621, } \\ & \text { P.H631, P.M430, } \\ & \text { P.T010, P.T040 } \end{aligned}$	$\begin{aligned} & \text { Pr.22, Pr.23, Pr.48, } \\ & \text { Pr.49, Pr.66, Pr.114, } \\ & \text { Pr.115, Pr.148, } \\ & \text { Pr.149, Pr.154, } \\ & \text { Pr.156, Pr.157, } \\ & \text { Pr.858, Pr. } 868 \end{aligned}$	409
To limit the torque during speed control	Torque limit	$\begin{aligned} & \text { P.H500, P.H700 to } \\ & \text { P.H704, P.H710, } \\ & \text { P.H720, P.H721, } \\ & \text { P.H730, P.T010, } \\ & \text { P.T040, P.G210 } \end{aligned}$	$\begin{aligned} & \text { Pr.22, Pr. } 801 \text {, } \\ & \text { Pr. } 803 \text {, Pr. } 810 \text {, } \\ & \text { Pr. } 812 \text { to Pr. } 817 \text {, } \\ & \text { Pr. } 858 \text {, Pr. } 868 \text {, } \\ & \text { Pr. } 874 \end{aligned}$	235
To monitor for load faults	Load characteristics fault detection	$\begin{aligned} & \text { P.H520 to P.H527, } \\ & \text { P.H531 to P.H535 } \end{aligned}$	Pr. 1480 to Pr. 1492	417
To shut off output if the operation panel disconnects	Overspeed detection level	P.H800	Pr. 374	421
To shut off output if the operation panel disconnects	Deceleration check	P.H880	Pr. 690	260

### 5.10.1 Motor overheat protection (electronic thermal O/L relay)

Set the current of the electronic thermal relay function to protect the motor from overheating. Such settings provide the optimum protective characteristic considering the low cooling capability of the motor during low-speed operation.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{\|l\|} \hline 9 \\ \mathrm{H} 000 \end{array}$	Electronic thermal O/L relay	Inverter rated current ${ }^{* 1}$	0 to $500 \mathrm{~A}^{*}{ }^{\text {a }}$	Set the rated motor current.
			0 to 3600 A *	
$\begin{aligned} & 600 \\ & \text { H001 } \end{aligned}$	First free thermal reduction frequency 1	9999	0 to 590 Hz	The electronic thermal O/L relay operation level can be changed to match the motor temperature characteristics with the combination of these three points (Pr.600, Pr.601), (Pr.602, Pr.603), (Pr.604, Pr.9).   9999: Free thermal O/L relay invalid
			9999	
$\begin{aligned} & \hline 601 \\ & \mathrm{H} 002 \end{aligned}$	First free thermal reduction ratio 1	100\%	1 to 100\%	
			9999	
$\begin{aligned} & 602 \\ & \text { H003 } \end{aligned}$	First free thermal reduction frequency 2	9999	0 to 590 Hz	
			9999	
603	First free thermal reduction ratio 2	100\%	1 to 100\%	
H004			9999	
$\begin{aligned} & 604 \\ & \text { H005 } \end{aligned}$	First free thermal reduction frequency 3	9999	0 to 590 Hz	
			9999	
$\begin{array}{\|l\|} \hline 607 \\ \text { H006 } \end{array}$	Motor permissible load level	150\%	110 to 250\%	Set the permissible load according to the motor characteristics.
$\begin{array}{\|l\|} \hline 51 \\ \mathrm{H} 010 \end{array}$	Second electronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{*} 2$	Enabled when the RT signal is ON. Set the rated motor current.
			0 to $3600 \mathrm{~A}^{* 3}$	
			9999	Second electronic thermal O/L relay invalid
$\begin{aligned} & 692 \\ & \text { H011 } \end{aligned}$	Second free thermal reduction frequency 1	9999	0 to 590 Hz	The electronic thermal O/L relay operation level can be changed to match the second motor temperature characteristics with the combination of these three points (Pr.692, Pr.693), (Pr.694, Pr.695), (Pr.696, Pr.51) when the RT signal is ON. 9999: Second free thermal O/L relay invalid
			9999	
$\begin{array}{\|l\|} \hline 693 \\ \mathrm{H} 012 \end{array}$	Second free thermal reduction ratio 1	100\%	1 to 100\%	
			9999	
$\begin{array}{\|l\|} \hline 694 \\ \mathrm{H} 013 \end{array}$	Second free thermal reduction frequency 2	9999	0 to 590 Hz	
			9999	
$\begin{array}{\|l\|} \hline 695 \\ \text { H014 } \end{array}$	Second free thermal reduction ratio 2	100\%	1 to 100\%	
			9999	
$\begin{aligned} & 696 \\ & \mathrm{H} 015 \end{aligned}$	Second free thermal reduction frequency 3	9999	0 to 590 Hz	
			9999	
$\begin{aligned} & 608 \\ & \mathrm{H} 016 \end{aligned}$	Second motor permissible load level	9999	110 to $250 \%$	Set the permissible frequency when the RT signal is ON.
			9999	The Pr. 607 setting is applied even when the RT signal is ON .
$\begin{aligned} & 561 \\ & \mathrm{H} 020 \end{aligned}$	PTC thermistor protection level	9999	0.5 to $30 \mathrm{k} \Omega$	Set the PTC thermistor protection level (resistance).
			9999	PTC thermistor protection disabled
$\begin{aligned} & 1016 \\ & \text { H021 } \end{aligned}$	PTC thermistor protection detection time	0 s	0 to 60 s	Set the time from when the resistance of the PTC thermistor reaches the protection level until the protective function is activated.
$\begin{aligned} & 876 \\ & \text { H022*4 } \end{aligned}$	Thermal protector input	1	0	Terminal OH of the control terminal option (FR-A8TP) is invalid.
			1	Terminal OH of the control terminal option (FR-A8TP) is valid.

*1 The initial value for the FR-A820-00077( 0.75 K ) or lower and FR-A840-00038(0.75K) or lower is set to the $85 \%$ of the inverter rated current.
*2 The setting range of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower The minimum setting increment is 0.01 A .
*3 The setting range of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher The minimum setting increment is 0.1 A .
*4 The setting is available when the FR-A8TP is installed.

## - Electronic thermal O/L relay operation characteristic for induction motor (Pr.9)

- This function detects the overload (overheat) of the motor and shut off the inverter output by stopping the operation of the transistor at the inverter output side.
- Set the rated current (A) of the motor in Pr. 9 Electronic thermal O/L relay. (If the motor has both 50 Hz and 60 Hz ratings and the Pr. 3 Base frequency is set to 60 Hz , set to 1.1 times the 60 Hz rated motor current.)
- Set "0" in Pr. 9 to avoid activating the electronic thermal relay function; for example, when using an external thermal relay for the motor.
(Note that the output transistor protection of the inverter is activated. (E.THT))
- When using the Mitsubishi Electric constant-torque motor, set Pr. 71 Applied motor = "1, 13 to $16,50,53,54$ ". (This setting enables the $100 \%$ constant-torque characteristic in the low-speed range.)

*1 When setting Pr. 9 to a value (current value) of $50 \%$ of the inverter rated current
*2 The \% value denotes the percentage to the rated inverter current. It is not the percentage to the rated motor current.
*3 When you set the electronic thermal relay function dedicated to the Mitsubishi Electric constant-torque motor, this characteristic curve applies to operation at 6 Hz or higher. (For selection of the operation characteristic, refer to page 505.)
*4 Transistor protection is activated depending on the temperature of the heatsink. The protection may be activated even with less than $150 \%$ depending on the operating conditions.


## NOTE

- The internal accumulated heat value of the electronic thermal relay function is reset to the initial value by the inverter's power reset and reset signal input. Avoid unnecessary reset and power-OFF.
- Install an external thermal relay (OCR) between the inverter and motors to operate several motors, a multi-pole motor or a dedicated motor with one inverter. When setting an external thermal relay, note that the current indicated on the motor rating plate is affected by the line-to-line leakage current. (Refer to page 114.) The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- The protective characteristic of the electronic thermal O/L relay is degraded when there is a large difference in capacity between the inverter and motor, and when the set value is small. In such case, use an external thermal relay.
- A dedicated motor cannot be protected by an electronic thermal O/L relay. Use an external thermal relay.
- Set Pr. 9 = "0" for Vector-control-dedicated motors (SF-V5RU) because they are equipped with thermal protectors.
- The transistor protection thermal O/L relay is activated early when the Pr. 72 PWM frequency selection setting is increased.


## - Electronic thermal O/L relay when using IPM motor (Pr.9)

- This function detects the overload (overheat) of the motor and shut off the inverter output by stopping the operation of the transistor at the inverter output side.
- Set the rated current (A) of the motor in Pr. 9 Electronic thermal O/L relay. Performing IPM parameter initialization automatically sets the rated current of the IPM motor. (Refer to page 225.)
- Set " 0 " in Pr. 9 to avoid activating the electronic thermal relay function; for example, when using an external thermal relay for the motor.
(Note that the output transistor protection of the inverter is activated. (E.THT))
- Operational characteristic of the electronic thermal O/L relay when MM-CF is used.


Protective function activated area: the area right of the characteristic curve
Normal operation area: the area left of the characteristic curve
*1 The \% value denotes the percentage to the rated motor current.

## NOTE

- The internal accumulated heat value of the electronic thermal relay function is reset to the initial value by the inverter's power reset and reset signal input. Avoid unnecessary reset and power-OFF.
- When using a PM motor other than MM-CF, set the free thermal parameters (Pr. 600 to Pr.604) in accordance with the motor characteristic.
- The transistor protection thermal O/L relay is activated early when the Pr. 72 PWM frequency selection setting is increased.


## - Set two types of electronic thermal O/L relays (Pr.51)



- These settings are used when rotating two motors with different rated current separately by a single inverter. (When rotating two motors together, use an external thermal relay.)
- Set the rated motor current for the second motor in Pr. 51 Second electronic thermal O/L relay.
- While the RT signal is ON, the setting values of Pr. 51 is referred to provide thermal protection.

Pr. 450   Second applied motor	Pr. 9   Electronic thermal O/L relay	$\text { Pr. } 51$   Second electronic thermal O/L relay	RT signal OFF		RT signal ON	
			First motor	Second monitor	First motor	Second monitor
9999	0	9999	$\times$	x	$\times$	$\times$
		0	$\times$	$\times$	$\times$	$\times$
		0.01 to 500 (0.1 to 3600)	$\times$	$\Delta$	$\times$	$\bigcirc$
9999	Other than 0	9999	$\bigcirc$	$\times$	$\bigcirc$	$\times$
		0	$\bigcirc$	$\times$	$\Delta$	$\times$
		0.01 to 500 (0.1 to 3600)	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$
Other than 9999	0	9999	$\times$	$\times$	$\times$	$\times$
		0	$\times$	x	$x$	$\times$
		0.01 to 500 (0.1 to 3600)	$\times$	$\Delta$	$\times$	$\bigcirc$
Other than 9999	Other than 0	9999	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$
		0	$\bigcirc$	$\times$	$\Delta$	$\times$
		0.01 to 500 (0.1 to 3600)	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$

$\circ$ : Values are accumulated by using the output current.
$\Delta$ : Values are accumulated by assuming the output current is 0 A (cooling processing).
$\times$ : Electronic thermal O/L relay does not operate.

## NOTE

- The RT signal is a second function selection signal which also enables other second functions. (Refer to page 500 .)
- The RT signal is assigned to the terminal RT in the initial status. Set " 3 " in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.


## Acceleration time setting (Pr.607, Pr.608)

The electronic thermal O/L relay operation characteristic can be changed by setting the permissible load level according to the motor characteristics.


Example of motor permissible load setting (when Pr.9="100\% of the inverter rating")

## - Electronic thermal O/L relay pre-alarm (TH) and warning signal (THP signal)

- If the accumulated electronic thermal value reaches $85 \%$ of the $\operatorname{Pr} .9$ or Pr. 51 setting, electronic thermal O/L relay function pre-alarm (TH) is displayed and the electronic thermal O/L relay pre-alarm (THP) signal is output. If the value reaches $100 \%$ of the Pr. 9 setting, the motor thermal protection (E.THM/E.THT) is activated to shut off the inverter output. The inverter output is not shut off with the TH display.
- For the terminal used for the THP signal output, assign the function by setting "8 (positive logic) or 108 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).

Electronic thermal   relay function   operation level
Electronic thermal $\mathrm{O} / \mathrm{L}$   relay alarm (THP)

## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - External thermal relay input (OH signal, E.OHT)



## External thermal relay input connection diagram

- The external thermal relay input $(\mathrm{OH})$ signal is used when using the external thermal relay or the thermal protector built into the motor to protect the motor from overheating.
- When the thermal relay is activated, the inverter output is shut off by the external thermal relay (E.OHT).
- For the terminal used for the OH signal input, set "7" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- Vector-control-dedicated motors (SF-V5RU) are equipped with thermal protectors.



## Connecting the SF-V5RU thermal protector

*1 Connect the recommended $2 \mathrm{~W} 1 \mathrm{k} \Omega$ resistor between terminals PC and OH. (Refer to page 90.)

- When the control terminal option (FR-A8TP) is used, valid/invalid setting of the terminal OH can be changed using Pr. 876 thermal protector input.


## NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## *PTC thermistor input (Pr.561, Pr.1016, E.PTC)



PTC thermistor input connection Example of PTC thermistor characteristics diagram

- Output from the PTC thermistor, which is built into the motor, can be input to the terminals 2 and 10. If the input from the PTC thermistor reaches the resistor value set in Pr. 561 PTC thermistor protection level, the PTC thermistor operation (E.PTC) shuts off the inverter output.
- Confirm the characteristic of the PTC thermistor to be used, and set the resistance for Pr. 561 around the center of the R1 and R2 values shown on the figure above so that it does not deviate from the protective function activating temperature TN. If the Pr. 561 setting becomes too close to R1 or R2, the protective function activating temperature may be too hot (protection is delayed), or too cold (too much protection).
- When the PTC thermistor protection is enabled (Pr. $561 \neq$ "9999"), the resistance value for the PTC thermistor can be displayed on the operation panel or via RS-485 communication. (Refer to page 424.)
- When the PTC thermistor protection level setting is used, use Pr. 1016 PTC thermistor protection detection time to set the time from when the resistance of the PTC thermistor reaches the protection level until the protective function (E.PTC) is activated.
- If the resistance of the PTC thermistor falls below the protection level within the protection detection time, the elapsed time count is cleared.



## NOTE

- When using terminal 2 for PTC thermistor input (Pr. $561 \neq " 9999$ "), the terminal 2 does not operate as an analog frequency command terminal. The PID and dancer control functions assigned to the terminal 2 is also disabled. Use Pr. 133 PID action set point to set the set point for the PID function.
- To input power to the PTC thermistor power supply, always use the terminal 10 and do not use any other terminals or an external power supply. Otherwise, the PTC thermistor protection (E.PTC) does not operate properly.
- When E.PTC is activated, the alarm display, "External protection (AU terminal)", may appear on the parameter unit (FRPU07), but it is not a fault.


## －Overheat protection to match the characteristic of the motor（Pr． 600 to Pr．604，Pr． 692 to Pr．696）

－The activation level of the electronic thermal $\mathrm{O} / \mathrm{L}$ relay can be varied to match the motor temperature characteristic．
－The electronic thermal O／L relay operation level can be set with the combination of three points（Pr．600，Pr．601），（Pr．602， Pr．603），（Pr．604，Pr．9）．Two or more points are required for setting．
－The electronic thermal O／L relay operation level can be set with the combination of three points（Pr．692，Pr．693），（Pr．694， Pr．695），（Pr．696，Pr．51）when the RT signal is ON．

## Continuous operation characteristic <br> Load ratio（ratio to Pr． 9 （Pr．51））［\％］ <br> 



## NOTE

－Make sure to set the parameters according to the temperature characteristic of the motor used．

《 Parameters referred to 》》
Pr． 71 Applied motor page 505
Pr． 72 PWM frequency selection page 339
Pr． 178 to Pr． 189 （Input terminal function selection）page 496
Pr． 190 to Pr． 196 （Output terminal function selection）page 450

## 5．10．2 Fault definition

Fault output can be done after deceleration stop when motor thermal protection is activated．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{8 7 5}$				
H030	Fault definition	0	0	Normal operation
		1	Decelerates to stop at activation of motor thermal protection．	

## －Output shutoff at activation of any protective function（Pr． $875=00$ initial value）

－At activation of a protective function，output is shutoff，and the alarm output 2 signal（ER）and the fault signal（ALM）are output．

## - Deceleration stop at motor thermal protection activation (Pr.875= "1")

- At activation of the external thermal relay (E.OHT), motor load (electronic thermal O/L relay) (E.THM) and PTC thermistor (E.PTC) protective functions, the alarm output 2 (ER) signal is displayed, and the motor decelerates to stop. After it stops, a fault signal (ALM) is output.
- When the ER signal comes ON, reduce the load or take other measures to allow the inverter to decelerate.
- During fault occurrence aside from the E.OHT, THM and E.PTC, the output is immediately shut off, and the fault is signal (ALM) is output.
- To use the ER signal, set "97 (positive logic)" or "197 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- Regardless of the Pr. 875 setting, when the protective function is operating during position control, output is immediately shut off. (No deceleration stop)
- For systems with a large load-side torque that prevents deceleration, setting value " 0 " is recommended.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


### 5.10.3 Cooling fan operation selection

A cooling fan is built into the inverter and its operation can be controlled.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 244 \\ & \mathrm{H} 100 \end{aligned}$	Cooling fan operation selection	1	0	A cooling fan operates at power ON. Cooling fan ON/OFF control is invalid. (The cooling fan is always ON at power ON)
			1	Cooling fan ON/OFF control is invalid.   The fan is always ON while the inverter is running. During a stop, the inverter status is monitored and the fan switches ON/OFF according to the temperature.
			101 to 105	Cooling fan ON/OFF control is invalid.   Set the cooling fan stop waiting time within 1 to 5 seconds.

## - Cooling fan always ON (Pr. $244=$ " 0 ")

- When Pr. $244=" 0$ ", the cooling fan operates at power ON. If the fan stops at this time, the inverter finds that the fan operation is faulty and "F M" (FN), the indication of the Fan alarm, is displayed on the operation panel. The Fan fault output (FAN) signal and the Alarm (LF) signal are output.
- For the terminal used for the FAN signal output, set "25 (positive logic)" or "125 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) and for LF signal, set "98 (positive logic)" or "198 (negative logic)".


## - Cooling fan operation control (Pr. 244 = "1" (initial value), "101 to 105")

- The cooling fan operation is controlled when Pr. $244=$ " 1 ". When the inverter is running, the cooling fan operates constantly. When the inverter is stopped, the cooling fan operates depending on the temperature of the inverter heatsink. If the fan stops although it meets the conditions for running, fan operation is regarded as faulty, [FN] is displayed on the operation panel, and the fan signal and LF signals are output.
－To prevent the cooling fan from turning ON and OFF repeatedly during frequent starts／stops（inching），the cooling fan stop waiting time can be set．The waiting time when Pr． $244=$＂ 101 to 105 ＂is Pr． $244-100$（or 1 s ，if the Pr． $244=$＂101＂）．


## －Cooling fan operation command（Y206）signal

－The Cooling fan operation command（Y206）signal can be output when the inverter cooling fan meets the conditions for running．The function can be used when the fan installed on the enclosure is synchronized with the inverter cooling fan．
－The Y206 signal indicates the operating command condition of the inverter cooling fan depending on the power supply ON／ OFF or the Pr． 244 settings．The signal does not indicate the actual operation of the cooling fan．（The signal is output even if the cooling fan is stopped due to a fault．）
－To use the Y206 signal，set＂206（positive logic）or 306 （negative logic）＂in one of Pr． 190 to Pr． 196 （Output terminal function selection）to assign function to an output terminal．

## NOTE

－The cooling fan is installed on the FR－A820－00105（1．5K）or higher and the FR－A840－00083（2．2K）or higher．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## 5．10．4 Earth（ground）fault detection at start

## V／F Magneticflux

Select whether to make earth（ground）fault detection at start．When enabled，earth（ground）fault detection is performed immediately after a start signal input to the inverter．

Pr．	Name	Initial value	Setting range	Description
249	Earth（ground）fault detection at   start	0	0	Without the earth（ground）fault detection at   start
			With the earth（ground）fault detection at start	

－If a ground fault is detected at start while Pr． $249=$＂ 1 ＂，the output－side earth（ground）fault overcurrent（E．GF）is displayed and the outputs are shut off．（Refer to page 756．）
－Pr． 249 setting is enabled during V／F control and Advanced magnetic flux vector control．
－When the Pr． 72 PWM frequency selection setting is high，enable the ground fault detection at start．

## NOTE

－Because the detection is performed at start，output is delayed for approx． 20 ms every start．
－Use Pr． 249 to enable／disable ground fault detection at operation start．Ground faults are detected always during operation regardless of the Pr． 249 setting．

## 5．10．5 Varying the activation level of the undervoltage protective function

If the undervoltage protection（E．UVT）activates due to unstable voltage in the power supply，the undervoltage level（DC bus voltage value）can be changed．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 598 \\ & \mathrm{H} 102 \end{aligned}$	Undervoltage level	9999	175 to 215 VDC	Set the DC voltage value at which E．UVT occurs．
			350 to 430 VDC	
			9999	E．UVT occurs at 215 VDC（ 200 V class）／ 430 VDC（ 400 V class）．

[^21]- Do not use this function when switching to an external battery, since the inrush current when power is restored increases, as the undervoltage level is decreased.
- For the 200 V class inverters, the setting is available for the FR-A820-02330(45K) or lower.
- The Pr. 598 setting is valid for induction motors. When either of the first or second motor is a PM motor, the Pr. 598 setting is invalid.


### 5.10.6 Initiating a protective function

A fault (protective function) is initiated by setting the parameter.
This function can be used to check how the system operates at activation of a protective function.

Pr.	Name	Initial value	Setting range	Description
997   H103	Fault initiation	9999	16 to 253	The setting range is same with the one for fault data codes of the   inverter (which can be read through communication). Written data is not   stored in EEPROM.
			The read value is always "9999". The protective function is not   activated with this setting.	

- To initiate a fault (protective function), set the assigned number of the protective function to be initiated in Pr. 997 .
- The value set in Pr. 997 is not stored in EEPROM.
- When a protective function activates, the inverter output is shut off, a fault is displayed, and a fault signal (ALM, ALM2) is output.
- The latest fault in the faults history is displayed while the fault initiation function is in operation. After a reset, the faults history goes back to the previous status. (The protective function generated by the fault is not saved in the faults history.)
- Perform inverter reset to cancel the protective function.
- For the selectable parameter by Pr. 997 and the corresponding protective functions, refer to page 742.


## NOTE

- If a protective function is already operating, no fault can be activated by Pr.997.
- The retry function is disabled when a protective function has been initiated by the fault initiation function.
- If a fault occurs after a protective function has been activated, the protective function indication does not change. The fault is not saved in the faults history either.


### 5.10.7 I/O phase loss protection selection

The output phase loss protection function, which stops the inverter output if one of the three phases ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) on the inverter's output side (load side) is lost, can be disabled.
The input phase loss protective function on the inverter input side (R/L1, S/L2, T/L3) can be enabled.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{2 5 1}$	Output phase loss			
H200				

*1 The setting is available only for standard models and IP55 compatible models.

## - Output phase loss protection selection (Pr.251)

- When Pr. 251 is set to "0", output phase loss protection (E.LF) becomes invalid.


## - Input phase loss protection selection (Pr.872) (Standard models and IP55 compatible models)

- When Pr. 872 is set to "1", Input phase loss (E.ILF) protection is activated if one of three phases is detected to be lost for 1 s continuously.


## NOTE

－When several motors are connected，output phase loss cannot be detected even if the wiring to one motor loses phase．
－If an input phase is lost while Pr． $872=" 1$＂（with input phase loss protection），Pr． 261 Power failure stop selection $\neq$＂ 0 ＂（power failure stop function enabled），the motor decelerates to stop without outputting E．ILF．
－In the case of R／L1，S／L2 phase loss，the input phase loss protection does not operate，and the inverter output is shut off．
－If an input phase loss continues for a long time，the lives of converter section and capacitor of the inverter become shorter．

## 5．10．8 Retry function

This function allows the inverter to reset itself and restart at activation of the protective function（fault indication）．The retry generating protective functions can also be selected．
When the automatic restart after instantaneous power failure function is selected（Pr． 57 Restart coasting time $\neq 9999$ ），the restart operation is also performed after a retry operation as well as after an instantaneous power failure．（For restart operation， refer to page 597 and page 604 for selection．）

Pr．	Name	Initial   value	Setting range	Description
65   H300	Retry selection	0	0 to 5	A fault for retry can be selected．
67   H301	Number of retries at fault   occurrence	0	0	No retry operation
		1 to 10	Set the number of retries at a fault occurrence．   A fault output is not provided during the retry operation．	
		101 to 110	Set the number of retries at a fault occurrence．（The setting value minus   100 is the number of retries．）   A fault output is provided during the retry operation．	
$\mathbf{6 8}$   H302	Retry waiting time	1 s	0.1 to 600 s	Set the waiting time from a fault occurrence to a retry．
$\mathbf{6 9}$   H303	Retry count display   erase	0	0	Clear the number of restarts succeeded by retries．

## －Setting the retry function（Pr．67，Pr．68）

－When the inverter protective function is operating（fault indication），the retry function automatically cancels（resets）the protective function after the time set in Pr．68．The retry function then restarts the operation from the starting frequency．
－Retry operation is performed when Pr． $67 \neq=0$＂．Set the number of retries at activation of the protective function in Pr． 67 ．

Pr． 67 setting	Fault output during retry   operation	Retry count
0	-	No retry function
1 to 10	Not available	1 to 10 times
101 to 110	Available	1 to 10 times

－When retries fail consecutively more than the number of times set in Pr．67，a retry count excess（E．RET）occurs，resulting in an inverter retries．（Refer to the Retry failure example．）
－Use Pr． 68 to set the waiting time from a protective function activation to a retry in the range of 0.1 to 600 s ．
－During retry operation，the During retry（Y64）signal is ON．For the Y64 signal，set＂64（positive logic）＂or＂164（negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function．

## - Retry count check（Pr．69）

－Reading the Pr． 69 value provides the cumulative number of successful restart times made by retries．The cumulative count in Pr． 69 increases by 1 when a retry is successful．Retry is regarded as successful when normal operation continues without a fault for the Pr． 68 setting multiplied by four or longer（ 3.1 s at the shortest）．（When retry is successful，the cumulative number of retry failures is cleared．）

- Writing " 0 " in Pr. 69 clears the cumulative count.



## - Selecting retry generating faults (Pr.65)

- Using Pr.65, the fault that causes a retry is selectable. No retry is made for the fault not indicated. (For the fault details, refer to page 745.) • indicates the faults selected for retry.

Retry-making   fault	Pr.65 setting					
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
E.OC1	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$
E.OC2	$\bullet$	$\bullet$		$\bullet$	$\bullet$	
E.OC3	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$
E.OV1	$\bullet$		$\bullet$	$\bullet$	$\bullet$	
E.OV2	$\bullet$		$\bullet$	$\bullet$	$\bullet$	
E.OV3	$\bullet$		$\bullet$	$\bullet$	$\bullet$	
E.THM	$\bullet$					
E.THT	$\bullet$					
E.IPF	$\bullet$				$\bullet$	
E.UVT	$\bullet$				$\bullet$	
E. BE	$\bullet$				$\bullet$	
E. GF	$\bullet$				$\bullet$	
E.OHT	$\bullet$					
E.OLT	$\bullet$				$\bullet$	
E.OPT	$\bullet$				$\bullet$	
E.OP1	$\bullet$				$\bullet$	
E.PE	$\bullet$				$\bullet$	
E.MB1	$\bullet$				$\bullet$	


Retry-making   fault	Pr.65 setting											
	$\mathbf{0}$							$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
E.MB2	$\bullet$				$\bullet$							
E.MB3	$\bullet$				$\bullet$							
E.MB4	$\bullet$				$\bullet$							
E.MB5	$\bullet$				$\bullet$							
E.MB6	$\bullet$				$\bullet$							
E.MB7	$\bullet$				$\bullet$							
E.OS	$\bullet$				$\bullet$							
E.OSD	$\bullet$				$\bullet$							
E.PTC	$\bullet$											
E.CDO	$\bullet$				$\bullet$							
E.SER	$\bullet$				$\bullet$							
E.USB	$\bullet$				$\bullet$							
E.ILF	$\bullet$				$\bullet$							
E.PID	$\bullet$				$\bullet$							
E.PCH	$\bullet$				$\bullet$							
E.SOT	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$						
E.LCI	$\bullet$				$\bullet$							

## NOTE

- Use the retry function only when the operation can be resumed after resetting a protective function activation. Making a retry against the protective function, which is activated by an unknown condition, will lead the inverter and motor to be faulty. Identify and remove the cause of the protective function activation before restarting the operation.
- If the retry function operates during PU operations, the operating conditions (forward/reverse rotation) are stored; and operations resume after retry reset.
- Only the fault details for the first fault that occurred during retry are stored in the faults history.
- The reset by the retry function does not clear the accumulated data of the electronic thermal O/L relay, regenerative brake duty, etc. (This is different from power supply reset or reset by RES signal.)
- When the parameter storage device fault (E.PE) is occurring and reading of the retry-function-related parameters is not possible, retry cannot operated.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## CAUTION

- When the retry function is set enabled, stay away from the motor and machine in the case of an output shutoff. The motor and machine will start suddenly (after the reset time has elapsed) after the shutoff. When the retry function is selected, apply the supplied CAUTION stickers to easily visible places.


## 《< Parameters referred to 》

Pr. 57 Restart coasting time page 597, page 604

### 5.10.9 Limiting the output frequency (maximum/minimum frequency)

Motor speed can be limited. Clamp the upper and lower limits of the output frequency.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{\|l} 1 \\ \mathrm{H} 400 \end{array}$	Maximum frequency	$120 \mathrm{~Hz}^{* 1}$	0 to 120 Hz	Set the upper limit of the output frequency.
		$60 \mathrm{~Hz}^{*}$		
$\begin{aligned} & 2 \\ & \mathrm{H} 401 \end{aligned}$	Minimum frequency	0 Hz	0 to 120 Hz	Set the lower limit of the output frequency.
18 H402	High speed maximum frequency	$120 \mathrm{~Hz}^{* 1}$	0 to 590 Hz	Set when operating at 120 Hz or higher.
		$60 \mathrm{~Hz}{ }^{*}$		

*1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.

## Setting the maximum frequency (Pr.1, Pr.18)

- Set Pr. 1 Maximum frequency to the upper limit of the output frequency. If the value of the frequency command given is higher than the setting, the output frequency is clamped at the maximum frequency.
- To operate at a frequency higher than the 120 Hz , adjust the upper output frequency limit with Pr. 18 High speed maximum frequency. (When setting a frequency in Pr.18, the Pr. 1 setting automatically changes to the frequency set in Pr.18. Also, when setting a frequency in Pr.1, the Pr. 18 setting automatically changes to the frequency set in Pr.1.)



## Setting the minimum frequency (Pr.2)

- Set Pr. 2 Minimum frequency to the lower limit of the output frequency.
- If the set frequency is Pr. 2 or less, the output frequency is clamped at Pr. 2 (does not fall below Pr.2).


## NOTE

- To operate with a frequency higher than 60 Hz using frequency-setting analog signals, change the Pr. 125 (Pr.126) (frequency setting gain) setting. Simply changing the Pr. 1 and Pr. 18 settings does not enable the operation at a frequency higher than 60 Hz .
- During Real sensorless vector control, Vector control, and PM sensorless vector control, the upper and lower limits are for the commanded frequency. The final output frequency that is decided by each control may exceed the lower or upper limits.
- When Pr. 15 Jog frequency is equal to or less than Pr.2, the Pr. 15 setting takes precedence.
- If a jump frequency that exceeds Pr. 1 (Pr.18) is set for the 3-point frequency jump, the maximum frequency setting is the set frequency. If the jump frequency is less than the setting of Pr.2, the jump frequency is the set frequency. (The set frequency can be equal to or lower than the frequency lower limit.) When stall prevention is activated to decrease the output frequency, the output frequency may drop to Pr. 2 or below.


## CAUTION

－Note that when Pr． 2 is set to any value equal to or higher than Pr． 13 Starting frequency，simply turning ON the start signal runs the motor at the frequency set in Pr． 2 even if the command frequency is not given．

## 《｜Parameters referred to 》》

Pr． 13 Starting frequency page 363，page 364
Pr． 15 Jog frequency
Pr． 125 Terminal 2 frequency setting gain frequency，Pr． 126 Terminal 4 frequency setting gain frequency page 482

## 5．10．10 Avoiding machine resonance points（frequency jump）

When it is desired to avoid resonance attributable to the natural frequency of a mechanical system，these parameters allow resonant frequencies to be jumped．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 31 \\ & \mathrm{H} 420 \end{aligned}$	Frequency jump 1A	9999	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	$1 A$ to $1 B, 2 A$ to $2 B, 3 A$ to $3 B$ are frequency jumps（3－point jump）． 9999：Function disabled
$\begin{aligned} & 32 \\ & \mathrm{H} 421 \end{aligned}$	Frequency jump 1B			
$\begin{array}{\|l\|} \hline 33 \\ \mathrm{H} 422 \end{array}$	Frequency jump 2A			
$\begin{aligned} & \hline 34 \\ & \mathrm{H} 423 \end{aligned}$	Frequency jump 2B			
$\begin{aligned} & \hline 35 \\ & \mathrm{H} 424 \end{aligned}$	Frequency jump 3A			
$\begin{array}{\|l\|} \hline 36 \\ \text { H425 } \end{array}$	Frequency jump 3B			
552			0 to 30 Hz	Set the jump range for the frequency jumps（6－point jump）．
H429	Frequency jump ran	9999	9999	3－point jump

## －3－point frequency jump（Pr． 31 to Pr．36）

－Up to three areas may be set，with the jump frequencies set to either the top or bottom point of each area．
－The settings of frequency jumps $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$ are jump points，and operation is performed at these frequencies in the jump areas．


Example 1）To fix the frequency to 30 Hz in the range of 30 Hz to 35 Hz ，set 35 Hz in Pr． 34 and 30 Hz in Pr． 33 ．
Pr．34： 35 Hz
Pr．33： 30 Hz

Example 2）To jump the frequency to 35 Hz in the range of 30 Hz to 35 Hz ，set 35 Hz in Pr． 33 and 30 Hz in Pr． 34 ．
Pr．33： 35 Hz
Pr．34： 30 Hz
 ＇

## 6－point frequency jump（Pr．552）

－A total of six jump areas can be set by setting the common jump range for the frequencies set in Pr． 31 to Pr．36．

- When frequency jump ranges overlap, the lower limit of the lower jump range and the upper limit of the upper jump range are used.
- When the set frequency decreases and falls within the jump range, the upper limit of the jump range is the set frequency. When the set frequency increases and falls within the jump range, the lower limit of the jump range is the set frequency.




## NOTE

- During acceleration/deceleration, the running frequency within the set area is valid.
- If the setting ranges of individual groups (1A and 1B, 2A and 2B, 3A and 3B) overlap, Parameter write error (Er1) occurs.
- Setting Pr. $552=$ " 0 " disables frequency jumps.
- If a jump frequency that exceeds Pr. 1 (Pr.18) Maximum frequency is set for the 3-point frequency jump, the maximum frequency setting is the set frequency. If the set frequency is less than the jump frequency Pr. 2 Minimum frequency, the jump frequency is the set frequency. (The set frequency can be equal to or lower than the frequency lower limit.) Example with 6-point frequency jump


Maximum frequency and frequency jump


Minimum frequency and frequency jump

## 《 Parameters referred to $\ggg$

Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency page 407

### 5.10.11 Stall prevention operation

## V/F Magneticflux

This function monitors the output current and automatically changes the output frequency to prevent the inverter from shutting off due to overcurrent, overvoltage, etc. It can also limit the stall prevention and fast-response current limit operation during acceleration/deceleration and power/regenerative driving.
This function is disabled during Real sensorless vector control, Vector control and PM sensorless vector control.

- Stall prevention:

If the output current exceeds the stall prevention operation level, the output frequency of the inverter is automatically changed to reduce the output current. Also, the second stall prevention function can limit the output frequency range in which the stall prevention function is enabled.

- Fast-response current limit:

If the current exceeds the limit value, the output of the inverter is shut off to prevent an overcurrent.

Pr.	Name	Initial value		Setting range	Description	
		FM	CA			
$\begin{aligned} & 22 \\ & \text { H500 } \end{aligned}$	Stall prevention operation level	150\%		0	Stall prevention operation disabled.	
				0.1 to $400 \%{ }^{* 1}$	Set the current limit at which the stall prevention operation starts.	
$\begin{array}{\|l\|} \hline 156 \\ \text { H501 } \end{array}$	Stall prevention operation selection	0		0 to 31, 100, 101	Enable/disable the stall prevention operation and the fastresponse current limit operation.	
$\begin{aligned} & 48 \\ & \mathrm{H} 600 \end{aligned}$	Second stall prevention operation level	150\%		0	Second stall prevention operation disabled.	
				0.1 to 400\%*1	The stall prevention operation level can be changed using the RT signal.	
$\begin{aligned} & 49 \\ & \mathrm{H} 601 \end{aligned}$	Second stall prevention operation frequency	0 Hz		0	Second stall prevention operation disabled.	
				0.01 to 590 Hz	Set the frequency at which the Pr. 48 stall prevention operation starts.	
				9999	Pr. 48 is enabled when the RT signal is ON.	
$\begin{aligned} & 114 \\ & \mathrm{H} 602 \end{aligned}$	Third stall prevention operation level	150\%		0	Third stall prevention operation disabled.	
				0.1 to 400\%* ${ }^{\text {1 }}$	The stall prevention opera X9 signal.	on level can be changed using the
	Third stall prevention operation frequency	0 Hz		0	Third stall prevention operation disabled.	
H603				0.01 to 590 Hz	Set the frequency at which the stall prevention operation starts when the X9 signal turns ON.	
$\begin{aligned} & 23 \\ & \mathrm{H} 610 \end{aligned}$	Stall prevention operation level compensation factor at double speed	9999		0 to 200\%	The stall operation level when running at high speeds above the rated frequency can be reduced.	
				9999	Stall prevention operation disabled at double speed.	
$\begin{aligned} & 66 \\ & \mathrm{H} 611 \end{aligned}$	Stall prevention operation reduction starting frequency	60 Hz	50 Hz	0 to 590 Hz	Set the frequency at which the stall operation level reduction starts.	
$\begin{array}{\|l\|} \hline 148 \\ \mathrm{H} 620 \end{array}$	Stall prevention level at 0 V input	150\%		0 to $400 \%{ }^{*}$	The stall prevention operation level can be changed by the analog signal input to the terminal 1 (terminal 4).	
$\begin{aligned} & \hline 149 \\ & \mathrm{H} 621 \end{aligned}$	Stall prevention level at 10 V input	200\%		0 to 400\%* ${ }^{\text {1 }}$		
$\begin{aligned} & 154 \\ & \mathrm{H} 631 \end{aligned}$	Voltage reduction selection during stall prevention operation	1		0	Output voltage reduction enabled	Enable/disable the output voltage reduction during stall prevention operation.
				1	Output voltage reduction disabled.	
				10	Output voltage reduction enabled	Use this setting when the overvoltage protective function (E.OV[]) is activated during stall prevention operation in an application with large load inertia.
				11	Output voltage reduction disabled.	
$\begin{aligned} & 157 \\ & \text { M430 } \end{aligned}$	OL signal output timer	0 s		0 to 25 s	Set the OL signal output start time when stall prevention is activated.	
				9999	No OL signal output.	
$\begin{aligned} & \hline 858 \\ & \text { T040 } \end{aligned}$	Terminal 4 function assignment	0		0, 1, 4, 9999	When set "4", the stall prevention level can be changed with the signal to the terminal 4.	
$\begin{aligned} & 868 \\ & \text { T010 } \end{aligned}$	Terminal 1 function assignment	0		0 to 6, 9999	When set "4", the stall prevention level can be changed with the signal to the terminal 1.	

*1 The upper limit of stall prevention operation is limited internally to the following.
120\% (SLD rating), 150\% (LD rating), 220\% (ND rating), or 280\% (HD rating)

## - Setting of stall prevention operation level (Pr.22)



- For Pr. 22 Stall prevention operation level, set the ratio of the output current to the inverter's rated current at which the stall prevention operation is activated. Normally, this should be set at $150 \%$ (initial value).
- Stall prevention operation stops acceleration (makes deceleration) during acceleration, makes deceleration during constant speed, and stops deceleration during deceleration.
- When the stall prevention operation is performed, the Overload warning (OL) signal is output.


## NOTE

- A continuous overloaded condition may activate a protective function such as motor overload trip (electronic thermal $\mathrm{O} / \mathrm{L}$ relay function) (E.THM).
- When Pr. 156 has been set to activate the fast response current limit (initial value), the Pr. 22 setting should not be higher than $170 \%$. Such setting prevents torque generation.
- When Real sensorless vector control or Vector control is selected using Pr. 800 Control method selection, Pr. 22 serves as the torque limit level.
For the FR-A820-00250(3.7K) or lower and the FR-A840-00126(3.7K) or lower, the initial value of Pr. 22 is $200 \%$ instead of 150\%.


## - Disabling the stall prevention operation and fast-response current limit according to operating conditions (Pr.156)

- Referring to the following table, enable/disable the stall prevention operation and the fast-response current limit operation, and also set the operation at OL signal output.

Pr. 156 setting		Fast-response current limit $\circ$ : enabled   -: disabled	Stall prevention operation selection   $\circ$ : enabled   - : disabled			OL signal output   $\circ$ : enabled   $\bullet$ : disabled ${ }^{* 1}$	
		Acceleration	Constant speed	Deceleration			
$\begin{array}{\|l\|} \hline 0 \\ \text { (initial } \end{array}$	value)		$\bigcirc$	-	-	$\bigcirc$	$\bigcirc$
1		$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
2		-	$\bullet$	-	$\bigcirc$	$\bigcirc$	
3		$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
4		$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	
5		$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	
6		$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	
7		$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	
8		$\bigcirc$	$\bigcirc$	-	$\bullet$	$\bigcirc$	
9		$\bullet$	$\bigcirc$	-	$\bullet$	$\bigcirc$	
10		$\bigcirc$	$\bullet$	-	$\bullet$	$\bigcirc$	
11		$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$	
12		$\bigcirc$	$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$	
13		$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$	
14		$1 \circ$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	
15		-	-	$\bullet$	-	-*2	
16		$\bigcirc$	$\bigcirc$	-	$\bigcirc$	$\bullet$	
17		$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bullet$	
18		$\bigcirc$	$\bullet$	-	$\bigcirc$	$\bullet$	
19		$\bullet$	$\bullet$	-	$\bigcirc$	$\bullet$	
20		$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$	
21		$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$	
22		$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	
23		$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	
24		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bullet$	
25		$\bullet$	$\bigcirc$	-	$\bullet$	$\bullet$	
26		$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$	-	
27		$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	
28		$\bigcirc$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	
29		$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	
30		$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	
31		$\bullet$	$\bullet$	$\bullet$	$\bullet$	-*2	
	Power driving	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
$100{ }^{* 3}$	Regenerative driving	$\bullet$	$\bullet$	$\bullet$	$\bullet$	*2	
	Power driving	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
$10{ }^{* 3}$	Regenerative driving	$\bullet$	$\bullet$	-	$\bullet$	-*2	

*1 When "operation stop at OL signal output" is selected, the fault output " (stop due to stall prevention) is displayed, and operation stops.
*2 The OL signal and E.OLT are not outputted because fast-response current limit and stall prevention are not operating.
*3 Setting values "100, 101" can be individually set for power driving and regenerative driving. The setting value "101" disables the fast-response current limit during power driving.

## NOTE

- When the load is heavy or the acceleration/deceleration time is short, stall prevention operates and acceleration/deceleration may not be performed according to the time set. Set the Pr. 156 and stall prevention operation level to the optimum values.
- For lift applications, make settings to disable the fast-response current limit. Otherwise, the torque may be insufficient, causing the load to drop.


## $\checkmark$ Adjusting the stall prevention operation signal and output timing (OL signal, Pr.157)

- If the output current exceeds the stall prevention operation level and stall prevention is activated, Overload warning (OL) signal turns ON for 100 ms or more. The output signal turns OFF when the output current falls to the stall prevention operation level or less.
- Pr. 157 OL signal output timer can be used to set whether to output the OL signal immediately, or whether to output it after a certain time period has elapsed.
- This function also operates during regeneration avoidance operation $\qquad$ (overvoltage stall).

Pr. 157 setting	Description
0 (initial value)	Output immediately.
0.1 to 25	Output after the set time (s).
9999	Not output.



NOTE

- OL signal is assigned to the terminal OL in the initial status. The OL signal can be assigned to other terminals by setting "3(positive logic) or 103 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If the stall prevention operation has lowered the output frequency to 0.5 Hz and kept the level for 3 s , the stall prevention stop (E.OLT) is activated to shut off the inverter output.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## Setting for stall prevention operation in the high-frequency range (Pr.22, Pr.23, Pr.66)




- When operating at the rated motor frequency or higher, acceleration may not be made because the motor current does not increase. Also, when operating in the high-frequency range, the current flowing to the locked motor becomes less than the rated output current of the inverter; and even if the motor is stopped, the protective function does not operate (OL). In a case like this, the stall prevention level can be reduced in the high-frequency range to improve the motor's operating characteristics. This is useful when operating up to the high speed range, such as when using a centrifuge. Normally, set Pr. 66 Stall prevention operation reduction starting frequency to 60 Hz , and Pr. 23 Stall prevention operation level compensation factor at double speed to $100 \%$.
- Calculation formula for stall prevention operation level
$\begin{gathered}\text { Stall prevention operation level (\%) } \\ \text { in the high-frequency range }\end{gathered}=A+B \times\left[\frac{\operatorname{Pr} .22-A}{\operatorname{Pr} .22-B}\right] \times\left[\frac{\operatorname{Pr} .23-100}{100}\right]$
Where, $\quad A=\frac{\operatorname{Pr} .66(\mathrm{~Hz}) \times \operatorname{Pr} .22(\%)}{\text { Output frequency (Hz) }}, B=\frac{\operatorname{Pr} .66(\mathrm{~Hz}) \times \operatorname{Pr} .22(\%)}{400 \mathrm{~Hz}}$
- When Pr. 23 = "9999" (initial value),the stall prevention operation level is constant at the Pr. 22 level up to 590 Hz .


## - Setting multiple stall prevention operation levels (Pr.48, Pr.49, Pr.114, Pr.115)

- Setting Pr. 49 Second stall prevention operation frequency = "9999" and turning ON the RT signal enables Pr. 48 Second stall prevention operation level.
- For Pr. 48 (Pr.114), set the stall prevention operation level that is effective in the output frequency range between 0 Hz and Pr. 49 (Pr.115). However, the operation level is Pr. 22 during acceleration.
- Stop-on-contact operation can be used by decreasing the Pr. 48 (Pr.114) setting and loosening the reduction torque.
- Pr. 114 and Pr. 115 are enabled when the X9 signal is ON. To input the X9 signal, set " 9 " in any of Pr. 178 to Pr. 189 input terminal function selection to assign the function to the terminal.

Pr. 49 setting	Pr. 115 setting	Operation status
0 (initial value)	The second (third) stall prevention function disabled.	
0.01 Hz to 590 Hz	The second (third) stall prevention function operates according to the frequency. ${ }^{* 1}$	
$9999^{* 2}$	Setting not   available	The second stall prevention function operates according to the RT signal.   RT signal ON: stall level set in Pr.48   RT signal OFF: stall level set in Pr. 22

*1 For the stall prevention operation level, the smaller of Pr. 22 and Pr. 48 (Pr.115)has precedence.
*2 When Pr. 858 = "4 (analog input to terminal 4 for stall prevention operation level)" or Pr. $868=$ "4 (analog input to terminal 1 for stall prevention operation level)", turning ON the RT (X9) signal does not enable the second (third) stall prevention function. (Input to the terminal 4 or terminal 1 is valid.)


- Set Pr. 149 Stall prevention level at $\mathbf{0} \mathbf{V}$ input to the current limit level when input voltage is $10 \mathrm{~V} / 5 \mathrm{~V}(20 \mathrm{~mA})$.


Pr. 858 setting	Pr. 868 setting	V/F, Advanced magnetic flux vector control	
		Terminal 4 function	Terminal 1 function
0 (initial value)	0 (initial value)	Frequency command (AU signal-ON)	Auxiliary frequency
	1		-
	2		-
	3		-
	4*1		Stall prevention
	5		-
	6		-
	9999		-
1	0 (initial value)	-	-
	1		-
	2		-
	3		-
	4*1		Stall prevention
	5		-
	6		-
	9999		-
$4^{* 2}$	0 (initial value)	Stall prevention	Auxiliary frequency
	1		-
	2		-
	3	-	-
	4*1	-*3	Stall prevention
	5	Stall prevention	-
	6		-
	9999		-
9999	-	-	-

*1 When Pr. $868 \neq$ "4" (analog stall prevention), the other functions of terminal 1 (auxiliary input, override function, PID control) do not operate,
*2 When Pr. $858=$ "4" (analog stall prevention), PID control and speed commands via terminal 4 do not operate even when the AU signal is ON.
*3 When both Pr. 858 and Pr. 868 are set to "4" (stall prevention), terminal 1 functions take priority and terminal 4 has no function.

## NOTE

- The fast-response current limit cannot be set.


## - Further prevention of a trip (Pr.154)

- Pr. 154 Voltage reduction selection during stall prevention operation $=" 0,10$ ", the output voltage is reduced during stall prevention operation. By making this setting, an overcurrent trip becomes less likely to occur. Use this setting when torque reduction does not pose a problem. (Under V/F control, the output voltage is reduced only during the stall prevention operation is activated.)
- Set Pr. $154=$ " 10 or 11 " when the overvoltage protective function (E.OV[]) is activated during stall prevention operation in an application with large load inertia. Note that turning OFF the start signal (STF/STR) or varying the frequency command during stall prevention operation may delay the acceleration/deceleration start.

Pr. 154	E.OC[] countermeasure	E.OV[] countermeasure
0	Enabled	-
1 (initial value)	-	-
10	Enabled	Enabled
11	-	Enabled

## CAUTION

- Do not set the stall prevention operation current too low.

Doing so will reduce the generated torque.

- Be sure to perform the test operation.

Stall prevention operation during acceleration may extend the acceleration time.
Stall prevention operation during constant-speed operation may cause sudden speed changes.
Stall prevention operation during deceleration may extend the deceleration time.

[^22]
### 5.10.12 Load characteristics fault detection

This function is used to monitor whether the load is operating in normal condition by storing the speed/torque relationship in the inverter to detect mechanical faults or for maintenance. When the load operating condition deviates from the normal range, the protective function is activated or the warning is output to protect the inverter or the motor.

Pr.	Name	Initial value		Setting range	Description
		FM	CA		
$\begin{array}{r} 1480 \\ \text { H520 } \end{array}$	Load characteristics measurement mode	0		0	Load characteristics measurement is normally completed.
				1	Load characteristics measurement mode is started.
				$\begin{aligned} & 2,3,4,5, \\ & 81,82, \\ & 83,84,85 \end{aligned}$	The load characteristics measurement status is displayed. (Read-only)
$\begin{aligned} & \hline 1481 \\ & \mathrm{H} 521 \end{aligned}$	Load characteristics load reference 1	9999		0 to 400\%	Set the reference value of normal load characteristics.   8888: The present load status is written as reference status.   9999: The load reference is invalid.
$\begin{aligned} & 1482 \\ & \text { H522 } \end{aligned}$	Load characteristics load reference 2	9999			
1483   H523	Load characteristics load reference 3	9999			
$\begin{aligned} & 1484 \\ & \mathrm{H} 524 \end{aligned}$	Load characteristics load reference 4	9999			
$\begin{aligned} & 1485 \\ & \text { H525 } \end{aligned}$	Load characteristics load reference 5	9999			
$\begin{aligned} & 1486 \\ & \text { H526 } \end{aligned}$	Load characteristics maximum frequency	60 Hz	50 Hz	0 to 590 Hz	Set the maximum frequency of the load characteristics fault detection range.
$\begin{aligned} & 1487 \\ & \mathrm{H} 527 \end{aligned}$	Load characteristics minimum frequency	6 Hz		0 to 590 Hz	Set the minimum frequency of the load characteristics fault detection range.
$\begin{aligned} & 1488 \\ & \text { H530 } \end{aligned}$	Upper limit warning detection width	20\%		0 to 400\%	Set the detection width when the upper limit load fault warning is output.
				9999	Function disabled
$\begin{aligned} & 1489 \\ & \text { H531 } \end{aligned}$	Lower limit warning detection width	20\%		0 to 400\%	Set the detection width when the lower limit load fault warning is output.
				9999	Function disabled
$\begin{aligned} & 1490 \\ & \text { H532 } \end{aligned}$	Upper limit fault detection width	9999		0 to 400\%	Set the detection width when output is shut off when the upper limit load fault occurs.
				9999	Function disabled
$\begin{aligned} & 1491 \\ & \text { H533 } \end{aligned}$	Lower limit fault detection width	9999		0 to 400\%	Set the detection width when output is shut off when the lower limit load fault occurs.
				9999	Function disabled
$\begin{aligned} & 1492 \\ & \mathrm{H} 534 \end{aligned}$	Load status detection signal delay time / load reference measurement waiting time	1 s		0 to 60 s	Set the waiting time after the load fault is detected until warning output or output shutoff.   In the load characteristics measurement mode, set the waiting time after the load measurement frequency is reached until the load reference is set.

## - Load characteristics setting (Pr. 1481 to Pr.1487)

- Use Pr. 1481 to Pr. 1485 to set the reference value of load characteristics.
- Use Pr. 1486 Load characteristics maximum frequency and Pr. 1487 Load characteristics minimum frequency to set the output frequency range for load fault detection.



## - Automatic measurement of the load characteristics reference (Load characteristics measurement mode) (Pr.1480)

## Point $\rho$

- Perform measurement under actual environment with the motor connected.
- Set the Pr. 1487 Load characteristics minimum frequency higher than the Pr. 13 Starting frequency.
- Setting Pr. 1480 Load characteristics measurement mode $=$ "1" enables automatic measurement of the load characteristics reference. (Load characteristics measurement mode)
- Use Pr. 1486 and Pr. 1487 to set the frequency band for the measurement, and set Pr. $1480=$ "1". After setting, when the inverter is started, the measurement starts.
- The automatically measured load characteristics reference is written in Pr. 1481 to Pr. 1485.
- After the measurement is started, read Pr. 1480 to display the status of the measurement. If " 8 " appears in the tens place, the measurement has not properly completed.

Read value of Pr. $\mathbf{1 4 8 0}$		Status
Tens place	Ones place	
-	1	During measurement from the starting point to Point 1
-	2	During measurement from Point 1 to Point 2
-	3	During measurement from Point 2 to Point 3
-	5	During measurement from Point 3 to Point 4
-	0	During measurement from Point 4 to Point 5
-	1 to 5	Termination of measurement by an activation of a protective function, Inverter reset, turning ON of MRS   signal, turning OFF of the start command, or timeout. (The value in the ones place represents the above-   mentioned measurement point.)
8		

- While measuring automatically, the During load characteristics measurement (Y213) signal is output. For the Y213 signal, assign the function by setting "213 (positive logic)" or "313 (negative logic)" in any of in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- Setting "8888" in Pr. 1481 to Pr. 1485 enables fine adjustment of load characteristics. When setting Pr. 1481 to Pr. $1485=$ " 8888 " during operation, the load status at that point is set in the parameter. (Only when the set frequency is within $\pm 2 \mathrm{~Hz}$ of the frequency of the measurement point, and SU signal is in the ON state.)



## NOTE

- Even if the load measurement is not properly completed, the load characteristics fault is detected based on the load characteristics found by the already-completed portion of the measurement.
- During the load characteristics measurement, the load characteristics fault detection is not performed.
- During the load characteristics measurement, linear acceleration/deceleration is performed even if the S-pattern acceleration/ deceleration is set.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Load fault detection setting (Pr. 1488 to Pr.1491)

- When the load is deviated from the detection width set in Pr. 1488 Upper limit warning detection width, the Upper limit warning detection (LUP) signal is output. When the load is deviated from the detection width set in Pr. 1489 Lower limit warning detection width, the Lower limit warning detection (LDN) signal is output. At the same time, the Load fault warning (LDF) appears on the operation panel.
- For the LUP signal, assign the function by setting "211 (positive logic)" or "311 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection). For the LDN signal, assign the function by setting "212 (positive logic)" or " 312 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- When the load is deviated from the detection width set in Pr. 1490 Upper limit fault detection width, the protective function (E.LUP) is activated and the inverter output is shut off. When the load is deviated from the detection width set in Pr. 1491 Lower limit fault detection width, the protective function (E.LDN) is activated and the inverter output is shut off.
- To prevent the repetitive on/off operation of the signal due to load fluctuation near the detection range, Pr. 1492 Load status detection signal delay time / load reference measurement waiting time can be used to set the delay time. Even when a fault is detected out of the detection range once, the warning is not output if the characteristics value returns to the normal range from a fault state within the output delay time.



## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Setting example

- The load characteristics are calculated from the parameter setting and the output frequency.
- A setting example is as follows. The reference value is linearly interpolated from the parameter settings. For example, the reference when the output frequency is 30 Hz is $26 \%$, which is linearly interpolated from values of the reference 2 and the reference 3.

Reference	Frequency	Load reference
Load characteristics reference 1	$\mathrm{f} 1:$ Load characteristics minimum frequency (Pr.1487) $=10 \mathrm{~Hz}$	Pr.1481 $=15 \%$
Load characteristics reference 2	$\mathrm{f} 2=(\mathrm{f} 5-\mathrm{f} 1) / 4+\mathrm{f} 1=22.5 \mathrm{~Hz}$	Pr.1482 $=20 \%$
Load characteristics reference 3	$\mathrm{f} 3=(\mathrm{f} 5-\mathrm{f} 1) / 2+\mathrm{f} 1=35 \mathrm{~Hz}$	Pr.1483 $=30 \%$
Load characteristics reference 4	$\mathrm{f} 4=(\mathrm{f5}-\mathrm{f} 1) \times 3 / 4+\mathrm{f} 1=47.5 \mathrm{~Hz}$	Pr.1484 $=60 \%$
Load characteristics reference 5	$\mathrm{f5}$ : Load characteristics maximum frequency $($ Pr.1486 $)=60 \mathrm{~Hz}$	Pr.1485 $=100 \%$



## NOTE

- When the load reference is not set for five points, the load characteristics value is determined by linear interpolation of the set load reference values only. If there is only one load reference setting, the set load reference is used as the load reference all through the range.


### 5.10.13 Motor overspeeding detection

The Overspeed occurrence (E.OS) is activated when the motor speed exceeds the overspeed detection level. This function prevents the motor from accidentally speeding over the specified value, due to an error in parameter setting, etc.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 374 \\ & \mathrm{H} 800 \end{aligned}$	Overspeed detection level	9999	0 to 590 Hz	If the motor rotation speed exceeds the speed set in Pr. 374 during encoder feedback control, Real sensorless vector control, Vector control or PM sensorless vector control, Overspeed occurrence (E.OS) occurs, the inverter output is shut off.
			9999	If the speed exceeds "the maximum speed (Pr.1, Pr.18) $+20 \mathrm{~Hz} "$ during encoder feedback control, Real sensorless vector control, or Vector control, E.OS occurs.   During PM sensorless vector control, E.OS occurs when the speed exceeds the "maximum motor frequency $+10 \mathrm{Hz**}$.

*1 The motor maximum frequency is set in Pr. 702 Maximum motor frequency. When Pr. $702=$ " 9999 (initial value)", the Pr. 84 Rated motor frequency is used as the maximum motor frequency.


## NOTE

- During the encoder feedback control operation or under Vector control, the motor speed is compared against Pr.374. Under Real sensorless vector control or PM sensorless vector control, the output frequency is compared against Pr. 374.


### 5.11 (M) Item and output signal for monitoring

Purpose	Parameter to set		Refer to page			
$\begin{array}{l}\text { To display the motor speed (the } \\ \text { number of rotations per minute). } \\ \text { To switch the unit of measure to set } \\ \text { the operation speed from frequency } \\ \text { to motor speed }\end{array}$	$\begin{array}{l}\text { Speed indication and its } \\ \text { setting change to rotations } \\ \text { per minute }\end{array}$	$\begin{array}{l}\text { P.M000 to P.M002, } \\ \text { P.D030 }\end{array}$	$\begin{array}{l}\text { Pr.37, Pr.144, } \\ \text { Pr.505, Pr.811 }\end{array}$	422	$]$	Pr.52, Pr.170,
:---						

### 5.11.1 Speed indication and its setting change to rotations per minute

The frequency monitored or set on the operation panel can be changed to the motor speed or the machine speed.

Pr.	Name	Initial value		Setting range	Description	
		FM	CA			
$\begin{array}{\|l\|} \hline 37 \\ \text { M000 } \end{array}$	Speed display	0		0	Monitoring and setting of frequency	
				1 to $9998 * 1$	Set a number for the speed of machine operated at the speed (frequency) set in Pr. 505.	
$\begin{array}{\|l\|} \hline 505 \\ \text { M001 } \end{array}$	Speed setting reference	60 Hz	50 Hz	1 to 590 Hz	Set the reference speed (frequency) for Pr. 37.	
$\begin{array}{\|l\|} \hline 144 \\ \text { M002 } \end{array}$	Speed setting switchover	4		$\begin{aligned} & 0,2,4,6,8,10,12,102 \\ & 104,106,108,110,112 \end{aligned}$	Set the number of motor poles for the indication of the motor speed.	
$\begin{array}{\|l} \hline 811 \\ \text { D030 } \end{array}$	Set resolution switchover	0		0	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.1\%
				1	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	
				10	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.01\%
				11	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	

*1 The maximum value of the setting range differs according to the Pr. 1 Maximum frequency, Pr. 505 Speed setting reference, and it can be calculated from the following formula.
The maximum value of Pr. $37<65535 \times$ Pr. 505 / Pr. 1 setting value (Hz).
The maximum setting value of Pr. 37 is 9998 if the result of the above formula exceeds 9998.

## - Indication of motor speed (Pr.37, Pr.144)

- To change the indication to the motor speed, set the number of motor poles ( $2,4,6,8,10$, or 12 ) or the number of motor poles with the addition of 100 (102, 104, 106, 108, 110, or 112) in Pr. 144.
- Whenever the number of motor poles set in Pr. 81 Number of motor poles is changed, the Pr. 144 setting changes automatically in conjunction with Pr.81. However, the Pr. 81 setting does not automatically change when the Pr. 144 setting is changed.
Example 1) Changing the initial value of Pr. 81 to " 2 " will change the Pr. 144 setting from " 4 " to " 2 ".
Example 2) Changing the Pr. 81 setting to "2" while Pr. 144 = "104" will change the Pr. 144 setting from "104" to "102".


## - Indication of machine speed (Pr.37, Pr.505)

- To change the indication to the machine speed, set a number in Pr. 37 which corresponds to the speed of machine operated at the frequency set in Pr. 505.
- For example, when Pr. 505 is set to 60 Hz and Pr. 37 is set to " 1000 ", the operation panel indicates " 1000 " as the monitor value of machine speed while the machine is operated at the frequency of 60 Hz . " 500 " is displayed while the running frequency is 30 Hz .


## -Changing the increment of the speed monitoring and setting (Pr.811)

- When Pr. $811=" 1$ or 11 ", the speed can be set in increments of $0.1 \mathrm{r} / \mathrm{min}$ on the PU, or can be set and monitored in increments of $0.1 \mathrm{r} / \mathrm{min}$ via RS-485 communication or other communication with a corresponding communication option installed. (The parameter setting is in $1 \mathrm{r} / \mathrm{min}$ increments.)
- For the information of the availability of changing the increments of speed setting on communication options, refer to the Instruction Manual of each communication option.
- Refer to page 235 for details of the setting increments for the torque limit level.


## - Monitoring/setting items and its increments

- When both settings of Pr. 37 and Pr. 144 are changed from the initial values, a precedence order for these settings is as follows: Pr. $144=102$ to $112>\operatorname{Pr} .37=1$ to $9998>\operatorname{Pr} .144=2$ to 12.
- The monitoring/setting items and its increments are listed with the following matrix to show the combination of the Pr. 37 and Pr. 144 settings.

Pr. 37 setting	Pr. 144 setting	Output frequency indication	Set frequency indication	Running speed indication	Frequency setting Parameter setting
$\begin{aligned} & 0 \\ & \text { (initial value) } \end{aligned}$	0	0.01 Hz	0.01 Hz	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	0.01 Hz
	2 to 12	0.01 Hz (initial setting)	0.01 Hz (initial setting)	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$ (initial setting)	0.01 Hz (initial setting)
	102 to 112	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	$1 \mathrm{r} / \mathrm{min}^{* 1}$
1 to 9998	0	0.01 Hz	0.01 Hz	1 (machine speed*1)	0.01 Hz
	2 to 12	1 (machine speed ${ }^{* 1}$ )	1 (machine speed*1)	1 (machine speed*1)	1 (machine speed*1)
	102 to 112	0.01 Hz	0.01 Hz	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	0.01 Hz

*1 Motor speed r/min conversion formula: frequency $\times 120 /$ number of motor poles (Pr.144)
Machine speed conversion formula: Pr $37 \times$ frequency / Pr. 505
The Pr. 144 value in the above formula is "Pr. 144-100" when any of " 102 to 112 " is set in Pr. 144 . The value is " 4 " when Pr. $37=0$ and Pr. $144=0$.
The item set in Pr. 505 is consistently a frequency (Hz).
*2 The increment can be changed in Pr. 811 from $1 \mathrm{r} / \mathrm{min}$ to $0.1 \mathrm{r} / \mathrm{min}$.

## NOTE

- The inverter's output frequency is displayed as synchronous speed under V/F control. The displayed value is "actual motor speed" + "motor slip". When Advanced magnetic flux vector control, Real sensorless vector control or PM sensorless vector control is selected, the actual motor speed (estimated value by motor slip calculation) is used. When the encoder feedback control or vector control is selected, the actual motor speed from the encoder is used.
- When Pr. $37=$ " 0 " and Pr. $144=$ " 0 ", the running speed monitor is displayed with the number of motor poles 4. (Displays 1800 $\mathrm{r} / \mathrm{min}$ at 60 Hz )
- To change the PU main monitor (PU main display), refer to Pr. 52.
- If the setting increment is changed to $1 \mathrm{r} / \mathrm{min}(\operatorname{Pr} .811=" 0$ or $10 ")$ after setting the running speed in $0.1 \mathrm{r} / \mathrm{min}(\operatorname{Pr} .811=" 1$ or 11"), the $0.1 \mathrm{r} / \mathrm{min}$ increment may be dropped, in order for the rotations per minute resolution to change from $0.1 \mathrm{r} / \mathrm{min}$ to 0.3 $\mathrm{r} / \mathrm{min}$ (when using four poles).
- When using the machine speed display for the parameter unit (FR-PU07), do not change the speed with the up/down key if a set speed above 65535 is displayed. The set speed may become an undetermined value.
- When the FR-A8ND is connected, the frequency display (setting) is used regardless of the Pr.37, Pr. 144 settings.
- When Pr. 811 = "1 or 11 " with the $0.1 \mathrm{r} / \mathrm{min}$ increment, the upper limit is as follows.

Speed command setting range: $6000 \mathrm{r} / \mathrm{min}$ for 2 to 10 motor poles, $5900 \mathrm{r} / \mathrm{min}$ for 12 motor poles
Running speed monitor such as the operation panel: $6553.5 \mathrm{r} / \mathrm{min}$
Full scale of the running speed motor for analog output (terminals FM, CA and AM): $6000 \mathrm{r} / \mathrm{min}$

## CAUTION

- Make sure to set the running speed and the number of motor poles.

Otherwise, the motor might run at extremely high speed, damaging the machine.

### 5.11.2 Monitor item selection on operation panel or via communication

The monitor item to be displayed on the operation panel or the parameter unit can be selected.

Pr.	Name	Initial value	Setting range	Description
52   M100	Operation panel main monitor selection	0 (output frequency)	0,5 to 14,17 to 20, 22 to 36,38 to 46,50 to 57 , 61, 62, 64, 67, 71 to 75,87 to 98, 100	Select the item monitored on the operation panel or parameter unit.   Refer to page 425 for the monitor item selection.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 774 \\ & \text { M101 } \end{aligned}$	Operation panel monitor selection 1	9999	1 to 3 , 5 to 14 , 17 to 20,22 to 36, 38 to 46,50 to $57,61,62$, 64, 67, 71 to 75 , 87 to 98,100 , 9999	Each of the initial items monitored on the operation panel or parameter unit in the monitor mode (output frequency, output current, and output voltage) can be switched to an user-designated item.   9999: Follows the Pr. 52 setting.
$\begin{array}{\|l\|} \hline 775 \\ \text { M102 } \end{array}$	Operation panel monitor selection 2			
776   M103	Operation panel monitor selection 3			
$\begin{array}{\|l\|} \hline 992 \\ \text { M104 } \end{array}$	Operation panel setting dial push monitor selection		$\begin{aligned} & 0 \text { to } 3,5 \text { to } 14 \text {, } \\ & 17 \text { to } 20,22 \text { to } \\ & 36,38 \text { to } 46,50 \\ & \text { to } 57,61,62, \\ & 64,67,71 \text { to } 75 \\ & 87 \text { to } 98,100 \end{aligned}$	Select the monitor item displayed on the operation panel at the time when the setting dial is pressed.
$\begin{array}{\|l\|} \hline 170 \\ \text { M020 } \\ \hline \end{array}$	Watt-hour meter clear	9999	0	Set "0" to clear the watt-hour meter.
			10	Set "10" to monitor the cumulative power in the range of 0 to 9999 kWh via communication.
			9999	Set "9999" to monitor the cumulative power in the range of 0 to 65535 kWh via communication.
$\begin{aligned} & \hline 563 \\ & \text { M021 } \end{aligned}$	Energization time carryingover times	0	(0 to 65535)   (Read-only)	The number of times that the cumulative energization time exceeded 65535 hours is displayed (read-only).
$\begin{array}{\|l\|} \hline 268 \\ \text { M022 } \\ \hline \end{array}$	Monitor decimal digits selection	9999	0	Value is displayed in 1 increments (an integer).
			1	Value is displayed in 0.1 increments.
			9999	No function
$\begin{array}{\|l\|} \hline 891 \\ \text { M023 } \end{array}$	Cumulative power monitor digit shifted times	9999	0 to 4	Set the number of digits to move the decimal point of the cumulative energy monitored value to the left. The readout peaks out at the upper limit of readout.
			9999	The function of moving the decimal point is not available. The readout is reset to 0 when it exceeds the upper limit.
$\begin{array}{\|l\|} \hline 171 \\ \text { M030 } \\ \hline \end{array}$	Operation hour meter clear	9999	0	Set "0" to clear the operation hour meter.
			9999	The readout is always 9999. Nothing changes when "9999" is set.
564   M031	Operating time carryingover times	0	(0 to 65535) (Read-only)	The number of times that the operating time reaches 65535 hours is displayed. Read-only.
$\begin{array}{\|l\|} \hline 290 \\ \text { M044 } \\ \hline \end{array}$	Monitor negative output selection	0	0 to 7	Set the availability of negative signals output via terminal AM, to the operation panel, and through communication. (Refer to page 433.)
$\begin{aligned} & 1018 \\ & \text { M045 } \end{aligned}$	Monitor with sign selection	9999	0	Select the item group to enable the indication of negative signed numbers.
			9999	
$\begin{aligned} & 1106 \\ & \text { M050 } \end{aligned}$	Torque monitor filter	9999	0 to 5 s	The filter time constant is selectable for monitoring of the torque. A larger setting results in slower response.
			9999	0.3 s filter
$\begin{aligned} & 1107 \\ & \text { M051 } \end{aligned}$	Running speed monitor filter	9999	0 to 5 s	The filter time constant is selectable for monitoring of the running speed. A larger setting results in slower response.
			9999	0.08 s filter
$\begin{aligned} & 1108 \\ & \text { M052 } \end{aligned}$	Excitation current monitor filter	9999	0 to 5 s	The filter time constant is selectable for monitoring of the motor excitation current. A larger setting results in slower response.
			9999	0.3 s filter

## - Monitor items list (Pr.52, Pr. 774 to Pr.776, Pr.992)

- Use Pr.52, Pr. 774 to Pr.776, or Pr. 992 to select the item to monitor on the operation panel or the parameter unit.
- Refer to the following table to find the setting value for each monitoring. (The items marked with "-" cannot be selected. The circle in the [-] column indicates that the indication of negative signed numbers is available.)

Monitor item	Increment   and unit	Pr.52,   Pr.774 to   Pr.776,   Pr.992	RS-485   dedicated   monitor   (hexadecimal)	MODBUS   RTU real   time   monitor	-1


Monitor item	Increment and unit	$\begin{gathered} \text { Pr. } 52, \\ \text { Pr. } 774 \text { to } \\ \text { Pr. } 776 \text {, } \\ \text { Pr. } 992 \end{gathered}$	RS-485   communication dedicated monitor (hexadecimal)	MODBUS   RTU real time monitor	-*1	Description
Fault indication	-	0/100	-	-		Each of the last 8 faults is displayed individually.
Set frequency / motor speed setting	$0.01 \mathrm{~Hz}^{* 17}$	$5^{*} 2$	H05	40205		The set frequency is displayed.
Operation speed	1 (r/min)	$6^{* 2}$	H06	40206	-*21	The motor speed is displayed (depending on the settings of Pr. 37 and Pr.144). (Refer to page 422.) During encoder feedback control operation or under Vector control, the actual motor speed according to encoder signals is displayed.
Motor torque	0.1\%	$7^{*}$	H07	40207	-	The motor torque is displayed as a percentage ( $0 \%$ under V/F control), considering the rated torque as $100 \%$.
Converter output voltage*7	0.1 V	$8^{* 2}$	H08	40208		The DC bus voltage value is displayed.
Regenerative brake duty ${ }^{*} 8$	0.1\%	$9^{* 2}$	H09	40209		Brake duty set in Pr. 70 for the regeneration unit set in Pr. 30 is displayed.
Electronic thermal O/   L relay load factor	0.1\%	$10^{*} 2$	HOA	40210		The motor thermal cumulative value is displayed, considering the thermal operation level as $100 \%$.
Output current peak value*7	0.01/0.1 $\mathrm{A}^{* 6}$	$11^{*} 2$	H0B	40211		The peak value of output current, which is constantly stored, is displayed. (It is reset with every startup of the inverter.)
Converter output voltage peak value ${ }^{* 7}$	0.1 V	$12^{*} 2$	H0C	40212		The DC bus voltage peak value, which is constantly stored, is displayed. (It is reset with every startup of the inverter.)
Input power	$\begin{aligned} & \text { 0.01/0.1 } \\ & \mathrm{kW}^{*} 6 \end{aligned}$	$13^{*}$	HOD	40213		The power at the inverter input side is displayed.
Output power*9	$\begin{aligned} & \text { 0.01/0.1 } \\ & \mathrm{kW}^{*} 6 \end{aligned}$	$14^{*} 2$	H0E	40214		The power at the inverter output side is displayed.
Load meter	0.1\%	17	H11	40217		Torque current is displayed as a percentage, considering Pr. 56 setting value as $100 \%$ (considering the motor rated torque as $100 \%$ under Real sensorless vector control or Vector control).
Motor excitation current ${ }^{*}$ 7	0.01/0.1 $\mathrm{A}^{* 6}$	18	H12	40218		The motor excitation current is displayed.
Position pulse ${ }^{* 11}$	-	19	H13	40219		The number of pulses per motor rotation during orientation control operation or in the position control mode is displayed. (The output voltage is displayed when a Vector control option is not installed.)
Cumulative energization time*3	1 h	20	H14	40220		The cumulative energization time since the inverter shipment is displayed.   The number of times an integrated value has reached the maximum value of 65535 hours can be checked in Pr. 563.
Orientation status*11	1	22	H16	40222		Monitoring is enabled only during orientation control operation. (The output voltage is displayed when a Vector control option is not installed.) (Refer to page 554.)
Actual operation time ${ }^{* 3^{*} 4}$	1 h	23	H17	40223		The cumulative operation time is displayed. The number of times an integrated value has reached the maximum value of 65535 hours can be checked in Pr.564. Use Pr. 171 to reset the cumulative operation time. (Refer to page 433.)
Motor load factor	0.1\%	24	H18	40224		The output current value is displayed as a percentage, considering the inverter rated current value as $100 \%$.   Readout (\%) = present output current value / inverter rated current value $\times 100$
Cumulative energy ${ }^{*}{ }^{\text {a }}$	$\begin{aligned} & 0.01 / 0.1 \\ & \mathrm{kWh}^{* 5 * 6} \end{aligned}$	25	H19	40225		The cumulative energy based on the monitored output power is displayed. Use Pr. 170 to reset it. (Refer to page 432.)


Monitor item	Increment and unit	$\begin{gathered} \text { Pr. } 52 \text {, } \\ \text { Pr. } 774 \text { to } \\ \text { Pr. } 776 \text {, } \\ \text { Pr. } 992 \end{gathered}$	RS-485 communication dedicated monitor (hexadecimal)	MODBUS   RTU real time monitor	-*1	Description
Position command (lower digits)	1	26	H1A	40226	$\bigcirc$	The position command (decimal) before the electronic gear is set is displayed. ${ }^{* 10}$
Position command (upper digits)	1	27	H1B	40227	$\bigcirc$	
Current position (lower digits)	1	28	H1C	40228	-	The converted number of the position feedback pulse into the number of pulses before the electronic gear is set is displayed. ${ }^{* 10}$
Current position (upper digits)	1	29	H1D	40229	$\bigcirc$	
Droop pulse (lower digits)	1	30	H1E	40230	-	The droop pulse before the electronic gear is set is displayed. ${ }^{* 10}$
Droop pulse (upper digits)	1	31	H1F	40231	$\bigcirc$	
Torque command	0.1\%	32	H20	40232	$\bigcirc$	The torque command value adjusted with Vector control is displayed.
Torque current command	0.1\%	33	H21	40233	$\bigcirc$	The command value of the current for torque is displayed.
Motor output	$\begin{aligned} & 0.01 / 0.1 \\ & \mathrm{~kW}^{*}{ }^{*} \end{aligned}$	34	H22	40234		The output of a machine connected to the motor shaft is displayed. It is determined by multiplying the present output torque with the present motor speed.
Feedback pulse*11	-	35	H23	40235		The number of pulses fed back from the encoder in one cycle of the sampling is displayed (kept displayed during a stop). (The output voltage is displayed when a Vector control option is not installed.)   The sampling time period varies depending on the Pr. 369 Number of encoder pulses setting.   1050 or less: 1 second   1051 to 2100: 0.5 seconds   2101 to 4096: 0.25 seconds
$\begin{array}{\|l} \hline \text { Torque (positive } \\ \text { polarity for driving } \\ \text { torque/negative } \\ \text { polarity for } \\ \text { regenerative braking } \\ \text { torque) } \\ \hline \end{array}$	0.1\%	36	H24	40236	-	The value equal to the motor torque is displayed. A positive value for driving torque or a negative value for regenerative braking torque is displayed.
Trace status	1	38	H26	40238		The trace status is displayed. (Refer to page 616.)
SSCNET III communication status ${ }^{* 11}$	1	39	H27	40239		The SSCNET III communication status between the inverter and the controller is displayed. The output voltage is displayed when the FRA8NS is not installed.
PLC function user monitor 1	Increment set in the register SD1215	40	H28	40240		The user-designated monitor item is displayed using the PLC function.   Each value of the following special registers is displayed.   SD1216: displayed with the setting value "40" SD1217: displayed with the setting value "41" SD1218: displayed with the setting value "42" (Refer to the PLC Function Programming Manual.)
PLC function user monitor 2		41	H29	40241		
PLC function user monitor 3		42	H2A	40242		
Station number (RS485 terminals)	1	43	H2B	40243		The station number of the inverter enabling communication via the RS-485 terminals is displayed.
Station number (PU)	1	44	H2C	40244		The station number of the inverter enabling communication via the PU connector is displayed.
Station number (CCLink)	1	45	H2D	40245		The station number of the inverter enabling CCLink communication is displayed. ("0" is displayed when the FR-A8NS is not installed.)
Motor temperature ${ }^{* 11}$	$1^{\circ} \mathrm{C}$	46	H2E	40246	-	The temperature of the Vector control dedicated motor with thermistor (SF-V5RU[]T/A) is displayed (for the FR-A8AZ).


Monitor item	Increment and unit	$\begin{gathered} \text { Pr. } 52, \\ \text { Pr. } 774 \text { to } \\ \text { Pr. } 776 \text {, } \\ \text { Pr. } 992 \end{gathered}$	RS-485   communication dedicated monitor (hexadecimal)	MODBUS   RTU real time monitor	-*1	Description
Power saving effect	Increment and unit vary depending on the parameter settings.	50	H32	40250		The energy saving effect monitoring is enabled. The item to monitor is selectable from among the saved power, the average energy saving, and the energy cost savings. Some of them can be displayed as a percentage according to the parameter settings. (Refer to page 444.)
Cumulative energy saving		51	H33	40251		
PID set point	0.1\%	52	H34	40252		The set point, measured value, and deviation during PID control operation is displayed. (Refer to page 579.)
PID measured value	0.1\%	53	H35	40253		
PID deviation	0.1\%	54	H36	40254	$\bigcirc$	
Input terminal status	-	$55^{* 19}$	H0F*12	40215*12		The ON/OFF state of the input terminals on the inverter is displayed. (Refer to page 431 for details of indication on the DU.)
Output terminal status	-		H10*13	40216*13		The ON/OFF state of the output terminals on the inverter is displayed. (Refer to page 431 for details of indication on the DU.)
Option input terminal status ${ }^{* 11}$	-	56	-	-		The ON/OFF state of the input terminals on the digital input option (FR-A8AX) is displayed on the DU. (Refer to page 431 for details.)
Option output terminal status ${ }^{* 11}$	-	57	-	-		The ON/OFF state of the output terminals on the digital output option (FR-A8AY) or the relay output option (FR-A8AR) is displayed on the DU. (Refer to page 431 for details.)
Option input terminal status 1 (for communication) ${ }^{* 11}$	-	-	H3A *14	40258*14		The ON/OFF state of the input terminals X0 to X15 on the digital input option (FR-A8AX) is monitored via RS-485 communication or other communication when the communication option is installed.
Option input terminal status 2 (for communication) ${ }^{* 11}$	-	-	H3B**	40259*15		The ON/OFF state of the input terminal DY on the digital input option (FR-A8AX) is monitored via RS-485 communication or other communication when the communication option is installed.
Option output terminal status (for communication) ${ }^{* 11}$	-	-	H3C*16	40260*16		The ON/OFF state of the output terminals on the digital output option (FR-A8AY) or the relay output option (FR-A8AR) is monitored via RS-485 communication or other communication when the communication option is installed.
Motor thermal load factor	0.1\%	61	H3D	40261		The accumulated heat value of the motor thermal O/L relay is displayed.   The Motor overload trip (electronic thermal relay function) (E.THM) occurs at 100\%.
Inverter thermal load factor	0.1\%	62	H3E	40262		The accumulated heat value of the inverter thermal O/L relay is displayed.   The Inverter overload trip (electronic thermal relay function) (E.THT) occurs at 100\%.
PTC thermistor resistance	$0.01 \mathrm{k} \Omega$	64	H40	40264		The PTC thermistor resistance is displayed when Pr. 561 PTC thermistor protection level $\neq 9999$. (The output voltage is displayed when Pr. $561=$ 9999.)
PID measured value 2	0.1\%	67	H43	40267		The PID measured value is displayed while the PID control is enabled (Pr. $128 \neq " 0 "$ ), even if PID control operating conditions are not satisfied. (Refer to page 579.)
Cumulative pulse ${ }^{* 11}$	-	71	H47	40271	-*20	The cumulative number of pulses is displayed (for Vector control compatible plug-in option). (Monitoring range: - 32767 to 32767 )
Cumulative pulse overflow times ${ }^{* 11}$	-	72	H48	40272	-*20	The number of the cumulative pulses carrying overflow times is displayed (for Vector control compatible plug-in option).
Cumulative pulse (control terminal option) ${ }^{* 11}$	-	73	H49	40273	-*20	The cumulative number of pulses is displayed (for the FR-A8TP). (Monitoring range: -32767 to 32767)


Monitor item	Increment   and unit	Pr.52,   Pr.774 to   Pr.776,   Pr.992	RS-485   communication   dedicated   monitor   (hexadecimal)	MODBUS   RTU real   time   monitor	-1	
Cumulative pulse   overflow times   (control terminal   option)	-	-11				

*1 The circle in this column indicates that the indication of negative signed numbers is available.
*2 To monitor the item on the LCD operation panel (FR-LU08) or the parameter unit (FR-PU07) in the monitor mode, use Pr. 774 to Pr. 776 or the monitor function of the FR-LU08 or the FR-PU07 for setting.
*3 The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0 .
*4 The actual operation time does not increase if the cumulative running time before power OFF is less than an hour.
*5 On the parameter unit (FR-PU07), the unit "kW" is displayed.
*6 The increment differs according to the inverter capacity. (Increment left of a slash for FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower. Increment right of a slash for FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher.)
*7 Since each readout of the output voltage and output current displayed on the operation panel (FR-DU08) is a four-digit number, a value of more than 9999 is displayed as "----".
*8 The setting is available for the standard model.
*9 The inverter regards the output current which is less than the specified current level ( $5 \%$ of the rated inverter current) as 0 A . Therefore, each readout of an output current and output power may show " 0 " if a too small-capacity motor is used as contrasted with the inverter capacity and the output current falls below the specified value.
*10 The displayed item can be changed to the pulse after the electronic gear is set by using Pr. 430 Pulse monitor selection. (Refer to page 306 .)
*11 Monitoring is available when the compatible plug-in option or control terminal option is installed.
*12 The details of bits for the input terminal status are as follows. (1: ON state, 0: OFF state of a terminal on the inverter. "-" denotes an indefinite (null) value.)

*13 The details of bits for the output terminal status are as follows. (1: ON state, 0 : OFF state of a terminal on the inverter. "-" denotes an indefinite (null) value.)
b15

	b0													
-	-	-	-	-	-	-	-	SO (SO)	ABC2	ABC1	FU	OL	IPF	SU
RUN														

*14 The details of bits for the option input terminal status 1 are as follows. (1: ON state, 0: OFF state of a terminal on the FR-A8AX.) Every bit is 0 (OFF) when the option is not installed.
b15

X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	X0

*15 The details of bits for the option input terminal status 2 are as follows. (1: ON state, 0: OFF state of a terminal on the FR-A8AX. "-" denotes an indefinite (null) value.) Every bit is 0 (OFF) when the option is not installed.
b15

| - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | DY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

*16 The details of bits for the option output terminal status are as follows. (1: ON state, 0: OFF state of a terminal on the FR-A8AY/A8AR. "-" denotes an indefinite (null) value.) Every bit is 0 (OFF) when the option is not installed.
b15

b0															
-	-	-	-	-	-	RA3	RA2	RA1	Y6	Y5	Y4	Y3	Y2	Y1	Y0

*17 The increment is 1 when Pr. $37=$ "1 to 9998 " or when $\operatorname{Pr} .144=" 2$ to 12 " or "102 to 112 ". (Refer to page 422 .)
*18 The monitored values are retained even if an inverter fault occurs. Resetting clears the retained values.
*19 Parameter setting is not available for setting the item as the main monitor item on the LCD operation panel (FR-LU08) or the parameter unit (FRPU07). Use the monitor function of the FR-LU08 or the FR-PU07 for setting.
*20 Negative values are not displayed on the operation panel. The values "-1 to -32767" are displayed as " 65535 to 32769 " on the operation panel.
*21 Setting of Pr. 1018 Monitor with sign selection is required. Also, it will be displayed without a minus sign on the operation panel. Confirm the rotation direction with the [FWD] or [REV] indicator.

## $\bullet$ Monitor display for operation panel (Pr.52, Pr. 774 to Pr.776)

- When Pr. 52 = "0" (initial value), the monitoring of output frequency, output current, output voltage and fault display can be selected in sequence by pressing $\square$
SET
- The Load meter, motor excitation current and motor load factor are displayed on the second monitor (output current) position, among the monitors set in Pr.52. Other monitors are displayed in the third monitor (output voltage) position.
- The monitor displayed at power ON is the first monitor (the output frequency monitor, according to the initial value). Display the monitor you want to display on the first monitor and hold down $\boxed{\operatorname{SET}}$ for 1 second. To return to the input current monitor, display the input current monitor and hold down $\boxed{\text { SET }}$ for 1 second.


For example, when Pr. 52 = " 20 " (cumulative energization time), the monitor is displayed on the operation panel as shown below.

- Power-on monitor (first monitor)


Output frequency monitor
Output current monitor


- Pr. 774 sets the output frequency monitor, Pr. 775 sets the output current monitor, and Pr. 776 sets the monitor description to be displayed at the output voltage monitor position. When Pr. 774 to Pr. $776=$ " 9999 " (initial value), the Pr. 52 setting value is used.


## NOTE

- On the operation panel (FR-DU08), the "Hz" unit indicator is lit while displaying the output frequency, the "Hz" blinks when displaying the set frequency.


## Displaying the set frequency during stop (Pr.52)

- When Pr. 52 = "100", the set frequency is displayed during stop, and output frequency is displayed during running. (LED of Hz flickers during stop and is lit during operation.)

Pr. 52 setting	Status	Output frequency	Output current	Output voltage	Fault monitor
0	During running/   stop	Output frequency			
100	During stop	Set frequency ${ }^{* 1}$	Output current	Output voltage	Fault monitor
	During running	Output frequency			

*1 Displays the frequency that is output when the start command is ON. The value considers the maximum/minimum frequency and frequency jumps. It is different from the frequency setting displayed when Pr. $52=$ " 5 ".

## NOTE

- During an error, the output frequency at error occurrence appears.
- During output shutoff by the MRS signal, the values displayed are the same as during a stop.
- During offline auto tuning, the tuning state monitor takes priority.


## - Operation panel setting dial push display (Pr.992)

- Use Pr. 992 to select the monitor that appears when the setting dial on the operation panel (FR-DU08) is pushed.
- When Pr. 992 = "0 (initial value)", keep pressing the setting dial when in PU operation mode or External/PU combined operation mode 1 (Pr. 79 Operation mode selection = "3") to show the presently set frequency.
- When Pr. 992 = "100", the set frequency is displayed during stop, and output frequency is displayed during running.

Pr.992 setting	Status	Monitor displayed by the setting dial push
0	During running/stop	Set frequency (PU direct-in frequency)
100	During stop	Set frequency $^{*}{ }^{1}$
	During running	Output frequency

*1 Displays the frequency that is output when the start command is ON. The value considers the maximum/minimum frequency and frequency jumps. It is different from the frequency setting displayed when Pr. $992=$ " 5 ".

## Operation panel (FR-DU08) I/O terminal monitor (Pr.52, Pr. 774 to Pr.776, Pr.992)

- When Pr. 52 (Pr. 774 to Pr.776, Pr.992) = "55 to 57", the I/O terminal state can be monitored on the operation panel (FRDU08).
- The LED is ON when the terminal is ON, and the LED is OFF when the terminal is OFF. The center line of LED is always ON . The center line of LED is always ON.

Pr.52, Pr. 774 to Pr.776,   Pr. 992 setting	Monitor item	Monitor description
55	I/O terminal status	Displays the I/O terminal ON/OFF state of the inverter.
$56^{* 1}$	Option input terminal status	Displays input terminal ON/OFF state of the digital input option (FR-A8AX)
$57^{* 1}$	Option output terminal status	Displays output terminal ON/OFF state of the digital output option (FR-A8AY) or   the relay output option (FR-A8AR).
*1 The setting value "56 or $57 "$ can be set even if the option is not installed. All are OFF when the option is not connected.		

*1 The setting value " 56 or 57 " can be set even if the option is not installed. All are OFF when the option is not connected.

- On the I/O terminal monitor, the upper LEDs indicate the input terminal status, and the lower LEDs indicate the output terminal status.

- Display example When signals STF, RH and RUN are on

- The decimal point of the first digit on the LED is lit for the input option terminal monitor.

- The decimal point of the second digit on the LED is lit for the output option terminal monitor.



## -Cumulative energy monitoring and resetting (Pr.170, Pr.891)

- During the monitoring of cumulative energy (Pr. $52=$ " 25 "), the monitored output power is added up. Its readout is refreshed every 100 ms . (The values are saved in EEPROM every hour.)
- Increments and ranges of monitoring on the operation panel or parameter unit and via communication (RS-485 communication or other communication with communication option installed) are as follows.

On operation panel or parameter unit ${ }^{* 1}$		Via communication		
Range	Increment	Range		Increment
		Pr. $170=10$	Pr. $170=9999$	
0 to 999.99 kWh	0.01 kWh	0 to 9999 kWh	0 to 65535 kWh (initial value)	1 kWh
1000.0 to 9999.9 kWh	0.1 kWh			
10000 to 99999 kWh	1 kWh			

*1 Energy is measured in the range of 0 to 99999.99 kWh , and displayed in five digits. The cumulative energy up to 999.99 kWh is displayed in 0.01 increments such as "999.99", and that of 1000 kWh or more is displayed in 0.1 increments such as "1000.0".

- The digit of monitored value can be moved to the right by the number of Pr. 891 Cumulative power monitor digit shifted times. For example, when the cumulative energy is 1278.56 kWh and Pr .891 is set to " 2 ", " 12.78 " is displayed (in 100 's of units) on the operation panel and the communication data is converted into "12".
- When Pr. 891 = "0 to 4" and the cumulative energy reaches more than the upper limit of readout, the readout peaks out at the upper limit, which indicates that moving digit is necessary. When Pr. $891=$ " 9999 " and the cumulative energy reaches more than the upper limit of readout, cumulative value is reset to 0 and the metering restarts.
- Setting "0" in Pr. 170 clears the cumulative energy value.


## NOTE

- Once " 0 " is set in Pr. 170 , the setting of Pr. 170 is turned to " 9999 " or " 10 " afterwards.
-Cumulative energization time / actual operation time monitoring (Pr.171, Pr.563, Pr.564)
- Cumulative energization time monitoring (Pr. $52=$ " 20 ") accumulates energization time from shipment of the inverter every hour.
- On the actual operation time monitoring ( $\operatorname{Pr} .52=" 23 ")$, the inverter running time is added up every hour. (Time is not added up during a stop.)
- When the cumulative value exceeds 65535 , the meter is reset to 0 and restarts adding up. To check how many times the cumulative energization time meter has exceeded 65535 h , use Pr.563. To check how many times the actual operation time meter has exceeded 65535 hours, use Pr. 564.
- Setting "0" in Pr. 171 clears the actual operation time meter. (The cumulative energization time meter cannot be cleared.)


## NOTE

- The cumulative energization time does not increase if the power is turned OFF after less than an hour.
- The actual operation time does not increase if the cumulative running time before power OFF is less than an hour.
- Once "0" is set in Pr.171, the setting of Pr. 171 is always turned to " 9999 " afterwards. Setting "9999" does not clear the actual operation time meter.


## - Hiding the decimal places for the monitors (Pr.268)

- The numerical figures after a decimal point displayed on the operation panel may fluctuate during analog input, etc. The decimal places can be hidden by selecting the decimal digits with Pr.268.

Pr. 268 setting	Description
9999 (initial value)	No function
0	For the first or second decimal places ( 0.1 increments or 0.01 increments) of the monitor, numbers   in the first decimal place and smaller are rounded to display an integral value (1 increments). The   monitor value equal to or smaller than 0.99 is displayed as 0.
1	When monitoring with the second decimal place ( 0.01 increments), the 0.01 decimal place is   dropped and the monitor displays the first decimal place ( 0.1 increments). When monitoring with the   first decimal place, the display will not change.

## NOTE

- The number of readout digits of the cumulative energization time (Pr. $52=$ " 20 "), actual operation time (Pr. $52=$ " 23 "), cumulative energy (Pr. $52=" 25$ "), and cumulative energy saving (Pr. $52=" 51$ ") does not change.


## Enabling display of negative numbers during monitoring (Pr.290)

- Negative signal outputs can be selected for the items monitored via terminal AM (analog voltage output), via a communication option, and on the operation panel. To check which items can be monitored with indication of negative numbers, refer to the monitor items list (on page 425).

Pr. 290 setting	Negative numbers   indication (via terminal AM)	Negative numbers indication   on operation panel	Negative numbers indication (via   communication option)
0 (initial value)	-	-	-
1	Enabled	-	-
2	-	Enabled	-
3	Enabled	Enabled	-
4	-	-	Enabled
5	Enabled	-	Enabled
6	-	Enabled	Enabled
7	Enabled	Enabled	Enabled

-: Negative numbers indication disabled (positive only)

- Select the item group to enable the indication of negative signed numbers by setting Pr. 1018 Monitor with sign selection.

Monitor item	Pr. 1018 setting	
	9999	0
Output frequency	-	-*1
Motor speed	-	-*1
Motor torque	$\bigcirc$	$\bigcirc$
Position command (lower digits)	$\bigcirc$	$\bigcirc$
Position command (upper digits)	$\bigcirc$	$\bigcirc$
Current position (lower digits)	$\bigcirc$	$\bigcirc$
Current position (upper digits)	$\bigcirc$	$\bigcirc$
Droop pulse (lower digits)	$\bigcirc$	$\bigcirc$
Droop pulse (upper digits)	$\bigcirc$	$\bigcirc$
Torque command	$\bigcirc$	$\bigcirc$
Torque current command	$\bigcirc$	$\bigcirc$
Torque (positive polarity for driving torque/negative polarity for regenerative braking torque)	$\bigcirc$	$\bigcirc$
Motor temperature	$\bigcirc$	$\bigcirc$
PID deviation	$\bigcirc$	$\bigcirc$
Cumulative pulse	$\bigcirc$	$\bigcirc$
Cumulative pulse overflow times	$\bigcirc$	$\bigcirc$
Cumulative pulse (control terminal option)	$\bigcirc$	$\bigcirc$
Cumulative pulse overflow times (control terminal option)	$\bigcirc$	$\bigcirc$
Remote output 1	$\bigcirc$	$\bigcirc$
Remote output 2	$\bigcirc$	-
Remote output 3	$\bigcirc$	$\bigcirc$
Remote output 4	$\bigcirc$	$\bigcirc$
PID manipulated amount	$\bigcirc$	$\bigcirc$
Second PID deviation	$\bigcirc$	$\bigcirc$
Second PID manipulated amount	$\bigcirc$	$\bigcirc$
Control circuit temperature	$\bigcirc$	$\bigcirc$

०: Negative numbers displayed with minus sign, 一: Negative numbers not displayed (positive only)
*1 Negative numbers are not displayed on the operation panel. Confirm the rotation direction with the [FWD] or [REV] indicator.

## NOTE

- When the output via terminal AM (analog voltage output) is set to "Negative numbers indication enabled", the output is within the range of -10 to +10 VDC. Connect the meter with which output level is matched.
- Parameter unit (FR-PU07) displays only positive values.


## - Monitor filter (Pr. 1106 to Pr.1108)

- The response level (filter time constant) of the following monitor indicators can be adjusted. Increase the setting when a monitor indicator is unstable, for example.

Pr.	Monitor number	Monitor indicator name
1106	7	Motor torque
	17	Load meter
	32	Torque command
	33	Torque current command
1107	6	Motor speed
1108	18	Motor excitation current

## | Parameters referred to $\ \gg$

Pr. 30 Regenerative function selection, Pr. 70 Special regenerative brake duty page 689
Pr. 37 Speed display, Pr. 144 Speed setting switchover page 422
Pr. 55 Frequency monitoring reference, Pr. 56 Current monitoring reference, Pr. 866 Torque monitoring reference page 435

### 5.11.3 Monitor display selection for terminals FM/CA and AM

The monitored statuses can be output as the following items: analog voltage (terminal AM), pulse train (terminal FM) for the FM type inverter, analog current (terminal CA) for the CA type inverter.
The signal (monitor item) to be output to terminal FM/CA and terminal AM can be selected.

Pr.	Name	Initial value		Setting range	Description	
		FM	CA			
$\begin{array}{\|l\|} \hline 54 \\ \text { M300 } \end{array}$	FM/CA terminal function selection	1 (output frequency)		$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14,17,18 \text {, } \\ & 21,24,32 \text { to } 34,36 \text {, } \\ & 46,50,52 \text { to } 53,61 \text {, } \\ & 62,67,70,87 \text { to } 90, \\ & 92,93,95,97,98 \end{aligned}$	Select the item monitored via terminal FM or CA.	
$\begin{aligned} & 158 \\ & \text { M301 } \end{aligned}$	AM terminal function selection			$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14,17,18 \text {, } \\ & 21,24,32 \text { to } 34,36 \text {, } \\ & 46,50,52 \text { to } 54,61 \text {, } \\ & 62,67,70,87 \text { to } 98 \end{aligned}$	Select the item monitored via terminal AM.	
55   M040	Frequency monitoring reference	60 Hz	50 Hz	0 to 590 Hz	Set the full-scale value when outputting the frequency monitor value to terminals FM, CA and AM.	
56 M041	Current monitoring reference	Inverter rated current		0 to $500 \mathrm{~A}^{* 1}$	Enter the full-scale value of a meter which corresponds to the output via terminal FM/CA or terminal AM to monitor the output current.	
				0 to $3600 \mathrm{~A}^{* 2}$		
$\begin{array}{\|l\|} \hline 866 \\ \text { M042 } \\ \hline \end{array}$	Torque monitoring reference	150\%		0 to 400\%	Enter the full-scale value of a meter which corresponds to the output via terminal FM/CA or terminal AM to monitor the motor torque.	
$\begin{array}{\|l\|} \hline 290 \\ \text { M044 } \\ \hline \end{array}$	Monitor negative output selection	0		0 to 7	Set the availability of negative signals output via terminal AM, to the operation panel, and through communication. (Refer to page 433.)	
$\begin{aligned} & 291 \\ & \text { D100 } \end{aligned}$	Pulse train I/O selection	0		0	Pulse train input (terminal JOG)	Pulse train output (terminal FM)
					JOG signal*3	FM output ${ }^{*}$
				1	Pulse train input	FM output ${ }^{*}$
				$10^{*}$	JOG signal ${ }^{*} 3$	High-speed pulse train output (50\% duty)
				$11^{*} 4$	Pulse train input	High-speed pulse train output (50\% duty)
				$20^{*}$	JOG signal ${ }^{*}{ }^{3}$	High-speed pulse train output (ON width fixed)
				$21^{*} 4$	Pulse train input	High-speed pulse train output (ON width fixed)
				$100 * 4$	Pulse train input	High-speed pulse train output (ON width fixed) Output the pulse train input without changes.
	*1 For the FR-A820-03160(55K) or lo   *2 For the FR-A820-03800(75K) or   *3 Function assigned to Pr. 185 JOG   *4 Valid only for the FM type inverter	wer, and gher, and terminal		800(55K) or lower. 160(75K) or higher. ection.		

## - Monitor description list (Pr.54, Pr.158)

- Set Pr. 54 FM/CA terminal function selection for monitoring via terminal FM (pulse train output) or terminal CA (analog current output).
- Set Pr. 158 AM terminal function selection for monitoring via terminal AM (analog voltage output). Negative signals can be output via terminal AM (in the range of -10 to +10 VDC). The circle in the [Negative output ( - )] column indicates that the output of negative signals is available via terminal AM. (To enable or disable the output of negative signals, refer to page 424.)
- Refer to the following table and select the item to be monitored. (Refer to page 425 for the list of monitor items.)

Monitor item	Increment and unit	Pr. 54 (FM/CA) Pr. 158 (AM) setting	Terminal FM, CA, AM full-scale value	$\begin{gathered} \text { Negative } \\ (-) \\ \text { output } \\ \hline \end{gathered}$	Remarks
Output frequency	0.01 Hz	1	Pr. 55	$0^{* 3}$	
Output current ${ }^{*}{ }^{2}$	0.01 A/0.1 A*1	2	Pr. 56		
Output voltage	0.1 V	3	$\begin{aligned} & 200 \mathrm{~V} \text { class: } 400 \mathrm{~V} \\ & 400 \mathrm{~V} \text { class: } 800 \mathrm{~V} \end{aligned}$		
Frequency setting value	0.01 Hz	5	Pr. 55		
Motor speed	1 (r/min)	6	The value converted with the Pr. 37, Pr. 144 value from Pr. 55.	$0^{* 3}$	Refer to page 422 for the monitoring of the operation speed.
Motor torque	0.1\%	7	Pr. 866	$\bigcirc$	
Converter output voltage*2	0.1 V	8	$\begin{aligned} & 200 \mathrm{~V} \text { class: } 400 \mathrm{~V} \\ & 400 \mathrm{~V} \text { class: } 800 \mathrm{~V} \end{aligned}$		
Regenerative brake duty ${ }^{*} 4$	0.1\%	9	Brake duty decided by Pr.30, Pr. 70.		
Electronic thermal O/L relay load factor	0.1\%	10	Electronic thermal O/L relay (100\%)		
Output current peak value	0.01 A/0.1 A*1	11	Pr. 56		
Converter output voltage peak value	0.1 V	12	$\begin{aligned} & 200 \mathrm{~V} \text { class: } 400 \mathrm{~V} \\ & 400 \mathrm{~V} \text { class: } 800 \mathrm{~V} \end{aligned}$		
Input power	$\begin{aligned} & 0.01 \mathrm{~kW} / 0.1 \\ & \mathrm{~kW}^{* 1} \end{aligned}$	13	Inverter rated power $\times$ 2		
Output power ${ }^{*}$	$\begin{aligned} & 0.01 \mathrm{~kW} / 0.1 \\ & \mathrm{~kW}^{* 1 * 1} \end{aligned}$	14	Inverter rated power $\times$ 2		
Load meter	0.1\%	17	Pr. 866		
Motor excitation current	0.01 A/0.1 A*1	18	Pr. 56		
Reference voltage output	-	21	-		Terminal FM: When Pr. 291 = "0 or 1", output is 1440 pulses/s. When Pr. $291 \neq$ " 0 or 1 ", output is 50 k pulses/s. Terminal CA: Output is 20 mA . Terminal AM: Output is 10 V .
Motor load factor	0.1\%	24	200\%		
Torque command	0.1\%	32	Pr. 866	$\bigcirc$	
Torque current command	0.1\%	33	Pr. 866	$\bigcirc$	
Motor output	$\begin{aligned} & 0.01 \mathrm{~kW} / 0.1 \\ & \mathrm{~kW}^{* 1} \end{aligned}$	34	Rated motor capacity		
Torque (positive polarity for driving torque/ negative polarity for regenerative braking torque)	0.1\%	36	Pr. 866	$\bigcirc$	
Motor temperature	$1^{\circ} \mathrm{C}$	46	Pr. 751	$\bigcirc$	Enabled when the FR-A8AZ is used.
Energy saving effect	Increment and unit vary depending on the parameter settings.	50	Inverter capacity		For the information of the power saving effect monitoring, refer to page 444.
PID set point	0.1\%	52	100\%		
PID measured value	0.1\%	53	100\%		Refer to page 579 for the PID control.
PID deviation	0.1\%	$54^{*}$	100\%	$\bigcirc$	
Motor thermal load factor	0.1\%	61	Motor thermal activation level (100\%)		
Inverter thermal load factor	0.1\%	62	Inverter thermal activation level (100\%)		
PID measured value 2	0.1\%	67	100\%		Refer to page 579 for the PID control.
PLC function analog output	0.1\%	70	100\%	$\bigcirc$	Valid by setting Pr. 414 = "1 or 2".   Refer to page 614 for the PLC function.


Monitor item	Increment and unit	Pr. 54 (FM/CA) Pr. 158 (AM) setting	Terminal FM, CA, AM full-scale value	$\begin{gathered} \text { Negative } \\ (-) \\ \text { output } \end{gathered}$	Remarks
Remote output value 1	0.1\%	87	1000\%		Refer to page 467 for the analog remote output.
Remote output value 2	0.1\%	88	1000\%		
Remote output value 3	0.1\%	89	1000\%		
Remote output value 4	0.1\%	90	1000\%		
PID manipulated amount	0.1\%	$91^{* 5}$	100\%	$\bigcirc$	Refer to page 579 for the PID control.
Second PID set point	0.1\%	92	100\%		
Second PID measured value	0.1\%	93	100\%		
Second PID deviation	0.1\%	$94^{* 5}$	100\%	$\bigcirc$	
Second PID measured value 2	0.1\%	95	100\%		
Second PID manipulated amount	0.1\%	$96 * 5$	100\%	-	
Dancer main speed setting	0.01 Hz	97	Pr. 55		For details on dancer control, refer to page 590.
Control circuit temperature	$1^{\circ} \mathrm{C}$	98	$100^{\circ} \mathrm{C}$	-	Terminal FM/CA: 0 to $100^{\circ} \mathrm{C}$ Terminal AM: -20 to $100^{\circ} \mathrm{C}$

*1 Differs according to the capacity. (Increment left of a slash for FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower. Increment right of a slash for FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher.)
*2 When the output current is less than the specified current level ( $5 \%$ of the rated inverter current), the output current is monitored as 0 A . Therefore, the monitored value of an output current and output power may be displayed as " 0 " when using a much smaller-capacity motor compared to the inverter or in other instances that cause the output current to fall below the specified value.
*3 Setting of Pr. 1018 Monitor with sign selection is required.
*4 The setting is available for the standard model.
*5 The setting is available only in Pr. 158 (terminal AM).

## - Frequency monitor reference (Pr.55)

- Enter the full scale value of a meter used to monitor the output frequency, the frequency setting value, or the dancer main speed setting via terminal FM/CA or terminal AM.
- For the FM type inverter, enter the full-scale value of the meter corresponding to a pulse train of 1440 pulses/s (or 50k pulses/s) output via terminal FM. Enter the frequency value (for example, 60 Hz or 120 Hz ) at full scale of the meter ( 1 mA analog meter) installed between terminal FM and terminal SD. Pulse speed is proportional to the output frequency of the inverter. (The maximum output pulse train is 2400 pulses/s (or 55 k pulses/s).)

- For the CA type inverter, enter the full-scale value of the meter corresponding to a current of 20 mADc output via terminal CA. Enter the current value (for example, 60 Hz or 120 Hz ) at full scale of the meter ( 20 mADC ammeter) installed between terminal CA and terminal 5 . Output current is proportional to the frequency. (The maximum output current is 20 mADC .)

- Enter the full-scale value of the meter corresponding to a voltage of 10 VDC output via terminal AM. Enter the current value (for example, 60 Hz or 120 Hz ) at full scale of the meter ( 10 VDC voltmeter) installed between terminal AM and terminal 5. Output voltage is proportional to the frequency. (The maximum output voltage is 10 VDC.)

*1 FM type: $60 \mathrm{~Hz}, \mathrm{CA}$ type: 50 Hz
*2 Output of negative signals enabled when Pr. 290 Monitor negative output selection = "1 or 3"


## - Current monitor reference (Pr.56)

- Enter the full scale value of a meter used to monitor the output current, the output current peak value, or the motor excitation current via terminal FM/CA or terminal AM.
- For the FM type inverter, enter the full-scale value of the meter corresponding to a pulse train of 1440 pulses/s (or 50k pulses/s) output via terminal FM. Enter the current value at full scale of the meter ( 1 mA analog meter) installed between terminal FM and terminal SD. Pulse speed is proportional to the output current monitored. (The maximum output pulse train is 2400 pulses/s (or 55 k pulses/s).)
- For the CA type inverter, enter the full-scale value of the current meter corresponding to a current of 20 mADc output via terminal CA. Enter the current value at full scale of the meter ( 20 mADC ammeter) installed between terminal CA and terminal 5 . Output current is proportional to the output current monitored. (The maximum output current is 20 mADC .)
- Enter the full-scale value of the current meter corresponding to a voltage of 10 VDC output via terminal AM. Enter the current value at full scale of the meter ( 10 VDC voltmeter) installed between terminal AM and terminal 5 . Output voltage is proportional to the output current monitored. (The maximum output voltage is 10 VDC.)


## - Torque monitor reference (Pr.866)

- Enter the full scale value of a meter used to monitor the output torque via terminal FM/CA or terminal AM.
- For the FM type inverter, enter the full-scale value of the torque meter corresponding to a pulse train of 1440 pulses/s (or 50 k pulses/s) output via terminal FM. Enter the torque value at full scale of the meter ( 1 mA analog meter) installed between terminal FM and terminal SD. Pulse speed is proportional to the torque monitored. (The maximum output pulse train is 2400 pulses/s (or 55k pulses/s).)
- For the CA type inverter, enter the full-scale value of the torque meter corresponding to a current of 20 mADC output via terminal CA. Enter the torque value at full scale of the meter ( 20 mADC ammeter) installed between terminal CA and terminal 5 . Output current is proportional to the torque monitored. (The maximum output voltage is 20 mADC .)
- Enter the full-scale value of the torque meter corresponding to a voltage of 10 VDC output via terminal AM. Enter the torque value at full scale of the meter ( 10 VDC voltmeter) installed between terminal AM and terminal 5 . Output voltage is proportional to the torque monitored. (The maximum output voltage is 10 VDC .)


## - Terminal FM pulse train output (Pr.291)

- Two kinds of pulse trains can be outputted via terminal FM.
- When Pr. 291 Pulse train I/O selection = " 0 (initial value) or 1 ", pulse train is output via terminal FM, with a maximum output of 8 VDC and 2400 pulses/s.
The pulse width can be adjusted on the operation panel or the parameter unit by using the calibration parameter C0 (Pr.900) FM/CA terminal calibration.
- A 1 mA full-scale DC ammeter or a digital meter can be used to give commands (such as inverter output frequency command).


## FM output circuit


*1 Not needed when the operation panel or the parameter unit is used for calibration.
Use a calibration resistor when the indicator (frequency meter) needs to be calibrated by a neighboring device because the indicator is located far from the inverter.
However, the frequency meter needle may not deflect to full-scale if the calibration resistor is connected. In this case, calibrate additionally with the operation panel or parameter unit.
*2 In the initial setting, 1 mA full-scale and 1440 pulses/s terminal FM are used at 60 Hz .

- When Pr. 291 Pulse train I/O selection = " $10,11,20,21$, or 100 ", this is high-speed pulse train output for open collector output. A maximum pulse train of 55 k pulses $/ \mathrm{s}$ is outputted.
There are two types of pulse width: " $50 \%$ duty" and "fixed ON width"; this cannot be adjusted with the calibration parameter C0 (Pr.900) FM/CA terminal calibration.

*1 The pulses may weaken due to stray capacitance in the wiring if the wiring is long, and the pulse counter will be unable to recognize the pulses. Connect the open collector output to the power source with a pull-up resistor if the wiring is too long.
Check the pulse counter specs for the pull-up resistance.
The resistance should be at 80 mA of the load current or less.
- When Pr. 291 = "10, or 11 ", the pulse cycle is $50 \%$ duty (ON width and OFF width are the same).
- When Pr. 291 = " 20,21 , or 100 ", the pulse ON width is output at a fixed width (approx. $10 \mu \mathrm{~s}$ ).
- At the " 100 " setting, the same pulse train from the pulse train input (terminal JOG) will be outputted. This is used when running at a synchronized speed with more than one inverter. (Refer to page 386.)

*1 "HIGH" indicates when the open collector output transistor is OFF.

Item	High-speed pulse train output   specifications
Output method	NPN open collector output
Voltage between collector-   emitter	30 V (max.)
Maximum permissible load   current	80 mA
Output pulse rate	0 to 55 k pulses/s ${ }^{* 1}$
Output resolution	3 pulses/s (excluding jitter)

*1 50 k pulses/s when the monitor output value is $100 \%$.

## NOTE

- Terminal JOG input specifications (pulse train input or contact input) can be selected with Pr.291. When changing the setting value, be careful not to change the terminal JOG input specifications. (Refer to page 386 for pulse train input.)
- Install a meter between terminals FM and SD after changing the Pr. 291 setting value. During output the pulse train via terminal FM (voltage output), be careful that voltage is not added to terminal FM.
- The meter cannot be used for the pulse input in a source logic type.
- If the All parameter clear is performed when the high-speed pulse train output is selected ( $\operatorname{Pr} .291=" 10,11,20,21$, or $100 "$ ), the output via terminal FM is changed from high-speed pulse train output to the voltage output because the Pr. 291 setting resets to the initial value " 0 ". To perform the All parameter clear, remove the device connected to terminal FM first.



### 5.11.4 Adjustment of terminal FM/CA and terminal AM

The output via terminal FM/CA or terminal AM corresponding to the full-scale value of a meter can be adjusted (calibrated) on the operation panel or the parameter unit.

Pr.	Name	Initial value	Setting range	Description
C0   (900)   M310*	FM/CA terminal calibration	-	-	Calibrates the scale of the meter connected to terminals FM and   CA.
C1 (901)   M320*1	AM terminal calibration	-	-	Calibrates the scale of the analog meter connected to terminal   AM.
C8 (930)   M330*1	Current output bias signal	$0 \%$	0 to $100 \%$	Set the signal value at the minimum analog current output.
C9 (930)   M331	Current output bias current	$0 \%$	0 to $100 \%$	Set the current value at the minimum analog current output.
C10 (931)   M332*1	Current output gain signal	$100 \%$	0 to $100 \%$	Sets the signal value when the analog current output is at   maximum.
C11 (931)   M333*1	Current output gain current	$100 \%$	0 to $100 \%$	Set the current value at the maximum analog current output.
$\mathbf{8 6 7}$   M321	AM output filter	0.01 s	0 to 5 s	Set a filter for output via terminal AM.
$\mathbf{8 6 9}$   M334	Current output filter	0.01 s	0 to 5 s	Set a filter for output via terminal CA.

*1 The parameter number in parentheses is that used (displayed) on the LCD operation panel and the parameter unit.

## - Terminal FM calibration (C0 (Pr.900))

- The output via terminal FM is set to the pulse output. By setting C0 (Pr.900), the meter connected to the inverter can be calibrated by parameter setting without use of a calibration resistor.
- The pulse train output via terminal FM can be used for digital display on a digital counter. The output is 1440 pulses/s at full scale. (Refer to page 435 for the full-scale value of each monitor item.)


Pulse width T1: Adjust using calibration parameter C0
Pulse cycle T2: Set with Pr. 55 (frequency monitor)
Set with Pr. 56 (current monitor)
*1 Not needed when the operation panel or the parameter unit is used for calibration.
Use a calibration resistor when the indicator (frequency meter) needs to be calibrated by a neighboring device because the indicator is located far from the inverter.
However, the frequency meter needle may not deflect to full-scale if the calibration resistor is connected. In this case, perform calibration using the operation panel or parameter unit.
*2 In the initial setting, 1 mA full-scale and 1440 pulses/s terminal FM are used at 60 Hz .

- Calibrate the output via terminal FM in the following procedure.

1. Connect an indicator (frequency meter) across terminals FM and SD on the inverter. (Note the polarity. Terminal FM is positive.)
2. When a calibration resistor has already been connected, adjust the resistance to "0" or remove the resistor.
3. Set a monitor item in Pr. 54 AM terminal function selection. (Refer to page 435.)

When the running frequency or inverter output current is selected on the monitor, set the running frequency or current value at which the output signal will be 1440 pulses/s, using Pr. 55 Frequency monitoring reference or Pr. 56 Current monitoring reference beforehand. Normally, at 1440 pulses/s the meter deflects to full-scale.
4. If the meter needle does not point to maximum even at maximum output, calibrate it with $\mathbf{C 0}$ ( Pr .900 ).

## NOTE

- When outputting an item such as the output current, which cannot reach a $100 \%$ value easily by operation, set Pr. 54 to " 21 " (reference voltage output) and calibrate. A pulse train of 1440 pulses/s are output via terminal FM.
- When Pr. 310 Analog meter voltage output selection = " 21 ", the output via terminal AM cannot be calibrated. For the details of Pr.310, refer to the Instruction Manual of the FR-A8AY.
- The wiring length to terminal FM should be 200 m at maximum.
- The initial value of the calibration parameter $\mathbf{C 0}(\mathbf{P r} .900)$ is set to 1 mA full-scale and 1440 pulses/s terminal FM pulse train output at 60 Hz . The maximum pulse train output of terminal FM is 2400 pulses/s.
- When connecting a frequency meter between terminals FM-SD and monitoring the running frequency, it is necessary to change Pr. 55 to the maximum frequency, since the FM terminal output will be saturated at the initial value when the maximum frequency reaches 100 Hz or greater.
- Calibration with the calibration parameter C0 (Pr.900) cannot be done when Pr. 291 Pulse train I/O selection = "10, 11, 20, 21 , or 100 " (high-speed pulse train output).

Calibration procedure for terminal FM when using the operation panel
(FR-DU08) (FR-DU08)

## Operating procedure

1. Turning $O N$ the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press $\frac{\mathrm{PU}}{\mathrm{EXT}}$ to choose the PU operation mode. [PU] indicator turns ON.
Calibration is also possible in the External operation mode.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
4. Calibration parameter selection

5. Selecting a parameter

Turn until " parameter setting.
The monitored value of the item (initially the output frequency) selected by Pr. 54 FM/CA terminal function selection will appear.
6. Pulse output via terminal FM

If stopped, press FWD or REV to start the inverter operation. (To monitor the output frequency, motor connection is not required.)
When a monitor that does not require inverter operation is set in Pr.54, calibration is also possible during a stop status.
7. Scale adjustment

Turn 12 to move the meter needle to a desired position.
8. Setting completed

Press 5 ET to confirm the selection. The monitored value and "I- blink alternately.

- Turn to read another parameter.
- Press 5 SET to return to the " $1_{-}^{-}--$----- " display.
- Press SET twice to show the next parameter.


## NOTE

- Calibration can also be made for External operation. Set the frequency in the External operation mode, and make calibration in the above procedure.
- Calibration can be performed during operation.
- For the operation from the parameter unit, refer to the Instruction Manual of the parameter unit.


## - Terminal CA calibration (C0 (Pr.900), C8 (Pr.930) to C11 (Pr.931))

- Terminal CA is initially set to provide a 20 mADC output in the full-scale state of the corresponding monitor item. The calibration parameter C0 (Pr.900) allows the output current ratio (gains) to be adjusted according to the meter scale. Note that the maximum output current is 20 mA DC .
- Set a value at the minimum current output in the calibration parameters $\mathbf{C 8}$ ( $\operatorname{Pr} .930$ ) and $\mathbf{C 9}$ ( $\operatorname{Pr} .930$ ). The calibration parameters C10 (Pr.931) and C11 (Pr.931) are used to set a value at the maximum current output.
- Set the output signal values (output monitor set with Pr.54) at zero or at the maximum current output via terminal CA using the calibration parameters C8 (Pr.930) and C10 (Pr.931). The full scale for each monitor is 100\% at this time.
- Set the output current values (output monitor set with Pr.54) at zero and at the maximum current output via terminal CA (using the calibration parameters C9 (Pr.930) and C11 (Pr.931). The output current calibrated by the calibration parameter C0 (Pr.900) is 100\% at this time.

- Calibrate the output via terminal CA in the following procedure.

1. Connect a $0-20 \mathrm{mADC}$ indicator (frequency meter) across terminals $C A$ and 5 on the inverter. (Note the polarity. Terminal CA is positive.)
2. Set the initial value of the calibration parameter $\mathrm{C8}$ (Pr.930) to C 11 (Pr.931). If the meter needle does not indicate zero when the current input is at zero, calibrate the meter using C8 (Pr.930) and C9 (Pr.930).
3. Set a monitor item in Pr. 54 FM/CA terminal function selection. (Refer to page 435.)

When the running frequency or inverter output current is selected on the monitor, set the running frequency or current value at which the output signal will be 20 mA , using Pr. 55 or Pr. 56 beforehand.
4. If the meter needle does not point to maximum even at maximum output, calibrate it with $\mathbf{C 0}$ (Pr.900).

## NOTE

- When outputting an item such as output current, which cannot reach a $100 \%$ value easily by operation, set Pr. 54 to " 21 " (reference voltage output) and calibrate. A current of 20 mADC is output via terminal CA.
- When Pr. 310 Analog meter voltage output selection = " 21 ", the output via terminal CA cannot be calibrated. For the details of Pr.310, refer to the Instruction Manual of the FR-A8AY.
- The output via terminal CA is enabled even if C8 (Pr.930) $\geq \mathbf{C 1 0}$ (Pr.931), C9 (Pr.930) $\geq \mathbf{C 1 1}$ (Pr.931).


## Adjusting the response of terminal CA (Pr.869)

- Using Pr.869, the output voltage response of terminal CA can be adjusted in the range of 0 to 5 seconds.
- Increasing the setting stabilizes the output via terminal CA more but reduces the response level. (Setting "0" sets the response level to 7 ms .)


## - Calibration of terminal AM (C1 (Pr.901))

- Adjusting the response of terminal CA (C1(Pr.901))

Terminal AM is initially set to provide a 10 VDC output in the full-scale state of the corresponding monitor item. The calibration parameter C1 (Pr.901)AM terminal calibration allows the output voltage ratio (gains) to be adjusted according to the meter scale. Note that the maximum output voltage is 10 VDC .

Inverter


[^23]1．Connect a $0-10$ VDC indicator（frequency meter）across terminal $A M$ and terminal 5 on the inverter．（Note the polarity．Terminal AM is positive．）
2．Set a monitor item in Pr． 158 AM terminal function selection．（Refer to page 435．）
When the running frequency or inverter output current is selected on the monitor，set the running frequency or current value at which the output signal is 10 V ，using Pr． 55 or Pr． 56 beforehand．
3．If the meter needle does not point to maximum even at maximum output．，calibrate it with $\mathbf{C 1}$（ $\mathbf{P r} .901$ ）．

## NOTE

－When outputting an item such as the output current，which cannot reach a $100 \%$ value easily by operation，set Pr． 158 to＂ 21 ＂ （reference voltage output）and calibrate．A voltage of 10 VDC is output via terminal AM．
－When Pr． 306 Analog output signal selection＝＂21＂，the output via terminal AM cannot be calibrated．For the details of Pr．306，refer to the Instruction Manual of the FR－A8AY．
－Use Pr． 290 Monitor negative output selection to enable negative signals output via terminal AM．The output voltage range is -10 to +10 VDC．Calibrate the maximum positive value output via terminal AM．

## Adjusting the response of terminal AM（Pr．867）

－Use Pr． 867 to adjust the output voltage response of the terminal $A M$ in the range of 0 to 5 seconds．
－Increasing the setting stabilizes the output via terminal AM more but reduces the response level．（Setting＂0＂means the setting of the response level to 7 ms ．）

## 《 Parameters referred to 》》

Pr． 54 FM／CA terminal function selection $\$$ page 435
Pr． 55 Frequency monitoring reference $F$ page 435
Pr． 56 Current monitoring reference $\sqrt{ } \rightarrow$ page 435
Pr． 158 AM terminal function selection page 435
Pr． 290 Monitor negative output selection page 435
Pr． 291 Pulse train I／O selection page 386

## 5．11．5 Energy saving monitoring

From the power consumption estimated value during commercial power supply operation，the energy saving effect by use of the inverter can be monitored and output．

Pr.	Name	Initial value	Setting range	Description
52   M100	Operation panel main monitor selection	$0$   (output frequency)	Refer to page 424.	50: Energy saving effect monitoring   51: Cumulative energy saving monitoring
774   M101	Operation panel monitor selection 1	9999		
$\begin{aligned} & 775 \\ & \text { M102 } \end{aligned}$	Operation panel monitor selection 2			
776   M103	Operation panel monitor selection 3			
992   M104	Operation panel setting dial push monitor selection			
$\begin{aligned} & 54 \\ & \text { M300 } \end{aligned}$	FM/CA terminal function selection	```1 (output frequency)```	Refer to page 435.	50: Energy saving effect monitoring
158   M301	AM terminal function selection			
$\begin{aligned} & 891 \\ & \text { M023 } \end{aligned}$	Cumulative power monitor digit shifted times	9999	0 to 4	Set the number of times to move the digit of cumulative power monitored value. The readout peaks out at the upper limit of readout.
			9999	The function of moving the decimal point is not available. The readout is reset to 0 when it exceeds the upper limit.
$\begin{aligned} & 892 \\ & \text { M200 } \end{aligned}$	Load factor	100\%	30 to 150\%	Set the load factor for the commercial power supply operation. The setting is used for calculation of the estimated power consumption during commercial power supply operation by being multiplied by the power consumption rate (page 449).
$\begin{array}{\|l} 893 \\ \text { M201 } \end{array}$	Energy saving monitor reference (motor capacity)	Inverter rated capacity	0.1 to $55 \mathrm{~kW}^{* 1}$	Set the motor capacity (pump capacity). Setting this parameter is required for calculating the rate of saved power, the rate of average energy saving, and the commercial power.
			0 to $3600 \mathrm{~kW}^{* 2}$	
$\begin{aligned} & 894 \\ & \text { M202 } \end{aligned}$	Control selection during commercial powersupply operation	0	0	Discharge damper control (fan)
			1	Inlet damper control (fan)
			2	Valve control (pump)
			3	Commercial power supply drive (fixed value)
$\begin{aligned} & 895 \\ & \text { M203 } \end{aligned}$	Power saving rate reference value	9999	0	Consider the commercial power as 100\%.
			1	Consider the power set in Pr. 893 as 100\%
			9999	No function
$\begin{array}{\|l\|} \hline 896 \\ \text { M204 } \end{array}$	Power unit cost	9999	0 to 500	Set the power unit cost. Setting this parameter is required for displaying the energy cost savings in the energy saving monitoring.
			9999	No function
$\begin{aligned} & 897 \\ & \text { M205 } \end{aligned}$	Power saving monitor average time	9999	0	The time period for averaging is 30 minutes.
			1 to 1000 h	Set the number of hours for averaging.
			9999	No function
$\begin{array}{\|l\|} \hline 898 \\ \text { M206 } \\ \hline \end{array}$	Power saving cumulative monitor clear	9999	0	Clear the cumulative monitor value
			1	Hold the cumulative monitor value
			10	Continue accumulation (upper limit communication data is 9999)
			9999	Continue accumulation (upper limit communication data is 65535)
$\begin{aligned} & 899 \\ & \text { M207 } \end{aligned}$	Operation time rate (estimated value)	9999	0 to 100\%	Setting this parameter is required for calculating the annual energy saving. Set an annual operating rate (considering a $24-$ hours-a-day and 365-days-a-year operation as 100\%).
			9999	No function

[^24]*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.

## - Energy saving monitoring list

- The items in the energy saving effect monitoring (items which can be monitored when " 50 " is set in Pr.52, Pr.54, Pr.158, Pr. 774 to Pr.776, and Pr.992) are listed below.
(The items which can be monitored via terminal FM or CA (Pr. 54 setting) and via terminal AM (Pr. 158 setting) are limited to [1 Power saving] and [3 Average power saving].)

	Energy saving monitor item	Description and formula	Unit and increment	Parameter setting			
				Pr. 895	Pr. 896	Pr. 897	Pr. 899
1	Power saving	It is the saved power, defined as the difference between the estimated power input to a motor for the commercial power supply operation and the inverter input power which is calculated from the inverter output power, determined using the following formula.   (Input power for commercial power supply operation) - (Monitored value of inverter input power)	$\begin{aligned} & 0.01 \mathrm{~kW} / \\ & 0.1 \mathrm{~kW}{ }^{* 2} \end{aligned}$	9999	-	9999	-
2	Power saving rate	It is defined as the power saving expressed as a percentage. The rate of the power saving with respect to the estimated input power for the commercial power supply operation is determined using the following formula.   [1 Power saving]   Power during commercial power supply operation	0.1\%	0			
		The rate of the power saving with respect to the Pr. 893 setting is determined using the following formula. $\frac{[2 \text { Power saving }]}{\text { Pr. } 893} \times 100$		1			
3	Average power saving	It is defined as the average hourly energy saving during a monitoring time (set in Pr.897). $\frac{\sum([1 \text { Power saving }] \times \Delta t)}{\operatorname{Pr} .897}$	$\begin{aligned} & 0.01 \mathrm{kWh} / \\ & 0.1 \mathrm{kWh}^{* 2} \end{aligned}$	9999	9999	0 to 1000 h	
4	Average power saving rate	It is defined as the average hourly energy saving expressed as a percentage. The rate of the average hourly energy saving with respect to the estimated input power for the commercial power supply operation is determined using the following formula. $\frac{\sum([2 \text { Power saving rate }] \times \Delta t)}{\text { Pr. } 897} \times 100$	0.1\%	0			
		The rate of the average hourly energy saving with respect to the Pr. 893 setting is determined using the following formula. $\frac{[3 \text { Average power saving] }}{\operatorname{Pr} .893} \times 100$		1			
5	Average power cost savings	It is defined as a monetary value of the average hourly energy saving, determined using the following formula.   [3 Average power saving] $\times$ Pr. 896 setting	0.01/0.1 ${ }^{*}$	-	0 to 500		

- The items in the cumulative energy saving monitoring (items which can be monitored when "51" is set in Pr.52, Pr. 774 to Pr.776, and Pr.992) are listed below.
(The digit of the cumulative energy saving monitored value can be moved to the right according to the setting of Pr. 891 Cumulative power monitor digit shifted times.)

	Energy saving monitor item	Description and formula	Unit and increment	Parameter setting			
				Pr. 895	Pr. 896	Pr. 897	Pr. 899
6	Power saving amount	It is defined as a cumulative energy saving during monitoring, determined by multiplying the saved power by the number of inverter operating hours. $\Sigma$ ([1 Power saving] $\times \Delta t$ )	$\begin{aligned} & 0.01 \mathrm{kWh} / \\ & 0.1 \mathrm{kWh} \\ & { }^{* 1 * 2 * 3} \end{aligned}$	-	9999		9999
7	Power cost savings	It is defined as a monetary value of the cumulative energy saving.   [6 Power saving amount] $\times$ Pr. 896 setting	$\begin{aligned} & 0.01 / \\ & 0.1^{* 1 * 3} \end{aligned}$	-	0 to 500		
8	Annual power saving amount	It is defined as an estimated annual energy saving. $\frac{[6 \text { Power saving amount] }}{\text { Operation time during power }} \begin{aligned} & \text { saving accumulation } \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{kWh} / \\ & 0.1 \\ & \mathrm{kWh}^{* 1 * 2 * 3} \end{aligned}$	-	9999		0 to 100\%
9	Annual power cost savings	It is defined as a monetary value of annual energy saving.   [8 Annual power saving amount] $\times$ Pr. 896 setting	$\begin{aligned} & 0.01 / \\ & 0.1^{* 1 * 3} \end{aligned}$	-	0 to 500		

*1 For monitoring via communication (RS-485 communication, or other communication using a communication option), the increments are 1 in no units. For example, a value " 10.00 kWh " is converted into " 10 " for communication data.
*2 On the LCD operation panel or the parameter unit, a readout is displayed in units of kilowatt-hours (kW).
*3 The increment differs according to the inverter capacity. (Increment left of a slash for FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower. Increment right of a slash for FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher.)

## NOTE

- The operation panel and the parameter unit have a 5-digit display. This means, for example, that a monitored value up to 999.99 is displayed in 0.01 increments and a monitor value of 1000 or more is displayed in 0.1 increments as "1000.0". The maximum monitored value displayed is "99999".
- The maximum monitored value via communication (RS-485 communication or other communication with communication option installed) is 65535 when Pr. 898 Power saving cumulative monitor clear = "9999". The maximum monitored value on monitoring in 0.01 increments is " 655.35 ", and that on monitoring in 0.1 increments is " 6553.5 ".


## - Power saving real-time monitoring ([1 Power saving], [2 Power saving rate])

- During [1 Power saving] monitoring, an energy saving effect (power difference) of using the inverter as compared to the commercial power supply operation is calculated and displayed on the main monitor.
- In the following cases, the monitored value of [1 Power saving] is " 0 ".

The result of calculating the saved power is negative value.
DC injection brake works.
The motor is not connected with the inverter (monitored value of output current is 0 A ).

- On [2 Power saving rate] monitoring, the rate of the saved power considering the consumed power (estimate) during the power supply operation as $100 \%$ is displayed when Pr. 895 Power saving rate reference value is set to " 0 ". When Pr. 895 is set to " 1 ", the rate of the saved power with respect to the setting of Pr. 893 Energy saving monitor reference (motor capacity) that is referenced as $100 \%$ is displayed.


## - Average power saving monitoring ([3 Average power saving], [4 Average power saving rate], [5 Average power cost savings])

- The average power saving monitors are displayed by setting a value other than 9999 in Pr. 897 Power saving monitor average time.
- On [3 Average power saving] monitoring, the average hourly energy saving every preset time period is displayed.
- When the setting of Pr. 897 is changed, when the inverter is powered ON, or when the inverter is reset, the averaging is restarted. The Energy saving average value updated timing (Y92) signal is inverted every time the averaging is restarted.

- On [4 Average power saving rate] monitoring, the average hourly monitored value of [2 Power saving rate]) is displayed when Pr. 895 Power saving rate reference value is set to " 0 or 1 ".
- On [5 Average power cost savings] monitoring, a monetary value of the average hourly energy saving ([3 Average power saving] $\times$ Pr. 896 setting) is displayed when the unit price, power cost per per kilowatt (hour), is set in Pr. 896 Power unit cost.


## - Cumulative energy saving monitoring ([6 Power saving amount], [7 Power cost saving], [8 Annual power saving amount], [9 Annual power cost savings])

- The digit of the cumulative energy monitored value can be moved to the right by the number set in Pr. 891 Cumulative power monitor digit shifted times. For example, when the cumulative energy is 1278.56 kWh and $\operatorname{Pr} .891$ is set to " 2 ", " 12.78 " is displayed (in 100's of units) on the PU/DU and the communication data is converted into "12". When Pr. $891=$ " 0 to 4 " and the cumulative energy reaches more than the upper limit of readout, the readout peaks out at the upper limit, which indicates that moving digit is necessary. When Pr. $891=$ " 9999 " and the cumulative energy reaches more than the upper limit of readout, cumulative value is reset to 0 and the metering restarts. The readout of other items in the cumulative energy saving monitoring peaks out at the upper limit of readout.
- With the monitored value of [6 Power saving amount], a cumulative energy saving during a desired time period can be measured. Follow this procedure.

1. Set "10" or "9999" in Pr. 898 Power saving cumulative monitor clear.
2. Change the setting of Pr. 898 to " 0 " when you want to start measuring the energy saving. The cumulative value is cleared and the cumulative energy saving meter restarts.
3. Change the setting of Pr. 898 to " 1 " when you want to stop measuring the energy saving. The meter stops and the cumulative value is fixed.


## NOTE

- The cumulative value of energy saving is refreshed every hour. This means that the last cumulative value is displayed at a restart of the inverter and the cumulative meter restarts if the time elapsed between turning OFF and re-turning ON of the inverter is shorter than an hour. (In some cases, the cumulative energy value may decrease.)


## - Estimated input power for the commercial power supply operation (Pr.892, Pr.893, Pr.894)

- Select the pattern of the commercial power supply operation from among four patterns (discharge damper control (fan), suction damper control (fan), valve control (pump) and commercial power drive), and set it in Pr. 894.
- Set the motor capacity (pump capacity) in Pr. 893 Energy saving monitor reference (motor capacity).
- Refer to the following graph to find the rate of power consumption (\%) during commercial power supply operation based on the selected pattern and the rate of motor rotations per minute with respect to the rated speed (the result of dividing the present output frequency by Pr. 3 Base frequency setting).

- The estimated input power (kW) for the commercial power supply operation is calculated from the motor capacity set in Pr.893, the setting of Pr. 892 Load factor, and the rate of power consumption using the following formula.

Estimated consumed power during
commercial power supply operation $(\mathrm{kW})$

## NOTE

- If the output frequency rises to the setting of Pr. 3 Base frequency or higher, it stays at a constant value because the rotations per minute cannot rise higher than the power supply frequency during commercial power supply operation.


## Annual energy saving and its monetary value (Pr.899)

- When the operation time rate (ratio of the time period in year when the inverter drives the motor) [\%] is set in Pr.899, the annual energy saving effect can be estimated.
- When the inverter is operated in specific patterns, the estimate annual energy saving can be calculated by measuring the energy saving in a certain period.
- Refer to the following procedure to set the operation time rate.

1. Estimate the average operation time per day (h/day).
2. Calculate the operation days per year (days/year) using the following formula: Average operation days per month $\times$ 12 (months).
3. Calculate the annual operation time (h/year) from values determined in Step 1 and Step 2, using the following formula.

Annual operation time ( $\mathrm{h} /$ year) $=$ average time ( $\mathrm{h} /$ day) $\times$ number of operation days (days/year)
4. Calculate the operation time rate using the following formula, and set it in Pr.899.

$$
\text { Operation time rate }(\%)=\frac{\text { Annual operation time }(\mathrm{h} / \text { year })}{24(\mathrm{~h} / \text { day }) \times 365(\text { days } / \text { year })} \times 100(\%)
$$

－Setting example for operation time rate：In the case where the average operation time per day is about 21 hours and the average operation days per month is 16 days．
Annual operation time $=21(\mathrm{~h} /$ day $) \times 16$（days $/$ month $) \times 12$（months）$=\underline{4032(\mathrm{~h} / \text { year })}$
Operation time rate $(\%)=\frac{4032(\mathrm{~h} / \text { year })}{24(\mathrm{~h} / \text { day }) \times 365(\text { days } / \text { year })} \times 100(\%)=\underline{46.03 \%}$
Therefore，set 46．03\％in Pr． 899.
－Calculate the annual energy saving from the value of［3 Average power saving］cumulated according to the setting of Pr． 899 Operation time rate（estimated value）．

$$
\text { Annual power saving amount }(\mathrm{kWh} / \text { year })=\begin{aligned}
& \text { With Pr. } 898=10 \text { or 9999, average power } \\
& \text { saving }(\mathrm{kW}) \text { during cumulative period }
\end{aligned} \times 24 \mathrm{~h} \times 365 \text { days } \times \frac{\text { Pr. } 899}{100}
$$

－When the power cost per hour is set in Pr． 896 Power unit cost，the annual energy cost savings can be monitored． The annual energy cost savings is determined by calculation using the following formula．

$$
\text { Annual power cost saving = annual power saving amount (kWh/year) } \times \text { Pr. } 896
$$

## NOTE

－During regenerative driving，substitute the output power during the commercial power supply operation for the saved power （therefore，input power $=0$ ）．

## 5．11．6 Output terminal function selection

Use the following parameters to change the functions of the open collector output terminals and relay output terminals．

Pr.	Name		Initial value	Signal name	Setting range
$\begin{array}{\|l\|} \hline 190 \\ \text { M400 } \\ \hline \end{array}$	RUN terminal function selection	For open collector output terminal	0	RUN (Inverter running)	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to 57 , $60,61,63,64,67,68,70,79,80,84,85,90$ to 99,100 to 108,110 to $116,120,122,125$ to 128, 130 to 136,138 to $157,160,161,163$, 164, 167, 168, 170, 179, 180, 184, 185, 190 to 199, 200 to 208, 211 to 213,300 to 308,311 to 313, 9999
$\begin{aligned} & \hline 191 \\ & \text { M401 } \end{aligned}$	SU terminal function selection		1	SU (Up to frequency)	
$192$	IPF terminal function selection		2*1	IPF (Instantaneous power failure/undervoltage)	
			9999*2	No function	
$\begin{aligned} & \hline 193 \\ & \text { M403 } \end{aligned}$	OL terminal function selection		3	OL (Overload warning)	
$\begin{array}{\|l\|} \hline 194 \\ \text { M404 } \\ \hline \end{array}$	FU terminal function selection		4	FU (Output frequency detection)	
$\begin{array}{\|l\|} \hline 195 \\ \text { M405 } \end{array}$	ABC1 terminal function selection	For relay output terminal	99	ALM (Fault)	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to 57 , $60,61,63,64,67,68,70,79,80,84,85,90,91$, 94 to 99,100 to 108,110 to $116,120,122,125$ to 128,130 to 136,138 to $157,160,161,163$, 164, 167, 168, 170, 179, 180, 184, 185, 190, 191, 194 to 199, 200 to 208, 211 to 213,300 to 308, 311 to 313, 9999
$\begin{array}{\|l\|} \hline 196 \\ \text { M406 } \end{array}$	ABC2 terminal function selection		9999	No function	
$313$   M410 ${ }^{*}{ }^{*} 4$	DO0 output selection	For terminal on the option	9999	No function	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to 57 , $60,61,63,64,68,70,79,80,84$ to 99,100 to 108, 110 to $116,120,122,125$ to 128,130 to 136, 138 to 157, 160, 161, 163, 164, 168, 170, 179, 180, 184 to 199, 200 to 208, 211 to 213 , 300 to 308,311 to 313,9999
$314$   M411*3*4	DO1 output selection		9999	No function	
$\begin{aligned} & 315 \\ & \text { M412***4 } \end{aligned}$	DO2 output selection		9999	No function	
316 M413* ${ }^{*}$	DO3 output selection		9999	No function	
317   M414 ${ }^{*}$	DO4 output selection		9999	No function	
318 M415* ${ }^{*}$	DO5 output selection		9999	No function	
319   M416*	DO6 output selection		9999	No function	
320   M420* ${ }^{*}$	RA1 output selection		9999	No function	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to 57 , $60,61,63,64,68,70,79,80,84$ to 91,94 to 99 , 200 to 208,211 to 213
321   M421*3	RA2 output selection		9999	No function	
$\begin{array}{\|l\|} \hline 322 \\ \text { M422*3 } \end{array}$	RA3 output selection		9999	No function	


Pr.	Name	Initial   value	Setting range	Description
$\mathbf{2 8 9}$	Inverter output terminal   M431   filter	9999	5 to 50 ms	Set the time delay for the output terminal response.
		9999	No filtering of the output terminal.	

*1 The initial value is for standard models and IP55 compatible models.
*2 The initial value is for separated converter types.
*3 The setting is available when the PLC function is enabled or when a compatible plug-in option is installed.
*4 The setting is available for the FR-A800-GF.

