int_{el}.

Intel[®] Pentium[®] 4 Processor in 478-Pin Package and Intel[®] 845 Chipset Platform for DDR

Design Guide

February 2002

Document Number: 298605-002

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel[®] Pentium 4 processor and the Intel[®] 845 chipset may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I²C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I²C bus/protocol and was developed by Intel. Implementations of the I²C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Alert on LAN is a result of the Intel-IBM Advanced Manageability Alliance and a trademark of IBM

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation

www.intel.com

or call 1-800-548-4725

Intel, Pentium, Intel Netburst and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002, Intel Corporation

int_el.

Contents

Introdu	iction			15
1.1	Related	Documenta	tion	16
1.2	Convent	ions and Te	rminology	18
1.3	System	Overview		21
	1.3.1	Intel [®] Pent	ium [®] 4 Processor	21
	1.3.2		Chipset	21
		1.3.2.1	Intel [®] Memory Controller Hub (MCH)	
		1.3.2.2	Accelerated Graphics Port (AGP) Interface	
		1.3.2.3		22
	1.3.3	1.3.2.4	Intel [®] I/O Controller Hub 2 (ICH2)	
	1.3.3		Summary onfigurations	
1.4		•		
1.4	1.4.1		Chipset	
	1.4.1	1.4.1.1	Processor/Host Interface (System Bus)	
		1.4.1.2	System Memory Interface	
			Accelerated Graphics Port (AGP)	25
	1.4.2	Intel [®] ICH2	2	25
		1.4.2.1	Integrated LAN Controller	25
		1.4.2.2	Ultra ATA/100 Support	
		1.4.2.3	Expanded USB 1.1 Support	
		1.4.2.4	AC '97 6-Channel Support	
	1.4.3	-	ility and Other Enhancements	
		1.4.3.1 1.4.3.2	SMBus	
	1.4.4	-	Interrupt Controller Platform Compliance	
			•	
Compo		•	t	
2.1	Intel [®] Pe	ntium [®] 4 Pr	ocessor Component Quadrant Layout	29
2.2	Intel [®] 84	5 Chipset C	omponent Quadrant Layout	30
2.3			ent Quadrant Layout	
		-	-	
			ck-Up Overview	
3.1			t Placement (DDR-SDRAM)	
3.2	Nominal	4-Layer Boa	ard Stack-Up	32
3.3	PCB Tec	chnologies		34
	3.3.1	Design Co	nsiderations	34
Proces	sor Syste	m Bus Guid	elines	35
4.1	Process	or System B	us Design Guidelines	35
	4.1.1		ayout and Routing Recommendations	
	4.1.2	HVREF, H	SWNG, HRCOMP Layout and Routing Recommendatio	ons at
		the Intel®	ИСН	38
4.2	Process	or Configura	ition	39

	4.2.1	Intel [®] Per	ntium [®] 4 Processor Configuration	39
	4.2.2		and Routing	
		4.2.2.1	Design Recommendations	
4.3			for Asynchronous GTL+ and Other Signals	
	4.3.1		es	
		4.3.1.1	Topology 1A: Asynchronous GTL+ Signal Driven by the Processor—FERR#	
		4.3.1.2	Topology 1B: Asynchronous GTL+ Signal Driven by the Processor—PROCHOT#	44
		4.3.1.3	Topology 1C: Asynchronous GTL+ Signal Driven by the Processor—THERMTRIP#	45
		4.3.1.4	Topology 2A: Asynchronous GTL+ Signals Driven by the Intel [®] ICH2—A20M#, IGNNE#, LINT[1:0], SLP#, SMI#, a STPCLK#	and
		4.3.1.5	Topology 2B: Asynchronous GTL+ Signal Driven by the Intel [®] ICH2—INIT#	47
		4.3.1.6	Topology 2C: Asynchronous GTL+ Signal Driven by the Intel [®] ICH2 Open Drain—PWRGOOD	
		4.3.1.7	Topology 3—V _{CCIOPLL} , V _{CCA} and V _{SSA}	48
		4.3.1.8	Topology 4—BR0# and RESET#	
		4.3.1.9	Topology 5: COMP[1:0] Signals	
		4.3.1.10	Topology 6: THERMDA/THERMDC Routing Guidelines	
		4.3.1.11	Topology 7: TESTHI and RESERVED Pins	50
		4.3.1.12	Topology 8: Processor Voltage Regulator Sequencing	F 4
4 4	A ddition		Requirements	
4.4			or Design Considerations	
	4.4.1 4.4.2		Mechanism Placement and Keep-Outs	
4.5			g Guidelines	
4.5	4.5.1		pols Specifications	
	4.5.1	4.5.1.1	Logic Analyzer Interface (LAI)	
		4.5.1.1	Mechanical Considerations	
		4.5.1.3	Electrical Considerations	
4.6	Intel [®] P		Processor Power Distribution Guidelines	
4.0	4.6.1		equirements	
	4.6.2		Processor Thermal Design Power (TDP) Limit	
	4.6.3		ng Requirements	
	4.6.4			
	4.6.5		Considerations	
	4.6.6	Simulatio		-
		4.6.6.1	Filter Specifications for V _{CCA} , V _{CCIOPLL} , and V _{SSA}	68
4.7	Intel [®] P	entium [®] 4 F	Processor and Intel [®] 845 Chipset Package Lengths	71
			nous DRAM (DDR-SDRAM) System Memory Design	75
5.1			Signals	
5.2		· ,	k-Up and Referencing Guidelines	
5.3			ory Topology and Layout Design Guidelines	
	5.3.1		nals—SDQ[63:0], SDQS[8:0], SCB[7:0]	81
		5.3.1.1 5.3.1.2	Routing Example—SDQ[63:0], SCB[7:0], SDQS[8:0] Data Group Signal Length Matching Requirements	
	5.3.2		ignals—SCKE[3:0], SCS#[3:0]	
			C L 1/ L - 1	

		5.3.2.1 5.3.2.2	Routing Examples—SCS#[3:0], SCKE[3:0] Control Signal to System Memory Clock Routing Requirements	
	5.3.3	Command 5.3.3.1	Signals—SMA[12:0], SBS[1:0], SRAS#, SCAS#, SWE# Routing Examples—SMA[12:0], SBS[1:0], SCAS#, SRAS# SWE#	88 #, 90
		5.3.3.2	Command Group Signal to System Memory Clock Routing Requirements	
	5.3.4	Clock Sign	als—SCK[5:0], SCK#[5:0]	93
		5.3.4.1	Routing Examples—SCK[5:0], SCK#[5:0]	
		5.3.4.2	Clock Group Signal Length Matching Requirements	
	5.3.5		-RCVENOUT#, RCVENIN#	
5.4	•		bass Capacitor Guidelines	
5.5			······	
	5.5.1		er Delivery Guidelines	
	5.5.2		System Memory Interface Decoupling Requirements	
		5.5.2.1	Intel [®] MCH System Memory High-Frequency Decoupling.	104
		5.5.2.2	Intel [®] MCH System Memory Low-Frequency Bulk	405
			Decoupling	
	5.5.3		A Decoupling Requirements	
	5.5.4		rence Voltage	
	5.5.5 5.5.6		COMP Resistive Compensation	
	5.5.6	5.5.6.1	Routing Example—DDR V_{TT} Termination Island	
		5.5.6.2	V _{TT} Termination Island High-Frequency Decoupling	
		5.5.6.3	Requirements	
	5.5.7	DDR Volta	ge Regulator Guidelines	110
		5.5.7.1	Intel [®] 845 Chipset DDR Reference Board Power Delivery	
		5.5.7.2	DDR 2.5 V Power Plane	
		5.5.7.3	DDR 1.25 V Power Plane	111
		5.5.7.4	DDR Reference Voltage (V _{REF})	111
		5.5.7.5 5.5.7.6	DC and AC Electrical Characteristics (DIMM Supply Rails) DC and AC Electrical Characteristics (Intel [®] MCH Supply)111
			Rails)	
		5.5.7.7	DC and AC Electrical Characteristics (V $_{TT}$ Supply Rail)	
		5.5.7.8	DDR Voltage Regulator Reference Design Example	
	5.5.8		juencing Requirements	114
		5.5.8.1	Intel® MCH Power Sequencing Requirements	
		5.5.8.2	DDR-SDRAM Power Sequencing Requirements	
5.6			nal Package Lengths	
AGP In	terface De	esign Guide	lines	119
6.1	AGP Rou	iting Guidel	ines	120
	6.1.1	1X Timing	Domain Signal Routing Guidelines	120
	6.1.2		ing Domain Signal Routing Guidelines	
		6.1.2.1	Trace Lengths Less Than 6 Inches	121
		6.1.2.2	Trace Lengths Greater Than 6 Inches and Less Than 7.25	
			Inches	
	6.1.3		aces Trace Length Summary	
	6.1.4		ver/Ground Referencing Recommendations	
	6.1.5	V _{DDQ} and T	TYPEDET#	124

6

int_{el}.

	6.1.6 6.1.7 6.1.8 6.1.9	V _{REF} Generation Intel [®] MCH AGP Interface Buffer Compensation Intel [®] MCH External AGP Pull-Up/Pull-Down Resistors	125 126
	0.1.9	AGP Device Down Routing Guidelines 6.1.9.1 1X Timing Domain Signal Routing Guidelines	
		6.1.9.2 2X/4X Timing Domain Signal Routing Guidelines	
	6.1.10	AGP Connector	
	6.1.11	AGP Connector Decoupling Guidelines	
	6.1.12	AGP Universal Retention Mechanism (RM)	
Hub In	terface	· · · ·	133
7.1	8-Bit Hu	b Interface Routing Guidelines	133
	7.1.1	8-Bit Hub Interface Data Signals	
	7.1.2	8-Bit Hub Interface Strobe Signals	
	7.1.3	8-Bit Hub Interface HI_REF Generation/Distribution	
	7.1.4	8-Bit Hub Interface Compensation	
	7.1.5	8-Bit Hub Interface Decoupling Guidelines	135
Intel [®] I	/O Contro	ller Hub 2 (ICH 2)	137
8.1	IDE Inte	rface	137
	8.1.1	Cabling	137
		8.1.1.1 Cable Detection for Ultra ATA/66 and Ultra ATA/100	137
		8.1.1.2 Combination Host-Side/Device-Side Cable Detection	138
		8.1.1.3 Device-Side Cable Detection	
	8.1.2	Primary IDE Connector Requirements	
	8.1.3	Secondary IDE Connector Requirements	
8.2			
	8.2.1	AC '97 Audio Codec Detect Circuit and Configuration Options	143
	8.2.2	Valid Codec Configurations	
	8.2.3	SPKR Pin Consideration	
8.3			
8.4			
	8.4.1	Using Native USB interface	149
	8.4.2	Disabling the Native USB Interface of Intel [®] ICH2	150
8.5	IOAPIC	Design Recommendation	151
	8.5.1	PIRQ Routing Example	151
8.6	SMBus/	SMLink Interface	152
	8.6.1	SMBus Architecture & Design Considerations	153
8.7	PCI		156
8.8	RTC		156
	8.8.1	RTC Crystal	156
	8.8.2	External Capacitors	
	8.8.3	RTC Layout Considerations	158
	8.8.4	RTC External Battery Connection	
	8.8.5	RTC External RTCRST Circuit	
	8.8.6	RTC Routing Guidelines	
	8.8.7	VBIAS DC Voltage and Noise Measurements	
	8.8.8	Power-Well Isolation Control Strap Requirements	
8.9	•	/out Guidelines	
	8.9.1	Intel [®] ICH2—Platform LAN Connect Guidelines	
		8.9.1.1 Bus Topologies	
		8.9.1.2 Point-to-point Interconnect	163

7

8

			8.9.1.3	LOM /CNR Interconnect	.163
			8.9.1.4	Signal Routing and Layout	.164
			8.9.1.5	Crosstalk Consideration	.164
			8.9.1.6	Impedances	.164
			8.9.1.7	Line Termination	.164
		8.9.2	General L	AN Routing Guidelines and Considerations	.165
			8.9.2.1	General Trace Routing Considerations	
			8.9.2.2	Power and Ground Connections	.167
			8.9.2.3	Common Physical Layout Issues	.169
		8.9.3	Intel [®] 825	62EH Home/PNA* Guidelines	.170
			8.9.3.1	Power and Ground Connections	.171
			8.9.3.2	Guidelines for Intel [®] 82562EH Component Placement	.171
			8.9.3.3	Crystals and Oscillators	.171
			8.9.3.4	Phoneline HPNA Termination	.171
			8.9.3.5	Critical Dimensions	
		8.9.4	Intel [®] 825	62ET / 82562EM Guidelines	.174
			8.9.4.1	Guidelines for Intel [®] 82562ET / 82562EM Component Placement	.174
			8.9.4.2	Crystals and Oscillators	.174
			8.9.4.3	Intel® 82562ET / 82562EM Termination Resistors	.175
			8.9.4.4	Critical Dimensions	.175
			8.9.4.5	Distance from Intel [®] 82562ET to Magnetics Module	.176
			8.9.4.6	Reducing Circuit Inductance	.176
		8.9.5	Intel [®] 825	62ET/82562EM Disabling Method	.178
		8.9.6	Intel [®] 825	62ET / 82562EH Dual Footprint Guidelines	.179
	8.10	Intel [®] ICF	12 Decoup	ling Recommendations	.181
9	FWH	Guidelines			.183
	9.1	FWH Dec	coupling		.183
	9.2			gramming	
	9.3		-	Guidelines	
10			-		
10			-		
	10.1	•			
	10.2	Discrete I	Logic		.185
11	Platfor	m Clock R	outing Gui	delines	.187
	11.1	Clock Ge	neration		.187
	11.2	Clock Gro	ologoT que	ogy and Layout Routing Guidelines	.190
				_K Clock Group	
				ock Group	
				Clock Group	
		11.2.4		lock Group	
		11.2.5		ock Group	
		11.2.6		Clock Group	
	11.3			pling	
12	Platfor	m Power G	Guidelines	· · · · ·	.201
	12.1	Definition	S		.201
	12.1)	
		-			
	12.3			Delivery	
		12.3.1	Intel [~] MC	H PLL Power Delivery	.204

		12.3.2 Intel [®] MCH 1.5 V Power Delivery 12.3.3 Intel [®] MCH 1.5 V Decoupling	.206
		12.3.3 Intel [®] MCH 1.3 V Decoupling	201
	12.4	Intel [®] ICH2 Power Delivery	
	12.4	12.4.1 1.8 V/3.3 V Power Sequencing	
		12.4.1 1.6 V/S.5 V Power Sequencing 12.4.2 3.3 V/V _{SREF} Sequencing	
		12.4.2 5.5 V/V _{5REF} Sequencing 12.4.3 ATX Power Supply PWRGOOD Requirements	
		12.4.4 Power Management Signals	
	12.5	CK 408 Power Delivery	
	12.5	12.5.1 CK_408 Power Sequencing	
		12.5.1 CK_408 Power Sequencing	
	12.6	Power Supply PS_ON Considerations	
13	Platfor	m Mechanical Guidelines	
10			
	13.1	Intel [®] MCH Retention Mechanism and Keep-Outs	
14		natic Checklist	
	14.1	Host Interface	.221
	14.2	Memory Interface	.225
		14.2.1 DDR-SDRAM	.225
	14.3	AGP Interface	.227
	14.4	Hub Interface	.229
	14.5	Intel [®] ICH2 Interface	
	14.6	Miscellaneous Intel [®] MCH Signals	
	14.7	Clock Interface CK_408	
	14.8	Power and Ground	.240
15	Intel [®] 8	345 Chipset Design Layout Checklist	.241
		System Bus	.241
	15.1	- /	
	15.1	15.1.1 System Bus	
	15.1	•	.241
	15.1 15.2	15.1.1 System Bus	.241 .243
		15.1.1 System Bus15.1.2 Decoupling, V_{REF}, and Filtering	.241 .243 .245
		15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering System Memory (DDR)	.241 .243 .245 .245
	15.2	15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering. System Memory (DDR)	.241 .243 .245 .245 .248
	15.2	15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering System Memory (DDR)	.241 .243 .245 .245 .248 .248
	15.2	15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering System Memory (DDR)	.241 .243 .245 .245 .245 .248 .248 .248
	15.2	15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering. System Memory (DDR)	.241 .243 .245 .245 .248 .248 .248 .248
	15.2 15.3	15.1.1System Bus15.1.2Decoupling, VREF, and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and VREF	.241 .243 .245 .245 .248 .248 .248 .248 .249 .250
	15.2 15.3	15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering. System Memory (DDR)	.241 .243 .245 .245 .248 .248 .248 .248 .249 .250 .250
	15.2 15.3	15.1.1 System Bus 15.1.2 Decoupling, V _{REF} , and Filtering. System Memory (DDR)	.241 .243 .245 .245 .248 .248 .248 .248 .249 .250 .250 .250
	15.2 15.3 15.4	15.1.1System Bus15.1.2Decoupling, V_{REF} , and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} .HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} .Clocks: CK_40815.5.1Decoupling.	.241 .243 .245 .245 .248 .248 .248 .248 .249 .250 .250 .250 .251
	15.2 15.3 15.4	15.1.1System Bus15.1.2Decoupling, V_{REF} , and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} .HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} .Clocks: CK_408	.241 .243 .245 .245 .248 .248 .248 .248 .249 .250 .250 .250 .251 .253
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} .HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} .Clocks: CK_40815.5.1Decoupling.	.241 .243 .245 .245 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} Clocks: CK_40815.5.1Decoupling.Intel [®] ICH2	.241 .243 .245 .245 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253 .253
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} Clocks: CK_40815.5.1Decoupling.Intel [®] ICH215.6.1IDE	.241 .243 .245 .245 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253 .253 .253
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and FilteringSystem Memory (DDR)15.2.12-DIMM DDR-SDRAMAGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} Clocks: CK_40815.5.1Decoupling.Intel [®] ICH215.6.1IDE.15.6.2AC '9715.6.3USB 1.115.6.4RTC	.241 .243 .245 .245 .248 .248 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253 .253 .253 .254 .254
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and FilteringSystem Memory (DDR)15.2.12-DIMM DDR-SDRAMAGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} Clocks: CK_40815.5.1Decoupling, Compensation, and V_{REF} Intel [®] ICH215.6.1IDE15.6.2AC '9715.6.3USB 1.115.6.4RTC15.6.5LAN	.241 .243 .245 .245 .248 .248 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253 .253 .253 .254 .254 .255
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and Filtering.System Memory (DDR)15.2.12-DIMM DDR-SDRAM.AGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} .HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} .Clocks: CK_40815.5.1Decoupling.Intel [®] ICH215.6.3USB 1.115.6.4RTC.15.6.5LAN.15.6.6Intel [®] ICH2 Decoupling.	.241 .243 .245 .245 .248 .248 .248 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253 .253 .254 .254 .255 .256
	15.2 15.3 15.4 15.5	15.1.1System Bus15.1.2Decoupling, V_{REF} , and FilteringSystem Memory (DDR)15.2.12-DIMM DDR-SDRAMAGP15.3.11X Signals:15.3.22X/4X Signals:15.3.3Decoupling, Compensation, and V_{REF} HUB Interface15.4.1Interface Signals.15.4.2Decoupling, Compensation, and V_{REF} Clocks: CK_40815.5.1Decoupling, Compensation, and V_{REF} Intel [®] ICH215.6.1IDE15.6.2AC '9715.6.3USB 1.115.6.4RTC15.6.5LAN	.241 .243 .245 .245 .248 .248 .248 .248 .248 .248 .249 .250 .250 .250 .251 .253 .253 .253 .254 .255 .256 .256

int_{el}.

15.8	Power		256
	15.8.1	Filtering	256
Appendix A: Custome	er Referer	nce Board Schematics	257

Figures

Figure 1. Typical System Configuration	
Figure 2. AC '97 with Audio/Modem Codec	27
Figure 3. AC '97 with Audio Codecs (4 Channel Secondary)	
Figure 4. AC '97 with Audio and Modem Codecs	
Figure 5. Pentium [®] 4 Processor Component Quadrant Layout (Top View–47	
Package)	29
Figure 6. Intel [®] MCH Component Quadrant Layout (Top View)	30
Figure 7. Intel [®] ICH2 Quadrant Layout (Top View)	30
Figure 8. Component Placement Example using DDR-SDRAM DIMMs	31
Figure 9. 4-layer PCB Stack-Up	32
Figure 10. PCB Technologies—Stack-Up	34
Figure 11. Cross Sectional View of 3:1 Ratio	
Figure 12. GTLREF Routing	37
Figure 13. Processor Topology	41
Figure 14. Routing Illustration for FERR#	
Figure 15. Routing Illustration for PROCHOT#	
Figure 16. Routing Illustration for THERMTRIP#	
Figure 17. THERMTRIP# Power Down Circuit	
Figure 18. Routing Illustration for A20M#, IGNNE#, LINT[1:0], SLP#, SMI#, a	
STPCLK#	
Figure 19. Routing Illustration for INIT#	
Figure 20. Voltage Translation of INIT#	
Figure 21. Routing Illustration for PWRGOOD	
Figure 22. Routing Illustration for BR0# and RESET#	
Figure 23. Passing Monotonic Rising Edge Voltage Waveform	
Figure 24. Failing Non-Monotonic Rising Voltage Waveform	
Figure 25. Power Sequencing Block Diagram	
Figure 26. RM Keep-Out Drawing 1	
Figure 27. RM Keep-Out Drawing 2	
Figure 28. VR Component Placement	
Figure 29. Decoupling Placement	
Figure 30. Top Layer Power Delivery Shape (V _{CC CPU})	
Figure 31. Layer 2 Power Delivery Shape (V _{CC_CPU})	
Figure 32. Layer 3 Power Delivery Shape (V _{SS})	
Figure 33. Bottom Layer Power Delivery Shape (V _{CC CPU})	
Figure 34. Alternating V _{CC_CPU} /V _{SS} Capacitor Placement Figure 35. Shared Power and Ground Vias	
Figure 36. Routing of VR Feedback Signal	
Figure 37. Detailed Power Distribution Model for Processor with Voltage Reg	
System Board	
Figure 38. Typical V _{CCIOPLL} , V _{CCA} , and V _{SSA} Power Distribution	
Figure 39. Filter Recommendation	
Figure 40. Example Component Placement of PLL Filter	
Figure 41. Layer Two Ground Flood Picture	
Figure 42. Data Signal Routing Topology	
Figure 43. Data Group Signal Trace Width/Spacing Routing	79

int_{el}.

Figure 44. Data Group Top Signal Layer Routing Example to First DIMM	
Figure 45. DQ/CB to DQS Trace Length Matching Requirements	
Figure 46. SDQS to SCK/SCK# Trace Length Matching Requirements	82
Figure 47. DIMM0 Control Signal Routing Topology (SCS#[1:0], SCKE[1:0])	
Figure 48. DIMM1 Control Signal Routing Topology (SCS#[3:2], SCKE[3:2])	84
Figure 49. Control Signal Trace Width/Spacing Routing	86
Figure 50. Control Group Bottom Signal Layer Routing Example to within 500 Mils of I	First
DIMM	86
Figure 51. Backside Control Signal Trace Segment Routing Example between the First	st
DIMM and the End of the Channel	86
Figure 52. Control Signal to SCK/SCK# Routing Requirements	87
Figure 53. Command Signal Routing Topology	
Figure 54. Command Signal Trace Width/Spacing Routing	90
Figure 55. Command Group Bottom Signal Layer Routing Example to within 500 Mils	of
First DIMM	90
Figure 56. Backside Command Trace Segment Routing Example within 500mils of Fi	
DIMM Connector to the End of the Channel	91
Figure 57. Command Signal to SCK/SCK# Routing Requirements	
Figure 58. DDR Clock Routing Topology (SCK/SCK#[2:0])	
Figure 59. DDR Clock Routing Topology (SCK/SCK#[5:3])	
Figure 60. Clock Signal Trace Width/Spacing Routing	
Figure 61. DDR Clock Bottom Signal Layer Routing Example #1	
Figure 62. DDR Clock Bottom Signal Layer Routing Example #2	
Figure 63. SCK to SCK# Trace Length Matching Requirements	
Figure 64. Clock Pair Trace Length Matching Requirements	
Figure 65. DDR Feedback (RCVEN#) Routing Topology	
Figure 66. Feedback (RCVEN#) Signal Trace Width/Spacing Routing	
Figure 67. DDR-DIMM Bypass Capacitor Placement	100
Figure 68. Layer four 2.5 V Power Delivery	
Figure 69. Layer Four 2.5 V Intel [®] MCH Power Delivery	102
Figure 70. Layer Four 2.5 V DIMM Power Delivery	
Figure 70. Layer Two 2.5 V Power Delivery Picture	
Figure 72. Intel [®] MCH DDR 2.5 V Decoupling Picture	105
Figure 73. Intel [®] MCH DDR 2.5 V Decoupling Capacitor Routing Alignment	105
Figure 74. Intel [®] MCH 2.5 V Bulk Decoupling Example	106
Figure 75. DDR-DIMM 2.5 V Bulk Decoupling Example	106
Figure 76. DDR V _{REF} Generation Example Circuit	
Figure 77. DDR SMRCOMP Resistive Compensation	
Figure 78. DDR V_{TT} Termination Island Example	
Figure 79. DDR V _{TT} Termination 0.1 μ F High-Frequency Capacitor Example #1	
Figure 80. DDR V _{TT} Termination 0.1 μ F High-Frequency Capacitor Example #1	
Figure 81. DDR V _{TT} Termination 4.7 μ F High-Frequency Capacitor Example	
Figure 82. DDR V _{TT} Termination Low-Frequency Capacitor Example	
Figure 83. Intel [®] 845 Chipset DDR Power Delivery Example	
Figure 84. AGP 2X/4X Routing Example for Interfaces Less Than 6 Inches	101
Figure 85. AGP 2X/4X Routing Example for Interfaces Between 6 Inches and 7.25 Inc Figure 86. AGP 2.0 V_{REF} Generation and Distribution for 1.5 V Cards	
Figure 87. AGP Device Down Routing Guidelines	
Figure 88. AGP Decoupling on Layer 1	.129
Figure 89. AGP Left-Handed Retention Mechanism	100
Figure 90. Left-Handed RM Keep-Out Information	
Figure 91. Bit Hub Interface Routing Example	
Figure 92. Hub Interface with Reference Divider Circuit	
Figure 93. Combination Host-Side/Device-Side IDE Cable Detection	.138

Figure 94. Device Side IDE Cable Detection	139
Figure 95. Connection Requirements for Primary IDE Connector	140
Figure 96. Connection Requirements for Secondary IDE Connector	
Figure 97. Intel [®] ICH2 AC '97—Codec Connection	
Figure 98. CDC_DN_ENAB# Support Circuitry for a Single Codec Motherbo	oard144
Figure 99. CDC_DN_ENAB# Support Circuitry for Multi-Channel Audio Upg	rade145
Figure 100. CDC_DN_ENAB# Support Circuitry for Two-Codecs on Mother	
Codec on CNR	
Figure 101. CDC_DN_ENAB# Support for Two-Codecs on Motherboard / T	wo-Codecs on
CNR 146	
Figure 102. Example Speaker Circuit	1/18
Figure 103. CNR Interface	
Figure 103. CNR Interface Figure 104. USB Data Signals	140
Figure 105. Example PIRQ Routing	
Figure 106. SMBUS/SMLink Interface	
Figure 107. Unified V _{CC_Suspend} Architecture	
Figure 108. Unified V _{CC_Core} Architecture	
Figure 109. Mixed V _{CC_Suspend} / V _{CC_Core} Architecture Figure 110. External Circuitry for the Intel [®] ICH2 RTC	
Figure 110. External Circuitry for the Intel [®] ICH2 RTC	157
Figure 111. A Diode Circuit to Connect RTC External Battery	159
Figure 112. RTCRST# External Circuit for the Intel [®] ICH2 RTC	159
Figure 113. Intel [®] ICH2/LAN Connect Section	161
Figure 114. Single Solution Interconnect	163
Figure 115. LOM/CNR Interconnect	
Figure 116. Trace Routing	
Figure 117. Ground Plane Separation	
Figure 118. Intel [®] 82562EH Termination	
Figure 119. Critical Dimensions for Component Placement	
Figure 120. Intel [®] 82562ET/82562EM Termination	
Figure 121. Critical Dimensions for Component Placement	
Figure 122. Termination Plane	
Figure 123. Intel [®] 82562ET/EM Disable Circuit	
Figure 124. Dual Footprint LAN Connect Interface	
Figure 125. Dual Footprint Analog Interface	
Figure 125. Dear Follprint Analog menace Figure 126. Decoupling Capacitor Layout	
Figure 120. Decoupling Capacitor Layout Figure 127. FWH VPP Isolation Circuitry	101
Figure 128. Clock Topology	
Figure 129. Source Shunt Termination	
Figure 130. Clock Skew as Measured from Agent to Agent	
Figure 131. Trace Spacing	
Figure 132. Topology for CLK66	
Figure 133. Topology for AGPCLK to AGP Connector	
Figure 134. Topology for CLK33 to Intel® ICH2	
Figure 135. Topology for CLK33 to SIO, Glue Chip, FWH, and PCI Device I	
Motherboard	
Figure 136. Topology for PCICLK to PCI Connector	196
Figure 137. Topology for CLK14	198
Figure 138. Topology for USB_CLOCK	
Figure 139. Intel [®] 845 Chipset Platform Using DDR-SDRAM System Memo	ry Power
Delivery Map	
Figure 140. Intel [®] 845 Chipset PLL0 Filter	204
Figure 141. Intel [®] 845 Chipset PLL1 Filter	205
Figure 142. 1.5 V Power Plane—Board View	
Figure 143. Intel [®] MCH 1.5 V Core and 1.5 V AGP I/O Decoupling Placeme	
- igore i lot mort no v oble and no v Aor i/o becouping r laceme	······························

Figure 144. V _{TT} Power Plane—Processor and Intel [®] MCH	
Figure 145. V _{TT} Power Plane at Intel [®] MCH—V _{TT} Decoupling at Intel [®] MCH	209
Figure 146. Power Plane Split Example (Layer 2)	210
Figure 147. Power Plane Split Example (Layer 1)	210
Figure 148. Example 1.8 V/3.3 V Power Sequencing Circuit	211
Figure 149. Example 3.3 V/V _{5REF} Sequencing Circuitry	212
Figure 150. CK_408 Schematic	216
Figure 151. Decoupling Capacitors Placement and Connectivity	217
Figure 152. Intel [®] MCH Retention Mechanism and Keep-Out Drawing	219
Figure 153. Typical Orientation of the Chipset Relative to the Processor	220

Tables

Table 2. Platform Bandwidth Summary23Table 3. System Bus Routing Summary for the Processor35Table 4. Source Synchronous Signal Groups and the Associated Strobes39Table 5. Miscellaneous Signals (Signals That Are Not Data, Address, or Strobe)42Table 6. Layout Recommendations for FERR# Signal—Topology 1A43Table 7. Layout Recommendations for PROCHOT# Signal—Topology 1B44
Table 4. Source Synchronous Signal Groups and the Associated Strobes
Table 5. Miscellaneous Signals (Signals That Are Not Data, Address, or Strobe)42Table 6. Layout Recommendations for FERR# Signal—Topology 1A43
Table 6. Layout Recommendations for FERR# Signal—Topology 1A43
Table 7. Layout Recommendations for PROCHOT# Signal—Topology 1B44
Table 8. Layout Recommendations for THERMTRIP# Signal—Topology 1C45
Table 9. Layout Recommendations for A20M#, IGNNE#, LINT[1:0], SLP#, SMI#, and
STPCLK#—Topology 2A46
Table 10. Layout Recommendations for INIT#—Topology 2B47
Table 11. Layout Recommendations for Miscellaneous Signals—Topology 2C48
Table 12. BR0# and RESET# Lengths49
Table 13. Reference Solution Fan Power Header Pinout
Table 14. Boxed Processor Fan Power Header Pinout
Table 15. Decoupling Requirements 59
Table 16. Decoupling Locations
Table 17. Intel [®] Pentium [®] 4 Processor Power Delivery Model Parameters
Table 18. Intel [®] 845 Chipset DDR Signal Groups75
Table 19. DDR Channel Referencing Stack-Up 76
Table 20. Data Signal Group Routing Guidelines
Table 21. DQ/CB to DQS Length Mismatch Mapping81
Table 22. Control Signal DIMM Mapping
Table 23. Control Signal Group Routing Guidelines
Table 24. Command Signal Group Routing Guidelines
Table 25. Clock Signal Mapping 93
Table 26. Clock Signal Group Routing Guidelines 94
Table 27. Minimum 2.5 V Copper Finger Width Requirements101
Table 28. DDR-SDRAM DIMM Core and I/O Voltage and Current Requirements at the
DIMM Connectors112
Table 29. DDR-SDRAM DIMM Reference Voltage and Current Requirements at the
DIMM Connectors112
Table 30. Intel [®] MCH DDR Supply Voltage and Current Requirements at the Intel [®] MCH113
Table 31. Intel [®] MCH DDR Reference Voltage and Current Requirements at the Intel [®]
MCH 113
Table 32. DDR Termination Voltage and Current Requirements 114
Table 33. DDR Termination Voltage and Current Requirements 114
Table 34. Power-up Initialization ¹ Sequence 115

Table 35.	AGP 2.0 Signal Groups1	20
Table 36.	AGP 2.0 Routing Summary1	23
	AGP Signal Routing Guidelines1	
Table 38.	AGP V _{RFF} Routing Guidelines1	25
Table 39.	Intel [®] MCH AGP Signals with Integrated Pull-Up/Pull-Down Resistors1	26
Table 40.	Intel [®] MCH AGP Signals Requiring External Pull-Up/Pull-Down Resistors1	26
Table 41.	1X Timing Domain Trace Length Recommendations for AGP Device Down .1	27
	2X/4X Timing Domain Trace Length Recommendations for AGP Device Down	
	1.5 V Decoupling at the AGP Connector1	
Table 44.	HI_REF Generation Circuit Specifications1	34
	RCOMP Resistor Values	
Table 46.	Signal Descriptions1	46
Table 47.	Codec Configurations1	47
	Recommended USB Trace Characteristics1	
Table 49.	IOAPIC Interrupt Inputs 16 through 23 Usages1	51
Table 50.	Differences between Intel® 82562EM, Intel® 82562ET, and Intel® 82562EH1	61
Table 51.	LAN Design Guide Section Reference1	62
	Length Requirements for Figure 1151	
Table 53.	Intel® 82562ET/EM Control Signals1	78
Table 54.	Decoupling Capacitor Recommendation1	81
Table 55.	Intel [®] 845 Chipset Clock Groups1	87
Table 56.	Platform System Clock Cross-Reference1	88
	BCLK [1:0]# Routing Guidelines1	
Table 58.	CLK66 Routing Guidelines1	94
	AGPCLK Routing Guidelines1	
Table 60.	33 MHz Clock Routing Guidelines1	97
	CLK14 Routing Guidelines1	
Table 62.	USBCLK Routing Guidelines1	99
Table 63.	PLL0 Filter Routing Guidelines2	04
Table 64.	PLL1 Routing Guidelines	05
Table 65.	Recommended Inductor Components for Intel® MCH PLL Filter	05
Table 66.	Recommended Capacitor Components for Intel [®] MCH PLL Filter2	05
	PLL1 Routing Guidelines2	

Revision History

Revision Number	Description	Revision Date
-001	Initial Release.	January 2002
-002	First Revision.	February 2002
	Updates	
	 Deleted the 45W Thermal Design Power (TDP) Processor Limitation 	
	 Recommendation for Power and Ground V5REF_SUS has been changed 	
	 Recommendation for 3.3 V/V5REF Sequencing in the Schematic Checklist has been changed 	

1 Introduction

In this document "processor" and "Intel[®] Pentium[®] 4 processor" refer to the Intel Pentium 4 processor in the 478-pin package.

This design guide documents Intel's design recommendations for systems based on the Pentium 4 processor and the Intel[®] 845 chipset. Design issues such as thermal considerations should be addressed using specific design guides or application notes for the processor or 845 chipset.

These design guidelines have been developed to ensure maximum flexibility for board designers while reducing the risk of board related issues. The design information provided in this document falls into one of the two following categories.

- *Design Recommendations* are items based on Intel's simulations and lab experience to date and are strongly recommended, if not necessary, to meet timing and signal quality specifications.
- *Design Considerations* are suggestions for platform design that provide one way to meet the design recommendations. They are based on the reference platforms designed by Intel. They should be used as examples, but may not be applicable to particular designs.
- *Note:* The guidelines recommended in this document are based on experience and preliminary simulation work performed at Intel while developing Pentium 4 processor and 845 chipset-based systems. This work is ongoing, and the recommendations and considerations are subject to change.

Platform schematics are provided in *Appendix A*, *Customer Reference Board Schematics*. The schematics are a reference for board designers. While the schematics may cover a specific design, the core schematics will remain the same for most platforms. The schematic set provides a reference schematic for each platform component as well as common motherboard options. Additional flexibility is possible through other permutations of these options and components.

1.1 Related Documentation

Reference the following documents or models for more information. All Intel issued documentation revision numbers are subject to change, and the latest revision should be used. The specific revision numbers referenced should be used for all documents not released by Intel. Contact the field representative for information on how to obtain Intel issued documentation.

Document	Document Number/Source
Intel [®] 845 Chipset: 82845 Memory Controller Hub (MCH) Datasheet	290725
Intel [®] Pentium [®] 4 Processor in the 478 Pin Package Datasheet	249887
Intel [®] Pentium [®] 4 Processor in the 478 Pin Package Thermal Design Guidelines	249889
Intel [®] 845 Chipset Thermal and Mechanical Design Guidelines	298586
Intel [®] Pentium [®] 4 Processor in the 478 pin package Processor Signal Integrity Models	
Intel [®] Pentium [®] 4 Processor VR Down Design Guidelines	249891
mPGA478 Socket Design Guidelines	249890
Intel [®] PC SDRAM Unbuffered DIMM Specification	http://developer.intel.com/t echnology/memory/pcsdra m/spec/index.htm
Intel [®] PC SDRAM Specification, Rev. 1.7	http://developer.intel.com/t echnology/memory/pcsdra m/spec/index.htm
Accelerated Graphics Port Interface Specification Rev 2.0	http://www.agpforum.org/
Low Pin Count Interface Specification Rev 1.0	http://www.intel.com/desig n/chipsets/industry/lpc.htm
PCI Local Bus Specification Rev. 2.1	www.pcisig.com
PCI-PCI Bridge Specification Rev. 1.0	www.pcisig.com
PCI Bus Power Management Interface Specification Rev. 1.0	www.pcisig.com
Universal Serial Bus 1.1 Specification	http://www.usb.org/develo pers/docs.html
Advanced Configuration and Power Interface Specification (ACPI) Rev. 1.0b	http://www.teleport.com/~a
PC'01 Specification	www.microsoft.com
PC 99 System Design Guide, Revision 1.0	http://www.microsoft.com/ hwdev/pc99.htm
ITP700 Debug Port Design Guide	http://developer.intel.com /design/pentium4/guides /249679.htm
Intel [®] 82801BA I/O Controller Hub 2 (ICH2) and Intel [®] 82801BAM I/O Controller Hub 2 Mobile (ICH2-M) Datasheet	290687

Document	Document Number/Source
Communication and Networking Riser (CNR) Specification Revision 1.1	http://developer.intel.com/t echnology/cnr/index.htm
Intel [®] 82562ET 10/100 Mbps Platform LAN Connect (PLC) Product Preview Datasheet	Contact Intel Field Representative
Intel [®] 82562ET LAN on Motherboard Design Guide (AP-414)	Contact Intel Field Representative
Intel [®] 82562ET/EM PCB Design Platform LAN Connect (AP-412)	Contact Intel Field Representative
CNR Reference Design Application Note (AP-418)	Contact Intel Field Representative

1.2 Conventions and Terminology

This section defines conventions and terminology that are used throughout this document.

Table 1. Conventions and Terminology

Convention/ Terminology	Definition
Aggressor	A network that transmits a coupled signal to another network is called the aggressor network.
AGTL+	The processor System Bus uses a bus technology called AGTL+, or Assisted Gunning Transceiver Logic. AGTL+ buffers are open-drain and require pull-up resistors that provide the high logic level and termination. AGTL+ output buffers differ from GTL+ buffers by the addition of an active pMOS pull-up transistor to "assist" the pull-up resistors during the first clock of a low-to-high voltage transition.
Bus Agent	A component or group of components that, when combined, represent a single load on the AGTL+ bus.
Corner	Describes how a component performs when all parameters that could impact performance are adjusted simultaneously to have the best or worst impact on performance. Examples of these parameters include variations in manufacturing process, operating temperature, and operating voltage. Performance of an electronic component may change as a result of (including, but not limited to): clock to output time, output driver edge rate, output drive current, and input drive current. Discussion of the "slow" corner means having a component operating at its slowest, weakest drive strength performance. Similar discussion of the "fast" corner means having a component operating at its fastest, strongest drive strength performance. Operation or simulation of a component at its slow corner and fast corner is expected to bound the extremes between slowest, weakest performance and fastest, strongest performance.
Crosstalk	The reception on a victim network of a signal imposed by aggressor network(s) through inductive and capacitive coupling between the networks.
	Backward Crosstalk—coupling that creates a signal in a victim network that travels in the opposite direction as the aggressor's signal.
	Forward Crosstalk—coupling that creates a signal in a victim network that travels in the same direction as the aggressor's signal.
	Even Mode Crosstalk—coupling from single or multiple aggressors when all the aggressors switch in the same direction that the victim is switching.
	Odd Mode Crosstalk—coupling from single or multiple aggressors when all the aggressors switch in the opposite direction that the victim is switching.

Convention/ Terminology	Definition
Flight Time	Flight time is a term in the timing equation that includes the signal propagation delay, any effects the system has on the T_{CO} of the driver, and any adjustments to the signal at the receiver needed to guarantee the setup time of the receiver. More precisely, <i>flight time</i> is defined to be:
	Time difference between a signal at the input pin of a receiving agent crossing the switching voltage (adjusted to meet the receiver manufacturer's conditions required for AC timing specifications; e.g., ringback, etc.) and the output pin of the driving agent crossing the switching voltage when the driver is driving a test load used to specify the driver's AC timings.
	Maximum and Minimum Flight Time—Flight time variations can be caused by many different variables. The more obvious causes include variation of the board dielectric constant, changes in load condition, crosstalk, power noise, variation in termination resistance and differences in I/O buffer performance as a function of temperature, voltage and manufacturing process. Some less obvious causes include effects of Simultaneous Switching Output (SSO) and packaging effects.
	Maximum flight time is the largest acceptable flight time a network will experience under all variations of conditions.
	Minimum flight time is the smallest acceptable flight time a network will experience under all variations of conditions.
GTL+	GTL+ is the bus technology used by the Intel [®] Pentium [®] Pro processor. This is an incident wave switching, open-drain bus with pull-up resistors that provide both the high logic level and termination. It is an enhancement to the GTL (Gunning Transceiver Logic) bus technology.
ISI	Inter-symbol interference is the effect of a previous signal (or transition) on the interconnect delay. For example, when a signal is transmitted down a line and the reflections due to the transition have not completely dissipated, the following data transition launched onto the bus is affected. ISI is dependent upon frequency, time delay of the line, and the reflection coefficient at the driver and receiver. ISI can impact both timing and signal integrity.
Network	The network is the trace of a Printed Circuit Board (PCB) that completes an electrical connection between two or more components.
Network Length	The distance between one agent pin and the corresponding agent pin at the far end of the bus.
Overshoot	Maximum voltage observed for a signal at the device pad.
Pad	The electrical contact point of a semiconductor die to the package substrate. A pad is observable only in simulation.
Pin	The contact point of a component package to the traces on a substrate, like the system board. Signal quality and timings can be measured at the pin.
Ringback	The voltage that a signal rings back to after achieving its maximum absolute value. Ringback may be due to reflections, driver oscillations, or other transmission line phenomena.
System Bus	The System Bus is the microprocessor bus of the Intel [®] Pentium [®] 4 processor. It may also be termed "system bus" in implementations where the System Bus is routed to other components. The P6 bus was the microprocessor bus of the Pentium Pro, Intel [®] Pentium [®] II, and Intel [®] Pentium [®] III processors. The System Bus is not compatible with the P6 bus.
Setup Window	The time between the beginning of Setup to Clock (T _{SU_MIN}) and the arrival of a valid clock edge. This window may be different for each type of bus agent in the system.

int_{el}.

Convention/ Terminology	Definition
SSO	Simultaneous Switching Output (SSO) effects refers to the difference in electrical timing parameters and degradation in signal quality caused by multiple signal outputs simultaneously switching voltage levels (e.g., high-to-low) in the opposite direction from a single signal (e.g., low-to-high) or in the same direction (e.g., high-to-low). These are respectively called odd-mode switching and even-mode switching. This simultaneous switching of multiple outputs creates higher current swings that may cause additional propagation delay (or "push-out"), or a decrease in propagation delay (or "pull-in"). These SSO effects may impact the setup and/or hold times and are not always taken into account by simulations. System timing budgets should include margin for SSO effects.
Stub	The branch from the bus trunk terminating at the pad of an agent.
Trunk	The main connection, excluding interconnect branches, from one end agent pad to the other end agent pad.
Undershoot	Minimum voltage observed for a signal that falls below V_{SS} at the device pad.
Victim	A network that receives a coupled crosstalk signal from another network is called the victim network.
VREF Guardband	A guardband defined above and below V_{REF} to provide a more realistic model accounting for noise such as V_{TT} and V_{REF} variation.

1.3 System Overview

The Pentium 4 processor with the 845 chipset delivers a high performance and professional desktop platform solution. The processor and chipset support the System Bus protocol.

1.3.1 Intel[®] Pentium[®] 4 Processor

The Pentium 4 processor in the 478-pin package is the next generation IA-32 processor. This processor has a number of features that significantly increase its performance with respect to previous generation IA-32 processors. The Intel[®] NetBurst[™] microarchitecture includes a number of new features as well as some improvements on existing features.

Intel NetBurst microarchitecture features include hyper-pipelined technology, rapid execution engine, 400 MHz system bus, and an execution trace cache. The hyper pipelined technology doubles the pipeline depth in the Pentium 4 processor in the 478-pin package, allowing the processor to reach much higher core frequencies. The rapid execution engine's two integer ALUs run at twice the core frequency, which allows many integer instructions to execute in 1/2 clock tick. The 400 MHz system bus is a quad-pumped bus clocked by a 100 MHz system clock, making 3.2 GB/sec data transfer rates possible. The execution trace cache is a level 1 cache that stores approximately 12K decoded micro-operations, which removes the decoder from the main execution path thereby increasing performance.

Improved features within the Intel NetBurst microarchitecture include advanced dynamic execution, advanced transfer cache, enhanced floating point and multi-media unit, and Streaming SIMD Extensions 2 (SSE2). The advanced dynamic execution improves speculative execution and branch prediction internal to the processor. The advanced transfer cache is a 256 KB, on-die level 2 cache with an increased bandwidth over previous micro-architectures. The floating point and multi-media units have been improved by making the registers 128 bits wide and adding a separate register for data movement. SSE2 adds 144 new instructions for double precision floating point, SIMD integer, and memory management functions.

The Pentium 4 processor in the 478-pin package supports only uni-processor configurations.

1.3.2 Intel[®] 845 Chipset

The 845 chipset consists of the following main components: Intel[®] 82045 Memory Controller Hub (MCH) and the Intel[®] 82801BA I/O Controller Hub 2 (ICH2). These components are interconnected via an Intel proprietary interface called Hub Interface. The Hub Interface is designed into the 845 chipset to provide efficient communication between components.

Additional hardware platform features include AGP 4x mode, PC 133 System memory, Ultra ATA/100, Low Pin Count interface (LPC), integrated LAN* and Universal Serial Bus. The platform is also ACPI compliant and supports Full-on, Stop Grant, Suspend to RAM, Suspend to Disk, and Soft-off power management states. Through the use of an appropriate LAN* connect, the platform supports Wake-on-LAN* for remote administration and troubleshooting.

1.3.2.1 Intel[®] Memory Controller Hub (MCH)

The MCH component provides the processor interface, system memory interface, AGP interface and hub interface in an 845 chipset platform.

The ICH2 is in a 593 ball FC-BGA package and has the following functionality:

- Supports a single processor with a data transfer rate of 400 MHz
- Supports DDR-SDRAM at 100 MHz and 133 MHz operations. (DDR)
- AGTL+ host bus with integrated termination supporting 32-bit host addressing
- 1.5 V AGP interface with 4x SBA/data transfer and 2x/4x fast write capability
- 8-bit, 66 MHz 4x Hub Interface to the ICH2

1.3.2.2 Accelerated Graphics Port (AGP) Interface

- Supports AGP 2.0 including 1x/2x/4x AGP data transfers and 2x/4x Fast Write protocol
- Supports a single Accelerated Graphics Port (AGP) device (either via a connector or on the motherboard)
- AGP 1.5 V Connector support only. No support for 3.3 V or Universal AGP connectors.
- High priority access support
- Delayed transaction support for AGP reads that cannot be serviced immediately

1.3.2.3 DDR-SDRAM

- Supports one DDR (Double Data Rate)-SDRAM channel, 64b wide (72b with ECC)
- Supports 200 MHz and 266 MHz DDR devices
- Supports 64-, 128-, 256- and 512-Mb technologies for x8 and x16 devices
- All supported devices must have four banks
- Supports page sizes of 2 KB, 4 KB, 8 KB and 16 KB. Page size is individually selected for every row.
- Supports JEDEC DIMM configurations defined in the JEDEC spec (no support for DS x16 DIMMs)

1.3.2.4 Intel[®] I/O Controller Hub 2 (ICH2)

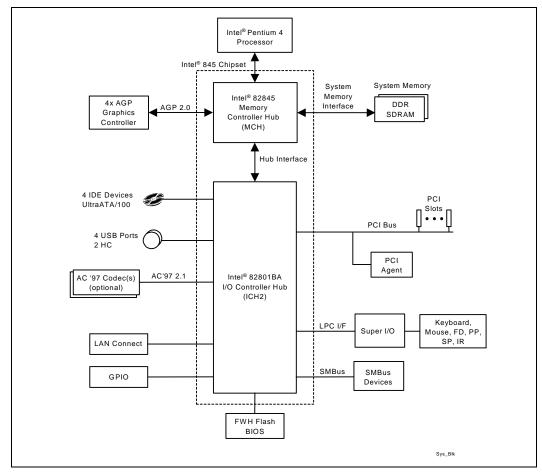
The ICH2 provides the I/O subsystem with access to the rest of the system. Additionally, it integrates many I/O functions. The ICH2 integrates:

- Upstream Hub Interface for access to the MCH
- 2 channel Ultra ATA/100 Bus Master IDE controller
- USB controller 1.1 (Expanded capabilities for 4 ports)
- I/O APIC
- SMBus controller
- FWH interface
- LPC interface
- AC '97 2.1 interface
- PCI 2.2 interface
- Integrated System Management Controller
- Alert-on-LAN (AOL*)
- Integrated LAN Controller

The ICH2 also contains the arbitration and buffering necessary to ensure efficient utilization of these interfaces. Refer to Section 8 for more information on these interfaces.

1.3.3 Bandwidth Summary

Table 2 lists the bandwidths of critical 845 chipset platform interfaces.


Table 2. Platform Bandwidth Summary

Interface	Clock Speed (MHz)	Samples per Clock	Data Width (Bytes)	Bandwidth (MB/s)
System Bus	100	4	8	3200
AGP	66	4	4	1066
Hub Interface	66	4	1	266
PCI	33	1	4	133
DDR-SDRAM 200MHz/266MHz	100/133	2/2	8/8	1600/2100

1.3.4 System Configurations

Figure 1 illustrates a typical Pentium 4 processor and 845 chipset based system configuration for both high performance desktop and mainstream desktop applications.

Figure 1. Typical System Configuration

1.4 Platform Initiatives

1.4.1 Intel[®] 845 Chipset

1.4.1.1 Processor/Host Interface (System Bus)

- Supports single processor
- System Bus interrupt delivery
- Supports 400 MHz System Bus
- 32-bit host bus addressing, allowing the processor to access the entire 4 GB of the MCH memory address space.

1.4.1.2 System Memory Interface

The system memory interface delivers high bandwidth to Pentium 4 processors. The MCH DDR-SDRAM interface runs at 100 MHz and 133 MHz operations, delivering 1.6 GB/s or 2.1GB/s of memory bandwidth respectively. 64-, 128-, 256-, and 512-Mb DDR-SDRAM technologies are supported.

The 845 chipset supports Suspend-to-RAM power management through system memory self-refresh mode using the SCKE signal.

1.4.1.3 Accelerated Graphics Port (AGP)

AGP is a high performance, component-level interconnect that is designed for 3D graphical display applications. AGP is based on a set of performance extensions and enhancements to the PCI bus. The 845 chipset employs an AGP interface that is optimized for a point-to-point topology using 1.5 V signaling in 4x mode. The 4x mode provides a peak bandwidth of 1066 MB/s.

For additional information, refer to the *Accelerated Graphics Port Interface Specification*, *Rev.* 2.0 located at http://www.agpforum.org.

1.4.2 Intel[®] ICH2

1.4.2.1 Integrated LAN Controller

The ICH2 incorporates an integrated LAN Controller. Its bus master capabilities enable the component to process high level commands and perform multiple operations, which lowers processor utilization by off-loading communication tasks from the processor.

The ICH2 functions with several options of LAN connect components that can be used for specific market segments. The Intel[®] 82562EH component provides a HomePNA* 1-Mbit/sec connection. The Intel[®] 82562ET provides a basic Ethernet 10/100 connection. The Intel[®] 82562EM component provides an Ethernet 10/100 connection with the added flexibility of Alert on LAN*.

1.4.2.2 Ultra ATA/100 Support

The ICH2 supports the IDE controller with two sets of interface signals (Primary and Secondary) that can be independently enabled, tri-stated or driven low. The component supports Ultra ATA/100, Ultra ATA/66, Ultra ATA/33, multiword PIO modes for transfers up to 100 Mbytes/sec.

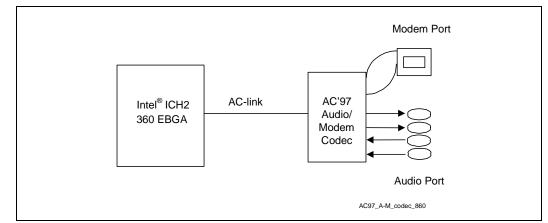
1.4.2.3 Expanded USB 1.1 Support

The ICH2 contains two USB1.1 Host Controllers. Each Host Controller includes a root hub with two separate USB ports, for a total of 4 USB ports.

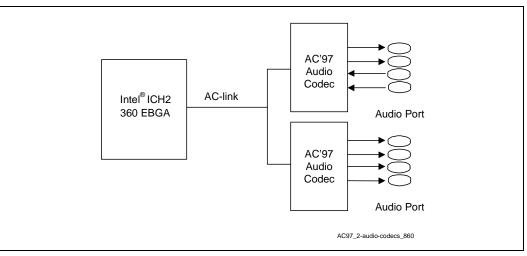
1.4.2.4 AC '97 6-Channel Support

The Audio Codec '97 (AC '97) Specification, Revision 2.1, defines a digital interface that can be used to attach an audio codec (AC), a modem codec (MC), an audio/modem codec (AMC), or both an AC and an MC. The AC '97 Specification defines the interface between the system logic and the audio or modem codec known as the "AC-link."

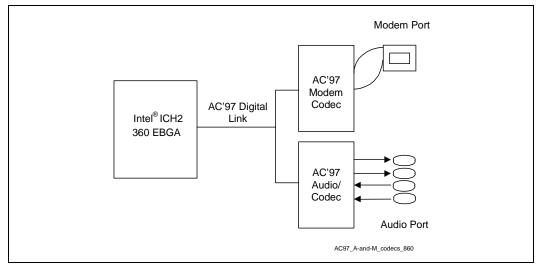
The ICH2 platform's AC '97 (with the appropriate codecs) not only replaces ISA audio and modem functionality, but also improves overall platform integration by incorporating the AC-link. Using ICH2 integrated AC-link reduces cost and eases migration from ISA.


By using an audio codec, the AC-link allows for cost-effective, high-quality, integrated audio on the ICH2 platform. In addition, an AC '97 soft modem can be implemented with the use of a modem codec. Several system options exist when implementing AC '97. The ICH2 integrated digital link allows several external codecs to be connected to the ICH2. The system designer can provide audio with an audio codec, a modem with a modem codec, and can provide audio or modem with an integrated audio/modem codec (Figure 2). The digital link is expanded to support two audio codecs or a combination of an audio and modem codec (Figure 3 and Figure 4).

Modem implementation for different countries must be considered because telephone systems vary. By using a split design, the audio codec can be on-board, and the modem codec can be placed on a riser. Intel is developing an AC-link connector. With a single integrated codec, or AMC, both audio and modem can be routed to a connector near the rear panel where the external ports can be located.


The digital link in the ICH2 is AC '97 Rev. 2.1 compliant, supporting two codecs with independent PCI functions for audio and modem. Microphone input and left and right audio channels are supported for a high quality two-speaker audio solution. Wake on ring from suspend is also supported with an appropriate modem codec.

The ICH2 expands audio capability with support for up to six channels of PCM audio output (full AC3 decode). Six-channel audio consists of Front Left, Front Right, Back Left, Back Right, Center, and Woofer for a complete surround sound effect. The ICH2 has expanded support for two audio codecs on the AC-link.



1.4.3 Manageability and Other Enhancements

The ICH2 platform integrates several functions designed to manage the system and lower the total cost of ownership (TCO) of the system. These system management functions are designed to report errors, diagnose the system, and recover from system lockups without the aid of an external micro controller.

1.4.3.1 SMBus

The ICH2 integrates an SMBus controller. The SMBus provides an interface to manage peripherals such as serial presence detection (SPD) on DIMMs, and thermal sensors. The slave interface of the SMBus Controller allows an external microcontroller to access system resources.

The ICH2 platform integrates several functions designed to expand the capability of interfacing several components to the system.

1.4.3.2 Interrupt Controller

The interrupt capability of the ICH2 expands support for up to 8 PCI interrupt pins and PCI 2.2 Message-Based Interrupts. In addition, the ICH2 supports system bus interrupt delivery.

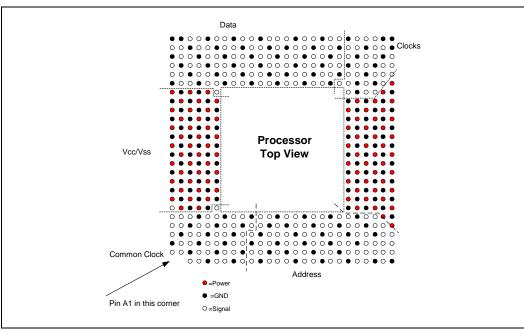
1.4.4 PC '99/'01 Platform Compliance

PC '99 and PC '01 are intended to provide guidelines for hardware design that will result in optimal user experience, particularly when the hardware is used with the Microsoft* Windows* family of operating systems. This document includes PC '99 and PC '01 requirements and recommendations for basic consumer and office implementations such as desktop, mobile, and workstation systems, and entertainment PCs. This document includes guidelines that address the following design issues:

- Design requirements for specific types of system that will run either Microsoft *Windows* 98, Windows* 2000 or Windows* Me operating systems.
- Design requirements related to OnNow design initiative, including requirements related to ACPI, Plug and Play device configuration, and power management in PC systems.
- Manageability requirements that focus on improving Windows 98, Windows 2000 and Windows Me, with the end goal of reducing TCO.
- Clarification and additional design requirements for devices supported by Windows 98, Windows 2000 and Windows Me, including new graphics and video device capabilities, DVD, scanners and digital cameras, and other devices.

For additional information, refer to the PC '99 System Design Guide and PC '01 System Design Guide at <u>http://www.pcdesguide.org/</u>.

int_{el},


2 Component Quadrant Layout

The quadrant layout figures do not show the exact component ball count. The figures show only general quadrant information that is intended for reference while using this document. Only the exact pin or ball assignment should be used to conduct routing analysis. Reference the following documents for pin or ball assignment information.

- Intel[®] Pentium[®] 4 Processor in the 478 Pin Package Datasheet
- Intel[®] 845 Chipset: 82845 Memory Controller Hub (MCH) Datasheet
- Intel[®] 82801BA I/O Controller Hub 2 (ICH2) and Intel[®] 82801BAM I/O Controller Hub 2 Mobile (ICH2-M)

2.1 Intel[®] Pentium[®] 4 Processor Component Quadrant Layout

2.2 Intel[®] 845 Chipset Component Quadrant Layout

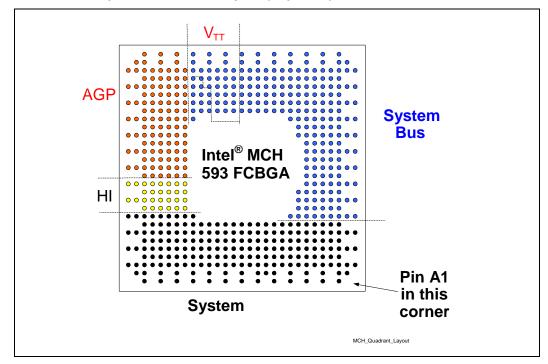
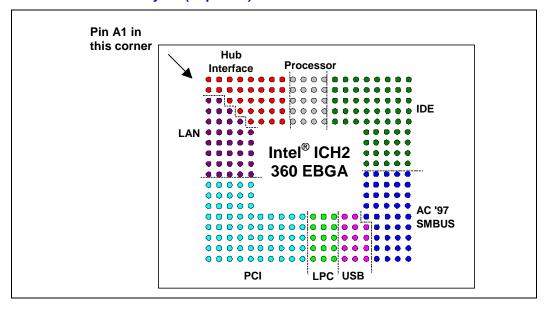



Figure 6. Intel[®] MCH Component Quadrant Layout (Top View)

2.3 Intel[®] ICH2 Component Quadrant Layout

Figure 7. Intel[®] ICH2 Quadrant Layout (Top View)

3 Platform Placement and Stack-Up Overview

In this section, an example of a 845 chipset platform component placement and stack-up is presented for a desktop system in ATX form factor for DDR. Although the DDR Customer Reference Board is an ATX form factor, the core components are placed within an area equal to a uATX form factor.

3.1 Platform Component Placement (DDR-SDRAM)

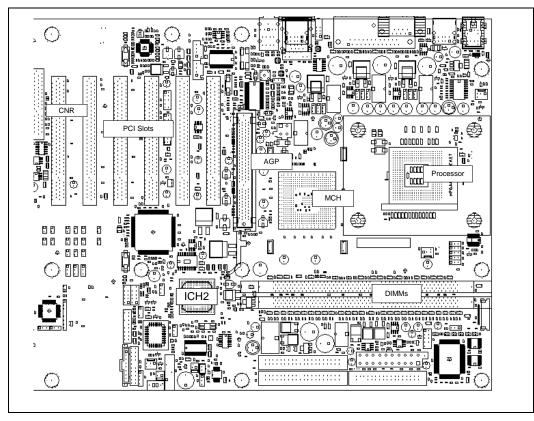
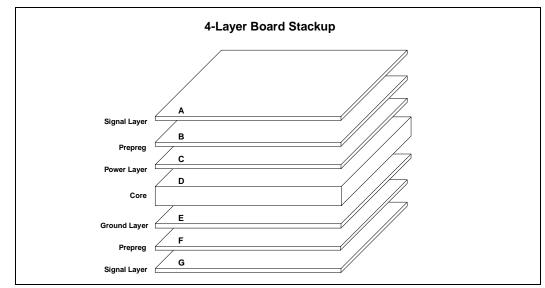



Figure 8. Component Placement Example using DDR-SDRAM DIMMs

3.2 Nominal 4-Layer Board Stack-Up

The 845 chipset platform requires a board stack-up yielding a target board impedance $\pm 15\%$ of 50 Ω for the System Bus and 60 Ω for the AGP interface, system memory, and hub interface. Recommendations in this design guide are based on the following a 4-layer board stack-up.