## - Output signal list

- A function listed below can be set to each output terminal.
- Refer to the following table and set the parameters. (0 to 99: Positive logic, 100 to 199: Negative logic)

Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
0	100	RUN	Inverter running	Outputted during operation when the inverter output frequency reaches Pr. 13 Starting frequency or higher.	-	456
1	101	SU	Up to frequency *1	Outputted when the output frequency reaches the set frequency.	Pr. 41	461


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
2	102	IPF	Instantaneous power failure/ undervoltage *5	Outputted when an instantaneous power failure or undervoltage protection operation occurs.	Pr. 57	$\begin{aligned} & 597, \\ & 604 \end{aligned}$
3	103	OL	Overload warning	Outputted while the stall prevention function works.	$\begin{aligned} & \text { Pr.22, Pr.23, } \\ & \text { Pr.66, Pr. } 148 \text {, } \\ & \text { Pr.149, Pr. } 154 \end{aligned}$	409
4	104	FU	Output frequency detection	Outputted when the output frequency reaches the frequency set in Pr. 42 (Pr. 43 during reverse rotation) or higher.	Pr.42, Pr. 43	461
5	105	FU2	Second output frequency detection	Outputted when the output frequency reaches the frequency set in Pr. 50 or higher.	Pr. 50	461
6	106	FU3	Third output frequency detection	Outputted when the output frequency reaches the frequency set in Pr. 116 or higher.	Pr. 116	461
7	107	RBP	Regenerative brake prealarm ${ }^{* 2}$	Outputted when the regenerative brake duty reaches $85 \%$ of the setting of Pr. 70 .	Pr. 70	689
8	108	THP	Electronic thermal O/L relay pre-alarm	Outputted when the cumulative electronic thermal O/L relay value reaches $85 \%$ of the trip level. (The electronic thermal O/L relay function (E.THT/E.THM) is activated when the value reaches 100\%.)	Pr. 9	394
10	110	PU	PU operation mode	Outputted when the PU operation mode is selected.	Pr. 79	370
11	111	RY	Inverter operation ready	Outputted when the reset process is completed after powering ON the inverter or when the inverter is ready to start operation with the start signal ON or during operation.	-	456
12	112	Y12	Output current detection	Outputted when the output current is higher than the Pr. 150 setting for the time set in Pr. 151 or longer.	Pr.150, Pr. 151	464
13	113	Y13	Zero current detection	Outputted when the output current is lower than the Pr. 152 setting for the time set in Pr. 153 or longer.	Pr.152, Pr. 153	464
14	114	FDN	PID lower limit	Outputted when the input value is lower than the lower limit set for the PID control operation.		
15	115	FUP	PID upper limit	Outputted when the input value is higher than the upper limit set for the PID control operation.	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	570
16	116	RL	PID forward/reverse rotation output	Outputted during forward rotation operation in the PID control operation.		
17	-	MC1	Electronic bypass MC1	Used to work the electronic bypass function.	$\begin{aligned} & \text { Pr. } 135 \text { to Pr. } 139 \text {, } \\ & \text { Pr. } 159 \end{aligned}$	532
18	-	MC2	Electronic bypass MC2			
19	-	MC3	Electronic bypass MC3			
20	120	BOF	Brake opening request	Outputted to release the brake while the brake sequence function is enabled.	$\begin{aligned} & \text { Pr. } 278 \text { to Pr. } 285 \text {, } \\ & \text { Pr. } 292 \end{aligned}$	
22	122	BOF2	Second brake opening request	Outputted to release the brake while the second brake sequence function is enabled (while the RT signal is ON).	Pr. 641 to Pr. 648	541
25	125	FAN	Fan fault output	Outputted when a fan fault occurs.	Pr. 244	402
26	126	FIN	Heatsink overheat pre-alarm	Outputted when the heat sink temperature rises to $85 \%$ of temperature at which the protective function of the Heatsink overheat is activated.	-	754
27	127	ORA	Orientation complete (output for a Vector control compatible option) ${ }^{*} 4$	Outputted while the orientation control operation is enabled.	Pr. 350 to Pr.366, Pr.369, Pr.393, Pr. 396 to Pr. 399	554
28	128	ORM	Orientation fault (output for a Vector control compatible option) ${ }^{*} 4$			


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
30	130	Y30	Forward rotation output (output for a Vector control compatible option) ${ }^{*} 4$	Outputted while a motor rotates in forward direction.		459
31	131	Y31	Reverse rotation output (output for a Vector control compatible option) ${ }^{*} 4$	Outputted while a motor rotates in reverse direction.	-	459
32	132	Y32	Regenerative status output (output for a Vector control compatible option) ${ }^{*}{ }^{4}$	Outputted while the motor is in a regenerative braking state under Vector control.		459
33	133	RY2	Operation ready 2	Outputted while pre-excitation is enabled or during normal operation under Real sensorless vector control, Vector control, or PM sensorless vector control.	-	456
34	134	LS	Low speed detection	Outputted when the output frequency drops to the Pr. 865 setting or lower.	Pr. 865	461
35	135	TU	Torque detection	Outputted when the motor torque is higher than the Pr. 864 setting.	Pr. 864	465
36	136	Y36	In-position	Outputted when the number of droop pulses drops below the setting.	Pr. 426	311
38	138	MEND	Travel completed	Outputted when the droop pulse is within the in-position width and the position command operation is completed or not performing home position return.	Pr. 426	311
39	139	Y39	Start time tuning completion	Outputted when tuning at start-up is completed.	Pr.95, Pr. 574	527
40	140	Y40	Trace status	Outputted during trace operation.	$\begin{aligned} & \text { Pr. } 1020 \text { to } \\ & \text { Pr. } 1047 \end{aligned}$	616
41	141	FB	Speed detection	Outputted when the actual motor rotations per minute (estimate) reaches the setting of Pr.42, Pr.50, or Pr. 116.	$\text { Pr. } 42 \text { to Pr.50, }$$\text { Pr. } 116$	461
42	142	FB2	Second speed detection			
43	143	FB3	Third speed detection			
44	144	RUN2	Inverter running 2	Outputted while the Forward rotation command signal or Reverse rotation command signal is ON. Outputted during deceleration even while the Forward rotation command signal or Reverse rotation command signal is OFF (except while pre-excitation is enabled (the LX signal is ON )).   Also outputted while the Orientation command (X22) signal is ON. Outputted while the servo-lock function is working (the LX signal is ON ) in the position control mode. (The signal output stops when the servo-lock function stops (the LX signal is OFF).)	-	456
45	145	RUN3	Inverter running and start command is ON	Outputted while the inverter is running or while the start command signal is ON.	-	456
46	146	Y46	During deceleration at occurrence of power failure	Outputted when the power-failure deceleration function is activated. (The signal output is retained until the function stops.)	Pr. 261 to Pr. 266	610
47	147	PID	During PID control activated	Outputted during the PID control operation.	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	570
48	148	Y48	PID deviation limit	Outputted when the absolute deviation value exceeds the limit value.	$\text { Pr. } 127 \text { to Pr.134, }$ $\text { Pr.553, Pr. } 554$	570


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
49	149	Y49	During pre-charge operation	Outputted while the pre-charge function is working.	Pr. 127 to Pr.134, Pr.241, Pr.553, Pr.554, Pr. 575 to Pr.577, Pr. 753 to Pr.769, C42, C45	587
50	150	Y50	During second pre-charge operation			
51	151	Y51	Pre-charge time over	Outputted when the time period while the pre-charge function is working reaches the time limit set in Pr. 764 or Pr. 769.		
52	152	Y52	Second pre-charge time over			
53	153	Y53	Pre-charge level over	Outputted when the value higher than the detection level set in Pr. 763 or Pr. 768 is measured until the pre-charge function stops during pre-charge operation.		
54	154	Y54	Second pre-charge level over			
55	155	Y55	Motor temperature detection (for FR-A8AZ) ${ }^{*} 4$	Outputted when the temperature of the thermistor-equipped vector control motor (SF-V5RU[]T/A) exceeds the detection level.	Pr. 750	-
56	156	ZA	Home position return failure	Outputted while the Home position return uncompleted warning is output.	-	288
57	157	IPM	During PM sensorless vector control	Outputted while the operation is performed under PM sensorless vector control.	$\begin{aligned} & \text { Pr. } 71 \text { to Pr. } 80 \text {, } \\ & \text { Pr. } 998 \end{aligned}$	224
60	160	FP	Position detection level	Outputted when the current position exceeds the position detection judgment value (set in Pr. 1294 and Pr.1295).	Pr. 1294 to Pr. 1297	311
61	161	PBSY	During position command operation	Outputted during the position command operation.		
63	163	ZP	Home position return completed	Outputted when the home position return operation is completed.		2
64	164	Y64	During retry	Outputted during retry operation.	Pr. 65 to Pr. 69	405
67	167	Y67	Power failed*3	Outputted when the inverter power output is shut off due to power failure or undervoltage or when the power failure time deceleration-to-stop function is activated.	Pr. 261 to Pr. 266	610
68	168	EV	24 V external power supply operation	Outputted while the inverter operated with a 24 V power supplied from an external source.	-	78
70	170	SLEEP	PID output interruption	Outputted while PID output suspension function is activated.	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	570
79	179	Y79	Pulse train output of output power	Outputted in pulses every time the cumulative value of energy outputted from the inverter reaches the Pr.799setting.	Pr. 799	470
80	180	SAFE	Safety monitor output	Outputted while the safety stop function is activated.	-	80
84	184	RDY	Position control preparation ready	Outputted when the servo-lock function is working (the LX signal turns ON) and the inverter is ready to operate.	Pr.419, Pr. 428 to Pr. 430	304
85	185	Y85	DC current feeding ${ }^{*}$	Outputted during power failure or undervoltage of the AC power supply.	Pr. 30	689
86	186	Y86	Control circuit capacitor life (for Pr. 313 to Pr.322) ${ }^{*} 6$	Outputted when the control circuit capacitor approaches the end of its life.	Pr. 255 to Pr. 259	341
87	187	Y87	Main circuit capacitor life (for Pr. 313 to Pr. 322 ) ${ }^{* 5 *}$	Outputted when the main circuit capacitor approaches the end of its life.		
88	188	Y88	Cooling fan life (for Pr. 313 to Pr.322) ${ }^{*}$ 6	Outputted when the cooling fan approaches the end of its life.		
89	189	Y89	Inrush current limit circuit life (for Pr. 313 to Pr.322) ${ }^{*}{ }^{*} 6$	Outputted when the inrush current limit circuit approaches the end of its life.		
90	190	Y90	Life alarm	Outputted when any of the control circuit capacitor, main circuit capacitor, inrush current limit circuit, or the cooling fan approaches the end of its life.		
91	191	Y91	Fault output 3 (Power-OFF signal)	Outputted when the Fault occurs due to an inverter circuit fault or connection fault.	-	460
92	192	Y92	Energy saving average value updated timing	Switches between ON and OFF every time the average energy saving is updated during the energy saving monitoring. This signal cannot be assigned to any of the relay output terminal (Pr.195, Pr.196, Pr. 320 to Pr.322).	Pr.52, Pr.54, Pr.158, Pr. 891 to Pr. 899	444


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
93	193	Y93	Current average monitor	Outputted in pulses for transmission of the average current value and the maintenance timer value. This signal cannot be assigned to any of the relay output terminal (Pr.195, Pr.196, Pr. 320 to Pr.322).	Pr. 555 to Pr. 557	346
94	194	ALM2	Fault output 2	Outputted when the inverter's protective function is activated to stop the power output (when the Fault occurs). The signal output continues during the inverter reset and stops after the inverter reset finishes. *7	-	460
95	195	Y95	Maintenance timer signal	Outputted when the value of Pr. 503 reaches the Pr. 504 setting or higher.	Pr.503, Pr. 504	345
96	196	REM	Remote output	Outputted via a terminal by setting a proper number in a relative parameter.	Pr. 495 to Pr. 497	466
97	197	ER	Alarm output 2	The ER signal output follows the ALM signal output when Pr. 875 = "0 (initial value)". When Pr. $875=" 1$ " and when any of E.OHT, E.THM, or E.PTC occurs, the inverter decelerates the motor to a stop at a time of the ER signal ON. When any of other faults occurs, the ER signal outputs when the inverter output stops.	Pr. 875	401
98	198	LF	Alarm	Outputted when an Alarm (Fan alarm) or a communication error occurs.	Pr.121, Pr. 244	$\begin{aligned} & 402, \\ & 630 \end{aligned}$
99	199	ALM	Fault	Outputted when the inverter's protective function is activated to stop the power output (when the Fault occurs). The signal output stops when the inverter reset starts.	-	460
200	300	FDN2	Second PID lower limit	Outputted when the input value is lower than the lower limit set for the second PID control operation.		
201	301	FUP2	Second PID upper limit	Outputted when the input value is higher than the upper limit set for the second PID control operation.	Pr. 753 to Pr. 758	
202	302	RL2	Second PID forward/reverse rotation output	Outputted during forward rotation operation in the second PID control operation.		570
203	303	PID2	Second During PID control activated	Outputted during the second PID control operation.		570
204	304	$\begin{aligned} & \text { SLEEP } \\ & 2 \end{aligned}$	During second PID output shutoff	Outputted while the second PID output suspension function is activated.	$\begin{aligned} & \text { Pr. } 753 \text { to Pr. } 758 \text {, } \\ & \text { Pr. } 1147 \text { to } \\ & \text { Pr. } 1149 \end{aligned}$	
205	305	Y205	Second PID deviation limit	Outputted when the absolute deviation value exceeds the limit value during the second PID control operation.	Pr. 753 to Pr. 758 , Pr.1145, Pr. 1146	
206	306	Y206	Cooling fan operation command	Output when the cooling fan operation is commanded.	Pr. 244	402
207	307	Y207	Control circuit temperature	Outputted when the temperature of the control circuit board reaches the detection level or higher.	Pr. 663	471
208	308	PS	PU stopped	Output while the PU is stopped.	Pr. 75	320
211	311	LUP	Upper limit warning detection	Output when the load fault upper limit warning is detected.		
212	312	LDN	Lower limit warning detection	Output when the load fault lower limit warning is detected.	$\begin{aligned} & \text { Pr. } 1480 \text { to } \\ & \text { Pr. } 1492 \end{aligned}$	417
213	313	Y213	During load characteristics measurement	Output during measurement of the load characteristics.		
9999		-	(No function)	-	-	-

*1 Note that changing the frequency setting with an analog signal or the setting dial on the operation panel (FR-DU08) may cause the turning ON and OFF of Up to frequency (SU) signal depending on its changing speed and the timing of the speed change determined by the acceleration/ deceleration time setting. (The signal state changing does not occur when the acceleration/deceleration time is set to 0 seconds.)
*2 This signal is available only for the standard model.
*3 This signal cannot be assigned to any of the output terminals for plug-in options (FR-A8AY and FR-A8AR).
*4 This signal is available when the compatible plug-in option or control terminal option is installed.
*5 This signal is available for the standard model or the IP55 compatible model.
*6 This signal is available for the FR-A800-GF, when the PLC function is enabled, or when an option (FR-A8AY, FR-A8AR, FR-A8NC, or FR-A8NCE) is installed. Use Pr. 313 to Pr. 322 to assign the function to the terminal. For the information of the availability of these parameters for each option, refer to the Instruction Manual of the option.
*7 On restarting the inverter, the Fault output 2 (ALM2) signal turns OFF at the time the inverter power turns OFF.

## NOTE

- One function can be assigned to more than one terminal.
- The function works during the terminal conducts when the parameter setting is any of " 0 to 99,200 to 299 ", and the function works during the terminal does not conduct when the setting is "100 to 199, 300 to 399".
- When Pr. 76 Fault code output selection = " 1 ", the outputs of terminals SU, IPF, OL, and FU are used only for outputting the fault code according to the Pr. 76 setting. (When the inverter's protective function is activated, the signal for the fault code is output.)
- The output of terminal RUN and the outputs of the relay output terminals are not affected by the Pr. 76 setting.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- Do not assign the signal to terminals A1, B1, and C1 or terminals A2, B2, and C2 which frequently changes its state between ON and OFF. Otherwise, the life of the relay contact may be shortened.


## - Adjusting the output terminal response level (Pr.289)

- The responsivity of the output terminals can be delayed in a range between 5 to 50 ms . (The following is the operation example of the RUN signal.)



## NOTE

- When Pr. 157 OL signal output timer is set for the Overload warning (OL) signal output, the OL signal is output when the set time of (Pr. 157 + Pr.289) elapses.
- The signal output for the PLC function (see page 614) and for the fault code output (see page 467) are not affected by the Pr. 289 setting (not filtered for responsivity).


## - Inverter operation ready signals (RY, RY2 signals) and inverter running signals (RUN, RUN2, RUN3 signals)

## ■ Operation under V/F control and Advanced magnetic flux vector control

- When the inverter is ready for operation, the Inverter operation ready (RY) signal turns ON (and stays ON during operation).
- When the inverter output frequency reaches the setting of Pr. 13 Starting frequency or higher, the inverter running signals (RUN, RUN2 signals) turn ON. The signals are OFF while the inverter is stopped or during the DC injection brake operation.
- The Inverter running and start command is ON (RUN3) signal is ON while the inverter is running or while the start command signal is ON (When the start command signal is ON, the RUN3 signal is ON even while the inverter's protective function is activated or while the MRS signal is ON.) The RUN3 signal is ON even during the DC injection brake operation, and the signal is OFF when the inverter stops.

- The ON/OFF state of each signal according to the inverter operating status is shown in the matrix below.

Output signal	Start signal OFF (inverter stopped)	Start signal ON (inverter stopped)	Start signal ON (inverter running)	During DC injection brake operation	Inverter output shutoff*2		Automatic restart after instantaneous power failure		
							During coasting		Inverter running after restart
					Start signal ON	Start signal OFF	Start signal ON	Start signal OFF	
RY*3	ON	ON	ON	ON	OFF		ON*1		ON
RY2	OFF	OFF	OFF	OFF	OFF		OFF		OFF
RUN	OFF	OFF	ON	OFF	OFF		OFF		ON
RUN2	OFF	OFF	ON	OFF	OFF		OFF		ON
RUN3	OFF	ON	ON	ON	ON	OFF	ON	OFF	ON

*1 The signal is OFF during power failure or undervoltage.
*2 This means the state during a fault occurrence or while the MRS signal is ON, etc.
*3 The signal is OFF while power is not supplied to the main circuit.
Operation under Real sensorless vector control, Vector control, and PM sensorless vector control

- When the inverter is ready for operation, the Inverter operation ready (RY) signal turns ON (and stays ON during operation).
- When the inverter output frequency reaches the setting of Pr. 13 Starting frequency or higher, the Inverter running (RUN) turns ON. The signal is OFF during an inverter stop, during the DC injection brake operation, during tuning at start-up, or during pre-excitation.
- The Inverter running 2 (RUN2) signal is ON while the inverter is running or while the start command signal is ON. (When the inverter's protective function is activated or the MRS signal is ON, the RUN2 signal turns OFF.)
- The Inverter running and start command is ON (RUN3) signal is ON while the inverter is running or while the start command signal is ON.
- The RUN2 and RUN3 signals are also ON when the start command signal is ON or during pre-excitation with the speed command value 0 . (However, the RUN2 signal is OFF during pre-excitation with the LX signal ON.)
- The Operation ready 2 (RY2) signal turns ON when the pre-excitation starts. The signal is ON during pre-excitation even while the inverter stops its output. The signal is OFF during the inverter output shutoff.



## NOTE

- When pre-excitation works with thePre-excitation/servo ON (LX) signal ON, the RY2 signal turns ON after 100 ms ( 500 ms for FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher) from the time the LX signal turns ON. (When online auto tuning at start-up is selected ( $\operatorname{Pr} .95=" 1 "$ ), the time the signal turns ON is delayed by the tuning time.)

- The ON/OFF state of each signal according to the inverter operating status is shown in the matrix below.

Output signal	Start signal OFF (inverter stopped)	Start signal ON ${ }^{* 1}$ (during preexcitation)	Start signal ON (inverter running)	$\begin{aligned} & \text { LX signal } \\ & \text { ON } \\ & \text { (during } \\ & \text { pre- } \\ & \text { excitation) } \end{aligned}$	During DC injection brake operation (during preexcitation)	Inverter output shutoff ${ }^{* 5}$		Automatic restart after instantaneous power failure		
								During coasting		Inverter running after restart
						Start signal ON	Start signal OFF	Start signal ON	Start signal OFF	
RY* ${ }^{*}$	ON	ON	ON	ON	ON	OFF		$\mathrm{ON}{ }^{*}$		ON
RY2	OFF	ON	ON	ON*3	ON	OFF		OFF		OFF
RUN	OFF	OFF	ON	OFF*4	OFF	OFF		OFF		ON
RUN2	OFF	ON	ON	OFF* ${ }^{*}$	OFF	OFF		OFF		ON
RUN3	OFF	ON	ON	ON	ON	ON	OFF	ON	OFF	ON

*1 When the start signal is ON and the frequency command is 0 Hz , such state is designated as "during pre-excitation".
*2 The signal is OFF during power failure or undervoltage.
*3 The RY2 signal turns ON after 100 ms ( 500 ms for FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher) from the time the LX signal turns ON.
*4 The signal is ON while the servo-lock function is ON (the LX signal is ON) in the position control mode.
*5 This means the state during a fault occurrence or while the MRS signal is ON, etc.
*6 The signal is OFF while power is not supplied to the main circuit.

- To use the RY, RY2, RUN, RUN2, of RUN3 signal, set the corresponding number selected from the following table in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.

Output signal	Pr. 190 to Pr. 196 settings	
	Positive logic	Negative logic
RY	11	111
RY2	33	133
RUN	0	100
RUN2	44	144
RUN3	45	145

## NOTE

- The RUN signal (positive logic) is initially assigned to the terminal RUN.


## - Forward rotation output (Y30) signal and Reverse rotation output (Y31) signal

- Under Vector control, the Forward rotation output (Y30) signal or the Reverse rotation output (Y31) signal is output according to the actual rotation direction of the motor.
- During pre-excitation (zero-speed or servo-lock function ON) in the speed or torque control mode, the Y30 signal and the Y31 signal are OFF. During the servo-lock function ON in the position control mode, however, the Y30 signal or the Y31 signal is ON according to the actual rotation direction of the motor, as well as during normal operation.
- To use the Y30 signal, set "30 (positive logic) or 130 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- To use the Y31 signal, set "31 (positive logic) or 131 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- The Y32 signal is always OFF under V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.
- If the motor is rotated by an external force while the inverter is stopped, the $Y 30$ signal and the Y 31 signal keep OFF state.


## - Regenerative status output (Y32) signal

- When the motor gets in a regenerative braking (dynamic braking) state under Vector control, the Regenerative status output (Y32) signal turns ON. Once the signal turns ON, the signal is retained ON for at least 100 ms .
- The signal is OFF during an inverter stop or during pre-excitation.
- To use the Y32 signal, set "32 (positive logic) or 132 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- The Y32 signal is always OFF under V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.


## - Fault (ALM) signal and Fault output 2 (ALM2) signal

- The fault signal (ALM or ALM2 signal) is output when an inverter protective function is activated.
- The ALM2 signal stays ON during the resetting the inverter after the Fault occurs.
- To use the ALM2 signal, set "94 (positive logic) or 194 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.
- The ALM signal is initially assigned to the relay terminals A1, B1, and C1.



## NOTE

- For the details of the inverter faults, refer to page 745.


## - Input power shutoff like magnetic contactor (Y91 signal)

- The Fault output 3 (Y91) signal is output when a fault originating in the inverter circuit or a connection fault occurs.
- To use the Y91 signal, set "91 (positive logic) or 191 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.
－The following is the list of faults that output the Y91 signal．（For the details of faults，refer to page 745．）

Fault name
Inrush current limit circuit fault（E．IOH）
CPU fault（E．CPU）
CPU fault（E．6）
CPU fault（E．7）
Parameter storage device fault（E．PE）
Parameter storage device fault（E．PE2）
24 VDC power fault（E．P24）
Operation panel power supply short circuit／RS－485 terminals power supply short circuit   （E．CTE）
Output side earth（ground）fault overcurrent（E．GF）
Output phase loss（E．LF）
Brake transistor alarm detection（E．BE）
Internal circuit fault（E．13／E．PBT）

## - Changing the special relay function for the PLC function

－For the PLC function，the function of special relays（SM1225 to SM1234）can be changed by setting Pr． 313 to Pr．322．（For the details of the PLC function，refer to the FR－A800 PLC Function Programming Manual．）

## 《｜Parameters referred to 》》

Pr． 13 Starting frequency page 363，page 364
Pr． 76 Fault code output selection page 469

## 5．11．7 Output frequency detection

If the inverter output frequency which reaches a specific value is detected，the relative signal is output．

Pr．	Name	Initial value		Setting range	Description
		FM	CA		
41 M441	Up－to－frequency sensitivity	10\％		0 to 100\％	Set the level where the SU signal turns ON．
42   M442	Output frequency detection	6 Hz		0 to 590 Hz	Set the frequency at which the FU（or FB）signal turns ON．
43   M443	Output frequency detection for reverse rotation	9999		0 to 590 Hz	Set the frequency at which the FU（or FB）signal turns ON only while the motor rotates in reverse direction．
				9999	The frequency same as the Pr． 42 setting is set．
50   M444	Second output frequency detection	30 Hz		0 to 590 Hz	Set the frequency at which the FU2（or FB2）signal turns ON．
$\begin{aligned} & 116 \\ & \text { M445 } \end{aligned}$	Third output frequency detection	60 Hz	50 Hz	0 to 590 Hz	Set the frequency at which the FU3（or FB3）signal turns ON．
$\begin{array}{\|l\|} \hline 865 \\ \text { M446 } \end{array}$	Low speed detection	1.5 Hz		0 to 590 Hz	Set the frequency at which the LS signal turns ON．
$\begin{array}{\|l\|} \hline 870 \\ \text { M400 } \\ \hline \end{array}$	Speed detection hysteresis	0 Hz		0 to 5 Hz	Set the hysteresis width for the detected frequency．

## Setting the notification zone of the output frequency reaching the set point（SU signal，Pr．41）

－The Up to frequency（SU）signal is output when the output frequency reaches the set frequency．
－Set the value in the range of 1 to $100 \%$ in Pr． 41 to determine tolerance for the set frequency（considered as $100 \%$ point）．
－It may be useful to use this signal to start operating related equipment after checking that the set frequency has been reached．


## $\bullet$ Output frequency detection (FU, FU2, FU3 signals, FB, FB2, FB3 signals, Pr.42, Pr.43, Pr.50, Pr.116)

- The Output frequency detection (FU) signal and the Speed detection (FB) signal are output when the output frequency reaches or exceeds the Pr. 42 setting.
- The FU, FU2, and FU3 signals are useful for applying or releasing electromagnetic brake, etc.
- The FU, FU2, and FU3 signal is output when the output frequency (frequency command) reaches the set frequency. On the other hand, the FB, FB2, and FB3 signal is output when the detected actual speed (estimated speed under Real sensorless vector control, or feedback value under Vector control) of the motor reaches the set frequency. The FU signal and the FB signal are output at the same manner under V/F control or Advanced magnetic flux vector control or during the encoder feedback control operation.
- The frequency detection dedicated to motor rotation in reverse direction is enabled by setting the frequency in Pr.43. This setting is useful when the timing of the electromagnetic braking during forward rotation operation (for example, during lifting up in the lifts operation) is different from that during reverse rotation operation (lifting down).
- When Pr. $43 \neq$ " 9999 ", the Pr. 42 setting is for the forward rotation operation and the Pr. 43 setting is for the reverse rotation operation.
- When a different detection point of the frequency is required, Pr. 50 and Pr. 116 are available. The FU2 (or FB2) signal can be set to be output when the output frequency reaches the Pr. 50 setting or higher, and the FU3 (or FB3) signal can be set to be output when the output frequency reaches the Pr. 116 setting or higher.

- To use each signal, set the corresponding number selected from the following table in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.

Output signal	Pr. $\mathbf{1 9 0}$ to Pr.196 settings		Related   Parameter
	Positive logic	Negative logic	
FB	4	104	50
FU2	41	141	
FB2	5	105	116
FU3	42	142	
FB3	6	106	143

## Low speed detection (LS signal, Pr.865)

- When the output frequency drops to the setting of Pr. 865 Low speed detection or lower, the Low speed detection (LS) signal is output.
- In the speed control mode under Real sensorless vector control, Vector control, or PM sensorless vector control, the fault occurs, the indication "E.OLT" appears, and the inverter output power shuts off if the inverter condition that the output frequency drops to the Pr. 865 setting and the output torque exceeds the setting of Pr. 874 OLT level setting by torque limit operation continues for 3 seconds or longer.
－To use the LS signal，set＂34（positive logic）or 134 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function to the output terminal．



## －Speed detection hysteresis（Pr．870）

Setting the hysteresis width for the detected frequency prevents chattering of the Speed detection（FB）signal．When an output frequency fluctuates，the following signals may chatter（turns ON and OFF repeatedly）．
－Up to frequency（SU）signal
－Speed detection（FB，FB2，FB3）signals
－Low speed detection（LS）signal
Setting hysteresis to the detected frequency prevents chattering of these signals．


## NOTE

－In the initial setting，the FU signal is assigned to terminal FU，and the SU signal is assigned to terminal SU．
－All signals shown in the following table are OFF during the DC injection brake operation，during the pre－excitation（zero speed control or servo lock）operation，and during tuning at start－up．
－The reference frequency in comparison with the set frequency differs depending on the control method．

Control method or function	Reference frequency	
	FU，FU2，FU3	FB，FB2，FB3，SU，LS
V／F control	Output frequency	Output frequency
Advanced magnetic flux vector   control	Output frequency before the slip   compensation	Output frequency before the slip   compensation
Real sensorless vector control	Frequency command value	Estimated frequency（actual motor   speed）
Encoder feedback control	Frequency converted from actual   motor speed	Frequency converted from actual motor   speed
Vector control	Frequency command value	Frequency converted from actual motor   speed
PM sensorless vector control	Frequency command value	Estimated frequency（actual motor   speed）

－Setting a higher value in Pr． 870 causes a lower responsivity of the signals for frequency detection（SU，FB，FB2，FB3，and LS signals）．
－The logic（ON／OFF switching）of the LS signal is the reverse of that of the FB signal．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

### 5.11.8 Output current detection function

If the inverter output current which reaches a specific value is detected, the relative signal is output via an output terminal.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{l\|l\|} \hline 150 \\ \text { M460 } \end{array}$	Output current detection level	150\%	0 to 400\%	Set the level to detect the output current. Consider the value of the rated inverter current as 100\%.
$\begin{aligned} & 151 \\ & \text { M461 } \end{aligned}$	Output current detection signal delay time	0 s	0 to 10 s	Set the timing to detect the output current. Enter the delay time between the time when the output current reaches the set current or higher and the time when the Output current detection (Y12) signal is output.
$\begin{array}{\|l\|} \hline 152 \\ \text { M462 } \\ \hline \end{array}$	Zero current detection level	5\%	0 to 400\%	Set the level to detect the zero current. Consider the value of the inverter rated current as $100 \%$.
$\begin{array}{\|l\|} \hline 153 \\ \text { M463 } \\ \hline \end{array}$	Zero current detection time	0.5 s	0 to 10 s	Set the time from the time when the output current drops to the Pr. 152 setting or lower to the time when the Zero current detection (Y13) signal is output.
			0 to 10 s	Set the retention time period during which the Y12 signal is ON.
M433	signal retention time	0.1 s	9999	The Y 12 signal is retained ON. The signal turns OFF at the next start-up of the inverter.
$\begin{array}{\|l\|} \hline 167 \\ \text { M464 } \\ \hline \end{array}$	Output current detection operation selection	0	0, 1, 10, 11	Select the inverter operation at the time when the Y12 signal and the Y13 signal turn ON.

## - Output current detection (Y12 signal, Pr.150, Pr.151, Pr.166, Pr.167)

- The output current detection function is useful for overtorque detection.
- If the inverter output during inverter running remains higher than the Pr. 150 setting for the time set in Pr. 151 or longer, the Output current detection ( Y 12 ) signal is output from the inverter's open collector or the relay output terminal.
- When the Y12 signal turns ON, the ON state is retained for the time set in Pr. 166.
- When Pr. $166=$ " 9999 ", the ON state is retained until the next start-up of the inverter.
- Setting Pr. $167=$ " 1 " while the Y12 signal is ON does not cause the fault E.CDO. The Pr. 167 setting becomes valid after the Y12 signal is turned OFF.
- To use the Y12 signal, set "12 (positive logic) or 112 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- Use Pr. 167 to select the inverter operation at the time when Y12 signal turns ON, whether the inverter output stops or the inverter operation continues.

Pr. 167 setting	When the Y12 signal turns ON	When the Y13 signal turns ON
0 (initial value)	Operation continues.	Operation continues.
1	Operation stops by fault (E.CDO).	Operation continues.
10	Operation continues.	Operation stops by fault (E.CDO).
11	Operation stops by fault (E.CDO).	Operation stops by fault (E.CDO).



## - Zero current detection (Y13 signal, Pr.152, Pr.153)

- If the inverter output during inverter running remains higher than the Pr. 152 setting for the time set in Pr. 153 or longer, the Zero current detection (Y13) signal is output from the inverter's open collector or the relay output terminal.
- Once the Zero current detection (Y13) signal turns ON, the signal is retained ON for at least 0.1 seconds.
－If the inverter output current drops to zero，slippage due to gravity may occur，especially in a lift application，because the motor torque is not generated．To prevent this，the Y 13 signal can be output from the inverter to apply the mechanical brake at zero current output．
－To use the Y13 signal，set＂13（positive logic）or 113 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function to the output terminal．
－Use Pr． 167 to select the inverter operation at the time when Y13 signal turns ON，whether the inverter output stops or the inverter operation continues．

＊When the output is restored to the Pr． 152 level，the Y13 signal is turned OFF after 0.1 s ．


## NOTE

－This function is enabled during online or offline auto tuning．
－The response time of the $Y 12$ and $Y 13$ signals is approximately 0.1 seconds．However，the response time varies according to the load condition．
－When Pr． 152 ＝＂ 0 ＂，the zero current detection function is disabled．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## CAUTION

－The setting of the zero current detection level should not be too low，and the setting of the zero current detection time should not be too long．Doing so may cause the signal for the zero current detection not to be outputted when the output current is very low and the motor torque is not generated．
－A safety backup such as an emergency brake must be provided to prevent machines or equipment in hazardous conditions even if the Zero current detection is used．

《位Parameters referred to 》》
Online auto tuning page 527
Offline auto tuning page 509，page 519
Pr． 190 to Pr． 196 （Output terminal function selection）page 450

## 5．11．9 Output torque detection function

## Magneticflux Sensorless Vector PM

If the motor torque which reaches a specific value is detected，the relative signal is output．
The signal is useful for applying or releasing electromagnetic brake，etc．

Pr．	Name	Initial value	Setting range	Description
864   M470	Torque detection	$150 \%$	0 to $400 \%$	Set a value of the torque at which the TU   signal turns ON．

－The Torque detection（TU）signal turns ON when the motor output torque reaches the value of torque set in Pr． 864 or higher．The TU signal turns OFF when the motor output torque drops lower than the set value．
－Pr． 864 is not available under V／F control．

- To use the TU signal, set "35 (positive logic) or 135 (negative logic)" in one of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

《 Parameters referred to 》
Pr. 190 to Pr. 196 (Output terminal function selection) page 450

### 5.11.10 Remote output function

The signal can be turned ON or OFF via the output terminal on the inverter as if the terminal is the remote output terminal for a programmable controller.

Pr.	Name	Initial value	Setting range	Description	
$\begin{array}{\|l\|} \hline 495 \\ \text { M500 } \end{array}$	Remote output selection	0	0	Remote output data is cleared when the inverter power is turned OFF.	Remote output data is cleared during an inverter reset.
			1	Remote output data is retained even after the inverter power is turned OFF.	
			10	Remote output data is cleared when the inverter power is turned OFF.	Remote output data is retained during an inverter reset.
			11	Remote output data is retained even after the inverter power is turned OFF.	
$\begin{array}{\|l\|} \hline 496 \\ \text { M501 } \end{array}$	Remote output data 1	0	0 to 4095	Set a decimal number to enter a binary number in every bit corresponding to each of the output terminals on the inverter.	
$\begin{array}{\|l\|} \hline 497 \\ \text { M502 } \end{array}$	Remote output data 2	0	0 to 4095	Set a decimal number to enter a binary number in every bit corresponding to each of the output terminals on the option FRA8AY or FR-A8AR.	

## - Remote output setting (REM signal, Pr.496, Pr.497)

- The signal assigned to each of the output terminal can be turned ON or OFF according to the settings of Pr. 496 and Pr.497. The signal assigned to each of the remote output terminal can be turned ON or OFF through communication via the PU connector, via the RS-485 terminals, or via a communication option.
- To use the Remote output (REM) signal, set "96 (positive logic) or 196 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the terminal.
- Refer to the following figures to check correspondences between the bit and the actual terminal. When "1" is set in the bit corresponding to the terminal to which the REM signal assigned by setting a number in Pr. 496 and Pr. 497 each, the signal turns ON (or OFF in negative logic setting). Also, setting " 0 " allows the signal to turn OFF (or ON in negative logic setting).
- For example, when Pr. 190 RUN terminal function selection = "96" (positive logic) and "1" (H01) is set in Pr.496, the REM signal assigned to terminal RUN turns ON.
Pr. 496


$\stackrel{*}{*}$	$\stackrel{*}{*}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\omega}{*} \end{aligned}$	$\begin{aligned} & \text { 刃 } \\ & \sim \\ & \sim \\ & \cdots \end{aligned}$	$\underset{\sim}{\underset{\sim}{\nabla}}$	$\begin{aligned} & \text { б } \\ & \text { * } \end{aligned}$	$\begin{aligned} & \text { ふ } \\ & \text { * } \end{aligned}$	＋ $\stackrel{*}{*}$	$\begin{aligned} & \text { ふ } \\ & \text { * } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{*}{*} \end{aligned}$	$\longleftrightarrow$ $\stackrel{*}{*}$	उ $\stackrel{*}{*}$

＊1 Any value
＊2 Y0 to Y 6 are available when the output－extending option（FR－A8AY）is installed．
＊3 RA1 to RA3 are available when the relay output option（FR－A8AR）is installed．

## －Remote output data retention（REM signal，Pr．495）

－When the inverter power is reset（or a power failure occurs）while Pr． $495=$＂ 0 （initial value）or 10 ＂，the REM signal setting is cleared．（The ON／OFF state of the signal assigned to each terminal is determined by the settings in Pr． 190 to Pr．196．） The settings in Pr． 496 and Pr． 497 are reset to＂ 0 ＂．
－When Pr． $495=$＂ 1 or 11 ＂，the remote output data is stored in EEPROM before the inverter power is turned OFF．This means that the signal output setting after power restoration is the same as that before the power was turned OFF．However，when Pr． $495=$＂ 1 ＂，the data during an inverter reset（terminal reset or reset request via communication）is not saved．
－When Pr． $495=$＂10 or 11 ＂，the remote output data in the signal before the reset is stored even during an inverter reset．


Signal condition during a reset

＊When Pr． 495 ＝＂1＂，the signal condition saved in EEPROM （condition of the last power OFF）is applied．

## NOTE

－The output terminal to which the REM signal is not assigned by using Pr． 190 to Pr． 196 does not turn ON or OFF when＂ 1 or 0 ＂is set in bit corresponding to each of the terminals by using Pr． 496 and Pr．497．（ON／OFF command affects only the terminal to which the REM signal is assigned．）
－When Pr． $495=" 1$ or 11 ＂（remote output data retained at power OFF），take measures to keep the control circuit power ON， such as connecting terminal R1／L11 with terminal P／＋and connecting terminal S1／L21 with terminal N／－．If the control power is not retained，the output signal after the inverter power turns ON is not guaranteed to work．When the high power factor converter（FR－HC2）or the converter unit（FR－CC2）is connected to the inverter，assign the FR－HC2／FR－CC2 connection， instantaneous power failure detection（X11）signal to an input terminal and input the IPF signal from the FR－HC2／FR－CC2 to the inverter via the terminal to which the X 11 signal is assigned．

## 5．11．11 Analog remote output function

An analog value can be output via the analog output terminal on the inverter．

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 655 \\ & \text { M530 } \end{aligned}$	Analog remote output selection	0	0	Remote output data is cleared when the inverter power is turned OFF.	Remote output data is cleared during an inverter reset.
			1	Remote output data is retained even after the inverter power is turned OFF.	
			10	Remote output data is cleared when the inverter power is turned OFF.	Remote output data is retained during an inverter reset.
			11	Remote output data is retained even after the inverter power is turned OFF.	
$\begin{aligned} & 656 \\ & \text { M531 } \end{aligned}$	Analog remote output 1	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output via the terminal for which "87" is set in the terminal function selection parameter (Pr. 54 or Pr.158)	Set the analog value outputted via terminal FM or CA, via terminal AM, and via the analog output terminal on the option FR-A8AY.
$\begin{array}{\|l\|} \hline 657 \\ \text { M532 } \end{array}$	Analog remote output 2	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output via the terminal for which "88" is set in the terminal function selection parameter (Pr. 54 or Pr.158)	
$\begin{array}{\|l\|} \hline 658 \\ \text { M533 } \end{array}$	Analog remote output 3	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output via the terminal for which "89" is set in the terminal function selection parameter (Pr. 54 or Pr.158)	
$\begin{array}{\|l\|} \hline 659 \\ \text { M534 } \end{array}$	Analog remote output 4	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output via the terminal for which "90" is set in the terminal function selection parameter (Pr. 54 or Pr.158)	

## Analog remote output (Pr. 656 to Pr.659)

- The analog signal of the value set in Pr. 656 to Pr. 659 (Analog remote output) can be output via terminal FM or CA, terminal AM and the analog output terminal on the option FR-A8AY.
- When Pr. 54 FM/CA terminal function selection $=$ " 87,88 , 89 , or 90 " (Remote output value), the type FM inverter can output a pulse train via terminal FM.
- For FM output (when Pr. 291 Pulse train I/O selection = "0 (initial value) or 1"):

Terminal FM output [pulses/s] $=1440[\mathrm{~Hz}] \times($ Analog remote output value -1000$) / 100$
Where the output range is 0 to 2400 pulses/s.

- For high-speed pulse output (when Pr. 291 Pulse train I/O selection = "10, 11, 20, or 21"):

Terminal FM output [pulses/s] $=50 \mathrm{k}[\mathrm{Hz}] \times($ Analog remote output value - 1000)/100
Where the output range is 0 to 55 k pulses/s.


- When Pr. 54 FM/CA terminal function selection $=" 87,88,89$, or 90 (remote output), the type CA inverter can output any analog current via terminal CA.
- Terminal CA output [mA] $=20[\mathrm{~mA}] \times($ Analog remote output value -1000$) / 100$

Where the output range is 0 to 20 mA .


- When Pr. 158 AM terminal function selection $=" 87,88,89$, or 90 ", an analog voltage can be output via terminal AM.
- Terminal AM output [V] $=10[\mathrm{~V}] \times($ Analog remote output value -1000$) / 100$

The output range is -10 to +10 V regardless of the Pr. 290 Monitor negative output selection setting.


Terminal AM

## - Analog remote output data retention (Pr.655)

- When the power supply is reset (including a power failure) while Pr. 655 Analog remote output selection = "0" (initial value) or 10 " and, the remote analog output (Pr. 656 to Pr.659) returns to its initial value (1000\%).
- When Pr. $655=$ " 1 or 11 ", the remote output data is stored in EEPROM before the inverter power is turned OFF. This means that the signal output setting after power restoration is the same as that before the power was turned OFF. However, when Pr. $655=$ " 1 ", the data during an inverter reset (terminal reset or reset request via communication) is not saved.
- When Pr. $655=$ "10 or 11 ", the remote output data in the signal before the reset is stored even during an inverter reset.
- When the setting in Pr. 655 is changed, the remote analog output (Pr. 656 to Pr.659) returns to its initial value (1000\%).

* When Pr. $655=$ "1", the signal condition saved in EEPROM (condition of the last power OFF) is applied.


## NOTE

- When Pr. $655=$ "1 or 11 " (remote output data retained at power OFF), take measures to keep the control circuit power ON, such as connecting terminal R1/L11 with terminal P/+ and connecting terminal $\mathrm{S} 1 / \mathrm{L} 21$ with terminal $\mathrm{N} /$ - (while power is supplied via input terminals R/L1, S/L2 and T/L3). If the control power is not retained, the output signal after the inverter power turns ON is not guaranteed to work. When connecting the high power factor converter FR-HC2, assign the instantaneous power failure detection (X11) signal to an input terminal to input the IPF signal from the FR-HC2 to the terminal for X11 signal.


## 《| Parameters referred to $》$

Pr. 54 FM/CA terminal function selection
Pr. 158 AM terminal function selection
Pr. 290 Monitor negative output selection page 435
Pr. 291 Pulse train I/O selection page 435

### 5.11.12 Fault code output selection

When a fault occurs, the corresponding data can be output as a 4-bit digital signal using via an open collector output terminal. The fault code can be read using an input module of programmable controller, etc.

Pr．	Name	Initial value	Setting range	Description
76   M510	Fault code output selection	0	0	Without fault code output
			With fault code output	
		2	Fault code is output only when a fault occurs	

－Fault codes can be output to the output terminals by setting Pr． 76 Fault code output selection＝＂1 or 2＂．
－When the setting is＂2＂，a fault code is only output when a fault occurs．In normal operation the terminal outputs the signal assigned in Pr． 191 to Pr． 194 （output terminal function selection）．
－The fault codes that can be output are shown in the following table．（0：Output transistor OFF，1：Output transistor ON）

Operation panel indication （FR－DU08）	Output terminal operation				Fault code
	SU	IPF	OL	FU	
Normal ${ }^{* 1}$	0	0	0	0	0
E．OC1	0	0	0	1	1
E．OC2	0	0	1	0	2
E．OC3	0	0	1	1	3
E．OV1 to E．OV3	0	1	0	0	4
E．THM	0	1	0	1	5
E．THT	0	1	1	0	6
E．IPF	0	1	1	1	7
E．UVT	1	0	0	0	8
E．FIN	1	0	0	1	9
E．BE	1	0	1	0	A
E．GF	1	0	1	1	B
E．OHT	1	1	0	0	C
E．OLT	1	1	0	1	D
E．OPT   E．OP1 to E．OP3	1	1	1	0	E
Terminals other than the above	1	1	1	1	F

＊1 When Pr． 76 ＝＂2＂，the terminal outputs the signal assigned by Pr． 191 to Pr． 194.

## NOTE

－If an error occurs while Pr． $76 \neq " 0$＂，the output terminals SU，IPF，OL，and FU output the signals in the table above regardless of the settings in Pr． 191 to Pr． 194 （Output terminal function selection）．Take caution when controlling the inverter with the output signals set by Pr． 191 to Pr． 194.

## 5．11．13 Pulse train output to announce cumulative output energy

Every time when the output energy cumulated from the time at power ON or at an inverter reset or when the setting of Pr． 799 Pulse increment setting for output power has been changed increments by the set value，the Pulse train output of output power（Y79）signal is output in pulses．

Pr．	Name	Initial value	Setting range	Description
799   M520	Pulse increment setting for   output power	1 kWh	$0.1 \mathrm{kWh}, 1 \mathrm{kWh}, 10$   $\mathrm{kWh}, 100 \mathrm{kWh}, 1000$   kWh	The Pulse train output of output power（Y79）signal is   output in pulses every time when the output energy   increments by the set amount of energy（kWh）．

## －Pulse increment setting for output power（Y79 signal，Pr．799）

－Every time when the output energy cumulated from the time at power ON or at an inverter reset increments by the set value of Pr． 799 Pulse increment setting for output power，the Pulse train output of output power（Y79）signal is output in pulses．
－The inverter does not stop cumulating（can continue to cumulate）the output energy even if the retry function or the automatic restart after instantaneous power failure function works because the cause of the function activation is a mini power failure which is too short to cause an inverter reset．
－If a power failure occurs，the cumulative value is reset to 0 kWh and restart cumulating．
－To use the Y79 signal，set＂79（positive logic）or 179 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function to the output terminal．


## NOTE

－Because the accumulated data in the inverter is cleared when control power is lost by power failure or at an inverter reset，the value on the monitor cannot be used to charge electricity bill．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．（Refer to page 450．）
－Do not assign the signal to terminal $A B C 1$ or terminal $A B C 2$ whose pulse outputs are frequently turned ON／OFF．Otherwise， the life of the relay contact may be shortened．

《＜Parameters referred to 》》
Pr． 190 to Pr． 196 （Output terminal function selection）page 450

## 5．11．14 Detection of control circuit temperature

The temperature of the control circuit board can be monitored，and a signal can be output according to a predetermined temperature setting．

Pr．	Name	Initial value	Setting range	Description
663   M060	Control circuit   temperature signal output   level	$0^{\circ} \mathrm{C}$	0 to $100^{\circ} \mathrm{C}$	Set the temperature where the Y207 signal turns   ON．

## －Control circuit temperature monitoring

－The temperature of the control circuit board can be monitored within the range of 0 to $100^{\circ} \mathrm{C}$ on the operation panel，or via terminal FM／CA，or terminal AM．Refer to page 424 for information on how to select the monitor item．
－When Pr． 290 Monitor negative output selection is set to enable display of the negative numbers for monitoring on the operation panel or via terminal AM，the range of monitoring is -20 to $100^{\circ} \mathrm{C}$ ．
－The monitor value is a rough approximation of the change in the surrounding air temperature of the inverter．Use this parameter to grasp the operating environment of the inverter．

## －Control circuit temperature detection（Pr．663，Y207 signal）

－The Y207 signal can be output when the control circuit temperature reaches the Pr． 663 setting or higher．
－To use the Y207 signal，set＂207（positive logic）or 307 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function to the output terminal．

## NOTE

－The Y207 signal is turned OFF when the control circuit temperature becomes $5^{\circ} \mathrm{C}$ or more lower than the Pr． 663 setting．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

### 5.11.15 Encoder pulse dividing output

The encoder pulse signal at the motor end can be divided in division ratio set in the parameter and be output. Use this parameter to make the response of the machine to be input slower, etc. The FR-A8AL or the FR-A8TP is required to be installed.

Pr.	Name	Initial value	Setting range	Description
$413$   M601 ${ }^{* 1}$	Encoder pulse division ratio	1	1 to 32767	Set a numerical value by which pulses are divided.
863   M600 ${ }^{*}{ }^{2}$	Control terminal optionEncoder pulse division ratio			

*1 This parameter is available when the FR-A8AL (option) is installed.
*2 This parameter is available when the FR-A8TP (option) is installed.

- Division waveform by division ratio

Both ON-OFF width is division times ( $50 \%$ duty).

- Pulse waveform example at 1000 pulse input when Pr. 413 or Pr. $863=$ "2"



## NOTE

- Control of motor rotation (forward or reverse) by phase difference between A phase and B phase is as follows.

When A phase is $90^{\circ}$ advanced as compared to $B$ phase: Forward rotation
When A phase is $90^{\circ}$ behind as compared to B phase: Reverse rotation

### 5.12 <br> (T) Multi-function input terminal parameters

Purpose	Parameter to set			Refer to page
To inverse the rotation direction with the voltage/current analog input selection (terminals 1, 2, and 4)	Analog input selection	P.T000, P.T001	Pr.73, Pr. 267	473
To assign functions to analog input terminals	Terminal 1 and terminal 4 function assignment	P.T010, P.T040	Pr.858, Pr. 868	477
To adjust the main speed by the analog auxiliary input	Analog auxiliary input and compensation (addition compensation and override functions)	$\begin{aligned} & \text { P.T021, P.T031, } \\ & \text { P.T050, P.T051 } \end{aligned}$	$\begin{aligned} & \text { Pr.73, Pr.242, Pr.243, } \\ & \text { Pr.252, Pr. } 253 \end{aligned}$	478
To eliminate noise on analog inputs	Analog input filter	P.T002 to P.T007	$\begin{aligned} & \text { Pr.74, Pr.822, Pr.826, } \\ & \text { Pr.832, Pr.836, } \\ & \text { Pr. } 849 \end{aligned}$	480
To adjust analog input frequency/voltage (current) (calibration)	Frequency setting voltage (current) bias and gain	P.T100 to P.T103,   P.T200 to P.T203,   P.T400 to P.T403,   P.M043	Pr.125, Pr.126,   Pr.241, C2 to C7   (Pr. 902 to Pr.905),   C12 to C15 (Pr. 917 to Pr.918)	482
To adjust analog input torque/voltage (current) (calibration)	Torque setting voltage (current) bias and gain	P.T110 to P.T113,   P.T410 to P.T413,   P.M043	Pr.241, C16 to C19 (Pr. 919 to Pr.920), C38 to C41 (Pr. 932 to Pr.933)	487
To continue operating at analog current input loss	4 mA input check	P.T052 to P.T054	$\begin{aligned} & \text { Pr. } 573, \text { Pr. } 777 \text {, } \\ & \text { Pr. } 778 \end{aligned}$	492
To assign functions to input terminals	Input terminal function selection	$\begin{aligned} & \text { P.T700 to P.T711, } \\ & \text { P.T740 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 178 \text { to Pr. 189, } \\ & \text { Pr. } 699 \end{aligned}$	496
	Output stop (MRS) signal input selection	P.T720	Pr. 17	499
To change the input specification (NO/NC contact) of input signals	Inverter run enable (X10) signal input selection	P.T721	Pr. 599	691
	Power failure stop external (X48) signal input selection	P.T722	Pr. 606	610
To enable the second (third) function only during the constant speed	RT signal function validity condition selection	P.T730	Pr. 155	500
To assign start and forward/reverse commands to different signals	Start signal (STF/STR) operation selection	P.G106	Pr. 250	502

### 5.12.1 Analog input selection

The functions to switch the analog input terminal specifications, override function, forward/reverse rotation by the input signal polarity are selectable.

Pr.	Name	Initial value	Setting range		Description
$\begin{aligned} & 73 \\ & \text { T000 } \end{aligned}$	Analog input selection	1	$\begin{array}{\|l} 0 \text { to } 5,10 \\ \text { to } 15 \\ \hline \end{array}$	Switch 1 - OFF (initial status)	The terminal 2 input specification ( 0 to $5 \mathrm{~V}, 0$ to 10 $\mathrm{V}, 0$ to 20 mA ) and terminal 1 input specification ( 0 to $\pm 5 \mathrm{~V}, 0$ to $\pm 10 \mathrm{~V}$ ) are selectable. Also the override and reversible operation settings are selectable.
			$\begin{aligned} & 6 \text { to } 7,16, \\ & 17 \end{aligned}$	Switch 1 - ON	
$\begin{aligned} & 267 \\ & \text { T001 } \end{aligned}$	Terminal 4 input selection	0	0	Switch 2 - ON (initial status)	Terminal 4 input, 4 to 20 mA
			1	Switch 2 - OFF	Terminal 4 input, 0 to 5 V
			2		Terminal 4 input, 0 to 10 V

## - Analog input specification selection

- For terminals 2 and 4 used for analog input, the voltage input ( 0 to $5 \mathrm{~V}, 0$ to 10 V ) and current input ( 0 to 20 mA ) are selectable. To change the input specification, change the setting of Pr. 73 (Pr.267) and the voltage/current input selection switch (switch 1 or switch 2 ).


Switch state		Input specification	Input terminal	Rated specification
Switch 1	ON	Current input	Terminal 2	For voltage input, the input resistance is $10 \pm 1 \mathrm{k} \Omega$ and the maximum permissible voltage is 20 VDC .   For current input, the input resistance is $245 \pm 5 \Omega$ and the maximum permissible current is 30 mA .
	OFF	Voltage input (initial status)		
Switch 2	ON	Current input (initial status)	Terminal 4	
	OFF	Voltage input		

- Change the setting of the voltage/current input selection switch to change the rated specification of terminal 2 or 4.
- Set Pr. 73 (Pr.267) and the voltage/current input selection switch according to the analog signal input. The incorrect settings shown in the following table cause a failure. The inverter does not operate properly with other incorrect settings.

Setting causing a failure		Operation
Switch setting	Terminal input	
ON (Current input)	Voltage input	Causes an analog signal output circuit failure in an external device (due to increased loads on the   signal output circuit of the external device).
OFF (Voltage input)	Current input	Causes an input circuit failure in the inverter (due to an increased output power in the analog signal   output circuit of an external device).

## NOTE

- Check the number of the voltage/current input selection switch before setting, because it is different from the switch number indicated on the FR-A700 series inverter.

Set Pr. 73 and the voltage/current input selection switch according to the following table.

Pr. 73 setting	Terminal 2 input	Switch 1	Terminal 1 input	Compensation input terminal compensation method	Reversible polarity
0	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$	Terminal 1 addition compensation	Not applied (state in which a negative polarity frequency command signal is not accepted)
1 (initial value)	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$		
2	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
3	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
4	0 to 10 V	OFF	0 to $\pm 10 \mathrm{~V}^{* 1}$	Terminal 2 override	
5	0 to 5 V	OFF	0 to $\pm 5 \mathrm{~V}^{* 1}$		
6	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 10 \mathrm{~V}$	Terminal 1 addition compensation	
7	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 5 \mathrm{~V}$		
10	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$		Applied
11	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$		
12	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
13	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
14	0 to 10 V	OFF	0 to $\pm 10 \mathrm{~V}^{* 1}$	Terminal 2 override	
15	0 to 5 V	OFF	0 to $\pm 5 \mathrm{~V}^{* 1}$		
16	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 10 \mathrm{~V}$	Terminal 1 addition compensation	
17	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 5 \mathrm{~V}$		

- When the Terminal 4 input selection (AU) signal is turned ON , terminal 4 is used to set the main speed. In this case, terminals 1 and 2 are not used to set the main speed.
- Set Pr. 267 and the voltage/current input selection switch according to the following table.

Pr.267 setting	Terminal 4 input	Switch 2
0 (initial value)	4 to 20 mA	ON
1	0 to 5 V	OFF
2	0 to 10 V	OFF

## NOTE

- To enable terminal 4, turn ON the AU signal.
- Set the parameters and the switch settings so that they agree. Incorrect setting may cause a fault, failure, or malfunction.
- The frequency setting auxiliary input through terminal 1 is added to the main speed setting signal input through terminal 2 or 4 .
- When the override setting is selected, terminal 1 or 4 is set to the main speed setting, and terminal 2 is set to the override signal ( 0 to 5 V or 0 to 10 V , and $50 \%$ to $150 \%$ ). (If the main speed signal is not input through terminal 1 or 4 , the compensation by terminal 2 is disabled.)
- Use Pr. 125 (Pr.126) (frequency setting gain) to change the maximum output frequency at the input of the maximum output frequency command voltage (current). At this time, the command voltage (current) need not be input. Also, the acceleration/ deceleration time, which is a slope up/down to the acceleration/deceleration reference frequency, is not affected by the change in Pr. 73 setting.
- When "4" is set in Pr. 858 Terminal 4 function assignment (Pr. 868 Terminal 1 function assignment), the stall prevention operation level is input through terminal 1 (4). To input frequency through terminal 1 (4), set "0 (initial value)" in Pr. 858 (Pr. 868 ).
- Always calibrate the input after changing the voltage/current input signal with Pr. 73 (Pr.267) and the voltage/current input selection switch.
- When Pr. 561 PTC thermistor protection level $\neq$ " 9999 ", terminal 2 is not used for the analog frequency command.


## - Running with analog input voltage

- For the frequency setting signal, input 0 to $5 \mathrm{VDC}($ or 0 to 10 VDC ) between terminals 2 and 5 . The $5 \mathrm{~V}(10 \mathrm{~V})$ input is the maximum output frequency.
- The power supply $5 \mathrm{~V}(10 \mathrm{~V})$ can be input by either using the internal power supply or preparing an external power supply. The internal power supply is 5 VDC output between terminals 10 and 5 , and 10 VDC output between terminals 10E and 5 .

Terminal	Inverter internal power source   voltage	Frequency setting resolution	Pr.73 (terminal 2 input voltage)
10	5 VDC	$0.030 / 60 \mathrm{~Hz}$	0 to 5 VDC input
10 E	10 VDC	$0.015 / 60 \mathrm{~Hz}$	0 to 10 VDC input

- To supply the 10 VDC input to terminal 2 , set " $0,2,4,10,12$, or 14 " in Pr.73. (The initial value is 0 to 5 V .)
-Set "1 (0 to 5 VDC$)$ " or "2 ( 0 to 10 VDC )" in Pr. 267 and turn OFF the voltage/current input selection switch to input voltage through terminal 4. Turning ON the AU signal activates the terminal 4 input.


Connection diagram using terminal 2 ( 0 to 5 VDC)


Connection diagram
using terminal 2 ( 0 to 10 VDC)


Connection diagram using terminal 4 ( 0 to 5 VDC)

## NOTE

- The wiring length of terminal 10,2 , and 5 should be 30 m at maximum.


## $\bullet$ Running with analog input current

- For constant pressure or temperature control with fans, pumps, or other devices, automatic operation is available by setting the regulator output signal 4 to 20 mADC to between terminals 4 and 5 .
- To use terminal 4, the AU signal needs to be turned ON.


Connection diagram using terminal 4 (4 to 20mADC)

- Set "6, 7, 16, or 17" in Pr. 73 and turn ON the voltage/current input selection switch to input current through terminal 2. In this case, the AU signal does not need to be turned ON.


Connection diagram using terminal 2 (4 to 20mADC)

## $\rightarrow$ Performing forward/reverse rotation with the analog input (polarity reversible operation)

- Setting "10 to 17" in Pr. 73 enables the polarity reversible operation.
－Set a positive or negative input（ 0 to $\pm 5 \mathrm{~V}$ or 0 to $\pm 10 \mathrm{~V}$ ）to terminal 1 to allow the operation of forward／reverse rotation according to the polarity of the input value．


Compensation input characteristics when STF is ON

## 《। Parameters referred to 》》

Pr． 22 Stall prevention operation level 5 page 409
Pr． 125 Terminal 2 frequency setting gain frequency，Pr． 126 Terminal 4 frequency setting gain frequency page 482
Pr．252，Pr． 253 Override bias／gain
Pr． 561 PTC thermistor protection level $\begin{aligned} & \text { ङ } \\ & \text { page } \\ & 394\end{aligned}$
Pr． 858 Terminal 4 function assignment，Pr． 868 Terminal 1 function assignment page 477

## 5．12．2 Analog input terminal（terminal 1，4）function assignment

The analog input terminal 1 and terminal 4 functions are set and changeable with parameters．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{8 6 8}$   T010	Terminal 1 function   assignment	0	0 to 6，9999	Select the terminal 1 function．
$\mathbf{8 5 8}$   T040	Terminal 4 function   assignment	0	$0,1,4,9999$	Select the terminal 4 function．

－For terminals 1 and 4 used for analog input，the frequency（speed）command，magnetic flux command，torque command， and other similar commands are usable．The functions available are different depending on the control method and control mode as shown in the following table．（For the details of the control methods，refer to page 215．）
－Functions of terminal 1 under different controls

$\begin{aligned} & \text { Pr. } 868 \\ & \text { setting } \end{aligned}$	V／F control   Advanced magnetic flux vector control	Real sensorless vector control，Vector control，PM sensorless vector control		
		Speed control	Torque control	Position control
0   （initial value）	Auxiliary frequency setting	Auxiliary speed setting	Auxiliary speed limit	－
1	－	Magnetic flux command＊1	Magnetic flux command＊1	Magnetic flux command＊1
2	－	Regenerative driving torque limit $(\operatorname{Pr} .810=1)$	－	Regenerative driving torque limit $(\operatorname{Pr} .810=1)$
3	－	－	Torque command（Pr． 804 ＝0）	－
4	Stall prevention operation level input	Torque limit（Pr． $810=1$ ）	Torque command（Pr． 804 ＝0）	Torque limit（Pr．810＝1）
5	－	－	Forward／reverse rotation speed limit $\text { (Pr. } 807 \text { = 2) }$	－
6	－	Torque bias input （Pr． $840=1,2,3$ ）	－	－
9999	－	－	－	－

- Functions of terminal 4 under different controls

Pr. 858 setting	V/F control   Advanced magnetic flux vector control	Real sensorless vector control, Vector control, PM sensorless vector control		
		Speed control	Torque control	Position control
0 (initial value)	Frequency command (AU signal-ON)	Speed command (AU signalON)	Speed limit (AU signal-ON)	-
1	-	Magnetic flux command *1*2	Magnetic flux command *1*2	Magnetic flux command *1*2
4	Stall prevention operation level input	Torque limit (Pr.810 = 1 $)^{*}$ (	-	Torque limit (Pr.810 = 1 ${ }^{*}{ }^{*}$
9999	-	-	-	-

-: No function
*1 This function is valid under Vector control.
*2 Invalid when Pr. $868=$ "1".
*3 Invalid when Pr. 868 = "4".

## NOTE

- When Pr. $868=$ " 1 " (magnetic flux command) or "4" (stall prevention / torque limit), the terminal 4 function is enabled regardless of the ON/OFF state of the AU signal.
$\langle$ Parameters referred to $\rangle \gg$
Advanced magnetic flux vector control page 222
Real sensorless vector control page 215
Pr. 804 Torque command source selection page 270
Pr. 807 Speed limit selection page 274
Pr. 810 Torque limit input method selection $\leftrightarrows$ page 235
Pr. 840 Torque bias selection page 255


### 5.12.3 Analog input compensation

The analog input for multi-speed operation or speed setting (main speed) through terminal 2 or 4 can be compensated by adding an input, or terminal 2 can be used for an auxiliary input to compensate the analog input at a fixed ratio using the override function.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 73 \\ & \text { T000 } \end{aligned}$	Analog input selection	1	0 to 3, 6, 7, 10 to 13, 16, 17	Compensation by addition
			4, 5, 14, 15	Compensation using the override function
$\begin{aligned} & 242 \\ & \text { T021 } \end{aligned}$	Terminal 1 added compensation amount (terminal 2)	100\%	0 to 100\%	Set the percentage of addition when terminal 2 is used to set the main speed.
$\begin{aligned} & 243 \\ & \text { T041 } \end{aligned}$	Terminal 1 added compensation amount (terminal 4)	75\%	0 to 100\%	Set the percentage of addition when terminal 4 is used to set the main speed.
$\begin{aligned} & 252 \\ & \text { T050 } \end{aligned}$	Override bias	50\%	0 to 200\%	Set bias compensation for the override function.
$\begin{array}{\|l\|} \hline 253 \\ \text { T051 } \end{array}$	Override gain	150\%	0 to 200\%	Set gain compensation for the override function.

## Compensation by addition (Pr.242, Pr.243)



Example of addition compensation connection

- A compensation signal can be added to the main speed setting for such as synchronous or continuous speed control operation.
- Set " 0 to 3, 6, 7, 10 to 13,16 , or 17 " in Pr. 73 to add the voltage determined by the terminal 1 input when the main speed setting is input through terminal 2.
- When a negative voltage obtained from the addition, it is regarded as 0 and the operation is stopped when $\operatorname{Pr} .73=$ " 0 to 3,6 , or 7 ", and the operation is reversed (polarity reversible operation) after the STF signal is turned ON when Pr. $73=$ " 10 to 13,16 , or 17 ".
- The terminal 1 compensation input can be added to the multi-speed setting or terminal 4 (initial value: 4 to 20 mA ).
- The degree of addition to terminal 2 is adjustable with Pr. 242 and the degree of addition to terminal 4 is adjustable with Pr. 243.
Analog command value with use of terminal $2=$ terminal 2 input + terminal 1 input $\times \frac{\text { Pr. } 242}{100(\%)}$

Analog command value with use of terminal $4=$ terminal 4 input + terminal 1 input $\times \frac{\text { Pr. } 243}{100(\%)}$


Auxiliary input characteristics
NOTE

- After changing the Pr. 73 setting, check the setting of the voltage/current input selection switch. Incorrect setting may cause a fault, failure, or malfunction. (Refer to page 473 for the setting.)


## - Override function (Pr.252, Pr.253)



## Connection example for the override function

- Use the override function to make the main speed changed at a specified rate.
- Set "4, 5, 14, or 15 " in Pr. 73 to select the override function.
- When the override function is selected, terminal 1 or 4 is used for the main speed setting, and terminal 2 is used for the override signal. (If the main speed signal is not input through terminal 1 or 4 , the compensation by terminal 2 is disabled.)
- Specify the scope of override by using Pr. 252 and Pr. 253.
- How to calculate the set frequency when the override function is used:

Set frequency $(\mathrm{Hz})=$ Main speed setting frequency $(\mathrm{Hz}) \times \frac{\text { Compensation (\%) }}{100(\%)}$
Main speed setting frequency (Hz): Terminals 1 or 4 input, multi-speed setting
Compensation (\%): Terminal 2 input

- Example) When Pr. 73 = " 5 "
 By the terminal 1 (main speed) and terminal 2 (auxiliary) input, the setting frequency is set as shown in the figure below.



## NOTE

- To use terminal 4, the AU signal needs to be turned ON.
- To make compensation input for multi-speed operation or remote setting, set Pr. 28 Multi-speed input compensation selection = "1" (with compensation) (initial value "0").
- After changing the Pr. 73 setting, check the setting of the voltage/current input selection switch. Incorrect setting may cause a fault, failure, or malfunction. (Refer to page 473 for the setting.)


## Parameters referred to $\gg$

Pr. 28 Multi-speed input compensation selection $\lessgtr$ page 391
Pr. 73 Analog input selection $\vDash$ page 473

### 5.12.4 Response level of analog input and noise elimination

The response level and stability of frequency command/torque command using the analog input signal (terminal 1,2, or 4 ) can be adjusted.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 74 \\ & \text { T002 } \end{aligned}$	Input filter time constant	1	0 to 8	Set the primary delay filter time constant to the analog input command. If the setting is too large, response becomes slow.
$\begin{aligned} & 822 \\ & \text { T003 } \end{aligned}$	Speed setting filter 1	9999	0 to 5 s	Set the primary delay filter time constant to the external speed command (analog input command).
			9999	As set in Pr. 74.
$\begin{aligned} & 826 \\ & \text { T004 } \end{aligned}$	Torque setting filter 1	9999	0 to 5 s	Set the primary delay filter time constant to the external torque command (analog input command).
			9999	As set in Pr. 74.
$\begin{array}{\|l} 832 \\ \text { T005 } \end{array}$	Speed setting filter 2	9999	0 to $5 \mathrm{~s}, 9999$	Second function of Pr. 822 (enabled when the RT signal is ON)
$\begin{array}{\|l} \hline 836 \\ \text { T006 } \end{array}$	Torque setting filter 2	9999	0 to $5 \mathrm{~s}, 9999$	Second function of Pr. 826 (enabled when the RT signal is ON)
$\begin{aligned} & 849 \\ & \text { T007 } \end{aligned}$	Analog input offset adjustment	100\%	0 to 200\%	Set offset for the analog speed input (terminal 2). The motor is prevented from rotating due to noise in the analog input or other factors when a zero speed command is given.



## - Analog input time constant (Pr.74)

- Use this parameter to eliminate noise on the frequency setting circuit.
- Increase the filter time constant if the operation is unstable due to noise or other factors.

If the setting is too large, response becomes slow. (The time constant can be between 0 and 8 , which are about 5 ms to 1 s.)

## - Analog speed command input time constant (Pr.822, Pr.832)

- Use Pr. 822 Speed setting filter 1 to set the primary delay filter time constant to the external speed command (analog input command). Increase the setting of the time constant to allow delays in follow-up of the speed command or when the analog input voltage is unstable.
- Use Pr. 832 Speed setting filter 2 to change the time constant to use one inverter to switch operation between two or more motors.
- Pr. 832 Speed setting filter 2 is enabled when the RT signal is ON.


## - Analog torque command input time constant (Pr.826, Pr.836)

- Use Pr. 826 Torque setting filter 1 to set the primary delay filter time constant to the external torque command (analog input command). Increase the setting of the time constant to allow delays in follow-up of the torque command or when the analog input voltage is unstable.
- Use Pr. 836 Torque setting filter 2 to change the time constant to use one inverter to switch operation between two or more motors.
- Pr. 836 Torque setting filter 2 is enabled when the RT signal is ON.


## Analog speed command input offset adjustment (Pr.849)

- Use this parameter to set a range in which the motor is stopped for prevention of incorrect motor operation in a very low speed rotation when the speed command is an analog input.
- The voltage range is offset according to the setting in Pr. 849 Analog input offset adjustment, assuming that $100 \%$ corresponds to zero.
100\% < Pr. 849 ...... Positive side
100\% > Pr. 849 ...... Negative side
The detailed calculation of the offset voltage is as described below:
Offset voltage [V] = Voltage at the time of $100 \%\left(5 \mathrm{~V}\right.$ or $\left.10 \mathrm{~V}^{* 1}\right) \times(\operatorname{Pr} .849-100) / 100$



## NOTE

- The analog input filter is invalid (no filter) during PID control operation.


### 5.12.5 Frequency setting voltage (current) bias and gain

The magnitude (slope) of the output frequency can be set as desired in relation to the frequency setting signal ( 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 20 mA ).
Use Pr. 73 Analog input selection (Pr. 267 Terminal 4 input selection) and the voltage/current input selection switch to switch among input of 0 to $5 \mathrm{VDC}, 0$ to 10 V , and 4 to 20 mA . (Refer to page 473.)

Pr.	Name	Initial value		Setting   range	Description

*1 The parameter number in parentheses is the one for use with the LCD operation panel and the parameter unit.

## - Relationship between the analog input terminal function and the calibration parameter

- Calibration parameter according to the terminal 1 function

| Pr. 868 <br> setting | Terminal function | Calibration parameter |
| :--- | :--- | :--- | :--- | :--- |

- Calibration parameter according to the terminal 4 function

$\begin{aligned} & \text { Pr. } 858 \\ & \text { setting } \end{aligned}$	Terminal function	Calibration parameter	
		Bias setting	Gain setting
0   (initial   value)	Frequency command	C5 (Pr.904) Terminal 4 frequency setting bias frequency C6 (Pr.904) Terminal 4 frequency setting bias	Pr. 126 Terminal 4 frequency setting gain frequency   C7 (Pr.905) Terminal 4 frequency setting gain
1	Magnetic flux command	C38 (Pr.932) Terminal 4 bias command (torque)   C39 (Pr.932) Terminal 4 bias (torque)	C40 (Pr.933) Terminal 4 gain command (torque)   C41 (Pr.933) Terminal 4 gain (torque)
4	Stall prevention operation level *1/ torque limit	C38 (Pr.932) Terminal 4 bias command (torque)   C39 (Pr.932) Terminal 4 bias (torque)	C40 (Pr.933) Terminal 4 gain command (torque)   C41 (Pr.933) Terminal 4 gain (torque)
9999	No function	-	-

*1 Use Pr. 148 Stall prevention level at 0 V input or Pr. 149 Stall prevention level at 10 V input to adjust bias or gain for setting the stall prevention operation level.

## To change the frequency for the maximum analog input (Pr.125, Pr.126)

- Use Pr. 125 (Pr.126) to change the frequency setting (gain) for the maximum analog input voltage (current). (C2 (Pr.902) to C7 (Pr.905) settings do not need to be changed.)


## Analog input bias/gain calibration (C2 (Pr.902) to C7 (Pr.905), C12 (Pr.917) to C15 (Pr.918))

- The "bias" and "gain" functions serve to adjust the relationship between a setting input signal and the output frequency. A setting input signal is such as a 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 20 mADC signal externally input to set the output frequency.
- Set the bias frequency of the terminal 2 input using $\mathbf{C 2}$ (Pr.902). (It is initially set to the frequency at 0 V .)
- Use Pr. 125 to set the output frequency to the frequency command voltage (current) set by Pr. 73 Analog input selection.
- Set the bias frequency of the terminal 1 input using C12 (Pr.917). (It is initially set to the frequency at 0 V .)
- Set the gain frequency of the terminal 1 input using C14 (Pr.918). (It is initially set to the frequency at 10 V .)
- Set the bias frequency of the terminal 4 input using C5 (Pr.904). (It is initially set to the frequency at 4 mA .)
- Use Pr. 126 to set the output frequency to the 20 mA input of the frequency command current ( 4 to 20 mA ).

- There are three methods to adjust the bias/gain frequency setting voltage (current).

Adjustment by applying voltage (current) between terminals 2 and 5 (4 and 5) to set the voltage (current) at the bias/gain torque. ๒ page 484
Adjustment by selecting the voltage (current) at the bias/gain torque without applying voltage (current) between terminals 2 and 5 ( 4 and 5 ).
Adjustment by changing the frequency without adjusting the voltage (current). 5 page 486

## NOTE

- When the slope of the frequency is changed after calibration of terminal 2 , the slope of the frequency is also changed for terminal 1.
- When voltage is applied to terminal 1 while calibration of terminal 2 or terminal 4 is in progress, the terminal 1 input value is added to the terminal 2 (4) input value.
- Always calibrate the input after changing the voltage/current input signal with Pr. 73 (Pr.267) and the voltage/current input selection switch.


## $\bullet$ Display unit changing for analog input (Pr.241)

- The analog input display unit (\%/V/mA) can be changed for analog input bias/gain calibration.
- Depending on the terminal input specification setting of Pr. 73 (Pr.267) and the voltage/current input switch, the unit of the displayed value of C3 (Pr.902), C4 (Pr.903), C6 (Pr.904) and C7 (Pr.905) changes as shown below:

Analog command (via terminals 2 or 4)   (depending on the settings of Pr.73   (Pr.267) and the voltage/current input   selection switch)	Pr.241 = 0 (initial value)	
0 to 5 V input	0 to $100 \%(0.1 \%)$	0 to $5 \mathrm{~V}(0.01 \mathrm{~V})$
0 to 10 V input	0 to $100 \%(0.1 \%)$	0 to $10 \mathrm{~V} \mathrm{(0.01} \mathrm{V)}$
0 to 20 mA input	0 to $100 \%(0.1 \%)$	0 to $20 \mathrm{~mA} \mathrm{(0.01} \mathrm{mA)}$

## NOTE

- When voltage is applied to terminal 1 while the terminal 1 input specification ( 0 to $\pm 5 \mathrm{~V}, 0$ to $\pm 10 \mathrm{~V}$ ) does not agree with the main speed (terminal 2 or terminal 4 input) specification ( 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 20 mA ), the analog input is not correctly displayed. (For example, when 0 V is applied to terminal 2 and 10 V is applied to terminal 1 in the initial status, the value is indicated as 5 V (100\%).)
Set "0 (initial value)" in Pr. 241 to use the \% display.


## - Frequency setting voltage (current) bias/gain adjustment method

## ■ Adjustment by applying voltage (current) between terminals 2 and 5 (4 and 5) to set the voltage

 (current) at the bias/gain frequency (Example of adjustment at the gain frequency)
## Operating procedure

1. Turning $O N$ the power of the inverter The operation panel is in the monitor mode.
2. Changing the operation mode

Press PU
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
4. Calibration parameter selection

5. Selecting the parameter

Turn (3) until "L- H" (C4 (Pr.903) Terminal 2 frequency setting gain) appears for terminal 2, or "IL- T" (C7 (Pr.905) Terminal 4 frequency setting gain) for terminal 4.
6. Analog voltage (current) display

Press SET to display the analog voltage (current) value (\%) currently applied to terminal 2 (4).
Do not touch until calibration is completed.
7. Voltage (current) application

Apply a $5 \mathrm{~V}(20 \mathrm{~mA})$. (Turn the external potentiometer connected between terminals 2 and 5 (terminals 4 and 5 ) to a desired position.)
8. Setting completed

Press SET to confirm the selection. The analog voltage (current) \% and ":- -i" ("L- Ti") are displayed alternately.

- Turn $\theta_{10}$ to read another parameter.
- Press SET to return to the " $[-$-- -- -- -- " display.
- Press SET twice to show the next parameter.


## ■ Adjustment by selecting the voltage (current) at the bias/gain frequency without applying voltage (current) between terminals 2 and 5 (4 and 5) (Example of adjustment at the gain frequency)

## Operating procedure

1. Turning $O N$ the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press ${ }^{\text {PU }}$ EXT to choose the PU operation mode. [PU] indicator turns ON.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
4. Calibration parameter selection

Turn (\%) until "L. . . . " appears. Press sET to display " $[-$
5. Selecting the parameter

Turn (3) until " $[$ 4" (C4 (Pr.903) Terminal 2 frequency setting gain) appears for terminal 2, or "■ 7" (C7 (Pr.905) Terminal 4 frequency setting gain) for terminal 4.
6. Analog voltage (current) display

Press SET to display the analog voltage (current) value (\%) currently applied to terminal 2 (4).
7. Analog voltage (current) ajustment

When is turned, the gain voltage (current) value (\%) currently set to the parameter appears.
Turn until the desired gain voltage (current) value (\%) appears.
8. Setting completed
 alternately.

- Turn to read another parameter.
- Press SET to return to the " Le -- -- -- -- " display. $^{\text {- }}$
- Press SET twice to show the next parameter.


## NOTE

- Press after step 6 to check the present bias/gain frequency setting. The setting cannot be checked after step 7 .


## ■ Adjustment by changing the frequency without adjusting the voltage (current) (Example of changing the gain frequency from 60 Hz to 50 Hz )

## Operating procedure

1. Selecting the parameter

Turn 412 until "F!
Press SET to read the present set value. $(60.00 \mathrm{~Hz})$
2. Changing the maximum frequency

Turn 0 to change the set value to "

3. Selecting the mode and the monitor item

Press MODE three times to select the monitor mode, and change the monitor item to the frequency.
4. Start

Turn ON the start switch (STF/STR signal), and turn the frequency setting potentiometer clockwise slowly to full. (Refer to steps 2 and 3 in page 155.)
The motor is operated at 50 Hz .

## NOTE

- If the frequency meter (display meter) connected between terminal FM and SD (CA and 5) does not indicate exactly 60 Hz , set the calibration parameter C0 FM/CA terminal calibration. (Refer to page 440.)
- If the voltage (current) values at the gain and bias frequencies are too close to each other, an error " may be indicated.
- Changing C4 (Pr.903) or C7 (Pr.905) (gain adjustment) will not change Pr. 20.

Input to terminal 1 (frequency setting auxiliary input) is added to the frequency setting signal.

- For operation outline of the parameter unit (FR-PU07), refer to the Instruction Manual of the FR-PU07.
- To set the value to 120 Hz or higher, the Pr. 18 High speed maximum frequency needs to be 120 Hz or higher. (Refer to page 407.)
- Use the calibration parameter C2 (Pr.902) or C5 (Pr.904) to set the bias frequency. (Refer to page 483 .)


## CAUTION

- Be cautious when setting any value other than " 0 " as the bias frequency at $0 \mathrm{~V}(0 \mathrm{~mA})$. Even if a speed command is not given, simply turning $O N$ the start signal will start the motor at the preset frequency.


## 《|Parameters referred to $\gg$

Pr. 1 Maximum frequency, Pr. 18 High speed maximum frequency $\leqslant$ page 407
Pr. 20 Acceleration/deceleration reference frequency $\leqslant$ page 349
Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection page 473
Pr. 79 Operation mode selection page 370
Pr. 858 Terminal 4 function assignment, Pr. 868 Terminal 1 function assignment page 477

### 5.12.6 Torque (magnetic flux) setting voltage (current) bias and gain

## Sensorless Vector PIM

The magnitude (slope) of the torque can be set as desired in relation to the torque setting signal ( 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 20 mA ).
Use Pr. 73 Analog input selection or Pr. 267 Terminal 4 input selection to switch among input 0 to $5 \mathrm{VDC}, 0$ to 10 V , and 4 to 20 mA . (Refer to page 473.)

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & \text { C16 (919) } \\ & \text { T110*1 } \end{aligned}$	Terminal 1 bias command (torque)	0\%	0 to 400\%	Set the bias torque (magnetic flux) for the terminal 1 input.
$\begin{aligned} & \hline \text { C17 (919) } \\ & \text { T111 }^{* 1} \end{aligned}$	Terminal 1 bias (torque)	0\%	0 to 300\%	Set the converted \% of the bias voltage for the terminal 1 input.
$\begin{aligned} & \text { C18 (920) } \\ & \text { T112 }^{* 1} \end{aligned}$	Terminal 1 gain command (torque)	150\%	0 to 400\%	Set the gain (maximum) torque (magnetic flux) for the terminal 1 input.
$\begin{aligned} & \hline \text { C19 (920) } \\ & \text { T113 }^{* 1} \end{aligned}$	Terminal 1 gain (torque)	100\%	0 to 300\%	Set the converted \% of the gain voltage for the terminal 1 input.
$\begin{aligned} & \text { C38 (932) } \\ & \text { T410*1 } \end{aligned}$	Terminal 4 bias command (torque)	0\%	0 to 400\%	Set the bias torque (magnetic flux) for the terminal 4 input.
$\begin{aligned} & \text { C39 (932) } \\ & \text { T411*1 } \end{aligned}$	Terminal 4 bias (torque)	20\%	0 to 300\%	Set the converted \% of the bias current (voltage) for the terminal 4 input.
$\begin{aligned} & \text { C40 (933) } \\ & \text { T412*1 } \end{aligned}$	Terminal 4 gain command (torque)	150\%	0 to 400\%	Set the gain (maximum) torque (magnetic flux) for the terminal 4 input.
$\begin{aligned} & \hline \text { C41 (933) } \\ & \text { T413*1 } \end{aligned}$	Terminal 4 gain (torque)	100\%	0 to 300\%	Set the converted \% of the gain current (voltage) for the terminal 4 input.
$\begin{array}{\|l\|} \hline 241 \\ \text { M043 } \end{array}$	Analog input display unit switchover	0	0   1	\% display Select the unit for analog input   display.

*1 The parameter number in parentheses is the one for use with the LCD operation panel and the parameter unit.

## - To change the function of analog input terminal

- In the initial setting, terminal 1 is used for analog input of the auxiliary speed setting (auxiliary speed limit), and terminal 4 is used for the speed command (speed limit). To use the analog input terminal to input the torque command, torque limit, or magnetic flux command, set Pr. 868 Terminal 1 function assignment or Pr. 858 Terminal 4 function assignment to change the function. (Refer to page 477.) The magnetic flux command is valid under Vector control only.


## Relationship between the analog input terminal function and the calibration parameter

- Calibration parameter according to the terminal 1 function

| Pr. 868 <br> setting | Terminal function | Calibration parameter |
| :--- | :--- | :--- | :--- | :--- |

*1 Use Pr. 148 Stall prevention level at 0 V input and Pr. 149 Stall prevention level at 10 V input to adjust bias and gain for setting the stall prevention operation level.

- Calibration parameter according to the terminal 4 function

Pr. 858   setting	Terminal function	Calibration parameter	
	Frequency (speed) command /   speed limit	C5 (Pr.904) Terminal 4 frequency setting   bias frequency   C6 (Pr.904) Terminal 4 frequency setting   bias	Pr. 126 Terminal 4 frequency setting gain   frequency   C7 (Pr.905) Terminal 4 frequency setting   gain
1	Magnetic flux command	C38 (Pr.932) Terminal 4 bias command   (torque)   C39 (Pr.932) Terminal 4 bias (torque)	C40 (Pr.933) Terminal 4 gain command   (torque)   C41 (Pr.933) Terminal 4 gain (torque)
4	Stall prevention operation level   *2/   torque limit	C38 (Pr.932) Terminal 4 bias command   (torque)   C39 (Pr.932) Terminal 4 bias (torque)	C40 (Pr.933) Terminal 4 gain command   (torque)   C41 (Pr.933) Terminal 4 gain (torque)
9999	No function	-	-

*2 Use Pr. 148 Stall prevention level at 0 V input and Pr. 149 Stall prevention level at 10 V input to adjust bias and gain for setting the stall prevention operation level

## - To change the torque for the maximum analog input (C18 (Pr.920), C40 (Pr.933))

- Use C18 (Pr.920) or C40 (Pr.933) to change the torque setting (gain) for the maximum analog input voltage (current).


## - Analog input bias/gain calibration (C16 (Pr.919) to C19 (Pr.920), C38 (Pr.932) to C41 (Pr.933))

- The "bias" and "gain" functions serve to adjust the relationship between a setting input signal and the torque. A setting input signal is such as a 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 20 mADC signal externally input to set the torque command or the torque limit.
- Set the bias torque of the terminal 1 input using C16 (Pr.919). (The initial value is the torque for 0 V .)
- Use C18 (Pr.920) to set the torque to the torque command voltage set by Pr. 73 Analog input selection. (Initial value is 10 V.$)$
- Set the bias torque of the terminal 4 input using C38 (Pr.932). (The initial value is the torque for 4 mA .)
- Use C40 (Pr.933) to set the torque to the 20 mA input of the torque command current ( 4 to 20 mA ).

*1 A negative voltage ( 0 to $-10 \mathrm{~V}(-5 \mathrm{~V})$ ) is valid as a torque command. However, when a negative voltage is input as a torque limit value, the torque limit is regarded as " 0 ".
- There are three methods to adjust the bias/gain torque setting voltage (current).

Adjustment by applying voltage (current) between terminals 1 and 5 ( 4 and 5 ) to set the voltage (current) at the bias/gain torque. 叩 page 489
Adjustment by selecting the voltage (current) at the bias/gain torque without applying voltage (current) between terminals 1 and 5 ( 4 and 5 ). 5 page 490
Adjustment by changing the torque without adjusting the voltage (current). 3 page 491

## NOTE

- Always calibrate the input after changing the voltage/current input signal with Pr. 73 (Pr.267) and the voltage/current input selection switch.


## $\rightarrow$ Display unit changing for analog input (Pr.241)

- The analog input display unit (\%/V/mA) can be changed for analog input bias/gain calibration.
- Depending on the terminal input specification setting of Pr. 73 (Pr.267), the unit of the displayed value of C17 (Pr.919), C19 (Pr.920), C39 (Pr.932), and C41 (Pr.933) changes as shown below:

Analog command (via terminals 1 or 4) (depending on the setting Pr. 73 or Pr.267)	Pr. 241 = 0 (initial value)	Pr. 241 = 1
0 to 5 V input	0 to 100\% (0.1\%)	0 to $5 \mathrm{~V}(0.01 \mathrm{~V})$
0 to 10 V input	0 to 100\% (0.1\%)	0 to $10 \mathrm{~V}(0.01 \mathrm{~V})$
0 to 20 mA input	0 to 100\% (0.1\%)	0 to 20 mA ( 0.01 mA )

## - Torque setting voltage (current) bias/gain adjustment method

## Adjustment by applying voltage (current) between terminals 1 and 5 (4 and 5) to set the voltage

 (current) at the bias/gain torque
## Operating procedure

1. Turning $O N$ the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press $\frac{P U}{E X T}$ to choose the PU operation mode. [PU] indicator turns ON.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
4. Calibration parameter selection

Turn until " 1.
5. Selecting the parameter
 (Pr.933) Terminal 4 gain (torque)) for terminal 4.
6. Analog voltage (current) display

Press SET to display the analog voltage (current) \% currently applied to the terminal 1 (4).
Do not touch until calibration is completed.
7. Voltage (current) application

Apply a $5 \mathrm{~V}(20 \mathrm{~mA})$. (Turn the external potentiometer connected between terminals 1 and 5 (terminals 4 and 5 ) to a desired position.)
8. Setting completed
 alternately.

- Turn to read another parameter.
- Press SET to return to the " $\mathrm{L}^{-}$-- -- -- -- " display.
- Press set twice to show the next parameter.


## ■ Adjustment by selecting the voltage (current) at the bias/gain torque without applying voltage (current) between terminals 1 and 5 (4 and 5)

## Operating procedure

1. Turning ON the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press $\frac{\text { PU }}{\text { EXT }}$ to choose the PU operation mode. [PU] indicator turns ON.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
4. Calibration parameter selection

5. Selecting the parameter
 (Pr.933) Terminal 4 gain (torque)) for terminal 4.
6. Analog voltage (current) display

Press SET to display the analog voltage (current) \% currently applied to the terminal 1 (4).
7. Analog voltage (current) adjustment

When is turned, the gain voltage (current) value (\%) currently set to the parameter appears.
Turn until the desired gain voltage (current) value (\%) appears.

8．Setting completed
 alternately．
－Turn to read another parameter．

－Press SET twice to show the next parameter．

## NOTE

－Press 15 after step 6 to check the present bias／gain torque setting．The setting cannot be checked after step 7 ．

Adjustment by changing the torque without adjusting the voltage（current）（Example of changing the gain torque from $150 \%$ to $130 \%$ ）

## Operating procedure

1．Selecting the parameter
Turn until＂ 1
Press SET to read the present set value．（150．0\％）
2．Torque setting change
Turn 0 ）to change the set value to＂

3．Selecting the mode and the monitor item
Press MODE three times to select the monitor mode，and change the monitor item to the frequency．
4．Start
Turn ON the start switch（STF or STR）to apply a voltage across terminals 1 and 5 （4 and 5），
Operation is performed with $130 \%$ torque．

## NOTE

－If the voltage（current）values at the gain and bias torques are too close to each other，an error（＂ indicated．
－For operation outline of the parameter unit（FR－PU07），refer to the Instruction Manual of the FR－PU07．
－Use the calibration parameter $\mathbf{C 1 6}$（Pr．919）or $\mathbf{C 3 8}$（Pr．932）to set the bias torque．（Refer to page 488 ．）

## CAUTION

－Be cautious when setting any value other than＂ 0 ＂as the bias torque at $0 \mathrm{~V}(0 \mathrm{~mA})$ ．Even if a torque command is not given，simply turning ON the start signal will supply torque to the motor．

[^25]
### 5.12.7 Checking of current input on analog input terminal

When current is input to the analog input terminal 2 or terminal 4 , the input current can be checked and the operation when the input falls below the specified level (the analog current input is lost) can be selected. The operation can be continued even when the analog current input is lost.

Pr.	Name	Initial   value	Setting   range	Description

## Analog current input loss condition (Pr.778)

- When the current input to terminal 4 (terminal 2) continues to be 2 mA or less for the period set in Pr.778, it is considered as loss of analog current input and the Alarm (LF) signal is turned ON. The LF signal turns OFF when the current input becomes 3 mA or higher.
- For the LF signal, set "98 (positive logic) or 198 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.

Set frequency

*1 When Pr. 573 \# " 9999 " and the terminal 4 (terminal 2) input is calibrated to 2 mA or less in $\mathbf{C 2}$ (Pr. 902 ) (C5 (Pr.904)), the operation set in Pr. 573 is applied to the frequency at the input of 2 mA or less.

## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## $\bullet$ Continuing operation when the analog current input is lost (Pr.573 = "1, 4", Pr.777)

- When Pr. 573 = "1", operation continues at the output frequency before the current input loss.
- When Pr. 573 = "4" and Pr. $777 \neq$ "9999", operation continues at the frequency set in Pr. 777.
- When the start command is turned OFF during current input loss, the inverter output decelerates the motor to a stop immediately, and the operation is not restarted even if a start command is input again.
- When the current input is restored, the LF signal is turned OFF, and operation is performed according to the current input.
- The following is the operation example during External operation.

- The following is the operation example during PID control (reverse action) operation.



## NOTE

- When the setting is changed to the continuous operation (Pr. $573=$ "1 or 4 ") after the input current loss, the frequency before loss is regarded as 0 Hz .


## - Fault output (Pr. 573 = "2")

- When the analog current input becomes 2 mA or lower, the protective function $\mathrm{E} . \mathrm{LCI}(4 \mathrm{~mA}$ input fault) is activated and the output is shut off.
- The following is the operation example during PID control (reverse action) operation.



## - Fault output after deceleration to stop (Pr. 573 = " 3 ")

- When the analog current input becomes 2 mA or lower, the inverter output decelerates the motor to a stop, and then the protective function E.LCI ( 4 mA input fault) is activated and the output is shut off.
- When the analog current input is restored during the deceleration, the motor is accelerated again and operates according to the current input.
- The following is the operation example during PID control (reverse action) operation.

- The following is the operation example when the analog input current is restored during deceleration under PID control (reverse action).



## －Functions related to current input check

Function		Refer to   page
Minimum frequency	When the operation continues，the minimum frequency setting is valid even during current   input loss．	407
Multi－speed operation	The multi－speed setting signal is prioritized even during current input loss（the motor operates   according to the multi－speed setting even during continuous operation at the predetermined   frequency or during deceleration to a stop）．   When the multi－speed setting signal is turned OFF while the input current is lost during the   multi－speed operation，the motor is decelerated to a stop even if the parameter is set to   continue operation when the current input is lost．	391
JOG operation	JOG operation is prioritized even during current input loss（the motor operation switches to   JOB operation even during continuous operation at the predetermined frequency or during   deceleration to a stop）．   When the JOG signal is turned OFF while the input current is lost during the JOG operation，   the motor is decelerated to a stop even if the parameter is set to continue operation when the   current input is lost．	390
MRS signal	The MRS signal is enabled even during current input loss（output is shut off by turning ON the   MRS signal even during continuous operation at the predetermined frequency or during   deceleration to a stop）．	499

### 5.12.8 Input terminal function selection

Use the following parameters to select or change the input terminal functions.

Pr.	Name	Initial value	Initial signal	Setting range
$\begin{aligned} & 178 \\ & \text { T700 } \end{aligned}$	STF terminal function selection	60	STF (Forward rotation command)	0 to 20, 22 to $28,37,42$ to 48,50 to 53,57 to 60 , 62,64 to $74,76,77$ to $80,85,87$ to 89,92 to 96 , 9999
$\begin{aligned} & 179 \\ & \text { T701 } \end{aligned}$	STR terminal function selection	61	STR (Reverse rotation command)	0 to 20,22 to $28,37,42$ to 48,50 to 53,57 to 59 , 61, 62, 64 to $74,76,77$ to $80,85,87$ to 89,92 to 96, 9999
$\begin{aligned} & \hline 180 \\ & \text { T702 } \end{aligned}$	RL terminal function selection	0	RL (Low-speed operation command)	0 to 20,22 to $28,37,42$ to 48,50 to 53,57 to 59 , 62,64 to $74,76,77$ to $80,85,87$ to 89,92 to 96 , 9999
$\begin{aligned} & \hline 181 \\ & \text { T703 } \end{aligned}$	RM terminal function selection	1	RM (Middle-speed operation command)	
$\begin{array}{l\|l\|} \hline 182 \\ \text { T704 } \end{array}$	RH terminal function selection	2	RH (High-speed operation command)	
$\begin{aligned} & 183 \\ & \text { T705 } \end{aligned}$	RT terminal function selection	3	RT (Second function selection)	
$\begin{aligned} & 184 \\ & \text { T706 } \end{aligned}$	AU terminal function selection	4	AU (Terminal 4 input selection)	
$\begin{aligned} & \hline 185 \\ & \text { T707 } \end{aligned}$	JOG terminal function selection	5	JOG (Jog operation selection)	
$\begin{aligned} & 186 \\ & \text { T708 } \end{aligned}$	CS terminal function selection	6	CS (Selection of automatic restart after instantaneous power failure / flying start)	
$\begin{aligned} & 187 \\ & \text { T709 } \end{aligned}$	MRS terminal function selection	$24^{* 1}$	MRS (Output stop)	
		$10^{*} 2$	X10 (Inverter run enable)	
$\begin{aligned} & \hline 188 \\ & \text { T710 } \end{aligned}$	STOP terminal function selection	25	STP (STOP) (Start self-holding selection)	
$\begin{aligned} & 189 \\ & \text { T711 } \end{aligned}$	RES terminal function selection	62	RES (Inverter reset)	


Pr.	Name	Initial   value	Setting range	Description
$\mathbf{6 9 9}$	Input terminal filter	9999	5 to 50 ms	Set the time delay for the input terminal response.
			No filter for the input terminal	

*1 The initial value is for standard models and IP55 compatible models.
*2 The initial value is for separated converter types.

## - Input terminal function assignment

- Use Pr. 178 to Pr. 189 to set the functions of the input terminals.
- Refer to the following table and set the parameters.

Setting	Signal name	Function		Related parameter	Refer to page
0	RL	Pr. $59=0$ (initial value)	Low-speed operation command	$\text { Pr. } 4 \text { to Pr.6, Pr. } 24 \text { to Pr.27, }$ $\text { Pr. } 232 \text { to Pr. } 239$	391
		Pr. $59 \neq 0$ * 1	Remote setting (setting clear)	Pr. 59	359
		Pr. 270 = 1, 3, 11, 13 *2	Stop-on-contact selection 0	Pr.270, Pr.275, Pr. 276	546
1	RM	Pr. $59=0$ (initial value)	Middle-speed operation command	Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr. 239	391
		Pr. $59 \neq 0$ * 1	Remote setting (deceleration)	Pr. 59	359
2	RH	Pr. $59=0$ (initial value)	High-speed operation command	$\begin{array}{\|l\|} \hline \text { Pr. } 4 \text { to Pr.6, Pr. } 24 \text { to Pr.27, } \\ \text { Pr. } 232 \text { to Pr. } 239 \end{array}$	391
		Pr. $59 \neq 0{ }^{* 1}$	Remote setting (acceleration)	Pr. 59	359
3	RT	Second function selection		$\begin{aligned} & \text { Pr. } 44 \text { to Pr.51, Pr. } 450 \text { to } \\ & \text { Pr. } 463 \text {, Pr. } 569 \text {, Pr. } 832 \text {, } \\ & \text { Pr. } 836 \text {, etc. } \\ & \hline \end{aligned}$	500
		Pr. 270 = 1, 3, 11, 13 *2	Stop-on-contact selection 1	Pr.270, Pr.275, Pr. 276	546
4	AU	Terminal 4 input selection		Pr. 267	473
5	JOG	Jog operation selection		Pr.15, Pr. 16	390


Setting	Signal name	Function	Related parameter	Refer to page
6	CS	Selection of automatic restart after instantaneous power failure / flying start	Pr.57, Pr.58, Pr. 162 to Pr.165, Pr.299, Pr. 611	597, 604
		Electronic bypass function	$\begin{array}{\|l} \hline \text { Pr.57, Pr.58, Pr. } 135 \text { to } \\ \text { Pr.139, Pr. } 159 \end{array}$	532
7	OH	External thermal relay input ${ }^{*}$	Pr. 9	394
8	REX	15 -speed selection (Combination with multi-speeds of RL, RM, and RH)	$\text { Pr. } 4 \text { to Pr.6, Pr. } 24 \text { to Pr.27, }$ $\text { Pr. } 232 \text { to Pr. } 239$	391
9	X9	Third function selection	Pr. 110 to Pr. 116	500
10	X10	Inverter run enable (FR-HC2/FR-CV/FR-CC2 connection)	Pr.30, Pr.70, Pr. 599	689
11	X11	FR-HC2/FR-CC2 connection, instantaneous power failure detection	Pr.30, Pr. 70	689
12	X12	PU operation external interlock	Pr. 79	370
13	X13	External DC injection brake operation start	Pr. 10 to Pr. 12	681
14	X14	PID control valid	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	570
15	BRI	Brake opening completion	Pr. 278 to Pr. 285	541
16	X16	PU/External operation switchover (External operation with X16-ON)	Pr.79, Pr. 340	370
17	X17	Load pattern selection forward/reverse rotation boost (For constant-torque with X17-ON)	Pr. 14	674
18	X18	V/F switchover (V/F control with X18-ON)	Pr.80, Pr.81, Pr. 800	215
19	X19	Load torque high-speed frequency	Pr. 270 to Pr. 274	549
20	X20	S-pattern acceleration/deceleration C switchover	Pr. 380 to Pr. 383	354
22	X22	Orientation command (for Vector control compatible options)****	Pr. 350 to Pr. 369	554
23	LX	Pre-excitation/servo ON *5	Pr. 850	681
24	MRS	Output stop	Pr. 17	499
		Electronic bypass function	$\begin{array}{\|l} \hline \text { Pr.57, Pr.58, Pr. } 135 \text { to } \\ \text { Pr.139, Pr. } 159 \end{array}$	532
25	$\begin{aligned} & \text { STP } \\ & \text { (STOP) } \end{aligned}$	Start self-holding selection	Pr. 250	502
26	MC	Control mode switchover	Pr. 800	215
27	TL	Torque limit selection	Pr. 815	235
28	X28	Start-time tuning start external input	Pr. 95	527
37	X37	Traverse function selection	Pr. 592 to Pr. 597	551
42	X42	Torque bias selection 1	Pr. 840 to Pr. 845	255
43	X43	Torque bias selection 2	Pr. 840 to Pr. 845	255
44	X44	P/PI control switchover (P control with X44-ON)	$\begin{array}{\|l\|} \hline \text { Pr. } 820, \text { Pr.821, Pr.830, } \\ \text { Pr. } 831 \end{array}$	244
45	BRI2	Second brake sequence open completion	Pr. 641 to Pr. 648	541
46	TRG	Trace trigger input	Pr. 1020 to Pr. 1047	616
47	TRC	Trace sampling start/end	Pr. 1020 to Pr. 1047	616
48	X48	Power failure stop external	$\begin{aligned} & \text { Pr. } 261 \text { to Pr.266, Pr.294, } \\ & \text { Pr. } 668 \end{aligned}$	610
50	SQ	Sequence start	Pr. 414	614
51	X51	Fault clear	Pr. 414	614
52	X52	Cumulative pulse monitor clear (for Vector control compatible plugin options)		
53	X53	Cumulative pulse monitor clear (control terminal option) (for FRA8TP)	Pr. 635	306
57	JOGF	JOG forward rotation command	Pr.15, Pr. 16	390
58	JOGR	JOG reverse rotation command	Pr.15, Pr. 16	390
59	CLRN	NET position pulse clear	$\begin{aligned} & \text { Pr. } 291, \text { Pr. } 419 \text { to Pr. } 430 \text {, } \\ & \text { Pr. } 464 \end{aligned}$	305
60	STF	Forward rotation command (assignable to the STF terminal (Pr.178) only)	Pr. 250	502
61	STR	Reverse rotation command (assignable to the STR terminal (Pr.179) only)	Pr. 250	502
62	RES	Inverter reset	Pr. 75	320
64	X64	PID forward/reverse action switchover	Pr. 127 to Pr. 134	570
65	X65	PU/NET operation switchover (PU operation with X65-ON)	Pr.79, Pr. 340	370
66	X66	External/NET operation switchover (NET operation with X66-ON)	Pr.79, Pr. 340	370


Setting	Signal name	Function	Related parameter	Refer to page
67	X67	Command source switchover (command by Pr. 338 or Pr. 339 enabled with X67-ON)	Pr.338, Pr. 339	380
68	NP	Simple position pulse train sign	$\begin{aligned} & \text { Pr. } 291, \text { Pr. } 419 \text { to Pr. } 430 \text {, } \\ & \text { Pr. } 464 \end{aligned}$	305
69	CLR	Simple position droop pulse clear	$\begin{aligned} & \text { Pr. } 291 \text {, Pr. } 419 \text { to Pr. } 430 \text {, } \\ & \text { Pr. } 464 \end{aligned}$	305
70	X70	DC feeding operation permission ${ }^{*}$	Pr. 30	689
71	X71	DC feeding cancel ${ }^{* 7}$	Pr. 30	689
72	X72	PID P control switchover	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	570
73	X73	Second PID P control switchover	$\begin{aligned} & \text { Pr. } 127 \text { to Pr.134, Pr. } 575 \text { to } \\ & \text { Pr. } 577 \end{aligned}$	570
74	X74	Magnetic flux decay output shutoff	Pr. 850	683
76	X76	Proximity dog	Pr. 1282 to Pr. 1288	288
77	X77	Pre-charge end command	Pr. 760 to Pr. 764	587
78	X78	Second pre-charge end command	Pr. 765 to Pr. 769	587
79	X79	Second PID forward/reverse action switchover	Pr. 753 to Pr. 758	570
80	X80	Second PID control valid	Pr. 753 to Pr. 758	570
85	X85	SSCNET III communication disabled (for FR-A8NS)**	Pr. 499	-
87	X87	Sudden stop	Pr. 464 to Pr. 494	288
88	LSP	Upper stroke limit (for FR-A8NS)* ${ }^{*}$	-	-
89	LSN	Lower stroke limit (for FR-A8NS)*6	-	-
92	X92	Emergency stop	Pr. 1103	349
93	X93	Torque control selection	Pr. 1113	274
94	X94	Control signal input for main circuit power supply MC	Pr.30, Pr.137, Pr.248, Pr. 254	538
95	X95	Converter unit fault input	$\begin{aligned} & \text { Pr.57, Pr.58, Pr. } 135 \text { to } \\ & \text { Pr. } 139 \text {, Pr. } 159 \end{aligned}$	532
96	X96	Converter unit fault (E.OHT, E.CPU) input		
9999	-	No function	-	-

*1 When Pr. 59 Remote function selection $\neq$ " 0 ", functions of the $R L, R M$, and $R H$ signals are changed as shown in the table.
*2 When Pr. 270 Stop-on contact/load torque high- speed frequency control selection = "1, 3, 11, or 13", functions of the RL and RT signals are changed as shown in the table.
*3 The OH signal is activated when the relay contact is open.
*4 When a stop position command is input from outside for orientation control, the FR-A8AX (16-bit digital input option) is required.
*5 Servo ON is enabled in the position control mode.
*6 Available when the plug-in option is connected. For details, refer to the Instruction Manual of each option.
*7 The setting is available only for standard models and IP55 compatible models.

## NOTE

- The same function can be assigned to two or more terminals. In this case, the logic of terminal input is OR.
- The priorities of the speed commands are defined as follows: JOG > multi-speed setting (RH, RM, RL, REX) > PID (X14).
- When the Inverter run enable (X10) signal is not assigned, or when the PU operation external interlock (X12) signal is not assigned while Pr. 79 Operation mode selection = "7", the MRS signal performs the same function.
- The same terminals are used to assign the multi-speed (7-speed) setting and the remote setting. The multi-speed setting and the remote setting cannot be assigned separately.
- When the Load pattern selection forward/reverse rotation boost (X17) signal is not assigned, the RT signal performs the same function.
- When Pr. 419 = "2" (simple pulse train position command), the terminal JOG is used for the simple position pulse train input regardless of the setting in Pr. 291 Pulse train I/O selection.
- When the terminal assignment is changed using Pr. 178 to Pr. 189 (Input terminal function selection), wiring may be mistaken due to different terminal name and signal contents, or may affect other functions. Set parameters after confirming the function of each terminal.


## - Adjusting the response of input terminals (Pr.699)

- Response of the input terminals can be delayed in a range between 5 to 50 ms . (The following is the operation example of the STF signal.)



## NOTE

- The Pr. 699 setting is invalid (no filter) for the following signals.
- Input signals which are already in the ON state when the power is turned ON
- Input signals used for the PLC function
- Inverter run enable (X10) signal, Simple position pulse train sign (NP) signal, Simple position droop pulse clear (CLR) signal


### 5.12.9 Inverter output shutoff

The inverter output can be shut off with the MRS signal. The logic of the MRS signal can also be selected.

Pr.	Name	Initial   value	Setting range	Description
$\mathbf{1 7}$			0	Normally open input
	MRS input selection	0	2	Normally closed input (NC contact input specification)
		4	External terminal: Normally closed input (NC contact input   specification)   Communication: Normally open input	

## $\bullet$ Output shutoff signal (MRS signal)



- When the Output stop (MRS) signal is turned ON while operating the inverter, the inverter output is instantaneously shut off.
- The response time of the MRS signal is within 2 ms .
- The MRS signal is used in the following cases.

Application	Description
To stop the motor using a mechanical brake (e.g.   electromagnetic brake)	The inverter output is shut off when the mechanical brake operates.
To provide interlock to disable the motor operation by the   inverter	With the MRS signal ON, the motor cannot be driven by the inverter even if   the start signal is input to the inverter.
To coast the motor to a stop	When the start signal is turned OFF, the inverter decelerates the motor to   a stop in the preset deceleration time, but when the MRS signal is turned   ON, the motor coasts to a stop.

## －MRS signal logic inversion（Pr． 17 ＝＂2＂）

－When＂2＂is set in Pr．17，the input specification of the MRS signal is changed to normally closed（NC contact）．The inverter will shut off the output when the MRS signal is turned ON（when the contact is opened）．

## －Assigning a different action for each MRS signal input via communication and external terminal（Pr． 17 ＝＂4＂）

－When Pr． 17 ＝＂4＂，the MRS signal input from an external terminal is normally closed（NC contact），and the MRS signal input from communication is normally open（NO contact）．This function is useful to perform operation via communication while keeping the ON state of the MRS signal input from the external terminal．

External MRS		Communication MRS	Pr．17 setting		
			$\mathbf{2}$	（	
OFF	OFF	Operation enabled	Output shutoff	Output shutoff	
OFF	ON	Output shutoff	Output shutoff	Output shutoff	
ON	OFF	Output shutoff	Output shutoff	Operation enabled	
ON	Ontput shutoff	Operation enabled	Output shutoff		

## NOTE

－The MRS signal is assigned to terminal MRS in the initial status．By setting＂24＂in any of Pr． 178 to Pr． 189 （Input terminal function selection），the MRS signal can be assigned to the other terminal．
－When using an external terminal to input the MRS signal，the MRS signal shuts off the output in any of the operation modes．
－The MRS signal is valid regardless of whether it is input through the external terminal or via network，but when the MRS signal is used as the Inverter run enable（X10）signal，input the signal through the external terminal．
－When the terminal assignment is changed using Pr． 178 to Pr． 189 （Input terminal function selection），wiring may be mistaken due to different terminal name and signal contents，or may affect other functions．Set parameters after confirming the function of each terminal．

## 5．12．10 Selecting the condition to activate the Second function selection（RT）signal or the Third function selection（X9）signal

The second function can be selected using the RT signal，and the third function can be selected using the X9 signal． The condition to activate the second or third function can be also set．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{1 1 5}$			$\begin{array}{l}\text { RT signal function } \\ \text { validity condition } \\ \text { selection }\end{array}$	0

RT signal is turned ON，and the third function is immediately <br>

enabled when the X9 signal is turned ON．\end{array}\right]\)| The function cannot be changed to the second or third function |
| :--- |
| during acceleration／deceleration．When the signal is turned ON |
| during acceleration／deceleration，the function is changed after |
| the acceleration／deceleration is finished． |

－Turning ON the Second function selection（RT）signal enables the second functions．
－Turning ON the Third function selection（X9）signal enables the third functions．For the X9 signal，set＂ 9 ＂in any of Pr． 178 to $\mathbf{1 8 9}$（Input terminal function selection）to assign the function．

- The following are the examples of the applications of the second (third) functions.

Switching between regular use and emergency use
Switching between heavy load and light load
Changing the acceleration/deceleration time
Switching characteristics of main motor and sub motor
Connection diagram example for the second functionExample of the second acceleration/deceleration time


- Turning ON the RT signal enables the second function, and turning ON the X9 signal enables the third function. The following table shows the functions which can be changed to the second or third function.

Function	First function Parameter number	Second function Parameter number	Third function Parameter number	Refer to page
Torque boost	Pr. 0	Pr. 46	Pr. 112	672
Base frequency	Pr. 3	Pr. 47	Pr. 113	673
Acceleration time	Pr. 7	Pr. 44	Pr. 110	349
Deceleration time	Pr. 8	Pr.44, Pr. 45	Pr.110, Pr. 111	349
Electronic thermal O/L relay	Pr. 9	Pr. 51	*2	394
Free thermal	Pr. 600 to Pr. 604	Pr. 692 to Pr. 696	*2	
Motor permissible load level *1	Pr. 607	Pr. 608	*2	
Stall prevention	Pr. 22	Pr.48, Pr. 49	Pr.114, Pr. 115	409
Applied motor *1	Pr. 71	Pr. 450	*2	505
Motor constant* ${ }^{* 1}$	Pr. 80 to Pr. 84, Pr. 90 to Pr.94, Pr.298, Pr.702,   Pr.706, Pr.707, Pr.711,   Pr.712, Pr.717, Pr.721,   Pr.724, Pr.725, Pr. 859	Pr. 453 to Pr.457, Pr.560, Pr. 458 to Pr. 462 , Pr. 738 to Pr.747, Pr. 860	*2	509, 519
Excitation current low-speed scaling factor	Pr.85, Pr. 86	Pr.565, Pr. 566	*2	677
Speed control gain (Advanced magnetic flux vector)	Pr. 89	Pr. 569	*2	222
Offline auto tuning ${ }^{* 1}$	Pr. 96	Pr. 463	*2	509, 519
Online auto tuning *1	Pr. 95	Pr. 574	*2	527
PID control	Pr. 127 to Pr. 134	Pr. 753 to Pr. 758	*2	570
PID pre-charge function	Pr. 760 to Pr. 764	Pr. 765 to Pr. 769	*2	587
Brake sequence*1	$\begin{aligned} & \text { Pr. } 278 \text { to Pr. 285, Pr. } 639 \text {, } \\ & \text { Pr. } 640 \end{aligned}$	$\begin{aligned} & \text { Pr. } 641 \text { to Pr.648, Pr. } 650 \text {, } \\ & \text { Pr. } 651 \end{aligned}$	*2	541
Droop control	$\begin{array}{\|l} \hline \text { Pr. } 286 \text { to Pr. } 288, \text { Pr. } 994, \\ \text { Pr. } 995 \end{array}$	Pr. 679 to Pr. 683	*2	702
Low-speed range torque characteristics*1	Pr. 788	Pr. 747	*2	227
Motor control method *1	Pr. 800	Pr. 451	*2	215
Speed control gain	Pr.820, Pr. 821	Pr.830, Pr. 831	*2	244
Analog input filter	Pr.822, Pr. 826	Pr.832, Pr. 836	*2	480
Speed detection filter	Pr. 823	Pr. 833	*2	316
Torque control gain	Pr.824, Pr. 825	Pr.834, Pr. 835	*2	280
Torque detection filter	Pr. 827	Pr. 837	*2	316

*1 The function can be changed by switching the RT signal ON/OFF while the inverter is stopped. If a signal is switched during operation, the operation method changes after the inverter stops. (Pr. $\mathbf{4 5 0}=19999$ )
*2 When the RT signal is OFF, the first function is valid. When it is ON, the second function is valid.

## NOTE

- The RT signal is assigned to terminal RT in the initial status. By setting "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection), the RT signal can be assigned to the other terminal.
- When both the RT and X9 signals are ON, the X9 signal (third function) is valid.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


### 5.12.11 Start signal operation selection

Operation of the start signal (STF/STR) can be selected.
Select the stopping method (deceleration stop or casting) at turn-OFF of the start signal.
Use this function to stop a motor with a mechanical brake at turn-OFF of the start signal.

Pr.	Name	Initial value	Setting range	Description	
				Start signal (STF/STR)	Stop operation (Refer to page 688)
$\begin{array}{\|l\|} \hline 250 \\ \text { G106 } \end{array}$	Stop selection	9999	0 to 100 s	STF signal: Forward rotation start STR signal: Reverse rotation start	The motor coasts to a stop after a lapse of the setting time when the start signal is turned OFF.   When set to 1000 to 1100 s , the motor will coast to stop after (Pr. $250-1000$ ) s.
			1000 to 1100 s	STF signal: Start signal STR signal: Forward/reverse rotation signal	
			9999	STF signal: Forward rotation start STR signal: Reverse rotation start	The motor is decelerated to a stop when the start signal is turned OFF.
			8888	STF signal: Start signal STR signal: Forward/reverse rotation signal	

## 2-wire type (STF signal, STR signal)

- The following figure shows the 2-wire type connection.
- As an initial setting, the forward/reverse rotation signals (STF/STR) acts as both start and stop signals. Either one turned ON will be enabled, and the operation will follow that signal. The motor will decelerate to a stop when both are turned OFF (or both are turned ON ) during the operation.
- The frequency can be set by inputting 0 to 10 VDC between the speed setting input terminals 2 and 5 , or with Pr. 4 to Pr. 6 Multi-speed setting (high speed, middle speed, and low speed). (For the multi-speed operation, refer to page 391.)
- By setting Pr. $250=$ "1000 to 1100 , 8888", the STF signal input becomes the start command and the STR signal input becomes the forward/reverse command.





## NOTE

- By setting Pr. $250=$ " 0 to 100,1000 to 1100 ", the motor will coast to a stop when the start command is turned OFF. (Refer to page 688.)
- The STF and STR signals are assigned to the STF and STR terminals in the initial status. The STF signal can be assigned to terminal STF only using Pr. 178 STF terminal function selection, and the STR signal can be assigned to terminal STR only using Pr. 179 STR terminal function selection.


## 3-wire type (STF signal, STR signal, STP (STOP) signal)

- The following figure shows the 3-wire type connection.
- The self-holding function is enabled when the STP (STOP) signal is turned ON. In such case, the forward/reverse signal is simply used as a start signal.
- Even if a start signal (STF or STR) is turned ON and then OFF, the start command remains valid and the motor operation continues. To change the rotation direction, turn the STR (STF) signal ON once and then OFF.
- In order to decelerates the motor to a stop, turn OFF the STP (STOP) signal once.



3-wire type connection example (Pr. 250 = "9999")



3-wire type connection example (Pr. 250 = " 8888 ")

## NOTE

- The STP (STOP) signal is assigned to terminal STP (STOP) in the initial status. Set " 25 " in any of Pr. 178 to Pr. 189 to assign the STP (STOP) signal to another terminal.
- When the JOG operation is enabled by turning ON the JOG signal, the STOP signal will be disabled.
- Even when the output is stopped by turning ON the MRS signal, the self-holding function is not canceled.


## - Start signal selection

STF	STR	Pr. $\mathbf{2 5 0}$ setting and inverter condition	
		$\mathbf{0}$ to $\mathbf{1 0 0} \mathbf{s}, \mathbf{9 9 9 9}$	$\mathbf{1 0 0 0}$ to $\mathbf{1 1 0 0} \mathbf{s}, \mathbf{8 8 8 8}$
OFF	OFF	Stop	Stop
OFF	ON	Reverse rotation	
ON	OFF	Forward rotation	Forward rotation
ON	ON	Stop	Reverse rotation

Pr． 4 to Pr． 6 （multi－speed setting）page 391
Pr． 178 to Pr． 189 （Input terminal function selection）page 496

### 5.13 (C) Motor constant parameters

Purpose	Parameter to set			Refer to page
To select the motor to be used	Second applied motor	P.C100, P.C200	Pr.71, Pr. 450	505
To maximize the performance of the induction and vector motors	Offline auto tuning	$\begin{aligned} & \text { P.C000, P.C100 to } \\ & \text { P.C105, P.C107, } \\ & \text { P.C108, P.C110, } \\ & \text { P.C120 to P.C126, } \\ & \text { P.C200 to P.C205, } \\ & \text { P.C207, P.C208, } \\ & \text { P.C210, P.C220 to } \\ & \text { P.C226 } \end{aligned}$	Pr.9, Pr.51, Pr.71,   Pr. 80 to Pr. 84, Pr. 90 to   Pr.94, Pr.96, Pr. 453 to   Pr.463, Pr.684, Pr.707,   Pr.724, Pr.744, Pr.745,   Pr.859, Pr. 860	509
To maximize the performance of the PM motor	PM motor offline auto tuning	P.C000, P.C100 to   P.C108, P.C110,   P.C120, P.C122,   P.C123, P.C126,   P.C130 to P.C133,   P.C135, P.C150,   P.C182, P.C185,   P.C200 to P.C208,   P.C210, P.C220,   P.C222, P.C223,   P.C226, P.C230 to   P.C233, P.C235,   P.C282, P.C285	Pr.9, Pr.51, Pr.71,   Pr.80, Pr.81, Pr.83,   Pr.84, Pr.90, Pr.92,   Pr.93, Pr.96, Pr.450,   Pr.453, Pr.454, Pr. 456   to Pr.458, Pr.460,   Pr.461, Pr.463, Pr.684,   Pr.702, Pr.706, Pr.707,   Pr.711, Pr.712, Pr.717,   Pr.721, Pr.724, Pr.725,   Pr. 738 to Pr.747,   Pr.788, Pr.859, Pr.860,   Pr.1002, Pr.1412,   Pr. 1413	519
To perform high accuracy operation without being affected by temperature and high-torque/ultra-low speed	Online auto tuning	P.C111, P.C211	Pr.95, Pr. 574	527
To use the motor with encoder	Encoder specifications	$\begin{aligned} & \text { P.C140, } \\ & \text { P.C141,P.C240, } \\ & \text { P.C241 } \end{aligned}$	$\begin{aligned} & \text { Pr.359, Pr.369,Pr.851, } \\ & \text { Pr. } 852 \end{aligned}$	93
To detect loss of encoder signals	Signal loss detection	P.C148,P.C248	Pr.376,Pr. 855	530

### 5.13.1 Applied motor

By setting the applied motor type, the thermal characteristic appropriate for the motor can be selected.
When using a constant-torque or PM motor, the electronic thermal $\mathrm{O} / \mathrm{L}$ relay function is set according to the motor.
When the Advanced magnetic flux vector control, Real sensorless vector control, Vector control, or PM sensorless vector control is selected, the motor constant necessary for control (SF-PR, SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500 r/ min series), MM-CF, etc.) is also selected at the same time.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16,20,23,24,30 \\ & 33,34,40,43,44,50,53,54,70, \\ & 73,74,330,333,334,8090, \\ & 8093,8094,9090,9093,9094 \end{aligned}$	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 450 \\ & \text { C200 } \end{aligned}$	Second applied motor	9999	$0,1,3$ to 6,13 to $16,20,23,24$, $30,33,34,40,43,44,50,53,54$, 70, 73, 74, 330, 333, 334, 8090, 8093, 8094, 9090, 9093, 9094	Set this parameter when using the second motor (the same specifications as Pr.71).
			9999	The function is disabled.

## - Setting the applied motor

- Refer to the following list and set the parameters according to the applied motor.

Pr. 71	Pr. 450	Motor	Motor constant value range when performing offline auto tuning (increment)	Electronic thermal O/L relay function		
				Standard	Constanttorque	PM
$0$   (Pr. 71 initial value)		Standard motor (such as SF-JR)	Pr. 82 (Pr.455) and Pr. 859 (Pr.860)   - 0 to $500 \mathrm{~A}, 9999$ ( 0.01 A$)^{* 2}$   - 0 to 3600 A, 9999 (0.1 A) *3   Pr. 90 (Pr.458), Pr. 91 (Pr.459)   - 0 to $50 \Omega, 9999(0.001 \Omega)^{* 2}$   - 0 to $400 \mathrm{~m} \Omega, 9999(0.01 \mathrm{~m} \Omega)^{* 3}$	-		
1		Constant-torque motor (SFJRCA, etc.)   SF-V5RU (other than the $1500 \mathrm{r} /$ min series)			-	
2	-	Standard motor (such as SF-JR) Adjustable 5 points V/F (refer to page 679)		-		
20		Mitsubishi Electric standard motor (SF-JR 4P 1.5kW or lower)	Pr. 92 (Pr. 460), Pr. 93 (Pr. 461 ) (Induction motor)   - 0 to $6000 \mathrm{mH}, 9999(0.1 \mathrm{mH})^{*}{ }^{2}$   - 0 to $400 \mathrm{mH}, 9999(0.1 \mathrm{mH})^{* 3}$   Pr. 92 (Pr. 460 ), Pr. 93 (Pr. 461 ) (PM motor)		$\bigcirc$	
30		Vector control dedicated motor SF-V5RU (1500 r/min series) SF-THY			-	
40		Mitsubishi Electric high-efficiency motor SF-HR	- 0 to $500 \mathrm{mH}, 9999(0.01 \mathrm{mH})^{*}{ }^{2}$   - 0 to $50 \mathrm{mH}, 9999(0.001 \mathrm{mH})^{* 3}$ Pr. 94 (Pr.462)   - 0 to $100 \%$, $9999(0.1 \%)^{*}{ }^{2}$   - 0 to 100\%, $9999(0.01 \%)^{* 3}$ Pr. 706 (Pr.738)   - 0 to 5000 mV (rad/s), 9999 ( 0.1 mV ( $\mathrm{rad} / \mathrm{s}$ ))	-		
50		Mitsubishi Electric constanttorque motor SF-HRCA			$\bigcirc$	
70		Mitsubishi Electric highperformance energy-saving motor SF-PR			$\bigcirc$	
330*1		IPM motor MM-CF				-
8090		IPM motor (other than MM-CF)			$\bigcirc$	
9090		SPM motor			$\bigcirc$	
$3(4)^{*} 4$		Standard motor (such as SF-JR)	Pr. 82 (Pr.455), Pr. 859 (Pr. 860), Pr. 90 (Pr.458),   Pr. 91 (Pr.459), Pr. 92 (Pr.460), Pr. 93 (Pr.461),   Pr. 94 (Pr. 462 ), Pr. 706 (Pr.738)   - Internal data value 0 to 65534, 9999 (1)   The display increment can be changed in Pr. 684.	$\bigcirc$		
$13(14)^{*} 4$		Constant-torque motor (SFJRCA, etc.) SF-V5RU (other than the $1500 \mathrm{r} /$ min series)			$\bigcirc$	
$23(24){ }^{*} 4$		Mitsubishi Electric standard motor (SF-JR 4P 1.5kW or lower)			$\bigcirc$	
$33(34)^{*} 4$		Vector control dedicated motor SF-V5RU (1500 r/min series) SF-THY			$\bigcirc$	
$43(44)^{*} 4$		Mitsubishi Electric high-efficiency motor SF-HR		-		
$53(54)^{*} 4$		Mitsubishi Electric constanttorque motor SF-HRCA			$\bigcirc$	
$73(74)^{*} 4$		Mitsubishi Electric highperformance energy-saving motor SF-PR			$\bigcirc$	
333 (334) ${ }^{* 1 * 4}$		IPM motor MM-CF				$\bigcirc$
$8093(8094)^{*} 4$		IPM motor (other than MM-CF)			$\bigcirc$	
9093 (9094) ${ }^{*} 4$		SPM motor			$\bigcirc$	


*1 The setting is available for the FR-A820-00630(11K) or lower.
*2 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*3 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.
*4 The same operation is performed for the both settings.

## NOTE

- Regardless of the Pr. 71 (Pr.450) setting, offline auto tuning can be performed according to Pr. 96 (Pr. 463 ) Auto tuning setting/status. (Refer to page 509 for offline auto tuning.)


## - Using two types of motors (RT signal, Pr.450)

- When using two types of motors with one inverter, set Pr. 450 Second applied motor.
- The setting value "9999" (initial value) disables the second motor.
- If Pr. $450 \neq 9999$, the following parameters will be enabled by turning ON the Second function selection (RT) signal.

Function	RT signal ON (second motor)	RT signal OFF (first motor)
Electronic thermal O/L relay	Pr. 51	Pr. 9
Applied motor	Pr. 450	Pr. 71
Control method selection	Pr. 451	Pr. 800
Motor capacity	Pr. 453	Pr. 80
Number of motor poles	Pr. 454	Pr. 81
Motor excitation current	Pr. 455	Pr. 82
Rated motor voltage	Pr. 456	Pr. 83
Rated motor frequency	Pr. 457	Pr. 84
Motor constant (R1)	Pr. 458	Pr. 90
Motor constant (R2)	Pr. 459	Pr. 91
Motor constant (L1)/d-axis inductance (Ld)	Pr. 460	Pr. 92
Motor constant (L2)/q-axis inductance (Lq)	Pr. 461	Pr. 93
Motor constant (X)	Pr. 462	Pr. 94
Auto tuning setting/status	Pr. 463	Pr. 96
Frequency search gain	Pr. 560	Pr. 298
Online auto tuning selection	Pr. 574	Pr. 95
Induced voltage constant (phi f)	Pr. 738	Pr. 706
Motor Ld decay ratio	Pr. 739	Pr. 711
Motor Lq decay ratio	Pr. 740	Pr. 712
Starting resistance tuning compensation	Pr. 741	Pr. 717
Starting magnetic pole position detection pulse width	Pr. 742	Pr. 721
Maximum motor frequency	Pr. 743	Pr. 702
Motor inertia (integer)	Pr. 744	Pr. 707
Motor inertia (exponent)	Pr. 745	Pr. 724
Motor protection current level	Pr. 746	Pr. 725
Torque current/Rated PM motor current	Pr. 860	Pr. 859

## NOTE

- The RT signal is the Second function selection signal. The RT signal also enables other second functions. (Refer to page 500.)
- The RT signal is assigned to terminal RT in the initial status. Set " 3 " in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Automatic change of torque boost for the SF-PR motor

- When the SF-PR motor is selected (Pr. $71=770$, 73, or 74 "), the Pr. 0 Torque boost is automatically changed to enable output of the $6 \mathrm{~Hz} 150 \%$ torque under V/F control by setting Pr. 81 Number of motor poles according to the number of the SF-PR motor poles.


## NOTE

- When selecting the automatic change of torque boost for the SF-PR motor, set Pr. 14 Load pattern selection = " 0 (initial value)".
- When the Pr. 0 setting is changed from its initial value, the automatic change is not performed.


## $\checkmark$ Automatic change of Pr. 0 Torque boost and Pr. 12 DC injection brake operation voltage

- When initial values are set in Pr. 0 and Pr.12, the Pr. 0 and Pr. 12 settings are automatically changed to the values in the following table by changing the Pr. 71 setting.

Inverter		Pr． 0 value（\％）after automatic change								Pr． 12 value（\％）after automatic change		
FR－A820－［］	FR－A840－［］	Standard Motor ${ }^{* 1}$		Constant－ torque motor＊2		SF－PR ${ }^{*}$				Standard Motor ${ }^{* 1}$	Constant－ torque motor ${ }^{*}$ 2	SF－PR＊3
		$\begin{aligned} & \hline \text { SLD/ } \\ & \text { LD } \end{aligned}$	$\begin{aligned} & \text { ND/ } \\ & \text { HD } \end{aligned}$	$\begin{gathered} \text { SLD/ } \\ \text { LD } \end{gathered}$	$\begin{aligned} & \text { ND/ } \\ & \text { HD } \end{aligned}$	$\begin{gathered} \operatorname{Pr} .81 \neq \\ 2,4,6 \end{gathered}$	Pr． $81=2$	Pr． $81=4$	Pr． $81=6$			
00046 （0．4K）	00023 （0．4K）	6		6		4	4	4	4	4	4	4
00077 （0．75K）	00038 （0．75K）	6		6		4	7.4	6	6.4	4	4	4
00105 （1．5K）	00052 （1．5K）	4		4		3	5.8	5	3.7	4	4	2.5
00167 （2．2K）	00083 （2．2K）	4		4		2.5	6	4.5	3.3	4	4	2.5
00250 （3．7K）	00126 （3．7K）	4		4		2.5	6.4	4.5	4.2	4	4	2.5
00340 （5．5K）	00170 （5．5K）	3		2		2	4.5	3.7	3.3	4	2	2
00490 （7．5K）	00250 （7．5K）	3		2		2	4.4	4.5	3.8	4	2	2
00630 （11K）	00310 （11K）	2		2		1.5	3.5	3.3	3.5	2	2	1.5
00770 （15K）	00380 （15K）	2		2		1.5	4.5	3	3.5	2	2	1.5
00930 （18．5K）	00470 （18．5K）	2		2		1.5	4	3.2	3	2	2	1.5
01250 （22K）	00620 （22K）	2		2		1.5	2.5	3.4	3	2	2	1
01540 （30K）	00770 （30K）	2		2		1	3	2	2.5	2	2	1
01870 （37K）	00930 （37K）	2		2		1	2	2.5	2.6	2	2	1
02330 （45K）	01160 （45K）	1.5	2	1.5	2	1	2	2	2.4	2	2	1
03160 （55K）	01800 （55K）	1.5	2	1.5	2	0.7	2	2	0.7	2	2	1
03800(75K) or higher	02160(75K)   or higher	1		1		1	1	1	1	1	1	1

＊1 Pr． $71=$＂ 0,2 to 6，20，23，24，40，43，or 44＂（standard motor）
＊2 Pr． $71=$＂1， 13 to $16,50,53$ ，or 54 ＂（constant－torque motor）
＊3 Pr． 71 ＝＂70，73，or 74＂（SF－PR）

## NOTE

－When the Pr． 0 and Pr． 12 settings are changed from their initial values，the automatic change is not performed．
－When the SF－PR motor is selected（Pr． $71=" 70,73$ ，or 74 ＂），the output current may become large due to a small load by setting Pr． 81 Number of motor poles according to the number of the SF－PR motor poles．
－When the SF－PR motor is used，the output current tends to increase compared with the case where the SF－JR or SF－HR motor is used．Depending on the load conditions，the output current may increase even though the torque boost value has been automatically changed．When the protective function such as the electronic thermal O／L relay（E．THT，E．THM）or stall prevention（OL，E．OLT）is activated，adjust the Pr． 0 Torque boost according to the load．

## CAUTION

－Make sure to set this parameter correctly according to the motor used．Incorrect setting may cause the motor and the inverter to overheat and burn．

## 《＜Parameters referred to 》》

Pr． 0 Torque boost page 672
Pr． 12 DC injection brake operation voltage page 681
Pr． 14 Load pattern selection page 674
Pr． 96 Auto tuning setting／status page 509
Pr． 100 to Pr． 109 （Adjustable 5 points V／F）
Pr． 178 to Pr． 189 （Input terminal function selection）page 496
Pr． 684 Tuning data unit switchover page 509
Pr． 800 Control method selection page 215

## 5．13．2 Offline auto tuning

## Magneticfflux Sensorless Vector

The offline auto tuning enables the optimal operation of a motor．
－Under Advanced magnetic flux vector control，Real sensorless vector control，or Vector control，automatic measurement of motor constants（offline auto tuning）enables optimal operation of motors even when motor constants vary，when a motor of another company is used，or when the wiring distance is long．

For the offline auto tuning for a PM motor, refer to page 519.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 684 \\ & \text { C000 } \end{aligned}$	Tuning data unit switchover	0	0	Internal data converted value
			1	The value is indicated in $\mathrm{A}, \Omega, \mathrm{mH}$, or \%.
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16,20,23,24 \text {, } \\ & 30,33,34,40,43,44,50, \\ & 53,54,70,73,74,330,333, \\ & 334,8090,8093,8094, \\ & 9090,9093,9094 \end{aligned}$	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \text { C101 } \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}{ }^{*} 2$	Set the applied motor capacity.
			0 to $3600 \mathrm{~kW}^{*} 3$	
			9999	V/F control
81 C102	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & 9 \\ & \mathrm{C} 103 \end{aligned}$	Electronic thermal O/L relay	Inverter rated current ${ }^{* 1}$	0 to $500 \mathrm{~A}^{*}$	Set the rated motor current.
			0 to $3600 \mathrm{~A}^{*}$	
$\begin{aligned} & 83 \\ & \text { C104 } \end{aligned}$	Rated motor voltage	$\begin{aligned} & 200 / \\ & 400 \mathrm{~V}^{*} 4 \end{aligned}$	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \text { C105 } \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency (Hz).
			9999	The setting value of Pr. 3 Base frequency is used.
$\begin{aligned} & 707 \\ & \text { C107 } \end{aligned}$	Motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia.   9999: The constant value of Mitsubishi Electric motor (SF-PR,
$\begin{aligned} & 724 \\ & \text { C108 } \end{aligned}$	Motor inertia (exponent)	9999	0 to 7, 9999	SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500 r/min series) and so on) is used.
$\begin{aligned} & 96 \\ & \text { C110 } \end{aligned}$	Auto tuning setting/status	0	0	No offline auto tuning
			1	Offline auto tuning is performed without rotating the motor.
			11	Offline auto tuning is performed without rotating the motor (V/F control, IPM motor MM-CF). (Refer to page 606.)
			101	Offline auto tuning is performed while rotating the motor.
$\begin{aligned} & 90 \\ & \text { C120 } \end{aligned}$	Motor constant (R1)	9999	0 to $50 \Omega$, 9999*5	Tuning data (The value measured by offline auto tuning is automatically set.)   9999: The constant value of Mitsubishi Electric motor (SF-PR, SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500 r/min series) and so on) is used.
			0 to $400 \mathrm{~m} \Omega, 9999 * 3 * 5$	
$\begin{aligned} & 91 \\ & \mathrm{C} 121 \end{aligned}$	Motor constant (R2)	9999	0 to $50 \Omega, 9999 * 2 * 5$	
			0 to $400 \mathrm{~m} \Omega, 9999 * 3 * 5$	
$\begin{aligned} & 92 \\ & \mathrm{C} 122 \end{aligned}$	Motor constant (L1)/d-axis inductance (Ld)	9999	0 to $6000 \mathrm{mH}, 9999^{* 2 * 5}$	
			0 to $400 \mathrm{mH}, 99993^{*} 5$	
$\begin{aligned} & 93 \\ & \mathrm{C} 123 \end{aligned}$	Motor constant (L2)/q-axis inductance (Lq)	9999	0 to $6000 \mathrm{mH}, 9999{ }^{*}{ }^{*} 5$	
			0 to $400 \mathrm{mH}, 9999{ }^{*}{ }^{*} 5$	
$\begin{aligned} & 94 \\ & \mathrm{C} 124 \end{aligned}$	Motor constant (X)	9999	0 to 100\%, 9999*5	
$\begin{aligned} & 82 \\ & \mathrm{C} 125 \end{aligned}$	Motor excitation current	9999	0 to $500 \mathrm{~A}, 9999 *{ }^{*} 5$	
			0 to 3600 A, 9999*3*5	
$\begin{aligned} & 859 \\ & \text { C126 } \end{aligned}$	Torque current/ Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999 * 2 * 5$	
			0 to 3600 A, 9999*3*5	
$\begin{aligned} & 298 \\ & \text { A711 } \end{aligned}$	Frequency search gain	9999	0 to 32767	The offline auto tuning automatically sets the gain required for the frequency search.
			9999	The constant value of Mitsubishi Electric motor (SF-PR, SFJR, SF-HR, SF-JRCA, SF-HRCA and so on) is used.
$\begin{aligned} & 450 \\ & \text { C200 } \end{aligned}$	Second applied motor	9999	$0,1,3$ to 6,13 to $16,20,23$, 24, 30, 33, 34, 40, 43, 44, 50, 53, 54, 70, 73, 74, 330, 333, 334, 8090, 8093, 8094, 9090, 9093, 9094	Set this parameter when using the second motor (the same specifications as Pr.71).
			9999	The function is disabled.
$\begin{aligned} & 453 \\ & \mathrm{C} 201 \end{aligned}$	Second motor capacity	9999	0.4 to $55 \mathrm{~kW}{ }^{*} 2$	Set the capacity of the second motor.
			0 to $3600 \mathrm{~kW}^{* 3}$	
			9999	V/F control


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 454 \\ & \mathrm{C} 202 \end{aligned}$	Number of second motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of poles of the second motor.
			9999	V/F control
$\begin{aligned} & 51 \\ & \text { C203 } \end{aligned}$	Secondelectronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{*} 2$	This function is enabled when the RT signal is ON. Set the rated motor current.
			0 to $3600 \mathrm{~A}^{*}$	
			9999	Second electronic thermal O/L relay disabled.
$\begin{array}{\|l\|} \hline 456 \\ \mathrm{C} 204 \\ \hline \end{array}$	Rated second motor voltage	$\begin{aligned} & 200 / \\ & 400 \mathrm{~V}^{*} 4 \end{aligned}$	0 to 1000 V	Set the rated voltage ( V ) of the second motor.
$\begin{aligned} & 457 \\ & \mathrm{C} 205 \end{aligned}$	Rated second motor frequency	9999	10 to 400 Hz	Set the rated frequency ( Hz ) of the second motor.
			9999	The Pr. 84 Rated motor frequency setting is used.
$\begin{aligned} & \hline 744 \\ & \text { C207 } \\ & \hline \end{aligned}$	Second motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia of the second motor. 9999. The constant value of Mitsubishi Electric motor (SF-PR,
$\begin{array}{\|l\|} \hline 745 \\ \text { C208 } \end{array}$	Second motor inertia (exponent)	9999	0 to 7,9999	SF-JR, SF-HR, SF-JRCA, SF-HRCA and so on) is used.
$\begin{aligned} & 463 \\ & \text { C210 } \end{aligned}$	Second motor auto tuning setting/status	0	0	No auto tuning for the second motor.
			1	Offline auto tuning is performed without rotating the second motor.
			11	Offline auto tuning is performed without rotating the motor (V/F control, IPM motor MM-CF). (Refer to page 606.)
			101	Offline auto tuning is performed while rotating the second motor.
$\begin{aligned} & 458 \\ & \mathrm{C} 220 \end{aligned}$	Second motor constant (R1)	9999	0 to $50 \Omega$, 9999*2*5	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)   9999: The constant value of Mitsubishi Electric motor (SF-PR, SF-JR, SF-HR, SF-JRCA, SF-HRCA and so on) is used.
			0 to $400 \mathrm{~m} \Omega, 9999 * 3 * 5$	
$\begin{aligned} & 459 \\ & \mathrm{C} 221 \end{aligned}$	Second motor constant (R2)	9999	0 to $50 \Omega, 9999 * 2 * 5$	
			0 to $400 \mathrm{~m} \Omega, 9999 * 3 * 5$	
$\begin{aligned} & 460 \\ & \mathrm{C} 222 \end{aligned}$	Second motor constant (L1) / daxis inductance (Ld)	9999	0 to $6000 \mathrm{mH}, 9999^{* 2 * 5}$	
			0 to $400 \mathrm{mH}, 9999{ }^{*}{ }^{*} 5$	
$\begin{aligned} & 461 \\ & \mathrm{C} 223 \end{aligned}$	Second motor constant (L2) / qaxis inductance (Lq)	9999	0 to $6000 \mathrm{mH}, 999{ }^{* 2 * 5}$	
			0 to $400 \mathrm{mH}, 9999 * 3 * 5$	
$\begin{aligned} & 462 \\ & \mathrm{C} 224 \end{aligned}$	Second motor constant (X)	9999	0 to 100\%, 9999*5	
$\begin{aligned} & 455 \\ & \text { C225 } \end{aligned}$	Second motor excitation current	9999	0 to $500 \mathrm{~A}, 9999 * 2 * 5$	
			0 to 3600 A, 9999*3*5	
$\begin{aligned} & 860 \\ & \text { C226 } \end{aligned}$	Second motor torque current/ Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999 * 2 * 5$	
			0 to $3600 \mathrm{~A}, 9999^{*}{ }^{*} 5$	
$\begin{aligned} & 560 \\ & \text { A712 } \end{aligned}$	Second frequency search gain	9999	0 to 32767	The offline auto tuning automatically sets the gain required for the frequency search of the second motor.
			9999	The constant value of Mitsubishi Electric motor (SF-PR, SFJR, SF-HR, SF-JRCA, SF-HRCA and so on) is used for the second motor.

[^26]- The function is enabled under Advanced magnetic flux vector control, Real sensorless vector control, and Vector control.
- By using the offline auto tuning function, the optimum operation characteristics are obtained for a motor other than Mitsubishi Electric standard motors (SF-JR 0.4 kW or higher), high-efficiency motors (SF-HR 0.4 kW or higher), Mitsubishi Electric constant-torque motors (SF-JRCA 4P, SF-HRCA 0.4 kW to 55 kW ), Mitsubishi Electric high-performance energy-serving motor (SF-PR), or Vector control dedicated motors (SF-V5RU (1500 r/min series)), such as an induction motor of other manufacturers, SF-JRC, or SF-TH, or with a long wiring length ( 30 m or longer).
- Tuning is enabled even when a load is connected to the motor.
- During offline auto tuning, the motor rotation can be locked (Pr. $96=" 1 "$ ) or unlocked ( $\operatorname{Pr} .96=" 101 "$ ). The tuning is more accurate when the motor can rotate (unlocked).
- Reading/writing of the motor constants tuned by offline auto tuning are enabled. The offline auto tuning data (motor constants) can be copied to another inverter using the operation panel.
- The offline auto tuning status can be monitored on the operation panel or the parameter unit.


## - Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- Check that a value other than "9999" is set in Pr. 80 and Pr.81, and Advanced magnetic flux vector control, Real sensorless vector control, or Vector control is selected (with Pr.800).
- Check that a motor is connected. (Check that the motor is not rotated by an external force during tuning.)
- Select a motor with the rated current equal to or less than the inverter rated current. (The motor capacity must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- Tuning is not available for a high-slip motor, high-speed motor, or special motor.
- The maximum frequency is 400 Hz .
- The motor may rotate slightly even if the offline auto tuning without motor rotation (Pr. 96 Auto tuning setting/status = "1") is selected. (The slight motor rotation does not affect the tuning performance.)
Fix the motor securely with a mechanical brake, or make sure that it is safe even if the motor rotates. (Caution is required especially in vertical lift applications.)
- Check the following points for the offline auto tuning with motor rotation (Pr. 96 Auto tuning setting/status = "101"). The torque is not sufficient during tuning.
Check that the motor can be rotated up to the speed close to the rated speed.
Check that the mechanical brake is released.
- Offline auto tuning is not performed correctly when the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) is inserted between the inverter and motor. Be sure to remove it before performing tuning.
- Make sure to connect the encoder to the motor without coaxial misalignment for Vector control. Set the speed ratio to 1:1.


## - Setting

- To perform tuning, set the following parameters about the motor.

First motor Pr.	Second motor Pr.	Name	Initial value	Description
80	453	Motor capacity	9999 (V/F control)	Set the motor capacity (kW).
81	454	Number of motor poles	9999 (V/F control)	Set the number of motor poles (2 to 12).
800	451	Control method selection	20	Set this parameter under Vector control or Real sensorless vector control.
9	51	Electronic thermal O/L relay	Inverter rated current	Set the rated motor current (A).
83	456	Rated motor voltage	$200 \mathrm{~V} / 400 \mathrm{~V}^{* 1}$	Set the rated motor voltage (V) printed on the motor's rating plate.*2
84	457	Rated motor frequency	9999	Set the rated motor frequency ( Hz ). ${ }^{*}$ When the setting is "9999", the Pr. 3 Base frequency setting is used.
71	450	Applied motor	0 (standard motor)	Set this parameter according to the motor. ${ }^{* 3}$ Three types of motor constant setting ranges, units and tuning data can be stored according to settings.
96	463	Auto tuning setting/ status	0	Set "1" or "101".   1: Tuning is performed without rotating the motor. (Excitation noise occurs at this point.)   101: Tuning is performed while rotating the motor. The motor can rotate up to the speed near the rated motor frequency.

*1 The initial value differs according to the voltage class ( $200 \mathrm{~V} / 400 \mathrm{~V}$ ).
*2 For the settings for the SF-V5RU, refer to page 93.
*3 Set Pr. 71 Applied motor according to the motor to be used and the motor constant setting range. According to the Pr. 71 setting, the range of the motor constant parameter setting values and units can be changed. (For other setting values of Pr.71, refer to page 505.)

Motor		Pr. 71 setting		
		Motor constant parameter $\mathrm{mH}, \%$, and A unit setting	Motor constant parameter internal data setting	Motor constant parameter $\Omega, m \Omega$, and $A$ unit setting
Mitsubishi Electric standard motor Mitsubishi Electric high-efficiency motor	SF-JR, SF-TH	0 (initial value)	3 (4)	-
	SF-JR 4P 1.5 kW or lower	20	23 (24)	-
	SF-HR	40	43 (44)	-
	Others	0 (initial value)	3 (4)	-
Mitsubishi Electric constant-torque motor	SF-JRCA 4P, SF-TH (constanttorque)	1	13 (14)	-
	SF-HRCA	50	53 (54)	-
	Others (SF-JRC, etc.)	1	13 (14)	-
Mitsubishi Electric high-performance energy-saving motor	SF-PR	70	73 (74)	-
Vector control dedicated motor	$\begin{aligned} & \text { SF-V5RU (1500 r/min series) } \\ & \text { SF-THY } \end{aligned}$	30	33 (34)	-
	SF-V5RU (other than the $1500 \mathrm{r} / \mathrm{min}$ series)	1	13 (14)	-
Other manufacturer's standard motor	-	0 (initial value)	3 (4)	5 (Wye connection motor)   6 (delta connection motor)
Other manufacturer's constant-torque motor	-	1	13 (14)	15 (Wye connection motor) 16 (delta connection motor)

## NOTE

- When the SF-V5RU (other than the $1500 \mathrm{r} / \mathrm{min}$ series) is used, be sure to perform auto tuning after setting "1, 13, or 14 " in Pr. 71 and setting Pr. 83 and Pr. 84.
- When Pr. 11 DC injection brake operation time = " 0 " or Pr. 12 DC injection brake operation voltage = " 0 ", offline auto tuning is performed at the initial setting of Pr. 11 or Pr. 12.
- When position control is selected (Pr. $\mathbf{8 0 0}=$ " 3 or 5 " (when the MC signal is OFF)), offline auto tuning is not performed.
- If "wye connection" or "delta connection" is incorrectly selected in Pr.71, Advanced magnetic flux vector control, Real sensorless vector control, and Vector control are not performed properly.
- For tuning accuracy improvement, set the following parameters when the motor constants are known in advance.

First motor Pr.	Second motor Pr.	Name	Mitsubishi Electric motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU)	Other motors
707	744	Motor inertia (integer)	9999 (initial value)	Motor inertia*4 $\mathrm{Jm}=\operatorname{Pr} .707 \times 10^{\wedge}(-$ Pr.724) (kg•m²)
724	745	Motor inertia (exponent)		

*4 The setting is valid only when a value other than "9999" is set in both Pr. 707 (Pr. 744 ) and Pr. 724 (Pr. 745 ).

## - Performing tuning

## Point $\rho$

- Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable
- In the PU operation mode, press FWD/ REV on the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.

## NOTE

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of the MRS signal.
- To force tuning to end, use the MRS or RES signal or press $\begin{aligned} & \text { STOP } \\ & \text { RESET }\end{aligned}$ on the operation panel.
(Turning OFF the start signal (STF signal or STR signal) also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid (initial value). Input terminals <valid signals>: STP (STOP), OH, MRS, RT, RES, STF, STR, S1, and S2 Output terminals: RUN, OL, IPF, FM/CA, AM, A1B1C1, and So (SO)
- When the rotation speed and the output frequency are selected for terminals FM/CA and AM, the progress status of offline auto tuning is output in 15 steps from FM/CA and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- Setting offline auto tuning (Pr. 96 Auto tuning setting/status $=$ " 1 or $101^{\prime \prime}$ ) will make pre-excitation invalid.
- When the offline auto tuning with motor rotation is selected (Pr. 96 Auto tuning setting/status = "101"), take caution and ensure safety against the rotation of the motor.
- Since the Inverter running (RUN) signal turns ON when tuning is started, pay close attention especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the operation command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = " 7 ", turn ON the PU operation external interlock (X12) signal for tuning in the PU operation mode.
- During tuning, the monitor is displayed on the operation panel as follows.

Pr. 96 setting	1	101	1	101
	Operation panel (FR-DU08) display		Parameter unit (FR-LU08) display	
(1) Setting				
(2) During tuning				
(3) Normal completion				

- Note: Offline auto tuning time (with the initial setting)

Offline auto tuning setting	
No motor rotation (Pr. $96=" 1 ")$	About 25 to 120 s (The time depends on the inverter capacity and motor type.)
With motor rotation (Pr. $96=" 101 ")$	About 40 s   (The following offline auto tuning time is set according to the acceleration/deceleration time setting.   Offline auto tuning time $=$ acceleration time + deceleration time + about 30 s$)$

- When offline auto tuning ends, press $\square$ on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal).

This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication.
(Without this operation, next operation cannot be started.)

## NOTE

- The motor constants measured once during offline auto tuning are stored as parameters and their data are held until offline auto tuning is performed again. However, the tuning data is cleared when performing All parameter clear.
- Changing Pr. 71 (Pr.450) after tuning completion will change the motor constant. For example, if " 3 " is set in Pr. 71 after tuning is performed with $\operatorname{Pr} .71=" 0$ ", the tuning data becomes invalid. To use the tuned data, set " 0 " again in Pr. 71.
- If offline auto tuning has ended in error (see the following table), motor constants are not set. Perform an inverter reset and perform tuning again.

Error display	Error cause	Countermeasures
8	Forced end	Set Pr. $96=$ "1 or 101" and try again.
9	Inverter protective function operation	Make the setting again.
91	The current limit (stall prevention) function is activated.	Set the acceleration/deceleration time longer.   Set Pr. 156 Voltage reduction selection during   stall prevention operation $=$ "1".
92	The converter output voltage fell to $75 \%$ of the rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr.84 Rated motor frequency setting.
93	Calculation error.   The motor is not connected.	Check the settings of Pr.83 and Pr.84.   Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error   (The frequency command for the tuning was given to exceed the   maximum frequency setting, or to be in the frequency jump range.)	Check the Pr.1 Maximum frequency and Pr. 31 to   Pr. 36 Frequency jump settings.

- When tuning is ended forcibly by pressing $\frac{\text { STOP }}{\text { BRSSTV }}$ or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)
Perform an inverter reset and perform tuning again.
- When the rated power supply of the motor is $200 / 220 \mathrm{~V}(400 / 440 \mathrm{~V}) 60 \mathrm{~Hz}$, set the rated motor current multiplied by 1.1 in Pr. 9 Electronic thermal O/L relay after tuning is complete.
- For a motor with a PTC thermistor, thermal protector, or other thermal detector, set " 0 " (motor overheat protection by inverter invalid) in Pr. 9 to protect the motor from overheating.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when the STF (STR) signal is ON, the motor starts forward (reverse) rotation.
- Any fault occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## CAUTION

- Note that the motor may start running suddenly.
- For performing offline auto tuning with motor rotation in vertical lift applications, etc., caution is required to avoid falling due to insufficient torque.


## - Changing the motor constants

- The motor constants can be set directly when the motor constants are known in advance, or by using the data measured during offline auto tuning.
- According to the Pr. 71 (Pr.450) setting, the range of the motor constant parameter setting values and units can be changed. The changed settings are stored in the EEPROM as the motor constant parameters.


## - Changing the motor constants (when setting the Pr. 92 and Pr. 93 motor constants in units of mH )

- Set Pr. 71 as follows.

Motor		Pr.71 setting
Mitsubishi Electric standard motor   Mitsubishi Electric high-efficiency motor	SF-JR	0 (initial value)
	SF-JR 4P 1.5 kW or lower	20
	SF-HR	40
Mitsubishi Electric constant-torque motor	SF-JRCA 4P	1
	SF-HRCA	50
Mitsubishi Electric high-performance   energy-saving motor	SF-PR	70
		30
	SF-V5RU (other than the 1500 r/min series)	1

- Use the following formula to find the Pr. 94 setting value and set a desired value as the motor constant parameter.



R1: Primary resistance
R2: Secondary resistance
11: Primary leakage inductance
I2: Secondary leakage inductance
M: Excitation inductance
S: Slip
L1= I1+M: Primary inductance
L2 $=12+\mathrm{M}$ : Secondary inductance
Equivalent circuit diagram of the motor

First motor Pr.	Second motor Pr.	Name	Setting range	Setting increments	Initial value
82	455	Motor excitation current (no load current)	0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	9999
			0 to 3600 A, 9999*2	0.1 A ${ }^{*}$	
90	458	Motor constant (R1)	0 to $50 \Omega, 999{ }^{* 1}$	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
91	459	Motor constant (R2)	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/d-axis inductance (Ld)	0 to $6000 \mathrm{mH}, 9999^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
			0 to $400 \mathrm{mH}, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{mH}^{*}{ }^{2}$	
93	461	Motor constant (L2)/q-axis inductance (Lq)	0 to $6000 \mathrm{mH}, 9999^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
			0 to $400 \mathrm{mH}, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{mH}^{*} 2$	
94	462	Motor constant (X)	0 to 100\%, 9999	0.1\% ${ }^{* 1}$	
				0.01\% ${ }^{\text {2 }}$	
859	860	Torque current/Rated PM motor current	0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	
			0 to 3600 A, 9999*2	0.1 A ${ }^{\text {2 }}$	
298	560	Frequency search gain	0 to 32767, 9999	1	

*1 For the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower.
*2 For the FR-A820-75K(03800) or higher and FR-A840-75K(02160) or higher.

## NOTE

- If "9999" is set, tuning data will be invalid and the constant values for Mitsubishi Electric motors (SF-PR, SF-JR, SF-HR, SFJRCA, SF-HRCA and SF-V5RU (1500 r/min series) and so on) are used.


## - Changing the motor constants (when setting motor constants in the internal data of the inverter)

- Set Pr. 71 as follows.

Motor		Pr.71 setting
Mitsubishi Electric standard motor   Mitsubishi Electric high-efficiency motor	SF-JR, SF-TH	$3(4)$
	SF-JR 4P 1.5 kW or lower	$23(24)$
	SF-HR	$43(44)$
Mitsubishi Electric constant-torque motor	Others	$3(4)$
	SF-JRCA 4P and   SF-TH (constant-torque)	$13(14)$
Mitsubishi Electric high-performance   energy-saving motor	SF-HRCA	$53(54)$
Vector control dedicated motor	SF-PR	$13(14)$
	SF-V5RU (1500 r/min series)   SF-THY	$73(74)$
	-	$33(34)$

- Set desired values as the motor constant parameters. The display units of the read motor constants can be changed with

Pr. 684 Tuning data unit switchover. Setting Pr. $684=$ "1" disables parameter setting changes.

First motor Pr.	Second motor Pr.	Name	Pr. $684=0$ (initial value)		Pr. $684=1$		Initial value
			Setting range	Setting increments	Range indication	Unit indication	
82	455	Motor excitation current	0 to ***, 9999	1	0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	9999
					0 to $3600 \mathrm{~A}, 9999^{*}$	$0.1 \mathrm{~A}^{*}$	
90	458	Motor constant (R1)			0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
					0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{*}{ }^{2}$	
91	459	Motor constant (R2)			0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
					0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{*}{ }^{2}$	
92	460	Motor constant (L1)/ d-axis inductance (Ld)			0 to $6000 \mathrm{mH}, 9999{ }^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
					0 to $400 \mathrm{mH}, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{mH}^{*}{ }^{\text {2 }}$	
93	461	Motor constant (L2)/ q -axis inductance (Lq)			0 to $6000 \mathrm{mH}, 999{ }^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
					0 to $400 \mathrm{mH}, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{mH}^{* 2}$	
94	462	Motor constant (X)			0 to 100\%, 9999	$0.1 \%^{* 1}$	
						0.01\%*2	
859	860	Torque current/ Rated PM motor current			0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	
					0 to $3600 \mathrm{~A}, 9999^{*}$	$0.1 \mathrm{~A}^{*}$	
298	560	Frequency search gain	0 to 32767, 9999	1	0 to 32767, 9999	1	

*1 For the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower.
*2 For the FR-A820-75K(03800) or higher and FR-A840-75K(02160) or higher.

## NOTE

- As the motor constants measured in the offline auto tuning have been converted into internal data (****), refer to the following setting example when making setting. (The value displayed has been converted into a value for internal use. Therefore, simple addition of a value to the displayed value does not bring the desired effect.)
Setting example: To slightly increase the Pr. 90 value (5\%)
When "2516" is displayed for Pr.90, set $2642(2516 \times 1.05=2641.8)$ in Pr. 90.
- If "9999" is set, tuning data will be invalid and the constant values for Mitsubishi Electric motors (SF-PR, SF-JR, SF-HR, SFJRCA, SF-HRCA and SF-V5RU (1500 r/min series) and so on) are used.


## Changing the motor constants (when setting the Pr. 92 and Pr. 93 motor constants in units of $\Omega$ )

- Set Pr. 71 as follows.

Applied motor		Pr.71 setting	
		Delta connection motor	
Standard motor	5	6	16
Constant-torque motor	15		

- Set desired values as the motor constant parameters.
$\mathrm{Iq}=$ torque current, $\mathrm{I} 100=$ rated current, $\mathrm{I} 0=$ no load current
$\mathrm{Iq}=\sqrt{1100^{2}-10^{2}}$

Firstmotor Pr.	Second motor Pr.	Name	Setting range	Setting increments	Initial value
82	455	Motor excitation current (no load current)	0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	9999
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
90	458	Motor constant (r1)	0 to $50 \Omega, 9999 * 1$	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{* 2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
91	459	Motor constant (r2)	0 to $50 \Omega, 9999 * 1$	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{*}{ }^{2}$	
92	460	Motor constant (x1)	0 to $50 \Omega, 9999{ }^{* 1}$	$0.001 \Omega^{* 1}$	
			0 to $3600 \mathrm{~m} \Omega$, $9999{ }^{*}$	$0.1 \mathrm{~m} \Omega^{* 2}$	
93	461	Motor constant (x2)	0 to $50 \Omega, 9999 * 1$	$0.001 \Omega^{* 1}$	
			0 to $3600 \mathrm{~m} \Omega$, $9999{ }^{*}$	$0.1 \mathrm{~m} \Omega^{* 2}$	
94	462	Motor constant (xm)	0 to $500 \Omega, 999{ }^{* 1}$	$0.01 \Omega$	
			0 to $100 \Omega, 9999 * 2$		
859	860	Torque current/Rated PM motor current	0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
298	560	Frequency search gain	0 to 32767, 9999	1	

*1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.

## NOTE

- If "wye connection" or "delta connection" is incorrectly selected in Pr.71, Advanced magnetic flux vector control, Real sensorless vector control, and Vector control are not performed properly.
- If "9999" is set, tuning data will be invalid and the constant values for Mitsubishi Electric motors (SF-PR, SF-JR, SF-HR, SFJRCA, SF-HRCA and SF-V5RU (1500 r/min series) and so on) are used.


## - Tuning the second motor

- When one inverter switches the operation between two different motors, set the second motor in Pr. 450 Second applied motor. (Refer to page 505.) In the initial setting, no second motor is applied.
- Turning ON the RT signal enables the parameter settings for the second motor as follows.

Function	RT signal-ON   (second motor)	RT signal-OFF   (first motor)
Motor capacity	Pr. 453	Pr. 80
Number of motor poles	Pr. 454	Pr. 81
Motor excitation current	Pr. 455	Pr. 82
Rated motor voltage	Pr. 456	Pr. 83
Rated motor frequency	Pr. 457	Pr. 84
Motor constant (R1)	Pr. 458	Pr. 90
Motor constant (R2)	Pr. 459	Pr. 91
Motor constant (L1)/d-axis inductance   (Ld)	Pr. 460	Pr. 92
Motor constant (L2)/q-axis inductance   (Lq)	Pr. 461	Pr. 93
Motor constant (X)	Pr. 462	Pr. 94
Auto tuning setting/status	Pr. 563	Pr. 96
Frequency search gain		Pr. 298

## NOTE

- The RT signal is assigned to terminal RT in the initial status. Set " 3 " in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

《 Parameters referred to 》
Pr. 1 Maximum frequency page 407
Pr. 9 Electronic thermal O/L relay page 394
Pr. 31 to Pr. 36 Frequency jump page 408
Pr. 71 Applied motor $\equiv 305$
Pr. 156 Stall prevention operation selection page 409
Pr. 178 to Pr. 189 (input terminal function selection) page 496
Pr. 190 to Pr. 196 (output terminal function selection) page 450
Pr. 800 Control method selection page 215

### 5.13.3 Offline auto tuning for a PM motor (motor constant tuning)

## PMM

The offline auto tuning enables the optimal operation of a PM motor.

- Automatic measurement of motor constants (offline auto tuning) enables optimal operation of motors for PM sensorless vector control even when motor constants vary or when the wiring distance is long. IPM and SPM motors other than the MM-CF IPM motor can also be used.
For the offline auto tuning under Advanced magnetic flux vector control, Real sensorless vector control, and Vector control, refer to page 509.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{\|l\|} \hline 684 \\ \text { C000 } \end{array}$	Tuning data unit switchover	0	0	Internal data converted value
			1	The value is indicated in $\mathrm{A}, \Omega, \mathrm{mH}$, or mV .
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	0 to 6,13 to 16, 20, 23, 24, $30,33,34,40,43,44,50$, 53, 54, 70, 73, 74, 330, 333, 334, 8090, 8093, 8094, 9090, 9093, 9094	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \text { C101 } \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}^{*}{ }^{2}$	Set the applied motor capacity.
			0 to $3600 \mathrm{~kW}^{* 3}$	
			9999	V/F control
$\begin{array}{\|l\|} \hline 81 \\ C 102 \end{array}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 9 \\ & \mathrm{C} 103 \end{aligned}$	Electronic thermal O/L relay	Inverter rated current ${ }^{* 1}$	0 to $500 \mathrm{~A}^{*}$	Set the rated motor current.
			0 to $3600 \mathrm{~A}^{*}$	
$\begin{aligned} & 83 \\ & C 104 \end{aligned}$	Rated motor voltage	$\begin{aligned} & 200 / \\ & 400 V^{*} 4 \end{aligned}$	0 to 1000 V	Set the rated motor voltage (V).
84 C105	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency ( Hz ).
			9999	The MM-CF constant is used when the IPM motor MM-CF is selected, and the inverter internal data is used when a PM motor other than MM-CF is selected. Use the correct setting according to the motor specification.
$\begin{aligned} & 702 \\ & \text { C106 } \end{aligned}$	Maximum motor frequency	9999	0 to 400 Hz	Set the permissible speed (frequency) of the motor.
			9999	The MM-CF motor maximum frequency is used when the IPM motor MM-CF is selected, and Pr. 84 setting is used when a PM motor other than MM-CF is selected.
$\begin{aligned} & 707 \\ & \text { C107 } \end{aligned}$	Motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia.
$\begin{aligned} & 724 \\ & \mathrm{C} 108 \end{aligned}$	Motor inertia (exponent)	9999	0 to 7, 9999	9999: The MM-CF inertia is used for the IPM motor MM-CF.
$\begin{array}{\|l} 96 \\ \mathrm{C} 110 \end{array}$	Auto tuning setting/ status	0	0,101	No offline auto tuning
			1	Offline auto tuning is performed without rotating the motor (motor other than IPM motor MM-CF).
			11	Offline auto tuning is performed without rotating the motor (for IPM motor MM-CF).
$\begin{aligned} & 90 \\ & \mathrm{C} 120 \end{aligned}$	Motor constant (R1)	9999	0 to $50 \Omega$, 9999*2*5	Tuning data   (The value measured by offline auto tuning is automatically set.)   9999: The MM-CF constant is used when the IPM motor MMCF is selected, and the inverter internal data is used when a PM motor other than MM-CF is selected.
			0 to $400 \mathrm{~m} \Omega, 9999 * 3 * 5$	
$\begin{aligned} & 92 \\ & \mathrm{C} 122 \end{aligned}$	Motor constant (L1)/daxis inductance (Ld)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 5$	
			0 to $50 \mathrm{mH}, 9999{ }^{* 3} 5$	
$\begin{aligned} & 93 \\ & \mathrm{C} 123 \end{aligned}$	Motor constant (L2)/qaxis inductance (Lq)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 5$	
			0 to $50 \mathrm{mH}, 9999^{* 3 * 5}$	
$\begin{aligned} & 859 \\ & \text { C126 } \end{aligned}$	Torque current/Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999 * 2 * 5$	
			0 to $3600 \mathrm{~A}, 9999{ }^{*}{ }^{*} 5$	
$\begin{aligned} & 706 \\ & \text { C130 } \end{aligned}$	Induced voltage constant (phi f)	9999	0 to $5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s})^{* 5}$	Set this parameter according to the PM motor specifications.
			9999	The value calculated from the parameter setting for motor constant is used.
$\begin{aligned} & 1412 \\ & \text { C135 } \end{aligned}$	Motor induced voltage constant (phif) exponent	9999	0 to 2	Set the exponent $n$ when the induced voltage constant phi $f$ (Pr.706) is multiplied by $10^{n}$.
			9999	No exponent setting
$\begin{aligned} & 711 \\ & \text { C131 } \end{aligned}$	Motor Ld decay ratio	9999	0 to 100\%, 9999	Tuning data   (The value measured by offline auto tuning is automatically   set.)   9999: The MM-CF constant is used when the IPM motor MMCF is selected, and the inverter internal data is used when a PM motor other than MM-CF is selected.
712   C132	Motor Lq decay ratio	9999	0 to 100\%, 9999	
717   C182	Starting resistance tuning compensation	9999	0 to 200\%, 9999	
$\begin{aligned} & 721 \\ & \text { C185 } \end{aligned}$	Starting magnetic pole position detection pulse width	9999	0 to $6000 \mu \mathrm{~s}, 10000$ to $16000 \mu \mathrm{~s}, 9999$	
$\begin{aligned} & 725 \\ & \text { C133 } \end{aligned}$	Motor protection current level	9999	100 to 500\%	Set the maximum current (OCT) level of the motor.
			9999	The MM-CF constant is used when the IPM motor MM-CF is selected, and $200 \%$ when a PM motor other than MM-CF is selected.
$\begin{aligned} & 1002 \\ & \text { C150 } \end{aligned}$	Lq tuning target current adjustment coefficient	9999	50 to 150\%	Adjust the target current during tuning.
			9999	100\%
$\begin{aligned} & 450 \\ & \mathrm{C} 200 \end{aligned}$	Second applied motor	9999	$0,1,3$ to 6,13 to 16,20 , $23,24,30,33,34,40,43$, $44,50,53,54,70,73,74$, 330, 333, 334, 8090, 8093, 8094, 9090, 9093, 9094	Set this parameter when using the second motor (the same specifications as Pr.71).
			9999	The function is disabled.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 453 \\ & \mathrm{C} 201 \end{aligned}$	Second motor capacity	9999	0.4 to $55 \mathrm{~kW}{ }^{*} 2$	Set the capacity of the second motor.
			0 to $3600 \mathrm{~kW}^{*} 3$	
			9999	V/F control
$\begin{aligned} & 454 \\ & \mathrm{C} 202 \end{aligned}$	Number of second motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of poles of the second motor.
			9999	V/F control
$\begin{aligned} & 51 \\ & \mathrm{C} 203 \end{aligned}$	Second electronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{*} 2$	Set the rated current of the second motor.
			0 to $3600 \mathrm{~A}^{* 3}$	
			9999	The second electronic thermal O/L relay is disab
$\begin{aligned} & 456 \\ & \text { C204 } \end{aligned}$	Rated second motor voltage	$\begin{aligned} & 200 \mathrm{~V} / 400 \\ & \mathrm{~V}^{*} 4 \end{aligned}$	0 to 1000 V	Set the rated voltage ( V ) of the second motor.
$\begin{aligned} & 457 \\ & \text { C205 } \end{aligned}$	Rated second motor frequency	9999	10 to 400 Hz	Set the rated frequency ( Hz ) of the second motor.
			9999	The MM-CF constant is used when the IPM motor MM-CF is selected for the second motor, and the inverter internal data is used when a PM motor other than MM-CF is selected. Use the correct setting according to the motor specification.
$\begin{array}{\|l\|} \hline 743 \\ \text { C206 } \end{array}$	Second motor maximum frequency	9999	0 to 400 Hz	Set the permissible speed (frequency) of the second motor.
			9999	The maximum frequency of an MM-CF motor when MM-CF is selected.   The Pr. 457 setting is used when a motor other than MM-CF is selected.
$\begin{array}{\|l\|} \hline 744 \\ \text { C207 } \end{array}$	Second motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia of the second motor.
$\begin{array}{\|l\|} \hline 745 \\ \text { C208 } \end{array}$	Second motor inertia (exponent)	9999	0 to 7,9999	9999: The MM-CF inertia is used for the IPM motor MM-CF.
$\begin{aligned} & 463 \\ & \mathrm{C} 210 \end{aligned}$	Second motor auto tuning setting/status	0	0,101	No auto tuning for the second motor.
			1	Offline auto tuning is performed without rotating the motor (motor other than IPM motor MM-CF).
			11	Offline auto tuning is performed without rotating the motor (for IPM motor MM-CF).
$\begin{aligned} & 458 \\ & \mathrm{C} 220 \end{aligned}$	Second motor constant (R1)	9999	0 to $50 \Omega, 9999{ }^{* 2 * 5}$	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)   9999: The MM-CF constant is used when the IPM motor MMCF is selected, and the inverter internal data is used when a PM motor other than MM-CF is selected.
			0 to $400 \mathrm{~m} \Omega, 9999^{* 3 * 5}$	
$\begin{aligned} & 460 \\ & \mathrm{C} 222 \end{aligned}$	Second motor constant (L1) / d-axis inductance (Ld)	9999	0 to $500 \mathrm{mH}, 9999^{* 2 * 5}$	
			0 to $50 \mathrm{mH}, 9999{ }^{* 3}{ }^{*} 5$	
$\begin{aligned} & 461 \\ & \mathrm{C} 223 \end{aligned}$	Second motor constant (L2) / q-axis inductance (Lq)	9999	0 to $500 \mathrm{mH}, 9999^{* 2 * 5}$	
			0 to $50 \mathrm{mH}, 9999{ }^{* 3 * 5}$	
$\begin{aligned} & 860 \\ & \text { C226 } \end{aligned}$	Second motor torque current/Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999 * 2 * 5$	
			0 to $3600 \mathrm{~A}, 9999{ }^{* 3 * 5}$	
$\begin{aligned} & 738 \\ & \mathrm{C} 230 \end{aligned}$	Second motor induced voltage constant (phi f)	9999	0 to $5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s})^{*} 5$	Set this parameter according to the PM motor specifications.
			9999	Value calculated based on the tuning data.
$\begin{aligned} & 1413 \\ & \mathrm{C} 235 \end{aligned}$	Second motor induced voltage constant (phif) exponent	9999	0 to 2	Set the exponent n when the induced voltage constant phif (Pr.738) is multiplied by $10^{\mathrm{n}}$.
			9999	No exponent setting
$\begin{aligned} & 739 \\ & \text { C231 } \end{aligned}$	Second motor Ld decay ratio	9999	0 to 100\%, 9999	Tuning data of the second motor   (The value measured by offline auto tuning is automatically set.)   9999: The MM-CF constant is used when the IPM motor MMCF is selected, and the inverter internal data is used when a PM motor other than MM-CF is selected.
$\begin{array}{\|l\|} \hline 740 \\ \text { C232 } \end{array}$	Second motor Lq decay ratio	9999	0 to 100\%, 9999	
$\begin{aligned} & 741 \\ & \text { C282 } \end{aligned}$	Second starting resistance tuning compensation	9999	0 to 200\%, 9999	
$\begin{aligned} & 742 \\ & \text { C285 } \end{aligned}$	Second motor magnetic pole detection pulse width	9999	0 to $6000 \mu \mathrm{~s}, 10000$ to $16000 \mu \mathrm{~s}, 9999$	
$\begin{array}{\|l} \hline 746 \\ \text { C233 } \end{array}$	Second motor protection current level	9999	100 to 500\%	Set the maximum current (OCT) level of the second motor.
			9999	The MM-CF constant is used when the IPM motor MM-CF is selected, and $200 \%$ when a PM motor other than MM-CF is selected.

[^27]*3 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.
*4 The initial value differs according to the voltage class ( $200 \mathrm{~V} / 400 \mathrm{~V}$ ).
*5 The setting range and unit change according to the Pr. 71 (Pr.450) setting.

## Point 8

- The settings are valid under PM sensorless vector control.
- The offline auto tuning enables the operation with SPM motors and IPM motors other than MM-CF. (When a PM motor other than the IPM motor MM-CF is used, always perform offline auto tuning.)
- Tuning is enabled even when a load is connected to the motor.
- Reading/writing of the motor constants tuned by offline auto tuning are enabled. The offline auto tuning data (motor constants) can be copied to another inverter using the operation panel.
- The offline auto tuning status can be monitored on the operation panel or the parameter unit.


## Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- Check that PM sensorless vector control is selected.
- Check that a motor is connected. (Check that the motor is not rotated by an external force during tuning.)
- The rated motor current should be equal to or less than the inverter rated current. (The motor capacity must be 0.4 kW or higher.)
If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- The maximum frequency under PM sensorless vector control is 400 Hz .
- The motor may rotate slightly even if the offline auto tuning without motor rotation (Pr. 96 Auto tuning setting/status = " 1 or $11^{\prime \prime}$ ) is selected. (It does not affect the tuning performance.)
Fix the motor securely with a mechanical brake, or make sure that it is safe even if the motor rotates. (Caution is required especially in vertical lift applications.)
- Tuning is not available during position control under PM sensorless vector control.
- Tuning may be disabled depending on the motor characteristics.


## - Setting

- To perform tuning, set the following parameters about the motor.

First motor   Pr.	Second   motor Pr.	Name	Driving a PM motor   other than MM-CF	Setting for   MM-CF
80	453	Motor capacity	Number of motor poles	Notor capacity (kW)
81	454	51	Electronic thermal O/L relay	Rated motor current (A)

*1 Set Pr. 71 Applied motor according to the motor to be used. According to the Pr. 71 setting, the range of the motor constant parameter setting values and units can be changed. (For other setting values of Pr.71, refer to page 505.)

Motor			Pr.71 setting	
		Motor constant parameter   $\mathbf{\Omega}, \mathbf{m H}$, and $\mathbf{A}$ unit setting	Motor constant parameter   internal data setting	
IPM motor	MM-CF	330	$333(334)$	
	Other than MM-CF	8090	$8093(8094)$	
SPM motor		9090	$9093(9094)$	

## NOTE

- Under PM sensorless vector control, tuning cannot be performed even when Pr. $96=" 101 "$. When the MM-CF is set to the applied motor, tuning cannot be performed even when Pr. $96=" 1$ or $101 "$.
- For tuning accuracy improvement, set the following parameters when the motor constants are known in advance.

First motor Pr.	Second monitor Pr.	Name	Setting for a PM motor other than MM-CF	Setting for MM-CF
702	743	Maximum motor frequency	Maximum motor frequency (Hz)	9999 (initial value)
707	744	Motor inertia (integer)	Motor inertia* ${ }^{*}$$\mathrm{Jm}=\operatorname{Pr} .707 \times 10^{\wedge}(-\operatorname{Pr} .724)\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right)$	9999 (initial value)
724	745	Motor inertia (exponent)		
725	746	Motor protection current level	Maximum current level of the motor (\%)	9999 (initial value)

## $\bullet$ Performing tuning

## Point $\rho$

Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable

- In the PU operation mode, press FWD/REV on the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.

## NOTE

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of the MRS signal.
- To force tuning to end, use the MRS or RES signal or press $\underbrace{\text { RESET }}_{\text {STOP }}$ on the operation panel. (Turning OFF the start signal (STF signal or STR signal) also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid (initial value). Input terminals <valid signals>: STP (STOP), OH, MRS, RT, RES, STF, STR, S1, and S2 Output terminals: RUN, OL, IPF, FM/CA, AM, A1B1C1, and So (SO)
- When the rotation speed and the output frequency are selected for terminals FM/CA and AM, the progress status of offline auto tuning is output in 15 steps from FM/CA and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- A motor with 14 or more poles cannot be tuned.
- Since the Inverter running (RUN) signal turns ON when tuning is started, pay close attention especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the operation command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = "7", turn ON the PU operation external interlock (X12) signal for tuning in the PU operation mode.
- Setting offline auto tuning (Pr. $96=$ "1 or 11 ") will make pre-excitation invalid.
- During tuning, the monitor is displayed on the operation panel as follows.

$\text { Pr. } 96 \text { (Pr. 463) }$ setting	1	11		1	11
	Operation panel (FR-DU08) display			Parameter unit (FR-LU08) display	
(1) Setting					
(2) During tuning					
(3) Normal completion			Blinking		

- When offline auto tuning ends, press
on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal). This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The motor constants measured once during offline auto tuning are stored as parameters and their data are held until offline auto tuning is performed again. However, the tuning data is cleared when performing All parameter clear.
- Changing Pr. 71 after tuning completion will change the motor constant. For example, if the Pr. 71 setting is changed to " 8093 " after tuned with Pr. 71 = "8090", the tuning data become invalid. To use the tuned data, set "8090" again in Pr. 71.
- If offline auto tuning has ended in error (see the following table), motor constants are not set.

Perform an inverter reset and perform tuning again.

Error display	Error cause	Countermeasures
8	Forced end	Set Pr. 96 (Pr.463)="1 or 11" and try again.
9	Inverter protective function operation	Make the setting again.
92	The converter output voltage fell to $75 \%$ of the rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr.84Rated motor frequency setting.
93	Calculation error   The motor is not connected.	Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error   (The frequency command for the tuning was given to exceed   the maximum frequency setting, or to be in the frequency   jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to Pr. 36   Frequency jump settings.

- When tuning is ended forcibly by pressing or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)
Perform an inverter reset and perform tuning again.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error.

After power is restored, the inverter starts normal operation. Therefore, when the STF (STR) signal is ON, the motor starts forward (reverse) rotation.

- Any fault occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed even when a protective function that performs a retry is activated.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## CAUTION

- Note that the motor may start running suddenly.


## - Parameters updated by tuning results after tuning

First motor Pr.	Second motor Pr.	Name	Other than MM-CF $\operatorname{Pr} .96(\operatorname{Pr} .463)=1$	V/F control, MM-CF $\text { Pr. } 96(\operatorname{Pr} .463)=11$	Description
90	458	Motor constant (R1)	$\bigcirc$	$\bigcirc$	Resistance per phase
92	460	Motor constant (L1)/d-axis inductance (Ld)	-	-	d-axis inductance
93	461	Motor constant (L2)/q-axis inductance (Lq)	-	-	q-axis inductance
711	739	Motor Ld decay ratio	$\bigcirc$	-	d-axis inductance decay ratio
712	740	Motor Lq decay ratio	$\bigcirc$	-	q-axis inductance decay ratio
717	741	Starting resistance tuning compensation	$\bigcirc$	$\bigcirc$	
721	742	Starting magnetic pole position detection pulse width	$\bigcirc$	-	When the setting value is 10000 or more: With polarity inversion for compensation, voltage pulse (Pr. setting minus 10000) $\mu \mathrm{s}$
859	860	Torque current/Rated PM motor current	-	-	
96	463	Auto tuning setting/status	$\bigcirc$	$\bigcirc$	

## - Tuning adjustment (Pr.1002)

- The overcurrent protective function may be activated during Lq tuning for an easily magnetically saturated motor (motor with a large Lq decay ratio). In such case, adjust the target flowing current used for tuning with Pr. 1002 Lq tuning target current adjustment coefficient.


## - Changing the motor constants

- The motor constants can be set directly when the motor constants are known in advance, or by using the data measured during offline auto tuning.
- According to the Pr. 71 (Pr.450) setting, the range of the motor constant parameter setting values and units can be changed. The changed settings are stored in the EEPROM as the motor constant parameters.


## $\checkmark$ Changing the motor constants (when setting motor constants in units of $\Omega, \mathrm{mH}$, or A )

- Set Pr. 71 as follows.

Motor		Pr.71 setting
IPM motor	MM-CF	330
	Other than MM-CF	8090
SPM motor	9090	

- Set desired values as the motor constant parameters.

$\begin{gathered} \text { First motor } \\ \text { Pr. } \end{gathered}$	Second motor Pr.	Name	Setting range	Setting increments	Initial value
90	458	Motor constant (R1)	0 to $50 \Omega, 999{ }^{* 1}$	$0.001 \Omega^{* 1}$	9999
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/d-axis inductance (Ld)	0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
			0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*} 2$	
93	461	Motor constant (L2)/q-axis inductance (Lq)	0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
			0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*}$	
706	738	Induced voltage constant (phi f)	0 to 5000 mV (rad/s), 9999	0.1 mV (rad/s)	
859	860	Torque current/Rated PM motor current	0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
1412	1413	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	

*1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.

## NOTE

- If "9999" is set, tuning data will be invalid. The MM-CF constant is used for the IPM motor MM-CF, and the inverter internal constant is used for a PM motor other than MM-CF.
- To change a motor induced voltage constant of PM motors, the setting in Pr. 706 Induced voltage constant (phi f) or Pr. 738 Second motor induced voltage constant (phif) must be changed. If the constant after the change exceeds the setting range of Pr. 706 or Pr. 738 ( 0 to 5000 mV (rad/s)), set Pr. 1412 Motor induced voltage constant (phi f) exponent or Pr. 1413 Second motor induced voltage constant (phif) exponent. Set a value in the exponent n in the formula, Pr. 706 (Pr.738) $\times$ 10n [mV (rad/s)], to set the induced voltage constant (phif).
- When Pr. 71 (Pr.450) = "8093, 8094, 9093, or 9094", or Pr. 1412 (Pr.1413) = "9999", the motor induced voltage constant is as set in Pr. 706 (Pr.738). (No exponent setting)


## Changing the motor constants (when setting a motor constants in the internal data of the inverter)

- Set Pr. 71 as follows.

Motor		Pr.71 setting
IPM motor	MM-CF	$333(334)$
	Other than MM-CF	$8093(8094)$
SPM motor	$9093(9094)$	

- Set desired values as the motor constant parameters. The displayed increments of the read motor constants can be changed with Pr. 684 Tuning data unit switchover. Setting Pr. 684 = "1" disables parameter setting changes.

First motor Pr.	Second motor Pr.	Name	Pr. 684 = 0 (initial value)		Pr. 684 = 1		Initial value
			Setting range	Setting increments	Range indication	Unit indication	
90	458	Motor constant (R1)	0 to ***, 9999	1	0 to $50 \Omega, 9999{ }^{* 1}$	$0.001 \Omega^{* 1}$	9999
					0 to $400 \mathrm{~m} \Omega, 9999{ }^{*} 2$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/daxis inductance (Ld)			0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
					0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*} 2$	
93	461	Motor constant (L2)/qaxis inductance (Lq)			0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
					0 to $50 \mathrm{mH}, 9999{ }^{*}$	$0.001 \mathrm{mH}^{*} 2$	
706	738	Induced voltage constant (phi f)			$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s}), \\ & 9999 \end{aligned}$	0.1 mV (rad/s)	
859	860	Torque current/Rated PM motor current			0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	
					0 to 3600 A, $9999{ }^{*}{ }^{2}$	$0.1 \mathrm{~A}^{*}$	
1412	1413	Motor induced voltage constant (phi f) exponent			0 to 2, 9999	1	

*1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
*2 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.

## NOTE

- As the motor constants measured in the offline auto tuning have been converted into internal data (****), refer to the following setting example when making setting. (The value displayed has been converted into a value for internal use. Therefore, simple addition of a value to the displayed value does not bring the desired effect.)

Setting example: to slightly increase the Pr. 90 value (5\%)
When "2516" is displayed for Pr.90, set 2642 ( $2516 \times 1.05=2641.8$ ) in Pr.90.

- If "9999" is set, tuning data will be invalid. The MM-CF constant is used for the IPM motor MM-CF, and the inverter internal constant is used for a PM motor other than MM-CF.
- To change a motor induced voltage constant of PM motors, the setting in Pr. 706 Induced voltage constant (phi f) or Pr. 738 Second motor induced voltage constant (phif) must be changed. If the constant after the change exceeds the setting range of Pr. 706 or Pr. 738 ( 0 to 5000 mV (rad/s)), set Pr. 1412 Motor induced voltage constant (phi f) exponent or Pr. 1413 Second motor induced voltage constant (phif) exponent. Set a value in the exponent n in the formula, $\operatorname{Pr} .706$ (Pr.738) $\times 10 \mathrm{n}[\mathrm{mV}$ (rad/s)], to set the induced voltage constant (phif)
When Pr. 71 (Pr.450) = "8093, 8094, 9093, or 9094", or Pr. 1412 (Pr.1413) = "9999", the motor induced voltage constant is as set in Pr. 706 (Pr.738). (No exponent setting)


## 5．13．4 Online auto tuning

## Magneticfflux Sensorless Vector

If online auto tuning is selected under Advanced magnetic flux vector control，Real sensorless vector control，or Vector control， favorable torque accuracy is retained by adjusting temperature even when the resistance value varies due to increase in the motor temperature．

Pr．	Name	Initial value	Setting range	Description
95   C111	Online auto tuning selection	0	0	No online auto tuning
			1	Online auto tuning is performed at startup．
	Second motor online auto tuning	0	0	Magnetic flux observer（continuous tuning）

## －Online auto tuning at startup（Pr．95／Pr． 574 ＝＂1＂）

－By promptly tuning the motor status at startup，accurate operation without being affected by motor temperature is achieved． Also high torque can be provided at very low speed and stable operation is possible．
－Under Advanced magnetic flux vector control（Pr． 80 Motor capacity，Pr． 81 Number of motor poles）or Real sensorless vector control
（Pr．80，Pr．81，Pr． 800 Control method selection），select the online auto tuning at start．
－Make sure to perform offline auto tuning before performing online auto tuning．

## Operating procedure

1．Perform offline auto tuning．（Refer to page 509．）
2．Check that Pr． 96 Auto tuning setting／status $=" 3$ or 103 ＂（offline auto tuning completion）．
3．Set Pr． 95 Online auto tuning selection $=" 1 "$（online auto tuning at start）．
Online auto tuning is enabled at the next start．
4．Check that the following parameters are set before starting operation．

Pr．	Description
9	Rated motor current or electronic thermal O／L relay
71	Applied motor
80	Motor capacity（with the rated motor current equal to or less than the inverter rated current）${ }^{* 1}$
81	Number of motor poles

＊1 If a motor with substantially low rated current compared with the inverter rated current is used，speed and torque accuracies may deteriorate due to torque ripples，etc．Set the rated motor current to about $40 \%$ or higher of the inverter rated current．
5．In the PU operation mode，press FWD／REV on the operation panel． For External operation，turn ON the start command（STF signal or STR signal）．

- When performing the online auto tuning at start for a lift, consider using a brake sequence function for the brake opening timing at a start, or tuning using the external terminal. The tuning takes about 500 ms at the most after starting. However, during this time, it is possible that not enough torque is provided and caution is required to prevent the object from dropping. Use of the Start-time tuning start external input (X28) signal is recommended to perform tuning. (Refer to page 528.)
- Perform online auto tuning at startup when the motor is stopped.
- The online auto tuning is disabled when the MRS signal is being input, the setting speed is Pr. 13 Starting frequency or lower (V/F control, Advanced magnetic flux vector control), an inverter fault is occurring, or the inverter's startup condition is not satisfied.
- Online auto tuning does not operate during deceleration and restart from DC injection brake operation.
- It is disabled during JOG operation.
- If automatic restart after instantaneous power failure is selected, automatic restart is prioritized. (Online auto tuning at startup is not performed during frequency search.)
If automatic restart after instantaneous power failure is used together, perform online auto tuning while stopping operation with the X28 signal. (Refer to page 528.)
- Zero current detection and output current detection are enabled during online auto tuning.
- The RUN signal is not output during online auto tuning. The RUN signal is turned ON at operation startup.
- If the time between the inverter stop and restart is within 4 seconds, tuning is performed at startup but its result will not be applied.


## Online auto tuning at startup using the external terminal (Pr.95/Pr. $574=$ "1", X28 signal, Y39 signal)

- Before turning ON the start signal (STF or STR), online auto tuning can be performed by turning ON the Start-time tuning start external input (X28) signal in a stopped status in order to minimize the startup delay by tuning at start.
- Perform offline auto tuning and set "1" (tuning at start) in Pr.95.
- When the Start time tuning completion (Y39) signal is OFF, tuning at start can be performed with the X 28 signal.
- The tuning takes about 500 ms at the most.
- To use the X28 signal, set "28" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.
- To use the Y39 signal, set "39 (positive logic) or 139 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.




## NOTE

- Even if the start signal is turned ON during zero speed control or servo lock, tuning is performed at startup.
- The Y39 signal remains ON after the motor is stopped as long as the second flux remains.
- The X28 signal is disabled while the Y39 signal is ON.
- The STF and STR signals are enabled after completing tuning at start.
- The Inverter running (RUN) signal is not turned ON during online auto tuning. The RUN signal is turned ON after starting up.
- This function is disabled under V/F control or PM sensorless vector control.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) or Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Magnetic flux observer (continuous tuning) (Pr.95/Pr. 574 = "2")

- Performing Vector control with a motor with encoder improves the torque accuracy. Estimate or measure the flux within the motor using the current running through the motor and the inverter output voltage. Since the flux of a motor can be accurately estimated continuously (even during operation), optimum characteristics can be obtained without being affected by temperature change in the second resistor.
- Under Vector control (Pr.80, Pr.81, Pr.800), select the magnetic flux observer.


## NOTE

- Offline auto tuning is not necessary when magnetic flux observer is selected for SF-V5RU, SF-JR (with encoder), SF-HR (with encoder), SF-JRCA (with encoder) or SF-HRCA (with encoder). (However, when the wiring length is long ( 30 m or longer as a reference), perform offline auto tuning so that the resistance arises in the long wiring can be reflected to the operation.)


## - Tuning the second motor (Pr.574)

- When one inverter switches the operation between two different motors, set the second motor in Pr. 450 Second applied motor. (In the initial setting, no second motor is applied. (Refer to page 505.))
- Perform tuning using Pr. 574 Second motor online auto tuning.
- Pr. 574 is enabled when the Second function selection (RT) signal is turned ON.

Pr.	Description
450	Applied motor
453	Motor capacity (with the rated motor current equal to or less than the inverter rated current) ${ }^{* 1}$
454	Number of motor poles

*1 If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.

## NOTE

- The RT signal is the Second function selection signal. The RT signal also enables other second functions. (Refer to page 496.) The RT signal is assigned to terminal RT in the initial status. Set "3" in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

《< Parameters referred to 》
Pr. 9 Electronic thermal O/L relay page 394
Pr. 71 Applied motor page 505
Pr. 80 Motor capacity page 215, page 509, page 519
Pr. 81 Number of motor poles page 215, page 509, page 519
Pr. 96 Auto tuning setting/status page 509, page 519
Pr. 178 to Pr. 189 (Input terminal function selection) page 496
Pr. 190 to Pr. 196 (Output terminal function selection) page 450
Pr. 800 Control method selection page 215

### 5.13.5 Signal loss detection of encoder signals

## V/F Magneticflux Vector

Signal loss detection (E.ECT) is turned ON to shut off the inverter output when the encoder signal is lost during encoder feedback control or orientation control operation or under Vector control.

Pr.		Name	Initial value	Setting range	Description
376	855	Encoder signal loss		0	Signal loss detection disabled
C148*1	C248*2	detection enable/ disable selection	0	1	Signal loss detection enabled

[^28]*2 These parameters are available when the control terminal option (FR-A8TP) is installed.

### 5.14 (A) Application parameters

Purpose		Parameter to set   page		
To operate by switching between the   inverter and the commercial power   supply operation	Electronic bypass function	P.A000 to P.A005	$\quad$ Pr.135 to Pr.139, Pr.159	532
:---				
To reduce the standby power				
Self power management				


Purpose		Parameter to set   Refer to   page		
To operate with sequence program	PLC	P.A800 to P.A804,   P.A811 to P.A860	Pr.414 to Pr.417, Pr.498,   Pr.1150 to Pr.1199	614
To store the inverter running status to a   USB memory device	Trace	P.A900 to P.A906,   P.A910 to P.A920,   P.A930 to P.A939	Pr. 1020 to Pr.1047	616

### 5.14.1 Electronic bypass function

## V/F Magneticflix Sensorless Vector

The inverter contains complicated sequence circuits for switching between the commercial power supply operation and inverter operation. Therefore, interlock operation of the magnetic contactor for switching can be easily performed by simply inputting start, stop, and automatic switching selection signals.

Pr.	Name	Initial value	Setting range	Description
57   A702	Restart coasting time	9999	0	Coasting time differs according to the inverter capacity. ${ }^{* 1}$
			0.1 to 30 s	Set the waiting time for the inverter to perform a restart after restoring power due to an instantaneous power failure.
			9999	No restart
$\begin{aligned} & \hline 58 \\ & \text { A703 } \end{aligned}$	Restart cushion time	1 s	0 to 60 s	Set the voltage cushion time for restart.
$\begin{aligned} & 135 \\ & \text { A000 } \end{aligned}$	Electronic bypass sequence selection	0	0	Without electronic bypass sequence
			1	With electronic bypass sequence
$\begin{aligned} & 136 \\ & \text { A001 } \end{aligned}$	MC switchover interlock time	1 s	0 to 100 s	Set the operation interlock time for MC2 and MC3.
$\begin{aligned} & 137 \\ & \text { A002 } \end{aligned}$	Start waiting time	0.5 s	0 to 100 s	Set a time period that is a little longer than the time period from the ON signal input to the actual pick-up operation of MC3 (0.3 to 0.5 s ).
$\begin{aligned} & 138 \\ & \text { A003 } \end{aligned}$	Bypass selection at a fault	0	0	Inverter output stop (motor coasting) at inverter failure
			1	Automatic switchover to commercial power supply operation at inverter failure. (Switchover is not possible when an external thermal relay (E.OHT) or CPU fault (E.CPU) is occurring.)
$\begin{aligned} & 139 \\ & \text { A004 } \end{aligned}$	Automatic switchover frequency from inverter to bypass operation	9999	0 to 60 Hz	Set the frequency where the inverter operation is switched to commercial power supply operation.   The inverter operation is performed from a start to Pr. 139 setting, then it switches automatically to the commercial power supply operation when the output frequency is equal to or above Pr. 139.
			9999	Without automatic switchover
$\begin{aligned} & 159 \\ & \text { A005 } \end{aligned}$	Automatic switchover frequency range from bypass to inverter operation	9999	0 to 10 Hz	Set the frequency where the commercial power supply operation, which has been switched from the inverter operation with Pr.139, switches back to inverter operation.   When the frequency command becomes less than (Pr. 139 - Pr.159), the motor switches automatically to inverter operation and operates at the frequency of the frequency command. Turning OFF a inverter start command (STF/STR) also switches the operation to the inverter operation.
			9999	To switch the commercial power supply operation, which has been switched from the inverter operation with Pr.139, to the inverter operation again, the inverter start command (STF/STR) is turned OFF. The operation switches to the inverter operation, and the motor decelerates to a stop.

*1 The coasting time when Pr. $57=$ " 0 " is as shown below. (When Pr. 162 Automatic restart after instantaneous power failure selection is set to the initial value.)
FR-A820-00105(1.5K) or lower and FR-A840-00052(1.5K) or lower: 0.5 s
FR-A820-00167(2.2K) to FR-A820-00490(7.5K) and FR-A840-00083(2.2K) to FR-A840-00250(7.5K): 1 s
FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K): 3.0 s
FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher: 5.0 s

## Electronic bypass sequence function

- When operating the motor at $60 \mathrm{~Hz}($ or 50 Hz ), the motor can be more efficiently operated with a commercial power supply. In addition, if the motor cannot be stopped for a long period of time even for an inverter maintenance and inspection, it is recommended that a commercial power supply circuit be installed.
- When switching between inverter operation and commercial power supply operation, commercial power supply may be accidentally applied to the output side of the inverter. To avoid such situation, provide an interlock where the magnetic contactor at the commercial power supply side turns ON at turn OFF of the magnetic contactor at the inverter output side. The inverter's electronic bypass sequence that outputs timing signals for the magnetic contactors can act as a complicated interlock between the commercial power supply operation and the inverter operation.


## NOTE

- The commercial power supply operation is not available with Mitsubishi Electric Vector control dedicated motors (SF-V5RU).


## -Connection diagram

- A typical connection diagram of the electronic bypass sequence is shown below.


Standard models and IP55 compatible models


Separated converter type
*1 Be careful of the capacity of the sequence output terminals.
The applied terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).

Output terminal capacity	Output terminal permissible load
Open collector output of inverter (RUN, SU, IPF, OL, FU)	24 VDC 0.1 A
Inverter relay output (A1-C1, B1-C1, A2-B2, B2-C2)	230 VAC 0.3 A,
Relay output option (FR-A8AR)	30 VDC 0.3 A

*2 When connecting a DC power supply, insert a protective diode.
When connecting an AC power supply, use the relay output option (FR-A8AR), and use contact outputs.
*3 The applied terminals differ by the settings of Pr. 180 to Pr. 189 (Input terminal function selection)
*4 To use the signal, assign the function to the output terminal Pr. 190 to Pr. 195 (Output terminal function selection) of the converter unit. Always set the negative logic for the ALM signal.

## NOTE

- Use the Electronic bypass function in External operation mode. In addition, the wiring terminals R1/L11 and S1/L21 must be connected to a separate power source that does not go through MC1. Be sure to connect using a separate power supply
- Be sure to provide a mechanical interlock for MC2 and MC3.
- Operation of magnetic contactor (MC1, MC2, MC3)

| Magnetic <br> contactor | Installation location | Operation status |  |
| :--- | :--- | :--- | :--- | :--- |
|  | During commercial <br> power supply <br> operation | During inverter <br> operation | During inverter fault |

- The input signals are as shown below.

Signal	Applied terminal	Function	Operation status	MC operation*8		
				MC1 ${ }^{\text {² }}$ 6	MC2	MC3
MRS	MRS ${ }^{* 1}$	Selects whether or not operation is available. ${ }^{*}$	ON Electronic bypass operation available	-	-	-
			OFF Electronic bypass operation not available	-	$\times$	Invariance
CS	CS	Inverter/commercial power supply operation switchover ${ }^{* 3}$	ON Inverter operation	-	$\times$	-
			OFF Commercial power supply operation	-	$\bigcirc$	×
$\begin{aligned} & \text { STF } \\ & \text { (STR) } \end{aligned}$	$\begin{aligned} & \text { STF } \\ & \text { (STR) } \end{aligned}$	Inverter operation command (Disabled during commercial power supply operation) ${ }^{*}$	ON Forward rotation (reverse rotation)	-	$\times$	-
			OFF Stop	-	x	-
OH	Set "7" in any of Pr. 180 to Pr. 189.	External thermal relay input	ON Motor normal	$\bigcirc$	-	-
			OFF Motor fault	$\times$	$\times$	$\times$
RES	RES	Operation status reset ${ }^{* 5}$	ON Reset	Invariance	$\times$	Invariance
			OFF Normal operation	$\bigcirc$	-	-
X95/X96	Set "95/96" in any of Pr. 180 to Pr. 189.	Converter unit fault / Converter unit fault (E.OHT, E.CPU)	X95 signal OFF, X96 signal OFF Converter fault (E.OHT, E.CPU)	$\times$	$\times$	$\times$
			X95 signal ON, X96 signal ON Converter normal	-	-	-
			X95 signal OFF, X96 signal ON Converter fault (other than E.OHT or E.CPU)	×	-*7	$\times$

*1 For separated converter types, the X10 signal is assigned to the terminal MRS in the initial setting. For the MRS signal, set " 24 " to any of Pr. 180 to Pr. 189 (input terminal function selection) to assign the function to another terminal
*2 When the MRS signal is OFF, neither the commercial power supply operation nor the inverter operation can be performed
*3 The CS signal operates only when the MRS signal is ON.
*4 STF (STR) operates only when the MRS and CS signals are both ON.
*5 The RES signal can be used for reset input acceptance with Pr. 75 Reset selection/disconnected PU detection/PU stop selection. When RES signal and another input signal are simultaneously input, the MC operation by the RES signal has a higher priority.
*6 MC1 turns OFF at an inverter fault.
*7 When Pr. $138=$ " 0 (electronic bypass invalid at a fault)", MC2 is OFF. When Pr. $138=$ " 1 (electronic bypass valid at a fault)", MC2 is ON
*8 MC operation is as shown below.

Notation	MC operation
$\circ$	ON
$\times$	OFF
-	During inverter operation: MC2-OFF, MC3-ON   During commercial power supply operation: MC2-ON, MC3-OFF
Invariance	The operation status before changing the signal state to ON or OFF is held.

- The output signals are as shown below.

Signal	Applied terminal   (Pr.190 to Pr. 196 setting)	Description
MC1	17	Operation output signal of the magnetic contactor MC1 on   the inverter's input side.
MC2	18	Operation output signal of the magnetic contactor MC2   for the commercial power supply operation.
MC3	19	Operation output signal of the magnetic contactor MC3 on   the inverter's output side.

## - Electronic bypass operation sequence

- Example of operation sequence without automatic bypass sequence (Pr. 139 = "9999")

- Example of operation sequence with automatic bypass sequence (Pr. 139 = "9999", Pr. 159 = "9999")

- Example of operation sequence with automatic bypass sequence (Pr. 139 = "9999", Pr. 159 = "9999")



## Operating procedure

- Operation flowchart
- Pr. 135 = "1" (open collector output terminal of inverter)

- Pr. $136=2.0$ s
- Pr. $137=1.0 \mathrm{~s}$ (Set the time until MC3 is actually turned ON and the inverter and motor are electrically connected. If the time is short, the restart may not function properly.)
- Pr. $57=0.5 \mathrm{~s}$
- Pr. $58=0.5 \mathrm{~s}$ (Always set this to switchover from the commercial power supply operation to the inverter operation.)
- Signal operation after setting parameters

Status	MRS	CS	STF	MC1	MC2	MC3	Remarks
Power ON	OFF   (OFF)	OFF   $($ OFF $)$	OFF   $($ OFF)	OFF $\rightarrow$ ON   $(O F F \rightarrow O N)$	OFF   $(O F F)$	OFF $\rightarrow$ ON   $(O F F \rightarrow O N)$	External operation mode   (PU operation mode)
At start   (inverter)	OFF $\rightarrow$ ON	OFF $\rightarrow$ ON	OFF $\rightarrow$ ON	ON	OFF	ON	
During constant-speed   operation   (commercial power supply)	ON	ON $\rightarrow$ OFF	ON	ON	OFF $\rightarrow$ ON	ON $\rightarrow$ OFF	MC2 turns ON after MC3 turns OFF.   Waiting time is 2 s (while coasting).
For deceleration,   switched to the inverter   operation (inverter)	ON	OFF $\rightarrow$ ON	ON	ON	ON $\rightarrow$ OFF	OFF $\rightarrow$ ON	MC3 turns ON after MC2 turns OFF.   Waiting time is 4 s (while coasting).
Stop	ON	ON	ON $\rightarrow$ OFF	ON	OFF	ON	

- Connect the control power (R1/L11, S1/L21) in front of the input-side MC1. If the control power is connected behind the inputside MC1, the electronic bypass sequence function will not operate.
- The electronic bypass sequence function is only enabled when Pr. 135 = "1" and in the External operation mode or combined operation mode (PU speed command and External operation command with Pr. 79 = " 3 "). MC1 and MC3 turn ON when Pr. 135 = "1" and in an operation mode other than mentioned above.
- MC3 turns ON when the MRS and CS signals are ON and the STF (STR) signal is OFF. If the motor was coasted to a stop from commercial power supply operation at the previous stop, the motor starts running only after waiting the time set in Pr. 137.
- Inverter operation is only available when the MRS, STF (STR), and CS signals are ON. In all other cases (when the MRS signal is ON), commercial power supply operation is available.
- When the CS signal is OFF, the motor switches to the commercial power supply operation. However, when the STF (STR) signal is OFF, the motor decelerates to a stop during inverter operation.
- From the point where MC2 and MC3 are both turned OFF, there is a waiting time set with Pr.136, till MC2 or MC3 is turned ON.
- Even when the electronic bypass sequence is enabled (Pr. $135=" 1 ")$, the Pr. 136 and Pr. 137 settings are ignored in PU operation mode.
In addition, the input terminals (STF, CS, MRS, OH) return to perform their normal functions.
- When the electronic bypass sequence function (Pr. $135=" 1 "$ ) and PU operation interlock function (Pr. $79=$ " 7 ") are used at the same time, the MRS signal is shared with the PU operation external interlock if the X 12 signal is not assigned. (The inverter operation is available when the MRS and CS signals are ON.)
- Set the acceleration time to the level that does not activate the stall prevention operation.
- If switching to the commercial power supply operation while a failure such as an output short circuit has occurred between the magnetic contactor MC3 and the motor, the damage may further spread. If a failure has occurred between the MC3 and the motor, a protection circuit such as using the OH signal input must be provided.
- Changing the terminal functions with Pr. 178 to Pr. 189 and Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.
- Switching with the electronic bypass sequence is not available during retry. Switching occurs after the retry. When the electronic bypass is valid at a fault (Pr. $138=" 1 "$ ), switching occurs also during retry.
- When the electronic bypass sequence function and the retry function of the converter unit are used at the same time for the separated converter type, set 101 or more in the number of retries at fault occurrence (Pr.67) on the converter unit side. When a value less than 100 is set, ALM signal does not turn ON until the retry count is exceeded. In this case, the electronic bypass at a fault is not performed until the retry count is exceeded.
- To use X95 and X96 signals for the separated converter type, use a converter unit manufactured in August 2014 or later.


## Operation in combination with the self power management function for the separated converter type

- When the self power management function is used with the separated converter type, the input signal operations are as follows.

X95   (Converter unit   fault)	X96   (Converter unit   fault (E.OHT,   E.CPU)	X94   (Control signal for   main circuit power   supply MC)	MC1		MC2	MC3

[^29]*3 * MC operation is as shown below.

Notation	MC operation
$\circ$	ON
$x$	OFF
-	During inverter operation: MC2-OFF, MC3-ON   During commercial power supply operation: MC2-ON, MC3-OFF

《 Parameters referred to 》
Pr. 11 DC injection brake operation time page 681
Pr. 57 Restart coasting time page 597, page 604
Pr. 58 Restart cushion time page 597
Pr. 79 Operation mode selection page 370
Pr. 178 to Pr. 189 (Input terminal function selection) page 496
Pr. 190 to Pr. 196 (Output terminal function selection) page 450

### 5.14.2 Self power management

## V/F Magneticflux PM

By turning ON the magnetic contactor (MC) on the input side before the motor is started and turning OFF the MC after the motor is stopped, power is not supplied to the main circuit, reducing the standby power.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 248 \\ & \text { A006 } \end{aligned}$	Self power management selection	0	0	Self power management function disabled
			1	Self power management function enabled (main circuit OFF at protective function activation)
			2	Self power management function enabled (main circuit OFF at protective function activation due to a circuit failure)
$\begin{aligned} & 137 \\ & \text { A002 } \end{aligned}$	Start waiting time	0.5 s	0 to 100 s	Set a time period that is a little longer than the time period from the ON signal input to the actual pick-up operation of MC1 ( 0.3 to 0.5 s ).
$\begin{aligned} & 254 \\ & \text { A007 } \end{aligned}$	Main circuit power OFF waiting time	600 s	1 to 3600 s	Set the waiting time until the main circuit power supply is turned OFF after the motor is stopped.
			9999	The main circuit power supply is turned OFF only when the protective function selected by Pr. 248 is activated.
$\begin{aligned} & 30 \\ & \text { E300 } \end{aligned}$	Regenerative function selection	0	100, 101	Power supply to the inverter: AC (terminals R, S, and T) When power is supplied only to the control circuit, and then switched to be supplied to both the control and main circuits, inverter reset is not performed.
			$\begin{aligned} & 0 \text { to } 2,10, \\ & 11,20,21, \\ & 102,110, \\ & 111,120, \\ & 121 \end{aligned}$	For other settings, refer to page 689.

## Connection diagram

- Terminal R1, S1 inputs

- 24 V external power supply input



## - Operation of the self power management function

- This function controls the magnetic contactor (MC) on the input side using the output relay to reduce the standby power during inverter stop. With the terminals R1/L11 and S1/L21 (refer to page 76 ) and 24 V external power supply input (refer to page 78), the main circuit power supply and control circuit power supply are separated, and the MC for main circuit power supply is controlled by the electronic bypass MC1 signal.
- Set Pr. 248 Self power management selection = "1 or 2", Pr. 30 Regenerative function selection $\neq$ " $20,21,120$, or 121" (other than DC feeding mode 2), and Pr. 190 to Pr. 196 (Output terminal function selection) = "17 (positive logic)" to assign the Electronic bypass MC1 (MC1) signal to an output terminal.
- After the inverter is stopped and the time set in Pr. 11 DC injection brake operation time and Pr. 254 Main circuit power OFF waiting time have passed, turning OFF the MC1 signal releases the MC on the input side (main circuit power supply OFF). Set Pr. 254 to prevent frequent MC operation.
- Turning ON the start signal turns ON the MC1 signal and closes the MC on the input side (main circuit power supply ON). After the time set in Pr. 137 Start waiting time has passed, the inverter starts. Set time slightly longer (about 0.3 to 0.5 s) than the time period from the MC1-ON to the actual pick-up operation of the MC is turned ON in Pr.137.

- When the protective function of the inverter is activated, the MC1 signal is immediately turned OFF according to the Pr. 248 setting. (The MC1 signal is turned OFF before the time set in Pr. 254 has passed.)
When Pr. $248=" 1 "$, the MC1 signal is turned OFF when the protective function is activated due to any cause.
When Pr. 248 ="2", the MC1 signal is turned OFF only when the protective function is activated due to an error resulted from a failure in the inverter circuit or a wiring error (refer to the following table). (For the fault details, refer to page 745.)

Fault type
Inrush current limit circuit fault (E.IOH)
CPU fault (E.CPU)
CPU fault (E.6)
CPU fault (E.7)
Parameter storage device fault (E.PE)
Parameter storage device fault (E.PE2)
24 VDC power fault (E.P24)
Operation panel power supply short circuit/RS-485 terminals power supply short circuit   (E.CTE)
Output side earth (ground) fault overcurrent (E.GF)
Output phase loss (E.LF)
Brake transistor alarm detection (E.BE)
Internal circuit fault (E.13/E.PBT)

- To enable the self power management function for the separated converter type, enable the self power management function also on the converter unit side. To activate the self power management function when a converter unit fault occurs, connect the terminal to which Y 17 signal of the converter unit is assigned and the terminal to which X 94 signal of the inverter is assigned.

Y17 output signal   (converter unit)	MC1 output signal   (inverter)	MC1 output signal actual   operation	Main circuit power supply
OFF	OFF	OFF	Stop
OFF	ON	OFF	Stop
ON	OFF	OFF	Stop
ON	ON	ON	Supplied

- To use the X94 signal, set " 94 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.
－When the start signal is turned OFF before the time set in Pr． 137 has passed after the start signal is turned ON，the inverter does not start and the MC1 signal is turned OFF after the time set in Pr． 254 has passed．If the start signal is turned ON again before the time set in Pr． 254 has passed，the inverter immediately starts outputting．

－At inverter reset，the status of the MC1 signal is held and operation of the magnetic contactor is not performed．
－When the inverter stops the output due to，for example，the Output stop（MRS）signal，the MC1 signal is turned OFF after the time set in Pr． 254 has passed．
－During the stop，turning ON the External DC injection brake operation start signal（X13）and Pre－excitation／servo ON signal （LX）turns ON the MC1 signal．
－To avoid inverter reset when supplying power to the main circuit is started when power is supplied only to the control circuit， set 100 or more in Pr．30．（For the separated converter type，setting Pr． 30 of the converter unit is also required．）
－When supplying power to the main circuit is started when power is supplied only to the control circuit，there is a slight waiting time before starting．
－Repeated operation of the magnetic contactor due to frequent start and stop or activation of the protective function may shorten the inverter life．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）and Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．
－To use X94 signal for the separated converter type，use a converter unit manufactured in August 2014 or later．


## 5．14．3 Brake sequence function

This function outputs operation timing signals of the mechanical brake from the inverter，such as for lift applications．
This function is useful in preventing load slippage at a start due to poor mechanical brake timing and overcurrent alarm in stop status and enable secure operation．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 278 \\ & \text { A100 } \end{aligned}$	Brake opening frequency	3 Hz	0 to 30 Hz	Set the rated slip frequency of the motor + approx． 1.0 Hz ．This can be set only when Pr． $278 \leq$ Pr． 282.
$\begin{aligned} & 279 \\ & \text { A101 } \end{aligned}$	Brake opening current	130\％	0 to 400\％	Set between 50 and $90 \%$ because load slippage is more likely to occur when a start setting is too low．   The inverter rated current is regarded as $100 \%$ ，or the rated motor torque is regarded as $100 \%$ ．（According to Pr． 639 setting）
$\begin{array}{\|l} 280 \\ \text { A102 } \end{array}$	Brake opening current detection time	0.3 s	0 to 2 s	Generally set between 0.1 and 0.3 s ．
$\begin{aligned} & 281 \\ & \text { A103 } \end{aligned}$	Brake operation time at start	0.3 s	0 to 5 s	Set the mechanical delay time until braking eases．When Pr． $292=$＂ 8 ＂， set the mechanical delay time until braking eases＋approx． 0.1 to 0.2 s ．
$\begin{aligned} & 282 \\ & \text { A104 } \end{aligned}$	Brake operation frequency	6 Hz	0 to 30 Hz	Turn OFF the Brake opening request（BOF）signal and set the frequency for operating the electromagnetic brake．Generally，set the setting value of Pr． $278+3$ to 4 Hz ．This can be set only when Pr． 282 $\geq$ Pr． 278.
$\begin{aligned} & 283 \\ & \text { A105 } \end{aligned}$	Brake operation time at stop	0.3 s	0 to 5 s	When Pr． 292 ＝＂7＂，set the mechanical delay time until the brake closes +0.1 s．When Pr． $292=$＂8＂，set the mechanical delay time until the brake closes + approx． 0.2 to 0.3 s ．


Pr.	Name	Initial value	Setting range	Description	
	Deceleration detection function selection	0	0	The deceleration detection function disabled.	
A106			1	The protective function activates when the deceleration speed of the deceleration operation is not normal.	
$\begin{aligned} & 285 \\ & \text { A107 } \end{aligned}$	Overspeed detection frequency ${ }^{* 1}$	9999	0 to 30 Hz	The Brake sequence fault (E.MB1) is activated when the difference between the detection frequency and output frequency is equal to or greater than the setting value under encoder feedback control.	
			9999	Overspeed detection disabled.	
$\begin{aligned} & 292 \\ & \text { F500 } \end{aligned}$	Automatic acceleration/ deceleration	0	0	Normal operation	
			1, 11	Operation with the shortest acceleration/deceleration time.(Refer to page 365.)	
			3	Operation with the optimum acceleration/deceleration time.(Refer to page 365.)	
			5,6	Lift operation 1, 2. (Refer to page 368.)	
			7	Brake sequence mode 1	
			8	Brake sequence mode 2	
639	Brake opening current selection	0	0	Brake opening by output current	
A108			1	Brake opening by motor torque	
	Brake operation frequency selection	0	0	Brake closing operation by frequency command	
A109			1	Brake closing operation by the actual motor rotation speed (estimated value)	
$\begin{aligned} & 641 \\ & \text { A130 } \end{aligned}$	Second brake sequence operation selection	0	0	Normal operation when the RT signal is ON	
			7	Second brake sequence 1 when the RT signal is ON	
			8	Second brake sequence 2 when the RT signal is ON	
			9999	First brake sequence is valid when the RT signal is ON	
$\begin{aligned} & \hline 642 \\ & \text { A120 } \end{aligned}$	Second brake opening frequency	3 Hz	0 to 30 Hz	Refer to Pr. 278.	Set the second brake sequence function. The second brake sequence function is enabled when the RT signal is ON.
$\begin{aligned} & \text { 643 } \\ & \text { A121 } \end{aligned}$	Second brake opening current	130\%	0 to 400\%	Refer to Pr. 279.	
$\begin{aligned} & \hline 644 \\ & \text { A122 } \end{aligned}$	Second brake opening current detection time	0.3 s	0 to 2 s	Refer to Pr. 280.	
$\begin{aligned} & \hline 645 \\ & \text { A123 } \end{aligned}$	Second brake operation time at start	0.3 s	0 to 5 s	Refer to Pr. 281.	
$\begin{aligned} & \hline 646 \\ & \text { A124 } \end{aligned}$	Second brake operation frequency	6 Hz	0 to 30 Hz	Refer to Pr. 282.	
$\begin{aligned} & \hline 647 \\ & \text { A125 } \end{aligned}$	Second brake operation time at stop	0.3 s	0 to 5 s	Refer to Pr. 283.	
$\begin{aligned} & \hline 648 \\ & \text { A126 } \end{aligned}$	Second deceleration speed detection selection	0	0, 1	Refer to Pr. 284.	
$\begin{aligned} & \hline 650 \\ & \text { A128 } \end{aligned}$	Second brake opening current selection	0	0, 1	Refer to Pr. 639.	
$\begin{aligned} & 651 \\ & \text { A129 } \end{aligned}$	Second brake operation frequency selection	0	0, 1	Refer to Pr. 640.	

*1 The speed deviation excess detection frequency is used when Vector control compatible option is mounted during Vector control. (Refer to page 259 for details.)

## - Connection diagram


*1 The input signal terminals differ by the settings of Pr. 178 to Pr. 189.
*2 The output signal terminals differ by the settings of Pr. 190 to Pr. 196.

## NOTE

- The automatic restart after instantaneous power failure function and orientation function do not operate when brake sequence is selected.
- To use this function, set the acceleration/deceleration time to 1 s or higher.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Setting the brake sequence operation

- Set Pr. 292 Automatic acceleration/deceleration = "7 or 8 (braking sequence operation)".

To ensure sequence operation, it is recommended to use with Pr. $292=" 7$ " (with brake opening completion signal input).

- Set "15" in any of Pr. 178 to Pr. 189 (input terminal function selection), and assign the Brake opening completion (BRI) signal to the input terminal.
- Set "20" (positive logic) or "120" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection), and assign the brake opening request signal (BOF) to the output terminal.
- Use Pr. 639 Brake opening current selection to select whether the output current or the motor torque is used as a reference for the brake opening operation. (Under V/F control, this operation is activated regardless of the Pr. 639 setting.)
- Under Real sensorless vector control, Vector control, or PM sensorless vector control, use Pr. 640 Brake operation frequency selection to select whether the frequency command or the actual motor speed (estimated value) is used as a reference for brake closing operation. If the brake operation timing is different from the motor speed because of the load, set Pr. 640 = "1 (brake operation with the actual motor speed (estimated value))".
- Under V/F control or Advanced magnetic flux vector control, perform brake operation while referring to the frequency command regardless of the Pr. 640 setting.


## NOTE

- Under torque control, position control, or PM sensorless vector control (with the low-speed range high torque characteristic disabled), the brake sequence function is disabled.


## - Operation with brake opening completion signal input (Pr. 292 = "7")

- When the start signal is input to the inverter, the inverter starts running, and when the output frequency reaches the frequency set in Pr. 278 Brake opening frequency and the output current or the motor torque is equal to or greater than the Pr. 279 Brake opening current setting, the brake opening request signal (BOF) is output after the time set in Pr. 280 Brake opening current detection time. The Brake opening completion (BRI) signal is input, and the output frequency is increased to the set speed after the set time in Pr. 281 Brake operation time at start.
- When the inverter decelerates to the frequency set to Pr. 282 Brake operation frequency during deceleration, the inverter turns OFF the brake opening request signal (BOF) and decelerates further to the frequency set in Pr.278. After electromagnetic brake operation completes and the inverter recognizes the turn OFF of the BRI signal, the inverter holds the frequency set in Pr. 278 for the time set in Pr. 283 Brake operation time at stop. And after the time set in Pr. 283 passes, the inverter decelerates again. The inverter outputs is shut off when the frequency reaches Pr. 13 Starting frequency setting or 0.5 Hz , whichever is lower.



## - Operation without Brake opening completion (Pr. 292 = "8") signal input.

- When the start signal is input to the inverter, the inverter starts running, and when the output frequency reaches the frequency set in Pr. 278 Brake opening frequency and the output current or the motor torque is equal to or greater than the Pr. 279 Brake opening current setting, the brake opening request signal (BOF) is output after the time set in Pr. 280 Brake opening current detection time.
After the BOF signal is output, the output frequency is increased to the set speed after the set time in Pr. 281 Brake operation time at start.
- When the inverter decelerates to the frequency set to Pr. 282 Brake operation frequency during deceleration, the inverter turns OFF the brake opening request signal (BOF) and decelerates further to the frequency set in Pr.278. And after the time set in Brake operation time at stop passes, the inverter decelerates again. Pr. 13 Starting frequency setting or 0.5 Hz , whichever is lower



## NOTE

- Even if the brake sequence operation has been selected, inputting the JOG signal (JOG operation) changes the operation method to normal operation and give a priority to the JOG operation. Note that the JOG signal input by the brake sequence function is invalid during operation.


## Set multiple brake sequence functions (Pr.641)

- When the second brake sequence function is set, it is possible to switch between and use two types of brake sequence functions. Turning ON the Second function selection (RT) signal enables the Second brake sequence function.
－Select the operation of the Second brake sequence function with Pr． 641 Second brake sequence operation selection．

Pr．641 setting	Brake sequence function when the RT signal is ON
0 （initial value）	Normal operation（The first and second brake sequence functions invalid）
7	Second brake sequence mode 1
8	Second brake sequence mode 2
9999	First brake sequence mode is valid

－Set＂45＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the Second brake sequence open completion signal（BRI2）to the input terminal．
－To use the Second brake opening request signal（BOF2），set＂22（positive logic）＂or＂122（negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function to the output terminal．
－The method of setting the second brake sequence parameters is the same as that for the corresponding first brake sequence function parameters．
－Switchover of the brake sequence function by RT signal is valid when the inverter is stopped．
－Protective function
－If one of the following faults occur while the brake sequence function is enabled，the inverter enters an fault status，shuts off output，and turns OFF the brake opening request signal（BOF）．

Fault   indication	$\quad$ Description
E．MB1	When（detection frequency）－（output frequency）$\geq$ Pr．285 during encoder feedback control．   When Pr．285（Overspeed detection function）＝9999，overspeed is not detected．
E．MB2	When deceleration is not normal during deceleration operation from the set frequency to the frequency set in Pr．282．（when   Pr．284＝1）（except stall prevention operation）
E．MB3	When the BOF signal turned ON while the motor is at a stop．（load slippage prevention function）
E．MB4	When more than 2 s have elapsed after the start command（forward or reverse rotation）is input，but the BOF signal does   not turn ON．
E．MB5	When more than 2 s have elapsed after the BOF signal turned ON，but the BRI signal does not turn ON．
E．MB6	When the inverter had turned ON the brake opening request signal（BOF），but the BRI signal turned OFF．
E．MB7	When more than 2 s have elapsed after the BOF signal turned OFF at a stop，but the BRI signal does not turn OFF．

## NOTE

－During PM sensorless vector control，the brake sequence function is available with the IPM motor MM－CF only．
－During deceleration，inverter output is shut OFF when the frequency reaches Pr．13Starting frequency or 0.5 Hz ，whichever is lower．For Pr． 278 Brake opening frequency，set a frequency equal to or higher than the Pr． 13 setting or 0.5 Hz ．
－Pr． 285 Overspeed detection frequency is valid under encoder feedback control（used with the FR－A8AP（option））even if a value other than＂ 7 or 8 ＂is set in Pr． 292 Automatic acceleration／deceleration．
－Setting Pr． 278 too high activates the stall prevention and may cause E．MB4．
－E．MB4 occurs when the acceleration time from Pr． 13 to Pr． $278+\operatorname{Pr} .280$ reaches or exceeds 2 s．


## 《｜Parameters referred to 》》

Pr． 3 Base frequency page 673
Pr． 178 to Pr． 189 （Input terminal function selection）
Pr． 190 to Pr． 196 （Output terminal function selection）page 450

## 5．14．4 Start count monitor

The inverter starting times can be counted．

Confirming the starting times can be used to determine the timing of the maintenance, or can be used as a reference for system inspection or parts replacement.

Pr.	Name	Initial value	Setting range	Description
1410   A170	Starting times lower 4   digits	0	0 to 9999	Displays the lower four digits of the number of the inverter starting   times.
$\mathbf{1 4 1 1}$   A171	Starting times upper 4   digits	0	0 to 9999	Displays the upper four digits of the number of the inverter starting   times.

- Every start signal input (the RUN signal ON) while the inverter output is stopped is counted as the inverter starting time. (Starting during pre-excitation is also counted.)

- The lower four digits of the number of starting times is displayed in Pr. 1410 Starting times lower 4 digits, and the upper four digits of the number of starting times is displayed in Pr. 1411 Starting times upper 4 digits.
- The maximum count is "99999999". When "99999999" is exceeded on the monitor, the monitor value is reset to 0 .

Display data		Monitor display
10000	Pr. 1410 (Lower digits monitor)	Pr. 1411 (Upper digits monitor)
	Pr. 1410 (Lower digits monitor)	$\vdots$
	Pr. 1411 (Upper digits monitor)	II_
	Pr	

## NOTE

- Any value can be set in Pr. 1410 or Pr.1411. Set " 0 " to clear the number on the monitor.
- Starting during offline auto tuning is not counted.
- Under position control, the count increases when the LX signal turns ON.
- The counting is enabled even if the RUN signal is not assigned to an output terminal.
- (For RUN signal, refer to page 450.)
- Starting during the test operation (Pr. $800=" 9 "$ ) is not counted.


### 5.14.5 Stop-on-contact control

## Magneticflux Sensorless

To ensure accurate positioning at the upper limit, etc. of a lift, stop-on-contact control causes the mechanical brake to close while the motor creates a holding torque to keep the load in contact with a mechanical stopper, etc.
This function suppresses vibration that is likely to occur when the load is stopped upon contact in lift applications, thereby ensuring reliable and highly accurate positioning stop.


Pr.	Name	Initial value	Setting range	Description		
$\begin{array}{\|l\|} \hline 6 \\ \text { D303 } \end{array}$	Multi-speed setting (low speed)	10 Hz	0 to 590 Hz	Set the output frequency for stop-on-contact control.		
$\begin{aligned} & 22 \\ & \mathrm{H} 500 \end{aligned}$	Stall prevention operation level	150\%	0 to 400\%	Set the stall prevention operation level for stop-on-contact control.		
$\begin{aligned} & 48 \\ & \mathrm{H} 600 \end{aligned}$	Second stall prevention operation level	150\%	0 to 400\%	The smaller value set in either Pr. 22 or Pr. 48 has priority.		
$\begin{aligned} & 270 \\ & \text { A200 } \end{aligned}$	Stop-on contact/load torque high-speed frequency control selection	0	0	Normal		
			1	Stop-on-contact control		
			2	Load torque high-speed frequency con	ntrol (Refer to page 549.)	
			3	Stop-on contact + load torque high sp to page 549)	eed frequency control (Refer	
			11	Stop-on-contact control	E.OLT is invalid under stop-on-contact control	
			13	```Stop-on contact + load torque high speed frequency control (Refer to page 549.)```		
$\begin{aligned} & \text { 275 } \\ & \text { A205 } \end{aligned}$	Stop-on contact excitation current low-speed scaling factor	9999	0 to 300\%	Set the force (holding torque) for stop-on-contact control. Normally, set the scaling factor between 130 to $180 \%$.		
			9999	Not compensated.		
$\begin{array}{\|l\|} \hline 276 \\ \text { A206 } \end{array}$	PWM carrier frequency at stop-on contact	9999	0 to $9^{* 1}$	Set a PWM carrier frequency for stop-on-contact control. For Real sensorless vector control, the carrier frequency is always 2 kHz when the setting value is 0 to 5 and always 6 kHz when the setting value is 6 to 9 . (Valid at the output frequency of 3 Hz or less.)		
			0 to $4^{* 2}$			
			9999	As set in Pr. 72 PWM frequency selection.		
The setting range of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower The setting range of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher						

## -Connection and operation example



## Setting the stop-on-contact control

- Make sure that the inverter is in External or Network operation mode. (Refer to page 370.)
- Select either Real sensorless vector control (speed control) or Advanced magnetic flux vector control.
- Set "1, 3, 11 or 13" in Pr. 270 Stop-on contact/load torque high- speed frequency control selection.
- Set the output frequency for stop-on-contact control in Pr. 6 Multi-speed setting (low speed).

Set the frequency as low as possible (about 2 Hz ). If a frequency higher than 30 Hz is set, it operates with 30 Hz .

- When both the RT and RL signals are switched ON, the inverter enters the stop-on-contact control, and operation is performed at the frequency set in Pr. 6 independently of the preceding speed.
- Setting Pr. $270=$ "11 or 13 " disables stall prevention stop (E.OLT) during stop-on-contact control (with both RL and RT signals ON).


## NOTE

- By increasing the Pr. 275 setting, the low-speed (stop-on-contact) torque increases, but overcurrent fault (E.OCT) may occur or the machine may oscillate in stop-on-contact status.
- The stop-on-contact function is different from the servo-lock function, and if used to stop or hold a load for an extended period, this function can cause the motor to overheat. After a stop, immediately switch to a mechanical brake to hold the load.
- Under the following operating conditions, the stop-on-contact function is invalid:

PU operation (Pr.79), JOG operation (JOG signal), PU + External operation (Pr.79), PID control function operation (Pr.128), Remote setting function operation (Pr.59), Automatic acceleration/deceleration operation (Pr.292), Start time tuning, Orientation control function operation

- When performing stop-on-contact control during encoder feedback control, encoder feedback control is invalid due to a transition to the stop-on-contact control mode.


## Function switching of stop-on-contact control selection

Main functions	Normal operation   Normal operation (either RL or RT is OFF or both are OFF)		Stop-on-contact control Stop-on-contact control (both RL and RT are ON)	
	Real sensorless vector control	Advanced magnetic flux vector control	Real sensorless vector control	Advanced magnetic flux vector control
Output frequency	Multi-speed, 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 4$ to 20 mA , etc.		Pr. 6 setting	
Stall prevention operation level	-	Pr. 22 setting	-	The smaller value set in either Pr. 22 or Pr. $48{ }^{* 1}$
Torque limit level	Pr. 22 setting	-	Pr. 22 setting	-
Excitation current low-speed scaling factor	-		The current is compensated by Pr. 275 (50 to 300\%) setting from normal operation.	
Carrier frequency	Pr. 72 setting		When output frequency is 3 Hz or lower, Pr. 276 setting (Pr.72when Pr. 276 = "9999")	
Fast-response current limit	-	Enabled	-	Disabled

## *1 When RL and RT are ON, Pr. 49 Second stall prevention operation frequency is invalid.

## Set frequency and validity of the stop-on-contact control (Pr. $270=$ "1, 3, 11, 13")

- The following table lists the frequencies set when the input terminals (RH, RM, RL, RT, JOG) are selected together.
- Stop-on-contact control is disabled when remote setting function is selected (Pr. $59=1$ to 3 ).

Input signal					Set   frequency	Stop-on-contact   control
RH	RM	RL	RT	JOG	Pr.4	
ON					Pr.5	
	ON					
		ON			Pr.6	
			ON		$* 1$	
				ON	Pr.15	
ON	ON				Pr.26	
ON		ON			Pr.25	
ON			ON		Pr.4	
ON				ON	Pr.15	
	ON	ON			Pr.24	
	ON		ON		Pr.5	
	ON			ON	Pr.15	
		ON	ON		Pr.6	Enabled
		ON		ON	Pr.15	
			ON	ON	Pr.15	
		ON	ON	ON	Pr.15	


Input signal					Set   frequency	Stop-on-contact   control
RH	RM	RL	RT	JOG	(	(

*1 By 0 to $5 \mathrm{~V}(0$ to 10 V$), 4$ to 20 mA input

## NOTE

－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

《｜Parameters referred to 》》
Pr． 4 to Pr．6，Pr． 24 to Pr． 27 （multi－speed setting）
Pr． 15 Jog frequency
Pr． 22 Stall prevention operation level，Pr． 48 Second stall prevention operation level level page 409
Pr． 22 Torque limit level page 235
Pr． 59 Remote function selection page 359
Pr． 72 PWM frequency selection page 339
Pr． 79 Operation mode selection page 370
Pr． 95 Online auto tuning selection page 527
Pr． 128 PID action selection page 570
Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 496
Pr． 270 Stop－on contact／load torque high－speed frequency control selection page 549
Pr． 292 Automatic acceleration／deceleration page 365，page 368

## 5．14．6 Load torque high－speed frequency control

Load torque high－speed frequency control is a function that automatically sets the maximum operable frequency according to the load．
The load size during power driving is estimated by detecting average currents at set timings after a start．When the load is light， the frequency is increased from the originally－set frequency．（In regenerative driving，the frequency is not increased．） This function is designed to increase speed automatically under light load，for example to minimize the incoming／outgoing time in a multi－story parking lot．
＜Without high－speed frequency control＞


Whether there is a load or not，the lift is moved vertically at the same speed．
＜With high－speed
frequency control＞


The lift with a light load or without a load is moved faster than the lift with a load．
（The output frequency is increased only during power driving．）

Pr．	Name	Initial value		Setting range	Description		
		FM	CA				
$\begin{aligned} & 4 \\ & \text { D301 } \end{aligned}$	Multi－speed setting （high speed）	60 Hz	50 Hz	0 to 590 Hz	Set the higher－speed frequency．		
$\begin{aligned} & \mathrm{5} \\ & \mathrm{D} 302 \end{aligned}$	Multi－speed setting （middle speed）	30 Hz		0 to 590 Hz	Set the lower－speed frequency．		
$\begin{aligned} & 270 \\ & \text { A200 } \end{aligned}$	Stop－on contact＋load torque high speed frequency control	0		0	Normal		
				1	Stop－on－contact control（Refer to page 546．）		
				2	Load torque high－speed frequency control		
				3	Stop－on contact（refer to page 546）＋load torque high speed frequency control		
				11	Stop－on－contact control	E．OLT is invalid under stop on－contact control．	
				13	Stop－on contact＋load torque high speed frequency control   （Refer to page 546．）		
$\begin{aligned} & 271 \\ & \text { A201 } \end{aligned}$	High－speed setting maximum current	50\％		0 to 400\％	Set the upper and lower limits of the current at high and middle speeds．		
$\begin{aligned} & 272 \\ & \text { A202 } \end{aligned}$	Middle－speed setting minimum current	100\％		0 to 400\％			
273	Current averaging range	9999		0 to 590 Hz	Set the average current during acceleration from（Pr． $273 \times 1 / 2) \mathrm{Hz}$ to（Pr．273）Hz．		
A203				9999	Set the average current during acceleration from（Pr． $5 \times 1 / 2$ ） Hz to （Pr．5）Hz．		
$\begin{aligned} & 274 \\ & \text { A204 } \end{aligned}$	Current averaging filter time constant	16		1 to 4000	Set the time constant of the primary delay filter relative to the output current．   （The time constant［ms］is $0.5 \times \operatorname{Pr} .274$ ，and the initial value is 8 ms ．） A larger setting results in a stable operation with poorer response．		

## - Connection diagram


*1 The applied terminals differ by the settings of Pr. 180 to Pr. 189 (Input terminal function selection)

## - Load torque high speed frequency control setting

- Set "2, 3 or 13" in Pr. 270 Stop-on contact/load torque high- speed frequency control selection.
- When the Load torque high-speed frequency (X19) signal ON, the inverter automatically adjusts the maximum frequency in the range between the Pr. 4 Multi-speed setting (high speed) and Pr. 5 in accordance with the average current in the current averaging range. The current averaging range is from the $1 / 2$ the Pr. 5 Multi-speed setting (middle speed) to the full Pr. 5 setting (in the current averaging range).
- To use the X19 signal, set "19" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.
- This is valid in External operation mode and Network operation mode.
- The control can be activated at every start.


## - Operation of load torque high speed frequency control

- When the average current of the current averaging range (chart A below) during operation with the X 19 signal ON is the "inverter rated current $\times$ Pr. 271 setting (\%)" or less, the maximum frequency automatically becomes the Pr. 4 Multi-speed setting (high speed) setting value.
- When the average current of the current averaging range (chart B below) during operation with the X 19 signal ON is greater than the "inverter rated current $\times$ Pr. 272 setting (\%)", the maximum frequency automatically becomes the Pr. 5 Multispeed setting (middle speed) setting value.
- During regeneration load operation, the Pr. 5 setting is the maximum frequency regardless of the average current.
- When Pr. 273 is used, the current averaging range can be set between one half of the frequency of the Pr. 273 setting value and the Pr. 273 set frequency. (However, the setting value must be smaller than Pr. 5 setting.)

－When the average current is larger than＂inverter rated current $\times$ Pr． 271 setting（\％）＂and smaller than＂inverter rated current $\times$ Pr． 272 setting（\％）＂，linear compensation is performed as shown below．


Value in parenthesis is initial value．

## NOTE

－When the current averaging range includes the constant－output range，the output current may become large in the constant－ output range．
－When the average current value in the current averaging range is small，deceleration time becomes longer as the running frequency increases．
－The automatic restart after instantaneous power failure function，fast－response current limit operation，fast－response current limit operation，shortest acceleration／deceleration，and optimum acceleration／deceleration are invalid．
－Changing the terminal assignment with Pr． 178 to Pr． 189 （Input terminal function selection）may affect other functions．Set parameters after confirming the function of each terminal．
－Under the following operating conditions，the load torque high－speed frequency function is invalid： PU operation（Pr．79），PU＋External operation（Pr．79），JOG operation，PID control function operation（Pr．128），remote setting function operation（Pr．59），orientation control function operation，multi－speed setting（RH，RM，and RL signals），torque control， position control．
－When the average current during acceleration is too small，it may be judged as regeneration，and the maximum frequency may become the setting of Pr． 5 ．
－The output frequency may change due to the load，so do not get unnecessarily close to the motor or machine．

## 《＜Parameters referred to 》》

Pr． 4 to Pr．6，Pr． 24 to Pr． 27 （multi－speed setting）$\leqslant$ page 391
Pr． 57 Restart coasting time page 597，page 604
Pr． 59 Remote function selection page 359
Pr． 79 Operation mode selection $\leqslant$ page 370
Pr． 128 PID action selection page 570
Pr． 178 to Pr． 189 （Input terminal function selection）page 496

## 5．14．7 Traverse function

The traverse operation，which oscillates the frequency at a constant cycle，is available．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 592 \\ & \text { A300 } \end{aligned}$	Traverse function selection	0	0	Traverse function invalid
			1	Traverse function valid only in External operation mode
			2	Traverse function valid regardless of the operation mode
$\begin{array}{\|l\|} \hline 593 \\ \text { A301 } \end{array}$	Maximum amplitude amount	10\％	0 to 25\％	Level of amplitude during traverse operation
$\begin{aligned} & 594 \\ & \text { A302 } \end{aligned}$	Amplitude compensation amount during deceleration	10\％	0 to 50\％	Compensation amount during amplitude inversion （from acceleration to deceleration）
$\begin{aligned} & 595 \\ & \text { A303 } \end{aligned}$	Amplitude compensation amount during acceleration	10\％	0 to 50\％	Compensation amount during amplitude inversion （from deceleration to acceleration）
$\begin{aligned} & 596 \\ & \text { A304 } \end{aligned}$	Amplitude acceleration time	5 s	0.1 to 3600 s	Time period of acceleration during traverse operation
$\begin{array}{\|l\|} \hline 597 \\ \text { A305 } \end{array}$	Amplitude deceleration time	5 s	0.1 to 3600 s	Time period of deceleration during traverse operation

－Setting Pr． 592 Traverse function selection＝＂1 or 2＂enables the traverse function．
－Assigning the Traverse function selection（X37）signal to the input terminal enables the traverse function only when the X 37 signal is ON．（When the X37 signal is not assigned，the traverse function is always available．）To input the X 37 signal， set＂37＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function to a terminal．

f0：set frequency
f1：amplitude amount from the set frequency （f0 $\times$ Pr．593／100）
f2：compensation amount at transition from acceleration to deceleration （f1 $\times$ Pr．594／100）
f3：compensation amount at transition from deceleration to acceleration （f1 $\times$ Pr．595／100）
$t 1$ ：time from acceleration during traverse operation（Time from（f0－f1）to（f0＋f1）） （Pr．596）
t2：time from deceleration during traverse operation（Time from $(\mathrm{fO}+\mathrm{f} 1)$ to $(\mathrm{fO}-\mathrm{f} 1)$ ） （Pr．597）
－The motor accelerates to the set frequency f0 according to the normal Pr． 7 Acceleration time at turn ON of the start command（STF or STR）．
－When the output frequency reaches $f 0$ and the X 37 signal turns ON ，the inverter begins traverse operation and accelerates to $\mathrm{f0} 0 \mathrm{f} 1$ ．The acceleration time at this time is according to the Pr． 596 setting．（If the X37 signal turns ON before the output frequency reaches $\mathrm{f0}$ ，traverse operation begins after the output frequency reaches fO ．）
－After the inverter accelerates to $\mathrm{f0}+\mathrm{f} 1$ ，this is compensated with $\mathrm{f} 2(\mathrm{f} 1 \times \operatorname{Pr} .594$ ），and the inverter decelerates to $\mathrm{f0}-\mathrm{f} 1$ ． The deceleration time at this time is according to the Pr． 597 setting．
－After the inverter decelerates to $\mathrm{f0}-\mathrm{f} 1$ ，this is compensated with f 3 （ $\mathrm{f} 1 \times$ Pr．595），and the inverter accelerates again to f0 ＋f1．
－When the X37 signal turns OFF during traverse operation，the inverter accelerates／decelerates to f0 according to the normal acceleration／deceleration time（Pr．7，Pr．8）．If the start command（STF or STR）is turned OFF during traverse operation，the inverter decelerates to a stop according to the normal deceleration time（Pr．8）．

## NOTE

－If the set frequency（f0）and traverse operation parameters（Pr． 598 to Pr．597）are changed during traverse operation，this is applied in operations after the output frequency reaches f0 before the change was made．
－If the output frequency exceeds Pr． 1 Maximum frequency or Pr． 2 Minimum frequency during traverse operation，the output frequency is clamped at the maximum／minimum frequency when the set pattern exceeds the maximum／minimum frequency．
－When the traverse function and S－pattern acceleration／deceleration（Pr． $29 \neq 00$＂）are selected，S－pattern acceleration／ deceleration operation occurs only in the range operated at the normal acceleration／deceleration time（Pr．7，Pr．8）． Acceleration／deceleration during traverse operation is performed linearly．
－If stall prevention activates during traverse operation，traverse operation stops and normal operation begins．When stall prevention operation is completed，the inverter accelerates／decelerates to $f 0$ at the normal acceleration／deceleration time （Pr．7，Pr．8）．After the output frequency reaches f0，the traverse operation begins again．
－If the value of the amplitude inversion compensation amount（Pr．594，Pr．595）is too large，an overvoltage trip or stall prevention occurs，and pattern operation cannot be performed as set．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

### 5.14.8 Anti-sway control

When an object is moved by a gantry crane, swinging is suppressed on the crane's traveling axis.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1072 \\ & \text { A310 } \end{aligned}$	DC brake judgment time for anti-sway control operation	3 s	0 to 10 s	Set the time from when the output frequency becomes the Pr. 10 DC injection brake operation frequency or less to when the DC injection brake (zero speed control or the servo lock) operation starts.
1073	Anti-sway control operation selection	0	0	Anti-sway control disabled
A311			1	Anti-sway control enabled
$\begin{aligned} & 1074 \\ & \text { A312 } \end{aligned}$	Anti-sway control frequency	1 Hz	0.05 to 3 Hz	Set a swinging frequency of the object.
			9999	Anti-sway control is performed using a swinging frequency estimated by the inverter according to the settings of Pr. 1077 to Pr. 1079.
$\begin{aligned} & 1075 \\ & \text { A313 } \end{aligned}$	Anti-sway control depth	0	0 to 3	0 (Deep) $\rightarrow 3$ (Shallow)
$\begin{aligned} & 1076 \\ & \text { A314 } \end{aligned}$	Anti-sway control width	0	0 to 3	0 (Narrow) $\rightarrow 3$ (Wide)
$\begin{aligned} & 1077 \\ & \text { A315 } \end{aligned}$	Rope length	1 m	0.1 to 50 m	Set the rope length of the crane.
$\begin{aligned} & 1078 \\ & \text { A316 } \end{aligned}$	Trolley weight	1 kg	$\begin{aligned} & 1 \text { to } \\ & 50000 \mathrm{~kg} \end{aligned}$	Set the weight of the trolley.
$\begin{aligned} & 1079 \\ & \text { A317 } \end{aligned}$	Load weight	1 kg	$\begin{aligned} & 1 \text { to } \\ & 50000 \mathrm{~kg} \end{aligned}$	Set the weight of the object.

## - Anti-sway control operation (Pr.1073)

- Setting Pr. 1073 Anti-sway control operation selection = "1" enables anti-sway control. (Anti-sway control is not available under zero speed or servo lock control.)
- During operation under anti-sway control, the travel distance becomes longer. Input a stop command earlier to avoid a collision with an obstacle.
- A deceleration to stop without anti-sway control is applied for stopping as a result of PU stop, an emergency stop command input from a communication option, Pr. 875 Fault definition, or an emergency stop input (X92 signal).



## NOTE

- Under torque control or position control, the anti-sway control is disabled.
- During operation of the power failure time deceleration-to-stop function, or when the automatic restart after instantaneous power failure is enabled (Pr. $57 \neq " 9999$ "), the anti-sway control is disabled.


## Swinging frequency setting (Pr. 1074 to Pr.1079)

- Set a swinging frequency in Pr. 1074 Anti-sway control frequency. The swinging frequency is used as a notch filter frequency. Lower the response level of speed control in the frequency band with the width set in the Pr. 1076 Anti-sway control width by the gain set in the Pr. 1075 Anti-sway control depth.
- A deeper notch depth has a greater effect in reducing mechanical resonance, but because the phase delay is larger, swinging may increase. Adjust by starting from the shallowest value.

Setting	3	$\mathbf{2}$	$\mathbf{1}$	0
Gain (depth)	-4 dB (shallow)	-8 dB	-14 dB	$-\infty$ (deep)

- If the Pr. 1076 setting is too large (the width is too wide), the response level of speed control drops, and the system may become unstable.
- After setting Pr. 1074 = "9999", set the crane rope length in the Pr. 1077 Rope length, the trolley weight in the Pr. 1078 Trolley weight, and the weight of an object in the Pr. 1079 Load weight. Then, anti-sway control is performed using a swinging frequency estimated by the inverter.


## - Waiting time for brake operation of anti-sway control (Pr.1072)

- Set the time from when the output frequency becomes the Pr. 10 DC injection brake operation frequency or less to when the zero speed control or the servo lock operation starts in the Pr. 1072 DC brake judgment time for anti-sway control operation.



## NOTE

- During anti-sway control operation, even if the motor rotation is restricted to one direction in the Pr. 78 Reverse rotation prevention selection, the motor may rotate in a direction opposite to the setting.
- A protective function (E.OSD) may be activated during vibration control. When using anti-sway control, set Pr. 690 Deceleration check time $=$ "9999 (initial value)" to disable the deceleration check function.
- When anti-sway control is enabled, regeneration avoidance, shortest acceleration/deceleration, and the traverse function are disabled.
- Do not set anti-sway control and droop control together.

```
Parameters referred to \>
Pr. }10\mathrm{ DC injection brake operation frequency }\leqslant\mathrm{ page }68
Pr. }78\mathrm{ Reverse rotation prevention selection page }38
Pr. }286\mathrm{ Droop gain
Pr. }292\mathrm{ Automatic acceleration/deceleration
Pr. }592\mathrm{ Traverse function selection F page 551
Pr. }690\mathrm{ Deceleration check time F page 259
Pr. }875\mathrm{ Fault definition page }40
Pr. }882\mathrm{ Regeneration avoidance operation selection page }69
```


### 5.14.9 Orientation control

V/F Magneticfliux Vector
The inverter can adjust the stop position (Orientation control) using a position detector (encoder) attached to a place such as the main shaft of the machine.

A Vector control compatible option is required.
Because Pr. 350 Stop position command selection is initially set to "9999", the orientation control function is invalid.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 350 \\ & \text { A510*1 } \end{aligned}$	Stop position command selection	9999	0	Internal stop position command (Pr.356)
			1	External stop position command (FR-A8AX 16-bit data)
			9999	Orientation control invalid
$\begin{aligned} & 351 \\ & \text { A526*1 } \end{aligned}$	Orientation speed	2 Hz	0 to 30 Hz	Turning ON the X22 signal decelerates the motor speed to the set value.
$\begin{aligned} & 352 \\ & \text { A527 } \end{aligned}$	Creep speed	0.5 Hz	0 to 10 Hz	After the speed reaches the orientation speed, the speed decreases to the
$\begin{aligned} & 353 \\ & \text { A528*1 } \end{aligned}$	Creep switchover position	511	0 to 16383	creep switchover position set in Pr. 353.


Pr.		Name	Initial value	Setting range	Description		
$\begin{array}{\|l\|} \hline 354 \\ \text { A529 } \end{array}$		Position loop switchover position	96	0 to 8191	As soon as the current position pulses reach the set position loop switchover position, control is changed to the position loop.		
$\begin{aligned} & 355 \\ & \text { A530*1 } \end{aligned}$		DC injection brake start position	5	0 to 255	After the motor moves into the position loop, the motor stops by the DC injection brake when the current position pulses reach the specified start position of the DC injection brake.		
$\begin{aligned} & 356 \\ & \text { A531 } \end{aligned}$		Internal stop position command	0	0 to 16383	When " 0 " is set in Pr.350, the internal position command is activated and the setting value of Pr. 356 becomes the stop position.		
$\begin{aligned} & 357 \\ & \text { A532*1 } \end{aligned}$		Orientation inposition zone	5	0 to 255	Set the in-position width at a stop of the orientation.		
358 A533 ${ }^{* 1}$		Servo torque selection	1	0 to 13	Operation at orientation completion can be selected.		
$\begin{aligned} & 359 \\ & \text { C141 }^{*} \\ & 2 \end{aligned}$	$\begin{array}{\|l} 852 \\ \mathrm{C} 241^{*} \\ 3 \end{array}$	Encoder rotation direction	1	0	Set when using a motor (encoder) for which forward rotation is clockwise (CW) viewed from the shaft	Set for the operation at 120 Hz or less.	
				100		Set for the operation at a frequency higher than 120 Hz .	
				1	Set when using a motor for which forward rotation (encoder) is counterclockwise (CCW) viewed from the shaft	Set for the operation at 120 Hz or less.	
				101		Set for the operation at a frequency higher than 120 Hz .	
$\begin{aligned} & 360 \\ & \text { A511*1 } \end{aligned}$		16-bit data selection	0	0	Speed command	When Pr. $350=$ "1" is set and the FR-A8AX is mounted together, set the stop position using 16-bit data. Stop position command is input as binary regardless of the Pr. 304 setting.	
		1		16-bit data is used as the external position command as is.			
		2 to 127		Set the stop position by dividing up to 128 stop positions.			
361   A512			Position shift	0	0 to 16383	Shift the home position using a compensation value without changing the home position of the encoder. The stop position is a position obtained by adding the setting of Pr. 361 to the position command.	
$\begin{aligned} & 362 \\ & \text { A520*1 } \end{aligned}$			Orientation position loop gain	1	0.1 to 100	When the servo torque function is selected using Pr.358, the output frequency for generating servo torque gradually increases to the Pr. 352 according to the slope set in Pr.362. Although the operation becomes faster when the value is increased, hunting may occur in the machine.	
$\begin{aligned} & 363 \\ & \text { A521*1 } \end{aligned}$		Completion signal output delay time	0.5 s	0 to 5 s	The Orientation complete (ORA) signal turns ON after going into the inposition width and waiting for the set time. Also, the signal turns OFF after going out of the in-position width and waiting for the set time.		
$\begin{aligned} & 364 \\ & \text { A522*1 } \end{aligned}$		Encoder stop check time	0.5 s	0 to 5 s	If the Orientation complete (ORA) signal has never been output and the encoder stays stopped for the set time without completing orientation, the Orientation fault (ORM) signal is output. If the ORA signal has been output before but the orientation cannot be completed within the set time, the ORM signal is also output.		
$\begin{aligned} & 365 \\ & \text { A523 }^{* 1} \end{aligned}$		Orientation limit	9999	0 to 60 s	The time elapses after passing the creep switchover position is measured. If orientation cannot be completed within the set time, the Orientation fault (ORM) signal is output.		
		9999		Set to 120 s .			
$\begin{aligned} & 366 \\ & \text { A524*1 } \end{aligned}$			Recheck time	9999	0 to 5 s	When the start signal is turned OFF with the Orientation command (X22) ON after stopping the motor by orientation control, the present position is checked again after the set time elapses, and the Orientation complete (ORA) signal or Orientation fault (ORM) signal is output.	
		9999			Not checked.		
$\begin{aligned} & 369 \\ & \text { C140* } \\ & 4 \end{aligned}$	$\begin{aligned} & 851 \\ & \mathrm{C} 240^{*} \\ & 3 \end{aligned}$	Number of encoder pulses	1024	0 to 4096	Set the number of encoder pulses. Set the number of pulses before it is	multiplied by 4.	


Pr.	Name	Initial value	Setting range	Description		
$\begin{aligned} & 393 \\ & \text { A525 }{ }^{* 1} \end{aligned}$	Orientation selection	0	0	Orientation is executed from the current rotation direction.	Motor end orientation	
			1	Orientation is executed from the forward rotation direction.		
			2	Orientation is executed from the reverse rotation direction.		
			10	Orientation is executed from the current rotation direction.	Machine end orientation* ${ }^{*}$	
			11	Orientation is executed from the forward rotation direction.		
			12	Orientation is executed from the reverse rotation direction.		
$\begin{aligned} & 394 \\ & \text { A540 } \end{aligned}$	Number of machine side gear teeth	1	0 to 32767	Set the encoder orientation gear ratio.		
395 A841*5	Number of motor side gear teeth					
$\begin{aligned} & 396 \\ & \text { A542*1 } \end{aligned}$	Orientation speed gain ( P term)	60	0 to 1000	Response level during position control loop (servo rigidity) can be adjusted at orientation stop.		
397   A543* ${ }^{*}$	Orientation speed integral time	0.333	0 to 20 s			
398   A544 ${ }^{* 1}$	Orientation speed gain ( D term)	1	0 to 100	Lag/advance compensation gain can be adjusted.		
399 A545* ${ }^{*}$	Orientation deceleration ratio	20	0 to 1000	Make adjustment when the motor runs back at orientation stop or the orientation time is long.		
$\begin{aligned} & 829 \\ & \text { A546*7 } \end{aligned}$	Number of machine end encoder pulses	9999	0 to 4096	Set the number of pulses output from the encoder connected to the end of the machine.   Set the number of pulses before it is multiplied by 4 .		
			9999	Machine end orientation invalid.		
$\begin{aligned} & 862 \\ & \mathrm{C} 242^{* 1} \end{aligned}$	Encoder option selection	0	0	First motor: plug-in option that supports the Vector control Second motor: control terminal option that supports the Vector control ${ }^{* 8}$	Machine end orientation invalid	
			1	First motor: control terminal option that supports the Vector control Second motor: plug-in option that supports the Vector control ${ }^{*} 8$	Machine end orientation invalid (when Pr. 393 = "0, 1, or 2")	
				Motor end: control terminal option that supports the Vector control Machine end: plug-in option that supports the Vector control	Machine end orientation valid (when $\text { Pr. } 393 \text { = "10, 11, or 12") }$	

*1 The setting is available when a Vector control compatible option is installed.
*2 These parameters are available when a built-in option (FR-A8AP/FR-A8AL/FR-A8APR/FR-A8APS) is installed.
*3 These parameters are available when the option (FR-A8TP) is installed.
*4 The setting is available when the FR-A8AP/FR-A8AL is installed.
*5 The setting is available when the FR-A8AP/FR-A8AL/FR-A8APR/FR-A8TP is installed.
*6 To perform machine end orientation, the plug-in option (FR-A8AP/FR-A8AL/FR-A8APR/FR-A8APS) and control terminal option (FR-A8TP) are required.
*7 The setting is available when the FR-A8AL is installed.
*8 When the second motor is selected, the orientation control is disabled.

## - Motor end orientation connection example


*1 Single-phase power supply ( $200 \mathrm{~V} / 50 \mathrm{~Hz}, 200$ to $230 \mathrm{~V} / 60 \mathrm{~Hz}$ ) is used for the fan for a 7.5 kW or lower dedicated motor.
*2 The pin number differs according to the encoder used.
*3 Use Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal. (Refer to page 496 .)
*4 Use Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to a terminal. (Refer to page 450.)
*5 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
*6 Connect the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 92.)
*7 For the differential line driver, set the terminating resistor selection switch to the ON position (initial status) to use. (Refer to page 87.) Note that the terminating resistor switch should be set to the OFF position when sharing the same encoder with another unit (NC, etc.) or when the terminating resistor is connected to another unit. For the complementary, set the switch to the OFF position.
*8 For terminal compatibility of the FR-JCBL, the FR-V5CBL, and the FR-A8AP, refer to page 87.
*9 A separate power supply of $5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$ is necessary according to the encoder power specification. Make the voltage of the external power supply same as the encoder output voltage, and connect the external power supply between PG and SD. When performing encoder feedback control and Vector control together, an encoder and power supply can be shared.
*10 When a stop position command is input from outside, a plug-in option FR-A8AX is required. Refer to page 558 for the external stop position command.
*11 Connect the recommended $2 \mathrm{~W} 1 \mathrm{k} \Omega$ resistor between terminals PC and OH . (Recommended product: MOS2C102J $2 \mathrm{~W} 1 \mathrm{k} \Omega$ by KOA Corporation) Insert the input line and the resistor to a 2-wire blade terminal, and connect the blade terminal to terminal OH. (For the recommended 2-wire blade terminals, refer to page 73.)
Insulate the lead wire of the resistor, for example by applying a contraction tube, and shape the wires so that the resistor and its lead wire do not touch other cables. Caulk the lead wire securely together with the thermal protector input line using a 2-wire blade terminal. (Do not subject the lead wire's bottom area to an excessive pressure.)
To use a terminal as terminal OH , assign the External thermal relay input $(\mathrm{OH})$ signal to an input terminal. (Set "7" in any of Pr.178 to Pr.189.) When OH signal is assigned to terminal RH (Pr. $182=$ " 7 ")


## Setting

- When the Orientation command (X22) signal is turned ON during operation after the parameters are set, the motor is decelerated to the orientation switchover speed. Then, the inverter calculates the orientation stop distance, further decelerates the motor and the motor enters the orientation state (servo lock). The Orientation complete (ORA) signal is output when the motor is within the orientation complete width.


## - Setting I/O signals

Signal	Signal name	Description
X22	Orientation   command	Turn ON the X22 signal to start the orientation operation.   For the X22 signal input, set "22" in any of Pr.178 to Pr. 189 to assign the function.
ORA	Orientation   complete	The output is in LOW state when the orientation stop can be made within the orientation complete width while   the start signal and X22 signal are input (ON).   For the ORA signal output, set "27 (positive logic)" or "127 (negative logic)" in Pr. 190 to Pr. 196.
ORM	Orientation fault	The output is in LOW state when the orientation stop cannot be made within the orientation complete width   while the start signal and X22 signal are input (ON).   For the ORM signal output, set "28 (positive logic)" or "128 (negative logic)" in Pr. 190 to Pr. 196.

## - Selecting stop position command (Pr. 350 Stop position command selection)

- Select either to use the internal stop position command (Pr. 356 Internal stop position command) or the external stop position command (16-bit data using the FR-A8AX).

Pr.350 setting	Stop position command source
0	Internal stop position command (Pr.356:0 to 16383)
1	External stop position command (FR-A8AX) 16-bit data
9999 (initial value)	Orientation control invalid

- When the internal stop position command ( $\operatorname{Pr} .350=" 0$ ") is selected, the Pr. 356 setting is used as the stop position.
- When the number of encoder pulses is 1024 pulses/r, one revolution ( $360^{\circ}$ ) of the encoder is divided by 4096 pulses (quadruplicated) so that the degree per pulse can be calculated as
$360^{\circ} / 4096$ pulses $=0.0879^{\circ} /$ pulse .
Refer to the following figure. Stop position (address) is shown within parentheses.

- When the external stop position command ( $\operatorname{Pr} .350=" 1 "$ ) is selected while the FR-A8AX option is mounted, 16 -bit data (binary input) is used to give the stop position.
- The value set in Pr. 360 16-bit data selection should be the divided value minus 1.

Pr. $\mathbf{3 6 0}$ setting	Description
0	External position command is invalid (speed command or torque command via the FR-A8AX)
1	Position command direct input   The 16-bit digital signal via the FR-A8AX is the direct stop position command.   <Example>   When the Pr.369 Number of encoder pulses setting is "1024", the stop position command "0 to 4095" can be input using   the FR-A8AX, and the digital signal of "2048 (H800)" is input to stop the motor at a 180 position. A command greater than   4096 is considered as 4095.
2 to 127	Set the stop position command by dividing up to 128 stop positions.   If the external stop command input is greater than the setting, the stop positions are the same as those in the maximum   external stop command value.   <Example>   When the number of stop positions is 90 (divided at intervals of $\left.4^{\circ}\right), 90-1=89$. Hence, set "89".


[Example 1] When Pr. 369 = "1024"	[Example 2] With 8 stop positions	[Example 3] With 120 stop positions
$\text { Pr. } 360 \text { = "1" }$	$\text { Pr. } 360 \text { = "7" }$   (7 or more) Origin(0) (1)   (4)	$\text { Pr. } 360 \text { = "119" }$

## NOTE

- Values in parentheses indicate binary data input from the terminals. Even if the position pulse monitor (Pr. 52 Operation panel main monitor selection $=" 19 "$ ) is selected, the data monitored is not the number of stop positions. It is the number of pulses from 0 to 65535 .
- FR-A8AX parameters (Pr. 300 to Pr.305) are invalid. (Valid when Pr. $360=$ "0")
- Terminal DY (data read timing input signal) becomes invalid during Vector control. (The position data is downloaded at the start of orientation.)
- Internal stop position command is given when no option is mounted or Pr. $360=00$ " even if "1" (external stop position command) is set in Pr. 350.
- Relationship between stop position command and 16-bit data

$\text { Pr. } 350$   Stop position command selection	$\text { Pr. } 360$   16-bit data selection	Operation status		
		Stop position command	16-bit data (FR-A8AX)	Speed command
0 internal	0 : speed command	Internal (Pr.356)	Speed command	16-bit data
	1, 2 to 127: position command	Internal (Pr.356)	Invalid	External command (or PU)
1: external	0: speed command	Internal (Pr.356)	Speed command	16-bit data
	1, 2 to 127: position command	External   (Internal when the FR-A8AX is not installed (Pr.356))	Position command	External command (or PU)

## - Pr. 361 Position shift (initial value "0")

- The stop position is a position obtained by adding the setting of Pr. 361 to the position command.
- Position shift function

Shift the home position using a compensation value without changing the home position of the position detector (encoder).

## NOTE

- When orientation control is valid using Pr. 350 Stop position command selection with the Vector control compatible option mounted, the rotation direction of the encoder is displayed on the rotation direction display of the PU (operation panel/ parameter unit).
Make settings so that "FWD" is displayed at turn ON of the STF signal and "REV" is displayed at turn ON of the STR signal.


## - Monitor display change

Monitor	Remarks
Position pulse monitor	When "19" is set in Pr.52 Operation panel main monitor selection, the position pulse
	monitor is displayed instead of the output voltage monitor of the PU.
	(Displayed only when the Vector control compatible option is mounted.)
	When "22" is set in Pr.52, the orientation status is displayed instead of the output voltage
	monitor of the PU. (Displayed only when the Vector control compatible option is mounted.)
	o: Other than orientation operation or orientation speed is not reached
1: Orientation speed is reached	
	2: Creep speed is reached
	3: Position loop is reached
	4: Orientation complete
	5: Orientation fault (pulse stop)
	6: Orientation fault (orientation limit)
	7: Orientation fault (recheck)
	8: Continuous multi-point orientation

*1 Invalid during Vector control. (" 0 " is always displayed.)

## - Pr. 357 Orientation in-position zone (initial value "5")

- The in-position width for orientation stop can be set.

The initial value of Pr. 357 is " 5 ". To change the $\Delta \theta$ value, make fine adjustments by changing in increments of $\pm 10$.

- If the position detection value from the encoder enters $\pm \Delta \theta$ during orientation stop, the Orientation complete (ORA) signal is output.
Set point
$\Delta \theta \stackrel{\Delta \theta}{\Delta}$

$$
\Delta \theta=\frac{360^{\circ}}{\substack{\text { Pr. } 369 \\ \text { Number of encoder pulses }} 4 \text { times }} \times \operatorname{Pr} .357
$$

## Orientation at the running status (under V/F control, Advanced magnetic flux vector control)

1. When the orientation command (X22) turns on, the motor speed decreases to the Pr. 351 Orientation speed. (Pr. 351 is initially set to: 2 Hz )
2. After the speed reaches the orientation speed, the speed further decreases to the Pr. 352 Creep speed as soon as the current position pulse reaches the Pr. 353 Creep switchover position.
(Pr. 352 is initially set to $0.5 \mathrm{~Hz}, \operatorname{Pr} .353$ is initially set to " 511 ".)
3. Moreover, as soon as the current position pulse reaches the Pr. 354 Position loop switchover position, control is changed to the position loop. (Pr. 354 is initially set to "96".)
4. After the motor moves into the position loop, the motor decelerates and stops by the $D C$ injection brake as soon as the current position pulse reaches the Pr. 355 DC injection brake start position. (Pr. 355 is initially set to " 5 ".)
5. When the motor stops in Pr. 357 Orientation in-position zone, the orientation complete (ORA) signal is output after Pr. 363 Completion signal output delay time. If the motor does not stop within the in-position width because of external force, etc., the ORA signal turns OFF after the time set in Pr. 363 . (Pr. 357 is initially set to " 5 ", Pr. 363 is initially set to 0.5 s .)
6. If the orientation is not completed continuously in Pr. 365 Orientation limit after passing the creep switchover position, the orientation fault signal (ORM) is output.
7. After the orientation starts, if the motor is stopped by external force, etc. before reaching the in-position width and the ORA signal is not output, the ORM signal is output after the Pr. 364 Encoder stop check time. If the motor is moved out of the in-position width by external force, etc. after the ORA signal has been output once, the ORA signal turns OFF after the set time in Pr.363. If the orientation is not completed within the time set in Pr.364, the ORM signal is output.
8. If the ORA and ORM signals have been output once, but the start signal (STF or STR) is turned OFF while the X 22 signal is ON, the ORA or ORM signal is output again after Pr. 366 Recheck time.
9. The ORA and ORM signals cannot be output while the X 22 signal is OFF.

## NOTE

- When the orientation command turns OFF while the start signal is ON, the speed accelerates to the command speed.

- If hunting of the motor shaft occurs during orientation stop, set a larger value in Pr. 354 or a smaller value in Pr. 352 to prevent it.



## - Orientation from the stop status (under V/F control, Advanced magnetic flux vector control)

- Turning ON the start signal after turning ON the Orientation command (X22) signal increases the motor speed to the Pr. 351 Orientation speed, and then the same orientation operation is performed as the operation shown in "Orientation at the running status".
- Note that the DC injection brake operates without increasing to the orientation speed if the position signal is within the DC injection brake start position.



## - Continuous multi-point orientation (V/F control, Advanced magnetic flux vector control)

- Orientation during orientation operation or start signal is ON

- The position data is read at the rising edge of DY. (For the details, refer to the Instruction Manual of FR-A8AX).
- When the position signal is within the creep switchover position, the speed starts up to the creep speed not to the orientation speed.
- When the position signal is outside the creep switchover position, the speed starts up to the orientation speed.
- The DC injection brake operates if the position signal is within the DC injection brake start position.
- 16-bit data with the FR-A8AX is valid only when the DY signal is ON.


## NOTE

- Couple the encoder with the motor shaft or with the shaft that stops the main shaft at the specified position. Couple it with the speed ratio of 1:1 and without any mechanical looseness.
- The DC injection brake operates at orientation stop. Release the DC injection brake as soon as possible (within several seconds), as continuous operation of the DC injection brake will cause the motor to overheat, leading to burnout.
- Because the servo lock function is not available after orientation stop, provide a holding mechanism, such as a mechanical brake or knock pin, when secure holding of the main shaft is required.
- To ensure correct positioning, the encoder must be set in the proper rotation direction, and the $A$ and $B$ phases must be connected correctly.
- If the pulse signal from the encoder stops due to encoder signal loss, etc. during orientation, the Orientation fault (ORM) signa may be output.
- When performing orientation control, enable the DC injection brake (refer to page 681). When the DC injection brake is disabled, orientation operation cannot be completed
- When orientation control is performed, the DC injection brake operates regardless of the External DC injection brake operation start (X13) signal even when Pr. 11 DC injection brake operation time = "8888" (DC injection brake external selection).
- To terminate orientation, the start signal (STF or STR) must be first switched OFF, and then the Orientation command (X22) signal must be switched OFF.As soon as this X22 signal is switched OFF, orientation control ends. (Depending on the (Pr. 358 Servo torque selection setting, the orientation status continues if the X22 signal remains ON even if the DC injection brake is released by turning OFF the start signal. Because of this, the orientation status on the monitor does not show " 0 ".
- When the retry function of Pr. 358 Servo torque selection is selected, the retry operation is performed three times including the first orientation.
- When performing orientation control, properly set Pr. 350 Stop position command selection and Pr.360 16-bit data selection (external position command selection). If the values set are incorrect, proper orientation control will not be performed.
- When orientation control is performed, PID control is disabled.


## Servo torque selection (Pr.358) (V/F control, Advanced magnetic flux vector control)

Function and description	Operation for each Pr. 358 setting														Remarks
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
a.Servo torque function until output of the Orientation complete (ORA) signal	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	-	$\circ$ : With servo torque function   $x$ : Without servo torque function
b. Retry function	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\circ$ : With retry function   $\times$ : Without retry function						
c. Output frequency compensation when the motor stops outside the in-position zone	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	-	$\circ$ : With frequency compensation   $\times$ : Without frequency compensation
d. DC injection brake and servo torque when the motor exits the in-position zone after output of the Orientation complete (ORA) signal	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	-	-	-	$\circ$ : DC injection brake enabled   x : Servo torque enabled
e. Turning OFF the orientation complete signal (ORA) when the orientation operation is ended.	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\circ$ : When the start signal (STF, STR) or orientation command is turned OFF $x$ : When the orientation command is turned OFF
f. Complete signal when the motor exits the in-position zone after output of the Orientation complete (ORA) signal	-	$\bigcirc$	-	$\bigcirc$	$\bigcirc$	$\times$	○: Turns OFF the complete signal when the motor exits the in-position zone   $\times$ : Complete signal remains ON even if the motor exits the in-position zone (the Orientation fault (ORM) signal is not output)								

- When the orientation command turns OFF while the start signal is ON, the motor accelerates to the command speed.
- When the motor shaft stops outside of the set setting range of the stop position, the motor shaft is returned to the stop position by the servo torque function (if enough torque is generated).
a. Servo torque function until output of the Orientation complete signal

Select whether or not servo torque is available using Pr. 358 Servo torque selection. Servo torque is not generated if the current position pulse is in between the orientation stop position and DC injection brake start position. The shaft is fixed using the DC injection brake, and when the motor exits the width by external force, etc., the servo torque is generated to move the motor back within the width. Once the Orientation complete (ORA) signal is output, the operation is performed as described in d.
b. Retry function

Select retry function using Pr.358. Note that the retry function cannot be used together with the servo torque function. If the motor shaft does not stop within the in-position zone when the motor stop is checked, orientation operation is performed again by the retry function. This retry function is performed three times including the first orientation. The maximum retry number is three. (The Orientation fault (ORM) signal is not output during retry operation.)
c. Frequency compensation when the motor stops outside the orientation complete width

When the motor stops before entering the in-position width due to external force, etc., the output frequency is increased to move the shaft to the orientation stop position. The output frequency is gradually increased to the Pr. 352 Creep speed. This function cannot be used with the retry function.
d. DC injection brake and servo torque selection when the position pulse exits the in-position zone after output of the ORA signal
If the motor exits the in-position width, select the setting either to fix the shaft with the DC injection brake or by returning the motor to the orientation stop position with the servo torque.
e. Turning OFF the Orientation complete (ORA) signal when the orientation operation is ended.

When ending the orientation operation, first turn OFF the start (STF or STR) signal, and then turn OFF the Orientation command X22 signal. At this time, select when to turn OFF the ORA signal from either the time the start signal is turned OFF or the time the orientation command signal is turned OFF.
f. Complete signal when the motor exits the in-position zone after output of the Orientation complete (ORA) signal Select to turn OFF the ORA signal or to keep the ORA signal ON (the ORM signal is not output) when the motor exits the in-position width.

## $\bullet$ Position loop gain (Pr.362) (V/F control, Advanced magnetic flux vector control)

- When the servo torque function is selected using Pr. 358 Servo torque selection, the output frequency for generating servo torque gradually increases to the Pr. 352 Creep speed according to the slope set in Pr. 362 Orientation position loop gain.
- Although the operation becomes faster when the value is increased, hunting may occur in the machine.


## - Description of orientation operation (Vector control)

- Setting the rotation direction (Pr. 393 Orientation selection)

Pr.393 setting	Rotation   direction	Remarks	
0 (initial value)	Pre-orientation	Orientation is executed from the current rotation direction.	
1	Forward rotation   orientation	Orientation is executed from the forward rotation direction.   (If the motor is running in reverse, orientation is executed from the forward   rotation direction after deceleration.)	Motor end orientation
2	Reverse rotation   orientation	Orientation is executed from the forward rotation direction.   (If the motor is running forward, orientation is executed from the reverse   rotation direction after deceleration.)	Machine end orientation
10	Pre-orientation	Orientation is executed from the current rotation direction.	
11	Forward rotation   orientation	Orientation is executed from the forward rotation direction. (If the motor is   running in reverse, orientation is executed from the forward rotation   direction after deceleration.)	Reverse rotation   orientation
Orientation is executed from the forward rotation direction. (If the motor is   running forward, orientation is executed from the reverse rotation direction   after deceleration.)			
12			

## Orientation from the current rotation direction (Pr. 393 = " 0 (initial value)") (Vector control)

- When the Orientation command (X22) signal is input, the motor speed decelerates from the running speed to Pr. 351 Orientation speed. At the same time, the orientation stop position command is read in. (The stop position command is determined by the setting of Pr. 350 Stop position command selection, Pr. 360 16-bit data selection)


- When the orientation switchover speed is reached, the encoder $Z$ phase pulse is confirmed, and the control changes from speed control to position control (Pr. 362 Orientation position loop gain).
- The distance to the orientation stop position is calculated at switching of the control, and the motor decelerates to a stop with a set deceleration pattern (Pr. 399 Orientation deceleration ratio) and enters the orientation (servo lock) state.
- Once in the Pr. 357 Orientation in-position zone, the Orientation complete (ORA) signal is output.
- The home position can be moved using Pr. 361 Position shift.


## CAUTION

- If the X22 is turned OFF while the start signal is input, the motor accelerates toward the speed of the current speed command. Therefore, to stop, turn the Forward rotation (Reverse rotation) signal OFF.


## -Orientation to the forward rotation direction (Pr. 393 = "1, 11") (Vector control)

- This method is used to improve the stopping precision and maintain the mechanical precision when the backlash is large.
- If the motor is running in the forward rotation direction, it makes an orientation stop with the same method as "orientation from the current rotation direction".
- If the motor is running in reverse, it decelerates, change to the forward rotation direction, and then orientation stop is executed.



## - Orientation from the reverse rotation direction (Pr. 393 = "2, 12") (Vector control)

- If the motor is running in the forward rotation direction, it executes an orientation stop with the same method as "orientation from the current rotation direction".
- If the motor is running in forward, it decelerates, change to the reverse rotation direction, and then orientation stop is executed.



## NOTE

- Couple the encoder with the motor shaft that stops the shaft at the specified position. Couple it with the speed ratio of $1: 1$ and without any mechanical looseness.
- To ensure correct positioning, the encoder must be set in the proper rotation direction, and the $A$ and $B$ phases must be connected correctly.
- If the pulse signal from the encoder stops due to encoder signal loss, etc. during orientation, orientation may not be completed.
- To terminate orientation, the start (STF or STR) signal must be first switched OFF, and then the Orientation (X22) signal must be switched OFF. As soon as this X22 signal is switched OFF, orientation control ends.
- When performing orientation control, properly set Pr. 350 Stop position command selection and Pr.360 16-bit data selection.
If the values set are incorrect, proper orientation control will not be performed.
- When orientation control is performed, PID control is disabled.
- If Signal loss detection (E.ECT) is displayed when the X22 signal is ON, causing the inverter to trip, check for a break in the cable of the $Z$ phase of the encoder.


## $\checkmark$ Servo rigidity adjustment (Pr.362, Pr. 396 to Pr.398) (Vector control)

- To increase the servo rigidity ${ }^{* 1}$ during orientation stop using Pr. 396 Orientation speed gain (P term) or Pr. 397 Orientation speed integral time, adjust with the following procedures.

1. Increase the Pr. 362 Orientation position loop gain value to the extent that rocking ${ }^{* 2}$ does not occur during orientation stop.
2. Increase Pr. 396 and Pr. 397 at the same rate.

Normally, adjust Pr. 396 in the range from 10 to 100, and Pr. 397 from 0.1 to 1.0 s.
(Note that these do not need to be set to the same rate.)
<Example>
When the Pr. 396 value is multiplied by 1.2, divide the Pr. 397 value by 1.2.
If vibration occurs during orientation stop, the scale cannot be raised any higher.
3. Pr. 398 Orientation speed gain ( $D$ term) is the lag/advance compensation gain.

The limit cycle ${ }^{* 3}$ can be prevented by increasing the value, and operation can be stopped stably. However, the torque decreases in relation to the position deviation, and the motor stops with deviation.
*1 Servo rigidity: The response when a position control loop is configured.
When the servo rigidity is raised, the holding force increases and operation becomes stabilized, but vibration occurs more easily. When the servo rigidity is lowered, the holding force decreases, and the settling time increases.
*2 Rocking: Movement in which return occurs when the stopping position is exceeded.
*3 Limit cycle: This is a phenomenon that generates $\pm$ continuous vibration centering on the target position.

## Point?

- Application of lag/advance control and PI control

PI control can be applied by setting Pr. 398 to 0 . Normally, use the lag/advance control. PI control should be used when using a machine with a high spindle static friction torque and requires a stop position accuracy.

## - Pr 399 Orientation deceleration ratio (initial value: 20) (Vector control)

- Make adjustments, as shown below, according to the orientation status. (Make adjustments in the order of a, b, and c.)

Normally, adjust Pr. 362 Orientation position loop gain in the range from 5 to 20, and Pr. 399 Orientation deceleration ratio from 5 to 50 .

Condition	Adjustment procedure
Rocking occurs during stopping	a. Decrease the Pr. 399 setting.   b. Decrease the Pr. 362 setting.   c. Increase the Pr. 396 and Pr. 397 settings.
The orientation time is long.	a. Increase the Pr. 399 setting.   b. Increase the Pr. 362 setting.
Hunting occurs during stopping	a. Decrease the Pr. 362 setting.   b. Decrease the Pr. 396 setting and increase the Pr. 397 setting.
Low servo rigidity during stopping	a. Increase the Pr. 396 setting and decrease the Pr. 397 setting.   b. Increase the Pr. 362 setting.

## NOTE

- Orientation stop operation fails, causing an excessive position error. or if the motor performs forward/reverse reciprocation operation, review the settings of Pr. 393 Orientation selection (on page 556) and Pr. 359 Encoder rotation direction (on page 555).


## - Pr. 351 Orientation speed (initial value: 2 Hz ) (Vector control)

- Set the speed when switching between the speed control mode and the position control mode is performed under orientation operation.
Decreasing the set speed enables stable orientation stop. Note that the orientation time increases.



## NOTE

- When "19" is set in Pr. 52 Operation panel main monitor selection, the position pulse monitor is displayed instead of the output voltage monitor on the PU.


## - Machine end orientation connection diagram (Vector control)

- To perform machine end orientation control, the following settings are required.
- Install a plug-in option (FR-A8AP/FR-A8AL or FR-A8APR) and a control terminal option (FR-A8TP) to the inverter, a motor end encoder to the control terminal option, and a machine end encoder to the plug-in option.
- Set "1" in Pr. 862 Encoder option selection.
- Set Pr. 393 Orientation selection = "10 to 12". (Refer to page 565.)
- Set the gear ratio by setting Pr. 394 Number of machine side gear teeth and Pr. 395 Number of motor side gear teeth. (Refer to page 568.)

*1 Single-phase power supply ( $200 \mathrm{~V} / 50 \mathrm{~Hz}, 200$ to $230 \mathrm{~V} / 60 \mathrm{~Hz}$ ) is used for the fan for a 7.5 kW or lower dedicated motor.
*2 The pin number differs according to the encoder used.
*3 Use Pr. 178 to Pr.182, Pr.185, or Pr. 1899 (input terminal function selection) to assign the function to a terminal. (Refer to page 496 .)
*4 Use Pr. 190 to Pr.192, or Pr. 195 (output terminal function selection) to assign the function to a terminal. (Refer to page 450 .)
*5 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
*6 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 87.)
*7 For the differential line driver, set the terminating resistor selection switch to the ON position. (Refer to page 92.) Note that the terminating resistor switch should be set to the OFF position (initial status) when sharing the same encoder with another unit (NC, etc.) having a terminating resistor under the differential line driver setting. For the complementary, set the switch to the OFF position.
*8 For terminal compatibility between the FR-A8TP and the FR-JCBL/FR-V7CBL, refer to the Instruction Manual of the FR-A8TP.
*9 A separate power supply of $5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V}$ is necessary according to the encoder power specification. When the encoder output is the differential line driver type, only 5 V can be input. Make the voltage of the external power supply same as the encoder output voltage, and connect the external power supply between PG and SD. If using the 24 V power supply of the FR-A8TP, 24 V power can be supplied from terminal PG24. When performing encoder feedback control and Vector control together, an encoder and power supply can be shared.
*10 When a stop position command is input from outside, a plug-in option FR-A8AX is required. Refer to page 558 for the external stop position command.
*11 To enable terminal OH, set Pr. 876 Thermal protector input = "1 (initial value)". (Refer to page 399.)


## - Encoder orientation gear ratio setting (Pr.394, Pr.395) (Vector control)

- Set the encoder orientation gear ratio for machine end orientation control.
- Set the encoder orientation gear ratio in Pr. 394 Number of machine side gear teeth, Pr. 395 Number of motor side gear teeth An accurate gear ratio (or pulley ratio) from the motor shaft to the spindle is necessary.

Set the correct numbers of gear teeth in Pr. 394 and Pr. 395.
Pr. $394=A \times C \times E$
Pr. $395=B \times D \times F$
Exercise care so that the $A \times C \times E$ and $B \times D \times F$ settings do not exceed 32767 . If either or both of them exceed that value, make approximations.


## NOTE

- Pulley ratio: Ratio of vector-driven motor side pulley diameter to spindle side pulley diameter

- Setting example (When the numbers of gear teeth are as follows)

A: 15, C: $43, \mathrm{E}: 60, \mathrm{~B}: 10, \mathrm{D}: 28, \mathrm{~F}: 55$
Pr. $394=15 \times 43 \times 60=38700$
Pr. $395=10 \times 28 \times 55=15400$
Since Pr.394setting exceeds 32767 at this time, make approximations as follows.
Pr.394/Pr.395=38700/15400=3870/1540

## - Machine end simple orientation control

- Machine end simple orientation control is available when the FR-A8AL option is installed on the inverter and connected to a machine end encoder. Both machine end orientation control and encoder feedback control/ Vector control is also enabled at the same time.
- Set the orientation speed at the motor end encoder in Pr. 351 Orientation speedOrientation speed.
- Set the rotation direction of the encoder in Pr. 359 Encoder rotation direction. If the rotation directions of the motor end encoder and the machine end encoder differ, set the rotation direction of the motor end encoder.
- To perform encoder feedback control or Vector control using the machine end encoder, set Pr. 369 Number of encoder pulses with the number of motor end encoder pulses converted from the number of machine end encoder pulses.
- To enable encoder feedback control or Vector control and machine end orientation control at the same time using the machine end encoder, set the number of machine end encoder pulses in Pr. 829 Number of machine end encoder pulses and " 0 " in Pr. 862 Encoder option selection.

Pr.829 setting	Pr.862 setting	Description
9999	-	Machine end simple orientation control invalid
$\begin{array}{l}\text { Other than } 9999 \text { (The } \\ \text { number of machine end } \\ \text { encoder pulses (before } \\ \text { multiplied by four) is set.) }\end{array}$	0	1

the same time using the machine end encoder is enabled.\end{array}\right]\)

- When the number of machine end encoder pulses is 4000 and the gear ratio between motor end and machine end is 4:1(4) rotations of motor equals one rotation of machine), set the value as Pr. $\mathbf{3 6 9}=$ " $1000 "$, Pr. $829=$ " 4000 " (the number of machine end encoder pulses) according to the following formula,
The equivalent of number of motor end encoder pulses $=4000 \times 1 / 4=1000$


## NOTE

- For other settings, refer to descriptions of motor end orientation control in this manual.


### 5.14.10 PID control

Process control such as flow rate, air volume or pressure are possible on the inverter.
A feedback system can be configured and PID control can be performed using the terminal 2 input signal or parameter setting value as the set point and the terminal 4 input signal as the feedback value.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 127 \\ & \text { A612 } \end{aligned}$	PID control automatic switchover frequency	9999	0 to 590 Hz	Set the value at which control is automatically switched to PID control.
			9999	No PID control automatic switchover function
$\begin{aligned} & 128 \\ & \text { A610 } \end{aligned}$	PID action selection	0	$\begin{aligned} & 0,10,11,20,21, \\ & 50,51,60,61,70, \\ & 71,80,81,90,91, \\ & 100,101,1000, \\ & 1001,1010, \\ & 1011,2000, \\ & 2001,2010,2011 \end{aligned}$	Select how to input the deviation value, measured value and set point, and forward and reverse action.
			40 to 43	Refer to page 590.
$\begin{aligned} & 129 \\ & \text { A613 } \end{aligned}$	PID proportional band	100\%	0.1 to 1000\%	If a narrow proportional band is set (small parameter setting value), the manipulated amount changes considerably by slight changes in the measured value. As a result, response improves as the proportional band becomes narrower, though stability worsens as shown by the occurrence of hunting. Gain $K p=1 /$ proportional band
			9999	No proportional control
$\begin{aligned} & 130 \\ & \text { A614 } \end{aligned}$	PID integral time	1 s	0.1 to 3600 s	With deviation step input, this is the time ( Ti ) used for obtaining the same manipulated amount as proportional band (P) by only integral (I) action. Arrival to the set point becomes quicker the shorter an integral time is set, though hunting is more likely to occur.
			9999	No integral control
$\begin{aligned} & 131 \\ & \text { A601 } \end{aligned}$	PID upper limit	9999	0 to 100\%	Set the upper limit. The FUP signal is output when the feedback value exceeds this setting. The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value is equivalent to $100 \%$.
			9999	No function
$\begin{aligned} & 132 \\ & \text { A602 } \end{aligned}$	PID lower limit	9999	0 to 100\%	Set the lower limit. The FDN signal is output when the measured value falls below the setting range. The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} /$ 10 V ) of the measured value is equivalent to $100 \%$.
			9999	No function
$\begin{aligned} & 133 \\ & \text { A611 } \end{aligned}$	PID action set point	9999	0 to 100\%	Set the set point during PID control.
			9999	Set point set by Pr. 128.
$\begin{aligned} & 134 \\ & \text { A615 } \end{aligned}$	PID differential time	9999	0.01 to 10 s	With deviation ramp input, this is the time (Td) used for obtaining the manipulated amount only by proportional action (P). Response to changes in deviation increase greatly as the differential time increases.
			9999	No differential control
$\begin{aligned} & 553 \\ & \text { A603 } \end{aligned}$	PID deviation limit	9999	0 to 100\%	The Y48 signal is output when the absolute value of the deviation exceeds the deviation limit value.
			9999	No function
$\begin{aligned} & 554 \\ & \text { A604 } \end{aligned}$	PID signal operation selection	0	0 to 3, 10 to 13	The action when the upper or lower limit for a measured value input is detected or when a limit for the deviation is detected can be selected. The operation for PID output suspension function can be selected.
$\begin{aligned} & 575 \\ & \text { A621 } \end{aligned}$	Output interruption detection time	1 s	0 to 3600 s	When the output frequency after PID calculation stays less than the Pr. 576 setting for the time set in Pr. 575 or more, the inverter operation is suspended.
			9999	No output interruption function
$\begin{aligned} & 576 \\ & \text { A622 } \end{aligned}$	Output interruption detection level	0 Hz	0 to 590 Hz	Set the frequency at which output interruption is performed.
$\begin{aligned} & 577 \\ & \text { A623 } \end{aligned}$	Output interruption cancel level	1000\%	900 to 1100\%	Level at which the PID output suspension function is released. Set "Pr. 577 -1000\%".
$\begin{aligned} & 609 \\ & \text { A624 } \end{aligned}$	PID set point/deviation input selection	2	1	Input of set point, deviation value from terminal 1
			2	Input of set point, deviation value from terminal 2
			3	Input of set point, deviation value from terminal 4
			4	Input of set point, deviation value via CC-Link/CC-Link IE Field Network communication
			5	Input of set point, deviation value by PLC function


Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 610 \\ & \text { A625 } \end{aligned}$	PID measured value input selection	3	1	Input of measured value from terminal 1	
			2	Input of measured value from terminal 2	
			3	Input of measured value from terminal 4	
			4	Input of set point, deviation value via CC-Link/CC-Link IE Field Network communication	
			5	Input measured value by PLC function	
$\begin{aligned} & 1015 \\ & \text { A607 } \end{aligned}$	Integral stop selection at limited frequency	0	0	Integral stopped at the limit, manipulation range of $\pm 100 \%$, integral cleared during output interruption	
			1	Integral continued at the limit, manipulation range of $\pm 100 \%$, integral cleared during output interruption	
			2	Integral stopped at the limit, manipulation range of 0 to $100 \%$, integral cleared during output interruption	
			10	Integral stopped at the limit, manipulation range of $\pm 100 \%$, integral stopped during output interruption	
			11	Integral continued at the limit, manipulation range of $\pm 100 \%$, integral stopped during output interruption	
			12	Integral stopped at the limit, manipulation range of 0 to $100 \%$, integral stopped during output interruption	
$\begin{aligned} & 753 \\ & \text { A650 } \end{aligned}$	Second PID action selection	0	$\begin{aligned} & 0,10,11,20,21, \\ & 50,51,60,61,70, \\ & 71,80,81,90,91, \\ & 100,101,1000, \\ & 1001,1010, \\ & 1011,2000, \\ & 2001,2010,2011 \end{aligned}$	Refer to Pr. 128.	Set the second PID control. For how to enable the second PID control, refer to page 582.
$\begin{aligned} & 754 \\ & \text { A652 } \end{aligned}$	Second PID control automatic switchover frequency	9999	0 to 590 Hz, 9999	Refer to Pr. 127.	
$\begin{aligned} & \hline 755 \\ & \text { A651 } \end{aligned}$	Second PID action set point	9999	0 to 100\%, 9999	Refer to Pr. 133.	
$\begin{array}{\|l\|} \hline 756 \\ \text { A653 } \end{array}$	Second PID proportional band	100	$\begin{aligned} & 0.1 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 129.	
$\begin{aligned} & \hline 757 \\ & \text { A654 } \end{aligned}$	Second PID integral time	1 s	$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	Refer to Pr. 130.	
$\begin{aligned} & 758 \\ & \text { A655 } \end{aligned}$	Second PID differential time	9999	0.01 to $10 \mathrm{~s}, 9999$	Refer to Pr. 134	
$\begin{aligned} & 1140 \\ & \text { A664 } \end{aligned}$	Second PID set point/ deviation input selection	2	1 to 5	Refer to Pr. 609.	
$\begin{aligned} & 1141 \\ & \text { A665 } \end{aligned}$	Second PID measured value input selection	3	1 to 5	Refer to Pr. 610.	
$\begin{aligned} & 1143 \\ & \text { A641 } \end{aligned}$	Second PID upper limit	9999	0 to 100\%, 9999	Refer to Pr. 131.	
$\begin{aligned} & \hline 1144 \\ & \text { A642 } \end{aligned}$	Second PID lower limit	9999	0 to 100\%, 9999	Refer to Pr. 132.	
$\begin{aligned} & 1145 \\ & \text { A643 } \end{aligned}$	Second PID deviation limit	9999	0 to 100\%, 9999	Refer to Pr. 553. (The Y205 signal is output.)	
$\begin{aligned} & 1146 \\ & \text { A644 } \end{aligned}$	Second PID signal operation selection	0	0 to 3, 10 to 13	Refer to Pr. 554.	
$\begin{aligned} & 1147 \\ & \text { A661 } \end{aligned}$	Second output interruption detection time	1 s	0 to 3600 s, 9999	Refer to Pr. 575.	
$\begin{aligned} & 1148 \\ & \text { A662 } \end{aligned}$	Second output interruption detection level	0 Hz	0 to 590 Hz	Refer to Pr. 576.	
$\begin{aligned} & 1149 \\ & \text { A663 } \end{aligned}$	Second output interruption cancel level	1000\%	900 to 1100\%	Refer to Pr. 577.	

## - Basic configuration of PID control

## ■ Pr. 128 ="10, 11" (deviation value signal input)



Kp: Proportionality constant Ti: Integral time S: Operator Td: Differential time
*1 Set " 0 " to Pr. 868 Terminal 1 function assignment. When Pr. $868 \neq$ " 0 ", PID control is invalid.

## ■ Pr. 128 = "20, 21" (measured value input)


*2 Note that the input of terminal 1 is added to the set point of terminal 2 as a set point.
*3 Set "0" to Pr. 858 Terminal 4 function assignment. When Pr. $858 \neq$ "0", PID control is invalid.

## - PID action outline

## ■ Pl action

Pl action is a combination of proportional action $(\mathrm{P})$ and integral action $(\mathrm{I})$, and applies a manipulated amount according to the size of the deviation and transition or changes over time.
[Example of action when the measured value changes in a stepped manner]

(Note) PI action is the result of P and I actions being added together.

## ■ PD action

PD action is a combination of proportional action (P) and differential action (D), and applies a manipulated amount according to the speed of the deviation to improve excessive characteristics.
[Example of action when the measured value changes proportionately]

(Note) PD action is the result of P and D actions being added together.

## PID action

PID action is a combination of PI and PD action, which enables control that incorporates the respective strengths of these actions.

(Note) PID action is the result of all $P, I$ and $D$ actions being added together.

## ■ Reverse action

When deviation $X$ = (set point - measured value) is a plus value, the manipulated amount (output frequency) is increased, and when the deviation is a minus value, the manipulated amount is decreased.


## ■ Forward action

When deviation $\mathrm{X}=$ (set point - measured value) is a minus value, the manipulated amount (output frequency) is increased, and when the deviation is a plus value, the manipulated amount is decreased.


Relationship between deviation and manipulated amount (output frequency)

PID action setting	Deviation	
	Plus	Minus
Reverse action	$\boldsymbol{\pi}$	$\searrow$
Forward action	$\searrow$	$\pi$

## -Connection diagram

- Sink logic
- Pr. $128=20$
- Pr. $183=14$
- Pr. $191=47$
- Pr. $192=16$
- Pr. $193=14$
- Pr. $194=15$

*1 Prepare a power supply matched to the power supply specifications of the detector.
*2 The applied output terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).
The applied input terminals differ by the settings of Pr. 178 to Pr. 189 (Input terminal function selection) The AU signal need not be input.


## - Selection of deviation value, measured value and set point input method, and PID action method (Pr.128, Pr.609, Pr.610)

- Using Pr.128, select the input method for the PID set point, measured value detected by the meter, and externally calculated deviation. Also, select forward or reverse action.
- Switch the power voltage/current specifications of terminals 2 and 4 by Pr. 73 Analog input selection or Pr. 267 Terminal 4 input selection to match the specification of the input device. After changing the Pr. 73 or Pr. 267 settings, check the voltage/current input selection switch. Incorrect setting may cause a fault, failure, or malfunction. (Refer to page 473 for the setting.)

$\begin{aligned} & \text { Pr. } 128 \\ & \text { setting } \end{aligned}$	$\begin{aligned} & \text { Pr. } 609 \\ & \text { Pr. } 610 \end{aligned}$	PID action	Set point input	Measured value input	Deviation input
0	Invalid	PID invalid	-	-	-
10		Reverse action	-	-	Terminal 1
11		Forward action			
20		Reverse action	Terminal 2 or Pr.133 ${ }^{* 1}$	Terminal 4	-
21		Forward action			
40 to 43	Enabled	Dancer control	For details on dancer control, refer to page 590.		
50	Invalid	Reverse action	-	-	CC-Link/CC-Link IE Field Network communication ${ }^{*}{ }^{2}$
51		Forward action			
60		Reverse action	CC-Link/CC-Link IE Field Network communication*2	CC-Link/CC-Link IE Field Network communication *2	-
61		Forward action			
70		Reverse action	-	-	PLC function (with frequency applied) ${ }^{* 3}$
71		Forward action			
80		Reverse action	PLC function   (with frequency applied) ${ }^{* 3}$	PLC function (with frequency applied) ${ }^{* 3}$	-
81		Forward action			
90		Reverse action	-	-	PLC function (without frequency applied) ${ }^{* 3}$
91		Forward action			
100		Reverse action	PLC function (without frequency applied) ${ }^{* 3}$	PLC function (without frequency applied) ${ }^{* 3}$	-
101		Forward action			
1000	Enabled	Reverse action	According to Pr.609*1	According to Pr. 610	-
1001		Forward action			
1010		Reverse action	-	-	According to Pr. 609
1011		Forward action			
2000		Reverse action (without frequency reflected)	According to Pr.609*1	According to Pr. 610	-
2001		Forward action (without frequency reflected)			
2010		Reverse action (without frequency reflected)	-	-	According to Pr. 609
2011		Forward action (without frequency reflected)			

- The set point/deviation input method can also be flexibly selected by Pr. 609 PID set point/deviation input selection and the measured value input method can be selected by Pr. 610 PID measured value input selection. Selection by Pr. 609 and Pr. 610 is valid when Pr. $128=$ "1000 to 2011".

Pr.609 to Pr.610 settings	$\quad$ Input method
1	Terminal 1 $^{*} 4$
2	Terminal 2*4 *
3	Terminal 4
4	CC-Link/CC-Link IE Field Network communication
5	PLC function

*4 When the same input method has been selected for the set point and measured value at Pr. 609 and Pr.610, set point input is invalid. (Inverter runs at set point $0 \%$ )

## NOTE

- When terminals 2 and 4 are selected for deviation input, perform bias calibration using $\mathbf{C} 3$ and $\mathbf{C} 6$ to prevent a minus voltage from being entered as the deviation input signal. Input of a minus voltage might damage devices and the inverter.
- The following shows the relationship between the input values of the analog input terminals and set point, measured value and deviation. (Calibration parameter initial values)

Input terminal	Input specification*5	Relationship with analog input			Calibration parameter
		Set point	Result	Deviation	
Terminal 2	0 to 5 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.125, C2 to C4
	0 to 10 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & \hline 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	
Terminal 1	0 to $\pm 5 \mathrm{~V}$	$\begin{aligned} & -5 \text { to } 0 V=0 \% \\ & +5 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -5 \text { to } 0 V=0 \% \\ & +5 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -5 V=-100 \% \\ & 0 V=0 \% \\ & +5 V=+100 \% \end{aligned}$	```When Pr. }128\mathrm{ = "10": Pr.125, C2 to C4. When Pr. 128 \geq "1000": C12, C2 to C15.```
	0 to 10 V	$\begin{aligned} & -10 \text { to } 0 \mathrm{~V}=0 \% \\ & +10 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -10 \text { to } 0 \mathrm{~V}=0 \% \\ & +10 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & \hline-10 \mathrm{~V}=-100 \% \\ & 0 \mathrm{~V}=0 \% \\ & +10 \mathrm{~V}=+100 \% \\ & \hline \end{aligned}$	
Terminal 4	0 to 5 V	$\begin{aligned} & 0 \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=-20 \% \\ & 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.126, C5 to C7
	0 to 10 V	$\begin{aligned} & 0 \text { to } 2 V=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 2 V=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=-20 \% \\ & 2 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	0 to $4 \mathrm{~mA}=0 \%$ $20 \mathrm{~mA}=100 \%$	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA}=-20 \% \\ & 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	

*5 Can be changed by Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection and the voltage/current input switch. (Refer to page 473 .)

## NOTE

- Always calibrate the input after changing the voltage/current input specification with Pr. 73 and Pr.267, and the voltage/current input selection switch


## - Input/output signals

- Assigning the PID control valid signal (X14) to the input terminal by Pr. 178 to Pr. 189 (Input terminal function selection) enables PID control to be performed only when the X 14 signal is turned ON. When the X 14 signal is OFF, regular inverter running is performed without PID action. (When the X 14 signal is not assigned, PID control is enabled only by setting Pr. 128 = " 0 ".)
- Input signal

Signal	Function	Pr. 178 to   Pr. 189   setting	
X14	PID control valid	14	When this signal is assigned to the input terminal, PID control is enabled when this
X80	Second PID control valid	80	PID control is switched between forward and reverse action without changing
X64	PID forward/reverse   action switchover	64	

- Output signal

Signal	Function	$\begin{aligned} & \text { Pr. } 190 \text { to } \\ & \text { Pr. } 196 \\ & \text { setting } \end{aligned}$		Description
		Positive logic	Negative logic	
FUP	PID upper limit	15	115	Output when the measured value signal exceeds Pr. 131 PID upper limit (Pr. 1143 Second PID upper limit).
FUP2	Second PID upper limit	201	301	
FDN	PID lower limit	14	114	Output when the measured value signal exceeds Pr. 132 PID lower limit (Pr. 1144 Second PID lower limit).
FDN2	Second PID lower limit	200	300	
RL	PID forward/reverse rotation output	16	116	"Hi" is output when the output display of the parameter unit is forward rotation (FWD) and "Low" is output when the display is reverse rotation (REV) and stop (STOP).
RL2	Second PID forward/ reverse rotation output	202	302	
PID	During PID control activated	47	147	Turns ON during PID control.   When the PID calculation result is not reflected to the output frequency (Pr.128< "2000"), the PID signal turns OFF at turn OFF of the start signal. When the PID calculation result is reflected to the output frequency (Pr. 128 $\geq$ "2000"), the PID signal turns ON regardless of the start signal status during PID calculation.
PID2	Second During PID control activated	203	303	
SLEEP	PID output interruption	70	170	Set Pr. 575 Output interruption detection time (Pr. 1147 Second output interruption detection time) $\neq$ "9999". This signal turns ON when the PID output suspension function is activated.
SLEEP2	During second PID output shutoff	204	304	

## NOTE

- Changing the terminal functions with Pr. 178 to Pr. 189 and Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.


## - PID automatic switchover control (Pr.127)

- The system can be started up more quickly by starting up without PID control activated.
- When Pr. 127 PID control automatic switchover frequency is set, the startup is made without PID control until the output frequency reaches the Pr. 127 setting. Once the PID control starts, the PID control is continued even if the output frequency drops to Pr. 127 setting or lower.