Target Value

50 Ω ± 15% with a 7 mil nominal Trace width

60 Ω ± 15% with a 5 mil nominal Trace width

Figure 9. 4-layer PCB Stack-Up

Description

Target Board

Impedance Z₀

Er @ 1 MHz

Er @ 1 GHz

Micro-stripline Er

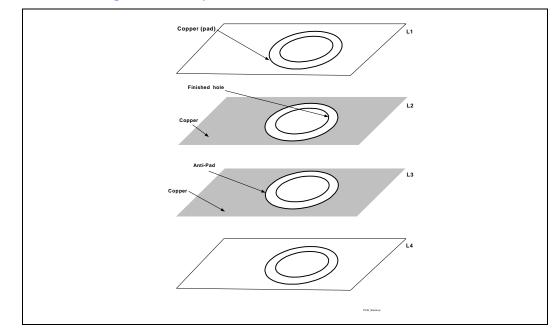
Description	Typical Values
Trace Thickness	1.3 – 1.42 mils
Board Thickness	62 mils total 0.062 + 0.008 – 0.005
Material	Fiberglass made of FR4
Fab Construction	4 layer

4.2 – 4.5

4.5

4.35

Layer	Description	Nominal Thickness	Tolerance (± mils)
Α	Signal Layer	0.7 mil (0.5 oz Cu) (See note 1)	(See note 2)
В	Prepreg	4.0 mil	0.3
С	Power Layer	1.4 mil (1.0 oz Cu)	0.2
D	Core	48 mil	5
E	Ground Layer	1.4 mil (1.0 oz Cu)	0.2
F	Prepreg	4.0 mil	0.3
G	Signal Layer	0.7 mil (0.5 oz Cu) (See note 1)	(See note 2)


NOTES:1. Thickness before Plating2. Final Plating Thickness varies 1.3 mils—1.42 mils

3.3 PCB Technologies

3.3.1 Design Considerations

Intel has found that the following recommendation aids in the design of an 845 chipset-based platform. Simulations and reference platform are based on the following technology and is recommended that designers adhere to these guidelines.

Figure 10. PCB Technologies—Stack-Up

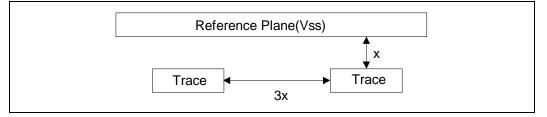
Number of Layers		
Stack Up	4 Layer	
Cu Thickness	0.5 oz Outer; (before Plating) 1 oz inner	
Final Board Thickness	0.062 inch + 0.008—0.005 inch	
Signal and Power Via Stack /Processor / Intel [®] MCH / Intel [®] ICH2 / Memory Breakout		
Via Pad	0.026 inch	
Via Anti-Pad	0.040 inch	
Via Finished Hole 0.014 inch		
Solder Mask Opening (top side only) ¹ 0.020 inch		
Signal Pad (BGA)	0.020 inch	

NOTE: ¹For solder bridge avoidance these pads are to be partially covered by solder mask on the primary side. Solder mask residue must not be left in the holes.

4 **Processor System Bus Guidelines**

4.1 **Processor System Bus Design Guidelines**

Table 3 summarizes the layout recommendations for Pentium 4 processor configurations and expands on specific design issues and recommendations.


Table 3. System Bus Routing Summary for the Processor

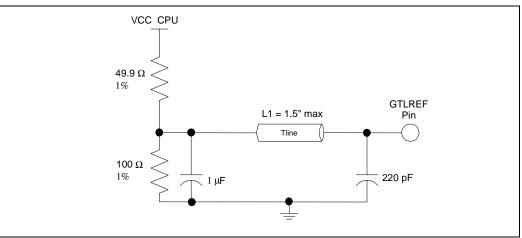
Parameter	Processor Routing Guidelines
Line to line spacing	Data and common clock system bus must be routed at 7 mil wide traces and with 13 mils spacing.
Breakout Guidelines (PROCESSOR & MCH)	7 mil wide with 5 mil spacing for a maximum of 250 mils from the component ball.
Data Line lengths	2 inches—10 inches from pin to pin.
(agent to agent spacing)	Data signals of the same source synchronous group should be routed to the same pad-to-pad length within \pm 100 mils of the associated strobes. The pad is defined as the attach point of the silicon die to the package substrate. Length must be added to the system board to compensate for package length differences. Signals should be referenced to V _{SS} .
DSTBn/p[3:0]#	A layer transition may occur if the reference plane remains the same (V_{SS}) and the layers are of the same configuration (all stripline or all microstrip).
	A data strobe and its complement should be routed within \pm 25 mils of the same pad-to-pad length.
	If one strobe switches layers, its complement must switch layers in the same manner.
	DSTBn/p# should be referenced to V _{SS} .
Address line lengths	2 inches—10 inches from pin to pin.
(agent to agent spacing) ADSTB[1:0]#	Address signals of the same source synchronous group should be routed to the same pad-to-pad length within \pm 200 mils of the associated strobes. The pad is defined as the attach point of the silicon die to the package substrate. Length must be added to the system board to compensate for package length differences. A layer transition may occur if the reference plane remains the same (V _{SS}), and the layers are of the same configuration (all stripline or all microstrip).
Common Clock line lengths	2.5 inches—10 inches pin to pin. No length compensation is necessary.
Topology	Point to point (chipset to processor).

Parameter	Processor Routing Guidelines
Routing priorities	All signals should be referenced to V _{SS} .
	Ideally, layer changes should not occur for any signals. If a layer change must occur, the reference plane must be V_{SS} and the layers must all be of the same configuration (all stripline or all microstrip for example). The data bus must be routed first, then the address bus, then common clock.
Clock keep out zones	Refer to Table 15-3 of the Platform Design Guide Revision 1.0.
Trace Impedance	$50 \ \Omega \pm 15\%$

Note: Refer to the *Intel*[®] 845 Chipset: 82845 Memory Controller Hub (MCH) Datasheet for MCH package dimensions, and refer to *Intel*[®] Pentium 4 Processor in the 478-Pin Package Processor Signal Integrity Models for processor package dimensions.

Figure 11. Cross Sectional View of 3:1 Ratio

The return path is the route current takes to return to its source. It may take a path through ground planes, power planes, other signals, integrated circuits, and vias, VRMs etc. It is useful to think of the return path as following a path of least resistance back to the original source. Discontinuities in the return path often have signal integrity and timing effects that are similar to the discontinuities in the signal conductor. Therefore, the return paths must be given similar considerations. A simple way to evaluate return path parasitic inductance is to draw a loop that traces the current from the driver through the signal conductor to the receiver, then back through the ground/power plane to the driver again. The smaller the area of the loop, the lower the parasitic inductance will be.


The following sets of return path rules apply:

- Always trace out the return current path and provide as much care to the return path as the path of the signal conductor.
- Decoupling capacitors do not adequately compensate for a plane split.
- Do not allow splits in the reference planes in the path of the return current.
- Do not allow routing of signals on the reference planes near system bus signals.
- Maintain V_{SS} as a reference plane for all system bus signals.
- Do not route over via anti-pads or socket anti-pads.

4.1.1 GTLREF Layout and Routing Recommendations

There are four AGTL+ GTLREF pins on the processor that are used to set the reference voltage level for the AGTL+ signals (GTLREF). Because all of these pins are connected inside the processor package, the GTLREF voltage must be supplied to only one of the four pins.

Figure 12. GTLREF Routing

- The processor must have one dedicated voltage divider.
- Decouple the voltage divider with a 1 μ F capacitor.
- Keep the voltage divider within 1.5 inches of the GTLREF pin.
- Decouple the pin with a high-frequency capacitor (such as a 220 pF 603) as close to the pin as possible.
- Keep signal routing at least 10 mils separated from the GTLREF routes. Use at least a 7 mil trace for routing.
- Do not allow signal lines to use the GTLREF routing as part of their return path (i.e., do not allow the GTLREF routing to create splits or discontinuities in the reference planes of the front side bus signals).

4.1.2 HVREF, HSWNG, HRCOMP Layout and Routing Recommendations at the Intel[®] MCH

The HVREF signals must be tied to a resistor divider network that supplies $2/3*V_{CC_CPU}$ Use one 49.9 Ω 1% resistor to the V_{CC_CPU} plane and one 100 Ω 1% resistor to ground for the divider. Decouple with one 0.1 μ F capacitor at the MCH. The trace to the voltage divider should be routed at a maximum of 3 inches at 12 mils wide. Keep this trace at a minimum of 10 mils away from other signals.

The HSWNG signals must be tied to a resistor divider network that supplies $1/3* V_{CC_CPU}$. Use one, 300 Ω 1% resistor to the V_{CC_CPU} plane and one 150 Ω 1% resistor to ground for the divider. Decouple with one 0.01 μ F capacitor at the MCH. The trace to the voltage divider should be routed at a maximum of 3 inches at 12 mils wide. Keep this trace at a minimum of 10 mils away from other signals.

Each HRCOMP signal must be tied to ground through a 24.9 Ω 1% resistor. The trace to each resistor should be routed a maximum of 0.5 inch at 10 mils wide. Keep each trace a minimum of 7 mils away from other signals.

4.2 **Processor Configuration**

4.2.1 Intel[®] Pentium[®] 4 Processor Configuration

This section provides more details for routing Pentium 4 processor-based systems. Both recommendations and considerations are presented.

For proper operation of the processor and the 845 chipset, it is necessary that the system designer meet the timing and voltage specifications of each component. The following recommendations are Intel's best guidelines based on extensive simulation and experimentation based on assumptions that may not apply to an OEM's system design. The most accurate way to understand the signal integrity and timing of the system bus in a platform is by performing a comprehensive simulation analysis. It is conceivable that adjustments to trace impedance, line length, termination impedance, board stack-up and other parameters can be made that improve system performance.

Refer to the Intel[®] Pentium[®] 4 Processor in the 478 Pin Package Datasheet for a system bus signal list, signal types, and definitions.

4.2.2 Topology and Routing

Table 4. Source Synchronous Signal Groups and the Associated Strobes

Signals	Associated Strobe
REQ[4:0]#, A[16:3]#	ADSTB0#
A[31:17]#	ADSTB1#
D[15:0]#, DBI0#	DSTBP0#, DSTBN0#
D[31:16]#, DBI1#	DSTBP1#, DSTBN1#
D[47:32]#, DBI2#	DSTBP2#, DSTBN2#
D[63:48]#, DBI3#	DSTBP3#, DSTBN3#

Design recommendations are presented first, followed by design considerations.

4.2.2.1 Design Recommendations

The following are the design recommendations for the data, address, strobes, and common clock signals. Based on the example of Figure 9, the data, address, strobe and common clock should be routed 7 mils with 13 mil spacing. For the following discussion, the pad is defined as the attach point of the silicon die to the package substrate.

DATA

The pad-to-pad distance for the data signals from the processor to the chipset should be between 2.0 inches and 10 inches (i.e., 2.0 inches < L1 < 10 inches). Data signals of the same source synchronous group should be routed to the same pad-to-pad length within \pm 100 mils of the associated strobes. As a result, additional trace will be added to some data nets on the system board in order for all trace lengths within the same data group to be the same length (\pm 100 mils) from the pad of the processor to the pad of the chipset. This length compensation will result in minimizing the source synchronous skew that exists on the system bus. Without the length compensation the flight times between a data signal and its strobe will be different, which results in an inequity between the setup and hold times. Data signals may change layers if the reference plane remains V_{SS}.

The following equation is used to calculate package delta addition to motherboard length for UP systems.

$$delta_{net,strobe} = (cpu_pkglen_{net} - cpu_pkglen_{strobe^*}) + (cs_pkglen_{net} - cs_pkglen_{strobe})$$

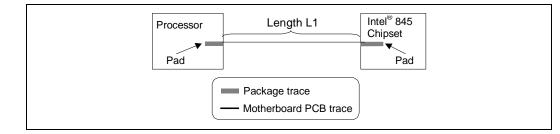
NOTES:

1. Refer to section 4.7 for package lengths.

2. * Strobe package length is the average of the strobe pair.

ADDRESS

Address signals follow the same rules as data signals except they should be routed to the same pad-to-pad length within \pm 200 mils of the associated strobes. Address signals may change layers if the reference plane remains V_{SS}.


DATA STROBES

A strobe and its complement should be routed to a length equal to their corresponding data group's mean pad-to-pad length ± 25 mils. This causes the strobe to be received closer to the center of the data pulse, which results in reasonably comparable setup and hold times. A strobe and its complement (xSTBp/n#) should be routed to ± 25 mils of the same length. It is recommended to simulate skew to determine the length that best centers the strobe for a given system.

COMMON CLOCK

Common clock signals should be routed to a minimum pin-to-pin motherboard length of 2.5 inches and a maximum motherboard length of 10 inches.

Figure 13. Processor Topology

4.3 Routing Guidelines for Asynchronous GTL+ and Other Signals

This section describes layout recommendations for signals other than data, strobe, and address. Table 5 lists the signals covered in this section.

Signal Name	Туре	Direction	Topology	Driven By
A20M#	Asynchronous GTL+	I	2A	ICH2
BR0#	AGTL+	I/O	4	Processor
COMP[1:0]	Analog	I	5	
FERR#	Asynchronous GTL+ Open Drain	0	1A	Processor
IGNNE#	Asynchronous GTL+	I	2A	ICH2
INIT#	Asynchronous GTL+	I	2B	ICH2
LINTO/INTR LINT1/NMI	Asynchronous GTL+	I	2A	ICH2
PROCHOT#	Asynchronous GTL+ Open Drain	0	1B	Processor
PWRGOOD	Asynchronous GTL+ Open Drain	I	2C	ICH2
RESET#	AGTL+ Open Drain	I	4	МСН
SLP#	Asynchronous GTL+	I	2A	ICH2
SMI#	Asynchronous GTL+	I	2A	ICH2
STPCLK#	Asynchronous GTL+	I	2A	ICH2
THERMTRIP#	Asynchronous GTL+ Open Drain	0	1C	Processor
V _{CCA}	Power	I	3	External logic
V _{CCIOPLL}	Power	I	3	External logic
V _{CCSENSE}	Other	0		Processor
VID[4:0]	Open Drain 3.3 V Tolerant	0	8	Processor
V _{SSA}	Power	I	3	Ground
V _{SSSENSE}	Other	0		Processor
THERMDA/THERMDC	Other	I/O	6	External logic
TESTHI	Other	I/O	7	External logic

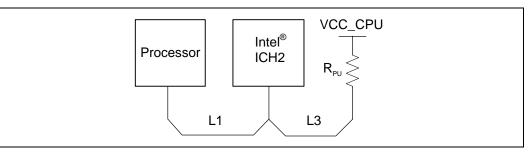
Table 5. Miscellaneous Signals (Signals That Are Not Data, Address, or Strobe)

NOTE: Refer to Section 14, Schematic Checklist, for Debug Port signals.

All signals must meet the AC and DC specifications as documented in the *Intel[®] Pentium[®] 4 Processor in the 478 Pin Package Datasheet.*

4.3.1 Topologies

The following sections describe the topologies and layout recommendations for the miscellaneous signals.


4.3.1.1 Topology 1A: Asynchronous GTL+ Signal Driven by the Processor— FERR#

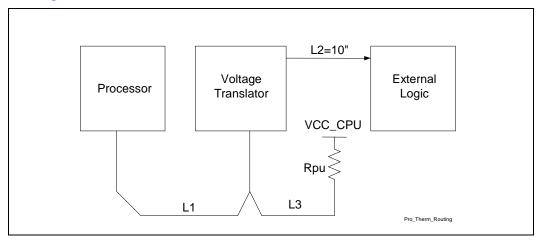
FERR# should adhere to the routing and layout recommendations described and illustrated in Table 6 and Figure 14.

Table 6. Layout Recommendations for FERR# Signal—Topology 1A

Trace Zo	Trace Spacing	L1	L3	Rpu
60 Ω	7 mil	1 in.—12 in.	3 in. max	$62 \Omega \pm 5\%$

Figure 14. Routing Illustration for FERR#

4.3.1.2 Topology 1B: Asynchronous GTL+ Signal Driven by the Processor—PROCHOT#

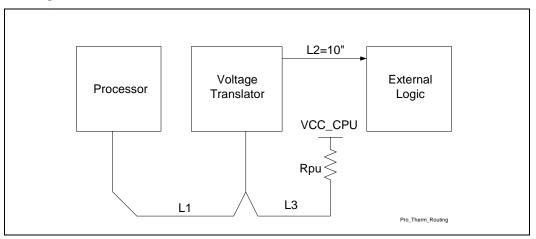

PROCHOT# should adhere to the routing and layout recommendations described and illustrated in Table 7 and Figure 15.

If PROCHOT# is routed to external logic, voltage translation may be required to avoid excessive voltage levels at the processor and to meet input thresholds for the external logic.

Table 7. Layout Recommendations for PROCHOT# Signal—Topology 1B

Trace Zo	Trace Spacing	L1	L2	L3	Rpu
60 Ω	7 mil	1 in.—17 in.	10 in. max	3 in. max	$62 \Omega \pm 5\%$

Figure 15. Routing Illustration for PROCHOT#


4.3.1.3 Topology 1C: Asynchronous GTL+ Signal Driven by the Processor— THERMTRIP#

THERMTRIP# should adhere to the routing and layout recommendations described and illustrated in Table 8 and Figure 16. If THERMTRIP# is routed to external logic, voltage translation may be required to avoid excessive voltage levels at the processor and to meet input thresholds for the external logic.

Table 8. Layout Recommendations for THERMTRIP# Signal—Topology 1C

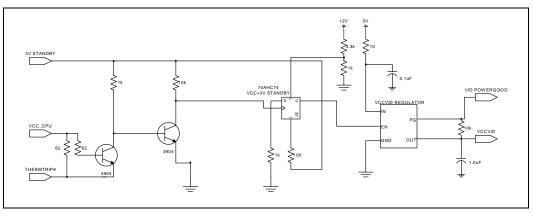
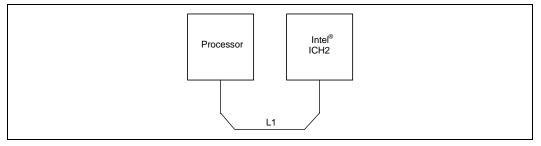

ſ	Trace Zo	Trace Spacing	L1	L2	L3	Rpu
	60 Ω	7 mil	1 in.—17 in.	10 in. max	3 in. max	$62 \Omega \pm 5\%$

Figure 16. Routing Illustration for THERMTRIP#

It is required that power is removed from the processor core within 0.5 seconds of the assertion of the THERMTRIP# signal. Figure 17 is an example circuit that powers down the processor voltage regulator when THERMTRIP# is asserted.

Figure 17. THERMTRIP# Power Down Circuit

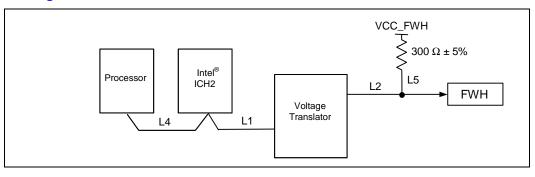

4.3.1.4 Topology 2A: Asynchronous GTL+ Signals Driven by the Intel[®] ICH2—A20M#, IGNNE#, LINT[1:0], SLP#, SMI#, and STPCLK#

These signals should adhere to the routing and layout recommendations described and illustrated in Table 9 and Figure 18.

Table 9. Layout Recommendations for A20M#, IGNNE#, LINT[1:0], SLP#, SMI#, and STPCLK#—Topology 2A

Trace Zo	Trace Spacing	L1	Rpu
60 Ω	7 mils	12 in. max	None

Figure 18. Routing Illustration for A20M#, IGNNE#, LINT[1:0], SLP#, SMI#, and STPCLK#


4.3.1.5 Topology 2B: Asynchronous GTL+ Signal Driven by the Intel[®] ICH2— INIT#

INIT# should adhere to the routing and layout recommendations described and illustrated in Table 10 and Figure 19.

Table 10. Layout Recommendations for INIT#—Topology 2B

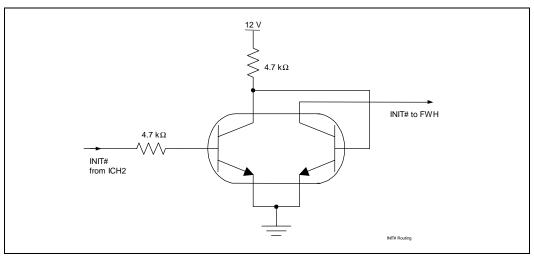
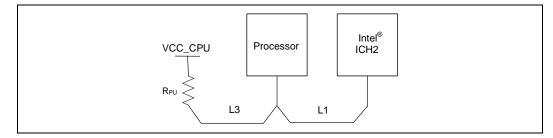

Trace Zo	Trace Spacing	L1	L2	L4	L5	Rpu
60 Ω	7 mils	2 in. max	10 in. max	17 in. max	3 in. max	300 Ω 5%

Figure 19. Routing Illustration for INIT#

Level shifting is required for the INIT# signal to the FWH to meet the input logic levels of the FWH. Figure 20 illustrates one method of level shifting.

Figure 20. Voltage Translation of INIT#

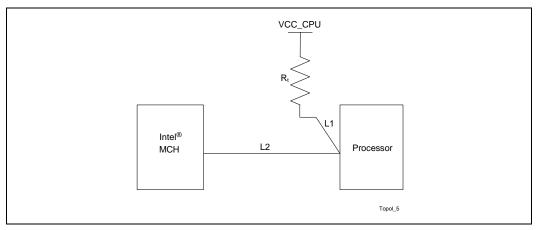

4.3.1.6 Topology 2C: Asynchronous GTL+ Signal Driven by the Intel[®] ICH2 Open Drain—PWRGOOD

PWRGOOD should adhere to the routing and layout recommendations described and illustrated in Table 11 and Figure 21.

Table 11. Layout Recommendations for Miscellaneous Signals—Topology 2C

Trace Zo	Trace Spacing	L1	L3	Rpu
60 Ω	7 mil	1 in.–12 in.	3 in. max	$300 \ \Omega \pm 5\%$

Figure 21. Routing Illustration for PWRGOOD


4.3.1.7 Topology 3—V_{CCIOPLL}, V_{CCA} and V_{SSA}

 $V_{CCIOPLL}$ and V_{CCA} are isolated power for internal PLLs. It is critical that they have clean, noiseless power on their input pins. Further details can be found in Section 4.6.6.1.

4.3.1.8 Topology 4—BR0# and RESET#

Because the processor does not have on-die termination on the BR0# and RESET# signals, it is necessary to terminate using discrete components on the system board. Connect the signals between the components as shown in Figure 22. The 845 chipset has on-die termination and thus it is necessary to terminate only at the processor end. The value of Rt should be 51 $\Omega \pm 5\%$ for RESET#. The value of Rt should be 150-220 $\Omega \pm 5\%$ for BR0#.

Figure 22. Routing Illustration for BR0# and RESET#

Table 12. BR0# and RESET# Lengths

Signal	Rt	L1	L2
RESET#	51 Ω	≤1-2"	2 in – 10 in pin to pin
BR0#	150 Ω– 220 Ω	≤1-2"	2 in – 10 in pin to pin

4.3.1.9 Topology 5: COMP[1:0] Signals

Terminate the COMP[1:0] pins to ground through a 51 $\Omega \pm 1\%$ resistor as close as possible to the pin. Do not wire COMP pins together; connect each pin to its own termination resistor. RCOMP value can be adjusted to set external drive strength of I/O and to control the edge rate.

4.3.1.10 Topology 6: THERMDA/THERMDC Routing Guidelines

The processor incorporates an on-die thermal diode. THERMDA (diode anode) and THERMDC (diode cathode) pins on the processor can be connected to a thermal sensor located on the system board to monitor the die temperature of the processor for thermal management/long term die temperature change monitoring purpose. This thermal diode is separate from the Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the Thermal Monitor.

Because the thermal diode is used to measure a very small voltage from the remote sensor, care must be taken to minimize noise induced at the sensor inputs. The following are some guidelines:

- The remote sensor should be placed as close as possible to THERMDA/THERMDC pins. It can be approximately 4 to 8 inches away as long as the worst noise sources such as clock generators, data buses, and address buses, etc., are avoided.
- Route the THERMDA and THERMDC lines in parallel and close together with ground guards enclosed.
- Use wide tracks to reduce inductance and noise pickup that may be introduced by narrow ones. A width of 10 mils and spacing of 10 mils is recommended.

4.3.1.11 Topology 7: TESTHI and RESERVED Pins

The TESTHI pins should be tied to the processor V_{CC} using a matched resistor, where a matched resistor has a resistance value within $\pm 20\%$ of the impedance of the board transmission line traces. For example, if the trace impedance is 50 Ω , then a value between 40 and 60 Ω is required.

The TESTHI pins may use individual pull-up resistors or be grouped together as follows. A matched resistor should be used for each group:

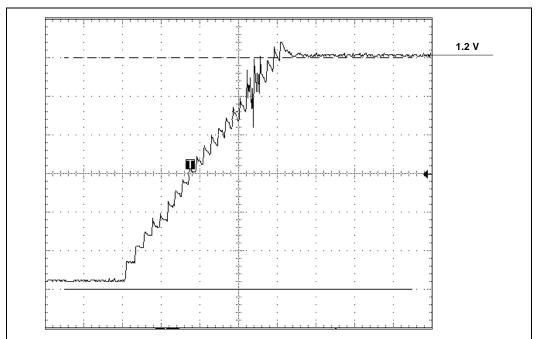
- 1) TESTHI[1:0]
- 2) TESTHI[5:2]
- 3) TESTHI[10:8]
- 4) TESTHI[12:11]

Additionally, if the ITPCLKOUT[1:0] pins are not used, they may be connected individually to V_{CC} using matched resistors, or they may be grouped with TESTHI[5:2] with a single matched resistor. If they are being used, individual termination with 1 k Ω resistors is acceptable. Tying ITPCLKOUT[1:0] directly to V_{CC} or sharing a pull-up resistor to V_{CC} will prevent use of debug interposers. This implementation is strongly discouraged for system boards that do not implement an onboard debug port.

As an alternative, group 2 (TESTHI[5:2]), and the ITPCLKOUT[1:0] pins may be tied directly to the processor V_{CC} . This has no impact on system functionality. TESTHI[0] and TESTHI[12] may also be tied directly to processor V_{CC} if resistor termination is a problem, but matched resistor termination is recommended. In the case of the ITPCLKOUT[1:0], direct tie to V_{CC} is strongly discouraged for system boards that do not implement an onboard debug port.

4.3.1.12 **Topology 8: Processor Voltage Regulator Sequencing Requirements**

- The output of the voltage regulator used to generate V_{CC} VID should be no more than 1.5 inches from pin AF4 of the processor.
- The trace connecting the voltage regulator output to pin AF4 should be as wide as practical, but not less than 0.025 inches.
- The trace connecting the voltage regulator output to pin AF4 should have both a $0.1.\mu$ F and a 1.0μ F capacitor for decoupling. The 1.0μ F capacitor should be located as close as possible to the output of the voltage regulator. The 0.1μ F capacitor should be located as close as possible to pin AF4 on the processor.


If an integrated voltage regulator such as the MIC5248 is used, the voltage input (pin 1) should be connected to the system board's V_{CC} or 3.3V rails through a zero ohm resistor. The input of the voltage regulator should also be decoupled with a 0.1 μ F capacitor at the pin. The trace connecting the voltage regular input to the zero resistor should be equal to or greater than the voltage regulator output trace connected to the processor (i.e. if the connection to the processor is 0.025 inches, then the trace width to the input of the voltage regulator should be 0.025 inches or greater). The voltage regulator power good signal (pin 4) should be connected to the voltage regulator output (pin 5) through a 10 k Ω resistor.

During power-on, the rising edge of the V_{CC} VID power supply must be monotonic. Examples of acceptable monotonic and unacceptable non-monotonic rising edges are show in Figure 23 and Figure 24 for reference.

1.2 V 1.2 V М 500µs Ch1 f 1.06 V

Figure 23. Passing Monotonic Rising Edge Voltage Waveform

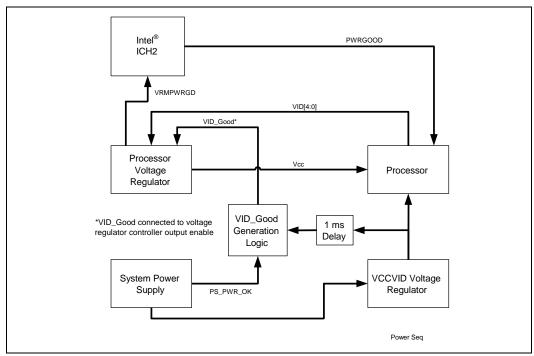


Figure 24. Failing Non-Monotonic Rising Voltage Waveform

The platform requires a 1.2 V supply to the V_{CC} VID pins to support the on-die VID generation circuitry. A linear regulator is recommended to generate this voltage. The on-die VID generation circuitry has some power sequencing requirements. Figure 25 shows a block diagram of a power sequencing implementation.

4.4 Additional Processor Design Considerations

This section documents system design considerations not addressed in previous sections.

4.4.1 Retention Mechanism Placement and Keep-Outs

The RM requires a keep out zone for a limited component height area under the RM as shown in Figure 26 and Figure 27. The figures show the relationship between the RM mounting holes, and pin one of the socket. In addition it also documents the keep-outs.

The retention holes should be a non-plated hole. The retention holes should have a primary and secondary side route keep-out area of 0.409 inches diameter.

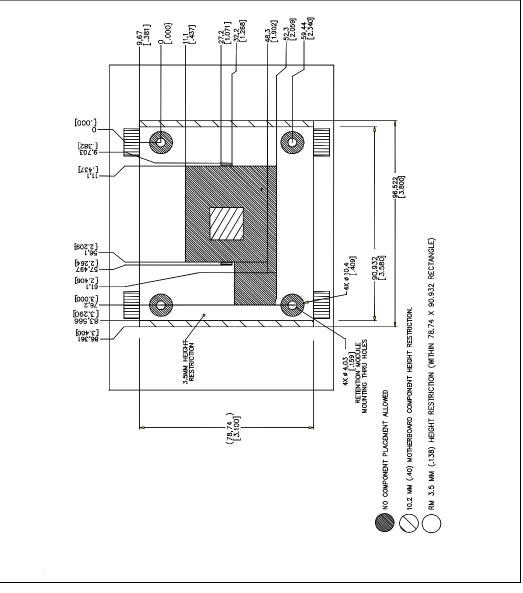

For heat sink volumetric information refer to the *Intel[®] Pentium[®] 4 Processor in the 478-pin package Thermal Design Guidelines.*

Figure 26. RM Keep-Out Drawing 1

NOTE: Dimensions are in millimeters with inch dimensions in brackets.

NOTE: Dimensions are in millimeters with inch dimensions in brackets.

4.4.2 **Power Header for Active Cooling Solutions**

The Intel reference-design heatsink includes an integrated fan. The recommended connector for the active cooling solution is a Walden*/Molex 22-01-3037, AMP* 643815-3, or equivalent. The integrated fan requires the system board to supply a minimum of 740 mA at 12 V for proper operation. The fan connector pinout is described Table 13

Table 13. Reference Solution Fan Power Header Pinout

Pin Number	Signal	
1	Ground	
2	+12 V	
3	No Connect	

The Intel boxed processor heatsink includes an integrated fan. The recommended connector for the active cooling solution is a Walden*/Molex* 22-23-2037, AMP* 640456-3 or equivalent. The integrated fan requires the system board to supply a minimum of 740 mA at 12 V for proper operation. The fan connector pinout is described in Table 14

Table 14. Boxed Processor Fan Power Header Pinout

Pin Number	Signal	
1	Ground	
2	+12 V	
3	Sense	

The fan heatsink outputs a SENSE signal, which is an open-collector output that pulses at a rate of two pulses per fan revolution. The system board requires a pull-up resistor to provide the appropriate Voh level to match the fan speed monitor. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 should be tied to GND.

For more information on boxed processor requirements, refer to the *Intel[®] Pentium[®] 4 Processor in the 478 Pin Package Datasheet.*

4.5 Debug Port Routing Guidelines

Refer to the latest revision of the *ITP700 Debug Port Design Guide* for details on the implementation of the debug port.

4.5.1 Debug Tools Specifications

4.5.1.1 Logic Analyzer Interface (LAI)

Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in debugging the Pentium[®] 4 processor systems. Tektronix and Agilent should be contacted for specific information about their logic analyzer interfaces. The following information is general in nature. Specific information must be obtained from the logic analyzer vendor.

Due to the complexity of Pentium 4 processor systems, the LAI is critical in providing the ability to probe and capture system bus signals. There are two sets of considerations to keep in mind when designing a Pentium 4 processor system that can make use of an LAI: mechanical and electrical.

4.5.1.2 Mechanical Considerations

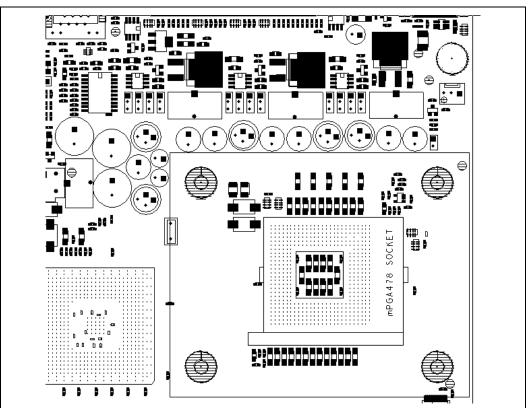
The LAI is installed between the processor socket and the Pentium 4 processor. The LAI pins plug into the socket, while the Pentium 4 processor plugs into a socket on the LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between the Pentium 4 processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keep-out volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor. System designers must make sure that the keep-out volume remains unobstructed inside the system. Note that it is possible that the keep-out volume reserved for the LAI may include space normally occupied by the Pentium 4 processor heat sink. If this is the case, the logic analyzer vendor will provide a cooling solution as part of the LAI.

4.5.1.3 Electrical Considerations

The LAI will also affect the electrical performance of the system bus; therefore, it is critical to obtain electrical load models for each of the logic analyzers to be able to run system level simulations to prove that they will work in the system. Contact the logic analyzer vendor for electrical specifications and load models for the LAI solution they provide.

4.6 Intel[®] Pentium[®] 4 Processor Power Distribution Guidelines

4.6.1 **Power Requirements**


Intel recommends using an Pentium 4 processor in the 478-pin package VR Down Design Guidelines-compliant regulator for the processor system board designs. A Pentium 4 processor and VR Down Design Guidelines -compliant regulator may be integrated as part of the system board or on a module. The system board designer should properly place high-frequency and bulkdecoupling capacitors as needed between the voltage regulator and the processor to ensure that voltage fluctuations remain within *Intel[®] Pentium[®] 4 Processor in the 478 Pin Package Datasheet* specifications. See Table 15 for recommendations on the amount of decoupling required.

Specifications for the processor voltage are contained in the *Intel*[®] *Pentium*[®] *4 Processor in the 478 Pin Package Datasheet*. These specifications are for the processor die. For guidance on correlating the die specifications to socket level measurements, refer to the socket loadlines in the *Intel*[®] *Pentium*[®] *4 Processor in the 478 Pin Package VR Down Design Guidelines*.

The voltage tolerance of the loadlines contained in these documents helps the system designer achieve a flexible motherboard design solution for all processor frequencies. Failure to meet the load line requirements when modeling the system power delivery may result in a system that is not upgradeable.

The processor requires local regulation because of its higher current requirements, and to maintain power supply tolerance. For example, an onboard DC-to-DC converter converts a higher DC voltage to a lower level using a switching regulator. Distributing lower current at a higher voltage to the converter minimizes unwanted losses (I x R). More important, however, an onboard regulator regulates the voltage locally, which minimizes DC line losses by reducing motherboard resistance on the processor voltage. Figure 28 shows an example of the placement of the local voltage regulation circuitry.

In this section, North and South are used to describe a specific side of the socket based on the placement of the customer reference board shown in Figure 8 North refers to the side of the processor closest to the back panel, and South refers to the side of the processor closest to the system memory.

Figure 28. VR Component Placement

4.6.2 45 Watt Processor Thermal Design Power (TDP) Limit

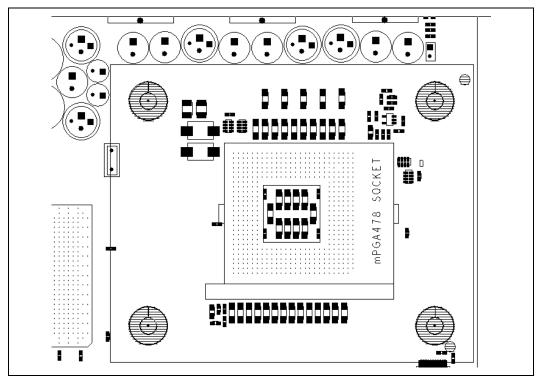
The Pentium 4 processors with 512 KB cache on the .13 micron process limited to a TDP of 45 Watts allow for a cost-optimized, high-performance VR down solution. A regulator switching at 400 KHz/phase allows the regulator designer to apply 2 phases when the processor is inserted into the socket, and to provide a minimum amount of output bulk capacitance. However, considerations must be made when using a 2-phase regulator at this high switching frequency and with roughly 20A of current going through each phase. Intel recommends placing plenty of copper on the board to dissipate FET and other conversion component losses, and to pay special attention to VR transient performance and tuning to maintain regulator stability and meet processor minimum and maximum voltages. A minimum 10 square inches of board space should be used on layer 1 as well as layer 4 for the entire regulator design. For exact details and layout guidelines, contact your voltage regulator manufacturer. Refer to the schematics for an implementation of the design.

4.6.3 Decoupling Requirements

For the processor voltage regulator circuitry to meet the transient specifications of the processor, proper bulk and high-frequency decoupling is required. The decoupling requirements for the processor power delivery in this case are shown in Table 15.

Table 15. Decoupling Requirements

Capacitance	ESR (Each)	ESL (Each)	Ripple Current Rating (Each)
9 OSCONs, 560 μF	9.28 mΩ, max	6.4 nH, max	4.080 A _{rms}
3 Al, Electolytic, 3300 µF	12 m Ω , max	5 nH, max	
38 1206 package, 10 μF	3.5 mΩ, typ	1.15 nH, typ	

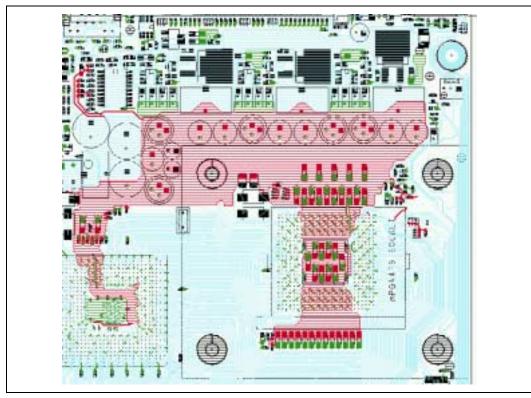

NOTES:

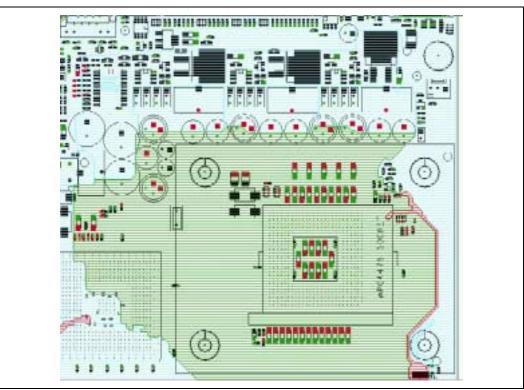
1. The ESR, ESL and ripple current values in this table are based on the values used in power delivery simulation by Intel, and are not vendor specifications.

The decoupling should be placed as close as possible to the processor power pins. Table 16 and Figure 29 describe and illustrate the recommended placement.

Table 16. Decoupling Locations

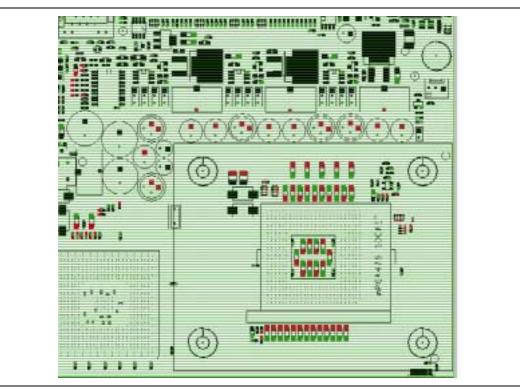
Туре	Number	Location
560 μF OS-CONs	9	North side of the processor as close as possible to the keep-out area for the retention mechanism
3 AI, Electolytic, 3300 μ F	3	North side of the processor as close as possible to the keep-out area for the retention mechanism
1206 package, 10 μF	14	North side of the processor as close as possible to the processor socket
1206 package, 10 μF	10	Inside the processor socket cavity
1206 package, 10 μF	14	South side of the processor as close as possible to the processor socket




Figure 29. Decoupling Placement

4.6.4 Layout

All four layers in the processor area should be used for power delivery. Two layers should be used for V_{CC_CPU} , and two layers should be used for ground. Traces are not sufficient for supplying power to the processor due to the high current and low resistance required to meet the processor voltage specifications. To satisfy these requirements, shapes that encompass the power delivery part of the processor pin field are required. Figure 30 through Figure 33 show examples of how to use shapes to deliver power to the processor.


Figure 30. Top Layer Power Delivery Shape (V_{CC_CPU})

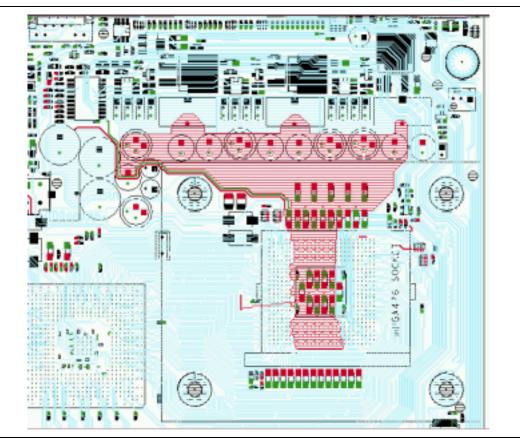


Figure 31. Layer 2 Power Delivery Shape (V_{ss})

Figure 32. Layer 3 Power Delivery Shape (V_{SS})

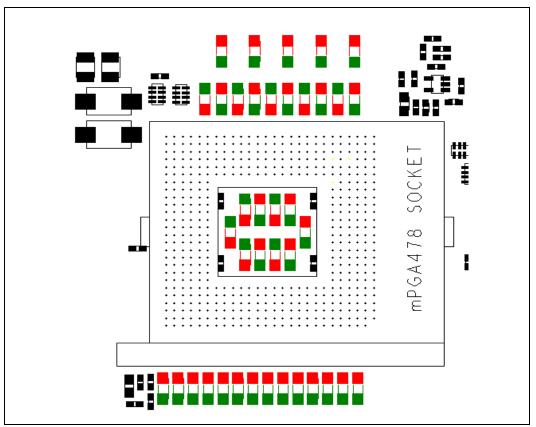
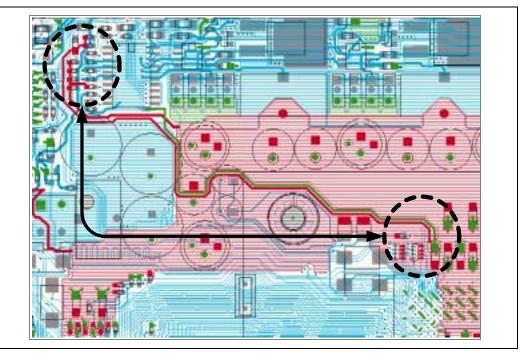


Figure 33. Bottom Layer Power Delivery Shape (V_{CC_CPU})

The high-frequency decoupling capacitors on the North side and within the socket cavity should be placed with alternating V_{CC_CPU} and V_{SS} to provide a better path for power delivery through the capacitor field. An example of this placement is shown in Figure 34.

The processor socket has 478 pins with 50-mil pitch. The routing of the signals, power and ground pins require creation of many vias. These vias cut up the power and ground planes beneath the processor resulting in increased inductance of these planes. To provide the best path through the via field, it is recommended that vias be shared for two processor ground pins and for two processor power pins. Figure 35 illustrates this via sharing.


Figure 35. Shared Power and Ground Vias

The switching voltage regulators typically used for processor power delivery require the use of a feedback signal for output error correction. The $V_{CCSENSE}$ and $V_{SSSENSE}$ pins on the processor should not be used for generating this feedback. These pins should be used as measurement points for lab measurements only. They can be routed to a test point or via on the back of the motherboard with a trace that is a maximum length of 100 mils for this purpose. The socket loadline defined in the *Intel*[®] *Pentium*[®] 4 *Processor VR Down Design Guidelines* is defined from pins AC14 (V_{CC_CPU}) and AC15 (V_{SS}) and should be validated from these pins as well. These pins are located approximately in the center of the pin field on the North side of the processor. Feedback for the voltage regulator controller should therefore be taken close to this area of the power delivery shape. Figure 36 shows an example routing of the feedback signal. It is routed as a trace from the 1206 capacitor in the Northwest corner of the processor back to the voltage regulator controller. Because the feedback in this case is not taken from the exact point that defines the socket loadline (pins AC14/AC15), it is important to consider any voltage drop from the feedback point to these pins in the design.

Figure 36. Routing of VR Feedback Signal

4.6.5 Thermal Considerations

For a power delivery solution to meet the flexible motherboard (FMB) requirements, it must be able to deliver a high amount of current. This high amount of current also requires that the solution be able to dissipate the associated heat generated by the components and keep all of the components and the PCB within their thermal specifications. OEMs should evaluate their component configurations, system airflow, and layout to ensure adequate thermal performance of the processor power delivery solution.

4.6.6 Simulation

To completely model the system board, one must include the inductance and resistance that exists in the cables, connectors, PCB planes, pins and body of components (such as resistors and capacitors), processor socket, and the voltage regulator module. More detailed models showing these effects are shown in Figure 37.

Figure 37. Detailed Power Distribution Model for Processor with Voltage Regulator on System Board

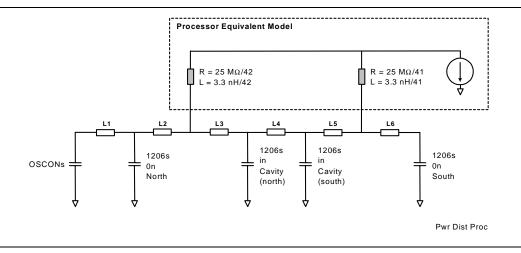
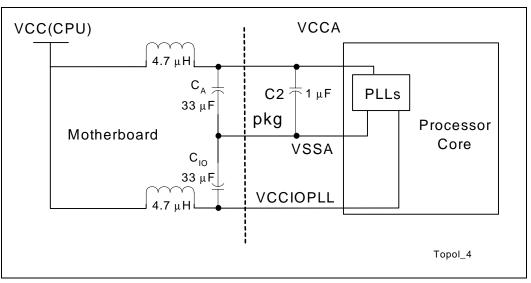


Table 17 lists model parameters for the system board shown in Figure 8.

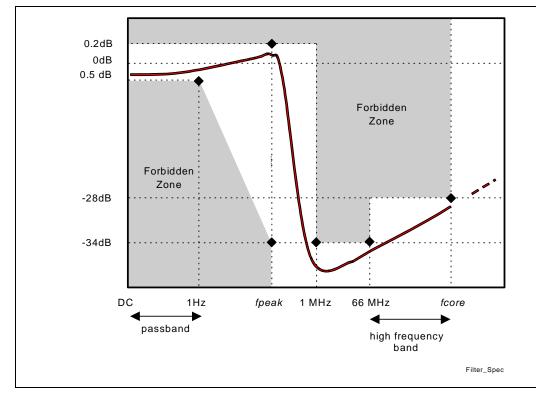

Table 17. Intel[®] Pentium[®] 4 Processor Power Delivery Model Parameters

Segment	Resistance	Inductance
L1	0.27 mΩ	80 pH
L2	0.33 mΩ	113 pH
L3	0.392 mΩ	104 pH
L4	$0.196 \text{ m}\Omega$	52 pH
L5	0.392 mΩ	104 pH
L6	0.64 mΩ	200 pH

4.6.6.1 Filter Specifications for V_{CCA}, V_{CCIOPLL}, and V_{SSA}

 V_{CCA} and $V_{CCIOPLL}$ are power sources required by the PLL clock generators on the processor silicon. Because these PLLs are analog in nature, they require quiet power supplies for minimum jitter. Jitter is detrimental to the system. It degrades external I/O timings, as well as internal core timings (i.e., maximum frequency). To prevent this degradation, these supplies must be low pass filtered from V_{CC} . The general desired filter topology is shown in Figure 38. Not shown in the core is parasitic routing. Excluded from the external circuitry are parasitics associated with each component.

Figure 38. Typical $V_{CCIOPLL}$, V_{CCA} , and V_{SSA} Power Distribution

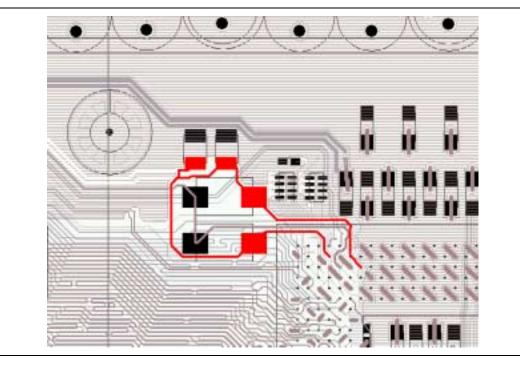

The function of the filter is two-fold. It protects the PLL from external noise through low-pass attenuation. It also protects the PLL from internal noise through high-pass filtering. In general, the low-pass description forms an adequate description for the filter. For simplicity this document will address the recommendation for the V_{CCA} filter design. The same characteristics and design approach is applicable for the $V_{CCIOPLL}$ filter design.

The AC low-pass recommendation, with input at V_{CC} and output measured across the capacitor (CA or CIO in Figure 38), is as follows:

- < 0.2 dB gain in pass band.
- < 0.5 dB attenuation in pass band < 1 Hz (see DC drop in next set of requirements).
- > 34 dB attenuation from 1 MHz to 66 MHz.
- \bullet > 28 dB attenuation from 66 MHz to core frequency.

int_{el},

The filter recommendation (AC) is graphically shown in Figure 39.



NOTES:

- 1. Diagram not to scale.
- 2. No specification for frequencies beyond fcore (core frequency).
- 3. Fpeak, if existent, should be less than 0.05 MHz.

Other Recommendations

- 1. Use shielded type inductors to minimize magnetic pickup.
- 2. Capacitors for the filters can have any value between 22 μ F and 100 μ F as long as components with ESL \leq 5 nH and ESR <0.3 Ω are used.
- 3. Values of either 4.7 μ H or 10 μ H may be used for the inductor.
- 4. Filter should support DC current > 60 mA.
- 5. DC voltage drop from V_{CC} to V_{CCA} should be < 60 mV.
- 6. To maintain a DC drop of less than 60 mV, the total DC resistance of the filter from V_{CC_CPU} to the processor socket should be a maximum of 1 Ω .
- 7. Other routing requirements:
 - a. C should be within 600 mils of the V_{CCA} and V_{SSA} pins. An example of the component placement is shown in Figure 40.
 - b. V_{CCA} route should be parallel and next to V_{SSA} route (minimize loop area).
 - c. A minimum 12 mil trace should be used to route from the filter to the processor pins.
 - d. L should be close to C.

Figure 40. Example Component Placement of PLL Filter

4.7 Intel[®] Pentium[®] 4 Processor and Intel[®] 845 Chipset Package Lengths

Processor Lengths		MCH Lengths			
Signal	Processor ball	Length (inches)	Signal	MCH ball	Length (inches)
		Address G	roup 0		
ADSTB0#	L5	0.210	HADSTB0#	R5	0.530
A03#	K2	0.368	HA03#	T4	0.518
A04#	K4	0.265	HA04#	T5	0.434
A05#	L6	0.155	HA05#	Т3	0.728
A06#	K1	0.415	HA06#	U3	0.577
A07#	L3	0.304	HA07#	R3	0.551
A08#	M6	0.144	HA08#	P7	0.359
A09#	L2	0.372	HA09#	R2	0.643
A10#	M3	0.327	HA10#	P4	0.533
A11#	M4	0.246	HA11#	R6	0.397
A12#	N1	0.394	HA12#	P5	0.463
A13#	M1	0.408	HA13#	P3	0.576
A14#	N2	0.349	HA14#	N2	0.660
A15#	N4	0.241	HA15#	N7	0.407
A16#	N5	0.198	HA16#	N3	0.570
REQ0#	J1	0.427	HREQ0#	U6	0.402
REQ1#	K5	0.207	HREQ1#	T7	0.350
REQ2#	J4	0.270	HREQ2#	R7	0.393
REQ3#	J3	0.337	HREQ3#	U5	0.475
REQ4#	НЗ	0.356	HREQ4#	U2	0.599
	· · ·	Address G	roup 1		
ADSTB1#	R5	0.214	HADSTB1#	N6	0.438
A17#	T1	0.470	HA17#	K4	0.550
A18#	R2	0.404	HA18#	M4	0.580
A19#	P3	0.303	HA19#	M3	0.648
A20#	P4	0.246	HA20#	L3	0.604
A21#	R3	0.334	HA21#	L5	0.521
A22#	T2	0.388	HA22#	K3	0.624

int_{el}.

Processor Lengths				MCH Lengths			
Signal	Processor ball	Length (inches)	Signal	MCH ball	Length (inches)		
A23#	U1	0.458	HA23#	J2	0.685		
A24#	P6	0.156	HA24#	M5	0.509		
A25#	U3	0.379	HA25#	J3	0.636		
A26#	T4	0.281	HA26#	L2	0.648		
A27#	V2	0.417	HA27#	H4	0.634		
A28#	R6	0.166	HA28#	N5	0.472		
A29#	W1	0.493	HA29#	G2	0.792		
A30#	T5	0.217	HA30#	M6	0.449		
A31#	U4	0.285	HA31#	L7	0.365		
		Data Gro	oup 0				
DSTBN0#	E22	0.338	HDSTBN0#	AD4	0.759		
DSTBP0#	F21	0.326	HDSTBP0#	AD3	0.801		
D00#	B21	0.414	HD00#	AA2	0.649		
D01#	B22	0.475	HD01#	AB5	0.564		
D02#	A23	0.538	HD02#	AA5	0.531		
D03#	A25	0.608	HD03#	AB3	0.678		
D04#	C21	0.386	HD04#	AB4	0.628		
D05#	D22	0.386	HD05#	AC5	0.635		
D06#	B24	0.535	HD06#	AA3	0.623		
D07#	C23	0.464	HD07#	AA6	0.468		
D08#	C24	0.515	HD08#	AE3	0.802		
D09#	B25	0.590	HD09#	AB7	0.495		
D10#	G22	0.274	HD10#	AD7	0.609		
D11#	H21	0.203	HD11#	AC7	0.548		
D#12	C26	0.589	HD12#	AC6	0.579		
D13#	D23	0.462	HD13#	AC3	0.709		
D14#	J21	0.183	HD14#	AC8	0.590		
D15#	D25	0.550	HD15#	AE2	0.856		
DBI0#	E21	0.309	DBI0#	AD5	0.637		
	· .	Data Gro	oup 1	1			
DSTBN1#	K22	0.301	HDSTBN1#	AE6	0.693		
DSTBP1#	J23	0.306	HDSTBP1#	AE7	0.638		
D16#	H22	0.272	HD16#	AG5	0.845		
D17#	E24	0.480	HD17#	AG2	0.904		

Intel[®] Pentium[®] 4 Processor in 478-Pin Package and Intel[®] 845 Chipset for DDR

Processor Lengths		MCH Lengths			
Signal	Processor ball	Length (inches)	Signal	MCH ball	Length (inches)
D18#	G23	0.358	HD18#	AE8	0.663
D19#	F23	0.418	HD19#	AF6	0.759
D20#	F24	0.443	HD20#	AH2	0.965
D21#	E25	0.508	HD21#	AF3	0.798
D22#	F26	0.513	HD22#	AG3	0.898
D23#	D26	0.597	HD23#	AE5	0.709
D24#	L21	0.176	HD24#	AH7	0.863
D25#	G26	0.524	HD25#	AH3	0.904
D26#	H24	0.412	HD26#	AF4	0.794
D27#	M21	0.171	HD27#	AG8	0.789
D28#	L22	0.245	HD28#	AG7	0.785
D29#	J24	0.401	HD29#	AG6	0.785
D30#	K23	0.313	HD30#	AF8	0.711
D31#	H25	0.473	HD31#	AH5	0.892
DBI1#	G25	0.458	DINVB_1	AG4	0.888
		Data Gro	oup 2		
DSTBN2#	K22	0.252	HDSTBN2#	AE11	0.595
DSTBP2#	J23	0.266	HDSTBP2#	AD11	0.532
D32#	M23	0.300	HD32#	AC11	0.514
D33#	N22	0.226	HD33#	AC12	0.565
D34#	P21	0.178	HD34#	AE9	0.652
D35#	M24	0.371	HD35#	AC9	0.566
D36#	N23	0.271	HD36#	AE10	0.605
D37#	M26	0.454	HD37#	AD9	0.635
D38#	N26	0.437	HD38#	AG9	0.724
D39#	N25	0.383	HD39#	AC10	0.543
D40#	R21	0.165	HD40#	AE12	0.558
D41#	P24	0.343	HD41#	AF10	0.666
D42#	R25	0.381	HD42#	AG11	0.703
D43#	R24	0.329	HD43#	AG10	0.705
D44#	T26	0.420	HD44#	AH11	0.754
D45#	T25	0.380	HD45#	AG12	0.669
D46#	T22	0.221	HD46#	AE13	0.563
D47#	T23	0.279	HD47#	AF12	0.596

int_{el}.

Processor Lengths		MCH Lengths		i	
Signal	Processor ball	Length (inches)	Signal	MCH ball	Length (inches)
DBI2#	P26	0.441	DINVB_2	AH9	0.775
		Data Gro	oup 3		
DSTBN3#	W22	0.298	HDSTBN3#	AC15	0.443
DSTBP3#	W23	0.300	HDSTBP3#	AC16	0.395
D48#	U26	0.419	HD48#	AG13	0.668
D49#	U24	0.324	HD49#	AH13	0.712
D50#	U23	0.270	HD50#	AC14	0.412
D51#	V25	0.384	HD51#	AF14	0.548
D52#	U21	0.167	HD52#	AG14	0.621
D53#	V22	0.252	HD53#	AE14	0.520
D54#	V24	0.341	HD54#	AG15	0.612
D55#	W26	0.447	HD55#	AG16	0.610
D56#	Y26	0.454	HD56#	AG17	0.619
D57#	W25	0.426	HD57#	AH15	0.703
D58#	Y23	0.336	HD58#	AC17	0.399
D59#	Y24	0.386	HD59#	AF16	0.580
D60#	Y21	0.222	HD60#	AE15	0.534
D61#	AA25	0.426	HD61#	AH17	0.672
D62#	AA22	0.268	HD62#	AD17	0.419
D63#	AA24	0.394	HD63#	AE16	0.503
DBI3#	V21	0.202	DINVB_3	AD15	0.431

5

Double Data Rate Synchronous DRAM (DDR-SDRAM) System Memory Design Guidelines

The 845 chipset Double Data Rate (DDR) SDRAM system memory interface consists of 120 CMOS signals. These CMOS signals have been divided into several signal groups: Data, Command, Control, Feedback, and Clock signals. Table 18 summarizes the signal groupings. Refer to the *Intel*[®] 845 Chipset Memory Controller Hub (MCH) External Design Specification (EDS) for details on the signals listed in Table 18.

The MCH AGP ST[0] signal is sampled by the MCH on power-on to identify the system memory mode, SDR or DDR. An internal MCH pull-up resistor on this signal sets the default system memory configuration to PC133 SDRAM. An external pull-down resistor to ground is required on ST[0] to enable the MCH to operate in DDR mode. The recommended pull-down resistor is $2 \text{ K}\Omega$.

Table 18. Intel[®] 845 Chipset DDR Signal Groups

Group	Signal Name	Description	
	SDQ[63:0]	Data Bus	
Data	SCB[7:0]	Check Bits for ECC Function	
	SDQS[8:0]	Data Strobes	
	SMA[12:0]	Memory Address Bus	
	SBS[1:0]	Bank Select	
Command	SRAS#	Row Address Select	
	SCAS#	Column Address Select	
	SWE#	Write Enable	
Control	SCKE[3:0]	Clock Enable - (One per Device Row)	
	SCS#[3:0]	Chip Select - (One per Device Row)	
Feedback	RCVENOUT#	Output Feedback Signal	
	RCVENIN#	Input Feedback Signal	
Clocks	SCK[5:0]	DDR-SDRAM Differential Clocks - (3 per DIMM)	
	SCK#[5:0]	DDR-SDRAM Inverted Differential Clocks - (3 per DIMM)	

5.1 Data Mask (DQM) Signals

The 845 chipset does not support data masking. The system memory DQM[7:0] pins on the DDR-DIMMs must be tied to ground.

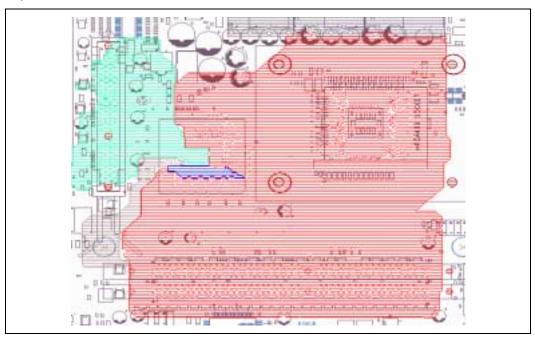
5.2 DDR-SDRAM Stack-Up and Referencing Guidelines

Intel 845 chipset designs using the DDR-SDRAM memory sub system require continuous ground referencing for all DDR signals. Based on the four-layer stack-up described in Section 3.2, the DDR channel requires the referencing stack-up described in Table 19 in order to ground reference all of the DDR signals from the MCH to the parallel termination at the end of the channel.

Note: This applies only to the DDR channel, and does not affect any of the other interfaces.

Table 19. DDR Channel Referencing Stack-Up

Motherboard Layer	Description
Layer 1	Signal
Layer 2	Ground Flood
Layer 3	Ground
Layer 4	Power/Signal


All DDR signals must be ground referenced to provide an optimal current return path. To do this, a solid ground flood must be placed on layer two under the DDR channel. This ground flood must be solid and continuous from the MCH DDR signal pins all the way beyond the V_{TT} termination capacitors at the end of the channel. The return current for the DDR signals will flow through the V_{TT} termination capacitors at the end of the channel into the ground flood under the DDR traces on the top signal layer. Any split in the ground flood will provide a sub-optimal return path. Therefore, there should be no splits in this flood.

The ground flood must be well stitched to the ground plane on layer three to ensure the same potential between the ground flood and the ground plane.

- The DIMM connector ground pins must connect to both the ground flood and the ground plane.
- The MCH DDR ground pins in the DDR interface section must connect to both the ground flood and the ground plane through vias.
- Any ground via that is placed in the DDR routing area must connect to both the ground flood and the ground plane.
- The ground ends of the DDR-DIMM high-frequency bypass and low-frequency bulk capacitors must connect to both the ground flood and the ground plane.
- The ground vias for the MCH 2.5 V high-frequency decoupling capacitors must connect to both the ground flood and the ground plane.
- The ground ends of the V_{TT} termination high-frequency decoupling and low-frequency bulk capacitors must connect to both the ground flood and the ground plane.

• The processor and the DDR ground floods on layer two must be connected to each other to create one large ground flood. Ground vias connecting the ground flood and the ground plane should be placed wherever possible around the edge of the ground flood. It is also recommended that vias between the ground flood and the ground plane be placed around the edge where the DDR and FSB ground floods connect on layer two.

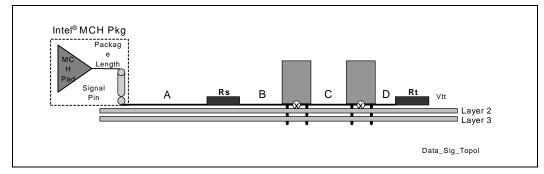
Figure 41. Layer Two Ground Flood Picture

5.3 DDR System Memory Topology and Layout Design Guidelines

The 845 chipset Double Data Rate (DDR) SDRAM system memory interface implements the low swing, high-speed, terminated SSTL_2 topology. It supports one DDR SDRAM channel with two DDR-DIMMS.

This section contains information and details on the DDR topologies, the DDR layout and routing guidelines, and the DDR power delivery requirements for a robust DDR solution on a 2-DIMM 845 chipset-based design.

Based on the four-layer DDR referencing stack-up described in Section 5.2, the MCH system memory ball field, and the requirement that all DDR signals must be ground referenced, the DDR-SDRAM system memory guidelines described in the following sections should be followed in 845 chipset DDR SDRAM-based systems.


5.3.1 Data Signals—SDQ[63:0], SDQS[8:0], SCB[7:0]

The MCH data signals are source synchronous signals that include the 64-bit wide data bus, eight check bits for Error Checking and Correction (ECC), and 9 data strobe signals. There is an associated data strobe (DQS) for each data (DQ) and check bit (CB) group. Table 21 summarizes the DQ/CB to DQS length mismatch mapping.