## - Selection of action at a communication error and SLEEP function stop selection (FUP signal, FDN signal, Y48 signal, Pr.554)

- Using Pr. 554 PID signal operation selection, set the action when the measured value input exceeds the upper limit (Pr. 131 PID upper limit) or lower limit (Pr. 132 PID lower limit), or when the deviation input exceeds the permissible value (Pr. 553 PID deviation limit).
- Choose whether to output the signals (FUP, FDN, Y48) only or to activate the protective function to output the inverter shutoff.
- The stop action when the inverter output is shut off by the SLEEP function can be selected.

Pr. 554 setting	Inverter operation		
	At FUP signal, FDN signal output* ${ }^{*}$	At Y48 signal output ${ }^{* 1}$	At SLEEP operation start
0 (initial value)	Signal output only	Signal output only	Coasts to stop
1	Signal output + output shutoff (E.PID)		
2	Signal output only	Signal output + output shutoff (E.PID)	
3	Signal output + output shutoff (E.PID)		
10	Signal output only	Signal output only	Deceleration stop
11	Signal output + output shutoff (E.PID)		
12	Signal output only	Signal output + output shutoff (E.PID)	
13	Signal output + output shutoff (E.PID)		

*1 When each of Pr.131, Pr. 132 and Pr.553settings corresponding to each of the FUP, FDN and Y48 signals is " 9999 " (no function), signal output and protective function are not available.

## - PID output suspension function (SLEEP function) (SLEEP signal, Pr. 575

## to Pr.577)

- When a status where the output frequency after PID calculation is less than Pr. 576 Output interruption detection level has continued for the time set in Pr. 575 Output interruption detection time or longer, inverter running is suspended. This allows the amount of energy consumed in the inefficient low-speed range to be reduced.
- When the deviation (for instance, = set point - measured value) reaches the PID output shutoff release level (Pr. 577 setting value $-1000 \%$ ) while the PID output suspension function is activated, the PID output suspension function is released, and PID control operation is automatically restarted.
- Whether to allow motor to coast to a stop or perform a deceleration stop when SLEEP operation is started can be selected using Pr. 554.
- While the PID output suspension function is activated, the PID output interruption (SLEEP) signal is output. During this time, the Inverter running (RUN) signal turns OFF and the During PID control activated (PID) signal turns ON.
- For the terminal used for the SLEEP signal, set "70 (positive logic)" or "170 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).


*1 When the PID output shutoff release level is reached during a deceleration stop, output shutoff is released, operation is re-accelerated and PID control is continued. During deceleration, Pr. 576 Output interruption detection level is invalid.


## $\bullet$ Integral stop selection when the frequency is limited (Pr.1015)

- The operation for the integral term can be selected when the frequency or the manipulated amount is limited during PID control. The operation during output suspension can be selected for the integral term using the PID output suspension (sleep) function.
- The manipulation range can be selected.

Pr. 1015 setting	Operation at limited   frequency	Range of manipulation	Operation during output   interruption
0 (initial value)	Integral stop	$-100 \%$ to $+100 \%$	
1	Integral continuation	Integral clear	
2	Integral stop	0 to $100 \%$	
10	Integral stop	$-100 \%$ to $+100 \%$	
11	Integral continuation	Integral stop	
12	Integral stop	0 to $100 \%$	

## NOTE

- While the integral stop is selected, the integral stop is enabled when any of the following conditions is met.


## Integral stop conditions

- The frequency reaches the upper or lower limit.
- The manipulated amount reaches plus or minus $100 \%$ (Pr. $1015=$ " 0 or 10").
- The manipulated amount reaches $0 \%$ or $100 \%$ (Pr. $1015=$ " 2 or 12 ").


## - PID monitor function

- This function displays the PID control set point, measured value and deviation on the operation panel, and can output these from the terminals FM/CA and AM.
- An integral value indicating a negative \% can be displayed on the deviation monitor. $0 \%$ is displayed as 1000 . (These values cannot be output on the deviation monitor from terminals FM and CA.)
- Set the following values to Pr. 52 Operation panel main monitor selection, Pr. 774 to Pr. 776 (Operation panel monitor selection), Pr. 992 Operation panel setting dial push monitor selection, Pr. 54 FM/CA terminal function selection and Pr. 158 AM terminal function selection for each monitor.

Parameter Setting	Monitor description	Minimum increment	Monitor range			Remarks
			Terminal FM/ CA	Terminal AM	Operation panel	
52	PID set point	0.1\%	0 to 100\%* ${ }^{\text {1 }}$			" 0 " is displayed at all times when PID control is based in deviation input.
92	Second PID set point/deviation input selection					
53	PID measured value	0.1\%	0 to 100\%*1			
93	Second PID measured value					
67	PID measured value 2	0.1\%	0 to 100\%**			Displays PID measured value even if the PID control operating conditions are not satisfied while the PID control is enabled.   " 0 " is displayed at all times when PID control is based in deviation input.
95	Second PID measured value 2					
54	PID deviation				900\% to	Using Pr. 290 Monitor negative output selection, negative values can be output to the terminal AM and displayed with a minus sign on the operation panel (FR-DU08). When signed indication is invalid, the indicated values are from " $900 \%$ " to " $1100 \%$ " on the operation panel. ( $0 \%$ is offset and displayed as "1000\%".)
94	Second PID deviation	0.1\%	Setting not available	$\begin{aligned} & -100 \% \text { to } \\ & 100 \%{ }^{* *}{ }^{*} 2 \end{aligned}$	$\begin{aligned} & 1100 \% \\ & \text { or } \\ & -100 \% \text { to } \\ & 100 \%{ }^{*} 1 \end{aligned}$	
91	PID manipulated amount	0.1\%	Setting not available	$\begin{aligned} & -100 \% \text { to } \\ & 100 \%{ }^{2} 2 \end{aligned}$	$\begin{aligned} & 900 \% \text { to } \\ & 1100 \% \\ & \text { or } \\ & -100 \% \text { to } \\ & 100 \% \end{aligned}$	
96	Second PID manipulated amount					

*1 When C42(Pr.934) and C44(Pr.935) are set, the minimum increment changes from unit \% to no unit, and the monitor range can be changed. (Refer to page 584.)
*2 When the minus value display is set disabled using Pr.290, the terminal AM output becomes "0".

## Adjustment procedure

1. Enable PID control

When Pr. $128 \neq$ " 0 ", PID control is enabled.
Set the set point, measured value and deviation input methods at Pr.128, Pr. 609 and Pr. 610.
2. Setting the parameter

Adjust the PID control parameters of Pr.127, Pr. 129 to Pr.134, Pr.553, Pr.554, Pr. 575 to Pr. 577.
3. Terminal setting

Set the I/O terminals for PID control. (Pr. 178 to Pr. 189 (Input terminal function selection), Pr. 190 to Pr. 196 (Output terminal function selection))
4. Turn the x 14 signal ON

When the X 14 signal is assigned to the input terminal, PID control is enabled by the X 14 signal turning ON.
5. Operation

## -Calibration example

(Adjust room temperature to $25^{\circ} \mathrm{C}$ by PID control using a detector that outputs 4 mA at $0^{\circ} \mathrm{C}$ and 20 mA at $50^{\circ} \mathrm{C}$.)

*1 When calibration is required
Calibrate detector output and set point input by Pr.125, C2 (Pr.902) to C4 (Pr.903) (terminal 2) or Pr.126, C5 (Pr.904) to C7 (Pr.905) (terminal 4). (Refer to page 482.)

When both C42 (Pr.934) and C44 (Pr.935) are other than "9999", calibrate the detector output and set point input by Pr. 934 and Pr. 935 (terminal 4). (Refer to page 584.)

Make calibration in the PU operation mode during an inverter stop.

## - Calibrating set point input

(Example: To enter the set point on terminal 2)

1. 2. Apply the input (for example, 0 V ) of set point setting $0 \%$ across terminals 2 and 5 .
1. Using $\mathbf{C} 2$ (Pr.902), enter the frequency (for example, 0 Hz ) to be output by the inverter when the deviation is $0 \%$.
2. Using C3 (Pr.902), set the voltage value at $0 \%$.
3. Apply the input (for example, 5 V ) of set point setting $100 \%$ across terminals 2 and 5 .
4. Using Pr.125, enter the frequency (for example, 60 Hz ) to be output by the inverter when the deviation is $100 \%$.
5. Using C4 (Pr.903), set the voltage value at $100 \%$.

## NOTE

- When the set point is set at Pr.133, the setting frequency of $\mathbf{C 2}$ ( $\operatorname{Pr} .902$ ) is equivalent to $0 \%$ and the setting frequency of $\operatorname{Pr} .125$ (Pr.903) is equivalent to $100 \%$.
- Measured value input calibration

1. Apply the input (for example, 4 mA ) of measured value $0 \%$ across terminals 4 and 5 .
2. Perform calibration by $\mathbf{C 6}$ (Pr.904).
3. Apply the input (for example, 20 mA ) of measured value $100 \%$ across terminals 4 and 5 .
4. Perform calibration by $\mathbf{C 7}$ (Pr.905).

## NOTE

- Set the frequencies set at C5 (Pr.904) and Pr. 126 to each of the same values set at $\mathbf{C 2}$ (Pr.902) and Pr. 125 .
- The display unit for analog input can be changed from "\%" to "V" or "mA". (Refer to page 484.)
- The following figure shows the results of having performed the calibration above.



## - Setting multiple PID functions

- When the second PID function is set, two sets of PID functions can be switched for use. The PID setting is selected as shown in the following table.

Pr. 128 setting (first PID setting)	Pr. 753 setting (second PID setting)	$\begin{gathered} \text { Pr. } 155 \\ \text { setting }{ }^{* 1} \end{gathered}$	RT signal	PID setting applied to the output frequency
"0" or not applied to the frequency	" 0 " or not applied to the frequency	-	-	Control other than PID control
"0" or not applied to the frequency	Applied to the frequency	-	-	Second PID setting
Applied to the frequency	" 0 " or not applied to the frequency	-	-	First PID setting
Applied to the frequency	Applied to the frequency	0	OFF	First PID setting
			ON	Second PID setting
		10	-	First PID setting
Dancer control	Not applied to the frequency ${ }^{*}{ }^{2}$	-	-	Dancer control

*1 While Pr. $155=$ " 0 ", the second function is enabled immediately after RT signal turns ON. While Pr. $155=$ " 10 ", the second function is enabled only during constant speed operation when RT signal turns ON. (For the details, refer to page 500.)
*2 When dancer control is selected, the setting is not applied to the frequency

- The second PID function parameters and signals function in the same way as the following parameters and signals of the first PID function. Refer to the first PID function when setting the second PID functions.

Classification	First PID function parameters		Second PID function parameters	
	Pr.	Name	Pr.	Name
Parameter	127	PID control automatic switchover frequency	754	Second PID control automatic switchover frequency
	128	PID action selection	753	Second PID action selection
	129	PID proportional band	756	Second PID proportional band
	130	PID integral time	757	Second PID integral time
	131	PID upper limit	1143	Second PID upper limit
	132	PID lower limit	1144	Second PID lower limit
	133	PID action set point	755	Second PID action set point
	134	PID differential time	758	Second PID differential time
	553	PID deviation limit	1145	Second PID deviation limit
	554	PID signal operation selection	1146	Second PID signal operation selection
	575	Output interruption detection time	1147	Second output interruption detection time
	576	Output interruption detection level	1148	Second output interruption detection level
	577	Output interruption cancel level	1149	Second output interruption cancel level
	609	PID set point/deviation input selection	1140	Second PID set point/deviation input selection
	610	PID measured value input selection	1141	Second PID measured value input selection


Classification	First PID function parameters		Second PID function parameters	
	Signal	Name	Signal	Name
Input signal	X14	PID control valid	X80	Second PID control valid
	X64	PID forward/reverse action   switchover	X79	Second PID forward/reverse action   switchover
	X72	PID P control switchover	X73	Second PID P control switchover
	FUP	PID upper limit	FUP2	Second PID upper limit
	FDN	PID lower limit	FDN2	Second PID lower limit
	RL	PID forward/reverse rotation   output	RL2	Second PID forward/reverse rotation   output
	PID	During PID control activated	PID2	Second During PID control activated
	SLEEP	PID output interruption	SLEEP2	During second PID output shutoff
	Y48	PID deviation limit	Y205	Second PID deviation limit

## NOTE

- Even if the X14 signal is ON, PID control is stopped and multi-speed or JOG operation is performed when the multi-speed operation (RH, RM, RL, or REX) signal or JOG signal (JOG operation) is input.
- PID control is invalid under the following settings.

Pr. 79 Operation mode selection = "6" (Switchover mode)

- Note that input to the terminal 1 is added to the terminals 2 and 4 inputs. For example when Pr. $128=$ " 20 or 21 ", the terminal 1 input is considered as a set point and added to the set point of the terminal 2.
- To use terminal 4 and 1 inputs in PID control, set " 0 " (initial value) to Pr. 858 Terminal 4 function assignment and Pr. 868 Terminal 1 function assignment. When a value other than " 0 ", PID control is invalid.
- Changing the terminal functions with Pr. 178 to Pr. 189 and Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.
- When PID control is selected, the minimum frequency becomes the frequency of Pr. 902 and the maximum frequency becomes the frequency of Pr. 903.
(The Pr. 1 Maximum frequency and Pr. 2 Minimum frequency settings also are valid.)
- During PID operation, the remote operation function is invalid.
- When control is switched to PID control during normal operation, the frequency during that operation is not carried over, and the value resulting from PID calculation referenced to 0 Hz becomes the command frequency.


Operation when control is switched to PID control during normal operation

### 5.14.11 Changing the display increment of numerical values used in PID control

When the LCD operation panel (FR-LU08) or the parameter unit (FR-PU07) is used, the display unit of parameters and monitor items related to PID control can be changed to various units.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 759 \\ & \text { A600 } \end{aligned}$	PID unit selection	0	0 to 43	Change the unit of the PID control-related values that is displayed on the LCD operation panel (FR-LU08) or the parameter unit (FR-PU07).	
			9999	Without display unit switching	
C42(934)	PID display bias coefficient	9999	0 to 500	Set the coefficient of the bias side (minimum) of measured value input.	
			9999	Displayed in \%.	
$\begin{aligned} & \text { C43(934) } \\ & \text { A631 }{ }^{* 1} \end{aligned}$	PID display bias analog value	20\%	0 to 300\%	Set the converted \% of the bias side (minimum) current/voltage of measured value input.	
C44(935)	PID display gain coefficient	9999	0 to 500	Set the coefficient of the gain side (maximum) of measured value input.	
			9999	Displayed in \%.	
$\begin{aligned} & \text { C45(935) } \\ & \text { A633 }{ }^{* 1} \end{aligned}$	PID display gain analog value	100\%	0 to 300\%	Set the converted \% of the gain side (maximum) current/voltage of measured value input.	
1136	Second PID display bias coefficient	9999	0 to 500	Refer to C42(934).	Second PID control
A670			9999		
$\begin{aligned} & 1137 \\ & \text { A671 } \end{aligned}$	Second PID display bias analog value	20\%	0 to 300\%	Refer to C43(934).	
1138	Second PID display gain coefficient	9999	0 to 500	Refer to C44(935).	
A672			9999		
$\begin{aligned} & 1139 \\ & \text { A673 } \end{aligned}$	Second PID display gain analog value	100\%	0 to 300\%	Refer to C45(935).	
$\begin{aligned} & 1142 \\ & \text { A640 } \end{aligned}$	Second PID unit selection	9999	$\begin{aligned} & 0 \text { to } 43, \\ & 9999 \end{aligned}$	Refer to Pr. 759.	

*1 The parameter number in parentheses is the one for use with the LCD operation panel and the parameter unit.

## Calibration of PID display bias and gain (C42 (Pr.934) to C45 (Pr.935))

- When both C42 (Pr.934) and C44 (Pr.935) $\neq$ "9999", the bias and gain values for the set point, measured value and deviation in PID control can be calibrated.
- "Bias"/"gain" function can adjust the relation between PID displayed coefficient and measured value input signal that is externally input. Examples of these measured value input signals are 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 2 mADC. (The terminals used for measured value input can be selected at Pr.128, Pr.609, Pr.610.)
- Set the value that is displayed when the PID measured value (control amount) is $0 \%$ to $\mathbf{C 4 2}(\mathbf{P r} .934)$ and the value that is displayed when the PID measured value (control amount) is 100\% to C44 (Pr.935).
- When both of C42 (Pr.934) and C44 (Pr.935) $\neq 4999$ " and Pr. 133 is set as the set point, the setting of $\mathbf{C 4 2}$ (Pr.934) is treated as 0\%, and C44 (Pr.935) as 100\%.

- There are three methods to adjust the PID display bias/gain.

Method to adjust any point by application of a current (voltage) to the measured value input terminal Method to adjust any point without application of a current (voltage) to the measured value input terminal Method to adjust only the display coefficient without adjustment of current (voltage)
(Refer to page 482 for details, and make the necessary adjustments by considering C7 (Pr.905) as C45 (Pr.935) and Pr. 126 as C44 (Pr.935).

## NOTE

- Always calibrate the input after changing the voltage/current input specification with Pr. 73 and Pr.267, and the voltage/current input selection switch.
- Take caution when the following condition is satisfied because the inverter recognizes the deviation value as a negative (positive) value even though a positive (negative) deviation is given: Pr. 934 (PID bias coefficient) > Pr. 935 (PID gain coefficient).
To perform a reverse action, set Pr. 128 PID action selection to forward action. Alternatively, to perform a forward action, set Pr. 128 to reverse action. In this case, the PID output shutoff release level is (1000-Pr.577).

Pr. 934 < Pr. 935 (normal setting)			Pr. $934 \geq$ Pr. 935
Reverse action	Reverse action setting to Pr. 128	Reverse action	Rorward action setting to Pr. 128
Forward action	Forward action setting to Pr. 128	Forward action	PID output shutoff release level
PID output shutoff release level	Pr. $577-1000$	Pr. 577	

(Example) Set the following: Pr. $934=" 500$ " or $20 \%$ ( 4 mA is applied), Pr. $935=" 100$ " or $100 \%$ ( 20 mA is applied).
When the set point $=400$ and the measured value $=360$, the deviation is $+40(>0)$, but the inverter recognizes the deviation as $-10 \%(<0)$. Because of this, operation amount does not increase in the reverse operation setting.
The operation amount increases when the forward operation is set.
To perform PID output shutoff release at deviation of +40 or higher, set Pr. $577=$ " 960 ".


- The display of the following parameters is changed according to the C42 (Pr.934), C44 (Pr.935), Pr.1136, and Pr1138 settings.

Pr.	Name	Pr.	Name
131	PID upper limit	1143	Second PID upper limit
132	PID lower limit	1144	Second PID lower limit
133	PID action set point	755	Second PID action set point
553	PID deviation limit	1145	Second PID deviation limit
577	Output interruption cancel level	1149	Second output interruption cancel level
761	Pre-charge ending level	766	Second pre-charge ending level
763	Pre-charge upper detection level	768	Second pre-charge upper detection level

## Changing the PID display coefficient of the LCD operation panel (FRLU08) or the parameter unit (FR-PU07) (Pr.759)

- Use Pr. 759 PID unit selection to change the unit of the displayed value on the FR-LU08 or the FR-PU07. For the coefficient set in C42 (Pr.934) to C44 (Pr.935), the units can be changed as follows.

Pr.759 setting	Unit   indication	
9999	$\%$	\%
0	-	(No indication) name
1	K	Kelvin
2	C	Degree Celsius
3	F	Degree Fahrenheit
4	PSI	Pound-force per Square Inch
5	MPa	Mega Pascal
6	Pa	Kilo Pascal
7	Gbr	Pascal
8	GPH	Gar
9	GPS	Gallon per Hour
10	L/H	Gallon per Second
11	L/M	Liter per Minute
12	L/S	Liter per Second
13	CFH	Cubic Feet per Hour
14	CFM	Cubic Feet per Minute
15	CFS	Cubic Feet per Second
16	CMH	Cubic Meter per Hour
17	CMM	Cubic Meter per Minute
18		
19	20	


Pr. 759 setting	Unit indication	Unit name
21	CMS	Cubic Meter per Second
22	ftM	Feet per Minute
23	ftS	Feet per Second
24	m/M	Meter per Minute
25	$\mathrm{m} / \mathrm{S}$	Meter per Second
26	lbH	Pound per Hour
27	IbM	Pound per Minute
28	IbS	Pound per Second
29	iWC	Inch Water Column
30	iWG	Inch Water Gauge
31	fWG	Feet of Water Gauge
32	mWG	Meter of Water Gauge
33	iHg	Inches of Mercury
34	mHg	Millimeters of Mercury
35	kgH	Kilogram per Hour
36	kgM	Kilogram per Minute
37	kgS	Kilogram per Second
38	ppm	Pulse per Minute
39	pps	Pulse per Second
40	kW	Kilowatt
41	hp	Horse Power
42	Hz	Hertz
43	rpm	Revolution per Minute

### 5.14.12 PID Pre-charge function

This function drives the motor at a certain speed before starting PID control. This function is useful for a pump with a long hose, since PID control would start before the pump is filled with water, and proper control would not be performed without this function,

| Pr. | Name | Initial <br> value | Setting <br> range | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{7 6 0}$ A616 |  |  |  |  | Pre-charge fault selection

## - Operation selection for the pre-charge function

- To enable the pre-charge function when PID control is enabled, set the pre-charge end conditions at Pr. 761 Pre-charge ending level and at Pr. 762 Pre-charge ending time, or set " 77 " to Pr. 178 to Pr. 189 (Input terminal function selection). When operation is started, the inverter runs at the frequency set to Pr. 127 PID control automatic switchover frequency to enter the pre-charge state.
- Pre-charge ends and PID control starts after a pre-charge ending condition is satisfied.
- The pre-charge function is also activated at a start after release of a PID output suspension (SLEEP) state or MRS (output shutoff). The PID output suspension (SLEEP) function is not activated until the started pre-charge operation ends.
- During pre-charge operation, the During pre-charge operation (Y49) signal is output. For the terminal used for Y49 signal output, set "49 (positive logic)" or "149 (negative logic)" in any of Pr. 190 to Pr. 196 (output terminal function selection) to assign the function.
- The pre-charge function valid/invalid settings and pre-charge ending conditions are as follows:

Pr. 127 setting	Pre-charge ending condition setting			Pre-charge function	Valid pre-charge ending condition*1		
	Pr. 761 setting	Pr. 762 setting	X77 signal				
9999	-	-	-	Disabled	-		
Other than 9999	9999	9999	Not assigned		-		
			Assigned	Enabled	-	-	X77
		Other than 9999	Not assigned		-	Time	-
		Other than 999	Assigned		-	Time	X77
	Other than 9999	9999	Not assigned		Result	-	-
			Assigned		Result	-	X77
		Other than 9999	Not assigned		Result	Time	-
			Assigned		Result	Time	X77

[^30]
## NOTE

- During the pre-charge operation, it is regarded as integrated value = estimated value. The motor speed may drop shortly from the automatic switchover frequency depending on the parameter settings.
- Parameter changes and switchover to the second PID control are applied immediately. If PID control has not started when the settings were changed, PID control starts with changed settings. (If PID control has already started, these settings do not apply. If the changed settings already satisfies a condition to start PID control, the PID control starts as soon as these are changed.)
- The pre-charge also ends when PID control is set to invalid, the start command has been turned OFF, and output has been shut off.


## - Example of the pre-charge operation

- When the measured amount reaches the pre-charge ending level (Pr. 761 Pre-charge ending level $=$ "9999")

The pre-charge operation ends when the measured value reaches the Pr. 761 setting or higher, then the PID control is performed.


- When the elapsed time reaches the pre-charge ending time (Pr. 762 Pre-charge ending time $\neq$ "9999")

The pre-charge operation ends when the pre-charge time reaches the Pr. 762 setting or higher, then the PID control is performed.


- When the signal is input to end the pre-charge operation

When the X77 signal turns ON, the pre-charge operation ends, and the PID control starts. (If a start command is given while the X 77 signal is ON , the pre-charge operation is not performed, and PID control starts.)


- When the PID output suspension (SLEEP) function is in use, and the $X 77$ signal is set to valid after this function is released, set the X 77 signal to OFF after checking that the during the During pre-charge operation (Y49) signal is OFF.
- When the PID output suspension (SLEEP) function is in use, and PID control is to be performed immediately after this function is released, leave the X77 signal ON until PID control ends.
- When the pre-charge operation is valid, the pre-charge operation is performed at the output shutoff cancellation (MRS signal, etc.). (The pre-charge operation is also performed in the case of instantaneous power failure when the automatic restart after instantaneous power failure is valid.)
- When the control method is changed to PID control from a control with higher priority in frequency command (multi-speed setting, JOG operation, etc.), the motor is accelerated/decelerated until its speed reaches the automatic switchover frequency (Pr.127), and the pre-charge is performed.


## - Operation setting at pre-charge fault

- The protective function can be activated when limit values are exceeded if the time limit is set at Pr. 764 Pre-charge time limit and the measured value limit level is set at Pr. 763 Pre-charge upper detection level.
- Whether to shut off output immediately after the protective function is activated or after a deceleration stop can be selected by Pr.760. (Pre-charge protective function is effective regardless of the setting of pre-charge ending conditions.)
- When the time limit is exceeded, the Pre-charge time over (Y51) signal is output. When the measured value limit level is exceeded, the Pre-charge level over (Y53) signal is output. For the Y51 signal, set "51 (positive logic)" or "151 (negative logic)" to Pr. 190 to Pr. 196 (Output terminal function selection), and for the Y53 signal, set "53 (positive logic)" or "153 (negative logic)" in Pr. 190 to Pr. 196 (Output terminal function selection) to assign the functions to terminals.


## NOTE

- For Pr. 764 Pre-charge time limit, set a value greater than Pr. 762 Pre-charge ending time.
- For Pr. 763 Pre-charge upper detection level, set a value greater than Pr. 761 Pre-charge ending level.
- Example of protective function by time limit (Pr. $760=$ " 0 ")

- Example of protective function measured value limit (Pr. $760=$ = $1 "$ ")



## $\checkmark$ Setting multiple PID pre-charge functions

- When the second pre-charge function is set, two sets of pre-charge functions can be switched for use. The second precharge function is enabled by the turning ON RT signal.
- The second pre-charge function parameters and signals function in the same way as the following parameters and signals of the first pre-charge function. Refer to the first pre-charge function when setting the second pre-charge functions.

Classification	First pre-charge function parameters		Second pre-charge function parameters	
	Pr.	Name	Pr.	Name
Parameter	760	Pre-charge fault selection	765	Second pre-charge fault selection
	761	Pre-charge ending level	766	Second pre-charge ending level
	762	Pre-charge ending time	767	Second pre-charge ending time
	763	Pre-charge upper detection level	768	Second pre-charge upper detection level
	764	Pre-charge time limit	769	Second pre-charge time limit


Classification	First pre-charge function parameters		Second pre-charge function parameters	
	Signal	Name	Signal	Name
Input signal	X77	Pre-charge end command	X78	Second pre-charge end command
	Y49	During pre-charge operation	Y50	During second pre-charge operation
	Y51	Pre-charge time over	Y52	Second pre-charge time over
	Y53	Pre-charge level over	Y54	Second pre-charge level over

## NOTE

- The second PID pre-charge function is valid also when the first pre-charge function is set to invalid and the second pre-charge function is set.
- When "10" (second function enabled only during constant-speed operation) is set to Pr.155, the second PID function is not selected even if the RT signal turns ON.


### 5.14.13 Dancer control

PID control is performed using detected dancer roll position as feedback data. The dancer roll is controlled to be at a designated position.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{4 4}$	Second acceleration/   deceleration time	5 s	0 to 3600 s	Set the acceleration/deceleration time during dancer control.   In dancer control, this parameter becomes the acceleration/deceleration   time of the main speed.   This setting does not operate as the second acceleration/deceleration time.


Pr.	Name	Initial value	Setting range	Description		
$\begin{array}{\|l\|} \hline 45 \\ \text { F021 } \end{array}$	Second deceleration time	9999	0 to 3600 s	Set the deceleration time during dancer control. In dancer control, this parameter becomes the deceleration time of the main speed.   This setting does not operate as the second deceleration time.		
			9999	Pr. 44 is the deceleration time.		
$\begin{aligned} & 128 \\ & \text { A610 } \end{aligned}$	PID action selection	0	0	No PID action		
			40	PID reverse action	Additive method: Fixed	For dancer control
			41	PID forward action	Additive method: Fixed	
			42	PID reverse action	Additive method: Ratio	
			43	PID forward action	Additive method: Ratio	
			Others	Refer to page 570.		
$\begin{aligned} & 129 \\ & \text { A613 } \end{aligned}$	PID proportional band	100\%	0.1 to 1000\%	If a narrow proportional band is set (small parameter setting value), the manipulated amount changes considerably by slight changes in the measured value.   As a result, response improves as the proportional band becomes narrower, though stability worsens as shown by the occurrence of hunting.   Gain $K p=1 /$ proportional band		
			9999	No proportional control		
$\begin{aligned} & 130 \\ & \text { A614 } \end{aligned}$	PID integral time	1 s	0.1 to 3600 s	With deviation step input, this is the time ( Ti ) used for obtaining the same manipulated amount as proportional band (P) by only integral (I) action. Arrival to the set point becomes quicker the shorter an integral time is set, though hunting is more likely to occur.		
			9999	No integral control		
$\begin{aligned} & 131 \\ & \text { A601 } \end{aligned}$	PID upper limit	9999	0 to 100\%	Set the upper limit.   The FUP signal is output when the feedback value exceeds this setting. The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value (terminal 4) is equivalent to $100 \%$.		
			9999	No function		
$\begin{aligned} & 132 \\ & \text { A602 } \end{aligned}$	PID lower limit	9999	0 to 100\%	Set the lower limit.   The FDN signal is output when the measured value (terminal 4) falls below the setting range.   The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value is equivalent to 100\%.		
			9999	No function		
$\begin{aligned} & 133 \\ & \text { A611 } \end{aligned}$	PID action set point	9999	0 to 100\%	Set the set point during PID control.		
			9999	Input of set point by terminal selected by Pr. 609		
$\begin{aligned} & 134 \\ & \text { A615 } \end{aligned}$	PID differential time	9999	0.01 to 10 s	With deviation ramp input, this is the time (Td) used for obtaining the manipulated amount only by proportional action (P).   Response to changes in deviation increase greatly as the differential time increases.		
			9999	No differential contro		
$\begin{aligned} & 609 \\ & \text { A624 } \end{aligned}$	PID set point/deviation input selection	2	1	Input of set point from terminal 1		
			2	Input of set point from terminal 2		
			3	Input set point from terminal 4		
			4	Input of set point, deviation value via CC-Link/CC-Link IE Field Network communication		
			5	Input of set point by PLC function		
$\begin{aligned} & 610 \\ & \text { A625 } \end{aligned}$	PID measured value input selection	3	1	Input of measured value from terminal 1		
			2	Input of measured value from terminal 2		
			3	Input of measured value from terminal 4		
			4	Input of set point, deviation value via CC-Link/CC-Link IE Field Network communication		
			5	Input measured value by PLC function		
$\begin{aligned} & 1134 \\ & \text { A605 } \end{aligned}$	PID upper limit manipulated value	100\%	0 to 100\%	Set the upper limit of PID action.		
$\begin{aligned} & 1135 \\ & \text { A606 } \end{aligned}$	PID lower limit manipulated value	100\%	0 to 100\%	Set the lower limit of PID action.		

## - Block diagram of dancer control


*1 The main speed can be selected in all operation modes, External (analog voltage input, multi-speed), PU (digital frequency setting) and Communication (RS-485).

## - Outline of dancer control

- Dancer control is performed by setting "40 to 43" in Pr. 128 PID action selection. The main speed command is the speed command for each operation mode (External, PU, and communication). PID control is performed by the dancer roll position detection signal, and the control result is added to the main speed command. For the main speed acceleration/deceleration time, set the acceleration time to Pr. 44 Second acceleration/deceleration time and the deceleration time to Pr. 45 Second deceleration time.



## NOTE

- Normally, set Pr. 7 Acceleration time and Pr. 8 Deceleration time to 0 s. When the Pr. 7 and Pr. 8 settings are large, dancer control response becomes slow during acceleration/deceleration.
- The Pr. 127 PID control automatic switchover frequency setting is enabled. The larger setting value between Pr. 7 and Pr. 44 is used as the acceleration time during normal operation. For the deceleration time, the larger setting value between Pr. 8 and Pr. 45 is used. (For the details of Pr.127, refer to page 570.)
- If an automatic restart after instantaneous power failure is activated during dancer control, E.OC[] or E.OV[] is likely to occur. In such case, disable the automatic restart after instantaneous power failure function (Pr. $57=$ " 9999 ").


## -Connection diagram

- Sink logic
- Pr. $128=41$
- Pr. $182=14$
- Pr. $193=14$
- Pr. $194=15$
- Pr. 133 = Set point

*1 The main speed command differs according to each operation mode (External, PU, communication).
*2 The applied output terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).
*3 The applied input terminals differ by the settings of Pr. 178 to Pr. 189 (Input terminal function selection).
*4 The AU signal need not be input.


## - Dancer control operation selection (Pr.128)

Pr. 128 setting	PID action	Additive method	Set point input	Measured value input		
0	PID invalid	-	-	-		
40	Reverse action	Fixed	Set by Pr. 133 or input by			
terminal selected by Pr.609 ${ }^{* 1}$						Input by terminal selected by
:---						
Pr. 610						

*1 When Pr. 133 = "9999", the Pr. 133 setting is valid.

- To enable dancer control, set "40 to 43" in Pr. 128 PID action selection.
- Dancer control is enabled only when the PID control valid (X14) signal turns ON when "14" is set in one of Pr. 178 to Pr. 182 (Input terminal function selection) and X14 signal is assigned. When the X 14 signal is not assigned, dancer control is enabled only by the Pr. 128 setting.
- Input the main speed command (External, PU, Communication). Dancer control is also supported by the main speed command in all operation modes.
- Input the set point between the terminals 2 and 5 (the setting can be selected using Pr. 133 or Pr.609) and input the measured value signal (dancer roll position detection signal) between the inverter terminals 4 and 5 (the setting can be selected using Pr.610).
- The action of Pr. 129 PID proportional band, Pr. 130 PID integral time, Pr. 131 PID upper limit, Pr. 132 PID lower limit and Pr. 134 PID differential time is the same as PID control action. In the relationship between the control amount (\%) and frequency in PID control, 0\% and 100\% are equivalent to the frequencies set to Pr. 902 and Pr.903, respectively.


## NOTE

- When Pr. 128 is set to " 0 " or the X14 signal is OFF, regular inverter running not dancer control is performed.
- Dancer control is enabled by turning ON/OFF the bits of terminals assigned the X14 signal by RS-485 communication or over the network.
- When dancer control is selected, set the PID output suspension function (Pr. 575 Output interruption detection time $=$ "9999")
- When Pr. 561 PTC thermistor protection level $\neq$ " 9999 ", terminal 2 cannot be used for the main speed command. Terminal 2 becomes the PTC thermistor input terminal.


## - Selection of set point/measured value input method (Pr.609, Pr.610)

- Select the set point input method by Pr. 609 PID set point/deviation input selection and the measured value input method by Pr. 610 PID measured value input selection. Switch the power voltage/current specifications of terminals 2 and 4 by Pr. 73 Analog input selection or Pr. 267 Terminal 4 input selection to match the specification of the input device.
- When Pr. 133 PID action set point $\neq$ "9999", Pr. 133 is the set point. When the set point is set at Pr.133, the setting frequency of Pr. 902 is equivalent to $0 \%$ and the setting frequency of Pr. 903 is equivalent to $100 \%$.

Pr.609, Pr.610 settings	Input method
1	Terminal 1 ${ }^{* 1}$
2	Terminal 2*1
3	Terminal 4*1
4	CC-Link/CC-Link IE Field Network communication
5	PLC function

*1 When the same input method has been selected for the set point and measured value at Pr. 609 and Pr.610, set point input is invalid. (Inverter runs at set point $0 \%$ )

## NOTE

- After changing the Pr. 73 or Pr. 267 settings, check the voltage/current input selection switch. Incorrect setting may cause a fault, failure or malfunction. (Refer to page 473 for the setting.)
- When terminals 2 and 4 are selected for deviation input, perform bias calibration using $\mathbf{C 3}$ and $\mathbf{C 6}$ to prevent a minus voltage from being entered as the deviation input signal. Input of a minus voltage might damage devices and the inverter.
- The following shows the relationship between the input values of the analog input terminals, and the set point and measured value.

Input terminal	Input specification ${ }^{* 2}$	Relationship with analog input		Calibration parameter
		Set point	Result	
Terminal 2	0 to 5 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.125, C2 to C4
	0 to 10 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	
Terminal 1	0 to $\pm 5 \mathrm{~V}$	$\begin{aligned} & -5 \text { to } 0 V=0 \% \\ & +5 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -5 \text { to } 0 V=0 \% \\ & +5 V=+100 \% \end{aligned}$	When Pr. 128 = "10", Pr. 125 setting, C2 to C4. When Pr. $128 \geq$ "1000", C12 setting, C2 to C15.
	0 to 10 V	$\begin{aligned} & -10 \text { to } 0 V=0 \% \\ & +10 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -10 \text { to } 0 V=0 \% \\ & +10 \mathrm{~V}=+100 \% \end{aligned}$	
Terminal 4	0 to 5 V	$\begin{aligned} & 0 \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.126, C5 to C7
	0 to 10 V	$\begin{aligned} & 0 \text { to } 2 V=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 2 V=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	

[^31]
## - Selection of additive method for PID calculation result

- When ratio is selected as the additive method ( $\mathrm{Pr} .128=42,43 "$ ), PID calculation result $\times$ (ratio of main speed) is added to the main speed. The ratio is determined by the Pr. 125 Terminal 2 frequency setting gain frequency and $\mathbf{C 2}$ (Pr.902) Terminal 2 frequency setting bias frequency settings. In the initial status, 0 to 60 Hz is set for 0 to $100 \%$. Thus, 60 Hz main speed is regarded as $100 \%$, and the 30 Hz main speed is regarded as $50 \%$.



## NOTE

- Even if $\mathbf{C 4}$ ( Pr .903 ) is set to other than $100 \%$, the frequency setting signal is treated at $100 \%$.
- Even if C3 (Pr.902) is set to other than 0\%, the frequency setting signal is treated as $0 \%$.
- If $\mathbf{C 2}$ ( Pr .902 ) is set to other than 0 Hz , the frequency setting signal is $0 \%$ at the $\mathbf{C 2}$ ( Pr .902 ) frequency setting or below.


## Setting the upper and lower limits of the PID manipulated amount (Pr.1134, Pr.1135)

- Set the upper and lower limits of the PID manipulated amount.
- The upper limit of the manipulated amount is the frequency obtained by adding the value resulting from frequency conversion of Pr. 1134 to the main speed.
The lower limit of the manipulated amount is the frequency obtained by subtracting the value resulting from frequency conversion of Pr. 1135 from the main speed.



## - Input/output signals

- The following signals can be used by assigning functions to Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection).
- Input signal

Signal	Function	$\begin{gathered} \text { Pr. } 178 \text { to } \\ \text { Pr. } 189 \\ \text { setting } \end{gathered}$	Description
X14	PID control valid	14	When this signal is assigned to the input terminal, PID control is enabled when this signal is ON.
X64	PID forward/ reverse action switchover	64	PID control is switched between forward and reverse action without changing parameters by turning ON this signal.
X72	PID P control switchover	72	Integral and differential values can be reset by turning ON this signal.

- Output signal

Signal	Function		Pr. 190 to Pr. 196   setting	
		Positive   logic	Negative   logic	
FUP	PID upper limit	15	115	Output when the measured value signal exceeds Pr. 131 PID upper limit   (Pr. 1143 Second PID upper limit).
FDN	Lower limit output	14	114	Output when the measured value signal falls below Pr. 132 PID lower limit   (Pr. 1144 Second PID lower limit).
RL	PID forward/reverse   rotation output	16	116	"Hi" is output when the output display of the parameter unit is forward rotation   (FWD) and "Low" is output when the display is reverse rotation (REV) and stop   (STOP).
PID	During PID control   activated	47	147	Turns ON during PID control.

## NOTE

- Changing the terminal functions with Pr. 178 to Pr. 189 and Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.


## - PID monitor function

- This function displays the PID control set point and measured value on the operation panel, and can output these from the terminals FM, AM, and CA.
- Set the following values to Pr. 52 Operation panel main monitor selection, Pr. 774 to Pr. 776 (Operation panel monitor selection), Pr. 992 Operation panel setting dial push monitor selection, Pr. 54 FM/CA terminal function selectionand Pr. 158 AM terminal function selection for each monitor.

Parameter   setting	Monitor   description		Minimum   increment	Monitor range         	Terminal   AM
	Operation   panel				
97	Dancer main   speed setting	0.01 Hz	0 to 590 Hz	When outputting through terminals FM, CA and   AM, the full scale value can be adjusted by Pr. 55   Frequency monitoring reference.	

## NOTE

- Refer to page 579 for details on other PID control monitors.


## - Priority of main speed commands

- The priority of main speed command sources when the speed command source is External is as follows:

JOG signal > multi-speed setting signal (RL/RM/RH/REX) > pulse train input > 16bit digital input (option FR-A8AX) > analog input (terminals $2,4,1$ )

- The priority of main speed command sources when " 3 " is set to Pr. 79 Operation mode selection is as follows: Multi-speed setting signal (RL/RM/RH/REX) > frequency setting (digital setting by PU or operation panel)
- Even if the remote operation function is selected by Pr. 59 Remote function selection $=$ " 0 ", compensation of the remote setting frequency against the main speed is ignored. (The value is " 0 ".)
- If terminal 1 is selected for the first and second PID, terminal 1 added compensation of the main speed is invalid.
- If terminal 2 is selected for the first and second PID, the terminal 2 override function of the main speed is invalid.
- If the same terminal as an external input terminal having a speed command source (external terminal where a main speed is input) is specified as the measured value input or set point input, the main speed is treated as " 0 ".
- Polarity reversible operation of the main speed is not possible.


## Adjustment procedure for dancer roll position detection signal

－When the input of terminal 4 is voltage input， 0 V and $5 \mathrm{~V}(10 \mathrm{~V})$ are the lower limit position and upper limit position， respectively（initial value）．When it is current input， 4 mA and 20 mA are the lower limit position and upper limit position， respectively（initial value）．When the potentiometer has an output of 0 to $7 \mathrm{~V}, \mathbf{C 7}(\mathrm{Pr} .905)$ must be calibrated at 7 V ．


（Example）To execute control at the dancer center position using a 0 to 7 V potentiometer
1．Switch the currentvoltage input selection switch to＂OFF＂，set＂ 2 ＂to Pr． 267 and set terminal 4 i input to voltage input．
2．Input 0 V across terminals 4 and 5 ，and calibrate $\mathbf{C 6}$（Pr．904）．（The \％display that is indicated at analog calibration is not related to the $\%$ of the feedback value．）
3．Input 7 V across terminals 4 and 5 ，and calibrate $\mathbf{C 7}$（Pr．905）．（The \％display that is indicated at analog calibration is not related to the $\%$ of the feedback value．）
4．Set Pr． 133 to＂ $50 \%$＂．

## NOTE

－After changing the Pr． 267 setting，check the voltage／current selection switch．Incorrect setting may cause a fault，failure or malfunction．（Refer to page 473 for the setting．）
－If the Multi－speed operation（RH，RM，RL，or REX）signal，or JOG signal is input during regular PID control，PID control is interrupted．However，at dancer control，these signals are treated as main speed commands，so PID control is continued．
－During dancer control，Pr． 44 and Pr． 45 （Second acceleration／deceleration time）is the parameter for setting the acceleration／ deceleration time for the main speed command．This function does not work as a second function．
－When the switchover mode is set by setting＂6＂to Pr．79，dancer control（PID control）is invalid．
－The acceleration／deceleration action of the main speed command is the same as that when the frequency is increased or decrease by analog input．The SU signal sometimes stays ON even if operation is turned ON／OFF by the start signal．The set frequency monitor is the value＂main speed command＋PID control＂which is constantly changing．
－With the main speed setting frequency setting，acceleration／deceleration is performed for the acceleration／deceleration time set in Pr． 44 and Pr．45，and with the output frequency setting，acceleration／deceleration is performed for the acceleration／ deceleration time set in Pr． 7 and Pr．8．For this reason，with the output frequency，when the time set in Pr． 7 and Pr． 8 is longer than the time set in Pr． 44 and Pr．45，acceleration／deceleration is performed for the acceleration／deceleration time set in Pr． 7 and Pr． 8.
－The limit of the integral term is the smaller of $100 \%$ and the value after conversion of the straight line after interpolation of Pr． 1 Maximum frequency by Pr． 902 and Pr． 903 to the PID manipulated amount．
However，note that the lower limit frequency limits the output frequency，but does not restrict the action of the integral item．

# 5．14．14 Automatic restart after instantaneous power failure／flying start with an induction motor 

## V／F Magneticflux Sensorless Vector

The inverter can be restarted without stopping the motor operation in the following situations：

- When switching from commercial power supply operation over to inverter running
- When an instantaneous power failure occurs during inverter running
- When the motor is coasting at start

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 162 \\ & \text { A700 } \end{aligned}$	Automatic restart after instantaneous power failure selection	0	0	Frequency search only performed at the first start
			1	Reduced voltage start only at the first start (no frequency search)
			2	Encoder detection frequency search
			3	Frequency search only performed at the first start (reduced impact restart)
			10	Frequency search at every start
			11	Reduced voltage start at every start (no frequency search)
			12	Encoder detection frequency search at every start
			13	Frequency search at every start (reduced impact restart)
$\begin{aligned} & 299 \\ & \text { A701 } \end{aligned}$	Rotation direction detection selection at restarting	0	0	Without rotation direction detection
			1	With rotation direction detection
			9999	When Pr. 78 Reverse rotation prevention selection = " 0 ", with rotation direction detection When Pr. 78 Reverse rotation prevention selection= "1 or 2", without rotation direction detection
57   A702	Restart coasting time	9999	0	Coasting time differs according to the inverter capacity. ${ }^{\text {¹ }}$
			0.1 to 30 s	Set the waiting time for the inverter to perform a restart after restoring power due to an instantaneous power failure.
			9999	No restart
$\begin{array}{\|l\|} \hline 58 \\ \text { A703 } \\ \hline \end{array}$	Restart cushion time	1 s	0 to 60 s	Set the voltage cushion time for restart.
$\begin{aligned} & 163 \\ & \text { A704 } \end{aligned}$	First cushion time for restart	0 s	0 to 20 s	Set the voltage cushion time for restart.
$\begin{aligned} & 164 \\ & \text { A705 } \end{aligned}$	First cushion voltage for restart	0\%	0 to 100\%	Consider this matched to the size of the load amount (moment of inertia/ torque).
$\begin{array}{\|l\|} \hline 165 \\ \text { A710 } \end{array}$	Stall prevention operation level for restart	150\%	0 to 400\%	Set the stall prevention level at restart operation on the assumption that the inverter rated current is $100 \%$.
$\begin{aligned} & 611 \\ & \text { F003 } \end{aligned}$	Acceleration time at a restart	9999	0 to 3600 s	Set the acceleration time to reach Pr. 20 Acceleration/deceleration reference frequency at restart.
			9999	Standard acceleration time (for example, Pr.7) is applied as the acceleration time at restart.

*1 The coasting time when $\operatorname{Pr} .57=00$ is as shown below. (When Pr. 162 and $\operatorname{Pr} .570$ are set to the initial value.)
FR-A820-00105(1.5K) or lower and FR-A840-00052(1.5K) or lower: 0.5 s
FR-A820-00167(2.2K) to FR-A820-00490(7.5K) and FR-A840-00083(2.2K) to FR-A840-00250(7.5K): 1 s
FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K): 3.0 s
FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher: 5.0 s

## Point ${ }^{\rho}$

- To operate the inverter with the automatic restart after instantaneous power failure function enabled, check the following points.
- Set Pr. 57 Restart coasting time = " 0 ".
- When the Selection of automatic restart after instantaneous power failure / flying start (CS) signal is assigned to the input terminal, restart operation is enabled at turn-ON of the CS signal.


## - Automatic restart after instantaneous power failure function



- The inverter output is shut off at the activation of the Instantaneous power failure (E.IPF) or Undervoltage (E.UVT). (Refer to page 754 for E.IPF or E.UVT.)
- When E.IPF or E.UVT is activated, the Instantaneous power failure/undervoltage (IPF) signal is output.
- The IPF signal is assigned to terminal IPF in the initial status. By setting "2 (positive logic) or 102 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection), the IPF signal can be assigned to another terminal.
- When the automatic restart after instantaneous power failure function is selected, motor driving is resumed at the power restoration after an instantaneous power failure or undervoltage. (E.IPF and E.UVT are not activated.)


## - Connection (CS signal)



With electronic bypass sequence

$$
\left[\begin{array}{l}
\text { For use for only automatic } \\
\text { restart after instantaneous } \\
\text { power failure or flying start, } \\
\text { turn ON the CS signal in } \\
\text { advance. }
\end{array}\right.
$$



Separated converter type

## Only with restart after instantaneous power failure

- Restart is enabled at turn-ON of the Selection of automatic restart after instantaneous power failure / flying start (CS) signal.
- The inverter operation is disabled at turn-OFF of the CS signal while Pr. 57 Restart coasting time $\neq$ " 9999 " (with restart).
- Separated converter types detect the instantaneous power failure on the converter unit side. Perform wiring so that the IPF signal transmitted from the converter unit is input to the terminal to which the X 11 signal is assigned.
On the converter unit side, enable the restart operation. (For setting the converter unit, refer to the Instruction Manual of the converter unit.)
- For the terminal used for the X10 or X11 signal, set "10" (X10) or "11" (X11) in Pr. 178 to Pr. 189 and assign the function. (For separated converter types, the X 10 signal is assigned to the terminal MRS in the initial setting.)
- For the X10 signal of separated converter types, NC contact input specification is selected in the initial setting. Set Pr. 599 = " 0 " to change the input specification to NO contact.


## NOTE

- The CS signal is assigned to terminal CS in the initial setting. By setting "6" to any of Pr. 178 to Pr. 189 (Input terminal function selection), the CS signal can be assigned to other terminals. Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- If the CS signal is not assigned to any input terminal, solely setting Pr. 57 enables the restart operation at all times.


## $\checkmark$ Setting for the automatic restart after instantaneous power failure operation (Pr.162)

- The Pr. 162 settings and the instantaneous power failure automatic restart operation under each operation mode are as shown below.

| Pr. $\mathbf{1 6 2}$ <br> setting | Restart <br> operation |  | Vdvanced magnetic flux vector control |  | Real sensorless <br> vector control | Vector control |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | PM sensorless |
| :---: |
| vector control |

## - Restart operation with frequency search (Pr. $162=$ ="0, 3, 10, or 13", Pr.299)

- When Pr. $162=$ " 0 (initial value), 3,10 , or 13 ", the motor speed is detected at a power restoration so that the motor can restart smoothly.
- The encoder also detects the rotation direction so that the inverter can re-start smoothly even during the reverse rotation.
- Whether or not to detect the rotation direction can be selected by Pr. 299 Rotation direction detection selection at restarting. If the motor capacity is different from the inverter capacity, set Pr. $299=$ " 0 " (no rotation direction detection).
- When the rotation direction is detected, the following operation is performed according to Pr. 78 Reverse rotation prevention selection setting.

Pr.299 setting	Pr.78 setting		
	$\mathbf{0}$	1	
9999	$\circ$	$\times$	$\times$
0 (initial value)	$\times$	$\times$	$\times$
1	$\circ$	$\circ$	0

0 : With rotation direction detection $\times$ : Without rotation direction detection

- By setting " 3 or 13 " in Pr. 162, the restart can be made smoother with even less impact than when " 0 or 10 " is set in Pr. 162. When the inverter is restarted with " 3,13 " set in Pr.162, offline auto tuning is required. (For details on offline auto tuning of Advanced magnetic flux vector control and Real sensorless vector control, refer to page 509, and for details on offline auto tuning of V/F control, refer to page 606.)

- The rotation speed detection time (frequency search) changes according to the rotation speed of the motor. (maximum 1 s )
- When the inverter capacity is two ranks or greater than the motor capacity, the overcurrent protective function (E.OC[]) is sometimes activated and prevents the inverter from restarting.
- If two or more motors are connected to one inverter, this function operates abnormally. (The inverter does not restart successfully.)
- Because a DC injection brake is applied instantaneously at speed detection during a restart, the speed might drop if the moment of inertia ( J ) of the load is small.
- If reverse operation is detected when "1" (reverse rotation disabled) is set to Pr.78, operation decelerates by reverse rotation and then changes to forward rotation when the start command is forward rotation. The inverter does not restart when the start command is reverse rotation.
- When "3 or 13 " is set to Pr.162, limit the wiring length to within 100 m .


## $\checkmark$ Restart operation without frequency search (Pr. 162 = "1 or 11")

- When Pr. 162 = "1 or 11", reduced voltage start is used for the restart operation. In this method, the voltage is raised gradually while keeping the output frequency level at the level before an instantaneous power failure, regardless of the motor's coasting speed.

V/F control, Advanced magnetic flux vector control


* The output shut off timing differs according to the load condition.


## NOTE

- This restart method uses the output frequency that was active before the instantaneous power failure stored in memory. If the instantaneous power failure time is 0.2 s or more, the output frequency can no longer be stored and held in memory, so the restart is performed from Pr. 13 Starting frequency (initial value: 0.5 Hz ).
- During Real sensorless vector control, Pr. 162 is set to " 3 or 13 " (reduced impact restart).


## - Restart operation with encoder detection frequency search (Pr. 162 = "2 or 12")

- When "2 or 12" is set in Pr. 162 by encoder feedback control, the inverter is restarted by the motor speed and direction of rotation that were detected by the encoder at the power restoration.
- By encoder detection frequency search, the Pr. 299 Rotation direction detection selection at restarting setting are invalid.

Motor speed N
(r/min)
Inverter output   frequency $\mathrm{f}(\mathrm{Hz})$   Output voltage $\mathrm{E}(\mathrm{V})$
$\binom{$ Coasting }{ time (Pr.57) }

* The output shut off timing differs according to the load condition.


## NOTE

- When "2 or 12" are set to Pr. 162 when encoder feedback control is invalid, the automatic restart is with a frequency search (Pr. 162 = "0 or 10").
- In Vector control, encoder detection frequency search is used regardless of the Pr. 162 setting. The Pr. 58 and Pr. 299 settings are invalid at this time.
- For the encoder feedback control, refer to page 700.


## - Restart at every start (Pr. 162 = "10 to 13")

- When "10 to 13" is set in Pr.162, a restart operation is performed at each start and automatic restart after instantaneous power failure (Pr. 57 start after the reset time has elapsed). When " 0 (initial value) to 3 " is set in Pr. 162, a restart operation is performed at the first start after a power-ON, and from the second power-ON onwards, a start from the starting frequency is performed.


## Automatic restart operation of the MRS (X10) signal

- The restart operation after restoration from output shutoff by the MRS (X10) signal is as shown in the following table according to the Pr. 30 setting.

Pr. $\mathbf{3 0}$ setting	Operation after restoration from output shutoff by the MRS (X10) signal
$2,10,11,102,110,111$	Restart operation (starting from the coasting speed)
Other than the above	Starting from Pr. 13 Starting frequency.

## NOTE

- When output is shut off using safety stop function (terminals S1 and S2), the inverter restarts in the same way as when output is shut off by MRS (X10) signal.


## Adjustment of restart coasting time (Pr.57)

- Coasting time is the time from the motor speed detection to the restart operation start.
- To enable restart operation, set " 0 " to Pr. 57 Restart coasting time. If " 0 " is set to Pr.57, the coasting time is automatically set to the following value (unit: s). Generally, this setting does not interfere with inverter operation.

Pr. 570 setting	Pr. 162 setting	200 V class FR-A820-[]																
		$\begin{aligned} & 00046 \\ & (0.4 \mathrm{~K}) \end{aligned}$	$\begin{array}{\|c\|} \hline 00077 \\ (0.75 \mathrm{~K}) \end{array}$	$\begin{aligned} & 00105 \\ & (1.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00167 \\ & (2.2 K) \end{aligned}$	$\begin{aligned} & 00250 \\ & (3.7 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00340 \\ & (5.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00490 \\ & (7.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00630 \\ & (11 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00770 \\ & (15 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 00930 \\ (18.5 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 01250 \\ & (22 K) \end{aligned}$	$\begin{aligned} & 01540 \\ & (30 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01870 \\ & (37 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 02330 \\ & (45 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 03160 \\ & (55 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 03800 \\ & (75 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 04750 \\ & (90 \mathrm{~K}) \end{aligned}$
		400 V class: $\mathrm{FR}-\mathrm{A} 840-[]$																
		$\begin{aligned} & 00023 \\ & (0.4 \mathrm{~K}) \end{aligned}$	$\begin{gathered} 00038 \\ (0.75 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00052 \\ & (1.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00083 \\ & (2.2 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00126 \\ & (3.7 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00170 \\ & (5.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00250 \\ & (7.5 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00310 \\ & (11 K) \end{aligned}$	$\begin{aligned} & 00380 \\ & (15 K) \end{aligned}$	$\begin{gathered} 00470 \\ (18.5 \mathrm{~K}) \end{gathered}$	$\begin{aligned} & 00620 \\ & (22 K) \end{aligned}$	$\begin{aligned} & 00770 \\ & (30 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 00930 \\ & (37 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 01160 \\ & (45 K) \end{aligned}$	$\begin{aligned} & 01800 \\ & (55 \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 02160 \\ & (75 K) \end{aligned}$	$\begin{array}{c\|} \hline 02600 \\ \text { (90K) or } \\ \text { higher } \end{array}$
$\begin{aligned} & \text { O(SLD) } \\ & 1 \text { (LD) } \end{aligned}$	Other than 3, 13	$0.5$	0.5	1	1	1	1	3	3	3	3	3	3	3	3	5	5	5
	3, 13	1	1	2	2	2	2	3	3	3	3	3		3	3	5	5	5
2 (ND)	Other than 3, 13	0.5	0.5	0.5	1	1	1	1	3	3	3	3	3	3	3	3	5	5
	3, 13	1	1	1	2	2	2	2	3	3	3	3	3	3	3	3	5	5
3 (HD)	Other than 3, 13	$0.5$	0.5	0.5	0.5	1	1	1	1	3	3	3	3	3	3	3	3	5
	3, 13	1	1	1	1	2	2	2	2	3	3	3	3	3	3	3	3	5

－Inverter operation is sometimes hindered by the size of the moment of inertia（ J ）of the load or running frequency．Adjust this coasting time within the range 0.1 s to 30 s to match the load specification．
－Set the waiting time when the sine wave filter is used（Pr． 72 PWM frequency selection＝＂ 25 ＂）to 3 seconds or more．

## －Restart cushion time（Pr．58）

－The cushion time is the time takes to raise the voltage to the level required for the specified speed after the motor speed detection（output frequency before the instantaneous power failure when Pr．162＝＂1 or 11＂）．
－Normally，the motor runs at the initial value as it is．However，adjust to suit the moment of inertia $(\mathrm{J})$ of the load or the size of the torque．

## NOTE

## －Pr． 58 is invalid under Real sensorless vector control or Vector control．

## $\bullet$ Adjustment of restart operation（Pr． 163 to Pr．165，Pr．611）

－The voltage cushion time at a restart can be adjusted by Pr． 163 and Pr． 164 as shown in the figure on the left．

－The stall prevention operation level at a restart operation can be set in Pr． 165.
－Using Pr．611，the acceleration time to reach Pr． 20 Acceleration／deceleration reference frequency after a restart operation can be set．This can be set individually from the normal acceleration time．

## NOTE

－Pr． 163 to Pr． 165 are invalid under Real sensorless vector control and Vector control．
－Changing the Pr． 21 setting does not affect the Pr． 611 setting increment．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．
－When the restart operation is selected，Undervoltage（E．UVT）and Instantaneous power failure（E．IPF）of the fault output signals become invalid．
－The SU and FU signals are not output during the restart．These signals are output after the restart cushion time passes．
－Restart operation is also performed after the inverter reset is released or after the retry by the retry function occurs．
－The automatic restart after instantaneous power failure function is invalid when the load torque high－speed frequency control （Pr． $270=$＂ 2,3 ，or 13 ＂）is set．

## CAUTION

－Provide a mechanical interlock for MC1 and MC2．The inverter will be damaged if power supply is input to the inverter output section．
－When the automatic restart after instantaneous power failure function is selected，the motor suddenly starts （after reset time passes）when an instantaneous power failure occurs．Stay away from the motor and machinery． Apply the supplied CAUTION stickers to easily visible places when automatic restart after instantaneous power failure has been selected．

[^32]
### 5.14.15 Automatic restart after instantaneous power failure/flying start with an IPM motor

## PM

When using the IPM motor MM-CF, the inverter operation can be restarted without stopping the motor operation.
When the automatic restart after instantaneous power failure function is selected, the motor driving is resumed in the following situations:

- When power comes back ON during inverter driving after an instantaneous power failure
- When the motor is coasting at start

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 57 \\ & \text { A702 } \end{aligned}$	Restart coasting time	9999	0	No waiting time
			0.1 to 30 s	Set the waiting time for the inverter to perform a restart after restoring power due to an instantaneous power failure.
			9999	No restart
$\begin{aligned} & 162 \\ & \text { A700 } \end{aligned}$	Automatic restart after instantaneous power failure selection	0	0, 1, 2, 3	Frequency search only performed at the first start
			10, 11, 12, 13	Frequency search at every start
$\begin{array}{\|l} \hline 611 \\ \text { F003 } \end{array}$	Acceleration time at a restart	9999	0 to 3600 s	Set the acceleration time to reach Pr. 20 Acceleration/deceleration reference frequency at restart.
			9999	Standard acceleration time (for example, Pr.7) is applied as the acceleration time at restart.

## Automatic restart after instantaneous power failure function



- The inverter output is shut off at the activation of the Instantaneous power failure (E.IPF) or Undervoltage (E.UVT). (Refer to page 745 for E.IPF or E.UVT.)
- When E.IPF or E.UVT is activated, the Instantaneous power failure/undervoltage (IPF) signal is output.
- The IPF signal is assigned to terminal IPF in the initial status. By setting "2 (positive logic) or 102 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection), the IPF signal can be assigned to another terminal.
- When the automatic restart after instantaneous power failure function is selected, motor driving is resumed at the power restoration after an instantaneous power failure or undervoltage. (E.IPF and E.UVT are not activated.)


## Connection (CS signal)

- When the Selection of automatic restart after instantaneous power failure / flying start (CS) signal is assigned to an input terminal (initial setting), a restart operation is enabled at turn-ON of the CS signal.
- The inverter operation is disabled at turn-OFF of the CS signal while Pr. 57 Restart coasting time $\neq$ " 9999 " (with restart).


## NOTE

- The CS signal is assigned to terminal CS in the initial setting. By setting "6" to any of Pr. 178 to Pr. 189 (Input terminal function selection), the CS signal can be assigned to other terminals. Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- If the CS signal is not assigned to any input terminal, solely setting Pr. 57 enables the restart operation at all times.
- If the restart operation is selected, instantaneous power failure (E.IPF) is disabled while the fault output signal is output at an instantaneous power failure.
- The SU and FU signals are not output during the restart. These signals are output after the restart cushion time passes.
- Restart operation is also performed after the inverter reset is released or after the retry by the retry function occurs.
- The automatic restart after instantaneous power failure function is invalid when the load torque high-speed frequency control (Pr. $270=$ "2, 3, 13") is set.


## - Selection of restart operation (Pr.162)

- At a power restoration, the encoder detects the motor speed by a frequency search so that the inverter can re-start smoothly.
- The encoder also detects the rotation direction so that the inverter can re-start smoothly even during the reverse rotation.
- When "10 to 13)" is set in Pr.162, a restart operation is performed at each start and automatic restart after instantaneous power failure. When " 0 to 3 " is set in Pr . 162, a restart operation is performed at the first start after a power-ON, and from the second power-ON onwards, a start from the starting frequency is performed.



## NOTE

- Because a DC injection brake is applied instantaneously at speed detection during a restart, the speed might drop if the moment of inertia $(\mathrm{J})$ of the load is small.
- Restart operation with reduced voltage is not available for PM sensorless vector control.


## - Restart coasting time (Pr.57)

- Coasting time is the time from the motor speed detection to the restart operation start.
- To enable restart operation, set " 0 " (no coasting time) in Pr. 57 Restart coasting time. Generally, this setting does not interfere with inverter operation.
- Inverter operation is sometimes hindered by the size of the moment of inertia ( J ) of the load or running frequency. Adjust this coasting time within the range 0.1 s to 30 s to match the load specification.


## - Adjustment of restart operation (Pr.611)

- Using Pr.611, the acceleration time to reach Pr. 20 Acceleration/deceleration reference frequency after a restart operation can be set. This can be set individually from the normal acceleration time.


## NOTE

- Changing the Pr. 21 Acceleration/deceleration time increments setting does not affect the Pr. 611 setting increment.
- An IPM motor is a motor with interior permanent magnets. Regression voltage is generated when the motor coasts at an instantaneous power failure or at a flying start. The inverter's DC bus voltage rises if the motor coasts fast or makes a flying start in this condition.
When using the automatic restart after instantaneous power failure function (Pr. $57 \neq 19999$ "), it is recommended to also use the regenerative avoidance function (Pr. 882 Regeneration avoidance operation selection $=" 1$ ") to make startups stable. If the overvoltage protective function (E.OV[]) still occurs with the regeneration avoidance function, also use the retry function (Pr.67).
- During PM sensorless vector control, the automatic restart after instantaneous power failure function operates only when an IPM MM-CF motor is connected.
When a built-in brake or a regeneration unit is used, the frequency search may not be available at $2200 \mathrm{r} / \mathrm{min}$ or higher. The restart operation cannot be performed until the motor speed drops to a frequency where the frequency search is available.


## CAUTION

－An IPM motor is a motor with interior permanent magnets．High voltage is generated at motor terminals while the motor is running．
Do not touch motor terminals and other parts until the motor stops to prevent an electric shock．
－When the automatic restart after instantaneous power failure function is selected，the motor suddenly starts（after reset time passes）when an instantaneous power failure occurs．

Stay away from the motor and machinery．
Apply the supplied CAUTION stickers to easily visible places when automatic restart after instantaneous power failure has been selected．

## 《｜Parameters referred to 》》

Pr． 13 Starting frequency page 363，page 364
Pr．65，Pr． 67 to Pr． 69 Retry function
Pr． 78 Reverse rotation prevention selection page 386
Pr． 178 to Pr． 189 （Input terminal function selection）page 496
Pr． 882 Regeneration avoidance operation selection page 696

## 5．14．16 Offline auto tuning for a frequency search

V／F PMM
Under V／F control or when driving the IPM motor MM－CF，the accuracy of the＂frequency search＂，which is used to detect the motor speed for the automatic restart after instantaneous power failure and flying start，can be improved．

| Pr． | Name <br> value | Setting range | Description |
| :--- | :--- | :--- | :--- | :--- |

＊1 For the FR－A820－03160（55K）or lower，and FR－A840－01800（55K）or lower．
＊2 For the FR－A820－03800（75K）or higher，and FR－A840－02160（75K）or higher．

## $\bullet$ Offline auto tuning for a frequency search (reduced impact restart)

- When the frequency search (reduced impact restart) is selected by setting Pr. 162 Automatic restart after instantaneous power failure selection = "3 or 13", perform offline auto tuning.


## - Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- Check that V/F control or PM sensorless vector control (IPM motor MM-CF) is selected.
- Check that a motor is connected. (Check that the motor is not rotated by an external force during tuning.)
- Select a motor with the rated current equal to or less than the inverter rated current. (The motor capacity must be 0.4 kW or higher.)
If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- The target motor is other than a high-slip motor, a high-speed motor, or a special motor.
- The motor may rotate slightly even if the offline auto tuning without motor rotation (Pr. 96 Auto tuning setting/status = "11") is selected. Fix the motor securely with a mechanical brake, or before tuning, make sure that it is safe even if the motor rotates. (Caution is required especially in vertical lift applications.) Note that even if the motor runs slightly, tuning performance is unaffected.
- Offline auto tuning is not performed correctly when the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) and sine wave filter (MT-BSL/BSC) are inserted between the inverter and motor. Be sure to remove them before performing tuning.


## - Setting

1. Set "11" in Pr96 Auto tuning setting/status.
2. Set the rated motor current (initial value is inverted rated current) in Pr. 9 Electronic thermal O/L relay. (Refer to page 394.)
3. Set Pr. 71 Applied motor according to the motor to be used.

Motor		
Mitsubishi Electric standard motor   Mitsubishi Electric high-efficiency motor	SF-JR, SF-TH	$0(3,4)$
	SF-JR 4P 1.5 kW or lower	$20(23,24)$
	SF-HR	$40(43,44)$
Mitsubishi Electric constant-torque motor	Others	$0(3,4)$
Mitsubishi Electric high-performance energy-   saving motor	SF-JRCA 4P,   SF-TH (constant-torque)	$1(13,14)$
	SF-HRCA	$50(53,54)$
	-	$1(13,14)$
Other manufacturer's constant-torque motor	-	$70(73,74)$

## $\rightarrow$ Performing tuning

## Point ${ }^{\rho}$ <br> - Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable

- In the PU operation mode, press FWD/ REV on the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts. (At this time, excitation noise occurs.)

## NOTE

- It takes about 10 s for tuning to complete. (The time depends on the inverter capacity and motor type.)
- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of the MRS signal.
- To force tuning to end, use the MRS or RES signal or $\frac{\text { STOP }}{\text { RESET }}$ on the operation panel. (Turning OFF the start signal (STF signal or STR signal) also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid (initial value). Input terminals <valid signals>: STP (STOP), OH, MRS, RT, RES, STF, STR, S1, and S2 Output terminals: RUN, OL, IPF, FM/CA, AM, A1B1C1, and So (SO)
- When the rotation speed and the output frequency are selected for terminals FM/CA and AM, the progress status of offline auto tuning is output in 15 steps from FM/CA and AM
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- Since the RUN signal turns ON when tuning is started, pay close attention especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the operation command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = "7", turn the PU operation external interlock (X12) signal ON to tune in the PU operation mode.
- During tuning, the monitor is displayed on the operation panel as follows.

Status	Operation panel (FR-DU08) display	LCD operation panel (FR-LU08) display
Setting		
Tuning in progress		Autorune  $12: 34$   TUNE  12   IIIIII  12   STF FWD PU   RREV
Normal end		

 the start signal (STF signal or STR signal). This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)

- At tuning completion, the tuning results are set in the following parameters:

Parameter	Name
90	Motor constant (R1)
298	Frequency search gain
96	Auto tuning setting/status

## NOTE

- The motor constants measured once during offline auto tuning are stored as parameters and their data are held until offline auto tuning is performed again. However, the tuning data is cleared when performing All parameter clear.
- If offline auto tuning has ended in error, motor constants are not set.

Perform an inverter reset and perform tuning again.

Error display	Error cause	Countermeasures
8	Forced end	Set "11" in Pr. 96 and retry.
9	Inverter protective function operation	Make the setting again.
91	The current limit (stall prevention) function is   activated.	Set the acceleration/deceleration time longer.   Set Pr.156 Voltage reduction selection during stall prevention   operation $=" 10,1 "$.
92	The converter output voltage fell to $75 \%$ of the rated   voltage.	Check for the power supply voltage fluctuation.
93	Calculation error   The motor is not connected.	Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error   (The frequency command for the tuning was given   to exceed the maximum frequency setting, or to be   in the frequency jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to Pr. 36

- When tuning is ended forcibly by pressing $\begin{aligned} & \text { STOP } \\ & R E S E T V \\ & \text { - }\end{aligned}$ or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)

Perform an inverter reset and restart tuning.

- If the rated power supply of the motor is $200 / 220 \mathrm{~V}(400 / 440 \mathrm{~V}) 60 \mathrm{~Hz}$, set the rated motor current multiplied by 1.1 in Pr.9Electronic thermal O/L relay after tuning is complete.
- For a motor with a PTC thermistor, thermal protector or other thermal detection, set "0" (motor overheat protection by inverter invalid) in Pr. 9 to protect the motor from overheating.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when the STF (STR) signal is ON, the motor starts forward (reverse) rotation.
- Any fault occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## - Tuning the second motor (Pr.463)

- When one inverter switches the operation between two different motors, set the second motor in Pr. 450 Second applied motor, set Pr. 463 Second motor auto tuning setting/status = "11", and perform tuning of the second motor.
- Turning ON the RT signal enables the parameter settings for the second motor as shown below.

Function	RT signal-ON   (second monitor)	RT signal-OFF   (first motor)
Motor constant (R1)	Pr.458	Pr.90
Frequency search gain	Pr.560	Pr. 463
Auto tuning setting/status	Pr. 96	

## NOTE

- The RT signal is assigned to terminal RT in the initial status. Set "3" in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## CAUTION

- Note that the motor may start running suddenly.
- For the offline auto tuning in vertical lift applications, etc., caution is required to avoid falling due to insufficient torque.


## 《 Parameters referred to 》>

Pr. 9 Electronic thermal O/L relay page 394
Pr.65, Pr. 67 to Pr. 69 Retry function $\vDash$ page 405
Pr. 71 Applied motor, Pr. 450 Second applied motor $\$ 305$
Pr. 79 Operation mode selection page 370
Pr. 156 Stall prevention operation selection page 409
Pr. 178 to Pr. 189 (Input terminal function selection) page 496

### 5.14.17 Power failure time deceleration-to-stop function

At instantaneous power failure or undervoltage, the motor can be decelerated to a stop or to the set frequency for the reacceleration.

Pr.	Name	Initial value		Setting range	Description
		FM	CA		
$\begin{aligned} & 261 \\ & \text { A730 } \end{aligned}$	Power failure stop selection	0		0	Power failure time deceleration-to-stop function disabled
				$\begin{aligned} & 1,2,11,12, \\ & 21,22 \end{aligned}$	Power failure time deceleration-to-stop function enabled Select action at an undervoltage or when an power failure occurs.
$\begin{aligned} & 262 \\ & \text { A731 } \end{aligned}$	Subtracted frequency at deceleration start	3 Hz		0 to 20 Hz	Normally, the motor runs at the initial value as it is. However, adjust to suit the size of the load specification (moment of inertia, torque).
$\begin{aligned} & 263 \\ & \text { A732 } \end{aligned}$	Subtraction starting frequency	60 Hz	50 Hz	0 to 590 Hz	When the output frequency $\geq$ the frequency set in Pr.263:   The motor decelerates if the output frequency decreases by the frequency set in Pr. 262.   When the output frequency < the frequency set in Pr.263: The motor decelerates at frequencies of the output frequency.
				9999	The motor decelerates from the "output frequency - Pr.262.
$\begin{aligned} & 264 \\ & \text { A733 } \end{aligned}$	Power-failure deceleration time 1	5 s		0 to 3600 s	Set the slope applicable from the deceleration start to the Pr. 266 set frequency.
$\begin{aligned} & 265 \\ & \text { A734 } \end{aligned}$	Power-failure deceleration time 2	9999		0 to 3600 s	Set the slope applicable for the frequency range starting at Pr. 266 and downward.
				9999	Same as Pr. 264.
$\begin{aligned} & 266 \\ & \text { A735 } \end{aligned}$	Power failure deceleration time switchover frequency	60 Hz	50 Hz	0 to 590 Hz	Set the frequency at which the slope during deceleration switches from the Pr. 264 setting to the Pr. 265 setting.
$\begin{aligned} & 294 \\ & \text { A785 } \end{aligned}$	UV avoidance voltage gain	100\%		0 to 200\%	Adjust the response at undervoltage avoidance operation. Setting a large value improves the response to changes in the bus voltage.
$\begin{aligned} & \text { 668 } \\ & \text { A786 } \end{aligned}$	Power failure stop frequency gain	100\%		0 to 200\%	Adjust the response level for the operation where the deceleration time is automatically adjusted.
$\begin{aligned} & 606 \\ & \text { T722 } \end{aligned}$	Power failure stop external signal input selection	1		0	Normally open input (NO contact input specification)
				1	Normally closed input (NC contact input specification)

Connection and parameter setting


- For the standard model, remove the jumpers between terminals R/L1 and R1/L11 and terminals S/L2 and S1/L21, and connect terminals R1/L11 and P/+ and terminals S1/L21 and N/-.
- If an undervoltage, power failure or input phase loss occurs when Pr. 261 Power failure stop selection $\neq$ " 0 ", the motor decelerates to a stop.
- The power failure time deceleration stop function operates as follows at an input phase loss.

Pr.261	Pr.872	Operation when an input phase loss occurs
0	0	Operation continues
	1	Input phase loss (E.ILT)
1,2	0	Operation continues
	1	Deceleration stop
21,22	-	Deceleration stop

- For the separated converter type, remove the jumpers between terminals R/L1 and R1/L11 and terminals S/L2 and S1/ L21 of the converter unit, and connect terminals R1/L11 and P/+ and terminals S1/L21 and N/-. Do not remove the jumpers of terminal R1/L11 and terminal S1/L21 of the inverter. (In the initial status of the separated converter type, terminals P/+ and R1/L11 and terminals N/- and S1/L21 are connected.)
- For the separated converter type, connect the terminal to which PWF signal of the converter unit is assigned and the terminal to which X48 signal of the inverter is assigned. Also, set Pr.261of the converter unit in accordance with the inverter setting. (Refer to the Instruction Manual of the converter unit.)


## Outline of operation of deceleration stop at a power failure

- If an undervoltage or power failure occurs, the output frequency is turned OFF only for the frequency set to Pr. 262 Subtracted frequency at deceleration start.
- The motor decelerates for the time set to Pr. 264 Power-failure deceleration time 1. (The deceleration time setting is the time it takes for the motor to stop from Pr. 20 Acceleration/deceleration reference frequency.)
- Change the deceleration time (slope) to stop using Pr. 265 Power-failure deceleration time 2 when the frequency is too low to obtain the regenerative energy or in other instances.



## Action setting at undervoltage and power failure

- Set Pr. 261 to select the action at an undervoltage and power failure.

Pr. 261 setting	Action at undervoltage and power failure	Power restoration during deceleration at occurrence of power failure	Deceleration stop time	Undervoltage avoidance function
0	Coasts to stop	Coasts to stop	-	-
1	Deceleration stop	Deceleration stop	According to Pr. 262 to Pr. 266 setting	Not available
2		Re-acceleration		Not available
11		Deceleration stop		Available
12		Re-acceleration		Available
21		Deceleration stop	Automatic adjustment of deceleration time	Not available
22		Re-acceleration		Not available

## - Power failure stop function (Pr. 261 = "1, 11, or 21")

- Even if power is restored during deceleration triggered by a power failure, deceleration stop is continued after which the inverter stays stopped. To restart operation, turn the start signal OFF then ON again.



## NOTE

- If the automatic restart after instantaneous power failure is selected (Pr. 57 Restart coasting time $\neq$ "9999") while the power failure time deceleration stop function is set enabled ( $\operatorname{Pr} .261=" 1,11$, or $21 "$ ), the power failure time deceleration stop function is disabled.
- When the power failure time deceleration stop function is enabled (Pr. $261=" 1,11$ or 21 "), the inverter does not start even if the power is turned ON or inverter reset is performed with the start signal (STF/STR) ON. Turn OFF the start signal once and then ON again to make a start.



## Continuous operation function at instantaneous power failure (Pr. 261 =

 "2, 12, or 22")- The motor re-accelerates to the set frequency when the power restores during the deceleration to stop.
- Combining with the automatic restart after instantaneous power failure function enables a power failure deceleration stop and re-acceleration at a power restoration.
If the power is restored after stoppage by a power failure, a restart operation is performed when automatic restart after instantaneous power failure (Pr. $57 \neq$ "9999") is selected.

*1 Acceleration time depends on Pr. 7 (Pr.44)


## Undervoltage avoidance function (Pr. 261 = "11 or 12", Pr.294)

- When "11 or 12" is set to Pr.261, the deceleration time is adjusted (shortened) to prevent an undervoltage from occurring during deceleration at occurrence of power failure.
- Adjust the downward frequency slope and the response level using Pr. 294 UV avoidance voltage gain. Setting a large value improves the response to the bus voltage.
- The undervoltage avoidance function is invalid under torque control by Real sensorless vector control. When Pr. $261=$ "11 (12)", the operation is performed in the same manner as Pr.261="1 (2)".


## - Automatic adjustment of deceleration time (Pr. 261 = "21 or 22", Pr.294, Pr.668)

- When "21 or 22" is set to Pr.261, the deceleration time is automatically adjusted to keep (DC bus) voltage constant in the converter when the motor decelerates to a stop at a power failure. Setting of Pr. 262 to Pr. 266 is not required.
- If a phenomenon such as motor vibration occurs during operation of the deceleration time automatic adjustment function, adjust the response level by setting the Pr. 668 Power failure stop frequency gain. Increasing the setting improves the response to change in the bus voltage. However, the output frequency may become unstable.
- If setting Pr. 294 UV avoidance voltage gain lower also does not suppress the vibration, set Pr. 668 lower.



## $\bullet$ Deceleration stop by the Power failure stop external(X48) signal

- By turning OFF X48 signal, the power failure time deceleration-to-stop function is activated. This function is used, for example, when an external power failure detection circuit is installed.
- To use the power failure time deceleration-to-stop function for the separated converter type, use X 48 signal. Connect the terminal to which PWF signal of the converter unit is assigned and the terminal to which X48 signal of the inverter is assigned.
- In the initial setting, X48 signal is used with the normally closed (NC contact) input specification. Use Pr. 606 Power failure stop external signal input selection to change the specification to the normally open (NO contact) input.
- To use the X48 signal, set "48" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.


## - During deceleration at occurrence of power failure (Y46) signal

- After deceleration by a power failure, the inverter is not restarted even though the start command is input. Check the During deceleration at occurrence of power failure (Y46) signal at a power failure. (For example, when input phase loss protection (E.ILF) occurs.)
- The Y46 signal is turned ON during deceleration at occurrence of power failure and in a stop status after deceleration at occurrence of power failure.
- For the Y46 signal, set "46 (positive logic)" or "146 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.


## - Power failed (Y67) signal

- The Y67 signal turns ON when the output is shut off due to detection of power failure (power supply fault) or undervoltage, or the power failure time deceleration-to-stop function is activated.
- To use the Y67 signal, assign the function by setting "67 (positive logic)" or "167 (negative logic)" in any of Pr. 190 to Pr. 196 (output terminal function selection).
－When＂ 2 ＂is set to Pr． 30 Regenerative function selection（when the FR－HC2 or FR－CV is used），the deceleration stop function is invalid at a power failure．
－If the＂output frequency－Pr．262＂at undervoltage or at power failure is a negative value，it is regarded as 0 Hz ．（DC injection brake operation is performed without deceleration．）
－The power failure time deceleration stop function is disabled during a stop or when the breaker is tripped．
－The Y46 signal turns ON if an undervoltage occurs even if a deceleration at a power failure has not occurred．For this reason， the Y46 signal is sometimes output instantaneously when the power supply is turned OFF，but this is not a fault．
－When the power failure time deceleration stop function is selected，undervoltage protection（E．UVT），instantaneous power failure protection（E．IPF）and input phase loss protection（E．ILF）are invalid．
－When the load is high during PM sensorless vector control，an undervoltage sometimes causes the inverter to coast to a stop．
－To use the power failure time deceleration－to－stop function for the separated converter type，use a converter unit manufactured in August 2014 or later．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）and Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．


## CAUTION

－Even if the power failure time deceleration stop function is set，some loads might cause the inverter to trip and the motor to coast．

The motor coasts if sufficient regenerative power is not obtained from the motor．

《 Parameters referred to 》》
Pr． 12 DC injection brake operation voltage page 681
Pr． 20 Acceleration／deceleration reference frequency，Pr． 21 Acceleration／deceleration time increments page 349
Pr． 30 Regenerative function selection page 689
Pr． 57 Restart coasting time page 597，page 604
Pr． 190 to Pr． 196 （Output terminal function selection）$\longmapsto$ page 450
Pr． 872 Input phase loss protection selection page 404

## 5．14．18 PLC function

The inverter can be run in accordance with a sequence program．
In accordance with the machine specifications，a user can set various operation patterns：inverter movements at signal inputs， signal outputs at particular inverter statuses，and monitor outputs，etc．

Pr.	Name	Initial value	Setting range	Description		
$\begin{aligned} & 414 \\ & \text { A800 } \end{aligned}$	PLC function operation selection	0	0	PLC function disabled		
			1	PLC function enabled	The SQ signal is enabled by input from a command source (external input terminal/ communication).	
			2		The SQ signal is enabled by input from an external input terminal.	
415	Inverter operation lock	0	0	The inverter start command is enabled regardless of the operating status of the sequence program.		
A801	mode setting	0	1	The inverter start command is enabled only while the sequence program is running.		
$\begin{aligned} & 416 \\ & \text { A802 } \end{aligned}$	Pre-scale function selection	0	0 to 5	Unit scale factor 0 : No function   1: $\times 1$   2: $\times 0.1$   3: $\times 0.01$   4: $\times 0.001$   5: $\times 0.0001$	When the pulse train is input from terminal JOG, the number of sampling pulses can be converted.   The result of conversion is stored to SD1236. Number of sampled pulses $=$ Input pulse value per count cycle $\times$ Pre-scale setting value (Pr.417) $\times$ Unit scale factor (Pr.416)	
$\begin{aligned} & 417 \\ & \text { A803 } \end{aligned}$	Pre-scale setting value	1	0 to 32767	Pre-scale setting value		
$\begin{array}{\|l\|} \hline 498 \\ \text { A804 } \end{array}$	PLC function flash memory clear	0	$\begin{aligned} & 0,9696 \\ & (0 \text { to } 9999) \end{aligned}$	0 : Clears the flash memory fault display (no operation after writing while the flash memory is in normal operation).		Write
				9696: Clears the flash memory (no operation after writing while the flash memory is at a fault).		
				Other than 0 and 9696: Outside the setting range		
				0: Normal display		Read
				1: The flash memory is not cleared because the PLC function is enabled.		
				9696: During flash memory clearing operation or flash memory fault		
$\begin{aligned} & 1150 \text { to } \\ & 1199 \\ & \text { A810 to } \\ & \text { A859 } \end{aligned}$	User parameters 1 to User parameters 50	0	0 to 65535	Desired values can be s Because devices D206 to accessed, the values set sequence program. The program can also be mo	255 used by the PLC function Pr. 1150 to Pr. 1199 can be us sult of performing calculation by ored by Pr. 1150 to Pr. 1199.	an be mutually d by the a sequence

## - Outline of PLC function

- To enable the PLC function, set "1 or 2" in Pr. 414 PLC function operation selection. When " 2 " is set in Pr.414, the Sequence startup (SQ) signal from the external input terminal is valid regardless of the setting of the Pr. 338 Communication operation command source. (The Pr. 414 setting change becomes valid after inverter reset.)
- Switch the execution key (RUN/STOP) of the sequence program by turning the SQ signal ON/OFF. The sequence program can be executed by turning the SQ signal ON. To input the SQ signal, set " 50 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.
- When "1" is set in Pr. 415 Inverter operation lock mode setting, the inverter can be operated only when the sequence program is running. By changing the PLC program status from RUN to STOP during inverter operation, the motor decelerates to stop. To stop the inverter operation at the STOP status of the PLC program while performing auto operation using SD1148 (or SM1200 to 1211) of the PLC program, set Pr. $415=11$ ".
- For reading or writing sequence programs, use FR Configurator2 on the personal computer connected to the inverter via RS-485 communication or USB. (When Pr. $\mathbf{4 1 4} \neq$ " 0 ", sequence programs can be read from or written to FR Configurator2.)


## NOTE

For the details of the PLC function, refer to the PLC Function Programming Manual and the Instruction Manual of FR Configurator2.

## - Copying the PLC function project data to USB memory

- This function copies the PLC function project data to a USB memory device. The PLC function project data copied in the USB memory device can be copied to other inverters. This function is useful in backing up the parameter setting and for allowing multiple inverters to operate by the same sequence programs.
- Refer to page page 84 for an outline of the USB communication function.

- The following data can be copied by copying the project data via USB memory device.

Extension	File type	Copy from inverter to USB   memory device	Copy from USB memory   device to inverter
.QPA	Parameter file	Supported	Supported
.QPG	Program file	Supported	Supported
.C32	Function block source information	Supported	Supported
.QCD	Global text comment information	Supported	Supported
.DAT	Project management information	Supported	Not available
.TXT	Copy information	Supported	Not available

## NOTE

- If the project data of the PLC function is locked with a password using FR Configurator 2, copying to the USB memory device and verification are disabled. Also if set to write-disabled, writing to the inverter is disabled. (For the details of the PLC function, refer to the PLC Function Programming Manual and the Instruction Manual of FR Configurator2.)


## 

Pr. 338 Communication operation command source page 380

### 5.14.19 Trace function

- The operating status of the inverter can be traced and saved on a USB memory device.
- Saved data can be monitored by FR Configurator 2, and the status of the inverter can be analyzed.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1020 \\ & \text { A900 } \end{aligned}$	Trace operation selection	0	0	Without trace operation
			1	Sampling start
			2	Forced trigger
			3	Sampling stop
			4	Transfer of data to USB memory device
$\begin{aligned} & 1021 \\ & \text { A901 } \end{aligned}$	Trace mode selection	0	0	Memory mode
			1	Memory mode (automatic transfer)
			2	Recorder mode
$\begin{aligned} & 1022 \\ & \text { A902 } \end{aligned}$	Sampling cycle	2	0 to 9	Set the sampling cycle.   $0: 0.125 \mathrm{~ms}, 1: 0.252 \mathrm{~ms}, 2: 1 \mathrm{~ms}, 3: 2 \mathrm{~ms}$,   4: $5 \mathrm{~ms}, 5: 10 \mathrm{~ms}, 6: 50 \mathrm{~ms}, 7: 100 \mathrm{~ms}, 8: 500 \mathrm{~ms}, 9: 1 \mathrm{~s}$   (For the setting values "0" and "1", the cycle varies according to the control mode.)
$\begin{aligned} & 1023 \\ & \text { A903 } \end{aligned}$	Number of analog channels	4	1 to 8	Select the number of analog channels for sampling.
$\begin{aligned} & 1024 \\ & \text { A904 } \end{aligned}$	Sampling auto start	0	0	Manual sampling start
			1	Sampling starts automatically when the power supply is turned ON or at a reset
$\begin{aligned} & 1025 \\ & \text { A905 } \end{aligned}$	Trigger mode selection	0	0	Fault trigger
			1	Analog trigger
			2	Digital trigger
			3	Analog or digital trigger (OR logic)
			4	Both analog and digital triggers (AND logic)
$\begin{aligned} & 1026 \\ & \text { A906 } \end{aligned}$	Number of sampling before trigger	90\%	0 to 100\%	Set the percentage of the pre-trigger sampling time with respect to the overall sampling time.
$\begin{aligned} & 1027 \\ & \text { A910 } \end{aligned}$	Analog source selection (1ch)	201	1 to 3,5 to 14,17 to 20 , 22 to 24,32 to 36,39 to 42, 46, 52 to 54, 61, 62, 64, 67, 71 to 75,87 to 98 , 201 to 213, 222 to 227, 230 to 232, 235 to 238	Select the analog data (monitor item) for sampling on each channel.
$\begin{aligned} & 1028 \\ & \text { A911 } \end{aligned}$	Analog source selection (2ch)	202		
$\begin{aligned} & 1029 \\ & \text { A912 } \end{aligned}$	Analog source selection (3ch)	203		
$\begin{aligned} & 1030 \\ & \text { A913 } \end{aligned}$	Analog source selection (4ch)	204		
$\begin{aligned} & 1031 \\ & \text { A914 } \end{aligned}$	Analog source selection (5ch)	205		
$\begin{aligned} & 1032 \\ & \text { A915 } \end{aligned}$	Analog source selection (6ch)	206		
$\begin{aligned} & 1033 \\ & \text { A916 } \end{aligned}$	Analog source selection (7ch)	207		
$\begin{aligned} & 1034 \\ & \text { A917 } \end{aligned}$	Analog source selection (8ch)	208		
$\begin{aligned} & 1035 \\ & \text { A918 } \end{aligned}$	Analog trigger channel	1	1 to 8	Select the analog channel to be the trigger.
$\begin{array}{r} 1036 \\ \text { A919 } \end{array}$	Analog trigger operation selection	0	0	Sampling starts when the value of the analog monitor exceeds the value set at the trigger level (Pr.1037)
			1	Sampling starts when the value of the analog monitor falls below the value set at the trigger level (Pr.1037)
$\begin{aligned} & 1037 \\ & \text { A920 } \end{aligned}$	Analog trigger level	1000	600 to 1400	Set the level at which the analog trigger turns ON.   The trigger level is the value obtained by subtracting 1000 from the set value.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1038 \\ & \text { A930 } \end{aligned}$	Digital source selection (1ch)	1	1 to 255	Select the digital data (I/O signal) for sampling on each channel.
$\begin{aligned} & 1039 \\ & \text { A931 } \end{aligned}$	Digital source selection (2ch)	2		
$\begin{array}{\|l\|} \hline 1040 \\ \text { A932 } \\ \hline \end{array}$	Digital source selection (3ch)	3		
$\begin{aligned} & 1041 \\ & \text { A933 } \end{aligned}$	Digital source selection (4ch)	4		
$\begin{aligned} & 1042 \\ & \text { A934 } \end{aligned}$	Digital source selection (5ch)	5		
$\begin{aligned} & 1043 \\ & \text { A935 } \end{aligned}$	Digital source selection (6ch)	6		
$\begin{aligned} & 1044 \\ & \text { A936 } \end{aligned}$	Digital source selection (7ch)	7		
$\begin{aligned} & 1045 \\ & \text { A937 } \end{aligned}$	Digital source selection (8ch)	8		
$\begin{aligned} & 1046 \\ & \text { A938 } \end{aligned}$	Digital trigger channel	1	1 to 8	Select the digital channel to be the trigger.
1047	Digital trigger operation	0	0	Trace starts when the signal turns ON
A939	selection	0	1	Trace starts when the signal turns OFF

## - Operation outline

- This function samples the status (analog monitor and digital monitor) of the inverter, traces the sampling data when a trigger (trace start condition) is generated, and saves the resulting trace data.
- When the trace function is set enabled, samplings are collected and the inverter goes into the pre-trigger status.
- In the pre-trigger status, samples are collected, and the trigger standby status is entered when sufficient samples for the number of pre-trigger samples have been collected.
- When the trigger is generated in the trigger standby status, the trace is started and the trace data is saved.



## $\checkmark$ Selection of trace mode (Pr.1021)

- Select how to save the trace data which results from sampling the inverter status.
- There are two trace data save methods, memory mode and recorder mode.

Pr. 1021   setting	Mode	Description
0	Memory mode	In this mode, trace data is saved sequentially to internal RAM on the inverter.   If automatic transfer is set, the trace data in internal RAM is transferred to USB memory device   when the trigger is being generated.   Data can be transferred to USB memory device as long as data is held in internal RAM.   Trace data in internal RAM is cleared when the power supply is turned OFF or when the inverter   is reset.
1	Memory mode   (automatic transfer)	
2	Recorder mode	In this mode, trace data is saved directly to USB memory device.   Sampling data is fixed at 8 analog channels and 8 digital channels.   The sampling cycle in this mode is longer than in the memory mode. (1 ms or longer)

## NOTE

- When the trace function is used in the recorder mode, use USB memory device having at least 1 GB of free space.
- Data transferred to USB is saved in the "TRC" folder under the "FR_INV" folder.
- Up to 99 sets of trace data can be saved in the USB memory device. When data transfer to USB memory reaches 99 sets of trace data, data is successively overwritten starting with the older data.
- By using FR Configurator2, the trace data of the internal RAM can be directly transmitted to the personal computer via the USB cable. For details, refer to the Instruction Manual of FR Configurator2.


## - Setting of sampling cycle (interval) and number of sampling channels (Pr.1022, Pr.1023)

- Set the sampling cycle (interval).

The shortest cycle in the recorder mode is 1 ms . When the recorder mode is set, sampling is performed at a sampling cycle of 1 ms even if " 0 or 1 " is set to Pr. 1022 Sampling cycle.

- When the memory mode is set, the number of analog channels to sample can be set in the Pr. 1023 Number of analog channels. Start setting from the smaller channel number. Up to 8 channels can be set. The sampling time becomes shorter the more channels are set.

The number of digital channels is always 8 when the recorder mode is used or when digital channels are used.

- The sampling time differs according to the sampling cycle and the number of sampling channels.

Number of Channels	Memory mode sampling time (per channel)	
	Minimum (Pr.1022 = "0")	Maximum (Pr.1022 = "9")
1	213 ms	1704 s
2	160 ms	1280 s
3	128 ms	1024 s
4	106.5 ms	852 s
5	91 ms	728 s
6	80 ms	640 s
7	71 ms	568 s
8	64 ms	512 s

## - Analog source (monitor item) selection

- Select the analog sources (monitor items) to be set to Pr. 1027 to Pr. 1034 from the following table.

Setting value	Monitor item ${ }^{* 1}$	Minus (-)   display* ${ }^{*}$	Triggerlevel criterion ${ }^{* 3}$
1	Output frequency/speed		*4
2	Output current		*4
3	Output voltage		*4
5	Frequency setting value/motor speed setting		*4
6	Running speed		*4
7	Motor torque		*4
8	Converter output voltage		*4
$9^{* 5}$	Regenerative brake duty		*4
10	Electronic thermal O/L relay load factor		*4
11	Output current peak value		*4
12	Converter output voltage peak value		*4
13	Input power		*4
14	Output power		*4
17	Load meter		*4
18	Motor excitation current		*4
19	Position pulse		65535
20	Cumulative energization time		65535
22	Orientation status		65535
23	Actual operation time		65535
24	Motor load factor		*4
32	Torque command		*4
33	Torque current command		*4
34	Motor output		*4
35	Feedback pulse		65535
36	Torque monitor (power driving/ regenerative driving polarity switching)	$\bigcirc$	*4
39	SSCNET III communication status ${ }^{* 7}$		65535
40	PLC function user monitor 1	$\bigcirc$	*4
41	PLC function user monitor 2	-	*4
42	PLC function user monitor 3	$\bigcirc$	*4
46	Motor temperature	$\bigcirc$	*4
52	PID set point		*4
53	PID measured value		*4
54	PID deviation	-	*4
61	Motor thermal load factor		*4
62	Inverter thermal load factor		*4
64	PTC thermistor resistance		Pr. 561
67	PID measured value 2		*4
71	Cumulative pulse	$\bigcirc$	*4


Setting value	Monitor item ${ }^{* 1}$	$\begin{aligned} & \text { Minus (-) } \\ & \text { display }{ }^{* 2} \end{aligned}$	Triggerlevel criterion ${ }^{* 3}$
72	Cumulative pulse overflow times	-	*4
73	Cumulative pulse (control terminal option)	-	*4
74	Cumulative pulse overflow times (control terminal option)	$\bigcirc$	*4
75	Multi-revolution counter		65535
87	Remote output value 1	$\bigcirc$	*4
88	Remote output value 2	$\bigcirc$	*4
89	Remote output value 3	$\bigcirc$	*4
90	Remote output value 4	$\bigcirc$	*4
91	PID manipulated amount	$\bigcirc$	*4
92	Second PID set point/deviation input selection		*4
93	Second PID measured value		*4
94	Second PID deviation	$\bigcirc$	*4
95	Second PID measured value 2		*4
96	Second PID manipulated amount	-	*4
97	Dancer main speed setting		*4
98	Control circuit temperature	$\bigcirc$	*4
201	*Output frequency		Pr. 84
202	*U-phase output current	-	ND rated current
203	*V-phase output current	-	ND rated current
204	*W-phase output current	-	ND rated current
205	Converter output voltage		$400 \mathrm{~V} / 800 \mathrm{~V}$
206	*Output current (all three phases)		ND rated current
207	*Excitation current (A)		ND rated current
208	*Torque current (A)		ND rated current
209	Terminal 2		100\%
210	Terminal 4		100\%
211	Terminal 1	$\bigcirc$	100\%
212	*Excitation current (\%)	$\bigcirc$	100\%
213	*Torque current (\%)	$\bigcirc$	100\%
222	Position command		65535
223	Position command (upper digits)	-	65535
224	Current position		65535
225	Current position (upper digits)	$\bigcirc$	65535
226	Droop pulse		65535
227	Droop pulse (upper digits)	$\bigcirc$	65535
230	*Output frequency (signed)	$\bigcirc$	Pr. 84
231	*Motor speed (with sign)	$\bigcirc$	*6
232	*Speed command (with sign)	$\bigcirc$	*6
235	*Torque command (with sign)	$\bigcirc$	100\%
236	*Motor torque	$\bigcirc$	100\%
237	*Excitation current command	$\bigcirc$	100\%
238	*Torque current command	$\bigcirc$	100\%

*1 "*" shows a monitor item with a high-speed sampling cycle.
*2 The monitor items with a circle (०) represents that its monitor value can be indicated with minus sign.
*3 Indicates a criterion at $100 \%$ when the analog trigger is set.
*4 Refer to the full-scale value of terminal FM/CA, or AM (page 435).
*5 Monitoring is available only for standard models.
*6 Rated motor frequency $\times 120$ / number of motor poles
*7 Inverter output voltage is displayed when the FR-A8NS is not installed.

## - Digital source (monitor item) selection

- Select the digital sources (input/output signals) to be set to Pr. 1038 to Pr. 1045 from the following table. When a value other than the below, " 0 " (OFF) is applied for indication.

Setting value	Signal name	Remarks
0	-	For the details of the signals, refer to page 496.
1	STF	
2	STR	
3	AU	
4	RT	
5	RL	
6	RM	
7	RH	
8	JOG	
9	MRS	
10	STP (STOP)	
11	RES	
12	CS	
21	X0	For the details of the signals, refer to the Instruction Manual of the FRA8AX (option).
22	X1	
23	X2	
24	X3	
25	X4	
26	X5	
27	X6	
28	X7	
29	X8	
30	X9	
31	X10	
32	X11	
33	X12	
34	X13	
35	X14	
36	X15	
37	DY	


Setting value	Signal name	Remarks
101	RUN	For the details of the signals, refer to page 450.
102	SU	
103	IPF	
104	OL	
105	FU	
106	ABC1	
107	ABC2	
121	DO0	For the details of the signals, refer to the Instruction Manual of the FRA8AY (option).
122	DO1	
123	DO2	
124	DO3	
125	DO4	
126	DO5	
127	DO6	
128	RA1	For the details of the signals, refer to the Instruction Manual of the FRA8AR (option).
129	RA2	
130	RA3	

## Trigger setting (Pr.1025, Pr. 1035 to Pr.1037, Pr.1046, Pr.1047)

- Set the trigger generating conditions and the trigger target channels.

$\begin{aligned} & \text { Pr. } 1025 \\ & \text { setting } \end{aligned}$	Trigger generating conditions	Selection of trigger target channel
0	Trace starts when inverter enters an fault status (protective function activated)	-
1	Trace starts when analog monitor satisfies trigger conditions	Pr. 1035
2	Trace starts when digital monitor satisfies trigger conditions	Pr. 1046
3	Trace starts when either of analog or digital monitor satisfies trigger conditions	Pr.1035, Pr. 1046
4	Trace starts when both of analog or digital monitor satisfies trigger conditions (AND)	Pr.1035, Pr. 1046

- Set the trigger generation conditions for the analog monitor.

Pr. $\mathbf{1 0 3 6}$   setting	Trigger generation conditions	Trigger level setting
0	Sampling starts when the analog data targeted for the trigger exceeds the value specified   at the trigger level	Set the trigger level from   Sampling starts when the analog data targeted for the trigger falls below the value specified   at the trigger level
1	600 to $1400\left(-400\right.$ to $\left.400 \%{ }^{* 1}\right)$ in   Pr. 1037	

*1 In Pr.1037, set the number obtained by adding 1,000 to the trigger level.

- Set the trigger generation conditions for the digital monitor.

Pr. 1047   setting	Trigger generation conditions
0	Trace starts when the digital data targeted for the trigger turns ON
1	Trace starts when the digital data targeted for the trigger turns OFF

## Start of sampling and copying of data (Pr.1020, Pr.1024)

- Set the trace operation. The trace operation is set by one of two ways, by setting Pr. 1020 Trace operation selection and by setting in the trace mode on the operation panel
- When "1" is set in Pr.1020, sampling starts.
- When "2" is set in Pr.1020, a trigger is regarded as generated (for instance: forced trigger), sampling stops and the trace starts.
- When " 3 " is set in Pr.1020, sampling stops.
- When "4" is set in Pr.1020, the trace data in internal RAM is transferred to USB memory device. (Trace data cannot be transferred during sampling.)
- To start sampling automatically when the power supply at power-ON or at a recovery after an inverter reset, set "1" in

Pr. 1024 Sampling auto start.

Pr. 1020 setting	Trace mode	Operation
0	[1.----	Sampling standby
1		Sampling start
2		Forced trigger (sampling stop)
3		Sampling stop
4	-ffrel	Data transmission

- Trace operation can also be set in the trace mode on the operation panel.



## Selection of trace operation by input terminal (TRG signal, TRC signal)

- Trace operation can be selected by signal inputs.
- A forced trigger can be applied when the Trace trigger input (TRG) signal is ON.
- Sampling is started and stopped by the Trace sampling start/end (TRC) signal turning ON and OFF, respectively.
- To input the TRG signal, set "46" in any of Pr. 178 to Pr. 189 (Input terminal function selection), and to input the TRC signal, set "47" to assign the function to a terminal.


## NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## $\bullet$ Monitoring the trace status

－The trace status can be monitored on the operation panel by setting＂ 38 ＂in Pr． 52 Operation panel main monitor selection，Pr． 774 to Pr． 776 （Operation panel monitor selection），or Pr． 992 Operation panel setting dial push monitor selection．
The content depends on the digits on the operation panel．


Monitor value	Trace status			
	Fourth digit	Third digit	Second digit	First digit
0 or no display ${ }^{*} 1$	No trace data in internal RAM	USB memory not accessed	Trigger not detected	Trace stopped
1	Trace data in internal RAM	USB memory being   accessed	Trigger detected	Trace operation
2	-	USB memory transfer error	-	-
3	-	USB buffer overrun	-	-

＊1 The value（s）＂ 0 ＂to the left of the leftmost non－zero value is（are）not shown in the monitor display．For example，if no trace data is in internal RAM， the USB memory is not accessed，no trigger is detected，and the trace operation is performed，＂1＂appears．（not＂0001＂）
－When copying the traced data to a USB memory device，the operating status of the USB host can be checked with the inverter LED．
Refer to page page 84 for an outline of the USB communication function．

LED display status	Operating status
OFF	No USB connection．
ON	The communication is established between the inverter and the USB device．
Blinking rapidly	Traced data is being transmitted．（In the memory mode，transmission command is being issued．In the recorder mode，   sampling is being performed．）
Blinking slowly	Error in the USB connection．

－During trace operation，the Trace status（Y40）signal can be output．
To use the Y 40 signal，set＂40（positive logic）or 140 （negative logic）＂in one of Pr． 190 to Pr． 196 （Output terminal function selection）to assign function to an output terminal．

## NOTE

－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

### 5.15 ( N ) Communication operation parameters

Purpose		Parameter to set	Refer   to   page	
To start operation via   communication	Initial setting of operation via   communication	P.N000, P.N001,   P.N010 to P.N014	Pr.549, Pr.342,   Pr.349, Pr.500 to   Pr.502, Pr.779	630
To communicate via PU connector	Initial setting of computer link   communication (PU connector)	Pitial setting of computer link   communication (RS-485 terminals)	P.N030 to P.N038	Pr.331 to Pr.337,   Pr.341
To communicate via RS-485   terminals	MODBUS RTU communication specification	P.N002, P.N030,   P.N031, P.N034,   P.N080	Pr.539, Pr.331,   Pr.332, Pr.334,   Pr.343	652

### 5.15.1 Wiring and configuration of PU connector

Using the PU connector as a computer network port enables communication operation from a personal computer, etc.
When the PU connector is connected with a personal, FA, or other computer by a communication cable, a user program can run and monitor the inverter or read and write to parameters.

## $\checkmark$ PU connector pin-outs



## NOTE

- Pins No. 2 and 8 provide power to the operation panel or parameter unit. Do not use these pins for RS-485 communication.
- Do not connect the PU connector to the computer's LAN board, FAX modem socket, or telephone modular connector. The product could be damaged due to differences in electrical specifications.


## Wiring and configuration of PU connector communication system

- System configuration

- Wiring between a computer and an inverter for RS-485 communication

*1 Make connection in accordance with the Instruction Manual of the computer to be used with. Fully check the terminal numbers of the computer since they vary with the model


## NOTE

- When performing RS-485 communication with multiple inverters, use the RS-485 terminals. (Refer to page 628.)
- Computer-inverter connection cable

Refer to the following for the connection cable (RS-232C to RS-485 converter) between the computer with an RS-232C interface and an inverter. Commercially available products (as of February 2015)

Model	
Interface embedded cable	Manufacturer
DAFXIH-CAB (D-SUB25P for personal computer)	
DAFXIH-CABV (D-SUB9P for personal computer)	
+	Diatrend Corp.
Connector conversion cable DINV-485CAB (for inverter) ${ }^{* 2}$	
Interface embedded cable dedicated for inverter	
DINV-CABV ${ }^{* 2}$	

*2 The conversion cable cannot connect multiple inverters. (The computer and inverter are connected in a 1:1 pair.) This product is an RS232C to RS-485 conversion cable that has a built-in converter. No additional cable or connector is required. For the product details, contac the manufacturer.

- Refer to the following table when fabricating the cable on the user side.

Commercially available products (as of February 2015)

Product name	Model	Manufacturer
Communication cable	SGLPEV-T (Cat5e/300 m) 24AWG $\times 4 \mathrm{P}^{* 3}$	Mitsubishi Cable Industries, Ltd.
RJ-45 connector	$5-554720-3$	Tyco Electronics

*3 Do not use pins No. 2 and 8 of the communication cable.

### 5.15.2 Wiring and configuration of RS-485 terminals

## - RS-485 terminal layout



Name	Description
RDA1 (RXD1+)	Inverter receive+
RDB1 (RXD1-)	Inverter receive-
RDA2 (RXD2+)	Inverter receive + (for branch)
RDB2 (RXD2-)	Inverter receive - (for branch)
SDA1 (TXD1+)	Inverter send+
SDB1 (TXD1-)	Inverter send-
SDA2 (TXD2+)	Inverter send + (for branch)
SDB2 (TXD2-)	Inverter send - (for branch)
P5S (VCC)	5 V (permissible load current 100 mA)
SG (GND)	Earthing (grounding) (connected to terminal SD)

## -Connection of RS-485 terminals and wires

- The size of RS-485 terminal block is the same as that of the control circuit terminal block. Refer to page 73 for the wiring method.


## NOTE

- To avoid malfunction, keep the RS-485 terminal wires away from the control circuit board.
- When the FR-A820-01250(22K) or lower, or the FR-A840-00620(22K) or lower is used with a plug-in option, lead the wires through the hole on the side face of the front cover for wiring of the RS-485 terminals.

- When the FR-A820-01540(30K) of higher, or the FR-A840-00770(30K) or higher is used with a plug-in option, lead the wires on the left side of the plug-in option for wiring of the RS-485 terminals.


## - System configuration of RS-485 terminals

- Computer and inverter connection (1:1)

*Set the terminating resistor switch to the " $100 \Omega$ " position.
- Combination of a computer and multiple inverters (1:n)



## - RS-485 terminal wiring method

- Wiring between a computer and an inverter for RS-485 communications

- Wiring between a computer and multiple inverters for RS-485 communication

*1 Make connection in accordance with the Instruction Manual of the computer to be used with.
Fully check the terminal numbers of the computer since they vary with the model.
*2 On the inverter most remotely connected with the computer, set the terminating resistor switch in the $\mathrm{ON}(100 \Omega)$ position.


## NOTE

- For branching, connect the wires as shown below.



## - Two-wire type connection

- If the computer is 2-wire type, a connection from the inverter can be changed to 2-wire type by passing wires across reception terminals and transmission terminals of the RS-485 terminals.

- A program should be created so that transmission is disabled (receiving state) when the computer is not sending and reception is disabled (sending state) during sending to prevent the computer from receiving its own data.


### 5.15.3 Initial setting of operation via communication

Set the action when the inverter is performing operation via communication.

- Set the RS-485 communication protocol. (Mitsubishi inverter protocol / MODBUS RTU protocol)
- Set the action at fault occurrence or at writing of parameters.

Pr.	Name	Initial value	Setting range	Description
549   N000	Protocol selection	0	0	Mitsubishi inverter protocol (computer link)
			1	MODBUS RTU protocol
$\begin{aligned} & 342 \\ & \text { N001 } \end{aligned}$	Communication EEPROM write selection	0	0	Parameter values written by communication are written to the EEPROM and RAM.
			1	Parameter values written by communication are written to the RAM.
$\begin{array}{\|l\|} \hline 349 \\ \text { N010* } \\ 1 \end{array}$	Communication reset selection	0	0	Enables the error reset function in any operation mode.
			1	Enables the error reset function only in the Network operation mode.
500   N011 ${ }^{*}$   1	Communication error execution waiting time	0	0 to 999.8 s	Set the time from when the communication line error occurs until the inverter starts the operation for the communication error (when a communication option is used).
$\begin{array}{\|l\|} \hline 501 \\ \text { N012* } \\ 1 \end{array}$	Communication error occurrence count display	0	0	Displays the communication error occurrence count (when a communication option is used).
$\begin{aligned} & 502 \\ & \text { N013 } \end{aligned}$	Stop mode selection at communication error	0	$\begin{aligned} & 0 \text { to } 4,11, \\ & 12 \end{aligned}$	Select the operation at a communication error occurrence.
$\begin{aligned} & 779 \\ & \text { N014 } \end{aligned}$	Operation frequency during communication error	9999	0 to 590 Hz	Set the frequency for the operation when a communication error occurs.
			9999	Operation continues at the same frequency before the communication error.

*1 The setting is available only when a communication option is installed.
*2 If in communication by the communication option, "E.OP1" is displayed.

## Setting the communication protocol (Pr.549)

- Select the RS-485 communication protocol.
- The MODBUS RTU protocol can be used by communication from the RS-485 terminals.

Pr. 549 setting	Communication protocol
0 (initial value)	Mitsubishi inverter protocol (computer link)
1	MODBUS RTU protocol

## -Communication EEPROM write selection (Pr.342)

- When parameter write is performed via the inverter PU connector, RS-485 terminal, USB communication, or a communication option, the parameters storage device can be changed to RAM only from both EEPROM and RAM. Use this function if parameter settings are changed frequently.
- When changing the parameter values frequently, set "1" in Pr. 342 Communication EEPROM write selection to write them to the RAM only. The life of the EEPROM will be shorter if parameter write is performed frequently with the setting unchanged from "0 (initial value)" (EEPROM write).


## NOTE

- Turning OFF the inverter's power supply clears the modified parameter settings when Pr. 342 = "1 (write only to RAM)". Therefore, the parameter values at next power-ON are the values last stored in EEPROM.
- The parameter setting written in RAM cannot be checked on the operation panel. (The values displayed on the operation panel are the ones stored in EEPROM.)


## - Operation selection at a communication error (Pr.502, Pr.779)

- For communication using RS-485 terminals or a communication option, operation at a communication error can be selected. The operation is active under the Network operation mode.
- Select the stop operation at the retry count excess (Pr.335, enabled only when the Mitsubishi inverter protocol is selected) or at a signal loss detection (Pr.336, Pr.539).

Fault type	$\begin{aligned} & \text { Pr. } 502 \\ & \text { setting } \end{aligned}$	At fault occurrence			At fault removal		
		Operation	Indication	Fault (ALM) signal	Operation	Indication	Fault (ALM) signal
Communication line	0 (initial value)	Output shutoff	E. SER ${ }^{* 1}$	ON	Output stop status continues.	E. SER ${ }^{* 1}$	ON
	1,11	Output to decelerate and stop the motor	"E.SER" indication after stop ${ }^{*}$	ON after stop			
	2, 12			OFF	Restart ${ }^{* 3}$	Normal	OFF
	3	Operation continues at the frequency set in Pr.779.*2	Normal				
	4		"CF" warning	OFF	Normal	Normal	OFF
Communication option (when a communication option is used)	0,3	Output shutoff	"E. 1"	ON	Output stop status continues	"E. 1"	ON
	$\begin{aligned} & 1,2,11, \\ & 12 \end{aligned}$	Output to decelerate and stop the motor	"E. 1" after stop	ON after stop			
	4	Operation continues at the frequency set in Pr.779. ${ }^{*}$	"CF" warning	OFF	Operation continues at the frequency set in Pr. 779.	"CF" warning	OFF

*1 If in communication by the communication option, "E.OP1" is displayed.
*2 Under position control, the operation is continued to the target position.
*3 When the communication error is removed during deceleration, the motor re-accelerates. Under position control, the motor does not re-accelerate even when the communication error is removed during deceleration.

- The motor is decelerated to a stop according to the setting of Pr. 111 Third deceleration time when an error occurs while Pr. 502 = "11 or 12".

Pr. 502 setting	Operation to a stop at a communication error occurrence
0	Output shutoff
1 to 4	Deceleration stop according to the selected deceleration time (selectable using the RT or X9 signal)
11,12	Deceleration stop according to the setting of Pr. 111

- When a communication error is detected while communication with the RS-485 terminals is performed, the Alarm (LF) signal is output to an output terminal of the inverter. To use the LF signal, set "98 (positive logic) or 198 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal. (To output the LF signal even if communication through RS-485 terminals is not performed for the time set in Pr. 336 or longer, or during communication using a communication option, set "3 or 4" in Pr.502.)
- The following charts show operations when a communication line error occurs.



(LF)

(LF)
- The following charts show operations when a communication option fault occurs.

$$
\text { Pr. } 502 \text { = "0 (initial value) or 3" }
$$

Pr. $502=$ " 1 or $2 "$



Alarm output
(LF) $\qquad$

- When a communication option is used, the protective function [E.OP1 (fault data: HA1)] is activated at error occurrences on the communication line. The protective function [E. 1 (fault data: HF1)] is activated at error occurrences in the communication circuit inside the option.
- Fault output indicates the Fault (ALM) signal and an alarm bit output.
- When the fault output is set enabled, fault records are stored in the faults history. (A fault record is written to the faults history at a fault output.)
- When the fault output is not enabled, fault record is overwritten to the faults history temporarily but not stored.
- After the fault is removed, the fault indication goes back to normal indication on the monitor, and the faults history goes back to the previous status.
- When Pr. $502 \neq$ " 0 ", the normal deceleration time setting (settings like Pr.8, Pr.44, and Pr.45) is applied as the deceleration time. Normal acceleration time setting (settings like Pr. 7 and Pr.44) is applied as the acceleration time for restart.
- When Pr. 502 = "2, 3, or 4", the inverter operates with the start command and the speed command, which were used before the fault.
- If a communication line error occurs, then the error is removed during deceleration while Pr. $502=$ " 2 ", the motor re-accelerates from that point. (When a communication option is used, acceleration does not restart at a communication option error.)
- The Pr. 502 and Pr. 779 settings are valid when communication is performed via the RS- 485 terminals or a communication option.
- These parameters are valid under the Network operation mode. When performing communication through RS-485 terminals, set Pr. 551 PU mode operation command source selection $\neq$ " 1 ".
- Pr. 502 is valid for the device that has the command source under the Network operation mode. If a communication option is installed while Pr. 550 = "9999 (initial setting)", a communication error in RS-485 terminals occurs and Pr. 502 becomes invalid.
- If the communication error setting is disabled with Pr. $335=$ " 9999 " or Pr. $539=$ " 9999 " while Pr. $502=$ " 3 or 4", the inverter does not operate with the frequency set in Pr. 779 when a communication error occurs.
- If a communication error occurs while continuous operation at Pr. 779 is selected with Pr. $502=$ " 3 or 4 ", the inverter operates at the frequency set in Pr. 779 even though the speed command source is at the external terminals.
Example) If a communication error occurs while Pr. $339=$ " 2 " and the RL signal is input through an external terminal, the operation is continued at the frequency set in Pr.779.
- During position control, an error occurs even if " 2 " is set in Pr. 502.


## CAUTION

- When Pr. 502 = "3" and a communication line error occurs, or Pr. $502=44$ " and a communication line error or a communication option fault occurs, the operation continues. When setting "3 or 4" in Pr.502, provide a safety stop countermeasure other than via communication. For example, input a signal through an external terminal (RES, MRS, or X92) or press the PU stop on the operation panel.


## - Waiting time setting from the communication line error occurrence to the communication error activation (Pr.500)

- When a communication option is used, use Pr. 500 Communication error execution waiting time to set the time from when the communication line error occurs until the inverter starts the operation for the communication error.
- When a communication line error occurs and lasts longer than the time set in Pr.500, it is recognized as a communication error. If the communication returns to normal within the time, it is not recognized as a communication error, and the operation continues.

(Pr. 502 = 3)
- Operation from the error occurrence until the Pr. 500 setting time elapses

Fault type	$\begin{aligned} & \text { Pr. } 502 \\ & \text { setting } \end{aligned}$	Operation	Indication	Fault output
Communication line	0	Operation continues. ${ }^{* 1}$	Normal ${ }^{* 1}$	Not provided. ${ }^{\text {1 }}$
	1			
	2			
	3			
	4			
Communication option	0, 3	Output shutoff	"E. 1"	Output
	1,2	Output to decelerate and stop the motor	"E. 1" after stop	Output after stop
	4	Operation continues.	"CF" warning	Not output

*1 When the communication returns to normal within the time period set in Pr.500, the protective function (E.OP1) is not activated.

## $\rightarrow$ Displaying and clearing the communication error count (Pr.501)

- When a communication option is used, the cumulative count of communication error occurrences can be displayed. Write " 0 " to clear this cumulative count.
- When a communication line error occurs, the setting of Pr. 501 Communication error occurrence count display increases by one.
- The cumulative count of communication error occurrences is counted from 0 to 65535 . When the count exceeds 65535 , the displayed value is cleared and the counting starts over from 0 again.



## NOTE

- Communication error count is temporarily stored in the RAM memory. The error count is stored in EEPROM only once per hour. If power reset or inverter reset is performed, Pr. 501 setting will be the one that is last stored to EEPROM depending on the reset timing.


## Error reset operation selection at inverter fault (Pr.349)

- An error reset command from a communication option can be invalidated in the External operation mode or the PU operation mode.

Pr. 349 setting	Description
0 (initial value)	Error reset is enabled independently of operation mode.
1	Error reset is enabled in the Network operation mode.

## - Operation mode switching and communication startup mode (Pr.79, Pr.340)

- Check the following before switching the operation mode.

The inverter is at a stop.
Both the STF and STR signals are off.
The Pr. 79 Operation mode selection setting is correct. (Check the setting on the operation panel of the inverter.) (Refer to page 370.)

- The operation mode at power ON and at restoration from instantaneous power failure can be selected. Set a value other than " 0 " in Pr. 340 Communication startup mode selection to select the Network operation mode. (Refer to page 378.)
- After the inverter starts up in the Network operation mode, parameter write can be commanded via the network.


## NOTE

- The changed value in Pr. 340 is applied after the next power-ON or inverter reset.
- The Pr. 340 setting can be changed on the operation panel in any operation mode
- When setting a value other than " 0 " in Pr.340, make sure that the communication settings of the inverter are correct.

[^33]
### 5.15.4 Initial settings and specifications of RS-485 communication

Use the following parameters to perform required settings for RS-485 communication between the inverter and a personal computer.

- There are two types of communication, communication using the inverter's PU connector and communication using the RS-485 terminals.
- Parameter setting, monitoring, etc. can be performed using Mitsubishi inverter protocol or MODBUS RTU communication protocol.
- To make communication between the personal computer and inverter, setting of the communication specifications must be made to the inverter in advance. Data communication cannot be made if the initial settings are not made or if there is any setting error.


## - Parameters related to PU connector communication

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 117 \\ & \text { N020 } \end{aligned}$	PU communication station number	0	0 to 31	Specify the inverter station number.   Enter the inverter station numbers when two or more inverters are connected to one personal computer.
$\begin{aligned} & 118 \\ & \text { N021 } \end{aligned}$	PU communication speed	192	$\begin{aligned} & 48,96,192, \\ & 384,576, \\ & 768,1152 \end{aligned}$	Select the communication speed.   The setting value $\times 100$ equals the communication speed.   For example, enter 192 to set the communication speed of 19200 bps.
E022	PU communication data length	0	0	Data length 8 bits
			1	Data length 7 bits
E023	PU communication stop bit length	1	0	Stop bit length 1 bit
			1	Stop bit length 2 bits
119	PU communication stop bit length / data length	1	0	Data length 8 bits
			1	
			10	Stop bit length 1 bit $\quad$ Data length 7 bits
			11	Data length 7 bits
$\begin{aligned} & 120 \\ & \text { N024 } \end{aligned}$	PU communication parity check	2	0	Without parity check
			1	With parity check at odd numbers
			2	With parity check at even numbers
$\begin{aligned} & 121 \\ & \text { N025 } \end{aligned}$	PU communication retry count	1	0 to 10	Set the permissible number of retries for unsuccessful data reception. If the number of consecutive errors exceeds the permissible value, the inverter output will be stopped.
			9999	The inverter output will not be shut off even when a communication error occurs.
$\begin{aligned} & 122 \\ & \text { N026 } \end{aligned}$	PU communication check time interval	9999	0	PU connector communication is disabled.
			$\begin{aligned} & 0.1 \text { to } 999.8 \\ & \mathrm{~s} \end{aligned}$	Set the interval of the communication check (Signal loss detection) time.   If a no-communication state persists for longer than the permissible time, the inverter output will be shut off.
			9999	No communication check (Signal loss detection)
$\begin{aligned} & 123 \\ & \text { N027 } \end{aligned}$	PU communication waiting time setting	9999	0 to 150 ms	Set the waiting time between data transmission to the inverter and the response.
			9999	Set with communication data. Waiting time: setting data $\times 10 \mathrm{~ms}$
$\begin{aligned} & 124 \\ & \text { N028 } \end{aligned}$	PU communication CR/ LF selection	1	0	Without CR/LF
			1	With CR
			2	With CR/LF

## - Parameters related to RS-485 terminal communication

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 331 \\ & \text { N030 } \end{aligned}$	RS-485 communication station number	0	$\begin{aligned} & 0 \text { to } 31 \\ & (0 \text { to } \\ & 247)^{* 1^{*} 2} \end{aligned}$	Enter the station number of the inverter. (Same specifications as Pr.117)
$\begin{array}{\|l} 332 \\ \text { N031 } \end{array}$	RS-485 communication speed	96	$\begin{aligned} & \hline 3,6,12,24, \\ & 48,96,192, \\ & 384,576, \\ & 768,1152 \end{aligned}$	Select the communication speed. (Same specifications as Pr.118)
N032	RS-485 communication data length	0	0, 1	Select the data length. (Same specifications as P.E022) ${ }^{* 3}$
N033	RS-485 communication stop bit length	1	0, 1	Select the stop bit length. (Same specifications as P.E023) ${ }^{4} 4$
333	RS-485 communication stop bit length / data length	1	0, 1, 10, 11	Select the stop bit length and data bit length. (Same specifications as Pr.119) ${ }^{* 3^{*} 4}$
$\begin{array}{\|l} \hline 334 \\ \text { N034 } \end{array}$	RS-485 communication parity check selection	2	0, 1, 2	Select the parity check specifications. (Same specifications as Pr.120)
335 N035*5	RS-485 communication retry count	1	0 to 10, 9999	Set the permissible number of retries for unsuccessful data reception. (Same specifications as Pr.121)
336 N036 ${ }^{* 5}$	RS-485 communication check time interval	0 s	0	RS-485 communication is available, but the inverter trips in the NET operation mode.
			$\begin{array}{\|l\|} \hline 0.1 \text { to } 999.8 \\ \text { s } \end{array}$	Set the interval of the communication check (Signal loss detection) time. (Same specifications as Pr.122)
			9999	No communication check (Signal loss detection)
337   N037 ${ }^{*}$ 5	RS-485 communication waiting time setting	9999	0 to 150 ms , 9999	Set the waiting time between data transmission to the inverter and the response. (Same specifications as Pr.123)
341 N038*5	RS-485 communication CR/LF selection	1	0, 1, 2	Select the presence/absence of CR/LF. (Same specifications as Pr.124)

*1 When "1" (MODBUS RTU protocol) is set in Pr.549, the setting range within parentheses is applied.
*2 When a value outside the setting range is set, the inverter operates at the initial value.
*3 In the MODBUS RTU protocol, the data length is fixed at 8 bits.
*4 In the MODBUS RTU protocol, Pr. 334 setting is applied as the stop bit length. (Refer to page 652.)
*5 In the MODBUS RTU protocol, this is invalid.

## $\curvearrowleft$ NOTE

- The monitor items and parameter settings can be read during communication with the Pr. 336 RS-485 communication check time interval = " 0 (initial value)" setting, but such operation will become faulty once the operation mode is changed to the NET operation mode. When the NET operation mode is selected as the start-up operation mode, communication is performed once, then a Communication fault (inverter) (E.SER) occurs. To perform operation or parameter writing via communication, set "9999" or a large setting value in Pr.336. (The setting value is determined by the computer program.) (Refer to page 643.)
- Always reset the inverter after making the initial settings of the parameters. After changing the communication-related parameters, communication cannot be made until the inverter is reset.


### 5.15.5 Mitsubishi inverter protocol (computer link communication)

Parameter setting and monitoring, etc. are possible by using the Mitsubishi inverter protocol (computer link communication) via inverter PU connector and the RS-485 terminals.

## -Communication specifications

- The communication specifications are given below.

Item		Description	Related parameter
Communication protocol		Mitsubishi inverter protocol (computer link communication)	Pr. 551
Conforming standard		EIA-485 (RS-485)	-
Number of connectable units		1: N (maximum 32 units), the setting range of station number is 0 to 31 .	$\begin{aligned} & \hline \text { Pr. } 117 \\ & \text { Pr. } 331 \end{aligned}$
Communication speed	PU connector	Selected among 4800/9600/19200/38400/57600/76800/115200 bps.	Pr. 118
	RS-485 terminals	Selected among 300/600/1200/2400/4800/9600/19200/38400/57600/76800/ 115200 bps.	Pr. 332
Control procedure		Asynchronous method	-
Communication method		Half-duplex system	-
Communication specifications	Character system	ASCII (7 bits or 8 bits can be selected.)	$\begin{aligned} & \hline \text { Pr. } 119 \\ & \text { Pr. } 333 \end{aligned}$
	Start bit	1 bit	-
	Stop bit length	1 bit or 2 bits can be selected.	$\begin{aligned} & \text { Pr. } 119 \\ & \text { Pr. } 333 \end{aligned}$
	Parity check	Check (at even or odd numbers) or no check can be selected.	$\begin{aligned} & \text { Pr. } 120 \\ & \text { Pr. } 334 \end{aligned}$
	Error check	Sum code check	-
	Terminator	CR/LF (whether or not to use it can be selected)	$\begin{aligned} & \text { Pr. } 124 \\ & \text { Pr. } 341 \end{aligned}$
Waiting time setting		Availability of the setting is selectable.	$\begin{aligned} & \hline \text { Pr. } 123 \\ & \text { Pr. } 337 \end{aligned}$

## Communication procedure

- Data communication between the computer and inverter is made in the following procedure.
(a) Request data is sent from the computer to the inverter. (The inverter will not send data unless requested.)
(b) Communication waiting time
(c) The inverter sends reply data to the computer in response to the computer request.
(d) Inverter data processing time
(e) An answer from the computer in response to reply data (c) of the inverter is transmitted. (Even if (e) is not sent, subsequent communication is made properly.)

*1 If a data error is detected and a retry must be made, perform retry operation with the user program. The inverter output is shut off if the number of consecutive retries exceeds the parameter setting.
*2 On receipt of a data error occurrence, the inverter returns reply data (c) to the computer again. The inverter output is shut off if the number of consecutive data errors reaches or exceeds the parameter setting.


## Communication operation presence/absence and data format types

- Data communication between the computer and inverter is made in ASCII code (hexadecimal code).
- Communication operation presence/absence and data format types are as follows.

Symbol	Operation		Operation command	Operation frequency	Multi command	Parameter write	Inverter reset	Monitor	Parameter read
a	Communication request is sent to the inverter in accordance with the user program in the computer.		A, A1	A	A2	A	A	B	B
b	Inverter data processing time		With	With	With	With	Without	With	With
C	Reply data from the inverter (Data (a) is checked for an error.)	No error ${ }^{* 1}$ (Request accepted)	C	C	$\mathrm{C} 1^{* 3}$	C	$C^{* 2}$	$\begin{aligned} & \text { E, E1, } \\ & \text { E2, E3 } \end{aligned}$	E
		With error (Request rejected)	D	D	D	D	$D^{* 2}$	D	D
d	Computer processing delay time		10 ms or more						
e	Reply from computer in response to reply data c (Data c is checked for error.)	No error ${ }^{* 1}$ (No inverter processing)	Without	Without	Without (C)	Without	Without	Without (C)	Without (C)
		With error (Inverter outputs C again.)	Without	Without	F	Without	Without	F	F

*1 In the communication request data from the computer to the inverter, 10 ms or more is also required after "no data error (ACK)". (Refer to page 642.)
*2 Reply from the inverter to the inverter reset request can be selected. (Refer to page 646.)
*3 At mode error, and data range error, C1 data contains an error code. (Refer to page 651.) Except for those errors, the error is returned with data format $D$.

- Data writing format
a. Communication request data from the computer to the inverter

Format	Number of characters																	
	1	2	3	4 4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A	$\begin{aligned} & \text { ENQ } \\ & { }_{* 1} \end{aligned}$	Inverter station number* ${ }^{*}$		Instruction code	*3	Data				Sum check		*4						
A1	$\begin{aligned} & \text { ENQ } \\ & { }_{* 1} \end{aligned}$	Inve   stati num		Instruction code	*3	Data		Sum check		*4								
A2	$\begin{aligned} & \text { ENQ } \\ & { }_{* 1} \end{aligned}$	Inve   stati num		Instruction code	*3	Send   data   type	Receive   data   type	Data 1				Data 2				Sum check		*4

c. Reply data from the inverter to the computer (No data error detected)

Format	Number of characters																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C	$\begin{aligned} & \mathrm{ACK} \\ & { }_{* 1} \end{aligned}$	Inverter station number *2		*4															
C1	$\begin{aligned} & \text { STX } \\ & { }_{* 1} \end{aligned}$	Inve stati num		Send   data type	Receive   data   type	Error code 1	Error code 2	Data 1				Data 2				$\begin{aligned} & \text { ETX } \\ & 1 \end{aligned}$	Sum check		*4

c. Reply data from the inverter to the computer (Data error detected)

Format	Number of characters				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
D	NAK ${ }^{* 1}$	Inverter station number ${ }^{*} 2$	Error   code	${ }^{*} 4$	

*1 Indicates a control code
*2 Specifies the inverter station numbers in the range of H 00 to H 1 F (stations 0 to 31 ) in hexadecimal.
*3 Set the waiting time. When Pr. 123 or Pr. 337 (waiting time setting) $\neq$ "9999", create a communication request data without waiting time in the data format. (The number of characters decreases by 1. )
*4 CR/LF code: When data is transmitted from the computer to the inverter, codes CR (carriage return) and LF (line feed) are automatically set at the end of a data group on some computers. In this case, setting must be also made on the inverter according to the computer. Whether the CR and LF codes will be present or absent can be selected using Pr. 124 or Pr. 341 (CR/LF selection).

- Data reading format
a. Communication request data from the computer to the inverter

Format	Number of characters								
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
B	ENQ $^{* 1}$	Inverter station   number 2	Instruction code	${ }^{* 3}$	Sum check	${ }^{*} 4$			

c. Reply data from the inverter to the computer (No data error detected)

Format	Number of characters												
	1	2	3	4	5	6	7	8	9	10	11	12	13
E	STX ${ }^{* 1}$	Inverter station number *2		Read data				ETX*1	Sum check		*4		
E1	STX *1	Inverter station number *2		Read data		ETX* ${ }^{*}$	Sum check		*4				
E2	STX *1	Inverter station number *2		Read data						ETX ${ }^{* 1}$	Sum check		*4


Format	Number of characters							
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	
E3	STX $^{* 1}$	Inverter station   number ${ }^{*} 2$	Read data (Inverter model information)	ETX ${ }^{* 1}$	Sum check	$* 4$		

c. Reply data from the inverter to the computer (Data error detected)

Format	Number of characters				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
D	NAK $^{* 1}$	Inverter station   number *2	Error   code	$*^{*} 4$	

e. Transmission data from the computer to the inverter when reading data

Format	Number of characters			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
C   (No data error   detected)	ACK $^{* 1}$	Inverter station   number *2	$* 4$	
F   (Data error   detected)	NAK *1	Inverter station   number *2	$* 4$	

*1 Indicates a control code.
*2 Specifies the inverter station numbers in the range of H 00 to H 1 F (stations 0 to 31 ) in hexadecimal.
*3 Set the waiting time. When Pr. 123 or Pr. 337 (waiting time setting) $\neq$ "9999", create a communication request data without waiting time in the data format. (The number of characters decreases by 1.)
*4 CR/LF code: When data is transmitted from the computer to the inverter, codes CR (carriage return) and LF (line feed) are automatically set at the end of a data group on some computers. In this case, setting must be also made on the inverter according to the computer. Whether the CR and LF codes will be present or absent can be selected using Pr. 124 or Pr. 341 (CR/LF selection).

## - Data definitions

- Control code

Signal name	ASCII code	Description
STX	H02	Start Of Text (Start of data)
ETX	H03	End Of Text (End of data)
ENQ	H05	Enquiry (Communication request)
ACK	H06	Acknowledge (No data error detected)
LF	H0A	Line Feed
CR	H0D	Carriage Return
NAK	H15	Negative Acknowledge (Data error detected)

- Inverter station number

Specify the station number of the inverter which communicates with the computer.

- Instruction code

Specify the processing request, for example, operation or monitoring, given by the computer to the inverter. Hence, the inverter can be run and monitored in various ways by specifying the instruction code appropriately. (Refer to page 646.)

- Data

Indicates the data such as frequency and parameters transferred to and from the inverter. The definitions and ranges of set data are determined in accordance with the instruction codes. (Refer to page 646.)

- Waiting time

Specify the waiting time between the receipt of data at the inverter from the computer and the transmission of reply data. Set the waiting time in accordance with the response time of the computer in the range of 0 to 150 ms in 10 ms increments. (For example; $1=10 \mathrm{~ms}, 2=20 \mathrm{~ms}$ )
When Pr. 123 or Pr. 337 (waiting time setting) $\neq$ " 9999 ", create a communication request data without waiting time in the data format. (The number of characters decreases by 1.)

*1 When Pr. $123=$ "9999", the waiting time is the data setting value $\times 10 \mathrm{~ms}$. When Pr. $123 \neq$ "9999", the waiting time is the value set in Pr. 123 .
*2 The time is about 10 to 30 ms . It varies depending on the instruction code.

## NOTE

- The data check time varies depending on the instruction code. (Refer to page 642.)


## - Sum check code

The sum check code is a 2-digit ASCII (hexadecimal) representing the lower 1 byte ( 8 bits) of the sum derived from the checked ASCII data.

*When the Pr. 123 or Pr. 337 (Waiting time setting) $\neq 9999$ ", create the communication request data without "waiting time" in the data format. (The number of characters decreases by 1.)


- Error code

If any error is found in the data received by the inverter, its error definition is sent back to the computer together with the

NAK code.

| Error code | Error item | Error description | Inverter operation |
| :--- | :--- | :--- | :--- | :--- |
| H0 | Computer NAK error | $\begin{array}{l}\text { The number of errors consecutively detected in } \\ \text { communication request data from the computer is greater } \\ \text { than the permissible number of retries. }\end{array}$ |  |
| H1 | Parity error | The parity check result does not match the specified parity. |  |\(\left.\} \begin{array}{l}The inverter output is shut off <br>

(E.PUE/E.SER) if error occurs <br>
continuously more than the <br>
permissible number of retries. <br>
The LF signal is output.\end{array}\right\}\)
$\bullet$ Response time

[Formula for data transmission time]
$\frac{1}{\substack{\text { Communication } \\ \text { speed (bps) }}} \times$ Number of data characters *1 $\times \underset{\substack{\text { Communication specifications } \\ \text { (Total number of bits) }}}{\text { 2 }}=$ data transmission time (s)
*1 Refer to page 638.
*2 Communication specifications

Name	
Number of bits	
Stop bit length	1 bit   2 bits
	7 bits   8 bits
Parity check	With
	Without

In addition to the above, 1 start bit is necessary.
Minimum number of total bits: 9 bits
Maximum number of total bits: 12 bits
*3 Data check time

Item	Check time
Monitoring, operation command, frequency setting (RAM)	$<12 \mathrm{~ms}$
Parameter read/write, frequency setting (EEPROM)	$<30 \mathrm{~ms}$
Parameter clear / all clear	$<5 \mathrm{~s}$
Reset command	No reply

## - Retry count setting (Pr.121, Pr.335)

- Set the permissible number of retries at data receive error occurrence. (Refer to page 641 for data receive error for retry.)
- When the data receive errors occur consecutively and the number of retries exceeds the permissible number setting, a communication fault (PU connector communication: E.PUE, RS-485 terminal communication: E.SER) occurs and the inverter output is shut off.
- When a data transmission error occurs while "9999" is set, the inverter does not trip but outputs the Alarm (LF) signal. To use the LF signal, set "98 (positive logic) or 198 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.

Example: PU connector communication, Pr. 121 = "1" (initial value)


Example: PU connector communication, Pr. 121 = "9999"


## NOTE

- For the RS-485 terminal communication, the operation at a communication error occurrence depends on the Pr. 502 Stop mode selection at communication error setting. (Refer to page 630.)


## $\bullet$ Signal loss detection (Pr.122, Pr. 336 RS-485 communication check time interval)

- If a signal loss (communication stop) is detected between the inverter and computer as a result of a signal loss detection, a communication error (PU connector communication: E.PUE, RS-485 terminal communication: E.SER) occurs and the inverter output is shut off.
- The LF signal is not output when a signal loss is detected. However, when a signal loss is detected via communication through the RS-485 terminals while Pr. 502 = " 3 or 4", the LF signal is output.
- When the setting is "9999", communication check (signal loss detection) is not made.
- When the setting is " 0 ", communication through the PU connector is not possible. The monitor items and parameter settings can be read during communication via RS-485 terminals, but a communication error (E.SER) occurs instantly when the operation mode is switched to the Network operation.
- A signal loss detection is made when the setting is any of " 0.1 s to 999.8 s ". To make a signal loss detection, it is necessary to send data (for details on control codes, refer to page 640) from the computer within the communication check time interval. (The inverter makes a communication check (clearing of communication check counter) regardless of the station number setting of the data sent from the master).
- Communication check is started at the first communication in the operation mode having the operation source (PU operation mode for PU connector communication in the initial setting or Network operation mode for RS-485 terminal communication).



## - Programming instructions

- When data from the computer has any error, the inverter does not accept that data. Hence, in the user program, always insert a retry program for data error.
- All data communication, for example, run command or monitoring, are started when the computer gives a communication request. The inverter does not return any data without the computer's request. Hence, design the program so that the computer gives a data read request for monitoring, etc. as required.
- Program example: To switch to the Network operation mode


## Microsoft® Visual C++® (Ver.6.0) programming example

```
#include <stdio.h>
#include <windows.h>
void main(void){
\begin{tabular}{lll}
HANDLE & hCom; & // Communication handle \\
DCB & hDcb; & // Structure for setting communication settings \\
COMMTIMEOUTS & hTim; & // Structure for setting timeouts
\end{tabular}
char szTx[0x10]; // Send buffer
 char szRx[0x10]; // Receive buffer
 char szCommand[0x10];// Command
 int nTx,nRx; // For storing buffer size
 int nSum; // For calculating sum code
 BOOL bRet;
 int nRet;
 int i;
 // **** Open COM1 port ****
 hCom = CreateFile("COM1", (GENERIC_READ | GENERIC_WRITE), 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 if(hCom != NULL) {
 //**** Set COM1 port communication ****
 GetCommState(hCom,&hDcb); // Get current communication information
 hDcb.DCBlength = sizeof(DCB); // Structure size setting
 hDcb.BaudRate = 19200; }\quad// Communication speed = 19200 bps
 hDcb.ByteSize = 8; // Data length = 8 bits
 hDcb.Parity = 2; // Parity check at even numbers
 hDcb.StopBits = 2;
 // Stop bit = 2 bits
 bRet = SetCommState(hCom,&hDcb);
 if(bRet == TRUE) {
 // **** Set COM1 port timeout ****
 GetCommTimeouts(hCom,&hTim); // Get current timeout values
 hTim.WriteTotalTimeoutConstant = 1000; // Write timeout 1 second
 hTim.ReadTotalTimeoutConstant = 1000; // Read timeout 1 second
 hTim.ReadTotalTimeoutConstantSetCommTimeouts(hCom,&hTim);// Setting of changed timeout values
 // **** Setting of command for switching the station number }1\mathrm{ inverter to the Network operation mode ****
 sprintf(szCommand,"01FB10000"); // Send data (NET operation write)
 nTx = strlen(szCommand); // Send data size
 // **** Generate sum code ****
 nSum = 0; // Initialize sum data
 for(i = 0;i < nTx;i++) {
 nSum += szCommand[i]; // Calculate sum code
 nSum &= (0xff); // Mask data
 }
 // **** Generate send data ****
 memset(szTx,0,sizeof(szTx)); // Initialize send buffer
 memset(szRx,0,sizeof(szRx)); // Initialize receive buffer
 sprintf(szTx,"\5%s%02X",szCommand,nSum);// ENQ code + send data + sum code
 nTx = 1 + nTx + 2; // ENQ code + number of send data + number of sum codes
 nRet = WriteFile(hCom,szTx,nTx,&nTx,NULL);
 // **** Send ****
 if(nRet != 0) {
 nRet = ReadFile(hCom,szRx,sizeof(szRx),&nRx,NULL);
 // **** Receive ****
 if(nRet != 0) {
 // **** Display receive data ****
 for(i = 0;i < nRx;i++) {
 printf("%02X ",(BYTE)szRx[i]);// Output received data to console
 // Display ASCII code in Hexadecimal' In case of 0', "30" is displayed.
 }
 printf("\n\r");
 }
 }
 }
 CloseHandle(hCom); // Close communication port
 }
\begin{tabular}{|c|}
\hline Port open \\
\hline \multirow[t]{2}{*}{Communication setting} \\
\hline \\
\hline Time out setting \\
\hline \\
\hline \begin{tabular}{l}
Send data processing \\
-Data setting \\
oSum code calculation \\
-Data transmission
\end{tabular} \\
\hline Receive data waiting \\
\hline \multirow[b]{2}{*}{Receive data processing - Receive data processing -Screen display} \\
\hline \\
\hline
\end{tabular}

\section*{CAUTION}
- Always set the communication check time interval before starting operation to prevent hazardous conditions.
- Data communication is not started automatically but is made only once when the computer provides a communication request. If communication is disabled during operation due to signal cable breakage etc., the inverter cannot be stopped. When the communication check time interval has elapsed, the inverter output will be shut off (E.PUE, E.SER). Turn the RES signal of the inverter ON or shut off the power supply to coast the motor to a stop.
- If communication is broken due to signal cable breakage, computer fault etc., the inverter does not detect such a fault. This should be fully noted.

\section*{- Setting items and set data}
- After completion of parameter settings, set the instruction codes and data, then start communication from the computer to allow various types of operation control and monitoring.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \begin{tabular}{c}
Read/ \\
write
\end{tabular} & \begin{tabular}{c}
Instruction \\
code
\end{tabular} & Data description & \multicolumn{1}{c|}{\begin{tabular}{c}
Number of \\
data digits \\
(format)
\end{tabular}} \\
\hline \multirow{3}{*}{ Operation mode } & Read & H7B & \begin{tabular}{l}
H0000: Network operation \\
H0001: External operation, External operation (JOG operation) \\
H0002: PU operation, External/PU combined operation, PUJOG operation
\end{tabular} & 4 digits (B.E/D) \\
\cline { 2 - 6 } & Write & HFB & \begin{tabular}{l}
H0000: Network operation (Setting is available via communication through \\
the RS-485 terminals.) \\
H0001: External operation \\
H0002: PU operation (Setting is available via communication through the PU \\
connector.)
\end{tabular} & 4 digits (A,C/D) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Read/ write & Instruction code & \multicolumn{5}{|c|}{Data description} & Number of data digits (format) \({ }^{* 1}\) \\
\hline \multirow{17}{*}{} & Output frequency / speed & Read & H6F & \multicolumn{5}{|l|}{H0000 to HFFFF: Output frequency in 0.01 Hz increments (The display can be changed to the rotations per minute using Pr.37, Pr.144, and Pr.811. (Refer to page page 424.))} & 4 digits (B.E/D) \\
\hline & Output current & Read & H70 & \multicolumn{5}{|l|}{H0000 to HFFFF: Output current (hexadecimal) Increment 0.01 A (FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower) Increment 0.1 A (FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher)} & 4 digits (B.E/D) \\
\hline & Output voltage & Read & H71 & \multicolumn{5}{|l|}{H0000 to HFFFF: Output voltage (hexadecimal) in 0.1 V increments} & 4 digits (B.E/D) \\
\hline & Special monitor & Read & H72 & \multicolumn{5}{|l|}{H0000 to HFFFF: Monitor data selected in the instruction code HF3} & 4 digits (B.E/D) \\
\hline & \multirow[t]{2}{*}{Special monitor selection No.} & Read & H73 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Monitor selection data (Refer to page 424 for details on selection No.)}} & \begin{tabular}{l}
2 digits (B.E1/ \\
D)
\end{tabular} \\
\hline & & Write & HF3 & & & & & & 2 digits (A1, C/ D) \\
\hline & \multirow{11}{*}{Fault record} & \multirow{11}{*}{Read} & \multirow{11}{*}{H74 to H77} & \multicolumn{5}{|l|}{} & \multirow{11}{*}{4 digits (B.E/D)} \\
\hline & & & & \multicolumn{5}{|l|}{\multirow[t]{10}{*}{\begin{tabular}{l}
H0000 to HFFFF: Two latest fault records \\
Fault record display example (instruction code H74) \\
With the read data H3OAO \\
(Last fault : THT) \\
(Present fault : OPT) \\
(Refer to page 742 for details on fault record read data.)
\end{tabular}}} & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Operation command (extended)} & Write & HF9 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Control input commands such as the Forward rotation command (STF) signal and the Reverse rotation command (STR) signal can be set. (For the details, refer to page 650.)}} & 4 digits (A,C/D) \\
\hline \multicolumn{2}{|l|}{Operation command} & Write & HFA & & & & & & \begin{tabular}{l}
2 digits (A1, C/ \\
D)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Inverter status monitor (extended)} & Read & H79 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{The states of the output signals such as the Forward rotation output, Reverse rotation output, and Inverter running (RUN) signals can be monitored. (For the details, refer to page 651.)}} & 4 digits (B.E/D) \\
\hline & erter status nitor & Read & H7A & & & & & & \begin{tabular}{l}
2 digits (B.E1/ \\
D)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Set frequency (RAM)} & \multirow[t]{2}{*}{Read} & H6D & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Read the set frequency/speed from the RAM or EEPROM. \\
H0000 to HFFFF: Set frequency in 0.01 Hz increments \\
(The display can be changed to the rotations per minute using Pr.37, Pr.144, and Pr.811. (Refer to page page 424.))
\end{tabular}}} & \multirow[b]{2}{*}{4 digits (B.E/D)} \\
\hline \multicolumn{2}{|l|}{Set frequency (EEPROM)} & & H6E & & & & & & \\
\hline \multicolumn{2}{|l|}{Set frequency (RAM)} & \multirow[b]{2}{*}{Write} & HED & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Write the set frequency/speed into the RAM or EEPROM. H0000 to HE678 (0 to 590.00 Hz): frequency in 0.01 Hz increments (The display can be changed to the rotations per minute using Pr.37, Pr.144, and Pr.811. (Refer to page page 424.)) \\
To change the set frequency consecutively, write data to the inverter RAM. (Instruction code: HED)
\end{tabular}}} & \\
\hline & \begin{tabular}{l}
frequency \\
AM, EEPROM)
\end{tabular} & & HEE & & & & & & 4 digits (A,C/D) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Inverter reset}} & \multirow[t]{3}{*}{Write} & \multirow[t]{3}{*}{HFD} & \multicolumn{5}{|l|}{\begin{tabular}{l}
H9696: Inverter reset \\
As the inverter is reset at the start of communication by the computer, the inverter cannot send reply data back to the computer.
\end{tabular}} & 4 digits (A,C/D) \\
\hline & & & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
H9966: Inverter reset \\
When data is sent normally, ACK is returned to the computer, and then the inverter is reset.
\end{tabular}}} & \\
\hline & & & & & & & & & 4 digits (A, D) \\
\hline & clearing of lt records & Write & HF4 & \multicolumn{5}{|l|}{H9696: Batch clearing of fault records} & 4 digits (A,C/D) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Item & Read/ write & Instruction code & Data description & Number of data digits (format) \({ }^{* 1}\) \\
\hline \multicolumn{2}{|l|}{Parameter clear All parameter clear} & Write & HFC & \begin{tabular}{l}
All parameters return to initial values. \\
Whether to clear communication parameters or not can be selected according to the data. \\
- Parameter clear \\
H9696: Parameters including communication parameters are cleared. \\
H5A5A: Parameters other than communication parameters are cleared. \({ }^{*}{ }^{2}\) \\
- All parameter clear \\
H9966: Parameters including communication parameters are cleared. \\
H55AA: Parameters other than communication parameters are cleared. \({ }^{* 2}\) \\
For the details of whether or not to clear parameters, refer to page 824. When a clear is performed with H9696 or H9966, communication related parameter settings also return to the initial values. When resuming the operation, set the parameters again. \\
Performing a clear will clear the instruction code HEC, HF3, and HFF settings. \\
Only H9966 and H55AA (All parameter clear) are valid when a password is registered (refer to page 331).
\end{tabular} & 4 digits (A,C/D) \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Parameter}} & Read & H00 to H63 & \multirow[t]{2}{*}{Refer to the instruction code (page 824) and write and/or read parameter values as required. When setting Pr. 100 and later, the link parameter extended setting must be set.} & 4 digits (B.E/D) \\
\hline & & Write & H80 to HE3 & & 4 digits (A,C/D) \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Link parameter extended setting}} & Read & H7F & \multirow[b]{2}{*}{Parameter settings are switched according to the H 00 to HOD settings. For details of the settings, refer to the instruction code (page 824).} & \begin{tabular}{l}
2 digits (B.E1/ \\
D)
\end{tabular} \\
\hline & & Write & HFF & & 2 digits (A1, C/ D) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Second parameter changing (instruction code
\[
\text { HFF }=1,9)
\]}} & Read & H6C & \multirow[t]{2}{*}{\begin{tabular}{l}
When setting the calibration parameters*3 \\
H00: Frequency \({ }^{*} 4\) \\
H01: Parameter-set analog value \\
H02: Analog value input from terminal
\end{tabular}} & 2 digits (B.E1/ D) \\
\hline & & Write & HEC & & 2 digits (A1, C/ D) \\
\hline Mult & ti command & Read/ write & HFO & Available for writing 2 commands, and monitoring 2 items for reading data. (Refer to page 651 for details.) & \[
\begin{aligned}
& 10 \text { digits (A2, } \\
& \text { C1/D) }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{} & Inverter model & Read & H7C & \begin{tabular}{l}
The inverter model can be read in ASCII code. "H2O" (blank code) is set for blank area. \\
Example) FR-A840-1 (FM type): \\
H46,H52,H2D,H41,H38,H34,H30,H2D,H31,H2O,H2O...H2O
\end{tabular} & \begin{tabular}{l}
20 digits (B, E3/ \\
D)
\end{tabular} \\
\hline & Capacity & Read & H7D & \begin{tabular}{l}
The inverter ND rated capacity can be read in ASCII code. \\
Data is read in increments of 0.1 kW , and rounds down to 0.01 kW increments. \\
"H2O" (blank code) is set for blank area. \\
Example) \(0.75 \mathrm{~K}: ~ " ~ 7 " ~(H 2 O, ~ H 2 O, ~ H 2 O, ~ H 2 O, ~ H 20, ~ H 37) ~\)
\end{tabular} & \begin{tabular}{l}
6 digits (B, E2/ \\
D)
\end{tabular} \\
\hline
\end{tabular}
*1 Refer to page 638 for data formats (A, A1, A2, B, C, C1, D, E, E1, E2, E3, F).
*2 Turning OFF the power supply while clearing parameters with H5A5A or H55AA returns the communication parameter settings to the initial settings.
*3 Refer to the following calibration parameter list for details on the calibration parameters.
*4 The gain frequency can be also written using Pr. 125 (instruction code: H99) or Pr. 126 (instruction code: H9A).

\section*{NOTE}
- Set 65520 (HFFF0) as a parameter value " 8888 " and 65535 (HFFFF) as "9999".
- For the instruction codes HFF, HEC, and HF3, their values once written are held, but cleared to zero when an inverter reset or all clear is performed.
- When a 32-bit parameter setting or monitor item is read and the value to be read exceeds HFFFF, HFFFF is returned.

Example) When reading the C3 (Pr.902) and C6 (Pr.904) settings from the inverter of station No. 0.
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Computer send data } & \multicolumn{1}{|c|}{ Inverter send data } & \multicolumn{1}{c|}{ Description } \\
\hline a & ENQ 00 FF 0 01 7D & ACK 00 & "H01" is set in the extended link parameter. \\
\hline b & ENQ 00 EC 001 79 & ACK 00 & "H01" is set in the second parameter changing. \\
\hline c & ENQ 00 5E 0 0A & STX 000000 ETX 20 & C3 (Pr.902) is read. 0\% is read. \\
\hline d & ENQ 00 60 0 F6 & STX 000000 ETX 20 & C6 (Pr.904) is read. 0\% is read. \\
\hline
\end{tabular}

To read/write C3 (Pr.902) or C6 (Pr.904) after inverter reset or parameter clear, execute from (a) again.

\section*{List of calibration parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Pr.} & \multirow{2}{*}{Name} & \multicolumn{3}{|c|}{Instruction code} \\
\hline & & Read & Write & Extended \\
\hline C2 (902) & Terminal 2 frequency setting bias frequency & 5E & DE & 1 \\
\hline C3 (902) & Terminal 2 frequency setting bias & 5E & DE & 1 \\
\hline 125 (903) & Terminal 2 frequency setting gain frequency & 5F & DF & 1 \\
\hline C4 (903) & Terminal 2 frequency setting gain & 5F & DF & 1 \\
\hline C5 (904) & Terminal 4 frequency setting bias frequency & 60 & E0 & 1 \\
\hline C6 (904) & Terminal 4 frequency setting bias & 60 & E0 & 1 \\
\hline 126 (905) & Terminal 4 frequency setting gain frequency & 61 & E1 & 1 \\
\hline C7 (905) & Terminal 4 frequency setting gain & 61 & E1 & 1 \\
\hline C12 (917) & Terminal 1 bias frequency (speed) & 11 & 91 & 9 \\
\hline C13(917) & Terminal 1 bias (speed) & 11 & 91 & 9 \\
\hline C14 (918) & Terminal 1 gain frequency (speed) & 12 & 92 & 9 \\
\hline C15 (918) & Terminal 1 gain (speed) & 12 & 92 & 9 \\
\hline C16 (919) & Terminal 1 bias command (torque) & 13 & 93 & 9 \\
\hline C17 (919) & Terminal 1 bias (torque) & 13 & 93 & 9 \\
\hline C18 (920) & Terminal 1 gain command (torque) & 14 & 94 & 9 \\
\hline C19 (920) & Terminal 1 gain (torque) & 14 & 94 & 9 \\
\hline C8 (930) & Current output bias signal & 1E & 9E & 9 \\
\hline C9 (930) & Current output bias current & 1E & 9E & 9 \\
\hline C10 (931) & Current output gain signal & 1F & 9F & 9 \\
\hline C11 (931) & Current output gain current & 1F & 9F & 9 \\
\hline C38 (932) & Terminal 4 bias command (torque) & 20 & A0 & 9 \\
\hline C39 (932) & Terminal 4 bias (torque) & 20 & A0 & 9 \\
\hline C40 (933) & Terminal 4 gain command (torque) & 21 & A1 & 9 \\
\hline C41 (933) & Terminal 4 gain (torque) & 21 & A1 & 9 \\
\hline C42 (934) & PID display bias coefficient & 22 & A2 & 9 \\
\hline C43 (934) & PID display bias analog value & 22 & A2 & 9 \\
\hline C44 (935) & PID display gain coefficient & 23 & A3 & 9 \\
\hline C45 (935) & PID display gain analog value & 23 & A3 & 9 \\
\hline
\end{tabular}

\section*{- Operation command}

*1 The signal within parentheses () is the initial status. The description changes depending on the setting of Pr. 180 to Pr. 189 (Input terminal function selection) (page 496).
*2 The Inverter run enable signal is in the initial status for the separated converter type
*3 JOG operation/automatic restart after instantaneous power failure/start self-holding selection/reset cannot be controlled over a network, so in the initial status bit 8 to bit 11 are invalid. To use bit 8 to bit 11, change the signal by Pr.185, Pr.186, Pr.188, or Pr. 189 (Input terminal function selection) (page 496) (A reset can be executed by the instruction code HFD.)
*4 During RS-485 communication through the PU connector, only the Forward rotation command and Reverse rotation command signals can be used.

\section*{- Inverter status monitor}
\begin{tabular}{|c|}
\hline Item & Instruction code & Bit length & Description*1 & \multicolumn{16}{|c|}{Example} \\
\hline \begin{tabular}{l}
Inverter \\
status \\
monitor
\end{tabular} & H7A & 8 bits & \begin{tabular}{l}
b0: RUN (Inverter running) \\
b1: Forward rotation output \\
b2: Reverse rotation output \\
b3: SU (Up to frequency) \\
b4: OL (Overload warning) \\
b5: IPF (Instantaneous power failure/ undervoltage) \({ }^{*}{ }^{2}\) \\
b6: FU (Output frequency detection) \\
b7: ABC1 (Fault)
\end{tabular} & \multicolumn{16}{|c|}{[Example 1] H02 \(\cdots\) During forward
b7 \begin{tabular}{c}
botation
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}
[Example 2] H80 \(\cdots\) Stop at fault
occurrence
b7
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}} \\
\hline Inverter status monitor (extended) & H79 & 16 bits & \begin{tabular}{l}
b0: RUN (Inverter running) \\
b1: Forward rotation output \\
b2: Reverse rotation output \\
b3: SU (Up to frequency) \\
b4: OL (Overload warning) \\
b5: IPF (Instantaneous power failure/ \\
undervoltage) \({ }^{*}{ }^{2}\) \\
b6: FU (Output frequency detection) \\
b7: ABC1 (Fault) \\
b8: ABC2 (-) \\
b9: Safety monitor output \\
b10 to b14: - \\
b15: Fault occurrence
\end{tabular} & \(\begin{array}{r}0 \\ \text { [Ex } \\ \text { b1 } \\ \hline 1\end{array}\) & 0 & 0 & \[
\begin{aligned}
& \hline 0 \\
& \hline \mathrm{H} \varepsilon \\
& \hline 0
\end{aligned}
\] & \[
\begin{aligned}
& 002 \\
& \hline 0 \\
& \hline 080 \\
& \hline 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \cdots \mathrm{~S} \\
& \hline 0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0 \\
\hline \text { Stop } \\
\hline 0 \\
\hline
\end{array}
\] & \begin{tabular}{l}
0 \\
at fa \\
0
\end{tabular} & 0
ult
1
1 & 0 & 0
rre
0 & 0
0
0
0 & 0 & 0
0 & 1
0
0 & \begin{tabular}{|c}
b0 \\
0 \\
\hline \\
b0 \\
\hline 0 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
*1 The signal within parentheses () is the initial status. The description changes depending on the setting of Pr. 190 to Pr. 196 (Output terminal function selection).
*2 No function is assigned in the initial status for the separated converter type.

\section*{- Multi command (HFO)}
- Sending data format from computer to inverter
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Format} & \multicolumn{19}{|c|}{Number of characters} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline A2 & ENQ & \multicolumn{2}{|l|}{Inverter station No.} & \multicolumn{2}{|l|}{Instruction code (HFO)} & Waiting time & Send data type *1 & Receive data type*2 & \multicolumn{4}{|l|}{Data \({ }^{* 3}\)} & \multicolumn{4}{|l|}{Data \(2^{* 3}\)} & \multicolumn{2}{|l|}{Sum check} & \[
\begin{aligned}
& \text { CR/ } \\
& \text { LF }
\end{aligned}
\] \\
\hline
\end{tabular}
- Reply data format from inverter to computer (No data error detected)
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Format} & \multicolumn{19}{|c|}{Number of characters} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline C1 & STX & \multicolumn{2}{|l|}{Inverter station No.} & Send data type *1 & Receive data type*2 & Error code \(1^{* 5}\) & Error code \(2^{* 5}\) & \multicolumn{4}{|l|}{Data \(1^{* 4}\)} & \multicolumn{4}{|l|}{Data 2*3} & ETX & \multicolumn{2}{|l|}{Sum check} & \[
\begin{aligned}
& \text { CR/ } \\
& \text { LF }
\end{aligned}
\] \\
\hline
\end{tabular}
*1 Specify the data type of sending data (from computer to inverter).
*2 Specify the data type of reply data (from inverter to computer).
*3 Combination of data 1 and data 2 for sending
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Data type } & \multicolumn{1}{|c|}{ Data 1 } & \multicolumn{1}{|c|}{ Data 2 } & \multicolumn{1}{c|}{ Remarks } \\
\hline 0 & \begin{tabular}{l}
Operation command \\
(extended)
\end{tabular} & Set frequency (RAM) & Run command (extended) is same as instruction code HF9. (Refer \\
to page 650.)
\end{tabular}
*4 Combination of data 1 and data 2 for reply
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Data type } & \multicolumn{1}{|c|}{ Data 1 } & \multicolumn{1}{c|}{ Data 2 } & \multicolumn{1}{c|}{ Remarks } \\
\hline 0 & \begin{tabular}{l}
Inverter status monitor \\
(extended)
\end{tabular} & \begin{tabular}{l}
Output frequency \\
(speed)
\end{tabular} & \begin{tabular}{l}
Inverter status monitor (extended) is same as instruction code H79 \\
(Refer to page 651.)
\end{tabular} \\
\hline 1 & \begin{tabular}{l}
Inverter status monitor \\
(extended)
\end{tabular} & Special monitor & \begin{tabular}{l}
Replies the monitor item specified in instruction code HF3 for special \\
monitor. (Refer to page 424.)
\end{tabular} \\
\hline
\end{tabular}
*5 The error code for sending data 1 is set in error code 1, and the error code for sending data 2 is set in error code 2. Mode error (HA), instruction code error (HB), data range error (HC) or no error (HF) is replied. (Refer to page 742 for the details of the error codes.)

\subsection*{5.15.6 MODBUS RTU communication specification}

Operation by MODBUS RTU communication or parameter setting is possible by using the MODBUS RTU communication protocol through the RS-485 terminals of the inverter.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 331 \\
& \text { N030 }
\end{aligned}
\]} & \multirow[b]{2}{*}{RS-485 communication station number} & \multirow[b]{2}{*}{0} & 0 & Broadcast communication \\
\hline & & & 1 to 247 & Specify the inverter station number. Enter the inverter station numbers when two or more inverters are connected to one personal computer. \\
\hline \[
\begin{aligned}
& 332 \\
& \text { N031 }
\end{aligned}
\] & RS-485 communication speed & 96 & \[
\begin{aligned}
& 3,6,12,24, \\
& 48,96,192, \\
& 384,576, \\
& 768,1152
\end{aligned}
\] & \begin{tabular}{l}
Select the communication speed. \\
The setting value \(\times 100\) equals the communication speed. For example, enter 96 to set the communication speed of 9600 bps .
\end{tabular} \\
\hline \multirow[b]{2}{*}{N033} & \multirow[t]{2}{*}{RS-485 communication stop bit length} & \multirow[b]{2}{*}{1} & 0 & Stop bit length 1 bit \\
\hline & & & 1 & \begin{tabular}{l|l}
Stop bit length 2 bits & \begin{tabular}{l}
Valid when Pr.N034 (Pr.334) \(=\) \\
"0"
\end{tabular}
\end{tabular} \\
\hline \multirow{4}{*}{333} & \multirow{4}{*}{RS-485 communication stop bit length / data length} & \multirow{4}{*}{1} & 0 & \multirow{2}{*}{Valid when Pr. 334 = "0"} \\
\hline & & & 1 & Stop bit length 2 bits \\
\hline & & & 10 & \\
\hline & & & 11 & Stop bit length 2 bits \\
\hline \multirow{3}{*}{\begin{tabular}{l}
334 \\
N034
\end{tabular}} & \multirow{3}{*}{RS-485 communication parity check selection} & \multirow{3}{*}{2} & 0 & \begin{tabular}{l}
Without parity check \\
Stop bit length 1 bit / 2 bits (depends on the setting of Pr.333)
\end{tabular} \\
\hline & & & 1 & With parity check at odd numbers Stop bit length 1 bit \\
\hline & & & 2 & With parity check at even numbers Stop bit length 1 bit \\
\hline \begin{tabular}{l}
343 \\
N080
\end{tabular} & Communication error count & 0 & - & Displays the communication error count during MODBUS RTU communication. Read-only. \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 539 \\
& \text { N002 }
\end{aligned}
\]} & \multirow{3}{*}{MODBUS RTU communication check time interval} & \multirow{3}{*}{9999} & 0 & MODBUS RTU communication is available, but the inverter output is shut off in the NET operation mode. \\
\hline & & & 0.1 to 999.8 s & Set the interval of the communication check (signal loss detection) time (same specifications as Pr.122). \\
\hline & & & 9999 & No communication check (signal loss detection) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
549 \\
N000
\end{tabular}} & \multirow[t]{2}{*}{Protocol selection} & \multirow[t]{2}{*}{0} & 0 & Mitsubishi inverter protocol (computer link) \\
\hline & & & 1 & MODBUS RTU protocol \\
\hline
\end{tabular}

\section*{NOTE}
- To use the MODBUS RTU protocol, set "1" in Pr. 549 Protocol selection.
- If MODBUS RTU communication is performed from the master to the address 0 (station number 0), the data is broadcasted, and the inverter does not send any reply to the master. To obtain replies from the inverter, set Pr. 331 RS-485 communication station number \(=\) " 0 (initial value)".
- Some functions are disabled in broadcast communication. (Refer to page 655.)
- If a communication option is installed with Pr. 550 NET mode operation command source selection = "9999 (initial value)", commands (operation commands) transmitted via RS-485 terminals become invalid. (Refer to page 380.)

\section*{- Communication specifications}
- The communication specifications are given below.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Description & Related parameter \\
\hline \multicolumn{2}{|l|}{Communication protocol} & MODBUS RTU protocol & Pr. 549 \\
\hline \multicolumn{2}{|l|}{Conforming standard} & EIA-485 (RS-485) & - \\
\hline \multicolumn{2}{|l|}{Number of connectable units} & 1: N (maximum 32 units), setting is 0 to 247 stations & Pr. 331 \\
\hline \multicolumn{2}{|l|}{Communication speed} & Selected among 300/600/1200/2400/4800/9600/19200/38400/57600/76800/ 115200 bps & Pr. 332 \\
\hline \multicolumn{2}{|l|}{Control procedure} & Asynchronous method & - \\
\hline \multicolumn{2}{|l|}{Communication method} & Half-duplex system & - \\
\hline \multirow{6}{*}{Communication specifications} & Character system & Binary (fixed at 8 bits) & - \\
\hline & Start bit & 1 bit & - \\
\hline & Stop bit length & Select from the following three types: & \\
\hline & Parity check & No parity check, stop bit length 1 bit / 2 bits (depends on the setting of Pr.333) Odd parity check, stop bit length 1 bit Even parity check, stop bit length 1 bit & \[
\begin{array}{|l|}
\hline \text { Pr. } 333 \\
\text { Pr. } 334
\end{array}
\] \\
\hline & Error check & CRC code check & - \\
\hline & Terminator & Not available & - \\
\hline \multicolumn{2}{|l|}{Waiting time setting} & Not available & - \\
\hline
\end{tabular}

\section*{Outline}
- The MODBUS communication protocol was developed by Modicon for programmable controllers.
- The MODBUS protocol uses exclusive message frames to perform serial communication between a master and slaves. These exclusive message frames are provided with a feature called "functions" that allows data to be read or written. These functions can be used to read or write parameters from the inverter, write input commands to the inverter or check the inverter's operating status, for example. This product classifies the data of each inverter into holding register area (register address 40001 to 49999). The master can communicate with inverters (slaves) by accessing pre-assigned holding register addresses.

\section*{NOTE}
- There are two serial transmission modes, the ASCII (American Standard Code for Information Interchange) mode and the RTU (Remote Terminal Unit) mode. However, this product supports only the RTU mode, which transfers 1 byte data (8 bits) as it is. Also, only communication protocol is defined by the MODBUS protocol. Physical layers are not stipulated.

\section*{- Message format}

- Data check time
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Check time } \\
\hline \begin{tabular}{l}
Monitoring, operation command, \\
frequency setting (RAM)
\end{tabular} & \(<12 \mathrm{~ms}\) \\
\hline \begin{tabular}{l}
Parameter read/write, \\
frequency setting (EEPROM)
\end{tabular} & \(<30 \mathrm{~ms}\) \\
\hline Parameter clear / all clear & \(<5 \mathrm{~s}\) \\
\hline Reset command & No reply \\
\hline
\end{tabular}
- Query

A message is sent to the slave (the inverter) having the address specified by the master.
- Normal response

After the query from the master is received, the slave executes the request function, and returns the corresponding normal response to the master.
- Error Response

When an invalid function code, address or data is received by the slave, the error response is returned to the master.
This response is appended with an error code that indicates the reason why the request from the master could not be executed.
This response cannot be returned for errors, detected by the hardware, frame error and CRC check error.
- Broadcast

The master can broadcast messages to all slaves by specifying address 0 . All slaves that receive a message from the master execute the requested function. With this type of communication, slaves do not return a response to the master.

\section*{NOTE}
- During broadcast communication, functions are executed regarded of the set inverter station number (Pr.331).

\section*{- Message frame (protocol)}
- Communication method

Basically, the master sends a query message (inquiry), and slaves return a response message (response). At normal communication, the device address and function code are copied as they are, and at erroneous communication (illegal function code or data code), bit \(7(=\mathrm{H} 80)\) of the function code is turned ON , and the error code is set at data bytes.

Query message from Master
\begin{tabular}{|c|c|}
\hline Device Address \\
\hline Function Code & \\
\hline \begin{tabular}{c}
Eight-Bit \\
Data Bytes
\end{tabular} \\
\hline Error Check \\
Response message from slave
\end{tabular}

Message frames comprise the four message fields shown in the figures above.
A slave recognizes message data as one message when a 3.5 character long no-data time (T 1 : start/end) is added before and after the data.
- Details of protocol

The following table explains the four message fields.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c}
Start \\
Start
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Address \\
ADDRESS
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
Function \\
FUNCTION
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c}
Data \\
DATA
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c}
CRC check \\
CRC CHECK
\end{tabular}} \\
\hline T1 & 8 bits & 8 bits & \(n \times 8\) bits & \begin{tabular}{l}
L \\
8 bits
\end{tabular} & \begin{tabular}{l}
H \\
End
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Message field } & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline Address field & \begin{tabular}{l}
"0 to 247 " can be set in the single-byte (8-bit) length field. Set "0" when sending broadcast messages \\
(instructions to all addresses), and "1 to 247" to send messages to individual slaves. \\
The response from the slave also contains the address set by the master. The value set in Pr. 331 RS-485 \\
communication station number is the slave address.
\end{tabular} \\
\hline \begin{tabular}{l}
Function \\
field
\end{tabular} & \begin{tabular}{l}
"1 to 255 " can be set as the function code in the single-byte (8-bit) length filed. The master sets the function to \\
be sent to the slave as the request, and the slave performs the requested operation. Refer to the function code \\
list for details of the supported function codes. An error response is generated when a function code other than \\
those in the function code list is set. \\
The normal response from the slave contains the function code set by the master. The error response contains \\
H80 and the function code.
\end{tabular} \\
\hline Data field & \begin{tabular}{l}
The format changes according the function code. (Refer to page 655.) The data, for example, includes the byte \\
count, number of bytes, and accessing content of holding registers.
\end{tabular} \\
\hline CRC check & \begin{tabular}{l}
Errors in the received message frame are detected. Errors are detected in the CRC check, and the 2 bytes length \\
data is appended to the message. When the CRC is appended to the message, the lower bytes of the CRC are \\
appended first, followed by the upper bytes. \\
The CRC value is calculated by the sender that appends the CRC to the message. The receiver recalculates \\
the CRC while the message is being received, and compares the calculation result against the actual value that \\
was received in the error check field. If the two values do not match, the result is treated as an error.
\end{tabular} \\
field
\end{tabular}

\section*{Function code list}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Function name & Read/ write & Code & Outline & Broadcast communication & Message format reference page \\
\hline Read holding register & Read & H03 & \begin{tabular}{l}
The data of the holding registers is read. \\
The various data of the inverter can be read from MODBUS registers. \\
System environmental variable (Refer to page 660.) \\
Real time monitor (Refer to page 425.) \\
Faults history (Refer to page 663.) \\
Model information monitor (Refer to page 663.) \\
Inverter parameters (Refer to page 661.)
\end{tabular} & Not available & page 655 \\
\hline Preset single register & Write & H06 & \begin{tabular}{l}
Data is written to a holding register. \\
Data can be written to MODBUS registers to output instructions to the inverter or set parameters. \\
System environmental variable (Refer to page 660.) \\
Inverter parameters (Refer to page 661.)
\end{tabular} & Available & page 656 \\
\hline Diagnostics & Read & H08 & \begin{tabular}{l}
Functions are diagnosed. (Communication check only) \\
A communication check can be made since the query message is sent and the query message is returned as it is as the return message (subfunction code H 00 function). \\
Subfunction code H00 (Return query data)
\end{tabular} & Not available & page 657 \\
\hline Preset multiple registers & Write & H10 & Data is written to multiple consecutive holding registers. Data can be written to consecutive multiple MODBUS registers to output instructions to the inverter or set parameters. System environmental variable (Refer to page 660.) Inverter parameters (Refer to page 661.) & Available & page 657 \\
\hline Read holding register access log & Read & H46 & \begin{tabular}{l}
The number of registers that were successfully accessed by the previous communication is read. \\
Queries by function codes H 03 and H 10 are supported. The number and start address of holding registers successfully accessed by the previous communication are returned. " 0 " is returned for both the number and start address for queries other than function code H 03 and H 10 .
\end{tabular} & Not available & page 658 \\
\hline
\end{tabular}

\section*{- Read holding register (reading data of holding registers) (H03 or 03)}
- Query message
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline a. Slave address & \multicolumn{1}{|c|}{ b. Function } & \multicolumn{2}{c|}{ c. Starting address } & \multicolumn{2}{c|}{ d. No. of points } & \multicolumn{2}{c|}{ CRC check } \\
\hline\((8\) bits \()\) & H 03 & H & L & H & L & & L \\
& \((8 \mathrm{bits})\) \\
\hline
\end{tabular}
- Normal response (Response message)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. Slave address & b. Function & e. Byte count & \multicolumn{3}{|c|}{f. Data} & \multicolumn{2}{|r|}{CRC check} \\
\hline (8 bits) & \begin{tabular}{l}
H03 \\
(8 bits)
\end{tabular} & (8 bits) & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & (8 bits) & \[
\text { (} \mathrm{n} \times 16 \text { bits } \text {) }
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \text { (8 bits) }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \mathrm{H} \\
(8 \text { bits })
\end{array}
\] \\
\hline
\end{tabular}
- Query message setting
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline a & Slave address & \begin{tabular}{l}
Set the address to send messages to. Broadcast communication is not possible. (Invalid when "0" \\
is set.)
\end{tabular} \\
\hline b & Function & Set H03. \\
\hline c & Starting address & \begin{tabular}{l}
Set the holding register address from which to start reading the data. \\
Starting address = start register address (decimal) - 40001 \\
For example, when starting register address 0001 is set, the data of holding register address 40002 \\
is read.
\end{tabular} \\
\hline d & No. of points & Set the number of holding registers for reading data. Data can be read from up to 125 registers. \\
\hline
\end{tabular}
- Content of normal response
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline e & Byte count & \begin{tabular}{l}
The setting range is H02 to HFA (2 to 250). \\
Twice the number of reads specified by (d) is set.
\end{tabular} \\
\hline f & Data & \begin{tabular}{l}
The amount of data specified by (d) is set. Read data is output Hi bytes first followed by Lo bytes, \\
and is arranged as follows: data of start address, data of start address+1, data of start address+2, \\
and so forth.
\end{tabular}
\end{tabular}

■ Example) Read the register values of 41004 (Pr.4) to 41006 (Pr.6) from slave address 17 (H11). Query message
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Slave address & Function & \multicolumn{2}{|r|}{Starting address} & \multicolumn{2}{|r|}{No. of points} & \multicolumn{2}{|r|}{CRC check} \\
\hline H11 (8 bits) & \begin{tabular}{l}
H03 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H03 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
HEB \\
(8 bits)
\end{tabular} & H00 (8 bits) & \begin{tabular}{l}
H03 \\
(8 bits)
\end{tabular} & \[
\begin{aligned}
& \mathrm{H} 77 \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} 2 \mathrm{~B} \\
& (8 \text { bits })
\end{aligned}
\] \\
\hline
\end{tabular}

Normal response (Response message)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Slave address & Function & Byte count & \multicolumn{6}{|c|}{Data} & \multicolumn{2}{|r|}{CRC check} \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\mathrm{H} 11 \\
(8 \text { bits })
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { H03 } \\
& \text { (8 bits) }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} 06 \\
& (8 \mathrm{bits})
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { H17 } \\
& \text { (8 bits) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { H70 } \\
& \text { (8 bits) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HOB } \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \text { HB8 } \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \text { H03 } \\
& \text { (8 bits) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HE8 } \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \mathrm{H} 2 \mathrm{C} \\
\text { (8 bits) }
\end{array}
\] & \[
\begin{aligned}
& \text { HE6 } \\
& \text { (8 bits) }
\end{aligned}
\] \\
\hline
\end{tabular}

Read value
Register 41004 (Pr.4): H1770 (60.00 Hz)
Register 41005 (Pr.5): H0BB8 (30.00 Hz)
Register 41006 (Pr.6): H03E8 (10.00 Hz)

\section*{- Preset single register (writing data to holding registers) (H06 or 06)}
- The content of the system environmental variables and inverter parameters (refer to page 660) assigned to the holding register area can be written.
- Query message
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. Slave address & b. Function & \multicolumn{2}{|r|}{c. Register address} & \multicolumn{2}{|r|}{d. Preset data} & \multicolumn{2}{|r|}{CRC check} \\
\hline (8 bits) & \begin{tabular}{l}
H06 \\
(8 bits)
\end{tabular} & \[
\begin{aligned}
& \mathrm{H} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{H} \\
& (8 \text { bits })
\end{aligned}
\] \\
\hline
\end{tabular}
- Normal response (Response message)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. Slave address & b. Function & \multicolumn{2}{|r|}{c. Register address} & \multicolumn{2}{|r|}{d. Preset data} & \multicolumn{2}{|r|}{CRC check} \\
\hline (8 bits) & H06 (8 bits) & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & (8 bits) & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & L (8 bits) & (8 bits) & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} \\
\hline
\end{tabular}
- Query message setting
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline a & Slave address & Set the address to send messages to. Setting "0" enables broadcast communication. \\
\hline b & Function & Set H06. \\
\hline c & Register address & \begin{tabular}{l}
Set the holding register address to write data to. \\
Register address = holding register address (decimal) - 40001 \\
For example, when register address 0001 is set, data is written to holding register address 40002.
\end{tabular} \\
\hline d & Preset Data & Set the data to write to the holding register. Write data is fixed at 2 bytes. \\
\hline
\end{tabular}
- Content of normal response

The contents in the normal response (a to d, including the CRC check) are the same as those in the query messages. In the case of broadcast communication, no response is returned.

\section*{■ Example) Write 60 Hz (H1770) to 40014 (running frequency RAM) of slave address 5 (H05).}

Query message
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Slave address } & \multicolumn{1}{c|}{ Function } & \multicolumn{2}{c|}{ Register address } & \multicolumn{2}{c|}{ Preset data } & \multicolumn{2}{c|}{ CRC check } \\
\hline \begin{tabular}{l}
H05 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H06 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H00 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H0D \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H17 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H70 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H17 \\
\((8\) bits \()\)
\end{tabular} \\
\hline
\end{tabular}

Normal response (Response message)
The same data as those in the query message

\section*{NOTE}
- With broadcast communication, no response is generated even if a query is executed, so when the next query is made, it must be made after waiting for the inverter data processing time after the previous query is executed.

\section*{- Diagnostics (diagnosis of functions) (H08 or 08)}
- A communication check can be made since the query message is sent and the query message is returned as it is as the return message (subfunction code H00 function). Subfunction code H00 (Return query data)
- Query message
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. Slave address & b. Function & \multicolumn{2}{|r|}{c. Subfunction} & \multicolumn{2}{|r|}{d. Data} & \multicolumn{2}{|r|}{CRC check} \\
\hline (8 bits) & H08 (8 bits) & H00 (8 bits) & H00 (8 bits) & \[
\begin{aligned}
& \mathrm{H} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& (8 \text { bits })
\end{aligned}
\] \\
\hline
\end{tabular}
- Normal response (Response message)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ a. Slave address } & b. Function & \multicolumn{2}{|c|}{ c. Subfunction } & \multicolumn{2}{c|}{ d. Data } & \multicolumn{2}{c|}{ CRC check } \\
\hline\((8 \mathrm{bits})\) & \begin{tabular}{l}
H08 \\
\((8 \mathrm{bits})\)
\end{tabular} & \begin{tabular}{l}
H00 \\
\((8 \mathrm{bits})\)
\end{tabular} & \begin{tabular}{l}
H00 \\
\((8 \mathrm{bits})\)
\end{tabular} & \begin{tabular}{l}
H \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
L \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
L \\
\((8\) bits \()\)
\end{tabular} \\
\hline
\end{tabular}
- Query message setting
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline a & Slave address & \begin{tabular}{l}
Set the address to send messages to. Broadcast communication is not possible. (Invalid when "0" is \\
set.)
\end{tabular} \\
\hline b & Function & Set H08. \\
\hline c & Subfunction & Set H0000. \\
\hline d & Data & Any 2-byte long data can be set. The setting range is H0000 to HFFFF. \\
\hline
\end{tabular}
- Content of normal response

The contents in the normal response (a to d, including the CRC check) are the same as those in the query messages.

\section*{NOTE}
- With broadcast communication, no response is generated even if a query is executed, so when the next query is made, it must be made after waiting for the inverter data processing time after the previous query is executed.

\section*{- Preset multiple registers (writing data to multiple holding registers) (H10 or 16)}
- Data can be written to multiple holding registers.
- Query message
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline a. Slave address & b. Function & \multicolumn{2}{|l|}{\begin{tabular}{l}
c. \\
Starting address
\end{tabular}} & \multicolumn{2}{|l|}{d. No. of registers} & e. Byte count & \multicolumn{3}{|c|}{f. Data} & \multicolumn{2}{|l|}{CRC check} \\
\hline (8 bits) & \begin{tabular}{l}
H10 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & (8 bits) & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \[
\begin{aligned}
& (\mathrm{n} \times 2 \times 8 \\
& \text { bits })
\end{aligned}
\] & \begin{tabular}{l}
L \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} \\
\hline
\end{tabular}
- Normal response (Response message)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline a. Slave address & b. Function & \multicolumn{2}{|r|}{c. Starting address} & \multicolumn{2}{|r|}{d. No. of registers} & \multicolumn{2}{|r|}{CRC check} \\
\hline (8 bits) & \begin{tabular}{l}
H10 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & \[
\begin{aligned}
& \mathrm{L} \\
& (8 \text { bits })
\end{aligned}
\] & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} & (8 bits) & (8 bits) & \begin{tabular}{l}
H \\
(8 bits)
\end{tabular} \\
\hline
\end{tabular}
- Query message setting
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline a & Slave address & Set the address to send messages to. Setting "0" enables broadcast communication. \\
\hline b & Function & Set H10. \\
\hline c & Starting address & \begin{tabular}{l}
Set the holding register address from which to start writing the data. \\
Starting address = start register address (decimal) - 40001 \\
For example, when starting register address 0001 is set, the data of holding register address 40002 \\
is read.
\end{tabular} \\
\hline d & No. of registers & Set the number of holding registers for writing data. Data can be written to up to 125 registers. \\
\hline e & Byte count & The setting range is H02 to HFA (2 to 250). Set twice the value specified by d. \\
\hline f & Data & \begin{tabular}{l}
Set the amount of data specified by d. Write data is output Hi bytes first followed by Lo bytes, and \\
is arranged as follows: data of start address, data of start address+1, data of start address+2, and \\
so forth.
\end{tabular} \\
\hline
\end{tabular}
- Content of normal response

The contents in the normal response (\(\mathbf{a}\) to \(\mathbf{d}\), including the CRC check) are the same as those in the query messages.

\section*{■ Example) Write 0.5 s (H05) to 41007 (Pr.7) and 1 s (H0A) to 41008 (Pr.8) of slave address 25 (H19).}

Query message
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Slave address & Function & \multicolumn{2}{|l|}{Starting address} & \multicolumn{2}{|l|}{No. of registers} & Byte count & \multicolumn{4}{|c|}{Data} & \multicolumn{2}{|l|}{CRC check} \\
\hline H19 (8 bits) & H10 (8 bits) & \begin{tabular}{l}
H03 \\
(8 bits)
\end{tabular} & HEE (8 bits) & \begin{tabular}{l}
HOO \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H02 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H04 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H00 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H05 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
HOO \\
(8 bits)
\end{tabular} & HOA (8 bits) & \begin{tabular}{l}
H86 \\
(8 bits)
\end{tabular} & H3D (8 bits) \\
\hline
\end{tabular}

Normal response (Response message)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c}
Slave \\
address
\end{tabular} & Function & \multicolumn{2}{|c|}{ Starting address } & \multicolumn{2}{c|}{ No. of registers } & \multicolumn{3}{c|}{ CRC check } \\
\hline \begin{tabular}{l}
H19 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H10 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H03 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
HEE \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H00 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H02 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H22 \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H61 \\
\((8\) bits \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{- Read holding register access log (H46 or 70)}
- Queries by function codes H 03 and H 10 are supported. The number and start address of holding registers successfully accessed by the previous communication are returned. " 0 " is returned for both the number and start address for queries other than the function codes above.
- Query message
\begin{tabular}{|l|l|l|l|}
\hline a. Slave address & b. Function & \multicolumn{2}{|c|}{ CRC check } \\
\hline (8 bits) & \begin{tabular}{l}
H46 \\
(8 bits) \()\)
\end{tabular} & \begin{tabular}{l}
L \\
\((8\) bits \()\)
\end{tabular} & \begin{tabular}{l}
H \\
\((8\) bits \()\)
\end{tabular} \\
\hline
\end{tabular}
- Normal response (Response message)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline a. Slave address & b. Function & \multicolumn{2}{|c|}{ c. Starting address } & \multicolumn{2}{c|}{ d. No. of points } & \multicolumn{2}{c|}{ CRC check } \\
\hline\((8\) bits \()\) & H 46 & H & H & L & L & \\
\hline\((8 \mathrm{bits})\) & \((8 \mathrm{bits})\) \\
\hline
\end{tabular}
- Query message setting
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline a & Slave address & \begin{tabular}{l}
Set the address to send messages to. Broadcast communication is not possible. (Invalid when "0" \\
is set.)
\end{tabular} \\
\hline b & Function & Set H46. \\
\hline
\end{tabular}
- Content of normal response
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline c & Starting address & \begin{tabular}{l}
The start address of the holding register that was successfully accessed is returned. \\
Starting address = start register address (decimal) - 40001 \\
For example, when starting address 0001 is returned, the holding register address that was \\
successfully accessed is 40002.
\end{tabular} \\
\hline d & No. of points & The number of holding registers that were successfully accessed is returned. \\
\hline
\end{tabular}

\title{
■ Example) Read the successful register start address and number of successful accesses from slave address 25 (H19).
}

Query message
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Slave address } & Function & \multicolumn{2}{c|}{ CRC check } \\
\hline H19 & H46 & H8B & HD2 \\
\((8\) bits \()\) & (8 bits \()\) & \((8\) bits \()\) & \((8\) bits \()\) \\
\hline
\end{tabular}

Normal response (Response message)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Slave address & Function & \multicolumn{2}{|r|}{Starting address} & \multicolumn{2}{|r|}{No. of points} & \multicolumn{2}{|r|}{CRC check} \\
\hline H19 (8 bits) & H10 (8 bits) & H03 (8 bits) & \begin{tabular}{l}
HEE \\
(8 bits)
\end{tabular} & H0O (8 bits) & \begin{tabular}{l}
H02 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H22 \\
(8 bits)
\end{tabular} & \begin{tabular}{l}
H61 \\
(8 bits)
\end{tabular} \\
\hline
\end{tabular}

The number of holding registers that were successfully accessed was returned as two with the start address 41007 (Pr.7).

\section*{- Error response}
- An error response is returned if the query message received from the master contains an illegal function, address or data. No response is returned for parity, CRC, overrun, framing, and busy errors.

\section*{NOTE}
- No response is also returned in the case of broadcast communication.
- Error response (Response message)
\begin{tabular}{|c|c|c|c|c|}
\hline a. Slave address & b. Function & c. Exception code & \multicolumn{2}{|r|}{CRC check} \\
\hline (8 bits) & H80 + Function (8 bits) & (8 bits) & (8 bits) & H (8 bits) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Message } & \multicolumn{1}{c|}{ Description } \\
\hline a & Slave address & Set the address received from the master. \\
\hline b & Function & The function code requested by the master and H 80 is set. \\
\hline c & Exception code & The codes in the following table are set. \\
\hline
\end{tabular}
- Error code list
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Code } & \multicolumn{1}{|c|}{ Error item } & \multicolumn{1}{c|}{ Error description } \\
\hline 01 & \begin{tabular}{l}
ILLEGAL FUNCTION \\
ILLEGAL FUNCTION
\end{tabular} & The query message from the master has a function code that cannot be handled by the slave. \\
\hline 02 & \begin{tabular}{l}
ILLEGAL DATA ADDRESS \\
ILLEGAL DATA ADDRESS
\end{tabular} \\
\hline 03 & \begin{tabular}{l}
ILLEGAL DATA VALUE \\
ILLEGAL DATA VALUE
\end{tabular} & \begin{tabular}{l}
The query message from the master has a register address that cannot be handled by the slave. \\
(No parameter, parameter cannot be read, parameter cannot be written)
\end{tabular} \\
\hline \begin{tabular}{l}
The query message from the master has data that cannot be handled by the slave. \\
(Out of parameter write range, a mode is specified, or other error)
\end{tabular} \\
\hline
\end{tabular}
*1 An error response is not returned in the following cases:
(a) Function code H 03 (reading data of holding registers)

When the number of registers is specified as one or more and there are one or more holding registers from which data can be read
(b) Function code H 10 (writing data to multiple holding registers)

When the number of registers is specified as one or more and there are one or more holding registers to which data can be written.
In other words, when function code H 03 or H 10 is used and multiple holding registers are accessed, an error response is not returned even if a nonexistent holding register or holding register that cannot be read or written from/to is accessed.

\section*{NOTE}
- An error response is returned if none of the accessed holding registers exist. When an accessed holding register does not exist, the read value is 0 and the written data is invalid.
- Error detection of message data

The following errors are detected in message data from the master. The inverter output is not shut off even if an error is detected.

Error check items
\begin{tabular}{|c|c|c|}
\hline Error item & Error description & Inverter operation \\
\hline Parity error & The data received by the inverter is different from the specified parity (Pr. 334 setting). & \multirow{5}{*}{\begin{tabular}{l}
When this error occurs, Pr. 334 is incremented by one. \\
When this error occurs, the LF signal is output.
\end{tabular}} \\
\hline Framing error & The data received by the inverter is different from the stop bit length (Pr.334) setting. & \\
\hline Overrun error & The next data has been sent by the master before the inverter completes receiving the preceding data. & \\
\hline Message frame error & The data length of the message frame is checked, and an error is generated if the received data length is less than 4 bytes. & \\
\hline CRC check error & An error is generated if the data in the message frame does not match the calculation result. & \\
\hline
\end{tabular}

\section*{NOTE}
- The LF signal can be assigned to an output terminal by setting Pr. 190 to Pr. 196 (Output terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.

\section*{- MODBUS register}
- The following shows the MODBUS registers for system environment variables (read/write), real time monitor items (read), parameters (read/write), faults history data (read/write), and model information monitor items (read).
- System environment variables
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & \multicolumn{1}{c|}{ Definition } & \multicolumn{1}{c|}{ Read/write } & \multicolumn{1}{c|}{ Remarks } \\
\hline 40002 & Inverter reset & Write & Any value \\
\hline 40003 & Parameter clear & Write & Set H965A. \\
\hline 40004 & All parameter clear & Write & Set H99AA. \\
\hline 40006 & Parameter clear*1 & Write & Set H5A96. \\
\hline 40007 & All parameter clear \({ }^{* 1}\) & Write & Set HAA99. \\
\hline 40009 & Inverter status / control input command \({ }^{* 2}\) & Read/write & Refer to the following. \\
\hline 40010 & Operation mode / inverter setting \({ }^{* 3}\) & Read/write & Refer to the following. \\
\hline 40014 & Running frequency (RAM value) & Read/write & The display can be changed to the rotations \\
\hline 40015 & Running frequency (EEPROM value) & Write & \begin{tabular}{l}
per minute using Pr.37, Pr.144 and Pr.811. \\
(Refer to page 424.)
\end{tabular} \\
\hline
\end{tabular}
*1 Settings in the communication parameters are not cleared.
*2 The data is written as a control input command for writing. The data is read as the inverter status for reading.
*3 The data is written as an operation mode setting for writing. The data is read as the operation mode status for reading.
- Inverter status / control input command
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Bit } & \multicolumn{1}{|c|}{ Definition } \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{ Control input command } & \multicolumn{1}{c|}{ Inverter status } \\
\hline 0 & Stop command & RUN (Inverter running) \({ }^{* 6}\) \\
\hline 1 & Forward rotation command & Forward running \\
\hline 2 & Reverse rotation command & Reverse running \\
\hline 3 & RH (High-speed operation command) \({ }^{* 4}\) & SU (Up to frequency) \({ }^{* 6}\) \\
\hline 4 & RM (Middle-speed operation command) \({ }^{* 4}\) & OL (Overload warning) \({ }^{* 6}\) \\
\hline 5 & RL (Low-speed operation command) \({ }^{* 4}\) & \begin{tabular}{l}
IPF (Instantaneous power failure/ \\
undervoltage) \({ }^{* 6 * 7}\)
\end{tabular} \\
\hline 6 & JOG (Jog operation selection) \({ }^{* 4}\) & FU (Output frequency detection) \({ }^{* 6}\) \\
\hline 7 & RT (Second function selection) \({ }^{* 4}\) & ABC1 (Fault) \({ }^{* 6}\) \\
\hline 8 & AU (Terminal 4 input selection) \({ }^{* 4}\) & ABC2 (-) \({ }^{* 6}\) \\
\hline 9 & \begin{tabular}{l}
CS (Selection of automatic restart after \\
instantaneous power failure / flying start) \({ }^{* 4}\)
\end{tabular} & Safety monitor output \\
\hline 10 & MRS (Output stop) \({ }^{* 4^{*}{ }^{*}}\) & 0 \\
\hline 11 & STP (STOP) (Start self-holding selection) \({ }^{* 4}\) & 0 \\
\hline 12 & RES (Inverter reset) \({ }^{* 4}\) & 0 \\
\hline 13 & 0 & 0 \\
\hline 14 & 0 & 0 \\
\hline 15 & 0 & Fault occurrence \\
\hline
\end{tabular}
*4 The signal within parentheses () is the initial status. The description changes depending on the setting of Pr. 180 to Pr. 189 (Input terminal function selection) (page 496).
The signals assigned to the input terminals may be valid or invalid in the NET operation mode. (Refer to page 384.)
*5 The Inverter run enable signal is in the initial status for the separated converter type.
*6 The signal within parentheses () is the initial status. The description changes depending on the setting of Pr. 190 to Pr. 196 (Output terminal function selection) (page 450).
*7 No function is assigned in the initial status for the separated converter type.
- Operation mode / inverter setting
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Mode } & \multicolumn{1}{c|}{ Read value } & \multicolumn{1}{c|}{ Write value } \\
\hline EXT & H 0000 & \(\mathrm{H} 0010^{* 8}\) \\
\hline PU & H 0001 & \(\mathrm{H} 0011^{* 8}\) \\
\hline \begin{tabular}{l}
EXT \\
JOG
\end{tabular} & H 0002 & - \\
\hline \begin{tabular}{l}
PU \\
JOG
\end{tabular} & H 0003 & - \\
\hline NET & H 0004 & H 0014 \\
\hline PU + EXT & H 0005 & - \\
\hline
\end{tabular}
*8 Writing is available depending on the Pr. 79 and Pr. 340 settings. For the details, refer to page 378. Restrictions in each operation mode conform with the computer link specification.
- Real time monitor

Refer to page 424 for the register numbers and monitor items of the real time monitor.
- Parameters
\begin{tabular}{|c|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{|c|}{ Register } & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Read/write } & \multicolumn{1}{c|}{ Remarks } \\
\hline 0 to 999 & 41000 to \\
41999 & 41902 & \begin{tabular}{l}
For details on parameter names, \\
refer to the parameter list (page \\
162).
\end{tabular} & Read/write & The parameter number + +41000 is the register number. \\
\hline C2 (902) & \begin{tabular}{l}
Terminal 2 frequency setting bias \\
(frequency)
\end{tabular} & Read/write & \\
\hline \multirow{3}{*}{ C3 (902) } & 42092 & \begin{tabular}{l}
Terminal 2 frequency setting bias \\
(analog value)
\end{tabular} & Read/write & Analog value (\%) set to C3 (902) \\
\cline { 2 - 5 } & 43902 & \begin{tabular}{l}
Terminal 2 frequency setting bias \\
(terminal analog value)
\end{tabular} & Read & \begin{tabular}{l}
Analog value (\%) of the voltage (current) applied to \\
terminal 2
\end{tabular} \\
\hline \(125(903)\) & 41903 & \begin{tabular}{l}
Terminal 2 frequency setting gain \\
(frequency)
\end{tabular} & Read/write & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Register & Name & Read/write & Remarks \\
\hline \multirow[b]{2}{*}{C4 (903)} & 42093 & Terminal 2 frequency setting gain (analog value) & Read/write & Analog value (\%) set in C4 (903) \\
\hline & 43903 & Terminal 2 frequency setting gain (terminal analog value) & Read & Analog value (\%) of the voltage (current) applied to terminal 2 \\
\hline C5 (904) & 41904 & Terminal 4 frequency setting bias (frequency) & Read/write & \\
\hline \multirow[b]{2}{*}{C6 (904)} & 42094 & Terminal 4 frequency setting bias (analog value) & Read/write & Analog value (\%) set in C6 (904) \\
\hline & 43904 & Terminal 4 frequency setting bias (terminal analog value) & Read & Analog value (\%) of the current (voltage) applied to terminal 4 \\
\hline 126 (905) & 41905 & Terminal 4 frequency setting gain (frequency) & Read/write & \\
\hline \multirow[t]{2}{*}{C7 (905)} & 42095 & Terminal 4 frequency setting gain (analog value) & Read/write & Analog value (\%) set in C7 (905) \\
\hline & 43905 & Terminal 4 frequency setting gain (terminal analog value) & Read & Analog value (\%) of the current (voltage) applied to terminal 4 \\
\hline C12 (917) & 41917 & Terminal 1 bias frequency (speed) & Read/write & \\
\hline \multirow[b]{2}{*}{C13 (917)} & 42107 & Terminal 1 bias (speed) & Read/write & Analog value (\%) set in C13 (917) \\
\hline & 43917 & Terminal 1 bias (speed) (terminal analog value) & Read & Analog value (\%) of voltage applied to terminal 1 \\
\hline C14 (918) & 41918 & Terminal 1 gain frequency (speed) & Read/write & \\
\hline \multirow[b]{2}{*}{C15 (918)} & 42108 & Terminal 1 gain (speed) & Read/write & Analog value (\%) set in C15 (918) \\
\hline & 43918 & Terminal 1 gain (speed) (terminal analog value) & Read & Analog value (\%) of voltage applied to terminal 1 \\
\hline C16 (919) & 41919 & Terminal 1 bias command (torque) & Read/write & \\
\hline \multirow[b]{2}{*}{C17 (919)} & 42109 & Terminal 1 bias (torque) & Read/write & Analog value (\%) set in C17 (919) \\
\hline & 43919 & Terminal 1 bias (torque) (terminal analog value) & Read & Analog value (\%) of voltage applied to terminal 1 \\
\hline C18 (920) & 41920 & Terminal 1 gain command (torque) & Read/write & \\
\hline \multirow[b]{2}{*}{C19 (920)} & 42110 & Terminal 1 gain (torque) & Read/write & Analog value (\%) set in C19 (920) \\
\hline & 43920 & Terminal 1 gain (torque) (terminal analog value) & Read & Analog value (\%) of voltage applied to terminal 1 \\
\hline \multirow[b]{2}{*}{C29 (925)} & 42115 & Motor temperature detection calibration (analog input) & Read/write & \\
\hline & 43925 & Motor temperature detection calibration (analog input) (terminal analog value) & Read & Analog value (\%) between terminals TH1 and TH2 of the FR-A8AZ \\
\hline C30 (926) & 41926 & Terminal 6 bias frequency (speed) & Read/write & \\
\hline \multirow[b]{2}{*}{C31 (926)} & 42116 & Terminal 6 bias (speed) & Read/write & Analog value (\%) set in C31 (926) \\
\hline & 43926 & Terminal 6 bias (speed) (terminal analog value) & Read & Analog value (\%) of the voltage applied to terminal 6 of the FR-A8AZ \\
\hline C32 (927) & 41927 & Terminal 6 gain frequency (speed) & Read/write & \\
\hline \multirow[b]{2}{*}{C33 (927)} & 42117 & Terminal 6 gain (speed) & Read/write & Analog value (\%) set in C33 (927) \\
\hline & 43927 & Terminal 6 gain (speed) (terminal analog value) & Read & Analog value (\%) of the voltage applied to terminal 6 of the FR-A8AZ \\
\hline C34 (928) & 41928 & Terminal 6 bias command (torque) & Read/write & \\
\hline \multirow[b]{2}{*}{C35 (928)} & 42118 & Terminal 6 bias (torque) & Read/write & Analog value (\%) set in C35 (928) \\
\hline & 43928 & Terminal 6 bias (torque) (terminal analog value) & Read & Analog value (\%) of the voltage applied to terminal 6 of the FR-A8AZ \\
\hline C36 (929) & 41929 & Terminal 6 gain command (torque) & Read/write & \\
\hline \multirow[b]{2}{*}{C37 (929)} & 42119 & Terminal 6 gain (torque) & Read/write & Analog value (\%) set in C37 (929) \\
\hline & 43929 & Terminal 6 gain (torque) (terminal analog value) & Read & Analog value (\%) of the voltage applied to terminal 6 of the FR-A8AZ \\
\hline C8 (930) & 41930 & Current output bias signal & Read/write & \\
\hline C9 (930) & 42120 & Current output bias current & Read/write & Analog value (\%) set in C9 (930) \\
\hline C10 (931) & 41931 & Current output gain signal & Read/write & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Register & Name & Read/write & Remarks \\
\hline C11 (931) & 42121 & Current output gain current & Read/write & Analog value (\%) set in C11 (931) \\
\hline C38 (932) & 41932 & Terminal 4 bias command (torque) & Read/write & \\
\hline \multirow[b]{2}{*}{C39 (932)} & 42122 & Terminal 4 bias (torque) & Read/write & Analog value (\%) set in C39 (932) \\
\hline & 43932 & Terminal 4 bias (torque) (terminal analog value) & Read & Analog value (\%) of the current (voltage) applied to terminal 4 \\
\hline C40 (933) & 41933 & Terminal 4 gain command (torque) & Read/write & \\
\hline \multirow[b]{2}{*}{C41 (933)} & 42123 & Terminal 4 gain (torque) & Read/write & Analog value (\%) set in C41 (933) \\
\hline & 43933 & Terminal 4 gain (torque) (terminal analog value) & Read & Analog value (\%) of the current (voltage) applied to terminal 4 \\
\hline C42 (934) & 41934 & PID display bias coefficient & Read/write & \\
\hline \multirow[b]{2}{*}{C43 (934)} & 42124 & PID display bias analog value & Read/write & Analog value (\%) set in C43 (934) \\
\hline & 43934 & PID display bias analog value (terminal analog value) & Read & Analog value (\%) of the current (voltage) applied to terminal 4 \\
\hline C44 (935) & 41935 & PID display gain coefficient & Read/write & \\
\hline \multirow[b]{2}{*}{C45 (935)} & 42125 & PID display gain analog value & Read/write & Analog value (\%) set in C45 (935) \\
\hline & 43935 & PID display gain analog value (terminal analog value) & Read & Analog value (\%) of the current (voltage) applied to terminal 4 \\
\hline \[
\begin{aligned}
& 1000 \text { to } \\
& 1999
\end{aligned}
\] & \[
\begin{aligned}
& 45000 \text { to } \\
& 45359
\end{aligned}
\] & For details on parameter names, refer to the parameter list (page 162). & Read/write & The parameter number +44000 is the register number. \\
\hline
\end{tabular}
- Faults history
\begin{tabular}{|c|c|c|c|}
\hline Register & Definition & Read/write & Remarks \\
\hline 40501 & Faults history1 & Read/write & \multirow{8}{*}{\begin{tabular}{l}
Being 2 bytes in length, the data is stored as \(\mathrm{H} 00 \circ \mathrm{o}\). Refer to the lowest 1 byte for the error code. (For details on error codes, refer to page 742.) \\
The faults history is batch-cleared by writing to register 40501. \\
Set any value as data.
\end{tabular}} \\
\hline 40502 & Faults history2 & Read & \\
\hline 40503 & Faults history3 & Read & \\
\hline 40504 & Faults history4 & Read & \\
\hline 40505 & Faults history5 & Read & \\
\hline 40506 & Faults history6 & Read & \\
\hline 40507 & Faults history7 & Read & \\
\hline 40508 & Faults history8 & Read & \\
\hline
\end{tabular}
- Model information monitor
\begin{tabular}{|c|c|c|c|}
\hline Register & Definition & Read/write & Remarks \\
\hline 44001 & Model (1st and 2nd characters) & Read & \multirow{10}{*}{\begin{tabular}{l}
The inverter model can be read in ASCII code. "H20" (blank code) is set for blank area. \\
Example) FR-A840-1 (FM type): \\
H46, H52, H2D, H41, H38, H34, H30, H2D, H31, H20...... H2O
\end{tabular}} \\
\hline 44002 & Model (3rd and 4th characters) & Read & \\
\hline 44003 & Model (5th and 6th characters) & Read & \\
\hline 44004 & Model (7th and 8th characters) & Read & \\
\hline 44005 & Model (9th and 10th characters) & Read & \\
\hline 44006 & Model (11th and 12th characters) & Read & \\
\hline 44007 & Model (13th and 14th characters) & Read & \\
\hline 44008 & Model (15th and 16th characters) & Read & \\
\hline 44009 & Model (17th and 18th characters) & Read & \\
\hline 44010 & Model (19th and 20th characters) & Read & \\
\hline 44011 & Capacity (1st and 2nd characters) & Read & \multirow[t]{3}{*}{\begin{tabular}{l}
The capacity in the inverter model can be read in ASCII code. \\
Data is read in increments of 0.1 kW , and rounds down to 0.01 kW increments. \\
"H20" (blank code) is set for blank area. \\

\end{tabular}} \\
\hline 44012 & Capacity (3rd and 4th characters) & Read & \\
\hline 44013 & Capacity (5th and 6th characters) & Read & \\
\hline
\end{tabular}

\section*{NOTE}
- When a 32-bit parameter setting or monitor item is read and the value to be read exceeds HFFFF, HFFFF is returned.

\section*{-Pr. 343 Communication error count}
- The communication error occurrence count can be checked.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ Setting range } & Minimum setting range & Initial value \\
\hline 343 & (Read-only) & 1 & 0 \\
\hline
\end{tabular}
- The communication error count is temporarily stored in the RAM memory. The value is not stored in EEPROM, and so is cleared to 0 when power is reset and the inverter is reset.

\section*{Alarm (LF) signal output (communication error warning)}
- During a communication error, the Alarm (LF) signal is output by open collector output. Assign the terminal to be used using any of Pr. 190 to Pr. 196 (Output terminal function selection).

\section*{NOTE}
- The LF signal can be assigned to an output terminal by setting Pr. 190 to Pr.196. Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.

\section*{- Signal loss detection (Pr. 539 RS-485 communication check time interval)}
- If a signal loss (communication) is detected between the inverter and the master as a result of a signal loss detection, the Communication fault (inverter) (E.SER) occurs and the inverter output is shut off.
- When the setting is "9999", communication check (signal loss detection) is not made.
- When the setting is "0", reading, etc. of monitors and parameters is possible, though E.SER occurs instantly when the operation mode is switched to the Network operation.
- A signal loss detection is made when the setting is any of " 0.1 s to 999.8 s ". In order to enable the signal loss detection, data must be sent by the master at an interval equal to or less than the time set for the communication check. (The inverter makes a communication check (clearing of communication check counter) regardless of the station number setting of the data sent from the master).
- The communication check is made from the first communication in the Network operation mode (can be changed by Pr. 551 PU mode operation command source selection).
- The communication check time by query communication includes a no-data time (3.5 bytes).

This no-data time differs according to the communication speed, so take this no-data time into consideration when setting the communication check time.

Example: RS-485 terminal communication, Pr. \(539=\) " 0.1 to 999.8 s"

\section*{NOTE}
- For the RS-485 terminal communication, the operation at a communication error occurrence depends on the Pr. 502 Stop mode selection at communication error setting. (Refer to page 630.)

\subsection*{5.15.7 CC-Link IE Field Network function setting (FRA800GF)}

Use the following parameters to perform required settings for CC-Link IE Field Network communication between the inverter and other stations.
- For the details of the CC-Link IE Field Network, refer to page 716.
- For the inverter operation at communication error, refer to page 630.
- Set the parameters other than Pr.434, Pr.435, and Pr. 541 in the same way as when a communication option is used.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{\begin{tabular}{l}
Initial \\
value
\end{tabular}} & Setting range & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
434 \\
N110
\end{tabular} & \begin{tabular}{l}
Network number (CC- \\
Link IE)
\end{tabular} & 0 & 0 to 255 & Enter the network number of the inverter. \\
\hline \begin{tabular}{l}
\(\mathbf{4 3 5}\) \\
N111
\end{tabular} & \begin{tabular}{l}
Station number (CC-Link \\
IE)
\end{tabular} & 0 & 0 to 255 & Enter the station number of the inverter. \\
\hline \(\mathbf{5 4 1}\) & \begin{tabular}{l}
Frequency command \\
Nign selection
\end{tabular} & 0 & 0 & Signed frequency command value \\
\cline { 4 - 5 } & & 1 & Unsigned frequency command value \\
\hline
\end{tabular}

\section*{－Network number and station number setting（Pr．434，Pr．435）}
－Enter the inverter network number in Pr． 434 Network number（CC－Link IE）．
－The setting range of Pr． 434 is＂ 0 to 255 ＂，but its active range is＂ 1 to 239 ＂．The values out of the active range are invalid because such values cannot be transmitted to the master station．
－Use Pr． 435 Station number（CC－Link IE）to enter the station number of the inverter．
－The setting range of Pr． 435 is＂ 0 to 255 ＂，but its active range is＂ 1 to 120 ＂．The values out of the active range are invalid because such values cannot be transmitted to the master station．

\section*{NOTE}
－Use different station numbers for different devices．（If different devices have the same station number，the communication cannot be performed properly．If an error occurs due to a duplicated number，re－assign the station numbers，then reset the master station and the inverter power．）
－Station numbers do not have to be consecutive numbers．
－The Pr． 434 and Pr． 435 settings are applied after an inverter reset or next power－ON．

\section*{\(\rightarrow\) Frequency command with sign（Pr．541）}
－By adding a sign to the frequency command value，the start command（forward／reverse rotation）can be inverted to start operation
－The Pr． 541 Frequency command sign selection setting is applied to the frequency command from RWw0．
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{c}
Rotations per minute \\
（machine speed）setting \\
using Pr．37 and Pr． 144
\end{tabular} & Pr．541 setting & \multicolumn{1}{|c|}{ Sign } & \multicolumn{1}{c|}{ Setting range } & \multicolumn{1}{c|}{ Actual frequency command } \\
\hline \multirow{2}{*}{ Without } & 0 & Without & 0 to 59000 & 0 to 590.00 Hz \\
\cline { 2 - 5 } & 1 & With & -32768 to 32767 （two＇s complement） & -327.68 to 327.67 Hz \\
\hline \multirow{2}{*}{ With } & 0 & Without & 0 to 65535 & It depends on Pr．37，Pr．144，and Pr．811 \\
& 1 & With & -32768 to 32767 （two＇s complement） \\
settings（in 1 or 0.1 increments）． \\
\hline
\end{tabular}
－Relationship between the start command and sign（Pr． \(541=\)＂ \(1 "\) ）
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Start command } & \begin{tabular}{c}
Sign of the frequency \\
command
\end{tabular} & \begin{tabular}{c}
Actual operation \\
command
\end{tabular} \\
\hline \multirow{2}{*}{ Forward rotation } & + & Forward rotation \\
\cline { 2 - 3 } & - & Reverse rotation \\
\hline \multirow{2}{*}{ Reverse rotation } & + & Forward rotation \\
\cline { 2 - 3 } & - & Reverse rotation \\
\hline
\end{tabular}

\section*{NOTE}
－When Pr． 541 ＝＂1＂（with sign）
－When EEPROM write is specified by turning ON of RY22，write mode error（error code H01）will occur．
－When both RY21 and RY22 are turned ON，RY21 has precedence．
－When power is turned ON（inverter reset），the initial setting status of the sign bit is＂positive＂and the set frequency is 0 Hz ． （The motor does not operate at the frequency set before turning OFF the power（inverter reset）．）
－When set frequency is written with the instruction code of HED or HEE，the sign of the frequency command is not changed．

\section*{5．15．8 USB device communication}

A personal computer and an inverter can be connected with a USB cable．Setup of the inverter can be easily performed with FR Configurator2．
The inverter can be connected easily to a personal computer by a USB cable．
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \[
\begin{aligned}
& 547^{* 1} \\
& \text { N040 }
\end{aligned}
\] & USB communication station number & 0 & 0 to 31 & Specify the inverter station number. \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 548^{* 1} \\
& \text { N041 }
\end{aligned}
\]} & \multirow{3}{*}{USB communication check time interval} & \multirow{3}{*}{9999} & 0 & USB communication is possible, however the inverter output is shut off (E.USB) when the mode changes to the PU operation mode. \\
\hline & & & 0.1 to 999.8 s & \begin{tabular}{l}
Set the communication check time interval. \\
If a no-communication state persists for longer than the permissible time, the inverter output is shut off (E.USB).
\end{tabular} \\
\hline & & & 9999 & No communication check \\
\hline
\end{tabular}
*1 The changed value is applied after the next power-ON or inverter reset.

\section*{USB communication specifications}
\begin{tabular}{|l|l|}
\hline Interface & Conforms to USB1.1 (USB2.0 full speed) \\
\hline Transmission speed & 12 Mbps \\
\hline Wiring length & Maximum 5 m \\
\hline Connector & USB mini B connector (receptacle) \\
\hline Power supply & Self-powered \\
\hline Recommended USB cable & MR-J3USBCBL3M (cable length 3 m) \\
\hline
\end{tabular}

- At the initial setting (Pr. 551 PU mode operation command source selection = "9999"), communication with FR Configurator2 can be made in the PU operation mode simply by connecting a USB cable. To fix the command source to the USB connector in the PU operation mode, set " 3 " in Pr. 551.
- Parameter setting and monitoring can be performed by using FR Configurator2. For details, refer to the Instruction Manual of FR Configurator2.

\section*{《 Parameters referred to 》}

Pr. 551 PU mode operation command source selection page 380

\subsection*{5.15.9 Automatic connection with GOT}

When the automatic connection is enabled in the GOT2000 series, the inverter can communicate with the GOT2000 series with only setting the station number and connecting the GOT. This eliminates the need for the communication parameter setting.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{|c|}{ Name } & Initial value & Setting range & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
117 \\
N020
\end{tabular} & \begin{tabular}{l}
PU communication \\
station number
\end{tabular} & 0 & 0 to 31 & \begin{tabular}{l}
Specify the inverter station number. \\
The inverter station number setting is required when multiple inverters are \\
connected to one GOT (PU connector communication).
\end{tabular} \\
\hline \begin{tabular}{l}
\(\mathbf{3 3 1}\) \\
N030
\end{tabular} & \begin{tabular}{l}
RS-485 \\
communication \\
station number
\end{tabular} & 0 & \begin{tabular}{l}
0 to 31 \\
\((0 \text { to } 247)^{* 1 * 2}\)
\end{tabular} & \begin{tabular}{l}
Specify the inverter station number. \\
The inverter station number setting is required when multiple inverters are \\
connected to one GOT (RS-485 terminal communication).
\end{tabular} \\
\hline
\end{tabular}
*1 When Pr. 549 Protocol selection = "1" (MODBUS RTU protocol), the setting range is as shown in the parentheses.
*2 When a value outside the setting range is set, the inverter operates at the initial value.

\section*{\(\bullet\) Automatic connection system configuration}

\section*{- GOT2000 series automatic recognition}
- When the GOT2000 series is connected, the parameters required for the GOT connection are automatically changed by setting the automatic recognition on the GOT2000 series side.
- Set the station number (Pr. 117 or Pr.331) of the inverter before the automatic recognition is performed.
- Connect all the stations of inverters with GOT before the automatic recognition is performed. The inverter newly added after automatic recognition will not be recognized automatically. (When an inverter is added, perform the initial setting in Pr. 999 Automatic parameter setting or set the automatic recognition on the GOT side again.)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Automatic change item} & \multicolumn{2}{|r|}{Automatic change parameter} & \multirow[t]{2}{*}{Setting value after change} \\
\hline & PU connector connection & RS-485 terminal connection & \\
\hline Communication speed & Pr. 118 & Pr. 332 & \multirow{5}{*}{Depending on the setting of the connected device on the GOT side.} \\
\hline Data length / stop bit & Pr. 119 & Pr. 333 & \\
\hline Parity & Pr. 120 & Pr. 334 & \\
\hline Waiting time setting & Pr. 123 & Pr. 337 & \\
\hline CR/LF selection & Pr. 124 & Pr. 341 & \\
\hline Number of communication retries & Pr. 121 & Pr. 335 & 9999 (fixed) \\
\hline Communication check time interval & Pr. 122 & Pr. 336 & 9999 (fixed) \\
\hline Protocol selection & (Pr. 549 holds the value before the automatic recognition.) & Pr. 549 & 0 (fixed to Mitsubishi inverter protocol) \\
\hline
\end{tabular}

\section*{NOTE}
- If the automatic recognition cannot be performed, initial setting in Pr. 999 is required.
- For connection to a device other than the GOT2000 series, initial setting in Pr. 999 is required.
- For details, refer to the GOT2000 Series Connection Manual (Mitsubishi Product).

\subsection*{5.15.10 Backup/restore}

The GOT can be used for backing up inverter parameters and the data used in the PLC function of inverter.
The backup data stored in the GOT can be used to restore the data in the inverter.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{\begin{tabular}{l}
Initial \\
value
\end{tabular}} & Setting range & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
434 \\
N110*1
\end{tabular} & \begin{tabular}{l}
Network number (CC-Link \\
IE)
\end{tabular} & 0 & 0 to 255 & Enter the network number of the inverter. \\
\hline \begin{tabular}{l}
435 \\
N111*1
\end{tabular} & Station number (CC-Link IE) & 0 & 0 to 255 & Enter the station number of the inverter. \\
\hline
\end{tabular}
*1 The setting is available in the inverter on which the FR-A8NCE is installed or when the FR-A800-GF inverter is used.

FR-A800 (with the FR-A8NCE installed)
FR-A800-GF

\section*{- Connected devices}
- To enable backup/restore, connect either the general-purpose inverter with the FR-A8NCE or the FR-A800-GF inverter to a programmable controller (master station) via the CC-Link IE Field Network.

\section*{NOTE}
- The backup/restore function is enabled only when the inverter is connected to a master station programmable controller.
- For the details of the connected devices, refer to the GOT2000 Series User's Manual (Monitor).

\section*{- Data to be backed up and restored}
- The following data can be backed up and restored. The data other than those listed below cannot be backed up or restored.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Item } \\
\hline Inverter parameters \\
\hline Parameters used for activating the PLC function \\
\hline Programs (including SFCs) used in the PLC function \\
\hline Global device comment information used in the PLC function \\
\hline Function block source information \\
\hline
\end{tabular}

\section*{- Backup/restore operation}
- The GOT backs up all applicable data in all the inverters that can be identified with the network numbers and station numbers in the controller list file.
- The GOT restores all relevant data of the inverters selected based on the network numbers and station numbers using the backup data.
- The backup/restore cannot be performed in the following cases.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Operation } & \multicolumn{1}{c|}{ Inverter status } \\
\hline Backup & \begin{tabular}{l}
During an inverter reset \\
A password is registered or password protection is enabled (Pr.297 \(\neq\) "9999"). \\
During parameter copy using an operation panel or USB memory device (during writing to the inverter) \\
During restore \\
While password protection is enabled for files used in the PLC function (read protection) \\
While PLC function project data is written to, read from, or verified against a USB memory device
\end{tabular} \\
\hline Restore & \begin{tabular}{l}
During an inverter reset \\
During running \\
During auto tuning \\
A password is registered or password protection is enabled (Pr.297 \(\neq\) "9999"). \\
While parameter write is disabled (Pr.77 = "1") \\
During parameter copy using an operation panel or USB memory device (during writing to / reading from / \\
verification against the inverter) \\
During backup operation \\
During the RUN status of the PLC function \\
While password protection is enabled for files used in the PLC function (write protection) \\
While PLC function project data is written to, read from, or verified against a USB memory device
\end{tabular} \\
\hline
\end{tabular}
- On the operation panel, "RD" is displayed during backup, and "WR" is displayed during restore.
- To enable the restore operation, Pr. 434 Network number (CC-Link IE) and Pr. 435 Station number (CC-Link IE) must be set.
- Backup is performed for parameters for which parameter copy can be performed.
- For the details of backup/restore function, refer to the GOT2000 Series User's Manual (Monitor).

\subsection*{5.16 \\ (G) Control parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline Purpose & \multicolumn{3}{|c|}{Parameter to set} & Refer to page \\
\hline To set the starting torque manually & Manual torque boost & \[
\begin{aligned}
& \text { P.G000, P.G010, } \\
& \text { P.G020 }
\end{aligned}
\] & Pr.0, Pr.46, Pr. 112 & 672 \\
\hline To set the motor constant & Base frequency, base frequency voltage & \[
\begin{aligned}
& \text { P.G001, P.G002, } \\
& \text { P.G011, P.G021 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.3, Pr.19, Pr. } 47 \text {, } \\
& \text { Pr. } 113
\end{aligned}
\] & 673 \\
\hline To select the V/F pattern matching the application & Load pattern selection & P.G003 & Pr. 14 & 674 \\
\hline To improve the torque in a low-speed range & Excitation current low-speed scaling factor & \[
\begin{aligned}
& \text { P.G003, P.G080, } \\
& \text { P.G201, P.G202, } \\
& \text { P.G301, P.G302 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.14, Pr. } 85 \text {, } \\
& \text { Pr. } 86, \text { Pr. } 565 \text {, } \\
& \text { Pr. } 566, \text { Pr. } 617
\end{aligned}
\] & 677 \\
\hline To perform energy saving operation & Energy saving operation & P.G030 & Pr. 60 & 678 \\
\hline To use a special motor & Adjustable 5 points V/F & \[
\begin{aligned}
& \text { P.C100, P.G040 to } \\
& \text { P.G049 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr. } 71, \text { Pr. } 100 \text { to } \\
& \text { Pr. } 109
\end{aligned}
\] & 679 \\
\hline To compensate the motor slip amount when replacing an SF-JR motor with an SF-PR motor & SF-PR slip amount adjustment mode & P.G060, P.G061 & Pr.673, Pr. 674 & 680 \\
\hline To adjust the motor braking torque & DC injection brake, zero speed control, servo lock, magnetic flux decay output shutoff & P.G100 to P.G103, P.G108 to P.G110 & \[
\begin{aligned}
& \text { Pr. } 10 \text { to Pr.12, } \\
& \text { Pr. } 802, \text { Pr. } 850 \text {, } \\
& \text { Pr. } 1299
\end{aligned}
\] & 681 \\
\hline To coast the motor to a stop & Output stop function & P.G105 & Pr. 522 & 686 \\
\hline To coast the motor to a stop & Selection of motor stop method & P.G106 & Pr. 250 & 688 \\
\hline To use the regeneration unit to increase the motor braking torque & Regenerative brake selection & \[
\begin{aligned}
& \text { P.E300, P.G107, } \\
& \text { P.T721 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.30, Pr.70, } \\
& \text { Pr. } 599
\end{aligned}
\] & 689 \\
\hline To operate the inverter with DC power supply & DC feeding mode & P.E300 & Pr. 30 & 689 \\
\hline To avoid overvoltage fault due to regenerative driving by automatic adjustment of output frequency & Regeneration avoidance function & P.G120 to P.G125 & Pr. 882 to Pr.886, Pr. 665 & 696 \\
\hline To decrease the deceleration time of the motor & Increased magnetic excitation deceleration & P.G130 to P.G132 & Pr. 660 to Pr. 662 & 699 \\
\hline To select the control method & Control method selection & P.G200, P.G300 & Pr.800, Pr. 451 & 215 \\
\hline To secure the low-speed torque by compensating the slip of the motor & Slip compensation & P.G203 to P.G205 & Pr. 245 to Pr. 247 & 700 \\
\hline To select the torque characteristic & Constant output range torque characteristic selection & P.G210 & Pr. 803 & 235, 270 \\
\hline To adjust the speed control gain & Speed control gain & \[
\begin{aligned}
& \text { P.G211, P.G212, } \\
& \text { P.G311, P.G312 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.820, Pr.821, } \\
& \text { Pr.830, Pr. } 831
\end{aligned}
\] & 244 \\
\hline To adjust the torque control gain & Torque control gain & \[
\begin{aligned}
& \text { P.G213, P.G214, } \\
& \text { P.G313, P.G314 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.824, P.825, } \\
& \text { Pr.834, P. } 835
\end{aligned}
\] & 280 \\
\hline To stabilize speed and torque feedback signal & Speed detection filter Torque detection filter & \[
\begin{aligned}
& \text { P.G215, P.G216, } \\
& \text { P.G315, P.G316 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.823, Pr.827, } \\
& \text { Pr.833, Pr. } 837
\end{aligned}
\] & 316 \\
\hline To changes excitation ratio & Excitation ratio & P.G217 & Pr. 854 & 316 \\
\hline To improve the motor trackability for the speed command changes & Speed feed forward control, model adaptive speed control & \[
\begin{array}{|l|}
\hline \text { P.G224, P.G220 to } \\
\text { P.G222, P.G223 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { Pr.828, Pr. } 877 \text { to } \\
& \text { Pr. } 879, \text { Pr. } 881
\end{aligned}
\] & 253 \\
\hline To make starting torque start-up faster & Torque bias & P.G230 to P.G238 & Pr. 840 to Pr. 848 & 255 \\
\hline To make the motor speed constant by the encoder & Encoder feedback control & \[
\begin{aligned}
& \text { P.M002, P.A107, } \\
& \text { P.C140, P.C141, } \\
& \text { P.G240, P.G241 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr. } 144 \text {, Pr. } 285 \text {, } \\
& \text { Pr. } 359 \text {, Pr. } 367 \text { to } \\
& \text { Pr. } 369
\end{aligned}
\] & 700 \\
\hline To select low-speed range torque characteristics & Low-speed range torque characteristics & P.G250, P.G350 & Pr.788, Pr. 747 & 227 \\
\hline To select operation at emergency stop & Emergency stop operation selection & P.G264 & Pr. 1349 & 349 \\
\hline To perform frequency control appropriate for load torque & Droop control & P.G400 to P.G404, P.G420 to P.G424 & \[
\begin{aligned}
& \text { Pr. } 286 \text { to Pr. } 288 \text {, } \\
& \text { Pr. } 679 \text { to Pr. } 683 \text {, } \\
& \text { Pr. } 994, \text { Pr. } 995
\end{aligned}
\] & 702 \\
\hline To suppress the machine resonance & Speed smoothing control & P.G410, P.G411 & Pr.653, Pr. 654 & 705 \\
\hline To suppress the machine resonance & Notch filter & P.G601 to P.G603 & Pr. 1003 to Pr. 1005 & 261 \\
\hline To adjust the speed gain for Advanced magnetic flux vector control & Speed control gain & P.G932, P.G942 & Pr.89, Pr. 569 & 222 \\
\hline
\end{tabular}

\subsection*{5.16.1 Manual torque boost}

VIF
Voltage drop in the low-frequency range can be compensated, improving reduction of the motor torque in the low-speed range.
- Motor torque in the low-frequency range can be adjusted according to the load, increasing the motor torque at the start up.
- By using the RT signal or X9 signal, it is possible to switch between 3 types of torque boost.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& 0 \\
& \text { G000 }
\end{aligned}
\]} & \multirow{5}{*}{Torque boost} & 6\%** & \multirow{5}{*}{0 to 30\%} & \multirow{5}{*}{Set the output voltage at 0 Hz in \%.} \\
\hline & & 4\%*2 & & \\
\hline & & 3\%*3 & & \\
\hline & & 2\%*4 & & \\
\hline & & \(1 \%^{*}{ }^{5}\) & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 46 \\
& \text { G010 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Second torque boost} & \multirow[t]{2}{*}{9999} & 0 to 30\% & Set the torque boost value at when RT signal is ON. \\
\hline & & & 9999 & Without the second torque boost \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 112 \\
& \text { G020 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Third torque boost} & \multirow[t]{2}{*}{9999} & 0 to 30\% & Set the torque boost value at when the X 9 signal is ON . \\
\hline & & & 9999 & Without the third torque boost \\
\hline
\end{tabular}
*1 The initial value for the FR-A820-00077(0.75K) or lower and FR-A840-00038(0.75K) or lower.
*2 The initial value for the FR-A820-00105(1.5K) to FR-A820-00250(3.7K), FR-A840-00052(1.5K) to FR-A840-00126(3.7K).
*3 The initial values for the FR-A820-00340(5.5K), FR-A820-00490(7.5K), FR-A840-00170(5.5K), FR-A840-00250(7.5K).
*4 The initial value for the FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K).
*5 The initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) and higher.

\section*{- Starting torque adjustment}
- Assuming Pr. 19 Base frequency voltage is \(100 \%\), set the output voltage at 0 Hz to Pr. 0 (Pr.46, Pr.112) in percentage.
- Perform the adjustment of the parameter little by little (approximately \(0.5 \%\)), and confirm the status of the motor each time.

The motor may overheat when the value is set too high. Do not use more than \(10 \%\) as a guideline.

\section*{- Setting multiple torque boosts (RT signal, X9 signal, Pr.46, Pr.112)}
- When changing the torque boost depending on the application or when using single inverter switching between multiple motors, use the second (third) torque boost.
- Pr. 46 Second torque boost is enabled when the RT signal is ON.
- Pr. 112 Third torque boost is enabled when the X9 signal is ON. Set "9" in Pr. 178 to Pr. 189 (Input terminal function selection) to assign the X 9 signal function to a terminal.

\section*{NOTE}
- The RT (X9) signal acts as the second (third) function selection signal and makes the other second (third) functions valid. (Refer to page 500.)
- The RT signal is assigned to terminal RT in the initial status. Set "3" in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Set a larger value when the distance between the inverter and the motor is long or when there is not enough motor torque in the low-speed range. It may cause overcurrent trip when it is set too large.
- Setting for Pr.0, Pr.46, and Pr. 112 becomes enabled only when the V/F control is selected.
- When the initial value is set in Pr.0, the Pr. 0 setting is automatically changed by changing the Pr. 71 Applied motor or Pr. 81 Number of motor poles setting. (Refer to page 505.)
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

\section*{5．16．2 Base frequency voltage}

\section*{V／F}

Use this function to adjust the inverter outputs（voltage，frequency）to match with the motor rating．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pr．} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|r|}{Initial value} & \multirow[b]{2}{*}{Setting range} & \multirow[b]{2}{*}{Description} \\
\hline & & FM & CA & & \\
\hline \[
\begin{aligned}
& \mathbf{3} \\
& \text { G001 }
\end{aligned}
\] & Base frequency & 60 Hz & 50 Hz & 0 to 590 Hz & Set the frequency at the rated motor torque．（50／60 Hz ） \\
\hline \multirow{3}{*}{\[
\begin{array}{|l|}
\hline 19 \\
\text { G002 }
\end{array}
\]} & \multirow{3}{*}{Base frequency voltage} & \multirow{3}{*}{9999} & \multirow{3}{*}{8888} & 0 to 1000 V & Set the base voltage． \\
\hline & & & & 8888 & 95\％of the power supply voltage \\
\hline & & & & 9999 & Same as the power supply voltage \\
\hline 47 & \multirow[t]{2}{*}{Second V／F（base frequency）} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{9999}} & 0 to 590 Hz & Sets the base frequency when the RL signal is ON． \\
\hline G011 & & & & 9999 & Second V／F disabled \\
\hline 113 & \multirow[t]{2}{*}{Third V／F（base frequency）} & \multirow[b]{2}{*}{9999} & & 0 to 590 Hz & Set the base frequency when the X 9 signal is ON． \\
\hline G021 & & & & 9999 & Third V／F disabled \\
\hline
\end{tabular}

\section*{Starting frequency setting（Pr．3）}
－When operating a standard motor，generally set the rated frequency of the motor in Pr． 3 Base frequency．When the motor operation require switching to the commercial power supply，set the power supply frequency in Pr．3．
－When the frequency described on the motor rating plate is＂ 50 Hz ＂only，make sure to set to 50 Hz ．When it is set to 60 Hz ， the voltage will drop too much，causing insufficient torque．As a result，the inverter output may be shut off due to overload． A caution is required especially in case of Pr． 14 Load pattern selection＝＂1＂（variable torque load）．
－When using the Mitsubishi Electric constant torque motor，set Pr． 3 to 60 Hz ．

\section*{Setting multiple base frequencies（Pr．47，Pr．113）}
－To change the base frequency when using single inverter switching between multiple motors，use Pr． 47 Second V／F（base frequency）and Pr． 113 Third V／F（base frequency）．
－Pr． 47 is enabled when the RT signal is ON and Pr． 113 is enabled when the X 9 signal is ON．To input the X 9 signal，set ＂9＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function to a terminal．

\section*{NOTE}
－The RT（X9）signal acts as the second（third）function selection signal and makes the other second（third）functions valid． （Refer to page 500．）
－The RT signal is assigned to the terminal RT in the initial status．Set＂ 3 ＂in one of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．

\section*{Setting of base frequency voltage（Pr．19）}
－Use Pr． 19 Base frequency voltage to set the base voltage（for example，rated motor voltage）．
－When it is set lower than the power supply voltage，maximum output voltage of the inverter will be the voltage set in Pr． 19 ．
- Pr. 19 can be used in following cases.
(a) When regenerative driving (continuous regeneration, etc.) is performed frequently

Output voltage will get higher than the specification during the regenerative driving, which may cause overcurrent trip (E.OC[]) by the increase in motor current.
(b) When the fluctuation of power supply voltage is high

When the power supply voltage exceeds the rated voltage of the motor, fluctuation of rotation speed or overheating of motor may occur due to excessive torque or increase in motor current.
- When operating a Vector control dedicated motor (SF-V5RU, SF-V5RU1, SF-V5RU3, SF-V5RU4, SF-VR) with V/F control, perform following settings.
\begin{tabular}{|c|c|c|}
\hline Motor model & Pr. 19 setting & Pr. 3 setting \\
\hline SF-V5RU, 3.7 kW or lower & 170 V & \multirow{4}{*}{50 Hz} \\
\hline SF-V5RU, 5.5 kW or higher & 160 V & \\
\hline SF-V5RUH, 3.7 kW or lower & 340 V & \\
\hline SF-V5RUH, 5.5 kW or higher & 320 V & \\
\hline SF-V5RU1, 30 kW or lower & 160 V & \multirow{4}{*}{33.33 Hz} \\
\hline SF-V5RU1, 37 kW & 170 V & \\
\hline SF-V5RU3, 22 kW or lower & 160 V & \\
\hline SF-V5RU3, 30 kW & 170 V & \\
\hline SF-V5RU4, 3.7 kW and 7.5 kW & 150 V & \multirow[t]{2}{*}{16.67 Hz} \\
\hline SF-V5RU4 and motors other than described above & 160 V & \\
\hline SF-VR & 160 V & \multirow[t]{2}{*}{50 Hz} \\
\hline SF-VRH & 320 V & \\
\hline
\end{tabular}

\section*{NOTE}
- When the operation becomes not possible due to failure in encoder, etc., under Vector control, set Pr. 80 Motor capacity or Pr. 81 Number of motor poles = "9999" to perform V/F control.
- When the Advanced magnetic flux vector control, Real sensorless vector control, Vector control, or PM sensorless vector control is selected, Pr.3, Pr.47, Pr.113, and Pr. 19 will become disabled, and Pr. 83 and Pr. 84 will become enabled. However, S-pattern curve with Pr. 29 Acceleration/deceleration pattern selection = "1" (S-pattern acceleration/deceleration A) will make Pr. 3 or Pr. 47 and Pr. 113 enabled. (S-pattern curve under PM sensorless vector control is the rated frequency of the motor.)
- When Pr. 71 Applied motor = "2" (adjustable 5 points V/F), setting for Pr. 47 and Pr. 113 will become disabled. Also, Pr. 19 cannot be set to "8888" or "9999".
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

\section*{《 Parameters referred to 》}

Pr. 14 Load pattern selection page 674
Pr. 29 Acceleration/deceleration pattern selection \(\leqslant\) page 354
Pr. 71 Applied motor page 505
Pr. 83 Rated motor voltage, Pr. 84 Rated motor frequency page 509
Pr. 178 to Pr. 189 (Input terminal function selection) page 496

\subsection*{5.16.3 Load pattern selection}

\section*{V/F}

Optimal output characteristics (V/F characteristics) for application or load characteristics can be selected.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow{7}{*}{14 G003} & \multirow{7}{*}{Load pattern selection} & \multirow{7}{*}{0} & 0 & For constant-torque load \\
\hline & & & 1 & For variable-torque load \\
\hline & & & 2 & For constant-torque lift (boost at reverse rotation: 0\%) \\
\hline & & & 3 & For constant-torque lift (boost at forward rotation: 0\%) \\
\hline & & & 4 & RT signal ON...for constant-torque load RT signal OFF...for constant-torque lift, boost at reverse rotation 0\% \\
\hline & & & 5 & RT signal ON...for constant-torque load RT signal OFF...for constant-torque lift, boost at forward rotation 0\% \\
\hline & & & 12 to 15 & Excitation current low-speed scaling factor (Refer to page 677.) \\
\hline
\end{tabular}

\section*{Application for constant-torque load (Pr. \(14=\) ="0", initial value)}
- The output voltage will change linearly against the output frequency at the base frequency or lower.
- Set this parameter when driving a load that has constant load torque even when the rotation speed is changed, such as conveyor, dolly, or roll drive.

\section*{Point \(\rho\)}

Select for constant-torque load (setting value " 0 ") even for fan and pump in following cases.
- When accelerating a blower with large moment of inertia \((\mathrm{J})\) in a short period of time.
- When it is a constant-torque load such as rotary pump or gear pump.
- When the load torque increases in low speed such as screw pump.

\section*{Application for variable-torque load (Pr. 14 ="1")}
- The output voltage will change in square curve against the output frequency at the base frequency or lower. (1.75th-power curve for the FR-A820-01870(37K) or higher, and the FR-A840-00930(37K) or higher)
- Set this parameter when driving a load with load torque change proportionally against the square of the rotation speed, such as a fan or pump.

\section*{- Vertical lift load applications (Pr. 14 = "2, 3")}
- Set "2" when a vertical lift load is fixed as power driving load at forward rotation and regenerative load at reverse rotation.
- Pr. 0 Torque boost is valid during forward rotation, and torque boost is automatically changed to "0\%" during reverse rotation.
- Set " 3 " for an elevated load that is in the driving mode during reverse rotation and in the regenerative load mode during forward rotation according to the load weight, e.g. counterweight system.

Output frequency (Hz)

Pr. \(14=3\)
For vertical lift loads
At forward rotation boost...0\%
At reverse rotation boost...Pr. 0 setting

Output frequency (Hz)

\section*{NOTE}
- When torque is continuously regenerated as vertical lift load, it is effective to set the rated voltage in Pr. 19 Base frequency voltage to prevent trip due to current at regeneration.

\section*{- Switching load pattern using signal (Pr. \(14=44,5\) ")}
- The output characteristics can be switched between for constant-torque load and for lift with the RT signal or X17 signal.
- To input the X17 signal, set "17" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- Switching with the RT signal will become disabled when the X17 signal is assigned.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Pr.14 setting } & \multicolumn{1}{|c|}{ RT (X17) signal } \\
\hline \multirow{2}{*}{4} & ON & \multicolumn{1}{c|}{ Output characteristics } \\
\cline { 2 - 3 } & OFF & For constant-torque load (same as setting value "0") \\
\hline \multirow{2}{*}{5} & ON & For lift, boost at reverse rotation 0\% (same as setting value "2") \\
\cline { 2 - 3 } & OFF & For constant-torque load (same as setting value "0") \\
\hline
\end{tabular}

\section*{NOTE}
- The RT signal is assigned to the terminal RT in the initial status. Set " 3 " in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to 189 may affect other functions. Set parameters after confirming the function of each terminal.
- Pr. 14 will become enabled under V/F control.
- Other second functions will become enabled when the RT signal is ON.

\footnotetext{
Parameters referred to 》
Pr. 0 Torque boost page 672
Pr. 3 Base frequency page 673
Pr. 178 to Pr. 189 (Input terminal function selection) page 496
}

\subsection*{5.16.4 Excitation current low-speed scaling factor}

\section*{Magneticflux Sensorless}

Under Advanced magnetic flux vector control or Real sensorless vector control, the excitation current scaling factor in the lowspeed range can be adjusted.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& 14 \\
& \text { G003 }
\end{aligned}
\]} & \multirow{5}{*}{Load pattern selection} & \multirow{5}{*}{0} & 0 to 5 & Excitation current low-speed scaling factor: Pr. 86 Refer to page 674 for details of the operation under V/F control. \\
\hline & & & \(12^{* 1}\) & Forward rotation excitation current low-speed scaling factor: Pr. 86 Reverse rotation excitation current low-speed scaling factor: Pr. 617 \\
\hline & & & \(13^{* 1}\) & Forward rotation excitation current low-speed scaling factor: Pr. 617 Reverse rotation excitation current low-speed scaling factor: Pr. 86 \\
\hline & & & \(14^{* 1}\) & Forward rotation excitation current low-speed scaling factor: Pr. 86 Reverse rotation excitation current low-speed scaling factor: Pr. 617 (X17-OFF), Pr. 86 (X17 signal-ON) \\
\hline & & & \(15^{* 1}\) & \begin{tabular}{l}
Forward rotation excitation current low-speed scaling factor: Pr. 617 (X17-OFF), Pr. 86 (X17 signal-ON) \\
Reverse rotation excitation current low-speed scaling factor: Pr. 86
\end{tabular} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 85 \\
& \text { G201 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Excitation current break point} & \multirow[b]{2}{*}{9999} & 0 to 400 Hz & Set the frequency at which increased excitation is started. \\
\hline & & & 9999 & \begin{tabular}{l}
SF-PR/SF-HR/SF-HRCA motor: The predetermined frequency is applied. \\
Motor other than the above: 10 Hz is applied.
\end{tabular} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 86 \\
& \text { G202 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Excitation current low speed scaling factor} & \multirow[b]{2}{*}{9999} & 0 to 300\% & Set an excitation current scaling factor at 0 Hz . \\
\hline & & & 9999 & \begin{tabular}{l}
SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. \\
Motor other than the above: \(130 \%\) is applied.
\end{tabular} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 617 \\
& \text { G080 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Reverse rotation excitation current low-speed scaling factor} & \multirow[b]{2}{*}{9999} & 0 to 300\% & Set an excitation current scaling factor when different excitation current scaling factors are used for forward and reverse rotation. \\
\hline & & & 9999 & \begin{tabular}{l}
SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. \\
Motor other than the above: \(130 \%\) is applied.
\end{tabular} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 565 \\
& \text { G301 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Second motor excitation current break point} & \multirow[b]{2}{*}{9999} & 0 to 400 Hz & Set an excitation current break point when the RT signal is ON. \\
\hline & & & 9999 & \begin{tabular}{l}
SF-PR/SF-HR/SF-HRCA motor: The predetermined frequency is applied. \\
Motor other than the above: 10 Hz is applied.
\end{tabular} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 566 \\
& \text { G302 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Second motor excitation current low-speed scaling factor} & \multirow[b]{2}{*}{9999} & 0 to 300\% & Set an excitation current low-speed scaling factor when the RT signal is ON. \\
\hline & & & 9999 & SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. Motor other than the above: \(130 \%\) is applied. \\
\hline
\end{tabular}
- Under Advanced magnetic flux vector control or Real sensorless vector control, excitation current in the low-speed range can be increased to improve torque. When Pr. \(14=" 12\) to \(15 "\), the excitation current scaling factor can be switched for the forward/reverse rotation.
- Increased excitation is applied when the output frequency is equal to or lower than the setting in Pr. 85 Excitation current break point. The excitation current scaling factor at 0 Hz is set in Pr. 86 Excitation current low speed scaling factor. Use Pr. 565 Second motor excitation current break point and Pr. 566 Second motor excitation current low-speed scaling factor for the setting for using the second motor (RT signal-ON).

- When Pr. 14 = "14 or 15 " and the X17 signal is turned ON, the excitation current scaling factor is switched from the value set in Pr. 617 to the value set in Pr. 86.
- An excitation current low-speed scaling factor set in the parameter shown in the table is used according to the Pr. 14 setting and other conditions.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Pr. 14 setting }} & \multirow{2}{*}{ X17 signal } & \multicolumn{2}{c|}{ During forward rotation } & \multicolumn{2}{c|}{ During reverse rotation } \\
\cline { 3 - 7 } & & \multicolumn{1}{|c|}{ RT signal OFF } & \multicolumn{1}{c|}{ RT signal ON } & RT signal OFF & RT signal ON \\
\hline 0 to 5 & - & Pr. 86 & Pr. 566 & Pr. 86 & Pr. 566 \\
\hline 12 & - & Pr. 86 & Pr. 566 & Pr. 617 & Pr. 617 \\
\hline 13 & - & Pr. 617 & Pr. 617 & Pr. 86 & Pr. 566 \\
\hline \multirow{2}{*}{14} & Pr. 86 & Pr. 566 & Pr. 617 & Pr. 617 \\
\hline \multirow{2}{*}{15} & Pr. 86 & Pr. 566 & Pr. 86 & Pr. 566 \\
\hline & ON & Pr. 617 & Pr. 617 & Pr. 86 & Pr. 566 \\
\hline
\end{tabular}
- When the SF-PR/SF-HR/SF-HRCA motor is used (Pr. \(71=440,43,44,50,53,54,70,73\), or 74 ") and "9999" is set in Pr.85/ Pr.86, the predetermined setting in the following table is applied.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Motor capacity (kW)} & \multicolumn{6}{|c|}{SF-PR} & \multicolumn{6}{|c|}{SF-HR/SF-HRCA} \\
\hline & \multicolumn{2}{|r|}{Pr. 81 = "2"} & \multicolumn{2}{|r|}{Pr. 81 = "4"} & \multicolumn{2}{|r|}{Pr. 81 = "6"} & \multicolumn{2}{|l|}{Pr. 81 = "2"} & \multicolumn{2}{|l|}{Pr. 81 = "4"} & \multicolumn{2}{|r|}{Pr. 81 = "6"} \\
\hline & Pr. 85 & Pr. 86 \\
\hline 0.4 & - & - & - & - & - & - & 10 Hz & 130\% & 10 Hz & 130\% & 10 Hz & 130\% \\
\hline 0.75 & 20 Hz & 130\% & 20 Hz & 130\% & 10 Hz & 130\% \\
\hline 1.5 & 30 Hz & 140\% & 10 Hz & 130\% \\
\hline 2.2 & 10 Hz & 150\% & 10 Hz & 130\% & 20 Hz & 130\% & 20 Hz & 150\% & 10 Hz & 130\% & 10 Hz & 130\% \\
\hline 3.7 & 30 Hz & 150\% & 25 Hz & 133\% & 20 Hz & 130\% & 30 Hz & 160\% & 30 Hz & 140\% & 10 Hz & 130\% \\
\hline 5.5 & 10 Hz & 150\% & 10 Hz & 130\% & 30 Hz & 130\% & 30 Hz & 140\% & 30 Hz & 140\% & 20 Hz & 140\% \\
\hline 7.5 & 10 Hz & 150\% & 30 Hz & 118\% & 30 Hz & 130\% & 30 Hz & 140\% & 30 Hz & 140\% & 30 Hz & 150\% \\
\hline 11 & 10 Hz & 150\% & 20 Hz & 140\% & 10 Hz & 130\% & 30 Hz & 140\% & 10 Hz & 130\% & 30 Hz & 130\% \\
\hline 15 & 10 Hz & 150\% & 30 Hz & 130\% & 30 Hz & 130\% & 20 Hz & 140\% & 10 Hz & 130\% & 30 Hz & 130\% \\
\hline 18.5 & 10 Hz & 150\% & 30 Hz & 130\% & 20 Hz & 130\% & 30 Hz & 150\% & 30 Hz & 140\% & 30 Hz & 140\% \\
\hline 22 & 30 Hz & 130\% & 10 Hz & 130\% & 10 Hz & 130\% & 30 Hz & 150\% & 30 Hz & 140\% & 20 Hz & 140\% \\
\hline 30 & 10 Hz & 150\% & 20 Hz & 130\% & 10 Hz & 130\% & 30 Hz & 150\% & 20 Hz & 150\% & 10 Hz & 130\% \\
\hline 37 & 20 Hz & 140\% & 10 Hz & 140\% & 20 Hz & 130\% & 20 Hz & 160\% & 20 Hz & 150\% & 10 Hz & 130\% \\
\hline 45 & 10 Hz & 140\% & 20 Hz & 130\% & 10 Hz & 130\% & 10 Hz & 130\% & 20 Hz & 140\% & 10 Hz & 140\% \\
\hline 55 & 20 Hz & 140\% & 30 Hz & 130\% & - & - & 10 Hz & 140\% & 20 Hz & 150\% & - & - \\
\hline
\end{tabular}

\subsection*{5.16.5 Energy saving control}

\section*{V/F Magneticiflux}

The inverter will automatically perform energy saving operation without setting detailed parameters.
This control method is suitable for applications such as fans and pumps.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 60 \\
& \text { G030 }
\end{aligned}
\]} & \multirow{3}{*}{Energy saving control selection} & \multirow{3}{*}{0} & 0 & Normal operation \\
\hline & & & 4 & Energy saving operation \\
\hline & & & 9 & Optimum excitation control \\
\hline
\end{tabular}

\section*{- Energy saving operation (Pr. 60 = "4")}
- Setting Pr. \(60=\) " 4 " will select the energy saving operation.
- With the energy saving operation, the inverter will automatically control the output voltage so the inverter output power during the constant-speed operation will become minimal.
- Energy saving operation will be enabled under V/F control.

\section*{- Optimum excitation control (Pr. 60 = "9")}
- Setting Pr. \(60=\) " 9 " will select the Optimum excitation control.
- The Optimum excitation control is a control method to decide the output voltage by controlling the excitation current so the efficiency of the motor is maximized.
- Optimum excitation control will be enabled under V/F control and Advanced magnetic flux vector control.

\section*{NOTE}
- In the energy saving operation mode, an energy saving effect is not expected for applications with high load torque or with the equipment with frequent acceleration and deceleration.
- In the Optimum excitation control mode, an energy saving effect is not expected when the motor capacity is extremely small compared with the inverter capacity or when multiple motors are connected to a single inverter.
- When the energy saving operation mode or Optimum excitation control mode is selected, the deceleration time may become longer than the setting value. Also, it may cause overvoltage more often compared to constant-torque load characteristics, so set the deceleration time longer.
- When the motor becomes unstable during the acceleration, set the acceleration time longer.
- Output current may increase slightly with the energy saving operation mode or the Optimum excitation control mode since the output voltage is controlled.

\subsection*{5.16.6 Adjustable 5 points V/F}

\section*{V/F}

By setting a desired V/F characteristic from the start up to the base frequency or base voltage with the V/F control (frequency voltage/frequency), a dedicated V/F pattern can be generated.

The optimal V/F pattern matching the torque characteristics of the facility can be set.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 71 \\
& \text { C100 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Applied motor} & \multirow[t]{2}{*}{0} & 2 & Standard motor (such as SF-JR) Adjustable 5 points V/F \\
\hline & & & Others & Refer to page 505. \\
\hline \[
\begin{aligned}
& 100 \\
& \text { G040 }
\end{aligned}
\] & V/F1 (first frequency) & 9999 & 0 to \(590 \mathrm{~Hz}, 9999\) & \multirow{10}{*}{Set each point of the V/F pattern (frequency, voltage). 9999: Do not set V/F.} \\
\hline \[
\begin{aligned}
& 101 \\
& \text { G041 }
\end{aligned}
\] & V/F1 (first frequency voltage) & 0 V & 0 to 1000 V & \\
\hline \[
\begin{aligned}
& 102 \\
& \text { G042 }
\end{aligned}
\] & V/F2 (second frequency) & 9999 & 0 to 590 Hz, 9999 & \\
\hline \[
\begin{aligned}
& 103 \\
& \text { G043 }
\end{aligned}
\] & V/F2 (second frequency voltage) & 0 V & 0 to 1000 V & \\
\hline \[
\begin{aligned}
& 104 \\
& \text { G044 }
\end{aligned}
\] & V/F3 (third frequency) & 9999 & 0 to \(590 \mathrm{~Hz}, 9999\) & \\
\hline \[
\begin{aligned}
& 105 \\
& \text { G045 }
\end{aligned}
\] & V/F3 (third frequency voltage) & 0 V & 0 to 1000 V & \\
\hline \[
\begin{aligned}
& 106 \\
& \text { G046 }
\end{aligned}
\] & V/F4 (fourth frequency) & 9999 & 0 to 590 Hz, 9999 & \\
\hline \[
\begin{aligned}
& 107 \\
& \text { G047 }
\end{aligned}
\] & V/F4 (fourth frequency voltage) & 0 V & 0 to 1000 V & \\
\hline \[
\begin{aligned}
& 108 \\
& \text { G048 }
\end{aligned}
\] & V/F5 (fifth frequency) & 9999 & 0 to \(590 \mathrm{~Hz}, 9999\) & \\
\hline \[
\begin{aligned}
& 109 \\
& \text { G049 }
\end{aligned}
\] & V/F5 (fifth frequency voltage) & 0 V & 0 to 1000 V & \\
\hline
\end{tabular}
- By setting the V/F1 (first frequency voltage/first frequency) to V/F5 parameters in advance, a desired V/F characteristic can be obtained
- For an example, with the equipment with large static friction factor and small dynamic friction factor, large torque is required only at the start up, so a V/F pattern that will raise the voltage only at the low-speed range is set.
- Setting procedure
1. Set the rated motor voltage in Pr. 19 Base frequency voltage.
(No function at the setting of "9999" or "8888".)
2. Set Pr. 71 Applied motor \(=" 2 "(\) adjustable 5 points V/F).
3. Set frequency and voltage to be set in Pr. 100 to Pr. 109.

\section*{CAUTION}
- Make sure to set the parameters correctly according to the motor used. Incorrect setting may cause the motor to overheat and burn.

\section*{NOTE}
- The adjustable 5 points V/F is enabled under V/F control.
- When Pr. 19 Base frequency voltage = " 8888 or 9999 ", setting of Pr. \(71=\) " 2 " is not available. To set " 2 " in Pr. 71 , set the rated motor voltage in Pr. 19.
- A write disable error " \(\boldsymbol{l}^{-\infty} \quad \boldsymbol{f}^{\prime}\) is generated when the same frequency value is used for multiple points.
- Set frequency or voltage for each point in Pr. 100 to Pr. 109 within the range of Pr. 3 Base frequency or Pr. 19 Base frequency voltage.
- When Pr. 71 = "2", Pr. 47 Second V/F (base frequency) and Pr. 113 Third V/F (base frequency) are not available.
- When Pr. 71 = "2", the inverter calculates the characteristic of the electronic thermal relay for a standard motor.
- By simultaneously using Pr. 60 Energy saving control selection and the adjustable 5 points V/F, further energy saving effect is expected.
- The Pr. 0 Torque boost and Pr. 12 DC injection brake operation voltage settings are automatically changed according to the Pr. 71 setting. (Refer to page 508.)

\subsection*{5.16.7 SF-PR slip amount adjustment mode}

\section*{VIF}
- As compared to our conventional SF-JR motor, the slip amount is small for the high-performance energy-saving SF-PR motor. When replacing the SF-JR to the SF-PR, the slip amount is reduced and the rotations per minute increases. Therefore, when the SF-PR is used with the same frequency setting as that of the SF-JR, power consumption may increase as compared to the SF-JR.
- By setting the slip amount adjustment mode, the frequency command can be adjusted to keep the rotations per minute of the SF-PR equivalent to those of the SF-JR for power consumption reduction.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline 673 & SF-PR slip amount adjustment & & 2, 4, 6 & Set the number of SF-PR motor poles. \\
\hline G060 & ope & & 9999 & The slip amount adjustment is disabled. \\
\hline \[
\begin{aligned}
& 674 \\
& \text { G061 }
\end{aligned}
\] & SF-PR slip amount adjustment gain & 100\% & 0 to 500\% & Setting is available for fine adjustment of the slip amount. \\
\hline
\end{tabular}
- By setting the number of SF-PR motor poles in Pr. 673 SF-PR slip amount adjustment operation selection, the SF-PR slip amount adjustment mode is activated.
- The SF-PR slip amount adjustment mode is available only under V/F control.
- Use Pr. 674 SF-PR slip amount adjustment gain to fine-tune the rotations per minute. To reduce the rotations per minute (to increase the compensation frequency), set a larger value in Pr.674. To increase the rotations per minute (to reduce the compensation frequency), set a smaller value in Pr.674. (Lower rotations per minute reduce the power consumption, and higher rotations per minute increase the power consumption.)

\section*{NOTE}
- The slip amount adjustment is not available in the following conditions.

During acceleration/deceleration, during DC injection brake operation, during PID control, during orientation control, during encoder feedback control, during stall prevention operation, during regeneration avoidance operation, during traverse operation, and while the slip compensation is valid (Pr.245).
- The slip amount adjustment is not available when the applicable motor capacity of the inverter is not compatible with the SFPR. (For the details of applicable motor capacity, refer to page 790.)

\subsection*{5.16.8 DC injection brake, zero speed control, and servo lock}
- Adjust the braking torque and timing to stop the motor using the DC injection brake.

Zero speed control is also available under Real sensorless vector control, and zero speed control and servo lock are selectable under Vector control or PM sensorless vector control.
When the DC injection brake operation is used, DC voltage is applied to the motor to prevent rotation of the motor shaft, and when the zero speed control is used, Vector control is performed to keep \(0 \mathrm{r} / \mathrm{min}\). Either way, when a motor shaft is rotated by external force, it does not go back to the original position.
When the servo lock control is used, the position of the motor shaft is held. When a motor shaft is rotated by external force, it goes back to the original position.
- Select the magnetic flux decay output shutoff function to decay the magnetic flux before shutting off the output at a stop.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 10 \\
& \text { G100 }
\end{aligned}
\]} & \multirow[t]{2}{*}{DC injection brake operation frequency} & \multirow[t]{2}{*}{3 Hz} & 0 to 120 Hz & Set the operation frequency for the DC injection brake (zero speed control / servo lock). \\
\hline & & & 9999 & The operation starts at the frequency set in Pr. 13 or lower. \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 11 \\
& \text { G101 }
\end{aligned}
\]} & \multirow{3}{*}{DC injection brake operation time} & \multirow{3}{*}{0.5 s} & 0 & Without DC injection brake (zero speed control / servo lock) \\
\hline & & & 0.1 to 10 s & Set the operation time for the DC injection brake (zero speed control / servo lock). \\
\hline & & & 8888 & The operation continues while the X 13 signal is ON. \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 12 \\
& \text { G110 }
\end{aligned}
\]} & \multirow{3}{*}{DC injection brake operation voltage} & 4\%** & \multirow{3}{*}{0 to 30\%} & \multirow{3}{*}{Set the DC injection brake voltage (torque). When set to " 0 ", the DC injection brake is not applied.} \\
\hline & & 2\%*2 & & \\
\hline & & 1\%*3 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 802 \\
& \text { G102 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Pre-excitation selection} & \multirow[b]{2}{*}{0} & 0 & Zero speed control \\
\hline & & & 1 & Servo lock \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1299 \\
& \text { G108 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Second preexcitation selection} & \multirow[t]{2}{*}{0} & 0 & \multirow[t]{2}{*}{The pre-excitation operation of the second motor can be selected.} \\
\hline & & & 1 & \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 850 \\
& \text { G103 }
\end{aligned}
\]} & \multirow{3}{*}{Brake operation selection} & \multirow{3}{*}{0} & 0 & DC injection brake operation \\
\hline & & & 1 & Zero speed control (Real sensorless vector control) \\
\hline & & & 2 & Magnetic flux decay output shutoff (Real sensorless vector control) \\
\hline
\end{tabular}
*1 The initial value for the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.
*2 The initial value for the FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K).
*3 The initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) and higher.

\section*{Setting of operating frequency (Pr.10)}
- By setting the frequency to operate the DC injection brake (zero speed control / servo lock) to Pr. 10 DC injection brake operation frequency, the DC injection brake (zero speed control / servo lock) will operate when it reaches this frequency at the time of deceleration.
- When Pr. 10 = "9999", DC injection brake (zero speed control / servo lock) will start when the frequency reaches Pr. 13 Starting frequency.
- The DC injection brake operation frequency depends on the stopping method.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Stopping method } & \multicolumn{1}{|c|}{ Parameter setting } & \multicolumn{1}{c|}{ DC injection brake operation frequency } \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Press the STOP key on the operation panel. \\
Turn OFF the STF/STR signal.
\end{tabular}} & 0.5 Hz or higher in Pr. 10 & Pr. 10 setting \\
\cline { 2 - 4 } & \begin{tabular}{l}
Lower than 0.5 Hz in Pr.10, and 0.5 Hz or \\
higher in Pr. 13
\end{tabular} & \multirow{2}{*}{0.5 Hz} \\
\cline { 2 - 4 } & Lower than 0.5 Hz in both Pr. 10 and Pr. 13 & Pr. 10 or Pr. 13 setting, whichever larger \\
\hline Set frequency to 0 Hz & - & Pr. 13 setting or 0.5 Hz , whichever smaller \\
\hline
\end{tabular}
- The DC injection brake operation frequency will be fixed to 0 Hz under PM sensorless vector control (low-speed range high-torque mode disabled).

Pr. 11 Operation time

\section*{NOTE}
- When executing pre-excitation (zero speed control) under Real sensorless vector control, set Pr. 10 DC injection brake operation frequency to 0.5 Hz or lower since it may cause motor vibration, etc., at the time of deceleration stop.
- The initial value of Pr. 10 will automatically switch to 0.5 Hz under Vector control.

\section*{- Setting of operation time (X13 signal, Pr.11)}
- Set the operation time for the DC injection brake (zero speed control / servo lock) to Pr. 11 DC injection brake operation time.
- When the motor does not stop due to large load moment (J), increase the setting to ensure the effect.
- When Pr. 11 = "0 s", DC injection brake (zero speed control / servo lock) will not operate. (The motor will coast to stop.)
- When Pr. 11 = " 8888 ", DC injection brake (zero speed control / servo lock) will operate when the X13 signal is turned ON. DC injection brake will operate when the X 13 signal is turned ON even while operating.
- For the X13 signal input, set "13" in any of Pr. 178 to Pr. 189 to assign the function.

\section*{NOTE}
- Under Real sensorless vector control, when the X13 signal turns ON while Pr. \(11=\) " 8888 ", the zero speed control is activated regardless of the Pr. 850 Brake operation selection setting.
- Under Vector control or PM sensorless vector control, zero speed control or servo lock will operate depending of the setting of Pr. 802.
- The X13 signal is disabled during PM sensorless vector control.

\section*{Setting of operation voltage (torque) (Pr.12)}
- Set the percentage against the power supply voltage in Pr. 12 DC injection brake operation voltage. (The setting is not used for zero speed control or servo lock.)
- The DC injection brake operation is not available when the setting of Pr. 12 is \(0 \%\). (The motor will coast to stop.)

\section*{NOTE}
- When the setting of Pr. 12 is the initial value, the setting corresponding to the motor is set according to the Pr. 71 Applied motor setting. (Refer to page 508.) However, when an energy saving motor (SF-HR or SF-HRCA) is used, change the Pr. 12 setting as shown below.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\(\quad\) Inverter } & \multicolumn{1}{c|}{\begin{tabular}{c}
Pr. 12 \\
setting
\end{tabular}} \\
\hline \begin{tabular}{l}
FR-A820-00250(3.7K) or lower \\
FR-A840-00126(3.7K) or lower
\end{tabular} & \(4 \%\) \\
\hline FR-A820-00340(5.5K), FR-A820-00490(7.5K) & \(3 \%\) \\
\hline FR-A840-00170(5.5K), FR-A840-00250(7.5K) & \(2 \%\) \\
\hline \begin{tabular}{l}
FR-A820-00630(11K) to FR-A820-01250(22K), FR-A820-01870(37K) or higher \\
FR-A840-00310(11K) to FR-A840-00620(22K), FR-A840-00930(37K) or higher
\end{tabular} & \(2 \%\) \\
\hline \begin{tabular}{l}
FR-A820-01540(30K) \\
FR-A840-00770(30K)
\end{tabular} & \(1.5 \%\) \\
\hline
\end{tabular}
- Even if the setting value of Pr. 12 is made larger, braking torque will be limited so the output current will be within the rated current of the inverter.

\section*{- Braking operation selection under Real sensorless vector control (Pr. 850 = "0 or 1")}
- The braking operation under Real sensorless vector control can be selected between the DC injection brake operation (initial setting) and zero speed control.
By setting Pr. 850 Brake operation selection = "1", zero speed control will be performed at the frequency set in Pr. 10 DC injection brake operation frequency or lower.

\section*{NOTE}
- Under Real sensorless vector control, when the X13 signal turns ON while Pr. \(11=\) " 8888 ", zero speed control is activated regardless of the Pr. 850 setting.
- When restarting the operation after a brake operation under Real sensorless vector control, set Pr. 850 = "1" (zero speed control). Setting " 0 " (DC injection brake) may cause a delay of about 2 seconds from the time the start up command is input until it actually is output.

\section*{- Magnetic flux decay output shutoff and the Magnetic flux decay output shutoff signal (X74 signal, Pr. \(850=\) "2")}
- Frequent starts/stops (inching) under Real sensorless vector control may cause an inverter failure or create a difference in operation with the motor. The reason is that some magnetic flux is left in the motor at shutoff of the inverter output. If this is the case, set Pr. \(850=\) "2" (magnetic flux decay output shutoff) or turn ON the Magnetic flux decay output shutoff (X74) signal to decay the magnetic flux at a stop, and then shut off the output.
- While Pr. \(850=\) " 2 ", deceleration starts at turning OFF of the start command, and the magnetic flux decay output shutoff is activated when the estimated speed becomes lower than Pr. 10 DC injection brake operation frequency.
- While the brake sequence function is active, the magnetic flux decay output shutoff is activated when the running frequency drops to 0.5 Hz or Pr. 13 Starting frequency, whichever is smaller.

*1 Maximum processing time of the magnetic flux decay
- Tuning ON the Magnetic flux decay output shutoff (X74) signal starts the magnetic flux decay output shutoff regardless of the Pr. 850 setting. For the X 74 signal, set " 74 " in any of Pr. 178 to 189 (Input terminal function selection) to assign the function.
- Inverter output shutoff timing with X 74 signal

- Since the torque will decrease at the time of magnetic flux decay output shutoff, set up so the mechanical brake will operate.
- The magnetic flux decay output shutoff will be canceled at the time of restart and when the Pre-excitation/servo ON (LX) signal or External DC injection brake operation start (X13) signal is turned ON.
- If an MC is installed at the inverter's output side, set to open the MC after the operation time of the magnetic flux decay output shutoff elapses. (See below.)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Motor capacity (Pr. \(\mathbf{8 0}\) setting) & \(\mathbf{2 . 2} \mathbf{~ k W}\) or lower & \(\mathbf{3 . 7} \mathbf{~ k W}\) to \(\mathbf{1 1} \mathbf{~ k W}\) & \(\mathbf{1 5} \mathbf{~ k W}\) to \(\mathbf{3 0} \mathbf{~ k W}\) & \(\mathbf{3 7} \mathbf{~ k W}\) to \(\mathbf{5 5} \mathbf{~ k W}\) & \(\mathbf{7 5} \mathbf{~ k W}\) or higher \\
\hline Magnetic flux decay process time & 250 ms & 500 ms & 800 ms & \(\mathbf{9 0 0} \mathrm{~ms}\) & \(\mathbf{1 1 0 0} \mathbf{~ m s}\) \\
\hline
\end{tabular}

\section*{NOTE}
- When operating under controls other than Real sensorless vector control, the inverter will immediately shutoff the output when the \(\mathrm{X74}\) signal is turned ON.
- Even under Real sensorless vector control, the inverter will immediately shutoff the output when the X 74 signal is turned ON during the automatic restart after instantaneous power failure and online auto tuning during the start up.
- If another output-shutoff trigger (inverter fault, turn-ON of the MRS signal, etc.) occurs during the magnetic flux decay operation, the magnetic flux decay operation is terminated, and the output is shut off immediately.
- Unlike the MRS signal, voltage is output during the magnetic flux decay output shutoff operation, so take caution on electric shocks.
- When the release timing of the mechanical brake is too fast, the motor shaft may be rotated by dropping or external force. When the release timing is too late, the overcurrent prevention operation, stall prevention operation, or electronic thermal \(\mathrm{O} /\) L relay function may be activated. Perform release of the mechanical brake matching the equipment using the Output frequency detection (FU) signal or Output current detection (Y12) signal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

\section*{- Braking operation selection under Vector control or PM sensorless vector control (Pr.802, Pr.1299)}
- UsePr. 802 Pre-excitation selection to select the braking operation when the pre-excitation is performed from either zero speed control or servo lock.
- Turning ON the RT signal enables the second pre-excitation selection (when Pr. 450 = "9999").
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c}
Pr.802 \\
(Pr.1299) \\
setting
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Pre- \\
excitation
\end{tabular}} & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
0 \\
(initial value)
\end{tabular} & \begin{tabular}{l}
Zero speed \\
control
\end{tabular} & \begin{tabular}{l}
Even under a load, the inverter does not rotate the motor and holds 0 r/min. However, it will not return to \\
its original position when the shaft moves due to external force. \\
This setting is invalid during position control. The inverter operates according to this setting only during \\
speed control.
\end{tabular} \\
\hline 1 & Servo lock & \begin{tabular}{l}
Even under a load, the inverter holds the position of the motor shaft. When the shaft moves due to external \\
force, it will return to its original position after the external force is removed. \\
To perform the position control, this loop gain can be adjusted using Pr.422 Position control gain \\
(Pr.1298 Second position control gain).
\end{tabular} \\
\hline
\end{tabular}
- The relation between the DC injection brake operation and pre-excitation operation is as follows.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Control method & Control mode & \[
\begin{gathered}
\text { Pr. } 802 \\
\text { (Pr. } 1299 \text {) }
\end{gathered}
\] & Pr. 850 & Deceleration stop & LX-ON & \[
\begin{gathered}
\text { X13-ON } \\
\text { (Pr. } 11=\text { "8888") } \\
\hline
\end{gathered}
\] \\
\hline V/F control & - & - & - & DC injection brake & - & DC injection brake \\
\hline Advanced magnetic flux vector control & - & - & - & DC injection brake & - & DC injection brake \\
\hline \multirow{6}{*}{Real sensorless vector control} & \multirow{3}{*}{Speed} & - & 0 & DC injection brake & \multirow[t]{2}{*}{Zero speed} & \multirow[t]{2}{*}{Zero speed} \\
\hline & & - & 1 & Zero speed & & \\
\hline & & - & 2 & Magnetic flux decay output shutoff & Zero speed & Zero speed \\
\hline & \multirow{3}{*}{Torque} & - & 0 & DC injection brake & \multirow[b]{2}{*}{Zero speed} & \multirow[b]{2}{*}{Zero speed} \\
\hline & & - & 1 & Zero speed & & \\
\hline & & - & 2 & Magnetic flux decay output shutoff & Zero speed & Zero speed \\
\hline \multirow{4}{*}{Vector control} & \multirow[b]{2}{*}{Speed} & 0 & - & Zero speed & Zero speed & Zero speed \\
\hline & & 1 & - & Servo lock & Servo lock & Servo lock \\
\hline & Torque & - & - & Zero speed & Zero speed & Zero speed \\
\hline & Position & - & - & - & Servo lock & - \\
\hline PM sensorless vector control, low-speed range high-torque mode disabled & Speed & - & - & DC injection brake & - & - \\
\hline \multirow[t]{3}{*}{PM sensorless vector control, low-speed range high-torque mode enabled} & \multirow[t]{2}{*}{Speed} & 0 & \multirow[t]{2}{*}{-} & Zero speed & Zero speed & \multirow[t]{2}{*}{-} \\
\hline & & 1 & & Servo lock & Servo lock & \\
\hline & Position & - & - & - & Servo lock & - \\
\hline
\end{tabular}

\section*{\(\bullet\) Pre-excitation signal (LX signal)}
- When the Pre-excitation/servo ON (LX) signal is turned ON while the motor stops under Real sensorless vector control, Vector control, or PM sensorless vector control, pre-excitation (zero speed control / servo lock) starts.
- To input the LX signal, set " 23 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.

\section*{NOTE}
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- Performing pre-excitation (by using the LX or X13 signal) during torque control (under Real sensorless vector control) may rotate a motor at a low speed even though a start command (STF or STR) is not input. The inverter at a start command ON may also rotate the motor at a low speed even though a speed limit value is set to zero lt must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Note that during the pre-excitation operation, a voltage is applied to the motor even with the FWD/REV indicator OFF on the operation panel.
- When offline auto tuning (Pr. 96 Auto tuning setting/status \(=" 1,11\), or 101 ") is performed during pre-excitation operation, pre-excitation is disabled.

\section*{CAUTION}
- During the orientation operation, do not set " 0 or 8888 " in Pr. 11 and do not set " 0 " in Pr.12. The motor may not stop properly.
- Install a mechanical brake to make an emergency stop or to stay stopped for a long time.

Wait until the machine stops completely, and fix the motor with a mechanical brake, then turn the LX signal (preexcitation) OFF.

\section*{《 Parameters referred to 》}

Pr. 13 Starting frequency page 363, page 364
Pr. 71 Applied motor \(\$\) page 505
Pr. 80 Motor capacity \(\approx\) page 509
Pr. 178 to Pr. 189 (Input terminal function selection) page 496
Pr. 422 Position control gain, Pr. 1298 Second position control gain \(\vDash\) page 312

\subsection*{5.16.9 Output stop function}

The motor coasts to a stop (inverter output is shutoff) when the inverter output frequency falls to Pr. 522 setting or lower.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{ Initial value } & \multicolumn{1}{c|}{\begin{tabular}{c}
Setting \\
range
\end{tabular}} & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
522 \\
G105
\end{tabular} & Output stop frequency & \multirow{2}{*}{9999} & 0 to 590 Hz & Set the frequency to start coasting to a stop (output shutoff). \\
\cline { 4 - 5 } & & 9999 & No function \\
\hline
\end{tabular}
- When both of the frequency setting signal and output frequency fall to the frequency set in Pr. 522 or lower, the inverter stops the output and the motor coasts to a stop.
- The motor re-starts when the frequency setting signal exceeds Pr. \(522+2 \mathrm{~Hz}\) and is accelerated at the Pr. 13 Starting frequency (0.01 Hz under PM sensorless vector control).

Example of: target frequency = analog input command, start signal always ON

*1 The output frequency to be compared with the Pr. 522 setting is the output frequency before slip compensation (V/F control or Advanced magnetic flux vector control), or the speed command value converted into the frequency (Real sensorless vector control, Vector control, or PM sensorless vector control).
*2 The motor is accelerated at the Pr. 13 Starting frequency (0.01 Hz under PM sensorless vector control).
*3 The steepness of the slope depends on the acceleration/deceleration time settings such as Pr.7.

\section*{NOTE}
- When the output stop function is enabled (Pr. \(522 \neq\) "9999"), the DC injunction brake (zero speed control / servo lock) operation is disabled and the motor coasts to stop when the output frequency drops to the Pr. 522 setting or lower.
- The motor starts acceleration again atPr. 13 Starting frequency (0.01 Hz under PM sensorless vector control) when the command value exceeds Pr. \(522+2 \mathrm{~Hz}\) again if the start signal remains ON while the motor is coasting after the frequency drops to the Pr. 522 setting or lower. Re-acceleration during coasting may cause an output shutoff of the inverter depending on the parameter setting. (Activation of the restart function is recommended especially for a PM motor.)
- The output stop frequency function is disabled during PID control, JOG operation, power failure stop, traverse function operation, offline auto tuning, orientation control, position control, torque control, or stop-on contact control.
- The output stop function does not operate during reverse rotation deceleration. However, when the frequency setting signal and output frequency fall to Pr. 522 or lower, the inverter output is shut off.
- During the output stop due to the output stop function (when forward/reverse command is given, but frequency command is not given), the FWD/REV LED indicator on the operation panel blinks fast. (When the frequency command is not given even if the forward/reverse command is given.)

\section*{CAUTION}
- A PM motor is a motor with interior permanent magnets. High voltage is generated at motor terminals while the motor is running.
Do not touch motor terminals and other parts until the motor stops to prevent an electric shock.

\section*{5．16．10 Stop selection}

Select the stopping method（deceleration stop or coasting）at turn－OFF of the start signal．
Coasting can be selected for the cases such that the motor is stopped with a mechanical brake at turn－OFF of the start signal． The operation of the start signal（STF／STR）can be selected．（For the start signal selection，refer to page 502．）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pr．} & \multirow[t]{2}{*}{Name} & \multirow[t]{2}{*}{Initial value} & \multirow[b]{2}{*}{Setting range} & \multicolumn{2}{|c|}{Description} \\
\hline & & & & Start signal（STF／STR）\({ }^{* 1}\) & Stop operation \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 250 \\
& \text { G106 }
\end{aligned}
\]} & \multirow{4}{*}{Stop selection} & \multirow{4}{*}{9999} & 0 to 100 s & STF signal：Forward rotation start STR signal：Reverse rotation start & The motor coasts to a stop after a lapse of the setting time when the start signal is turned OFF． \\
\hline & & & 1000 to 1100 s & STF signal：Start signal STR signal：Forward／reverse rotation signal & The motor coasts to a stop after a lapse of the（Pr．250－1000） seconds when the start signal is turned OFF． \\
\hline & & & 9999 & STF signal：Forward rotation start STR signal：Reverse rotation start & \multirow[b]{2}{*}{The motor is decelerated to a stop when the start signal is turned OFF} \\
\hline & & & 8888 & STF signal：Start signal STR signal：Forward／reverse rotation signal & \\
\hline
\end{tabular}
＊1 For the start signal selection，refer to page 502.

\section*{－To decelerate the motor to a stop}
－Set Pr． 250 ＝＂9999（initial value）or 8888＂．
－The motor is decelerated to a stop when the start signal（STF／STR）is turned OFF．

\section*{－To coast the motor to a stop}
－Set the time required to shut off the output after the start signal is turned OFF in Pr．250．When＂1000 to 1100＂is set，output is shut off after a lapse of the（Pr．250－1000）seconds．
－The output is shut off after a lapse of the setting time of Pr． 250 when the start signal is turned OFF．Motor coasts to a stop．
－The RUN signal is turned OFF when the output is shut off．

\section*{NOTE}
－The stop selection setting is disabled when following functions are operating．
Position control（Pr． \(419=\)＂0＂）
Power failure stop function（Pr．261）
PU stop（Pr．75）
Deceleration stop due to fault definition（Pr．875）
Deceleration stop due to communication error（Pr．502）
Offline auto tuning（with motor rotation）
－When Pr． \(250 \neq\)＂9999 or 8888 ＂，acceleration／deceleration is performed in accordance to the frequency command until the output is shut off by turning OFF the start signal．
－When the restart signal is turned ON during the motor coasting，the operation is resumed from Pr． 13 Starting frequency．
－Even with the setting of coasting to a stop，when the LX signal is turned ON，the motor does not coast but zero speed control or servo lock is applied．

\section*{《齐 Parameters referred to 》}

Pr． 7 Acceleration time，Pr． 8 Deceleration time \(\sqrt{3}\) page 349
Pr． 13 Starting frequency page 363，page 364
Pr． 75 Reset selection／disconnected PU detection／PU stop selection page 320
Pr． 261 Power failure stop selection page 610
Pr． 419 Position command source selection page 284
Pr． 502 Stop mode selection at communication error
Pr． 875 Fault definition page 401

\section*{5．16．11 Regenerative brake selection and DC feeding mode}
－When performing frequent start and stop operation，usage rate of the regenerative brake can be increased by using the optional high－duty brake resistor（FR－ABR）or the brake unit（FR－BU2，BU，or FR－BU）．
－The power regeneration common converter（FR－CV）or power regeneration converter（MT－RC）is used for the continuous operation during regenerative driving．The high power factor converter（FR－HC2）can be used also to reduce harmonics， improve power factor，and operate continuously during regenerative driving．
－It is possible to choose between the DC feeding mode 1，which will operate with DC power supply（terminals P and N ），and DC feeding mode 2，which will normally operate in AC power supply（terminals \(\mathrm{R}, \mathrm{S}\) ，and T ）and operate in DC power supply（terminal \(P\) and \(N\) ），such as batteries，at the time of power failure．
－While the power is supplied only to the control circuit，the reset operation when the power is supplied to the main circuit can be selected．
\begin{tabular}{|c|c|c|c|c|}
\hline Pr． & Name & Initial value & Setting range & Description \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 30 \\
& \text { E300 }
\end{aligned}
\]} & \multirow{3}{*}{Regenerative function selection} & \multirow{3}{*}{\[
\begin{aligned}
& 0^{* 1 * 3}, \\
& 10^{*} 2
\end{aligned}
\]} & \[
\begin{array}{|l}
\hline 0 \text { to } 2,10,11, \\
20,21,100 \text { to } \\
102,110,111, \\
120,121^{* 1} \\
\hline
\end{array}
\] & \multirow{3}{*}{Set the applied regeneration unit，the terminal used for power supply，and whether to reset the inverter when the power is supplied to the main circuit．} \\
\hline & & & \[
\begin{aligned}
& \hline 2,10,11,102, \\
& 110,111^{* 2} \\
& \hline
\end{aligned}
\] & \\
\hline & & & \[
\begin{aligned}
& 0,2,10,20 \\
& 100,102,110 \\
& 120^{* 3}
\end{aligned}
\] & \\
\hline \[
70
\]
\[
\text { G107 }{ }^{*} 4
\] & Special regenerative brake duty & 0\％ & 0 to 100\％ & Set the \％ED of the built－in brake transistor operation． \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 599 \\
& \text { T721 }
\end{aligned}
\]} & \multirow[t]{2}{*}{X10 terminal input selection} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0^{* 1 * 3}, \\
& 1^{* 2}
\end{aligned}
\]} & 0 & Normally open input \\
\hline & & & 1 & Normally closed input（NC contact input specification） \\
\hline
\end{tabular}
＊1 The initial value or setting range for the standard model．
＊2 The initial value or setting range for the separated converter type．
＊3 The initial value or setting range for the IP55 compatible model．
＊4 The setting is available for the standard model．

\section*{- Details of the setting value}
- FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Regeneration unit } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Power supply \\
terminals of \\
inverter
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
Pr.30 \\
setting \({ }^{*} 4\)
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
Pr.70 \\
setting
\end{tabular}} & \multicolumn{1}{c|}{ Remarks }
\end{tabular}
- FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher
\begin{tabular}{|c|c|c|c|}
\hline Regeneration unit & Power supply terminals of inverter & Pr. 30 setting \({ }^{*} 4\) & Pr. 70 setting \\
\hline \multirow{3}{*}{Without regenerative function} & R, S, T & 0 (initial value), 100 & \multirow{3}{*}{-} \\
\hline & P, N & 10, 110 & \\
\hline & R, S, T/P, N & 20, 120 & \\
\hline \multirow{3}{*}{Brake unit (FR-BU2 (MT-BR5))} & R, S, T & 1, 101 & \multirow{3}{*}{0\% (initial value)} \\
\hline & P, N & 11, 111 & \\
\hline & R, S, T/P, N & 21, 121 & \\
\hline Power regeneration converter (MT-RC) & R, S, T & 1,101 & 0\% (initial value) \\
\hline High power factor converter (FR-HC2) & P, N & 2, 102 & - \\
\hline
\end{tabular}
- FR-A842-07700(315K) or higher
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Regeneration unit } & \multicolumn{1}{c|}{ Pr.30 setting \({ }^{*} 4\)} \\
\hline Without regenerative function (FR-CC2) & 10 (initial value), 110 \\
\hline \begin{tabular}{l}
Brake unit \\
(FR-CC2+FR-BU2 (MT-BR5))
\end{tabular} & 11,111 \\
\hline High power factor converter (FR-HC2) & 2,102 \\
\hline
\end{tabular}
*1 For the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.
*2 For the FR-A820-00630(11K) or higher, and FR-A840-00310(11K) or higher.
*3 The built-in brake is installed on FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.
*4 While the power is supplied only to the control circuit with Pr.30= "100 or higher", the inverter reset is not performed when the power is supplied to the main circuit.

\section*{NOTE}
- For the use of a brake resistor other than the FR-ABR, contact your sales representative.

\section*{- When using the built-in brake resistor or brake unit (FR-BU2, BU, FR-BU) (FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower)}
- When using the built-in brake, using the FR-BU2 in combination with the GZG/GRZG/FR-BR, or using the BU or FR-BU, set Pr. \(30=\) " 0 (initial value), 10, 20, 100, 110, or 120 ". The Pr. 70 setting is invalid. At this time, the regenerative brake duty is as follows.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Inverter } & \multicolumn{1}{c|}{ Regenerative brake duty } \\
\hline FR-A820-00250(3.7K) or lower & \(3 \%\) \\
\hline FR-A820-00340(5.5K), FR-A820-00490(7.5K) & \(2 \%\) \\
\hline FR-A840-00250(7.5K) or lower & \(2 \%\) \\
\hline Other than the above & \(0 \%\) (without the built-in brake resistor) \\
\hline
\end{tabular}

\section*{NOTE}
- The built-in brake resistor is equipped for the FR-A820-00490(7.5K) or lower, and the FR-A840-00250(7.5K) or lower.

\section*{When using the high-duty brake resistor (FR-ABR) (FR-A820-01250(22K) or lower, FR-A840-00620(22K) or lower)}
- Set "1, 11, or 21" in Pr. 30.
- Set Pr. 70 as follows.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Inverter } & \multicolumn{1}{c|}{ Pr.70 setting } \\
\hline FR-A820-00490(7.5K) or lower, FR-A840-00250(7.5K) or lower & \(10 \%\) \\
\hline FR-A820-00630(11K) or higher, FR-A840-00310(11K) or higher & \(6 \%\) \\
\hline
\end{tabular}

\section*{When using the brake unit (FR-BU2) (FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher)}
- To use the FR-BU2 in combination with the MT-BR5, set as follows.
- Set "1, 11, or 21" in Pr. 30.
- Set Pr. \(70=0 \%\) (initial value).
- Set the brake unit FR-BU2, Pr. 0 Brake mode selection = " 2 ".

\section*{NOTE}
- The stall prevention (overvoltage), oL, does not occur while Pr. \(30=11\), 11, or 21 ".

\section*{When using the power regeneration converter (MT-RC)}
- Set "1 or 101" in Pr. 30.
- Set Pr. \(70=0 \%\) (initial value).

\section*{- When using the high power factor converter (FR-HC2), power} regeneration common converter (FR-CV), or converter unit (FR-CC2)
- To use the FR-HC2 or HR-CV, set Pr. \(30=\) " 2 ". The Pr. 70 setting is invalid.
- When using the FR-CC2, set Pr. \(30=10\) " (initial value of the separated converter type).
- Use any of Pr. 178 to Pr. 189 (Input terminal function assignment) to assign the following signals to the contact input terminals.
(a) Inverter run enable (X10) signal: FR-HC2 connection, FR-CV connection, FR-CC2 connection

To make protective coordination with the FR-HC2, FR-CV, or FR-CC2, use the X10 signal to shut off the inverter output.
Input the RDY signal of the FR-HC2 (the RDYB signal of FR-CV or the RDA signal of FR-CC2).
(b) FR-HC2/FR-CC2 connection, instantaneous power failure detection (X11) signal: FR-HC2 connection, FR-CC2 connection
The X11 signal is used to store the command when the inverter is set to store the command before an instantaneous power failure during the RS-485 communication.
Input the FR-HC2/FR-CC2 connection, instantaneous power failure detection signal.
- For the terminal used for the X10 or X11 signal, set "10" (X10) or "11" (X11) in any of Pr. 178 to Pr. 189 and assign the function. (For the separated converter type, the X 10 signal is assigned to terminal MRS in the initial setting.)

\section*{NOTE}
- For details of the high-duty brake resistor (FR-ABR), brake unit, high power factor converter (FR-HC2), or power regeneration common converter (FR-CV) connections, refer to page 96 to page 103. Also, for details of each option, refer to the Instruction Manual of each option.
- Setting Pr. \(30=\) " 2 " will reset the inverter, and "Err" is displayed on the operation panel during the reset.

\section*{Logic reversing of the Inverter run enable signal (X10 signal, Pr.599)}
- Use Pr. 599 X10 terminal input selection to select the X10 signal input specification between normally open (NO contact) and normally closed (NC contact). With the normally closed (NC contact) input specification, the inverter output is shut off by turning OFF (opening) the X10 signal.
- Changing the inverter logic (NO/NC contact) with the Pr. 599 setting is required according to the logic of the Inverter run enable signal sent from the option unit.
- The response time of the X 10 signal is within 2 ms .

- Relationship between Pr. 599 and the Inverter run enable signal of each option unit
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr.599 setting } & \multicolumn{2}{|c|}{ Corresponding signals of the option unit } & \multicolumn{1}{c|}{\begin{tabular}{l}
Operation according to the X10 \\
signal status
\end{tabular}} \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{ FR-HC2 } & FR-CV & FR-CC2 & \multicolumn{1}{c|}{\begin{tabular}{l}
X10-ON: Inverter output shutoff \\
(NO contact)
\end{tabular}} \\
\hline \begin{tabular}{l}
(initial value of standard models and \\
IP55 compatible models)
\end{tabular} & \begin{tabular}{l}
RDY (negative \\
logic) \\
(initial setting)
\end{tabular} & RDYB & RDB & RDA
\end{tabular} \begin{tabular}{l}
X10-OFF: Inverter output shutoff \\
(NC contact)
\end{tabular}

\section*{NOTE}
- If the X10 signal is unassigned while Pr. \(30=\) " 2 " (FR-HC2/FR-CV connection) or "10 or 11" (DC feeding mode 1), the MRS signal can be used as the X10 signal. At this time, logic setting for the signal will follow Pr. 17 MRS input selection.
- The MRS signal is valid from either of communication or external, but when the MRS signal is to be used as the Inverter run enable (X10) signal, it must be input from external.
- When the FR-HC or MT-HC is connected, set Pr. \(599=\) " 0 (initial value)".
- When the terminal assignment is changed with Pr. 178 to Pr. 189 (Input terminal function selection), wiring may be mistaken due to different terminal name and signal contents, or may affect other functions. Set parameters after confirming the function of each terminal.

\section*{\(\bullet\) Regenerative brake duty warning output and the warning signal (RBP signal) (standard models)}
- When the regenerative brake duty reaches \(85 \%\) of the Pr. 70 setting, "RB" is indicated on the operation panel and the Regenerative brake prealarm signal (RBP) signal is output. When it reaches \(100 \%\) of the \(\operatorname{Pr} .70\) setting, it will become regenerative overvoltage (E.OV[]).
- The inverter output is not shut off with the warning signal.
- For the terminal to be used for the RBP signal output, set "7 (positive logic) or 107 (negative logic)" to one of Pr. 190 to Pr. 196 (Output terminal function selection), and assign the function.
\(100 \%\) : Regeneration overvoltage protection operation value

\section*{NOTE}
- When Pr. \(30=\) " 0 (initial value), 10, or 20" for the FR-A820-00630(11K) or higher and the FR-A840-00310(11K) or higher, "RB" is not indicated.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

\section*{- Selection between resetting or not resetting during power supply to main circuit (Pr. \(30=\) "100, 101, 102, 110, 111, 120, or 121")}
- Inverter reset is not performed if Pr. \(30=\) "100" or more, and supplying power to the main circuit (input through terminals R/L1, S/L2, and T/L3) is started when power is supplied only to the control circuit (input through terminals R1/L11 and S1/ L12, or 24 V external power supply input).
- When a communication option, etc. is used, communication interruption due to the inverter reset can be avoided.

\section*{NOTE}
- When supplying power to the main circuit is started while the protective function of the inverter is activated, inverter reset is performed even when "not resetting after power-ON" is selected.

\section*{- DC feeding mode 1 (Pr. 30 = "10 or 11") (standard models and IP55 compatible models)}
- For standard models and IP55 compatible models, setting Pr. \(30=10\) or 11 " allows operation with a DC power supply.
- Keep the AC power supply connection terminals R/L1, S/L2, and T/L3 open, and connect the DC power supply between terminals P/+ and N/-. Also, for the standard model, remove the jumpers between terminals R/L1 and R1/L11 and between terminals S/L2 and S1/L21, and connect the terminals R1/L11 and S1/L21 to the terminals P/+ and N/- respectively.
- The diagram below is a connection example.

\section*{CAUTION}
- Do not connect a separated converter type inverter to a DC power supply. Doing so may damage the inverter.

\section*{- DC feeding mode 2 (Pr. 30 = "20 or 21") (standard models and IP55 compatible models)}
- When Pr. \(30=\) " 20 or 21 ", it will normally operate with AC power supply and operate with DC power supply such as batteries at the time of power failure.
- Connect the AC power supply to the AC power supply connecting terminals R/L1, S/L2, and T/L3, and connect the DC power supply to the terminals \(\mathrm{P} /+\) and \(\mathrm{N} /\)-. Also, for the standard model, remove the jumpers between terminals R/L1 and R1/L11 and between terminals S/L2 and S1/L21, and connect the terminals R1/L11 and S1/L21 to the terminals P/+ and \(\mathrm{N} /\) - respectively.
- Operation with DC current is possible by turning ON the DC feeding operation permission (X70) signal. For details on the I/O signals, refer to following table.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal name} & Name & Description & Parameter setting \\
\hline \multirow[b]{2}{*}{Input} & X70 & DC feeding operation permission & \begin{tabular}{l}
To operate with DC feeding, turn ON the X70 signal. \\
When the inverter output is shutoff due to power failure, it will be possible to start up 200 ms after turning ON the X 70 signal. (Automatic restart after instantaneous power failure can start after the time set in Pr. 57 has elapsed.) \\
When the X 70 signal is turned OFF while operating the inverter, output shutoff (Pr. \(261=\) "0") or deceleration stop (Pr. 261 = "0") will occur.
\end{tabular} & Set "70" in any of Pr. 178 to Pr. 189. \\
\hline & X71 & DC feeding cancel & \begin{tabular}{l}
Turn ON when stopping the DC feeding. When the X 71 signal is turned ON during the operation of the inverter and X 70 signal is ON, output shutoff (Pr. \(261=" 0\) ") or deceleration stop (Pr. \(261 \neq " 0\) ") will occur, and Y85 signal will turn OFF after stopping. \\
After turning ON the X 71 signal, operation is not possible even if the X70 signal is turned ON.
\end{tabular} & Set "71" in any of Pr. 178 to Pr. 189 . \\
\hline Output & Y85 & DC current feeding & \begin{tabular}{l}
This signal will turn ON during power failure or undervoltage of the AC power supply. It will turn OFF when the X 71 signal turns ON or power restoration. \\
The Y85 signal will not turn OFF even with the power restoration while the inverter is running, but turns OFF after stopping the inverter. When the Y 85 signal is turned ON due to undervoltage, the Y 85 signal will not turn OFF even when the undervoltage is resolved. The ON/OFF status is maintained when the inverter is reset.
\end{tabular} & Set "85 (positive logic) or 185 (negative logic)" in any of Pr. 190 to Pr. 196. \\
\hline
\end{tabular}
- Following is the connection diagram of switching to DC power supply using the power failure detection of the inverter.

*1 Assign the function using Pr. 178 to Pr. 182 (Input terminal function selection).
*2 Assign the function using Pr. 190 to Pr. 196 (Output terminal function selection)
- Operation example at the time of power failure occurrence 1

- Operation example at the time of power failure occurrence 2 (when the AC power supply is restored)

- Operation example at the time of power failure occurrence 3 (when continuing the operation)

\section*{－Power supply specification for DC feeding（standard models and IP55 compatible models）}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{200 V class } & Rated input DC voltage & 283 to 339 VDC \\
\cline { 2 - 3 } & Permissible fluctuation & 240 to 373 VDC \\
\hline \multirow{2}{*}{400 V class } & Rated input DC voltage & 537 to 679 VDC \\
\cline { 2 - 3 } & Permissible fluctuation & 457 to 740 VDC \\
\hline
\end{tabular}

\section*{NOTE}
－The voltage between terminals P and N briefly increases to \(415 \mathrm{~V}(830 \mathrm{~V})\) or higher during the regenerative driving，so take caution on the selection of the DC power supply．
－When an AC power supply is connected to terminals R／L1，S／L2，and T／L3 during DC feeding with Pr． \(30=\)＂ 2 ，10，or 11＂（DC feeding），an option fault（E．OPT）will occur．
－When the inverter is operated by the DC power supply by setting Pr． \(30=\)＂ \(2,10,11,20\) ，or 21 ＂（DC deeding），Undervoltage （E．UVT）and Instantaneous power failure（E．IPF）are not performed．
－When the DC power is switched ON，an inrush current higher than that for the AC power flows in the inverter．Minimize the number of power－ON events．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）or Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

\section*{WARNING}
－The value set in Pr． 70 must not exceed the setting of the brake resistor used．
It may cause overheating
《｜Parameters referred to 》》
Pr． 17 MRS input selection page 499
Pr． 57 Restart coasting time page 597，page 604
Pr． 178 to Pr． 189 （Input terminal function selection）page 496
Pr． 190 to Pr． 196 （Output terminal function selection）
Pr． 261 Power failure stop selection page 610

\section*{5．16．12 Regeneration avoidance function}

The regenerative status can be detected and avoided by raising the frequency．
－The operation frequency is automatically increased to prevent the regenerative operations．This function is useful when a load is forcibly rotated by another fan in the duct．
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pr. & Name & \multicolumn{2}{|r|}{Initial value} & Setting range & Description \\
\hline \multirow{3}{*}{\[
\begin{array}{|l}
882 \\
\text { G120 }
\end{array}
\]} & \multirow[b]{3}{*}{Regeneration avoidance operation selection} & \multicolumn{2}{|l|}{\multirow{3}{*}{0}} & 0 & The regeneration avoidance function is disabled. \\
\hline & & & & 1 & The regeneration avoidance function is always enabled. \\
\hline & & & & 2 & The regeneration avoidance function is enabled only during constant-speed operation. \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 883 \\
& \text { G121 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Regeneration avoidance operation level} & \[
\begin{aligned}
& 200 \mathrm{~V} \\
& \text { class }
\end{aligned}
\] & 380 VDC & & Set the bus voltage level to operate the regeneration avoidance operation. When the bus voltage level is set low, it will be harder \\
\hline & & \[
\begin{array}{|l}
400 \mathrm{~V} \\
\text { class }
\end{array}
\] & 760 VDC & V & \begin{tabular}{l}
be longer. \\
Set the setting value higher than the (power supply voltage \(\times\) \(\sqrt{2}\)) value.
\end{tabular} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 884 \\
& \text { G122 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Regeneration avoidance at deceleration detection sensitivity} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{0}} & 0 & The regeneration avoidance is disabled due to bus voltage change rate. \\
\hline & & & & 1 to 5 & Set the sensitivity to detect the bus voltage change rate. Setting value 1 (detection sensitivity: low) to 5 (detection sensitivity: high) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 885 \\
& \text { G123 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Regeneration avoidance compensation frequency limit value} & \multirow[t]{2}{*}{6 Hz} & & 0 to 590 Hz & Set the limit value for frequency to rise when the regeneration avoidance function is activated. \\
\hline & & & & 9999 & The frequency limit is disabled. \\
\hline \[
\begin{array}{|l|}
\hline 886 \\
\text { G124 } \\
\hline
\end{array}
\] & Regeneration avoidance voltage gain & \multicolumn{2}{|l|}{100\%} & 0 to 200\% & \multirow[t]{2}{*}{Adjust the response during the regeneration avoidance operation. Increasing the setting improves the response to change in the bus voltage. However, the output frequency may become unstable. If setting a smaller value in Pr. 886 does not suppress the vibration, set a smaller value in Pr. 665 .} \\
\hline \[
\begin{aligned}
& 665 \\
& \text { G125 }
\end{aligned}
\] & Regeneration avoidance frequency gain & \multicolumn{2}{|l|}{100\%} & 0 to 200\% & \\
\hline
\end{tabular}

\section*{- Regeneration avoidance operation (Pr.882, Pr.883)}
- When the regenerative voltage increases, the DC bus voltage will rise, which may cause an overvoltage fault (E.OV[]). The regenerative status can be avoided by detecting this rise of bus voltage, and raising the frequency when the bus voltage level exceeds Pr. 883 Regeneration avoidance operation level.
- The regeneration avoidance operation can be selected to operate constantly or operate only during constant speed.
- The regeneration avoidance function is enabled by setting "1 or 2" in Pr. 882 Regeneration avoidance operation selection.

\section*{NOTE}
- The slope of frequency rising or lowering by the regeneration avoidance operation will change depending on the regenerative status.
- The DC bus voltage of the inverter will be approximately \(\sqrt{2}\) times of the normal input voltage.

The bus voltage is about 311 VDC (622 VDC) when the input voltage is 220 VAC (440 VAC). However, it may vary depending on the input power supply waveform.
- Make sure that the setting value of Pr. 883 will not get under DC bus voltage level. The frequency will rise with operation of the regeneration avoidance function even during operation other than the regenerative operation.
- The stall prevention (overvoltage) (oL) will only operate during deceleration, stopping the lowering of output frequency, but on the other hand, the regeneration avoidance function will constantly operate (\(\operatorname{Pr} .882=" 1 "\)) or operate only at constant speed (Pr. 882 = "2"), and raise the frequency depending on the amount of regeneration.
- When the motor becomes unstable due to operation of the stall prevention (overcurrent) (OL) during the regeneration avoidance operation, increase the deceleration time or lower the setting of Pr.883.
- During position control, the regeneration avoidance function is not activated.

\section*{- Detecting the regenerative status faster during deceleration (Pr.884)}
- Since a rapid change in bus voltage cannot be handled by bus voltage level detection during the regeneration avoidance operation, deceleration is stopped by detecting the change in bus voltage and if it is equal to or lower than Pr. 883 Regeneration avoidance operation level. Set the detectable bus voltage change rate as the detection sensitivity in Pr. 884 Regeneration avoidance at deceleration detection sensitivity. A larger set value increases the detection sensitivity.

\section*{NOTE}
- When the setting value is too small (detection sensitivity is not good), detection will not be possible, and regeneration avoidance will operate even with the bus voltage change caused by a change in the input power.

\section*{- Limiting the regeneration avoidance operation frequency (Pr.885)}
- It is possible to assign a limit to the output frequency corrected (rise) by the regeneration avoidance operation.
- Limit of the frequency is output frequency (frequency before regeneration avoidance operation) + Pr. 885 Regeneration avoidance compensation frequency limit value for during acceleration and constant speed. During deceleration, when the frequency increases due to the regeneration avoidance operation and exceeds the limit value, the limit value will be retained until the output frequency is reduced to be the half the Pr. 885 setting.
- When the frequency that have increased by the regeneration avoidance operation exceeds Pr. 1 Maximum frequency, it will be limited to the maximum frequency.
- When Pr. \(885=\) " 9999 ", the regeneration avoidance compensation frequency limit is disabled.
- Set the frequency around the motor rated slip frequency. Increase the setting value if the overvoltage protection function (\(\mathrm{E} . \mathrm{OV}[]\)) is activated at the start of deceleration.
\[
\text { Rated motor slip frequency }=\frac{\text { Synchronized speed at the time of base frequency }- \text { rated rotation speed }}{\text { Synchronized speed at the time of base frequency }} \times \text { Rated motor frequency }
\]

\section*{Adjusting the regeneration avoidance operation (Pr.665, Pr.886)}
- If the frequency becomes unstable during regeneration avoidance operation, decrease the setting of Pr. 886 Regeneration avoidance voltage gain. On the other hand, if an overvoltage fault occurs due to a sudden regeneration, increase the setting.
- If setting a smaller value in Pr. 886 does not suppress the vibration, set a smaller value in Pr. 665 Regeneration avoidance frequency gain.

\section*{NOTE}
- During the regeneration avoidance operation, the stall prevention (overvoltage) "oL" is displayed and the Overload warning (OL) signal is output. Set the operation pattern at an OL signal output using Pr. 156 Stall prevention operation selection. Use Pr. 157 OL signal output timer to set the OL signal output timing.
- The stall prevention is enabled even during regeneration avoidance operation.
- The regeneration avoidance function cannot decrease the actual deceleration time for the motor to stop. Since the actual deceleration time is determined by the regenerative power consumption performance, consider using a regeneration unit (FRBU2, BU, FR-BU, FR-CV, FR-HC2) or brake resistor (FR-ABR, etc.) to decrease the deceleration time.
- When using a regeneration unit (FR-BU2, BU, FR-BU, FR-CV, FR-HC2) or brake resistor (FR-ABR, etc.) to consume the regenerative power, set Pr. \(882=00\) (initial value)" (the regeneration avoidance function is disabled). When consuming the regenerative power at the time of deceleration with the regeneration unit, etc., set Pr. \(882=22\) (enables regeneration avoidance function only at the constant speed).
- When using the regeneration avoidance function under Vector control, noise may be generated from the motor during deceleration. In such case, adjust the gain by performing easy gain tuning, etc. (Refer to page 244.)

\subsection*{5.16.13 Increased magnetic excitation deceleration}

\section*{V/F Magneticflux Sensorless Vector}

Increase the loss in the motor by increasing the magnetic flux during deceleration. The deceleration time can be reduced by suppressing the stall prevention (overvoltage) (oL).
The deceleration time can further be shortened without a brake resistor. (When a brake resistor is used, the duty can be reduced.)
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 660 \\
& \text { G130 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Increased magnetic excitation deceleration operation selection} & \multirow[b]{2}{*}{0} & 0 & Without the increased magnetic excitation deceleration function \\
\hline & & & 1 & With the increased magnetic excitation deceleration function \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 661 \\
& \text { G131 }
\end{aligned}
\]} & \multirow{3}{*}{Magnetic excitation increase rate} & \multirow{3}{*}{9999} & 0 to 40\% & Set the increase of excitation. \\
\hline & & & \multirow{2}{*}{9999} & The magnetic excitation increase rate is \(10 \%\) under V/F control and Advanced magnetic flux vector control. \\
\hline & & & & The magnetic excitation increase rate is \(0 \%\) under Real sensorless vector control and Vector control. \\
\hline \[
\begin{aligned}
& 662 \\
& \text { G132 }
\end{aligned}
\] & Increased magnetic excitation current level & 100\% & 0 to 300\% & The increased magnetic excitation rate is automatically lowered when the output current exceeds the setting value during increased magnetic excitation deceleration. \\
\hline
\end{tabular}

\section*{-Setting of increased magnetic excitation rate (Pr.660, Pr.661)}
- To enable the increased magnetic excitation deceleration, set Pr. 660 Increased magnetic excitation deceleration operation selection = "1".
- Set the amount of excitation increase in Pr. 661 Magnetic excitation increase rate. Increased magnetic excitation deceleration will be disabled when Pr. 661 = " 0 ".
- When the DC bus voltage exceeds the increased magnetic excitation deceleration operation level during the deceleration, excitation is increased in accordance with the setting value in Pr.661.
- The increased magnetic excitation deceleration will continue even if the DC bus voltage goes under the increased magnetic excitation deceleration operation level during increased magnetic excitation deceleration.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Inverter } & \multicolumn{1}{c|}{\begin{tabular}{c}
Increased magnetic excitation \\
deceleration operation level
\end{tabular}} \\
\hline 200 V class & 340 V \\
\hline 400 V class & 680 V \\
\hline With 500 V input & 740 V \\
\hline
\end{tabular}
- When the stall prevention (overvoltage) occurs during the increased magnetic excitation deceleration operation, increase the deceleration time or raise the setting value of Pr.661. When the stall prevention (overcurrent) occurs, increase the deceleration time or lower the setting value of Pr.661.
- Increased magnetic excitation deceleration is enabled under V/F control, Advanced magnetic flux vector control, Real sensorless vector control (speed control), and Vector control (speed control).

\section*{NOTE}
- Increased magnetic excitation deceleration will be disabled in the following conditions:

During PM sensorless vector control, power failure stop, orientation control, operation with the FR-HC2/FR-CV, energy saving operation, Optimum excitation control, and stop-on-contact control.

\section*{Overcurrent prevention function (Pr.662)}
- The overcurrent prevention function is enabled under V/F control and Advanced magnetic flux vector control.
- The increased magnetic excitation rate is lowered automatically when the output current exceeds the level set in Pr. 662 during increased magnetic excitation deceleration.
- When the inverter protective function (E.OC[], E.THT) is activated due to increased magnetic excitation deceleration, adjust the level set in Pr. 662.
- The overcurrent preventive function is disabled when Pr. \(662=\) " 0 ".

\section*{NOTE}
- When the level set in Pr. 662 is more than the one set in Pr. 22 Stall prevention operation level, the overcurrent preventive function is activated at the level set in Pr.22. (The level set in Pr. 662 is applied when \(\operatorname{Pr} .22=" 0\) ".)

\section*{《| Parameters referred to}

Pr. 22 Stall prevention operation levelt page 409
Pr. 30 Regenerative function selection \(\wp\) page 689
Pr. 60 Energy saving control selection \(ङ\) page 678
Pr. 162 Automatic restart after instantaneous power failure selection page 597, page 604
Pr. 270 Stop-on contact/load torque high- speed frequency control selection page 546
Pr. 261 Power failure stop selection \({ }^{3}\) page 610
Pr. 350 Stop position command selection page 554

\subsection*{5.16.14 Slip compensation}

VIF
Under V/F control, the slip of the motor is estimated from the inverter output current to maintain the rotation of the motor constant.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 245 \\
& \text { G203 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Rated slip} & \multirow[b]{2}{*}{9999} & 0.01 to 50\% & Set the rated motor slip. \\
\hline & & & 0,9999 & No slip compensation \\
\hline \[
\begin{aligned}
& 246 \\
& \text { G204 }
\end{aligned}
\] & Slip compensation time constant & 0.5 s & 0.01 to 10 s & Set the response time of the slip compensation. Reducing the value improves the response, but the regenerative overvoltage (E.OV[]) error is more likely to occur with a larger load inertia. \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 247 \\
& \text { G205 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Constant output range slip compensation selection} & \multirow[t]{2}{*}{9999} & 0 & No slip compensation in the constant power range (frequency range higher than the frequency set in Pr .3). \\
\hline & & & 9999 & Slip compensation is performed in the constant power range. \\
\hline
\end{tabular}
- Calculate the rated motor slip and set the value in Pr. 245 to enable slip compensation.

Slip compensation is not performed when Pr. 245 = "0 or 9999".
Rated slip \(=\frac{\text { Synchronized speed at the time of base frequency }- \text { rated rotation speed }}{\text { Synchronized speed at the time of base frequency }} \times 100[\%]\)

\section*{NOTE}
- When the slip compensation is performed, the output frequency may become larger than the set frequency. Set Pr. 1 Maximum frequency higher than the set frequency.
- Slip compensation will be disabled in the following conditions:

Stall prevention (oL, OL) operation, regeneration avoidance operation, auto tuning, encoder feedback control operation

\subsection*{5.16.15 Encoder feedback control}

\section*{VNF Magneticiflux}

This controls the inverter output frequency so that the motor speed is constant to the load variation by detecting the motor speed with the speed detector (encoder) to feed back to the inverter.
A Vector control compatible option is required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pr.} & Name & Initial value & Setting range & \multicolumn{2}{|l|}{Description} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 144 \\
& \text { M002 }
\end{aligned}
\]} & Speed setting switchover & 4 & \[
\begin{aligned}
& 0,2,4,6,8,10,12 \\
& 102,104,106,108 \\
& 110,112
\end{aligned}
\] & \multicolumn{2}{|l|}{Set the number of motor poles for the encoder feedback control under V/F control.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 285 \\
& \text { H416 }
\end{aligned}
\]}} & \multirow[t]{2}{*}{Overspeed detection frequency \({ }^{* 1}\)} & \multirow[t]{2}{*}{9999} & 0 to 30 Hz & \multicolumn{2}{|l|}{When the difference between the detected frequency and the output frequency exceeds the set value during encoder feedback control, an inverter fault (E.MB1) is generated.} \\
\hline & & & & 9999 & \multicolumn{2}{|l|}{Overspeed detection is disabled.} \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 359^{* 2 * 3} \\
& \text { C141 }
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 852^{*} 4 \\
& \text { C241 }
\end{aligned}
\]} & \multirow{4}{*}{Encoder rotation direction} & \multirow{4}{*}{1} & 0 & \multirow[t]{2}{*}{Set when using a motor for which forward rotation (encoder) is clockwise (CW) viewed from the shaft} & Set for the operation at 120 Hz or less. \\
\hline & & & & 100 & & Set for the operation at a frequency higher than 120 Hz . \\
\hline & & & & 1 & \multirow[t]{2}{*}{Set when using a motor for which forward rotation (encoder) is counterclockwise (CCW) viewed from the shaft} & Set for the operation at 120 Hz or less. \\
\hline & & & & 101 & & Set for the operation at a frequency higher than 120 Hz . \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 367^{* 2} \\
& \text { G240 }
\end{aligned}
\]}} & \multirow[b]{2}{*}{Speed feedback range} & \multirow[t]{2}{*}{9999} & 0 to 590 Hz & \multicolumn{2}{|l|}{Set the range of speed feedback control.} \\
\hline & & & & 9999 & \multicolumn{2}{|l|}{The encoder feedback control is disabled.} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& 368^{* 2} \\
& \text { G241 }
\end{aligned}
\]} & Feedback gain & 1 & 0 to 100 & \multicolumn{2}{|l|}{Set when the rotation is unstable or response is slow.} \\
\hline \[
\begin{aligned}
& 369^{* 2 * 3} \\
& \text { C140 }
\end{aligned}
\] & \[
\begin{aligned}
& 851^{* 4} \\
& \text { C240 }
\end{aligned}
\] & Number of encoder pulses & 1024 & 0 to 4096 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Set the number of encoder pulses. \\
Set the number of pulses before it is multiplied by 4 .
\end{tabular}} \\
\hline
\end{tabular}

\footnotetext{
*1 The speed deviation excess detection frequency is used when Vector control compatible option is mounted during Vector control. (Refer to page 259 for details.)
*2 The setting is available when a Vector control compatible option is installed.
*3 The parameter number is the one for use a Vector control compatible option. (Pr. 369 is applicable for the FR-A8AP and FR-A8AL.)
*4 The parameter number is the one for use with the control terminal option (FR-A8TP).
}

\section*{Setting before operation (Pr.144, Pr.359, Pr.369)}
- For the operation during encoder feedback control under V/F control, set the number of motor poles in Pr. 144 Speed setting switchover in accordance with the applied motor. Since the Pr. 81 Number of motor poles setting is used during Advanced magnetic flux vector, the Pr. 144 setting does not need to be changed.
- Use Pr. 359 Encoder rotation direction and Pr. 369 Number of encoder pulses to set the rotation direction and the number of pulses for the encoder.

\section*{NOTE}
- Operating the inverter with Pr. \(144=" 0,10,12,110\), or 112 " causes E. 1 to E. 3 .
- When "102, 104, 106, or 108 " is set in Pr. 144, the value obtained by subtracting 100 from the set value will be set as the number of poles.
- The Pr. 144 setting changes automatically when setting the motor poles in Pr. 81 , but even if Pr. 144 is changed, Pr. 81 will not automatically change.
- Control with correct speed is not possible if the number of poles for the applied motor is incorrect. Check first before operation.
- Encoder feedback control is not possible when the rotation direction setting of the encoder is incorrect. (Operation of the inverter is possible.)
Check the indicator on the parameter unit to confirm the direction.

\section*{- Selection of encoder feedback control (Pr.367)}
- When a value other than "9999" is set in Pr. 367 Speed feedback range, encoder feedback control is enabled. Set a target value (frequency at which stable speed operation is performed) and specify the range around the value. Normally, use the frequency converted from the slip amount (r/min) at the rated motor speed (rated load). If the setting is too large, response becomes slow.

- Example: when the rated speed of a motor (4 poles) is \(1740 \mathrm{r} / \mathrm{min}\) at 60 Hz

Slip Nsp = Synchronous speed - Rated speed = 1800-1740 \(=60(\mathrm{r} / \mathrm{min})\)
Frequency equivalent to slip \((\mathrm{fsp})=\mathrm{Nsp} \times\) Number of poles/120
\(=60 \times 4 / 120\)
\(=2(\mathrm{~Hz})\)

\section*{\(\checkmark\) Feedback gain (Pr.368)}
- Set Pr. 368 Feedback gain when the rotation is unstable or response is slow.
- Response of the feedback will become slow when the acceleration/deceleration time is long. In such case, increase the setting value of Pr. 368.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. 368 setting } & \multicolumn{1}{c|}{ Description } \\
\hline Pr. \(368>1\) & Response will become faster but it may cause overcurrent or unstable operation. \\
\hline \(1>\) Pr. 368 & Response will become slower but the operation will become more stable. \\
\hline
\end{tabular}

\section*{- Overspeed detection (Pr.285)}
- To prevent malfunction when the correct pulse signal cannot be detected from the encoder, when [detection frequency] - [output frequency] \(\geq\) Pr. 285
during encoder feedback control, a protective function (E.MB1) will be activated to shut off the inverter output.
- Overspeed detection is not performed when Pr. 285 = "9999".

\section*{NOTE}
- Couple the encoder on the same axis as the motor axis without any mechanical clatter, with speed ratio of 1:1.
- Encoder feedback control is not performed during the acceleration and deceleration to prevent unstable operation such as hunting.
- Encoder feedback control is performed after the output frequency has reached [set frequency] \(\pm\) [speed feedback range] once.
- When following status occurs during encoder feedback control operation, the inverter output is not shut off, the output frequency becomes the value obtained by [set frequency] \(\pm\) [speed feedback range], and tracking of the motor speed is not performed.
When the pulse signal from the encoder is lost due to a break, etc.
When correct pulse signal cannot be detected due to induction noise, etc.
When the motor is forcefully accelerated (regenerative rotation) or decelerated (motor lock) due to large external force
- Use the Inverter running (RUN) signal when releasing the brake from the motor with a brake. (The brake may not be released when the Output frequency detection (FU) signal is used.)
- Do not turn OFF the external power supply for the encoder during encoder feedback control. Normal encoder feedback control will not be possible.

\subsection*{5.16.16 Droop control}

\section*{Magneticflux Sensorless Vector PNM}

This is a function to give droop characteristics to the speed by balancing the load in proportion with the load torque during the Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and PM sensorless vector control.

This is effective in balancing the load when multiple inverters are connected.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & \multicolumn{2}{|r|}{Description} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 286 \\
& \text { G400 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Droop gain} & \multirow[b]{2}{*}{0\%} & 0 & \multicolumn{2}{|l|}{Normal operation} \\
\hline & & & 0.1 to 100\% & \multicolumn{2}{|l|}{\begin{tabular}{l}
Droop control enabled. \\
Set the droop amount at the time of rated torque as \% value of the rated motor frequency.
\end{tabular}} \\
\hline \[
\begin{aligned}
& \hline 287 \\
& \text { G401 }
\end{aligned}
\] & Droop filter time constant & 0.3 s & 0 to 1 s & \multicolumn{2}{|l|}{Set the time constant of the filter relative to the torque current.} \\
\hline \multirow{8}{*}{\[
\begin{aligned}
& 288 \\
& \text { G402 }
\end{aligned}
\]} & \multirow{8}{*}{Droop function activation selection} & \multirow{8}{*}{0} & 0 & No droop control during acceleration/deceleration (with 0 limit) & \multirow{3}{*}{The Pr. 84 setting is the droop compensation reference.} \\
\hline & & & 1 & Continuous droop control during operation (with 0 limit) & \\
\hline & & & 2 & Continuous droop control during operation (without 0 limit) & \\
\hline & & & 10 & No droop control during acceleration/deceleration (with 0 limit) & \multirow[t]{2}{*}{The motor speed is the droop compensation reference.} \\
\hline & & & 11 & Continuous droop control during operation (with 0 limit) & \\
\hline & & & 20 & No droop control during acceleration/deceleration (with 0 limit) & \multirow{3}{*}{The Pr. 1121 setting is the droop compensation reference.} \\
\hline & & & 21 & Constant droop control during operation (with 0 limit) & \\
\hline & & & 22 & Constant droop control during operation (without 0 limit) & \\
\hline \[
994
\] & Droop break point gain & 9999 & 0.1 to 100\% & \multicolumn{2}{|l|}{Set the droop amount to be changed as \% value of the rated motor frequency.} \\
\hline & & & 9999 & \multicolumn{2}{|l|}{No function} \\
\hline \[
\begin{array}{|l|}
\hline 995 \\
\text { G404 }
\end{array}
\] & Droop break point torque & 100\% & 0.1 to 100\% & \multicolumn{2}{|l|}{Set the torque to change the droop amount.} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 679 \\
& \text { G420 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Second droop gain} & \multirow[b]{2}{*}{9999} & 0 to 100\% & Refer to Pr. 286. & \multirow{10}{*}{Set the second droop control. The second droop control is enabled when the RT signal is ON.} \\
\hline & & & 9999 & The first droop control setting is applied. & \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 680 \\
& \text { G421 }
\end{aligned}
\]} & \multirow[b]{2}{*}{Second droop filter time constant} & \multirow[b]{2}{*}{9999} & 0 to 1 s & Refer to Pr. 287. & \\
\hline & & & 9999 & The first droop control setting is applied. & \\
\hline \multirow[t]{2}{*}{681 G422} & \multirow[t]{2}{*}{Second droop function activation selection} & \multirow[t]{2}{*}{9999} & \[
\begin{aligned}
& 0 \text { to } 2,10,11, \\
& 20 \text { to } 22
\end{aligned}
\] & Refer to Pr. 288. & \\
\hline & & & 9999 & The first droop control setting is applied. & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
682 \\
G423
\end{tabular}} & \multirow[t]{2}{*}{Second droop break point gain} & \multirow[b]{2}{*}{9999} & 0.1 to 100\% & Refer to Pr. 994. & \\
\hline & & & 9999 & The first droop control setting is applied. & \\
\hline & \multirow[t]{2}{*}{Second droop break point torque} & \multirow[b]{2}{*}{9999} & 0.1 to 100\% & Refer to Pr.995. & \\
\hline G424 & & & 9999 & The first droop control setting is applied. & \\
\hline
\end{tabular}

\section*{- Droop control}
- Droop control is enabled under Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and PM sensorless vector control.
- In the droop control, the speed command changes depending on the amount of the current for torque.

Set the droop amount at the rated torque in Droop gain as \% value of the rated motor frequency (or motor speed when Pr. 288 = "10 or 11").
- The upper limit of the droop compensation frequency is 400 Hz or Pr. 1 Maximum frequency, whichever smaller.
- During PM sensorless vector control, the upper limit of the droop compensation frequency is 400 Hz , the frequency set in Pr.1, or the maximum motor frequency, whichever the smallest.

- The droop compensation frequency is calculated as follows.

Droop compensation frequency \(=\frac{\text { Current for torque after filtering }}{\text { Rated torque current }} \times \mathrm{K} \times \frac{\text { Droop compensation reference } \times \text { Droop gain }}{100}\)
When the output frequency is equal to or lower than the rated frequency set in Pr.84: \(\mathrm{K}=1\)
When the output frequency is higher than the rated frequency set in Pr.84: K \(=\frac{\text { Rated frequency (Pr.84) }}{\text { Output frequency }}\)

\section*{NOTE}
- Set the droop gain equivalent to the rated slip of the motor.
\[
\text { Rated slip }=\frac{\text { Synchronized speed at the time of base frequency }- \text { rated rotation speed }}{\text { Synchronized speed at the time of base frequency }} \times 100[\%]
\]
- The speed loop integration can be disabled at the emergency stop using Pr. 1349 Emergency stop operation selection. (Refer to page 349.)
- Limiting the frequency after the droop compensation (0 limit)
- Under Real sensorless vector control, Vector control, or PM sensorless vector control, the lower limit can be set for the frequency command value by setting Pr. 288 when the value falls below zero after droop compensation.
\begin{tabular}{|c|c|c|c|}
\hline \[
\text { Pr. } 288
\]
setting & Operation & When the output frequency after droop compensation is negative & Droop compensation reference \\
\hline 0 (initial value) & \multirow{3}{*}{No droop control during acceleration/deceleration} & \multirow{6}{*}{\begin{tabular}{l}
Limited at 0 Hz \\
(limited at 0.5 Hz under Advanced magnetic flux vector control)
\end{tabular}} & Rated motor frequency (Pr. 84 setting) \\
\hline \(10^{* 1}\) & & & Motor speed \\
\hline \(20^{* 1}\) & & & Per-unit speed control reference frequency (Pr. 1121 setting) \\
\hline \(1{ }^{* 1}\) & \multirow[b]{3}{*}{Continuous droop control during operation} & & Rated motor frequency (Pr. 84 setting) \\
\hline \(11^{* 1}\) & & & Motor speed \\
\hline \(21^{* 1}\) & & & Per-unit speed control reference frequency (Pr. 1121 setting) \\
\hline \(2^{* 1}\) & & - Not limited (but reversed) under Vector control or PM & Rated motor frequency (Pr. 84 setting) \\
\hline \(22^{* 1}\) & operation & \begin{tabular}{l}
sensorless vector control \\
- Limited at 0 Hz under Real sensorless vector control
\end{tabular} & Per-unit speed control reference frequency (Pr. 1121 setting) \\
\hline
\end{tabular}
*1 Under Advanced magnetic flux vector control, the operation is the same as the one when the setting is " 0 ".

\section*{Setting the break point for droop control（Pr．994，Pr．995）}
－Set Pr． 994 and Pr． 995 to have a break point on a droop compensation frequency line．Setting a break point allows the inverter to raise the droop compensation frequency for light－load（no load）operation without raising it for heavy－load operation．

\section*{NOTE}
－The droop break point function is disabled when any of the following conditions is met．（Linear compensation by Pr． 286 is performed．）
Pr． 995 ＝100\％（initial value）
Pr． 286 ＜Pr． 994
Pr． 994 ＜Pr． \(995 \times\) Pr． 286 ／100\％

\section*{Setting multiple droop control types（Pr． 679 to Pr．683）}
－When the second droop control is set，two sets of droop controls can be switched for use．Turning ON the Second function selection（RT）signal enables the second droop control．

\section*{NOTE}
－The RT signal is the Second function selection signal which also enables other second functions．
－The RT signal is assigned to terminal RT in the initial status．Set＂3＂in one of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions． Set parameters after confirming the function of each terminal．

《 Parameters referred to 》》
Pr． 1 Maximum frequency page 407
Pr． 178 to Pr． 189 Input terminal function selection \(\leqslant\) page 496

\section*{5．16．17 Speed smoothing control}

\section*{V／F}

The output current（torque）of the inverter sometimes becomes unstable due to vibration caused by mechanical resonance． Such vibration can be suppressed by reducing fluctuation of the output current（torque）by changing the output frequency．
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr．} & \multicolumn{1}{|c|}{ Name } & Initial value & \multicolumn{1}{c|}{\begin{tabular}{c}
Setting \\
range
\end{tabular}} & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l}
653 \\
G410
\end{tabular} & \begin{tabular}{l}
Speed smoothing \\
control
\end{tabular} & \(0 \%\) & 0 to \(200 \%\) & \begin{tabular}{l}
Check the effect by increasing and decreasing the value at around \\
\(100 \%\).
\end{tabular} \\
\hline \begin{tabular}{l}
654 \\
G411
\end{tabular} & \begin{tabular}{l}
Speed smoothing \\
cutoff frequency
\end{tabular} & 20 Hz & 0 to 120 Hz & Set the minimum frequency for the torque variation cycle． \\
\hline
\end{tabular}

\section*{-Control block diagram}

\section*{Setting method}
- When vibration caused by mechanical resonance occurs, set \(100 \%\) in Pr. 653 Speed smoothing control, perform operation at the frequency with the largest vibration, and check if the vibration is suppressed after few seconds.
- If the setting is not effective, gradually increase the value set in Pr. 653 and repeat the operation to check the effect to determine the most effective value (Pr.653).
- If the vibration increases by increasing the value in Pr.653, decrease the value in Pr. 653 from 100\% to check the effect.
- When the vibrational frequency at which mechanical resonance occurs (during fluctuation of torque, speed, or converter output voltage) is measured using an instrument such as a tester, set \(1 / 2\) to 1 times of the vibrational frequency in Pr. 654 Speed smoothing cutoff frequency. (Setting the resonance frequency range mitigates vibration more effectively.)

NOTE
- Depending on the equipment, the vibration may not be suppressed sufficiently or the setting is not effective.

\section*{Point \({ }^{\rho}\)}
- Set "1" to Pr.CLR Parameter clear or ALL.CL All parameter clear to initialize all parameters. (Parameters cannot be cleared when Pr. 77 Parameter write selection = "1".)
- Pr.CL does not clear calibration parameters or the terminal function selection parameters.
- Refer to the parameter list on page 824 for parameters cleared with this operation.

\section*{Operating procedure}
1. Turning \(O N\) the power of the inverter

The operation panel is in the monitor mode.
2. Changing the operation mode

Press \(\int\) PUT to choose the PU operation mode. The [PU] indicator turns ON.
3. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
4. Selecting the parameter

Turn \(\underbrace{}_{1}\) to " SET. "
5. Parameter clear

Turn
(1) to change the set value to " 1 ". Press 5 St to set. " 1 \("\) and Prerp. (")
- Turn to read another parameter.
- Press SET to show the setting again.
- Press SET twice to show the next parameter.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Setting } & \multicolumn{2}{|c|}{ Description } \\
\cline { 2 - 4 } & \multicolumn{2}{|c|}{ Pr.CL Parameter clear } \\
\hline 0 & Initial display (Parameters are not cleared.) \\
\hline 1 & \begin{tabular}{l}
The settings of parameters except for calibration parameters parater clear \\
and terminal function selection parameters are initialized.
\end{tabular} & \begin{tabular}{l}
The settings of all the parameters, including calibration \\
parameters and terminal function selection parameters, are \\
initialized.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

1) Press \(\frac{\text { PU }}{\text { EXT }}\)

OPU turns ON, and " \(\quad\) " appears on the monitor. (When Pr. \(79=0\) " (initial value))
2) Press SET to clear the parameter.
- Stop the inverter first. Writing error occurs if parameter clear is attempted while the inverter is running.
- To clear parameters, the inverter must be in the PU operation mode even if "2" is set to Pr.77.
- For availability of the Parameter clear or All parameter clear operation for each parameter, refer to the parameter list on page 824.

\subsection*{5.18 Copying and verifying parameters on the operation panel}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pr.CPY setting value } & \multicolumn{1}{c|}{ Description } \\
\hline 0.--- & Initial display \\
\hline 1.RD & Copy the source parameters to the operation panel. \\
\hline 2.WR & Write the parameters copied to the operation panel to the destination inverter. \\
\hline 3.VFY & Verify parameters in the inverter and operation panel. (Refer to page 709.) \\
\hline
\end{tabular}

\section*{NOTE}
- When the copy destination is other than the FR-A800 series or when parameter copy is attempted after the parameter copy reading was stopped, the model error "
- Refer to the parameter list on page 824 for the availability of parameter copy.
- When the power is turned OFF or an operation panel is disconnected, etc. during parameter copy writing, write again or check the setting values by parameter verification.
- When parameters are copied from a different-capacity inverter, there are parameters with different initial values depending on the inverter capacity, so the setting values of some parameters will be automatically changed. After performing a parameter copy from a different-capacity inverter, check all the parameter settings. (Refer to the parameter list (page 162) for details of parameters with different initial values depending on individual inverter capacity.)
- While password protection is enabled, parameter copy and parameter verification cannot be performed. (Refer to page 331.)
- If parameters are copied from an older inverter to a newer inverter that has additional parameters, out-of-range setting values may be written in some parameters. In that case, those parameters operate as if they were set to initial values.

\subsection*{5.18.1 Parameter copy}
- Inverter parameter settings can be copied to other inverters.

\section*{- Reading the parameter settings of the inverter to the operation panel}

\section*{Operating procedure}
1. Connect the operation panel to the source inverter.
2. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
3. Selecting the parameter

Turn to "10)
"1. -- -- -- " appears.
4. Reading to the operation panel

Turn \(\left.\begin{array}{rl}1 \\ 1\end{array}\right)\) to change the set value to " the operation panel. (It takes about 30 seconds to read all the settings. During reading, "
5. End reading

\section*{NOTE}
- "-

\section*{Copying parameter settings read to the operation panel to the inverter}

\section*{Operating procedure}
1. Connect the operation panel to the destination inverter.
2. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
3. Selecting the parameter

"I_- -- -- -- "appears.
4. Selecting parameter copy

目. Fil appears.
5. Copying to the inverter

Press SET to start copying to the inverter. (It takes about 60 seconds to copy all the settings. During copying,

- Perform this step while the inverter is stopped. (Parameter settings cannot be copied during operation.)
6. Ending copying

7. When parameters are written to the destination inverter, reset the inverter before operation by, for example, turning the power supply OFF.

\section*{NOTE}
- "- 焉" appears when a parameter write error occurred. Perform the operation from step 3. again.
 or lower or FR-A840-01800(55K) or lower inverters and the FR-A820-03800(75K) or higher or FR-A840-02160(75K) or higher inverters. When CP and 0.00 are displayed alternately, set Pr. 989 Parameter copy alarm release as shown below (initial value).
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. 989 setting } & \multicolumn{1}{c|}{ Operation } \\
\hline 10 & Cancels the alarm of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower. \\
\hline 100 & Cancels the alarm of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher. \\
\hline
\end{tabular}