The MCH system memory pin out has been optimized to breakout all the data and strobe signals on the top signal layer. The data signals must break out of the MCH and route entirely on the top signal layer referenced to ground from the MCH to the series termination resistor, from the series termination resistor to the first DIMM, from DIMM to DIMM, and from the second DIMM to the parallel termination.

Resistor packs are acceptable for the series (Rs) and parallel (Rt) data and strobe termination resistors, but data and strobe signals **cannot** be placed within the same RPACK's as the command or control signals.

The following figures and table describe the recommended topology and layout routing guidelines for the DDR-SDRAM data signals.

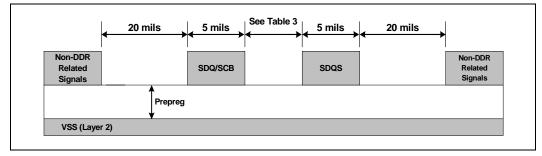

Figure 42. Data Signal Routing Topology

Table 20. Data Signal Group Routing Guidelines

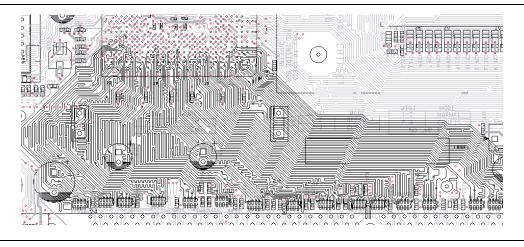

Parameter	Routing Guidelines	Figure
Signal Group	Data - SDQ[63:0], SCB[7:0], SDQS[8:0]	
Topology	Daisy Chain	Figure 42
Reference Plane	Ground Referenced	Figure 42
Characteristic Trace Impedance (Zo)	60 Ω ± 15%	
Trace Width	5 mils	Figure 43
Trace Spacing	• MCH to 1 st DIMM = 12 mils	Figure 42
	• Within DIMM Pin Field = 7 mils minimum	
	• From DIMM to DIMM = 12 mils	
	• 2^{nd} DIMM to Rt = 7 mils minimum	
Group Spacing	Isolation spacing from non-DDR related signals = 20 mils minimum	Figure 43
Trace Length A – MCH signal Ball to Series Termination Resistor Pad	Min = 2.0" Max = 5.0"	Figure 42
Trace Length B – Series Termination Resistor Pad to First DIMM Pin	Max = 500 mils	Figure 42
Trace Length C – DIMM Pin to DIMM Pin	Min = 300 mils Max = 500 mils	Figure 42
Trace Length D – Last DIMM Pin to Parallel termination Resistor Pad	Min = 100 mils Max = 800 mils	Figure 42
Series Resistor (Rs)	$33 \Omega \pm 5\%$	
Termination Resistor (Rtt)	47 Ω ± 5%	
Maximum via Count per signal	0	Figure 42
MCH Breakout Guidelines	5 mil width with 7 mil spacing for a max of 350 mils.	
Length Matching Requirements	• SDQ[63:0], SCB[7:0] to SDQS[8:0]	Figure 45
	• SDQS[8:0] to SCK/SCK#[5:0]	Figure 46
	• See section 5.3.1.2 for details	

Figure 43. Data Group Signal Trace Width/Spacing Routing

5.3.1.1 Routing Example—SDQ[63:0], SCB[7:0], SDQS[8:0]

Figure 44. Data Group Top Signal Layer Routing Example to First DIMM

5.3.1.2 Data Group Signal Length Matching Requirements

5.3.1.2.1 Data to Strobe Length Matching Requirements

The data signals, SDQ[63:0], and check bit signals, SCB[7:0], for a byte group require the matching of the trace lengths from MCH pad to the pins on the first <u>AND</u> second DIMM connectors within ± 25 mils of its associated data strobe, SDQS[8:0].

- SDQS Length = X
- Associated SDQ/SCB Byte Group Length = Y, where $(X 25 \text{ mils}) \le Y \le (X + 25 \text{ mils})$

Notes:

- 1. 1st DIMM length X and Y include: MCH Package Length + Motherboard Length A + Motherboard Length B
- 2. 2nd DIMM length X and Y include: MCH Package Length + Motherboard Length A + Motherboard Length B + Motherboard Length C
- 3. Motherboard lengths A, B, and C are documented in Table 20. No length matching is required from the 2nd DIMM to the parallel termination resistors.
- 4. Refer to section 5.6 for MCH data and strobe package length data.

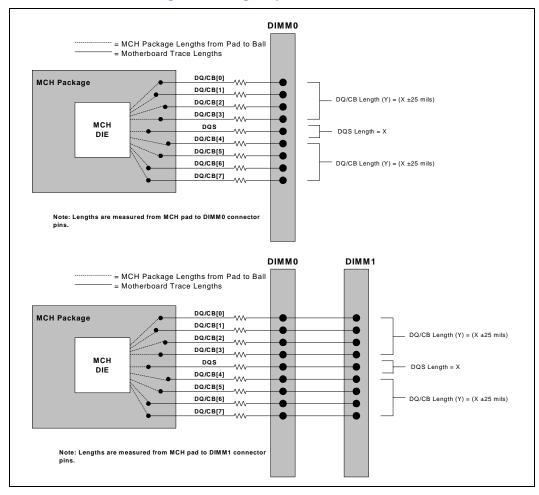

 Table 21 and Figure 45 describe and illustrate the length matching requirements of the DQ, CB, and DQS signals.

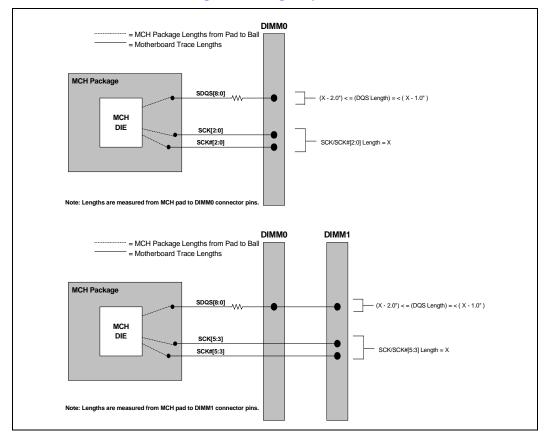
Table 21. DQ/CB to DQS Length Mismatch Mapping

Signal	Length Mismatch	Relative To
SDQ[7:0]	± 25 mils	SDQS0
SDQ[15:8]	± 25 mils	SDQS1
SDQ[23:16]	± 25 mils	SDQS2
SDQ[31:24]	± 25 mils	SDQS3
SDQ[39:32]	± 25 mils	SDQS4
SDQ[47:40]	± 25 mils	SDQS5
SDQ[55:48]	± 25 mils	SDQS6
SDQ[63:56]	± 25 mils	SDQS7
SCB[7:0]	± 25 mils	SDQS8

Figure 45. DQ/CB to DQS Trace Length Matching Requirements

5.3.1.2.2 Strobe to Clock Length Matching Requirements

The data strobe lengths SDQS[8:0] between the MCH pad and the pins on the first DIMM connector must be between 1.0" and 2.0" shorter then the SCK/SCK#[2:0] differential clock signals. The data strobe lengths SDQS[8:0] between the MCH pad and the pins on the second DIMM connector must be between 1.0" and 2.0" shorter then the SCK/SCK#[5:3] differential clock signals.


- SCK/SCK# Length = X
- SDQS Length = Y, where $(X 2.0") \le Y \le (X 1.0")$

Notes:

- 1. 1st DIMM length X and Y include: MCH Package Length + Motherboard Length A + Motherboard Length B
- 2. 2nd DIMM length X includes: MCH Package Length + Motherboard Length A + Motherboard Length B
- 3. 2nd DIMM length Y includes: MCH Package Length + Motherboard Length A + Motherboard Length B + Motherboard Length C
- 4. SDQS[8:0] motherboard lengths A, B, and C are documented in Table 20.
- 5. SCK/SCK#[5:0] motherboard lengths A and B are documented in Table 26.
- 6. Refer to section 5.6 for MCH strobe and clock package length data.

Figure 46 shows the length matching requirements between the DQS and clock signals.

Figure 46. SDQS to SCK/SCK# Trace Length Matching Requirements

5.3.2 Control Signals—SCKE[3:0], SCS#[3:0]

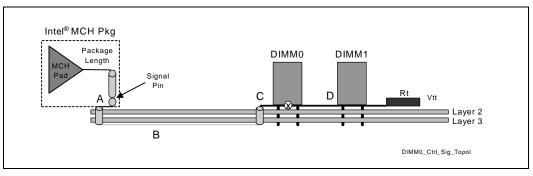
The MCH control signals are source-clocked signals that are "clocked" into the DIMMs using the clock signals, SCK/SCK#[5:0]. The MCH drives the control and clock signals together, with the clocks centered in the valid control window. The MCH provides one chip select and one clock enable control signal per DDR-SDRAM Physical DIMM device Row. Two chip selects and two clock enables are routed to each DIMM (one for each side). Table 22 summarizes the control signal mapping.

Signal	Relative To	DIMM Pin
SCS#[0]	DIMMO	157
SCS#[1]	DIMMO	158
SCS#[2]	DIMM1	157
SCS#[3]	DIMM1	158
SCKE[0]	DIMMO	21
SCKE[1]	DIMMO	111
SCKE[2]	DIMM1	21
SCKE[3]	DIMM1	111

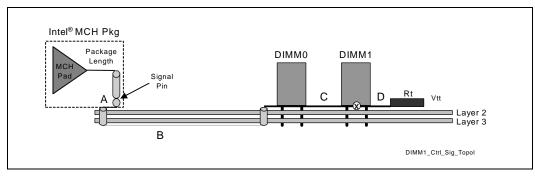
Table 22. Control Signal DIMM Mapping

The MCH system memory pin out has been optimized to breakout the control signals onto the bottom signal layer. The control signals must transition from the top signal layer to the bottom signal layer under the MCH. They should route on the bottom signal layer until they transition to the top signal layer within 500 mils before the first DIMM connector, then should continue on the top signal layer to the specified DIMM pins. Finally, the control signals should route from the DIMM connector pins to the parallel termination resistors at the end of the memory channel on the top signal layer referenced to ground.

- *Note:* To ease routing in congested areas on the top signal layer (specifically from 500 mils before the first DIMM connector to the end of the channel), the following additional guidelines can be applied for the DDR control signals:
 - The control signals may route for short distances on the bottom signal layer ground referenced to layer three.
 - These backside control trace segments must be kept to no more than two additional segments per control signal, and they must be as short as possible.
 - Special attention must be paid to how these backside signals affect the 2.5 V copper flooding to any 2.5 V DIMM pin.
 - Figure 51 shows an example of some control signal trace segments between the first DIMM and the end of the channel.


Because the control signals are routed on the bottom signal layer, the 2.5 V copper flooding on the bottom signal layer is reduced. This copper flooding is used for the 2.5 V power delivery to the MCH system memory interface and, for the DDR-DIMMs. For 2.5 V power delivery guidelines, refer to Section 5.5.1. The control signals should be kept as short as possible to maximize this flooding for better 2.5 V power delivery to the MCH and the DIMMs.

Because the control signals transition signal layers near the first DIMM, a via connecting the ground flood and ground plane on layer two and three should be placed as close as possible to each control signal transition via. This ensures that the control signals return currents can transition layers appropriately.


Resistor packs are acceptable for the parallel (Rt) control termination resistors, but control signals can NOT be placed within the same RPACK's as data, strobe, or command signals.

The following figures and tables describe the recommended topology and layout routing guidelines for the DDR-SDRAM control signals that go to the first and second DIMM.

Figure 47. DIMM0 Control Signal Routing Topology (SCS#[1:0], SCKE[1:0])

Figure 48. DIMM1 Control Signal Routing Topology (SCS#[3:2], SCKE[3:2])

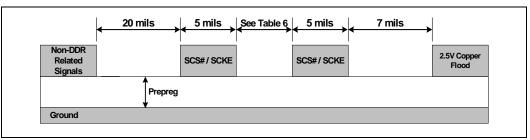


Table 23. Control Signal Group Routing Guidelines

Parameter	Routing Guidelines	Reference
Signal Group	Control – SCS#[3:0], SCKE[3:0].	
Topology	Point to Point.	Figure 47 Figure 48
Reference Plane	Ground Referenced.	Figure 47 Figure 48
Characteristic Trace Impedance (Zo)	60 Ω ± 15%.	
Trace Width	5 mils.	Figure 49
Trace Spacing	 MCH to 1st DIMM = 12 mils. Within DIMM Pin Field = 7 mils minimum. From DIMM to DIMM = 12 mils. 2nd DIMM to Rt = 7 mils minimum. 	Figure 48
Group Spacing	Isolation spacing from non-DDR related signals = 20 mils.	Figure 49
2.5 V Copper Flood Spacing	Isolation spacing from the 2.5 V copper flood on layer four = 7 mils minimum.	
Trace Length A – MCH Signal Pin to MCH Signal Via	Max = 40 mils.	Figure 47 Figure 48
Trace Length B – MCH Signal Via to Layer Transition Via	Min = 2.0". Max = 3.5".	Figure 47 Figure 48
Trace Length C (SCS#/SCKE[1:0]) – Layer Transition Via to DIMM Pins on 1 st DIMM	Max = 500 mils.	Figure 47
Trace Length C (SCS#/SCKE[3:2]) – Layer Transition Via to DIMM Pins on 2 nd DIMM	Max = 1.0".	Figure 48
Trace Length D (SCS#/SCKE[1:0]) – DIMM pins on 1 st DIMM to Rtt Pad	Min = 400 mils. Max = 1.3".	Figure 47
Trace Length D (SCS#/SCKE[3:2]) – DIMM pins on 2 nd DIMM to Rtt Pad	Min = 100 mils. Max = 800 mils.	Figure 48
Termination Resistor (Rtt)	47 Ω ± 5%.	
Maximum via Count per signal	2 (without Additional Trace Segments).	Figure 47 Figure 48
	5 (with two Additional Trace Segments).	
Signal Transition Via Distance	500 mils max from the pins on the first DIMM Connector.	Figure 47 Figure 48
MCH Breakout Guidelines	5 mil width with 7 mil spacing for a max of 350 mils.	
Control to SCK Routing Requirements	SCS#/SCKE[3:0] to SCK/SCK#[5:0].	Figure 52
	See section 5.3.2.2 for details.	

Figure 49. Control Signal Trace Width/Spacing Routing

5.3.2.1 Routing Examples—SCS#[3:0], SCKE[3:0]

Figure 50. Control Group Bottom Signal Layer Routing Example to within 500 Mils of First DIMM

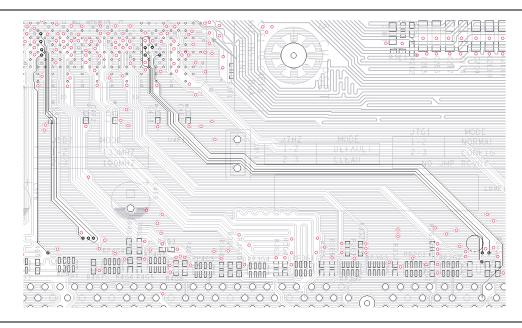
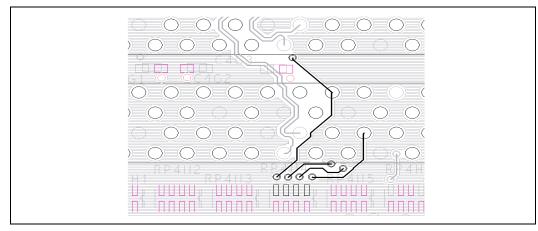
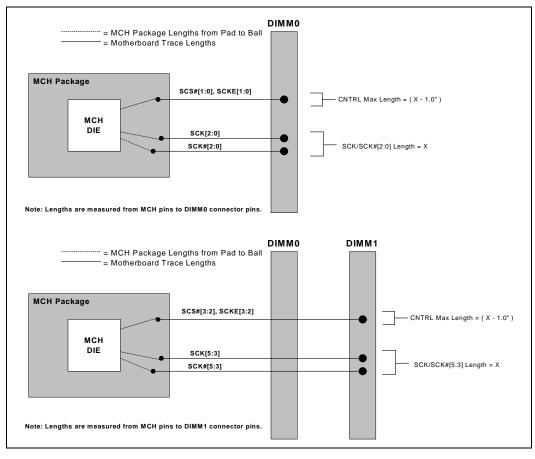



Figure 51. Backside Control Signal Trace Segment Routing Example between the First DIMM and the End of the Channel

Intel[®] Pentium[®] 4 Processor in 478-Pin Package and Intel[®] 845 Chipset for DDR

5.3.2.2 Control Signal to System Memory Clock Routing Requirements

The control signals, SCS#/SCKE[1:0] between the MCH pins and the pins on the first DIMM connector must be at least 1.0" shorter then the shortest SCK/SCK#[2:0] differential clock signal motherboard length. The control signals, SCS#/SCKE[3:2] between the MCH pins and the pins on the second DIMM connector must be at least 1.0" shorter then the shortest SCK/SCK#[5:3] differential clock signal motherboard length:


- SCK/SCK# Length = X
- SCS#/SCKE Max Length = Y, where Y = (X 1.0")

Notes:

- 1. 1st and 2nd DIMM length X and Y include motherboard Length only.
- 2. 1st DIMM Length X is the shortest SCK/SCK#[2:0] motherboard length.
- 3. 2nd DIMM Length X is the shortest SCK/SCK#[5:3] motherboard length.
- 4. The MCH control and clock package lengths do not have to be considered.

Figure 52 shows the routing requirements between the control signals and the clock signals.

Figure 52. Control Signal to SCK/SCK# Routing Requirements

5.3.3 Command Signals—SMA[12:0], SBS[1:0], SRAS#, SCAS#, SWE#

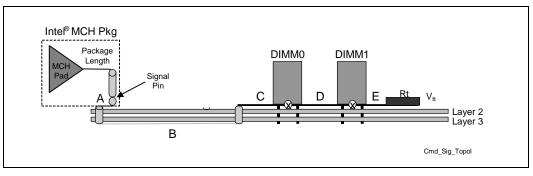
The MCH command signals are source clocked signals that are "clocked" into the DIMMs using the clock signals SCK/SCK#[5:0]. The MCH drives the command and clock signals together with the clocks centered in the valid command window.

أnt

The MCH system memory pin out has been optimized to breakout the command signals onto the bottom signal layer. The command signals include SMA[12:0], SBS[1:0], SRAS#, SCAS#, and SWE#. They must transition from the top signal layer to the bottom signal layer under the MCH. They should route on the bottom signal layer until they transition to the top signal layer, within 500 mils before the first DIMM connector. They should continue on the top signal layer to the pins on the first DIMM, from DIMM pin to DIMM pin, and finally from the pins on the second DIMM to the parallel termination resistors at the end of the memory channel on the top signal layer referenced to ground.

- *Note*: To ease routing in congested areas on the top signal layer (specifically from 500mils before the first DIMM connector to the end of the channel), the following additional guidelines can be applied for the DDR command signals:
 - The command signals may route for short distances on the bottom signal layer ground referenced to layer three.
 - These backside command trace segments must be kept to no more then two additional segments per command signal, and they must be as short as possible.
 - Special attention must be paid to how these backside signals affect the 2.5 V copper flooding to any 2.5 V DIMM pin.
 - Figure 53 shows an example of some command signal trace segments between the first DIMM and the end of the channel.

Because the command signals are routed on the bottom signal layer, the 2.5 V copper flooding on the bottom signal layer is reduced. This copper flooding is used for the 2.5 V power delivery to the MCH system memory interface, and for the DDR-DIMMs. For 2.5 V power delivery guidelines, refer to Section 5.5.1. To maximize this flooding, for better 2.5 V power delivery to the MCH and the DIMMs, the command signals should be kept as short as possible.


Because the command signals transition signal layers near the first DIMM, a via connecting the ground flood and ground plane on layer two and three should be placed as close as possible to each command signal transition via. This will ensure that the command signals return currents can transition layers appropriately.

Resistor packs are acceptable for the parallel (Rt) command termination resistors, but command signals can NOT be placed within the same RPACK's as data, strobe, or control signals.

The following figures and table describe the recommended topology and layout routing guidelines for the DDR-SDRAM command signals.

Figure 53. Command Signal Routing Topology

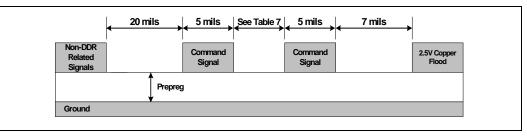


Table 24. Command Signal Group Routing Guidelines

Parameter	Routing Guidelines	Reference
Signal Group	Command – SMA[12:0], SBS[1:0], SRAS#, SCAS#, SWE#	
Topology	Daisy Chain	Figure 53
Reference Plane	Ground Referenced	Figure 53
Characteristic Trace Impedance (Zo)	60 Ω ± 15%	
Trace Width	5 mils	Figure 54
Trace Spacing from MCH	• MCH to 1 st DIMM = 12 mils	Figure 53
	Within DIMM Pin Field = 7 mils minimum	
	• From DIMM to DIMM = 12 mils	
	• 2^{nd} DIMM to Rt = 7 mils minimum	
Group Spacing	Isolation spacing from non-DDR related signals = 20 mils	Figure 54
2.5 V Copper Flood Spacing	Isolation spacing from the 2.5 V copper flood on layer four = 7 mils minimum	
Trace Length A – MCH Signal Pin to MCH Signal Via	Max = 40 mils	Figure 53
Trace Length B – MCH Signal Via to Layer Transition Via	Min = 2.0" Max = 3.5"	Figure 53
Trace Length C – Layer Transition Via to DIMM Pins on First DIMM	Max = 500 mils	Figure 53
Trace Length D – DIMM pin to DIMM pin.	Min = 300 mils Max = 500 mils	Figure 53
Trace Length E – DIMM pins on second DIMM to Rtt Pad	Min = 100 mils Max = 800 mils	Figure 53
Termination Resistor (Rt)	$56 \Omega \pm 5\%$	
Maximum via Count per signal	2 (without Additional Trace Segments) 5 (with two Additional Trace Segments)	Figure 53
Signal Transition Via Distance	500 mils max from the pins on the first DIMM	Figure 53

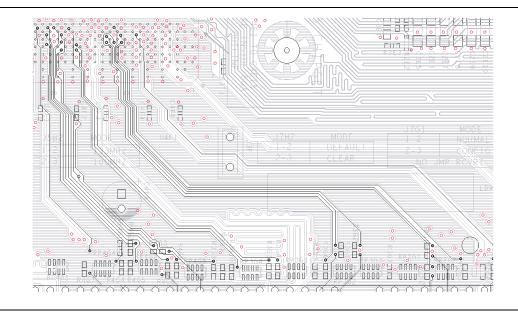

Parameter	Routing Guidelines	Reference
	Connector	
MCH Breakout Guidelines	5 mil width with 7 mil spacing for a max of 350 mils	
CMD to SCK Routing Requirements	CMD to SCK/SCK#[5:0] See section 5.3.3.2 for details	Figure 57

Figure 54. Command Signal Trace Width/Spacing Routing

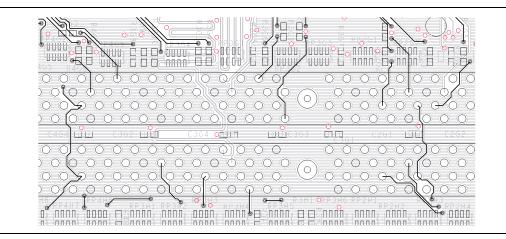
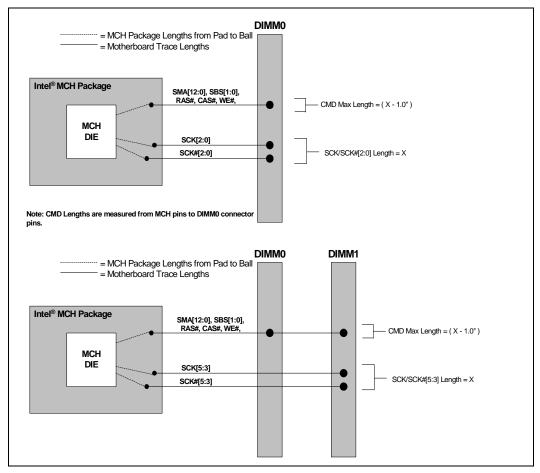

5.3.3.1 Routing Examples—SMA[12:0], SBS[1:0], SCAS#, SRAS#, SWE#

Figure 55. Command Group Bottom Signal Layer Routing Example to within 500 Mils of First DIMM

Figure 56. Backside Command Trace Segment Routing Example within 500mils of First DIMM Connector to the End of the Channel

5.3.3.2 Command Group Signal to System Memory Clock Routing Requirements


The command signals, SMA[12:0], SBS[1:0], RAS#, CAS#, and WE#, going from the MCH pins to the pins on the first DIMM connector must be at least 1.0" shorter than the shortest SCK/SCK#[2:0] differential clock signal motherboard length. The command signals, SMA[12:0], SBS[1:0], RAS#, CAS#, and WE#, going from the MCH pins to the pins on the second DIMM must be at least 1.0" shorter than the shortest SCK/SCK#[5:3] differential clock signal motherboard length.

- SCK/SCK# Length = X
- CMD Signal Max Length = Y, where Y = (X 1.0")

Notes:

- 1. 1st and 2nd DIMM length X and Y include motherboard length only.
- 2. 1st DIMM Length X is the shortest SCK/SCK#[2:0] motherboard length.
- 3. 2nd DIMM Length X is the shortest SCK/SCK#[5:3] motherboard length.
- 4. The MCH command and clock package lengths do not have to be considered.

Figure 57 shows the routing requirements between the command signals and the clock signals.

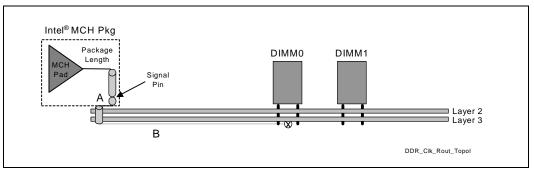
Figure 57. Command Signal to SCK/SCK# Routing Requirements

NOTE: CMD lengths are measured from Intel[®] MCH pins to DIMM1 connector pins.

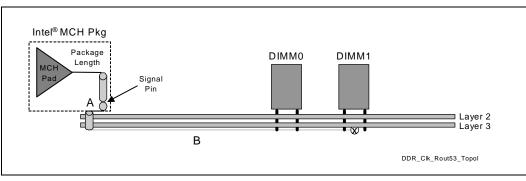
5.3.4 Clock Signals—SCK[5:0], SCK#[5:0]

The clock signal group includes the differential clock pairs SCK[5:0] and SCK#[5:0]. The MCH generates and drives these differential clock signals required by the DDR interface. Therefore, no external clock driver is required for the DDR interface. Because the MCH supports only unbuffered DDR DIMMs, three differential clock pairs are routed to each DIMM connector. Table 25 summarizes the clock signal mapping.

Table 25. Clock Signal Mapping


Signal	Relative To
SCK[2:0], SCK#[2:0]	DIMM0
SCK[5:3], SCK#[5:3]	DIMM1

The MCH system memory pin out has been optimized to breakout the clock signals onto the bottom signal layer. The clock signals **must** transition from the top signal layer to the bottom signal layer under the MCH, and routed referenced to ground on the bottom signal layer for the entire length to their associated DIMM pins. The clock signal pairs must be routed differentially from the MCH to their associated DIMM pins, must maintain the correct isolation spacing from other signals, and when they serpentine together they MUST maintain a minimum of 20 mil spacing.


Because the clock signals are routed on the bottom signal layer, the 2.5 V copper flooding on the bottom signal layer is reduced. This copper flooding is used for the 2.5 V power delivery to the MCH system memory interface, and for the DDR-DIMMs. For 2.5 V power delivery guidelines, refer to Section 5.5.1. Special attention must be paid to how these backside clock signals affect the 2.5 V copper flooding to any 2.5 V DIMM pin. Figure 61 and Figure 62 show examples of the clock routing on the bottom signal layer.

The following table and figures describe the recommended topology and layout routing guidelines for the DDR-SDRAM differential clocks.

Figure 58. DDR Clock Routing Topology (SCK/SCK#[2:0])

Figure 59. DDR Clock Routing Topology (SCK/SCK#[5:3])

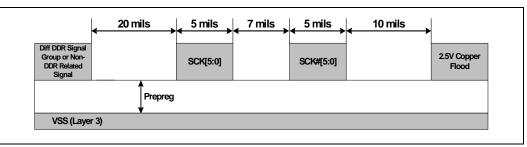


Table 26. Clock Signal Group Routing Guidelines

Parameter	Routing Guidelines	Reference
Signal Group	Clock – SCK[5:0], SCK#[5:0]	
Topology	Point to Point	Figure 58 Figure 59
Reference Plane	Ground Referenced	Figure 58 Figure 59
Characteristic Trace Impedance (Zo)	Single Ended = 60 $\Omega \pm 15\%$ Differential = 120 $\Omega \pm 15\%$	
Trace Width	5 mils	Figure 60
Differential Trace Spacing	7 mils	Figure 60
Group Spacing	Isolation spacing from another DDR signal group = 20 mils Isolation spacing from non-DDR related signals = 20 mils	Figure 60
Serpentine Spacing	20 mils minimum	
2.5 V Copper Flood Spacing	Isolation spacing from the 2.5 V copper flood on layer four = 10 mils minimum	
Trace Length A – MCH Signal Pin to MCH Signal Via	Max = 40 mils	Figure 58 Figure 59
Trace Length B (SCK/SCK[2:0]) – MCH Signal Via to Associated DIMM Pins	Min = 2.0" Max = 6.5"	Figure 58
Trace Length B (SCK/SCK[5:3]) – MCH Signal Via to Associated DIMM Pins	Min = 2.5" Max = 7.0"	Figure 59
Maximum via Count per signal	1	Figure 58 Figure 59
MCH Breakout Guidelines	5 mil width with 7 mil differential spacing with a minimum of 7 mil isolation spacing from another signal for a max of 350 mils	
Length Matching Requirements	SCK = SCK# All DIMM0 Clock Pairs are equal in length, and all DIMM1 Clock Pairs are equal in length. See section 5.3.4.2 for details	Figure 63 Figure 64

Figure 60. Clock Signal Trace Width/Spacing Routing

5.3.4.1 Routing Examples—SCK[5:0], SCK#[5:0]

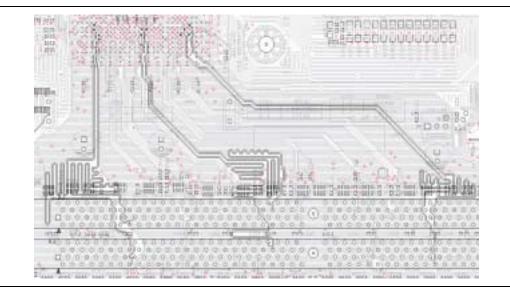
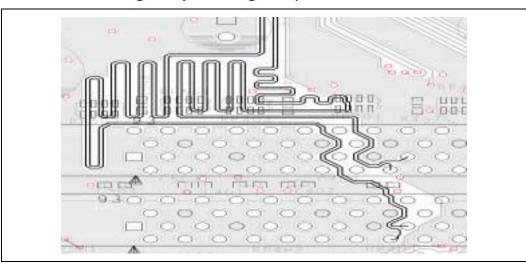



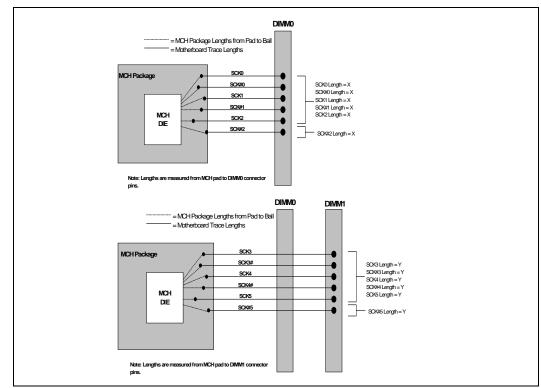
Figure 61. DDR Clock Bottom Signal Layer Routing Example #1

Figure 62. DDR Clock Bottom Signal Layer Routing Example #2

5.3.4.2 Clock Group Signal Length Matching Requirements

The MCH provides three differential clock pair signals for each DIMM. A differential clock pair is made up of a SCK signal and its complement signal SCK#. SCK and its complement SCK# within every differential clock pair requires exact length matching from the MCH pad to the DIMM pins:

int


- SCK[0] = SCK#[0]
- SCK[1] = SCK#[1]
- SCK[2] = SCK#[2]
- SCK[3] = SCK#[3]
- SCK[4] = SCK#[4]
- SCK[5] = SCK#[5]
- *Note:* The SCK and SCK# lengths include the compensated MCH Package Length + the Motherboard Trace Length. Refer to section 5.6 for the MCH clock package length data.

Clock length matching is also required between clock pairs to their specified DIMM. The differential clock pairs for the first DIMM connector, SCK/SCK#[2:0], require exact matching of the trace lengths from MCH pad to the pins of the first DIMM connector. The differential clock pairs for the second DIMM connector, SCK/SCK#[5:3], require exact matching of the trace lengths from MCH pad to the pins of the second DIMM connector:

- SCK/SCK#[0] = SCK/SCK#[1] = SCK/SCK#[2]
- SCK/SCK#[3] = SCK/SCK#[4] = SCK/SCK#[5]
- *Note:* The SCK and SCK# lengths include the compensated MCH Package Length + the Motherboard Trace Length. Refer to section 5.6 for the MCH clock package length data.

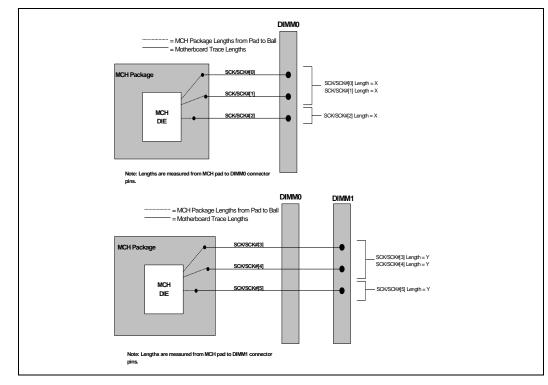
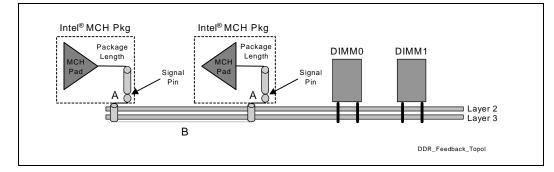

Keep in mind that the differential clocks must be 1.0" to 2.0" longer then the strobe signals, and at least 1.0" longer than the control and command signals without exceeding their maximum motherboard trace lengths. For information about data strobe to clock length matching requirements, refer to Section 5.3.1.2.2. For information about control signal to clock routing requirements, refer to Section 5.3.2.2. For information about command signal to clock routing requirements, refer to Section 5.3.3.2. Figure 63 and Figure 64 show clock length matching requirements.

Figure 63. SCK to SCK# Trace Length Matching Requirements

Figure 64. Clock Pair Trace Length Matching Requirements


5.3.5 Feedback—RCVENOUT#, RCVENIN#

The MCH provides a feedback signal called "receive enable" (RCVEN#) that is used by the MCH to determine the approximate roundtrip flight time (command flight + Read data flight) to and from the DIMMs. There are two pins on the MCH that facilitate the use of RCVEN#. The RCVENOUT# pin is an output of the MCH, and the RCVENIN# pin is an input to the MCH. The board designer must connect RCVENOUT# to RCVENIN#.

int

The RCVEN# signal must be routed on the same layer as the system memory clocks. It should transition from the top signal layer to the bottom signal layer under the MCH, routed referenced to ground for the entire length, and then transition from the bottom signal layer back to the top signal layer under the MCH.

The following table and figures describe the recommended topology and layout routing guidelines for the DDR-SDRAM feedback signal.

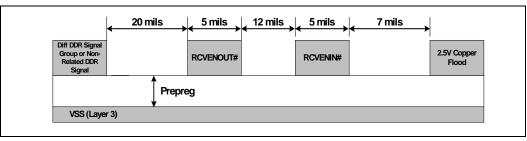
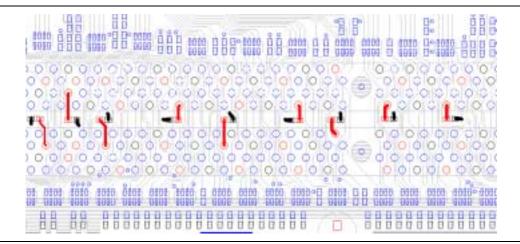


Figure 65. DDR Feedback (RCVEN#) Routing Topology

Parameter	Routing Guidelines	Reference
Signal Group	Feedback – RCVENOUT# and RCVENIN#	
Тороlоду	Point to Point	Figure 65
Reference Plane	Ground Referenced	Figure 65
Characteristic Trace Impedance (Zo)	60 Ω ± 15%	
Trace Width	5 mils	Figure 66
Trace Spacing	12 mils	Figure 66
Group Spacing	Isolation spacing from another DDR signal group = 10 mils	Figure 66
	Isolation spacing from non-DDR related signals = 10 mils	
2.5 V Copper Flood Spacing	Isolation spacing from the 2.5 V copper flood on layer four = 7 mils minimum	
Trace Length A – MCH Signal Ball to MCH Signal Via	Max = 40 mils	Figure 65
Trace Length B – MCH RCVEN# Output Signal Via to RCVEN# Input Signal Via	Must equal 1.0"	Figure 65
Maximum via Count per signal	2	Figure 65
Breakout Guidelines	5 mil width with 7 mil spacing for a max of 350 mils	
Length Matching Requirements	None	


Figure 66. Feedback (RCVEN#) Signal Trace Width/Spacing Routing

5.4 System Memory Bypass Capacitor Guidelines

Discontinuities in the DDR signal return paths occur when the signals transition between the motherboard and the DIMMs. To account for this ground to 2.5 V discontinuity and help minimize any anticipated return path discontinuities that are be created, a minimum of nine 0603 0.1 μ F high-frequency bypass capacitors are required between the DIMMs. The bypass capacitors should connect to 2.5 V and ground. The ground trace should connect to a via that transitions to the ground flood on layer two, and to the ground plane on layer three. The ground via should be placed as close to the ground pad as possible. The 2.5 V trace should connect to a via that transitions to the closet 2.5 V copper flood on layer four, and should connect with a wide trace to the closet 2.5 V DIMM pin on either the first or second DIMM connector. The capacitor 2.5 V traces should be distributed as evenly as possible between the two DIMMs, and the 2.5 V via should be placed as close to the 2.5 V pad as possible.

Figure 67. DDR-DIMM Bypass Capacitor Placement

5.5 **Power Delivery**

The following guidelines are recommended for 845 chipset DDR system memory designs. The main focus of these MCH guidelines is to minimize signal integrity problems, and to improve the power delivery to the MCH system memory interface and the DDR-DIMMs.

5.5.1 2.5 V Power Delivery Guidelines

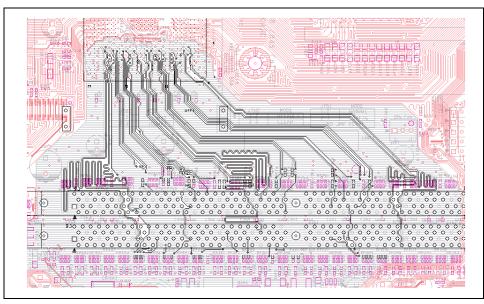
The 2.5 V power for the MCH system memory interface and the DDR-DIMMs is delivered on layer four around the DDR command, control, and clock signals. Special attention must be paid to the 2.5 V copper flooding on layer four to ensure proper MCH and DIMM power delivery. This 2.5 V flood must extend from the MCH 2.5 V power vias all the way to the 2.5 V DDR voltage regulator and its bulk capacitors located at the end of the DDR channel on layer one, beyond the second DIMM connector. The 2.5 V DDR voltage regulator must connect to the 2.5 V flood with a minimum of six vias, and the DIMM connector 2.5 V pins as well as the MCH 2.5 V power vias must connect to the 2.5 V copper flood on layer four.

The copper flooding to the MCH should include at least seven fingers to allow for the routing of the DDR signals and for optimal MCH power delivery. The copper fingers must be kept as wide as possible to minimize the loop inductance path from the 2.5 V voltage regulator to the MCH. In the areas where the copper flooding necks down under the MCH, make sure to keep these neck down lengths as short and wide as possible. Table 27 lists the minimum width requirements for the copper fingers that extend from the MCH system memory high-frequency capacitors to the MCH package edge (approximately 150 mils). It also lists the minimum neck down width requirements that the copper fingers can be reduced to for short distances from the MCH package edge through the MCH pin field. **These neck down lengths must be kept as short as possible.** The minimum width requirements listed in Table 27 for the copper fingers must be met to supply good 2.5 V power delivery to the MCH. The table references Figure 69, which has a total of eight copper fingers for MCH 2.5 V power delivery (at least seven are required). The copper finger numbering starts from the far left, and moves to the right.

Cu Finger ¹	Min Width (From Capacitors to Package Edge)	Min Neck Down Widths (Within Intel [®] MCH Pin Field)
Number 1 (Left most finger)	215 mils	170 mils
Number 2	36 mils	32 mils
Number 3	36 mils	22 mils
Number 4	105 mils	30 mils
Number 5	85 mils	24 mils
Number 6	52 mils	40 mils
Number 7	140 mils	32 mils
Number 8 (Right most finger)	80 mils	45 mils

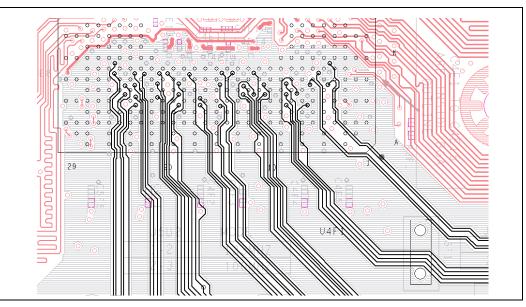
Table 27. Minimum 2.5 V Copper Finger Width Requirements

NOTE: ¹Refer to Figure 69.

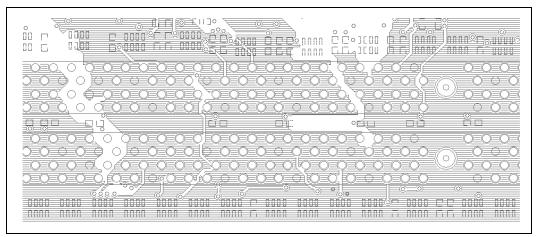

The 2.5 V copper flooding under the DIMM connectors must encompass all the DIMM 2.5 V pins. Figure 68 and Figure 70 show examples of the layer four 2.5 V power delivery to the DIMMs.

A small 2.5 V cooper flood shape should be placed on layer two under the MCH to increase the copper area to the back row 2.5 V MCH pins. This flood must not be placed under any of the DDR data, strobe, clock, or receive enable signals. The number of DDR command and control signals that are placed over this small layer two 2.5 V shape must be kept to a minimum, and for no longer then 40 mils.

The 2.5 V copper flooding is limited because the DDR command, control, and clock signals are routed on the bottom signal layer, between the MCH and the first DIMM. To maximize the copper flooding, these signals should be kept as short as possible to reduce the amount of serpentining needed in this area on the bottom layer.


Finally, the six MCH 2.5 V high-frequency decoupling capacitors located on the top signal layer should have their 2.5 V via placed directly over and connected to a separate 2.5 V copper finger. For guidelines on the MCH 2.5 V high-frequency decoupling capacitors, refer to section 5.5.2.1.

The following figures show examples of the 2.5 V power delivery copper flood for the MCH and the DIMMs.


Figure 68. Layer four 2.5 V Power Delivery

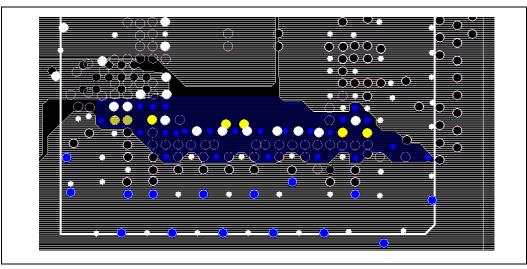
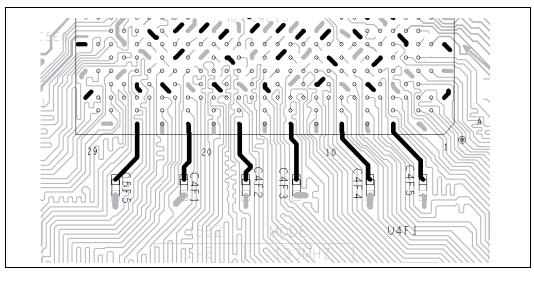


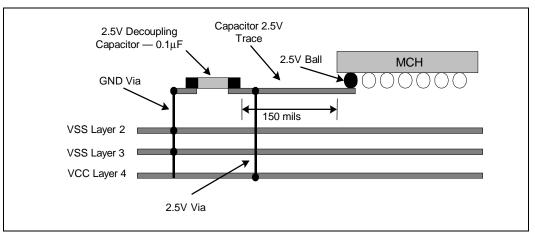
Figure 69. Layer Four 2.5 V Intel[®] MCH Power Delivery

Figure 70. Layer Four 2.5 V DIMM Power Delivery


Figure 71. Layer Two 2.5 V Power Delivery Picture

5.5.2 Intel[®] MCH System Memory Interface Decoupling Requirements

5.5.2.1 Intel[®] MCH System Memory High-Frequency Decoupling


Every MCH ground and power ball in the system memory interface should have its own via. For 2.5 V high-frequency decoupling, a minimum of six 0603 0.1 μ F high-frequency capacitors located within 150 mils of the MCH package are required. The six capacitors should be evenly distributed along the MCH DDR system memory interface, and must be placed perpendicular to the MCH with the power (2.5 V) side of the capacitors facing the MCH. The trace from the power end of the capacitor should be as wide as possible, and must connect to a 2.5 V power ball on the outer row of balls on the MCH. Each capacitor should have its 2.5 V via placed directly over and connected to a separate 2.5 V copper finger located on layer four, and should be as close to the ground flood on layer two and to the ground plane on layer three through a via. This via should be as close to the capacitor pad as possible, within 25 mils, with as wide a trace as possible. The following figures show the MCH DDR 2.5 V high-frequency decoupling requirements.

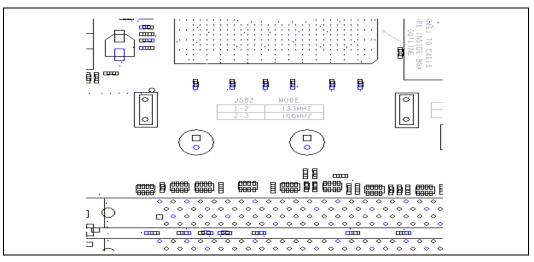

Figure 72. Intel[®] MCH DDR 2.5 V Decoupling Picture

Figure 73. Intel[®] MCH DDR 2.5 V Decoupling Capacitor Routing Alignment

5.5.2.2 Intel[®] MCH System Memory Low-Frequency Bulk Decoupling

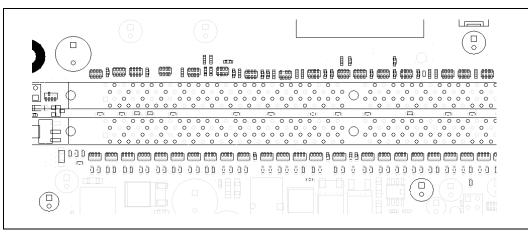
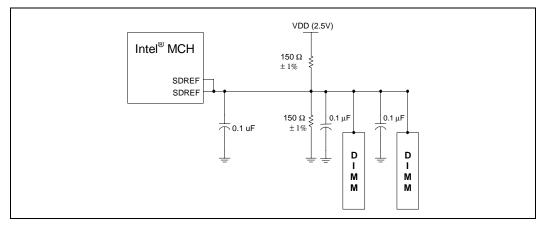

The MCH system memory interface requires low- frequency bulk decoupling. Place two 100 μ F electrolytic capacitors between the MCH and the first DIMM connector. The power end of the capacitors must connect to 2.5 V on layer four, and the ground end of the capacitors must connect to ground on layers two and three. The output of the 2.5 V regulator must have enough bulk decoupling to ensure the stability of this regulator. The amount of bulk decoupling required at the output of the 2.5 V regulator varies according to the needs of OEM design targets.

Figure 74. Intel[®] MCH 2.5 V Bulk Decoupling Example

5.5.3 DDR-DIMM Decoupling Requirements

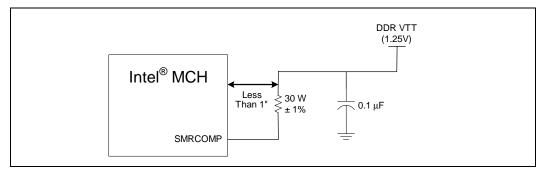
The DDR-DIMMs require low-frequency bulk decoupling. Install a total of four 100 μ F capacitors, one at each corner of each DIMM connector. The power end of the capacitors must connect to 2.5 V on layer four, and the ground end of the capacitors must connect to ground on layers two and three. The output of the 2.5 V regulator must have enough bulk decoupling to ensure the stability of the regulator. The amount of bulk decoupling required at the output of the 2.5 V regulator varies according to the needs of OEM design targets.


Figure 75. DDR-DIMM 2.5 V Bulk Decoupling Example

5.5.4 DDR Reference Voltage

The DDR system memory reference voltage (V_{REF}) is used by the DDR-SDRAM devices to compare the input signal levels of the data, command, and control signals, and is also used by the MCH to compare the input data signal levels. V_{REF} must be generated as shown in Figure 76 from a typical resistor divider using 1%-tolerance resistors. The V_{REF} resistor divider should be placed no further then 1.0" from the DIMMs. Additionally, V_{REF} must be decoupled locally at each DIMM connector, at the resistor divider, and at the MCH. Finally, the V_{REF} signal should be routed with as wide a trace as possible, minimum of 12 mils wide, and must be isolated from other signals with a minimum of 12 mil spacing (min of 7 mil spacing for a max of 350 mils within the breakout area of the MCH).

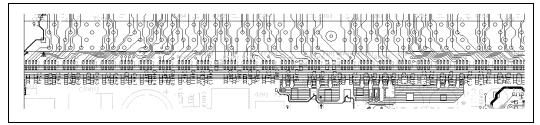
Figure 76. DDR V_{REF} Generation Example Circuit


5.5.5 DDR SMRCOMP Resistive Compensation

The MCH uses a compensation signal to adjust the system memory buffer characteristics over temperature, process, and voltage variations. The DDR system memory (SMRCOMP) must be connected to the DDR termination voltage (1.25 V) through a 30 $\Omega \pm 1\%$ resistor and one 0603 0.1 μ F decoupling capacitor to ground as shown in Figure 77.

The 0.1 μ F decoupling capacitor must be connected to V_{TT} (DDR Termination voltage) and GND, and must be placed on the V_{TT} side of the SMRCOMP resistor, not the MCH side.

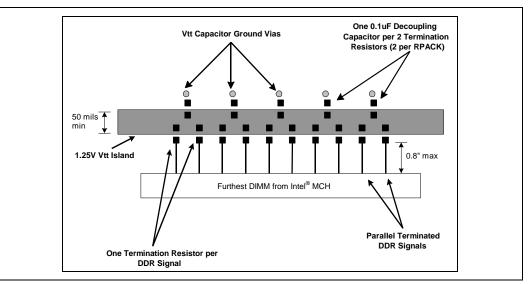
Place the resistor as close to the MCH as possible, within 1.0 inch of the MCH package. The compensation signal and the V_{TT} trace should be routed with as wide a trace as possible, minimum of 12 mils wide, and should be isolated from other signals with a minimum of 10 mil spacing.


Figure 77. DDR SMRCOMP Resistive Compensation

5.5.6 DDR V_{TT} Termination

All DDR signals except the command clocks must be terminated to $1.25 \text{ V} (\text{V}_{\text{TT}})$ using 5% resistors at the end of the channel opposite the MCH. Place a solid $1.25 \text{ V} (\text{V}_{\text{TT}})$ termination island on the top signal layer just beyond the last DIMM connector, as shown in Figure 78 and Figure 79. The V_{TT} termination island must be at least 50 mils wide. Use this termination island to terminate all DDR signals, using one resistor per signal. Resistor packs are acceptable, but signals within an RPACK must be from the same DDR signal group. No mixing of signals from different DDR signal groups is allowed within an RPACK. The parallel termination resistors connect directly to the V_{TT} Island on the top signal layer.

5.5.6.1 Routing Example—DDR V_{TT} Termination Island


Figure 78. DDR V_{TT} Termination Island Example

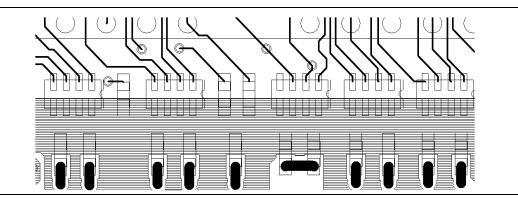
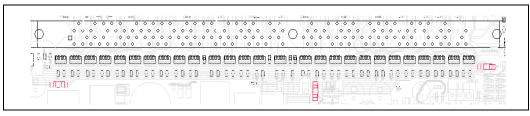
5.5.6.2 V_{TT} Termination Island High-Frequency Decoupling Requirements

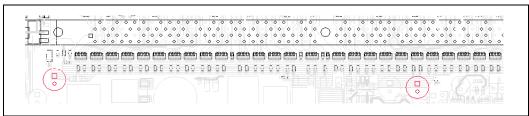
The V_{TT} Island must be decoupled using high-speed bypass capacitors, one 0603 0.1 μ F capacitor per two DDR signals. These decoupling capacitors connect directly to the V_{TT} Island and to ground, and must be spread-out across the termination island so that all the parallel termination resistors are near high-frequency capacitors. The capacitor ground via should be as close to the capacitor pad as possible, within 25 mils, with as thick a trace as possible. The ground end of the capacitors must connect to the ground flood on layer two and to the ground plane on layer three through a via. The distance from any DDR termination resistor pin to a 0.1 μ F V_{TT} capacitor pin must not exceed more then 100 mils.

Place one 4.7 μ F ceramic capacitor on each end of the termination island, and place one 4.7 μ F ceramic capacitor near the center of the termination island. The power end of these capacitors must connect to the V_{TT} termination island directly, and the ground end of the capacitors must connect to ground on layer two and three.

Figure 79. DDR V $_{TT}$ Termination 0.1 μ F High-Frequency Capacitor Example #1

Figure 80. DDR V_{TT} Termination 0.1 μ F High-Frequency Capacitor Example #2

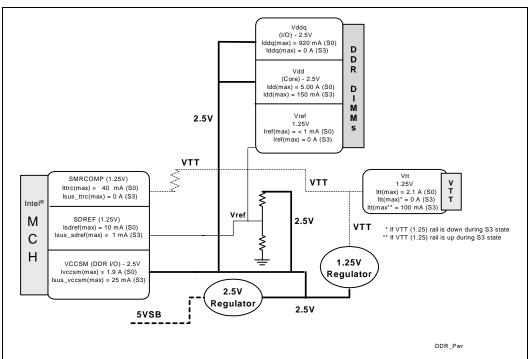




Figure 81. DDR V $_{TT}$ Termination 4.7 μ F High-Frequency Capacitor Example

5.5.6.3 V_{TT} Termination Island Low-Frequency Bulk Decoupling Requirements

The V_{TT} termination island requires low-frequency bulk decoupling. Place one 220 μ F electrolytic capacitor at each end of the termination island. The power end of the capacitors must connect to the V_{TT} termination island directly, and the ground end of the capacitors must connect to ground on layers two and three. The output of the 1.25 V regulator must have enough bulk decoupling to ensure the stability of the regulator. The amount of bulk decoupling required at the output of the 1.25 V regulator varies according to the OEM design targets.

Figure 82. DDR V_π Termination Low-Frequency Capacitor Example


5.5.7 DDR Voltage Regulator Guidelines

Intel 845 chipset designs using the DDR-SDRAM memory sub system require several voltages: V_{DD} , V_{DDQ} , V_{TT} , and V_{REF} . To generate these voltages, a 2.5 V and 1.25 V regulator is required and must be designed to supply the required voltage and current levels to meet both MCH and DDR-SDRAM device requirements. The following sections define the range of DC and AC operating Voltage and Current conditions the 2.5 V and 1.25 V voltage regulators should meet for a two DIMM DDR-SDRAM based system with the 845 chipset. There is no attempt to define a specific voltage regulator implementation. DDR voltage regulation will be governed by either an on-motherboard regulator circuit or a module with the necessary complement of external capacitance, and will vary according to OEM design targets.

5.5.7.1 Intel[®] 845 Chipset DDR Reference Board Power Delivery

Figure 83 shows the power delivery architecture for the 845 chipset DDR memory subsystem. This power delivery example provides support for the suspend-to-RAM (STR) and the full Power-on State.

Figure 83. Intel[®] 845 Chipset DDR Power Delivery Example

5.5.7.2 DDR 2.5 V Power Plane

The 2.5 V power plane, which is generated by the 2.5 V regulator, is used to supply power to the MCH 2.5 V I/O Ring, the DDR-SDRAM 2.5 V Core, and the DDR-SDRAM 2.5 V I/O Ring. The 2.5 V regulator should be placed at the end of the DDR channel near the V_{TT} termination island.

5.5.7.3 DDR 1.25 V Power Plane

The 1.25 V power plane, which is generated by the 1.25 V regulator, is used to supply the DDR termination voltage (V_{TT}) and the MCH SMRCOMP pull-up voltage (V_{TT}). Special considerations must be taken for the 1.25 V regulator design because it must be able to source and sink a significant amount of current. The 1.25 V regulator should be placed at the end of the DDR channel near the V_{TT} termination island.

5.5.7.4 DDR Reference Voltage (V_{REF})

The MCH and DDR-DIMM reference voltage (V_{REF}) is generated from a typical resistor divider circuit from the 2.5 V power plane. For guidelines on the V_{REF} resistor divider, refer to Section 5.5.4

5.5.7.5 DC and AC Electrical Characteristics (DIMM Supply Rails)

The DDR 2.5 V voltage regulator supplies the required voltages, V_{DD} , V_{DDQ} , and V_{REF} , and current for up to two, DDR-DIMMs as shown in the following tables. The following DRAM device specifications were determined at the DIMM connectors.

5.5.7.5.1 DDR-SDRAM DIMM Core and I/O Voltage (V_{DD}, V_{DDQ})

The following conditions apply to the following specifications:

- I_{DD} and I_{DDQ} are measured at maximum $V_{\text{DD}}/V_{\text{DDQ}},$ and under maximum signal loading conditions.
- Note that these worst case values are for reference only and are based on current and future expected DRAM vendor-specific specifications for maximum current.
- The worst-case Idd current draw was determined with the following criteria:
 - Both DIMM slots are populated with double-sided ECC x8 device DDR-DIMMs.
 - Continuous back-to-back burst reads, with a burst length of 4, to one single bank in the same physical DIMM device Row.
 - All other banks are in the active standby state where a row in each bank is activated/open.

Table 28. DDR-SDRAM DIMM Core and I/O Voltage and Current Requirements at the DIMM Connectors

Parameter	Symbol	Unit	Minimum	Nominal	Maximum
Core Supply Voltage, Static	V _{DD}	Volts, V	2.3	2.5	2.7
I/O Supply Voltage, Static	V _{DDQ}	Volts, V	2.3	2.5	2.7
Core Supply Current, Static	I _{DD}	Amperes, A			5.0 0.150 (Standby)
I/O Supply Current, Static	I _{DDQ}	Amperes, A			0.920 0 (Standby)

5.5.7.5.2 DDR-SDRAM DIMM Reference Voltage (V_{REF})

For the specifications listed in Table 29, IREF is measured at maximum V_{REF} under maximum signal loading conditions.

Table 29. DDR-SDRAM DIMM Reference Voltage and Current Requirements at the DIMM Connectors

Parameter	Symbol	Unit	Minimum	Nominal	Maximum
I/O Reference Supply Voltage, Static	V _{REF}	Volts, V	V _{DD} /2 - 0.05	V _{DD} /2	V _{DD} /2 + 0.05
I/O Reference Supply Current, Static	I _{REF}	Amperes, A			< 0.001 0 (Standby)

5.5.7.6 DC and AC Electrical Characteristics (Intel[®] MCH Supply Rails)

The 2.5 V DDR voltage regulator supplies the required MCH voltages, V_{CCSM} and SD_{REF} , and current as shown in the following tables. The following MCH specifications were determined at the MCH supply pins.

5.5.7.6.1 Intel[®] MCH DDR Supply Voltage (V_{CCSM})

For the specifications listed in Table 30, I_{VCCSM} is measured at maximum V_{CCSM} under maximum signal loading conditions.

Note: The specifications are for reference only. Refer to the latest revision of the *Intel*[®] 845 *Chipset MCH Addendum for DDR Memory.*

Table 30. Intel[®] MCH DDR Supply Voltage and Current Requirements at the Intel[®] MCH

Parameter	Symbol	Unit	Minimum	Nominal	Maximum
MCH DDR Supply Voltage, Static	V _{CCSM}	Volts, V	2.375	2.5	2.625
MCH DDR Supply Current, Static	IVCCSM	Amperes, A			1.9 0.025 (Standby)

5.5.7.6.2 Intel[®] MCH Reference Voltage (V_{REF})

For the specifications listed in Table 31, ISD_{REF} is measured at maximum VSD_{REF} under maximum signal loading conditions.

Note: The specifications are for reference only. Refer to the latest revision of the *Intel*[®] 845 *Chipset MCH Addendum for DDR Memory*.

Table 31. Intel[®] MCH DDR Reference Voltage and Current Requirements at the Intel[®] MCH

Parameter	Symbol	Unit	Minimum	Nominal	Maximum
MCH Reference Supply Voltage, Static	SD _{REF}	Volts, V	0.48 x V _{CCSM}	$0.5 \times V_{CCSM}$	0.52 x V _{CCSM}
MCH Reference Supply Current, Static	Isdref	Amperes, A			0.010 0.001 (Standby)

5.5.7.7 DC and AC Electrical Characteristics (V_{TT} Supply Rail)

The 1.25 V DDR voltage regulator supplies the required DDR Termination Voltage (V_{TT}) and current (Itt), and supplies the MCH system memory resistive compensation pull-up voltage (V_{TT}), and current (IttRC) as shown in the following tables.

5.5.7.7.1 DDR Termination Voltage (V_{TT})

For the specifications listed in Table 32, I_{TT} is measured at maximum V_{TT} under maximum signal loading conditions by looking at all the DDR signals, excluding the command clocks, with their specified series and parallel termination resistors.

Table 32. DDR Termination Voltage and Current Requirements

Parameter	Symbol	Unit	Minimum	Nominal	Maximum
Termination Supply Voltage, Static	V _{TT}	Volts, V	V _{REF} – 0.04	V_{REF}	V _{REF} f + 0.04
Termination Supply Current, Static	ITT	Amperes, A			2.1 0 (Standby) ¹ 0.100 (Standby) ²

NOTES:

1. If DDR termination voltage (V_{TT}) rail is down during S3 standby state.

2. If DDR termination voltage (V_{TT}) rail is up during S3 standby state.

5.5.7.7.2 DDR SMRCOMP Pull-up Voltage (V_{TT})

For the specifications listed in Table 33, I_{TTRC} is measured at maximum V_{TT} under maximum signal loading conditions.

Table 33. DDR Termination Voltage and Current Requirements

Parar	neter	Symbol	Unit	Minimum	Nominal	Maximum
SMRCOMP T Supply Voltag		V _{TT}	Volts, V	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SMRCOMP 1 Supply Curre		I _{TTRC}	Amperes, A			0.040 0 (Standby)

5.5.7.8 DDR Voltage Regulator Reference Design Example

Refer to the latest revision of the Intel[®] 845 Chipset Reference Schematics (DDR).

5.5.8 **Power Sequencing Requirements**

5.5.8.1 Intel[®] MCH Power Sequencing Requirements

There are no MCH power sequencing requirements. All MCH power rails should be stable before deasserting reset, but the power rails can be brought up in any order desired. Good design practice would have all MCH power rails come up as close in time as practical, with the core voltage (1.5 V) coming up first.

5.5.8.2 DDR-SDRAM Power Sequencing Requirements

No DDR-SDRAM power sequencing requirements are specified during power up or power down if the following criteria are met:

- V_{DD} and V_{DDQ} are driven from a single power converter output.
- V_{TT} is limited to 1.44 V (reflecting $V_{DDQ}(max)/2 + 50$ mV V_{REF} variation + 40 mV V_{TT} variation).
- $V_{REF} < V_{DDQ} + 0.3V.$
- A minimum resistance of 42 Ω (22 Ω series resistor + 22 Ω parallel resistor, 5% tolerance) limits the input current from the V_{TT} supply into any pin.