- After setting Pr.989, perform setting of Pr.9, Pr.30, Pr.51, Pr.56, Pr.57, Pr.61, Pr.70, Pr.72, Pr.80, Pr.82, Pr. 90 to Pr.94, Pr.453, Pr.455, Pr. 458 to Pr.462, Pr.557, Pr.859, Pr.860, and Pr. 893 again.

\subsection*{5.18.2 Parameter verification}
- Whether the parameter settings of inverters are the same or not can be checked.

\section*{Operating procedure}
1. Copy the parameter settings of the verification source inverter to the operation panel according to the procedure on page 708.
2. Move the operation panel to the inverter to be verified.
3. Turning \(O N\) the power of the inverter The operation panel is in the monitor mode.
4. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
5. Selecting the parameter

"1-1. -- -- " appears.
6. Parameter verification

Turn to change to setting value "
Press SET. Verification of the parameter settings copied to the operation panel and the parameter settings of the verification destination inverter is started. (It takes about 60 seconds to verify all the settings. During verification,

- If there are different parameters, the different parameter number and "r are displayed alternately.
- To continue verification, press

\section*{NOTE}
- When ", "

\subsection*{5.19 Copying and verifying parameters using a USB memory}
- Inverter parameter settings can be copied to a USB memory device.
- Parameter setting data copied to a USB memory device can be copied to other inverters or verified to see if they differ from the parameter settings of other inverters.
- Parameter settings can also be imported to a personal computer and edited in FR Configurator2.

\section*{- Changes in the USB memory copy operation states}
- Insert the USB memory device into the inverter. The USB memory mode is displayed and the USB memory operations are enabled.

Copy the parameter setting from the inverter to the USB memory device.

Parameter setting file number saved in the USB memory device (up to 99)

Parameter setting mode P. \(\quad\) - Noob Function mode Flifir \(\square\) MODE Faults history mode E-----

- When parameter settings are copied to the USB memory without specifying a parameter setting file number in the USB memory, numbers are automatically assigned.
- Up to 99 files can be saved in the USB memory. When the USB memory already has 99 files, attempting copying of another file to the USB memory causes the file quantity error (rE7).
- Refer to the Instruction Manual of FR Confirurator2 for the details on importing files to FR Configurator2.
- While password protection is enabled, parameter copy and parameter verification cannot be performed. (Refer to page 331.)

\section*{\(\checkmark\) Procedure for copying parameters to the USB memory}

\section*{Operating procedure}
1. Insert the USB memory device into the copy source inverter.
2.

USB memory mode
Press MODE to change to the USB memory mode.
3. Displaying the file selection screen

Press SET three times to display "I the USB memory, display the file selection screen, turn to select the file number, and press \(\operatorname{sET}\).)
4. Copying to the USB memory

Turn to change to " memory. (It takes about 15 seconds to copy all the settings. During copying, "
" 1 左 " and the file number are displayed alternately after copying ends.

\section*{- Procedure for copying parameters from the USB memory to the inverter}

\section*{Operating procedure}
1. Insert the USB memory device into the destination inverter.
2.

USB memory mode
Press MODE to change to the USB memory mode.
3. Displaying the file selection screen

Press \(S\) SET three times to display "1-- -- -- " (file selection screen).
4. Selecting the file number

Turn to select the file number to copy to the inverter, and press SET

6. Writing to the inverter

Press SET to write the parameters copied to the USB memory to the destination inverter. (It takes about 15

"_I FI_ FI " and the file number are displayed alternately after copying ends.
- Perform this step while the inverter is stopped.
7. When parameters are written to the destination inverter, reset the inverter before operation by, for example, turning the power supply OFF.
- "device and try the operation again.
- " or lower or FR-A840-01800(55K) or lower inverters and the FR-A820-03800(75K) or higher or FR-A840-02160(75K) or higher inverters. When CP and 0.00 are displayed alternately, set Pr. 989 Parameter copy alarm release as shown below (initial value).
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. 989 setting } & \multicolumn{1}{c|}{ Operation } \\
\hline 10 & Cancels the warning of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower. \\
\hline 100 & Cancels the warning of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher. \\
\hline
\end{tabular}
- After setting Pr.989, perform setting of Pr.9, Pr.30, Pr.51, Pr.56, Pr.57, Pr.61, Pr.70, Pr.72, Pr.80, Pr.82, Pr. 90 to Pr.94, Pr.453, Pr.455, Pr. 458 to Pr.462, Pr.557, Pr.859, Pr.860, and Pr. 893 again.
- When the destination inverter is other than the FR-A800 series or when Parameter copy is attempted after the parameter copy reading was stopped, the model error "
- Refer to the parameter list on page 824 for the availability of parameter copy.
- When the power is turned OFF or an operation panel is disconnected, etc. during parameter copy writing, write again or check the setting values by parameter verification.
- When parameters are copied from a different-capacity inverter, there are parameters with different initial values depending on the inverter capacity, so the setting values of some parameters will be automatically changed. After performing a parameter copy from a different-capacity inverter, check all the parameter settings. (Refer to the parameter list (page 162) for details of parameters with different initial values depending on individual inverter capacity.)

\section*{- Procedure for verifying parameters in the USB memory}

\section*{Operating procedure}
1. Copy the parameter settings of the verification source inverter to the USB memory according to the procedure on page 712.
2. Move the USB memory device to the inverter to be verified.
3. Turning ON the power of the inverter The operation panel is in the monitor mode.
4. USB memory mode

Press MODE to change to the USB memory mode.
5. Displaying the file selection screen

Press \(\boxed{\text { SET }}\) three times to display "
6. Selecting the file number

Turn \(=12\) to select the file number to be verified, and press
7. Parameter verification

Turn to display the setting "Fl, "

Press SET to start verification of the parameter settings copied to the USB memory and the parameter settings of the verification destination inverter. (It takes about 15 seconds to verify all the settings. During verification,

- If there are different parameters, the different parameter number and "-
- To continue verification, press

\section*{NOTE}
- When ",

\subsection*{5.20 Checking parameters changed from their initial values (initial value change list)}

\section*{Parameters changed from their initial values can be displayed.}

\section*{Operating procedure}
1. Turning \(O N\) the power of the inverter

The operation panel is in the monitor mode.
2. Selecting the parameter setting mode

Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
3. Selecting a parameter

Turn 楽) to "
" 1 -1.-- -- -- -- " appears.
4. Checking the Initial value change list

Turn . The parameter numbers that have been changed from their initial value appear in order.
- If SET is pressed with parameters that have been changed, the parameter settings can be changed as they are.
(Parameter numbers are no longer displayed in the list when they are returned to their initial values.)
Other changed parameters appear by turning
- "

\section*{NOTE}
- The calibration parameters (C0 (Pr.900) to C7 (Pr.905), C42 (Pr.934) to C45 (Pr.935)) are not displayed even when these are changed from the initial settings.
- Only the simple mode parameters are displayed when the simple mode is set (Pr. \(160=\) "9999").
- Only user groups are displayed when user groups are set (Pr. \(160=\) "1").
- Pr. 160 is displayed independently of whether the setting value is changed or not.
- Parameter setting using the Initial value change list is also possible.

\subsection*{5.21 CC-Link IE Field Network (FR-A800-GF)}

\subsection*{5.21.1 Cyclic transmission}

Data communication is available periodically among stations on the same network. Link devices (\(R X, R Y, R W r\), and RWw) are used.

\section*{- Data flow and link device assignment (master and slave stations (except for local stations))}

One-to-one communication is possible between the master and slave stations.
The status information of the link devices (RY and RWw) of the master station is output to the external device of the slave station, and the input status information from the external device of the slave station is stored in the link devices (\(R X\) and \(R W r\)) of the master station.

\begin{tabular}{|c|c|c|}
\hline Status & No. & Description \\
\hline \multirow{4}{*}{Output from the master station} & (1) & The device of the CPU module turns ON. \\
\hline & (2) & The device status data of the CPU module are stored in the link devices (RY and RWw) of the master station by link refresh. \\
\hline & (3) & The status data of the link devices (RY and RWw) of the master station are stored in the link devices (RY and RWw) of each slave station by link scan. \\
\hline & (4) & The inverter starts according to the link device (RY and RWw) conditions (input signals such as STF and STR) of the slave station. \\
\hline \multirow{3}{*}{Input from the slave station} & (5) & Inverter conditions (output signals such as RUN and SU, monitoring) are stored in the link devices (RX and RWr) of the slave station. \\
\hline & (6) & The status data of the link devices (\(R X\) and \(R W r\)) of the slave station are stored in the link devices (\(R X\) and \(R W r\)) of the master station by link scan. \\
\hline & (7) & The status data of the link devices (RX and RWr) of the master station are stored in the devices of the CPU module by link refresh. \\
\hline
\end{tabular}
- Refer to the MELSEC iQ-R, MELSEC-Q, or MELSEC-L CC-Link IE Field Network Master/Local Module User's Manual for the detailed assignment methods for the link devices and link refresh.

\subsection*{5.21.2 I/O signal list \\ \(\rightarrow\) Remote I/O (64 points (fixed))}
\begin{tabular}{|c|c|c|}
\hline Device No. \({ }^{*}\) & Signal & Refer to page \\
\hline RYn0 & Forward rotation command*2 & 720 \\
\hline RYn1 & Reverse rotation command*2 & 720 \\
\hline RYn2 & High-speed operation command (terminal RH function) \({ }^{* 1}\) & 720 \\
\hline RYn3 & Middle-speed operation command (terminal RM function) \({ }^{* 1}\) & 720 \\
\hline RYn4 & Low-speed operation command (terminal RL function) \({ }^{* 1}\) & 720 \\
\hline RYn5 & Jog operation command (terminal Jog function) \({ }^{* 1}\) & 720 \\
\hline RYn6 & Second function selection (terminal RT function) \({ }^{* 1}\) & 720 \\
\hline RYn7 & Current input selection (terminal AU function) \({ }^{* 1}\) & 720 \\
\hline RYn8 & Selection of automatic restart after instantaneous power failure (terminal CS function) \({ }^{* 1}\) & 720 \\
\hline RYn9 & Output stop (terminal MRS function)* \({ }^{*}\) & 720 \\
\hline RYnA & Start self-holding selection (terminal STOP function)* \({ }^{*}\) & 720 \\
\hline RYnB & Reset (terminal RES function)* \({ }^{* 1}\) & 720 \\
\hline RYnC to RYnF & & \\
\hline \[
\begin{aligned}
& \mathrm{RY}(\mathrm{n}+1) 0 \text { to } \\
& \mathrm{RY}(\mathrm{n}+1) 2
\end{aligned}
\] & Reserved & - \\
\hline \[
\begin{aligned}
& \mathrm{RY}(\mathrm{n}+1) 3 \text { to } \\
& \mathrm{RY}(\mathrm{n}+1) \mathrm{F} \\
& \hline
\end{aligned}
\] & Reserved & - \\
\hline RY(\(n+2\)) 0 & Monitor command & 720 \\
\hline RY(n+2)1 & Frequency setting command (RAM) & 720 \\
\hline \(\mathrm{RY}(\mathrm{n}+2) 2\) & Frequency setting command (RAM, EEPROM) & 720 \\
\hline \(\mathrm{RY}(\mathrm{n}+2) 3\) & Torque command / torque limit (RAM) & 721 \\
\hline RY(n+2)4 & Torque command / torque limit (RAM, EEPROM) & 721 \\
\hline RY(n+2)5 & Instruction code execution request & 721 \\
\hline \[
\begin{aligned}
& \hline \mathrm{RY}(\mathrm{n}+2) 6 \text { to } \\
& \mathrm{RY}(\mathrm{n}+3) 9 \\
& \hline
\end{aligned}
\] & Reserved & - \\
\hline RY(\(\mathrm{n}+3\)) A & Error reset request flag & 721 \\
\hline \[
\begin{aligned}
& R Y(n+3) B \text { to } \\
& R Y(n+3) F
\end{aligned}
\] & Reserved & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Device No. \({ }^{* 5}\) & Signal & Refer to page \\
\hline RXn0 & Forward running & 722 \\
\hline RXn1 & Reverse running & 722 \\
\hline RXn2 & Running (terminal RUN function) \({ }^{* 3}\) & 722 \\
\hline RXn3 & Up to frequency (terminal SU function) \({ }^{* 3}\) & 722 \\
\hline RXn4 & Overload alarm (terminal OL function) \({ }^{* 3}\) & 722 \\
\hline RXn5 & Instantaneous power failure (terminal IPF function) \({ }^{* 3}\) & 722 \\
\hline RXn6 & Frequency detection (terminal FU function) \({ }^{* 3}\) & 722 \\
\hline RXn7 & Error (terminal ABC1 function) \({ }^{* 3}\) & 722 \\
\hline RXn8 & - (terminal ABC2 function)* \({ }^{*}\) & 722 \\
\hline \(R X n 9\) to RXnF & Reserved & - \\
\hline \(\mathrm{RX}(\mathrm{n}+1) 0\) & Pr. 313 assignment function (DO0)* \({ }^{*}\) & 722 \\
\hline \(\mathrm{RX}(\mathrm{n}+1) 1\) & Pr. 314 assignment function (DO1)* \({ }^{4}\) & 722 \\
\hline \(R X(n+1) 2\) & Pr. 315 assignment function (DO2)* \({ }^{*}\) & 722 \\
\hline \[
\begin{aligned}
& R X(n+1) 3 \text { to } \\
& R X(n+1) F
\end{aligned}
\] & Reserved & - \\
\hline \(\mathrm{RX}(\mathrm{n}+2) 0\) & Monitoring & 722 \\
\hline RX(\(\mathrm{n}+2) 1\) & Frequency setting completion (RAM) & 722 \\
\hline \(\mathrm{RX}(\mathrm{n}+2) 2\) & Frequency setting completion (RAM, EEPROM) & 722 \\
\hline \(\mathrm{RX}(\mathrm{n}+2) 3\) & Torque command / torque limit setting completion (RAM) & 722 \\
\hline \(\mathrm{RX}(\mathrm{n}+2) 4\) & Torque command / torque limit setting completion (RAM, EEPROM) & 722 \\
\hline \(\mathrm{RX}(\mathrm{n}+2) 5\) & Instruction code execution completed & 722 \\
\hline \[
\begin{aligned}
& \mathrm{RX}(\mathrm{n}+2) 6 \text { to } \\
& \mathrm{RX}(\mathrm{n}+3) 9
\end{aligned}
\] & Reserved & - \\
\hline \(R X(n+3) A\) & Error status flag & 722 \\
\hline \(R X(n+3) B\) & Remote station ready & 722 \\
\hline \[
\begin{aligned}
& R X(n+3) C \text { to } \\
& R X(n+3) F
\end{aligned}
\] & Reserved & - \\
\hline
\end{tabular}
*1 These signals are set in the initial setting. Using Pr. 180 to Pr.189, input signals assigned to the device numbers can be changed. (Refer to page 496.)
*2 The signals are fixed. They cannot be changed using parameters.
*3 These signals are set in the initial setting. Using Pr. 190 to Pr.196, output signals assigned to the device numbers can be changed. (Refer to page 450.)
*4 Output signal can be assigned using Pr. 313 to Pr.315. (Refer to page 450.)
*5 " n " indicates a value determined by the station number setting.

\section*{\(\checkmark\) Remote register (128 words (fixed))}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address*3} & \multicolumn{2}{|r|}{Description} & \multirow[t]{2}{*}{Refer to page} \\
\hline & Upper 8 bits & Lower 8 bits & \\
\hline RWwn & \multicolumn{2}{|l|}{Set frequency (0.01 Hz increments)} & 723 \\
\hline RWwn+1 & \multicolumn{2}{|l|}{Reserved} & - \\
\hline RWwn+2 & \multicolumn{2}{|l|}{Torque command / torque limit} & 723 \\
\hline RWwn+3 & \multicolumn{2}{|l|}{Reserved} & - \\
\hline RWwn+4 & \multicolumn{2}{|l|}{PID set point (0.01\% increments) \({ }^{* 1}\)} & 723 \\
\hline RWwn+5 & \multicolumn{2}{|l|}{PID measured value (\(0.01 \%\) increments) \({ }^{* 1}\)} & 723 \\
\hline RWwn+6 & \multicolumn{2}{|l|}{PID deviation (\(0.01 \%\) increments) \({ }^{* 1}\)} & 723 \\
\hline RWwn+7 to RWwn+F & \multicolumn{2}{|l|}{Reserved} & - \\
\hline RWwn+10 & Link parameter extended setting & Instruction code \({ }^{* 2}\) & 723 \\
\hline RWwn+11 & \multicolumn{2}{|l|}{Write data} & 723 \\
\hline RWwn+12 & Link parameter extended setting & Instruction code \({ }^{*}\) & 723 \\
\hline RWwn+13 & \multicolumn{2}{|l|}{Write data} & 723 \\
\hline RWwn+14 & Link parameter extended setting & Instruction code \({ }^{* 2}\) & 723 \\
\hline RWwn+15 & \multicolumn{2}{|l|}{Write data} & 723 \\
\hline RWwn+16 & Link parameter extended setting & Instruction code \({ }^{* 2}\) & 723 \\
\hline RWwn+17 & \multicolumn{2}{|l|}{Write data} & 723 \\
\hline RWwn+18 & Link parameter extended setting & Instruction code \({ }^{* 2}\) & 723 \\
\hline RWwn+19 & \multicolumn{2}{|l|}{Write data} & 723 \\
\hline RWwn+1A & Link parameter extended setting & Instruction code \({ }^{* 2}\) & 723 \\
\hline RWwn+1B & \multicolumn{2}{|l|}{Write data} & 723 \\
\hline \begin{tabular}{l}
RWwn+1C \\
to \\
RWwn+1F
\end{tabular} & \multicolumn{2}{|l|}{Reserved} & - \\
\hline RWwn+20 & \multicolumn{2}{|l|}{Reserved} & - \\
\hline RWwn+21 & \multicolumn{2}{|l|}{Faults history No.} & 723 \\
\hline \begin{tabular}{l}
RWwn+22 \\
to \\
RWwn+25
\end{tabular} & \multicolumn{2}{|l|}{Reserved} & - \\
\hline RWwn+26 & \multicolumn{2}{|l|}{Monitor code 1} & 723 \\
\hline RWwn+27 & \multicolumn{2}{|l|}{Monitor code 2} & 723 \\
\hline RWwn+28 & \multicolumn{2}{|l|}{Monitor code 3} & 723 \\
\hline RWwn+29 & \multicolumn{2}{|l|}{Monitor code 4} & 723 \\
\hline RWwn+2A & \multicolumn{2}{|l|}{Monitor code 5} & 723 \\
\hline RWwn+2B & \multicolumn{2}{|l|}{Monitor code 6} & 723 \\
\hline RWwn+2C & \multicolumn{2}{|l|}{Monitor code 7} & 723 \\
\hline RWwn+2D & \multicolumn{2}{|l|}{Monitor code 8} & 723 \\
\hline RWwn+2E & \multicolumn{2}{|l|}{Monitor code 9} & 723 \\
\hline RWwn+2F & \multicolumn{2}{|l|}{Monitor code 10} & 723 \\
\hline \begin{tabular}{l}
RWwn+30 \\
to \\
RWwn+39
\end{tabular} & \multicolumn{2}{|l|}{Reserved} & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Address \({ }^{* 3}\)} & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Refer \\
to page
\end{tabular}} \\
\hline & \multicolumn{1}{|c|}{ Upper 8 bits } & \multicolumn{1}{c|}{ Lower 8 bits }
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address*3} & \multicolumn{2}{|c|}{Description} & \multirow[t]{2}{*}{Refer to page} & \multirow[t]{2}{*}{Address \({ }^{* 3}\)} & Description & \multirow[t]{2}{*}{Refer to page} \\
\hline & Upper 8 bits & Lower 8 bits & & & Upper 8 bits \(\quad\) Lower 8 bits & \\
\hline \multirow{54}{*}{\[
\begin{aligned}
& \text { RWwn+3A } \\
& \text { to } \\
& \text { RWwn }+73
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow{54}{*}{Reserved}} & \multirow{54}{*}{-} & RWrn+3A & Electric thermal relay function load factor & 724 \\
\hline & & & & RWrn+3B & Output current peak value & 724 \\
\hline & & & & RWrn+3C & Converter output voltage peak value & 724 \\
\hline & & & & RWrn+3D & Input power & 724 \\
\hline & & & & RWrn+3E & Output power & 724 \\
\hline & & & & RWrn+3F & Input terminal status & 724 \\
\hline & & & & RWrn+40 & Output terminal status & 724 \\
\hline & & & & RWrn+41 & Load meter & 724 \\
\hline & & & & RWrn+42 & Motor excitation current & 724 \\
\hline & & & & RWrn+43 & Position pulse & 724 \\
\hline & & & & RWrn+44 & Cumulative energization time & 724 \\
\hline & & & & RWrn+45 & Reserved & - \\
\hline & & & & RWrn+46 & Orientation status & 724 \\
\hline & & & & RWrn+47 & Actual operation time & 724 \\
\hline & & & & RWrn+48 & Motor load factor & 724 \\
\hline & & & & RWrn+49 & Cumulative power & 724 \\
\hline & & & & RWrn+4A & Position command (lower) & 724 \\
\hline & & & & RWrn+4B & Position command (upper) & 724 \\
\hline & & & & RWrn+4C & Current position (lower) & 724 \\
\hline & & & & RWrn+4D & Current position (upper) & 724 \\
\hline & & & & RWrn+4E & Droop pulse (lower) & 724 \\
\hline & & & & RWrn+4F & Droop pulse (upper) & 724 \\
\hline & & & & RWrn+50 & Torque command & 724 \\
\hline & & & & RWrn+51 & Torque current command & 724 \\
\hline & & & & RWrn+52 & Motor output & 724 \\
\hline & & & & RWrn+53 & Feedback pulse monitor & 724 \\
\hline & & & & RWrn+54 & Torque monitor & 724 \\
\hline & & & & RWrn+55 & Reserved & - \\
\hline & & & & RWrn+56 & Trace status & 724 \\
\hline & & & & RWrn+57 & Reserved & - \\
\hline & & & & RWrn+58 & PLC function user monitor 1 & 724 \\
\hline & & & & RWrn+59 & PLC function user monitor 2 & 724 \\
\hline & & & & RWrn+5A & PLC function user monitor 3 & 724 \\
\hline & & & & RWrn+5B & Station number (RS-485 terminals) & 724 \\
\hline & & & & RWrn+5C & Station number (PU) & 724 \\
\hline & & & & RWrn+5D & Station number (CC-Link) & 724 \\
\hline & & & & RWrn+5E & Motor temperature & 724 \\
\hline & & & & RWrn+5F to RWrn+61 & Reserved & - \\
\hline & & & & RWrn+62 & Power saving effect & 724 \\
\hline & & & & RWrn+63 & Cumulative energy saving & 724 \\
\hline & & & & RWrn+64 & PID set point & 724 \\
\hline & & & & RWrn+65 & PID measured value & 724 \\
\hline & & & & RWrn+66 & PID deviation & 724 \\
\hline & & & & RWrn+67 to RWrn+69 & Reserved & - \\
\hline & & & & RWrn+6A & Option input terminal status 1 & 724 \\
\hline & & & & RWrn+6B & Option input terminal status 2 & 724 \\
\hline & & & & RWrn+6C & Option output terminal status & 724 \\
\hline & & & & RWrn+6D & Motor thermal load factor & 724 \\
\hline & & & & RWrn+6E & Inverter thermal load factor & 724 \\
\hline & & & & RWrn+6F & Reserved & - \\
\hline & & & & RWrn+70 & PTC thermistor value & 724 \\
\hline & & & & RWrn+71 & Reserved & - \\
\hline & & & & RWrn+72 & & \\
\hline & & & & RWrn+73 & PID measured value 2 & 724 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Address \(^{* 3}\)} & \multicolumn{2}{|c|}{ Description } & \begin{tabular}{c}
Refer \\
to page
\end{tabular} \\
\cline { 2 - 3 } & \multicolumn{2}{|c|}{ Upper 8 bits } & Lower 8 bits \\
RWwn+74 \\
to \\
RWwn+7F & Reserved & \\
& & - \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|l|}
\hline \multirow{2}{*}{ Address \({ }^{* 3}\)} & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{\begin{tabular}{c}
Refer \\
to page
\end{tabular}} \\
\cline { 2 - 3 } \begin{tabular}{l}
RWrn+74 to \\
RWrn+76
\end{tabular} & \multicolumn{1}{|c|}{ Reserved } & Lower 8 bits & \\
\hline RWrn+77 & Cumulative pulse & 724 \\
\hline RWrn+78 & Cumulative pulse overflow times & 724 \\
\hline RWrn+79 & Cumulative pulse (control terminal option) & 724 \\
\hline RWrn+7A & \begin{tabular}{l}
Cumulative pulse overflow times (control \\
terminal option)
\end{tabular} & 724 \\
\hline \begin{tabular}{l}
RWrn+7B to \\
RWrn+7F
\end{tabular} & Reserved & - \\
\hline
\end{tabular}
*1 When Pr. \(128=" 50,51,60\), or 61", the register is valid.
*2 Instructions will be processed in the order they are received. Thus, the read value of an instruction may differ at different timings if other writing requests are being made.
*3 " n " indicates a value determined by the station number setting.

\subsection*{5.21.3 Details of the remote input and output signals}

The following device numbers are for the station number 1 .
For the station number 2 and later, the device numbers are different. (Refer to the manual for the CC-Link master module for the correspondence between device numbers and station numbers.)

\section*{- Output signals (from the master module to the inverter)}

Output signals from the master module are as follows. (Input signals to the inverter)
\begin{tabular}{|c|c|c|c|}
\hline Device No. & Signal & & Description \\
\hline RY0 & Forward rotation command & \begin{tabular}{l}
0 : Stop command \\
1: Forward rotation start
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
- When "1" is set, a start command is input to the inverter. When "1" is set in RY0 and RY1, a stop command is input. \\
- The signals are fixed. They cannot be changed using parameters.
\end{tabular}} \\
\hline RY1 & Reverse rotation command & \begin{tabular}{l}
0: Stop command \\
1: Reverse rotation start
\end{tabular} & \\
\hline RY2 & High-speed operation command (terminal RH function) & \multicolumn{2}{|l|}{\multirow{10}{*}{\begin{tabular}{l}
- Functions assigned to terminals RH, RM, RL, JOG, RT, AU, CS, MRS, STOP and RES are activated. \\
- These signals are set in the initial setting. Using Pr. 180 to Pr.189, input signals assigned to the device numbers can be changed. Some signals are not controllable via network depending on the settings of Pr. 338 and Pr.339. For example, RYB reset (terminal RES function) cannot be controlled via network.
\end{tabular}}} \\
\hline RY3 & Middle-speed operation command (terminal RM function) & & \\
\hline RY4 & Low-speed operation command (terminal RL function) & & \\
\hline RY5 & Jog operation command (terminal Jog function) & & \\
\hline RY6 & Second function selection (terminal RT function) & & \\
\hline RY7 & Current input selection (terminal AU function) & & \\
\hline RY8 & Selection of automatic restart after instantaneous power failure (terminal CS function) & & \\
\hline RY9 & Output stop (terminal MRS function) & & \\
\hline RYA & Start self-holding selection (terminal STOP function) & & \\
\hline RYB & Reset (terminal RES function) & & \\
\hline RY20 & Monitor command & When " 1 " is set in the mo remote register RWr26 to " 1 " is set in the monitor co & nitor command (R20), the monitored value is set in the \(R W r 2 F\), and " 1 " is set in the monitoring (RX20). While ommand (RY20), the monitored data is always updated. \\
\hline RY21 & Frequency setting command (RAM) & When "1" is set in the freq (RWw0) is written to RAM (RWw0) is always applied After the writing complete & \begin{tabular}{l}
quency setting command (RY21), the set frequency \(M\) of the inverter. While " 1 " is set, the set frequency d. \\
s, "1" is set in the frequency setting completion (RX21).
\end{tabular} \\
\hline RY22 & Frequency setting command (RAM, EEPROM) & When "1" is set in the freq (RWw0) is written to RAM After the writing complete To change the frequency & \begin{tabular}{l}
quency setting command (RY22), the set frequency \(M\) and EEPROM of the inverter. \\
s, "1" is set in the frequency setting completion (RX22). consecutively, be sure to write data to the inverter RAM.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Device No. & Signal & Description \\
\hline RY23 & Torque command / torque limit (RAM) & \begin{tabular}{l}
When "1" is set in the torque command / torque limit (RY23), the set torque command / torque limit (RWw2) is written to RAM of the inverter. \\
After the writing completes, " 1 " is set in the torque command/ torque limit setting completion (RX23). \\
The following value is written to RAM. \\
- During torque control \({ }^{* 1}\) : Torque command value \\
- During speed control / position control: Torque limit value
\end{tabular} \\
\hline RY24 & Torque command / torque limit (RAM, EEPROM) & \begin{tabular}{l}
When " 1 " is set in the torque command / torque limit (RY24), the set torque command / torque limit (RWw2) is written to RAM and EEPROM of the inverter. After the writing completes, " 1 " is set in the torque command / torque limit setting completion (RX24). \\
The following value is written to RAM and EEPROM. \\
- During torque control \({ }^{* 1}\) : Torque command value \\
- During speed control / position control: Torque limit value \\
To change the torque command or the torque limit consecutively, be sure to write data to the inverter RAM.
\end{tabular} \\
\hline RY25 & Instruction code execution request & When "1" is set in the instruction code execution request (RY25), processes corresponding to the instruction codes set to RWw10, 12, 14, 16, 18 and 1 A are executed. " 1 " is set in the instruction code execution request (RX25) after completion of instruction codes. When an instruction code execution error occurs, a value other than " 0 " is set in the reply code (\(\mathrm{RWr} 10,12,14,16,18\), and 1 A). \\
\hline RY3A & Error reset request flag & When " 1 " is set in the error reset request flag (RY3A) at an inverter fault, the inverter is reset, then " 0 " is set in the error status flag (RX3A). Refer to page 635 for operation conditions of inverter reset. \\
\hline
\end{tabular}
*1 Torque control cannot be performed with a PM motor.

\section*{- Input signals (from the inverter to the master module)}

Input signals to the master module are as follows. (Output signals from the inverter)
\begin{tabular}{|c|c|c|}
\hline Device No. & Signal & Description \\
\hline RX0 & Forward running & \begin{tabular}{l}
0: Other than forward running (during stop or reverse rotation) \\
1: Forward running
\end{tabular} \\
\hline RX1 & Reverse running & \begin{tabular}{l}
0: Other than reverse running (during stop or forward rotation) \\
1: Reverse running
\end{tabular} \\
\hline RX2 & Running (terminal RUN function) & \multirow{7}{*}{\begin{tabular}{l}
- Functions assigned to terminals RUN, SU, OL, IPF, FU, ABC1 and \(A B C 2\) are activated. \\
- These signals are set in the initial setting. Using Pr. 190 to Pr.196, output signals assigned to the device numbers can be changed.
\end{tabular}} \\
\hline RX3 & Up to frequency (terminal SU function) & \\
\hline RX4 & Overload alarm (terminal OL function) & \\
\hline RX5 & Instantaneous power failure (terminal IPF function) & \\
\hline RX6 & Frequency detection (terminal FU function) & \\
\hline RX7 & Error (terminal ABC1 function) & \\
\hline RX8 & - (terminal ABC2 function) & \\
\hline RX10 & - (DO0 function) & \multirow[t]{3}{*}{\begin{tabular}{l}
- Functions assigned to Pr. 313 to Pr. 315 are activated. \\
- No signal is assigned in the initial setting. Use Pr. 313 to Pr. 315 to assign signals.
\end{tabular}} \\
\hline RX11 & - (DO1 function) & \\
\hline RX12 & - (DO2 function) & \\
\hline RX20 & Monitoring & After "1" is set in the monitor command (RY20), and the monitored value is set in the remote register RWr26 to RWr2F, "1" is set in this signal. When " 0 " is set in the monitor command (RY20), " 0 " is set in this signal. \\
\hline RX21 & Frequency setting completion (RAM) & After "1" is set in the frequency setting command (RY21) and the set frequency is written to the inverter RAM, "1" is set in this signal. When " 0 " is set in the frequency setting command (RY21), " 0 " is set in this signal. \\
\hline RX22 & Frequency setting completion (RAM, EEPROM) & After "1" is set in the frequency setting command (RY22) and the set frequency is written to the inverter RAM and EEPROM, " 1 " is set in this signal. When " 0 " is set in the frequency setting command (RY22), " 0 " is set in this signal. \\
\hline RX23 & Torque command / torque limit setting completion (RAM) & After "1" is set in the torque command / torque limit (RY23) and the torque command / torque limit value is written to the inverter RAM, "1" is set in this signal. When " 0 " is set in the torque command / torque limit (RY23), " 0 " is set in this signal. \\
\hline RX24 & Torque command / torque limit setting completion (RAM, EEPROM) & After "1" is set in the torque command / torque limit (RY24) and the torque command / torque limit value is written to the inverter RAM and EEPROM, "1" is set in this signal. When " 0 " is set in the torque command / torque limit (RY24), "0" is set in this signal. \\
\hline RX25 & Instruction code execution completed & After "1" is set in the instruction code execution request (RY25) and the processes corresponding to the instruction codes (RWw10, 12, 14, 16, 18 and 1 A) are executed, " 1 " is set in this signal. When " 0 " is set in the instruction code execution request (RY25), " 0 " is set in this signal. \\
\hline RX3A & Error status flag & When an inverter error occurs (protective function is activated), "1" is set in this signal. \\
\hline RX3B & Remote station ready & \begin{tabular}{l}
When the inverter goes into the ready status upon completion of initial setting after power-on or hardware reset, "1" is set in this signal. \\
When an inverter error occurs (protective function is activated), " 0 " is set in this signal. \\
The signal is used as an interlock during the write to/read from the master module.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.21.4 Details of the remote register}

The following device numbers are for the station number 1.
For the station number 2 and later, the device numbers are different. (Refer to the manual for the CC-Link master module for the correspondence between device numbers and station numbers.)

\section*{\(\checkmark\) Remote register (from the master module to the inverter)}
\begin{tabular}{|c|c|c|}
\hline Device No. & Signal & Description \\
\hline RWw0 & Set frequency \({ }^{* 1 * 2}\) & \begin{tabular}{l}
- Specify the set frequency or rotations per minute (machine speed). At this time, whether to write to RAM or EEPROM is decided with the RY21 and RY22 settings. After setting the set frequency in this register, set "1" in RY21 or RY22 to write the frequency. After writing of frequency is completed, "1" is set in RX21 or RX22 in response to the input command. \\
- The setting range is 0 to \(590.00 \mathrm{~Hz}(0.01 \mathrm{~Hz}\) increments). Write " 59000 " when setting 590.00 Hz .
\end{tabular} \\
\hline & Torque command value & \multirow[t]{2}{*}{Specify the torque command value / torque limit value. Set Pr. 804 Torque command source selection \(=" 1,3,5\), or \(6 "\) to activate this signal under Real sensorless vector control, Vector control, and PM sensorless vector control. The value is written to the inverter either by RY23 or RY24. Pr. 805 Torque command value (RAM) and Pr. 806 Torque command value (RAM, EEPROM) are updated as well. The setting range and the setting increment depend on the Pr. 804 setting. (Refer to page 726.)} \\
\hline RWw2*5 & Torque limit value & \\
\hline RWw4 & PID set point \({ }^{* 3}\) & \multirow{3}{*}{\begin{tabular}{l}
- Input a value 100 times greater than the value to be set. For example, enter "10000" when setting 100.00\%. \\
- Refer to page 570 for details of PID control.
\end{tabular}} \\
\hline RWw5 & PID measured value*3 & \\
\hline RWw6 & PID deviation*3 & \\
\hline \begin{tabular}{l}
RWw10, \\
RWw12, \\
RWw14, \\
RWw16, \\
RWw18, \\
RWw1A
\end{tabular} & Link parameter extended setting / instruction code & \begin{tabular}{l}
Set an instruction code (refer to page 724) for an operation such as operation mode switching, parameter read/write, error reference, and error clear in the lower eight bits. The instructions are executed in the following order by setting "1" in RY25 after completing the register setting: RWw10, 12, 14, 16, 18, then 1A. After completing the execution up to RWw1A, "1" is set in RX25. Set HFFFF to disable an instruction by RWw10 to 1A. \\
Set the link parameter extended setting in the upper 8 bits. \\
Example) When reading Pr.160, instruction code is H0200.
\end{tabular} \\
\hline RWw11, RWw13, RWw15, RWw17, RWw19, RWw1B & Write data & \begin{tabular}{l}
Set the data specified by the instruction code of RWw10, 12, 14, 16, 18 and 1A (when required). \\
RWw10 and 11, 12 and 13,14 and 15,16 and 17,18 and 19, and \(1 A\) and \(1 B\) correspond each other. Set "1" in RY25 after setting the instruction codes (RWw10, 12, 14, 16, 18 and 1A) and the corresponding register. \\
Set " 0 " when the write data is not required.
\end{tabular} \\
\hline RWw21 & Faults history No. \({ }^{*}\) & \begin{tabular}{l}
Set the individual fault number of the faults history that you want to read. Up to the 8th previous fault can be read. \\
Last two digits: H 00 (most recent fault) to H07 (8th most recent fault) Set H08 to HFF to make the faults history No. to "0".
\end{tabular} \\
\hline RWw26 & Monitor code \(1^{* 4}\) & \multirow{10}{*}{\begin{tabular}{l}
Set the monitor code to be monitored. By setting "1" in RY20 after setting, the specified monitor data is stored in RWr26 to RWr2F. \\
If a monitor code out of the setting range is set, no item is monitored (the monitor value is fixed to 0). \\
The monitor codes are the same as those of the RS-485 communication dedicated monitor. (Refer to page 424.) \\
When the remote registers RWw26 to 2F are used for monitoring, H 01 (output frequency) and H05 (set frequency) always indicate the frequency regardless of the settings of Pr.37, Pr.144, and Pr. 811.
\end{tabular}} \\
\hline RWw27 & Monitor code \(2 * 4\) & \\
\hline RWw28 & Monitor code 3*4 & \\
\hline RWw29 & Monitor code 4*4 & \\
\hline RWw2A & Monitor code 5*4 & \\
\hline RWw2B & Monitor code 6*4 & \\
\hline RWw2C & Monitor code \(7{ }^{*} 4\) & \\
\hline RWw2D & Monitor code \(8{ }^{*} 4\) & \\
\hline RWw2E & Monitor code 9*4 & \\
\hline RWw2F & Monitor code 10*4 & \\
\hline
\end{tabular}

\section*{\(\rightarrow\) Remote register (from the inverter to the master module)}
\begin{tabular}{|c|c|c|}
\hline Device No. & Signal & Description \\
\hline RWr0 & Reply code & \begin{tabular}{l}
When "1" is set in RY21 or RY22, the following reply codes are set for the frequency setting command. The setting value " 0 " is set normally, and a value other than " 0 " is set at an error. \\
H0000: Normal \\
H0001: Write mode fault \\
H0003: Setting range fault
\end{tabular} \\
\hline RWr2 & Reply code & \begin{tabular}{l}
When "1" is set in RY23 or RY24, the following reply codes are set for the torque command / torque limit. The setting value " 0 " is set normally, and a value other than " 0 " is set at an error. \\
H0000: Normal \\
H0003: Setting range fault
\end{tabular} \\
\hline RWr4, RWr5, RWr6 & Reply code & \begin{tabular}{l}
When the PID command (RWw4 to RWw6) is set, the following reply code is set for the PID command. The setting value " 0 " is set normally, and a value other than " 0 " is set at an error. \\
H0000: Normal \\
H0003: Setting range fault
\end{tabular} \\
\hline RWr10, RWr12, RWr14, RWr16, RWr18, RWr1A & Reply code & \begin{tabular}{l}
When "1" is set in RY25, the following reply codes corresponding to the instruction code RWw10, \(12,14,16,18\), and 1 A are set. The setting value " 0 " is set normally, and a value other than " 0 " is set at an error. \\
H0000: Normal \\
H0001: Write mode fault \\
H0002: Parameter selection fault \\
H0003: Setting range fault
\end{tabular} \\
\hline RWr11, RWr13, RWr15, RWr17, RWr19, RWr1B & Read data & In a normal reply, a replay code for the instruction code is set. \\
\hline RWr20 & Error status & The setting value " 0 " is set during normal inverter operation, and the data code of the corresponding error is set at an error. (For the data codes or details of fault records, refer to page 742.) \\
\hline RWr21 & Fault record (fault data) & The data code of faults history No. specified by RWw21 is stored in the lower 8 bits. Lower 8 bits of RWw21 will be reverted back to the upper 8 bits. \\
\hline RWr22 & Fault record (output frequency) & The output frequency of the faults history No. specified in RWw21 is stored. \\
\hline RWr23 & Fault record (output current) & The output current of the faults history No. specified in RWw21 is always stored. \\
\hline RWr24 & Fault record (output voltage) & The output voltage of the faults history No. specified in RWw21 is always stored. \\
\hline RWr25 & Fault record (energization time) & The energization time of the faults history No. specified in RWw21 is always stored. \\
\hline RWr26 & First monitor value & \multirow{10}{*}{\begin{tabular}{l}
When "1" is set in RY20, the monitor value specified to the corresponding monitor code (RWw26 to RWw2F) is stored. \\
The output frequency, output current, and output voltage monitors are held at an inverter failure.
\end{tabular}} \\
\hline RWr27 & Second monitor value & \\
\hline RWr28 & Third monitor value & \\
\hline RWr29 & Fourth monitor value & \\
\hline RWr2A & Fifth monitor value & \\
\hline RWr2B & Sixth monitor value & \\
\hline RWr2C & Seventh monitor value & \\
\hline RWr2D & Eighth monitor value & \\
\hline RWr2E & Ninth monitor value & \\
\hline RWr2F & Tenth monitor value & \\
\hline RWr30 to RWr7F & Monitor value & \begin{tabular}{l}
Fixed monitored data are saved regardless of the RY20 setting. \\
The output frequency, output current, and output voltage monitors are held at an inverter failure.
\end{tabular} \\
\hline
\end{tabular}

Instruction code
Set instruction codes using the remote register (RWw). (Refer to page 723.)

The definition read by the instruction code is stored in the remote register (RWr). (Refer to page 724.)

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{|c|}{\(\begin{array}{l}\text { Read/ } \\
\text { write }\end{array}\)} & \(\begin{array}{c}\text { Instruction } \\
\text { code }\end{array}\) & \multicolumn{1}{c|}{ Data description } \\
\hline Parameter clear \\
All parameter clear & Write & HFC & \(\begin{array}{l}\text { All parameters return to initial values. } \\
\text { Whether to clear communication parameters or not can be selected according to the } \\
\text { data. } \\
- \text { Parameter clear } \\
\text { H9696: Communication parameters are cleared. } \\
\text { H5A5A*5: Communication parameters are not cleared. } \\
\text { All parameter clear } \\
\text { H9966: Communication parameters are cleared. } \\
\text { H55AA*5: Communication parameters are not cleared. }\end{array}\) \\
For the details of whether or not to clear parameters, refer to page 824. \\
When clear is performed with H9696 or H9966, communication related parameter \\
settings also return to the initial values. When resuming the operation, set the \\
parameters again. Performing a clear will clear the instruction code HEC, HF3, and \\
HFF settings.
\end{tabular}\(\}\)\begin{tabular}{l}
H9696: Resets the inverter.
\end{tabular}
*1 When "100" is set in Pr. 52 Operation panel main monitor selection, set frequency is monitored during a stop and output frequency is monitored during running.
*2 When position control is selected, the number of pulses is monitored when Pr. \(430 \neq\) "9999".
*3 Write data is in hexadecimal, and only two digits are valid. (The upper two digits are ignored.)
*4 Setting from the remote register (RWw0) is also available.
*5 Turning OFF the power supply while clearing parameters with H5A5A or H55AA returns the communication parameter settings to the initial settings.
*6 Reading or writing is available when the link parameter extended setting = "1 or 9".
*7 The gain frequency can be also written using Pr. 125 (instruction code: H99) or Pr. 126 (instruction code: H9A).

\section*{NOTE}
- When a 32-bit parameter setting or monitored value is read and the read value exceeds HFFFF, the reply data will be HFFFF.

\section*{- Torque command / torque limit through CC-Link IE Field Network communication}
- Torque commands can be given or the torque can be limited via CC-Link IE Field Network under Real sensorless vector control, Vector control, or PM sensorless vector control. The value is used to limit the torque during speed control or position control, and to give a torque command during torque control. To limit the torque, set Pr. \(\mathbf{8 1 0}=\) " 2 ". The torque command / torque limit setting method can be selected using Pr. 804 Torque command source selection. (Torque control cannot be performed with a PM motor.)
- For setting the torque limit parameters, refer to page 235, and for setting the torque command parameters, refer to page 270.
- Set the torque command value or the torque limit value in RWw2. The RWw2 function is switched according to the Pr. 804 and Pr. 810 settings and the control mode.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Pr.804 setting } & \multirow{2}{*}{ Pr.810 setting } & \multicolumn{2}{|c|}{ RWw2 function } \\
\cline { 2 - 4 } & & Speed control / position control & \multicolumn{1}{c|}{ Torque control } \\
\hline \multirow{2}{*}{\(1,3,5,6\)} & 2 & Torque limit & Torque command \\
\cline { 2 - 4 } & 0,1 & RWw2 disabled & Torque command \\
\hline 0,4 & - & RWw2 disabled & RWw2 disabled \\
\hline
\end{tabular}
- Relationship between the Pr. 804 setting, the setting range, and the actual torque command / torque limit (when setting is made from CC-Link IE Field Network communication)
\begin{tabular}{|l|l|l|l|}
\hline Pr. 804 setting & \multicolumn{1}{|c|}{ Setting range } & \multicolumn{1}{c|}{ Actual torque command } & \multicolumn{1}{c|}{ Actual torque limit } \\
\hline 1,3 & 600 to \(1400\left(1 \%\right.\) increments) \({ }^{* 1}\) & -400 to \(400 \%\) & 0 to \(400 \%\) \\
\hline 5,6 & \begin{tabular}{l}
-32768 to 32767 (two's \\
complement)
\end{tabular} & -327.68 to \(327.67 \%\) & 0 to \(327.67 \%\) \\
\hline
\end{tabular}
*1 The torque limit setting is defined as an absolute value.
- Torque command / torque limit setting method
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Setting method } & \multicolumn{1}{c|}{ Setting procedure } \\
\hline Writing in RWw2 & \begin{tabular}{l}
1. Set the torque command / torque limit value in RWw2. \\
2. Set "1" in RY23 (or RY24).
\end{tabular} \\
\hline \multirow{4}{|c|}{\begin{tabular}{l}
1. Set link parameter extended setting = H08 for RWw10 (12, 14, 16, 18, 1A). \\
2. Set H85 or H86 as the instruction code.
\end{tabular}} \\
\hline & \begin{tabular}{l}
3. Set the torque command / torque limit value in RWw11 (13, 15, 17, 19, 1B). \\
4. Set "1" in RY25.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.21.5 Programming examples}

The following explains the programming examples for controlling the inverter with sequence programs.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Program example } & \multicolumn{1}{c|}{\begin{tabular}{c}
Refer to \\
page
\end{tabular}} \\
\hline Reading the inverter status & Reading the inverter status from the buffer memory of the master station & 729 \\
\hline Setting the operation mode & Selecting the Network operation mode & 729 \\
\hline Setting the operation commands & Commanding the forward rotation and middle speed signals & 730 \\
\hline Setting the monitoring function & Monitoring the output frequency & 730 \\
\hline Reading a parameter value & Reading the value of Pr.7 Acceleration time & 730 \\
\hline Writing a parameter value & Setting "3.0 s" in Pr.7 Acceleration time & 731 \\
\hline \begin{tabular}{l}
Setting the running frequency \\
(running speed)
\end{tabular} & Setting to 50.00 Hz & 731 \\
\hline Reading the fault records & Reading the inverter faults & 732 \\
\hline Inverter reset & Resetting the inverter when an inverter error occurs & 733 \\
\hline
\end{tabular}
- System configuration for programming example

PLC

- In the programming example, network parameters of the master station are set as below. (Network parameters (module 1))
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Setting condition } \\
\hline Network type & CC-Link IE Field (master station) \\
\hline Start I/O & 0000 \\
\hline Network No. & 1 \\
\hline Total number of (slave) stations & 2 \\
\hline Mode & Online (standard mode) \\
\hline Network configuration & Refer to the following. \\
\hline Refresh parameter & Refer to the following. \\
\hline
\end{tabular}
- Network configuration (assignment method: start/end)
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Item }} & \multicolumn{2}{c|}{ Setting condition } \\
\cline { 3 - 4 } & \multicolumn{2}{c|}{ Module 1 } & \multicolumn{1}{c|}{ Module 2 } \\
\hline Station number & 1 & 2 \\
\hline Station type & Start & 0000 & Intelligent device station \\
\hline \multirow{2}{*}{ RX/RY setting } & End & 003 F & 0040 \\
\hline \multirow{2}{*}{ RWw/RWr setting } & Start & 0000 & 007 F \\
\cline { 3 - 4 } & End & 007 F & 0080 \\
\hline \begin{tabular}{l}
Reserved station / error invalid \\
station
\end{tabular} & No setting & \(00 F F\) \\
\hline
\end{tabular}
- Refresh parameters (assignment method: start/end)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Link side} & \multicolumn{3}{|c|}{Master side} \\
\hline Device name & Start & End & Device name & Start & End \\
\hline SB & 0000 & 01FF & SB & 0000 & 01FF \\
\hline SW & 0000 & 01FF & SW & 0000 & 01FF \\
\hline RX & 0000 & 007F & X & 1000 & 107F \\
\hline RY & 0000 & 007F & Y & 1000 & 107F \\
\hline RWr & 0000 & 00FF & W & 000000 & 0000FF \\
\hline RWw & 0000 & 00FF & W & 000100 & 0001FF \\
\hline
\end{tabular}
- Remote I/O (RX and RY) transmitted between the programmable controller CPU and intelligent device stations

- Remote registers (RWw and RWr) transmitted between the programmable controller CPU and the intelligent device stations

\section*{- Programming example for reading the inverter status}

The following program turns ON the signal Y 00 of the output unit when the station 1 inverter starts running.

\section*{\(\checkmark\) Programming example for setting the operation mode}

The following explains a program to write various data to the inverter.
The following program changes the operation mode of the station 1 inverter to network operation.
- Operation mode write code: HFB (hexadecimal)
- Network operation set data: H0000 (hexadecimal) (Refer to page 724.)
- The reply code (RWr10) to the instruction code execution is set in D2. (Refer to page 724 for the reply code (RWr10).)

\section*{\(\bullet\) Programming example for setting the operation commands}

The following program gives a forward rotation command and middle-speed operation command to the station 1 inverter.

1 These signals are assigned in the initial status. Use Pr. 180 to Pr. 189 (Input terminal function selection) to change the input signals. Some signals are not controllable by a command from the programmable controller depending on the setting.

\section*{\(\rightarrow\) Programming example for monitoring the output frequency}

The following explains a program to read monitor functions of the inverter.

The following program reads the output frequency of the station 1 inverter to output to D1.
Output frequency read code: H0001 (hexadecimal)
For the monitor codes, refer to page 424.
Example) The output frequency of 60 Hz is indicated as "H1770 (6000)".

\section*{- Programming example for the parameter reading}

The following program reads Pr. 7 Acceleration time of the station 1 inverter to output to D1.
- Pr. 7 Acceleration time reading instruction code: H07 (hexadecimal)
- Refer to page 824 for details of the parameter instruction code.
- The reply code (RWr10) to the instruction code execution is set in D2. (Refer to page 724 for the reply code (RWr10).)

\section*{NOTE}
- For the parameter assigned the number of 100 or higher, change the link parameter extended setting (set it to the one other than H 00). Refer to page 824 for the settings.

\section*{- Programming example for the parameter writing}

The following program changes the setting value in Pr. 7 Acceleration time of the station 1 inverter to 3.0 s .
- Acceleration time writing instruction code: H87 (hexadecimal)
- Acceleration time setting data: K30 (decimal)

For the details of instruction codes of each parameter, refer to the list of parameters (function codes) and instruction codes under different control modes (on page 824).

\section*{NOTE}
- For the parameter assigned the number of 100 or higher, change the link parameter extended setting (set it to the one other than H00). Refer to page 824 for the settings.
- For other functions, refer to the instruction codes (refer to page 724).

\section*{- Programming example for setting the running frequency}

The following program changes the running frequency of the station 1 inverter to 50.00 Hz .
- Set frequency: K5000 (decimal)
- The reply code (RWr10) to the instruction code execution is set in D2. (Refer to page 724 for the reply code (RWr 0).)

\section*{NOTE}
- To change the running frequency continuously from a programmable controller, check that the frequency setting complete (for example, X1021) turns ON, and the reply code from the intelligent register is H0000. Then change the setting data (for example, W100) continuously.
- To write the running frequency to the EEPROM, change the following points in the program shown above.
- Frequency setting command (from Y1021 to Y1022)
- Frequency setting completion (from X1021 to X1022)
<Timing chart for writing to the RAM> <Timing chart for writing to the EEPROM>

*1 To the EEPROM, a writing is performed only once after the command Y1022 turns ON.
*2 If the set data is changed at the command Y1022 ON, the change is not applied to the inverter.

\section*{Programming example for the fault record reading}

The following program reads the fault records of the station 1 inverter to output to D1.
- Faults history No. 1 and 2 reading instruction code: H74 (hexadecimal)

For the error code, refer to page 742.

The reply code (RWr 10) to the instruction code execution is set in D2. (Refer to page 724 for the reply code (RWr 10).)

\section*{- Programming example for resetting the inverter at an inverter fault}

The following program resets the station 1 inverter at an inverter fault.

\section*{NOTE}
- The inverter reset with the flag RY3A shown above is enabled at an inverter fault only.
- When Pr. 349 Communication reset selection \(=" 0\) ", inverter reset is available independently of the operation mode.
- When using the instruction code execution request (RY25) with the instruction code (HFD) and data (H9696) to reset the inverter, set a value other than " 0 " in Pr. 340 Communication startup mode selection or change the operation mode to the Network operation mode. (For the program example, refer to page 729.)

\subsection*{5.21.6 Instructions}

\section*{- Programming instructions}
- Since the buffer memory data of the master station is kept transferred (refreshed) to/from the inverters, the TO instruction need not be executed every scan in response to data write or read requests. (The execution of the TO instruction every scan does not pose any problem.)
- If the FROM/TO instruction is executed frequently, data may not be written reliably. When transferring data between the inverter and sequence program via the buffer memory, perform the handshake to confirm that data has been written without error.

\section*{- Operating and handling instructions}
- The commands only from the programmable controller can be accepted during CC-Link IE Field Network communication. The run command from external and parameter unit is ignored.
- If multiple inverters have the same station number, the communication cannot be performed properly.
- The inverter protective function (E.OP1) is activated if data communication stops for more than the time set in Pr. 500 Communication error execution waiting time due to a programmable controller fault, an open Ethernet cable etc. during CC-Link IE Field Network operation.
- If the programmable controller (master station) is reset during CC-Link IE Field Network operation or if the programmable controller is powered off, data communication stops and the inverter protective function (E.OP1) is activated. To reset the programmable controller (master station), switch the operation mode to the External operation once, then reset the programmable controller.
- When Pr. \(340=\) " 0 (initial value)", any inverter whose main power is restored is reset to return to the External operation mode. To resume the Network operation, therefore, set the operation mode to the Network operation using the sequence program. Set a value other than " 0 " in Pr. 340 to start in the Network operation mode after inverter reset.

\subsection*{5.21.7 Troubleshooting}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Point to be checked } \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Operation mode does not switch to \\
the Network operation mode.
\end{tabular}} & \begin{tabular}{l}
Check for looseness of the connector between the CC-Link IE Field Network communication circuit \\
board and the inverter's control circuit board. Check that the Ethernet cable is installed correctly. (Check \\
for contact fault, break in the cable, etc.)
\end{tabular} \\
\cline { 2 - 5 } & \begin{tabular}{l}
Check that Pr.434 Network number (CC-Link IE) and Pr.435 Station number (CC-Link IE) are \\
correctly set. (Check that their settings match with the program, that the network number is set within \\
the range, that no overlapping stations exist, and that the station number is set within the range.)
\end{tabular} \\
\cline { 2 - 4 } & Check that the inverter is in the External operation mode. \\
\cline { 2 - 4 } & Check that the operation mode switching program is running. \\
\cline { 2 - 4 } & Check that the operation mode switching program has been written correctly. \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Inverter does not start in the \\
Network operation mode.
\end{tabular}} & Check that the inverter starting program is running. \\
\cline { 2 - 4 } & Check that the inverter starting program has been written correctly. \\
\cline { 2 - 4 } & Check that Pr. 338 Communication operation command source is not set to External. \\
\hline
\end{tabular}

\section*{CHAPTER 6 PROTECTIVE FUNCTIONS}
6.1 Inverter fault and alarm indications 738
6.2 Reset method for the protective functions 739
6.3 Check and clear of the faults history 740
6.4 List of fault displays 742
6.5 Causes and corrective actions 745
6.6 Check first when you have a trouble 765

This chapter explains the "PROTECTIVE FUNCTIONS" that operate in this product.
Always read the instructions before use.

\subsection*{6.1 Inverter fault and alarm indications}
- When the inverter detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function is activated to shut off the inverter output.
- When any fault occurs, take an appropriate corrective action, then reset the inverter, and resume the operation. Restarting the operation without a reset may break or damage the inverter.
- When a protective function is activated, note the following points.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline Fault signal & \begin{tabular}{l}
Opening the magnetic contactor \((M C)\) provided on the input side of the inverter at a fault occurrence shuts off \\
the control power to the inverter, therefore, the fault output will not be retained.
\end{tabular} \\
\hline Fault or alarm indication & When a protective function is activated, the operation panel displays a fault indication. \\
\hline Operation restart method & \begin{tabular}{l}
While a protective function is activated, the inverter output is kept shutoff. Reset the inverter to restart the \\
operation.
\end{tabular} \\
\hline
\end{tabular}
- Inverter fault or alarm indications are categorized as follows.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Displayed item } & \multicolumn{1}{c|}{ Description } \\
\hline Error message & \begin{tabular}{l}
A message regarding operational fault and setting fault by the operation panel and the parameter unit. The \\
inverter output is not shut off.
\end{tabular} \\
\hline Warning & \begin{tabular}{l}
The inverter output is not shut off even when a warning is displayed. However, failure to take appropriate \\
measures will lead to a fault.
\end{tabular} \\
\hline Alarm & The inverter output is not shut off. An Alarm (LF) signal can also be output with a parameter setting. \\
\hline Fault & When a protective function is activated, the inverter output is shut off and a Fault (ALM) signal is output. \\
\hline
\end{tabular}

\section*{NOTE}
- The past eight faults can be displayed on the operation panel. (Faults history) (For the operation, refer to page 740.)

\subsection*{6.2 Reset method for the protective functions}

Reset the inverter by performing any of the following operations. Note that the accumulated heat value of the electronic thermal relay function and the number of retries are cleared (erased) by resetting the inverter.
The inverter recovers about 1 second after the reset is released.
- On the operation panel, press \(\frac{\text { STOP }}{\operatorname{RTSETETN}}\)) to reset the inverter. (This may only be performed when a fault occurs. (Refer to page 751 of the Instruction Manual for faults.))

- Switch the power OFF once, then switch it ON again.

- Turn ON the Reset (RES) signal for 0.1 s or more. (If the RES signal is kept ON, "Err" appears (blinks) to indicate that the inverter is in a reset status.)

\section*{NOTE}
- OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting an inverter fault with the start signal ON restarts the motor suddenly.

\subsection*{6.3 Check and clear of the faults history}

The operation panel stores the fault indications which appear when a protective function is activated to display the fault record for the past eight faults. (Faults history)
Check for the faults history

*1 When an overcurrent trip occurs by an instantaneous overcurrent, the monitored current value saved in the faults history may be lower than the actual current that has flowed.
*2 The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0 .

\section*{- Faults history clearing procedure}

\section*{Point \(\rho\)}
- Set Err.CL Fault history clear = "1" to clear the faults history.

\section*{Operating procedure}
1. Turning \(O N\) the power of the inverter

The operation panel is in the monitor mode.
2. Selecting the parameter setting mode

Press mode to choose the parameter setting mode. (The parameter number read previously appears.)
3. Selecting the parameter number
 value) appears.
4. Faults history clear

Turn to change the set value to " \(\mathrm{f}^{\prime \prime}\). Press SET to start clearing.
" |" and "
- Turn to read another parameter.
- Press SET to show the setting again.
- Press SET twice to show the next parameter.

\subsection*{6.4 List of fault displays}

If the displayed message does not correspond to any of the following or if you have any other problem, contact your sales representative.

\section*{- Error message}
- A message regarding operational fault and setting fault by the operation panel and the parameter unit is displayed. The inverter output is not shut off.
\begin{tabular}{|c|c|c|}
\hline Operation panel indication & Name & Refer to page \\
\hline f1Til & Operation panel lock & 745 \\
\hline I Fif & Password locked & 745 \\
\hline \(\begin{array}{lll}E & - & i\end{array}\) & Parameter write error & \[
\begin{aligned}
& 745, \\
& 746
\end{aligned}
\] \\
\hline & Copy operation fault & \[
\begin{aligned}
& 746, \\
& 747
\end{aligned}
\] \\
\hline \(E 1 \times 10\) & Error & 747 \\
\hline
\end{tabular}

\section*{- Warning}
- The inverter output is not shut off even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.
\begin{tabular}{|c|c|c|}
\hline Operation panel indication & Name & Refer to page \\
\hline E12 & Stall prevention (overcurrent) & 748 \\
\hline & Stall prevention (overvoltage) & 748 \\
\hline & Regenerative brake pre-alarm & 748 \\
\hline \[
1-1
\] & Electronic thermal relay function pre-alarm & 749 \\
\hline & PU stop & 749 \\
\hline & Speed limit indication & 749 \\
\hline \[
15
\] & Parameter copy & 749 \\
\hline E15 & Safety stop & 749 \\
\hline Mil ito M11 = & Maintenance signal output & 750 \\
\hline \[
115
\] & USB host error & 750 \\
\hline \[
1-181
\] & Home position return setting error & 750 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ Name } & \begin{tabular}{c}
Refer \\
to page
\end{tabular} \\
\hline & Home position return uncompleted & 750 \\
\hline & \begin{tabular}{l}
Home position return parameter \\
setting error
\end{tabular} & 750 \\
\hline & \begin{tabular}{l}
Continuous operation during \\
communication fault
\end{tabular} & 750 \\
\hline
\end{tabular}

\section*{Alarm}
- The inverter output is not shut off. An Alarm (LF) signal can also be output with a parameter setting.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ Name } & \begin{tabular}{c}
Refer \\
to page
\end{tabular} \\
\hline N! & Fan alarm & 750 \\
\hline N: & Internal fan alarm & 751 \\
\hline
\end{tabular}

\section*{Fault}
- When a protective function is activated, the inverter output is shut off and a Fault (ALM) signal is output.
- The data code is used for checking the fault detail via communication or with Pr. 997 Fault initiation.

■ Data code 16 to 199
\begin{tabular}{|lll|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c}{ Name } & \begin{tabular}{l}
Data \\
Code
\end{tabular} & \begin{tabular}{c}
Refer \\
to page
\end{tabular} \\
\hline E. & On
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & Name & Data Code & Refer to page \\
\hline E. ilif & Upper limit fault detection & \[
\begin{aligned}
& \hline 98 \\
& (\mathrm{H} 62)
\end{aligned}
\] & 755 \\
\hline E. L Ein & Lower limit fault detection & \[
\begin{aligned}
& \hline 99 \\
& (\mathrm{H} 63)
\end{aligned}
\] & 756 \\
\hline E. E E & Brake transistor alarm detection & \[
\begin{array}{|l|}
\hline 112 \\
(H 70)
\end{array}
\] & 756 \\
\hline E. EF & Output side earth (ground) fault overcurrent & \[
\begin{aligned}
& \hline 128 \\
& (\mathrm{H} 80)
\end{aligned}
\] & 756 \\
\hline E. 1F & Output phase loss & \[
\begin{aligned}
& 129 \\
& (\mathrm{H} 81)
\end{aligned}
\] & 756 \\
\hline E. EIf: & External thermal relay operation & \[
\begin{aligned}
& 144 \\
& \text { (H90) }
\end{aligned}
\] & 756 \\
\hline & PTC thermistor operation & \[
\begin{aligned}
& 145 \\
& \text { (H91) }
\end{aligned}
\] & 757 \\
\hline E. EIEI & Option fault & \[
\begin{aligned}
& 160 \\
& \text { (HAO) }
\end{aligned}
\] & 757 \\
\hline & & \[
\begin{aligned}
& 161 \\
& \text { (HA1) }
\end{aligned}
\] & \\
\hline & Communication option fault & \[
\begin{aligned}
& 162 \\
& \text { (HA2) }
\end{aligned}
\] & 757 \\
\hline & & \[
\begin{aligned}
& 163 \\
& (\mathrm{HA} 3)
\end{aligned}
\] & \\
\hline & & \[
\begin{aligned}
& 164 \\
& \text { (HA4) }
\end{aligned}
\] & \\
\hline & & \[
\begin{aligned}
& 165 \\
& \text { (HA5) }
\end{aligned}
\] & \\
\hline & User definition error by the PLC function & \[
\begin{aligned}
& 166 \\
& \text { (HA6) }
\end{aligned}
\] & 758 \\
\hline & & \[
\begin{aligned}
& \hline 167 \\
& \text { (HA7) } \\
& \hline
\end{aligned}
\] & \\
\hline & & \[
\begin{aligned}
& 168 \\
& \text { (HA8) }
\end{aligned}
\] & \\
\hline & Parameter storage device fault & \[
\begin{aligned}
& 176 \\
& \text { (HBO) }
\end{aligned}
\] & 758 \\
\hline E. FiliE & PU disconnection & \[
\begin{array}{|l|}
\hline 177 \\
\text { (HB1) } \\
\hline
\end{array}
\] & 758 \\
\hline & Retry count excess & \[
\begin{array}{|l|}
\hline 178 \\
\text { (HB2) }
\end{array}
\] & 758 \\
\hline & Parameter storage device fault & \[
\begin{aligned}
& 179 \\
& \text { (HB3) }
\end{aligned}
\] & 758 \\
\hline E. EFI! & CPU fault & \[
\begin{aligned}
& 192 \\
& (\mathrm{HCO})
\end{aligned}
\] & 759 \\
\hline & Operation panel power supply short circuit/RS-485 & \[
\begin{aligned}
& 193 \\
& (\mathrm{HC} 1)
\end{aligned}
\] & 759 \\
\hline E. EIEI & 24 VDC power fault & \[
\begin{aligned}
& 194 \\
& (\mathrm{HC} 2)
\end{aligned}
\] & 759 \\
\hline E. EIE1 & Abnormal output current detection & \[
\begin{aligned}
& 196 \\
& \text { (HC4) }
\end{aligned}
\] & 759 \\
\hline E. 1 Eifo & Inrush current limit circuit fault & \[
\begin{aligned}
& 197 \\
& \text { (HC5) }
\end{aligned}
\] & 759 \\
\hline E. EFE & Communication fault (inverter) & \[
\begin{aligned}
& 198 \\
& \text { (HC6) }
\end{aligned}
\] & 760 \\
\hline E. Fil E & Analog input fault & \[
\begin{aligned}
& 199 \\
& (\mathrm{HC} 7)
\end{aligned}
\] & 760 \\
\hline
\end{tabular}

\section*{■ Data code 200 or more}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & Name & \begin{tabular}{c}
Data \\
code
\end{tabular} & \begin{tabular}{c}
Refer \\
to \\
page
\end{tabular} \\
\hline E. & USB communication fault & \begin{tabular}{l}
200 \\
(HC8)
\end{tabular} & 760 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & Name & Data code & Refer to page \\
\hline E. E®E & Safety circuit fault & \[
\begin{array}{|l|}
\hline 201 \\
\text { (HC9) }
\end{array}
\] & 760 \\
\hline & \multirow[t]{2}{*}{Internal circuit fault} & \[
\begin{array}{|l|}
\hline 202 \\
(\mathrm{HCA}) \\
\hline
\end{array}
\] & \multirow[t]{2}{*}{760} \\
\hline E, 1-1 & & \[
\begin{aligned}
& 253 \\
& \text { (HFD) }
\end{aligned}
\] & \\
\hline E FiE & Overspeed occurrence & \[
\begin{array}{|l|}
\hline 208 \\
(\mathrm{HDO})
\end{array}
\] & 761 \\
\hline & Speed deviation excess detection & \[
\begin{array}{|l|}
\hline 209 \\
\text { (HD1) } \\
\hline
\end{array}
\] & 761 \\
\hline & Signal loss detection & \[
\begin{array}{|l|}
\hline 210 \\
\text { (HD2) }
\end{array}
\] & 761 \\
\hline E. IEN & Excessive position fault & \[
\begin{array}{|l|}
\hline 211 \\
\text { (HD3) } \\
\hline
\end{array}
\] & 761 \\
\hline E. NiE & \multirow{7}{*}{Brake sequence fault} & \[
\begin{array}{|l|}
\hline 213 \\
\text { (HD5) } \\
\hline
\end{array}
\] & \multirow{7}{*}{762} \\
\hline E. Mif & & \[
\begin{array}{|l|}
\hline 214 \\
\text { (HD6) } \\
\hline
\end{array}
\] & \\
\hline E. Mil = & & \[
\begin{array}{|l}
\hline 215 \\
\text { (HD7) }
\end{array}
\] & \\
\hline \[
\text { E. } \quad \text { Mín }
\] & & \[
\begin{array}{|l|}
\hline 216 \\
\text { (HD8) } \\
\hline
\end{array}
\] & \\
\hline E. M保 & & \[
\begin{array}{|l|}
\hline 217 \\
\text { (HD9) } \\
\hline
\end{array}
\] & \\
\hline & & \[
\begin{array}{|l|}
\hline 218 \\
\text { (HDA) } \\
\hline
\end{array}
\] & \\
\hline E. MIE & & \[
\begin{array}{|l|}
\hline 219 \\
\text { (HDB) }
\end{array}
\] & \\
\hline E. EF & Encoder phase fault & \[
\begin{array}{|l|}
\hline 220 \\
\text { (HDC) } \\
\hline
\end{array}
\] & 762 \\
\hline E MiF & Magnetic pole position unknown & \[
\begin{array}{|l|}
\hline 222 \\
(H D E)
\end{array}
\] & 762 \\
\hline E. 1 Eif & Abnormal internal temperature & \[
\begin{array}{|l|}
\hline 225 \\
\text { (HE1) } \\
\hline
\end{array}
\] & 762 \\
\hline E. & 4 mA input fault & \[
\begin{aligned}
& \hline 228 \\
& \text { (HE4) }
\end{aligned}
\] & 762 \\
\hline E. Firf & Pre-charge fault & \[
\begin{aligned}
& 229 \\
& \text { (HE5) }
\end{aligned}
\] & 763 \\
\hline E. Ei, Ef & PID signal fault & \[
\begin{aligned}
& \hline 230 \\
& \text { (HE6) }
\end{aligned}
\] & 763 \\
\hline & \multirow{3}{*}{Option fault} & \[
\begin{aligned}
& \hline 241 \\
& \text { (HF1) }
\end{aligned}
\] & \multirow{3}{*}{763} \\
\hline & & \[
\begin{array}{|l|}
\hline 242 \\
\text { (HF2) } \\
\hline
\end{array}
\] & \\
\hline & & \[
\begin{array}{|l|}
\hline 243 \\
\text { (HF3) } \\
\hline
\end{array}
\] & \\
\hline \[
E=
\] & \multirow{3}{*}{CPU fault} & \[
\begin{array}{|l|}
\hline 245 \\
\text { (HF5) }
\end{array}
\] & \multirow{3}{*}{759} \\
\hline E, E & & \[
\begin{array}{|l|}
\hline 246 \\
\text { (HF6) } \\
\hline
\end{array}
\] & \\
\hline E. & & \[
\begin{array}{|l|}
\hline 247 \\
\text { (HF7) }
\end{array}
\] & \\
\hline \[
E . \quad 11
\] & Opposite rotation deceleration fault & \[
\begin{array}{|l|}
\hline 251 \\
\text { (HFB) } \\
\hline
\end{array}
\] & 763 \\
\hline
\end{tabular}

\section*{- Others}
- The faults history and the operation status of the inverter are displayed. It is not a fault indication.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ Name } & \begin{tabular}{c}
Refer \\
to \\
page
\end{tabular} \\
\hline & Faults history & 740 \\
\hline operation & Backup in progress & 764 \\
\hline Re- & Restoration in progress & 764 \\
\hline
\end{tabular}

If faults other than the above appear, contact your sales representative.

\subsection*{6.5 Causes and corrective actions}

\section*{- Error message}

A message regarding operational troubles is displayed. Output is not shut off.
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & HOLD & & ¢01\% \\
\hline Name & \multicolumn{3}{|l|}{Operation panel lock} \\
\hline Description & \multicolumn{3}{|l|}{Operation lock is set. Operation other than \begin{tabular}{|c}
STOP \\
RESET
\end{tabular} is invalid. (Refer to page 324.)} \\
\hline Check point & & & -------------- \\
\hline Corrective action & Press MODE & for 2 s to release the lock. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Operation panel indication & LOCD & 1 Fin \\
\hline Name & \multicolumn{2}{|l|}{Password locked} \\
\hline Description & \multicolumn{2}{|l|}{Password function is active. Display and setting of parameters are restricted.} \\
\hline Check point & \multicolumn{2}{|r|}{--------------} \\
\hline Corrective action & \multicolumn{2}{|l|}{Enter the password in Pr. 297 Password lock/unlock to unlock the password function before operating. (Refer to page 331.)} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ Er1 } \\
\hline Name & Write disable error \\
\hline Description & \begin{tabular}{l}
- Parameter setting was attempted while Pr.77 Parameter write selection is set to disable parameter write. \\
- Overlapping range has been set for the frequency jump. \\
- Overlapping range has been set for the adjustable 5 points V/F. \\
- The PU and inverter cannot make normal communication. \\
- IPM parameter initialization was attempted while Pr. 72 PWM frequency selection = "25".
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check the Pr.77 setting. (Refer to page 328.) \\
- Check the settings of Pr. 31 to Pr. 36 (frequency jump). (Refer to page 408.) \\
- Check the settings of Pr. 100 to Pr. 109 (adjustable 5 points V/F). (Refer to page 679.) \\
- Check the connection of PU and the inverter. \\
- Check the Pr. 72 setting. A sine wave filter cannot be used under PM sensorless vector control.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ Er2 } \\
\hline Name & Write error during operation \\
\hline Description & Parameter write was attempted while Pr.77 Parameter write selection = "0". \\
\hline Check point & • Check that the inverter is stopped. \\
\hline Corrective action & \begin{tabular}{l}
• After stopping the operation, make parameter setting. \\
- When setting Pr.77 = "2", parameter write is enabled during operation. (Refer to page 328.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ Er3 } \\
\hline Name & Calibration error \\
\hline Description & Analog input bias and gain calibration values have been set too close. \\
\hline Check point & Check the settings of the calibration parameters C3, C4, C6, and C7 (calibration functions). (Refer to page 482.) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ Er4 } \\
\hline Name & Mode designation error \\
\hline Description & \begin{tabular}{l}
- Parameter setting was attempted in the External or NET operation mode while Pr.77 Parameter write selection \\
\(=\) \\
- P1".
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the operation mode is the PU operation mode. \\
• Check that the Pr.551 PU mode operation command source selection setting is correct.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- After setting the operation mode to the "PU operation mode", make parameter setting. (Refer to page 370.) \\
- When Pr.77 = "2", parameter write is enabled regardless of the operation mode. (Refer to page 328.) \\
- Set Pr.551 = "2". (Refer to page 380.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ Er8 } \\
\hline Name & USB memory device operation error \\
\hline Description & \begin{tabular}{l}
- An operation command was given during the USB memory device operation. \\
- A copy operation (writing) was performed while the PLC function was in the RUN state. \\
- A copy operation was attempted for a password locked project.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check if the USB memory device is operating. \\
- Check if the PLC function is in the RUN state. \\
- Check if the project data is locked with a password.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Perform the operation after the USB memory device operation is completed. \\
- Stop the PLC function. (Refer to page 614 and the PLC function programming manual.) \\
- Unlock the password of the project data using FR Configurator2. (Refer to the Instruction Manuals of FR \\
Configurator2 and GX Works2.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ rE1 } \\
\hline Name & Parameter read error \\
\hline Description & \begin{tabular}{l}
- A failure has occurred at the operation panel side EEPROM while reading the copied parameters. \\
- A failure has occurred in the USB memory device while copying the parameters or reading the PLC function \\
project data.
\end{tabular} \\
\hline Check point & - ------------ \\
\hline Corrective action & \begin{tabular}{l}
- Perform parameter copy again. (Refer to page 708 and page 711.) \\
- Perform PLC function project data copy again. (Refer to page 614.) \\
- The USB memory device may be faulty. Replace the USB memory device. \\
- The operation panel (FR-DU08) may be faulty. Contact your sales representative.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ rE2 } \\
\hline Name & Parameter write error \\
\hline Description & \begin{tabular}{l}
- Parameter copy from the operation panel to the inverter was attempted during operation. \\
- A failure has occurred at the operation panel side EEPROM while writing the copied parameters. \\
- A failure has occurred in the USB memory device while writing the copied parameters or PLC function project \\
data.
\end{tabular} \\
\hline Check point & - Check that the inverter is stopped. \\
\hline Corrective action & \begin{tabular}{l}
- After stopping the operation, perform parameter copy again. (Refer to page 708.) \\
- The operation panel (FR-DU08) may be faulty. Contact your sales representative. \\
- Perform parameter copy or PLC project data copy again. (Refer to page 614 and page 711.) \\
- The USB memory device may be faulty. Replace the USB memory device.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ rE3 } \\
\hline Name & Parameter verification error \\
\hline Description & \begin{tabular}{l}
- The data in the inverter are different from the data in the operation panel. \\
- A failure has occurred at the operation panel side EEPROM during parameter verification. \\
- A failure has occurred in the USB memory device during parameter verification. \\
- The data in the inverter are different from the data in the USB memory device or the personal computer (FR \\
Configurator2).
\end{tabular} \\
\hline Check point & - Check the parameter setting of the source inverter against the setting of the destination inverter. \\
\hline Corrective action & \begin{tabular}{l}
- Continue the verification by pressing \begin{tabular}{l}
SET \\
- Perform parameter verification again. (Refer to page 709.) \\
- The operation panel (FR-DU08) may be faulty. Contact your sales representative. \\
- The USB memory device may be faulty. Replace the USB memory device. \\
- Verify the PLC function project data again. (Refer to page 614.)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ rE4 } \\
\hline Name & Model error \\
\hline Description & \begin{tabular}{l}
- A different model was used when parameter copy from the operation panel or parameter verification was \\
performed. \\
- The data in the operation panel were not correct when parameter copy from the operation panel or parameter \\
verification was performed.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the parameter copy or verification source inverter is of the same model. \\
- Check that parameter copy to the operation panel was not interrupted by switching OFF the power or by \\
disconnecting the operation panel.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Perform parameter copy and parameter verification between inverters of the same model (FR-A800 series). \\
- Perform parameter copy to the operation panel from the inverter again.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ rE6 } \\
\hline Name & File error \\
\hline Description & \begin{tabular}{l}
- The parameter copy file in the USB memory device cannot be recognized. \\
- An error has occurred in the file system during transfer of the PLC function data or writing to RAM.
\end{tabular} \\
\hline Check point & ------------- \\
\hline Corrective action & \begin{tabular}{l}
- Perform parameter copy again. (Refer to page 711.) \\
- Copy the PLC function project data again. (Refer to page 614.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ rE7 } \\
\hline Name & File quantity error \\
\hline Description & \begin{tabular}{l}
• A parameter copy was attempted to the USB memory device in which the copy files from 001 to 099 had already \\
been saved.
\end{tabular} \\
\hline Check point & • Check if the number of copy files in the USB memory device has reached 99. \\
\hline Corrective action & • Delete the copy file in the USB memory device and perform parameter copy again. (Refer to page 711.) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ rE8 } \\
\hline Name & No PLC function project file \\
\hline Description & The specified PLC function project file does not exist in the USB memory device. \\
\hline Check point & \begin{tabular}{l}
- Check that the file exists in the USB memory device. \\
• Check that the folder name and the file name in the USB memory device is correct.
\end{tabular} \\
\hline Corrective action & The data in the USB memory device may be damaged. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ Err. } \\
\hline Description & \begin{tabular}{l}
- The RES signal is turned ON. \\
- The operation panel and inverter cannot make normal communication (contact faults of the connector). \\
- This error may occur when the voltage at the input side of the inverter drops. \\
- When using a separate power source for the control circuit power (R1/L11, S1/L21) from the main circuit power \\
(R/L1, S/L2, T/L3), this error may appear at turning ON of the main circuit. It is not a fault.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Turn OFF the RES signal. \\
- Check the connection between the operation panel and the inverter. \\
- Check the voltage on the input side of the inverter.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Warning}

Output is not shut off when a protective function is activated.
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & OL & FR-LU08 indication & OL \\
\hline Name & \multicolumn{3}{|l|}{Stall prevention (overcurrent)} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
- When the output current of the inverter increases, the stall prevention (overcurrent) function is activated. \\
- The following section explains about the stall prevention (overcurrent) function.
\end{tabular}} \\
\hline & During acceleration & \multicolumn{2}{|l|}{When the output current (output torque under Real sensorless vector control or Vector control) of the inverter exceeds the stall prevention level (Pr. 22 Stall prevention operation level, etc.), this function stops the increase in frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current is reduced below stall prevention operation level, this function increases the frequency again.} \\
\hline Description & During constantspeed operation & \multicolumn{2}{|l|}{When the output current (output torque under Real sensorless vector control or Vector control) of the inverter exceeds the stall prevention level (Pr. 22 Stall prevention operation level, etc.), this function reduces frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current is reduced below stall prevention operation level, this function increases the frequency up to the set value.} \\
\hline & During deceleration & \multicolumn{2}{|l|}{When the output current (output torque under Real sensorless vector control or Vector control) of the inverter exceeds the stall prevention level (Pr. 22 Stall prevention operation level, etc.), this function stops the decrease in frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current is reduced below stall prevention operation level, this function decreases the frequency again.} \\
\hline Check point & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Check that the Pr. 0 Torque boost setting is not too large. \\
- The Pr. 7 Acceleration time and Pr. 8 Deceleration time settings may be too short. \\
- Check that the load is not too heavy. \\
- Check for any failures in peripheral devices. \\
- Check that the Pr. 13 Starting frequency is not too large. \\
- Check that Pr. 22 Stall prevention operation level is appropriate.
\end{tabular}} \\
\hline Corrective action & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Gradually increase or decrease the Pr. 0 setting by \(1 \%\) at a time and check the motor status. (Refer to page 672.) \\
- Set a larger value in Pr. 7 and Pr.8. (Refer to page 349.) \\
- Reduce the load. \\
- Try Advanced magnetic flux vector control, Real sensorless vector control, or Vector control. \\
- Change the Pr. 14 Load pattern selection setting. \\
- The stall prevention operation current can be set in Pr. 22 Stall prevention operation level. (Initial value is \(150 \%\).) The acceleration/deceleration time may change. Increase the stall prevention operation level with Pr. 22 Stall prevention operation level, or disable stall prevention with Pr. 156 Stall prevention operation selection. (Use Pr. 156 to set either operation continued or not at OL operation.)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & oL & E1 & FR-LU08 indication & oL \\
\hline Name & \multicolumn{4}{|l|}{Stall prevention (overvoltage)} \\
\hline \multirow[t]{2}{*}{Description} & \multicolumn{4}{|l|}{\begin{tabular}{l}
- When the output voltage of the inverter increases, the stall prevention (overvoltage) function is activated. \\
- The regeneration avoidance function is activated due to excessive regenerative power of the motor. (Refer to page 696.) \\
- The following section explains the stall prevention (overvoltage) function.
\end{tabular}} \\
\hline & During deceleration & If the regenerat power consump overvoltage trip & of the motor becomes ility, this function stop s the regenerative pow & xcessive to exceed the regenerative decreasing the frequency to prevent er has reduced, deceleration resumes. \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for sudden speed reduction. \\
- Check if the regeneration avoidance function (Pr. 882 to Pr.886) is being used. (Refer to page 696.)
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{The deceleration time may change. Increase the deceleration time using Pr. 8 Deceleration time.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ RB } & Regenerative brake pre-alarm (Standard models only) \\
\hline Name & \begin{tabular}{l}
Appears if the regenerative brake duty reaches or exceeds \(85 \%\) of the Pr.70 Special regenerative brake duty \\
value. If the regenerative brake duty reaches 100\%, a regenerative overvoltage (E. OV[]) occurs.
\end{tabular} \\
\hline Description & \begin{tabular}{l}
- Check if the brake resistor duty is not too high. \\
- Check that the Pr. 30 Regenerative function selection and Pr. 70 settings are correct.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Set the deceleration time longer. \\
- Check the Pr. 30 and Pr. 70 settings. (Refer to page 689.)
\end{tabular} \\
\hline Corrective action
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ TH } & FR-LU08 indication & TH \\
\hline Name & \begin{tabular}{l}
Appears if the cumulative value of the electronic thermal O/L relay reaches or exceeds 85\% of the preset level \\
of Pr.9 Electronic thermal O/L relay. If the specified value is reached, the protection circuit is activated to shut \\
off the inverter output.
\end{tabular} \\
\hline Description & \begin{tabular}{l}
- Check for large load or sudden acceleration. \\
- Check that the Pr.9 setting is appropriate. (Refer to page 394.)
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Reduce the load and frequency of operation. \\
- Set an appropriate value in Pr.9. (Refer to page 394.)
\end{tabular} \\
\hline Corrective action
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & PS & FR-LU08 indication & PS \\
\hline Name & \multicolumn{3}{|l|}{PU stop} \\
\hline Description & \multicolumn{3}{|l|}{\begin{tabular}{l}
- The motor is stopped using \(\square\) STOP under the mode other than the PU operation mode. (To enable RESEIT under the mode other than the PU operation mode, set Pr. 75 Reset selection/disconnected PU detection/ PU stop selection. Refer to page 320 for details.) \\
- The motor is stopped by the emergency stop function.
\end{tabular}} \\
\hline Check point & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Check for a stop made by pressing \(\square\) \(\frac{\text { STOP }}{\text { RESET }}\) of the operation panel. \\
- Check for whether the X92 signal is OFF.
\end{tabular}} \\
\hline Corrective action & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Turn the start signal OFF and release with \(\square\) PU \\
- Turn ON the X92 signal and OFF the start signal for release.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ SL } & FR-LU08 indication & SL \\
\hline Name & Speed limit indication (output during speed limit) \\
\hline Description & Output if the speed limit level is exceeded during torque control. \\
\hline Check point & \begin{tabular}{l}
- Check that the torque command is not larger than required. \\
- Check if the speed limit level is set too low.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Decrease the torque command value. \\
- Increase the speed limit level.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{\(\mathbf{C P}\)} & FR-LU08 indication & CP \\
\hline Name & Parameter copy \\
\hline Description & \begin{tabular}{l}
Appears when parameter copy is performed between the FR-A820-03160(55K) or lower / FR-A840-01800(55K) \\
or lower inverters and the FR-A820-03800(75K) or higher / FR-A840-02160(75K) or higher inverters.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
Resetting of Pr.9, Pr.30, Pr.51, Pr.56, Pr.57, Pr.61, Pr.70, Pr.72, Pr.80, Pr.82, Pr.90 to Pr.94, Pr.453, Pr.455, \\
Pr.458 to Pr.462, Pr.557, Pr.859, Pr.860 to Pr.462, Pr.557, Pr.859, Pr.860 and Pr.893 is necessary.
\end{tabular} \\
\hline Corrective action & Set the initial value in Pr.989 Parameter copy alarm release. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & SA & FR-LU08 indication & - \\
\hline Name & \multicolumn{3}{|l|}{Safety stop} \\
\hline Description & \multicolumn{3}{|l|}{Appears when safety stop function is activated (during output shutoff). (Refer to page 80.)} \\
\hline Check point & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Check if an emergency stop device is activated. \\
- Check if the shorting wire between S1 and PC or between S2 and PC is disconnected when not using the safety stop function.
\end{tabular}} \\
\hline Corrective action & \multicolumn{3}{|l|}{\begin{tabular}{l}
- An emergency stop device is active when using the safety stop function. Identify the cause of emergency stop, ensure the safety and restart the system. \\
- When not using the safety stop function, short across terminals S1 and PC and across S2 and PC with shorting wire for the inverter to run. \\
- If "关 1 " the safety stop function (drive enabled), internal failure might be the cause. Check the wiring of terminals S 1 , S2, and SIC and contact your sales representative if the wiring has no fault.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ MT1 to MT3 } & Maintenance signal output \\
\hline Name & \begin{tabular}{l}
Appears when the inverter's cumulative energization time reaches or exceeds the parameter set value. Set the \\
time until the MT is displayed using Pr. 504 Maintenance timer 1 warning output set time (MT1), Pr.687 \\
Maintenance timer 2 warning output set time (MT2), and Pr.689 Maintenance timer 3 warning output set \\
time (MT3). MT does not appear when the settings of Pr.504, Pr.687, and Pr.689 are initial values (9999).
\end{tabular} \\
\hline Description & The set time of maintenance timer has been exceeded. (Refer to page 345.) \\
\hline Check point & \begin{tabular}{l}
Take appropriate countermeasures according to the purpose of the maintenance timer setting. Setting "0" in \\
Pr.503 Maintenance timer 1, Pr. 686 Maintenance timer 2, and Pr. 688 Maintenance timer 3 clears the \\
indication.
\end{tabular} \\
\hline Corrective action
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ UF } & FR-LU08 indication UF \\
\hline Name & USB host error \\
\hline Description & Appears when an excessive current flows into the USB A connector. \\
\hline Check point & Check if a USB device other than a USB memory device is connected to the USB A connector.
\end{tabular}
\begin{tabular}{|c|l||l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ HP1 to HP3 } & Home position return error \\
\hline Name & \begin{tabular}{l}
Appears when an error occurs during the home position return operation under position control. For the details, \\
refer to page 298.
\end{tabular} \\
\hline Description & Identify the cause of the error occurrence. \\
\hline Check point & Check the parameter setting, and check that the input signal is correct. \\
\hline Corrective action & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ CF } & FR-LU08 indication & CF \\
\hline Name & Continuous operation during communication fault \\
\hline Description & \begin{tabular}{l}
Appears when the operation continues while an error is occurring in the communication line or communication \\
option (when Pr.502 = "4").
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check for a break in the communication cable. \\
- Check for communication option faults.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Check the connection of communication cable. \\
- Replace the communication option.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ LDF } & FR-LU08 indication LDF \\
\hline Name & Load fault warning \\
\hline Description & \begin{tabular}{l}
Appears when the load is deviated from the detection width set in Pr. 1488 Upper limit warning detection width \\
or Pr. 1489 Lower limit warning detection width.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check if too much load is applied to the equipment, or if the load is too light. \\
- Check that the load characteristics settings are correct.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Inspect the equipment. \\
- Set the load characteristics (Pr. 1481 to Pr.1487) correctly.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Alarm}

Output is not shut off when a protective function is activated. An Alarm signal can also be output with a parameter setting. (Set "98" in Pr. 190 to Pr. 196 (Output terminal function selection). Refer to page 450.)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ FN } & FR-LU08 indication & FN \\
\hline Name & Fan alarm \\
\hline Description & \begin{tabular}{l}
For the inverter that contains a cooling fan, FN appears on the operation panel when the cooling fan stops due \\
to a fault, low rotation speed, or different operation from the setting of Pr.244 Cooling fan operation selection.
\end{tabular} \\
\hline Check point & Check the cooling fan for a failure. \\
\hline Corrective action & The fan may be faulty. Contact your sales representative. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ FN2 } & FR-LU08 indication & FN2 \\
\hline Name & Internal fan alarm (IP55 compatible models only) \\
\hline Description & FN2 appears on the operation panel when the internal air circulation fan stops due to a fault or low rotation speed. \\
\hline Check point & Check the internal air circulation fan for a failure. \\
\hline Corrective action & The fan may be faulty. Contact your sales representative. \\
\hline
\end{tabular}

\section*{Fault}

When a protective function is activated, the inverter output is shut off and a Fault signal is output.
\begin{tabular}{|c|c|c|c|c|}
\hline Operation
indica & E.OC1 & & FR-LU08 indication & Overcurrent trip durin \\
\hline Name & \multicolumn{4}{|l|}{Overcurrent trip during acceleration} \\
\hline Descript & \multicolumn{4}{|l|}{When the inverter output current reaches or exceeds approximately \(235 \%{ }^{* 1}\) of the rated current during acceleration, the protection circuit is activated and the inverter output is shut off.} \\
\hline Check p & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for sudden speed acceleration. \\
- Check if the downward acceleration time is too long in a lift application. \\
- Check for output short-circuit. \\
- Check that the Pr. 3 Base frequency setting is not 60 Hz when the motor rated frequency is 50 Hz . \\
- Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled. \\
- Check that the regenerative driving is not performed frequently. (Check if the output voltage becomes larger than the V/F reference voltage at regenerative driving and overcurrent occurs due to increase in the motor current.) \\
- Check that the power supply for RS-485 terminal is not shorted (under Vector control). \\
- Check that the encoder wiring and the specifications (encoder power supply, resolution, differential/ complementary) are correct. Check also that the motor wiring (\(\mathrm{U}, \mathrm{V}, \mathrm{W}\)) is correct (under Vector control). \\
- Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. \\
- Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control) \\
- Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Set the acceleration time longer. (Shorten the downward acceleration time of the lift.) \\
- If "E.OC1" always appears at start, disconnect the motor once and restart the inverter. If "E.OC1" still appears, contact your sales representative. \\
- Check the wiring to make sure that output short circuit does not occur. \\
- Set 50 Hz in Pr. 3 Base frequency. (Refer to page 673.) \\
- Lower the stall prevention operation level. Activate the fast-response current limit operation. (Refer to page 409.) \\
- Set the base voltage (rated voltage of the motor, etc.) in Pr. 19 Base frequency voltage. (Refer to page 673.) \\
- Check RS-485 terminal connection (under Vector control). \\
- Check the wiring and specifications of the encoder and the motor. Perform the setting according to the specifications of the encoder and the motor (under vector control). (Refer to page 86.) \\
- Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. \\
- Choose inverter and motor capacities that match. (PM sensorless vector control) \\
- Input a start command after the motor stops. Alternatively, use the automatic restart after instantaneous power failure/flying start function. (Refer to page 604.) (PM sensorless vector control)
\end{tabular}} \\
\hline
\end{tabular}
*1 Differs according to ratings. The rating can be changed using Pr. 570 Multiple rating setting. (Refer to page 326.) \(148 \%\) for SLD rating, \(170 \%\) for LD rating, \(235 \%\) for ND rating (initial setting), and \(280 \%\) for HD rating
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.OC2 & & FR-LU08 indication & Overcurrent trip during constant speed \\
\hline Name & \multicolumn{4}{|l|}{Overcurrent trip during constant speed} \\
\hline Description & \multicolumn{4}{|l|}{When the inverter output current reaches or exceeds approximately \(235 \%^{* 2}\) of the rated current during constantspeed operation, the protection circuit is activated and the inverter output is shut off.} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for sudden load change. \\
- Check for a short-circuit in the output circuit. \\
- Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled. \\
- Check that the power supply for RS-485 terminal is not shorted (under Vector control). \\
- Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. \\
- Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control) \\
- Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Keep the load stable. \\
- Check the wiring to make sure that output short circuit does not occur. \\
- Lower the stall prevention operation level. Activate the fast-response current limit operation. (Refer to page 409.) \\
- Check RS-485 terminal connection (under Vector control). \\
- Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. \\
- Choose inverter and motor capacities that match. (PM sensorless vector control) \\
- Input a start command after the motor stops. Alternatively, use the automatic restart after instantaneous power failure/flying start function. (Refer to page 604.) (PM sensorless vector control)
\end{tabular}} \\
\hline
\end{tabular}
*2 Differs according to ratings. The rating can be changed using Pr. 570 Multiple rating setting. (Refer to page 326.) \(148 \%\) for SLD rating, \(170 \%\) for LD rating, \(235 \%\) for ND rating (initial setting), and \(280 \%\) for HD rating
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.OC3 & & FR-LU08 indication & OC During Dec \\
\hline Name & \multicolumn{4}{|l|}{Overcurrent trip during deceleration or stop} \\
\hline Description & \multicolumn{4}{|l|}{When the inverter output current reaches or exceeds approximately \(235 \%{ }^{* 3}\) of the rated current during deceleration (other than acceleration or constant speed), the protection circuit is activated and the inverter output is shut off.} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for sudden speed reduction. \\
- Check for a short-circuit in the output circuit. \\
- Check for too fast operation of the motor's mechanical brake. \\
- Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled. \\
- Check that the power supply for RS-485 terminal is not shorted (under Vector control). \\
- Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. \\
- Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control) \\
- Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Set the deceleration time longer. \\
- Check the wiring to make sure that output short circuit does not occur. \\
- Check the mechanical brake operation. \\
- Lower the stall prevention operation level. Activate the fast-response current limit operation. (Refer to page 409.) \\
- Check RS-485 terminal connection (under Vector control). \\
- Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. \\
- Choose inverter and motor capacities that match. (PM sensorless vector control) \\
- Input a start command after the motor stops. Alternatively, use the automatic restart after instantaneous power failure/flying start function. (Refer to page 604.) (PM sensorless vector control)
\end{tabular}} \\
\hline
\end{tabular}
*3 Differs according to ratings. The rating can be changed using Pr. 570 Multiple rating setting. (Refer to page 326.) \(148 \%\) for SLD rating, \(170 \%\) for LD rating, \(235 \%\) for ND rating (initial setting), and \(280 \%\) for HD rating
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.OV1 } \\
\hline Name & Regenerative overvoltage trip during acceleration \\
\hline Description & \begin{tabular}{l}
If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified \\
value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge \\
voltage produced in the power supply system.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check for too slow acceleration. (e.g. during downward acceleration in vertical lift load) \\
- Check that the Pr.22 Stall prevention operation level is not set to the no load current or lower. \\
- Check if the stall prevention operation is frequently activated in an application with a large load inertia.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Set the acceleration time shorter. \\
- Use the regeneration avoidance function (Pr.882 to Pr.886). (Refer to page 696.) \\
\\
\hline
\end{tabular} \\
\hline - Set a value larger than the no load current in Pr.22.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.OV2 & E. EiN' & FR-LU08 indication & Steady spd OV \\
\hline Name & \multicolumn{4}{|l|}{Regenerative overvoltage trip during constant speed} \\
\hline Description & \multicolumn{4}{|l|}{If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for sudden load change. \\
- Check that the Pr. 22 Stall prevention operation level is not set to the no load current or lower. \\
- Check if the stall prevention operation is frequently activated in an application with a large load inertia. \\
- Check that acceleration/deceleration time is not too short.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Keep the load stable. \\
- Use the regeneration avoidance function (Pr. 882 to Pr.886). (Refer to page 696.) \\
- Use the brake unit or power regeneration common converter (FR-CV) as required. \\
- Set a value larger than the no load current in Pr.22. \\
- Set Pr. 154 Voltage reduction selection during stall prevention operation = "10 or 11". (Refer to page 409.\()\) \\
- Set the acceleration/deceleration time longer. (Under Vector control or Advanced magnetic flux vector control, the output torque can be increased. However, sudden acceleration may cause an overshoot in speed, resulting in an occurrence of overvoltage.)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.OV3 } \\
\hline Name & Regenerative overvoltage trip during deceleration or stop \\
\hline Description & \begin{tabular}{l}
If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified \\
value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge \\
voltage produced in the power supply system.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check for sudden speed reduction. \\
- Check if the stall prevention operation is frequently activated in an application with a large load inertia.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Set the deceleration time longer. (Set the deceleration time which matches the moment of inertia of the load.) \\
- Make the brake cycle longer. \\
- Use the regeneration avoidance function (Pr.882 to Pr.886). (Refer to page 696.) \\
- Use the brake unit or power regeneration common converter (FR-CV) as required. \\
- Set Pr. 154 Voltage reduction selection during stall prevention operation = "10 or 11". (Refer to page 409.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.THT & E. 1 F11 & FR-LU08 indication & Inv. Overload \\
\hline Name & \multicolumn{4}{|l|}{Inverter overload trip (Electronic thermal O/L relay) \({ }^{*} 4\)} \\
\hline Description & \multicolumn{4}{|l|}{If the temperature of the output transistor elements exceeds the protection level with a rated output current or higher flowing without the overcurrent trip (E.OC[]), the inverter output is stopped. (Overload capacity \(150 \% 60\) s)} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check that acceleration/deceleration time is not too short. \\
- Check that torque boost setting is not too large (small). \\
- Check that load pattern selection setting is appropriate for the load pattern of the using machine. \\
- Check the motor for the use under overload. \\
- Check that the encoder wiring and the specifications (encoder power supply, resolution, differential/ complementary) are correct. Check also that the motor wiring (\(\mathrm{U}, \mathrm{V}, \mathrm{W}\)) is correct (under Vector control).
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Set the acceleration/deceleration time longer. \\
- Adjust the torque boost setting. \\
- Set the load pattern selection setting according to the load pattern of the using machine. \\
- Reduce the load. \\
- Check the wiring and specifications of the encoder and the motor. Perform the setting according to the specifications of the encoder and the motor (under vector control). (Refer to page 86.)
\end{tabular}} \\
\hline
\end{tabular}
*4 Resetting the inverter initializes the internal cumulative heat value of the electronic thermal O/L relay function.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.THM } \\
\hline Name & \begin{tabular}{l}
Inverter overload trip (Electronic thermal O/L relay)
\end{tabular} \\
\hline Description & \begin{tabular}{l}
The electronic thermal O/L relay function in the inverter detects motor overheat, which is caused by overload or \\
reduced cooling capability during low-speed operation. When the cumulative heat value reaches \(85 \%\) of the Pr. 9 \\
Electronic thermal O/L relay setting, pre-alarm (TH) is output. When the accumulated value reaches the \\
specified value, the protection circuit is activated to stop the inverter output. When the inverter is used to drive a \\
dedicated motor, such as a multiple-pole motor, or several motors, the motor cannot be protected by the \\
electronic thermal O/L relay. Install an external thermal relay on the inverter output side.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check the motor for the use under overload. \\
- Check that the setting of Pr. 71 Applied motor for motor selection is correct. (Refer to page 505.) \\
- Check that the stall prevention operation setting is correct.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Reduce the load. \\
- For a constant-torque motor, set the constant-torque motor in Pr.71. \\
- Set the stall prevention operation level accordingly. (Refer to page 409.)
\end{tabular} \\
\hline
\end{tabular}
*5 Resetting the inverter initializes the internal cumulative heat value of the electronic thermal O/L relay function.
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.FIN } \\
\hline Name & Heatsink overheat \\
\hline Description & \begin{tabular}{l}
When the heatsink overheats, the temperature sensor is activated, and the inverter output is stopped. \\
The FIN signal can be output when the temperature becomes approximately \(85 \%\) of the heatsink overheat \\
protection operation temperature. \\
For the terminal used for the FIN signal output, assign the function by setting "26 (positive logic) or 126 (negative \\
logic)" from Pr. 190 to Pr. 196 (output terminal function selection). (Refer to page 450.)
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check for too high surrounding air temperature. \\
- Check for heatsink clogging. \\
- Check that the cooling fan is not stopped. (Check that FN is not displayed on the operation panel.)
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Set the surrounding air temperature to within the specifications. \\
- Clean the heatsink. \\
- Replace the cooling fan.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.IPF & - i & FR-LU08 indication & Instantaneous power failure \\
\hline Name & \multicolumn{4}{|l|}{Instantaneous power failure (Standard models and IP55 compatible models only)} \\
\hline Description & \multicolumn{4}{|l|}{\begin{tabular}{l}
If a power failure occurs (or when power input to the inverter is shut off) for longer than \(15 \mathrm{~ms}^{*}\), the instantaneous power failure protective function is activated to shut off the inverter output in order to prevent the control circuit from malfunctioning. If a power failure persists for 100 ms or longer, the fault warning output is not provided, and the inverter restarts if the start signal is ON upon power restoration. (The inverter continues operating if an instantaneous power failure is within \(15 \mathrm{~ms}^{*}{ }^{6}\).) In some operating status (load magnitude, acceleration/deceleration time setting, etc.), overcurrent or other protection may be activated upon power restoration. \\
When instantaneous power failure protection is activated, the IPF signal is output. (Refer to page 597 and page 604.)
\end{tabular}} \\
\hline Check point & \multicolumn{4}{|l|}{Find the cause of instantaneous power failure occurrence.} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Remedy the instantaneous power failure. \\
- Prepare a backup power supply for instantaneous power failure. \\
- Set the function of automatic restart after instantaneous power failure (Pr.57). (Refer to page 597 and page 604.)
\end{tabular}} \\
\hline
\end{tabular}
*6 10 ms for IP55 compatible models
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.UVT } & Undervoltage (Standard models and IP55 compatible models only) \\
\hline Name & \begin{tabular}{l}
If the power supply voltage of the inverter decreases, the control circuit will not perform normal functions. In \\
addition, the motor torque will be insufficient and/or heat generation will increase. To prevent this, if the power \\
supply voltage decreases to about \(150 \mathrm{VAC}(300 \mathrm{VAC}\) for the 400 V class) or below, this function shuts off the \\
inverter output. \\
Description \\
When a jumper is not connected across P/+ and P1, the undervoltage protective function is activated. \\
When undervoltage protection is activated, the IPF signal is output. (Refer to page 597 and page 604.)
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check if a high-capacity motor is driven. \\
- Check if the jumper is connected across terminals P/+ and P1.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Check the devices on the power supply line such as the power supply itself. \\
- Do not remove the jumper across terminals \(\mathrm{P} /+\) and P 1 except when connecting a DC reactor. \\
- If the problem still persists after taking the above measure, contact your sales representative.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.ILF } \\
\hline Name & Input phase loss (Standard models and IP55 compatible models only) \\
\hline Description & \begin{tabular}{l}
When Pr.872 Input phase loss protection selection is enabled ("1") and one of the three-phase power input \\
is lost, the inverter output is shut off. This protective function is not available when Pr.872 is set to the initial value \\
(Pr.872 = "0"). (Refer to page 404.)
\end{tabular} \\
\hline Check point & Check for a break in the cable for the three-phase power supply input. \\
\hline Corrective action & \begin{tabular}{l}
- Wire the cables properly. \\
- Repair a break portion in the cable.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.OLT & E. Eil & FR-LU08 indication & Stall Prev STP \\
\hline Name & \multicolumn{4}{|l|}{Stall prevention stop} \\
\hline \multirow[b]{2}{*}{Description} & \multicolumn{4}{|l|}{If the output frequency has fallen to 0.5 Hz by stall prevention operation and remains for 3 s , a fault (E.OLT) appears and the inverter output is shut off. OL appears while stall prevention is being activated.} \\
\hline & \multicolumn{4}{|l|}{When speed control is performed, a fault (E.OLT) appears and the inverter output is shut off if frequency drops to the Pr. 865 Low speed detection (initial value is 1.5 Hz) setting by torque limit operation and the output torque exceeds the Pr. 874 OLT level setting (initial value is \(150 \%\)) setting and remains 3 s .} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check the motor for the use under overload. \\
- Check that the Pr. 865 and Pr. 874 values are correct. (Check the Pr. 22 Stall prevention operation level setting under V/F control and Advanced magnetic flux vector control.) \\
- Check if a motor is connected under PM sensorless vector control.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Reduce the load. \\
- Change the Pr.22, Pr.865, and Pr. 874 values. (Check the Pr. 22 setting under V/F control and Advanced magnetic flux vector control.) \\
- For the test operation without connecting a motor, select the PM sensorless vector control test operation. (Refer to page 218.) \\
- Also check that the stall prevention (overcurrent) warning (OL) or the stall prevention (overvoltage) warning (oL) countermeasure is taken.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & \[
\begin{array}{r}
\text { E.SOT } \\
\hline \text { PMM }
\end{array}
\] & - E-İ & FR-LU08 indication & Motor Step Out \\
\hline Name & \multicolumn{4}{|l|}{Loss of synchronism detection} \\
\hline Description & \multicolumn{4}{|l|}{The inverter output is shut off when the motor operation is not synchronized. (This function is only available under PM sensorless vector control.)} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check that the PM motor is not driven overloaded. \\
- Check if a start command is given to the inverter while the PM motor is coasting. \\
- Check if a motor is connected under PM sensorless vector control. \\
- Check if a PM motor other than the MM-CF series is driven.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Set the acceleration time longer. \\
- Reduce the load. \\
- If the inverter restarts during coasting, set Pr. 57 Restart coasting time \(\neq\) " 9999 ", and select the automatic restart after instantaneous power failure. \\
- Check the connection of the IPM motor. \\
- For the test operation without connecting a motor, select the PM sensorless vector control test operation. (Refer to page 218.) \\
- Drive an IPM motor (MM-CF series). \\
- When driving an IPM motor other than MM-CF series, offline auto tuning must be performed. (Refer to page 519.)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.LUP } & Upper limit fault detection \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when the load exceeds the upper limit fault detection range. This protective \\
function is not available in the initial setting of Pr. 1490 (Pr. \(1490=" 9999 ")\).
\end{tabular} \\
\hline Description & \begin{tabular}{l}
- Check if too much load is applied to the equipment. \\
- Check that the load characteristics settings are correct.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Inspect the equipment. \\
- Set the load characteristics (Pr. 1481 to Pr.1487) correctly.. \\
\hline Corrective action
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.LDN } & Lower limit fault detection \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when the load falls below the lower limit fault detection range. This protective \\
function is not available in the initial setting of Pr. 1491 (Pr. \(1491=" 9999 ")\).
\end{tabular} \\
\hline Description & - Check if the equipment load is too light. \\
- Check that the load characteristics settings are correct.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.BE & E. E & FR-LU08 indication & Br. Cct. Fault \\
\hline Name & \multicolumn{4}{|l|}{Brake transistor alarm detection} \\
\hline Description & \multicolumn{4}{|l|}{\begin{tabular}{l}
- The inverter output is shut off if a fault due to damage of the brake transistor and such occurs in the brake circuit. \\
In such a case, the power supply to the inverter must be shut off immediately. \\
- Appears when an internal circuit fault occurred for separated converter types and IP55 compatible models.
\end{tabular}} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Reduce the load inertia. \\
- Check that the brake duty is proper.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{Replace the inverter.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.GF } & Or-LU08 indication & Ground Fault \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off if an earth (ground) fault overcurrent flows due to an earth (ground) fault that \\
occurred on the inverter's output side (load side).
\end{tabular} \\
\hline Description & Check for a ground fault in the motor and connection cable. \\
\hline Check point & Remedy the earth (ground) fault portion. \\
\hline Corrective action & \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.LF } \\
\hline Name & Output phase loss \\
\hline Description & The inverter output is shut off if one of the three phases (U, V, W) on the inverter's output side (load side) is lost. \\
\hline Check point & \begin{tabular}{l}
- Check the wiring. (Check that the motor is normally operating.) \\
- Check that the capacity of the motor used is not smaller than that of the inverter. \\
- Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Wire the cables properly. \\
- Input a start command after the motor stops. Alternatively, use the automatic restart after instantaneous power \\
failure/flying start function (page 604). (PM sensorless vector control)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.OHT } & External thermal relay operation \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off if the external thermal relay provided for motor overheat protection or the internally \\
mounted thermal relay in the motor, etc. switches ON (contacts open). This function is available when "7" (OH \\
signal) is set in any of Pr. 178 to Pr. 189 (Input terminal function selection). This protective function is not \\
available in the initial status. (OH signal is not assigned.)
\end{tabular} \\
\hline Description & \begin{tabular}{l}
- Check for motor overheating. \\
- Check that the value "7" (OH signal) is set correctly to any of Pr. 178 to Pr. 189 (Input terminal function \\
selection).
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Reduce the load and operation duty. \\
- Even if the relay contacts are reset automatically, the inverter will not restart unless it is reset.
\end{tabular} \\
\hline Corrective action
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.PTC } \\
\hline Name & PTC thermistor operation \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off if resistance of the PTC thermistor connected between terminal 2 and terminal 10 \\
is equal to or higher than the Pr. 561 PTC thermistor protection level setting for a continuous time equal to or \\
longer than the setting value in Pr. 1016 PTC thermistor protection detection time. When the initial value \\
(Pr.561 = "9999") is set, this protective function is not available.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check the connection with the PTC thermistor. \\
- Check the Pr. 561 and Pr. 1016 settings. \\
- Check the motor for operation under overload.
\end{tabular} \\
\hline Corrective action & Reduce the load. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.OPT & - PE1 & FR-LU08 indication & Option Fault \\
\hline Name & \multicolumn{4}{|l|}{Option fault} \\
\hline Description & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Appears when the AC power supply is connected to terminal R/L1, S/L2, or T/L3 accidentally when a high power factor converter (FR-HC2) or power regeneration common converter (FR-CV) is connected (when Pr. 30 Regenerative function selection = "2"). \\
- Appears when torque command by the plug-in option is selected using Pr. 804 Torque command source selection and no plug-in option is mounted. This function is available under torque control. \\
- Appears when either one of a Vector control compatible plug-in option or a control terminal option (FR-A8TP) is not installed during machine end orientation control. \\
- Appears when the switch for manufacturer setting of the plug-in option is changed. \\
- Appears when a communication option is connected while Pr. 296 Password lock level = "0 or 100".
\end{tabular}} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check that the AC power supply is not connected to terminal R/L1, S/L2, or T/L3 when a high power factor converter (FR-HC2) or power regeneration common converter (FR-CV) is connected (when Pr. \(30=\) " 2 "). \\
- Check that the plug-in option for torque command setting is connected. \\
- Check that the Vector control plug-in option and the control terminal option (FR-A8TP) are installed correctly. Check that the Pr. 393 Orientation selection and Pr. 862 Encoder option selection settings are correct. \\
- Check for the password lock with a setting of Pr. \(296=\) "0, 100".
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check the Pr. 30 setting and wiring. \\
- The inverter may be damaged if the AC power supply is connected to terminal R/L1, S/L2, or T/L3 when a high power factor converter is connected. Contact your sales representative. \\
- Check for connection of the plug-in option. Check the Pr. 804 setting. \\
- Install the Vector control plug-in option and the control terminal option (FR-A8TP) correctly. Set Pr. 393 and Pr. 862 correctly. (Refer to page 554.) \\
- Set the switch on the plug-in option, which is for manufacturer setting, back to the initial setting. (Refer to the Instruction Manual of each option.) \\
- To apply the password lock when installing a communication option, set Pr. \(296 \neq " 0,100\) ". (Refer to page 331.)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.OP1 to E.OP3 & E. & FR-LU08 indication & Option1 Fault to Option3 Fault \\
\hline Name & \multicolumn{4}{|l|}{Communication option fault} \\
\hline Description & \multicolumn{4}{|l|}{\begin{tabular}{l}
- The inverter output is shut off if a communication line error occurs in the communication option. \\
- This function stops the inverter output when a communication line error occurs on the CC-Link IE Field network communication circuit board of the FR-A800-GF. \\
- When the FR-A8APR is installed to the inverter and a motor with a resolver is used, the inverter output is shut off if the FR-A8APR fails or the wiring of the resolver is not properly connected.
\end{tabular}} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for an incorrect option function setting and operation. \\
- Check that the plug-in option is plugged into the connector securely. \\
- For the FR-A800-GF, check that the CC-Link IE Field Network communication circuit board is securely installed to the connector of the inverter control circuit board. \\
- Check for a break in the communication cable. \\
- Check that the terminating resistor is fitted properly. \\
- Check that the wiring of the resolver is correct. (When the FR-A8APR is used.)
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check the option function setting, etc. \\
- Connect the plug-in option securely. \\
- Connect the CC-Link IE Field Network communication circuit board of the FR-A800-GF securely. \\
- Check the connection of communication cable. \\
- Check the wiring of the resolver (when the FR-A8APR is used). \\
- If the fault occurs again when the inverter is reset, contact your sales representative.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{l}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E. 16 to E.20 } \\
\hline Name & User definition error by the PLC function \\
\hline Description & \begin{tabular}{l}
The protective function is activated by setting "16 to 20" in the special register SD1214 for the PLC function. The \\
inverter output is shut off when the protective function is activated. \\
The protective function is activated when the PLC function is enabled. This protective function is not available in \\
the initial setting (Pr.414 = "0"). \\
Any character string can be displayed on FR-LU08 or FR-PU07 by sequence programs.
\end{tabular} \\
\hline Check point & - Check if "16 to 20 is set in the special register SD1214. \\
\hline Corrective action & - Set a value other than "16 to 20 in the special register SD1214. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.PE } & Parameter storage device fault \\
\hline Name & The inverter output is shut off if a fault occurs in the parameter stored. (EEPROM failure) \\
\hline Description & Check for too many number of parameter write times. \\
\hline Check point & \begin{tabular}{l}
Contact your sales representative. \\
Set "1" in Pr.342 Communication EEPROM write selection (write to RAM) for the operation which requires \\
frequent parameter writing via communication, etc. Note that writing to RAM goes back to the initial status at \\
power OFF.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.PUE } \\
\hline Name & PU disconnection & \begin{tabular}{l}
- The inverter output is shut off if communication between the inverter and PU is suspended, e.g. the operation \\
panel or parameter unit is disconnected, when the disconnected PU disconnection function is valid in Pr. 75 \\
Reset selection/disconnected PU detection/PU stop selection.
\end{tabular} \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off if communication errors occurred consecutively for more than permissible \\
number of retries when Pr. 121 PU communication retry count \(\neq\) "9999" during the RS-485 communication. \\
- The inverter output is shut off if communication is broken within the period of time set in Pr. 122 PU \\
communication check time interval during the RS-485 communication via the PU connector.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the operation panel or the parameter unit is connected properly. \\
- Check the Pr. 75 setting.
\end{tabular} \\
\hline Corrective action & Fit the operation panel or the parameter unit securely. \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.RET } & Retry count excess \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off if the operation cannot be resumed properly within the number of retries set in Pr. 67 \\
Number of retries at fault occurrence. This function is available when Pr. 67 is set. This protective function is \\
not available in the initial setting (Pr. \(67=\) " 0 ").
\end{tabular} \\
\hline Description & Find the cause of the fault occurrence. \\
\hline Check point & Eliminate the cause of the fault preceding this fault indication. \\
\hline Corrective action &
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.PE2 } & Parameter storage device fault \\
\hline Name & The inverter output is shut off if a fault occurs in the parameter stored. (EEPROM failure) \\
\hline Description & - P-- \\
\hline Check point & Contact your sales representative. \\
\hline Corrective action & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.CTE & E. & FR-LU08 indication & Circuit fault \\
\hline Name & \multicolumn{4}{|l|}{Operation panel power supply short circuit/RS-485 terminals power supply short circuit} \\
\hline Description & \multicolumn{4}{|l|}{\begin{tabular}{l}
- When the power supply for the operation panel (PU connector) is shorted, the power output is shutoff and the inverter output is shut off. The use of the operation panel (parameter unit) and the RS-485 communication via the PU connector are disabled. \\
To reset, enter the RES signal from the terminal, reset through communication via the RS-485 terminals, or switch power OFF then ON again. \\
- When the power supply for the RS-485 terminals are short circuited, this function shuts off the power output. At this time, communication from the RS-485 terminals cannot be made. \\
To reset, use \(\square\) STOP on the operation panel, enter the RES signal, or switch power OFF then ON again.
\end{tabular}} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check that the PU connector cable is not shorted. \\
- Check that the RS-485 terminals are connected correctly.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check PU and the cable. \\
- Check the connection of the RS-485 terminals.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & E.P24 & E. F- Flor & FR-LU08 indication & 24 VDC power fault \\
\hline Name & \multicolumn{4}{|l|}{24 VDC power fault} \\
\hline Description & \multicolumn{4}{|l|}{- When the 24 VDC power output from the PC terminal is shorted, this function shuts off the power output. At this time, all external contact inputs switch OFF. The inverter cannot be reset by entering the RES signal. To reset it, use the operation panel, or switch power OFF, then ON again.} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check for a short circuit in the PC terminal output. \\
- Check that the 24 V external power supply voltage is correct.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Repair the short-circuited portion. \\
- Supply the power at 24 V . (If the power with insufficient voltage is supplied to the 24 V input circuit for a long time, the inverter internal circuit may heats up. Although it will not damage the inverter, supply power at the correct voltage .)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.CDO } & Abnormal output current detection \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off if the output current exceeds the Pr.150 Output current detection level setting. \\
This functions is available when "1" is set in Pr.167 Output current detection operation selection. When the \\
initial value (Pr.167 \(=\) " 0 ") is set, this protective function is not available.
\end{tabular} \\
\hline Description & \begin{tabular}{l}
Check the settings of Pr.150, Pr.151 Output current detection signal delay time, Pr. 166 Output current \\
detection signal retention time, and Pr.167. (Refer to page 464.)
\end{tabular} \\
\hline Check point
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.IOH } & Inrush current limit circuit fault (Standard models and IP55 compatible models only) \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when the resistor of the inrush current limit circuit is overheated. The inrush current \\
limit circuit is faulty.
\end{tabular} \\
\hline Description \\
\hline Check point & \begin{tabular}{l}
- Check that frequent power ON/OFF is not repeated. \\
- Check if the input side fuse (5A) in the power supply circuit of the inrush current limit circuit contactor (FR-A840- \\
03250(110K) or higher) is blown. \\
- Check that the power supply circuit of inrush current limit circuit contactor is not damaged.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
Configure a circuit where frequent power ON/OFF is not repeated. \\
If the problem still persists after taking the above measure, contact your sales representative.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.SER } & Communication fault (inverter) \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when communication error occurs consecutively for the permissible number of \\
retries or more when Pr.335 RS-485 communication retry count \(\neq\) "9999" during RS-485 communication \\
through the RS-485 terminals. The inverter output is also shut off if communication is broken for the period of \\
time set in Pr.336 RS-485 communication check time interval.
\end{tabular} \\
\hline Description & Check the RS-485 terminal wiring. \\
\hline Check point & Perform wiring of the RS-485 terminals properly. \\
\hline Corrective action & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.AIE } & Analog input fault \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when a 30 mA or higher current or a 7.5 V or higher voltage is input to terminal 2 \\
while the current input is selected by Pr. 73 Analog input selection, or to terminal 4 while the current input is \\
selected by Pr.267 Terminal 4 input selection.
\end{tabular} \\
\hline Description & Check the Pr.73, Pr.267, and the voltage/current input switch settings. (Refer to page 473.) \\
\hline Check point & \begin{tabular}{l}
Either give a current less than 30 mA , or set Pr.73, Pr.267, and the voltage/current input switch to the voltage \\
input and input a voltage.
\end{tabular} \\
\hline Corrective action \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.USB } & USB communication fault \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when the communication is cut off for the time set in Pr.548 USB communication \\
check time interval.
\end{tabular} \\
\hline Description & - Check that the USB communication cable is connected securely. \\
\hline Check point & \begin{tabular}{l}
- Check the Pr. 548 setting. \\
- Connect the USB communication cable securely. \\
- Increase the Pr. 548 setting or set "9999." (Refer to page 666.)
\end{tabular} \\
\hline Corrective action & USB comm error \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.SAF } \\
\hline Name & Safety circuit fault \\
\hline Description & \begin{tabular}{l}
- The inverter output is shut off when a safety circuit fault occurs. \\
- The inverter output is shut off if the either of the wire between S1 and SIC or S2 and SIC becomes non- \\
conductive while using the safety stop function. \\
- When the safety stop function is not used, the inverter output is shut off when the shorting wire between \\
terminals S1 and PC or across S2 and PC is disconnected.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the safety relay module or the connection has no fault when using the safety stop function. \\
- Check if the shorting wire between S1 and PC or between S2 and PC is disconnected when not using the safety \\
stop function.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- When using the safety stop function, check that wiring of terminal S1, S2 and SIC is correct and the safety stop \\
input signal source such as a safety relay module is operating properly. Refer to the Safety Stop Function \\
Instruction Manual for causes and countermeasures. (Contact your sales representative for the manual.) \\
- When the safety stop function is not used, short across terminals S1 and PC and across S2 and PC with \\
shorting wires. (Refer to page 80.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Operation panel indication} & E.PBT & E E-1 & \multirow{2}{*}{FR-LU08 indication} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline PBT fault \\
\hline Internal circuit fault \\
\hline
\end{tabular}} \\
\hline & E. 13 & E, \(1=1\) & & \\
\hline Name & \multicolumn{4}{|l|}{Internal circuit fault} \\
\hline Description & \multicolumn{4}{|l|}{The inverter output is shut off when an internal circuit fault occurs.} \\
\hline Corrective action & \multicolumn{4}{|l|}{Contact your sales representative.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.OS } \\
\hline Name & Overspeed occurrence \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off when the motor speed exceeds the Pr.374 Overspeed detection level under \\
encoder feedback control, Real sensorless vector control, Vector control, and PM sensorless vector control. This \\
protective function is not available in the initial status.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the Pr.374 setting is correct. \\
- Check that the number of encoder pulses does not differ from the actual number of Pr.369 (Pr.851) Number \\
of encoder pulses. (Under encoder feedback control or vector control)
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Set the Pr.374 correctly. \\
- Set Pr.369 (Pr.851) correctly. (Under encoder feedback control or vector control)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Operation panel indication & \[
\begin{aligned}
& \text { E.OSD } \\
& \text { Vector }
\end{aligned}
\] & E. EIE & FR-LU08 indication & Spd deviation fault \\
\hline Name & \multicolumn{4}{|l|}{Speed deviation excess detection} \\
\hline Description & \multicolumn{4}{|l|}{\begin{tabular}{l}
- The inverter output is shut off if the motor speed is increased or decreased under the influence of the load etc. during Vector control with Pr. 285 Overspeed detection frequency set and cannot be controlled in accordance with the speed command value. \\
- If the motor is accelerated against the stop command accidentally, the deceleration check function (Pr.690) is activated to stop the inverter output.
\end{tabular}} \\
\hline Check point & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Check that the settings of Pr. 285 and Pr. 853 Speed deviation time are correct. \\
- Check for sudden load change. \\
- Check that the setting of Pr. 369 (Pr.851) Number of encoder pulses does not differ from the actual number of encoder pulses.
\end{tabular}} \\
\hline Corrective action & \multicolumn{4}{|l|}{\begin{tabular}{l}
- Set Pr. 285 and Pr. 853 correctly. \\
- Keep the load stable. \\
- Set Pr. 369 (Pr.851) correctly.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.ECT } \\
\hline Name & Signal loss detection \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off when the encoder signal is shut off under orientation control, encoder feedback \\
control or vector control. This protective function is not available in the initial status.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check for the encoder signal loss. \\
- Check that the encoder specifications are correct. \\
- Check for a loose connector. \\
- Check that the switch setting of a Vector control compatible option is correct. \\
- Check that the power is supplied to the encoder. Alternatively, check that the power is not supplied to the \\
encoder later than the inverter.
\end{tabular} \\
\hline - Check that the voltage of the power supplied to the encoder is the same as the encoder output voltage.
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.OD } \\
\hline Name & Excessive position fault \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off when the difference between the position command and position feedback \\
exceeds the setting of Pr. 427 \\
available in the initial status.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the position detecting encoder mounting orientation matches the parameter. \\
- Check that the load is not large. \\
\\
- Check that the settings of Pr. 427 and Pr. 369 (Pr.851) Number of encoder pulses are correct.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Check the parameters. \\
\\
\\
- Reduce the load. \\
- Set Pr. 427 and Pr. 369 (Pr.851) correctly..
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.MB1 to 7} \\
\hline Name & Brake sequence fault \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off when a sequence error occurs during use of the brake sequence function (Pr.278 \\
to Pr.285). This protective function is not available in the initial status. (The brake sequence function is invalid.) \\
(For the details of fault record, refer to page 541.)
\end{tabular} \\
\hline Check point & Find the cause of the fault occurrence. \\
\hline Corrective action & Check the set parameters and perform wiring properly. \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.EP } \\
\hline Name & Encoder phase fault \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off when the rotation command of the inverter differs from the actual motor rotation \\
direction detected from the encoder during offline auto tuning. This protective function is not available in the initial \\
status.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check for mis-wiring of the encoder cable. \\
- Check if the Pr.359 (Pr.852) Encoder rotation direction setting is incorrect.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Perform connection and wiring securely. \\
- Change the Pr. 359 (Pr.852)setting.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.MP } \\
\hline Name & Magnetic pole position unknown \\
\hline Description & \begin{tabular}{l}
When the offset value between the PM motor home magnetic pole position and the home position of the encoder \\
(position detector) is unknown, the protective circuit is activated to stop the inverter output.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the encoder position tuning was performed. \\
- Check that the encoder position tuning ended properly. When Pr. 1105 Encoder magnetic pole position \\
offset = "9999", the encoder position tuning does not end properly.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Perform encoder position tuning with Pr.373 Encoder position tuning setting/status. (Refer to the Instruction \\
Manual of the encoder option.) \\
- Remove the cause of the tuning error, and perform tuning again. (Refer to the Instruction Manual of the encoder \\
option.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.IAH } & Abnormal internal temperature (Standard models and IP55 compatible models only) \\
\hline Name & The inverter output is shut off when the inverter internal temperature reaches the specified value or higher. \\
\hline Description & \begin{tabular}{l}
- Check for too high surrounding air temperature. \\
- Check if the internal air circulation fan or the cooling fan stops due to a fault.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Install an inverter suitable for the installation environment. (Refer to the Instruction Manual (Hardware) of the \\
FR-A806.)
\end{tabular} \\
\hline - Replace the internal air circulation fan or the cooling fan.
\end{tabular}
\begin{tabular}{|c|l||l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.LCI } & FR-LU08 indication 4 mA input fault \\
\hline Name & \begin{tabular}{l}
The inverter output is shut off when the analog input current is 2 mA or less for the time set in Pr. 7784 mA input \\
check filter. This function is available when Pr. 5734 mA input check selection \(=\) " 2 or 3 ". (Refer to page 492.\()\) \\
This protective function is not available in the initial status.
\end{tabular} \\
\hline Description & \begin{tabular}{l}
- Check for a break in the wiring for the analog current input. \\
- Check that the Pr.778 setting is not too short.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check the wiring for the analog current input. \\
- Set the Pr. 778 setting larger.
\end{tabular} \\
\hline Corrective action \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.PCH } \\
\hline Name & Pre-charge fault \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off when the pre-charge time exceeds Pr. 764 Pre-charge time limit. The inverter \\
output is shut off when the measured value exceeds Pr. 763 Pre-charge upper detection level during pre- \\
charging. This function is available when Pr. 764 and Pr. 763 are set (refer to page 587). This protective function \\
is not available in the initial status.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the Pr. 764 setting is not too short. \\
- Check that the Pr. 763 setting is not too small. \\
- Check that thePr. 127 PID control automatic switchover frequency setting is not too low. \\
\\
- Check for a break in the connection to the pump.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Set the Pr. 764 setting longer. \\
- Set the Pr. 763 setting larger. \\
- Set the Pr. 127 setting higher. \\
- Check the connection to the pump.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l||l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ E.PID } \\
\hline Name & PID signal fault \\
\hline Description & \begin{tabular}{l}
The inverter output is shut off if the measured value exceeds the PID upper limit or PID lower limit parameter \\
setting, or the absolute deviation value exceeds the PID deviation parameter setting during PID control. Set this \\
function in Pr. 131 PID upper limit, Pr. 132 PID lower limit, Pr. 553 PID deviation limit, and Pr. 554 PID signal \\
operation selection. (Refer to page 570.) This protective function is not available in the initial status.
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check the meter for a failure or break. \\
- Check that the parameter settings are correct.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Check that the meter has no failure or break. \\
- Set the parameters correctly.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Operation panel indication & E. 1 to E.3 & FR-LU08 indication & Fault 1 to Fault 3 \\
\hline Name & \multicolumn{3}{|l|}{Option fault} \\
\hline Description & \multicolumn{3}{|l|}{\begin{tabular}{l}
- The inverter output is shut off when a contact fault is found between the inverter and the plug-in option, or when the communication option is not connected to the connector 1. \\
- For the FR-A800-GF, the inverter output is shut off when a connector contact fault or the like occurs between the CC-Link IE Field network communication circuit board and the inverter control circuit board. \\
- Appears when the switch for manufacturer setting of the plug-in option is changed.
\end{tabular}} \\
\hline Check point & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Check that the plug-in option is plugged into the connector securely. (1 to 3 indicate connector numbers for connection of options.) \\
- For the FR-A800-GF, check that the CC-Link IE Field Network communication circuit board is securely installed to the connector of the inverter control circuit board. \\
- Check for excessive noise around the inverter. \\
- Check if the communication option is connected to the connector 2 or 3.
\end{tabular}} \\
\hline Corrective action & \multicolumn{3}{|l|}{\begin{tabular}{l}
- Connect the plug-in option securely. \\
- Connect the CC-Link IE Field Network communication circuit board of the FR-A800-GF securely. \\
- Take measures against noises if there are devices producing excessive electrical noises around the inverter. If the problem still persists after taking the above measure, contact your sales representative. \\
- Connect the communication option to the connector 1. \\
- Set the switch on the plug-in option, which is for manufacturer setting, back to the initial setting. (Refer to the Instruction Manual of each option.)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ E.11 } \\
\hline Name & Opposite rotation deceleration fault \\
\hline Description & \begin{tabular}{l}
The speed may not decelerate during low speed operation if the rotation direction of the speed command and \\
the estimated speed differ when the rotation is changing from forward to reverse or from reverse to forward \\
during torque control under Real sensorless vector control. The inverter output is shut off when overload occurs \\
due to the un-switched rotation direction. This protective function is not available in the initial status (V/F control). \\
(This function is only available under Real sensorless vector control.)
\end{tabular} \\
\hline Check point & \begin{tabular}{l}
- Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) \\
during torque control under Real sensorless vector control.
\end{tabular} \\
\hline Corrective action & \begin{tabular}{l}
- Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) \\
during torque control under Real sensorless vector control. \\
- Contact your sales representative.
\end{tabular} \\
\hline
\end{tabular}

\section*{- Others}

Indicate the status of the inverter. It is not a fault.
\begin{tabular}{|c|l||l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{c|}{ EV } \\
\hline Name & 24 V external power supply operation \\
\hline Description & Blinks when the main circuit power supply is off and the 24 V external power supply is being input. \\
\hline Check point & - Power is supplied from a 24 V external power supply. \\
\hline Corrective action & \begin{tabular}{l}
- Turning ON the power supply (main circuit) of the inverter clears the indication. \\
- If the indication is still displayed after turning ON of the power supply (main circuit) of the inverter, the power \\
supply voltage may be low, or the jumper between terminals P/+ and P1 may be disconnected.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ RD } \\
\hline Name & Backup in progress \\
\hline Description & \begin{tabular}{l}
The GOT is used for backing up inverter parameters and the data used in the PLC function of inverter. (Refer to \\
page 668.)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Operation panel \\
indication
\end{tabular} & \multicolumn{1}{|c|}{ WR } \\
\hline Name & Restoration in progress \\
\hline Description & The backup data stored in the GOT is used to restore the data in the inverter. (Refer to page 668.) \\
\hline
\end{tabular}

\section*{NOTE}
- If protective functions with indication of "Fault" on the FR-LU08 or FR-PU07 are activated, "ERR" appears in the faults history of the FR-LU08 or FR-PU07.
- If faults other than the above appear, contact your sales representative.

\subsection*{6.6 Check first when you have a trouble}

For Real sensorless vector control and Vector control, also refer to the troubleshooting on page 251 (speed control), page 281 (torque control), and page 313 (position control).

\section*{Point \({ }^{\rho}\)}
- If the cause is still unknown after every check, it is recommended to initialize the parameters, set the required parameter values and check again.

\subsection*{6.6.1 Motor does not start}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c}
Check \\
point
\end{tabular} & \multicolumn{1}{c|}{ Possible cause } & \multicolumn{1}{c|}{\begin{tabular}{c}
Countermeasure
\end{tabular}} & \begin{tabular}{c}
Refer to \\
page
\end{tabular} \\
\hline \multirow{5}{*}{\begin{tabular}{c}
Main \\
circuit
\end{tabular}} & \begin{tabular}{l}
An appropriate power supply voltage is not \\
applied. \\
(The operation panel display is not \\
operating.)
\end{tabular} & \begin{tabular}{l}
Power on a molded case circuit breaker (MCCB), an earth leakage \\
circuit breaker (ELB), or a magnetic contactor (MC).
\end{tabular} & - \\
\cline { 3 - 5 } & The motor is not connected properly. & \begin{tabular}{l}
Check for the decreased input voltage, input phase loss, and wiring.
\end{tabular} & - \\
\cline { 2 - 5 } & \begin{tabular}{l}
If only the control power is ON when using a separate power source \\
for the control circuit, turn ON the main circuit power.
\end{tabular} & 76
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline \multirow{11}{*}{Input signal} & A start signal is not input. & \begin{tabular}{l}
Check the start command source, and input a start signal. \\
PU operation mode: \(\square\) \\
FWD REV \\
External operation mode: STF/STR signal
\end{tabular} & 373 \\
\hline & Both the forward and reverse rotation start signals (STF, STR) are input simultaneously. & \begin{tabular}{l}
Turn ON only one of the forward and reverse rotation start signals (STF or STR). \\
When the STF and STR signals are turned ON simultaneously in the initial setting, a stop command is given.
\end{tabular} & 68 \\
\hline & Frequency command is zero. (The [FWD] or [REV] LED indicator on the operation panel is blinking.) & Check the frequency command source and input a frequency command. & 373 \\
\hline & The AU signal is not ON when terminal 4 is used for frequency setting. (The [FWD] or [REV] LED indicator on the operation panel is blinking.) & Turn ON the AU signal. Turning ON the AU signal activates terminal 4 input. & 473 \\
\hline & \begin{tabular}{l}
The Output stop (MRS) signal or Inverter reset (RES) signal is ON. \\
(The [FWD] or [REV] LED indicator on the operation panel is blinking.)
\end{tabular} & \begin{tabular}{l}
Turn the MRS or RES signal OFF. \\
The inverter starts the operation with a given start command and a frequency command after turning OFF the MRS or RES signal. Before turning OFF, ensure the safety.
\end{tabular} & 68 \\
\hline & The CS signal is OFF while the automatic restart after instantaneous power failure function is selected (Pr. 57 Restart coasting time \(=\) 9999). (The [FWD] or [REV] LED indicator on the operation panel is blinking.) & \begin{tabular}{l}
Turn ON the Selection of automatic restart after instantaneous power failure / flying start (CS) signal. \\
When the CS signal is assigned to an input terminal, automatic restart operation is enabled when the CS signal is turned ON.
\end{tabular} & 597 \\
\hline & The jumper connector for selecting sink logic or source logic is incorrectly installed. (The [FWD] or [REV] LED indicator on the operation panel is blinking.) & \begin{tabular}{l}
Check that the control logic switchover jumper connector is correctly installed. \\
If it is not installed correctly, the input signal is not recognized.
\end{tabular} & 72 \\
\hline & The wiring of the encoder is incorrect. (Under encoder feedback control or vector control) & Check the wiring of the encoder. & 90 \\
\hline & The voltage/current input switch is not correctly set for the analog input signal (0 to 5 V , 0 to 10 V , or 4 to 20 mA). (The [FWD] or [REV] LED indicator on the operation panel is blinking.) & Set Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection, and a voltage/current input switch correctly, then input an analog signal in accordance with the setting. & 473 \\
\hline & The STOP
RESET
\(\square\) key was pressed. (The operation panel indication is " Iー" (PS).) & During the External operation mode, check the method of restarting from a \(\square\) \(\frac{\text { STOP }}{\text { RTGEP }}\) input stop from PU. & 321, 749 \\
\hline & For the separated converter type, terminals RDA and SE of the converter unit are not connected to terminals MRS (X10 signal) and SD (PC for source logic) of the inverter respectively. & Check for secure wiring connections. & Refer to the Instruction Manual (Hardware) of the FRA802. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline \multirow{17}{*}{Parameter setting} & Two-wire or three-wire type connection is incorrect. & \begin{tabular}{l}
Check the connection. \\
Use the Start self-holding selection (STP (STOP)) signal when the three-wire type is used.
\end{tabular} & 502 \\
\hline & Under V/F control, Pr. 0 Torque boost setting is not appropriate. & \begin{tabular}{l}
Increase the Pr. 0 setting by \(0.5 \%\) increments while observing the rotation of a motor. \\
If that makes no difference, decrease the setting.
\end{tabular} & 672 \\
\hline & Pr. 78 Reverse rotation prevention selection is set. & Check the Pr. 78 setting. Set Pr. 78 when you want to limit the motor rotation to only one direction. & 386 \\
\hline & The Pr. 79 Operation mode selection setting is incorrect. & Select the operation mode suitable for the input methods of the start command and frequency command. & 370 \\
\hline & The bias and gain (the calibration parameter C2 to C7) settings are not appropriate. & Check the bias and gain (the calibration parameter C2 to \(\mathbf{C 7}\)) settings. & 482 \\
\hline & The Pr. 13 Starting frequency setting is greater than the running frequency. & Set the running frequency higher than the one set in Pr.13. The inverter does not start if the frequency setting signal has a value lower than that of Pr. 13. & 363, 349 \\
\hline & Zero is set in various running frequency settings (such as for multi-speed operation). Especially, Pr. 1 Maximum frequency is zero. & Set the frequency command according to the application. Set Pr. 1 higher than the actual frequency used. & 391, 407 \\
\hline & Pr. 15 Jog frequency is lower than Pr. 13 Starting frequency for JOG operation. & The Pr. 15 setting should be equal to or higher than the Pr. 13 setting. & \[
\begin{aligned}
& \hline 363,364, \\
& 390 \\
& \hline
\end{aligned}
\] \\
\hline & The Pr. 359 (Pr.852) Encoder rotation direction setting is incorrect under encoder feedback control or under vector control. & If the REV indicator on the operation panel is ON even though the forward-rotation command is given, set Pr. 359 (Pr.852) = "1". & 93,700 \\
\hline & When a Vector control option is used, the option to be used and parameter settings do not match. & Correctly set Pr. 862 Encoder option selection according to the option to be used. & 220 \\
\hline & Operation mode and a writing device do not correspond. & Check Pr. 79 Operation mode selection, Pr. 338 Communication operation command source, Pr. 339 Communication speed command source, Pr. 550 NET mode operation command source selection and Pr. 551 PU mode operation command source selection, and select an operation mode suitable for the purpose. & 370, 380 \\
\hline & The start signal operation selection is set by Pr. 250 Stop selection & Check the Pr. 250 setting and the connection of the STF and STR signals. & 502 \\
\hline & The motor has decelerated to a stop when the power failure deceleration stop function is selected. & When power is restored, ensure the safety, and turn OFF the start signal once, then turn ON again to restart. When Pr. 261 Power failure stop selection= "2 or 12", the motor automatically restarts after the power is restored. & 610 \\
\hline & Auto tuning is being performed. & \begin{tabular}{l}
When offline auto tuning ends, press the \(\square\) \(\frac{\text { STOP }}{\text { RESETI }}\) key of the operation panel for the PU operation. For the External operation, turn OFF the start signal (STF or STR). \\
This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. \\
(Without this operation, next operation cannot be started.)
\end{tabular} & 509, 607 \\
\hline & \begin{tabular}{l}
The automatic restart after instantaneous power failure function or power failure stop function has been activated. \\
(Performing overload operation during input phase loss may cause voltage insufficiency, and that may result in detection of power failure.)
\end{tabular} & \begin{tabular}{l}
Set Pr. 872 Input phase loss protection selection = "1" (input phase failure protection active). \\
Disable the automatic restart after instantaneous power failure function and power failure stop function. \\
Reduce the load. \\
Increase the acceleration time if the function was activated during acceleration.
\end{tabular} & \[
\begin{aligned}
& 404,597, \\
& 604,610
\end{aligned}
\] \\
\hline & The motor test operation is selected under Vector control or PM sensorless vector control. & Check the Pr. 800 Control method selection setting. & 215 \\
\hline & When the FR-HC2, FR-CV, or FR-CC2 is used, the input logic setting of the X10 signal is incorrect. & Set Pr. 599 = "0" (initial value for standard models and IP55 compatible models) to use the X10 signal with the NO contact input specification, and Pr. \(599=\) "1" (initial value for separated converter types) to use the X10 signal with the NC contact input specification. & 689 \\
\hline \multirow{2}{*}{Load} & Load is too heavy. & Reduce the load. & - \\
\hline & The shaft is locked. & Inspect the machine (motor). & - \\
\hline
\end{tabular}

\subsection*{6.6.2 Motor or machine is making abnormal acoustic noise}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline Input signal & \multirow[t]{2}{*}{Disturbance due to EMI when the frequency or torque command is given through analog input terminal 1, 2, or 4.} & Take countermeasures against EMI. & 114 \\
\hline Parameter setting & & Increase the Pr. 74 Input filter time constant setting if steady operation cannot be performed due to EMI. & 480 \\
\hline \multirow{9}{*}{Parameter setting} & No carrier frequency noises (metallic noises) are generated. & In the initial setting, Pr. 240 Soft-PWM operation selection is enabled to change motor noise to an unoffending complex tone. Therefore, no carrier frequency noises (metallic noises) are generated. Set Pr. \(240=\) "0" to disable this function. & 339 \\
\hline & The motor noise increases due to activation of the carrier frequency automatic reduction function when the motor is driven overloaded. & Reduce the load. Disable the automatic reduction function by setting Pr. 260 PWM frequency automatic switchover = "0". (As the load remains excessive, overload may cause a protective function E.THT.) & 339 \\
\hline & Resonance occurs. (output frequency) & \begin{tabular}{l}
Set Pr. 31 to Pr.36, and Pr. 552 (frequency jump). \\
When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.
\end{tabular} & 408 \\
\hline & \multirow[t]{2}{*}{Resonance occurs. (carrier frequency)} & Change the Pr. 72 PWM frequency selection setting. Changing the PWM carrier frequency produces an effect on avoiding the resonance frequency of a mechanical system or a motor. & 339 \\
\hline & & Set a notch filter. & 261 \\
\hline & Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or Vector control. & Perform offline auto tuning. & 509 \\
\hline & Gain adjustment during PID control is insufficient. & \begin{tabular}{l}
To stabilize the measured value, change the proportional band (Pr.129) to a larger value, the integral time (Pr.130) to a slightly longer time, and the differential time (Pr.134) to a slightly shorter time. \\
Check the calibration of set point and measured value.
\end{tabular} & 570 \\
\hline & The gain is too high under Real sensorless & During speed control, check the setting of Pr. 820 Speed control P gain 2. & 244 \\
\hline & sensorless vector control. & During torque control, check the setting of Pr. 824 Torque control \(\mathbf{P}\) gain 2. & 280 \\
\hline \multirow[t]{2}{*}{Others} & Mechanical looseness & Adjust machine/equipment so that there is no mechanical looseness. & - \\
\hline & \multicolumn{3}{|l|}{Contact the motor manufacturer.} \\
\hline Motor & Operating with output phase loss & Check the motor wiring. & - \\
\hline
\end{tabular}

\subsection*{6.6.3 Inverter generates abnormal noise}
\begin{tabular}{|c|l|l|c|}
\hline \begin{tabular}{c}
Check \\
point
\end{tabular} & \multicolumn{1}{|c|}{ Possible cause } & Countermeasure & \begin{tabular}{c}
Refer to \\
page
\end{tabular} \\
\hline Fan & \begin{tabular}{l}
The fan cover was not correctly installed \\
when a cooling fan was replaced.
\end{tabular} & Install the fan cover correctly. & 780 \\
\hline
\end{tabular}

\subsection*{6.6.4 Motor generates heat abnormally}
\begin{tabular}{|c|l|l|c|}
\hline \begin{tabular}{c}
Check \\
point
\end{tabular} & \multicolumn{1}{c|}{ Possible cause } & \multicolumn{1}{c|}{\begin{tabular}{c}
Countermeasure \\
Mofer to \\
page
\end{tabular}} \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Motor
\end{tabular}} & \begin{tabular}{l}
The motor fan is not working. \\
(Dust is accumulated.)
\end{tabular} & \begin{tabular}{l}
Clean the motor fan. \\
Improve the environment.
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{c}
Phase to phase insulation of the motor is \\
insufficient.
\end{tabular} & Check the insulation of the motor. & - \\
\hline \begin{tabular}{c}
Main \\
Circuit
\end{tabular} & \begin{tabular}{l}
The inverter output voltage (U, V, W) are \\
unbalanced.
\end{tabular} & \begin{tabular}{l}
Check the output voltage of the inverter. \\
Check the insulation of the motor.
\end{tabular} & - \\
\hline \begin{tabular}{c}
Parameter \\
setting
\end{tabular} & \begin{tabular}{l}
The Pr.71 Applied motor setting is \\
incorrect.
\end{tabular} & Check the Pr.71 Applied motor setting. & 784 \\
\hline- & Motor current is too large & Refer to "6.6.11 Motor current is too large". & 505 \\
\hline
\end{tabular}

\subsection*{6.6.5 Motor rotates in the opposite direction}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Check \\
point
\end{tabular} & \multicolumn{1}{c|}{ Possible cause } & \multicolumn{1}{c|}{ Countermeasure } & \begin{tabular}{c}
Refer to \\
page
\end{tabular} \\
\hline \begin{tabular}{c}
Main \\
Circuit
\end{tabular} & \begin{tabular}{l}
The phase sequence of output terminals U, \\
V and W is incorrect.
\end{tabular} & \begin{tabular}{l}
Connect the output side terminals (terminals U, V, and W) correctly. \\
The start signals (STF and STR signals) are \\
Input \\
signal
\end{tabular} & \begin{tabular}{l}
The polarity of the frequency command is \\
negative during the polarity reversible \\
operation set by Pr.73 Analog input \\
selection.
\end{tabular} \\
\hline \begin{tabular}{l}
Check the connection. (STF: forward rotation, STR: reverse \\
rotation)
\end{tabular} & Check the polarity of the frequency command. & 68,502 \\
\hline \begin{tabular}{c}
Input \\
signal, \\
parameter \\
setting
\end{tabular} & \begin{tabular}{l}
The torque command is negative during \\
torque control under Vector control.
\end{tabular} & Check the torque command value. & 473 \\
\hline
\end{tabular}

\subsection*{6.6.6 Speed greatly differs from the setting}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline \multirow[b]{2}{*}{Input signal} & The frequency setting signal is incorrect. & Measure the input signal level. & - \\
\hline & The input signal lines are affected by external EMI. & Take countermeasures against EMI, such as using shielded wires for input signal lines. & 116 \\
\hline \multirow{3}{*}{Parameter setting} & \multirow[t]{2}{*}{Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency, and the calibration parameter C2 to C7 settings are not appropriate.} & Check the settings of Pr.1, Pr.2, and Pr.18. & 407 \\
\hline & & Check the calibration parameter \(\mathbf{C} 2\) to \(\mathbf{C 7}\) settings. & 482 \\
\hline & Pr. 31 to Pr.36, and Pr. 552 (frequency jump) settings are not appropriate. & Narrow down the range of frequency jump. & 408 \\
\hline Load & \multirow{3}{*}{The stall prevention (torque limit) function is activated due to a heavy load.} & Reduce the load weight. & - \\
\hline Parameter setting & & Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.) & 235, 409 \\
\hline Motor & & Check the capacities of the inverter and the motor. & - \\
\hline
\end{tabular}

\subsection*{6.6.7 Acceleration/deceleration is not smooth}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline \multirow{5}{*}{Parameter setting} & The acceleration/deceleration time is too short. & Increase the acceleration/deceleration time. & 349 \\
\hline & The torque boost (Pr.0, Pr.46, Pr.112) setting is not appropriate under V/F control, so the stall prevention function is activated. & Increase/decrease the Pr. 0 Torque boost setting value by 0.5\% increments so that stall prevention does not occur. & 672 \\
\hline & \multirow[t]{2}{*}{The base frequency does not match the motor characteristics.} & Under V/F control, set Pr. 3 Base frequency, Pr. 47 Second V/F (base frequency), and Pr. 113 Third V/F (base frequency). & 673 \\
\hline & & Under Vector control, set Pr. 84 Rated motor frequency. & 215 \\
\hline & Regeneration avoidance operation is performed. & If the frequency becomes unstable during regeneration avoidance operation, decrease the setting of Pr. 886 Regeneration avoidance voltage gain. & 696 \\
\hline Load & \multirow{3}{*}{The stall prevention (torque limit) function is activated due to a heavy load.} & Reduce the load. & - \\
\hline Parameter setting & & Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.) & 235,409 \\
\hline Motor & & Check the capacities of the inverter and the motor. & - \\
\hline
\end{tabular}

\subsection*{6.6.8 Speed varies during operation}

Under Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and encoder feedback control, the output frequency varies between 0 and 2 Hz as the load fluctuates. This is a normal operation and not a fault.
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline Load & The load varies during an operation. & Select Advanced magnetic flux vector control, Real sensorless vector control, Vector control, or encoder feedback control. & 215, 700 \\
\hline \multirow{6}{*}{Input signal} & The frequency setting signal is varying. & Check the frequency setting signal. & - \\
\hline & \multirow[t]{2}{*}{The frequency setting signal is affected by EMI.} & Set filter to the analog input terminal using Pr. 74 Input filter time constant, Pr. 822 Speed setting filter 1. & 480 \\
\hline & & Take countermeasures against EMI, such as using shielded wires for input signal lines. & 116 \\
\hline & A malfunction is occurring due to the undesirable current generated when the transistor output unit is connected. & Use terminal PC (terminal SD when source logic) as a common terminal to prevent a malfunction caused by undesirable current. & 73 \\
\hline & A multi-speed command signal is chattering. & Take countermeasures to suppress chattering. & - \\
\hline & The feedback signal from the encoder is affected by EMI. & \begin{tabular}{l}
Run the encoder cable away from any EMI source such as the main circuit and power supply voltage. \\
Earth (ground) the shield of the encoder cable to the enclosure using a metal P-clip or U-clip.
\end{tabular} & 90 \\
\hline \multirow{7}{*}{Parameter setting} & Fluctuation of power supply voltage is too large. & Under V/F control, change the Pr. 19 Base frequency voltage setting (approximately by 3\%). & 673 \\
\hline & The Pr. 80 Motor capacity and Pr. 81 Number of motor poles settings are not appropriate for the motor capacity under Advanced magnetic flux vector control, Real sensorless vector control, Vector control, or PM sensorless vector control. & Check the settings of Pr. 80 and Pr. 81. & 215 \\
\hline & The wiring length exceeds 30 m when Advanced magnetic flux vector control, Real sensorless vector control, Vector control, or PM sensorless vector control is selected. & Perform offline auto tuning. & 509 \\
\hline & \multirow[t]{2}{*}{Under V/F control, wiring is too long and a voltage drop occurs.} & In the low-speed range, adjust the Pr. 0 Torque boost setting by \(0.5 \%\) increments. & 672 \\
\hline & & Change the control method to Advanced magnetic flux vector control or Real sensorless vector control. & 215 \\
\hline & \multirow[t]{2}{*}{Hunting occurs by the generated vibration, for example, when structural rigidity of the load is insufficient.} & \begin{tabular}{l}
Disable automatic control functions, such as the energy saving operation, fast-response current limit operation, torque limit, regeneration avoidance function, Advanced magnetic flux vector control, Real sensorless vector control, Vector control, encoder feedback control, droop control, stall prevention, online auto tuning, notch filter, and orientation control. \\
For PID control, set smaller values to Pr. 129 PID proportional band and Pr. 130 PID integral time. \\
Lower the control gain to increase the stability.
\end{tabular} & - \\
\hline & & Change the Pr. 72 PWM frequency selection setting. & 339 \\
\hline
\end{tabular}

\subsection*{6.6.9 Operation mode is not changed properly}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline Input signal & The start signal (STF or STR) is ON. & Check that the STF and STR signals are OFF. When either is ON, the operation mode cannot be changed. & 68, 502 \\
\hline \multirow[t]{2}{*}{Parameter setting} & The Pr. 79 Operation mode selection setting is not appropriate. & When the Pr. 79 is set to " 0 (initial value)", the operation mode is the External operation mode at power ON. To switch to the PU operation mode, press the \(\square\) PU key on the operation panel (press the \(\square\) PU key on the parameter unit (FR-PU07)). At other settings (1 to \(4,6,7\)), the operation mode is limited accordingly. & 370 \\
\hline & Operation mode and a writing device do not correspond. & Check Pr. 79 Operation mode selection, Pr. 338 Communication operation command source, Pr. 339 Communication speed command source, Pr. 550 NET mode operation command source selection and Pr. 551 PU mode operation command source selection, and select an operation mode suitable for the purpose. & 370, 380 \\
\hline
\end{tabular}

\subsection*{6.6.10 Operation panel (FR-DU08) display is not operating}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c}
Check \\
point
\end{tabular} & \multicolumn{1}{|c|}{ Possible cause } & \multicolumn{1}{c|}{ Countermeasure } & \begin{tabular}{c}
Refer to \\
page
\end{tabular} \\
\hline \begin{tabular}{c}
Main \\
circuit \\
Control \\
circuit
\end{tabular} & The power is not input. & Input the power. & 46 \\
\hline \begin{tabular}{c}
Front \\
cover
\end{tabular} & \begin{tabular}{l}
The operation panel is not properly \\
connected to the inverter.
\end{tabular} & Check if the inverter front cover is installed securely. & 33 \\
\hline
\end{tabular}

\subsection*{6.6.11 The motor current is too large}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline \multirow{8}{*}{Parameter setting} & The torque boost (Pr.0, Pr.46, Pr.112) setting is not appropriate under V/F control, so the stall prevention function is activated. & Increase/decrease the Pr. 0 Torque boost setting value by \(0.5 \%\) increments so that stall prevention does not occur. & 672 \\
\hline & \multirow[t]{2}{*}{The V/F pattern is not appropriate when \(\mathrm{V} /\) F control is performed. (Pr.3, Pr.14, Pr.19)} & Set the rated frequency of the motor to Pr. 3 Base frequency. Use Pr. 19 Base frequency voltage to set the base voltage (for example, rated motor voltage). & 673 \\
\hline & & Change the Pr. 14 Load pattern selection setting according to the load characteristic. & 674 \\
\hline & \multirow{3}{*}{The stall prevention (torque limit) function is activated due to a heavy load.} & Reduce the load weight. & - \\
\hline & & Set Pr. 22 Stall prevention operation level (Torque limit level)higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.) & 235, 409 \\
\hline & & Check the capacities of the inverter and the motor. & - \\
\hline & Offline auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or Vector control. & Perform offline auto tuning. & 509 \\
\hline & When PM sensorless vector control is selected for an IPM motor other than MMCF, offline auto tuning is not performed. & Perform offline auto tuning for the IPM motor. & 519 \\
\hline
\end{tabular}

\subsection*{6.6.12 Speed does not accelerate}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline \multirow{3}{*}{Input signal} & The start command or frequency command is chattering. & Check if the start command and the frequency command are correct. & - \\
\hline & The wiring length is too long for the analog frequency command, causing a voltage (current) drop. & Perform the bias and gain calibration for the analog input. & 482 \\
\hline & The input signal lines are affected by external EMI. & Take countermeasures against EMI, such as using shielded wires for input signal lines. & 116 \\
\hline \multirow{12}{*}{Parameter setting} & \multirow[t]{2}{*}{Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency, and the calibration parameter C2 to C7 settings are not appropriate.} & Check the settings of Pr. 1 and Pr.2. To operate at 120 Hz or higher, set Pr. 18 High speed maximum frequency. & 407 \\
\hline & & Check the calibration parameter \(\mathbf{C} 2\) to \(\mathbf{C 7}\) settings. & 482 \\
\hline & The maximum voltage (current) input value is not set during the External operation. (Pr.125, Pr.126, Pr.18) & \begin{tabular}{l}
Check the settings of Pr. 125 Terminal 2 frequency setting gain frequency and Pr. 126 Terminal 4 frequency setting gain frequency. \\
To operate at 120 Hz or higher, set Pr. 18.
\end{tabular} & 407, 482 \\
\hline & The torque boost (Pr.0, Pr.46, Pr.112) setting is not appropriate under V/F control, so the stall prevention function is activated. & Increase/decrease the Pr. 0 Torque boost setting value by \(0.5 \%\) increments so that stall prevention does not occur. & 672 \\
\hline & \multirow[t]{2}{*}{The V/F pattern is not appropriate when V/ F control is performed. (Pr.3, Pr.14, Pr.19)} & Set the rated frequency of the motor to Pr. 3 Base frequency. Use Pr. 19 Base frequency voltage to set the base voltage (for example, rated motor voltage). & 673 \\
\hline & & Change the Pr. 14 Load pattern selection setting according to the load characteristic. & 674 \\
\hline & \multirow{3}{*}{The stall prevention (torque limit) function is activated due to a heavy load.} & Reduce the load weight. & - \\
\hline & & Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.) & 235, 409 \\
\hline & & Check the capacities of the inverter and the motor. & - \\
\hline & Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or Vector control. & Perform offline auto tuning. & 509 \\
\hline & The setting of pulse train input is not appropriate. & Check the specification of the pulse generator (open collector output or complementary output) and check the adjustment of the pulse train and frequency (Pr. 385 Frequency for zero input pulse and Pr. 386 Frequency for maximum input pulse). & 386 \\
\hline & \multicolumn{2}{|l|}{During PID control, the output frequency is automatically controlled so that the measured value equals the set point.} & 570 \\
\hline Main circuit & A brake resistor is connected across terminals P/+ and P1 or across P1 and PR by mistake. & Connect an optional brake resistor (FR-ABR) across terminals P/+ and PR. & 96 \\
\hline
\end{tabular}

\subsection*{6.6.13 Unable to write parameter setting}
\begin{tabular}{|c|c|c|c|}
\hline Check point & Possible cause & Countermeasure & Refer to page \\
\hline Input signal & Operation is being performed (the STF or STR signal is ON). & Stop the operation. When Pr. 77 Parameter write selection = "0 (initial value)", writing is enabled only during a stop. & 328 \\
\hline \multirow{5}{*}{Parameter setting} & Parameter setting was attempted in the External operation mode. & Choose the PU operation mode. Or, set Pr. 77 Parameter write selection = "2" to enable parameter writing regardless of the operation mode. & 328, 370 \\
\hline & Parameter write is disabled by the Pr. 77 Parameter write selection setting. & Check the Pr. 77 setting. & 328 \\
\hline & The key lock mode is enabled by the Pr. 161 Frequency setting/key lock operation selection setting. & Check the Pr. 161 setting. & 324 \\
\hline & Operation mode and a writing device do not correspond. & Check Pr.79, Pr.338, Pr.339, Pr. 550 and Pr.551, and select an operation mode suitable for the purpose. & 370, 380 \\
\hline & Under PM sensorless vector control, setting "25" in Pr. 72 PWM frequency selection was attempted. Or, setting PM sensorless vector control was attempted while Pr. 72 = " 25 ". & Under PM sensorless vector control, "25" cannot be set in Pr.72. (A sine wave filter (MT-BSL/BSC) cannot be used under PM sensorless vector control.) & 339 \\
\hline
\end{tabular}

\subsection*{6.6.14 Power lamp is not lit}
\begin{tabular}{|c|c|l|c|}
\hline \begin{tabular}{c}
Check \\
point
\end{tabular} & \multicolumn{1}{c|}{ Possible cause } & \multicolumn{1}{c|}{ Countermeasure } & \begin{tabular}{c}
Refer to \\
page
\end{tabular} \\
\hline \begin{tabular}{c}
Main \\
circuit \\
Control \\
circuit
\end{tabular} & The wiring or installation is inadequate. & \begin{tabular}{l}
Check for secure wiring and installation. \\
The power lamp is lit when power is supplied to the control circuit (R1// \\
L11, S1/L21).
\end{tabular} & 54 \\
\hline
\end{tabular}

\section*{CHAPTER 7 PRECAUTIONS FOR MAINTENANCE AND INSPECTION}
7.1 Inspection item. 776
7.2 Measurement of main circuit voltages, currents, and powers 784

\title{
PRECAUTIONS FOR MAINTENANCE AND \\ INSPECTION
}

This chapter explains the precautions for maintenance and inspection of this product.
Always read the instructions before use.
For the precautions for maintenance and inspection of the separated converter type inverter, refer to the FR-A802 (Separated Converter Type) Instruction Manual (Hardware).
For the precautions for maintenance and inspection of the IP55 compatible model inverter, refer to the FR-A806 (IP55/UL Type 12 specification) Instruction Manual (Hardware).

\subsection*{7.1 Inspection item}

The inverter is a static unit mainly consisting of semiconductor devices. Daily inspection must be performed to prevent any fault from occurring due to the adverse effects of the operating environment, such as temperature, humidity, dust, dirt and vibration, changes in the parts with time, service life, and other factors.

\section*{\(\bullet\) Precautions for maintenance and inspection}

When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched OFF. Then, make sure that the voltage across the main circuit terminals \(\mathrm{P} /+\) and \(\mathrm{N} /-\) on the inverter is not more than 30 VDC using a tester, etc.

\subsection*{7.1.1 Daily inspection}

Basically, check for the following faults during operation.
- Motor operation fault
- Improper installation environment
- Cooling system fault
- Abnormal vibration, abnormal noise
- Abnormal overheat, discoloration

\subsection*{7.1.2 Periodic inspection}

Check the areas inaccessible during operation and requiring periodic inspection. Consult us for periodic inspection.

Check and clean the cooling system:
Check the tightening and retighten:

Clean the air filter, etc.
The screws and bolts may become loose due to vibration, temperature changes, etc. Check and tighten them. Tighten them according to the specified tightening torque. (Refer to page 57.)

Check the conductors and insulating materials for corrosion and damage.
Measure the insulation resistance.
Check and change the cooling fan and relay.

\section*{NOTE}
- When using the safety stop function, periodic inspection is required to confirm that safety function of the safety system operates correctly. For more details, refer to the Safety Stop Function Instruction Manual.

\subsection*{7.1.3 Daily and periodic inspection}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area of inspection} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Inspection item}} & \multirow[t]{2}{*}{Description} & \multicolumn{2}{|r|}{Inspection interval} & \multirow[t]{2}{*}{Correctiveaction at fault occurrence} & \multirow[t]{2}{*}{Check by user} \\
\hline & & & & Daily & Periodic*3 & & \\
\hline \multirow{4}{*}{General} & & rounding ironment & Check the surrounding air temperature, humidity, dirt, corrosive gas, oil mist, etc. & \(\bigcirc\) & & Improve the environment. & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Overall unit}} & Check for unusual vibration and noise. & - & & Check fault location and retighten. & \\
\hline & & & Check for dirt, oil, and other foreign material. \({ }^{* 1}\) & \(\bigcirc\) & & Clean. & \\
\hline & & wer supply age & Check that the main circuit voltage and control circuit voltage are normal. \({ }^{2}\) & - & & Inspect the power supply. & \\
\hline \multirow{7}{*}{Main circuit} & \multicolumn{2}{|l|}{General} & \begin{tabular}{l}
- Check with megger (between main circuit terminals and earth (ground) terminal). \\
- Check for loose screws and bolts. \\
- Check for overheat traces on the parts. \\
- Check for stains.
\end{tabular} & & \[
\begin{aligned}
& \circ \\
& 0 \\
& \circ \\
& 0
\end{aligned}
\] & Contact the manufacturer. Retighten. Contact the manufacturer. Clean. & \\
\hline & \multicolumn{2}{|l|}{Conductors and cables} & \begin{tabular}{l}
- Check conductors for distortion. \\
- Check cable sheaths for breakage and deterioration (crack, discoloration, etc.).
\end{tabular} & & \(\bigcirc\) & Contact the manufacturer. Contact the manufacturer. & \\
\hline & \multicolumn{2}{|l|}{Transformer/ reactor} & Check for unusual odor and abnormal increase of whining sound. & - & & Stop the equipment and contact the manufacturer. & \\
\hline & \multicolumn{2}{|l|}{Terminal block} & Check for a damage. & & \(\bigcirc\) & Stop the equipment and contact the manufacturer. & \\
\hline & \multicolumn{2}{|l|}{Smoothing aluminum electrolytic capacitor} & \begin{tabular}{l}
- Check for liquid leakage. \\
- Check for safety valve projection and bulge. \\
- Visual check and judge by the life check of the main circuit capacitor. (Refer to page 779.)
\end{tabular} & & & Contact the manufacturer. Contact the manufacturer. & \\
\hline & \multicolumn{2}{|l|}{Relay/contactor} & Check that the operation is normal and no chattering sound is heard. & & \(\bigcirc\) & Contact the manufacturer. & \\
\hline & \multicolumn{2}{|l|}{Resistor} & \begin{tabular}{l}
- Check for cracks in the resistor insulator. \\
- Check for a break in the cable.
\end{tabular} & & \(\bigcirc\) & Contact the manufacturer. Contact the manufacturer. & \\
\hline \multirow{3}{*}{Control circuit Protective circuit} & \multicolumn{2}{|l|}{Operation check} & \begin{tabular}{l}
- Check for an output voltage imbalance between phases while operating the inverter alone. \\
- Check that no fault is found in protective and display circuits in a sequence protective operation test.
\end{tabular} & & \(\bigcirc\) & Contact the manufacturer. Contact the manufacturer. & \\
\hline & \multirow[t]{2}{*}{} & Overall & \begin{tabular}{l}
- Check for unusual odor and discoloration. \\
- Check for serious rust development.
\end{tabular} & & \begin{tabular}{l}
- \\
-
\end{tabular} & Stop the equipment and contact the manufacturer. Contact the manufacturer. & \\
\hline & & Aluminum electrolytic capacitor & \begin{tabular}{l}
- Check for liquid leakage in a capacitor and deformation trace. \\
- Visual check and judge by the life check of the control circuit capacitor. (Refer to page 779.)
\end{tabular} & & \begin{tabular}{l}
- \\
-
\end{tabular} & Contact the manufacturer. & \\
\hline \multirow[t]{2}{*}{Cooling system} & \multicolumn{2}{|l|}{Cooling fan} & \begin{tabular}{l}
- Check for unusual vibration and noise. \\
- Check for loose screws and bolts. \\
- Check for stains.
\end{tabular} & - & \begin{tabular}{l}
- \\
○
\end{tabular} & \begin{tabular}{l}
Replace the fan. \\
Fix with the fan cover fixing screws. \\
Clean.
\end{tabular} & \\
\hline & \multicolumn{2}{|l|}{Heatsink} & \begin{tabular}{l}
- Check for clogging. \\
- Check for stains.
\end{tabular} & & \[
\begin{aligned}
& \circ \\
& \circ \\
& \hline
\end{aligned}
\] & Clean. Clean. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area of inspection} & \multirow[t]{2}{*}{Inspection item} & \multirow[t]{2}{*}{Description} & \multicolumn{2}{|r|}{Inspection interval} & \multirow[t]{2}{*}{Correctiveaction at fault occurrence} & \multirow[t]{2}{*}{Check by user} \\
\hline & & & Daily & Periodic \({ }^{* 3}\) & & \\
\hline \multirow[b]{2}{*}{Display} & Display & \begin{tabular}{l}
- Check that display is normal. \\
- Check for stains.
\end{tabular} & - & - & Contact the manufacturer. Clean. & \\
\hline & Meter & Check that reading is normal. & - & & Stop the equipment and contact the manufacturer. & \\
\hline \begin{tabular}{l}
Load \\
Motor
\end{tabular} & Operation check & Check for vibration and abnormal increase in operation noise. & - & & Stop the equipment and contact the manufacturer. & \\
\hline
\end{tabular}
*1 Oil component of the heat dissipation grease used inside the inverter may leak out. The oil component, however, is not flammable, corrosive, nor conductive and is not harmful to humans. Wipe off such oil component.
*2 It is recommended to install a voltage monitoring device for checking the voltage of the power supplied to the inverter.
*3 One to two years of periodic inspection cycle is recommended. However, it differs according to the installation environment. Consult us for periodic inspection.

\section*{NOTE}
- Continuous use of a leaked, deformed, or degraded smoothing aluminum electrolytic capacitor (as shown in the table above) may lead to a burst, breakage, or fire. Replace such capacitor without delay.

\subsection*{7.1.4 Checking the inverter and converter modules}

\section*{- Preparation}
- Disconnect the external power supply cables (R/L1, S/L2, T/L3) and motor cables (U, V, W).
- Prepare a tester. (For the resistance measurement, use the \(100 \Omega\) range.)

\section*{- Checking method}

Change the polarity of the tester alternately at the inverter terminals R/L1, S/L2, T/L3, U, V, W, P/+, and N/- and check the electric continuity.

\section*{NOTE}
- Before measurement, check that the smoothing capacitor is discharged.
- At the time of electric discontinuity, the measured value is almost \(\infty\). When there is an instantaneous electric continuity, due to the smoothing capacitor, the tester may not indicate \(\infty\). At the time of electric continuity, the measured value is several \(\Omega\) to several tens of \(\Omega\). If all measured values are almost the same, although these values are not constant depending on the module type and tester type, the modules are without fault.

\section*{- Module device numbers and terminals to be checked}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{Tester polarity} & \multirow[b]{2}{*}{Continuity} & & Tes & larity & \multirow[t]{2}{*}{Continuity} \\
\hline & & \(\oplus\) & \(\theta\) & & & \(\oplus\) & \(\theta\) & \\
\hline & D1 & R/L1 & P/+ & No & D4 & R/L1 & N/- & Yes \\
\hline & D1 & P/+ & R/L1 & Yes & D4 & N/- & R/L1 & No \\
\hline Cons & & S/L2 & P/+ & No & & S/L2 & N/- & Yes \\
\hline Converter module & D2 & P/+ & S/L2 & Yes & & N/- & S/L2 & No \\
\hline & D3 & T/L3 & P/+ & No & D6 & T/L3 & N/- & Yes \\
\hline & D3 & P/+ & T/L3 & Yes & D6 & N/- & T/L3 & No \\
\hline \multirow{6}{*}{Inverter module} & \multirow[b]{2}{*}{TR1} & U & P/+ & No & \multirow[b]{2}{*}{TR4} & U & N/- & Yes \\
\hline & & P/+ & U & Yes & & N/- & U & No \\
\hline & \multirow[b]{2}{*}{TR3} & V & P/+ & No & \multirow[b]{2}{*}{TR6} & V & N/- & Yes \\
\hline & & P/+ & V & Yes & & N/- & V & No \\
\hline & \multirow[b]{2}{*}{TR5} & W & P/+ & No & \multirow[b]{2}{*}{TR2} & W & N/- & Yes \\
\hline & & P/+ & W & Yes & & N/- & W & No \\
\hline
\end{tabular}
(Assumes the use of an analog meter.)

\subsection*{7.1.5 Cleaning}

Always run the inverter in a clean status.
When cleaning the inverter, gently wipe dirty areas with a soft cloth immersed in neutral detergent or ethanol.

\section*{NOTE}
- Do not use solvent, such as acetone, benzene, toluene and alcohol, as these will cause the inverter surface paint to peel off.
- The display, etc. of the operation panel (FR-DU08) and parameter unit (FR-PU07) are vulnerable to detergent and alcohol.

\subsection*{7.1.6 Replacement of parts}

The inverter consists of many electronic parts such as semiconductor devices.
The following parts may deteriorate with age because of their structures or physical characteristics, leading to reduced performance or fault of the inverter. For preventive maintenance, the parts must be replaced periodically.
Use the life check function as a guidance of parts replacement.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Part name } & \multicolumn{1}{c|}{ Estimated lifespan \({ }^{* 1}\)} & \multicolumn{1}{c|}{ Description } \\
\hline Cooling fan & 10 years & Replace (as required) \\
\hline Main circuit smoothing capacitor & 10 years \(^{* 2}\) & Replace (as required) \\
\hline On-board smoothing capacitor & 10 years \(^{* 2}\) & - \\
Replace the board (as required). \\
\hline Relays & 10 years & As required \\
\hline \begin{tabular}{l}
Main circuit fuse inside the inverter (FR-A840- \\
04320(160K) or higher)
\end{tabular} & Replace (as required) \\
\hline
\end{tabular}
*1 Estimated lifespan for when the yearly average surrounding air temperature is \(40^{\circ} \mathrm{C}\). (without corrosive gas, flammable gas, oil mist, dust and dirt etc.)
*2 Output current: 80\% of the inverter rating

\section*{NOTE}
- For parts replacement, contact the nearest Mitsubishi FA center.

\section*{- Inverter parts life display}

The inverter diagnoses the main circuit capacitor, control circuit capacitor, cooling fan, and inrush current limit circuit by itself and estimates their lives.
The self-diagnostic warning is output when the life span of each part is near its end. It gives an indication of replacement time.

Guideline for life judgment using the life warning output
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Part } & \multicolumn{1}{c|}{ Judgment level } \\
\hline Main circuit capacitor & \(85 \%\) of the initial capacity \\
\hline Control circuit capacitor & Estimated remaining life \(10 \%\) \\
\hline Inrush current limit circuit & Estimated remaining life 10\% (Power ON: 100,000 times left) \\
\hline Cooling fan & Less than \(50 \%\) of the specified speed \({ }^{* 1}\) \\
\hline
\end{tabular}
*1 Initial values differ according to the inverter capacity (Refer to page 344 for details.)

\section*{NOTE}
- Refer to page 341 to perform the life check of the inverter parts.

\section*{- Replacement procedure of the cooling fan}

The replacement interval of the cooling fan used for cooling the parts generating heat such as the main circuit semiconductor is greatly affected by the surrounding air temperature. When unusual noise and/or vibration are noticed during inspection, the cooling fan must be replaced immediately.

\section*{■ Removal (FR-A820-00105(1.5K) to 04750(90K), FR-A840-00083(2.2K) to 03610(132K))}
1. Push the hooks from above and remove the fan cover.

FR-A820-00105(1.5K) to 00250(3.7K) FR-A840-00083(2.2K), 00126(3.7K)

FR-A820-00340(5.5K) to 01540(30K) FR-A840-00170(5.5K) to 00770(30K)

FR-A820-01870(37K) or higher FR-A840-00930(37K) to 03610(132K)

FR-A820-01870(37K) or higher FR-A840-00930(37K) to 03610(132K)

FR-A820-00105(1.5K) to 00250(3.7K)
FR-A840-00083(2.2K), 00126(3.7K)

FR-A820-00340(5.5K) to 01540(30K) FR-A840-00170(5.5K) to 00770(30K)
*1 The number of cooling fans differs according to the inverter capacity.

\section*{■ Installation (FR-A820-00105(1.5K) to 04750(90K), FR-A840-00083(2.2K) to 03610(132K))}
1. After confirming the orientation of the fan, install the fan so that the "AIR FLOW" arrow faces up.

<Fan side face>
2. Connect the fan connectors.

FR-A820-1.5K to 3.7K
FR-A840-2.2K, 3.7K

FR-A820-18.5K, 22K
FR-A840-18.5K, 22K

FR-A820-37K, 45K FR-A840-37K to 55 K
3. Install the fan cover.
2. Insert hooks until you hear a click sound.
1. Insert hooks

FR-A820-00105(1.5K) to 00250(3.7K) FR-A840-00083(2.2K), 00126(3.7K)

FR-A820-5.5K to 15 K
FR-A840-5.5K to 15 K

FR-A820-30K
FR-A840-30K

FR-A820-55K or higher FR-A840-75K or higher

FR-A820-00340(5.5K) to 01540(30K) FR-A840-00170(5.5K) to 00770(30K)

FR-A820-01870(37K) or higher FR-A840-00930(37K) to 03610(132K)

\section*{NOTE}
- Installing the fan in the opposite direction of air flow may shorten the inverter life.
- Ensure that the cables are not caught when the fan is installed.
- Switch OFF the power before starting the fan replacement work. To prevent an electric shock accident, keep the inverter with its covers on during fans replacement since the inverter circuits are charged with voltage even after power OFF.

\section*{■ Removal (FR-A840-04320(160K) or higher)}
1. Remove the fan cover fixing screws, and remove the fan cover.
2. Disconnect the fan connector and remove the fan block.
3. Remove the fan fixing screws, and remove the fan.

\section*{■ Installation (FR-A840-04320(160K) or higher)}
1. After confirming the orientation of the fan, install the fan so that the "AIR FLOW" arrow faces up.

<Fan side face>
2. Install fans referring to the above figure.

\section*{NOTE}
- Installing the fan in the opposite direction of air flow may shorten the inverter life.
- Ensure that the cables are not caught when the fan is installed.
- Switch OFF the power before starting the fan replacement work. To prevent an electric shock accident, keep the inverter with its covers on during fans replacement since the inverter circuits are charged with voltage even after power OFF.

\section*{- Smoothing capacitors}

A large-capacity aluminum electrolytic capacitor is used for smoothing in the main circuit DC section, and an aluminum electrolytic capacitor is used for stabilizing the control power in the control circuit. Their characteristics are deteriorated by the adverse effects of ripple currents, etc. The replacement intervals greatly vary with the surrounding air temperature and operating conditions. When the inverter is operated in air-conditioned, normal environment conditions, replace the capacitors about every 10 years.
The appearance criteria for inspection are as follows:
- Case: Check the side and bottom faces for expansion.
- Sealing plate: Check for a remarkable warp and extreme crack.
- Check for an external crack, discoloration, liquid leakage, etc. Judge that the capacitor has reached its life when the measured capacitance of the capacitor reduced below \(80 \%\) of the rating.

\section*{NOTE}
- The inverter diagnoses the main circuit capacitor and control circuit capacitor by itself and can judge their lives. (Refer to page 341.)

\section*{- Relays}
- To prevent a contact fault, etc., relays must be replaced according to the cumulative number of switching times (switching life).
- The control terminal block must be replaced in case of failure of either relay between the relay output terminals C 1 and B 1 or A1, or terminals C 2 and B 2 or A 2 . (After replacing the control terminal block, connect the jumper connector to the correct position in accordance with the control logic of input signals. (Refer to page 72.))

\section*{- Main circuit fuse inside the inverter (FR-A840-04320(160K) or higher)}

Fuses are used in some inverters. The surrounding air temperature and operating condition affect the life of fuses. When the inverter is used in a normal air-conditioned environment, replace its fuse after about 10 years.

\subsection*{7.1.7 Inverter replacement}

The inverter can be replaced with the control circuit wiring kept connected. Before replacement, remove the wiring cover of the inverter.
1. Loosen the two installation screws at the both side of the control circuit terminal block. (These screws cannot be removed.)
Slide down the control circuit terminal block to remove it.

2. Be careful not to bend the pins of the inverter's control circuit connector, reinstall the control circuit terminal block and fix it with the mounting screws.

\section*{NOTE}
- Before starting inverter replacement, switch OFF the power, wait for at least 10 minutes, and then check the voltage with a tester and such to ensure safety.

\subsection*{7.2 Measurement of main circuit voltages, currents, and powers}

Since the voltages and currents on the inverter power supply and output sides include harmonics, measurement data depends on the instruments used and circuits measured. When instruments for commercial frequency are used for measurement, measure the following circuits with the instruments given on the next page.

\section*{NOTE}
- When installing meters etc. on the inverter output side

When the inverter-to-motor wiring length is long, especially in the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.
To measure and display the output voltage and output current of the inverter, it is recommended to use the terminal AM and FM/CA output functions of the inverter.

\section*{- Examples of measuring points and instruments}

\section*{- Measuring points and instruments}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Measuring point & Measuring instrument & \multicolumn{2}{|l|}{Remarks (reference measured value)} \\
\hline Power supply voltage V1 & Between R/L1 and S/L2, S/L2 and T/L3, or T/L3 and R/L1 & Moving-iron type AC voltmeter*4 & \multicolumn{2}{|l|}{Commercial power supply Within permissible AC voltage fluctuation (Refer to page 790.)} \\
\hline Input current I1 & R/L1, S/L2, T/L3 line current & Moving-iron type AC ammeter* \({ }^{*}\) & & \\
\hline Input power P1 & R/L1, S/L2, T/L3, and between R/L1 and S/L2, S/L2 and T/L3, or T/L3 and R/L1 & Digital power meter (designed for inverter) or electrodynamic type single-phase wattmeter & \multicolumn{2}{|l|}{\(\mathrm{P} 1=\mathrm{W} 11+\mathrm{W} 12+\mathrm{W} 13\) (3-wattmeter method)} \\
\hline Input power factor Pf1 & \multicolumn{4}{|l|}{Calculate after measuring input voltage, input current and input power.
\[
\mathrm{Pf}_{1}=\frac{\mathrm{P}_{1}}{\sqrt{3} V_{1} \times \mathrm{I}_{1}} \times 100 \%
\]} \\
\hline Output voltage V2 & Between U and \(\mathrm{V}, \mathrm{V}\) and W, or W and U & Rectifier type AC voltmeter \({ }^{* * *}\) (moving-iron type cannot measure.) & \multicolumn{2}{|l|}{Difference between the phases is within \(1 \%\) of the maximum output voltage.} \\
\hline Output current I2 & \(\mathrm{U}, \mathrm{V}\) and W line currents & Moving-iron type AC ammeter \({ }^{*}{ }^{*} 4\) & \multicolumn{2}{|l|}{Difference between the phases is \(10 \%\) or lower of the rated inverter current.} \\
\hline Output power P2 & ```
U, V, or W, and
between U and V, or V and
W
``` & Digital power meter (designed for inverter) or electrodynamic type single-phase wattmeter & \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
\mathrm{P} 2=\mathrm{W} 21+\mathrm{W} 22
\] \\
2-wattmeter method (or 3-wattmeter method)
\end{tabular}} \\
\hline Output power factor Pf2 & \multicolumn{4}{|l|}{Calculate in similar manner to the input power factor.
\[
\mathrm{Pf}_{2}=\frac{\mathrm{P}_{2}}{\sqrt{3} \mathrm{~V}_{2} \times \mathrm{I}_{2}} \times 100 \%
\]} \\
\hline Converter output & Between P/+ and N/- & Moving-coil type (such as tester) & \multicolumn{2}{|l|}{Inverter LED indication \(1.35 \times \mathrm{V} 1\)} \\
\hline Frequency setting & 2, and between 4(+) and 5 & \multirow{8}{*}{Moving-coil type (such as tester) (internal resistance \(50 \mathrm{k} \Omega\) or more)} & 0 to \(10 \mathrm{VDC}, 4\) to 20 mA & \multirow{6}{*}{Terminal 5 is a common terminal.} \\
\hline signal & Between 1(+) and 5 & & 0 to \(\pm 5 \mathrm{VDC}\) and 0 to \(\pm 10 \mathrm{VDC}\) & \\
\hline Power supply for a & Between 10(+) and 5 & & 5.2 VDC & \\
\hline frequency setting potentiometer & Between 10E(+) and 5 & & 10 VDC & \\
\hline & Between AM(+) and 5 & & Approximately 10 VDC at maximum frequency (without frequency meter) & \\
\hline & Between CA(+) and 5 & & Approximately 20 mADC at maximum frequency & \\
\hline Frequency meter signal & Between FM(+) and SD & & \begin{tabular}{l}
Approximately 5 VDC at maximum frequency (without frequency meter) \\
Pulse width T1: Adjust with C0 (Pr.900). \\
Pulse cycle T2: Set with Pr. 55 (for frequency monitor only).
\end{tabular} & Terminal SD is a common terminal. \\
\hline \begin{tabular}{l}
Start signal \\
Select signal \\
Reset signal \\
Output stop signal
\end{tabular} & STF, STR, RH, RM, RL, JOG, RT, AU, STP (STOP), CS, RES, between MRS(+) and SD (for sink logic) & & When open 20 to 30 VDC ON voltage: 1 V or less & \\
\hline Fault signal & \begin{tabular}{l}
Between A1 and C1 \\
Between B1 and C1
\end{tabular} & Moving-coil type (such as tester) & \begin{tabular}{ll} 
Continuity check & \\
& \\
& [Normal] \\
A1-C1 & No \\
B1-C1 & Yes
\end{tabular} & \begin{tabular}{l}
[Fault] \\
Yes \\
No
\end{tabular} \\
\hline
\end{tabular}
*1 Use an FFT to measure the output voltage accurately. A tester or general measuring instrument cannot measure accurately.
*2 When the carrier frequency exceeds 5 kHz , do not use this instrument since using it may increase eddy current losses produced in metal parts inside the instrument, leading to burnout. In this case, use an approximate-effective value type.
*3 When the setting of Pr. 195 ABC1 terminal function selection is the positive logic

\subsection*{7.2.1 Measurement of powers}

Use digital power meters (for inverter) both on the inverter's input and output sides. Alternatively, use electrodynamic type single-phase wattmeters both on the inverter's input and output sides in the two-wattmeter or three-wattmeter method. As the current is liable to be imbalanced especially on the input side, it is recommended to use the three-wattmeter method. Examples of measured value differences produced by different measuring meters are shown in the following figure.

An error will be produced by difference between measuring instruments, e.g. power calculation type and two- or threewattmeter type three-phase wattmeter. When a CT is used in the current measuring side or when the meter contains a PT on the voltage measurement side, an error will also be produced due to the frequency characteristics of the CT and PT.
[Measurement conditions]
Constant output of 60 Hz or more frequency with a constanttorque ( \(100 \%\) ). The value obtained by the 3 -wattmeter method with a 4-pole 3.7 kW induction motor is assumed to be \(100 \%\).


Example of measuring inverter input power
[Measurement conditions]
Constant output of 60 Hz or more frequency with a constanttorque ( \(100 \%\) ). The value obtained by the 3 -wattmeter method with a 4-pole 3.7 kW induction motor is assumed to be \(100 \%\).


Example of measuring inverter output power

\subsection*{7.2.2 Measurement of voltages and use of PT}

\section*{- Inverter input side}

As the input voltage has a sine wave and it is extremely small in distortion, accurate measurement can be made with an ordinary AC meter.

\section*{- Inverter output side}

Since the output voltage has a PWM-controlled rectangular wave, always use a rectifier type voltmeter. A needle type tester cannot be used to measure the output voltage as it indicates a value much greater than the actual value. A moving-iron type meter indicates an effective value which includes harmonics and therefore the value is larger than that of the fundamental wave. The value monitored on the operation panel is the inverter-controlled voltage itself. Hence, that value is accurate and it is recommended to monitor values (analog output) using the operation panel.

\section*{- PT}

No PT can be used on the output side of the inverter. Use a direct-reading meter. (A PT can be used on the input side of the inverter.)

\subsection*{7.2.3 Measurement of currents}

Use moving-iron type meters both on the inverter's input and output sides. However, if the carrier frequency exceeds 5 kHz , do not use that meter since an overcurrent losses produced in the internal metal parts of the meter will increase and the meter may burn out. In this case, use an approximate-effective value type.

Since the inverter input current tends to be unbalanced, measurement of three phases is recommended. The correct value cannot be obtained by measuring only one or two phases. On the other hand, the unbalanced ratio of each phase of the output current should be within \(10 \%\).

When a clamp ammeter is used, always use an effective value detection type. A mean value detection type produces a large error and may indicate an extremely smaller value than the actual value. The value monitored on the operation panel is accurate if the output frequency varies, and it is recommended to monitor values (provide analog output) using the operation panel.
Examples of measured value differences produced by different measuring meters are as follows:
[Measurement conditions]
The value indicated on the moving-iron type ammeter is \(100 \%\).


Example of measuring the inverter input current
[Measurement conditions]
The value indicated on the moving-iron type ammeter is 100\%.


Example of measuring the inverter output current

\subsection*{7.2.4 Use of CT and transducer}

A CT may be used both on the inverter's input and output sides. Use the one with the largest possible VA ability because an error will increase if the frequency gets lower.
When using a transducer, use the effective value calculation type which is immune to harmonics.

\subsection*{7.2.5 Measurement of inverter input power factor}

Calculate the factor from the effective power and the apparent power. A power-factor meter cannot indicate an exact value.

Total power factor of the inverter \(=\)
Effective power
Apparent power
\(=\frac{\text { Three-phase input power found by the 3-wattmeter method }}{\sqrt{3} \times \mathrm{V} \text { (power supply voltage) } \times \mathrm{I} \text { (input current effective value) }}\)

\subsection*{7.2.6 Measurement of converter output voltage (between terminals \(P\) and \(N\) )}

The output voltage of the converter can be measured with a moving-coil type meter (tester) between terminals \(P\) and \(N\). The voltage varies according to the power supply voltage. Approximately 270 to 300 VDC ( 540 to 600 VDC for the 400 V class) is output when no load is connected. The voltage decreases when a load is applied.
When energy is regenerated from the motor during deceleration, for example, the converter output voltage rises to nearly 400 to 450 VDC ( 800 to 900 VDC for the 400 V class) maximum.

\subsection*{7.2.7 Measurement of inverter output frequency}

In the initial setting of the FM type inverter, a pulse train proportional to the output frequency is output across the pulse train output terminals FM and SD on the inverter. This pulse train output can be counted by a frequency counter, or a meter (movingcoil type voltmeter) can be used to read the mean value of the pulse train output voltage. When a meter is used to measure the output frequency, approximately 5 VDC is indicated at the maximum frequency.
For detailed specifications of the pulse train output terminal FM, refer to page 441.

In the initial setting of the CA type inverter, a pulse train proportional to the output frequency is output across the analog current output terminals CA and 5 on the inverter. Measure the current using an ammeter or tester.
For detailed specifications of the analog current output terminal CA, refer to page 442.

\subsection*{7.2.8 Insulation resistance test using megger}
- For the inverter, conduct the insulation resistance test on the main circuit only as follows and do not perform the test on the control circuit.
(Use a 500 VDC megger.)

\section*{NOTE}
- Before performing the insulation resistance test on the external circuit, disconnect the cables from all terminals of the inverter so that the test voltage is not applied to the inverter.
- For the continuity test of the control circuit, use a tester (high resistance range) and do not use the megger or buzzer.


\subsection*{7.2.9 Pressure test}

Do not conduct a pressure test. Deterioration may occur.

\section*{CHAPTER 8 SPECIFICATIONS}
8.1 Inverter rating ..... 790
8.2 Motor rating. ..... 794
8.3 Common specifications. ..... 800
8.4 Outline dimension drawings ..... 802

\section*{8 SPECIFICATIONS}

This chapter explains the specifications of this product.
Always read the instructions before use.
For the separated converter type inverter, refer to "SPECIFICATIONS" in the FR-A802 (Separated Converter Type) Instruction Manual (Hardware).
For the IP55 compatible model inverter, refer to "SPECIFICATIONS" in the FR-A806 (IP55/UL Type12 specification) Instruction Manual (Hardware).

\subsection*{8.1 Inverter rating}

\section*{- 200 V class}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{Model FR-A820-[]}} & 00046 & 0007 & 0010 & 0016 & 00250 & 00340 & 00490 & 0063 & 00770 & 00930 & 01250 & 0154 & 01870 & 02330 & 0316 & 0380 & 04750 \\
\hline & & & & 0.4K & 0.75K & 1.5K & 2.2K & 3.7K & 5.5K & 7.5K & 11K & 15K & 18.5K & 22K & 30K & 37K & 45K & 55K & 75K & 90K \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Applicable motor capacity (kW)* \({ }^{*}\)}} & \multicolumn{2}{|l|}{SLD} & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 & \[
\begin{aligned}
& 90 / \\
& 110
\end{aligned}
\] & 132 \\
\hline & & \multicolumn{2}{|l|}{LD} & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 & 90 & 110 \\
\hline & & \multicolumn{2}{|l|}{ND (initial setting)} & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 & 90 \\
\hline & & \multicolumn{2}{|l|}{HD} & 0.2 * & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{4}{*}{Rated capacity (kVA) \({ }^{* 3}\)}} & \multicolumn{2}{|l|}{SLD} & 1.8 & 2.9 & 4 & 6.4 & 10 & 13 & 19 & 24 & 29 & 35 & 48 & 59 & 71 & 89 & 120 & 145 & 181 \\
\hline & & \multicolumn{2}{|l|}{LD} & 1.6 & 2.7 & 3.7 & 5.8 & 8.8 & 12 & 17 & 22 & 27 & 32 & 43 & 53 & 65 & 81 & 110 & 132 & 165 \\
\hline & & \multicolumn{2}{|l|}{ND (initial setting)} & 1.1 & 1.9 & 3 & 4.2 & 6.7 & 9.1 & 13 & 18 & 23 & 29 & 34 & 44 & 55 & 67 & 82 & 110 & 132 \\
\hline & & \multicolumn{2}{|l|}{HD} & 0.6 & 1.1 & 1.9 & 3 & 4.2 & 6.7 & 9.1 & 13 & 18 & 23 & 29 & 34 & 44 & 55 & 67 & 82 & 110 \\
\hline \multirow{12}{*}{\[
\begin{aligned}
& \stackrel{\rightharpoonup}{\partial} \\
& \stackrel{\rightharpoonup}{3} \\
& 0
\end{aligned}
\]} & & \multicolumn{2}{|l|}{SLD} & 4.6 & 7.7 & 10.5 & 16.7 & 25 & 34 & 49 & 63 & 77 & 93 & 125 & 154 & 187 & 233 & 316 & 380 & 475 \\
\hline & Rated & \multicolumn{2}{|l|}{LD} & 4.2 & 7 & 9.6 & 15.2 & 23 & 31 & 45 & 58 & 70.5 & 85 & 114 & 140 & 170 & 212 & 288 & 346 & 432 \\
\hline & current (A) & \multicolumn{2}{|l|}{ND (initial setting)} & 3 & 5 & 8 & 11 & 17.5 & 24 & 33 & 46 & 61 & 76 & 90 & 115 & 145 & 175 & 215 & 288 & 346 \\
\hline & & \multicolumn{2}{|l|}{HD} & 1.5 & 3 & 5 & 8 & 11 & 17.5 & 24 & 33 & 46 & 61 & 76 & 90 & 115 & 145 & 175 & 215 & 288 \\
\hline & & \multicolumn{2}{|l|}{SLD} & \multicolumn{17}{|l|}{\(110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(40^{\circ} \mathrm{C}\)} \\
\hline & current & \multicolumn{2}{|l|}{LD} & \multicolumn{17}{|l|}{\(120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(50^{\circ} \mathrm{C}\)} \\
\hline & rating \({ }^{*} 4\) & \multicolumn{2}{|l|}{ND (initial setting)} & \multicolumn{17}{|l|}{\(150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(50^{\circ} \mathrm{C}\)} \\
\hline & & \multicolumn{2}{|l|}{HD} & \multicolumn{17}{|l|}{\(200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(50^{\circ} \mathrm{C}\)} \\
\hline & \multicolumn{3}{|l|}{Rated voltage \({ }^{* 5}\)} & \multicolumn{17}{|l|}{Three-phase 200 to 240 V} \\
\hline & & \multicolumn{2}{|l|}{Brake transistor} & \multicolumn{7}{|l|}{Built-in} & \multicolumn{10}{|c|}{FR-BU2 (option)} \\
\hline & Regenerative & \multicolumn{2}{|l|}{Maximum brake torque \({ }^{* 7}\)} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& 150 \% \text { torque, } 3 \% \\
& E D^{* 6}
\end{aligned}
\]} & \multicolumn{2}{|l|}{100\% torque, \(3 \%\) ED \(^{*}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 100 \% \text { torque, } \\
& 2 \% \text { ED* }
\end{aligned}
\]} & \multicolumn{8}{|l|}{\(20 \%\) torque, continuous} & \multicolumn{2}{|l|}{10\% torque, continuous} \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
FR-ABR \\
(when the option is used)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 150\% torque, } \\
& 10 \% \text { ED }
\end{aligned}
\]} & \multicolumn{5}{|l|}{100\% torque, 10\% ED} & \multicolumn{4}{|l|}{100\% torque, 6\% ED} & - & - & - & - & - & - \\
\hline \multicolumn{2}{|l|}{\multirow[t]{11}{*}{}} & \multicolumn{2}{|l|}{nd frequency} & \multicolumn{17}{|l|}{Three-phase 200 to \(240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\)} \\
\hline & & \multicolumn{2}{|l|}{AC voltage fluctuation} & \multicolumn{17}{|l|}{170 to \(264 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\)} \\
\hline & & requency fluc & ctuation & \multicolumn{17}{|l|}{\(\pm 5 \%\)} \\
\hline & & \multirow{4}{*}{Without DC reactor} & SLD & 5.3 & 8.9 & 13.2 & 19.7 & 31.3 & 45.1 & 62.8 & 80.6 & 96.7 & 115 & 151 & 185 & 221 & 269 & - & - & - \\
\hline & & & LD & 5 & 8.3 & 12.2 & 18.3 & 28.5 & 41.6 & 58.2 & 74.8 & 90.9 & 106 & 139 & 178 & 207 & 255 & - & - & - \\
\hline & & & \[
\begin{array}{|l|}
\hline \text { ND } \\
\text { (initial setting) } \\
\hline
\end{array}
\] & 3.9 & 6.3 & 10.6 & 14.1 & 22.6 & 33.4 & 44.2 & 60.9 & 80 & 96.3 & 113 & 150 & 181 & 216 & 266 & - & - \\
\hline & & & HD & 2.3 & 3.9 & 6.3 & 10.6 & 14.1 & 22.6 & 33.4 & 44.2 & 60.9 & 80 & 96.3 & 113 & 150 & 181 & 216 & - & - \\
\hline & & \multirow{4}{*}{With DC reactor} & SLD & 4.6 & 7.7 & 10.5 & 16.7 & 25 & 34 & 49 & 63 & 77 & 93 & 125 & 154 & 187 & 233 & 316 & 380 & 475 \\
\hline & & & LD & 4.2 & 7 & 9.6 & 15.2 & 23 & 31 & 45 & 58 & 70.5 & 85 & 114 & 140 & 170 & 212 & 288 & 346 & 432 \\
\hline & & & \begin{tabular}{l}
ND \\
(initial setting)
\end{tabular} & & 5 & 8 & 11 & 17.5 & 24 & 33 & 46 & 61 & 76 & 90 & 115 & 145 & 175 & 215 & 288 & 346 \\
\hline & & & HD & 1.5 & 3 & 5 & 8 & 11 & 17.5 & 24 & 33 & 46 & 61 & 76 & 90 & 115 & 145 & 175 & 215 & 288 \\
\hline \multirow[t]{8}{*}{} & \multirow{8}{*}{Powersupply capacity \((\mathrm{kVA})^{*}{ }^{*}\)} & \multirow{4}{*}{Without DC reactor} & SLD & 2 & 3.4 & 5 & 7.5 & 12 & 17 & 24 & 31 & 37 & 44 & 58 & 70 & 84 & 103 & - & - & - \\
\hline & & & LD & 1.9 & 3.2 & 4.7 & & 11 & 16 & 22 & 29 & 35 & 41 & 53 & 68 & 79 & 97 & - & - & - \\
\hline & & & ND (initial setting) & 1.5 & 2.4 & 4 & 5.4 & 8.6 & 13 & 17 & 23 & 30 & 37 & 43 & 57 & 69 & 82 & 101 & - & - \\
\hline & & & HD & 0.9 & 1.5 & 2.4 & 4 & 5.4 & 8.6 & 13 & 17 & 23 & 30 & 37 & 43 & 57 & 69 & 82 & - & - \\
\hline & & \multirow{4}{*}{With DC reactor} & SLD & 1.8 & 2.9 & 4 & 6.4 & 10 & 13 & 19 & 24 & 29 & 35 & 48 & 59 & 71 & 89 & 120 & 145 & 181 \\
\hline & & & LD & 1.6 & 2.7 & 3.7 & 5.8 & 8.8 & 12 & 17 & 22 & 27 & 32 & 43 & 53 & 65 & 81 & 110 & 132 & 165 \\
\hline & & & \[
\begin{array}{|l|}
\hline \text { ND } \\
\text { (initial setting) }
\end{array}
\] & 1.1 & 1.9 & 3 & 4.2 & 6.7 & 9.1 & 13 & 18 & 23 & 29 & 34 & 44 & 55 & 67 & 82 & 110 & 132 \\
\hline & & & HD & 0.6 & 1.1 & 1.9 & 3 & 4.2 & 6.7 & 9.1 & 13 & 18 & 23 & 29 & 34 & 44 & 55 & 67 & 82 & 110 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Protection rating of structure (IEC 60529) \({ }^{*}{ }^{10}\) Cooling system}} & \multicolumn{11}{|l|}{Enclose type (IP20)} & \multicolumn{6}{|l|}{Open type (IP00)} \\
\hline & & & & \multicolumn{2}{|l|}{Natural} & \multicolumn{15}{|l|}{Forced air} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Model FR-A820-[]} & 00046 & 00077 & 00105 & 0167 & 0250 & 00340 & 00490 & 00630 & 00770 & 00930 & 01250 & 1540 & 01870 & 02330 & 03160 & 03800 & 04750 \\
\hline & 0.4K & 0.75K & 1.5K & 2.2K & 3.7K & 5.5K & 7.5K & 11K & 15K & 18.5K & 22K & 30K & 37K & 45K & 55K & 75K & 90K \\
\hline Approx. mass (kg) & 2.0 & 2.2 & 3.3 & 3.3 & 3.3 & 6.7 & 6.7 & 8.3 & 15 & 15 & 15 & 22 & 42 & 42 & 54 & 74 & 74 \\
\hline
\end{tabular}
*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.
*2 A 0.2 kW motor can be operated under V/F control only.
*3 The rated output capacity is the value with respect to 220 V output voltage.
*4 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under \(100 \%\) load.
*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about \(\sqrt{2}\).
*6 The built-in brake resistor is used.
*7 Value for the ND rating
*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.
*9 The power supply capacity is the value at the rated output current. The input power impedances (including those of the input reactor and cables) affect the value.
*10 The protection rating of the FR-DU08 is IP40 (except for the PU connector).

\section*{400 V class}

\section*{■ 00023 to 01800}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{Model FR-A840-[]}} & 00023 & 00038 & 00052 & 00083 & 00126 & 00170 & 00250 & 00310 & 00380 & 00470 & 00620 & 00770 & 00930 & 01160 & 01800 \\
\hline & & & & 0.4K & 0.75K & 1.5K & 2.2K & 3.7K & 5.5K & 7.5K & 11K & 15K & 18.5K & 22K & 30K & 37K & 45K & 55K \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Applicable motor capacity (kW)* \({ }^{*}\)}} & \multicolumn{2}{|l|}{SLD} & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75/90 \\
\hline & & \multicolumn{2}{|l|}{LD} & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 \\
\hline & & \multicolumn{2}{|l|}{ND (initial setting)} & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 \\
\hline & & \multicolumn{2}{|l|}{HD} & 0.2 *2 & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Rated capacity \((\mathrm{kVA})^{*}\)}} & \multicolumn{2}{|l|}{} & 1.8 & 2.9 & 4 & 6.3 & 10 & 13 & 19 & 24 & 29 & 36 & 47 & 59 & 71 & 88 & 137 \\
\hline & & \multicolumn{2}{|l|}{SLD} & 1.6 & 2.7 & 3.7 & 5.8 & 8.8 & 12 & 18 & 22 & 27 & 33 & 43 & 53 & 65 & 81 & 110 \\
\hline & & \multicolumn{2}{|l|}{ND (initial setting)} & 1.1 & 1.9 & 3 & 4.6 & 6.9 & 9.1 & 13 & 18 & 24 & 29 & 34 & 43 & 54 & 66 & 84 \\
\hline & & \multicolumn{2}{|l|}{HD} & 0.6 & 1.1 & 1.9 & 3 & 4.6 & 6.9 & 9.1 & 13 & 18 & 24 & 29 & 34 & 43 & 54 & 66 \\
\hline \multirow{12}{*}{\[
\begin{aligned}
& \begin{array}{l}
\overrightarrow{3} \\
\frac{2}{3} \\
0
\end{array}
\end{aligned}
\]} & & \multicolumn{2}{|l|}{SLD} & 2.3 & 3.8 & 5.2 & 8.3 & 12.6 & 17 & 25 & 31 & 38 & 47 & 62 & 77 & 93 & 116 & 180 \\
\hline & Rated & \multicolumn{2}{|l|}{LD} & 2.1 & 3.5 & 4.8 & 7.6 & 11.5 & 16 & 23 & 29 & 35 & 43 & 57 & 70 & 85 & 106 & 144 \\
\hline & current (A) & \multicolumn{2}{|l|}{ND (initial setting)} & 1.5 & 2.5 & 4 & 6 & 9 & 12 & 17 & 23 & 31 & 38 & 44 & 57 & 71 & 86 & 110 \\
\hline & & \multicolumn{2}{|l|}{HD} & 0.8 & 1.5 & 2.5 & 4 & 6 & 9 & 12 & 17 & 23 & 31 & 38 & 44 & 57 & 71 & 86 \\
\hline & & \multicolumn{2}{|l|}{SLD} & \multicolumn{15}{|l|}{\(110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(40^{\circ} \mathrm{C}\)} \\
\hline & Overload current & \multicolumn{2}{|l|}{LD} & \multicolumn{15}{|l|}{\(120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(50^{\circ} \mathrm{C}\)} \\
\hline & \[
\text { rating }{ }^{*} 4
\] & \multicolumn{2}{|l|}{ND (initial setting)} & \multicolumn{15}{|l|}{\(150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(50^{\circ} \mathrm{C}\)} \\
\hline & & \multicolumn{2}{|l|}{HD} & \multicolumn{15}{|l|}{\(200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}\) (inverse-time characteristics) at surrounding air temperature of \(50^{\circ} \mathrm{C}\)} \\
\hline & \multicolumn{3}{|l|}{Rated voltage*5} & \multicolumn{15}{|l|}{Three-phase 380 to 500 V} \\
\hline & \multirow[b]{3}{*}{Regenerative braking} & \multicolumn{2}{|l|}{Brake transistor} & \multicolumn{15}{|l|}{Built-in} \\
\hline & & \multicolumn{2}{|l|}{Maximum brake torque \({ }^{* 7}\)} & \multicolumn{7}{|l|}{100\% torque, \(2 \%\) ED* \({ }^{*}\)} & \multicolumn{8}{|l|}{20\% torque, continuous} \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
FR-ABR \\
(when the option is used)
\end{tabular}} & \multicolumn{7}{|l|}{\(100 \%\) torque, \(10 \%\) ED} & \multicolumn{4}{|l|}{100\% torque, 6\% ED} & \multicolumn{4}{|l|}{-*12} \\
\hline \multicolumn{4}{|c|}{Rated input AC voltage and frequency} & \multicolumn{15}{|l|}{Three-phase 380 to \(500 \mathrm{~V}, 50 / 60 \mathrm{~Hz}{ }^{* 11}\)} \\
\hline \multicolumn{4}{|c|}{Permissible AC voltage fluctuation} & \multicolumn{15}{|l|}{\[
323 \text { to } 550 \mathrm{~V}, 50 / 60 \mathrm{~Hz}
\]} \\
\hline \multicolumn{4}{|c|}{Permissible frequency fluctuation} & \multicolumn{15}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow{8}{*}{\[
\begin{array}{|l|l}
\text { Rated input } \\
\text { current }(\mathrm{A})^{* 8}
\end{array}
\]}} & \multirow{4}{*}{Without DC reactor} & SLD & 3.2 & 5.4 & 7.8 & 10.9 & 16.4 & 22.5 & 31.7 & 40.3 & 48.2 & 58.4 & 76.8 & 97.6 & 115 & 141 & - \\
\hline & & & LD & 3 & & 7.3 & 10.1 & 15.1 & 22.3 & 31 & 38.2 & 44.9 & 53.9 & 75.1 & 89.7 & 106 & 130 & \\
\hline & & & \[
\begin{array}{|l|}
\hline \text { ND } \\
\text { (initial setting) }
\end{array}
\] & 2.3 & 3.7 & 6.2 & 8.3 & 12.3 & 17.4 & 22.5 & 31 & 40.3 & 48.2 & 56.5 & 75.1 & 91 & 108 & 134 \\
\hline & & & HD & 1.4 & 2.3 & 3.7 & 6.2 & 8.3 & 12.3 & 17.4 & 22.5 & 31 & 40.3 & 48.2 & 56.5 & 75.1 & 91 & 108 \\
\hline & & \multirow{4}{*}{With DC reactor} & SLD & 2.3 & 3.8 & 5.2 & 8.3 & 12.6 & 17 & 25 & 31 & 38 & 47 & 62 & 77 & 93 & 116 & 180 \\
\hline & & & LD & 2.1 & 3.5 & 4.8 & 7.6 & 11.5 & 16 & 23 & 29 & 35 & 43 & 57 & 70 & 85 & 106 & 144 \\
\hline & & & \begin{tabular}{|l|}
\hline\(N D\) \\
(initial setting) \\
\hline
\end{tabular} & 1.5 & 2.5 & 4 & 6 & 9 & 12 & 17 & 23 & 31 & 38 & 44 & 57 & 71 & 86 & 110 \\
\hline & & & HD & & 1.5 & 2.5 & 4 & 6 & 9 & 12 & 17 & 23 & 31 & 38 & 44 & 57 & 71 & 86 \\
\hline \multirow[t]{8}{*}{} & \multirow{8}{*}{Powersupply capacity
\[
(\mathrm{kVA})^{*} 9
\]} & \multirow{4}{*}{Without DC reactor} & SLD & 2.5 & 4.1 & 5.9 & 8.3 & 12 & 17 & 24 & 31 & 37 & 44 & 59 & 74 & 88 & 107 & - \\
\hline & & & LD & 2.3 & 3.7 & 5.5 & 7.7 & 12 & 17 & 24 & 29 & 34 & 41 & 57 & 68 & 81 & 99 & - \\
\hline & & & ND
(initial setting) & & 2.8 & 4.7 & 6.3 & 9.4 & 13 & 17 & 24 & 31 & 37 & 43 & 57 & 69 & 83 & 102 \\
\hline & & & HD 1.1 & 1.1 & 1.7 & 2.8 & 4.7 & 6.3 & 9.4 & 13 & 17 & 24 & 31 & 37 & 43 & 57 & 69 & 83 \\
\hline & & \multirow{4}{*}{With DC reactor} & SLD & 1.8 & 2.9 & 4 & 6.3 & 10 & 13 & 19 & 24 & 29 & 36 & 47 & 59 & 71 & 88 & 137 \\
\hline & & & LD & 1.6 & 2.7 & 3.7 & 5.8 & 8.8 & 12 & 18 & 22 & 27 & 33 & 43 & 53 & 65 & 81 & 110 \\
\hline & & & \[
\begin{array}{|l|}
\hline N D \\
\text { (initial setting) } \\
\hline
\end{array}
\] & & & 3 & 4.6 & 6.9 & 9.1 & 13 & 18 & 24 & 29 & 34 & 43 & 54 & 66 & 84 \\
\hline & & & HD & 0.6 & 1.1 & 1.9 & 3 & 4.6 & 6.9 & 9.1 & 13 & 18 & 24 & 29 & 34 & 43 & 54 & 66 \\
\hline \multicolumn{4}{|l|}{Protection rating of structure (IEC 60529)**10} & \multicolumn{11}{|l|}{Enclose type (IP20)} & \multicolumn{4}{|l|}{Open type (IP00)} \\
\hline \multicolumn{4}{|l|}{Cooling system} & \multicolumn{3}{|l|}{Natural} & \multicolumn{12}{|l|}{Forced air} \\
\hline \multicolumn{4}{|l|}{Approx. mass (kg)} & \multicolumn{3}{|l|}{\begin{tabular}{l|l|l}
2.8 & 2.8 & 2.8
\end{tabular}} & 3.3 & 3.3 & 6.7 & 6.7 & 8.3 & 8.3 & 15 & 15 & 23 & 41 & 41 & 43 \\
\hline
\end{tabular}
*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.
*2 A 0.2 kW motor can be operated under V/F control only
*3 The rated output capacity is the value with respect to 440 V output voltage.
*4 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under \(100 \%\) load.
*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about \(\sqrt{2}\).
*6 The built-in brake resistor is used.
*7 Value for the ND rating
*8 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.
*9 The power supply capacity is the value at the rated output current. The input power impedances (including those of the input reactor and cables) affect the value.
*10 FR-DU08: IP40 (except for the PU connector)
*11 For the power voltage exceeding 480 V , set Pr. 977 Input voltage mode selection. (For details, refer to page 327.)
*12 The braking capability of the inverter can be improved with a commercial brake resistor. For the details, please contact your sales representative.

\section*{75K to 280K}

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.
*2 The rated output capacity is the value with respect to 440 V output voltage.
*3 The percentage of the overload current rating is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under \(100 \%\) load.
*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about \(\sqrt{2}\).
*5 Value for the ND rating
*6 The rated input current is the value at a rated output voltage. The input power impedances (including those of the input reactor and cables) affect the value.
*7 The power supply capacity is the value at the rated output current. The input power impedances (including those of the input reactor and cables) affect the value.
*8 FR-DU08: IP40 (except for the PU connector)
*9 For the power voltage exceeding 480 V , set Pr. 977 Input voltage mode selection. (For details, refer to page 327.)

\subsection*{8.2 Motor rating}

\subsection*{8.2.1 Vector control dedicated motor SF-V5RU (1500 r/ min series)}

\section*{- Motor specifications}

\section*{\(\square 200\) V class}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor model: SF-V5RU[]K} & 1 & 2 & 3 & 5 & 7 & 11 & 15 & 18 & 22 & 30 & 37 & 45 & 55 \\
\hline \multicolumn{2}{|l|}{Applicable inverter model FR-A820-[]K (ND rating)} & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 \\
\hline \multicolumn{2}{|l|}{Rated output power (kW)} & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & \(30^{* 1}\) & \(37^{* 1}\) & \(45^{* 1}\) & 55 \\
\hline \multicolumn{2}{|l|}{Rated current (A)} & 8.5 & 11.5 & 17.6 & 28.5 & 37.5 & 54 & 72.8 & 88 & 102 & 126 & 168 & 198 & 264 \\
\hline \multicolumn{2}{|l|}{Rated torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 9.55 & 14.1 & 23.6 & 35.0 & 47.7 & 70.0 & 95.5 & 118 & 140 & 191 & 235 & 286 & 350 \\
\hline \multicolumn{2}{|l|}{Maximum torque at \(\mathbf{1 5 0 \%} \mathbf{6 0}\) s ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 14.3 & 21.1 & 35.4 & 52.4 & 71.6 & 105 & 143 & 176 & 211 & 287 & 353 & 429 & 525 \\
\hline \multicolumn{2}{|l|}{Rated speed (r/min)} & \multicolumn{13}{|c|}{1500} \\
\hline \multicolumn{2}{|l|}{Maximum speed (r/min)} & \multicolumn{12}{|c|}{\(3000{ }^{*}\)} & 2400 \\
\hline \multicolumn{2}{|l|}{Frame No.} & 90L & 100L & 112M & 132S & 132M & 160M & 160L & 180M & 180M & 200L & 200L & 200L & 2255 \\
\hline \multicolumn{2}{|l|}{Inertia moment J ( \(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) )} & 67.5 & 105 & 175 & 275 & 400 & 750 & 875 & 1725 & 1875 & 3250 & 3625 & 3625 & 6850 \\
\hline \multicolumn{2}{|l|}{Noise \({ }^{* 5}\)} & \multicolumn{9}{|c|}{75 dB or less} & \multicolumn{3}{|c|}{80 dB or less} & 85 dB or less \\
\hline \multirow[t]{3}{*}{Cooling fan (with thermal protector) \({ }^{* 7^{*}}\) 8} & Voltage & \multicolumn{5}{|l|}{Single-phase \(200 \mathrm{~V} / 50 \mathrm{~Hz}\) Single-phase 200 to \(230 \mathrm{~V} / 60 \mathrm{~Hz}\)} & \multicolumn{8}{|c|}{Three-phase \(200 \mathrm{~V} / 50 \mathrm{~Hz}\)
Three-phase 200 to \(230 \mathrm{~V} / 60 \mathrm{~Hz}\)} \\
\hline & Input \({ }^{* 3}\) & \multicolumn{3}{|c|}{\[
\begin{gathered}
36 / 55 \mathrm{~W} \\
(0.26 / 0.32 \mathrm{~A}) \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
22 / 28 \mathrm{~W} \\
(0.11 / 0.13 \mathrm{~A})
\end{gathered}
\]} & \multicolumn{4}{|c|}{\[
\begin{gathered}
55 / 71 \mathrm{~W} \\
(0.37 / 0.39 \mathrm{~A})
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{gathered}
100 / 156 \mathrm{~W} \\
(0.47 / 0.53 \mathrm{~A})
\end{gathered}
\]} & \[
\begin{gathered}
85 / 130 \mathrm{~W} \\
(0.46 / 0.52 \mathrm{~A})
\end{gathered}
\] \\
\hline & Recommended thermal setting & \multicolumn{3}{|c|}{0.36 A} & \multicolumn{2}{|c|}{0.18 A} & \multicolumn{4}{|c|}{0.51 A} & \multicolumn{3}{|c|}{0.69 A} & 0.68 A \\
\hline \multicolumn{2}{|l|}{Surrounding air temperature and humidity} & \multicolumn{13}{|c|}{-10 to \(+40^{\circ} \mathrm{C}\) (non-freezing), \(90 \% \mathrm{RH}\) or less (non-condensing)} \\
\hline \multicolumn{2}{|l|}{Structure (Protection rating)} & \multicolumn{13}{|c|}{Totally enclosed forced ventilated (Motor: IP44, Cooling fan: IP23S)*4} \\
\hline \multicolumn{2}{|l|}{Detector} & \multicolumn{13}{|c|}{Encoder 2048P/R, A phase, B phase, Z phase, +12 V/24 VDC power supply \({ }^{*}{ }^{6}\)} \\
\hline \multicolumn{2}{|l|}{Equipment} & \multicolumn{13}{|c|}{Encoder, thermal protector, fan} \\
\hline \multicolumn{2}{|l|}{Insulation class} & \multicolumn{13}{|c|}{F} \\
\hline \multicolumn{2}{|l|}{Vibration rank} & \multicolumn{13}{|c|}{V10} \\
\hline \multicolumn{2}{|l|}{Approx. mass (kg)} & 24 & 33 & 41 & 52 & 62 & 99 & 113 & 138 & 160 & 238 & 255 & 255 & 320 \\
\hline
\end{tabular}

\section*{\(\square 400\) V class}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Motor model: SF-V5RUH[]K} & 1 & 2 & 3 & 5 & 7 & 11 & 15 & 18 & 22 & 30 & 37 & 45 & 55 \\
\hline \multicolumn{2}{|l|}{Applicable inverter model FR-A840-[]K (ND rating)} & 2.2 & 2.2 & 3.7 & 7.5 & 11 & 15 & 18.5 & 22 & 30 & 37 & 45 & 55 & 75 \\
\hline \multicolumn{2}{|l|}{Rated output power (kW)} & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 & 11 & 15 & 18.5 & 22 & \(30^{* 1}\) & \(37^{* 1}\) & \(45^{* 1}\) & 55 \\
\hline \multicolumn{2}{|l|}{Rated current (A)} & 4.2 & 5.8 & 8.8 & 14.5 & 18.5 & 27.5 & 35.5 & 44 & 51 & 67 & 84 & 99 & 132 \\
\hline \multicolumn{2}{|l|}{Rated torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 9.55 & 14.1 & 23.6 & 35.0 & 47.7 & 70.0 & 95.5 & 118 & 140 & 191 & 235 & 286 & 350 \\
\hline \multicolumn{2}{|l|}{Maximum torque at \(\mathbf{1 5 0 \%} \mathbf{6 0} \mathrm{s}\) ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 14.3 & 21.1 & 35.4 & 52.4 & 71.6 & 105 & 143 & 176 & 211 & 287 & 353 & 429 & 525 \\
\hline \multicolumn{2}{|l|}{Rated speed (r/min)} & \multicolumn{13}{|c|}{1500} \\
\hline \multicolumn{2}{|l|}{Maximum speed (r/min)} & \multicolumn{12}{|c|}{3000 *2} & 2400 \\
\hline \multicolumn{2}{|l|}{Frame No.} & 90L & 100L & 112M & 132 S & 132M & 160M & 160L & 180M & 180M & 200L & 200L & 200L & 2255 \\
\hline \multicolumn{2}{|l|}{Inertia moment \(\mathrm{J}\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{\mathbf{2}}\right)\)} & 67.5 & 105 & 175 & 275 & 400 & 750 & 875 & 1725 & 1875 & 3250 & 3625 & 3625 & 6850 \\
\hline \multicolumn{2}{|l|}{Noise \({ }^{* 5}\)} & \multicolumn{9}{|c|}{75 dB or less} & \multicolumn{3}{|c|}{80 dB or less} & 85 dB or less \\
\hline \multirow[t]{3}{*}{Cooling fan (with thermal protector) \({ }^{* 7^{*}}\) 8} & Voltage & \multicolumn{5}{|c|}{Single-phase \(200 \mathrm{~V} / 50 \mathrm{~Hz}\) Single-phase 200 to \(230 \mathrm{~V} / 60 \mathrm{~Hz}\)} & \multicolumn{8}{|c|}{Three-phase 380 to \(400 \mathrm{~V} / 50 \mathrm{~Hz}\) Three-phase 400 to \(460 \mathrm{~V} / 60 \mathrm{~Hz}\)} \\
\hline & Input \({ }^{3}\) & \multicolumn{3}{|c|}{\[
\begin{gathered}
36 / 55 \mathrm{~W} \\
(0.26 / 0.32 \mathrm{~A})
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline 22 / 28 \mathrm{~W} \\
(0.11 / 0.13 \mathrm{~A}) \\
\hline
\end{gathered}
\]} & \multicolumn{4}{|c|}{\[
\begin{gathered}
55 / 71 \mathrm{~W} \\
(0.19 / 0.19 \mathrm{~A})
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\hline 100 / 156 \mathrm{~W} \\
(0.27 / 0.30 \mathrm{~A})
\end{gathered}
\]} & \[
\begin{gathered}
85 / 130 \mathrm{~W} \\
(0.23 / 0.26 \mathrm{~A})
\end{gathered}
\] \\
\hline & Recommended thermal setting & \multicolumn{3}{|c|}{0.36 A} & \multicolumn{2}{|c|}{0.18 A} & \multicolumn{4}{|c|}{0.25 A} & \multicolumn{3}{|c|}{0.39 A} & 0.34 A \\
\hline \multicolumn{2}{|l|}{Surrounding air temperature and humidity} & \multicolumn{13}{|c|}{-10 to \(+40^{\circ} \mathrm{C}\) (non-freezing), \(90 \% \mathrm{RH}\) or less (non-condensing)} \\
\hline \multicolumn{2}{|l|}{Structure (Protection rating)} & \multicolumn{13}{|c|}{Totally enclosed forced ventilated (Motor: IP44, Cooling fan: IP23S)* \({ }^{*}\)} \\
\hline \multicolumn{2}{|l|}{Detector} & \multicolumn{13}{|c|}{Encoder 2048P/R, A phase, B phase, Z phase, +12 V/24 VDC power supply \({ }^{*} 6\)} \\
\hline \multicolumn{2}{|l|}{Equipment} & \multicolumn{13}{|c|}{Encoder, thermal protector, fan} \\
\hline \multicolumn{2}{|l|}{Insulation class} & \multicolumn{13}{|c|}{F} \\
\hline \multicolumn{2}{|l|}{Vibration rank} & \multicolumn{13}{|c|}{V10} \\
\hline \multicolumn{2}{|l|}{Approx. mass (kg)} & 24 & 33 & 41 & 52 & 62 & 99 & 113 & 138 & 160 & 238 & 255 & 255 & 320 \\
\hline
\end{tabular}
*1 \(80 \%\) output in the high-speed range. (The output is reduced at the speed of \(2400 \mathrm{r} / \mathrm{min}\) or faster.) Contact us separately for details.
*2 The maximum speed of a 3.7 kW motor or less is \(3600 \mathrm{r} / \mathrm{min}\). Consult our sales office for use of these motor.
*3 Power (current) at \(50 / 60 \mathrm{~Hz}\).
*4 Since a brake motor has a window for gap check, the protection rating of both the cooling fan section and brake section of the motor is IP20. The letter S in IP23S is an additional code indicating that a cooling fan was checked for water protection while it is stationary.
*5 The value shown is applicable to the motor at high carrier frequency (Pr.72 = 6 and Pr. \(240=0\) ).
*6 A separate power supply of \(12 / 24 \mathrm{~V}\) is required for the encoder. (When the FR-A8TP is installed on the inverter, the 24 V power supply from the FR-A8TP is available.)
*7 The cooling fan is equipped with a thermal protector. The cooling fan stops when the coil temperature exceeds the specified value in order to protect the fan motor. A restrained cooling fan or degraded fan motor insulation could be causes for the rise in coil temperature. The cooling fan re-starts when the coil temperature drops to normal.
*8 The cooling fan voltage and input values are the basic specifications of the cooling fan alone and free air values. The input value becomes slightly larger when it is rotated by this motor due to an increased workload, but the cooling fan can be used as it is. When preparing a thermal relay at the user side, use the recommended thermal setting.

\section*{- Motor torque}

The torque characteristics of the SF-V5RU series driven by the inverter are shown in graph form as follows.

These are the case of the motor driven by the inverter at ND or HD rating. As the overload capacity decreases in the case of LD or SLD rating, observe the specified range of the inverter.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SF-V5RU (1500 r/min series)} \\
\hline 1.5 to 22 (kW) & 30 to 55 (kW) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SF-V5RU1 (1000 r/min) speed ratio \(=1: 2\) & SF-V5RU3 (1000 r/min) speed ratio \(=1: 3\) & SF-V5RU4 (500 r/min) speed ratio \(=1: 4\) \\
\hline 1.5 to 37 (kW) & 1.5 to 30 (kW) & 1.5 to 15 (kW) \\
\hline  &  &  \\
\hline Speed (r/min) & Speed (r/min) & Speed (r/min) \\
\hline
\end{tabular}
- The maximum speed of the SF-V5RU55K and SF-V5RU30K3 is \(2400 \mathrm{r} / \mathrm{min}\).
- The maximum speed of a 3.7 kW motor or less is \(3600 \mathrm{r} / \mathrm{min}\). Consult our sales office for use of these motor.
- The maximum speed of a brake motor is \(1800 \mathrm{r} / \mathrm{min}\).
- The maximum short-time torque of the SF-V5RU[]K1, SF-V5RU[]K3, and SF-V5RU[]K4 is \(120 \%\) of the rated torque. The maximum short-time torque of the SF-V5RU[]K1Y, SF-V5RU[]K3Y, and SF-V5RU[]K4Y is \(150 \%\) of the rated torque.

\subsection*{8.2.2 Vector control dedicated motor SF-THY}

\section*{\(\checkmark\) Motor specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} & \multicolumn{8}{|c|}{SF-THY} \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{Applicable inverter model (ND rating)}} & FR-A820-[]K & \multicolumn{7}{|c|}{FR-A840-[]K} \\
\hline & & & & 90 & 90 & 110 & 132 & 160 & 185 & 220 & 280 \\
\hline \multicolumn{4}{|l|}{Rated output power (kW)} & 75 & 75 & 90 & 110 & 132 & 160 & 200 & 250 \\
\hline \multicolumn{4}{|l|}{Rated torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 477 & 477 & 572 & 700 & 840 & 1018 & 1273 & 1591 \\
\hline \multicolumn{4}{|l|}{Maximum torque at 150\% 60 s ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 715 & 715 & 858 & 1050 & 1260 & 1527 & 1909 & 2386 \\
\hline \multicolumn{4}{|l|}{Rated speed (r/min)} & 1500 & \multicolumn{7}{|c|}{1500} \\
\hline \multicolumn{4}{|l|}{Maximum speed (r/min)} & 2400 & 2400 & \multicolumn{6}{|c|}{1800} \\
\hline \multicolumn{4}{|l|}{Frame No.} & 250MD & 250MD & 250MD & 280MD & 280MD & 280MD & 280L & 315H \\
\hline \multicolumn{4}{|l|}{Inertia moment J (kg \(\cdot \mathrm{m}^{\mathbf{2}}\) )} & 1.1 & 1.1 & 1.7 & 2.3 & 2.3 & 4.0 & 3.8 & 5.0 \\
\hline \multicolumn{4}{|l|}{Noise} & 90 dB & \multicolumn{3}{|c|}{90 dB} & \multicolumn{4}{|c|}{95 dB} \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{Cooling fan}} & \multicolumn{2}{|l|}{Voltage} & \multicolumn{8}{|c|}{Three-phase, 200 V/50 Hz, 200 V/60 Hz, 220 V/ 60 Hz ( 400 V class cooling fan is available upon order)} \\
\hline & & \multirow[b]{2}{*}{Input (W)} & 50 Hz & \multirow[b]{2}{*}{750} & 400 & 400 & 400 & 400 & 400 & 750 & 750 \\
\hline & & & 60 Hz & & 750 & 750 & 750 & 750 & 750 & 1500 & 1500 \\
\hline \multicolumn{4}{|l|}{Approx. mass (kg)} & 610 & 610 & 660 & 870 & 890 & 920 & 1170 & 1630 \\
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Surrounding air temperature and humidity \\
Structure
\end{tabular}}} & \multicolumn{8}{|c|}{-10 to \(+40^{\circ} \mathrm{C}\) (non-freezing), \(90 \% \mathrm{RH}\) or less (non-condensing)} \\
\hline & & & & \multicolumn{8}{|c|}{Totally enclosed forced ventilated} \\
\hline \multirow{9}{*}{Common specifications} & \multicolumn{3}{|l|}{Equipment} & \multicolumn{8}{|c|}{Encoder, thermal protector \({ }^{*}\), fan} \\
\hline & \multicolumn{3}{|l|}{Insulation class} & \multicolumn{8}{|c|}{F} \\
\hline & \multicolumn{3}{|l|}{Vibration rank} & \multicolumn{8}{|c|}{V10} \\
\hline & \multirow{6}{*}{Dedicated encoder} & \multicolumn{2}{|l|}{Resolution} & \multicolumn{8}{|c|}{2048 pulses/rev} \\
\hline & & \multicolumn{2}{|l|}{Power supply voltage} & \multicolumn{8}{|c|}{12/24 VDC \(\pm 10 \%{ }^{* 1}\)} \\
\hline & & \multicolumn{2}{|l|}{Current consumption} & \multicolumn{8}{|c|}{90 mA} \\
\hline & & \multicolumn{2}{|l|}{Output signal form} & \multicolumn{8}{|l|}{Phase A and Phase B: 90 degrees out of phase, Phase Z: 1 pulse/rev} \\
\hline & & \multicolumn{2}{|l|}{Output circuit} & \multicolumn{8}{|l|}{Complementary (constant voltage output matched by emitter follow)} \\
\hline & & \multicolumn{2}{|l|}{Output voltage} & \multicolumn{8}{|c|}{\begin{tabular}{l}
"H" level: Power supply voltage 9 V or more (IOH: -20 mA) \\
"L" level: Power supply voltage 3 V or less (IOL: 20 mA )
\end{tabular}} \\
\hline
\end{tabular}
*1 The \(12 / 24 \mathrm{~V}\) power supply is required for the encoder.
*2 A motor with a thermal protector is available. Contact your sales representative.

\section*{- Motor torque}

The torque characteristics of the SF-THY driven by the inverter are shown in graph form as follows.



\subsection*{8.2.3 IPM motor MM-CF ( 2000 r/min series)}

\section*{- Motor specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Motor model: MM-CF[]} & 52(C)(B) & 102(C)(B) & 152(C)(B) & 202(C)(B) & 352(C)(B) & 502(C) & 702(C) \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Applicable inverter model FR-A820-[]K}} & SLD & 0.4 & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 \\
\hline & & LD & 0.4 & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 \\
\hline & & ND (initial setting) & 0.4 & 0.75 & 1.5 & 2.2 & 3.7 & 5.5 & 7.5 \\
\hline & & HD & \(0.75{ }^{*} 6\) & \(1.5{ }^{*}\) & 2.2 * & \(3.7 *\) * & \(5.5 * 6\) & \(7.5^{*} 6\) & \(11^{*} 6\) \\
\hline \multirow[t]{2}{*}{Continuous characteristics* \({ }^{* 1}\)} & \multicolumn{2}{|l|}{Rated output power (kW)} & 0.5 & 1.0 & 1.5 & 2.0 & 3.5 & 5.0 & 7.0 \\
\hline & \multicolumn{2}{|l|}{Rated torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 2.39 & 4.78 & 7.16 & 9.55 & 16.70 & 23.86 & 33.41 \\
\hline \multicolumn{3}{|l|}{Rated speed*1 \({ }^{* 1}\) r/min)} & \multicolumn{7}{|c|}{2000} \\
\hline \multicolumn{3}{|l|}{Maximum speed (r/min)} & \multicolumn{7}{|c|}{3000} \\
\hline \multicolumn{3}{|l|}{Instantaneous permissible speed (r/min)} & \multicolumn{7}{|c|}{\(3450{ }^{* 7}\)} \\
\hline \multicolumn{3}{|l|}{Maximum torque ( \(\mathrm{N} \cdot \mathrm{m}\) )} & 4.78 & 9.56 & 14.32 & 19.09 & 33.41 & 47.73 & 66.82 \\
\hline \multicolumn{3}{|l|}{Inertia moment \(\mathrm{J}^{\star 5}\)
\[
\left(\times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}\right)
\]} & \[
\begin{gathered}
6.6 \\
(7.0)
\end{gathered}
\] & \[
\begin{gathered}
13.7 \\
(14.9)
\end{gathered}
\] & \[
\begin{gathered}
20.0 \\
(21.2)
\end{gathered}
\] & \[
\begin{gathered}
45.5 \\
(48.9)
\end{gathered}
\] & \[
\begin{gathered}
85.6 \\
(89.0)
\end{gathered}
\] & 120.0 & 160.0 \\
\hline \multicolumn{3}{|l|}{Recommended ratio of load inertia moment to motor shaft inertia moment \({ }^{* 2}\)} & \multicolumn{3}{|c|}{100 times max.} & \multicolumn{4}{|c|}{50 times max.} \\
\hline \multicolumn{3}{|l|}{Rated current (A)} & 1.81 & 3.70 & 5.22 & 7.70 & 12.5 & 20.5 & 27.0 \\
\hline \multicolumn{3}{|l|}{Insulation class} & \multicolumn{7}{|c|}{F} \\
\hline \multicolumn{3}{|l|}{Structure (Protection rating)} & \multicolumn{7}{|c|}{Totally enclosed, naturally air-cooled (IP44*3/IP65*3*4)} \\
\hline \multicolumn{3}{|l|}{Surrounding air temperature and humidity} & \multicolumn{7}{|c|}{-10 to \(+40^{\circ} \mathrm{C}\) (non-freezing), \(90 \% \mathrm{RH}\) or less (non-condensing)} \\
\hline \multicolumn{3}{|l|}{Storage temperature and humidity} & \multicolumn{7}{|c|}{-20 to \(+70^{\circ} \mathrm{C}\) (non-freezing), \(90 \%\) RH or less (non-condensing)} \\
\hline \multicolumn{3}{|l|}{Ambience} & \multicolumn{7}{|c|}{Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust and dirt)} \\
\hline \multicolumn{3}{|l|}{Altitude} & \multicolumn{7}{|c|}{Maximum 1000 m} \\
\hline \multicolumn{3}{|l|}{Vibration} & \multicolumn{7}{|c|}{\(\mathrm{X}: 9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{Y}: 24.5 \mathrm{~m} / \mathrm{s}^{2}\)} \\
\hline \multicolumn{3}{|l|}{Approx. mass \({ }^{* 5}\) (kg)} & 5.1/7.8 & 7.2/11 & 9.3/13 & 13/20 & 19/28 & 27 & 36 \\
\hline
\end{tabular}
*1 The rated output power or speed is not guaranteed at low supply voltages.
*2 It is the case that the load torque is \(20 \%\) of the motor rating. The permissible load inertia moment ratio is smaller when the load torque is larger. Consult us if the load inertia moment ratio exceeds the above value.
*3 This does not apply to the shaft through portion.
*4 The value after the slash is for MM-CF[ ]2C.
*5 The value for MM-CF[ ]2B is indicated in parentheses.
*6 The one-rank higher inverter is designated for high torque in low-speed range.
*7 Set \(3150 \mathrm{r} / \mathrm{min}(210 \mathrm{~Hz})\) or less in Pr. 374 Overspeed detection level. The inverter may be damaged by the motor induction voltage if the motor speed exceeds \(3150 \mathrm{r} / \mathrm{min}(210 \mathrm{~Hz})\).

\section*{- Motor torque}
\begin{tabular}{|c|c|c|}
\hline Motor capacity & \multicolumn{2}{|l|}{Low speed high torque setting enabled (high frequency superposition control)} \\
\hline 1.5 kW or lower & ND rating & HD rating \\
\hline 2.0 kW or higher & ND rating & \begin{tabular}{l}
HD rating \\
* Zero speed up to a \(150 \%\) instantaneous output torque
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Motor capacity & Low speed high torque setting disabled (current synchronization operation) \\
\hline All capacities & ND rating \\
\hline
\end{tabular}

\section*{8.3 Common specifications}

\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{} & \multirow{3}{*}{For indication on external meters} & Pulse train output (FM type inverter) & Max. 2.4 kHz via one terminal (for the indication of inverter output frequency). The item for monitoring can be changed using Pr. 54 FM/CA terminal function selection. \\
\hline & & Current output (CA type inverter) & Max. 20 mADC via one terminal (for the indication of inverter output frequency). The item for monitoring can be changed using Pr. 54 FM/CA terminal function selection. \\
\hline & & Voltage output & Max. 10 VDC via one terminal (for the indication of inverter output frequency). The item for monitoring can be changed using Pr. 158 FM/CA terminal function selection. \\
\hline & \multirow[b]{2}{*}{Operation panel (FRDU08)} & Status monitoring & Output frequency, output current, output voltage, and frequency setting value are monitored. The item for monitoring can be changed using Pr. 52 FM/CA terminal function selection. \\
\hline & & Fault monitoring & When a protective function is activated, a fault indication is displayed and the output voltage, output current, output frequency, cumulative energization time, date (year, month, day) and time at the occurrence of the fault are stored. Each fault is recorded and the last 8 records can be displayed. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Protective function}} & Fault & Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip (electronic thermal relay function), Motor overload trip (electronic thermal relay function), Heatsink overheat, Instantaneous power failure \({ }^{* 4}\), Undervoltage \({ }^{* 4}\), Input phase loss \({ }^{*} 4^{*} 5\), Stall prevention stop, Loss of synchronism detection \({ }^{* 5}\), Brake transistor alarm detection \({ }^{*}\), Upper limit fault detection, Lower limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation \({ }^{* 5}\), PTC thermistor operation \({ }^{* 5}\), Option fault, Communication option fault, Parameter storage device fault, PU disconnection, Retry count excess \({ }^{* 5}\), CPU fault, Operation panel power supply short circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current detection \({ }^{*}\), Inrush current limit circuit fault \({ }^{*}\), Communication fault (inverter), Analog input fault, USB communication fault, Safety circuit fault, Overspeed occurrence \({ }^{* 5}\), Speed deviation excess detection \({ }^{* 1 * 5}\), Signal loss detection \({ }^{* 1 * 5}\), Excessive position fault \({ }^{* 1^{*} 5}\), Brake sequence fault \({ }^{* 5}\), Encoder phase fault \({ }^{* 1^{*} 5}, 4 \mathrm{~mA}\) input fault \({ }^{* 5}\), Pre-charge fault \({ }^{* 5}\), PID signal fault \({ }^{* 5}\), Option fault, Opposite rotation deceleration fault \({ }^{* 5}\), Internal circuit fault, Abnormal internal temperature \({ }^{* 7}\), Magnetic pole position unknown \({ }^{* 1}\) \\
\hline & & Alarm, Warning, Error message & Fan alarm, Stall prevention (overcurrent), Stall prevention (overvoltage), Regenerative brake prealarm \({ }^{* 5 *}\), Electronic thermal relay function pre-alarm, PU stop, Speed limit indication \({ }^{* 5}\), Parameter copy, Safety stop, Maintenance signal output \({ }^{* 5}\), USB host error, Home position return setting error \({ }^{* 5}\), Home position return uncompleted \({ }^{* 5}\), Home position return parameter setting error \({ }^{* 5}\), Operation panel lock \({ }^{* 5}\), Password locked \({ }^{*}\), Parameter write error, Copy operation error, 24 V external power supply operation, Internal fan alarm \({ }^{* 7}\), Continuous operation during communication fault \({ }^{* 5}\), Load fault warning \\
\hline \multirow{5}{*}{} & \multicolumn{2}{|l|}{Surrounding air temperature} & \begin{tabular}{l}
-10 to \(+50^{\circ} \mathrm{C}\left(0\right.\) to \(+50^{\circ} \mathrm{C}\) for the FR-A800-GF) (non-freezing) (LD, ND, and HD ratings) \\
-10 to \(+40^{\circ} \mathrm{C}\) ( 0 to \(+40^{\circ} \mathrm{C}\) for the FR-A800-GF) (non-freezing) (SLD rating, IP55 compatible models)
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{Surrounding air humidity} & ```
95% RH or less (non-condensing) (With circuit board coating (conforming to IEC60721-3-3 3C2/3S2),
IP55 compatible models)
90% RH or less (non-condensing) (Without circuit board coating)
``` \\
\hline & \multicolumn{2}{|l|}{Storage temperature*8} & -20 to \(+65^{\circ} \mathrm{C}\) \\
\hline & \multicolumn{2}{|l|}{Ambience} & Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt) \\
\hline & \multicolumn{2}{|l|}{Altitude/vibration} & Maximum \(1000 \mathrm{~m}^{* 9}, 5.9 \mathrm{~m} / \mathrm{s}^{2}\) or less \({ }^{* 10}\) at 10 to 55 Hz (directions of \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) axes) \\
\hline
\end{tabular}
*1 Available when a Vector control compatible option is installed.
*2 For PM sensorless vector control, refer to page 823.
*3 For the FR-A820-00340(5.5K) or higher and the FR-A840-00170(5.5K) or higher, the starting torque is initially limited to a level of \(150 \%\) due to the torque limitation.
*4 Available for the standard model and the IP55 compatible model.
*5 Not activated in the inverter in the initial state.
*6 Available only for the standard model.
*7 Available only for the IP55 compatible model.
*8 Applicable to conditions for a short time, for example, in transit.
*9 For the installation at an altitude above 1000 m (up to 2500 m), consider a \(3 \%\) reduction in the rated current per 500 m increase in altitude.
*10 \(2.9 \mathrm{~m} / \mathrm{s}^{2}\) or less for the FR-A840-04320(160K) or higher.
*11 Available only for the FR-A800-GF series.

\subsection*{8.4 Outline dimension drawings}

\subsection*{8.4.1 Inverter outline dimension drawings}

FR-A820-00046(0.4K), FR-A820-00077(0.75K)(-GF)

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Inverter model } & \multicolumn{1}{c|}{ D } & \multicolumn{1}{c|}{ D1 } \\
\hline FR-A820-00046(0.4K) & 110 & 20 \\
\hline FR-A820-00077(0.75K) & 125 & 35 \\
\hline
\end{tabular}
*1 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth. (Unit: mm)

FR-A820-00105(1.5K), 00167(2.2K), 00250(3.7K)(-GF)
FR-A840-00023(0.4K), 00038(0.75K), 00052(1.5K), 00083(2.2K), 00126(3.7K)(-GF)

*1 FR-A840-00023(0.4K) to 00052(1.5K) are not provided with a cooling fan.
*2 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

FR-A820-00340(5.5K), 00490(7.5K), 00630(11K)(-GF)
FR-A840-00170(5.5K), 00250(7.5K), 00310(11K), 00380(15K)(-GF)

\begin{tabular}{|l|l|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Inverter model } & \multicolumn{1}{c|}{ H } & \multicolumn{1}{c|}{ H1 } & \multicolumn{1}{c|}{ H2 } & \multicolumn{1}{c|}{ D } & D1 \\
\hline \begin{tabular}{l}
FR-A820-00340(5.5K), 00490(7.5K) \\
FR-A840-00170(5.5K), 00250(7.5K)
\end{tabular} & 260 & 245 & 1.5 & 170 & 84 \\
\hline \begin{tabular}{l}
FR-A820-00630(11K) \\
FR-A840-00310(11K), 00380(15K)
\end{tabular} & 300 & 285 & 3 & 190 & 101.5 \\
\hline
\end{tabular}
*1 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

FR-A820-00770(15K), 00930(18.5K), 01250(22K)(-GF)
FR-A840-00470(18.5K), 00620(22K)(-GF)

*1 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

FR-A820-01540(30K)(-GF)

\section*{FR-A840-00770(30K)(-GF)}

*1 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

FR-A820-01870(37K), 02330(45K), 03160(55K), 03800(75K), 04750(90K)(-GF)
FR-A840-00930(37K), 01160(45K), 01800(55K), 02160(75K), 02600(90K), 03250(110K), 03610(132K)(-GF)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Inverter model & W & W1 & H & H1 & H2 & d & D & D1 \\
\hline \[
\begin{aligned}
& \text { FR-A820-01870(37K), 02330(45K) } \\
& \text { FR-A840-00930(37K), 01160(45K), 01800(55K) }{ }^{* 1} \\
& \hline
\end{aligned}
\] & 435 & 380 & 550 & 525 & 514 & 25 & 250 & 24 \\
\hline FR-A820-03160(55K)* \({ }^{\text {1 }}\) & 465 & 410 & 700 & 675 & 664 & 25 & 250 & 22 \\
\hline FR-A820-03800(75K) \({ }^{* 1}, 04750(90 \mathrm{~K})^{* 1}\) & 465 & 400 & 740 & 715 & 704 & 24 & 360 & 22 \\
\hline FR-A840-02160(75K) \({ }^{* 1}, 02600(90 \mathrm{~K})^{* 1}\) & 465 & 400 & 620 & 595 & 584 & 24 & 300 & 22 \\
\hline FR-A840-03250(110K) \({ }^{* 1}, 03610(132 \mathrm{~K})^{* 1}\) & 465 & 400 & 740 & 715 & 704 & 25 & 360 & 22 \\
\hline
\end{tabular}
*1 For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option.
*2 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

FR-A840-04320(160K), 04810(185K)(-GF)

Always connect a DC reactor (FR-HEL), which is available as an option.
*1 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

Always connect a DC reactor (FR-HEL), which is available as an option.
*1 The LED display cover attached to the FR-A800-GF in this position has an additional 2.1 mm depth.
(Unit: mm)

\section*{Operation panel (FR-DU08)}

(Unit: mm)

\subsection*{8.4.2 Dedicated motor outline dimension drawings}

\section*{\(\bullet\) Dedicated motor (SF-V5RU(H)) outline dimension drawings (standard horizontal type)}

Frame number: 90L

Frame number: 100L, 112M, 132S, 132M

Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { [} \mathrm{K}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\hline \mathbf{j K 1} 1 \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { [1K3 } \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\hline[\mathrm{K} 4 \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{Frame No.} & \multirow[t]{2}{*}{Mass (kg)} & \multicolumn{23}{|c|}{Motor} & \multicolumn{3}{|l|}{Terminal screw size} \\
\hline & & & & & & A & B & C & D & E & F & H & 1 & KA & KG & \[
\begin{array}{|c|}
\hline \mathrm{KLL} \\
\text { (KP) } \\
\hline
\end{array}
\] & L & M & ML & N & XB & Q & QK & R & S & T & U & w & \[
\begin{gathered}
\mathrm{U}, \mathbf{v}, \\
\mathbf{w}
\end{gathered}
\] & \[
\begin{aligned}
& \text { A, B, } \\
& \text { (C) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { G1, } \\
& \text { G2 } \\
& \hline
\end{aligned}
\] \\
\hline 1 & - & - & - & 90L & 24 & 256.5 & 114 & 90 & 183.6 & 70 & 62.5 & 198 & - & 53 & 65 & \[
\begin{array}{|c|}
\hline 220 \\
(210)
\end{array}
\] & 425 & 175 & - & 150 & 56 & - & - & 168.5 & 24j6 & 7 & 4 & 8 & M6 & M4 & M4 \\
\hline 2 & 1 & - & - & 100L & 33 & 284 & 128 & 100 & 207 & 80 & 70 & 203.5 & 230 & 65 & 78 & 231 & 477 & 200 & 212 & 180 & 63 & 60 & 45 & 193 & 28j6 & 7 & 4 & 8 & M6 & M4 & M4 \\
\hline 3 & 2 & 1 & - & 112M & 41 & 278 & 135 & 112 & 228 & 95 & 70 & 226 & 253 & 69 & 93 & 242 & 478 & 230 & 242 & 180 & 70 & 60 & 45 & 200 & \(28 j 6\) & 7 & 4 & 8 & M6 & M4 & M4 \\
\hline 5 & 3 & 2 & - & 132S & 52 & 303 & 152 & 132 & 266 & 108 & 70 & 265 & 288 & 75 & 117 & 256 & 542 & 256 & 268 & 180 & 89 & 80 & 63 & 239 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 \\
\hline 7 & 5 & 3 & 1 & 132M & 62 & 322 & 171 & 132 & 266 & 108 & 89 & 265 & 288 & 94 & 117 & 256 & 580 & 256 & 268 & 218 & 89 & 80 & 63 & 258 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 \\
\hline
\end{tabular}

Frame number: 200L, 225S

Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

\section*{Dimensions table (Unit: mm)}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { [K }
\end{array}
\]} & \multirow[t]{2}{*}{SFV5RU []K1} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \text { SF- } \\
\text { V5RU } \\
\text { [} 1 \mathrm{~K} 3
\end{array}
\]} & \multirow[t]{2}{*}{SF-
V5RU [K4} & \multirow[t]{2}{*}{Frame No.} & \multirow[t]{2}{*}{Mass (kg)} & \multicolumn{23}{|c|}{Motor} & \multicolumn{3}{|l|}{\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Terminal screw size } \\
\hline 相
\end{tabular}} \\
\hline & & & & & & A & B & C & D & E & F & H & 1 & KA & KG & \[
\begin{array}{|c|}
\hline \text { KL } \\
\text { (KP) }
\end{array}
\] & L & M & ML & N & XB & Q & QK & R & S & T & U & W & \[
\mathrm{U}, \mathbf{v},
\] & \[
\begin{aligned}
& \text { A, B, } \\
& \text { (C) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { G1, } \\
& \text { G2 }
\end{aligned}
\] \\
\hline 11 & 7 & 5 & 2 & 160M & 99 & 412 & 198 & 160 & 318 & 127 & 105 & 316 & 367 & 105 & 115 & 330 & 735 & 310 & - & 254 & 108 & - & - & 323 & 42k6 & 8 & 5 & 12 & M8 & M4 & M4 \\
\hline 15 & 11 & 7 & 3 & 160L & 113 & 434 & 220 & 160 & 318 & 127 & 127 & 316 & 367 & 127 & 115 & 330 & 779 & 310 & - & 298 & 108 & - & - & 345 & 42k6 & 8 & 5 & 12 & M8 & M4 & M4 \\
\hline 18 & - & - & - & OM & 138 & 438.5 & 225.5 & 180 & 363 & 139.5 & 120.5 & 359 & 410 & 127 & 139 & 352 & 790 & 335 & - & 285 & 121 & - & - & 351.5 & 48k6 & 9 & 5.5 & 14 & M8 & M4 & M4 \\
\hline 22 & 15 & 11 & - & M & 160 & 438.5 & 225.5 & 180 & 363 & 139.5 & 120.5 & 359 & 410 & 127 & 139 & 352 & 790 & 335 & - & 285 & 121 & - & - & 351.5 & 48 k 6 & 9 & 5.5 & 14 & M8 & M4 & M4 \\
\hline - & 18 & 15 & 5 & 180L & 200 & 457.5 & 242.5 & 180 & 363 & 139.5 & 139.5 & 359 & 410 & 146 & 139 & 352 & 828 & 335 & - & 323 & 121 & - & - & 370.5 & 55m6 & 10 & 6 & 16 & M8 & M4 & M4 \\
\hline 30 & - & - & 7 & 200L & 238 & 483.5 & 267.5 & 200 & 406 & 159 & 152.5 & 401 & - & 145 & 487 & (546) & 909 & 390 & - & 361 & 133 & - & - & 425.5 & 60m6 & 11 & 7 & 18 & M10 & M4 & M4 \\
\hline 37, 45 & 22,30 & 18, 22 & - & & 255 & 483.5 & 267.5 & 200 & 406 & 159 & 152.5 & & - & 145 & 487 & (546) & 909 & 350 & - & 361 & 133 & - & - & 425.5 & 60 mb & 11 & 7 & 18 & M10 & M4 & \\
\hline 55 & 37 & 30 & 11, 15 & 225S & 320 & 500 & 277 & 225 & 446 & 178 & 143 & 446 & - & 145 & 533 & (592) & 932 & 428 & - & 342 & 149 & - & - & 432 & 65m6 & 11 & 7 & 18 & M10 & M4 & M4 \\
\hline
\end{tabular}

\section*{NOTE}
- Install the motor with a frame number 180 or larger on the floor and use it with the shaft horizontal.
- Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Check that a fan blows air from the opposite load side to the load side.
- The vertical tolerance for the shaft center height is \({ }_{-0.5}^{0}\).
- The 400 V class motor has "- H " at the end of its model name.

\title{
\(\rightarrow\) Dedicated motor (SF-V5RU(H)) outline dimension drawings (standard horizontal type with brake)
}

Frame number: 90L

\(\begin{array}{ll}\text { Main terminal box } & \text { For brake (B1, B2) } \\ & \text { For motor (U, } \mathrm{V}, \mathrm{W})\end{array}\)

Frame number: 100L, 112M, 132S, 132M

Connector (for encoder)

\(\hbar\) indicates an inserting position of a bolt with hex head holes for manual opening.
Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { [KB } \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { } 1 \mathrm{~K} 1 \mathrm{~B}
\end{array}
\]} & \multirow[t]{2}{*}{SF-
V5RU
ПK3B} & \multirow[t]{2}{*}{\[
\begin{array}{c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { VK4B }
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Frame \\
No.
\end{tabular} & \begin{tabular}{c}
Mass \\
(kg)
\end{tabular} \\
\hline
\end{tabular}}} & \multicolumn{22}{|c|}{Motor} & \multicolumn{7}{|c|}{Shaft end} & \multicolumn{4}{|l|}{Terminal screw size} \\
\hline & & & & & & A & B & C & D & E & F & G & H & 1 & J & KA & KD & KG & KL & KP & L & M & ML & N & X & XB & Z & Q & QK & R & S & T & U & W & \[
\begin{gathered}
\mathbf{U}, \mathbf{v}, \\
\mathbf{w}
\end{gathered}
\] & \[
\begin{aligned}
& A, B, \\
& \text { (C) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { G1, } \\
& \text { G2 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B} 1, \\
& \mathrm{~B} 2
\end{aligned}
\] \\
\hline 1 & - & - & - & 90L & 29 & 296.5 & 114 & 90 & 183.6 & 70 & 62.5 & 4 & - & - & - & 53 & 27 & 65 & 220 & 245 & 465 & 175 & - & 150 & 15 & 56 & 9 & 50 & 40 & 168.5 & 24j6 & 7 & 4 & 8 & M6 & M4 & M4 & M4 \\
\hline 2 & 1 & - & - & 100L & 46 & 333.5 & 128 & 100 & 207 & 80 & 70 & 6.5 & - & - & 40 & 65 & 27 & 78 & 231 & 265 & 526.5 & 200 & 212 & 180 & 4 & 63 & 12 & 60 & 45 & 193 & 28j6 & 7 & 4 & 8 & M6 & M4 & M4 & M4 \\
\hline 3 & 2 & 1 & - & 112M & 53 & 355 & 135 & 112 & 228 & 95 & 70 & 6.5 & - & - & 40 & 69 & 27 & 93 & 242 & 290 & 555 & 230 & 242 & 180 & 4 & 70 & 12 & 60 & 45 & 200 & 28j6 & 7 & 4 & 8 & M6 & M4 & M4 & M4 \\
\hline 5 & 3 & 2 & - & 132 S & 70 & 416 & 152 & 132 & 266 & 108 & 70 & 6.5 & - & - & 40 & 75 & 27 & 117 & 256 & 329 & 655 & 256 & 268 & 180 & 4 & 89 & 12 & 80 & 63 & 239 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 & M4 \\
\hline 7 & 5 & 3 & 1 & 132M & 80 & 435 & 171 & 132 & 266 & 108 & 89 & 6.5 & - & - & 40 & 94 & 27 & 117 & 256 & 329 & 693 & 256 & 268 & 218 & 4 & 89 & 12 & 80 & 63 & 258 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 & M4 \\
\hline
\end{tabular}

Frame number: 200L, 225S

it indicates an inserting position of a bolt with hex head holes for manual opening.
Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

\section*{Dimensions table (Unit: mm)}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { [KB } \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { } 1 \mathrm{~K} 1 \mathrm{~B}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { पK3B }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
\text { V5RU } \\
\text { } 1 \mathrm{~K} 4 \mathrm{~B}
\end{array}
\]} & \multirow[t]{2}{*}{Frame
No.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Mass } \\
& \text { (kg) }
\end{aligned}
\]} & \multicolumn{22}{|c|}{Motor} & \multicolumn{7}{|c|}{Shaft end} & \multicolumn{4}{|l|}{Terminal screw size} \\
\hline & & & & & & A & B & C & D & E & F & G & H & 1 & J & KA & KD & KG & KL & KP & L & M & ML & N & X & XB & z & Q & QK & R & S & T & U & W & \[
\begin{gathered}
\mathrm{U}, \mathbf{v}, \\
\mathbf{w}
\end{gathered}
\] & \[
\mathrm{A}, \mathrm{~B},
\]
(C) & \begin{tabular}{l}
G1, \\
G2
\end{tabular} & \[
\begin{array}{|l|}
\hline \mathrm{B} 1, \\
\mathrm{D},
\end{array}
\] \\
\hline 11 & 7 & 5 & 2 & 160M & 140 & 522.5 & 198 & 160 & 318 & 127 & 105 & 8 & - & - & 50 & 105 & 56 & 115 & 330 & 391 & 845.5 & 310 & - & 254 & 4 & 108 & 14.5 & 110 & 90 & 323 & 42k6 & 8 & 5 & 12 & M8 & M4 & M4 & M4 \\
\hline 15 & 11 & 7 & 3 & 160L & 155 & 544.5 & 220 & 160 & 318 & 127 & 127 & 8 & - & - & 50 & 127 & 56 & 115 & 330 & 391 & 889.5 & 310 & - & 298 & 4 & 108 & 14.5 & 110 & 90 & 345 & 42k6 & 8 & 5 & 12 & M8 & M4 & M4 & M4 \\
\hline 18 & - & - & - & OM & 185 & 568.5 & 225.5 & 180 & 363 & 139.5 & 120.5 & 8 & - & - & 50 & 127 & 56 & 139 & 352 & 428 & 920 & 335 & - & 285 & 4 & 121 & 14.5 & 110 & 90 & 351.5 & 48k6 & 9 & 5.5 & 14 & M8 & M4 & M4 & M4 \\
\hline 22 & 15 & 11 & - & & 215 & & & & 363 & & & 8 & - & - & 50 & 127 & 56 & 139 & 352 & 428 & 920 & 335 & - & 285 & 4 & 121 & 14.5 & 10 & 50 & 351.5 & 48 k & 9 & 5.5 & 14 & M8 & M4 & M & M4 \\
\hline - & 18 & 15 & 5 & 180L & 255 & 587.5 & 242.5 & 180 & 363 & 139.5 & 139.5 & 8 & - & - & 50 & 146 & 56 & 139 & 352 & 428 & 958 & 335 & - & 323 & 4 & 121 & 14.5 & 110 & 90 & 370.5 & 55m6 & 10 & 6 & 16 & M8 & M4 & M4 & M4 \\
\hline 30 & - & - & 7 & 200L & 305 & 644.5 & 267.5 & 200 & 406 & 159 & 152.5 & 11 & - & - & 70 & 145 & 90 & 487 & - & 546 & 1070 & 390 & - & 361 & 4 & 133 & 18.5 & 140 & 110 & 425.5 & 60m6 & 11 & 7 & 18 & M10 & M4 & M4 & M4 \\
\hline 37, 45 & 22, 30 & 18, 22 & - & & 330 & 644.5 & 267.5 & 200 & 406 & 159 & 152.5 & 11 & - & - & 70 & 145 & 9 & 487 & - & 546 & 1070 & 390 & - & 361 & 4 & 133 & 18.5 & 140 & 110 & 425.5 & 60 mb & 11 & 7 & 18 & M10 & M4 & M4 & M4 \\
\hline 55 & 37 & 30 & 11, 15 & 2255 & 395 & 659 & 277 & 225 & 446 & 178 & 143 & 11 & - & - & 70 & 145 & 90 & 533 & - & 592 & 1091 & 428 & - & 342 & 4 & 149 & 18.5 & 140 & 110 & 432 & \(65 \mathrm{m6}\) & 11 & 7 & 18 & M10 & M4 & M4 & M4 \\
\hline
\end{tabular}

\section*{NOTE}
- Install the motor on the floor and use it with the shaft horizontal.
- Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Check that a fan blows air from the opposite load side to the load side.
- The vertical tolerance for the shaft center height is \({ }_{-0.5}^{0}\).
- The 400 V class motor has "- H " at the end of its model name.
- Since a brake power device is a stand-alone, install it inside the enclosure. (This device should be arranged by the customer. Refer to the FR-A800 catalog.)

\section*{- Dedicated motor (SF-V5RU(H)) outline dimension drawings (flange type)}

Frame number: 90L

Frame number: 100L, 112M, 132S, 132M

Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline SF- & SF- & SF- & SF- & & & & \multicolumn{13}{|c|}{Motor} & \multicolumn{7}{|c|}{Shaft end} & \multicolumn{3}{|l|}{Terminal screw size} \\
\hline V5RUF [K & \[
\begin{gathered}
\text { V5RUF } \\
{[1 \mathrm{~K} 1}
\end{gathered}
\] & V5RUF
[K3 & V5RUF
[K4 & No. & No. & (kg) & D & IE & KB & KD & KL & LA & LB & LC & LE & LG & LL & LN & LZ & LR & Q & QK & S & T & U & W & \[
\begin{aligned}
& \mathrm{U}, \mathrm{~V}, \\
& \mathbf{w}
\end{aligned}
\] & A, B, (C) & \[
\begin{aligned}
& \text { G1, } \\
& \text { G2 }
\end{aligned}
\] \\
\hline 1 & - & - & - & FF165 & 90L & 26.5 & 183.6 & - & 198.5 & 27 & 220 & 165 & 130j6 & 200 & 3.5 & 12 & 402 & 4 & 12 & 50 & 50 & 40 & \(24 j 6\) & 7 & 4 & 8 & M6 & M4 & M4 \\
\hline 2 & 1 & - & - & FF215 & 100L & 37 & 207 & 130 & 213 & 27 & 231 & 215 & 180j6 & 250 & 4 & 16 & 432 & 4 & 14.5 & 60 & 60 & 45 & \(28 j 6\) & 7 & 4 & 8 & M6 & M4 & M4 \\
\hline 3 & 2 & 1 & - & FF215 & 112M & 46 & 228 & 141 & 239 & 27 & 242 & 215 & 180j6 & 250 & 4 & 16 & 448 & 4 & 14.5 & 60 & 60 & 45 & 28 j 6 & 7 & 4 & 8 & M6 & M4 & M4 \\
\hline 5 & 3 & 2 & - & FF265 & 132S & 65 & 266 & 156 & 256 & 27 & 256 & 265 & 230j6 & 300 & 4 & 20 & 484 & 4 & 14.5 & 80 & 80 & 63 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 \\
\hline 7 & 5 & 3 & 1 & FF265 & 132M & 70 & 266 & 156 & 294 & 27 & 256 & 265 & 230j6 & 300 & 4 & 20 & 522 & 4 & 14.5 & 80 & 80 & 63 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 \\
\hline
\end{tabular}

Frame Number: 160M, 160L, 180M, 180L

Frame number: 200L

\section*{Connector (for encoder)}

Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline SF- & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SF- } \\
=\mathrm{V} 5 \mathrm{RUF} \\
\mathrm{jK} 1
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline SF- \\
V5RUF \\
[]K3
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SF- } \\
= \\
\text { V5RUF } \\
{[\mathrm{KK} 4}
\end{array}
\]} & \multirow[b]{2}{*}{Flange No.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Frame } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{Mass (kg)} & \multicolumn{13}{|c|}{Motor} & \multicolumn{7}{|c|}{Shaft end} & \multicolumn{3}{|l|}{Terminal screw size} \\
\hline V5RUF
[K & & & & & & & D & IE & KB & KD & KL & LA & LB & LC & LE & LG & LL & LN & LZ & LR & Q & QK & S & T & U & W & \[
\begin{gathered}
\mathbf{u}, \mathbf{v}, \\
\mathbf{w}
\end{gathered}
\] & \[
\begin{aligned}
& \text { A, B, } \\
& \text { (C) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { G1, } \\
& \text { G2 }
\end{aligned}
\] \\
\hline 11 & 7 & 5 & 2 & FF300 & 160M & 110 & 318 & 207 & 318 & 56 & 330 & 300 & 250j6 & 350 & 5 & 20 & 625 & 4 & 18.5 & 110 & 110 & 90 & 42k6 & 8 & 5 & 12 & M8 & M4 & M4 \\
\hline 15 & 11 & 7 & 3 & FF300 & 160L & 125 & 318 & 207 & 362 & 56 & 330 & 300 & 250j6 & 350 & 5 & 20 & 669 & 4 & 18.5 & 110 & 110 & 90 & 42k6 & 8 & 5 & 12 & M8 & M4 & M4 \\
\hline 18 & - & - & - & FF350 & 180M & 160 & 363 & 230 & 378.5 & 56 & 352 & 350 & 300j6 & 400 & 5 & 20 & 690 & 4 & 18.5 & 110 & 110 & 90 & 48k6 & 9 & 5.5 & 14 & M8 & M4 & M4 \\
\hline 22 & 15 & 11 & - & FF350 & 180м & 185 & 363 & 230 & 378.5 & 56 & 352 & 350 & 3006 & 400 & 5 & 20 & 650 & 4 & 18.5 & 110 & 110 & 9 & 48 k 6 & 9 & 5.5 & 14 & M8 & M4 & M4 \\
\hline - & 18 & 15 & 5 & FF350 & 180L & 225 & 363 & 230 & 416.5 & 56 & 352 & 350 & 300j6 & 400 & 5 & 20 & 728 & 4 & 18.5 & 110 & 110 & 90 & 55m6 & 10 & 6 & 16 & M8 & M4 & M4 \\
\hline 30 & - & - & 7 & FF400 & 200L & 270 & 406 & 255 & 485 & 90 & 346 & 400 & 350j6 & 450 & 5 & 22 & 823.5 & 8 & 18.5 & 140 & 140 & 110 & 60m6 & 11 & 7 & 18 & M10 & M4 & M4 \\
\hline 37, 45 & 22,30 & 18, 22 & - & & & 290 & & & & & & & & & & & & 8 & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{NOTE}
- The motor with a frame number 180 or larger cannot be installed on the ceiling (with the shaft facing up). For use with the shaft facing down, the protection rating of the cooling fan is IP20.
- Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Check that a fan blows air from the opposite load side to the load side.
- The 400 V class motor has "- H " at the end of its model name.

\title{
\(\bullet\) Dedicated motor (SF-V5RU(H)) outline dimension drawings (flange type with brake)
}

Frame number: 90L

Frame number: 100L, 112M, 132S, 132M

is indicates an inserting position of a bolt with hex head holes for manual opening.
Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{c|}
\hline SF- \\
V5RUF \\
[KB
\end{tabular}} & \multirow[t]{2}{*}{SFV5RUF [K1B} & \multirow[t]{2}{*}{SF-
V5RUF [K3B} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SF- } \\
\text { V5RUF } \\
\square \mathrm{KK4B}
\end{gathered}
\]} & \multirow[b]{2}{*}{Flange No.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Frame } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Mass } \\
(\mathbf{k g})
\end{gathered}
\]} & \multicolumn{13}{|c|}{Motor} & \multicolumn{7}{|c|}{Shaft end} & \multicolumn{4}{|l|}{Terminal screw size} \\
\hline & & & & & & & D & KB & KD & KL & KP & LA & LB & LC & LE & LG & LL & LN & LZ & LR & Q & QK & S & T & U & W & \[
\begin{gathered}
\mathrm{u}, \mathrm{~V}, \\
\mathrm{w}
\end{gathered}
\] & \[
\begin{aligned}
& \text { A, B, } \\
& \text { (C) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { B1, } \\
& \text { B2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { G1, } \\
& \text { G2 }
\end{aligned}
\] \\
\hline 1 & - & - & - & FF165 & 90L & 31.5 & 183.6 & 198.5 & 27 & 220 & 155 & 165 & 130j6 & 200 & 3.5 & 12 & 442 & 4 & 12 & 50 & 50 & 40 & 24j6 & 7 & 4 & 8 & M6 & M4 & M4 & M4 \\
\hline 2 & 1 & - & - & FF215 & 100L & 50 & 207 & 213 & 27 & 231 & 165 & 215 & 180j6 & 250 & 4 & 16 & 481.5 & 4 & 14.5 & 60 & 60 & 45 & 28 j 6 & 7 & 4 & 8 & M6 & M4 & M4 & M4 \\
\hline 3 & 2 & 1 & - & FF215 & 112M & 58 & 228 & 239 & 27 & 242 & 178 & 215 & 180j6 & 250 & 4 & 16 & 525 & 4 & 14.5 & 60 & 60 & 45 & 28 j 6 & 7 & 4 & 8 & M6 & M4 & M4 & M4 \\
\hline 5 & 3 & 2 & - & FF265 & 132S & 83 & 266 & 256 & 27 & 256 & 197 & 265 & 230j6 & 300 & 4 & 20 & 597 & 4 & 14.5 & 80 & 80 & 63 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 & M4 \\
\hline 7 & 5 & 3 & 1 & FF265 & 132M & 88 & 266 & 294 & 27 & 256 & 197 & 265 & 230j6 & 300 & 4 & 20 & 635 & 4 & 14.5 & 80 & 80 & 63 & 38k6 & 8 & 5 & 10 & M6 & M4 & M4 & M4 \\
\hline
\end{tabular}

\section*{Frame number: 160M, 160L}

is indicates an inserting position of a bolt with hex head holes for manual opening.
Make sure to earth the earth terminal of the flange section as well as the earth terminal in the terminal box.

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{SFV5RUF [KB} & \multirow[t]{2}{*}{SF V5RUF [K1B} & \multirow[t]{2}{*}{SFV5RUF [K3B} & \multirow[t]{2}{*}{SFV5RUF []K4B} & \multirow[t]{2}{*}{Flange No.} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Frame } \\
\text { No. }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Mass } \\
(k g)
\end{gathered}
\]} & \multicolumn{13}{|c|}{Motor} & \multicolumn{6}{|c|}{Shaft end} \\
\hline & & & & & & & D & KB & KD & KL & KP & LA & LB & LC & LE & LG & LL & LN & LZ & LR & Q & QK & S & & \\
\hline 11 & 7 & 5 & 2 & FF300 & 160M & 151 & 318 & 318 & 56 & 330 & 231 & 300 & 250j6 & 350 & 5 & 20 & 735.5 & 4 & 18.5 & 110 & 110 & 90 & 42k6 & & \\
\hline 15 & 11 & 7 & 3 & FF300 & 160L & 167 & 318 & 362 & 56 & 330 & 231 & 300 & 250j6 & 350 & 5 & 20 & 779.5 & 4 & 18.5 & 110 & 110 & 90 & 42k6 & & \\
\hline
\end{tabular}

\section*{NOTE}
- Install the motor on the wall and use it with the shaft horizontal.
- Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Check that a fan blows air from the opposite load side to the load side.
- The 400 V class motor has "-H" at the end of its model name.
- Since a brake power device is a stand-alone, install it inside the enclosure. (This device should be arranged by the customer. Refer to the FR-A800 catalog.)

\section*{\(\bullet\) Dedicated motor (SF-THY) outline dimension drawings (1500 r/min series)}

Frame number: 250MD, 280MD
75 to 160 kW

Frame number: 280L, 315H
200 kW, 250 kW

Dimensions table (Unit: mm)
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Output} & \multirow[t]{2}{*}{Frame No.} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Mass } \\
\text { (kg) }
\end{array}
\]} & \multicolumn{20}{|c|}{Motor} & \multicolumn{6}{|c|}{Shaft end size} \\
\hline & & & A & B & C & D & E & F & G & H & J & K & K1 & K2 & L & M & N & R & Z & XB & KA & KG & Q & QK & S & W & T & U \\
\hline 75 & 250MD & 610 & 988.5 & 340.5 & 250 & 557 & 203 & 174.5 & 30 & 775 & 100 & 130 & 168 & 50 & 1471 & 486 & 449 & 482.5 & 24 & 168 & 157.5 & 635 & 140 & 110 & \(\varphi 75 \mathrm{m6}\) & 20 & 12 & 7.5 \\
\hline 90 & 250MD & 660 & 988.5 & 340.5 & 250 & 557 & 203 & 174.5 & 30 & 775 & 100 & 130 & 168 & 50 & 1471 & 486 & 449 & 482.5 & 24 & 168 & 157.5 & 635 & 140 & 110 & \(\varphi 75 \mathrm{m6}\) & 20 & 12 & 7.5 \\
\hline 110 & 280MD & 870 & 1049.5 & 397.5 & 280 & 607 & 228.5 & 209.5 & 30 & 845 & 110 & 130 & 181 & 40 & 1619 & 560 & 449 & 569.5 & 24 & 190 & 210.5 & 705 & 170 & 140 & \(\varphi 85 \mathrm{m6}\) & 22 & 14 & 9 \\
\hline 132 & 280MD & 890 & 1049.5 & 397.5 & 280 & 607 & 228.5 & 209.5 & 30 & 845 & 110 & 130 & 181 & 40 & 1619 & 560 & 449 & 569.5 & 24 & 190 & 210.5 & 705 & 170 & 140 & \(\varphi 85 \mathrm{m6}\) & 22 & 14 & 9 \\
\hline 160 & 280MD & 920 & 1049.5 & 397.5 & 280 & 607 & 228.5 & 209.5 & 30 & 845 & 110 & 130 & 181 & 40 & 1619 & 560 & 499 & 569.5 & 24 & 190 & 210.5 & 705 & 170 & 140 & \(\varphi 85 \mathrm{m6}\) & 22 & 14 & 9 \\
\hline 200 & 280L & 1170 & 1210.5 & 416.5 & 280 & 652 & 228.5 & 228.5 & 30 & 885 & 110 & 160 & 160 & 75 & 1799 & 560 & 607 & 588.5 & 24 & 190 & 214.5 & 745 & 170 & 140 & ¢85m6 & 22 & 14 & 9 \\
\hline 250 & 315 H & 1630 & 1343 & 565 & 315 & 717 & 254 & 355 & 35 & 965 & 130 & 175 & 428 & 80 & 2084 & 636 & 870 & 741 & 28 & 216 & 306 & 825 & 170 & 140 & \(\varphi 95 \mathrm{m6}\) & 25 & 14 & 9 \\
\hline
\end{tabular}

\section*{NOTE}
- The vertical tolerance for the shaft center height C is \({ }_{-0.5}^{0}\) for the frame number 250 , and \({ }_{-1.0}^{0}\) for the frame number 280 or larger.
9.1 For customers replacing the conventional model with this inverter 820
9.2 Specification comparison between PM sensorless vector control and induction motor control 823
9.3
Parameters (functions) and instruction codes under different control methods 824
9.4 For customers using HMS network options 851

\subsection*{9.1 For customers replacing the conventional model with this inverter}

\subsection*{9.1.1 Replacement of the FR-A700 series}

\section*{- Differences and compatibility with the FR-A700 series}
\begin{tabular}{|c|c|c|c|}
\hline & Item & FR-A700 & FR-A800 \\
\hline \multicolumn{2}{|r|}{Control method} & \begin{tabular}{l}
V/F control \\
Advanced magnetic flux vector control \\
Real sensorless vector control \\
Vector control (with plug-in option) \\
PM sensorless vector control (IPM motor)
\end{tabular} & \begin{tabular}{l}
V/F control \\
Advanced magnetic flux vector control \\
Real sensorless vector control \\
Vector control (with plug-in option / control terminal option) \\
PM sensorless vector control (IPM motor / SPM motor)
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Added functions} & - & USB host function Safety stop function etc. \\
\hline \multicolumn{2}{|r|}{Brake transistor (brake resistor usable)} & Built in for the FR-A720-0.4K to 22K Built in for the FR-A740-0.4K to 22K & Built in for the FR-A820-00046(0.4K) to 01250(22K) Built in for the FR-A840-00023(0.4K) to 01800(55K) \\
\hline \multirow[t]{5}{*}{Maximum output frequency} & V/F control & 400 Hz & 590 Hz \\
\hline & Advanced magnetic flux vector control & 120 Hz & 400 Hz \\
\hline & Real sensorless vector control & 120 Hz & 400 Hz \\
\hline & Vector control & 120 Hz & 400 Hz \\
\hline & PM sensorless vector control & 300 Hz & 400 Hz \\
\hline \multicolumn{2}{|r|}{PID control} & Turn the X14 signal ON to enable PID control. & \begin{tabular}{l}
When the X 14 signal is not assigned, just set a value in Pr. 128 to enable PID control. \\
When the X 14 signal is assigned, turn the X 14 signal ON while Pr. 128 = " 0 " to enable PID control. The PID pre-charge function and dancer control are added.
\end{tabular} \\
\hline & utomatic restart er instantaneous power failure & Turn the CS signal ON to enable restart. & The CS signal does not need to be assigned. (Restart is enabled with the Pr. 57 setting only.) \\
\hline & umber of motor poles control switching & The V/F switchover (X18) signal is valid when Pr. \(81=\) "12 to 20" (2 to 10 poles). & \begin{tabular}{l}
Pr. 81 = "12" (12 poles) \\
The X18 signal is valid regardless of the Pr. 81 setting. (The Pr. 81 settings " 14 to 20 " are not available.)
\end{tabular} \\
\hline & thermistor input & \begin{tabular}{l}
Input through terminal AU \\
(The function of terminal \(A U\) is switched by a switch.)
\end{tabular} & \begin{tabular}{l}
Input through terminal 2 \\
(The function of terminal 2 is switched by the Pr. 561 setting.)
\end{tabular} \\
\hline & USB connector & B connector & Mini B connector \\
\hline & Control circuit terminal block & Removable terminal block (screw type) & Removable terminal block (spring clamp type) \\
\hline & rminal response level & \multicolumn{2}{|l|}{The FR-A800's I/O terminals have better response level than the FR-A700's terminals. By setting Pr. 289 Inverter output terminal filter and Pr. 699 Input terminal filter, the terminal response level can be compatible with that of FR-A700. Set to approximately 5 to 8 ms and adjust the setting according to the system.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & FR-A700 & FR-A800 \\
\hline PU & \[
\begin{aligned}
& \text { FR-DU07 (4-digit LED) } \\
& \text { FR-PU07 }
\end{aligned}
\] & \begin{tabular}{l}
FR-DU08 (5-digit LED) \\
FR-LU08 (LCD operation panel) \\
FR-PU07 (Some functions, such as parameter copy, are unavailable.) \\
The FR-DU07 is not supported.
\end{tabular} \\
\hline Plug-in option & \multicolumn{2}{|l|}{Dedicated plug-in options (not interchangeable)} \\
\hline Communication option & Connected to the connector 3 & Connected to the connector 1 \\
\hline Installation size & \multicolumn{2}{|l|}{\begin{tabular}{l}
For standard models, installation size is compatible for all capacities. (Replacement between the same capacities does not require new mounting holes.) \\
For separated converter types, installation size is not compatible. (New mounting holes are required.)
\end{tabular}} \\
\hline Converter & Built-in for all capacities & An optional converter unit (FR-CC2) is required for separated converter types. \\
\hline DC reactor & The 75 K or higher comes with a DC reactor (FR-HEL). & \begin{tabular}{l}
For the FR-A820-03800(75K) or higher, the FR-A840\(02160(75 \mathrm{~K})\) or higher, and when a 75 kW or higher motor is used, select a DC reactor suitable for the applicable motor capacity. (A DC reactor is not included.) \\
Separated converter types (converter unit FR-CC2) and IP55 compatible models have a built-in DC reactor.
\end{tabular} \\
\hline Brake unit (75 kW or higher) & FR-BU2, MT-BU5 & FR-BU2 \\
\hline
\end{tabular}

\section*{Installation precautions}
- Removal procedure of the front cover is different. (Refer to page 33.)
- Plug-in options of the FR-A700 series are not compatible.
- Operation panel (FR-DU07) cannot be used.

\section*{Wiring instructions}
- The spring clamp type terminal block has changed to the screw type. Use of blade terminals is recommended.

\section*{\(\checkmark\) Instructions for continuous use of the PU07 (parameter unit) manufactured in September 2015 or earlier}
- For the FR-A800 series, many functions (parameters) have been added. When setting these parameters, the parameter names and setting ranges are not displayed.
- Only the parameter with the numbers up to "999" can be read and set. The parameters with the numbers after "999" cannot be read or set.
- Many protective functions have been added for the FR-A800 series. These functions are available, but all faults are displayed as "Fault". When the faults history is checked, "ERR" appears. Added faults will not appear on the parameter unit. (However, MT1 to MT3 are displayed as MT.)
- Parameter copy/verification function are not available.

\section*{- Copying parameter settings}
- The FR-A700 series' parameter settings can be easily copied to the FR-A800 series by using the setup software (FR Configurator2). (Not supported by the setup software FR-SW3-SETUP or older.)

\subsection*{9.1.2 Replacement of the FR-A500(L) series}

\section*{- Installation precautions}
- Installation size is compatible for replacing the FR-A520(L)-0.4K to \(90 \mathrm{~K}, \mathrm{FR}-\mathrm{A} 540(\mathrm{~L})-0.4 \mathrm{~K}\) to \(7.5 \mathrm{~K}, 18.5 \mathrm{~K}\) to \(55 \mathrm{~K}, 110 \mathrm{~K}\), 160 K , or 220 K . New mounting holes are required for replacing models with other capacities.
- To use the same mounting holes of the FR-A540-11K or 15 K for the A 800 series, the optional installation interchange attachment (FR-AAT) is necessary.
- The external heatsink attachment is not interchangeable.

The enclosure cut dimensions of the FR-A520-3.7K or lower, FR-A520-30K, FR-A520-55K or higher, FR-A540-3.7K or lower, FR-A540-11K and 15K, and FR-A540-75K or higher are not compatible.

NOTE
- For the installation size and the outline dimensions of the separated converter type, refer to the FR-A802 (Separated Converter Type) Instruction Manual (Hardware).

\subsection*{9.2 Specification comparison between PM sensorless vector control and induction motor control}
\begin{tabular}{|c|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{PM sensorless vector control (MM-CF)} & Induction motor control \\
\hline Applicable motor & \multicolumn{2}{|l|}{IPM motor MM-CF series (0.5 to 7.0 kW) (Refer to page 798.) IPM motors other than MM-CF (tuning required) \({ }^{* 1}\)} & Induction motor*1 \\
\hline \multirow[b]{2}{*}{Starting torque} & High frequency superposition control & \(200 \%\) (200\% for the 1.5 kW or lower with MM-CF, 150\% for the 2.0 kW or higher) & \multirow[t]{2}{*}{```
200% (FR-A820-00250(3.7K) or
lower and FR-A840-00126(3.7K)
or lower)
150%: (FR-A820-00340(5.5K) or
higher and FR-A840-00126(3.7K)
or higher)
under Real sensorless vector
control and
Vector control
```} \\
\hline & Current synchronization operation & 50\% & \\
\hline \multirow[b]{2}{*}{Zero speed} & High frequency superposition control & Available (Select the HD rating for zero speed 200\%.) & \multirow[t]{2}{*}{Available under Real sensorless vector control and vector control Available under Vector control.} \\
\hline & Current synchronization operation & Not available & \\
\hline \multirow[b]{2}{*}{Carrier frequency} & High frequency superposition control & \begin{tabular}{l}
\[
\begin{aligned}
& 6 \mathrm{kHz}(\operatorname{Pr} .72=" 0 \text { to } 9 "), \\
& 10 \mathrm{kHz}(\operatorname{Pr} .72=" 10 \text { to } 13 "), \\
& 14 \mathrm{kHz}(\operatorname{Pr} .72=" 14 \text { to } 15 ")
\end{aligned}
\] \\
( 6 kHz in a low-speed range of 10 kHz or higher. \\
2 kHz is not selectable.)
\end{tabular} & \begin{tabular}{l}
Any value in the range of 0.75 kHz to 14.5 kHz \\
(FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower)
\end{tabular} \\
\hline & Current synchronization operation & \[
\begin{aligned}
& \hline 2 \mathrm{kHz}(\text { Pr. } 72=\text { = } 0 \text { to } 5 \mathrm{k}), \\
& 6 \mathrm{kHz} \text { (Pr. } 72=" 6 \text { to } 9 "), \\
& 10 \mathrm{kHz} \text { (Pr. } 72=" 10 \text { to } 13 "), \\
& 14 \mathrm{kHz} \text { (Pr. } 72=" 14 \text { to } 15 ") \\
& (6 \mathrm{kHz} \text { in a low-speed range of } 10 \\
& \mathrm{kHz} \text { or higher.) }
\end{aligned}
\] & 0.75 kHz to 6 kHz (FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher.) \\
\hline Automatic restart after instantaneous power failure & \multicolumn{2}{|l|}{No startup waiting time. Using the regeneration avoidance function or retry function together is recommended.} & Startup waiting time exists. \\
\hline Startup delay & \multicolumn{2}{|l|}{Startup delay of about 0.1 s for magnetic pole position detection.} & No startup delay (when online auto tuning is not performed at startup). \\
\hline Driving by the commercial power supply & \multicolumn{2}{|l|}{Cannot be driven by the commercial power supply.} & Can be driven by the commercial power supply. (Other than vector control dedicated motor.) \\
\hline Operation during coasting & \multicolumn{2}{|l|}{While the motor is coasting, potential is generated across motor terminals.} & While the motor is coasting, potential is not generated across motor terminals. \\
\hline Torque control & \multicolumn{2}{|l|}{Not available} & Available under Real sensorless vector control and vector control. Available under Vector control. \\
\hline \multirow[t]{2}{*}{Position control} & High frequency superposition control & Available (sensorless) & \multirow[t]{2}{*}{Available under Vector control.} \\
\hline & Current synchronization operation & Not available & \\
\hline
\end{tabular}
*1 For the motor capacity, the rated motor current should be equal to or less than the rated inverter current. (It must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about \(40 \%\) or higher of the inverter rated current.