If the above criteria cannot be met by the system design, then the following table must be adhered to during power up:

Table 34. Power-up Initialization¹ Sequence

Voltage Description	Sequencing	Voltage Relationship to Avoid Latch-up
V _{DDQ}	After or with V _{DD}	< V _{DD} + 0.3V
VTT	After or with V_{DDQ}	< V _{DDQ} + 0.3V
V _{REF}	After or with V_{DDQ}	< V _{DDQ} + 0.3V

NOTE: ¹Information in table is provided for use if the previously described power sequencing requirements are not met.

int

5.6 Intel[®] MCH DDR Signal Package Lengths

		DDR Data	a Signals		
Data Signal	Intel [®] MCH Ball	Package Length (inches)	Data Signal	Intel [®] MCH Ball	Package Length (inches)
SDQ0	G28	0.716	SDQ36	B13	0.639
SDQ1	F27	0.699	SDQ37	C13	0.552
SDQ2	C28	0.874	SDQ38	C11	0.588
SDQ3	E28	0.754	SDQ39	D10	0.626
SDQ4	H25	0.532	SDQ40	E10	0.533
SDQ5	G27	0.666	SDQ41	C9	0.605
SDQ6	F25	0.592	SDQ42	D8	0.587
SDQ7	B28	0.892	SDQ43	E8	0.522
SDQ8	E27	0.797	SDQ44	E11	0.523
SDQ9	C27	0.833	SDQ45	B9	0.715
SDQ10	B25	0.812	SDQ46	B7	0.706
SDQ11	C25	0.753	SDQ47	C7	0.643
SDQ12	B27	0.886	SDQ48	C6	0.7
SDQ13	D27	0.867	SDQ49	D6	0.664
SDQ14	D26	0.773	SDQ50	D4	0.76
SDQ15	E25	0.645	SDQ51	B3	0.922
SDQ16	D24	0.722	SDQ52	E6	0.64
SDQ17	E23	0.602	SDQ53	B5	0.846
SDQ18	C22	0.699	SDQ54	C4	0.81
SDQ19	E21	0.566	SDQ55	E5	0.67
SDQ20	C24	0.785	SDQ56	C3	0.859
SDQ21	B23	0.781	SDQ57	D3	0.811
SDQ22	D22	0.64	SDQ58	F4	0.723
SDQ23	B21	0.711	SDQ59	F3	0.814
SDQ24	C21	0.627	SDQ60	B2	0.949
SDQ25	D20	0.555	SDQ61	C2	0.893
SDQ26	C19	0.587	SDQ62	E2	0.865
SDQ27	D18	0.522	SDQ63	G5	0.689
SDQ28	C20	0.615	SCB0	C16	0.57

DDR Data Signals					
Data Signal	Intel [®] MCH Ball	Package Length (inches)	Data Signal	Intel [®] MCH Ball	Package Length (inches)
SDQ29	E19	0.487	SCB1	D16	0.526
SDQ30	C18	0.579	SCB2	B15	0.623
SDQ31	E17	0.521	SCB3	C14	0.533
SDQ32	E13	0.432	SCB4	B17	0.621
SDQ33	C12	0.543	SCB5	C17	0.583
SDQ34	B11	0.596	SCB6	C15	0.54
SDQ35	C10	0.59	SCB7	D14	0.503
DDR Data Strobe Signals			DDR Clock Signals		
Data Signal	Intel [®] MCH Ball	Package Length (inches)	Data Signal	Intel [®] MCH Ball	Package Length (inches)
SDQS0	F26	0.651	SCK0	E14	0.453
SDQS1	C26	0.775	SCK#0	F15	0.432
SDQS2	C23	0.738	SCK1	J24	0.454
SDQS3	B19	0.636	SCK#1	G25	0.587
SDQS4	D12	0.493	SCK2	G6	0.551
SDQS5	C8	0.596	SCK#2	G7	0.543
SDQS6	C5	0.776	SCK3	G15	0.371
SDQS7	E3	0.821	SCK#3	G14	0.349
SDQS8	E15	0.52	SCK4	E24	0.610
			SCK#4	G24	0.548
			SCK5	H5	0.589
			SCK#5	F5	0.693

This page is intentionally left blank.

6 AGP Interface Design Guidelines

For detailed AGP Interface functionality (protocols, rules, signaling mechanisms, etc.) refer to the AGP Interface Specification, Rev. 2.0, which can be obtained from: <u>http://www.agpforum.org</u>.

This design guide focuses only on specific 845 chipset-based platform recommendations.

The latest AGP Interface Specification enhances the functionality of the original *AGP Interface Specification, Version 1.0* by allowing 4x data transfers and 1.5 V operation. In addition to these enhancements, additional performance enhancement and clarifications, such as fast write capability, are featured in the *AGP Interface Specification, Version 2.0*. The 845 chipset supports these enhanced features and 1.5 V signaling only.

The 4x mode of operation on the AGP interface provides for "quad-sampling" of the AGP address/data and sideband address buses. This means data is sampled four times during each 66 MHz AGP clock cycle, or each data cycle is ¼ of 15 ns or 3.75 ns. It is important to realize that 3.75 ns is the data cycle time, not the clock cycle time. During 2x mode, data is sampled twice during a 66 MHz clock cycle; therefore, the data cycle time is 7.5 ns. These high-speed data transfers are accomplished using source synchronous data strobing for 2x mode, and differential source synchronous data strobing for 4x mode.

With data cycle times as small as 3.75 ns and setup/hold times of 1 ns, it is important to minimize noise and propagation delay mismatch. Noise on the data lines will cause the settling time to be high. If the mismatch between a data line and the associated strobe is too great or if there is noise on the interface, incorrect data will be sampled.

The AGP signals are broken into three groups: 1x timing domain, 2x/4x timing domain, and miscellaneous signals. In addition, the 2x/4x timing domain signals are divided into three sets of signals (#1-#3). All signals must meet the minimum and maximum trace length, width and spacing requirements. The trace length matching requirements are applicable only between the 2x/4x timing domain signal sets.

1x Timing Domain	2x/4x Timing Domain	Miscellaneous Signals
AGPCLK PIPE# RBF# WBF# ST[2:0] G_FRAME# G_IRDY# G_TRDY# G_STOP# G_DEVSEL# G_REQ# G_GNT# G_PAR	SET #1 G_AD[15:0] G_C/BE[1:0]# AD_STB0 AD_STB0# SET #2 G_AD[31:16] G_C/BE[3:2]# AD_STB1 AD_STB1 AD_STB1# SET #3 SBA[7:0] SB_STB SB_STB SB_STB#	USB+ USB- OVRCNT# PME# TYPDET# PERR# SERR# INTA# INTB#

Table 35. AGP 2.0 Signal Groups

Strobe signals are not used in the 1x AGP mode. In 2x AGP mode, G_AD[15:0] and G_C/BE[1:0]# are associated with AD_STB0, G_AD[31:16] and G_C/BE[3:2]# are associated with AD_STB1, and SBA[7:0] is associated with SB_STB. In 4x AGP mode, AD[15:0] and G_C/BE[1:0]# are associated with AD_STB0 and AD_STB0#, AD[31:16] and C/BE[3:2]# are associated with AD_STB1 and AD_STB1#, and SBA[7:0] is associated with SB_STB and SB_STB#.

6.1 AGP Routing Guidelines

The following section documents the recommended routing guidelines for 845 chipset-based designs. All aspects of the interface will be covered from signal trace length to decoupling. These trace length guidelines apply to ALL of the signals listed as 2x/4x timing domain signals. These signals should be routed using 5 mils traces for a 60 Ω impedance, using the stack-up described in Figure 9.

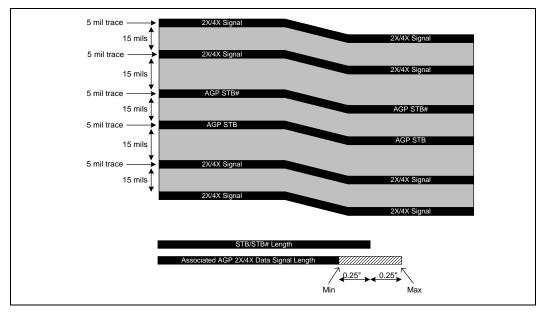
These guidelines are not intended to replace thorough system simulations and validation. These guidelines are subject to change as simulation data is gathered.

6.1.1 1X Timing Domain Signal Routing Guidelines

The 1x signals should adhere to the follow routing guidelines:

- All 1x timing domain signal maximum trace lengths are 7.5 inches.
- 1x timing domain signals can be routed with 5 mil minimum trace separation.
- There are no trace length matching requirements for 1x timing domain signals.

6.1.2 2X/4X Timing Domain Signal Routing Guidelines


The maximum line length and mismatch requirements are dependent on the routing rules used on the motherboard. These routing rules were created to give design freedom by making tradeoffs between signal coupling (trace spacing) and line lengths. The maximum length of the AGP interface defines which set of routing guidelines must be used. Guidelines for short AGP interfaces (e.g., < 6 inches) and the long AGP interfaces (e.g., > 6 inches and < 7.25 inches) are documented separately. The maximum length allowed for the AGP interface is 7.25 inches.

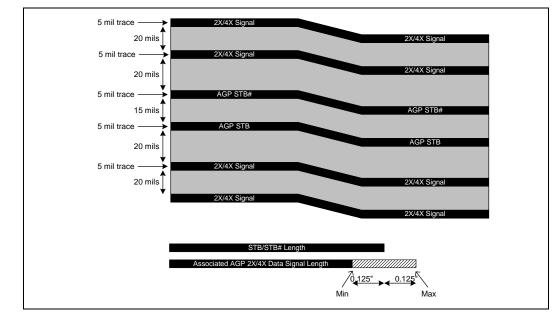
6.1.2.1 Trace Lengths Less Than 6 Inches

If the AGP interface is less than 6 inches with 60 $\Omega \pm 15\%$ board impedance, at least 5 mil traces with at least 15 mils of space (1:3) between signals is required for 2x/4x lines (data and strobes). These 2x/4x signals must be matched to their associated strobe within ± 0.25 inch.

For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) are 5.3 inches long, the data signals associated with those strobe signals (e.g., G_AD[15:0] and G_C/BE[3:0]#), can be 5.05 inches to 5.55 inches long. While another strobe set (e.g., SB_STB and SB_STB#) could be 4.2 inches long and the data signals associated to those strobe signals (e.g., SBA[7:0]) can be 3.95 inches to 4.45 inches long.

The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB and SB_STB#) act as clocks on the source synchronous AGP interface. Special care must be taken when routing these signals. Because each strobe pair is truly a differential pair, the pair should be routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two strobes in a strobe pair should be routed on 5 mil traces with at least 15 mils of space (1:3) between them. This pair should be separated from all other signals by at least 15 mils. The strobe pair must be length matched to less than ± 0.1 inch (that is, a strobe and its compliment must be the same length within 0.1 inch).

Figure 84. AGP 2X/4X Routing Example for Interfaces Less Than 6 Inches



6.1.2.2 Trace Lengths Greater Than 6 Inches and Less Than 7.25 Inches

If the AGP interface is greater than 6 inches and less than 7.25 inches with 60 $\Omega \pm 15\%$ board impedance then at least 5 mil traces with at least 20 mils of space (1:4) between signals is required for 2x/4x lines (data and strobes). These 2x/4x signals must be matched to their associated strobe within ± 0.125 inch.

For example, if a set of strobe signals (e.g., AD_STB0 & AD_STB0#) are 6.5 inch long, the data signals that are associated with those strobe signals (e.g., AD[15:0] & C/BE2:0]#), can be 6.475 inches to 6.625 inches long. Another strobe set (e.g., SB_STB & SB_STB#) could be 6.2 inches long, and the data signals that are associated with those strobe signals (e.g., SBA[7:0]), can be 6.075 inches to 6.325 inches long.

The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB and SB_STB#) act as clocks on the source synchronous AGP interface. Special care must be taken when routing these signals. Because each strobe pair is truly a differential pair, the pair should be routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two strobes in a strobe pair should be routed on 5 mil traces with at least 15 mils of space (1:3) between them. This pair should be separated from all other signals by at least 20 mils. The strobe pair must be length matched to less than \pm 0.1 inch (that is, a strobe and its compliment must be the same length within 0.1 inch).

Figure 85. AGP 2X/4X Routing Example for Interfaces Between 6 Inches and 7.25 Inches

6.1.3 AGP Interfaces Trace Length Summary

The 2X/4X Timing Domain Signals can be routed with 5-mil spacing when breaking out of the MCH. The routing must widen to the documented requirements within 0.15 inch of the MCH package.

When matching trace length for the AGP 4X interface, all traces should be matched from the ball of the MCH to the pin on the AGP connector. It is not necessary to compensate for the length of the AGP signals on the MCH package.

To reduce trace to trace coupling (crosstalk), separate the traces as much as possible. The trace length and trace spacing requirements must not be violated by any signal. Trace length mismatch for all signals within a signal group should be as close to zero as possible to provide timing margin.

Table 36. AGP 2.0 Routing Summary

Signal	Maximum Length	Trace Spacing (5 mil traces)	Length Mismatch	Relative To
1X Timing Domain	7.5 in.	5 mils	No requirement	N/A
2X/4X Timing Domain Set #1	7.25 in.	20 mils	± 0.125 in.	AD_STB0 and AD_STB0#
2X/4X Timing Domain Set #2	7.25 in.	20 mils	± 0.125 in.	AD_STB1 and AD_STB1#
2X/4X Timing Domain Set #3	7.25 in.	20 mils	± 0.125 in.	SB_STB and SB_STB#
2X/4X Timing Domain Set #1	6 in.	15 mils	± 0.25 in.	AD_STB0 and AD_STB0#
2X/4X Timing Domain Set #2	6 in.	15 mils	± 0.25 in.	AD_STB1 and AD_STB1#
2X/4X Timing Domain Set #3	6 in.	15 mils	± 0.25 in.	SB_STB and SB_STB#

NOTES:

1. All trace widths are 5 mils.

2. Each strobe pair must be separated from other signals by at least 15 mils for signal maximum lengths of 6 inches, and at least 20 mils for signal maximum lengths of 7.25 inches.

- 3. Strobe and strobe bar pairs must be separated from each other by 15 mils and must be the same length.
- 4. These guidelines apply to board stack-ups described in Section 3.

Table 37. AGP Signal Routing Guidelines

Parameter	Routing Guidelines
Breakout Guidelines	5 mil width with 5 mil spacing for a max of 0.15 in.

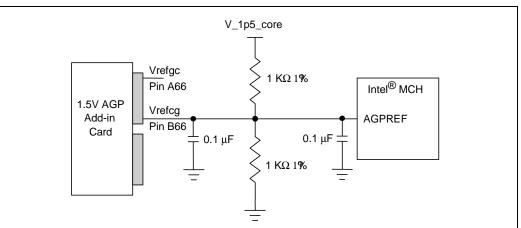
6.1.4 Signal Power/Ground Referencing Recommendations

It is strongly recommended that signals do not change referencing. If a signal is power referenced it should stay referenced to power, and if it is referenced to ground it should stay referenced to ground. It is strongly recommended that AGP signals have a maximum of 1 via. All signals in a signal group should be routed on the same layer. If a signal is power referenced, it MUST stay referenced to power.

6.1.5 V_{DDQ} and TYPEDET#

AGP specifies two separate power planes: V_{CC} and V_{DDQ} . V_{CC} is the core power for the graphics controller and is always 3.3 V.V_{DDQ} is the interface voltage. The 845 chipset supports only an interface voltage of 1.5 V.

AGP 2.0 specification requires V_{CC} and V_{DDQ} to be tied to separate power planes, and implements a TYPEDET# (type detect) signal on the AGP connector that determines the interface operating voltage (V_{DDQ}). Designs based on the 845 chipset do not require TYPEDET# detection because the 845 chipset supports 1.5 V AGP add-in cards. 3 V AGP add-in cards are not supported.


6.1.6 V_{REF} Generation

For 1.5 V add-in cards, the graphics controller and MCH generate AGP voltage reference V_{REF} and distribute it through the connector. Two signals have been defined on the 1.5 V connector to allow V_{REF} delivery:

- V_{REFGC}—V_{REF} from the graphics controller to the chipset.
- V_{REFCG} V_{REF} from the chipset to the graphics controller.

However, the usage of the source generated V_{REFCG} at the MCH is not required per the AGP Interface Specification, rev 2.0. Given this and the fact that the MCH requires the presence of V_{REF} when an AGP add-in card is present and not present, the following circuit is recommended for V_{REF} generation.

The V_{REF} divider network should be placed near the AGP connector. The minimum trace spacing around the V_{REF} signal must be 25 mils to reduce crosstalk and maintain signal integrity, and a 0.1 μ F bypass capacitor should be placed within 0.8 inch of the MCH AGP_{REF} ball. V_{REF} voltage must be 0.5 x V_{DDQ} for 1.5 V operation.

Figure 86. AGP 2.0 V_{REF} Generation and Distribution for 1.5 V Cards

Table 38. AGP V_{REF} Routing Guidelines

Parameter	Routing Guidelines
AGP V _{REF} trace width	12 mils
AGP V_{REF} trace spacing to other signals	25 mils
AGP V_{REF} trace breakout guidelines	5 mil width with 5 mil spacing for a max of 0.15 in.
AGP V_{REF} decoupling—MCH max distance	0.8 in.

6.1.7 Intel[®] MCH AGP Interface Buffer Compensation

The MCH AGP interface supports resistive buffer compensation (GRCOMP). The GRCOMP signal must be tied to a 40 Ω 2% resistor to ground. This trace should be kept to 10 mils wide and less than 0.5 inch long.

AGP signals have integrated pull-up resistors to AGP V_{DDQ} , and pull-down resistors to ground. This is to ensure stable values are maintained when agents are not actively driving the bus. Table 39 lists signals that have integrated AGP pull-up/pull-down resistors. Their value is between 4 k Ω and 16 k Ω . External pull-ups and pull-downs are not needed for these signals.

Note: 1x mode, trace stub to pull-up resistor should be kept to less than 0.5 inch 2x/4x mode, trace stub to pull-up resistor should be kept to less than 0.1 inch.

Short stub lengths help minimize signal reflections from the stub. The strobe signals require pull-up/pull-down on the motherboard to ensure stable values when there are no agents driving the bus.

Signals	Pull-Up/Pull-Down	
1x Timing Domain		
G_FRAME#	pull-up resistor to V _{CC1_5}	
G_TRDY#	pull-up resistor to V_{CC1_5}	
G_IRDY#	pull-up resistor to V_{CC1_5}	
G_DEVSEL#	pull-up resistor to V_{CC1_5}	
G_STOP#	pull-up resistor to V_{CC1_5}	
RBF#	pull-up resistor to V_{CC1_5}	
PIPE#	pull-up resistor to V_{CC1_5}	
G_REQ#	pull-up resistor to V_{CC1_5}	
WBF#	pull-up resistor to V_{CC1_5}	
2x/4x Timing Domain		
AD_STB[1:0]	pull-up resistor to V_{DDQ}	
SB_STB	pull-up resistor to V_{DDQ}	
AD_STB[1:0]#	pull-down resistor to GND	
SB_STB#	pull-down resistor to GND	

Table 39. Intel[®] MCH AGP Signals with Integrated Pull-Up/Pull-Down Resistors

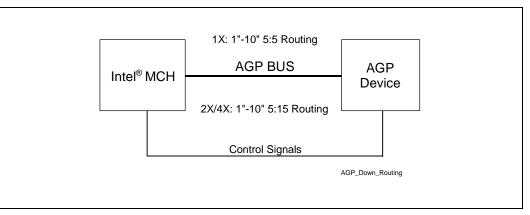
6.1.8 Intel[®] MCH External AGP Pull-Up/Pull-Down Resistors

The MCH G_GNT# output signal is tri-stated during RSTIN# assertion. This signal must have an external 6.8 k Ω pull-up resistor to keep it from floating during the RSTIN# assertion.

Note: The G_GNT# signals require pull-up resistor to the MCH V_{CC1_5}.

The MCH ST1 signal needs a site for an external pull-down resistor to ground. This resistor should not be populated, and is reserved for future use.

The MCH AGP ST0 signal is sampled by the MCH at power-on to configure MCH system memory mode. An internal MCH pull-up resistor on this signal sets the default system memory mode to PC133 SDRAM.


Table 40. Intel[®] MCH AGP Signals Requiring External Pull-Up/Pull-Down Resistors

Signals	Pull-Up/Pull-Down
G_GNT#	6.8 k Ω pull-up resistor to V_{CC1_5}

6.1.9 AGP Device Down Routing Guidelines

Routing guidelines for the AGP device 'down' option are very similar to those used when routing to an AGP connector. For any routing/layout information that is not included in this section of design guidelines, refer to the AGP up routing/layout guidelines in this chapter. Figure 87 shows the on-board AGP layout.

Figure 87. AGP Device Down Routing Guidelines

6.1.9.1 1X Timing Domain Signal Routing Guidelines

The 1x signals should adhere to the follow routing guidelines:

- All 1x timing domain signals have a maximum trace length of 10 inches.
- 1x timing domain signals can be routed with 5 mil minimum trace separation.
- 1x timing domain signals can be routed with 5 mil minimum trace width.
- There are no trace length matching requirements for 1x timing domain signals.

In all cases it is best to reduce the line length mismatch wherever possible to insure added margin. It is also best to separate the traces by as much as possible to reduce the amount of trace-to-trace coupling.

Table 41. 1X Timing Domain Trace Length Recommendations for AGP Device Down

Width: Space	Trace	Line Length	Line Length Matching
5:5	Control	1.0 in < line length < 10 in	Not required

6.1.9.2 2X/4X Timing Domain Signal Routing Guidelines

The 2x/4x signals should adhere to the follow routing guidelines:

- All 2x/4x timing domain signals have a maximum trace length of 10 inches.
- 2x/4x timing domain signals can be routed with 15 mil minimum trace separation.
- 2x/4x timing domain signals can be routed with 5 mil minimum trace width.

Table 42. 2X/4X Timing Domain Trace Length Recommendations for AGP Device Down

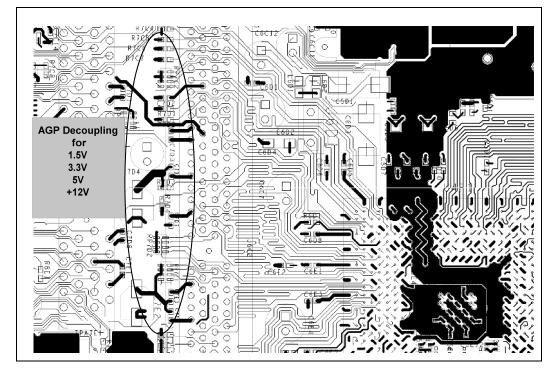
Width:Space	Trace	Line Length	Line Length Matching
5:15	Data/Strobe	1.0 in < line length < 10 in	Refer to section 6.1.2.2

Some of the signals require pull-up or pull-down resistors to be installed on the motherboard. Refer to Table 40 for a list of these signals.

6.1.10 AGP Connector

The 845 chipset supports only 1.5 V add-in cards. A 1.5 V AGP card uses the AGP 3 V connector and rotates it 180 degrees on the planar. Therefore, the key of the connector moves to the opposite side of the planar away from the I/O panel and will not allow 3 V add-in cards. A 1.5 V AGP Pro50* connector is an extension of the AGP connector. It has additional power and ground pins at each end of the connector and is back compatible with a 1.5 V AGP card. Intel recommends a 1.5 V AGP Pro50* connector for workstations, and a 1.5 V AGP connector for desktop systems.

The designer should ensure that the AGP connector is well decoupled as described in the revision 1.0 of the AGP Design Guide, Section 1.5.3.3 (i.e., use a 0.01 μ F capacitor for each power pin, a bulk 10 μ F tantalum capacitor on V_{DDQ}, and 20 μ F tantalum capacitor on V_{CC3_3} plane near the connector.).


6.1.11 AGP Connector Decoupling Guidelines

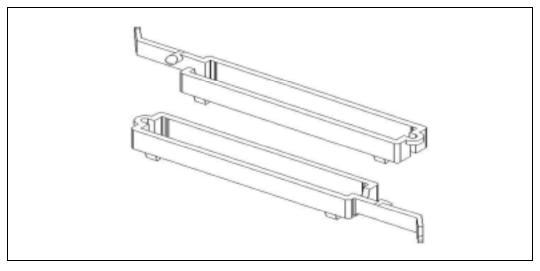
The following decoupling is suggested for decoupling the 1.5 V power plane at the AGP connector. Figure 88 shows the general location of AGP decoupling capacitors on layer 1. Actual component placement will depend upon how the 1.5 V, 3.3 V, 5 V, and +12 V power planes are split on layer 2.

Table 43. 1.5 V Decoupling at the AGP Connector

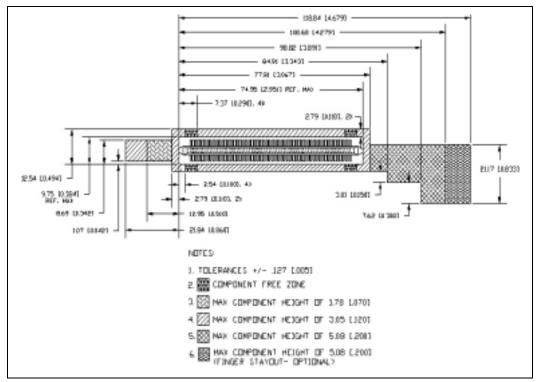
Voltage	Number of Capacitors	Component
1.5 V	6	0.1 μF ceramic capacitor, 603 body type, X7R dielectric
3.3 V	3	$0.1 \ \mu\text{F}$ ceramic capacitor, 603 body type, X7R dielectric
	1	22 μF electrolytic capacitor
	1	100 μF electrolytic capacitor
5 V	1	$0.1 \ \mu F$ ceramic capacitor, 603 body type, X7R dielectric
	1	10 µF aluminum electrolytic capacitor
12 V	1	0.1 μF ceramic capacitor, 603 body type, X7R dielectric

The designer should ensure that the AGP connector is well decoupled as described in the revision 1.0 of the AGP Design Guide, Section 1.5.3.3.

Figure 88. AGP Decoupling on Layer 1


6.1.12 AGP Universal Retention Mechanism (RM)

Environmental testing and field reports indicate that, without proper retention, AGP cards may become unseated during system shipping and handling. To prevent the disengagement of AGP cards, Intel recommends that AGP-based platforms use the AGP retention mechanism (RM).


The AGP RM is a mounting bracket used to properly locate the card with respect to the chassis, and to assist with card retention. The AGP RM is available in two different handle orientations: left-handed (Figure 89), and right-handed. Most system boards accommodate the left-handed AGP RM. Because the manufacturing capacity is greater for the left-handed RM, Intel recommends that customers design into their systems the left-handed AGP RM. The right-handed AGP RM is identical to the left-handed AGP RM except for the position of the actuation handle, which is located on the same end as in the primary design but extends from the opposite side, parallel to the longitudinal axis of the part. Figure 90 details the keep-out information for the left-handed AGP RM. Use this information to ensure that motherboard designs leave adequate space for RM installation.

The AGP interconnect design requires that the AGP card be retained to limit card back out within the AGP connector to 0.99 mm (0.039 inch) max. For this reason, new cards should have an additional mechanical keying tab notch that provides an anchor point on the AGP card for interfacing with the AGP RM. The RM's round peg engages with the AGP card's retention tab, thereby preventing the card from disengaging during dynamic loading. The additional notch in the mechanical keying tab is required for 1.5 V AGP cards, and is recommended for the new 3.3 V AGP cards.

Figure 89. AGP Left-Handed Retention Mechanism

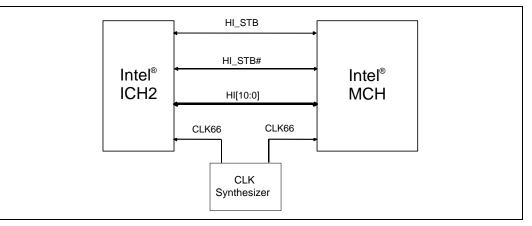
Recommended for all AGP cards, the AGP RM is detailed in Engineering Change Request No. 48 (ECR #48), which details approved changes to the *Accelerated Graphics Port (AGP) Interface Specification, Version 2.0.* Intel intends to incorporate the AGP RM changes into later revisions of the AGP interface specification. In addition, Intel has defined a reference design for a mechanical device utilizing the features defined in ECR #48.

ECR #48 can be viewed on the Intel Web site at: <u>http://developer.intel.com/technology/agp/ecr.htm</u>

More information regarding this component (AGP RM) is available from the following vendors:

Resin Color	Supplier	Part Number	
		Left-Handed Orientation (Preferred)	Right-Handed Orientation (Alternate)
Black	AMP P/N	136427-1	136427-2
	Foxconn P/N	006-0002-939	006-0001-939
Green	Foxconn P/N	009-0004-008	009-0003-008

This page is intentionally left blank.


7 Hub Interface

The MCH and ICH2 ballout assignments have been optimized to simplify the Hub Interface routing between these devices. It is recommended that the Hub Interface signals be routed directly from the MCH to ICH2 with all signals referenced to V_{ss} . Layer transition should be kept to a minimum. If a layer change is required, use only two vias per net, and keep all data signals and associated strobe signals on the same layer.

The Hub Interface signals are broken into two groups: data signals (HI), and strobe signals (HI_STB). For the 8-bit Hub Interface, HI[7:0] are associated with HI_STB and HI_STB#.

No pull-ups or pull-downs are required on the hub interface. HI11 on the ICH2 should be brought out to a test point for NAND Tree testing.

Figure 91. Bit Hub Interface Routing Example

7.1 8-Bit Hub Interface Routing Guidelines

This section documents the routing guidelines for the Hub Interface. This Hub Interface connects the ICH2 to the MCH. The trace impedance must equal 60 $\Omega \pm 15\%$.

7.1.1 8-Bit Hub Interface Data Signals

The 8-bit Hub Interface data signal traces should be routed 5 mils wide with a minimum trace spacing of 15 mils (5 on 15). To break out of the MCH and ICH2 package, the Hub Interface data signals can be routed 5 on 5, and must be separated to 5 on 15 within 300 mils of the package.

The maximum Hub Interface data signal trace length is 8 inches Each data signal must be matched within ± 0.1 inch of the HI_STB differential pair. There is no explicit matching requirement between the individual data signals.

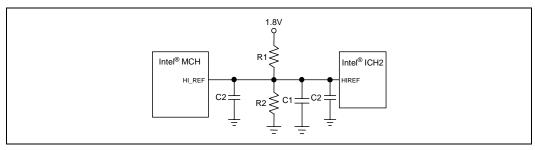
7.1.2 8-Bit Hub Interface Strobe Signals

The 8-bit Hub Interface strobe signals should be routed 5 mils wide with a minimum trace spacing of 15 mils (5 on 15). This strobe pair should have a minimum of 15 mils spacing from any adjacent signals. The maximum length for the strobe signals is 8 inches Each strobe signal must be the same length, and each data signal must be matched within ± 0.1 inch of the strobe signals.

7.1.3 8-Bit Hub Interface HI_REF Generation/Distribution

HI_REF is the Hub Interface reference voltage. The HI_REF voltage requirement must be set appropriately for proper operation. See Table 44 for the HI_REF voltage specifications and the associated resistor recommendations for the voltage divider circuit.

Table 44. HI_REF Generation Circuit Specifications


HI_REF Voltage Specification (V)	Recommended Resistor Values for the HI_REF Divider Circuit (Ω)
½ V _{CC1_8} ± 2%	R1 = R2 = 150 ± 1%

The HI_REF divider should not be located more than 4 in from either the MCH or the ICH2. The reference divider circuit should be bypassed to ground at each component with a 0.1 μ F capacitor (C2) located within 0.25 inches of the HI_REF pin.

The resistor values, R1 & R2, must be rated at 1% tolerance. The selected resistor values ensure that the reference voltage tolerance is maintained over the input leakage specification. A 0.1 μ F capacitor (C1 in the following figure) should be placed close to R1 and R2.

Figure 92 shows an example HI_REF divider circuit.

Figure 92. Hub Interface with Reference Divider Circuit

7.1.4 8-Bit Hub Interface Compensation

The Hub Interface uses a compensation signal to adjust buffer characteristics to the specific board characteristic. The Hub Interface requires Resistive Compensation (RCOMP).

Table 45. RCOMP Resistor Values

Component	RCOMP Resistor Value	RCOMP Resistor Tied to
ICH2	40.2 Ω ± 1%	V _{CC1_8}
MCH	$40.2 \Omega \pm 2\%$	V _{CC1_8}

7.1.5 8-Bit Hub Interface Decoupling Guidelines

To improve I/O power delivery, use two 0.1 μ F capacitors within 150 mils of the ICH2. The MCH should be decoupled with one 0.1 μ F within 150 mils of the package, and one 10 μ F capacitor nearby. All capacitors should be adjacent to the rows that contain the Hub Interface.

This page is intentionally left blank.

8 Intel[®] I/O Controller Hub 2 (ICH 2)

8.1 IDE Interface

This section contains guidelines for connecting and routing the ICH2 IDE interface. The ICH2 has two independent IDE channels. This section provides guidelines for IDE connector cabling and motherboard design, including component and resistor placement, and signal termination for both IDE channels. The ICH2 has integrated the series resistors that have been typically required on the IDE data signals (PDD[15:0] and SDD[15:0]) running to the two ATA connectors. Additional series terminations are not anticipated, but OEMs should verify motherboard signal integrity through simulation. Additional external 0 Ω resistors can be incorporated into the design to address possible noise issues on the motherboard. The additional resistor layout increases flexibility by offering stuffing options at a later date.

The IDE interface can be routed with 5 mil traces on 7 mil spaces, and must be less than 8 inches long (from ICH2 to IDE connector). Additionally, the shortest IDE signal (on a given IDE channel) must be less than 0.5 inch shorter than the longest IDE signal (on that channel).

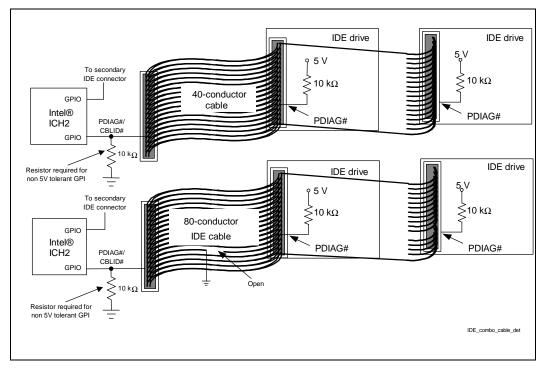
8.1.1 Cabling

- Length of cable: Each IDE cable must be equal to or less than 18 inches.
- Capacitance: Less than 30 pF.
- **Placement**: A maximum of 6 inches between drive connectors on the cable. If a single drive is placed on the cable, it should be placed at the end of the cable. If a second drive is placed on the same cable, it should be placed on the next closest connector to the end of the cable (6 inches away from the end of the cable).
- **Grounding**: Provide a direct low impedance chassis path between the motherboard ground and hard disk drives.
- **ICH2 Placement**: The ICH2 must be placed equal to or less than 8 inches from the ATA connector(s).

8.1.1.1 Cable Detection for Ultra ATA/66 and Ultra ATA/100

The ICH2 IDE Controller supports PIO, Multi-word (8237 style) DMA, and Ultra DMA modes 0 through 5. The ICH2 must determine the type of cable that is present to configure itself for the fastest possible transfer mode that the hardware can support.

An 80-conductor IDE cable is required for Ultra ATA/66 and Ultra ATA/100. This cable uses the same 40-pin connector as the old 40-pin IDE cable. The wires in the cable alternate: ground, signal, ground, signal, ground, etc. All the ground wires are tied together on the cable (and they are tied to the ground on the motherboard through the ground pins in the 40-pin connector). This cable conforms to the Small Form Factor Specification SFF-8049. This specification can be obtained from the Small Form Factor Committee.



To determine if ATA/66 or ATA/100 mode can be enabled, the ICH2 requires the system software to attempt to determine the cable type used in the system. If the system software detects an 80-conductor cable, it may use any Ultra DMA mode up to the highest transfer mode supported by both the chipset and the IDE device. If a 40-conductor cable is detected, the system software must not enable modes faster than Ultra DMA Mode 2 (Ultra ATA/33).

Intel recommends that cable detection be done using a combination Host-Side/Device-Side detection mechanism. Note that Host-Side detection cannot be implemented on an NLX form factor system because this configuration does not define interconnect pins for the PDIAG#/CBLID# from the riser (containing the ATA connectors) to the motherboard. These systems must rely on the Device-Side Detection mechanism only.

8.1.1.2 Combination Host-Side/Device-Side Cable Detection

Host side detection (described in the ATA/ATAPI-4 Standard, Section 5.2.11) requires the use of two GPI pins (one for each IDE channel). The proper way to connect the PDIAG#/CBLID# signal of the IDE connector to the host is shown in Figure 93. All IDE devices have a 10 k Ω pull-up resistor to 5 volts on this signal. Not all of the GPI and GPIO pins on the ICH2 are 5-volt tolerant. If non 5-volt tolerant inputs are used, a resistor divider is required to prevent 5 volts on the ICH2 or Intel FWH pins. This resistor also prevents the GPI pins from floating if a device is not present on the IDE interface. The proper value of the divider resistor is 10 k Ω (as shown in Figure 93).

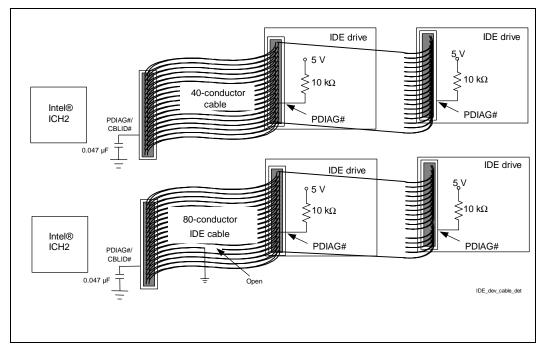


Figure 93. Combination Host-Side/Device-Side IDE Cable Detection

This mechanism allows the BIOS, after diagnostics, to sample PDIAG#/CBLID#. If the signal is high, there is 40-conductor cable in the system, and ATA modes 3, 4 and 5 must not be enabled.

If PDIAG#/CBLID# is detected low, there may be an 80-conductor cable in the system, or there may be a 40-conductor cable and a legacy slave device (Device 1) that does not release the PDIAG#/CBLID# signal as required by the ATA/ATAPI-4 standard. In this case, BIOS should check the IDENTIFY DEVICE information in a connected device that supports Ultra DMA modes higher than 2. If ID Word 93, bit 13 is a "1", an 80-conductor cable is present. If this bit is "0", a legacy slave (Device 1) is preventing proper cable detection, and BIOS should configure the system as though a 40-conductor cable is present and notify the user of the problem.

8.1.1.3 Device-Side Cable Detection

Figure 94. Device Side IDE Cable Detection

For platforms that must implement Device-Side detection only (e.g., NLX platforms), a 0.047 μ F capacitor is required on the motherboard as shown in Figure 94. This capacitor should not be populated when implementing the recommended combination Host-Side/Device-Side cable detection mechanism described above.

This mechanism creates a resistor-capacitor (RC) time constant. The ATA mode 3, 4, or 5 drive will drive PDIAG#/CBLID# low, and then release it (pulled up through a $10K\Omega$ resistor). The drive will sample the signal after releasing it. In an 80-conductor cable, PDIAG#/CBLID# is not connected through to the host; therefore, the capacitor has no effect. In a 40-conductor cable, the signal is connected to the host. Therefore the signal will rise more slowly as the capacitor charges. The drive can detect the difference in rise times and it will report the cable type to the BIOS when it sends the IDENTIFY_DEVICE packet during system boot as described in the ATA/66 specification.

8.1.2 Primary IDE Connector Requirements

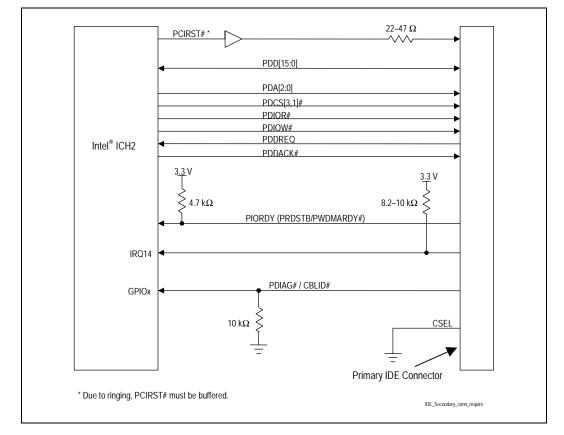


Figure 95. Connection Requirements for Primary IDE Connector

- A 22 Ω -47 Ω series resistor is required on PCIRST#. The correct value should be determined for each unique motherboard design based on signal quality.
- An 8.2 k Ω to 10 k Ω pull-up resistor is required on IRQ14 and IRQ15 to V_{CC3}.
- A 4.7 k Ω pull-up resistor to V_{CC3} is required on PIORDY and SIORDY.
- Series resistors can be placed on the control and data line to improve signal quality. The resistors are placed as close to the connector as possible. Values are determined for each unique motherboard design.
- The 10 k Ω resistor to ground on the PDIAG#/CBLID# signal is now required on the primary connector. This change is to prevent the GPIO pin from floating if a device is not present on the IDE interface.

8.1.3 Secondary IDE Connector Requirements

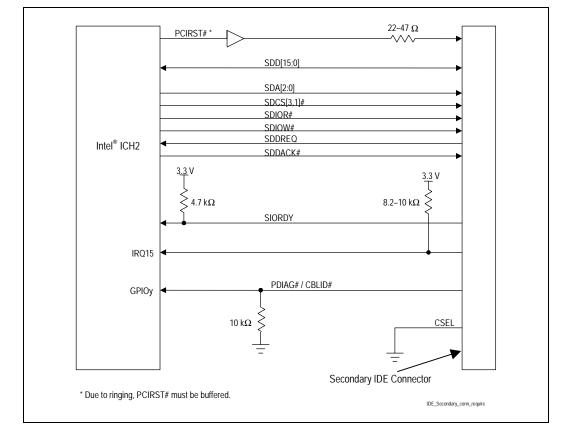
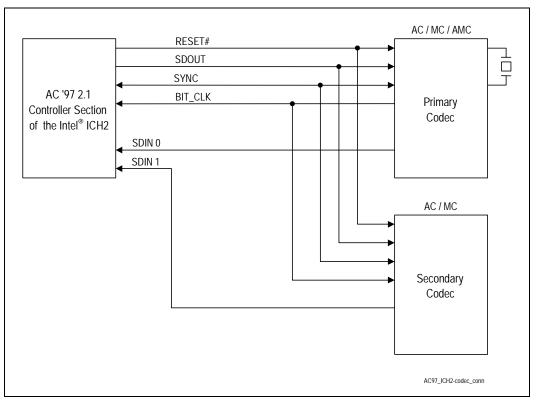


Figure 96. Connection Requirements for Secondary IDE Connector

- 22 Ω -47 Ω series resistors are required on PCIRST#. The correct value should be determined for each unique motherboard design, based on signal quality.
- An 8.2 k Ω to 10 k Ω pull-up resistor is required on IRQ14 and IRQ15 to V_{CC3}.
- A 4.7 k Ω pull-up resistor to V_{CC3} is required on PIORDY and SIORDY.
- Series resistors can be placed on the control and data line to improve signal quality. The resistors are placed as close to the connector as possible. Values are determined for each unique motherboard design.
- The 10 k Ω resistor to ground on the PDIAG#/CBLID# signal is now required on the secondary connector. This change is to prevent the GPIO pin from floating if a device is not present on the IDE interface.


8.2 AC '97

The ICH2 implements an AC '97 2.1 compliant digital controller. Any codec attached to the ICH2 AC-link must be AC '97 2.1 compliant as well. The AC '97 2.1 specification is on the Intel website:

http://developer.intel.com/ial/scalableplatforms/audio/index.htm

The AC-link is a bi-directional, serial PCM digital stream. It handles multiple input and output data streams, as well as control register accesses, employing a time division multiplexed (TDM) scheme. The AC-link architecture provides for data transfer through individual frames transmitted in a serial fashion. Each frame is divided into 12 outgoing and 12 incoming data streams, or slots. The architecture of the ICH2 AC-link allows a maximum of two codecs to be connected. Figure 97 shows a two codec topology of the AC-link for the ICH2.

Figure 97. Intel[®] ICH2 AC '97—Codec Connection

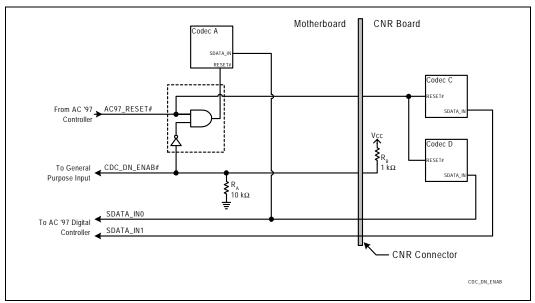
The AC '97 interface can be routed using 5 mil traces with 5 mil spaces between the traces. Maximum length between the ICH2 and CODEC/CNR is 14 inches in a T topology. This assumes that a CNR riser card implements its audio solution with a maximum trace length of 4 inches for the AC'LINK. Trace impedance should be $Z0 = 60 \ \Omega \pm 15\%$.

Clocking is provided from the primary codec on the link via AC_BITCLK, and is derived from a 24.576 MHz crystal or oscillator. Refer to the primary codec vendor for crystal or oscillator requirements. AC_BITCLK is a 12.288 MHz clock driven by the primary codec to the digital

controller (ICH2), and any other codec present. This clock is used as the time base for latching and driving data.

The ICH2 supports wake on ring from S1-S5 via the AC '97 link. The codec asserts SDATAIN to wake the system. To provide wake capability and/or caller ID, standby power must be provided to the modem codec.

The ICH2 has weak pull-downs/pull-ups that are enabled only when the AC-Link Shut Off bit in the ICH2 is set. This keeps the link from floating when the AC-link is off or when there are no codecs present.

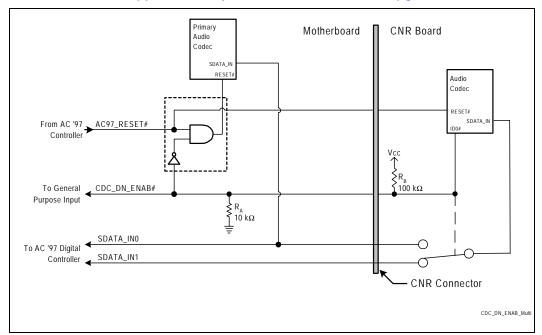

The Shut-off bit not set indicates that there is a codec on the link. Therefore, AC_BITCLK and AC_SDOUT will be driven by the codec and ICH2, respectively. However, AC_SDIN0 and AC_SDIN1 may not be driven. If the link is enabled, the assumption can be made that there is at least one codec. If there is one or no CODEC onboard, the unused AC_SDINx pin(s) should have a weak (10 k Ω) pull-down to keep it from floating.

8.2.1 AC '97 Audio Codec Detect Circuit and Configuration Options

The following provides general circuits to implement a number of different codec configurations. Refer to Intel's White Paper Recommendations for ICHx/AC '97 Audio (Motherboard and Communication and Network Riser) for Intel's recommended codec configurations.

To support more than two channels of audio output, the ICH2 allows for a configuration in which two audio codecs work concurrently to provide surround capabilities. To maintain data-on-demand capabilities, the ICH2 AC '97 controller, when configured for 4 or 6 channels, will wait for all the appropriate slot request bits to be set before sending data in the SDATA_OUT slots. This allows for simple FIFO synchronization of the attached codecs. It is assumed that both codecs will be programmed to the same sample rate, and that the codecs have identical (or at least compatible) FIFO depth requirements. It is recommended that the codecs be provided by the same vendor upon the certification of their interoperability in an audio channel configuration.

The following circuits (Figure 98 through Figure 101) show the adaptability of a system with the modification of R_A and R_B combined with some basic glue logic to support multiple codec configurations. This also provides a mechanism to make sure that only two codecs are enabled in a given configuration, and allows the configuration of the link to be determined by the BIOS so that the correct PnP IDs can be loaded.


Figure 98. CDC_DN_ENAB# Support Circuitry for a Single Codec Motherboard

As shown in Figure 98, when a single codec is located on the motherboard, the resistor R_A and the circuitry (AND and NOT gates) shown inside the dashed box must be implemented on the motherboard. This circuitry is required to disable the motherboard codec when a CNR is installed that contains two AC '97 codecs (or a single AC '97 codec that must be the primary codec on the AC-Link).

By installing resistor R_B (1 k Ω) on the CNR, the codec on the motherboard becomes disabled (held in reset), and the codec(s) on the CNR take control of the AC-Link. One possible example of using this architecture is a system integrator installing an audio plus modem CNR in a system already containing an audio codec on the motherboard. The audio codec on the motherboard would then be disabled, allowing all of the codecs on the CNR to be used.

The architecture shown in Figure 99 has some unique features. These include the possibility of the CNR being used as an upgrade to the existing audio features of the motherboard (by simply changing the value of resistor R_B on the CNR to 100 k Ω). An example of one such upgrade is increasing from two-channel to four or six-channel audio.

Both Figure 99 and Figure 100 show a switch on the CNR board. This is necessary to connect the CNR board codec to the proper SDATA_IN*n* line to avoid conflict with the motherboard codec(s).

Figure 99. CDC_DN_ENAB# Support Circuitry for Multi-Channel Audio Upgrade

Figure 100 shows the circuitry required on the motherboard to support a two-codec down configuration. This circuitry disables the codec on a single codec CNR. Notice that in this configuration, the resistor R_B , has been changed to 100 k Ω .

Figure 100. CDC_DN_ENAB# Support Circuitry for Two-Codecs on Motherboard/One-Codec on CNR

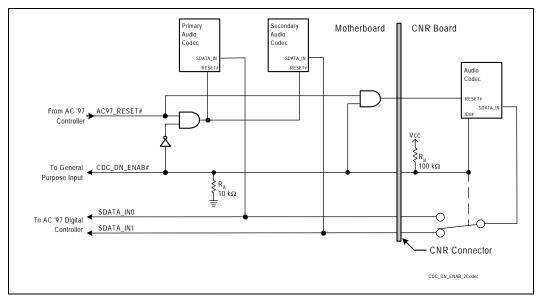
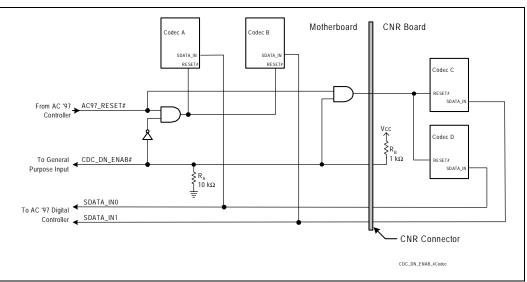



Figure 101 shows the case of two-codecs down and a dual-codec CNR. In this case, both codecs on the motherboard are disabled (while both on CNR are active) by R_A being 10 k Ω and R_B being 1 k Ω

Figure 101. CDC_DN_ENAB# Support for Two-Codecs on Motherboard / Two-Codecs on CNR

NOTES:

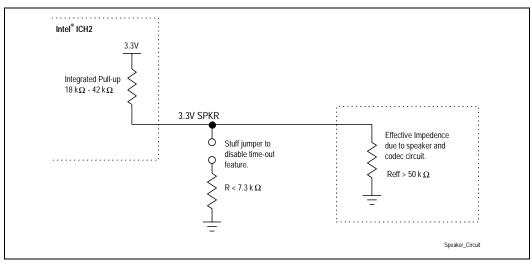
- 1. While it is possible to disable down codecs as shown in Figure 98 through Figure 101, disabling is not recommended for reasons such as avoidance of shipping redundant and/or non-functional audio jacks, as well as reasons cited in the ICHx/AC '97 white paper.
- 2. All CNR designs include resistor R_B. The value of R_B is either 1 k Ω or 100 k Ω , depending on the intended functionality of the CNR (whether or not it intends to be the primary/controlling codec).
- 3. Any CNR with two codecs must implement RB with value 1 k Ω . If there is one Codec, use a 100 k Ω pull-up resistor. A CNR with zero codecs must not stuff R_B. If implemented, R_B must be connected to the same power well as the codec so that it is valid whenever the codec has power.
- 4. A motherboard with one or more codecs down must implement R_A with a value of 10 k Ω .
- The CDC_DN_ENAB# signal must be run to a GPI so that the BIOS can sense the state of the signal. CDC_DN_ENAB# is required to be connected to a GPI; a connection to a GPIO is strongly recommended for testing purposes.

Table 46. Signal Descriptions

Signal	Description	
CDC_DN_ENAB#	When low, indicates that the codec on the motherboard is enabled and primary on the AC97 Interface. When high, indicates that the motherboard codec(s) must be removed from the AC '97 Interface (held in reset), because the CNR codec(s) will be the primary device(s) on the AC '97 Interface.	
AC97_RESET#	Reset signal from the AC '97 Digital Controller (ICH2).	
SDATA_In <i>n</i>	AC '97 serial data from an AC '97-compliant codec to an AC '97-compliant controller (i.e., the ICH2).	

8.2.2 Valid Codec Configurations

Table 47. Codec Configurations

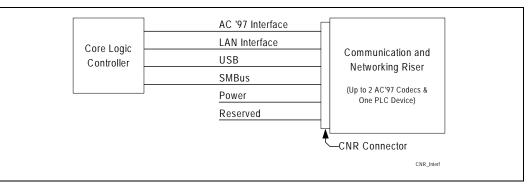

Valid Codec Configurations	Invalid Codec Configurations
AC (Primary)	MC (Primary) + X (any other type of codec)
MC (Primary)	AMC (Primary) + AMC (Secondary)
AMC (Primary)	AMC (Primary) + MC (Secondary)
AC (Primary) + MC (Secondary)	
AC (Primary) + AC (Secondary)	
AC (Primary) + AMC (Secondary)	

Note: Power management registers are in audio space for power management reasons. Therefore, if there is an audio codec in the system, it must be Primary. There cannot be 2 modems in a system because there is only one set of modem DMA channels.

8.2.3 SPKR Pin Consideration

The effective impedance of the speaker and codec circuitry on the SPKR signal line must be greater than 50 k Ω . Failure to do so will cause the TCO Timer Reboot function to be erroneously disabled. SPKR is used as both the output signal to the system speaker, and as a functional strap. The strap function enables or disables the "TCO Timer Reboot function" based on the state of the SPKR pin on the rising edge of PWROK. When enabled, the ICH2 sends an SMI# to the processor upon a TCO timer timeout. The status of this strap is readable via the NO_REBOOT bit (bit 1, D31: F0, Offset D4h). The SPKR signal has a weak integrated pull-up resistor (the resistor is only enabled during boot/reset). Therefore its default state when the pin is a "no connect" is a logical one or enabled. To disable the feature, a jumper can be populated to pull the signal line low (see Figure 102). The value of the pull-down must be such that the voltage divider caused by the pull-down and integrated pull-up resistors will be read as logic low. When the jumper is not populated, a low can still be read on the signal line if the effective impedance due to the speaker and codec circuit is equal to or lower than the integrated pull-up resistor. It is therefore strongly recommended that the effective impedance be greater than 50 k Ω , and the pull-down resistor be less than 7.3 k Ω .

Figure 102. Example Speaker Circuit


8.3 CNR

Refer to *Communication and Networking Riser (CNR) Specification Revision 1.1* (see Section 1.1, Related Documentation.

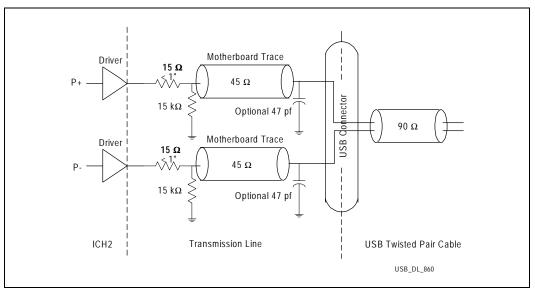
The Communication and Networking Riser (CNR) Specification defines a hardware scalable Original Equipment Manufacturer (OEM) motherboard riser and interface. This interface supports multi-channel audio, V.90 analog modem, phone-line based networking, and 10/100 Ethernet based networking. The CNR specification defines the interface, which should be configured prior to shipment of the system. Standard I/O expansion slots, such as those supported by the PCI bus architecture, are intended to continue serving as the upgrade medium. The CNR mechanically shares a PCI slot. Unlike the AMR (Audio Modem Riser), system designers will not sacrifice a PCI slot if they decide not to include a CNR in a particular build. It is required that the CNR A0–A2 pins be set to a unique address so that the CNR EEPROM can be accessed. See the CNR specification.

Figure 103 shows the interface for the CNR connector. Refer to the appropriate section of this document for the corresponding design and layout guidelines. The Platform LAN Connection (PLC) can be either an 82562EH or an 82562EM component. Refer to the CNR specification for additional information.

Figure 103. CNR Interface

8.4 USB 1.1

8.4.1 Using Native USB interface


The following are general guidelines for the USB interface:

- Unused USB ports should be terminated with 15 k Ω pull-down resistors on both P+/P– data lines.
- 15 Ω series resistors should be placed as close as possible to the ICH2 (<1 inch). These series resistors are required for source termination of the reflected signal.
- An optional 0–47 pF capacitor may be placed as close to the USB connector as possible on the USB data lines (P0±, P1±, P2±, P3±). This capacitor can be used for signal quality (rise/fall time) and to help minimize EMI radiation. Use the value in the 0–47 pF range needed to provide the best EMI immunity and best adherence to rise & fall time requirements. This capacitor is shown in the Figure 104.
- 15 k $\Omega \pm$ 5% pull-down resistors should be placed on the USB Connector side of the series resistors on the USB data lines (P0± ... P3±), and are REQUIRED for signal termination by USB specification. The length of the stub should be as short as possible.
- The trace impedance for the P0±... P3± signals should be 45 Ω (to ground) for each USB signal P+ or P-. Using the stack-up recommended, USB requires 9 mil traces and 25 mil spacing. The impedance is 90 Ω between the differential signal pairs P+ and P- to match the 90 Ω USB twisted pair cable impedance. Note that twisted pair characteristic impedance of 90 Ω is the series impedance of both wires, resulting in an individual wire presenting a 45 Ω impedance. The trace impedance can be controlled by carefully selecting the trace width, trace distance from power or ground planes, and physical proximity of nearby traces.
- USB data lines must be routed as critical signals. The P+/P- signal pair must be routed together, parallel to each other on the same layer, and not parallel with other non-USB signal traces to minimize crosstalk. Doubling the space from the P+/P- signal pair to adjacent signal traces will help to prevent crosstalk. Do not worry about crosstalk between the two P+/P- signal traces. The P+/P- signal traces must also be the same length. This will minimize the effect of common mode current on EMI. Lastly, do not route over plane splits.

Figure 104 is the recommended USB schematic.

Figure 104. USB Data Signals

Table 48. Recommended USB Trace Characteristics

Impedance 'Z0' = 45.5 Ω
Line Delay = 160.2 ps
Capacitance = 3.5 pF
Inductance = 7.3 nH
Impedance 'Z0' = 45.4 Ω
Res @20° C = 53.9 m Ω

8.4.2 Disabling the Native USB Interface of Intel[®] ICH2

The ICH2 native USB interface can be disabled. This can be done when an external PCI based USB controller is being implemented in the platform. To disable the native USB Interface, ensure that the differential pairs are pulled down thru 15 k Ω resistors, that the OC[3:0]# signals are deasserted by pulling them up weakly to V_{CC3SBY}, and that both function 2 & 4 are disabled via the D31:F0;FUNC_DIS register. Ensure that the 48 MHz USB clock is connected to the ICH2 and is kept running. This clock must be maintained even though the internal USB functions are disabled.

8.5 **IOAPIC Design Recommendation**

The processor does not have any IOAPIC pins that are defined. It receives interrupts for servicing via the system bus interrupt delivery mechanism. See *Intel*[®] 82801BA I/O Controller Hub 2 (ICH2) and Intel[®] 82801BAM I/O Controller Hub 2 Mobile (ICH2-M) Datasheet for more details.

Intel 845 chipsets systems should incorporate the following ICH2 recommendations:

- Tie APICCLK directly to ground.
- Tie APICD [0:1] to ground through a 10 k Ω resistor.

8.5.1 PIRQ Routing Example

PCI interrupt request signals E-H are new to the ICH2. These signals have been added to lower the latency caused by having multiple devices on one interrupt line. With these new signals, each PCI slot can have an individual PCI interrupt request line (assuming that the system has four PCI slots). Table 49 shows how the ICH2 uses the PCI IRQ when the IOAPIC is active.

Table 49. IOAPIC Interrupt Inputs 16 through 23 Usages

IOAPIC INTIN Pin	Function in Intel [®] ICH2 Using the PCI IRQ in IOAPIC
IOAPIC INTIN PIN 16 (PIRQA)	
IOAPIC INTIN PIN 17 (PIRQB)	AC'97, Modem and SMBUS
IOAPIC INTIN PIN 18 (PIRQC)	
IOAPIC INTIN PIN 19 (PIRQD)	USB Controller #1
IOAPIC INTIN PIN 20 (PIRQE)	Internal LAN Device
IOAPIC INTIN PIN 21 (PIRQF)	
IOAPIC INTIN PIN 22 (PIRQG)	
IOAPIC INTIN PIN 23 (PIRQH)	USB Controller #2 (starting from ICH2 B0 silicon)

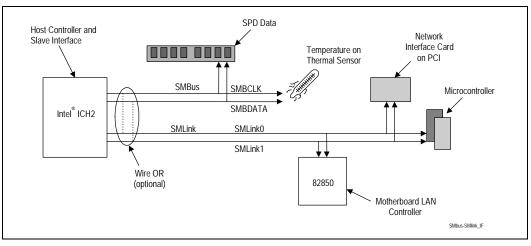
Interrupts B, D, E, and H service devices internal to the ICH2. Interrupts A, C, F, and G are unused and can be used by PCI slots. Figure 105 shows an example of IRQ line routing to the PCI slots.

Figure 105. Example PIRQ Routing

The PCI IRQ Routing shown in Figure 105 allows the ICH2 internal functions to have a dedicated IRQ (assuming add-in cards are single function devices and use INTA). If a P2P bridge card or a multifunction device uses more than one INTn# pin on the ICH2 PCI Bus, the ICH2 internal functions will start sharing IRQs.

Figure 105 is an example. It is up to the board designer to route the signals in the most efficient way for a particular system. A PCI slot can be routed to share interrupts with any of the ICH2 internal device/functions.

8.6 SMBus/SMLink Interface


The SMBus interface on the ICH2 is the same as that on the ICH. It uses two signals, SMBCLK and SMBDATA, to send and receive data from components residing on the bus. The SMBus Host Controller uses these signals exclusively. The SMBus Host Controller resides inside the ICH2. If the SMBus is used only for the SDRAM SPD EEPROMs (one on each DIMM), both signals should be pulled up with a 4.7 k Ω resistor to 3.3 V.

The ICH2 incorporates a new SMLink interface that supports AOL*, AOL2*, and a slave functionality. It uses two signals, SMLINK[1:0]. SMLINK[0] corresponds to an SMBus clock signal, and SMLINK[1] corresponds to an SMBus data signal. These signals are part of the SMB Slave Interface.

For Alert on LAN (AOL) functionality, the ICH2 transmits heartbeat and event messages over the interface. When using the 82562EM LAN Connect Component, the ICH2's integrated LAN Controller will claim the SMLink heartbeat and event messages, and send them over the network. An external, AOL2-enabled LAN Controller will connect to the SMLink signals to receive heartbeat and event messages, as well as access the ICH2 SMBus Slave Interface. The slave interface function allows an external microcontroller to perform various functions. For example, the slave write interface can reset or wake a system, generate SMI# or interrupts, and send a message. The slave read interface can read the system power state, read the watchdog timer status, and read system status bits.

Both the SMBus Host Controller and the SMBus Slave Interface obey the SMBus protocol, so the two interfaces can be externally wire-OR'd together to allow an external management ASIC to access targets on the SMBus as well as the ICH2 Slave interface. This is done by connecting SMLink[0] to SMBCLK, and SMLink[1] to SMBDATA.

Note: Intel does not support external access to the ICH2 Integrated LAN Controller via the SMLink interface, and does not support access to the ICH2's SMBus Slave Interface by the ICH2's SMBus Host Controller.

8.6.1 SMBus Architecture & Design Considerations

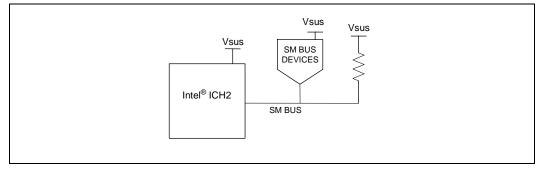
SMBus Design Considerations

There are several possibilities for designing an SMBus using the ICH2. Designs can be grouped into three major categories based on the power supply source for the SMBus microcontrollers. This includes two unified designs in which all devices are powered by either V_{CC_Core} or $V_{CC_Suspend}$, and a mixed design in which some devices are powered by each of the two supplies.

Primary considerations in choosing a design are based on:

- The presence of devices that must run in STR (Suspend to RAM).
- The amount of $V_{CC_Suspend}$ current available (i.e., minimizing load of $V_{CC_Suspend}$).

General Design Issues and Notes


The following are general considerations for all architectures:

- The pull-up resistor size for the SMBus data and clock signals is dependent on the number of devices present on the bus. A typical value is 8.2 k Ω . This should prevent the SMBus signals from floating, which could cause leakage in the ICH2 and other devices.
- SDRAM DIMMs have their SPD device powered by the same power plane as that used for the DRAM array. Thus in a system where STR is supported, the SPD device must be powered by $V_{CC_Suspend}$. In a system not supporting STR, this DIMM can be powered by the core supply.
- The ICH2 does not run SMBus cycles while in STR.
- SMBus devices that can operate in STR must be powered by the V_{CC_Suspend} supply.

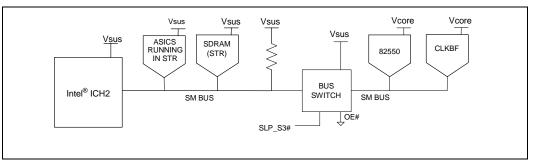
The Unified V_{CC_Suspend} Architecture

In this design all SMBus devices are powered by the $V_{CC_Suspend}$ supply. Consideration must be made to provide enough $V_{CC_Suspend}$ current while in STR.

The Unified V_{CC_Core} Architecture

In this design, all SMBus devices are powered by the V_{CC_Core} supply. This architecture allows none of the devices to operate in STR, but minimizes the load on $V_{CC_Suspend}$.

Figure 108. Unified V_{CC_Core} Architecture


NOTES:

- 1. The SMBus device must be back-drive safe while its supply (Vcore) is off and V_{CC_Suspend} is still powered.
- 2. In suspended modes in which V_{CC_Core} is OFF & V_{CC_Suspend} is on, the V_{CC_Core} node will be very near ground potential. In this case, the input leakage of the ICH will be approximately 10 μ A.

Mixed Architecture

This design allows for SMBus devices to communicate while in STR, yet minimizes $V_{CC_Suspend}$ leakage by keeping non-essential devices on the core supply. This is accomplished by the use of a "bus switch" to isolate the devices powered by the core and suspend supplies. (See Figure 109.)

Figure 109. Mixed V_{CC_Suspend} / V_{CC_Core} Architecture

Added Considerations for Mixed Architecture

- V_{CC_Suspend} must power the bus switch.
- If there are 5 V SMBus devices used, then an added level translator must be used to separate those devices driving 5 V from those driving 3 V signal levels.
- Devices that are powered by the V_{CC_Suspend} well must not drive into other devices that are powered off. This is accomplished with the "bus switch".

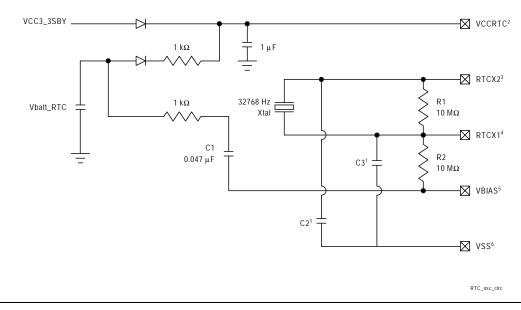
8.7 PCI

The ICH2 provides a PCI Bus interface that is compliant with the PCI Local Bus Specification, Revision 2.2. The implementation is optimized for high-performance data streaming when the ICH2 is acting as either the target or the initiator on the PCI bus. For more information on the PCI Bus interface, refer to the PCI Local Bus Specification Revision 2.2.

The ICH2 supports six PCI Bus masters (excluding the ICH2) by providing six REQ#/GNT# pairs. In addition, the ICH2 supports two PC/PCI REQ#/GNT# pairs, one of which is multiplexed with a PCI REQ#/GNT# pair.

The GNTA# signal on the ICH2 contains an added "top block swap" strapping function that allows the top block in the FWH to be swapped with another location. This allows for safe update up the boot block even if a power failure occurs. Refer to the *Intel*[®] 82801BA I/O Controller Hub 2 (ICH2) and Intel[®] 82801BAM I/O Controller Hub 2 Mobile (ICH2-M) Datasheet for more information.

8.8 RTC


The ICH2 contains a real time clock (RTC) with 256 bytes of battery backed SRAM. The internal RTC module provides two key functions: keeping date and time, and storing system data in its RAM when the system is powered down.

This section describes the recommended hookup for the RTC circuit for the ICH2.

8.8.1 RTC Crystal

The ICH2 RTC module requires an external oscillating source of 32.768 kHz connected on the RTCX1 and RTCX2 pins. Figure 110 shows the external circuitry that comprises the oscillator of the ICH2 RTC.

Figure 110. External Circuitry for the Intel[®] ICH2 RTC

NOTES:

- 1. The exact capacitor value must be based on the crystal maker's recommendation. (Typical values for C2 and C3 are 18 pF for a crystal with CLOAD=12.5 pF.)
- 2. VccRTC: Power for RTC-well.
- 3. RTCX2: Crystal Input 2-connected to the 32.768 kHz crystal.
- 4. RTCX1: Crystal Input 1-connected to the 32.768 kHz crystal.
- 5. VBIAS: RTC BIAS Voltage—This pin is used to provide a reference voltage that sets a current that is mirrored throughout the oscillator and buffer circuitry.
- 6. V_{SS}: Ground.

8.8.2 External Capacitors

To maintain the RTC accuracy, the external capacitor C1 must be 0.047 μ F, and the external capacitor values (C2 and C3) should be chosen to provide the manufacturer's specified load capacitance (Cload) for the crystal when combined with the parasitic capacitance of the trace, socket (if used), and package. When the external capacitor values are combined with the capacitance of the trace, socket, and package, the closer the capacitor value can be matched to the actual load capacitance of the crystal used, the more accurate the RTC will be.

The following equation can be used to choose the external capacitance values (C2 and C3):

Cload = (C2 * C3)/(C2+C3) + Cparasitic

C3 can be chosen such that C3 > C2. Then C2 can be trimmed to obtain the 32.768 kHz.

8.8.3 RTC Layout Considerations

- Keep the RTC lead lengths as short as possible (about ¹/₄ inch is sufficient).
- Minimize the capacitance between Xin and Xout in the routing.
- Put a ground plane under the XTAL components.
- Do not route switching signals under the external components (unless on the other side of the board).
- The oscillator V_{CC} should be clean. Use a filter, such as an RC lowpass filter or a ferrite inductor.

8.8.4 RTC External Battery Connection

The RTC requires an external battery connection to maintain its functionality and its RAM while the ICH2 is not powered by the system.

Example batteries are Duracell* 2032, 2025, or 2016 (or equivalent), which can give many years of operation. Batteries are rated by storage capacity. The battery life can be calculated by dividing the capacity by the average current required. For example, if the battery storage capacity is 170 mAh (assumed usable) and the average current required is 3 μ A, the battery life will be at least:

 $170,000 \,\mu\text{Ah} / 3 \,\mu\text{A} = 56,666 \,h = 6.4 \,\text{years}$

The voltage of the battery can affect the RTC accuracy. In general, when the battery voltage decays, the RTC accuracy also decreases. High accuracy can be obtained when the RTC voltage is in the range of 3.0 V to 3.3 V.

The battery must be connected to the ICH2 via an isolation Schottky diode circuit. The Schottky diode circuit allows the ICH2 RTC-well to be powered by the battery when the system power is not available, but by the system power when it is available. To do this, the diodes are set to be reverse biased when the system power is not available. Figure 111 is an example of a diode circuit that is used.

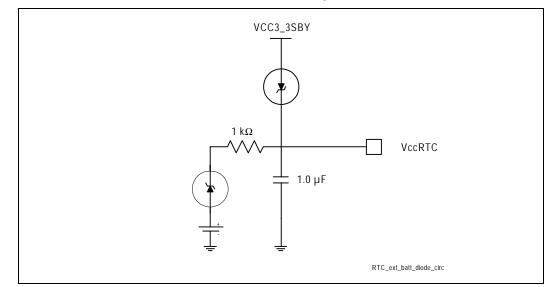


Figure 111. A Diode Circuit to Connect RTC External Battery

A standby power supply should be used in a desktop system to provide continuous power to the RTC when available, which will significantly increase the RTC battery life and thereby the RTC accuracy.

8.8.5 RTC External RTCRST Circuit

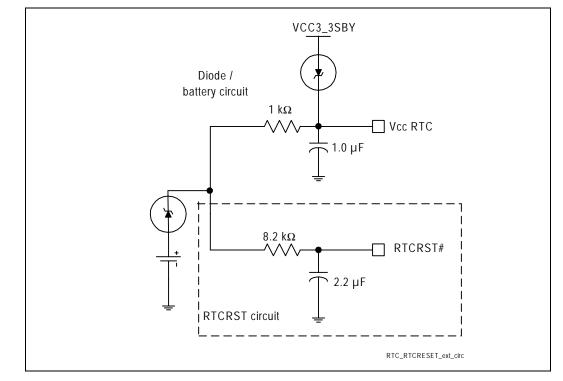


Figure 112. RTCRST# External Circuit for the Intel[®] ICH2 RTC

The ICH2 RTC requires some additional external circuitry. The RTCRST# signal is used to reset the RTC-well. The external capacitor and the external resistor between RTCRST# and the RTC battery (Vbat) were selected to create an RC time delay, such that RTCRST# will go high some time after the battery voltage is valid. The RC time delay should be in the range of 10–20 ms. When RTCRST# is asserted, bit 2 (RTC_PWR_STS) in the GEN_PMCON_3 (General PM Configuration 3) register is set to 1, and remains set until software clears it. Therefore, when the system boots, the BIOS knows that the RTC battery has been removed.

This RTCRST# circuit when combined with the diode circuit Figure 111 allows the RTC-well to be powered by the battery when the system power is not available. Figure 110 is and example of this circuitry that is used in conjunction with the external diode circuit.

8.8.6 RTC Routing Guidelines

- All RTC OSC signals (RTCX1, RTCX2, VBIAS) should all be routed with trace lengths of less than 1 inch (the shorter the better).
- Minimize the capacitance between RTCX1 and RTCX2 in the routing (optimal would be a ground line between them).
- Put a ground plane under all of the external RTC circuitry.
- Do not route any switching signals under the external components (unless on the other side of the ground plane).

8.8.7 VBIAS DC Voltage and Noise Measurements

- Steady state VBIAS will be a DC voltage of at least 200 mV.
- VBIAS will be "kicked" when the battery is inserted to about 0.7–1.0 V, but it will come back to its DC value within a few ms.
- $\bullet\,$ VBIAS is very sensitive and cannot be directly probed; it can be probed through a .01 μF capacitor.
- Excess noise on VBIAS can cause the ICH2 internal oscillator to misbehave or even stop completely.
- To minimize noise on VBIAS, it is necessary to implement the routing guidelines described above and the required external RTC circuitry as described in the *Intel®* 82801BA I/O Controller Hub 2 (ICH2) and Intel[®] 82801BAM I/O Controller Hub 2 Mobile (ICH2-M) Datasheet.

8.8.8 **Power-Well Isolation Control Strap Requirements**

If not using the glue chip, all RTC-well inputs (RSMRST#, RTCRST#, INTRUDER#) must be either pulled up to $V_{CC}RTC$ or pulled down to ground while in G3 state. RTCRST#, when configured as shown in Figure 112, meets this requirement. RSMRST# should have a weak external pull-down to ground, and INTRUDER# should have a weak external pull-up to $V_{CC}RTC$. This will prevent these nodes from floating in G3, and correspondingly will prevent I_{CC}RTC leakage that can cause excessive coin-cell drain. The PWROK input signal should also be configured with an external weak pull-down.

8.9 LAN Layout Guidelines

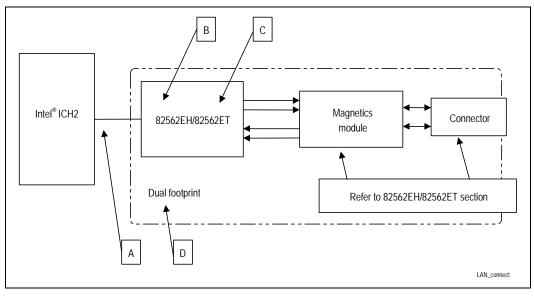

The ICH2 provides several options for integrated LAN capability. The platform supports several components depending on the target market. These guidelines use the 82562ET to refer to both the 82562ET and 82562EM. The 82562EM is specified in those cases where there is a difference.

Table 50. Differences between Intel[®] 82562EM, Intel[®] 82562ET, and Intel[®] 82562EH

LAN Connect Component	Connection	Features
Intel [®] 82562EM	Advanced 10/100 Ethernet	AOL* & Ethernet 10/100 Connection
Intel [®] 82562ET	10/100 Ethernet	Ethernet 10/100 Connection
Intel [®] 82562EH	1 MB HomePNA* LAN	1 MB HomePNA connection

Intel developed a dual footprint for 82562ET and 82562EH to minimize the required number of board builds. A single layout with the specified dual footprint will allow the OEM to install the appropriate Platform LAN connect component to meet the market need. Design guidelines are provided for each required interface and connection. Refer to Figure 113 and Table 51.

Figure 113. Intel[®] ICH2/LAN Connect Section

Layout Section	Figure 113 Referenc e	Design Guide Section
Intel [®] ICH2—LAN Interconnect	А	8.9.1—LAN Interconnect Guidelines
General Routing Guidelines	B,C,D	8.9.2—General LAN Routing Guidelines and Considerations
Intel [®] 82562EH	В	8.9.3—Intel [®] 82562EH Home/PNA* Guidelines
Intel [®] 82562ET /82562EM	С	8.9.4—Intel [®] 82562ET / 82562EM Guidelines
Dual Layout Footprint	D	8.9.6—Intel [®] 82562ET / 82562EH Dual Footprint Guidelines

Table 51. LAN Design Guide Section Reference

8.9.1 Intel[®] ICH2—Platform LAN Connect Guidelines

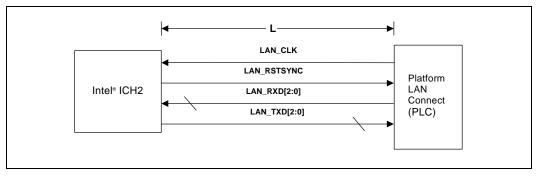
This section contains guidelines to the design of motherboards and riser cards to comply with the LAN Connect Interface. It should not be treated as a specification, and the system designer must ensure through simulations or other techniques that the system meets the specified timings. Special care must be given to matching the LAN_CLK traces to those of the other signals, as shown below. The following are guidelines for the ICH2 to LAN component interface. The following signal lines are used on the LAN Interconnect interface:

- LAN_CLK
- LAN_RSTSYNC
- LAN_RXD[2:0]
- LAN_TXD[2:0]

This interface supports both 82562EH and 82562ET/82562EM components. Signal lines LAN_CLK, LAN_RSTSYNC, LAN_RXD[0], and LAN_TXD[0] are shared by both components. Signal lines LAN_RXD[2:1] and LAN_TXD[2:1] are not connected when 82562EH is installed.

Dual Footprint guidelines are described in Section 8.9.6

8.9.1.1 Bus Topologies

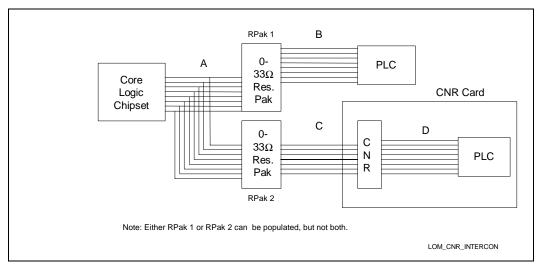

The LAN Connect Interface can be configured in several topologies:

- Direct point-to-point connection between the ICH2 and the LAN component
- Dual Footprint
- LOM/CNR Implementation

8.9.1.2 Point-to-point Interconnect

The following are guidelines for a single solution motherboard. Either 82562EH, 82562ET, or CNR is installed.

Figure 114. Single Solution Interconnect



Length requirements for Figure 114:

- 82562EH: L = 4.5 inches to 10 inches (Signal Lines LAN_RXD[2:1] and LAN_TXD[2:1] are not connected).
- 82562ET: L = 3.5 inches to 10 inches
- CNR: L = 3 inches to 9 inches (0.5 inch to 3 inches on card).

8.9.1.3 LOM /CNR Interconnect

The following guidelines allow for an all inclusive motherboard solution. This layout combines LOM (LAN on Motherboard), dual footprint, and the CNR solutions. The resistor pack ensures that either a CNR option or a LAN on motherboard option can be implemented at one time. A model of this is found in Figure 115. The recommended trace routing lengths are listed in Table 52.

Figure 115. LOM/CNR Interconnect

Configuration	Α	В	С	D
Intel [®] 82562EH	0.5 in. to 6 in.	4 in. to (10 in.– A)		
Intel [®] 82562ET/82562EM	0.5 in. to 7 in.	3 in. to (10 in.– A)		
Dual Footprint	0.5 in. to 6.5 in.	3.5 in. to (10 in.– A)		
82562ET/EH Card ¹	0.5 in. to 6.5 in.		2.5 in. to (9 in.– A)	0.5 in. to 3 in.

Table 52. Length Requirements for Figure 115

NOTE: ¹Total trace length should not exceed 13 in.

Additional guidelines for this configuration are as follows:

- Stubs due to the resistor pack should not be present on the interface.
- The resistor pack value can be 0 Ω to 33 Ω .
- LAN on motherboard PLC can be a dual footprint configuration.

8.9.1.4 Signal Routing and Layout

Platform LAN Connect signals must be carefully routed on the motherboard to meet the timing and signal quality requirements of this interface specification. The following are some general guidelines that should be followed. It is recommended that the board designer simulate the board routing to verify that the specifications are met for flight times and skews due to trace mismatch and crosstalk. On the motherboard the length of each data trace is either equal in length to the LAN_CLK trace or up to 0.5 inches shorter than the LAN_CLK trace. (LAN_CLK should always be the longest motherboard trace in each group.)

8.9.1.5 Crosstalk Consideration

Noise due to crosstalk must be carefully controlled to a minimum. Crosstalk is the key cause of timing skews, and is the largest part of the t_{RMATCH} parameter. This parameter is the sum of the trace length mismatch between the JCLK and other data signals. To meet this requirement, the length of each data trace on the motherboard is either equal to or as much as 0.5 inch shorter than the JCLK trace. Noise due to crosstalk from non_PLC signals should be minimized by maintaining at least 100 mils of spacing.

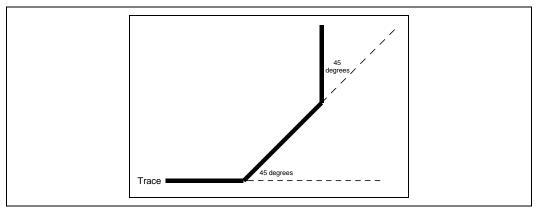
8.9.1.6 Impedances

The motherboard impedances should be controlled to minimize the impact of any mismatch between the motherboard and the add-in card. An impedance of $60 \ \Omega \pm 15\%$ is strongly recommended. Otherwise, signal integrity requirements may be violated.

8.9.1.7 Line Termination

Line termination mechanisms are not specified for the LAN Connect interface. Slew rate controlled output buffers achieve acceptable signal integrity by controlling signal reflection, over/undershoot, and ring back. A 33 Ω series resistor can be installed at the driver side of the interface should the developer have concerns about over/undershoot. Note that the receiver must allow for any drive strength and board impedance characteristic within the specified ranges.

8.9.2 General LAN Routing Guidelines and Considerations


8.9.2.1 General Trace Routing Considerations

Trace routing considerations are important to minimize the effects of crosstalk and propagation delays on sections of the board where high-speed signals exist. Signal traces should be kept as short as possible to decrease interference from other signals, including those propagated through power and ground planes.

Observe the following to help optimize board performance.

- Note: Some of the following suggestions are specific to a 4.5 mil stack-up:
 - Maximum mismatch between the length of the clock trace and the length of any data trace is 0.5 inch.
 - Maintain constant symmetry and spacing between the traces within a differential pair.
 - Keep the signal trace lengths of a differential pair equal to each other.
 - Keep the total length of each differential pair under 4 inches. [Many customer designs with differential traces longer than 5 inches have had one or more of the following issues: IEEE phy conformance failures, excessive EMI, and/or degraded receive BER (Bit Error Rate).]
 - Do not route the transmit differential traces closer than 100 mils to the receive differential traces.
 - Do not route any other signal traces parallel to the differential traces, and closer than 100 mils to the differential traces. 300 mils separation is recommended.
 - Keep maximum separation between differential pairs to 7 mils.
 - For high-speed signals, the number of corners and vias should be kept to a minimum. If a 90° bend is required, it is recommended to use two 45° bends instead. Refer to Figure 116.
 - Traces should be routed away from board edges by a distance greater than the trace height above the ground plane. This allows the field around the trace to couple more easily to the ground plane rather than to adjacent wires or boards.
 - Do not route traces and vias under crystals or oscillators. This will prevent coupling to or from the clock.
 - Place traces from clocks and drives at a minimum distance from apertures by a distance that is greater than the largest aperture dimension.

Figure 116. Trace Routing

8.9.2.1.1 Trace Geometry and Length

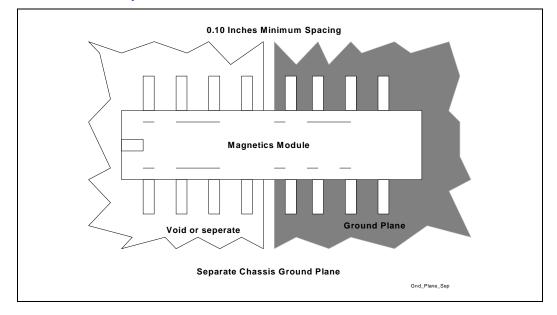
The key factors in controlling trace EMI radiation are the trace length, and the ratio of trace-width to trace-height above the ground plane. To minimize trace inductance, high-speed signals and signal layers that are close to a ground or power plane should be as short and as wide as practical. Ideally, the trace width to height above the ground plane ratio is between 1:1 and 3:1. To maintain trace impedance, the width of the trace should be modified when changing from one board layer to another if the two layers are not equidistant from the power or ground plane. Differential trace impedances should be controlled to be ~100 Ω . It is necessary to compensate for trace-to-trace edge coupling, which can lower the differential impedance by 10 Ω , when the traces within a pair are closer than 30 mils (edge to edge).

Traces between decoupling and I/O filter capacitors should be as short and as wide as practical. Long and thin traces are more inductive and would reduce the intended effect of decoupling capacitors. For similar reasons, traces to I/O signals and signal terminations should be as short as possible. Vias to the decoupling capacitors should be sufficiently large in diameter to minimize series inductance. Additionally, the PLC should not be closer than one inch to the connector/magnetics/edge of the board.

8.9.2.1.2 Signal Isolation

The following rules apply to signal isolation:

- Separate and group signals by function on separate layers if possible. Maintain a gap of 100 mils between all differential pairs (Phoneline and Ethernet) and other nets, but group associated differential pairs together.
- *Note:* Over the length of the trace run, each differential pair should be at least 0.3 inches away from any parallel signal traces.
 - Physically group together all components associated with one clock trace to reduce trace length and radiation.
 - Isolate I/O signals from high speed signals to minimize crosstalk, which can increase EMI emission and susceptibility to EMI from other signals.
 - Avoid routing high-speed LAN or Phoneline traces near other high-frequency signals associated with a video controller, cache controller, processor, or other similar devices.


8.9.2.2 Power and Ground Connections

The following rules and guidelines apply to power and ground connections:

- All V_{CC} pins should be connected to the same power supply.
- All V_{SS} pins should be connected to the same ground plane.
- 4-6 decoupling capacitors, including two 4.7 µF capacitors, are recommended.
- Place decoupling as close as possible to power pins.

8.9.2.2.1 General Power and Ground Plane Considerations

To properly implement the common mode choke functionality of the magnetics module, the chassis or output ground (secondary side of transformer) should be separated from the digital or input ground (primary side) by a physical separation of at least 100 mils.

Figure 117. Ground Plane Separation

Proper grounding requires minimizing inductance levels in the interconnections and keeping ground returns short, signal loop areas small, and power inputs bypassed to signal return. This will significantly reduce EMI radiation.

The following rules help reduce circuit inductance in both backplanes and motherboards.

- Route traces over a continuous plane with no interruptions (do not route over a split plane). If there are vacant areas on a ground or power plane, avoid routing signals over the vacant areas, which will increase inductance and EMI radiation levels.
- Separate noisy digital grounds from analog grounds to reduce coupling. Noisy digital grounds may affect sensitive DC subsystems.
- All ground vias should be connected to every ground plane, and every power via should be connected to all power planes at equal potential. This helps reduce circuit inductance.
- Physically locate grounds between a signal path and its return. This will minimize the loop area.
- Avoid fast rise/fall times as much as possible. Signals with fast rise and fall times contain many high-frequency harmonics that can radiate EMI.
- The ground plane beneath the filter/transformer module should be split. The RJ45 and/or RJ11 connector side of the transformer module should have chassis ground beneath it. By splitting ground planes beneath the transformer, noise coupling between the primary and secondary sides of the transformer and between the adjacent coils in the transformer is minimized. There should not be a power plane under the magnetics module.
- Create a spark gap between pins 2 through 5 of the Phoneline connector(s) and shield ground of 1.6 mm (59.0 mil). This is a critical requirement needed to pass FCC part 68 testing for phoneline connection. Note that for worldwide certification, 2.5 mm is required. In North America, the spacing requirement is 1.6mm. However, home networking can be used in other parts of the world, including Europe, where some Nordic countries require the 2.5 mm spacing.

8.9.2.3 Common Physical Layout Issues

Here is a list of common physical layer design and layout mistakes in LAN On Motherboard Designs.

- Unequal length of the two traces within a differential pair. Inequalities create common-mode noise and will distort the transmit or receive waveforms.
- Lack of symmetry between the two traces within a differential pair. [Each component and/or via that one trace encounters, the other trace must encounter the same component or a via at the same distance from the PLC.] Asymmetry can create common-mode noise and distort the waveforms.
- Excessive distance between the PLC and the magnetics, or between the magnetics and the RJ-45/11 connector. Beyond a total distance of about 4 inches, it can become extremely difficult to design a spec-compliant LAN product. Long traces on FR4 (fiberglass epoxy substrate) will attenuate the analog signals. Also, any impedance mismatch in the traces will be aggravated if they are longer. The magnetics should be as close to the connector as possible (less than or equal to one inch).
- Routing any other trace parallel to and close to one of the differential traces. Crosstalk transmitted onto the receive channel will cause degraded long cable BER. Crosstalk getting onto the transmit channel can cause excessive emissions (failing FCC), and can cause poor transmit BER on long cables. At a minimum, other signals should be kept 0.3 inches from the differential traces.
- Routing the transmit differential traces next to the receive differential traces. The transmit trace that is closest to one of the receive traces will induce more crosstalk onto the closest receive trace, and can greatly degrade the receiver's BER over long cables. After exiting the PLC, the transmit traces should be kept 0.3 inches or more away from the nearest receive trace. The only possible exceptions are in the vicinities where the traces enter or exit the magnetics, the RJ-45/11, and the PLC.
- Use of an inferior magnetics module. The magnetics modules that are used have been fully tested for IEEE PLC conformance, long cable BER, and for emissions and immunity. Inferior magnetics modules often have less common-mode rejection and/or no auto transformer in the transmit channel.
- Use of an 82555 or 82558 physical layer schematic in a PLC design. The transmit terminations and decoupling are different. There are also differences in the receive circuit. Follow the appropriate reference schematic or App.-Note.
- Not using (or incorrectly using) the termination circuits for the unused pins at the RJ-45/11 and for the wire-side center-taps of the magnetics modules. These unused RJ pins and wire-side center-taps must be correctly referenced to chassis ground via the proper value resistor and a capacitance or term plane. If these are not terminated properly, there can be emissions (FCC) problems, IEEE conformance issues, and long cable noise (BER) problems. The Application Notes have schematics that illustrate the proper termination for these unused RJ pins and the magnetics center-taps.

• Incorrect differential trace impedances. It is important to have ~100 Ω impedance between the two traces within a differential pair. This becomes even more important as the differential traces become longer. It is very common to see designs that have differential trace impedances between 75 Ω and 85 Ω , even when the designers think they have designed for 100 Ω . Short traces will have fewer problems if the differential impedance is a little deviated.

To calculate differential impedance, many impedance calculators only multiply the singleended impedance by two. This does not take into account edge-to-edge capacitive coupling between the two traces. When the two traces within a differential pair are kept close¹ to each other, the edge coupling can lower the effective differential impedance by 5 to 20 Ω . A 10 to 15 Ω drop in impedance is common.

- Use of a capacitor between the transmit traces that is too large, and/or too much capacitance between the magnetic's transmit center-tap (on the 82562ET side of the magnetics) and ground. Using capacitors more than a few pF in either of these locations can slow the 100 Mbps rise and fall time so much that they fail the IEEE rise time and fall time specs. This will also cause return loss to fail at higher frequencies, and will degrade the transmit BER performance. Caution should be exercised if a capacitor is put in either of these locations. If a capacitor is used, it should almost certainly be less than 22 pF. (6 pF to 12 pF values have been used on past designs with reasonably good success.) These capacitors are not necessary unless there is some overshoot in 100 Mbps mode.
- Not keeping the two traces within a differential pair close⁽¹⁾ to each other. Keeping them close⁽¹⁾ helps to make them more immune to crosstalk and other sources of common-mode noise. This also means lower emissions (i.e., FCC compliance) from the transmit traces, and better receive BER for the receive traces.
- *Note:* ¹Close should be considered to be less than 0.030 inches between the two traces within a differential pair. 0.007 inch trace-to-trace spacing is recommended.

8.9.3 Intel[®] 82562EH Home/PNA* Guidelines

Documentation can be found at:

http://developer.intel.com/design/network/home/82562EH.htm

82562EH Home/PNA* Guidelines Related Documents

- 82562EH HomePNA 1 Mb/s Physical Layer Interface—Product Preview Datasheet: <u>http://developer.intel.com/design/network/home/82562EH_datasheet.pdf</u>
- RS-82562EH 1Mb/s Home PNA LAN Connect Option Application Note: http://developer.intel.com/design/network/home/82562_EHapnote.pdf

For correct LAN performance, designers must follow the general guidelines outlined in General LAN Routing Guidelines and Considerations. The following sections describe additional guidelines for implementing an 82562EH Home/PNA* Platform LAN connect component.

8.9.3.1 Power and Ground Connections

Do the following for power and ground connections:

- For best performance place decoupling capacitors on the backside of the PCB directly under the 82562EH with equal distance from both pins of the capacitor to power/ground.
- The analog power supply pins for 82562EH (V_{CCA} , V_{SSA}) should be isolated from the digital V_{CC} and V_{SS} through the use of ferrite beads. In addition, adequate filtering and decoupling capacitors should be used between V_{CC} and V_{SS} , and V_{CCA} and V_{SSA} power supplies.

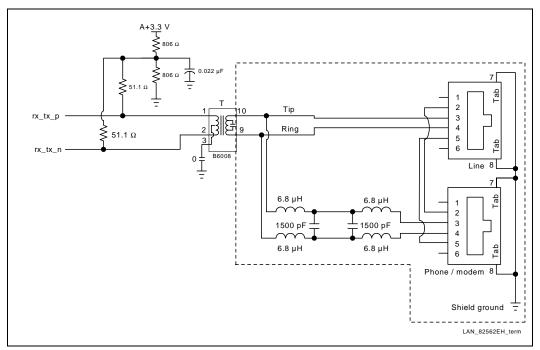
8.9.3.2 Guidelines for Intel[®] 82562EH Component Placement

Component placement can affect signal quality, emissions, and temperature of a board design. This section has guidelines for component placement.

Careful component placement can:

- Decrease potential problems directly related to electromagnetic interference (EMI) that can cause failure to meet FCC specifications.
- Simplify the task of routing traces. To some extent, component orientation will affect the complexity of trace routing. The overall objective is to minimize turns and crossovers between traces.

Minimizing the amount of space needed for the HomePNA LAN interface is important because all other interfaces will compete for physical space on a motherboard near the connector edge. As with most subsystems, the HomePNA LAN circuits must be as close as possible to the connector. Thus, it is imperative that all designs be optimized to fit in a very small space.


8.9.3.3 Crystals and Oscillators

To minimize the effects of EMI, clock sources should not be placed near I/O ports or board edges. Radiation from these devices may be coupled onto the I/O ports or out of the system chassis. Crystals should be kept away from the HomePNA magnetics module to prevent interference of communication. The retaining straps of the crystal (if they exist) should be grounded to prevent the possibility of radiation from the crystal case, and the crystal should lay flat against the PC board to provide better coupling of the electromagnetic fields to the board.

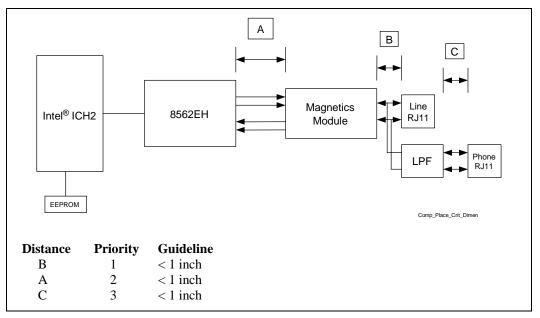
For noise free and stable operation, place the crystal and associated discretes as close as possible to the 82562EH keeping the length as short as possible, and do not route any noisy signals in this area.

8.9.3.4 Phoneline HPNA Termination

The transmit/receive differential signal pair is terminated with a pair of $51.1 \ \Omega \pm 1\%$ resistors. This parallel termination should be placed close to the 82562EH. The center, common point between the $51.1 \ \Omega$ resistors is connected to a voltage divider network. The opposite end of one 806 Ω resistor is tied to V_{CC}A (3.3 V), and the opposite end of the other 806 Ω resistor and the capacitor are connected to ground. The termination is shown in Figure 118.

Figure 118. Intel[®] 82562EH Termination

The filter and magnetics component T integrates the required filter network, high-voltage impulse protection, and transformer to support the HomePNA LAN interface.


One RJ-11 jack (labeled "LINE" in Figure 118, *Intel*[®] 82562EH Termination) allows the node to be connected to the phoneline, and the second jack (labeled "PHONE" in Figure 118) allows other downline devices to be connected at the same time. This second connector is not required by HomePNA. However, typical PCI adapters and PC motherboard implementations are likely to include it for user convenience.

A low-pass filter, setup in-line with the second RJ-11 jack, is also recommended by the HomePNA to minimize interference between the HomePNA* connection and a POTs (Plain Old Telephone) voice or modem connection on the second jack. This places a restriction of the type of devices connected to the second jack because the pass-band of this filter is set approximately at 1.1 MHz. Refer to the HomePNA website, *www.homepna.org*, for up-to-date information and recommendations regarding the use of this low-pass filter to meet HomePNA certifications.

8.9.3.5 Critical Dimensions

There are three dimensions to consider during layout. Distance 'B' from the line RJ11 connector to the magnetics module, distance 'C' from the phone RJ11 to the LPF (Low Pass Filter) if implemented, and distance 'A' from 82562EH to the magnetics module (See Figure 119).

Figure 119. Critical Dimensions for Component Placement

8.9.3.5.1 Distance from Magnetics Module to Line RJ11

This distance 'B' should be given highest priority and should be less then 1 inch. Regarding trace symmetry, route differential pairs with consistent separation and with exactly the same lengths and physical dimensions.

Asymmetrical and unequal length in the differential pairs contribute to common mode noise that can degrade the receive circuit performance and contribute to radiated emissions from the transmit side.

8.9.3.5.2 Distance from Intel[®] 82562EH to Magnetics Module

Because of the high-speed of signals present, distance 'A' between the 82562EH and the magnetics should also be less than 1 inch, but should be second priority relative to distance form connects to the magnetics module.

In general, any section of trace that is intended for use with high-speed signals should incorporate proper termination practices. Proper signal termination can reduce reflections caused by impedance mismatches between device and traces route. The reflections of a signal can have a high-frequency component that may contribute more EMI than the original signal itself.

8.9.3.5.3 Distance from LPF to Phone RJ11

This distance 'C' should be less then 1 inch. Regarding trace symmetry, route differential pairs with consistent separation and with exactly the same lengths and physical dimensions.

Asymmetrical and unequal length in the differential pairs contribute to common mode noise that can degrade the receive circuit performance and contribute to radiated emissions from the transmit side

8.9.4 Intel[®] 82562ET / 82562EM Guidelines

82562ET / 82562EM Guidelines Related Documents

Refer to Section 1.1, *Related Documentation*, for a list of related documents.

For correct LAN performance, designers must follow the general guidelines outlined in Section 8.9.2, *General LAN Routing Guidelines and Considerations*. The following sections describe additional guidelines for implementing an 82562ET or 82562EM Platform LAN connect component.

8.9.4.1 Guidelines for Intel[®] 82562ET / 82562EM Component Placement

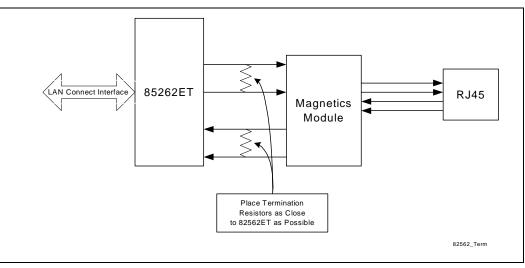
Component placement can affect the signal quality, emissions, and temperature of a board design. This section will provide guidelines for component placement.

Careful component placement can:

- Decrease potential problems directly related to electromagnetic interference (EMI) than can cause failure to meet FCC and IEEE test specifications.
- Simplify the task of routing traces. To some extent, component orientation will affect the complexity of trace routing. The overall objective is to minimize turns and crossovers between traces.

Minimizing the amount of space needed for the Ethernet LAN interface is important because all other interfaces will compete for physical space on a motherboard near the connector edge. As with most subsystems, the Ethernet LAN circuits must be as close as possible to the connector. Therefore, it is imperative that all designs be optimized to fit in a very small space.

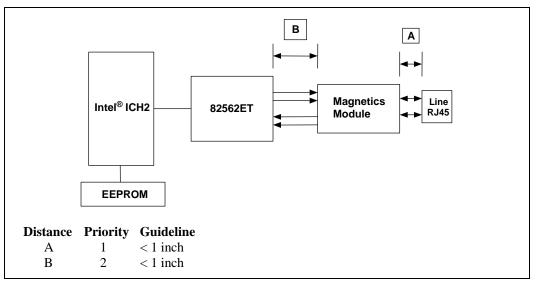
8.9.4.2 Crystals and Oscillators


To minimize the effects of EMI, clock sources should not be placed near I/O ports or board edges. Radiation from these devices may be coupled onto the I/O ports or out of the system chassis. Crystals should be kept away from the Ethernet magnetics module to prevent interference of communication. The retaining straps of the crystal (if they exist) should be grounded to prevent the possibility of radiation from the crystal case, and the crystal should lay flat against the PC board to provide better coupling of the electromagnetic fields to the board.

For noise free and stable operation, place the crystal and associated discretes as close as possible to the 82562ET or 82562EM keeping the trace length as short as possible, and do not route any noisy signals in this area.

8.9.4.3 Intel[®] 82562ET / 82562EM Termination Resistors

The 100 Ω (1%) resistor used to terminate the differential transmit pairs (TDP/TDN) and the 120 Ω (1%) receive differential pairs (RDP/RDN) should be placed as close to the Platform LAN connect component (82562ET or 82562EM) as possible. This is because these resistors are terminating the entire impedance that is seen at the termination source (i.e., 82562ET), including the wire impedance reflected through the transformer.


Figure 120. Intel[®] 82562ET/82562EM Termination

8.9.4.4 Critical Dimensions

There are two dimensions to consider during layout. Distance 'A' from the line RJ45 connector to the magnetics module, and distance 'B' from the 82562ET or 82562EM to the magnetics module (See Figure 121)

Figure 121. Critical Dimensions for Component Placement

8.9.4.4.1 Distance from Magnetics Module to RJ45

Distance A in Figure 121: should be given the highest priority in board layout. The distance between the magnetics module and the RJ45 connector should be kept to less than one inch of separation. The following trace characteristics are important and should be observed:

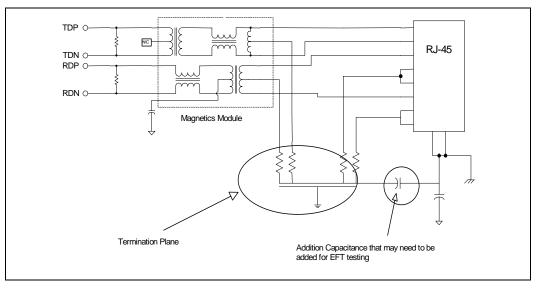
- **Differential Impedance**—The differential impedance should be 100 Ω . The single ended trace impedance will be approximately 50 Ω ; however, the differential impedance can also be affected by the spacing between the traces.
- **Trace Symmetry**—Differential pairs (such as TDP and TDN) should be routed with consistent separation and with exactly the same lengths and physical dimensions (for example, width).
- *Caution:* Asymmetric and unequal length traces in the differential pairs contribute to common mode noise. This can degrade the receive circuit's performance and contribute to radiated emissions from the transmit circuit. If the 82562ET must be placed further than a couple of inches from the RJ45 connector, distance B can be sacrificed. Keeping the total distance between the 82562ET and RJ-45 as short as possible should be a priority.
 - *Note:* Measured trace impedance for layout designs targeting 100 Ω often result in lower actual impedance. OEMs should verify actual trace impedance and adjust their layout accordingly. If the actual impedance is consistently low, a target of 105–110 Ω should compensate for second order effects.

8.9.4.5 Distance from Intel[®] 82562ET to Magnetics Module

Distance B should also be designed to be less than one inch between devices. The high-speed nature of the signals propagating through these traces requires that the distance between these components be closely observed. In general, any section of traces that is intended for use with high-speed signals should incorporate proper termination practices. Proper termination of signals can reduce reflections caused by impedance mismatches between device and traces. The reflections of a signal may have a high-frequency component that may contribute more EMI than the original signal itself. For this reason, these traces should be designed for a 100 Ω differential value. These traces should also be symmetric and equal length within each differential pair.

8.9.4.6 Reducing Circuit Inductance

The following guidelines show how to reduce circuit inductance in both back planes and motherboards. Traces should be routed over a continuous ground plane with no interruptions. If there are vacant areas on a ground or power plane, the signal conductors should not cross the vacant areas. This increases inductance and associated radiated noise levels. Noisy logic grounds should be separated from analog signal grounds to reduce coupling. Noisy logic grounds can sometimes affect sensitive DC subsystems such as analog to digital conversion, operational amplifiers, etc. All ground vias should be connected to every ground plane, and all power vias should be connected to all power planes at equal potential. This helps reduce circuit inductance. Another recommendation is to physically locate grounds to minimize the loop area between a signal path and its return path. Rise and fall times should be as slow as possible because signals with fast rise and fall times contain many high-frequency harmonics that can radiate significantly. The most sensitive signal returns closest to the chassis ground should be connected together. This will result in a smaller loop area and will reduce the likelihood of crosstalk. The effect of different configurations on the amount of crosstalk can be studied using electronics modeling software.

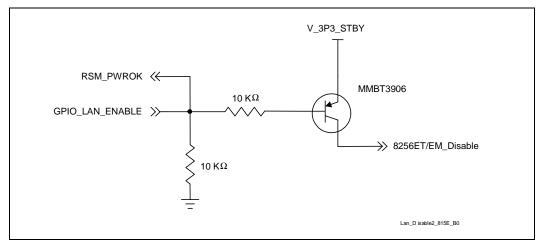

8.9.4.6.1 Terminating Unused Connections

In Ethernet designs it is common practice to terminate unused connections on the RJ-45 connector and on the magnetics module to ground. Depending on overall shielding and grounding design, this may be chassis ground, signal ground, or a termination plane. Care must be taken when using various grounding methods to insure that emission requirements are met. The method most often implemented is called the "Bob Smith" Termination. In this method a floating termination plane is cut out of a power plane layer. This floating plane acts as a plate of a capacitor with an adjacent ground plane. The signals can be routed through 75 Ω resistors to the plane. Stray energy on unused pins is then carried to the plane.

8.9.4.6.2 Termination Plane Capacitance

It is recommended that the termination plane capacitance equal a minimum value of 1500 pF. This helps reduce the amount of crosstalk on the differential pairs (TDP/TDN and RDP/RDN) from the unused pairs of the RJ45. Pads may be placed for an additional capacitance to chassis ground, which may be required if the term plane capacitance is not large enough to pass EFT (Electrical Fast Transient) testing. If a discrete capacitor is used, to meet the EFT requirements it should be rated for at least 1000 Vac.

Figure 122. Termination Plane



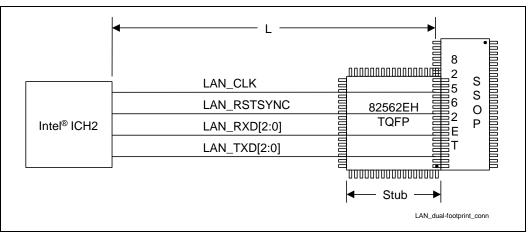
8.9.5 Intel[®] 82562ET/82562EM Disabling Method

To disable the 82562ET/EM, the device must be isolated (disabled) before reset (RSM_PWROK) is asserted. When using a GPIO such as GPO28 to be LAN_Enable (enabled high), LAN will default to enabled on initial power-up and after an AC power loss. This circuit shown in Figure 123 provides this operation. BIOS can disable the LAN micro controller by controlling the GPIO.

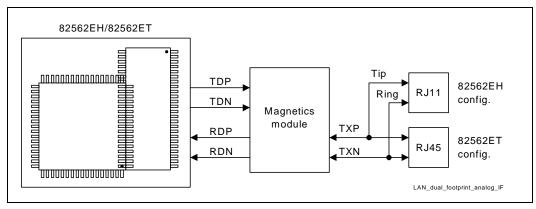
Figure 123. Intel[®] 82562ET/EM Disable Circuit

There are 4 pins that are used to put the 82562ET/EMcontroller in different operating states: Test_En, Isol_Tck, Isol_Ti, and Isol_Tex. Table 53 describes the operational/disable features for this design

Table 53. Intel[®] 82562ET/EM Control Signals


Test_En	lsol_Tck	lsol_Ti	lsol_Tex	State
0	0	0	0	Enabled
0	1	1	1	Disabled with Clock (low power)
1	1	1	1	Disabled without Clock (lowest power)

Test_En (see Table 53) should be pulled-down through a 100 Ω resistor. The remaining 3 control signals should each be connected through 100 Ω series resistors to the common node "82562ET/EM_Disable" of the disable circuit.


8.9.6 Intel[®] 82562ET / 82562EH Dual Footprint Guidelines

These guidelines characterize the proper layout for a dual footprint solution. This configuration enables the developer to install either the 82562EH or the 82562ET/82562EM component in a single motherboard design. The following are guidelines for the 82562ET/82562EH Dual Footprint option. The guidelines called out in Section 8.9.1 through 8.9.4 apply to this configuration. The dual footprint for this particular solution uses an SSOP footprint for 82562ET, and a TQFP footprint for 82562EH. The combined footprint for this configuration is shown in Figure 124 and Figure 125.

Figure 124. Dual Footprint LAN Connect Interface

Figure 125. Dual Footprint Analog Interface

The following are additional guidelines for this configuration:

- L = 3.5 inches to 10 inches
- Stub < 0.5 inch
- Either 82562EH or 82562ET/82562EM can be installed, but not both.
- 82562ET pins 28,29, and 30 overlap with 82562EH pins 17,18, and 19.
- Overlapping pins are tied to ground.
- No other signal pads should overlap or touch.
- The 82562EH and 82562ET configurations share signal lines LAN_CLK, LAN_RSTSYNC, LAN_RXD0, LAN_TXD0, RDP, RDN, RXP/Ring, and RXN/Tip.
- No stubs should be present when 82562ET is installed.
- Packages used for the Dual Footprint are TQFP for 82562EH and SSOP for 82562ET.
- A 22 Ω resistor can be placed at the driving side of the signal line to improve signal quality on the LAN connect interface.
- Resistors should be placed as close as possible to the component.
- Use components that can satisfy both the 82562ET and 82562EH configurations (i.e., magnetics module).
- Install components for either the 82562ET or the 82562EH configuration. Only one configuration can be installed at a time.
- Route shared signal lines so that stubs are not present or are kept to a minimum.
- Stubs may occur on shared signal lines (i.e., RDP and RDN). These stubs are due to traces routed to an uninstalled component. In an optimal layout, there should be no stubs.
- Use 0 Ω resistors to connect and disconnect circuitry not shared by both configurations. Place resistor pads along the signal line to reduce stub lengths.
- Traces from magnetics to connector must be shared and not stubbed. An RJ-11 connector that fits into the RJ-45 slot is available. Any amount of stubbing will destroy both HomePNA* and Ethernet performance.

8.10 Intel[®] ICH2 Decoupling Recommendations

The ICH2 is capable of generating large current swings when switching between logic high and logic low. This condition could cause the component voltage rails to drop below specified limits. To avoid this, ensure that the appropriate amount of bulk capacitance is added in parallel to the voltage input pins. It is recommended that the developer use decoupling capacitors specified in Table 54 to ensure that the components maintain stable supply voltages. The capacitors should be placed as close to the package as possible (200 mils nominal). Refer to Figure 126 for a layout example. It is recommended that for prototype board designs, the designer include pads for extra power plane decoupling capacitors.

Table 54. Decoupling Capacitor Recommendation

Power Plane/Pins	Number of Decoupling Capacitors	Capacitor Value
3.3 V Core	6	0.1 μF
3.3 V Stand By	1	0.1 μF
Processor I/F (1.3 ~ 2.5 V)	1	0.1 μF
1.8 V Core	2	0.1 μF
1.8 V Stand By	1	0.1 μF
5 V Reference	1	0.1 μF
5 V Reference Stand By	1	0.1 μF

Figure 126 shows the layout of the ICH2 decoupling capacitors for various power planes around the ICH2. The decoupling capacitors are circled and have pointers that identify the power planes/traces to which they are connected.

Figure 126. Decoupling Capacitor Layout

This page is intentionally left blank.

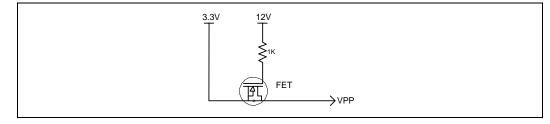
9 FWH Guidelines

The following provides general guidelines for compatibility and design recommendations for supporting the FWH device.

9.1 FWH Decoupling

A 0.1 μ F capacitor should be placed between the V_{CC} supply pins and the V_{SS} ground pins to decouple high-frequency noise that may affect the programmability of the device. Additionally, a 4.7 μ F capacitor should be placed between the V_{CC} supply pins and the V_{SS} ground pin to decouple low-frequency noise. The capacitors should be placed no further than 390 mils from the V_{CC} supply pins.

9.2 In-Circuit FWH Programming


All cycles destined for the FWH will appear on PCI. The ICH2 Hub Interface to PCI Bridge will put all PROCESSOR boot cycles on PCI (before sending them out on the FWH interface). If the ICH2 is set for subtractive decode, these boot cycles can be accepted by a positive decode agent out on PCI. This enables the ability to boot from of a PCI card that positively decodes these memory cycles. To boot off a PCI card it is necessary to keep the ICH2 in subtractive decode mode. If a PCI boot card is inserted and the ICH2 is programmed for positive decode, there will be two devices positively decoding the same cycle. After booting from a PCI card, it is possible to potentially program the FWH in circuit and program the ICH2 CMOS.

9.3 FWH Vpp Design Guidelines

The Vpp pin on the FWH is used for programming the flash cells. The FWH supports Vpp of 3.3 V or 12 V. The flash cells will program about 50% faster when Vpp is 12 V. However, the FWH only supports 12 V Vpp for 80 hours. The 12 V Vpp would be useful in a programmer environment, which is typically an event that occurs very infrequently (much less than 80 hours). The VPP pin MUST be tied to 3.3 V on the motherboard.

In some instances, it is desirable to program the FWH during assembly with the device soldered down on the board. To decrease programming time it becomes necessary to apply 12 V to the V_{PP} pin. The circuit shown in Figure 127 allows testers to apply 12 V to the V_{PP} pin while keeping the 12 V separated from the 3.3 V plane to which the rest of the power pins are connected. This circuit also allows the board to operate with 3.3 V on this pin during normal operation.

This page is intentionally left blank.

10 Miscellaneous Logic

The ICH2 requires additional external circuitry to function properly. Some of these functionalities include meeting timing specifications, buffering signals, and switching between power wells. This logic may be implemented through the use of the Glue Chip, or discrete logic.

10.1 Glue Chip

To reduce the component count and BOM (Bill of Materials) cost of the ICH2 platform, Intel has developed an ASIC component that integrates miscellaneous platform logic into a single chip. By integrating much of the required glue logic, overall board cost can be reduced. The following functions are integrated into the Glue Chip.

- Audio-disable circuit
- Mute Audio Circuit
- 5 V reference generation
- 5 V standby reference generation
- HD single color LED driver
- IDE reset signal generation/PCIRST# buffers
- PWROK (PWRGD_3V) signal generation

- Power Sequencing / BACKFEED_CUT
- Power Supply turn on circuitry
- RSMRST# generation
- Tri-state buffers for test
- Extra GP Logic Gates
- Power LED Drivers

Vendor	Contact Information
Philips Semiconductors	6028 44th Way NE Olympia, WA 98516-2477 Phone: (360) 413-6900 Fax: (360) 438-3606
Fujitsu Microelectronics	3545 North 1st Street, M/S 104 San Jose, CA 95134-1804 Phone: 1-800-866-8600 Fax: 1-408-922-9179

More information regarding this component is available from the following vendors:

10.2 Discrete Logic

As an alternative solution, external circuitry may be implemented into a design if not using all of the features of the Glue Chip. Refer to the Customer Reference Board schematic in Appendix A.

This page is intentionally left blank.

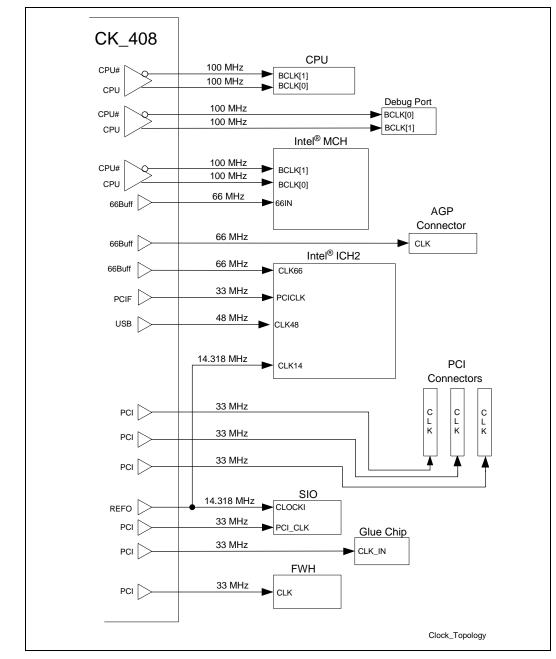
11 Platform Clock Routing Guidelines

The following sections describe platform clock routing layout guidelines for 845 chipset-based systems.

11.1 Clock Generation

Only one clock generator component is required in an 845 chipset-based system. Clock synthesizers that meet the *Intel*[®] *CK_408 Clock Synthesizer/Driver Specification* are suitable for 845 chipset-based systems. For more information on CK_408 compliance, refer to the *Intel*[®] *CK_408 Clock Synthesizer/Driver Specification*. The following tables and figure list and illustrate the 845 chipset clock groups, the platform system clock cross-reference, and the platform clock distribution.

Table 55. Intel[®] 845 Chipset Clock Groups


Clock Name	Frequency	Receiver
Host_CLK	100 MHz	Processor, Debug Port, and MCH
CLK66	66 MHz	MCH and Intel [®] ICH2
AGPCLK	66 MHz	AGP Connector or AGP Device
CLK33	33 MHz	ICH2, SIO, Glue Chip, and FWH
CLK14	14.318 MHz	ICH2 and SIO
PCICLK	33 MHz	PCI Connector
USBCLK	48 MHz	ICH2

Clock Group	CK_408 Pin	Component	Component Pin Name
HOST_CLK	CPU	CPU	BCLK0
	CPU#	CPU	BCLK1
	CPU	Debug Port	BCLK0
	CPU#	Debug Port	BCLK1
	CPU	МСН	BCLK0
	CPU#	МСН	BCLK1
CLK66	66BUFF	МСН	66IN
		ICH2	CLK66
AGPCLK	66BUFF	AGP Connector or AGP Device	CLK
CLK33	PCIF	ICH2	PCICLK
	PCI	SIO	PCI_CLK
	PCI	Glue Chip	CLK_IN
	PCI	FWH	CLK
CLK14	REF0	ICH2	CLK14
		SIO	CLOCKI
PCICLK	PCI	PCI Connector #1	CLK
		PCI Connector #2	CLK
		PCI Connector #3	CLK
USBCLK	USB	ICH2	CLK48

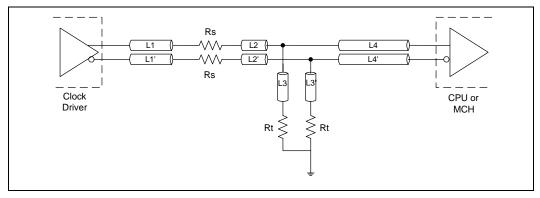
Table 56. Platform System Clock Cross-Reference

Figure 128. Clock Topology

11.2 Clock Group Topology and Layout Routing Guidelines

11.2.1 HOST_CLK Clock Group

The clock synthesizer provides three sets of 100 MHz differential clock outputs. The 100 MHz differential clocks are driven to the processor, the 845 chipset, and the processor debug port as shown in Figure 128.


The clock driver differential bus output structure is a "Current Mode Current Steering" output that develops a clock signal by alternately steering a programmable constant current to the external termination resistors Rt. The resulting amplitude is determined by multiplying IOUT by the value of Rt. The current IOUT is programmable by a resistor and an internal multiplication factor so the amplitude of the clock signal can be adjusted for different values of Rt to match impedances or to accommodate future load requirements.

The recommended termination for the differential bus clock is a "Shunt Source termination." Refer to Figure 129 for an illustration of this termination scheme. Parallel Rt resistors perform a dual function, converting the current output of the clock driver to a voltage, and matching the driver output impedance to the transmission line. The series resistors Rs provide isolation from the clock driver's output parasitics, which would otherwise appear in parallel with the termination resistor Rt.

The value of Rt should be selected to match the characteristic impedance of the system board, and Rs should be between 20 and 33 Ω . Simulations have shown that Rs values above 33 Ω provide no benefit to signal integrity and only degrade the edge rate.

Mult0 pin (pin #43) is connected to HIGH, making the multiplication factor 6.

The IREF pin (pin # 42) is connected to ground through a 475 $\Omega \pm 1\%$ resistor, making the I_{REF} 2.32 mA.

Figure 129. Source Shunt Termination

Table 57. BCLK [1:0]# Routing Guidelines

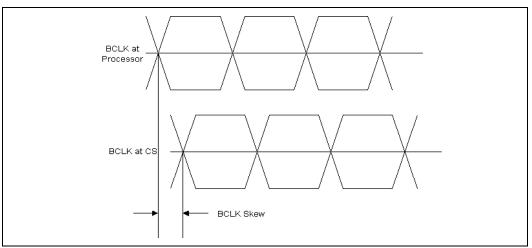
Layout Guideline	Value	Illustration	Notes
BCLK Skew between agents	400 ps total	Figure 128	1, 2, 3, 4
	Budget: 150 ps for Clock driver 250 ps for interconnect		
Differential pair spacing	W max.	Figure 131	5, 6
Spacing to other traces	4 W–5 W mils	Figure 131	
Line width	7.0 mils	Figure 131	8
System board Impedance—Differential	100 Ω ± 15%	_	9
System board Impedance—odd mode	50 Ω ± 15%	_	10
Processor routing length— L1, L1': Clock driver to Rs	0.5 in. max	Figure 129	14
Processor routing length— L2, L2': Rs to RS-RT node	0–0.2 in.	Figure 129	14
Processor routing length— L3, L3': RS-RT node to Rt	0–0.2 in.	Figure 129	14
Processor routing length— L4, L4': RS-RT node to Load	2–9 in.	Figure 129	
MCH routing length— L1, L1': Clock Driver to Rs	0.5 in. max	Figure 129	14
MCH routing length— L2, L2': Rs to RS-RT node	0–0.2 in.	Figure 129	14
MCH routing length— L3, L3': RS-RT node to Rt	0–0.2 in.	Figure 129	14
MCH routing length— L4, L4': RS-RT Nnode to Load	2–9 in.	Figure 129	
Clock driver to Processor and clock driver to Chipset length matching.	400 mils—600 mils	Figure 129	7,11
BCLK0—BCLK1 length matching	± 10 mils	Figure 129	_
Rs Series termination value	33 Ω ± 5%	Figure 129	12
Rt Shunt termination value	49.9 $\Omega \pm 5\%$ (for 50 Ω impedance)	Figure 129	13

NOTES:

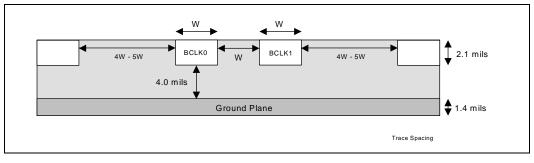
- 1. The skew budget includes clock driver output pair to output pair jitter (differential jitter) and skew, clock skew due to interconnect process variation, and static skew due to layout differences between clocks to all bus agents.
- 2. This number does not include clock driver common mode (cycle to cycle) jitter or spread spectrum clocking.
- 3. The interconnect portion of the total budget for this specification assumes clock pairs are routed on multiple routing layers, and are routed no longer than the maximum recommended lengths.
- 4. Skew measured at the load between any two-bus agents. Measured at the crossing point.
- 5. Edge to edge spacing between the two traces of any differential pair. Uniform spacing should be maintained along the entire length of the trace.
- 6. Clock traces are routed in a differential configuration. Maintain the minimum recommended spacing between the two traces of the pair. Do not exceed the maximum trace spacing because this will degrade the noise rejection of the network.

- The clock driver to MCH trace length must be greater than the clock driver to processor socket trace length. This accounts for delay through the processor socket.
- 8. Set the line width to meet correct motherboard impedance. The line width value provided here is a recommendation to meet the proper trace impedance based on the recommended stack-up.
- 9. The differential impedance of each clock pair is approximately 2*Zsingle-ended*(1—2*Kb), where Kb is the backwards crosstalk coefficient. Kb is very small for the recommended trace spacing, and the effective differential impedance is approximately equal to 2 times the single-ended impedance of each half of the pair.
- 10. The single ended impedance of both halves of a differential pair should be targeted to be of equal value. They should have the same physical construction. If the BCLK traces vary within the tolerances specified, both traces of a differential pair must vary equally.
- 11. Length compensation for the processor socket and package delay is added to chipset routing to match electrical lengths between the chipset and the processor from the die pad of each. Therefore, the system board trace length for the chipset will be longer than that for the processor.
- 12. Rs values between 20–33 Ω have been shown to be effective.
- 13. Rt shunt termination value should match the system board impedance.
- 14. Minimize L1, L2 and L3 lengths. Long lengths on L2 and L3 degrade effectiveness of source termination and contribute to ring back.

BCLK General Routing Guidelines


- When routing the 100 MHz differential clocks, do not split up the two halves of a differential clock pair between layers, and route to all agents on the same physical routing layer referenced to ground.
- If a layer transition is required, make sure that the skew induced by the vias used to transition between routing layers is compensated in the traces to other agents.
- Do not place vias between adjacent complementary clock traces, and avoid differential vias. A via that is placed in one half of a differential pair must be matched by a via in the other half of the differential pair. Differential vias can be placed within length L1, between clock driver and Rs, if needed to shorten length L1.