\section*{NOTE}
- Before wiring, make sure that the motor is stopped. Otherwise you may get an electric shock.
- Never connect an IPM motor to the commercial power supply.
- No slippage occurs with an IPM motor because of its characteristic. If an IPM motor, which took over an induction motor, is driven at the same speed as for the general-purpose motor, the running speed of the IPM motor becomes faster by the amount of the general-purpose motor's slippage. Adjust the speed command to run the IPM motor at the same speed as the induction motor, as required.

\subsection*{9.3 Parameters (functions) and instruction codes under different control methods}
*1 Instruction codes are used to read and write parameters in accordance with the Mitsubishi inverter protocol of RS-485 communication. (For RS485 communication, refer to page 636.)
*2 Function availability under each control method is shown as follows:
\(\circ\) : Available
\(\times\) : Not available
\(\Delta\) : Available with some restrictions
*3 If function availability differs between using induction motors with an encoder and using PM motors with an encoder, the function availability using PM motors with an encoder is described in parentheses. Also, a PM motor with an encoder is not available in the torque control mode.
*4 For Parameter copy, Parameter clear, and All parameter clear, o indicates the function is available, and \(\times\) indicates the function is not available.
*5 Communication parameters that are not cleared by parameter clear or all clear (H5A5A or H55AA) via communication. (For RS-485 communication, refer to page 636.)
*6 When a communication option is installed, parameter clear (lock release) during password lock (Pr. 297 Password lock/unlock = " 9999 ") can be performed only from the communication option.
*7 Available when the IPM motor MM-CF series is used and the low-speed range high-torque characteristic is enabled (Pr. 788 Low speed range torque characteristic selection = "9999 (initial value)").
*8 Reading and writing via the PU connector are available.
Symbols in the table indicate parameters that operate when the options are connected.
APFR-A8AP, ALFR-A8AL, TPFR-A8TP, APRFR-A8APR, APSFR-A8APS, ARFR-A8AR, AXFR-A8AX, AYFR-A8AY, AZFRA8AZ, NCFR-A8NC, NCEFR-A8NCE, NDFR-A8ND, NPFR-A8NP, NFFR-A8NF, NSFR-A8NS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס } \\
& \text { D } \\
& \stackrel{\rightharpoonup}{0} \\
& \text { X }
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PM} & \multirow[b]{2}{*}{\[
\begin{gathered}
*^{+} \\
\stackrel{\rightharpoonup}{\circ} \\
0 ن
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{\pi}^{\pi} \\
& \frac{\otimes}{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \pm \\
& \stackrel{+}{\approx} \\
& \frac{0}{0} \\
& \overline{4}
\end{aligned}
\]} \\
\hline & & & & & & & \(\overline{0}\)
0
0
0
0
0
0
0
© &  &  &  & 은
0
0
0
0
0
흥
ㅇ &  &  & & & \\
\hline 0 & Torque boost & 00 & 80 & 0 & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1 & Maximum frequency & 01 & 81 & 0 & \(\bigcirc\) \\
\hline 2 & Minimum frequency & 02 & 82 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 3 & Base frequency & 03 & 83 & 0 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 4 & Multi-speed setting (high speed) & 04 & 84 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 5 & Multi-speed setting (middle speed) & 05 & 85 & 0 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & - & \(\bigcirc\) & - & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 6 & Multi-speed setting (low speed) & 06 & 86 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\Delta\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 7 & Acceleration time & 07 & 87 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 8 & Deceleration time & 08 & 88 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 9 & Electronic thermal O/L relay & 09 & 89 & 0 & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 10 & DC injection brake operation frequency & OA & 8A & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 11 & DC injection brake operation time & OB & 8B & 0 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 12 & DC injection brake operation voltage & OC & 8C & 0 & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 13 & Starting frequency & OD & 8D & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 14 & Load pattern selection & OE & 8E & 0 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 15 & Jog frequency & 0F & 8F & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 16 & Jog acceleration/deceleration time & 10 & 90 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 17 & MRS input selection & 11 & 91 & 0 & \(\bigcirc\) \\
\hline 18 & High speed maximum frequency & 12 & 92 & 0 & \(\bigcirc\) \\
\hline 19 & Base frequency voltage & 13 & 93 & 0 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 20 & Acceleration/deceleration reference frequency & 14 & 94 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{\text {1 }}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{0}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{*}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{*} \underset{\substack{\circ \\ \hline}}{ }
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \stackrel{\pi}{\pi} \\
& \frac{\otimes}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & \(\overline{3}\)
0
0
0
0
0
0
0
0
0 &  & 인
0
0
0
0
D
0.0
10 & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \\
© \\
क
\end{tabular} &  & & & \\
\hline 21 & Acceleration/deceleration time increments & 15 & 95 & 0 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 22 & Stall prevention operation level (Torque limit level) & 16 & 96 & 0 & \(\bigcirc\) \\
\hline 23 & Stall prevention operation level compensation factor at double speed & 17 & 97 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 24 & Multi-speed setting (4 speed) & 18 & 98 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 25 & Multi-speed setting (5 speed) & 19 & 99 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 26 & Multi-speed setting (6 speed) & 1A & 9A & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 27 & Multi-speed setting (7 speed) & 1B & 9B & 0 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 28 & Multi-speed input compensation selection & 1C & 9C & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 29 & Acceleration/deceleration pattern selection & 1D & 9D & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 30 & Regenerative function selection & 1E & 9E & 0 & \(\bigcirc\) \\
\hline 31 & Frequency jump 1A & 1F & 9F & 0 & - & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 32 & Frequency jump 1B & 20 & A0 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 33 & Frequency jump 2A & 21 & A1 & 0 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 34 & Frequency jump 2B & 22 & A2 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 35 & Frequency jump 3A & 23 & A3 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 36 & Frequency jump 3B & 24 & A4 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 37 & Speed display & 25 & A5 & 0 & \(\bigcirc\) \\
\hline 41 & Up-to-frequency sensitivity & 29 & A9 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 42 & Output frequency detection & 2A & AA & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 43 & Output frequency detection for reverse rotation & 2B & AB & 0 & \(\bigcirc\) & - & - & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 44 & Second acceleration/ deceleration time & 2C & AC & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 45 & Second deceleration time & 2D & AD & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 46 & Second torque boost & 2E & AE & 0 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 47 & Second V/F (base frequency) & 2F & AF & 0 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 48 & Second stall prevention operation level & 30 & B0 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 49 & Second stall prevention operation frequency & 31 & B1 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 50 & Second output frequency detection & 32 & B2 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 51 & Second electronic thermal O/L relay & 33 & B3 & 0 & \(\bigcirc\) \\
\hline 52 & Operation panel main monitor selection & 34 & B4 & 0 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 54 & FM/CA terminal function selection & 36 & B6 & 0 & \(\bigcirc\) \\
\hline 55 & Frequency monitoring reference & 37 & B7 & 0 & \(\bigcirc\) \\
\hline 56 & Current monitoring reference & 38 & B8 & 0 & \(\bigcirc\) \\
\hline 57 & Restart coasting time & 39 & B9 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 58 & Restart cushion time & 3A & BA & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 59 & Remote function selection & 3B & BB & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 60 & Energy saving control selection & 3C & BC & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 61 & Reference current & 3D & BD & 0 & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 62 & Reference value at acceleration & 3E & BE & 0 & \(\bigcirc\) & \(\bigcirc\) & \[
\stackrel{\circ}{(\times)}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{\text {1 }}\)} & \multicolumn{9}{|c|}{Control method \({ }^{2}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్ס } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& * \\
& \frac{\pi}{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
\hline
\end{tabular} & 은
0
0
0
0
0
0
0
0 &  &  &  &  & & & \\
\hline 63 & Reference value at deceleration & 3F & BF & 0 & - & - & \[
(x)
\] & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 64 & Starting frequency for elevator mode & 40 & C0 & 0 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 65 & Retry selection & 41 & C1 & 0 & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 66 & Stall prevention operation reduction starting frequency & 42 & C2 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 67 & Number of retries at fault occurrence & 43 & C3 & 0 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 68 & Retry waiting time & 44 & C4 & 0 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline 69 & Retry count display erase & 45 & C5 & 0 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 70 & Special regenerative brake duty & 46 & C6 & 0 & \(\bigcirc\) \\
\hline 71 & Applied motor & 47 & C7 & 0 & \(\bigcirc\) \\
\hline 72 & PWM frequency selection & 48 & C8 & 0 & \(\bigcirc\) \\
\hline 73 & Analog input selection & 49 & C9 & 0 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 74 & Input filter time constant & 4A & CA & 0 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 75 & Reset selection/disconnected PU detection/PU stop selection & 4B & CB & 0 & - & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline 76 & Fault code output selection & 4C & CC & 0 & \(\bigcirc\) \\
\hline \(77^{*}\) & Parameter write selection & 4D & CD & 0 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 78 & Reverse rotation prevention selection & 4E & CE & 0 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline \(79^{*}\) & Operation mode selection & 4F & CF & 0 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 80 & Motor capacity & 50 & D0 & 0 & \(\times\) & \(\bigcirc\) \\
\hline 81 & Number of motor poles & 51 & D1 & 0 & \(\times\) & \(\bigcirc\) \\
\hline 82 & Motor excitation current & 52 & D2 & 0 & \(\times\) & - & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 83 & Rated motor voltage & 53 & D3 & 0 & \(\times\) & - & - & \(\bigcirc\) & \[
(\times)
\] & - & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 84 & Rated motor frequency & 54 & D4 & 0 & \(\times\) & \(\bigcirc\) \\
\hline 85 & Excitation current break point & 55 & D5 & 0 & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 86 & Excitation current low speed scaling factor & 56 & D6 & 0 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 89 & Speed control gain (Advanced magnetic flux vector) & 59 & D9 & 0 & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 90 & Motor constant (R1) & 5A & DA & 0 & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 91 & Motor constant (R2) & 5B & DB & 0 & \(\times\) & - & \[
(\times)
\] & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 92 & Motor constant (L1)/d-axis inductance (Ld) & 5C & DC & 0 & \(\times\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 93 & Motor constant (L2)/q-axis inductance (Lq) & 5D & DD & 0 & \(\times\) & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 94 & Motor constant (X) & 5E & DE & 0 & \(\times\) & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 95 & Online auto tuning selection & 5F & DF & 0 & \(\times\) & - & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 96 & Auto tuning setting/status & 60 & E0 & 0 & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 100 & V/F1 (first frequency) & 00 & 80 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 101 & V/F1 (first frequency voltage) & 01 & 81 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 102 & V/F2 (second frequency) & 02 & 82 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 103 & V/F2 (second frequency voltage) & 03 & 83 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 104 & V/F3 (third frequency) & 04 & 84 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 105 & V/F3 (third frequency voltage) & 05 & 85 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס} \\
& \text { ס }
\end{aligned}
\]} & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{\text { * }}{\stackrel{\rightharpoonup}{0}}^{2}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{\pi} \\
& \frac{\mathbb{E}}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & \[
\xlongequal[4]{4}
\] & & & &  & \begin{tabular}{l}
\(\overline{0}\) \\
0. \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
\hline 1
\end{tabular} & \(\overline{0}\)
른
0
0
0
0
0
0
0
0 &  &  & \(\overline{0}\)
\(\mathbf{L}\)
0
0
0
0
0
©
के &  & & & \\
\hline 106 & V/F4 (fourth frequency) & 06 & 86 & 1 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(x\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 107 & V/F4 (fourth frequency voltage) & 07 & 87 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 108 & V/F5 (fifth frequency) & 08 & 88 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 109 & V/F5 (fifth frequency voltage) & 09 & 89 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 110 & Third acceleration/deceleration time & OA & 8A & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 111 & Third deceleration time & 0B & 8B & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 112 & Third torque boost & OC & 8C & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 113 & Third V/F (base frequency) & OD & 8D & 1 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\Delta\) & \(\Delta\) & \(\times\) & \(\Delta\) & \(\times\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 114 & Third stall prevention operation level & 0E & 8E & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 115 & Third stall prevention operation frequency & 0F & 8F & 1 & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 116 & Third output frequency detection & 10 & 90 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 117 & PU communication station number & 11 & 91 & 1 & \(\bigcirc\) & - \({ }^{*}\) & \(0^{* 5}\) \\
\hline 118 & PU communication speed & 12 & 92 & 1 & - & \(\bigcirc\) & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 119 & PU communication stop bit length / data length & 13 & 93 & 1 & \(\bigcirc\) & -*5 & \(0^{* 5}\) \\
\hline 120 & PU communication parity check & 14 & 94 & 1 & \(\bigcirc\) & -*5 & \(0^{* 5}\) \\
\hline 121 & PU communication retry count & 15 & 95 & 1 & \(\bigcirc\) & - \({ }^{\text {5 }}\) & \(0^{* 5}\) \\
\hline 122 & PU communication check time interval & 16 & 96 & 1 & \(\bigcirc\) & O*5 & \(0^{* 5}\) \\
\hline 123 & PU communication waiting time setting & 17 & 97 & 1 & \(\bigcirc\) & -*5 & -*5 \\
\hline 124 & PU communication CR/LF selection & 18 & 98 & 1 & \(\bigcirc\) & -*5 & \(0^{* 5}\) \\
\hline 125 & Terminal 2 frequency setting gain frequency & 19 & 99 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 126 & Terminal 4 frequency setting gain frequency & 1A & 9A & 1 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 127 & PID control automatic switchover frequency & 1B & 9B & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 128 & PID action selection & 1C & 9C & 1 & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 129 & PID proportional band & 1D & 9D & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 130 & PID integral time & 1E & 9E & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 131 & PID upper limit & 1F & 9F & 1 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 132 & PID lower limit & 20 & A0 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 133 & PID action set point & 21 & A1 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 134 & PID differential time & 22 & A2 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 135 & Electronic bypass sequence selection & 23 & A3 & 1 & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 136 & MC switchover interlock time & 24 & A4 & 1 & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 137 & Start waiting time & 25 & A5 & 1 & \(\bigcirc\) & \(\bigcirc\) & \[
(\times)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 138 & Bypass selection at a fault & 26 & A6 & 1 & \(\bigcirc\) & \(\bigcirc\) & \[
(\times)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 139 & Automatic switchover frequency from inverter to bypass operation & 27 & A7 & 1 & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 140 & Backlash acceleration stopping frequency & 28 & A8 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 141 & Backlash acceleration stopping time & 29 & A9 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ర్ } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *^{*} \\
& \frac{\otimes}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & 은
0
0
0
0
0
©
あ & \begin{tabular}{c}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline-1
\end{tabular} & \[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0.3 \\
& 0 \\
& 0
\end{aligned}
\] &  & \begin{tabular}{l}
\(\overline{0}\) \\
은 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 1
\end{tabular} &  & \[
\begin{gathered}
\text { * } \\
\text { 은 } \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \frac{1}{0} \\
0 \\
0
\end{gathered}
\] & & & \\
\hline 142 & Backlash deceleration stopping frequency & 2A & AA & 1 & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 143 & Backlash deceleration stopping time & 2B & AB & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 144 & Speed setting switchover & 2C & AC & 1 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 145 & PU display language selection & 2D & AD & 1 & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline 147 & Acceleration/deceleration time switching frequency & 2F & AF & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 148 & Stall prevention level at 0 V input & 30 & B0 & 1 & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 149 & Stall prevention level at 10 V input & 31 & B1 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 150 & Output current detection level & 32 & B2 & 1 & \(\bigcirc\) & - & - & - & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 151 & Output current detection signal delay time & 33 & B3 & 1 & - & - & \(\bigcirc\) & - & - & - & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 152 & Zero current detection level & 34 & B4 & 1 & \(\bigcirc\) \\
\hline 153 & Zero current detection time & 35 & B5 & 1 & \(\bigcirc\) & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 154 & Voltage reduction selection during stall prevention operation & 36 & B6 & 1 & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 155 & RT signal function validity condition selection & 37 & B7 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 156 & Stall prevention operation selection & 38 & B8 & 1 & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 157 & OL signal output timer & 39 & B9 & 1 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 158 & AM terminal function selection & 3A & BA & 1 & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 159 & Automatic switchover frequency range from bypass to inverter operation & 3B & BB & 1 & - & - & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 160 & User group read selection & 00 & 80 & 2 & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 161 & Frequency setting/key lock operation selection & 01 & 81 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 162 & Automatic restart after instantaneous power failure selection & 02 & 82 & 2 & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & - & - & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline 163 & First cushion time for restart & 03 & 83 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 164 & First cushion voltage for restart & 04 & 84 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 165 & Stall prevention operation level for restart & 05 & 85 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 166 & Output current detection signal retention time & 06 & 86 & 2 & \(\bigcirc\) \\
\hline 167 & Output current detection operation selection & 07 & 87 & 2 & \(\bigcirc\) \\
\hline 168 & Parameter for manufacturer settin & g. Do & not & & & & & & & & & & & & & \\
\hline 170 & Watt-hour meter clear & OA & 8A & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 171 & Operation hour meter clear & OB & 8B & 2 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 172 & User group registered display/ batch clear & OC & 8C & 2 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 173 & User group registration & OD & 8D & 2 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 174 & User group clear & OE & 8E & 2 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 178 & STF terminal function selection & 12 & 92 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 179 & STR terminal function selection & 13 & 93 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 180 & RL terminal function selection & 14 & 94 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 181 & RM terminal function selection & 15 & 95 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 182 & RH terminal function selection & 16 & 96 & 2 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{\text {1 }}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{\text { N }}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{* 3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\begin{gathered}
*_{*}^{\lambda} \\
\stackrel{\circ}{\circ}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *^{*} \frac{1}{\pi} \\
& \frac{0}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & \[
\begin{aligned}
& \overline{0} \\
& \text { 름 } \\
& 0 \\
& 0 \\
& 0 \\
& 0.3 \\
& 0 \\
& 0
\end{aligned}
\] &  & \begin{tabular}{l} 
은 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0
\end{tabular} & \(\overline{0}\)
0
0
0
0
0
0
0
© &  & & & \\
\hline 183 & RT terminal function selection & 17 & 97 & 2 & - & ○ & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & - & ○ & \(\times\) & \(\bigcirc\) \\
\hline 184 & AU terminal function selection & 18 & 98 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 185 & JOG terminal function selection & 19 & 99 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 186 & CS terminal function selection & 1A & 9A & 2 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 187 & MRS terminal function selection & 1B & 9B & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 188 & STOP terminal function selection & 1C & 9C & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 189 & RES terminal function selection & 1D & 9D & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 190 & RUN terminal function selection & 1E & 9E & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 191 & SU terminal function selection & 1F & 9F & 2 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 192 & IPF terminal function selection & 20 & A0 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 193 & OL terminal function selection & 21 & A1 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 194 & FU terminal function selection & 22 & A2 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 195 & ABC1 terminal function selection & 23 & A3 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 196 & ABC2 terminal function selection & 24 & A4 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 232 & Multi-speed setting (8 speed) & 28 & A8 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 233 & Multi-speed setting (9 speed) & 29 & A9 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 234 & Multi-speed setting (10 speed) & 2A & AA & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 235 & Multi-speed setting (11 speed) & 2B & AB & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 236 & Multi-speed setting (12 speed) & 2C & AC & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & - & \(\bigcirc\) & - & \(\Delta\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 237 & Multi-speed setting (13 speed) & 2D & AD & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 238 & Multi-speed setting (14 speed) & 2E & AE & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 239 & Multi-speed setting (15 speed) & 2F & AF & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 240 & Soft-PWM operation selection & 30 & B0 & 2 & \(\bigcirc\) \\
\hline 241 & Analog input display unit switchover & 31 & B1 & 2 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 242 & Terminal 1 added compensation amount (terminal 2) & 32 & B2 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 243 & Terminal 1 added compensation amount (terminal 4) & 33 & B3 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 244 & Cooling fan operation selection & 34 & B4 & 2 & \(\bigcirc\) \\
\hline 245 & Rated slip & 35 & B5 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 246 & Slip compensation time constant & 36 & B6 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 247 & Constant output range slip compensation selection & 37 & B7 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 248 & Self power management selection & 38 & B8 & 2 & \(\bigcirc\) & \(\bigcirc\) & (○) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 249 & Earth (ground) fault detection at start & 39 & B9 & 2 & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 250 & Stop selection & 3A & BA & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 251 & Output phase loss protection selection & 3B & BB & 2 & \(\bigcirc\) \\
\hline 252 & Override bias & 3C & BC & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 253 & Override gain & 3D & BD & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 254 & Main circuit power OFF waiting time & 3E & BE & 2 & \(\bigcirc\) & \(\bigcirc\) & (○) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 255 & Life alarm status display & 3F & BF & 2 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 256 & Inrush current limit circuit life display & 40 & C0 & 2 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 257 & Control circuit capacitor life display & 41 & C1 & 2 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 258 & Main circuit capacitor life display & 42 & C2 & 2 & \(\bigcirc\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 259 & Main circuit capacitor life measuring & 43 & C3 & 2 & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס } \\
& \text { D } \\
& \text { 世 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{2}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{* 3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{*} \\
& \frac{\otimes}{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & \begin{tabular}{l}
\(\overline{0}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
01 \\
0 \\
0
\end{tabular} & 은
0
0
0
0
©
© & \begin{tabular}{l}
\(\overline{0}\) \\
0. \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 1
\end{tabular} &  &  & & & \\
\hline 260 & PWM frequency automatic switchover & 44 & C4 & 2 & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 261 & Power failure stop selection & 45 & C5 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 262 & Subtracted frequency at deceleration start & 46 & C6 & 2 & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 263 & Subtraction starting frequency & 47 & C7 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 264 & Power-failure deceleration time 1 & 48 & C8 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 265 & Power-failure deceleration time 2 & 49 & C9 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 266 & Power failure deceleration time switchover frequency & 4A & CA & 2 & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 267 & Terminal 4 input selection & 4B & CB & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 268 & Monitor decimal digits selection & 4C & CC & 2 & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 269 & Parameter for manufacturer settin & Do & not & & & & & & & & & & & & & \\
\hline 270 & Stop-on contact/load torque high- speed frequency control selection & 4E & CE & 2 & \(\bigcirc\) & - & - & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 271 & High-speed setting maximum current & 4F & CF & 2 & \(\bigcirc\) & - & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 272 & Middle-speed setting minimum current & 50 & D0 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & - \\
\hline 273 & Current averaging range & 51 & D1 & 2 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 274 & Current averaging filter time constant & 52 & D2 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 275 & Stop-on contact excitation current low-speed scaling factor & 53 & D3 & 2 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 276 & PWM carrier frequency at stopon contact & 54 & D4 & 2 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 278 & Brake opening frequency & 56 & D6 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 279 & Brake opening current & 57 & D7 & 2 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 280 & Brake opening current detection time & 58 & D8 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 281 & Brake operation time at start & 59 & D9 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 282 & Brake operation frequency & 5A & DA & 2 & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 283 & Brake operation time at stop & 5B & DB & 2 & \(\bigcirc\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 284 & Deceleration detection function selection & 5C & DC & 2 & \(\times\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 285 & Overspeed detection frequency (Speed deviation excess detection frequency) & 5D & DD & 2 & \(\times\) & \(\Delta\) & - & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & - \\
\hline 286 & Droop gain & 5E & DE & 2 & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 287 & Droop filter time constant & 5F & DF & 2 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 288 & Droop function activation selection & 60 & E0 & 2 & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 289 & Inverter output terminal filter & 61 & E1 & 2 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 290 & Monitor negative output selection & 62 & E2 & 2 & \(\bigcirc\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 291 & Pulse train I/O selection & 63 & E3 & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 292 & Automatic acceleration/ deceleration & 64 & E4 & 2 & \(\Delta\) & \(\Delta\) & \[
\begin{gathered}
\Delta \\
(\times) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\Delta\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 293 & Acceleration/deceleration separate selection & 65 & E5 & 2 & \(\bigcirc\) & \(\bigcirc\) & \[
\begin{gathered}
\circ \\
(x)
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 294 & UV avoidance voltage gain & 66 & E6 & 2 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 295 & Frequency change increment amount setting & 67 & E7 & 2 & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{14}{3}
\]} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{*}{*} \stackrel{\vdots}{\circ}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{\pi} \\
& \frac{\mathbb{E}}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \stackrel{\pi}{\pi} \\
& \frac{\mathbf{e}}{0} \\
& \frac{1}{4}
\end{aligned}
\]} \\
\hline & & & & & & &  &  & 은
0
0
0
0
0
0.1
0
0 &  &  &  & \[
\begin{aligned}
& \text { f } \\
& \text { O} \\
& \frac{1}{4} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & \\
\hline 296 & Password lock level & 68 & E8 & 2 & \(\bigcirc\) & \(\bigcirc\) & - & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - \\
\hline 297 & Password lock/unlock & 69 & E9 & 2 & \(\bigcirc\) & \(0^{* 6}\) & \(\bigcirc\) \\
\hline 298 & Frequency search gain & 6A & EA & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 299 & Rotation direction detection selection at restarting & 6B & EB & 2 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 300 & BCD input bias AX & 00 & 80 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 301 & BCD input gain AX & 01 & 81 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 302 & BIN input bias AX & 02 & 82 & 3 & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 303 & BIN input gain AX & 03 & 83 & 3 & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 304 & Digital/analog input compensation enable/disable selection AX & 04 & 84 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 305 & Read timing operation selection AX & 05 & 85 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 306 & Analog output signal selection AY & 06 & 86 & 3 & \(\bigcirc\) \\
\hline 307 & Setting for zero analog output AY & 07 & 87 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 308 & Setting for maximum analog output AY & 08 & 88 & 3 & \(\bigcirc\) \\
\hline 309 & Analog output voltage/current signal switchover AY & 09 & 89 & 3 & \(\bigcirc\) \\
\hline 310 & Analog meter voltage output selection AY & OA & 8A & 3 & \(\bigcirc\) \\
\hline 311 & Setting for zero analog meter voltage output AY & OB & 8B & 3 & \(\bigcirc\) \\
\hline 312 & Setting for maximum analog meter voltage output AY & OC & 8C & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 313 & DOO output selection AY NC NCE & OD & 8D & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 314 & DO1 output selection AY NC NCE & OE & 8E & 3 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 315 & DO2 output selection AY NC NCE & OF & 8F & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 316 & DO3 output selection AY & 10 & 90 & 3 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 317 & DO4 output selection AY & 11 & 91 & 3 & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline 318 & DO5 output selection AY & 12 & 92 & 3 & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 319 & DO6 output selection AY & 13 & 93 & 3 & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline 320 & RA1 output selection AR & 14 & 94 & 3 & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline 321 & RA2 output selection AR & 15 & 95 & 3 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 322 & RA3 output selection AR & 16 & 96 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 323 & AM0 0 V adjustment AY & 17 & 97 & 3 & - & - & - & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 324 & AM1 0 mA adjustment AY & 18 & 98 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 326 & Motor temperature feedback reference AZ & 1A & 9A & 3 & \(\times\) & \(\times\) & \[
(\times)
\] & \(\bigcirc\) & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 329 & Digital input unit selection AX & 1D & 9D & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\times\) & \(\bigcirc\) \\
\hline 331 & RS-485 communication station number & 1F & 9F & 3 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 332 & RS-485 communication speed & 20 & A0 & 3 & \(\bigcirc\) & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 333 & RS-485 communication stop bit length / data length & 21 & A1 & 3 & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 334 & RS-485 communication parity check selection & 22 & A2 & 3 & \(\bigcirc\) & -*5 & -*5 \\
\hline 335 & RS-485 communication retry count & 23 & A3 & 3 & \(\bigcirc\) & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|c|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{O} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\begin{gathered}
\pm \\
\stackrel{ \pm}{\circ} \\
0 \\
0
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{\pi}^{\pi} \\
& \frac{\otimes}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & 은
0
0
0
0
0.1
0
0
0 &  &  & 을
0
0
0
©
©
© &  & & & \\
\hline 336 & RS-485 communication check time interval & 24 & A4 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 337 & RS-485 communication waiting time setting & 25 & A5 & 3 & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 338 & Communication operation command source & 26 & A6 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 339 & Communication speed command source & 27 & A7 & 3 & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 340 & Communication startup mode selection & 28 & A8 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & -*5 & -*5 \\
\hline 341 & RS-485 communication CR/LF selection & 29 & A9 & 3 & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 342 & Communication EEPROM write selection & 2A & AA & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 343 & Communication error count & 2B & AB & 3 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 345 & DeviceNet address ND & 2D & \(A D\) & 3 & \(\bigcirc\) & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 346 & DeviceNet baud rate ND & 2E & AE & 3 & \(\bigcirc\) & -*5 & \(0^{* 5}\) \\
\hline 349 & Communication reset selection NC NCE ND NP NF & 31 & B1 & 3 & \(\bigcirc\) & -*5 & -*5 \\
\hline 350 & Stop position command selection AP AL TP APR APS & 32 & B2 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 351 & Orientation speed AP AL TP APR APS & 33 & B3 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 352 & Creep speed AP AL TP APR APS & 34 & B4 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 353 & Creep switchover position AP AL TP APR APS & 35 & B5 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 354 & Position loop switchover position AP AL TP APR APS & 36 & B6 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 355 & DC injection brake start position AP AL TP APR APS & 37 & B7 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 356 & Internal stop position command AP AL TP APR APS & 38 & B8 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 357 & Orientation in-position zone AP AL TP APR APS & 39 & B9 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 358 & Servo torque selection AP AL TP APR APS & 3A & BA & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 359 & Encoder rotation direction AP AL APR APS & 3B & BB & 3 & \(\bigcirc\) & \(\bigcirc\) & \[
(\Delta)
\] & \(\bigcirc\) & \[
(\Delta)
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 360 & 16-bit data selection AP AL TP APR APS & 3C & BC & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 361 & Position shift AP AL TP APR APS & 3D & BD & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 362 & Orientation position loop gain AP AL TP APR APS & 3E & BE & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 363 & Completion signal output delay time AP AL TP APR APS & 3F & BF & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 364 & Encoder stop check time AP AL TP APR APS & 40 & C0 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 365 & Orientation limit AP AL TP APR APS & 41 & C1 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 366 & Recheck time AP AL TP APR APS & 42 & C2 & 3 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 367 & Speed feedback range AP AL TP APR APS & 43 & C3 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 368 & Feedback gain AP AL TP APR APS & 44 & C4 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|c|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס} \\
& \dot{\pi} \\
& \boldsymbol{\sim}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{*}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{\pi} \\
& \stackrel{\otimes}{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \(\mathbf{1}\) \\
0 \\
0 \\
0
\end{tabular} &  & \[
\begin{aligned}
& \text { O} \\
& \text { 르 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 00 \\
& 1
\end{aligned}
\] &  &  & & & \\
\hline 369 & Number of encoder pulses AP AL & 45 & C5 & 3 & - & - & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & - & \[
(x)
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 373 & Encoder position tuning setting/ status APR APS & 49 & C9 & 3 & \(\times\) & \(\times\) & (○) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 374 & Overspeed detection level & 4A & CA & 3 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 376 & Encoder signal loss detection enable/disable selection AP AL APR APS & 4C & CC & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 379 & SSCNET III rotation direction selection NS & 4F & CF & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & -*5 & -*5 \\
\hline 380 & Acceleration S-pattern 1 & 50 & D0 & 3 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 381 & Deceleration S-pattern 1 & 51 & D1 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 382 & Acceleration S-pattern 2 & 52 & D2 & 3 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 383 & Deceleration S-pattern 2 & 53 & D3 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 384 & Input pulse division scaling factor & 54 & D4 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 385 & Frequency for zero input pulse & 55 & D5 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 386 & Frequency for maximum input pulse & 56 & D6 & 3 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 393 & Orientation selection AP AL TP APR APS & 5D & DD & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 394 & Number of machine side gear teeth AP AL TP APR & 5E & DE & 3 & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 395 & Number of motor side gear teeth AP AL TP APR & 5F & DF & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 396 & Orientation speed gain ( P term) AP AL TP APR APS & 60 & E0 & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 397 & Orientation speed integral time AP AL TP APR APS & 61 & E1 & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 398 & Orientation speed gain (D term) AP AL TP APR APS & 62 & E2 & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 399 & Orientation deceleration ratio AP AL TP APR APS & 63 & E3 & 3 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 406 & High resolution analog input selection AZ & 06 & 86 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 407 & Motor temperature detection filter AZ & 07 & 87 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 408 & Motor thermistor selection AZ & 08 & 88 & \(\bigcirc\) \\
\hline 413 & Encoder pulse division ratio AL & OD & 8D & 4 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 414 & PLC function operation selection & OE & 8E & 4 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline 415 & Inverter operation lock mode setting & OF & 8F & 4 & \(\bigcirc\) \\
\hline 416 & Pre-scale function selection & 10 & 90 & 4 & \(\bigcirc\) \\
\hline 417 & Pre-scale setting value & 11 & 91 & 4 & \(\bigcirc\) \\
\hline 418 & Extension output terminal filter AY AR & 12 & 92 & 4 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 419 & Position command source selection & 13 & 93 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 420 & Command pulse scaling factor numerator (electronic gear numerator) & 14 & 94 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 421 & Command pulse multiplication denominator (electronic gear denominator) & 15 & 95 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 422 & Position control gain & 16 & 96 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { శ్ర } \\
& \text { థ }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{array}{|l|}
\hline \\
\hline \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\]} & \multicolumn{3}{|c|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*} \stackrel{\rightharpoonup}{0}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{\pi}^{\pi} \\
& \frac{\otimes}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \stackrel{\pi}{\pi} \\
& \frac{\mathbf{e}}{0} \\
& \frac{1}{4}
\end{aligned}
\]} \\
\hline & & & & & & & \begin{tabular}{l}
\(\overline{0}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} &  & \(\overline{0}\)
0
0
0
0
0
0.3
0
0
0
0 &  & \begin{tabular}{l}
\(\overline{0}\) \\
은 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 1
\end{tabular} &  & \[
\begin{gathered}
\text { * } \\
\text { 은 } \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \frac{1}{0} \\
0 \\
0
\end{gathered}
\] & & & \\
\hline 423 & Position feed forward gain & 17 & 97 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & - \\
\hline 424 & Position command acceleration/ deceleration time constant & 18 & 98 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 425 & Position feed forward command filter & 19 & 99 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 426 & In-position width & 1A & 9A & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 427 & Excessive level error & 1B & 9B & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 428 & Command pulse selection & 1C & 9C & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 429 & Clear signal selection & 1D & 9D & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 430 & Pulse monitor selection & 1E & 9E & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 432 & Pulse train torque command bias AL & 20 & A0 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 433 & Pulse train torque command gain AL & 21 & A1 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 434 & Network number (CC-Link IE) NCE & 22 & A2 & 4 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & -*5 & -*5 \\
\hline 435 & Station number (CC-Link IE) NCE & 23 & A3 & 4 & \(\bigcirc\) & -*5 & \(0^{* 5}\) \\
\hline 446 & Model position control gain & 2E & AE & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 447 & Digital torque command bias AX & 2 F & AF & 4 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 448 & Digital torque command gain AX & 30 & B0 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 449 & SSCNET III input filter setting NS & 31 & B1 & 4 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & -*5 & \(0^{* 5}\) \\
\hline 450 & Second applied motor & 32 & B2 & 4 & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 451 & Second motor control method selection & 33 & B3 & 4 & \(\bigcirc\) \\
\hline 453 & Second motor capacity & 35 & B5 & 4 & \(\times\) & \(\bigcirc\) \\
\hline 454 & Number of second motor poles & 36 & B6 & 4 & \(\times\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 455 & Second motor excitation current & 37 & B7 & 4 & \(\times\) & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 456 & Rated second motor voltage & 38 & B8 & 4 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 457 & Rated second motor frequency & 39 & B9 & 4 & \(\times\) & \(\bigcirc\) \\
\hline 458 & Second motor constant (R1) & 3A & BA & 4 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline 459 & Second motor constant (R2) & 3B & BB & 4 & \(\times\) & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 460 & Second motor constant (L1) / daxis inductance (Ld) & 3C & BC & 4 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 461 & Second motor constant (L2) / qaxis inductance (Lq) & 3D & BD & 4 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 462 & Second motor constant (X) & 3E & BE & 4 & \(\times\) & - & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 463 & Second motor auto tuning setting/status & 3F & BF & 4 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 464 & Digital position control sudden stop deceleration time & 40 & C0 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 465 & First target position lower 4 digits & 41 & C1 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 466 & First target position upper 4 digits & 42 & C2 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 467 & Second target position lower 4 digits & 43 & C3 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 468 & Second target position upper 4 digits & 44 & C4 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 469 & Third target position lower 4 digits & 45 & C5 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 470 & Third target position upper 4 digits & 46 & C6 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}{ }^{2}\)} & \multicolumn{3}{|c|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్ס } \\
& \text { థ }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector*3} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \stackrel{\pi}{\circ} \\
& 0
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& { }^{*} \frac{\pi}{\pi} \\
& \frac{0}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & 은
0
0
0
0
0
©
© &  & 율
0
0
0
0
0.1
0
0
0 &  &  &  &  & & & \\
\hline 471 & Fourth target position lower 4 digits & 47 & C7 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 472 & Fourth target position upper 4 digits & 48 & C8 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 473 & Fifth target position lower 4 digits & 49 & C9 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & - & - \\
\hline 474 & Fifth target position upper 4 digits & 4A & CA & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 475 & Sixth target position lower 4 digits & 4B & CB & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 476 & Sixth target position upper 4 digits & 4C & CC & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 477 & Seventh target position lower 4 digits & 4D & CD & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 478 & Seventh target position upper 4 digits & 4E & CE & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 479 & Eighth target position lower 4 digits & 4F & CF & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 480 & Eighth target position upper 4 digits & 50 & D0 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 481 & Ninth target position lower 4 digits & 51 & D1 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 482 & Ninth target position upper 4 digits & 52 & D2 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 483 & Tenth target position lower 4 digits & 53 & D3 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 484 & Tenth target position upper 4 digits & 54 & D4 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 485 & Eleventh target position lower 4 digits & 55 & D5 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 486 & Eleventh target position upper 4 digits & 56 & D6 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 487 & Twelfth target position lower 4 digits & 57 & D7 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 488 & Twelfth target position upper 4 digits & 58 & D8 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 489 & Thirteenth target position lower 4 digits & 59 & D9 & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 490 & Thirteenth target position upper 4 digits & 5A & DA & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 491 & Fourteenth target position lower 4 digits & 5B & DB & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 492 & Fourteenth target position upper 4 digits & 5C & DC & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 493 & Fifteenth target position lower 4 digits & 5D & DD & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 494 & Fifteenth target position upper 4 digits & 5E & DE & 4 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 495 & Remote output selection & 5F & DF & 4 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 496 & Remote output data 1 & 60 & E0 & 4 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 497 & Remote output data 2 & 61 & E1 & 4 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 498 & PLC function flash memory clear & 62 & E2 & 4 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 499 & SSCNET III operation selection NS & 63 & E3 & 4 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(0^{* 5}\) & -*5 \\
\hline 500 & Communication error execution waiting time NC NCE ND NP NF & 00 & 80 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్ळ } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{N}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector*3} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{\pi}^{\pi} \\
& \frac{\otimes}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & \(\overline{0}\)
\(\dot{y}\)
0
0
0
0
0
©
के &  & \(\overline{0}\)
0
0
0
0
0
0
0.
0.
0 &  & \[
\begin{aligned}
& \text { O} \\
& \text { O} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0.0
\end{aligned}
\] &  &  & & & \\
\hline 501 & Communication error occurrence count display NC NCE ND NP NF & 01 & 81 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & - & - & - & - & \(\times\) & - & \(\bigcirc\) \\
\hline 502 & Stop mode selection at communication error & 02 & 82 & 5 & \(\bigcirc\) \\
\hline 503 & Maintenance timer 1 & 03 & 83 & 5 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 504 & Maintenance timer 1 warning output set time & 04 & 84 & 5 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 505 & Speed setting reference & 05 & 85 & 5 & \(\bigcirc\) \\
\hline 516 & S-pattern time at a start of acceleration & 10 & 90 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 517 & S-pattern time at a completion of acceleration & 11 & 91 & 5 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - & - & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 518 & S-pattern time at a start of deceleration & 12 & 92 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 519 & S-pattern time at a completion of deceleration & 13 & 93 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 522 & Output stop frequency & 16 & 96 & 5 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - \\
\hline 539 & MODBUS RTU communication check time interval & 27 & A7 & 5 & \(\bigcirc\) & -*5 & -*5 \\
\hline 541 & Frequency command sign selection NC NCE NP & 29 & A9 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 542 & Communication station number (CC-Link) NC & 2A & AA & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & -*5 & -*5 \\
\hline 543 & \begin{tabular}{l}
Baud rate selection (CC- \\
Link) NC
\end{tabular} & 2B & AB & 5 & \(\bigcirc\) & -*5 & -*5 \\
\hline 544 & CC-Link extended setting NC & 2C & AC & 5 & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) & - & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 547 & USB communication station number & 2F & AF & 5 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & -*5 & -*5 \\
\hline 548 & USB communication check time interval & 30 & B0 & 5 & \(\bigcirc\) & -*5 & -*5 \\
\hline 549 & Protocol selection & 31 & B1 & 5 & - & \(\bigcirc\) & - & - & - & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 550 & NET mode operation command source selection & 32 & B2 & 5 & \(\bigcirc\) & - & \(0^{* 5}\) & \(0^{* 5}\) \\
\hline 551 & PU mode operation command source selection & 33 & B3 & 5 & \(\bigcirc\) & -*5 & -*5 \\
\hline 552 & Frequency jump range & 34 & B4 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 553 & PID deviation limit & 35 & B5 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 554 & PID signal operation selection & 36 & B6 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 555 & Current average time & 37 & B7 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 556 & Data output mask time & 38 & B8 & 5 & \(\bigcirc\) \\
\hline 557 & Current average value monitor signal output reference current & 39 & B9 & 5 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 560 & Second frequency search gain & 3C & BC & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 561 & PTC thermistor protection level & 3D & BD & 5 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 563 & Energization time carrying-over times & 3F & BF & 5 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 564 & Operating time carrying-over times & 40 & C0 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 565 & Second motor excitation current break point & 41 & C1 & 5 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 566 & Second motor excitation current low-speed scaling factor & 42 & C2 & 5 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 569 & Second motor speed control gain & 45 & C5 & 5 & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 570 & Multiple rating setting & 46 & C6 & 5 & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్డ్ } \\
& \dot{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \pm \\
& \substack{2 \\
3}
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{*}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \text { * } \\
& \stackrel{\rightharpoonup}{\circ} \\
& 0
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{*} \\
& \frac{0}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & \begin{tabular}{l}
\(\overline{3}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0.1 \\
0 \\
0 \\
0
\end{tabular} & \(\overline{0}\)
른
0
0
0
©
©
के &  & \(\overline{0}\)
\(\dot{H}\)
0
0
0
0
©
के &  & & & \\
\hline 571 & Holding time at a start & 47 & C7 & 5 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 573 & 4 mA input check selection & 49 & C9 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 574 & Second motor online auto tuning & 4A & CA & 5 & \(\times\) & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 575 & Output interruption detection time & 4B & CB & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 576 & Output interruption detection level & 4C & CC & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 577 & Output interruption cancel level & 4D & CD & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 592 & Traverse function selection & 5C & DC & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 593 & Maximum amplitude amount & 5D & DD & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 594 & Amplitude compensation amount during deceleration & 5E & DE & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 595 & Amplitude compensation amount during acceleration & 5F & DF & 5 & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 596 & Amplitude acceleration time & 60 & E0 & 5 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 597 & Amplitude deceleration time & 61 & E1 & 5 & \(\bigcirc\) & - & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 598 & Undervoltage level & 62 & E2 & 5 & \(\bigcirc\) & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \[
(\times)
\] & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 599 & X10 terminal input selection & 63 & E3 & 5 & \(\bigcirc\) \\
\hline 600 & First free thermal reduction frequency 1 & 00 & 80 & 6 & \(\bigcirc\) \\
\hline 601 & First free thermal reduction ratio 1 & 01 & 81 & 6 & \(\bigcirc\) \\
\hline 602 & First free thermal reduction frequency 2 & 02 & 82 & 6 & \(\bigcirc\) \\
\hline 603 & First free thermal reduction ratio 2 & 03 & 83 & 6 & \(\bigcirc\) \\
\hline 604 & First free thermal reduction frequency 3 & 04 & 84 & 6 & \(\bigcirc\) \\
\hline 606 & Power failure stop external signal input selection & 06 & 86 & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 607 & Motor permissible load level & 07 & 87 & 6 & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 608 & Second motor permissible load level & 08 & 88 & 6 & \(\bigcirc\) \\
\hline 609 & PID set point/deviation input selection & 09 & 89 & 6 & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 610 & PID measured value input selection & 0A & 8A & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 611 & Acceleration time at a restart & OB & 8B & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 617 & Reverse rotation excitation current low-speed scaling factor & 11 & 91 & 6 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 635 & Cumulative pulse clear signal selection AP AL TP APR APS & 23 & A3 & 6 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 636 & Cumulative pulse division scaling factor AP AL TP APR APS & 24 & A4 & 6 & \(\bigcirc\) \\
\hline 637 & Control terminal optionCumulative pulse division scaling factor AP AL TP APR APS & 25 & A5 & 6 & \(\bigcirc\) & - & - & - & \(\bigcirc\) \\
\hline 638 & Cumulative pulse storage AP AL TP APR APS & 26 & A6 & 6 & \(\bigcirc\) \\
\hline 639 & Brake opening current selection & 27 & A7 & 6 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 640 & Brake operation frequency selection & 28 & A8 & 6 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{*} \underset{\substack{\circ \\ \hline}}{ }
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & \begin{tabular}{l}
\(\overline{3}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
©
\end{tabular} &  & \(\overline{3}\)
0
0
0
0
0
0
0
0
0 &  &  &  &  & & & \\
\hline 641 & Second brake sequence operation selection & 29 & A9 & 6 & - & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 642 & Second brake opening frequency & 2A & AA & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 643 & Second brake opening current & 2B & AB & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 644 & Second brake opening current detection time & 2 C & AC & 6 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 645 & Second brake operation time at start & 2D & AD & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 646 & Second brake operation frequency & 2E & AE & 6 & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 647 & Second brake operation time at stop & 2F & AF & 6 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 648 & Second deceleration detection function selection & 30 & B0 & 6 & \(\times\) & \(\Delta\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 650 & Second brake opening current selection & 32 & B2 & 6 & \(\times\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 651 & Second brake operation frequency selection & 33 & B3 & 6 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 653 & Speed smoothing control & 35 & B5 & 6 & - & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 654 & Speed smoothing cutoff frequency & 36 & B6 & 6 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 655 & Analog remote output selection & 37 & B7 & 6 & \(\bigcirc\) \\
\hline 656 & Analog remote output 1 & 38 & B8 & 6 & \(\bigcirc\) & - & - & - & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 657 & Analog remote output 2 & 39 & B9 & 6 & - & - & - & - & \(\bigcirc\) & - & - & - & - & \(\times\) & \(\times\) & \(\times\) \\
\hline 658 & Analog remote output 3 & 3A & BA & 6 & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 659 & Analog remote output 4 & 3B & BB & 6 & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 660 & Increased magnetic excitation deceleration operation selection & 3C & BC & 6 & \(\bigcirc\) & - & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 661 & Magnetic excitation increase rate & 3D & BD & 6 & \(\bigcirc\) & - & \[
(x)
\] & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 662 & Increased magnetic excitation current level & 3E & BE & 6 & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 663 & Control circuit temperature signal output level & 3F & BF & 6 & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 665 & Regeneration avoidance frequency gain & 41 & C1 & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 668 & Power failure stop frequency gain & 44 & C4 & 6 & - & - & - & \(\bigcirc\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 673 & SF-PR slip amount adjustment operation selection & 49 & C9 & 6 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 674 & SF-PR slip amount adjustment gain & 4A & CA & 6 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 679 & Second droop gain & 4F & CF & 6 & \(\times\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 680 & Second droop filter time constant & 50 & D0 & 6 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 681 & Second droop function activation selection & 51 & D1 & 6 & \(\times\) & - & - & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 682 & Second droop break point gain & 52 & D2 & 6 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 683 & Second droop break point torque & 53 & D3 & 6 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 684 & Tuning data unit switchover & 54 & D4 & 6 & \(\times\) & \(\bigcirc\) \\
\hline 686 & Maintenance timer 2 & 56 & D6 & 6 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 687 & Maintenance timer 2 warning output set time & 57 & D7 & 6 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 688 & Maintenance timer 3 & 58 & D8 & 6 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method* \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్డ } \\
& \text { థ }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{*}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \stackrel{\pi}{\circ} \\
& 0
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  & 을
0
0
0
0
0
0
0
0 &  &  &  & \[
\begin{aligned}
& \text { fo } \\
& \text { 을 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & \\
\hline 689 & Maintenance timer 3 warning output set time & 59 & D9 & 6 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 690 & Deceleration check time & 5A & DA & 6 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 692 & Second free thermal reduction frequency 1 & 5C & DC & 6 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 693 & Second free thermal reduction ratio 1 & 5D & DD & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 694 & Second free thermal reduction frequency 2 & 5E & DE & 6 & \(\bigcirc\) \\
\hline 695 & Second free thermal reduction ratio 2 & 5F & DF & 6 & \(\bigcirc\) \\
\hline 696 & Second free thermal reduction frequency 3 & 60 & E0 & 6 & \(\bigcirc\) \\
\hline 699 & Input terminal filter & 63 & E3 & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 702 & Maximum motor frequency & 02 & 82 & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 706 & Induced voltage constant (phi f) & 06 & 86 & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(0) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 707 & Motor inertia (integer) & 07 & 87 & 7 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 711 & Motor Ld decay ratio & OB & 8B & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 712 & Motor Lq decay ratio & OC & 8C & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \times \\
(0) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 717 & Starting resistance tuning compensation & 11 & 91 & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 721 & Starting magnetic pole position detection pulse width & 15 & 95 & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 724 & Motor inertia (exponent) & 18 & 98 & 7 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 725 & Motor protection current level & 19 & 99 & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \begin{tabular}{l}
\(\times\) \\
(○)
\end{tabular} & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 738 & Second motor induced voltage constant (phi f) & 26 & A6 & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(0) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 739 & Second motor Ld decay ratio & 27 & A7 & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ)
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 740 & Second motor Lq decay ratio & 28 & A8 & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 741 & Second starting resistance tuning compensation & 29 & A9 & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 742 & Second motor magnetic pole detection pulse width & 2A & AA & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 743 & Second motor maximum frequency & 2B & AB & 7 & \(\times\) & \(\times\) & (○) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 744 & Second motor inertia (integer) & 2C & AC & 7 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 745 & Second motor inertia (exponent) & 2D & AD & 7 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 746 & Second motor protection current level & 2E & AE & 7 & \(\times\) & \(\times\) & \[
\begin{gathered}
\times \\
(\mathrm{O})
\end{gathered}
\] & \(\times\) & \[
\begin{gathered}
\times \\
(0) \\
\hline
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline 747 & Second motor low-speed range torque characteristic selection & 2F & AF & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 750 & Motor temperature detection level AZ & 32 & B2 & 7 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 751 & Reference motor temperature AZ & 33 & B3 & 7 & \(\bigcirc\) \\
\hline 753 & Second PID action selection & 35 & B5 & 7 & \(\bigcirc\) & - & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 754 & Second PID control automatic switchover frequency & 36 & B6 & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr．} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code＊\({ }^{*}\)} & \multicolumn{9}{|c|}{Control method＊2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{\text { N }}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{* 3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& * \\
& \stackrel{\pi}{\pi} \\
& \frac{⿺ 𠃊}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\pm \\
\stackrel{\pi}{む} \\
\frac{\mathrm{e}}{0} \\
\overline{\text { }}
\end{gathered}
\]} \\
\hline & & & & & & &  & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
1
\end{tabular} & \(\overline{0}\)
를
0
0
0
0
0.1
0
0
0 &  &  &  &  & & & \\
\hline 755 & Second PID action set point & 37 & B7 & 7 & － & － & － & \(\times\) & \(\times\) & － & \(\times\) & － & \(\times\) & － & \(\bigcirc\) & \(\bigcirc\) \\
\hline 756 & Second PID proportional band & 38 & B8 & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 757 & Second PID integral time & 39 & B9 & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 758 & Second PID differential time & 3A & BA & 7 & － & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & － & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 759 & PID unit selection & 3B & BB & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 760 & Pre－charge fault selection & 3C & BC & 7 & \(\bigcirc\) & － & － & \(\times\) & \(\times\) & － & \(\times\) & － & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 761 & Pre－charge ending level & 3D & BD & 7 & － & － & － & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & － & \(\times\) & － & \(\bigcirc\) & \(\bigcirc\) \\
\hline 762 & Pre－charge ending time & 3E & BE & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 763 & Pre－charge upper detection level & 3F & BF & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 764 & Pre－charge time limit & 40 & C0 & 7 & － & － & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & － & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 765 & Second pre－charge fault selection & 41 & C1 & 7 & － & － & － & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 766 & Second pre－charge ending level & 42 & C2 & 7 & \(\bigcirc\) & － & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 767 & Second pre－charge ending time & 43 & C3 & 7 & \(\bigcirc\) & － & － & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & － & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 768 & Second pre－charge upper detection level & 44 & C4 & 7 & \(\bigcirc\) & － & \(\bigcirc\) & \(\times\) & \(\times\) & － & \(\times\) & － & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 769 & Second pre－charge time limit & 45 & C5 & 7 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 774 & Operation panel monitor selection 1 & 4A & CA & 7 & － & － & － & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 775 & Operation panel monitor selection 2 & 4B & CB & 7 & \(\bigcirc\) & － & － & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 776 & Operation panel monitor selection 3 & 4C & CC & 7 & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 777 & 4 mA input fault operation frequency & 4D & CD & 7 & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) \\
\hline 778 & 4 mA input check filter & 4E & CE & 7 & \(\bigcirc\) & － & － & － & － & － & － & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) \\
\hline 779 & Operation frequency during communication error & 4F & CF & 7 & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 788 & Low speed range torque characteristic selection & 58 & D8 & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) \\
\hline 791 & Acceleration time in low－speed range & 5B & DB & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 792 & Deceleration time in low－speed range & 5C & DC & 7 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 799 & Pulse increment setting for output power & 63 & E3 & 7 & \(\bigcirc\) & － & － & \(\bigcirc\) \\
\hline 800 & Control method selection & 00 & 80 & 8 & \(\bigcirc\) \\
\hline 802 & Pre－excitation selection & 02 & 82 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 803 & Constant output range torque characteristic selection & 03 & 83 & 8 & \(\times\) & \(\times\) & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & － & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 804 & Torque command source selection & 04 & 84 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 805 & Torque command value（RAM） & 05 & 85 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 806 & Torque command value（RAM， EEPROM） & 06 & 86 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 807 & Speed limit selection & 07 & 87 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 808 & Forward rotation speed limit／ speed limit & 08 & 88 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 809 & Reverse rotation speed limit／ reverse－side speed limit & 09 & 89 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 810 & Torque limit input method selection & OA & 8A & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 811 & Set resolution switchover & 0B & 8B & 8 & \(\bigcirc\) \\
\hline 812 & Torque limit level（regeneration） & OC & 8C & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్ర } \\
& \text { D }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{*}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\begin{gathered}
*_{*}^{\lambda} \\
\stackrel{\circ}{\circ}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{*} \\
& \frac{\otimes}{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & \(\overline{0}\)
는
0
0
0
©
©
के & \[
\begin{aligned}
& \overline{0} \\
& \text { 를 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \[
\begin{aligned}
& \overline{0} \\
& \text { 르 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \text { © }
\end{aligned}
\] &  & \(\overline{0}\)
\(\mathbf{L}\)
0
0
0
0
0
©
के &  & & & \\
\hline 813 & Torque limit level (3rd quadrant) & 0D & 8D & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & - & - \\
\hline 814 & Torque limit level (4th quadrant) & OE & 8E & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 815 & Torque limit level 2 & 0F & 8F & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 816 & Torque limit level during acceleration & 10 & 90 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 817 & Torque limit level during deceleration & 11 & 91 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 818 & Easy gain tuning response level setting & 12 & 92 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 819 & Easy gain tuning selection & 13 & 93 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 820 & Speed control P gain 1 & 14 & 94 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 821 & Speed control integral time 1 & 15 & 95 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 822 & Speed setting filter 1 & 16 & 96 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 823 & \begin{tabular}{l}
Speed detection filter \\
1 AP AL TP APR APS
\end{tabular} & 17 & 97 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 824 & Torque control P gain 1 (current loop proportional gain) & 18 & 98 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 825 & Torque control integral time 1 (current loop integral time) & 19 & 99 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 826 & Torque setting filter 1 & 1A & 9A & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 827 & Torque detection filter 1 & 1B & 9B & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 828 & Model speed control gain & 1C & 9C & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 829 & Number of machine end encoder pulses & 1D & 9D & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 830 & Speed control P gain 2 & 1E & 9E & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 831 & Speed control integral time 2 & 1F & 9F & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 832 & Speed setting filter 2 & 20 & A0 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 833 & Speed detection filter
\[
2 \mathrm{AP} \mathrm{AL} \text { TP APR APS }
\] & 21 & A1 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 834 & Torque control P gain 2 & 22 & A2 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 835 & Torque control integral time 2 & 23 & A3 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 836 & Torque setting filter 2 & 24 & A4 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 837 & Torque detection filter 2 & 25 & A5 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline 838 & DA1 terminal function selection AZ & 26 & A6 & 8 & \(\bigcirc\) \\
\hline 839 & DA1 output filter Az & 27 & A7 & 8 & \(\bigcirc\) \\
\hline 840 & Torque bias selection & 28 & A8 & 8 & \(\times\) & \(\times\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 841 & Torque bias 1 & 29 & A9 & 8 & \(\times\) & \(\times\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 842 & Torque bias 2 & 2A & AA & 8 & \(\times\) & \(\times\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 843 & Torque bias 3 & 2B & AB & 8 & \(\times\) & \(\times\) & \[
(\times)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 844 & Torque bias filter & 2C & AC & 8 & \(\times\) & \(\times\) & \[
\begin{gathered}
\circ \\
(x)
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 845 & Torque bias operation time & 2D & AD & 8 & \(\times\) & \(\times\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline 846 & Torque bias balance compensation & 2E & AE & 8 & \(\times\) & \(\times\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 847 & Fall-time torque bias terminal 1 bias & 2F & AF & 8 & \(\times\) & \(\times\) & \[
(\times)
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 848 & Fall-time torque bias terminal 1 gain & 30 & B0 & 8 & \(\times\) & \(\times\) & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method \({ }^{* 2}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { శ్ర } \\
& \text { థ }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{\text { N }}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{array}{|l|}
\hline \\
\hline \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\]} & \multicolumn{3}{|c|}{Vector*3} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{\pi}^{\pi} \\
& \frac{\otimes}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\pm \\
\stackrel{\pi}{む} \\
\frac{\mathrm{e}}{0} \\
\overline{\text { }}
\end{gathered}
\]} \\
\hline & & & & & & & \begin{tabular}{l}
\(\overline{0}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} & \begin{tabular}{l} 
인 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0
\end{tabular} & 은
0
0
0
0
0.3
0
0
0 &  & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
\hline 1
\end{tabular} &  &  & & & \\
\hline 849 & Analog input offset adjustment & 31 & B1 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 850 & Brake operation selection & 32 & B2 & 8 & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 851 & Control terminal option-Number of encoder pulses TP & 33 & B3 & 8 & \(\bigcirc\) & - & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 852 & Control terminal option-Encoder rotation direction TP & 34 & B4 & 8 & \(\bigcirc\) & \(\bigcirc\) & \[
(x)
\] & \(\bigcirc\) & \[
(x)
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 853 & Speed deviation time AP AL TP APR APS & 35 & B5 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 854 & Excitation ratio & 36 & B6 & 8 & \(\times\) & \(\times\) & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & \(\bigcirc\) & \[
\begin{gathered}
\circ \\
(\times)
\end{gathered}
\] & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 855 & Control terminal option-Signal loss detection enable/disable selection TP & 37 & B7 & 8 & \(\times\) & \(\times\) & \[
(x)
\] & - & \[
(x)
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 857 & DA1-0V adjustment AZ & 39 & B9 & 8 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline 858 & Terminal 4 function assignment & 3A & BA & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 859 & Torque current/Rated PM motor current & 3B & BB & 8 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 860 & Second motor torque current/ Rated PM motor current & 3C & BC & 8 & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 862 & Encoder option selection AP AL TP APR APS & 3E & BE & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 863 & Control terminal option-Encoder pulse division ratio TP & 3F & BF & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 864 & Torque detection & 40 & C0 & 8 & \(\times\) & \(\times\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 865 & Low speed detection & 41 & C1 & 8 & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 866 & Torque monitoring reference & 42 & C2 & 8 & \(\times\) & \(\bigcirc\) \\
\hline 867 & AM output filter & 43 & C3 & 8 & \(\bigcirc\) & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 868 & Terminal 1 function assignment & 44 & C4 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline 869 & Current output filter & 45 & C5 & 8 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 870 & Speed detection hysteresis & 46 & C6 & 8 & \(\bigcirc\) \\
\hline 872 & Input phase loss protection selection & 48 & C8 & 8 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 873 & Speed limit AP AL TP APR APS & 49 & C9 & 8 & \(\times\) & \(\times\) & \[
\stackrel{\circ}{(x)}
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 874 & OLT level setting & 4A & CA & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 875 & Fault definition & 4B & CB & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 876 & Thermal protector input \(T\) TP & 4C & CC & 8 & - & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 877 & Speed feed forward control/ model adaptive speed control selection & 4D & CD & 8 & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline 878 & Speed feed forward filter & 4E & CE & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 879 & Speed feed forward torque limit & 4F & CF & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 880 & Load inertia ratio & 50 & D0 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 881 & Speed feed forward gain & 51 & D1 & 8 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 882 & Regeneration avoidance operation selection & 52 & D2 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 883 & Regeneration avoidance operation level & 53 & D3 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 884 & Regeneration avoidance at deceleration detection sensitivity & 54 & D4 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 885 & Regeneration avoidance compensation frequency limit value & 55 & D5 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס्帀 } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\(\stackrel{\geqq}{3}\)} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{\pi} \\
& \frac{\mathbb{E}}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  &  &  &  &  &  & \[
\text { Position control }{ }^{* 7}
\] & & & \\
\hline 886 & Regeneration avoidance voltage gain & 56 & D6 & 8 & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 888 & Free parameter 1 & 58 & D8 & 8 & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline 889 & Free parameter 2 & 59 & D9 & 8 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline 891 & Cumulative power monitor digit shifted times & 5B & DB & 8 & \(\bigcirc\) \\
\hline 892 & Load factor & 5C & DC & 8 & \(\bigcirc\) \\
\hline 893 & Energy saving monitor reference (motor capacity) & 5D & DD & 8 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 894 & Control selection during commercial power-supply operation & 5E & DE & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 895 & Power saving rate reference value & 5F & DF & 8 & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 896 & Power unit cost & 60 & E0 & 8 & \(\bigcirc\) & - & - & \(\bigcirc\) & - & - & - & - & \(\bigcirc\) & - & - & \(\bigcirc\) \\
\hline 897 & Power saving monitor average time & 61 & E1 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 898 & Power saving cumulative monitor clear & 62 & E2 & 8 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 899 & Operation time rate (estimated value) & 63 & E3 & 8 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C0 } \\
(900)
\end{gathered}
\] & FM/CA terminal calibration & 5C & DC & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C1 } \\
(901)
\end{gathered}
\] & AM terminal calibration & 5D & DD & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C2 } \\
(902)
\end{gathered}
\] & Terminal 2 frequency setting bias frequency & 5E & DE & 1 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - \\
\hline \[
\begin{gathered}
\text { C3 } \\
(902)
\end{gathered}
\] & Terminal 2 frequency setting bias & 5E & DE & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
125 \\
(903)
\end{gathered}
\] & Terminal 2 frequency setting gain frequency & 5F & DF & 1 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C4 } \\
(903)
\end{gathered}
\] & Terminal 2 frequency setting gain & 5F & DF & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C5 } \\
(904)
\end{gathered}
\] & Terminal 4 frequency setting bias frequency & 60 & E0 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C6 } \\
(904)
\end{gathered}
\] & Terminal 4 frequency setting bias & 60 & E0 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
126 \\
(905) \\
\hline
\end{gathered}
\] & Terminal 4 frequency setting gain frequency & 61 & E1 & 1 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - \\
\hline \[
\begin{gathered}
\text { C7 } \\
(905)
\end{gathered}
\] & Terminal 4 frequency setting gain & 61 & E1 & 1 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C12 } \\
(917)
\end{gathered}
\] & Terminal 1 bias frequency (speed) & 11 & 91 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & - \\
\hline \[
\begin{gathered}
\text { C13 } \\
(917)
\end{gathered}
\] & Terminal 1 bias (speed) & 11 & 91 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C14 } \\
(918)
\end{gathered}
\] & Terminal 1 gain frequency (speed) & 12 & 92 & 9 & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\times\) & - \\
\hline \[
\begin{gathered}
\text { C15 } \\
(918)
\end{gathered}
\] & Terminal 1 gain (speed) & 12 & 92 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\hline \text { C16 } \\
(919)
\end{gathered}
\] & Terminal 1 bias command (torque) & 13 & 93 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C17 } \\
(919)
\end{gathered}
\] & Terminal 1 bias (torque) & 13 & 93 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C18 } \\
(920)
\end{gathered}
\] & Terminal 1 gain command (torque) & 14 & 94 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס্̃ } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{N}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*} \stackrel{\vdots}{0}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & \begin{tabular}{l}
\(\overline{3}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
©
\end{tabular} &  & \(\overline{0}\)
0
0
0
0
0
0
0
0
0
0 & \(\overline{3}\)
를
0
0
0
0
0
© & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
\hline 1
\end{tabular} &  &  & & & \\
\hline \[
\begin{gathered}
\text { C19 } \\
(920)
\end{gathered}
\] & Terminal 1 gain (torque) & 14 & 94 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C29 } \\
(925)
\end{gathered}
\] & Motor temperature detection calibration (analog input) AZ & 19 & 99 & 9 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C30 } \\
(926)
\end{gathered}
\] & Terminal 6 bias frequency (speed) AZ & 1A & 9A & 9 & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C31 } \\
(926) \\
\hline
\end{gathered}
\] & Terminal 6 bias (speed) AZ & 1A & 9A & 9 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C32 } \\
(927)
\end{gathered}
\] & Terminal 6 gain frequency (speed) AZ & 1B & 9B & 9 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C33 } \\
(927) \\
\hline
\end{gathered}
\] & Terminal 6 gain (speed) AZ & 1B & 9B & 9 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\hline \text { C34 } \\
(928)
\end{gathered}
\] & Terminal 6 bias command (torque) AZ & 1C & 9C & 9 & \(\times\) & \(\times\) & - & - & - & - & - & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C35 } \\
(928) \\
\hline
\end{gathered}
\] & Terminal 6 bias (torque) AZ & 1 C & 9C & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C36 } \\
(929)
\end{gathered}
\] & Terminal 6 gain command (torque) AZ & 1D & 9D & 9 & \(\times\) & \(\times\) & - & - & - & - & - & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C37 } \\
(929)
\end{gathered}
\] & Terminal 6 gain (torque) AZ & 1D & 9D & 9 & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C8 } \\
(930)
\end{gathered}
\] & Current output bias signal & 1E & 9E & 9 & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C9 } \\
(930)
\end{gathered}
\] & Current output bias current & 1E & 9E & 9 & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C10 } \\
(931)
\end{gathered}
\] & Current output gain signal & 1F & 9F & 9 & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C11 } \\
(931)
\end{gathered}
\] & Current output gain current & 1F & 9F & 9 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - \\
\hline \[
\begin{gathered}
\text { C38 } \\
(932) \\
\hline
\end{gathered}
\] & Terminal 4 bias command (torque) & 20 & A0 & 9 & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C39 } \\
(932) \\
\hline
\end{gathered}
\] & Terminal 4 bias (torque) & 20 & A0 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C40 } \\
(933)
\end{gathered}
\] & Terminal 4 gain command (torque) & 21 & A1 & 9 & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C41 } \\
(933) \\
\hline
\end{gathered}
\] & Terminal 4 gain (torque) & 21 & A1 & 9 & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C42 } \\
(934)
\end{gathered}
\] & PID display bias coefficient & 22 & A2 & 9 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C43 } \\
(934)
\end{gathered}
\] & PID display bias analog value & 22 & A2 & 9 & \(\bigcirc\) & \(\bigcirc\) & - & \(\times\) & \(\times\) & - & \(\times\) & - & \(\times\) & - & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C44 } \\
(935)
\end{gathered}
\] & PID display gain coefficient & 23 & A3 & 9 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline \[
\begin{gathered}
\text { C45 } \\
(935)
\end{gathered}
\] & PID display gain analog value & 23 & A3 & 9 & - & \(\bigcirc\) & - & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 977 & Input voltage mode selection & 4D & CD & 9 & \(\bigcirc\) & \(\times\) & \(\times\) \\
\hline 989 & Parameter copy alarm release & 59 & D9 & 9 & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 990 & PU buzzer control & 5A & DA & 9 & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 991 & PU contrast adjustment & 5B & DB & 9 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 992 & Operation panel setting dial push monitor selection & 5C & DC & 9 & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 994 & Droop break point gain & 5E & DE & 9 & \(\times\) & - & - & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 995 & Droop break point torque & 5F & DF & 9 & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 997 & Fault initiation & 61 & E1 & 9 & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 998 & PM parameter initialization & 62 & E2 & 9 & \(\bigcirc\) \\
\hline 999 & Automatic parameter setting & 63 & E3 & 9 & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{\text {1 }}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్ఞ } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{*}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{gathered}
*_{*}^{\pi} \\
\stackrel{\otimes}{U}
\end{gathered}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  & \begin{tabular}{l}
\(\overline{0}\) \\
은 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 1
\end{tabular} & \(\overline{0}\)
0
0
0
0
0
0.3
0
0 &  &  &  &  & & & \\
\hline 1000 & Direct setting selection & 00 & 80 & A & \(\bigcirc\) \\
\hline 1002 & Lq tuning target current adjustment coefficient & 02 & 82 & A & \(\times\) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ)
\end{gathered}
\] & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1003 & Notch filter frequency & 03 & 83 & A & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1004 & Notch filter depth & 04 & 84 & A & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1005 & Notch filter width & 05 & 85 & A & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1006 & Clock (year) & 06 & 86 & A & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 1007 & Clock (month, day) & 07 & 87 & A & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 1008 & Clock (hour, minute) & 08 & 88 & A & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 1015 & Integral stop selection at limited frequency & OF & 8F & A & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1016 & PTC thermistor protection detection time & 10 & 90 & A & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 1018 & Monitor with sign selection & 12 & 92 & A & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1019 & Analog meter voltage negative output selection \(A\) Y & 13 & 93 & A & \(\bigcirc\) \\
\hline 1020 & Trace operation selection & 14 & 94 & A & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1021 & Trace mode selection & 15 & 95 & A & \(\bigcirc\) \\
\hline 1022 & Sampling cycle & 16 & 96 & A & \(\bigcirc\) \\
\hline 1023 & Number of analog channels & 17 & 97 & A & \(\bigcirc\) \\
\hline 1024 & Sampling auto start & 18 & 98 & A & \(\bigcirc\) \\
\hline 1025 & Trigger mode selection & 19 & 99 & A & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1026 & Number of sampling before trigger & 1A & 9A & A & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1027 & Analog source selection (1ch) & 1B & 9B & A & \(\bigcirc\) \\
\hline 1028 & Analog source selection (2ch) & 1C & 9C & A & \(\bigcirc\) \\
\hline 1029 & Analog source selection (3ch) & 1D & 9D & A & \(\bigcirc\) \\
\hline 1030 & Analog source selection (4ch) & 1E & 9E & A & \(\bigcirc\) \\
\hline 1031 & Analog source selection (5ch) & 1F & 9F & A & \(\bigcirc\) \\
\hline 1032 & Analog source selection (6ch) & 20 & A0 & A & \(\bigcirc\) \\
\hline 1033 & Analog source selection (7ch) & 21 & A1 & A & \(\bigcirc\) \\
\hline 1034 & Analog source selection (8ch) & 22 & A2 & A & \(\bigcirc\) \\
\hline 1035 & Analog trigger channel & 23 & A3 & A & \(\bigcirc\) \\
\hline 1036 & Analog trigger operation selection & 24 & A4 & A & \(\bigcirc\) \\
\hline 1037 & Analog trigger level & 25 & A5 & A & \(\bigcirc\) \\
\hline 1038 & Digital source selection (1ch) & 26 & A6 & A & \(\bigcirc\) \\
\hline 1039 & Digital source selection (2ch) & 27 & A7 & A & \(\bigcirc\) \\
\hline 1040 & Digital source selection (3ch) & 28 & A8 & A & \(\bigcirc\) \\
\hline 1041 & Digital source selection (4ch) & 29 & A9 & A & \(\bigcirc\) \\
\hline 1042 & Digital source selection (5ch) & 2A & AA & A & \(\bigcirc\) \\
\hline 1043 & Digital source selection (6ch) & 2B & AB & A & \(\bigcirc\) \\
\hline 1044 & Digital source selection (7ch) & 2C & AC & A & \(\bigcirc\) \\
\hline 1045 & Digital source selection (8ch) & 2D & AD & A & \(\bigcirc\) \\
\hline 1046 & Digital trigger channel & 2E & AE & A & \(\bigcirc\) \\
\hline 1047 & Digital trigger operation selection & 2F & AF & A & \(\bigcirc\) \\
\hline 1048 & Display-off waiting time & 30 & B0 & A & \(\bigcirc\) \\
\hline 1049 & USB host reset & 31 & B1 & A & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1072 & DC brake judgment time for antisway control operation & 48 & C8 & A & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1073 & Anti-sway control operation selection & 49 & C9 & A & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1074 & Anti-sway control frequency & 4A & CA & A & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|c|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\stackrel{y}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{* 3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*} \stackrel{\vdots}{0}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
*^{*} \\
\frac{\otimes}{0} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & 은
0
0
0
0
©
© &  & \(\overline{0}\)
0
0
0
0
0
0
0
0
0
0 &  & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
1
\end{tabular} &  &  & & & \\
\hline 1075 & Anti-sway control depth & 4B & CB & A & - & - & - & \(\times\) & \(\times\) & - & \(\times\) & - & \(\times\) & - & - & \(\bigcirc\) \\
\hline 1076 & Anti-sway control width & 4C & CC & A & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1077 & Rope length & 4D & CD & A & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1078 & Trolley weight & 4E & CE & A & - & - & - & \(\times\) & \(\times\) & - & \(\times\) & - & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1079 & Load weight & 4F & CF & A & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1103 & Deceleration time at emergency stop & 03 & 83 & B & - & - & - & - & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1105 & Encoder magnetic pole position offset APR APS & 05 & 85 & B & \(\times\) & \(\times\) & (○) & \(\times\) & (○) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) \\
\hline 1106 & Torque monitor filter & 06 & 86 & B & \(\bigcirc\) \\
\hline 1107 & Running speed monitor filter & 07 & 87 & B & \(\bigcirc\) \\
\hline 1108 & Excitation current monitor filter & 08 & 88 & B & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1109 & PROFIBUS communication command source selection NP & 09 & 89 & B & \(\times\) & - & - & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & -*5 & -*5 \\
\hline 1110 & PROFIBUS format selection NP & OA & 8A & B & \(\bigcirc\) & -*5 & \(\bigcirc^{* 5}\) \\
\hline 1113 & Speed limit method selection & OD & 8D & B & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1114 & Torque command reverse selection & OE & 8E & B & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1115 & Speed control integral term clear time & OF & 8F & B & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & - & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1116 & Constant output range speed control \(P\) gain compensation & 10 & 90 & B & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1117 & Speed control P gain 1 (per-unit system) & 11 & 91 & B & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & - & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1118 & Speed control P gain 2 (per-unit system) & 12 & 92 & B & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1119 & Model speed control gain (perunit system) & 13 & 93 & B & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1121 & Per-unit speed control reference frequency & 15 & 95 & B & \(\times\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1134 & PID upper limit manipulated value & 22 & A2 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1135 & PID lower limit manipulated value & 23 & A3 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1136 & Second PID display bias coefficient & 24 & A4 & B & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 1137 & Second PID display bias analog value & 25 & A5 & B & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 1138 & Second PID display gain coefficient & 26 & A6 & B & \(\bigcirc\) & - & - & \(\times\) & \(\times\) & - & \(\times\) & - & \(\times\) & - & \(\times\) & \(\bigcirc\) \\
\hline 1139 & Second PID display gain analog value & 27 & A7 & B & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & - & \(\times\) & - & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 1140 & Second PID set point/deviation input selection & 28 & A8 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1141 & Second PID measured value input selection & 29 & A9 & B & \(\bigcirc\) & - & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1142 & Second PID unit selection & 2A & AA & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1143 & Second PID upper limit & 2B & AB & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1144 & Second PID lower limit & 2C & AC & B & - & - & - & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1145 & Second PID deviation limit & 2D & AD & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1146 & Second PID signal operation selection & 2E & AE & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1147 & Second output interruption detection time & 2F & AF & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code \({ }^{* 1}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס्帀 } \\
& \text { 区 }
\end{aligned}
\]} & \multirow[b]{2}{*}{\(\stackrel{y}{3}\)} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{*}{*} \stackrel{\vdots}{\circ}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& *_{*}^{\pi} \\
& \frac{\mathbb{E}}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & \(\overline{3}\)
\(\dot{U}\)
0
0
0
0
0
©
के &  & \(\overline{0}\)
륻
0
0
0
0
0.3
0
0 &  &  & 은
0
0
0
0
0
©
© &  & & & \\
\hline 1148 & Second output interruption detection level & 30 & B0 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1149 & Second output interruption cancel level & 31 & B1 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1150 & PLC function user parameters 1 & 32 & B2 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1151 & PLC function user parameters 2 & 33 & B3 & B & \(\bigcirc\) \\
\hline 1152 & PLC function user parameters 3 & 34 & B4 & B & \(\bigcirc\) \\
\hline 1153 & PLC function user parameters 4 & 35 & B5 & B & \(\bigcirc\) \\
\hline 1154 & PLC function user parameters 5 & 36 & B6 & B & \(\bigcirc\) \\
\hline 1155 & PLC function user parameters 6 & 37 & B7 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1156 & PLC function user parameters 7 & 38 & B8 & B & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1157 & PLC function user parameters 8 & 39 & B9 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1158 & PLC function user parameters 9 & 3A & BA & B & \(\bigcirc\) \\
\hline 1159 & PLC function user parameters 10 & 3B & BB & B & \(\bigcirc\) \\
\hline 1160 & PLC function user parameters 11 & 3C & BC & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1161 & PLC function user parameters 12 & 3D & BD & B & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1162 & PLC function user parameters 13 & 3E & BE & B & \(\bigcirc\) \\
\hline 1163 & PLC function user parameters 14 & 3F & BF & B & \(\bigcirc\) & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1164 & PLC function user parameters 15 & 40 & C0 & B & \(\bigcirc\) \\
\hline 1165 & PLC function user parameters 16 & 41 & C1 & B & \(\bigcirc\) \\
\hline 1166 & PLC function user parameters 17 & 42 & C2 & B & \(\bigcirc\) \\
\hline 1167 & PLC function user parameters 18 & 43 & C3 & B & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1168 & PLC function user parameters 19 & 44 & C4 & B & \(\bigcirc\) \\
\hline 1169 & PLC function user parameters 20 & 45 & C5 & B & \(\bigcirc\) \\
\hline 1170 & PLC function user parameters 21 & 46 & C6 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1171 & PLC function user parameters 22 & 47 & C7 & B & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1172 & PLC function user parameters 23 & 48 & C8 & B & \(\bigcirc\) \\
\hline 1173 & PLC function user parameters 24 & 49 & C9 & B & \(\bigcirc\) & \(\bigcirc\) & - & - & \(\bigcirc\) & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1174 & PLC function user parameters 25 & 4A & CA & B & \(\bigcirc\) \\
\hline 1175 & PLC function user parameters 26 & 4B & CB & B & \(\bigcirc\) \\
\hline 1176 & PLC function user parameters 27 & 4C & CC & B & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1177 & PLC function user parameters 28 & 4D & CD & B & \(\bigcirc\) \\
\hline 1178 & PLC function user parameters 29 & 4E & CE & B & \(\bigcirc\) \\
\hline 1179 & PLC function user parameters 30 & 4F & CF & B & \(\bigcirc\) \\
\hline 1180 & PLC function user parameters 31 & 50 & D0 & B & - & - & - & \(\bigcirc\) & - & - & - & - & \(\bigcirc\) & - & - & \(\bigcirc\) \\
\hline 1181 & PLC function user parameters 32 & 51 & D1 & B & \(\bigcirc\) \\
\hline 1182 & PLC function user parameters 33 & 52 & D2 & B & \(\bigcirc\) \\
\hline 1183 & PLC function user parameters 34 & 53 & D3 & B & - & - & - & - & - & - & - & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1184 & PLC function user parameters 35 & 54 & D4 & B & \(\bigcirc\) \\
\hline 1185 & PLC function user parameters 36 & 55 & D5 & B & \(\bigcirc\) \\
\hline 1186 & PLC function user parameters 37 & 56 & D6 & B & \(\bigcirc\) \\
\hline 1187 & PLC function user parameters 38 & 57 & D7 & B & \(\bigcirc\) \\
\hline 1188 & PLC function user parameters 39 & 58 & D8 & B & \(\bigcirc\) \\
\hline 1189 & PLC function user parameters 40 & 59 & D9 & B & \(\bigcirc\) \\
\hline 1190 & PLC function user parameters 41 & 5A & DA & B & \(\bigcirc\) \\
\hline 1191 & PLC function user parameters 42 & 5B & DB & B & \(\bigcirc\) \\
\hline 1192 & PLC function user parameters 43 & 5C & DC & B & \(\bigcirc\) \\
\hline 1193 & PLC function user parameters 44 & 5D & DD & B & \(\bigcirc\) \\
\hline 1194 & PLC function user parameters 45 & 5E & DE & B & \(\bigcirc\) \\
\hline 1195 & PLC function user parameters 46 & 5F & DF & B & \(\bigcirc\) \\
\hline 1196 & PLC function user parameters 47 & 60 & E0 & B & \(\bigcirc\) \\
\hline 1197 & PLC function user parameters 48 & 61 & E1 & B & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method*2} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ర్డ } \\
& \dot{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|c|}{Vector \({ }^{* 3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}_{\stackrel{2}{0}}^{0}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \pm \\
& * \\
& \frac{ \pm}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & &  & \begin{tabular}{l}
\(\overline{0}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
\hline
\end{tabular} & \(\overline{0}\)
0
0
0
0
0
0
0.
0
0
0 &  & \[
\begin{aligned}
& \overline{0} \\
& \text { 늘 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline 0
\end{aligned}
\] & \(\overline{0}\)
른
0
0
0
0
©
के &  & & & \\
\hline 1198 & PLC function user parameters 49 & 62 & E2 & B & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1199 & PLC function user parameters 50 & 63 & E3 & B & \(\bigcirc\) \\
\hline 1220 & Target position/speed selection & 14 & 94 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1221 & Start command edge detection selection & 15 & 95 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1222 & First positioning acceleration time & 16 & 96 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1223 & First positioning deceleration time & 17 & 97 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1224 & First positioning dwell time & 18 & 98 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1225 & First positioning sub-function & 19 & 99 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1226 & Second positioning acceleration time & 1A & 9A & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1227 & Second positioning deceleration time & 1B & 9B & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1228 & Second positioning dwell time & 1C & 9C & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1229 & Second positioning sub-function & 1D & 9D & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1230 & Third positioning acceleration time & 1E & 9E & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1231 & Third positioning deceleration time & 1F & 9F & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1232 & Third positioning dwell time & 20 & A0 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1233 & Third positioning sub-function & 21 & A1 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1234 & Fourth positioning acceleration time & 22 & A2 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1235 & Fourth positioning deceleration time & 23 & A3 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1236 & Fourth positioning dwell time & 24 & A4 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1237 & Fourth positioning sub-function & 25 & A5 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1238 & Fifth positioning acceleration time & 26 & A6 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1239 & Fifth positioning deceleration time & 27 & A7 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & - \\
\hline 1240 & Fifth positioning dwell time & 28 & A8 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1241 & Fifth positioning sub-function & 29 & A9 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1242 & Sixth positioning acceleration time & 2A & AA & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1243 & Sixth positioning deceleration time & 2B & AB & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & - \\
\hline 1244 & Sixth positioning dwell time & 2C & AC & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1245 & Sixth positioning sub-function & 2D & AD & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1246 & Seventh positioning acceleration time & 2E & AE & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1247 & Seventh positioning deceleration time & 2F & AF & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1248 & Seventh positioning dwell time & 30 & B0 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1249 & Seventh positioning sub-function & 31 & B1 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1250 & Eighth positioning acceleration time & 32 & B2 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1251 & Eighth positioning deceleration time & 33 & B3 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1252 & Eighth positioning dwell time & 34 & B4 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1253 & Eighth positioning sub-function & 35 & B5 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\(\stackrel{ \pm}{3}\)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ㅎ } \\
& \text { ㅇ } \\
& \text { 흐 } \\
& \text { X }
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& { }^{*} \frac{\pi}{\pi} \\
& \frac{0}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & \begin{tabular}{l}
\(\overline{3}\) \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
©
\end{tabular} &  & \begin{tabular}{l}
\(\overline{0}\) \\
\(\underline{y}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
0 \\
0
\end{tabular} &  &  &  &  & & & \\
\hline 1254 & Ninth positioning acceleration time & 36 & B6 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1255 & Ninth positioning deceleration time & 37 & B7 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1256 & Ninth positioning dwell time & 38 & B8 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1257 & Ninth positioning sub-function & 39 & B9 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1258 & Tenth positioning acceleration time & 3A & BA & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1259 & Tenth positioning deceleration time & 3B & BB & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1260 & Tenth positioning dwell time & 3C & BC & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1261 & Tenth positioning sub-function & 3D & BD & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1262 & Eleventh positioning acceleration time & 3E & BE & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & - & - & - & \(\bigcirc\) \\
\hline 1263 & Eleventh positioning deceleration time & 3F & BF & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1264 & Eleventh positioning dwell time & 40 & C0 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1265 & Eleventh positioning subfunction & 41 & C1 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1266 & Twelfth positioning acceleration time & 42 & C2 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1267 & Twelfth positioning deceleration time & 43 & C3 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1268 & Twelfth positioning dwell time & 44 & C4 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & - & - & \(\bigcirc\) \\
\hline 1269 & Twelfth positioning sub-function & 45 & C5 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1270 & Thirteenth positioning acceleration time & 46 & C6 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1271 & Thirteenth positioning deceleration time & 47 & C7 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1272 & Thirteenth positioning dwell time & 48 & C8 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & - & - & \(\bigcirc\) \\
\hline 1273 & Thirteenth positioning subfunction & 49 & C9 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1274 & Fourteenth positioning acceleration time & 4A & CA & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1275 & Fourteenth positioning deceleration time & 4B & CB & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1276 & Fourteenth positioning dwell time & 4C & CC & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & - & \(\bigcirc\) \\
\hline 1277 & Fourteenth positioning subfunction & 4D & CD & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1278 & Fifteenth positioning acceleration time & 4E & CE & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1279 & Fifteenth positioning deceleration time & 4F & CF & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1280 & Fifteenth positioning dwell time & 50 & D0 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1281 & Fifteenth positioning subfunction & 51 & D1 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1282 & Home position return method selection & 52 & D2 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) \\
\hline 1283 & Home position return speed & 53 & D3 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1284 & Home position return creep speed & 54 & D4 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1285 & Home position shift amount lower 4 digits & 55 & D5 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1286 & Home position shift amount upper 4 digits & 56 & D6 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Pr.} & \multirow[b]{3}{*}{Name} & \multicolumn{3}{|l|}{Instruction code* \({ }^{*}\)} & \multicolumn{9}{|c|}{Control method \({ }^{*}\)} & \multicolumn{3}{|r|}{Parameter} \\
\hline & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ס్ס } \\
& \text { థ }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\stackrel{ \pm}{4}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Vector \({ }^{* 3}\)} & \multicolumn{2}{|l|}{Sensorless} & \multicolumn{2}{|l|}{PMM} & \multirow[b]{2}{*}{\[
\stackrel{+}{*}_{\stackrel{2}{0}}^{2}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& { }_{*}^{*} \frac{1}{\pi} \\
& \frac{\mathbb{U}}{U}
\end{aligned}
\]} & \multirow[b]{2}{*}{} \\
\hline & & & & & & & 은
0
0
0
0
0
©
© & \begin{tabular}{l}
\(\overline{0}\) \\
인 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0
\end{tabular} & \(\overline{0}\)
0
0
0
0
0
0
0.1
0
0 &  & \[
\begin{aligned}
& \text { o } \\
& \text { in } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \text { D } \\
& 0 \\
& 1
\end{aligned}
\] &  &  & & & \\
\hline 1287 & Travel distance after proximity dog ON lower 4 digits & 57 & D7 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1288 & Travel distance after proximity dog ON upper 4 digits & 58 & D8 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1289 & Home position return stopper torque & 59 & D9 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1290 & Home position return stopper waiting time & 5A & DA & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1292 & Position control terminal input selection & 5C & DC & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1293 & Roll feeding mode selection & 5D & DD & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1294 & Position detection lower 4 digits & 5E & DE & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & - & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1295 & Position detection upper 4 digits & 5 F & DF & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1296 & Position detection selection & 60 & E0 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1297 & Position detection hysteresis width & 61 & E1 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1298 & Second position control gain & 62 & E2 & C & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1299 & Second pre-excitation selection & 63 & E3 & C & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1348 & P/PI control switchover frequency & 30 & B0 & D & \(\times\) & \(\times\) & - & \(\times\) & \[
\begin{gathered}
\times \\
(0)
\end{gathered}
\] & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1349 & Emergency stop operation selection & 31 & B1 & D & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\)
\((0)\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline 1410 & Starting times lower 4 digits & OA & 8A & E & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 1411 & Starting times upper 4 digits & OB & 8B & E & \(\bigcirc\) & \(\times\) & \(\times\) & \(\times\) \\
\hline 1412 & Motor induced voltage constant (phi f) exponent & OC & 8C & E & \(\times\) & \(\times\) & \[
\begin{gathered}
\times \\
(\circ)
\end{gathered}
\] & \(\times\) & (○) & \(\times\) & \(\times\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline 1413 & Second motor induced voltage constant (phi f) exponent & OD & 8D & E & \(\times\) & \(\times\) & \(\times\)
\((\circ)\) & \(\times\) & (०) & \(\times\) & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline
\end{tabular}

List of inverter monitor items / command items
The following items can be set using a communication option.

\section*{16-bit data}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Description & Unit & Type & Read/ write \\
\hline H0000 & No data & - & - & - \\
\hline H0001 & Output frequency & 0.01 Hz & unsigned & R \\
\hline H0002 & Output current & 0.01 A/0.1 A & unsigned & R \\
\hline H0003 & Output voltage & 0.1 V & unsigned & R \\
\hline H0004 & reserved & - & - & - \\
\hline H0005 & Frequency setting value & 0.01 Hz & unsigned & R \\
\hline H0006 & Motor speed & \(1 \mathrm{r} / \mathrm{min}\) & unsigned & R \\
\hline H0007 & Motor torque & 0.1\% & unsigned & R \\
\hline H0008 & Converter output voltage & 0.1 V & unsigned & R \\
\hline H0009 & Regenerative brake duty & 0.1\% & unsigned & R \\
\hline H000A & Electric thermal relay function load factor & 0.1\% & unsigned & R \\
\hline H000B & Output current peak value & 0.01 A/0.1 A & unsigned & R \\
\hline H000C & Converter output voltage peak value & 0.1 V & unsigned & R \\
\hline H000D & Input power & 0.01 kW/ 0.1 kW & unsigned & R \\
\hline H000E & Output power & 0.01 kW/ 0.1 kW & unsigned & R \\
\hline H000F & Input terminal status \({ }^{* 1}\) & - & - & R \\
\hline H0010 & Output terminal status*1 & - & - & R \\
\hline H0011 & Load meter & 0.1\% & unsigned & R \\
\hline H0012 & Motor excitation current & 0.01 A/0.1 A & unsigned & R \\
\hline H0013 & Position pulse & 1 & unsigned & R/W \\
\hline H0014 & Cumulative energization time & 1 h & unsigned & R \\
\hline H0015 & reserved & - & - & - \\
\hline H0016 & Orientation status & 1 & unsigned & R \\
\hline H0017 & Actual operation time & 1 h & unsigned & R \\
\hline H0018 & Motor load factor & 0.1\% & unsigned & R \\
\hline H0019 & Cumulative power & 1 kWh & unsigned & R \\
\hline H001A & Position command (lower 16 bits) & 1 & & R \\
\hline H001B & Position command (upper 16 bits) & 1 & signed & R \\
\hline H001C & Current position (lower 16 bits) & 1 & signed & R \\
\hline H001D & Current position (upper 16 bits) & 1 & signed & \\
\hline H001E & Droop pulse (lower 16 bits) & 1 & signed & R \\
\hline H001F & Droop pulse (upper 16 bits) & 1 & signed & R \\
\hline H0020 & Torque order & 0.1\% & unsigned & R \\
\hline H0021 & Torque current order & 0.1\% & unsigned & R \\
\hline H0022 & Motor output & 0.1 kW & unsigned & R \\
\hline H0023 & Feedback pulse & 1 & unsigned & R \\
\hline \[
\begin{array}{|l|}
\hline \mathrm{H} 0024 \\
\mathrm{H} 0025
\end{array}
\] & reserved & - & - & - \\
\hline H0026 & Trace status & - & unsigned & R \\
\hline H0027 & reserved & - & - & - \\
\hline H0028 & PLC function user monitor 1 & - & unsigned & R \\
\hline H0029 & PLC function user monitor 2 & - & unsigned & R \\
\hline H002A & PLC function user monitor 3 & - & unsigned & R \\
\hline \[
\begin{aligned}
& \text { H002B to } \\
& \text { H002D }
\end{aligned}
\] & reserved & - & - & - \\
\hline H002E & Motor temperature & & & R \\
\hline \[
\begin{aligned}
& \text { H002F to } \\
& \text { H0031 }
\end{aligned}
\] & reserved & - & - & - \\
\hline H0032 & Power saving effect & - & unsigned & R \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Description & Unit & Type & Read/ write \\
\hline H0033 & Cumulative saving power & - & unsigned & R \\
\hline H0034 & PID set point & 0.1\% & unsigned & R/W \\
\hline H0035 & PID measured value & 0.1\% & unsigned & R/W \\
\hline H0036 & PID deviation & 0.1\% & unsigned & R/W \\
\hline \[
\begin{aligned}
& \mathrm{H} 0037 \text { to } \\
& \text { H0039 }
\end{aligned}
\] & reserved & - & - & - \\
\hline H003A & Option input terminal status \(1^{* 1}\) & - & - & R \\
\hline H003B & Option input terminal status \(2^{* 1}\) & - & - & R \\
\hline H003C & Option output terminal status*1 & - & - & R \\
\hline H003D & Motor thermal load factor & 0.1\% & unsigned & R \\
\hline H003E & Transistor thermal load factor & 0.1\% & unsigned & R \\
\hline H003F & reserved & - & - & - \\
\hline H0040 & PTC thermistor resistance & ohm & unsigned & R \\
\hline H0041 & Output power (with regenerative display) & & & R \\
\hline H0042 & Cumulative regenerative power & & & R \\
\hline H0043 & PID measured value 2 & & & \\
\hline H0044 & Second PID set point & 0.1\% & unsigned & R/W \\
\hline H0045 & Second PID measured value & 0.1\% & unsigned & R/W \\
\hline H0046 & Second PID deviation & 0.1\% & unsigned & R/W \\
\hline H0047 & Cumulative pulse & 1 & signed & R \\
\hline H0048 & Cumulative pulse carrying-over times & 1 & signed & R \\
\hline H0049 & Cumulative pulse (control terminal option) & 1 & signed & R \\
\hline H004A & Cumulative pulse carrying-over times (control terminal option) & 1 & signed & R \\
\hline H004B & Multi-revolution counter & 1 & unsigned & R \\
\hline \[
\begin{aligned}
& \text { H004C to } \\
& \text { H004F }
\end{aligned}
\] & reserved & - & - & - \\
\hline H0050 & Integrated power on time & & & R \\
\hline H0051 & Running time & & & R \\
\hline H0052 & Saving energy monitor & & & R \\
\hline H0053 & reserved & - & - & - \\
\hline H0054 & Fault code (1) & - & - & R \\
\hline H0055 & Fault code (2) & - & - & R \\
\hline H0056 & Fault code (3) & - & - & R \\
\hline H0057 & Fault code (4) & - & - & R \\
\hline H0058 & Fault code (5) & - & - & R \\
\hline H0059 & Fault code (6) & - & - & R \\
\hline H005A & Fault code (7) & - & - & R \\
\hline H005B & Fault code (8) & - & - & R \\
\hline \[
\begin{aligned}
& \text { H005C to } \\
& \text { H005E }
\end{aligned}
\] & reserved & - & - & - \\
\hline H005F & Second PID measured value 2 & 0.1\% & unsigned & R \\
\hline H0060 & Second PID manipulated variable & 0.1\% & signed & R \\
\hline \[
\begin{aligned}
& \text { H0061 to } \\
& \text { H0063 }
\end{aligned}
\] & reserved & - & - & - \\
\hline H0064 & Current position 2 (lower 16 bits) & & & R \\
\hline H0065 & Current position 2 (upper 16 bits) & 1 & signed & R \\
\hline H0066 & PID manipulated variable & 0.1\% & signed & R \\
\hline H0067 to H00F8 & reserved & - & - & - \\
\hline H00F9 & Run command*2 & - & - & R/W \\
\hline H00FA to H01FF & reserved & - & - & - \\
\hline
\end{tabular}
*1 For the details, refer to page 424.
*2 Operation command
This signal is assigned in the initial status. The description changes depending on the setting of Pr. 180 to Pr. 189 (Input terminal function selection). (Refer to page 496.)


\section*{<32-bit data>}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Description & Unit & Type & Read/ write \\
\hline H0200 & reserved & - & - & - \\
\hline H0201 & Output frequency (0-15 bit) & \multirow[b]{2}{*}{0.01 Hz} & \multirow[b]{2}{*}{signed} & \multirow{2}{*}{R} \\
\hline H0202 & Output frequency (16-31 bit) & & & \\
\hline H0203 & Setting frequency (0-15 bit) & \multirow[t]{2}{*}{0.01 Hz} & \multirow{2}{*}{signed} & \multirow{2}{*}{R} \\
\hline H0204 & Setting frequency (16-31 bit) & & & \\
\hline H0205 & Motor rotation (0-15 bit) & \multirow[t]{2}{*}{\(1 \mathrm{r} / \mathrm{min}\)} & \multirow[t]{2}{*}{signed} & \multirow[t]{2}{*}{R} \\
\hline H0206 & Motor rotation (16-31 bit) & & & \\
\hline H0207 & Load meter (0-15 bit) & \multirow[t]{2}{*}{0.1\%} & \multirow[b]{2}{*}{signed} & \multirow[t]{2}{*}{R} \\
\hline H0208 & Load meter (16-31 bit) & & & \\
\hline H0209 & Positioning pulse (0-15 bit) & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{signed} & \multirow{2}{*}{R/W} \\
\hline H020A & Positioning pulse (16-31 bit) & & & \\
\hline H020B & Watt-hour meter (1 kWh step) (0-15 bit) & \multirow[t]{2}{*}{1 kWh} & \multirow[b]{2}{*}{unsigned} & \multirow[t]{2}{*}{R} \\
\hline H020C & Watt-hour meter (1 kWh step) (16-31 bit) & & & \\
\hline H020D & Watt-hour meter (0.1/0.01 kWh step) (0-15 bit) & \multirow[t]{2}{*}{0.1/0.01 kWh} & \multirow[t]{2}{*}{unsigned} & \multirow[t]{2}{*}{R} \\
\hline H020E & Watt-hour meter (0.1/0.01 kWh step) (1631 bit) & & & \\
\hline H020F & Position error (0-15 bit) & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{signed} & \multirow[b]{2}{*}{R} \\
\hline H0210 & Position error (16-31 bit) & & & \\
\hline H0211 & Position command (lower 16 bits) & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{signed} & \multirow[t]{2}{*}{R} \\
\hline H0212 & Position command (upper 16 bits) & & & \\
\hline H0213 & Current position (lower 16 bits) & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{signed} & \multirow[b]{2}{*}{R} \\
\hline H0214 & Current position (upper 16 bits) & & & \\
\hline H0215 to H03FF & reserved & - & - & - \\
\hline
\end{tabular}

\section*{- Direct command mode for position control}

In the direct command mode, the target position and maximum speed can be set through communication.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 1220 \\
& \text { B100 }
\end{aligned}
\]} & \multirow{3}{*}{Target position/speed selection} & \multirow{3}{*}{0} & 0 & Target position and maximum speed: Point table \\
\hline & & & 1 & Target position: Direct command Maximum speed: Point table \\
\hline & & & 2 & Target position and maximum speed: Direct command \\
\hline
\end{tabular}
- The point table is set as follows in the direct command mode. (The setting is applied when the start signal is turned ON.)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Pr.1220 \\
setting
\end{tabular} & \multicolumn{1}{|c|}{ Target position } & \multicolumn{1}{|c|}{ Maximum speed } & \begin{tabular}{c} 
Acceleration \\
time
\end{tabular} & \begin{tabular}{c} 
Deceleration \\
time
\end{tabular} & \multicolumn{1}{c|}{ Dwell time } & \begin{tabular}{c} 
Auxiliary \\
function
\end{tabular} \\
\hline 1 & Direct command & Point table 1 & \({ }^{* 1}\) & \({ }^{* 1}\) & \(\operatorname{lnvalid~}^{* 2}\) & \({ }^{* 1}\) \\
\hline 2 & Direct command & Direct command & Pr. 7 & Pr. 8 & Invalid \(^{* 2}\) & \({ }^{* 1}\) \\
\hline
\end{tabular}
*1 Same as the point table 1. However, even when continuous operation is set in the auxiliary function, individual operation is applied.
*2 The direct command mode is available only for individual operation. The dwell time is invalid.
- To perform positioning operation in the direct command mode, specify the point table (RH recommended) and turn ON the start signal. (When no point table is specified, home position return operation is performed.)
- Example when Pr. \(1220=" 1 "\)


Direct command sent
- Example when Pr. \(1220=\) " 2 "


Direct command sent

\section*{MEMO}

\section*{REVISIONS}
*The manual number is given on the bottom left of the back cover.
\begin{tabular}{|c|c|c|}
\hline Print date & *Manual number & Revision \\
\hline May 2013 & IB(NA)-0600503ENG-A & First edition \\
\hline Dec. 2013 & IB(NA)-0600503ENG-B & \begin{tabular}{l}
Addition \\
- FR-A840-03250(110K) to FR-A840-06830(280K) \\
- IP55 compatible model \\
- Compatibility with FR-A8NP \\
- SF-PR included (Pr. 71 (Pr.450) = "70, 73, 74") \\
- Anti-sway control (Pr. 1072 to Pr.1079) \\
- Position control functions added (Pr.1289, Pr.1290, Pr. 1292 to Pr.1297)
\end{tabular} \\
\hline Mar. 2014 & IB(NA)-0600503ENG-C & \begin{tabular}{l}
Addition \\
- Separated converter type
\end{tabular} \\
\hline Apr. 2014 & IB(NA)-0600503ENG-D & \begin{tabular}{l}
Addition \\
- Motor permissible load level (Pr.607, Pr.608) \\
- FR-A846-00023(0.4K) to FR-A846-00170(5.5K)
\end{tabular} \\
\hline Sep. 2014 & IB(NA)-0600503ENG-E & \begin{tabular}{l}
Addition \\
- SF-PR heavy duty setting \\
- SF-PR slip amount adjustment mode (Pr.673, Pr.674) \\
- Addition to the power failure time deceleration-to-stop function (Pr.606, X48 signal, Y67 signal, and compatibility with the separated converter type) \\
- Addition to the self power management function (X94 signal) \\
- Addition to the electronic bypass sequence function (X95 signal and X96 signal) \\
- Pr. 1015 Integral stop selection at limited frequency \\
- Pr. 1016 PTC thermistor protection detection time
\end{tabular} \\
\hline Mar. 2015 & IB(NA)-0600503ENG-F & \begin{tabular}{l}
Addition \\
- Second droop control (Pr. 679 to Pr.683) \\
- Internal torque limit 2 (Pr. \(810=\) "2") \\
- Pr. 1018 Monitor with sign selection \\
- Current position 2 (Pr.430) \\
- Cumulative pulse monitor (Pr. 635 to Pr.638) \\
- Compatibility with FR-A8TP, FR-A8APR, and FR-A8AZ \\
Modification \\
- Availability of the brake sequence function under V/F control \\
- Availability of the anti-sway control under V/F control and Advanced magnetic flux vector control
\end{tabular} \\
\hline Aug. 2015 & IB(NA)-0600503ENG-G & \begin{tabular}{l}
Addition \\
- FR-A800-GF (CC-Link IE Field Network communication function type)
\end{tabular} \\
\hline Oct. 2016 & IB(NA)-0600503ENG-H & \begin{tabular}{l}
Addition \\
- Start count monitor (Pr.1410, Pr.411) \\
- Excitation current low-speed scaling factor (Pr. 14 = "12 to 15", Pr.85, Pr.86, Pr.565, Pr.566, Pr.617) \\
- Backup/restore function \\
- Input signals (CLRN, JOGF, JOGR) \\
- Output signal (SAFE) \\
- Simple position control by point table (The home position information is retained at servo-OFF.) (Pr. 419 = "10") \\
- MODBUS RTU communication stop bit length selection \\
- Continuous operation at communication error (Pr. 502 = "4")
\end{tabular} \\
\hline May 2017 & IB(NA)-0600503ENG-J & \begin{tabular}{l}
Addition \\
- Load characteristics fault detection (Pr. 1480 to Pr.1492) \\
- Droop control using the per-unit speed control reference frequency (Pr. 288 (Pr.681) = "20 to 22") \\
- Torque current command limit (Pr.801, Pr. \(803=\) "2") \\
- PID manipulated amount: 0 to 100\% (Pr. 1015 = "2, 12") \\
- Pr. 1348 P/PI control switchover frequency \\
- Pr. 1349 Emergency stop operation selection \\
- Operation selection at a communication error (Pr. \(502=111,12 ")\) \\
- Multi-revolution counter monitoring \\
Modification \\
- Pr. 275 setting range: 0 to \(300 \%\)
\end{tabular} \\
\hline
\end{tabular}

\section*{FR-A800 series}

\section*{Instruction Manual Supplement}

\section*{1}

Monitor value update timing

The timing to update the value is changed for the cumulative energization time, actual operation time, and cumulative power. Moreover, the cumulative energization time on the display is incremented differently depending on the total time.

\section*{Cumulative power monitoring}
- During the monitoring of cumulative power ( \(\operatorname{Pr} .52=" 25 ")\), the monitored output power is added up. Its readout is refreshed every 100 ms .
- The values are stored in EEPROM every 10 minutes. The values are also stored in EEPROM at power OFF or inverter reset.

\section*{- Cumulative energization time monitoring}
- Cumulative energization time monitoring (Pr. \(52=" 20 ")\) accumulates energization time from shipment of the inverter.
- The cumulative energization time is displayed in 0.001 -hour increments until the cumulative time reaches one hour, and then the time is displayed in 1-hour increments.
- The EEPROM is updated every minute until the cumulative energization time reaches one hour, and then the EEPROM is updated every 10 minutes. The EEPROM is also updated at power OFF.

\section*{- Actual operation time monitoring}
- On the actual operation time monitoring ( \(\operatorname{Pr} .52=" 23 ")\), the inverter running time is added up every hour. (Time is not added up during a stop.)
- The time is displayed in 1 -hour increments.
- The values are stored in EEPROM every 10 minutes. The EEPROM is also updated at power OFF.

User parameters can be stored automatically in data registers at power OFF or inverter reset. User parameters can be read from RAM or EEPROM according to the setting.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Initial \\
value
\end{tabular}} & \begin{tabular}{c} 
Setting \\
range
\end{tabular} & \multicolumn{2}{c|}{ Description }
\end{tabular}

\section*{- User parameter (data register (D)) auto storage function selection}
- Setting Pr. 675 = "1" enables the auto storage function for user parameters.
- The user parameter auto storage function is used to store the setting of Pr. 1195 User parameter 46 (D251) to Pr. 1199 User parameter 50 (D255) automatically in EEPROM at power OFF or inverter reset.
- The auto storage function is disabled while the inverter performs any of the following.

Measurement of the main circuit capacitor's life, offline auto tuning, or measurement of load characteristics

\section*{NOTE}
- The auto storage function may fail if the EEPROM is accessed by other functions at the same time at power OFF. To ensure the auto storage, provide a power source for the control circuit separately from that of the main circuit.

\section*{User parameter reading from EEPROM}
- User parameters (Pr. 1150 to Pr.1199) are read from RAM or EEPROM according to the settings in Pr. 342 Communication EEPROM write selection and Pr. 414 PLC function operation selection. When Pr. \(414=" 11\) or 12", RAM data is read regardless of the Pr. 342 setting.
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Pr. 342 & Pr. 414 & Read from & Written to \\
\hline \multirow{4}{*}{Inverter (via communication), FR Configurator2} & \multirow{2}{*}{0} & 0, 1, 2 & EEPROM & \multirow{2}{*}{EEPROM} \\
\hline & & 11, 12 & RAM & \\
\hline & \multirow{2}{*}{1} & 0, 1, 2 & RAM & \multirow{2}{*}{RAM} \\
\hline & & 11, 12 & RAM & \\
\hline \multirow{4}{*}{Communication option} & \multirow{2}{*}{0} & 0, 1, 2 & (Differs according to the option type.) & \multirow{2}{*}{EEPROM} \\
\hline & & 11, 12 & RAM & \\
\hline & \multirow{2}{*}{1} & 0, 1, 2 & RAM & \multirow{2}{*}{RAM} \\
\hline & & 11, 12 & RAM & \\
\hline \multirow{4}{*}{Parameter unit, operation panel} & \multirow{2}{*}{0} & 0, 1, 2 & EEPROM & \multirow{2}{*}{EEPROM} \\
\hline & & 11, 12 & RAM & \\
\hline & \multirow[b]{2}{*}{1} & 0, 1, 2 & EEPROM & \multirow[b]{2}{*}{RAM} \\
\hline & & 11, 12 & RAM & \\
\hline
\end{tabular}

The FR-A800 series inverter has a removable control circuit terminal block. The following are the precautions to remove or reinstall the control circuit terminal block.
Observe the following for proper handling to avoid malfunctions or failures of the inverter.

\section*{Removal and reinstallation of the control circuit terminal block}

To remove or reinstall the control circuit terminal block, keep it upright so that it is parallel with the inverter. To install the control circuit terminal block, slide it upward so that the groove on the terminal block fits over the tongue on the inverter. Adjust the terminal block position for alignment with the screw fixing bases.

\section*{NOTE}
- Be careful not to bend the control circuit connector pins on the inverter at the time of removal or installation.


\section*{Screw-fixing of the control circuit terminal block}

Check that the terminal block is parallel with the inverter and the pins of the inverter's control circuit connector are not bent. After checking the proper connection, fix the terminal block with two screws.


View from A side

\section*{NOTE}
- Do not tilt the terminal block while tightening the screws or removing it from the inverter. (Otherwise, a stress applied to the control circuit terminal block or the control circuit connector may cause damage to them.)

\section*{FR-A800 Series}

\section*{Instruction Manual Supplement}

\section*{1 Reset selection}

The inverter reset function can be restricted to be available only while the start signal is OFF.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[b]{2}{*}{75} & \multirow[b]{2}{*}{Reset selection/ disconnected PU detection/PU stop selection} & \multirow[b]{2}{*}{14} & 0 to 3 , 14 to 17, 1000 to 1003, 1014 to \(1017^{* 1}\) & \multirow[b]{2}{*}{For the initial setting, reset is always enabled, without disconnected PU detection, and with the PU stop function.} \\
\hline & & & 0 to 3 , 14 to 17,100 to 103 , 114 to 117, 1000 to 1003, 1014 to 1017, 1100 to 1103, 1114 to \(1117^{*}{ }^{2}\) & \\
\hline \multirow{4}{*}{E100} & \multirow{4}{*}{Reset selection} & \multirow{4}{*}{0} & 0 & Reset input is always enabled. \\
\hline & & & 1 & Reset input is enabled only when the protective function is activated. \\
\hline & & & 2 & Reset input is enabled only when the start signal is OFF. \\
\hline & & & 3 & Reset input is enabled when the protective function is activated and the start signal is OFF. \\
\hline
\end{tabular}

The parameters above will not return to their initial values even if parameter (all) clear is executed.
*1 The setting range for the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower.
*2 The setting range of the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.
\begin{tabular}{|c|c|c|c|}
\hline Pr. 75 setting \({ }^{* 3}\) & Reset selection & Disconnected PU detection & PU stop selection \\
\hline 0, 100 & Reset input always enabled. & \multirow{4}{*}{Operation continues even when PU is disconnected.} & \multirow{8}{*}{\begin{tabular}{l}
Decelerates to a stop when \\
STOP \\
RESET \\
is input in the PU operation mode only.
\end{tabular}} \\
\hline 1,101 & Reset input enabled only when the protective function is activated. & & \\
\hline 1000, 1100 & Reset input enabled only when the start signal is OFF. & & \\
\hline 1001, 1101 & Reset input enabled only when the protective function is activated and the start signal is OFF. & & \\
\hline 2, 102 & Reset input always enabled. & \multirow{4}{*}{Inverter output shut off when PU is disconnected.} & \\
\hline 3,103 & Reset input enabled only when the protective function is activated. & & \\
\hline 1002, 1102 & Reset input enabled only when the start signal is OFF. & & \\
\hline 1003, 1103 & Reset input enabled only when the protective function is activated and the start signal is OFF. & & \\
\hline 14 (initial value), 114 & Reset input always enabled. & \multirow{4}{*}{Operation continues even when PU is disconnected.} & \multirow{8}{*}{Decelerates to a stop when
\(\square\) \(\frac{\text { STOP }}{\text { RESET }}\) is input in any of the PU, External, and Network operation modes.} \\
\hline 15, 115 & Reset input enabled only when the protective function is activated. & & \\
\hline 1014, 1114 & Reset input enabled only when the start signal is OFF. & & \\
\hline 1015, 1115 & Reset input enabled only when the protective function is activated and the start signal is OFF. & & \\
\hline 16, 116 & Reset input always enabled. & \multirow{4}{*}{Inverter output shut off when PU is disconnected.} & \\
\hline 17, 117 & Reset input enabled only when the protective function is activated. & & \\
\hline 1016, 1116 & Reset input enabled only when the start signal is OFF. & & \\
\hline 1017, 1117 & Reset input enabled only when the protective function is activated and the start signal is OFF. & & \\
\hline
\end{tabular}
*3 When any of " 100 to 103,114 to 117,1100 to 1103 , or 1114 to 1117 " is set in Pr.75, the reset limit function is enabled. (The reset limit function is available for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)

\section*{Reset selection (P.E100)}
- When P.E100 = "1" or Pr. \(75=" 1,3,15,17,101,103,115\), or 117 ", reset input (reset command via the RES signal or communication) is enabled only when the protective function is activated.
- When P.E100 = "2" or Pr. \(75=\) " \(1000,1002,1014,1016,1100,1102,1114\), or \(1116 "\), reset input (reset command via the RES signal or communication) is enabled only when the start signal is OFF.
- When P.E100 = "3" or Pr. \(75=\) "1001, 1003, 1015, 1017, 1101, 1103, 1115, or 1117", reset input (reset command via the RES signal or communication) is enabled only when the protective function is activated with the start signal OFF.

\section*{NOTE}
- When the Inverter reset (RES) signal is input during operation, the motor coasts since the inverter being reset shuts off the output. Also, the cumulative values of electronic thermal \(\mathrm{O} / \mathrm{L}\) relay and regenerative brake duty are cleared.
- When "reset input always enabled" is selected, the reset key on the PU is enabled only when the protective function is activated.
- The following table shows applicable start commands. (When both the STF and STR signals are ON, the start signal status is OFF.)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Start signal input interface } & \multicolumn{1}{c|}{ Applicable start signal } \\
\hline External terminal & X13, X22, LX, X28, JOGF, JOGR, STF, or STR \\
\hline PU & Forward/reverse rotation command given by pressing the FWD/REV key \\
\hline Communication & X13, X22, LX, X28, STF, or STR \\
\hline
\end{tabular}

\section*{2 \\ External fault input signal}

The inverter output can be shut off by inputting the External fault input (X32) signal when an external fault occurs.

\section*{- Input terminal function assignment}
- To assign the signal to an input terminal, set the following value in any of Pr. 178 to Pr. 189.
\begin{tabular}{|l|l|l|l|l|}
\hline Setting & Signal name & & Function & Related parameter \\
\hline 32 & X32 & External fault input \({ }^{*} 1\) & - \\
\hline
\end{tabular}
*1 The protective function using the X32 signal is activated when the relay contact opens.

\section*{- Details of the operation}
- When the External fault input (X32) signal turns OFF during operation, the inverter activates the protective function with the indication "E.EF" displayed to shut off the output.
- When the X32 signal turns OFF during a stop, the protective function is not activated ("E.EF" is not displayed).
- When the inverter operation is started with the X32 signal OFF, the inverter activates the protective function immediately to shut off the output.

\section*{NOTE}
- When the X32 signal turns OFF during zero speed control or pre-excitation while the start signal is OFF, the inverter output is shut off.
- When the inverter operation is started with the X32 signal OFF, the inverter may output the AC voltage for an extremely brief moment.

\section*{Fault}

When a protective function is activated, the inverter output is shut off and a fault signal is output.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c} 
Operation panel \\
display/indicator
\end{tabular} & \multicolumn{1}{|c|}{ E.EF } & External fault during output operation (Data code: 224 (HEO)) \({ }^{* 1}\) \\
\hline Name & \begin{tabular}{l} 
When the X32 signal turns OFF (the contact opens) due to an external fault or other factor, the inverter output is shut off. \\
This function is available when "32" is set in any of Pr. 178 to Pr. 189 (Input terminal function selection). This protective \\
function is not available in the initial status (X32 signal is not assigned).
\end{tabular} \\
\hline Description & - Check that the X32 signal is OFF. \\
\hline Check point & Corrective action & Make sure that there is no problem in starting operation, and turn ON the X32 signal. \\
\hline
\end{tabular}
*1 The data code is used to check the fault via communication or to set Pr. 997 Fault initiation.

\section*{NOTE}
- The retry function (Pr.65) is not applicable to the fault "E.EF".

Setting "28 or 29" in Pr.52, Pr. 774 to Pr.776, or Pr. 992 (multifunction monitor) enables monitoring of the current position 2.
\begin{tabular}{|c|c|c|c|c|}
\hline Pr. & Name & Initial value & Setting range & Description \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 430 \\
& \text { B011 }
\end{aligned}
\]} & \multirow[t]{2}{*}{Pulse monitor selection} & \multirow[t]{2}{*}{9999} & ```
0 to 5, 12, 13,
100 to 105, 112, 113, 1000 to
1005, 1012, 1013, 1100 to 1105,
1112, 1113,
2000 to 2005, 2012, 2013, 2100 to
2105, 2112, 2113,
3000 to 3005, 3012, 3013, 3100 to
3105, 3112, }311
``` & Shows the various pulse conditions during operation as the number of pulses. \\
\hline & & & 8888, 9999 & Shows the output frequency value. \\
\hline
\end{tabular}

\section*{- Pulse monitor selection (Pr.430)}
- Shows the various pulse conditions during operation as the number of pulses. Set " 0 " in Pr. 52 Operation panel main monitor selection to display the first screen (initially set to monitor the output frequency).
- Set "26 to 31" in Pr.52, Pr. 774 to Pr.776, or Pr. 992 (multifunction monitor) to change the electronic gear operation setting for pulse monitoring.
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pr. } 430 \\
& \text { setting }
\end{aligned}
\] & \multicolumn{2}{|r|}{Description} \\
\hline [][][]0 & \multirow{8}{*}{Pulse monitor selection} & Displays the lower of the position command (accumulated value of command pulses). \\
\hline [][][] & & Displays the upper of the position command (accumulated value of command pulses). \\
\hline [][][]2 & & Displays the lower of the current position (accumulated value of feedback pulses*1). \\
\hline [][][]3 & & Displays the upper of the current position (accumulated value of feedback pulses \({ }^{* 1}\)). \\
\hline [][][]4 & & Displays the lower of the accumulated value of droop pulses. \\
\hline [][][]5 & & Displays the upper of the accumulated value of droop pulses. \\
\hline [][12 & & Displays the lower of the current position 2 (accumulated value of feedback pulses \({ }^{* 1}\)). \\
\hline [][13 & & Displays the upper of the current position 2 (accumulated value of feedback pulses \({ }^{* 1}\)). \\
\hline []O[][] & \multirow[t]{2}{*}{For pulse monitor selection} & Displays the monitor item selected in the pulse monitor selection after the electronic gear operation. \\
\hline []1[][] & & Displays the monitor item selected in the pulse monitor selection before the electronic gear operation. \\
\hline \multirow[b]{2}{*}{O[][][]} & \multirow{8}{*}{For the multifunction monitor / For the PLC function special register} & Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation. \\
\hline & & Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation. \\
\hline \multirow[b]{2}{*}{1[][][]} & & Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation. \\
\hline & & Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation. \\
\hline \multirow[b]{2}{*}{2[][][]} & & Displays the monitor item selected in the multifunction monitor (position command, current position 2, and droop pulse) before the electronic gear operation. \\
\hline & & Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation. \\
\hline \multirow[b]{2}{*}{3[][][]} & & Displays the monitor item selected in the multifunction monitor (position command, current position 2, and droop pulse) after the electronic gear operation. \\
\hline & & Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation. \\
\hline \multirow[t]{2}{*}{8888} & \multirow{4}{*}{Output frequency display} & Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation. \\
\hline & & Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
9999 \\
(initial \\
value)
\end{tabular}} & & Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation. \\
\hline & & Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation. \\
\hline
\end{tabular}

\footnotetext{
*1 Accumulated value of estimated feedback pulses when PM sensorless vector control is used.
}
\begin{tabular}{|c|c|}
\hline Model & \begin{tabular}{c}
FR-A800 \\
Instruction Manual (Detailed)
\end{tabular} \\
\hline Model code & 1A2-P52 \\
\hline
\end{tabular}```

[^0]: *1 0 to $+50^{\circ} \mathrm{C}$ for the FR-A800-GF.
 *2 0 to $+40^{\circ} \mathrm{C}$ for the FR-A800-GF.
 *3 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A840-04320(160K) or higher.

[^1]: NOTE

 - The amount of heat generated shown assumes that the output current is inverter rated current, power supply voltage is 440 V (400 V class), and carrier frequency is 2 kHz .

[^2]: *1 The terminal function can be selected by Pr. 178 to Pr. 196 (Input terminal function selection). (Refer to page 496.)
 *2 Set Pr.73, Pr.267, and the voltage/current input switch correctly, then input an analog signal in accordance with the setting. Applying a voltage with each of the voltage/current input switch ON (current input is selected) or a current with each of the switch OFF (voltage input is selected) could cause component damage of the inverter or analog circuits of output devices. (For the details, refer to page 473.)
 *3 Sink logic is initially set for the FM-type inverter.
 *4 Source logic is initially set for the CA-type inverter.

[^3]: *1 The maximum speed is $2400 \mathrm{r} / \mathrm{min}$.
 *2 80% output in the high-speed range. (The output is reduced when the speed is $2400 \mathrm{r} / \mathrm{min}$ or faster.)
 *3 90% output in the high-speed range. (The output is reduced when the speed is $1000 \mathrm{r} / \mathrm{min}$ or faster.)
 *4 For motors with overload capacity $150 \% 60 \mathrm{~s}$ (" Y " at the end of their model names), contact your sales representative.
 *5 This model is developed upon receipt of order.

[^4]: *1 The leakage currents of the 400 V class are about twice as large.

[^5]: For " 人" connection, the amount of leakage current is appox. $1 / 3$ of the above value.

[^6]: - Use the operation panel (FR-DU08) to give a start command and a frequency command. (PU operation)

[^7]: 《｜Parameters referred to \》
 Pr． 7 Acceleration time，Pr． 8 Deceleration time page 349
 Pr． 79 Operation mode selection
 Pr． 125 Terminal 2 frequency setting gain frequency page 482
 C2（Pr．902）Terminal 2 frequency setting bias frequency page 482

[^8]: 《 Parameters referred to 》
 Pr． 7 Acceleration time，Pr． 8 Deceleration time page 349
 Pr． 79 Operation mode selection page 370
 Pr． 126 Terminal 4 frequency setting gain frequency page 482

[^9]: 《齐 Parameters referred to 》》
 Pr． 15 Jog frequency，Pr． 16 Jog acceleration／deceleration time page 390
 Pr． 79 Operation mode selection page 370

[^10]: 《｜Parameters referred to 》》
 Pr． 15 Jog frequency，Pr． 16 Jog acceleration／deceleration time page 390

[^11]: 《 Parameters referred to 》》
 Pr． 178 to Pr． 189 （Input terminal function selection）page 496

[^12]: *1 The setting is available when the FR-A8AL is installed.

[^13]: ＊1 The read value is always＂9999＂

[^14]: *1 Enabled when the FR-LU08 (-01) is used.

[^15]: *1 When Pr. 414 = "1", the setting value is not changed.

[^16]: ＊1 The setting range of FR－A820－03160（55K）or lower and FR－A840－01800（55K）or lower
 ＊2 The setting range of FR－A820－03800（75K）or higher and FR－A840－02160（75K）or higher

[^17]: *1 The initial value for the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower.
 *2 Initial value for the FR-A820-00630(11K) or higher and FR-A840-00310(11K) and higher.

[^18]: 《 Parameters referred to 》》
 Pr． 2 Minimum frequency page 407
 Pr． 7 Acceleration time page 349

[^19]: *1 Depends on the Pr. 77 Parameter write selection setting and other parameter write conditions. (Refer to page 328.)

[^20]: 《 Parameters referred to 》》
 Pr． 291 （Pulse train output）page 435
 Pr． 419 Position command source selection \longmapsto page 304

[^21]: ＊1 For the 200 V class
 ＊2 For the 400 V class

[^22]: 《|Parameters referred to \》
 Pr. 22 Torque limit level page 235
 Pr. 73 Analog input selection page 473
 Pr. 178 to Pr. 189 (Input terminal function selection) page 496
 Pr. 190 to Pr. 196 (Output terminal function selection) page 450
 Pr. 858 Terminal 4 function assignment, Pr. 868 Terminal 1 function assignment page 477

[^23]: - Calibrate the output via terminal FM in the following procedure.

[^24]: *1 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.

[^25]: 《《 Parameters referred to 》》
 Pr． 20 Acceleration／deceleration reference frequency page 349
 Pr． 73 Analog input selection，Pr． 267 Terminal 4 input selection $\sqrt{\xi}$ page 473
 Pr． 79 Operation mode selection $\sqrt{3}$ page 370
 Pr． 858 Terminal 4 function assignment，Pr． 868 Terminal 1 function assignment page 477

[^26]: *1 For the FR-A820-00077(0.75K) or lower and FR-A840-00038(0.75K) or lower, it is set to 85% of the inverter rated current.
 *2 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.
 *3 For the FR-A820-03800(75K) or higher, and FR-A840-02160(75K) or higher.
 *4 The initial value differs according to the voltage class ($200 \mathrm{~V} / 400 \mathrm{~V}$).
 *5 The setting range and unit change according to the Pr. 71 (Pr.450) setting.

[^27]: *1 For the FR-A820-00077(0.75K) or lower and FR-A840-00038(0.75K) or lower, it is set to 85% of the inverter rated current.
 *2 For the FR-A820-03160(55K) or lower, and FR-A840-01800(55K) or lower.

[^28]: *1 The setting is available when a Vector control compatible plug-in option is installed.

[^29]: *1 When Pr. $138=$ " 0 (electronic bypass invalid at a fault)", MC2 is OFF. When Pr. $138=$ " 1 (electronic bypass valid at a fault)", MC2 is ON.
 *2 The self power management operation is followed.

[^30]: *1 When two or more ends conditions are satisfied, the pre-charge operation ends by the first-satisfied condition.

[^31]: *2 Can be changed by Pr. 73 and Pr. 267 and the voltage/current input switch. (Refer to page 473.)

[^32]: 《｜Parameters referred to 》》
 Pr． 7 Acceleration time，Pr． 21 Acceleration／deceleration time increments page 349
 Pr． 13 Starting frequency page 363，page 364
 Pr．65，Pr． 67 to Pr． 69 Retry function 5 page 405
 Pr． 78 Reverse rotation prevention selection page 386
 Pr． 178 to Pr． 189 （Input terminal function selection）page 496

[^33]: 《 Parameters referred to 》
 Pr. 7 Acceleration time, Pr. 8 Deceleration time, Pr. 111 Third deceleration time page 349