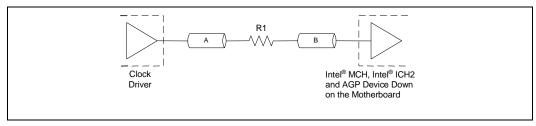
EMI Constraints


Clocks are a significant contributor to EMI and should be treated with care. The following recommendations can aid in EMI reduction:

- Maintain uniform spacing between the two halves of differential clocks.
- Route clocks on physical layer adjacent to the V_{ss} reference plane only.

Figure 130. Clock Skew as Measured from Agent to Agent

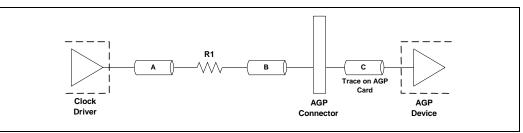
Figure 131. Trace Spacing



11.2.2 CLK66 Clock Group

The driver is the clock synthesizer 66 MHz clock output buffer, and the receiver is the 66 MHz clock input buffer at the MCH and the ICH2. If an AGP device is placed down on the motherboard, these guidelines should be used. Note that the goal is to have as little skew as possible between the clocks within this group.

Figure 132. Topology for CLK66

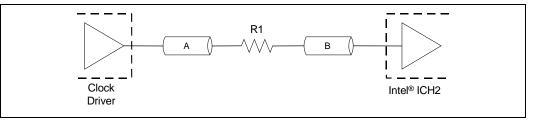

Table 58. CLK66 Routing Guidelines

Parameter	Routing Guidelines
Topology	Point to point
Characteristic Trace Impedance (Zo)	60 Ω ± 15%
Trace Width	5 mils
Trace Spacing	20 mils
Spacing to other traces	20 mils
Trace Length-A	0.00 in. to 0.50 in.
Trace Length-B	4.00 in. to 8.50 in.
CLK66 Total Length (A+B)	Matched to \pm 100 mils of each other
Resistor	R1 = 33 Ω ± 5%

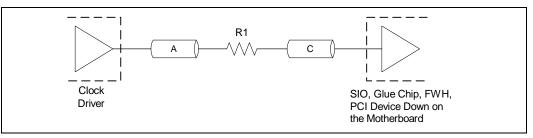
11.2.3 AGPCLK Clock Group

The driver is the clock synthesizer 66 MHz clock output buffer, and the receiver is the 66 MHz clock input buffer at the AGP device. Use these guidelines when routing to an AGP connector.

Figure 133. Topology for AGPCLK to AGP Connector


Table 59. AGPCLK Routing Guidelines

Parameter	Routing Guidelines
Topology	Point to point
Characteristic Trace Impedance (Zo)	60 Ω ± 15%
Trace Width	5 mils
Trace Spacing	20 mils
Spacing to other traces	20 mils
Trace Length—A	0.00 in. to 0.50 in.
Trace Length—B	(CLK66 Trace B) – 4 in.
Trace Length—C	Trace length on AGP add-in card
AGPCLK Total Length (A+B)	Must be matched to ± 100 mils of CLK66 Total Length
Resistor	R1 = 33 Ω ± 5%


11.2.4 33 MHz Clock Group

The driver is the clock synthesizer 33 MHz clock output buffer, and the receiver is the 33 MHz clock input buffer at the ICH2, FWH, Glue Chip, SIO, and all PCI devices. The skew between these clocks at their respective devices must be less than 2 ns.

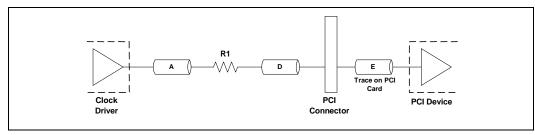

Figure 134. Topology for CLK33 to Intel[®] ICH2

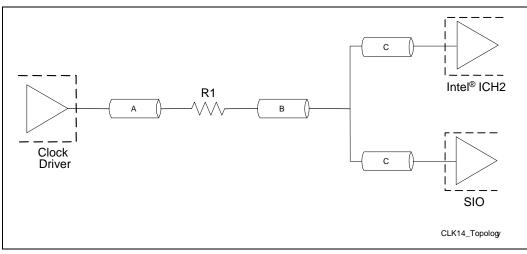
Figure 135. Topology for CLK33 to SIO, Glue Chip, FWH, and PCI Device Down on the Motherboard

Figure 136. Topology for PCICLK to PCI Connector

Table 60. 33 MHz Clock Routing Guidelines

Parameter	Routing Guidelines
Topology	Point to point
Characteristic Trace Impedance (Zo)	$60 \ \Omega \pm 15\%$
Trace Width	5 mils
Trace Spacing	15 mils
Spacing to other traces	15 mils
Trace Length—A	0.0 in. to 0.50 in.
Total Length (A+B)	Must be matched to \pm 100 mils of CLK66 Total Length. See Note 1
Total Length (A+C)	See Note 2
Total Length (A+D+E)	See Note 2
Resistor	$R1 = 33 \ \Omega \pm 5\%$

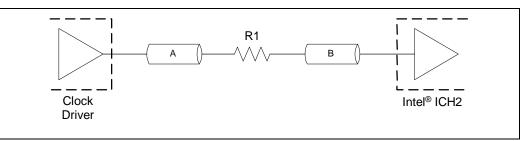
NOTES:


- The 33 MHz clock **must always** lag the 66 MHz clock at the ICH2 by 1–4 ns. The clock generator guarantees this phase offset. There is no need to intentionally add trace length to the 33 MHz clock. This length-matching requirement applies to the 33 MHz ICH2 clock only.
 There should be no more than 7.5 inches of total mismatch between any two clocks in this group. If
- There should be no more than 7.5 inches of total mismatch between any two clocks in this group. If routing to a PCI connector, a 2.6 inch max trace length is assumed on the PCI card. These 2.6 inches must be included in the 7.5 inch total mismatch.

11.2.5 CLK14 Clock Group

The driver is the clock synthesizer 14.318 MHz clock output buffer, and the receiver is the 14.318 MHz clock input buffer at the ICH2 and SIO. Note that the clocks within this group should have minimal skew (~ 0) between each other. However, each clock in this group is asynchronous to clocks in other groups.

Figure 137. Topology for CLK14


Table 61. CLK14 Routing Guidelines

Parameter	Routing Guidelines
Topology	Balanced T topology
Characteristic Trace Impedance (Zo)	$60 \ \Omega \pm 15\%$
Trace Width	5 mils
Trace Spacing	10 mils
Spacing to other traces	10 mils
Trace Length—A	0.00 in. to 0.50 in.
Trace Length—B	0.00 in. to 12 in.
Trace Length—C	0.00 in. to 6 in.
CLK14 Total Length (A+B+C)	Matched to ± 0.5 in. of each other
Resistor	R1 = 33 Ω ± 5%

11.2.6 USBCLK Clock Group

The driver is the clock synthesizer USB clock output buffer, and the receiver is the USB clock input buffer at the ICH2. Note that this clock is asynchronous to other clocks on the board.

Figure 138. Topology for USB_CLOCK

Table 62. USBCLK Routing Guidelines

Parameter	Routing Guidelines
Topology	Point to point
Characteristic Trace Impedance (Zo)	60 Ω ± 15%
Trace Width	5 mils
Spacing to other traces	15 mils
Trace Length—A	0.00 in.—0.50 in.
Trace Length—B	3.00 in.—12.00 in.
Resistor	R1 = 33 Ω ± 5%
Skew Requirements	None—USBCLK is asynchronous to any other clock on the board

11.3 Clock Driver Decoupling

The decoupling requirements for a CK_408 compliant clock synthesizer are as follows:

- One 10 μF bulk decoupling capacitor in a 1206 package placed close to the V_{DD} generation circuitry.
- Six 0.1 μF high-frequency decoupling capacitors in a 0603 package placed close to the V_{DD} pins on the Clock driver.
- Three 0.01 μF high-frequency decoupling capacitors in a 0603 package placed close to the V_{DDA} pins on the Clock driver.
- One 10 μF bulk decoupling capacitor in a 1206 package placed close to the V_{DDA} generation circuitry.

This page is intentionally left blank.

12 Platform Power Guidelines

12.1 Definitions

Suspend-To-RAM (STR)

In the STR state, the system state is stored in main memory and all unnecessary system logic is turned off. Only main memory and logic required to *wake* the system remain powered.

Full-power Operation

During *full-power* operation, all components on the motherboard remain powered. Note that *full-power* operation includes both the *full-on* operating state, and the S1 (processor stop-grant state) state.

Suspend Operation

During *suspend* operation, power is removed from some components on the motherboard. The customer reference board supports two suspend states: Suspend-to-RAM (S3), and Soft-off (S5).

Core Power Rail

A power rail that is only on during *full-power* operation. These power rails are on when the PS_ON signal is asserted to the ATX power supply.

Standby Power Rail

A power rail that is on during *suspend* operation (these rails are also on during *full-power* operation). These rails are on at all times when the power supply is plugged into AC power. The only standby power rail that is distributed *directly* from the ATX power supply is $5V_{SB}$ (5 V Standby). There are other standby rails that are created with voltage regulators on the motherboard.

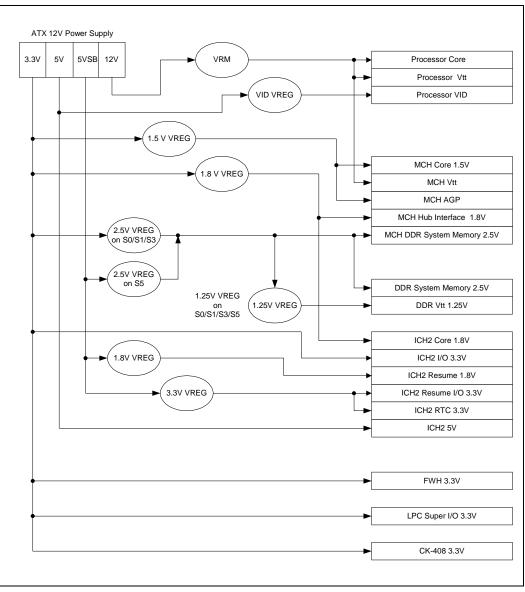
Derived Power Rail

A *derived* power rail is any power rail that is generated from another power rail using an on-board voltage regulator. For example, $3.3V_{SB}$ is usually derived on the motherboard from $5V_{SB}$ using a voltage regulator.

Dual Power Rail

A *dual* power rail is derived from different rails at different times depending on the power state of the system. Usually a dual power rail is derived from a *standby supply* during *suspend* operation, and derived from a *core supply* during *full-power* operation. Note that the voltage on a *dual* power rail may be misleading.

12.2 Power Delivery Map

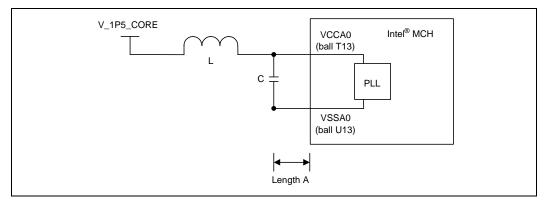

Figure 139 shows the power delivery architecture for an example 845 chipset platform. This power delivery architecture supports the "Instantly Available PC Design Guidelines" via the *suspend-to-RAM* (STR) state.

During STR, only the necessary devices are powered. These devices include main memory, the ICH2 resume well, PCI wake devices (via 3.3 Vaux), AC '97, and optionally USB. (USB can be powered only if sufficient standby power is available.) To ensure that enough power is available during STR, a thorough power budget should be completed. The power requirements should include each device's power requirements, both in *suspend* and in *full power*. The power requirements should be compared with the power budget supplied by the power supply. Due to the requirements of main memory and the PCI 3.3 Vaux (and possibly other devices in the system), it is necessary to create a *dual* power rail.

The solutions in this design guide are only examples. Many power distribution methods achieve similar results. When deviating from these examples, it is critical to consider the effect of a change. For additional thermal characteristics, refer to the *Intel[®] Pentium[®] 4 Processor in the 478 Pin Package Datasheet*.

Refer to Section 5.5 for more specific details.

Figure 139. Intel[®] 845 Chipset Platform Using DDR-SDRAM System Memory Power Delivery Map


12.3 Intel[®] MCH Power Delivery

There are no MCH power sequencing requirements. All MCH power rails should be stable before deasserting reset, but the power can be brought up in any order desired. Good design practice would have all power rails come up as close in time as practical.

12.3.1 Intel[®] MCH PLL Power Delivery

 V_{CCA1} and $V_{SSA1},$ and V_{CCA0} and V_{SSA0} are power sources required by the MCH PLL clock generators.

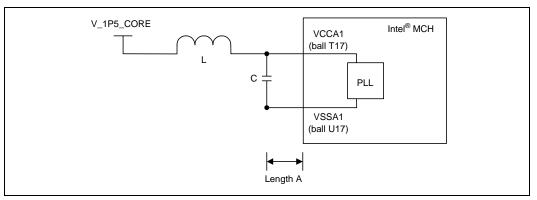

Figure 140. Intel[®] 845 Chipset PLL0 Filter

Table 63. PLL0 Filter Routing Guidelines

Parameter	Routing Guidelines
Trace Width	5 mils
Trace Spacing	10 mils
Trace Length—A	1.5 in.
Capacitor—C	33 μF
Inductor-L	4.7 μΗ

Figure 141. Intel[®] 845 Chipset PLL1 Filter

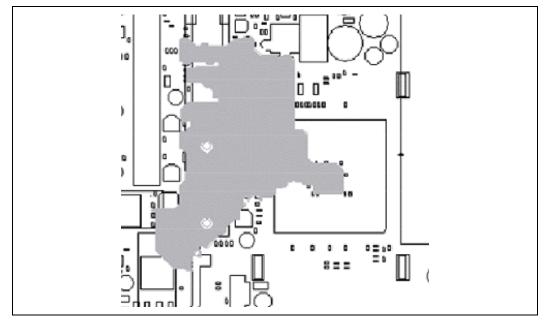
Table 64. PLL1 Routing Guidelines

Parameter	Routing Guidelines
Trace Width	5 mils
Trace Spacing	10 mils
Trace Length—A	1.5 in.
Capacitor—C	33 μF
Inductor-L	4.7 μΗ

Table 65. Recommended Inductor Components for $Intel^{^{(\! R)}}$ MCH PLL Filter

Value	Tolerance	SRF	Rated I	DCR
4.7 μΗ	10%	35 MHz	30 mA	0.56 Ω (1Ω max)
4.7 μΗ	10%	47 MHz	30 mA	0.7 Ω (± 50%)
4.7 μΗ	30%	35 MHz	30 mA	0.3Ω max

Table 66. Recommended Capacitor Components for Intel[®] MCH PLL Filter


Value	ESL	ESR
33 μF	2.5 nH	0.225 Ω
33 µF	2.5 nH	0.2 Ω

12.3.2 Intel[®] MCH 1.5 V Power Delivery

The MCH core and AGP I/O is supplied by 1.5 V. Adequate high-frequency decoupling is needed to ensure one does not adversely impact the other.

12.3.3 Intel[®] MCH 1.5 V Decoupling

The following minimum decoupling components are recommended:

- Six 0.1 μ F ceramic capacitor, 603 body type, X7R dielectric
- Two 10 µF ceramic capacitor, 1206 body type, X7R dielectric
- Two 100 µF electrolytic capacitor

It is recommended that low ESL ceramic capacitors, such as 0603 body types, X7R dielectric, be used. The designer should evenly distribute placement of decoupling capacitors among the AGP interface signal field, and place them as close to the MCH as possible (no further than 0.25 inch from the MCH V_{CC1_5} ball in the AGP ball field). Figure 143 shows an example placement of 1.5 V decoupling capacitors.

Figure 143. Intel[®] MCH 1.5 V Core and 1.5 V AGP I/O Decoupling Placement

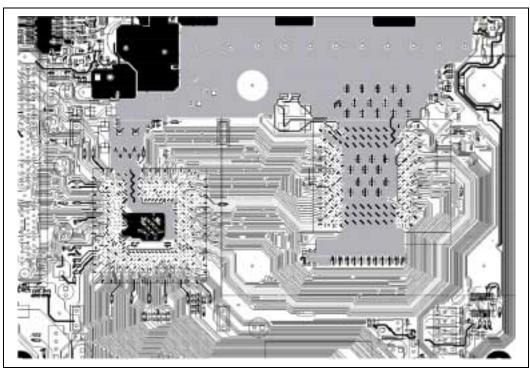
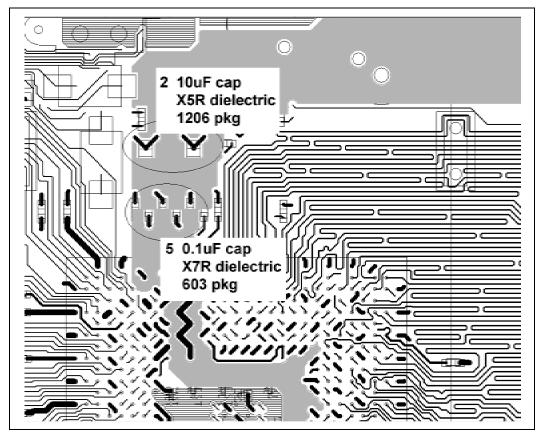


Figure 144. V_{TT} Power Plane—Processor and Intel[®] MCH


12.3.4 Intel[®] MCH V_{TT} Decoupling

The following minimum decoupling components are recommended:

- Two, 10 µF ceramic capacitor, 1206 body type, X5R dielectric.
- Five, 0.1 μ F ceramic capacitor, 1206 type, X7R dielectric.

The alternating polarity of the five 0.1 μF capacitors minimizes the area reduction caused by the vias.

Figure 145. V_{TT} Power Plane at Intel[®] MCH— V_{TT} Decoupling at Intel[®] MCH

12.4 Intel[®] ICH2 Power Delivery

Figure 146. Power Plane Split Example (Layer 2)

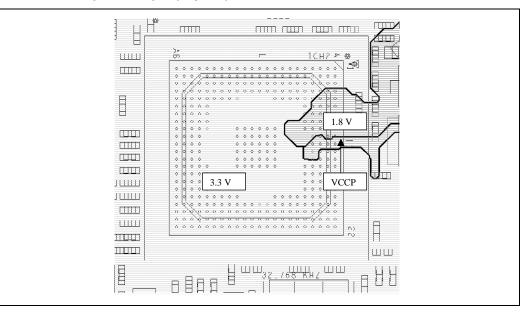
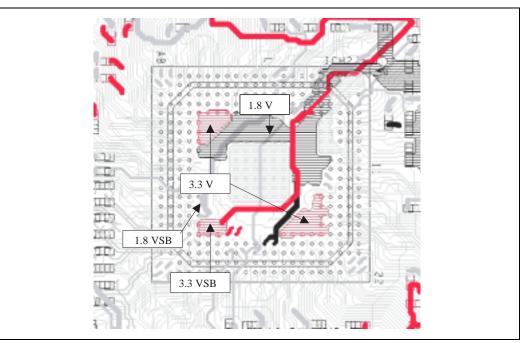
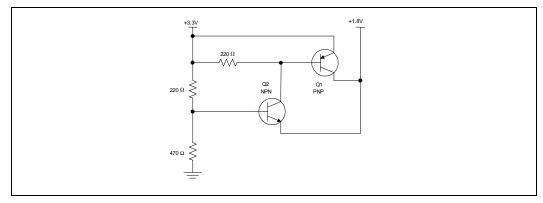



Figure 147. Power Plane Split Example (Layer 1)

12.4.1 1.8 V/3.3 V Power Sequencing


The ICH2 has two pairs of associated 1.8 V and 3.3 V supplies. These are { V_{CC1_8} , V_{CC3_3} }, and { V_{CCSUS1_8} , V_{CCSUS3_3} }. These pairs are assumed to power up and power down together. *The difference between the two associated supplies must never be greater than 2.0 V*. The 1.8 V supply may come up before the 3.3 V supply without violating this rule (though this is generally not practical in a desktop environment because the 1.8 V supply is typically derived from the 3.3 V supply by means of a linear regulator).

One serious consequence of violating this "2 V Rule" is electrical overstress of oxide layers, resulting in component damage.

The majority of the ICH2 I/O buffers are driven by the 3.3 V supplies, but are controlled by logic that is powered by the 1.8 V supplies. Thus, another consequence of faulty power sequencing arises if the 3.3 V supply comes up first. In this case the I/O buffers will be in an undefined state until the 1.8 V logic is powered up. Some signals that are defined as "Input-only" actually have output buffers that are normally disabled, and the ICH2 may unexpectedly drive these signals if the 3.3 V supply is active while the 1.8 V supply is not.

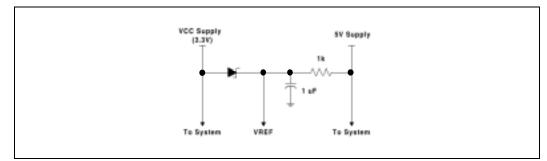
Figure 148 is an example power-on sequencing circuit that ensures that the "2 V Rule" is not violated. This circuit uses a NPN (Q2) and PNP (Q1) transistor to ensure the 1.8 V supply tracks the 3.3 V supply. The NPN transistor controls the current through PNP from the 3.3 V supply into the 1.8 V power plane by varying the voltage at the base of the PNP transistor. By connecting the emitter of the NPN transistor to the 1.8 V plane, current will not flow from the 3.3 V supply into 1.8 V plane when the 1.8 V plane reaches 1.8 V.

Figure 148. Example 1.8 V/3.3 V Power Sequencing Circuit

When analyzing systems that may be "marginally compliant" to the 2 V Rule, pay close attention to the behavior of the ICH2's RSMRST# and PWROK signals because these signals control internal isolation logic between the various power planes:

- RSMRST# controls isolation between the RTC-well and the Resume wells.
- PWROK controls isolation between the Resume wells and Main wells.

If one of these signals goes high while one of its associated power planes is active and the other is not, a leakage path will exist between the active and inactive power wells. This could result in high, possibly damaging internal currents.


12.4.2 3.3 V/V_{5REF} Sequencing

 V_{5REF} is the reference voltage for 5 V tolerance on inputs to the ICH2. V_{5REF} must be powered up before V_{CC3_3} , or after V_{CC3_3} within 0.7 V. Also, V_{5REF} must power down after V_{CC3_3} , or before V_{CC3_3} within 0.7 V. The rule must be followed to ensure the safety of the ICH2. If the rule is violated, internal diodes will attempt to draw power sufficient to damage the diodes from the V_{CC3_3} rail. Figure 149 shows a sample implementation of how to satisfy the 3.3 V/ V_{5REF} sequencing rule.

This rule also applies to the stand-by rails. However, in most platforms the V_{CCSUS3_3} rail is derived from the V_{CCSUS5} ; and therefore, the V_{CCSUS3_3} rail will always come up after the V_{CCSUS5} rail. As a result, V_{5REF_SUS} will always be powered up before V_{CCSUS3_3} . In platforms that do not derive the V_{CCSUS3_3} rail from the V_{CCSUS5} rail, this rule must be comprehended in the platform design.

As an additional consideration, during suspend, the only signals that are 5V tolerant capable are USB OC:[3:0]#. If these signals are not needed during suspend, V5REF_SUS can be connected to either VccSus3_3 or 5V_Always/5V_AUX. If OC:[3:0]# is needed during suspend and 5V tolerance is required then V5REF_SUS should be connected to 5V_Always/5V_AUX, but if 5V tolerance is not needed in suspend, then V5REF_SUS can be connected to either VccSus3_3 or 5V_Always/5V_AUX rails.

Figure 149. Example 3.3 V/V_{5REF} Sequencing Circuitry

12.4.3 ATX Power Supply PWRGOOD Requirements

The PWROK signal must be glitch free for proper power management operation. The ICH2 sets the PWROK_FLR bit (ICH2 GEN_PMCON_2, General PM Configuration 2 Register, PM-dev31: function 0, bit 0, at offset A2h). If this bit is set upon resume from S3 power-down, the system will reboot, and control of the system will not be given to the program that is running when the S3 state is entered. System designers should ensure that PWROK signal designs are glitch free.

12.4.4 Power Management Signals

- A power button is required by the ACPI specification.
- PWRBTN# is connected to the front panel on/off power button. The ICH2 integrates 16 ms debouncing logic on this pin.
- AC power loss circuitry has been integrated into the ICH2 to detect power failure.
- It is recommended that the PS_POK signal from the power supply connector be routed through a Schmitt trigger to square off and maintain its signal integrity. It should not be connected directly to logic on the board.
- PS_POK logic must be powered from the core voltage supply.
- RSMRST# logic should be powered by a standby supply while making sure that the input to the ICH2 is at the 3 V level. The RSMST# signal requires a minimum time delay of 1 ms from the rising edge of the standby power supply voltage. A Schmitt trigger circuit is recommended to drive the RSMRST# signal. To provide the required rise time, the 1 ms delay should be placed before the Schmitt trigger circuit. The reference design implements a 20 ms delay at the input of the Schmitt trigger to ensure that the Schmitt trigger inverters have sufficiently powered up before switching the input. Also ensure that voltage on RSMRST# does not exceed V_{CC} (RTC).
- It is recommended that 3.3 V logic be used to drive RSMRST# to alleviate rise time problems when using a resistor divider from V_{CC5} .
- The PWROK signal to the chipset is a 3 V signal.
- The core well power valid to PWROK asserted at the chipset is a minimum of 1 ms.
- PWROK to the chipset must be deasserted after RSMRST#.
- PWRGOOD signal to processor is driven with an open-collector buffer pulled up to 2.5 V using a 330 Ω resistor.
- RI# can be connected to the serial port if this feature is used. To implement ring indicate as a wake event, make sure that the driver (RS232 transceiver) of the RI# signal is powered when the ICH2 suspend well is powered. This can be achieved by powering the serial port transceiver from the standby well that implements a shutdown feature.
- SLP_S3# from the ICH2 must be inverted then connected to PSON of the power supply connector to control the state of the core well during sleep states.
- For an ATX power supply, when PSON is Low, the core wells are turned on. When PSON is high, the core wells from the power supply are turned off.

12.5 CK_408 Power Delivery

Differential Routing

- The host clock pairs must be routed differentially and on the same physical routing layer.
- DO NOT split the two halves of a differential clock pair. Route them referenced to ground for the entire length.
- The differential clock must have no more than two via transitions.

Isolation

- Special care must be taken to provide a quiet V_{DDA} supply to the Ref $V_{\text{DD}},\,V_{\text{DDA}},$ and the 48 MHz $V_{\text{DD}}.$
- These V_{DDA} signals are especially sensitive to switching noise induced by the other V_{DD} s on the clock chip.
- The V_{DDA} signals are also sensitive to switching noise generated elsewhere in the system such as CPU VRM. The LC Pie filter should be designed to provide the best reasonable isolation.

Referencing

- Ground referencing is strongly recommended for all platform clocks.
- Motherboard layer transitions and power plane split crossing must be kept to a minimum.

Flooding

Option 1 (Signal-Power-Ground-Signal)

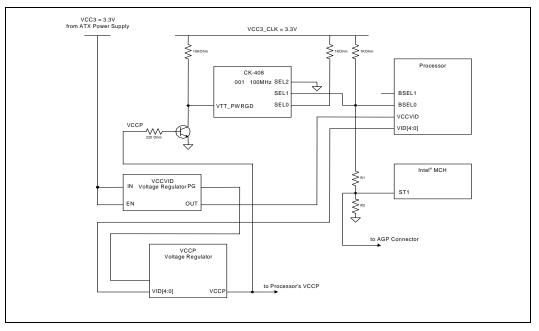
For the stack up shown in Figure 9 (Signal-Power-Ground-Signal), it is strongly recommended that:

- A solid ground flood be placed on layer 1 (signal layer) inside the part pads.
- A solid 3.3 V Power plane be present on layer 2 (power layer).
- A solid ground plane be present on layer 3 (ground layer).
- Signals after termination should via to the backside to be ground referenced.
- Here the host clocks will be power referenced for a small portion of time while they route from CK_408 pin to their transition via.
- Keep this MB length as short as possible.

Option 2 (Signal-Ground-Power-Signal)

If using a stack up such as Signal-Ground-Power-Signal, It is strongly recommended that:

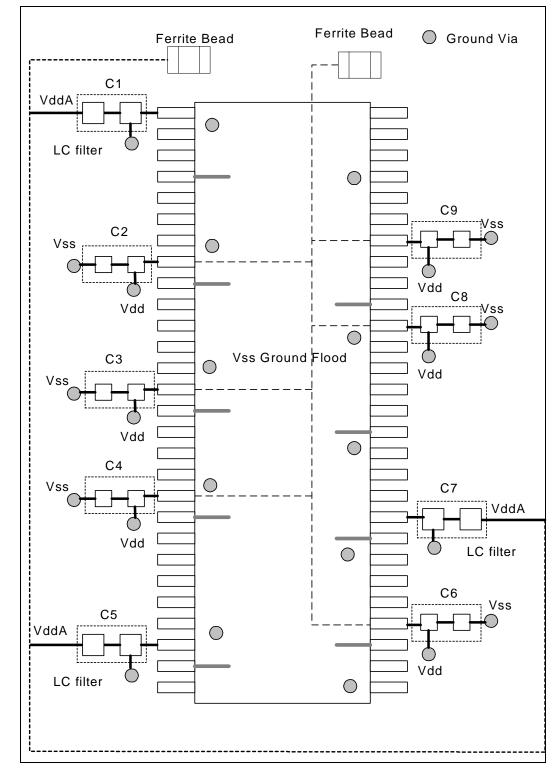
- A ground flood be present on layer1 (signal layer) inside the part pads.
- A solid ground plane be present on layer 2 (ground layer).
- A solid 3.3 V Power plane be present on layer 3 (power layer).
- Signals after termination should remain on the top layer to be ground referenced (via to the front side).


Decoupling

- For ALL power connections to planes, decoupling capacitors, and vias, the MAXIMUM trace width allowable and shortest possible lengths should be used to ensure the lowest possible inductance.
- The decoupling capacitors should be connected as shown in Figure 151, taking care to connect the V_{DD} pins directly to the V_{DD} side of the capacitors.
- The V_{SS} pins should not be connected directly to the V_{SS} side of the capacitors. They should be connected to the ground flood under the part that is via'd to the ground plane to avoid V_{DD} glitches propagating out and getting coupled through the decoupling capacitors to the V_{SS} pins. This method has been shown to provide the best clock performance.
- The ground flood should be via'd through to the ground plane with no less than 12–16 vias under the part. It should be well connected.
- For all power connections, heavy duty and/or dual vias should be used.
- It is imperative that the standard signal vias and small traces not be used for connecting decoupling capacitors and ground floods to the power and ground planes.
- V_{DDA} should be generated by using an LC filter. This V_{DDA} should be connected to the V_{DD} side of the three capacitors that require it using a hefty trace on the top layer. This trace should be routed from the LC filter.

12.5.1 CK_408 Power Sequencing

Platforms need proper power sequencing of the CK_408 with respect to the voltage regulators, processor, and MCH. Figure 150 is a schematic showing the relationship between the V_{CC} VID voltage regulator, the V_{CCP} voltage regulator, CK_408, processor, and MCH.


Table 67. PLL1 Routing Guidelines

Parameter	Routing Guidelines	
Resistor—R1	Not populated	
Resistor—R2	Not populated	

12.5.2 CK_408 Decoupling

The decoupling requirements for a CK_408 compliant clock synthesizer are as follows:

- One 10 μF bulk-decoupling capacitor in a 1206 package placed close to the V_{DD} generation circuitry.
- Six 0.1 μF high-frequency decoupling capacitors in a 0603 package placed close to the V_{DD} pins on the clock driver.
- Three 0.01 μ F high-frequency decoupling capacitors in a 0603 package placed close to the V_{DDA} pins on the clock driver.
- One 10 μF bulk decoupling capacitor in a 1206 package placed close to the V_{DDA} generation circuitry.

Figure 151. Decoupling Capacitors Placement and Connectivity

12.6 **Power Supply PS_ON Considerations**

If a pulse on SLP_S3# or SLP_S5# is short enough (~ 10-100 ms) such that PS_ON is driven active during the exponential decay of the power rails, a few power supplies may not be designed to handle this short pulse condition. In this case, the power supply will not respond to this event and never power back up. These power supplies would need to be unplugged and re-plugged to bring the system back up. Power supplies not designed to handle this condition must have their power rails decay to a certain voltage level before they can properly respond to PS_ON. This level varies with affected power supply.

The ATX spec does not specify a minimum pulse width on PS_ON de-assertion, which means power supplies must be able to handle any pulse width. This issue can affect any power supply (beyond ATX) with similar PS_ON circuitry. Because of variance in the decay of the core power rails per platform, a single board or chipset silicon fix would be non-deterministic (may not solve the issue in all cases).

The platform designer must ensure that the power supply used with the platform is not affected by this issue.

13 Platform Mechanical Guidelines

13.1 Intel[®] MCH Retention Mechanism and Keep-Outs

Figure 152 shows the motherboard keep-out dimensions intended for the reference thermal / mechanical components for the 845 chipset.

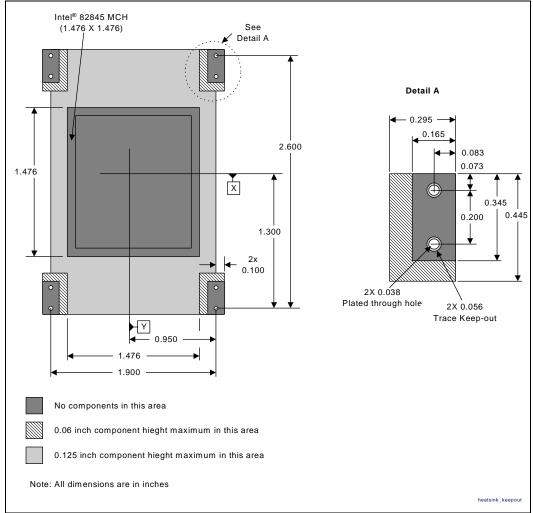
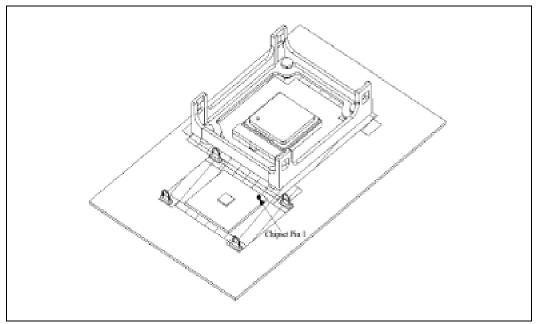



Figure 153 shows a typical orientation of the 845 chipset keep-out relative to the Pentium 4 processor. The 845 chipset mechanical reference design assumes this orientation, or a rotation of 180 degrees of the chipset relative to the orientation shown in this figure. Intel will not qualify other orientations.

14 Schematic Checklist

14.1 Host Interface

Signal	Description	✓
PROCESSOR/ Intel [®] MCH Signals		
A[31:3]#	Connect to HA[31:3] pins on MCH.	
ADS#	Connect to the associated pin on the MCH.	
ADSTB[1:0]#	Connect to HADSTB[1:0]# pins on MCH.	
BNR#	Connect to the associated pin on the MCH.	
BPRI#	Connect to the associated pin on the MCH.	
BR0#	Connect to the associated pin on the MCH.	
	- Terminate to V_{CC_CPU} through a 51 Ω ± 5% resistor near the processor.	
RESET#	Connect to the associated pin on the MCH.	
	- Terminate to V_{CC_CPU} through a 51 Ω ± 5% resistor near the processor.	
D[63:0]#	Connect to HD[63:0] pins on MCH.	
DBI[3:0]#	Connect to the associated pin on the MCH.	
DBSY#	Connect to the associated pin on the MCH.	
DEFER#	Connect to the associated pin on the MCH.	
DRDY#	Connect to the associated pin on the MCH.	
DSTBN[3:0]#	Connect to HDSTBN[3:0]# pins on MCH.	
DSTBP[3:0]#	Connect to HDSTBP[3:0]# pins on MCH.	
HIT#	Connect to the associated pin on the MCH.	
HITM#	Connect to the associated pin on the MCH.	
LOCK#	Connect to HLOCK# pin on MCH.	
REQ[4:0]#	Connect to HREQ[4:0]# pins on MCH.	
RS[2:0]#	Connect to the associated pin on the MCH.	
TRDY#	Connect to HTRDY# pin on MCH.	

Signal	Description	✓
	Processor/ Intel [®] ICH2 Signals	
A20M#	Connect to the associated pin on the ICH2 (No extra pull-up resistors required).	
CPUSLP#	Connect to the associated pin on the ICH2 (No extra pull-up resistors required).	
FERR#	Connect to the associated pin on the ICH2.	
	- Terminate to V_{CC_CPU} through a 62 Ω ± 5% resistor near the processor.	
IGNNE#	Connect to the associated pin on the ICH2 (No extra pull-up resistors required).	
INIT#	 Connect to the associated pin on the ICH2 (No extra pull-up resistors required). 	
	A voltage translator is required for FWH.	
	Connect to Firmware Hub.	
INTR	 Connect to the associated pin on the ICH2 (No extra pull-up resistors required). 	
LINT[1:0]	LINT1 connects to ICH2 NMI (No extra pull-up resistors required).	
	LINT0 connects to ICH2 INTR (No extra pull-up resistors required).	
NMI	 Connect to the associated pin on the ICH2 (No extra pull-up resistors required). 	
PWRGOOD	 Connects to ICH2 CPUPWRGD pin (Weak external pull-up resistor required). 	
	- Terminate to V_{CC_CPU} through a 300 Ω ± 5% resistor.	
SLP#	 Connect to the associated pin on the ICH2 (No extra pull-up resistors required). 	
SMI#	 Connect to the associated pin on the ICH2 (No extra pull-up resistors required). 	
STPCLK#	 Connect to the associated pin on the ICH2 (No extra pull-up resistors required) 	
	PROCESSOR Only Signals	
A[35:32]#	No Connect.	
AP[1:0]#	No Connect.	
BCLK[1:0]	Connect to CK_408.	
	• Connect 20—33 Ω series resistors to each clock signal.	
	• Connect a 49.9 Ω ± 1% shunt source termination (Rt) resistor to GND for each signal on the processor side of the series resistor (50 Ω motherboard impedance).	
BPM[5:0]#	• These signals should be terminated with a 51 $\Omega \pm 5\%$ resistor to V _{CC_CPU} near the processor. If a debug port is implemented termination is required near the debug port as well. Refer to the <i>ITP700 Debug Port Design Guide</i> for further information.	
BINIT#	No Connect.	

int_{el}.

Signal	Description	✓
BSEL[1:0]	Connect to CK_408.	
	• Terminate to CK_408 3.3V supply through a 1 $k\Omega$ resistor.	
COMP[1:0]	• Terminate to GND through a 51.1 Ω ± 1% resistor.	
	• Minimize the distance from termination resistor and processor pin.	
DBR#	• Refer to the ITP700 Debug Port Design Guide for further information.	
DP[3:0]#	No Connect.	
IERR#	• Terminate to V _{CC_CPU} through a 62 Ω ± 5% resistor near the processor.	
GTLREF[3:0]	• Terminate to V _{CC_CPU} through a 49.9 Ω ± 1% resistor.	
	• Terminate to GND through a 100 Ω ± 1% resistor.	
	• Should be $2/3 V_{CC_{CPU}}$.	
ITP_CLK0	• Refer to the ITP700 Debug Port Design Guide for further information.	
ITP_CLK1	• Refer to the ITP700 Debug Port Design Guide for further information.	
MCERR#	No Connect.	
PROCHOT#	• Terminate to V _{CC_CPU} though a 62 Ω ± 1% resistor near the processor.	
RSP#	No Connect.	
SKTOCC#	Connect to Glue Chip / Discrete Logic (If pin is used).	
ТСК	• Refer to the ITP700 Debug Port Design Guide for further information.	
TDI	• Refer to the ITP700 Debug Port Design Guide for further information.	
TDO	• Refer to the ITP700 Debug Port Design Guide for further information.	
TESTHI	Refer to Section 4.3.1.11	
THERMTRIP#	• Terminate to V _{CC_CPU} through a 62 Ω ± 5% resistor near the processor.	
THERMDA	Connect to thermal monitor circuitry if used.	
THERMDC	Connect to thermal monitor circuitry if used.	
TMS	• Refer to the ITP700 Debug Port Design Guide for further information.	
TRST#	• Refer to the ITP700 Debug Port Design Guide for further information.	
VCCA	Connect with isolated power circuitry to V _{CC_CPU} .	
VCCIOPLL	Connect with isolated power circuitry to V _{CC_CPU} .	
VCCSENSE	Leave as no-connect.	
VCCVID	Connect to 1.2 V linear regulator.	
VID[4:0]	• Connect to VR or VRM. These are open-drain signals from the processor and require pull-ups to 3.3 V for proper operation. Some VR controllers have internal pull-ups. If the VR controller used does not have 1 k Ω internal pull-ups, 1 k Ω 5% pull-ups to 3.3V should be placed on the motherboard.	
VSSA	Connect with isolated power circuitry to V _{CC_CPU} .	
VSSSENSE	Leave as no-connect.	

int_{el}.

Signal	Description	✓	
	Intel [®] MCH Signals Only		
HRCOMP[1:0]	• Pull-down to GND through a 24.9 Ω ±1% resistor.		
HSWNG[1:0]	• Connect voltage divider circuit to V _{TT} through a 301 Ω ± 1% pull-up resistor to GND through a 150 Ω ± 1% pull-down resistor.		
	- Decouple the voltage divider with a 0.01 μF capacitor to GND.		
HVREF	• Connect voltage divider circuit to V _{CC_CPU} through a 49.9 $\Omega \pm 1\%$ pull-up resistor and to GND through a 100 $\Omega \pm 1\%$ pull-down resistor Decouple the voltage divider with a 0.1 µF capacitor.		
VTT	Connect to V _{CC_CPU} power supply.		

14.2 Memory Interface

14.2.1 DDR-SDRAM

Signal	Description	✓	
	MCH/DIMM Signals		
SBS[1:0]	Connect to BA[1:0] pin on each DIMM		
	• Terminate to V _{TT} through a parallel 56 Ω ±5% resistor		
SCAS#	Connect to CAS# pin on each DIMM		
	• Terminate to V_{TT} through a parallel 56 Ω ±5% resistor		
SCB[7:0]	Connect to CB[7:0] pins on each DIMM		
	• Connect to a series 33 Ω ±5% resistor and terminate to V _{TT} through a parallel 47 Ω ±5% resistor		
SCK[2:0]	Connect to CK[2:0] pins on first DIMM		
SCK#[2:0]	Connect to CK#[2:0] pins on first DIMM		
SCK[5:3}	Connect to CK[2:0] on second DIMM		
SCK#[5:3]	Connect to CK#[2:0] on second DIMM		
SCKE[0]	Connect to pin 21 on first DIMM		
	- Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCKE[1]	Connect to pin 111 on first DIMM		
	+ Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCKE[2]	Connect to pin 21 on second DIMM		
	• Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCKE[3]	Connect to pin 111 on second DIMM		
	+ Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCS#[0]	Connect to pin 157 on first DIMM		
	• Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCS#[1]	Connect to pin 158 on first DIMM		
	• Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCS#[2]	Connect to pin 157 on second DIMM		
	• Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SCS#[3]	Connect to pin 158 on second DIMM		
	• Terminate to V_{TT} through a parallel 47 Ω ±5% resistor		
SDQ[63:0]	Connect to DQ[63:0] pins on each DIMM		
	 Connect to a series 33Ω ±5% resistor and terminate to V_{TT} through a parallel 47Ω ±5% resistor 		

SDQS[8:0]	Connect to DQS[8:0] pins on each DIMM	
	• Connect to a series 33 Ω ±5% resistor and terminate to V _{TT} through a parallel 47 Ω ±5% resistor	
SMA[12:0]	Connect to A[12:0] pins on each DIMM	
	• Terminate to V_{TT} through a parallel 56 Ω ±5% resistor	
SRAS#	Connect to RAS# pin on each DIMM	
	• Terminate to V _{TT} through a parallel 56 Ω ±5% resistor	
SWE#	Connect to WE# pin on each DIMM	
	• Terminate to V _{TT} through a parallel 56 Ω ±5% resistor	
	MCH Signals Only	
RCVENOUT#	Connect directly to MCH RCVENIN# pin	
RCVENIN#	Connect directly to MCH RCVENOUT# pin	
RSVD	No Connect	
SDREF	Connect to DDR Reference Voltage (V _{REF})	
	 Terminate to ground through a 0.1 μF capacitor 	
SMRCOMP	• Connect to DDR Termination Voltage (V _{TT}) through a 30 Ω ±1% pull-up resistor.	
	 Terminate to GND through a 0.1 μF capacitor 	
	• Place the 0.1 $$ F capacitor on the V_TT side of the SMRCOMP 30 Ω ±1% pull-up resistor.	
VCCSM	Connect to 2.5 V	
	DIMM Signals Only	
A13	No Connect	
DM[8:0]/DQS[17:9]	Connect to GND	
FETEN	No Connect	
NC	No Connect	
SA[2:0]	DIMM0: Connect to GND	
	DIMM1: Connect SA[2:1] to GND, and Connect SA0 to 2.5 V	
SDA	Connect to I2C_DATA	
SCL	Connect to I2C_CLOCK	
VDD	Connect to 2.5 V	
VDDQ	Connect to 2.5 V	
VREF	Connect to DDR Reference Voltage (V _{REF})	
	• Terminate to ground through a 0.1 µF capacitor	
VSS	Connect to GND	
VDDSPD	Connect to power (from a minimum of 2.3V to a maximum of 3.6V)	
	 Strongly recommend connecting to 2.5 V 	

14.3 AGP Interface

Signal	Description	✓	
	Intel [®] MCH/ Connector Signals		
AD_STB[1:0]	Connect together.		
	• Recommend site for a pull-down resistor to GND (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
AD_STB[1:0]#	Connect together.		
	• Recommend site for a pull-down resistor to GND (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
G_AD[31:0]	Connect together.		
G_C/BE[3:0]#	Connect together.		
G_DEVSEL#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
G_FRAME#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
G_GNT#	Connect together.		
	• Terminate to V_{DDQ} = 1.5 V through a pull-up resistor with a value between 4 k Ω and 16 k Ω . 6.8 k Ω resistor value recommended.		
G_IRDY#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
G_PAR	Connect together.		
G_PIPE#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4k Ω to 16k Ω if populated, 6.8k Ω resistor value recommended).		
G_REQ#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
G_STOP#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
G_TRDY#	Connect together.		
	• Recommend site for a pull-up resistor to V_{DDQ} (4 k Ω to 16 k Ω if populated, 6.8 k Ω resistor value recommended).		
INTA#	Connect together.		
	• Terminate to 3.3 V through a pull-up resistor.		
INTB#	Connect together.		
	• Terminate to 3.3 V through a pull-up resistor.		

Signal	Description	×
PIPE#	Connect together.	
RBF#	Connect together.	
	 Recommend site for a pull-up resistor to V_{DDQ} (4 kΩ to 16 kΩ if populated, 6.8 kΩ resistor value recommended). 	
SBA[7:0]	Connect together.	
SB_STB	Connect together.	
	 Recommend site for a pull-down resistor to GND (4 kΩ to 16 kΩ if populated, 6.8 kΩ resistor value recommended). 	
SB_STB#	Connect together.	
	 Recommend site for a pull-down resistor to GND (4 kΩ to 16 kΩ if populated, 6.8 kΩ resistor value recommended). 	
SBA[7:0]	Connect together.	
ST0	Connect together.	
ST1	Connect together.	
	• Site required for pull-down resistor to ground but do not populate.	
ST2	Connect together.	
WBF#	Connect together.	
	• Recommend site for a pull-up resistor to V_{DDQ} (4 k Ω to 16 k Ω if populated).	
VCC1_5	Connect to 1.5 V power supply.	
	CONNECTOR Signals Only	
3.3Vaux	Connect to PCI 3.3VAUX.	
12V	Connect to 12V.	
AGPCLK	Connect to CK_408.	
G_PERR#	• Terminate to V_{DDQ} through a 4 k Ω to 16 k Ω resistor (6.8 k Ω resistor value recommended).	
G_SERR#	• Terminate to V_{DDQ} through a 4 k Ω to 16 k Ω resistor (6.8 k Ω resistor value recommended).	
OVRCNT	•	
PCIRST	Connect to PCI slot PCIRST.	
PME#	Connect to PCI PME#.	
TYPEDET#	Not required.	
USB+	•	
USB-	•	
VCC	Connect to V _{CC3} .	
VCC5	Connect to V _{CC} .	
VDDQ	Connect to V _{1.5CORE} .	
VREFCG	Connect to V _{REF} divider network at the AGP connector.	
VREFGC	Not required.	

int_{el},

Signal	Description	✓
Intel [®] MCH Signals Only		
AGPREF	Connect to V _{REFCG} pin on connector.	
	- Terminate to ground through a 0.1 μF capacitor at the MCH.	
GRCOMP	• Pull-down to GND through a 40.2 Ω ±1% resistor.	

14.4 Hub Interface

Signal	Description	✓
	Intel [®] MCH/ Intel [®] ICH2 Signals	1
HI[10:0]	Connect together.	
HI_STB	Connect together.	
HI_STB#	Connect together.	
HI_REF	• Connect voltage divider circuit with R1=R2=150 Ω ± 1%.	
	- Use two 0.1 μF capacitors within 150 mils of the ICH2.	
	- The MCH should be decoupled with one 0.1 μF capacitor within 150 mils of the package and one 10 μF capacitor nearby.	
	- Bypass to GND through a 0.1 μF capacitor located near each component's (MCH & ICH2) HI_REF pin.	
	- Decouple with a 0.1 μF capacitor placed near the divider circuit.	
VCC1_8	Connect to 1.8 V power supply.	
	Intel [®] MCH Signals Only	
HLRCOMP	• Pull-up to V _{CC1_8} through a 40.2 $\Omega \pm$ 1% resistor	
	Intel [®] ICH2 Signals Only	
HI11	No extra pull-ups required.	
HICOMP	• Terminate to V_{CC1_8} through a 40.2 $\Omega \pm 1\%$ resistor.	
	ZCOMP is no longer supported.	

int_{el}.

14.5 Intel[®] ICH2 Interface

Signal	Description	✓
	LAN Signals	•
LAN Connect	If not used leave all pins as NC.	
Interface	• For line termination, a 33 Ω series resistors can be installed at the driver side of the interface for over/undershoot problems.	
	 Point-to-point Interconnect: Direct connect to Intel[®] 82562EH, Intel[®] 82562ET, or CNR. 	
	• LOM/CNR implementation: Add resistor pack (0–33 Ω) to ensure that either a CNR option or a LAN on motherboard option can be implemented at one time. Stubs due to the resistor pack should not be present on the interface.	
	• Dual Footprint: Direct connect to 82562 EH or 82562ET/EM. A 0–33 Ω resistor can be placed as close as possible to the driving side of each signal line. To improve signal quality, use 0 Ω resistors to connect and disconnect circuitry not shared by both configurations. Place resistor pads along the signal line to reduce stub lengths.	
LAN_CLK	Connect to LAN device.	
LAN_RSTSYNC	Connect to LAN device.	
LAN_RXD[2:0]	Contains integrated pull-up resistor.	
	Connect to LAN device.	
LAN_TXD[2:0]	Connect to LAN device.	
	EEPROM Signals	
EE_CS	Refer to schematics.	
EE_DIN	Contains an integrated pull-up resistor.	
	Connect to EE_DOUT of EEPROM or CNR.	
EE_DOUT	Contains an integrated pull-up resistor.	
	• Prototype Boards should include a placeholder for a pull-down resistor on this signal line, but do not populate the resistor.	
	Connect to EE_DIN of EEPROM or CNR.	
EE_SHCLK	Refer to schematics.	
	FWH Signals	
FWH[3:0]	Contains integrated pull-up resistors.	
	Connect to FWH.	
	• Can also be used as LAD[3:0].	
FWH4	Connect to FWH.	
	Can also be used as LFRAME#.	

Signal	Description	✓
	PCI Signals	
PCI Connect	All inputs to the ICH2 must not be left floating.	
Interface	 Note that some of these signals are mixed with GPIO signals that must be pulled up to different sources. 	
	Pull-ups are placed to meet PCI component specification.	
AD[31:0]	Refer to schematics.	
C/BE[3:0]#	Refer to schematics.	
DEVSEL#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
FRAME#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
GNT[5:0]#	GNT5# contains an integrated pull-up resistor.	
(PCIGNT#)	Can be left as no connect.	
	• Terminate to V _{CC3_3} if used.	
	GNT5# can also be used as GNTB# or GPO17.	
	Actively driven by ICH2.	
GNT[A:B]#	Contain integrated pull-up resistors.	
	GNTA# can also be used as GPO16.	
	GNTB# can also be used as GNT5# or GPO17.	
IRDY#	Connect together	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
PAR	Refer to schematics.	
PCICLK	- Connect together to CK_408 via 33 Ω series resistor.	
PCIRST#	Buffer to form IDERST# signal.	
PERR#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
PLOCK#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
PME#	Contains integrated pull-up resistor.	
	Connect together.	
REQ[5:0]#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 $k\Omega$ resistor or V_{CC5} through a 2.7 $k\Omega.$	
	• REQ5# can also be used as REQB# or GPI1.	
REQ[A:B]#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 $k\Omega$ resistor or V_{CC5} through a 2.7 $k\Omega.$	
	• REQA# can also be used as GPI0.	
	• REQB# can also be used as REQ5# or GPI1.	

Signal	Description	✓
SERR#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
STOP#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 $k\Omega$ resistor or V_{CC5} through a 2.7 $k\Omega.$	
TRDY#	Connect together.	
	- Terminate to V_{CC3_3} through an 8.2 $k\Omega$ resistor or V_{CC5} through a 2.7 $k\Omega.$	
	Intel [®] ICH2/IDE Signals	
Cable Detect	Host Side/Device Side Detection.	
	Connect ICH2 GPIO pin to IDE pin PDIAG#/CBLID#.	
	• Connect to GND through a $10k\Omega$ resistor.	
	Device Side Detection.	
	No ICH2 connection.	
	- Connect a .047 μF capacitor from IDE pin PDIAG#/CBLID# to GND.	
IDERST#	• Formed by buffering PCIRST# signal.	
	• Terminate through a series 33 Ω resistor.	
PDA[2:0]	Contain integrated series termination resistors.	
PDCS1#	Contains an integrated series termination resistor.	
PDCS3#	Contains an integrated series termination resistor.	
PDD[15:0]	Contains integrated series termination resistors.	
	• PDD7 contains an integrated pull-down resistor.	
	- Use a 0 Ω resistor to address possible noise issues on motherboard.	
PDDACK#	Contains an integrated series termination resistor.	
PDDREQ	Contains an integrated pull-down resistor.	
	Contains an integrated series termination resistor.	
PDIOR#	Contains an integrated series termination resistor.	
PDIOW#	Contains an integrated series termination resistor.	
PIORDY	Contains an integrated series termination resistor.	
	• Pull-up to V_{CC3_3} via a 4.7 k Ω pull-up resistor.	
SDA[2:0]	Contains integrated series termination resistors.	
SDCS1#	Contains an integrated series termination resistor.	
SDCS3#	Contains an integrated series termination resistor.	
SDD[15:0]	Contains integrated series termination resistors.	
	• SDD7 contains an integrated pull-down resistor.	
	- Use a 0 Ω resistor to address possible noise issues on motherboard.	
SDDACK#	Contains an integrated series termination resistor.	

int_{el},

Signal	Description	✓
SDDREQ	Contains an integrated pull-down resistor.	
	Contains an integrated series termination resistor.	
SDIOR#	Contains an integrated series termination resistor.	
SDIOW#	Contains an integrated series termination resistor.	
SIORDY	Contains an integrated series termination resistor.	
	• Pull-up to V_{CC3_3} via a 4.7 k Ω pull-up resistor.	
	Intel [®] ICH2/LPC Signals	
LAD[3:0]	Connect together.	
	Contains integrated pull-up resistors.	
	• Can also be used as FWH[3:0].	
LDRQ0#	Contains integrated pull-up resistors.	
LDRQ1#	Contains integrated pull-up resistors.	
	No Connect.	
LFRAME#	Connect together.	
	Can also be used as FWH4.	
	Interrupt Signals	
APICCLK	Terminate to GND.	
APICD[1:0]	• Terminate to GND through a 10 k Ω resistor.	
IRQ[15:14]	Contain integrated series termination resistors.	
	• Terminate to V_{CC3_3} through a 10 k Ω resistor.	
	Connect to IDE connector.	
	Open drain outputs.	
PIRQ[H:A]#	• In Non-APIC Mode the PIRQx# signals can be routed to interrupts 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 or 15. Each PIRQx#line has a separate control register.	
	- Terminate to V_{CC3_3} through an 8.2 k Ω resistor or V_{CC5} through a 2.7 k $\Omega.$	
	PIRQG# can also be used as GPI4.	
	• PIRQF# can also be used as GPI3.	
	 Since PIRQ[E]# and PIRQ[H]# are used internally for LAN and USB controllers respectively, they cannot be used as GPIO(s) pin. 	
	 In APIC mode, these signals are connected to the internal I/O APIC in the following fashion: 	
	PIRQ[A]# is connected to IRQ16,	
	— PIRQ[B]# to IRQ17,	
	— PIRQ[D]# to IRQ19, — PIRQ[E]# to IRQ20,	
	— PIRQ[E]# to IRQ20, — PIRQ[F]# to IRQ21,	
	— PIRQ[G]# to IRQ22, and	
	— PIRQ[H]# to IRQ22, and — PIRQ[H]# to IRQ23.	
	This frees the ISA interrupts.	

Signal	Description	✓
SERIRQ	• Terminate to V_{CC3_3} through a weak 8.2 k Ω pull-up resistor.	
	• Open drain.	
	Intel [®] ICH2/USB	
Disabling	• Ensure the differential pairs are pulled down through 15 k $\!\Omega$ resistors.	
	 Ensure the OC[3:0]# signals are de-asserted by pulling them up weakly to V_{CC3_3SBY}, and that both function 2 & 4 are disabled via the D31:F0;FUNC_DIS register. 	
	• Ensure that the 48 MHz USB clock is connected to the ICH2 and is kept running. This clock must be maintained even though the internal USB functions are disabled.	
OC[3:0]#	Refer to schematics.	
USBP[3:0]N	• 15 Ω series resistors should be placed as close as possible to the Intel [®] ICH2 (<1 inch) for source termination of the reflected signal.	
USBP[3:0]P	- Terminate unused USB ports with 15 k Ω pull-down resistors on both P+/P- data lines.	
	• For signal quality (rise/fall time) and to help minimize EMI radiation, a 47 pF capacitor may be placed as close to the USB connector as possible.	
	 Place 15 kΩ pull-down resistors on USB Connector side of the series resistors on the USB data lines (P0± P3±). The length of the stub should be as short as possible. Resistors are REQUIRED for signal termination by USB specification. 	
	Power Management Signals	
PWRBTN#	Contains an integrated pull-up resistor.	
PWROK	• To meet timing requirements, this signal should be connected to power monitoring logic and should go high no sooner than 10 ms after both V _{CC3_3} and V _{CC1_8} have reached their nominal voltages.	
RI#	 Recommend an 8.2 kΩ pull-up resistor to resume well. 	
RSMRST#	• To meet timing requirements, this signal should be connected to power monitoring logic and should go high no sooner than 10 ms after both V _{CC3_3} and V _{CC1_8} have reached their nominal voltages.	
	Requires weak pull-down. Also requires well isolation control as directed in Section 8.8.8	
RSM_PWROK	Connect to RSMRST# on desktop platforms.	
	• Requires weak pull-down. Also requires well isolation control as directed in Section 8.8.8.	
SLP_S3#	 If connected to clock generator's PWRDOWN pin, use an RC delay to ensure at least 5 PCICLKs after it is asserted. 	
	No extra pull-up/pull-down resistor needed.	
	Driven by ICH2.	
SLP_S5#	No extra pull-up/pull-down resistor needed.	
	Driven by ICH2.	
SUSCLK	• To assist in RTC circuit debug, route SUSCLK to a test point if it is unused.	
SUSSTAT#	Connect together.	
THRM#	Connect to temperature sensor.	
	Pull-up if not used since polarity bit defaults this signal to an active low.	

Signal	Description	 Image: A set of the set of the
VRMPWRGD	Connect to processor's VRM power good.	
	• Pull-up to V_{CC3} using a 10 $k\Omega$ resistor if unused.	
	SMBUS Signals	
SMBALERT#	See GPIO section if SMBALERT# is not implemented.	
	Can also be used as GPI11.	
SMBCLK	Pull-up resistor required. This value is determined by the line load.	
SMBDATA	- If the SMBus is used only for the SDRAM SPD EEPROMS, (one on each DIMM) pull-up with a 4.7 $k\Omega$ to 3.3 V.	
	System Management Signals	<u>.</u>
INTRUDER#	• Pull-up to $V_{CC}RTC$ (V_{BAT}) with a weak 10 k Ω resistor. No resistor to ground on the other side of th intruder connector.	
SMLINK[1:0]	• Pull-up through an 8.2 k $\!\Omega$ resistor. This value is determined by the line load.	
	RTC Signals	
RTCRST#	• Connect through an 8.2 k Ω series resistor and a 2.2 μF decoupling capacitor to ensure 10–20 ms RC delay.	
RTCX1	\bullet Connect a 32.768 kHz crystal oscillator across these pins with a 10 $M\Omega$	
RTCX2	resistor.	
	Use an 18 pF decoupling capacitor at each signal (Assuming 12.5 pF crystal capacitive load).	
	RTCX1may optionally be driven by an external oscillator.	
	• These signals are 1.8 V only, and must not be driven by a 3.3 V source.	
VBIAS	• Connect through a series 1 $k\Omega$ and a 0.047 μF capacitor.	
	• Connect to RTCX1 through a 10 M Ω series resistor.	
VCCRTC	• No "Clear" CMOS jumper on V _{CC} RTC.	
	Use a jumper on RTCRST#, a GPI, or use a safe mode strapping for "Clear" CMOS.	
	AC '97 Signals	
AC_RST	Connect together.	
AC_SYNC	No extra pull-down required.	
	Some implementations add termination for signal integrity.	
AC_BITCLK	No extra pull-down required.	
	 When nothing is connected to the link, BIOS must set a shut-off bit for the internal resistor to be enabled. At that point you don't need pull-ups/pull-downs on any of the link signals. 	
AC_SDOUT	 Requires a jumper to an 8.2 kΩ pull-up resistor (Do not stuff for default operation). 	
AC_SDIN[1:0]	• Requires pads for weak 10 k Ω resistors.	
	Stuff resistor if unused or if going to CNR connector.	
	Pull-down to ground if no codec on system board.	

Signal	Description	✓	
	GPIO Signals		
GPIO interface	Ensure all unconnected signals are outputs only.		
	- Requires a 10 $k\Omega$ pull-down to ground for GPI's used for combination host-side/device-side cable detection.		
GPI[0:1]	Reside in main power well (5 V tolerant).		
	 Pull-up resistors must use the V_{CC3_3} plane. 		
	- Unused inputs must be pulled up to V_{CC3_3} or pulled down to ground.		
	GPI0 can also be used as REQA#.		
	GPI1 can also be used as REQB# or REQ5#.		
GPIO2	Not implemented.		
GPI[3:4]	Reside in main power well (5 V tolerant).		
	 Pull-up resistors must use the V_{CC3_3} plane. 		
	- Unused inputs must be pulled up to V_{CC3_3} or pulled down to ground.		
	 Can also be used as PIRQ[F:G]# respectively. 		
GPIO5	Not implemented.		
GPI[6:7]	Reside in main power well (5 V tolerant).		
	 Pull-up resistors must use the V_{CC3_3} plane. 		
	- Unused inputs must be pulled up to V_{CC3_3} or pulled down to ground.		
GPI8	Reside in resume power well (not 5 V tolerant).		
	 Pull-up resistors must use the V_{CCSUS3_3}. 		
	Unused resume well inputs must be pulled up.		
	Can be used as an ACPI compliant wake event.		
	Contains an associated status bits in the GPE1_STS register.		
GPI[9:10]	Not Implemented		
GPI[11:13]	Reside in resume power well (not 5 V tolerant).		
	 Pull-up resistors must use the V_{CCSUS3_3} plane. 		
	Unused resume well inputs must be pulled up.		
	GPI11 can also be used as SMBALERT#.		
	Can be used as ACPI compliant wake events.		
	Contain associated status bits in the GPE1_STS register.		
GPI[14:15]	Not Implemented.		
GPO[16:17]	Reside in main power well.		
	Contain integrated pull-up resistors.		
	GPO16 can also be used as GNTA#.		
	GPO17 can also be used as GNT5# or GNTB#.		

Signal	Description	✓
GPO[18:23]	Reside in main power well.	
	Can be left as no connect.	
	GPO22 is open drain.	
GPIO[24:25]	Reside in resume power well.	
	Can be left as no connect.	
GPIO26	Not Implemented.	
GPIO[27:28]	Reside in resume power well.	
	Can be left as no connect.	
GPO[29:31]	Not Implemented.	
	Miscellaneous Signals	
SPKR	Contains an integrated pull-up resistor.	
	• The effective impedance of the Speaker and Codec circuitry must be greater than 50 k Ω ; otherwise, a means to isolate the resistive load from the signal while PWROK is low should be found.	
TP_0	Requires external pull-up resistor to V _{CCSUS3_3} .	
	Not required for desktop.	
FS_0	Contains an integrated pull-up resistor.	
	Connect to a test point.	
RCIN#	• Terminate to V_{CC3_3} through a 10 k Ω resistor.	
	Typically driven by open-drain external micro-controller.	
A20GATE	• Terminate to V_{CC3_3} through a 10 k Ω resistor.	

14.6 Miscellaneous Intel[®] MCH Signals

Signal	Description	✓
66IN	Connect to CK_408.	
RSTIN#	Connect to PCIRST# on the ICH2.	
TESTIN#	No Connect.	

14.7 Clock Interface CK_408

Signal	Description	✓
66_BUFF0	Connect to MCH.	
	• Connect to a series 33 Ω ± 5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	
66_BUFF1	Connect to ICH2.	
	- Connect to a series 33 Ω ± 5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	
66_BUFF2	Connect to AGP.	
	- Connect to a series 33 Ω ± 5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	
66_INPUT	No Connect.	
CLK14	• Connect to ICH2 through a series 33 Ω resistor.	
CLK48	• Connect to ICH2 through a series 33 Ω resistor.	
CLK66	• Connect to ICH2 through a series 33 Ω resistor.	
CPU [1:0]	Connect to processor.	
	• Connect to a series 27 Ω ±5% resistor and terminate to GND through a 49.9 Ω ±1% resistor.	
CPU [1:0]#	Connect to processor.	
	• Connect to a series 27 Ω ±5% resistor and terminate to GND through a 49.9 Ω ±1% resistor.	
CPU2	Connect to MCH.	
	• Connect to a series 27 Ω ± 5% resistor and terminate to GND through a 49.9 Ω ± 1% resistor.	
CPU2#	Connect to MCH.	
	- Connect to a series 27 Ω ± 5% resistor and terminate to GND through a 49.9 Ω ± 1% resistor.	
CPU_STOP#	• Terminate to V _{CC3} through a 1 k Ω ± 1% resistor.	
DOT_48 MHz	No Connect.	
DRCG_0	Connect to Glue Chip/Discrete Logic.	
	- Connect to a series 33 Ω ± 5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	
DRCG_1/VCH	No Connect.	
IREF	• Terminate to GND through a 475 Ω ± 1% resistor.	
MULT0	• Connected from the V _{CC3} through a series 10 k Ω ± 5% resistor and terminate to GND through a parallel 1 k Ω ± 1% resistor.	
PCI [6:0]	- Connect to a series 33 Ω ±5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	
PCIF[2:0]	- Connect to a series 33 Ω ± 5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	

int_{el}.

Signal	Description	 Image: A start of the start of
PCI_STOP#	• Terminate to V_{CC3} through a 1 k Ω ± 5% resistor.	
PWRDWN#	• Terminate to V _{CC3} through a 1 k Ω ± 5% resistor.	
REF0	• Connect to a series 33 Ω ± 5% resistor and terminate to GND through a 10 pF ± 5% capacitor.	
SEL[1:0]	• Terminate to V _{CC3_CLK} through a 1 k Ω ± 5% resistor.	
SEL_2	• Terminate to GND through a 1 k Ω ± 5% resistor.	
SCLK	Connect to DIMMs.	
SDTA	Connect to DIMMs.	
USB_48 MHz	Connect to ICH2.	
	- Terminate to GND through a 33 Ω ± 5% resistor and a 10 pF ± 5% capacitor.	
VDD	• Terminate to V _{CC3CLK} .	
VDD_48 MHz	• Terminate to V _{CC3CLK} .	
VDDA	• Terminate to GND through a 0.1 μF ± 5% capacitor.	
VSS	Terminate to GND.	
VSS_48 MHz	Terminate to GND.	
VSS_IREF	Terminate to GND.	
VTT_PWRGD#	 Connect to an inverted copy of V_{CC_CPU}. Refer to the respective section of the design guide for more details. 	
XTAL_IN	• Terminate to GND through a 10 pF ± 5% capacitor.	
XTAL_OUT	• Terminate to GND through a 10 pF ± 5% capacitor.	

14.8Power and Ground

Signal	Description	✓
VCC3_3	 Requires six, 0.1 μF decoupling capacitors. 	
VCC1_8	 Requires two, 0.1 μF decoupling capacitors. 	
V5REF	Connect to V _{REF} [2:1] pins.	
VCCSUS3_3	 Requires one 0.1 μF decoupling capacitor. 	
VCCSUS1_8	 Requires one, 0.1 μF decoupling capacitor. 	
V5REF_SUS	 Requires one, 0.1 μF decoupling capacitor. 	
	 V5REF_SUS only affects 5V-tolerance for USB OC:[3:0]# pins and can be connected to either VccSUS3_3 or 5V_Always/5V_AUX if 5V tolerance on these OC:[3:0]# is not needed. If 5V tolerance on OC:[3:0]# is needed then V5REF_SUS USB must be connected to 5V_Always/5V_AUX which remains powered during S5. 	
V_CPU_IO[1:0]	 Connected to the proper power plane for the processor's CMOS compatibility signals. 	
	 Connect one, 0.1 μF decoupling capacitor. 	
VSS	Connect to GND.	

15 Intel[®] 845 Chipset Design Layout Checklist

15.1 System Bus

15.1.1 System Bus

Checklist Item	✓	
Data Signals: D[63:0]#, DBI[3:0]#		
Point-to-Point Topology.		
• Edge to edge spacing versus trace to reference plane height ratio should be 3:1.		
• 2.0 in. to 10.0 in. pin to pin data signal lengths.		
Traces should be 7 mils wide with 13 mil spacing.		
 Data signals of the same source synchronous group should be routed to the same pad-to-pad length within +100 mils of the associated strobes. 		
Data Strobes: DSTBn/p[3:0]		
Traces should be 7 mils wide with 13 mil spacing.		
 Data strobes and their compliments should be routed within ± 25 mils of the same pad to pad length. 		
Address Strobes: ADSTB[1:0]		
Point-to-Point Topology.		
• Edge to edge spacing versus trace to reference plane height ratio should be 3:1.		
• 2.0 in. to 10.0 in. pin to pin address signal lengths.		
 Traces should be 7 mils wide with 13 mil spacing. 		
Address Signals: A[3:31]#, REQ[4:0]		
Traces should be 7 mils wide with 13 mil spacing.		
• 2.0 in. to 10.0 in. pin to pin address signal lengths.		
 Address signals of the same source synchronous group should be routed to the same pad-to-pad length, within ± 200 mils of the associated strobes. 		
Clocks: BCLK, BCLK#		
• These should be routed as a differential pair with 7 mil traces and 7mil spacing between them.		
• 2.5 in. to 10.0 in. pin to pin common clock lengths.		
25 mil spacing should be maintained around all clocks.		

Checklist Item	✓	
Processor AGTL+: FERR#, PROCHOT#, THERMTRIP#		
Traces should be 5 mils wide with 7 mil spacing.		
1.0 in. to 12.0 in. max from Processor to ICH2.		
• 3.0 in. max from ICH2 to V _{DD} .		
ICH2 AGTL+: A20M#, IGNNE#, INIT#, LINT[1:0], SLP#, SMI#, STPCLK#		
 Traces should be 5 mils wide with 7 mil spacing. 		
12.0 in. max from ICH2 to Processor.		
 Level shifting is required from the INIT# pin to FWH. 		
Intel [®] ICH2 Open Drain AGTL+: PWRGOOD		
• 7 mil spacing.		
1.0 in. to 12.0 in. max from ICH2 to Processor.		
• 1.1 in. max breakout length.		
• 3.0 in. max from Processor to V _{DD} .		
Miscellaneous AGTL+: BR0#, RESET#		
Terminate using discrete components on the system board.		
Minimize the distance between the terminating resistors and the processor.		
Connect the signals between these components.		
Miscellaneous AGTL+: COMP[1:0]		
Minimize the distance from terminating resistor.		
Miscellaneous AGTL+: THERMDA, THERMDC		
• 10 mils wide by 10 mil spacing.		
 Remote sensor should be placed as close as possible to THERMDA/THERMDC pins. It can be approximately 4.0 in. to 8.0 in. away as long as the worst noise sources such as clock generators, data, buses and address buses, etc are avoided. 		
 Route in parallel and close together with ground guards enclosed. 		

15.1.2 Decoupling, V_{REF}, and Filtering

Checklist Item	✓
V _{CC_CPU} Decoupling	
• 9 OSCONs, 560 μF.	
• 3 Al Electrolytic, 3300 μF.	
• 38 1206 package, 10 μF.	
Refer to Section 4.6.2.	
Processor GTL _{REF}	
The processor must have one dedicated voltage divider.	
• Keep the voltage divider within 1.5 in. of the first GTL _{REF} pin.	
Keep signal routing at least 10 mils separated from the GTL _{REF} routes.	
• 7 mil min trace length for routing.	
• Do not allow signal lines to use the GTL _{REF} routing as part of their return path.	
GTL _{REF} Decoupling:	
 Decouple voltage divider with a 1 µF capacitor. 	
• Decouple pin with a high-frequency capacitor (such as a 220 pF 603).	
Place capacitor as close to pin as possible.	
V _{CCA} , V _{CCIOPLL} , and V _{SSA} Filtering for Processor	
Use shielded type inductors.	
- Minimize the distance between $V_{\text{CCA}},V_{\text{SSA}}$ pins and capacitors.	
 V_{CCA} should be routed parallel and next to V_{SSA} route. 	
Filter capacitors and inductors should be routed next to each other.	
Intel [®] MCH HV _{REF}	
• 12 mils wide, 3.0 in. max length	
• 10 mil group spacing	
 Place 0.1 μF decoupling capacitor at the MCH 	
Minimize the distance between the voltage divider, decoupling capacitors and MCH	

Checklist Item	✓
Intel [®] MCH HV _{REF}	
• 12 mils wide, 3.0 in. max length.	
• 10 mil group spacing.	
• Place 0.1 μ F decoupling capacitor at the MCH.	
• Minimize the distance between the voltage divider, decoupling capacitors and MCH.	
Intel [®] MCH HRCOMP[1:0]	
• 10 mils wide, 0.5 in. max length.	
• 7 mils group spacing.	
Minimize the distance between HRCOMP and the MCH.	
Intel [®] MCH V _{TT} Decoupling	
 Place five, evenly-spaced 0.1 μF capacitors within 150 mils of the MCH. 	
• Place two, 10 μ F capacitors right behind the 0.1 μ F capacitors.	

15.2 System Memory (DDR)

15.2.1 2-DIMM DDR-SDRAM

Data Signals: SDQ[63:0], SCB[7:0], SDQS[8:0]	✓
Daisy Chain Topology, Routed Entirely on the Top Signal Layer	
Ground Referenced	
• 5 mils wide	
12 mil spacing from MCH to 1st DIMM	
7 mil minimum spacing within DIMM Pin Field	
12 mil spacing from DIMM to DIMM	
7 mil minimum spacing from 2nd DIMM to Rt	
20 mil minimum Isolation Spacing from Non-DDR Related Signals	
• 2.0" to 5.0" trace length from MCH signal ball to series termination resistor pad	
• 0.5" max trace length from series termination resistor pad to 1st DIMM pin	
• 0.3" to 0.5" trace length from DIMM pin to DIMM pin	
0.1" to 0.8" trace length from last DIMM pin to parallel termination resistor pad	
Breakout guideline:	
• 5 mils wide by 7 mil spacing for a max of 0.35"	
SDQ[63:0], SCB[7:0], SDQS[8:0] Length Matching Guidelines:	
See Section 5.3.1.2 for details	

Control Signals: SCKE[3:0], SCS[3:0]#	✓
Point to Point Topology	
Ground Referenced	
5 mils wide	
• 12 mil spacing from MCH to 1 st DIMM	
• 7 mil minimum spacing within DIMM Pin Field	
12 mil spacing from DIMM to DIMM	
• 7 mil minimum spacing from 2 nd DIMM to Rtt	
20 mil minimum Isolation Spacing from Non-DDR Related Signals	
• 7 mil minimum Isolation Spacing from the 2.5 V Copper Flood on Layer Four	
40 mils from MCH signal pin to MCH signal via	
2.0" to 3.5" from MCH signal via to layer transition via	
0.5" max from layer transition via to DIMM pins on 1 st DIMM (SCS#/SCKE[1:0])	
• 1.0" max from layer transition via to DIMM pins on 2 nd DIMM (SCS#/SCKE[3:2])	
0.4" to 1.3" from DIMM pins on 1 st DIMM to Rt Pad (SCS#/SCKE[1:0])	
0.1" to 0.8" from DIMM pins on 2 nd DIMM to Rt Pad (SCS#/SCKE[3:2])	
Control Signal to System Memory Clock Routing Requirements:	
See section 5.3.2.2 for details	
Command Signals: SMA[12:0], SBS[1:0], SRAS#, SCAS#, SWE#	×
Daisy Chain Topology	
Ground Referenced	
5 mils wide by 12 mil spacing	
• 12 mil spacing from MCH to 1 st DIMM	
7 mil minimum spacing within DIMM Pin Field	
12 mil spacing from DIMM to DIMM	
• 7 mil minimum spacing from 2 nd DIMM to Rt	
20 mil minimum Isolation Spacing from Non-DDR Related Signals	
• 7 mil minimum Isolation Spacing from the 2.5 V Copper Flood on Layer Four	
40 mil max from MCH signal pin to MCH signal via	
• 2.0" to 3.5" from MCH signal via to Rs Pad	
0.5" max from Rs Pad to 1 st DIMM pin	
0.3" to 0.5" from DIMM pin to DIMM pin	
0.1" to 0.8" from DIMM pins on 2 nd DIMM to Rt pad	
Command Signal to System Memory Clock Routing Requirements:	
See section 5.3.3.2 for details	

Clock Signals: SCK[5:0], SCK#[5:0]	 ✓
Point to Point Topology, Routed Entirely on the Bottom Signal Layer	
Ground Referenced	
• 5 mils wide	
7 mil Differential Trace Spacing	
 20 mil minimum Isolation Spacing from another DDR Signal Group or from Non-DDR Related Signals 	
• 10 mil minimum Isolation Spacing from the 2.5 V Copper Flood on Layer Four	
20 mil minimum of Serpentine Spacing	
40 mil max from MCH signal pin to MCH signal via	
 2.0" to 6.5" from MCH signal via to associated DIMM pins on First DIMM Connector (SCK/SCK#[2:0]) 	
 2.5" to 7.0" from MCH signal via to associated DIMM pins on Second DIMM Connector (SCK/SCK#[5:3]) 	
System Memory Clock Length Matching:	
See section 5.3.4.2 for details	
Feedback Signals: RCVENOUT#, RCVENIN#	~
Point to Point Topology	
Ground Referenced	
• 5 mils wide by 12 mil spacing	
 10 mil minimum Isolation Spacing from another DDR Signal Group or from Non-DDR Related Signals 	
• 7 mil minimum Isolation Spacing from the 2.5 V Copper Flood on Layer Four	
40 mil max from MCH signal ball to MCH signal via	
MCH RCVEN# output signal via to RCVEN# input signal via must equal 1.0"	

intel

15.3 AGP

15.3.1 1X Signals:

Checklist Item	 Image: A start of the start of
CLK, RBF#, WBF#, ST [2:0], PIPE, REQ#, GNT#, PAR, FRAME#, IRDY#, TRDY, STOP#, DEVSE	L#
• 7.25 in. max trace length.	
• 5 mils wide by 5 mil spacing.	
No trace matching requirements.	

15.3.2 2X/4X Signals:

Checklist Item	✓
AD [31:0], C/BE [3:0]#, ADSTB [1:0]#, SBA [7:0], SB_STB, SB_STB#	
Route AD[15:0], C/BE[1:0], AD_STB0, and AD_STB0# together.	
Route AD[31:16], C/BE[3:2], AD_STB1, and AD_STB1# together.	
Route SBA[7:0], SB_STB, SB_STB# together.	
• ± 0.1 in. length match strobe pairs.	
Less Than 6 Inches	
• 5 mils wide by 15 mil spacing.	
• ± 0.25 in. length match from DATA and C/BE# to strobes.	
Signals that require pull-up or pull-down resistors.	
0.5 in. max stub length for 1X signals.	
Greater Than 6 Inches and Less Than 7.25 Inches	
• 5 mils wide by 20 mil spacing.	
• ±0.125 in. length match from DATA and C/BE# to strobes.	
Signals that require pull-up or pull-down resistors.	
0.1 in. max stub length for 2X/4X signals.	
AGP Controller Down on Motherboard	
• 5 mils wide by 15 mil spacing.	
10.0 in. max trace length.	

15.3.3 Decoupling, Compensation, and V_{REF}

Checklist Item	 Image: A second s
V _{CC1_5} Decoupling	
 Min of six 0.1 µF capacitors spaced evenly among the AGP signals routed between the MCH and AGP connector to decouple MCH core and MCH AGP I/O. All capacitors must be within 0.25 in. of MCH. 	
GRCOMP	
• 10 mils wide, 0.5 in. max length.	
Minimize the distance between GRCOMP resistor and MCH.	
AGPREF	
Minimum trace width must be 12 mils.	
Minimum trace spacing around the AGPREF signal must be 25 mils.	
• One 0.1 µF bypass capacitor should be placed 0.8 in. maximum from MCH's AGPREF pin.	

intel

15.4 HUB Interface

15.4.1 Interface Signals

Checklist Item	✓
General Recommendations	
• It is recommended that all signals be referenced to $V_{\mbox{\scriptsize SS}}.$	
• Board impedance must be 60 Ω ± 10%.	
Traces must be routed 5 mils wide with 15 mils spacing.	
Max trace length is 8 in.	
Data Signals	
 Can be routed to 5 on 5 for breakout, but must be separated to 5 on 15 within 300 mils of the package. 	
• Must be matched within ± 0.1 in. of the HL_STB diff pair.	
Strobe Signals	
Strobe pair should have a minimum of 15 mils spacing from any adjacent signals.	
Each strobe signal must be the same length.	

15.4.2 Decoupling, Compensation, and V_{REF}

Checklist Item	 Image: A start of the start of
V _{CC1_8} Decoupling	
• Decouple the ICH2 with two 0.1 μ F capacitors within 150 mils from the package.	
- Decouple the MCH with one 0.1 μF capacitor within 150 mils of the package and one 10 μF capacitor nearby.	
Capacitors should be adjacent to hub interface rows.	
HLRCOMP	
Place resistor using a 10 mils wide and 0.7 in. max trace length.	
• 7 mil group spacing.	
Minimize the distance between HLRCOMP resistor and MCH.	
HI_REF	
Should be placed no more than 4 in. of away from MCH or ICH2.	
- Bypass to ground with a 0.1 μF capacitor located within 0.25 inches of each component's HI_REF pin.	
 Place one 0.1 μF capacitor at the divider. 	

15.5 Clocks: CK_408

Checklist Item	✓
Host Clock: CPU#, CPU	
• 7 mils wide.	
Differential pair spacing should be based on a distance from BCLK1 to BCLK0.	
• Spacing to other traces should 4 times to 5 times greater than distance from BCLK1 to BCKL0.	
Processor routing length—Clock driver to Rs should be 0.5 in. max.	
Processor routing length—Rs to Rs-Rt should be 0 in. to 0.2 in.	
Processor routing length—RS_RT node to Rt should be 0 in. to 0.2 in.	
Processor routing length—RS_RT node to load should be 2 in. to 9 in.	
MCH routing length—Clock driver to Rs should be 0.5 in. max.	
MCH routing length—Rs to Rs-Rt should be 0.5 in. max.	
MCH routing length—RS_RT node to Rt should be 0.0 in. to 0.2 in. max.	
 MCH routing length—RS_RT node to load should be 2.0 in. to 9.0 in. max. 	
Clock driver to processor and clock driver to chipset length matching should be 600 mils.	
10 mil length matching between BCLK0 to BCLK1.	
Do not split up the two halves of a differential clock pair between layers.	
• Route all agents on the same physical routing layer referenced to ground of the differential clock.	
• Make sure that the skew induced by the vias is compensated in the traces to other agents.	
Do not place vias between adjacent complementary clock traces.	
Maintain uniform spacing between the two halves of differential clocks.	
 Route clocks on physical layers adjacent to the V_{SS} reference plane only. 	
66 MHz Clock Group	
Point-to-Point Topology.	
• 5 mils wide and 20 mil spacing.	
• 20 mil group spacing.	
Series termination within 0.5 in. of the driver.	
• Trace length from series termination to receiver on the motherboard between 4.0 in. and 8.5 in.	
• The total trace lengths must be matched to ± 100 mils of each other.	
• Follow these guidelines when routing to an AGP device down on the motherboard.	
AGP Clock (When Routing to an AGP Connector)	
Point-to-Point Topology.	
• 5 mils wide and 20 mil spacing.	
• 20 mil group spacing.	
Series termination within 0.5 in. of the driver.	
• The total trace length must be 4.0 in. less than the CLK66 total trace lengths \pm 100 mils.	

Checklist Item	✓
33 MHZ Clock Group	
Point-to-Point Topology.	
• 5 mils wide and 15 mil spacing.	
• 15 mil group spacing.	
Series termination within 0.5 in. of the driver.	
 The total mismatch between any two 33 MHz clocks must be less than 7.5 in. If routing to a PCI connector, 2.6 in. of routing on the PCI card must be included in the 7.5 in. total mismatch. 	
• The 33 MHz clock to the ICH2 must be matched to \pm 100 mils of the 66 MHz clock to the ICH2.	
14 MHz Clock Group	
Balanced T Topology.	
• 5 mils wide and 10 mil spacing.	
• 10 mil group spacing.	
Series termination within 0.5 in. of the driver.	
• The total trace length from the Clock driver to SIO and Clock driver must be matched to 0.5 in.	
Signal must T within 12 in. of the series termination.	
Max trace length of stubs is 6 in.	
• Total trace length matched to ± 0.5 in. of each other.	
USB Clock	
Point-to-Point Topology.	
• 5 mils wide.	
• 15 mil group spacing.	
Series termination within 0.5 in. of the driver.	
• Trace length from series termination to receiver on the motherboard between 3.0 in. and 12 in.	

15.5.1 Decoupling

Checklist Item	✓
V _{DDA} /V _{DD} Decoupling	
- Place one 10 μF capacitor close to the V_{DD} generation circuitry.	
- Place six 0.1 μF capacitors close to the V_{DD} pins on the clock driver.	
- Place three 0.01 μF capacitors close to the V_{DDA} pins on the clock driver.	
- Place one 10 μF bulk decoupling capacitor close to the V_{DDA} generation circuitry.	
Host clock pairs must be differentially routed on the same physical routing layer.	
Differential clocks must not have more than two via transitions.	
Ground referencing is strongly recommended for all platform clocks.	
Motherboard layer transitions and power plane splits must be kept to a minimum.	
For flooding options, refer to Section 12.5 of the Design Guide.	

15.6 Intel[®] ICH2

15.6.1 IDE

Recommendations	~
 5 mil width and 7 mil spacing. 	
8.0 in. max trace length from ICH2 to IDE connector.	
Shortest IDE trace length must be 0.5 in. shorter than the longest IDE trace length.	

15.6.2 AC '97

Recommendations	✓
• Trace impedance should be 60 Ω ± 15%.	
• 5 mil width by 5 mil spacing.	
 14.0 in. max trace length from ICH2 to Codec/CNR connector (Assuming CNR implements its audio solution with a max trace length of 4.0 in.). 	

15.6.3 USB 1.1

Recommendations	 Image: A start of the start of
• The trace impedance for the P0± P3± signals should be 45 Ω (to ground) for each USB signal P+ or P–.	
9 mils wide, 25 mil spacing between differential pairs.	
• 15 Ω series resistor to be placed < 1 inch from ICH2.	
• 15 k Ω pull-down resistors must be on the connector side of the series resistor and must always be present whether or not the USB ports are used.	
• 0–47 pF parallel capacitors should be placed as close to the USB connector as possible.	
• Stub length due to 15 k Ω pull-downs should be as short as possible.	
• The series impedance of the twisted differential signal pairs P+ and P– should be 90 Ω resulting in an individual wire presenting a 45 Ω impedance. The trace impedance can be controlled by carefully selecting the trace width, trace distance from power or ground planes, and physical proximity of nearby traces.	
• USB data lines must be routed as critical signals. The P+/P- signal pair must be routed together, parallel to each other on the same layer, and not parallel with other non-USB signal traces. Doubling the space from the P+/P- signal pair to adjacent signal traces will help to prevent crosstalk. Do not worry about crosstalk between the two P+/P- signal traces. The P+/P- signal traces must also be the same length. Lastly, do not route over plane splits.	
• Trace Characteristics: Line Delay = 160.2 ps, Capacitance = 3.5 pF, Inductance = 7.3 nH, Res @ 20° C = 53.9 m Ω .	

15.6.4 RTC

Recommendations	 Image: A start of the start of
1.0 in. max RTC OSC signal trace lengths.	
Minimize the capacitance between RTCX1 and RTCX2 in the routing.	
Put a ground plane underneath crystal components.	
0.25 in. max RTC lead lengths.	
• Do not route switching signals under the external components (unless on other side of board).	
• 5 V Reference power plane—one 0.1 µF capacitor.	
• 5 V Reference Stand By power plane—one 0.1 µF capacitor.	

15.6.5 LAN

Recommendations	 Image: A start of the start of
Trace Spacing: 5 mils wide, 10 mil spacing.	
• LAN Max Trace Length ICH2 to CNR: L = 3 in. to 9 in. (0.5 in. to 3 in. on card).	
Stubs due to R-pak CNR/LOM stuffing option should not be present.	
 Maximum Trace Lengths: Intel[®] ICH2 to Intel[®] 82562EH: L = 4.5 inches to 10 inches; 82562ET: L = 3.5 inches to 10 inches; 82562EM: L = 4.5 inches to 8.5 inches. 	
 Max mismatch between the length of a clock trace and the length of any data trace is 0.5 inches (clock must be longest trace). 	
 Maintain constant symmetry and spacing between the traces within a differential pair out of the LAN phy. 	
Keep the total length of each differential pair under 4 inches.	
• Do not route the transmit differential traces closer than 100 mils to the receive differential traces.	
 Distance between differential traces and any other signal line is 100 mils. (300 mils recommended). 	
Route 5 mils on 7 mils for differential pairs (out of LAN phy).	
• Differential trace impedance should be controlled to be ~100 $\Omega.$	
 For high-speed signals, the number of corners and vias should be kept to a minimum. If a 90 degree bend is required, it is recommended to use two 45 deg. bends. 	
• Traces should be routed away from board edges by a distance greater than the trace height above the ground plane.	
Do not route traces and vias under crystals or oscillators.	
• Trace width to height ratio above the ground plane should be between 1:1 and 3:1.	
• Traces between decoupling and I/O filter capacitors should be as short and wide as practical.	
Vias to decoupling capacitors should be sufficiently large in diameter.	
 Avoid routing high-speed LAN* or Phoneline traces near other high-frequency signals associated with a video controller, cache controller, processor, or other similar devices. 	
Isolate I/O signals from high speed signals.	
Place the 82562ET/EM part more than 1.5 inches away from any board edge.	
- Place at least one bulk capacitor (4.7 μF or greater) on each side of the 82562ET/EM.	
- Place decoupling capacitors (0.1 $\mu F)$ as close to the 82562ET/EM as possible.	

15.6.6 Intel[®] ICH2 Decoupling

Recommendations	~
Place decoupling capacitors as close to the ICH2 as possible (less than 200 mils).	
 3.3 V Core power plane—six 0.1 μF capacitors. 	
 3.3 V Stand By power plane—one 0.1 µF capacitor. 	
 Processor I/F (1.3 to 2.5 V)—one 0.1 µF capacitor. 	
 1.8 V Core power plane—two 0.1 µF capacitors. 	
 1.8 V Stand By power plane—one 0.1 µF capacitor. 	
 5 V Reference power plane use one 0.1 µF capacitor. 	
 5 V Reference Stand By power plane use one 0.1 µF capacitor. 	

15.6.7 Power/Ground Decoupling

Recommendations	✓
• Insert 4–6 decoupling capacitors, including two 4.7 µF capacitors for power/ground connections.	
Minimize the distance between decoupling capacitors and power pins.	
Route traces over a continuous plane with no interruptions.	
Separate noisy digital grounds from analog grounds.	
• All ground vias should be connected to every ground plane; and every power via should be connected to all power planes at equal potential.	

15.7 FWH

Recommendations		✓
• 0.1 μF capacitors should be placed between the V _{CC} supply pins and the V _{SS} ground pins and less than 390 mils from the V _{CC} supply pins.	no	
• 4.7 μF capacitors should be placed between the V _{CC} supply pins and the V _{SS} ground pins and less than 390 mils from the V _{CC} supply pins.	no	

15.8 Power

15.8.1 Filtering

Checklist Item	✓
MCH PLL Filter Routing Guidelines: PLL0, PLL1	
• 5 mil width by 10 mil spacing.	
• 1.5 in. max length from capacitor to MCH.	

Appendix A: Customer Reference Board Schematics

This appendix provides a set of schematics for the Pentium 4 processor in 478-pin Package and 845 chipset platform Customer Reference Board (CRB).

INTEL (R) 845 DDR SCHEMATICS REV. 2.1

4

PAGE # COMPONENT/FUNCTION

7

6

8

CR-1

B

PHGE #	COMPONENT /FUNCTION	
1	COVER PAGE.	
2	BLOCK DIAGRAM	
3	POWER DISTRIBUTION	
4	CLOCK DISTRIBUTION	
5	CPU CONNECTOR (SOCKET 478)	
6	CPU PULLUPS/PULLDWNS/TERMINATION	
7	FILTERED ANALOG SUPPLY	
8-9	BROOKDALE CHIPSET	
10	СК-408	-
11	CHIPSET DECOUPLING, STRAPPING	-
12	AGP	-
13	DDR SERIES IMPEDANCE RESISTORS	-
14	DDR SERIES TERMINATION RESISTORS	-
15	DDR DIMM	-
16-17	DDR RESISTOR TERMINATION	
18	DDR DECOUPLING CAPACITORS	_
19	ICH2	_
20	ICH2	_
21	ICH2 PULLUPS & DECOUPLING	
22	AC97 & CNR STUFFING OPTION	_
23	IDE CONNECTOR	_
24	USB BACK PANEL	_
25	USB TERMINATION	_
26	USB FRONT PANEL POWER	_
27	USB FRONT/BACK PANEL HEADER	_
28-30	PCI SLOTS 6 - 4	_
31-33	PCI SLOTS 3 - 1	_
34	PCI TERMINATION	_
35	CNR	_
36	USB 2.0 CONTROLLER	_
37	LAN	_
38	AUDIO	
39	AUDIO SUBMODULE 2	
40	AUDIO SUBMODULE 4	
41	AUDIO SUBMODULE 3	
42	AUDIO SUBMODULE 5 AUDIO FRONT PANEL	
43	AUDIO VREG	
44	SUPER I/O	
45		
46	FLOPPY CONNECTOR	
47	KEYBOARD AND MOUSE	
48	PARRALLEL PORT	_
49	SERIAL PORT	_
8	7 6	_
		_

PAGE # | COMPONENT/FUNCTION

5

5

4

50	FIRMWARE HUB
51	GLUECHIP4
52	HECETA
53	SPEAKER
54	FRONT PANEL HEADER
55	FAN CONTROL
56	SMBUS ISOLATION
57	THERMTRIP CIRCUIT
58	2P5 VREG
59	1.25V DDR
60	STANDARD POWER CONNECTOR
61	PCI VAUX
62	VREG BULK DECOUPLING
63	DDR 2P5_SM DECOUPLING
64	3.3V/1.8V STANDBY
65	USB VREG
66	1.5 & 1.8 LINEAR REGULATION
67	CPU VREG
68	CAPACITORS
69	ITP CONNECTOR

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED. BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

2

1

INTEL MAY MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE.

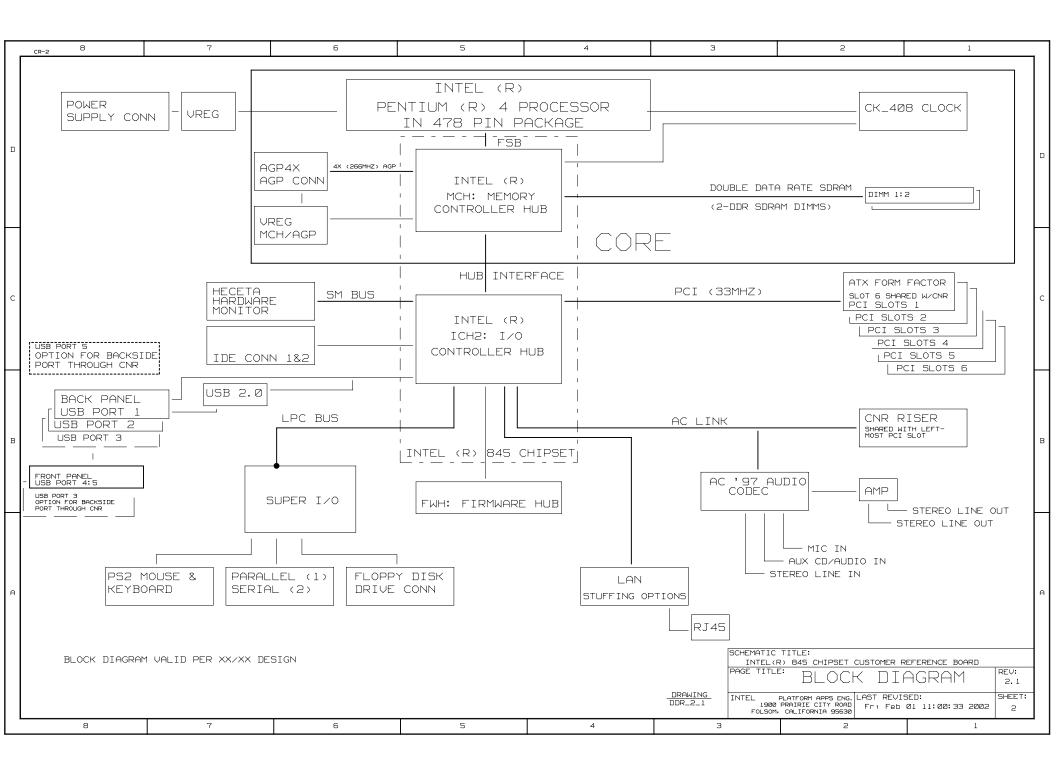
DESIGNERS MUST NOT RELY ON THE ABSENCE OR CHARACTERISTICS OF ANY FEATURES OR INSTRUCTIONS MARKED "RESERVED" OR "UNDEFINED". INTEL RESERVES THESE FOR FUTURE DEFINITION AND SHALL HAVE NO RESPONSIBILITY WHATSOEVER FOR CONFLICTS OR INCOMPATABILITIES ARISING FROM FUTURE CHANGES TO THEM.

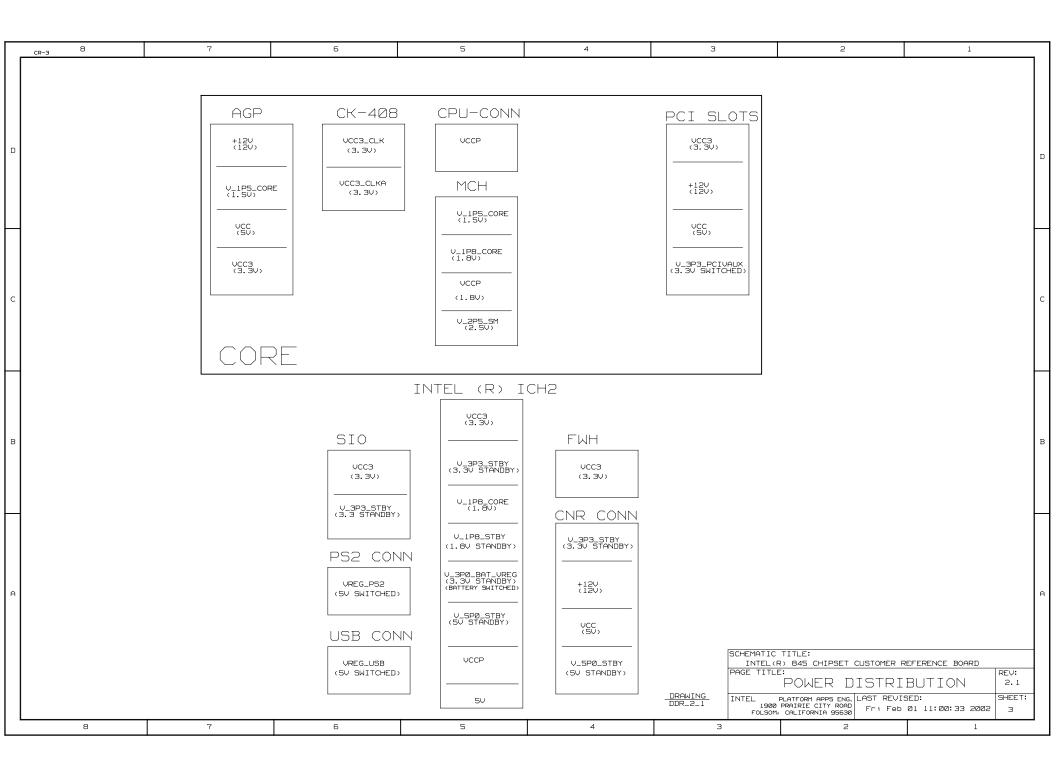
THE INTEL(R) PENTIUM 4 PROCESSOR AND THE INTEL(R) 845 CHIPSET PLATFORM MAY CONTAIN DESIGN DEFECTS OR ERRORS KNOWN AS ERRATA WHICH MAY CAUSE THE PRODUCT TO DEVIATE FROM PUBLISHED SPECIFICATIONS. CURRENT CHARICTERIZED ERRATA ARE AVAILABLE ON REQUEST.

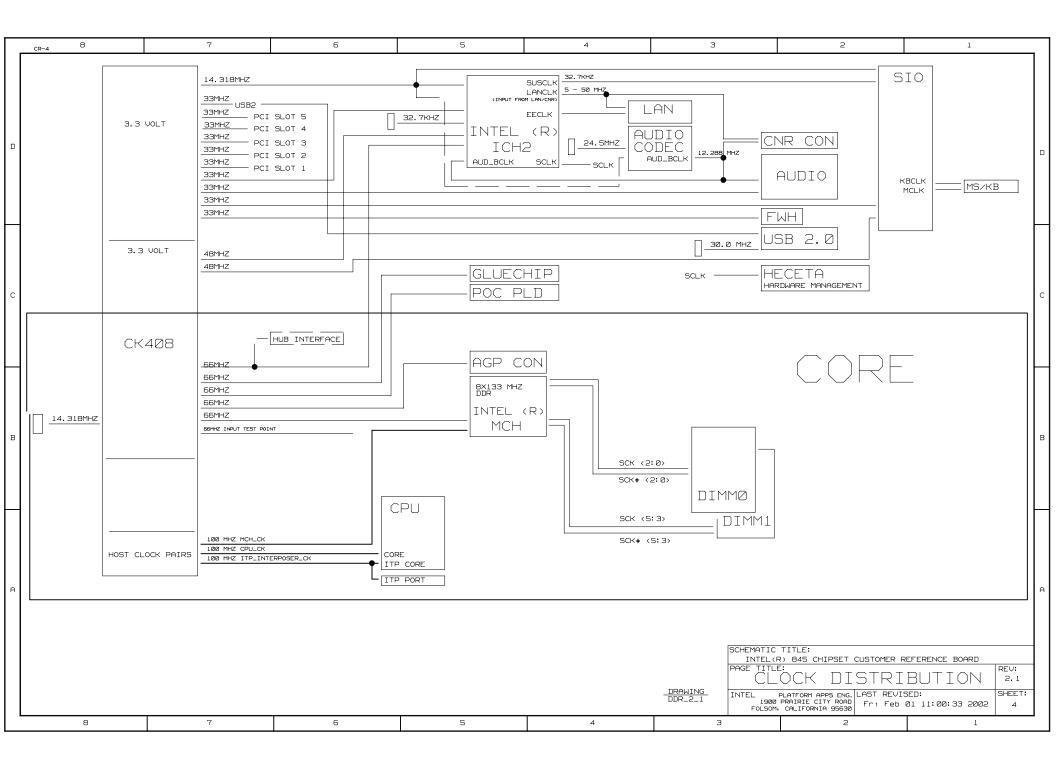
CONTACT YOUR LOCAL INTEL SALES OFFICE OR YOUR DISTRIBUTOR TO OBTAIN THE LATEST SPECIFICATIONS AND BEFORE PLACING YOUR PRODUCT ORDER.

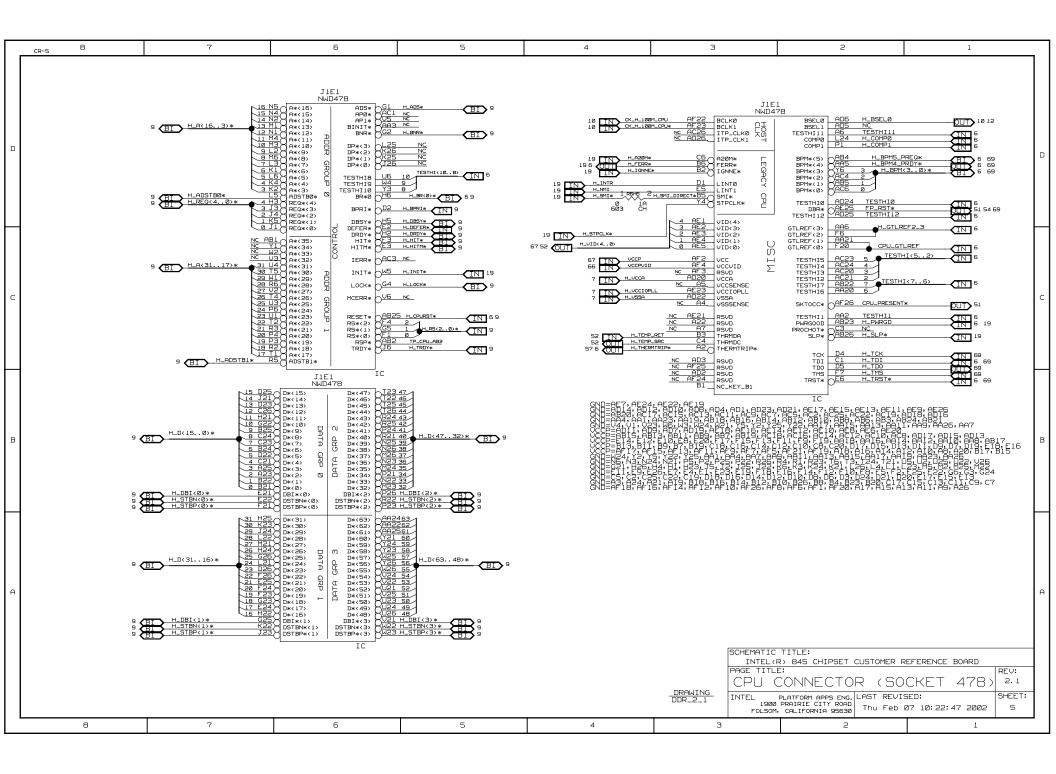
COPIES OF DOCUMENTS WHICH HAVE AN ORDERING NUMBER AND ARE REFERENCED IN THIS

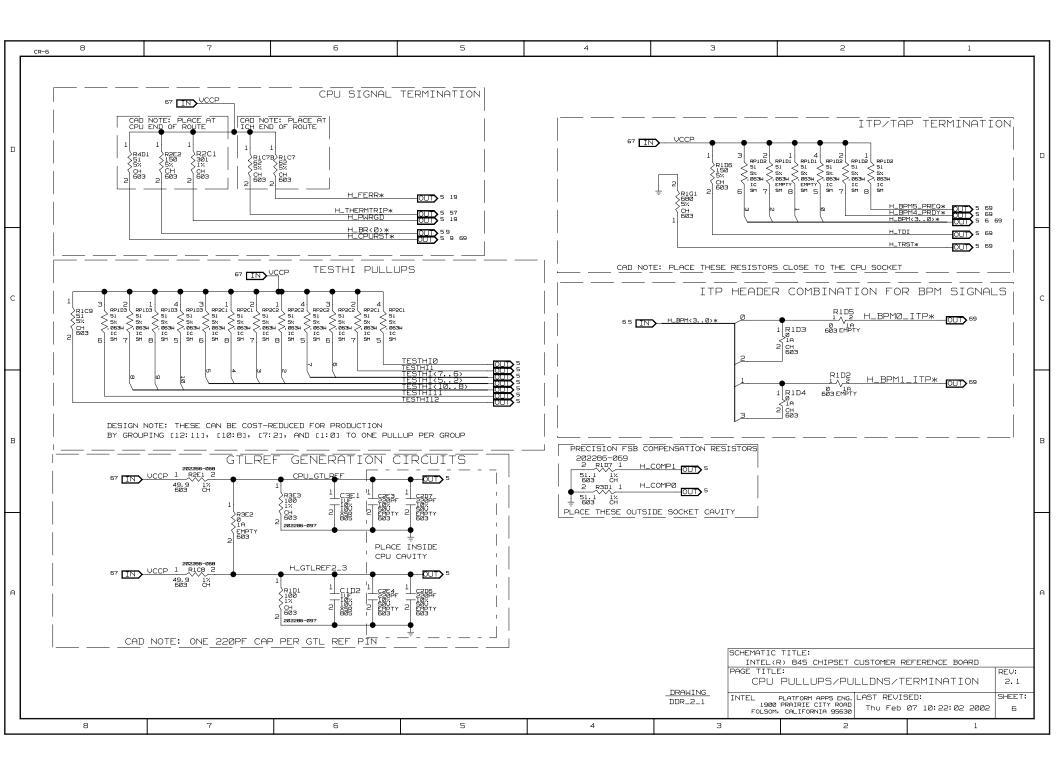
DOCUMENT, OR OTHER INTEL LITERATURE, MAY BE OBTAINED FROM:

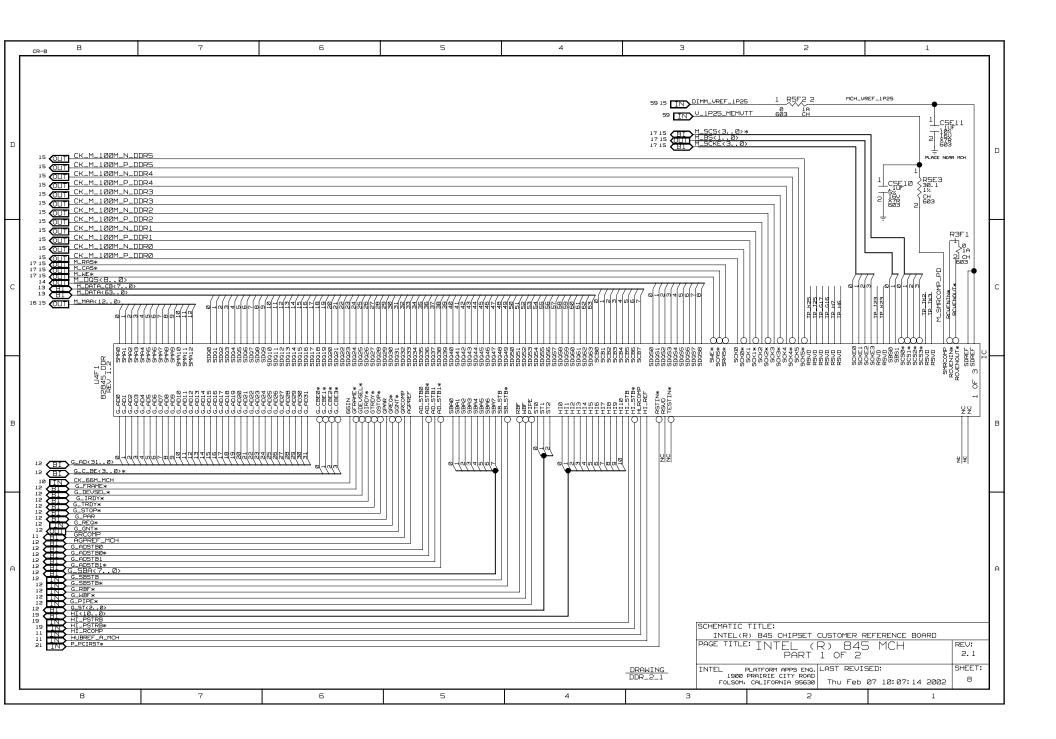

INTEL CORPORATION

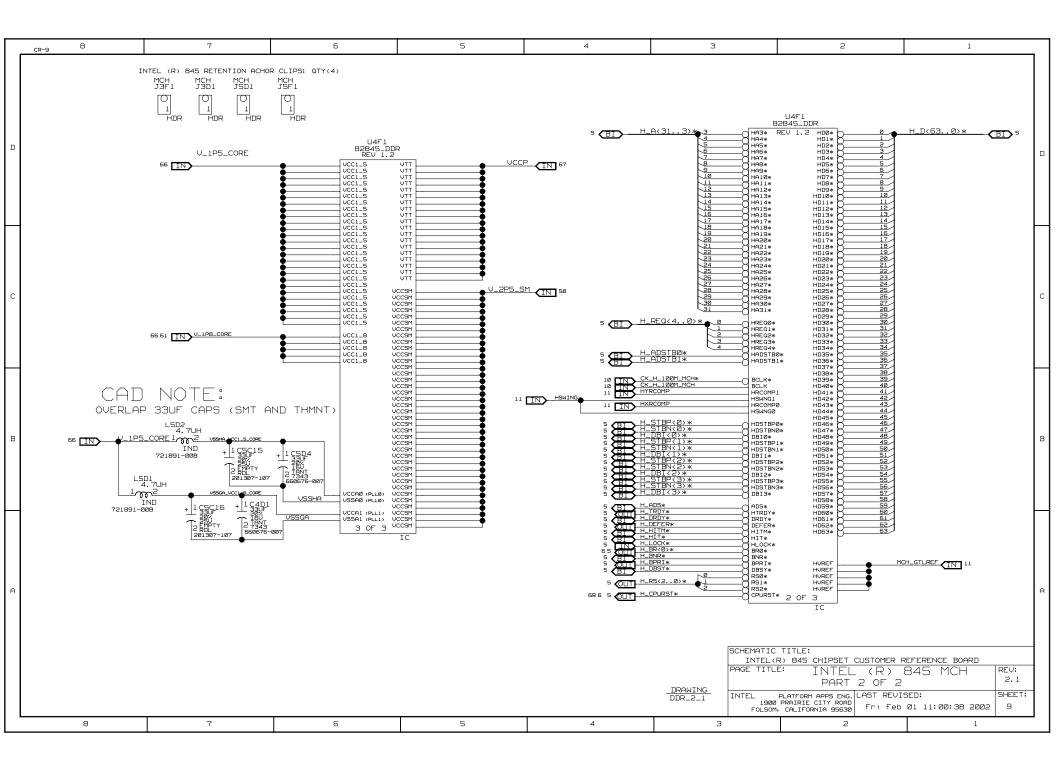

З

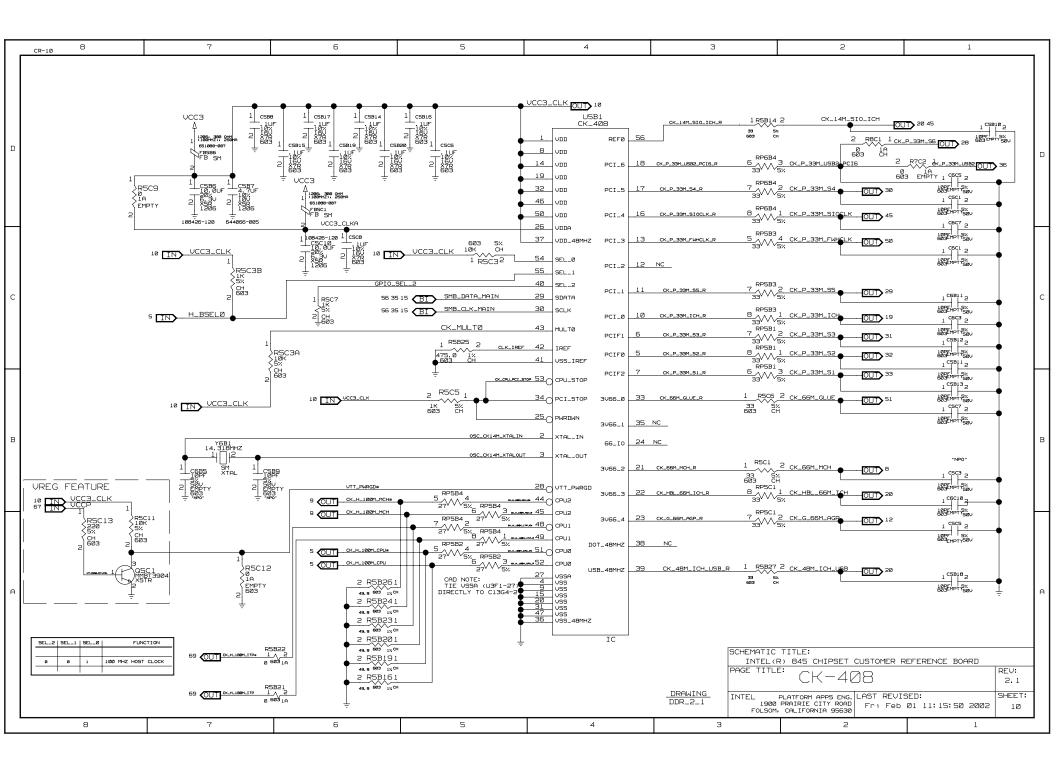

WWW.INTEL.COM OR CALL 1-800-548-4725

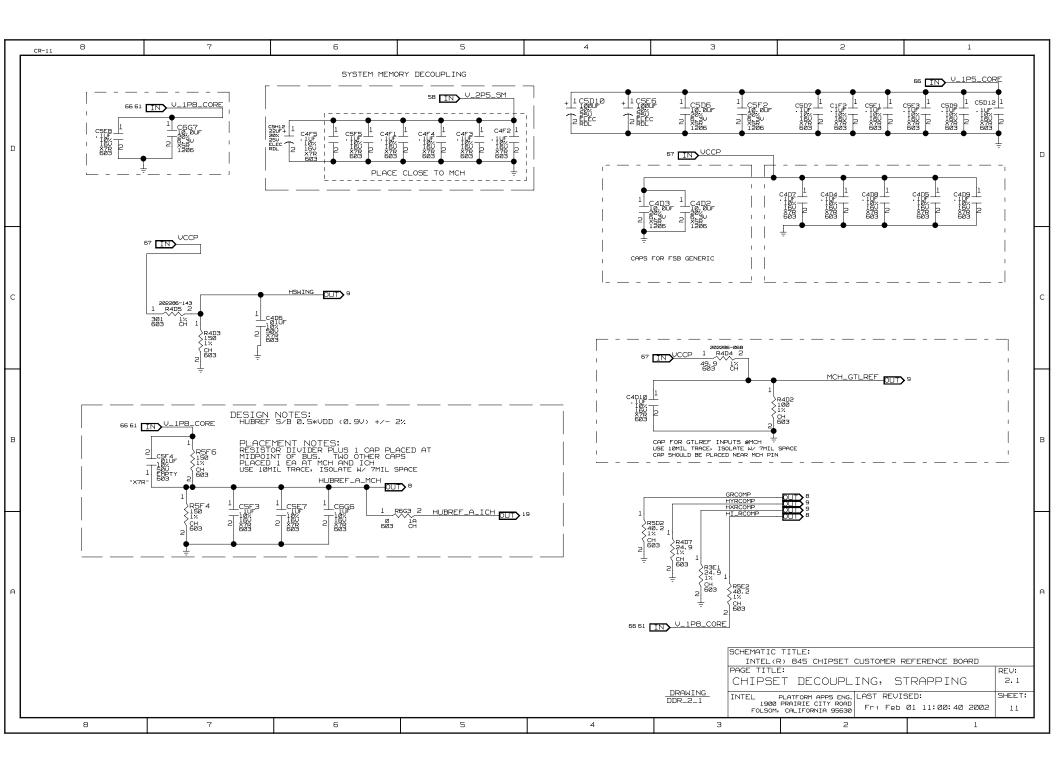

INTEL AND PENTIUM 4 ARE TARDEMARKS OR REGISTERED TRADEMARKS OF INTEL CORPORATION OR ITS SUBSIDIARIES IN THE UNITED STATES AND OTHER COUNTRIES. *OTHER NAMES AND BRANDS MAY BE CLAIMED AS THE PROPERTY OF OTHERS.

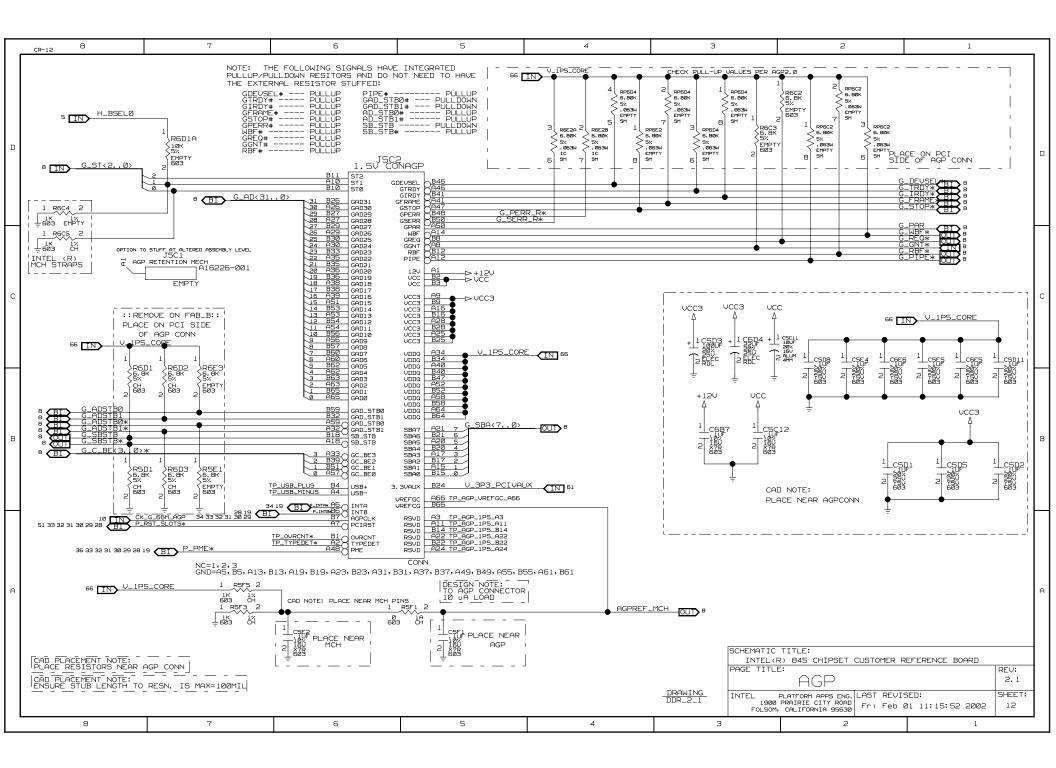

	SCHEMATIC INTEL (R		CUSTOMER	REFERENCE BOARD					
	PAGE TITLE: REV:								
DRAWING	TITLE PAGE AND TABLE OF CONTENTS 2.1								
DDR_2_1		SED:	SHEET:						
		PRAIRIE CITY ROAD CALIFORNIA 95630	Fri Feb	01 11:00:33 2002	1				
З		2		1					





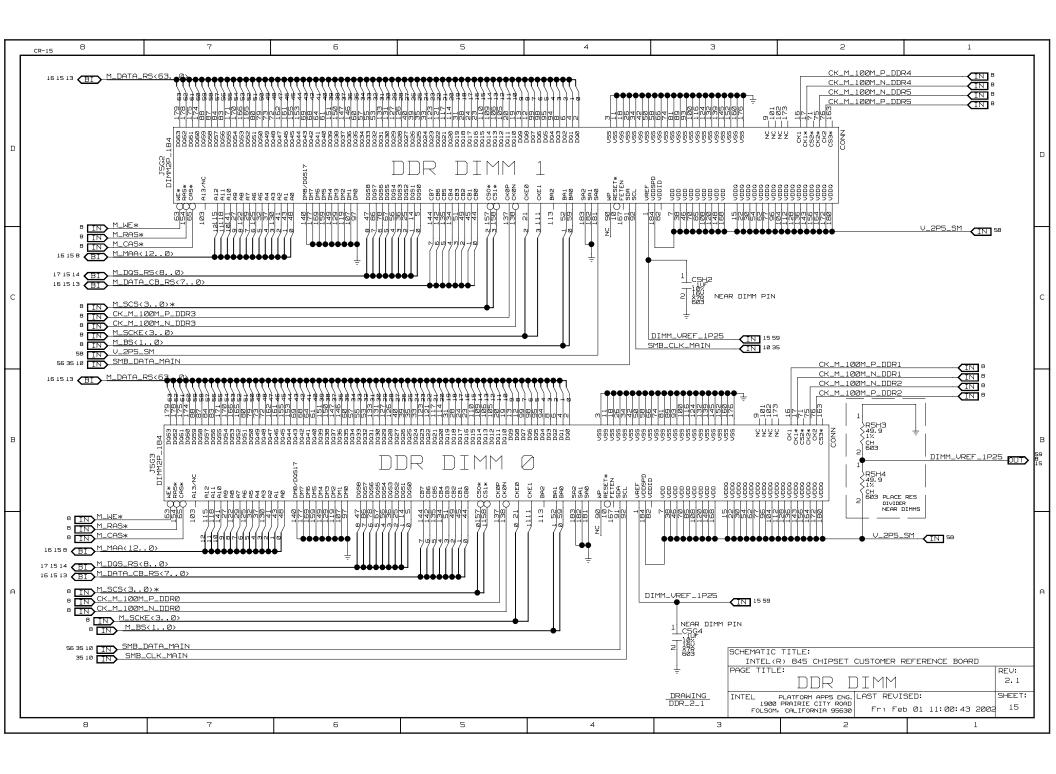





~~~~	8	7	б	5	4	3		2	1		
D	- /		I	I					1		a
с				67 IN VCCP 201005- L3C2 1 IND 22UH IND 	515 1 L3C1 22UH IND 2						с
в				=724513-801 =724513-801 = 2501 	5. THMT, ALUM ELEC" H_USSA DUT 5 H_UCCIOPLL DUT 5 5. THMT, ALUM ELEC"						в
A			PLAC TRAC CAD	D NOTE: E THMT CAPS OUTSIDE RM BC CE WIDTH TO CAPS MUST BE N NOTE: PLACE COMPONENTS A ESSOR SOCKET	NO SMALLER THAN 12MIL		PAGE TITLE FIL INTEL 1900	2) 845 CHIPSET CUSTOMER (	SUPPLY	REV: 2.1 SHEET: 7	A
	8	7	6	5	4	З	FOLSOM,	CALIFORNIA 95530 Fri Feb	1	ſ	
		•	•	•							_



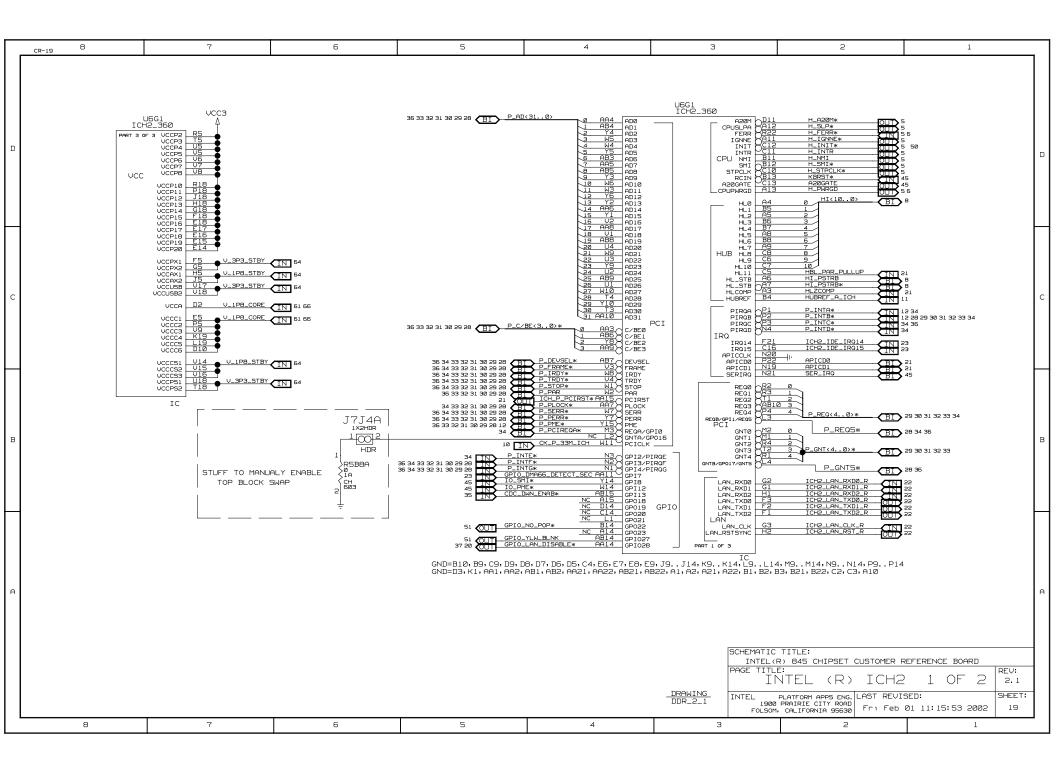


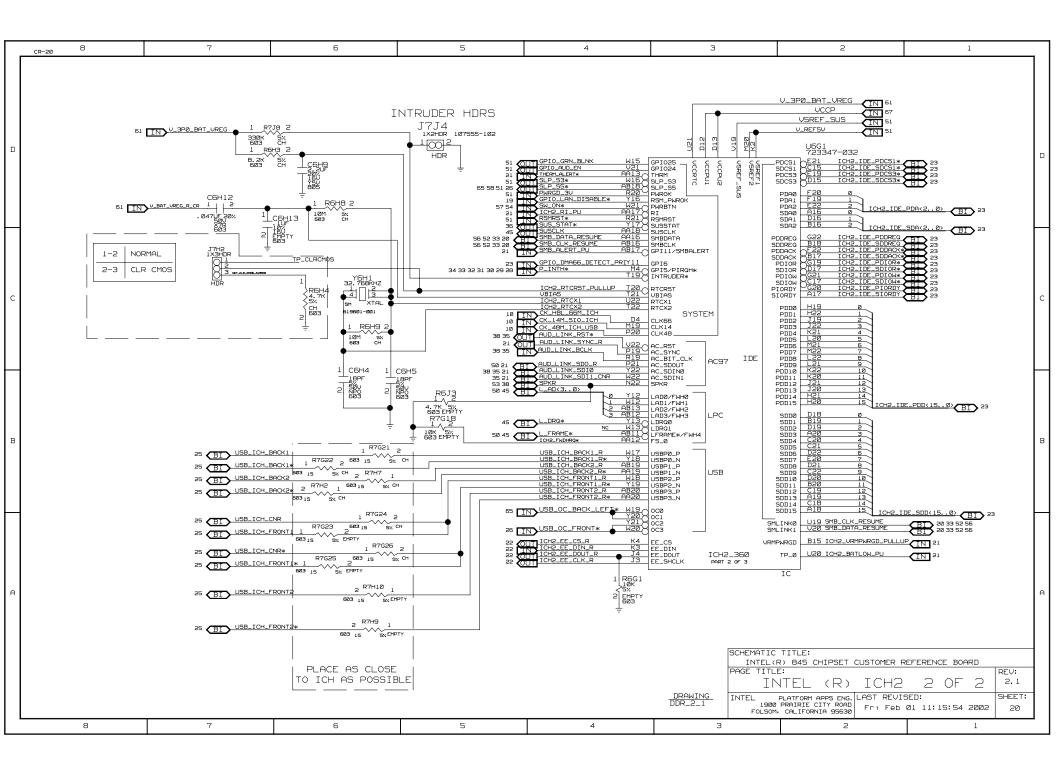




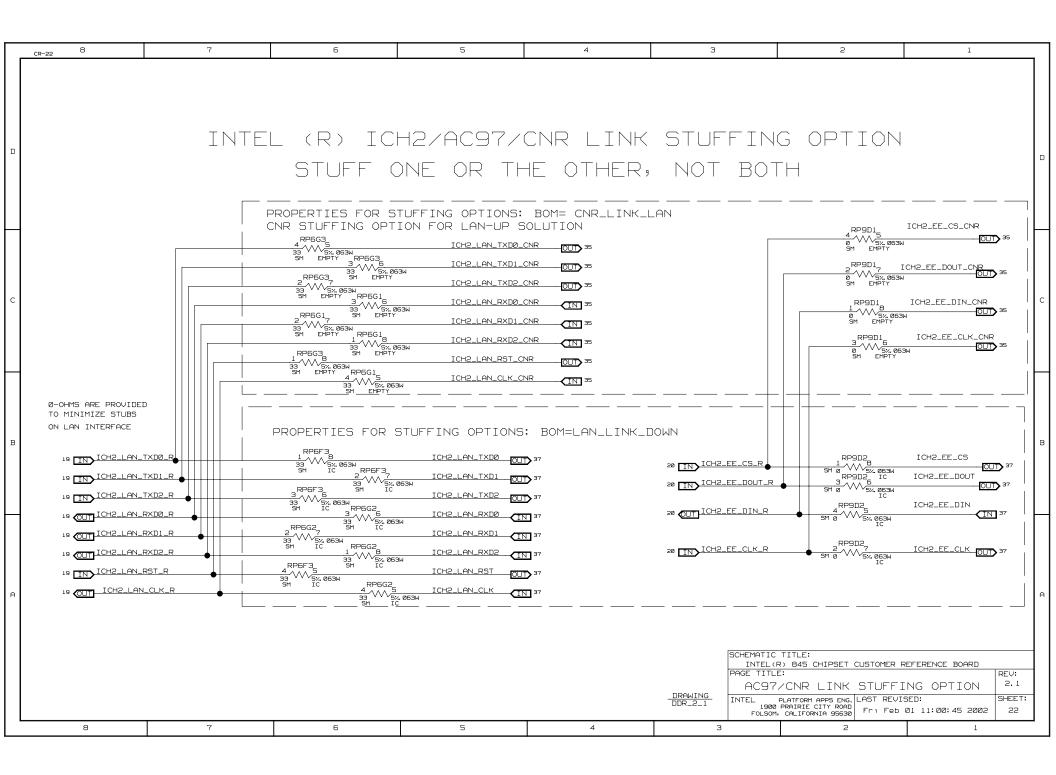


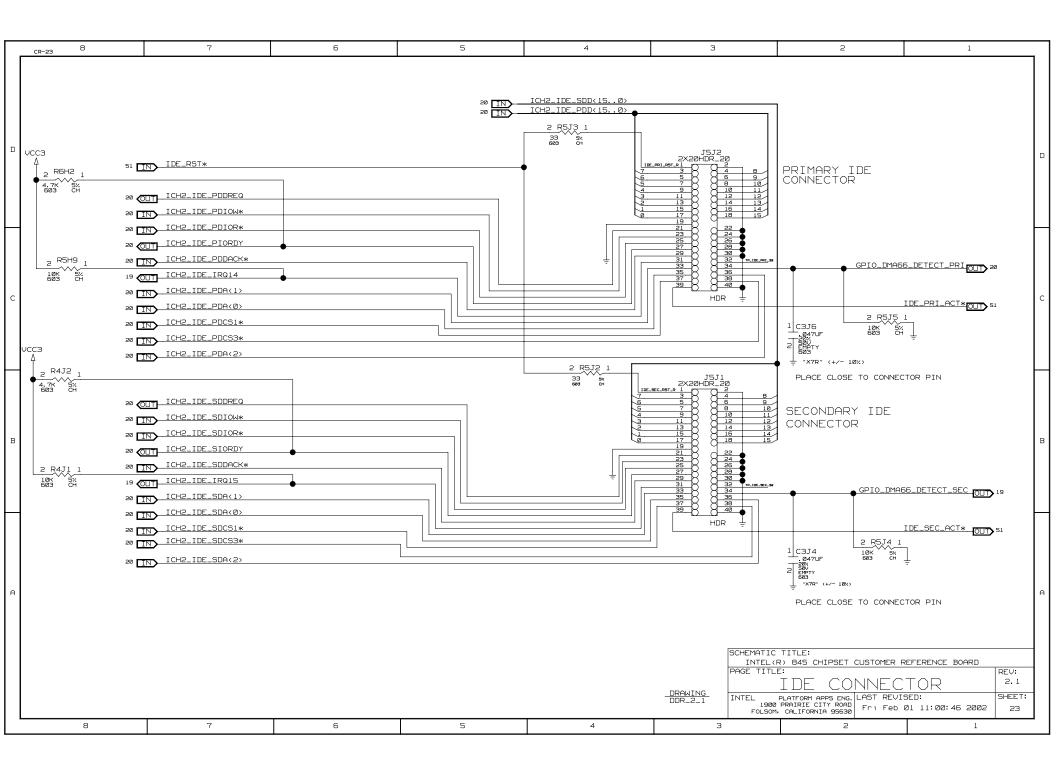

	CR-13 8	7	6	5		4	З		2	1		Л
				•				<u>A_RS(63.</u>	Ø>BI_ 15 16			
			53 3 RP1G2 33 55. Ø63W 54 IC	47 1 33 547 57. 053W 547 57. 053W	31 1 33 54 57.063W 54 57.063W	15 3 RP4G1 33 5% 5% IC	15 . Ø63W					
D				45 2 7 45 33 5%. 053W SM IC	30 3 RP3G4 33 57. 063W SM IC	14 4 RP4G1 33 SM 5 SM IC	14 // 2531					D
				45 2 RP2G2 33 5%. 063W 5M IC	29 1 33 5%. Ø63W SM IC	13 1 33 50 50 50 50 50 50 50 50 50 50 50 50 50	13 263W					
			50 4 33 5% 063W 5M IC	44 4 RP2G2 33 57.053W SM IC	28 3 RP4G5 33 57. 063W 5M IC	12 3 33 54 57 57 57 57 57	<u>12</u> . Ø63W					
			S9 1 S9 1 S7. 063W SM IC	43 3 RP2G3 33 57. 053W 5M IC	27 2 RP3G4 33 55. 063W 5M IC	11 1 33 5M IC	. Ø63W					
			58 2 RP1G2 7 58 33 5%, 063W	42 4 RP2G3 33 5 42 33 5%. 063W 5M IC	26 4 RP3G4 33 5. 26 33 5. 263W 5. 263W IC	10 2 33 5M IC	. Ø63W					
С				41 1 33 5M IC	25 2 RP4G5 33 55. 063W 5M IC	9 2 RP4G3 33 5% 5M IC						С
	16 15 <b>(EI)</b> M_DATA	_CB_RS(70>	56 2 RP1G1 7 56 33 57.063W SM IC	40 3 RP2G2 33 5%. 063W 5M IC	24 4 33 SM IC	8 4 RP4G3 5 33 SM IC	<u>8</u> . Ø63W					
		0 2 RP3G1 33 55.0534 5M IC	55 3 M 5%. 063W SM IC	39 2 RP2G1 33 7 39 33 5%. 053W 5M IC	23 1 RP4G2 33 5%. 063W SM IC	7 2 RP5G1 7 33 5% 5% IC	. Ø63W				-	
		1 1 33 УУБЗИ 5М IC	54 4 33 57. 063W SM IC	38 3 RP2G1 33 57.063W SM IC	22 3 RP4G2 5 22 33 5%. Ø63W SM IC	5 4 RP5G1 33 57 58 IC	. 063W					
в		2 4 RP3G2 5 2 33 5% 053W SM IC	SM IC	37 1 RP3G3 B 37 33 5%. 063W 5M IC	21 1 33 54 1 57.063W 58.063W	5 2 RP5G2 33 5% 5M IC	. 063W					в
		3 2 RP3G2 7 3 33 5% 053W 5% 053W	52 2 RP2G4 7 52 33 5% 063W SM IC	36 3 RP3G3 5 35 33 5%. 053W SM IC	20 4 33 5M IC	4 3 RP5G2 6 33 55 5M IC	4 . 063W					
_		4 4 RP3G1 5 4 33 55.063W 5M IC	SM IC	35 1 RP2G1 B 35 33 57.053W 5M IC	19 2 RP4G2 7 19 33 5%. Ø63W SM IC	3 1 RP5G1 33 5% SM IC	. Ø63W				-	
		5 3 RP3G1 6 5 33 57.063W SM IC	50 2 RP2G5 33 55. 063W 5M IC	34 4 RP2G1 5 34 33 57.063W 57.063W	18 4 RP4G2 5 18 33 55. 063W 5M IC	2 3 RP5G1 33 57 57 IC	. Ø63W					
A		5 3 RP3G2 5 5 33 55. 063W 5M IC	49 3 33 5%. 063W 5M IC	33 2 RP3G3 33 7 33 33 5% 053W 5M IC	17 2 RP4G4 33 SM IC SM IC	1 1 33 5M 10 5M 10	1 . Ø63W					A
	B (BI) M_DATA_CB		48 4 33 54 063W	32 4 RP3G3 33 4 5%. 053W SM IC	15 3 33 50 16 50 16 50 16 50 16 50 16	a 4 RP5G2 33 SM IC	0 . 063W					
	® <b>(BI)</b> M_DATA<63.	. 🛛 >	• •		•	]		SCHEMATIC	TITLE: 2) 845 CHIPSET CUSTOMER	DEFEDENCE BOOD		
								PAGE TITLE DDR S	: Serial impedanci	E RESISTORS	REV: 2.1 SHEET:	
	8	7	6	5		4	DRAWING DDR_2_1	1900 FOLSOM,	PLATFORM APPS ENG. LAST REV PRAIRIE CITY ROAD CALIFORNIA 95530 Fri Fel 2	15ED: 5 01 11:00:42 2002	13	1
	5	1	³	5		-			~			

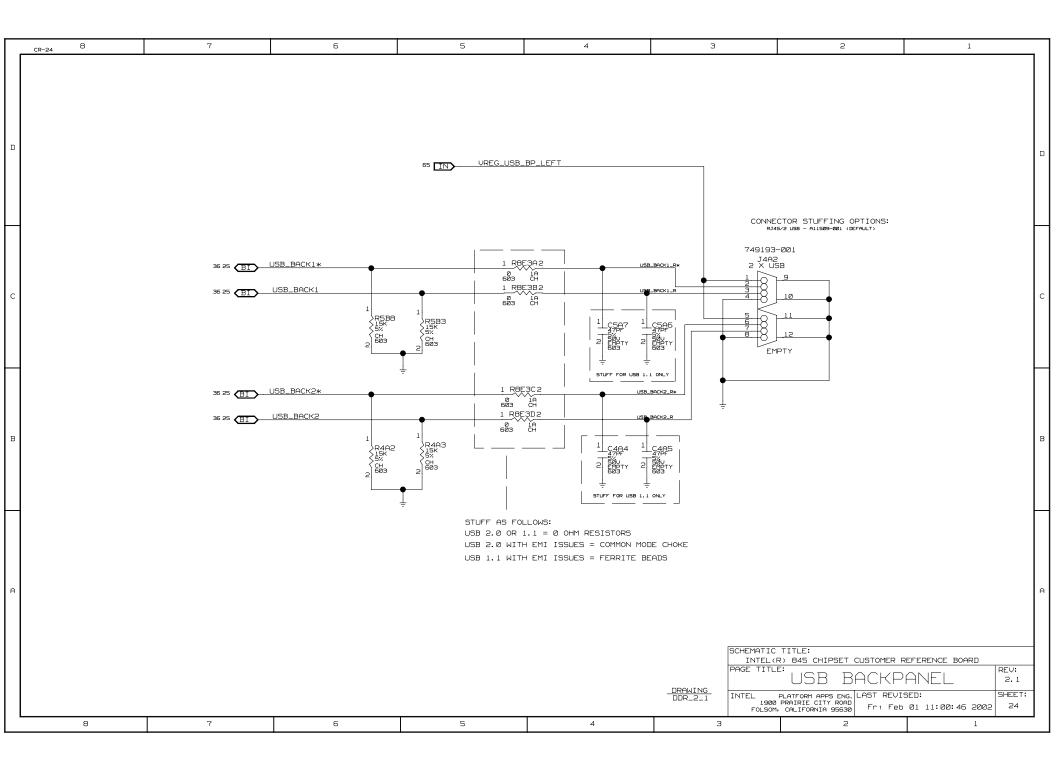

	_{CR-14} 8	7	6	5	4	З	2	1
ם				I			1	
				M_DQS_R5(80) 15 17				
с		8 7 5	1 R3G5 2 8 33 5% 663 5% 1 R1G2 2 7 333 5% 1 R2G6 2 6 33 5% 1 R2G6 2 6 33 5% 1 R2G6 2 5 33 5% 1 R2G4 2 5 33 5%					с
в		4	1 R3G7 2 4 33 5% 1 R3G8 2 3 603 6% 1 R4G1 2 2 33 5% 1 R4G1 2 2 33 5% 1 R4G5 2 1 1 R4G5 2 1 1 R4G5 2 1 1 R4G5 2 1 1 R5G1 2 -	•				в
			1 R5G1 2 0 33 57 603 CH	_				
A						PAGE TIT	(R) 845 CHIPSET CUSTOMER	REV:
						DRAWING DDR_2_1 INTEL Folse	PLATFORM APPS ENG. LAST REVI 10 PRAIRIE CITY ROAD 10M, CALIFORNIA 95530 Fri Feb	
L	8	7	6	5	4	З	2	1

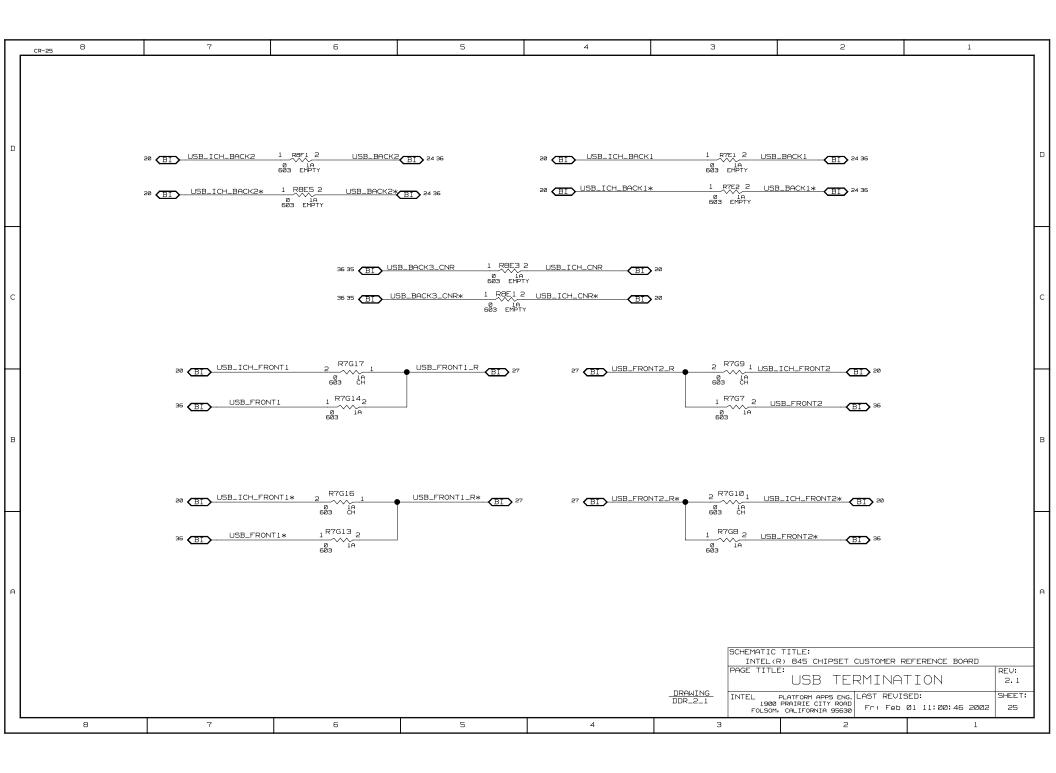


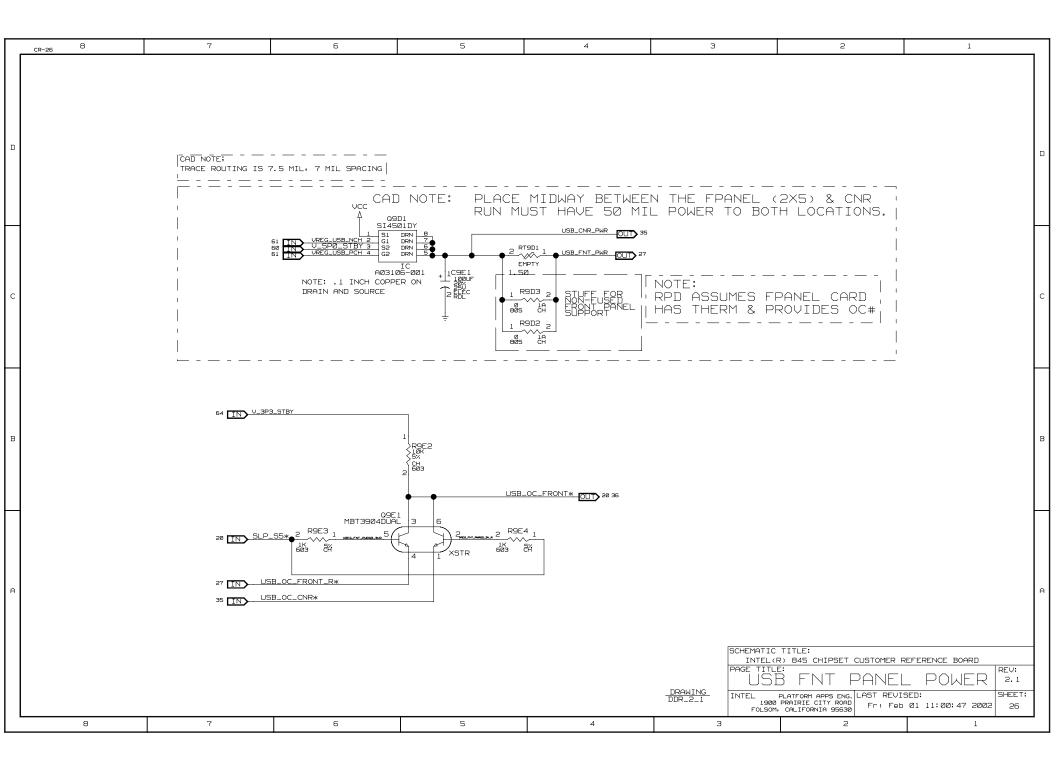

	CR-16 8	7	6	5	4	з	2	1
				•	•	·	V_1P25_	
С	CR-16 8	7	89 1H4           63 4         47           63 4         47           52 H         10           52 H         10           52 H         10           53 4         7           54 2         10           51 1         7           52 1         10           51 1         7           52 1         10           54 2         10           59 2         10           59 3         7           57 3         7           58 3         10           59 3         7           59 7         7           59 7         7           59 7         7           59 7         7           59 7         7           59 7         7           59 7         7           50 3         7           51 1         10           52 1         7           51 3         10           52 1         7           57         3           58         10           59         10           59         10	33W       47       47       47       5%         33W       5M       1C       5M       1C         33W       3M       1C       5M       1C         33W       3M       1C       5%       063k         33W       3M       1C       5%       063k         33W       3M       1C       5%       063k         33W       3M       1C       1C       1C         33W       3M       1C       1C       SM         33W       3M	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MEMUTT S9 5 5 5 5 5 5 5 5 5 5 5 5 5
A		RS<70> 3 RP3H46 37 Sz. 5 3 RP3H46 57 Sz. 5 2 RP3H5 47 M5z. 5 3 RP3H46 5 2 RP3H46 5 3 A7 5 2 RP3H5 47 M5z. 5 M IC 5 3 RP3H46 5 2 RP3H5 5 2 RP3H5	- 063W	ЗА <u>1</u> 47 57 57 10 57 10 57 10 10 10 10 10 10 10 10 10 10	18 4 RP4H75 5% 065% 5% IC 17 4 RP4H5 47 W5% 065% 5% IC 5% IC	A CHEMATI	A A A A A A A A A A A A A A	REFERENCE BOARD
						DRAWING DDR_2_1 INTEL FOLS	PLATFORM APPS ENG. LAST REV 20 PRAIRIE CITY ROAD OM, CALIFORNIA 95630 Fri Fet	ISED: SHEET: 0 01 11:00:43 2002 16
Ľ	8	7	6	5	4	З	2	1


Γ	CR-17 8	8	7	6	5	4	З	2	1	
ם			18	зм	59 <u>TR</u>	V_1P25_MEMVTT				D
			7. 2 RP1H3 7 47 ₩ 5%. 06 SM IC 5 3 RP1H1 5 47 ₩ 5%. 06 SM IC 5 4 RP2H6 5 47 ₩ 5%. 06 SM IC	ю.	2 1 R3H2 56 503 8 4 4 4 4	2 5% сн 5%. 063W IC				
с			4 2 PP2H1 7 47 5% 05 5M 10 3 1 PP3H1 8 47 W5% 05	ын ж		⁵ 5% ФБЗ₩ IC 5% ФБЗ₩ IC				с
в	15	M_DOS_RS<8.	2 2 47 47 5M 5M 5M 5M 5M 5M 5M 5M 5M 5M	Эм	2 3 RP2HE 47 5M 1 2 RP2HE 47 47 5M	IC 5. 053W IC 5. 053W IC 5. 053W IC				в
		8 <u>IN</u>	L_RAS* <u>3</u> ^{RP2H4} 5 55 05 51 IC	B IN M_SCKE	2 2 RP4H 47 SM	5%. 063W IC				
A		8 IN M	SM IC		RP4H	45 5, 063ж IC 48 5, 063ж IC				A
		0		5	-		DRAWING DDR_2_1 DDR_2_1 DDR_2_1 DDR_2_1	R) 845 CHIPSET CUSTOMER I E: RESISTOR TER PLATFORM APPS ENG. PRAIFIC CITY ROAD 1. CALIFORNIA 95630 Fr 1 Feb	MINATION         REV: 2.1           sed:         sed:           01 11:00:43 2002         17	
		8	7	6	5	4	3	2	1	

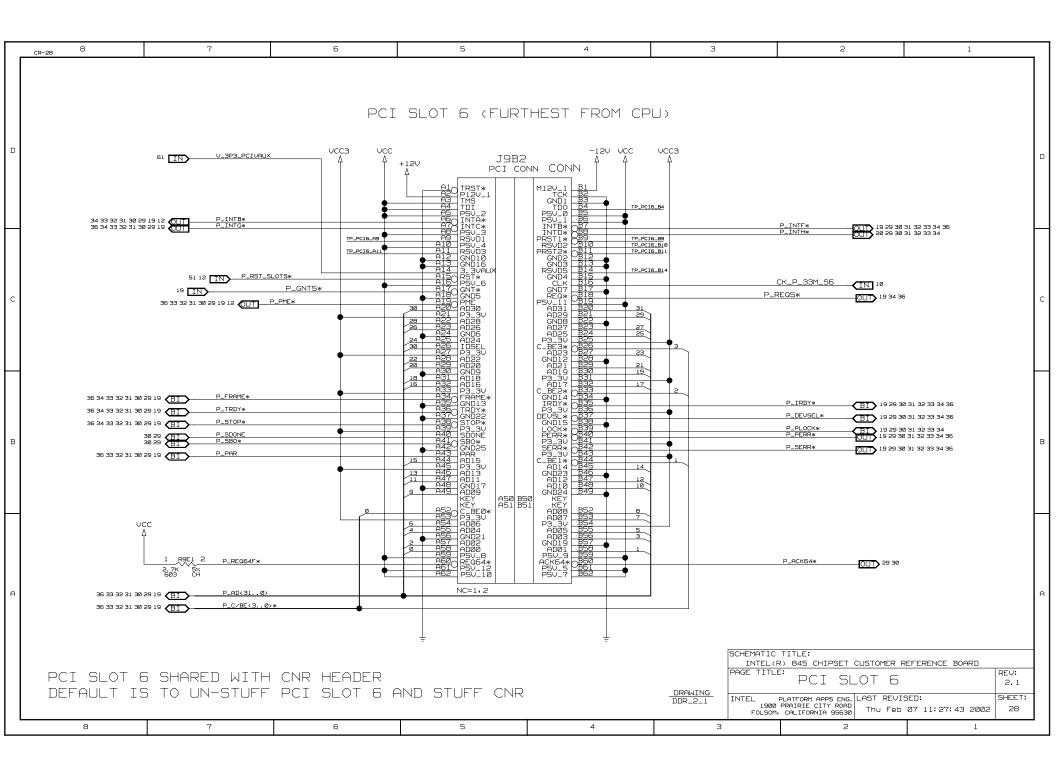

	CR-18	8			7		6			5			4		З			2			1	
ם				ACED A			ENDS															Γ
с			,	•	•	•		•	. <b>•</b>		•			•		•	•	•	•	•	25_MEMVTT	
					1 C5H7 -1UF 2 250 603			1 1UF 207 250 250 503		2	C4H1 10F 2050 250 603			1 C4H6 21UF 2 250 2 750 603		1 C3H10 1UF 20% 25% 603		1 C4H14 1UF 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5		1 C4H10 2 2 2 50 2 50 50 50 50 50 50 50 50 50 50 50 50 50	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
в		•													1 C3H11 2 2 5 6 0 3 6 0 3	1 C3H9 - 1UF - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1 C3H12 .1UF 2 2 603 603					_• E
				1 C2H2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 C2H3 20% 20% 603			1 C2H10 20% 250 250 250 250 250 250 250		2		1 C2H12 20% 20% 20% 20% 20% 20% 20% 20	1 C2H5 207 207 207 207 207 207 207 207 207	1 C2H13 20% 20% 20% 20% 20% 20% 20% 20%		1 C2H14 2550 603		1 C2H6 2 2 557 683				•
		•			:	1 C1H6 250 250 603																
A		Ť																				f
														-	DRAWING DDR_2_1	INTE PAGE TI DDR INTEL	TLE: DEC PLATFOR	CHIPSET	ING C	CAPAC Jised:	се воаrd ITORS 200: 43 2002	REV: 2.1 SHEET: 18
		8			7		6			5			4		:	3		2	1		1	<u> </u>

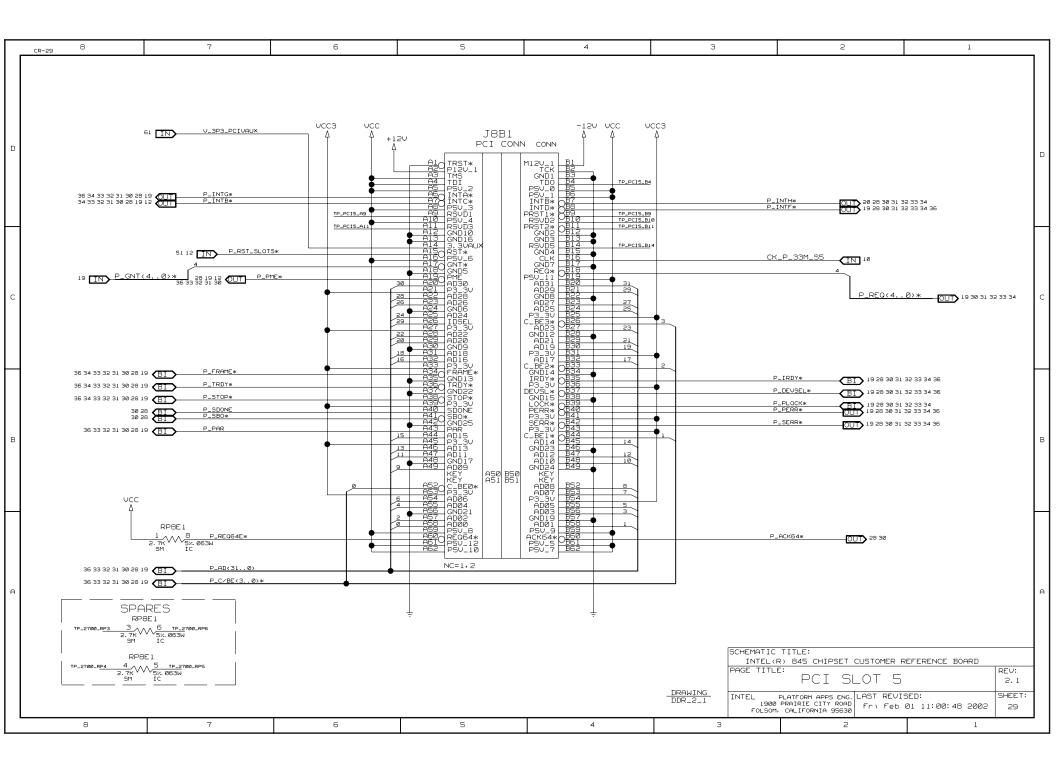


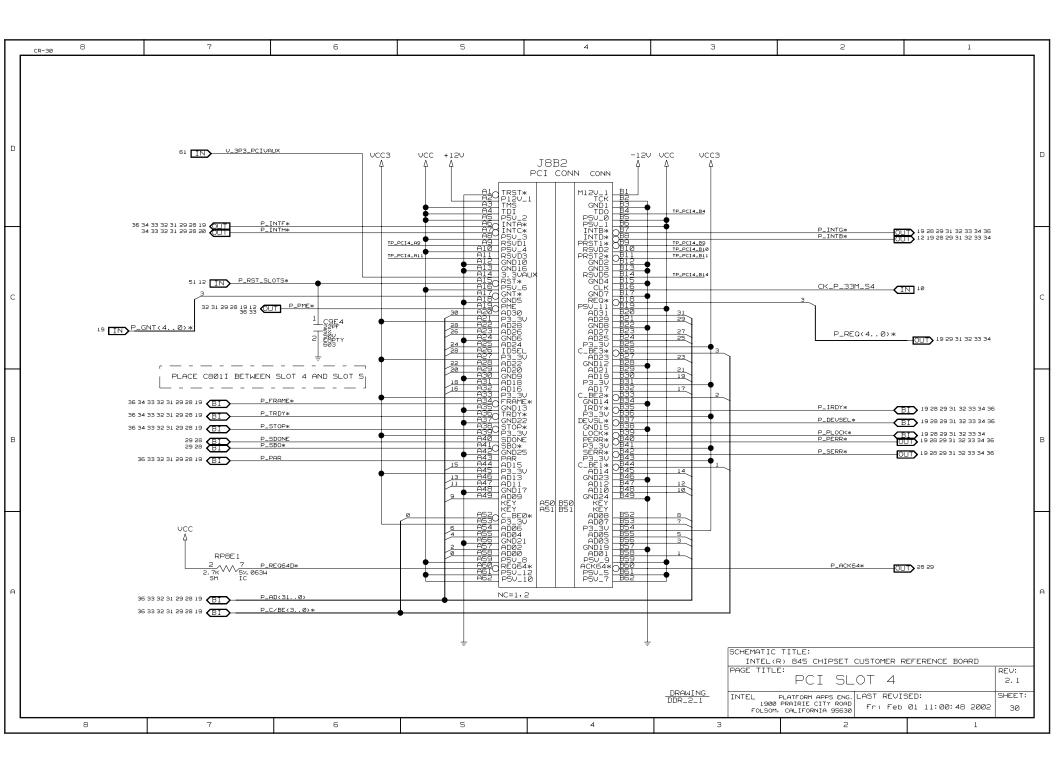



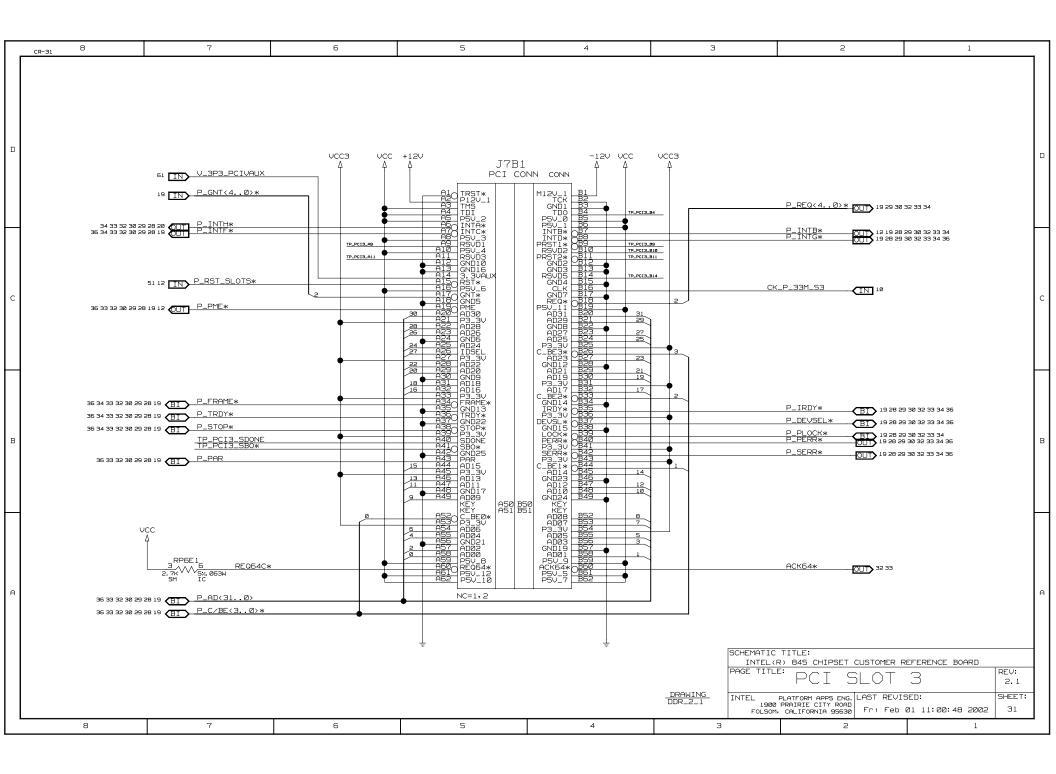


CR-21	8	7	6	5	4	з		2	1	
D		THERM_ALERT*	4 PP9D3 100 500 100 100 100 100 100 100	<u>VK_SDI1_CNR_OUT</u> 28 35 <u>VK_SDI8</u> 28 35 38			2 8 3 2 6 5 5 67	C6H11 NU-390_BAT_URC0 1 - 1UF 20X - 255 E03 - 1UF 20X - 255 E03 - 1UF 20X - 1UF 20X - 255 - 10F 20X - 10F 20X	VCC3 VCC3 A C6H1 C7C2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2	
в	Ţ	ICH2_URMPARGD_PULLUP	20 20 	20 TN AUD_LINK_SDO_R 1 3 60 20 TN AUD_LINK_SYNC_R 1 3 50 50 50 50	3 5%. 13 CH	35 38				В
A			<u>000</u> 20 00020 00020			51 50 <u>DRAWING</u> DDR_2_1	PAGE TITLE INTEL INTEL 1900	TITLE: 2 B45 CHIPSET CUSTOMER F CR) ICH2 PULLUPS & 2 ICH2 PULLUPS &	EFERENCE BOARD DECOUPLING E SED: SH	P 2: 1 EET: 21
	8	7	6	5	4	3		2	1	

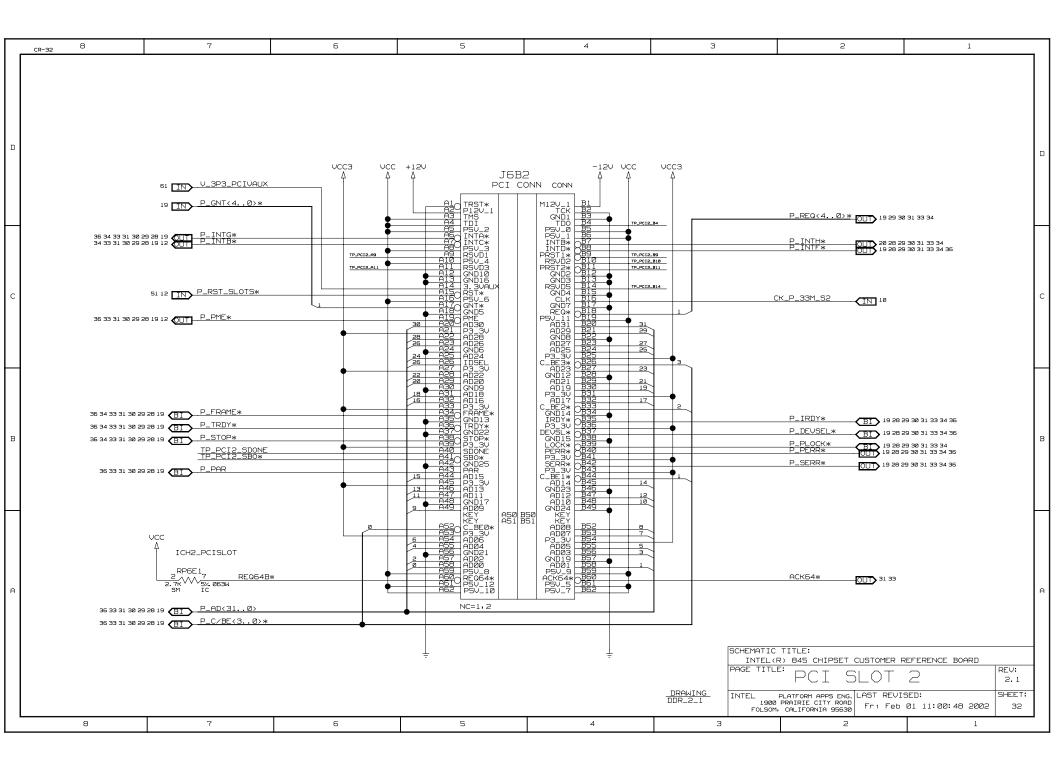




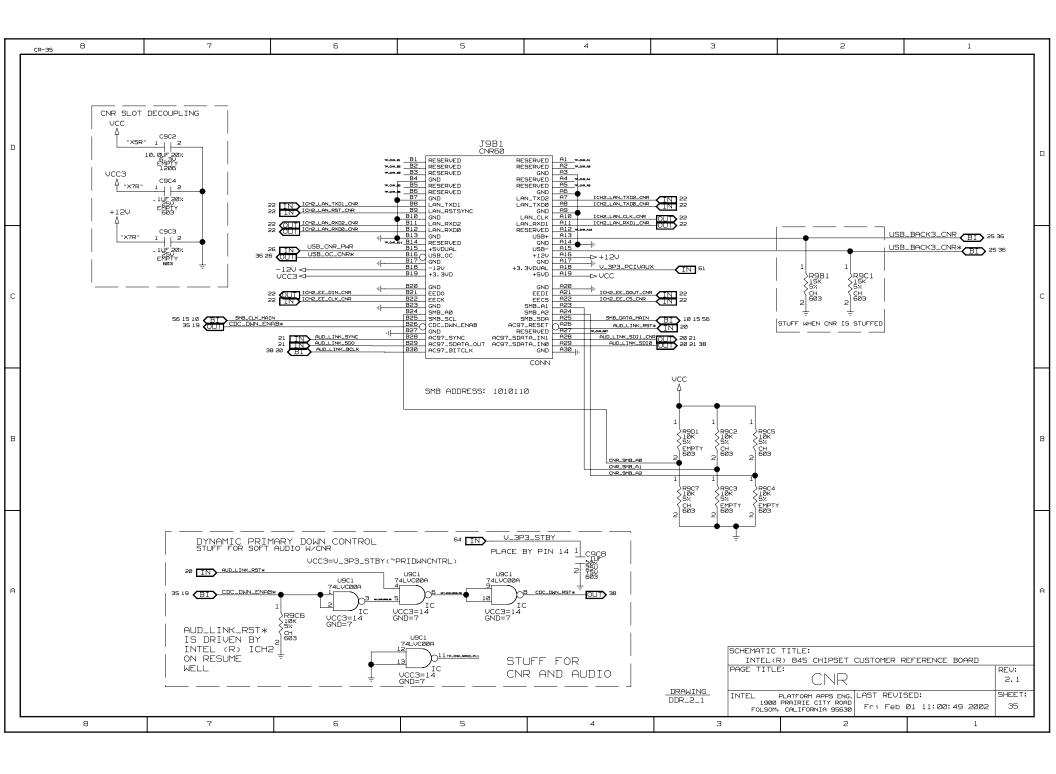



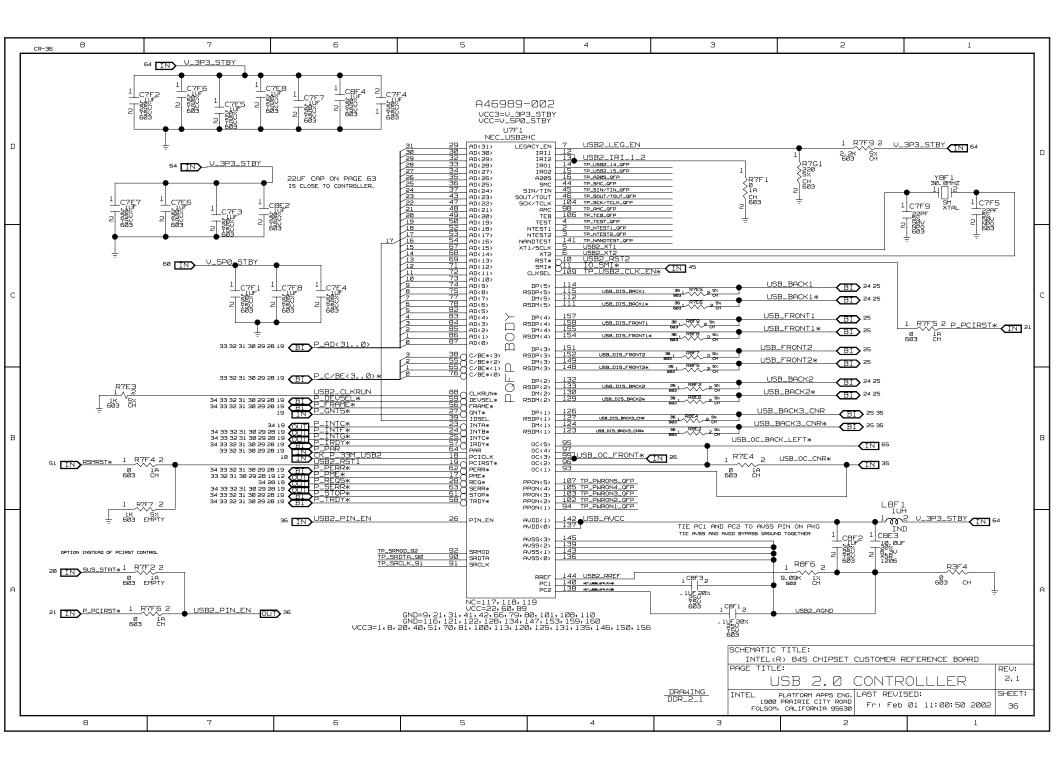



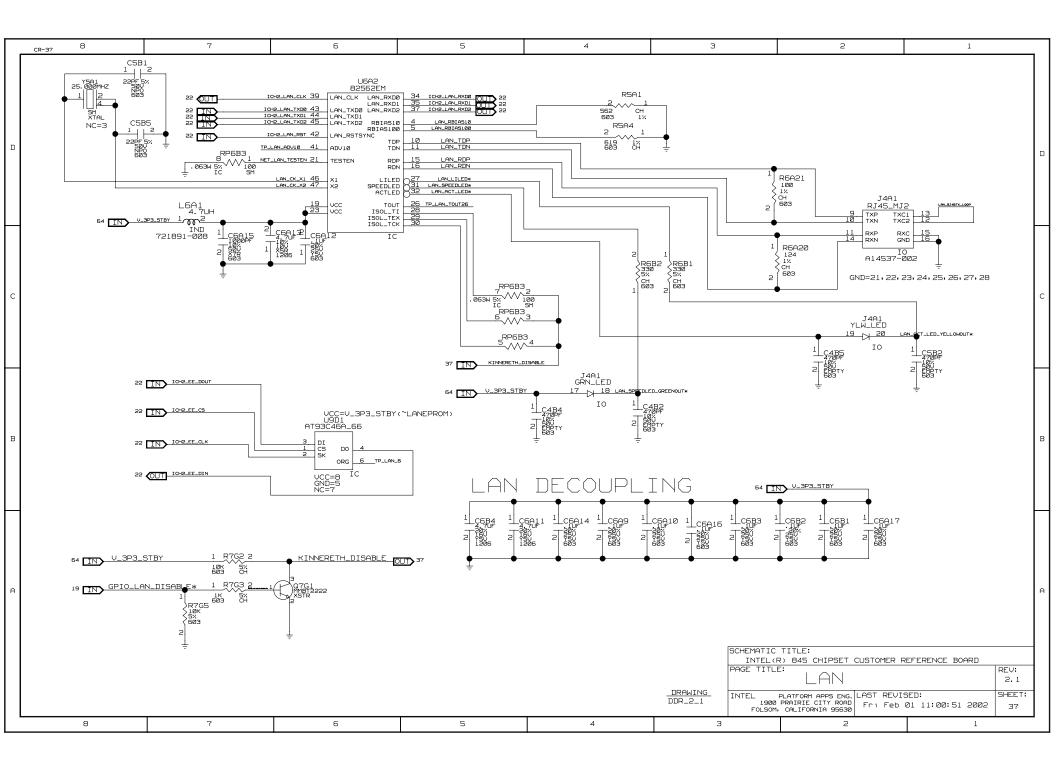


	_{CR-27} 8	7	6	5	4	З	2	1
D					2_9			ם
с		25 <b>BI</b> US 25 <b>BI</b> US	B_FRONT1_R*		2 3 4 6 1 1 2 4 6 1 1 2 4 5 1 2 4 5 1 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5	USB_FRONT2_R USB_FRONT2_R USB_FRONT2_R USB_FRONT2_R 2_5K 2_5K 2_6534 1_1 2_7 5M	S BI ≈ S BI ≈	с
в			26 <u>IN</u> <u>USB_FNT_PWR</u>	RBG2 2 abs Ether STUEE FOR FRONT PANEL		EF FOR EN PANEL SUPPORT		в
A						I PAGE		DER 2.1 SED: SHEET:
	8	7	6	5	4		FOLSOM, CALIFORNIA 95630 Fri Feb	01 11:00:47 2002 27 1

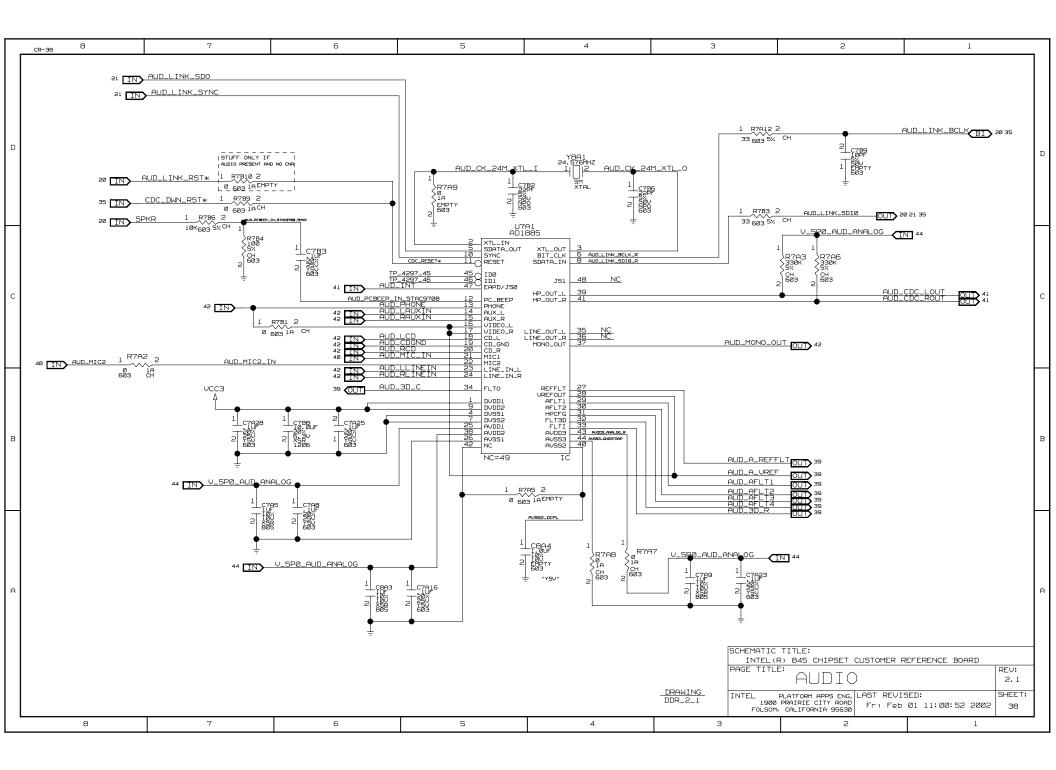


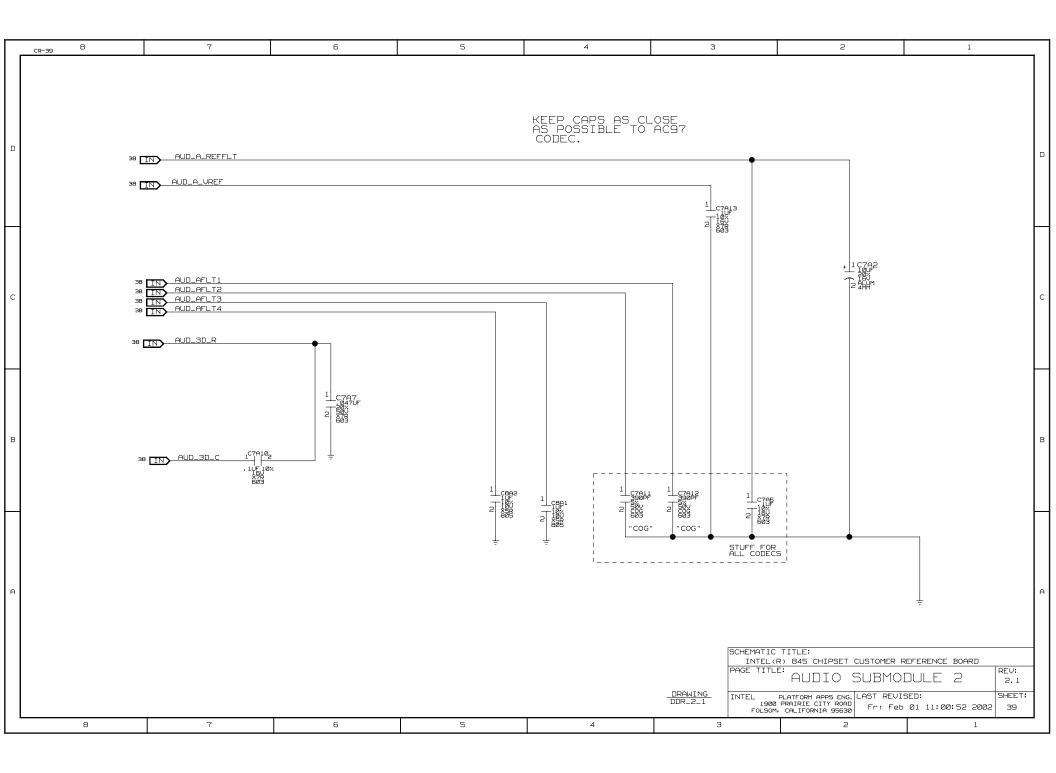


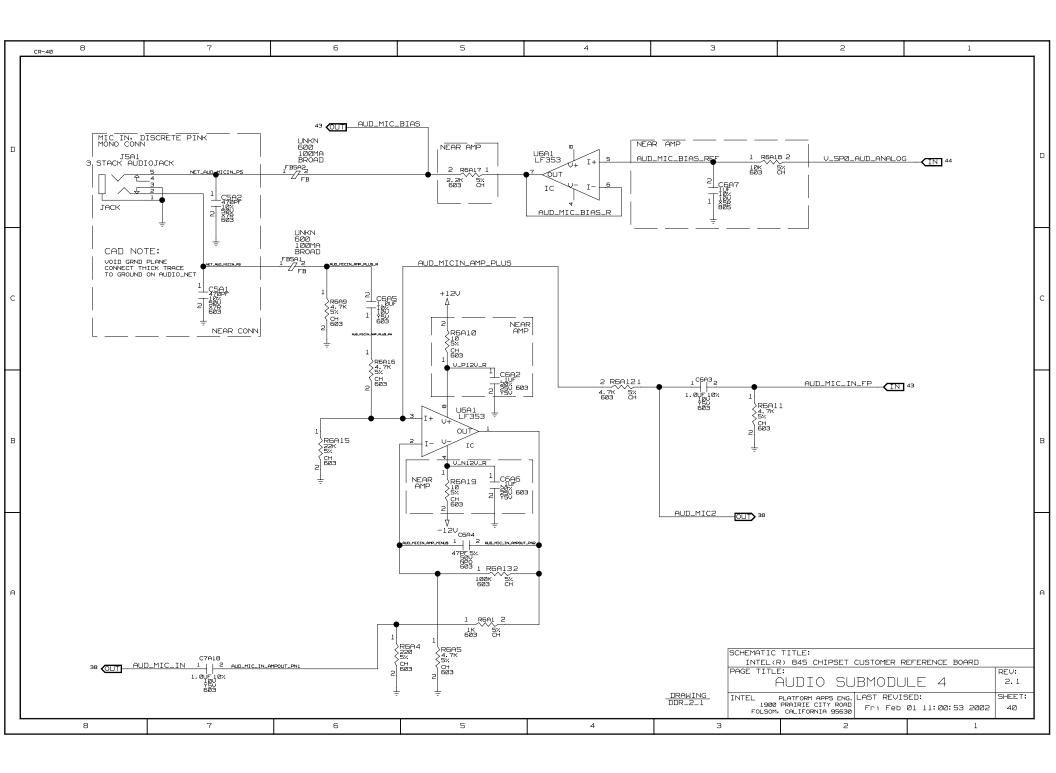


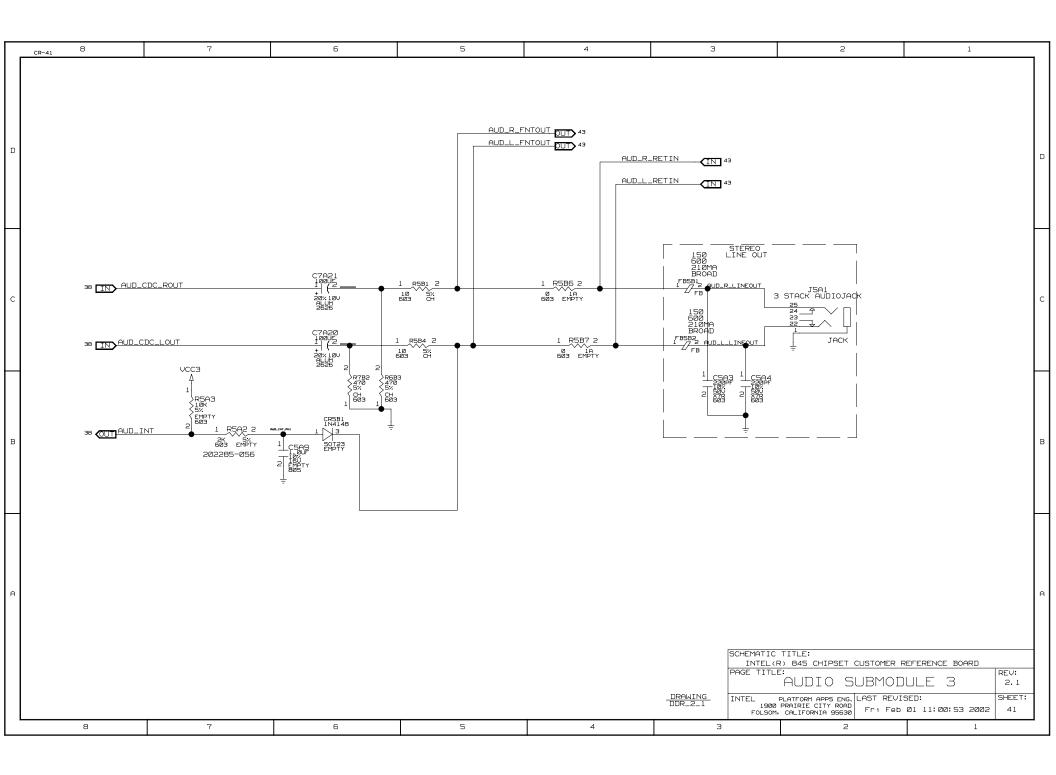



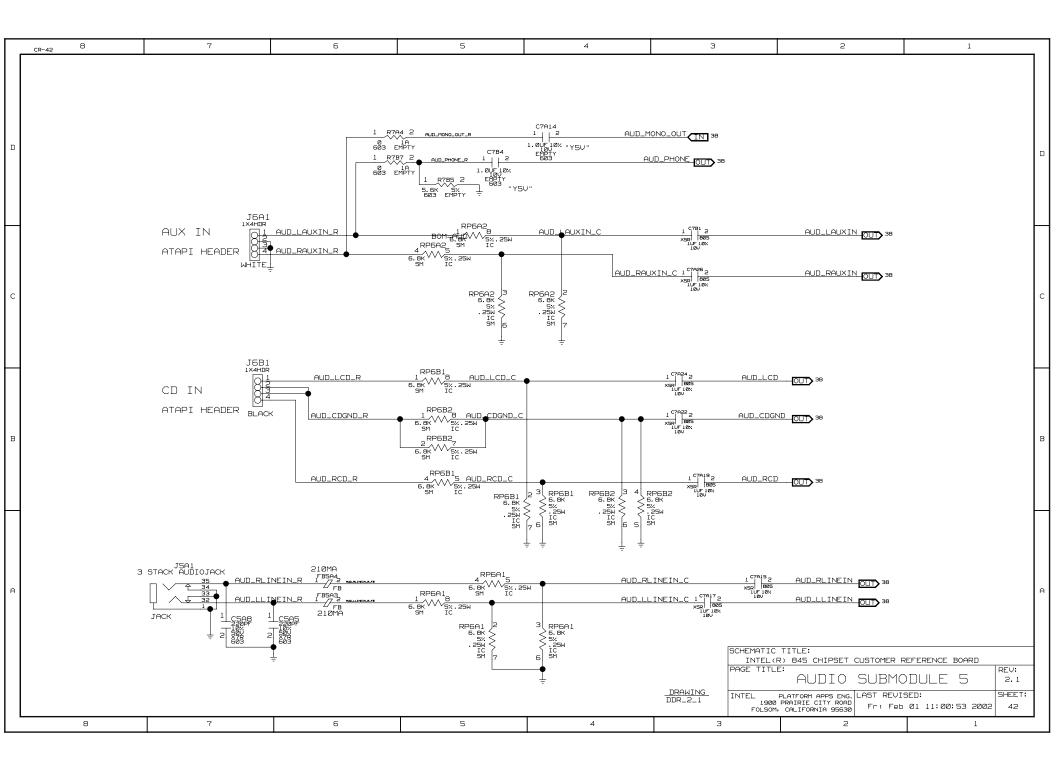





CR-33	8	7	6	5	4	З		2	1	,
С	36 32 31 30 59 36 36	19 51 12 IN P_RSI. 51 12 IN P_RSI. 28 19 12 OII P_PME* 34 32 31 30 29 28 19 EI P_RSI. 34 32 31 30 29 28 19 EI P_SIC 55 52 20 EI SIMB_DATA_RESI 55 52 20 EI SIMB_DATA_RESI 55 52 20 EI SIMB_DATA_RESI 56 52 20 EI P_PAR	3_PCIUAUX     1	TP.PCIL.AI AI TRST.*         TRST.*           TRST.*         P12V_1           TMS         TMS           TP.CLI.AIAS         TMTC           ABD         FSUJ1           TRSUDI         FSUJ1           AII         FSUJ1           AII         FSUJ3           AII         FSUJ3           AII         FSUJ3           AII         FSUJ4           AII         FSUJ3           AIII         FSUJ3           AII	CONN CONN M12U_1 B1 GND1 B3 TCK B2 GND1 B3 PSU_1 B5 PSU_1 B5 PSU_1 B5 PSU_1 B5 PSU_1 B5 PSU_1 B5 PSU_1 B17 RSUD2 B14 RSUD2 B14 RSUD2 B14 CGD2 CGD2 CG CGD2 B14 CGD2 B14 CGD2 B14 CGD2 CGD2 CG CGD2 B14 CGD2 CGD2 CG CGD2 CGD2 CG CGD2 CG CGD2 CGD2 CGD2 CG CGD2 CGD2 CGD2 CGD2 CGD2 CGD2 CGD2 CGD2			P_IRDY* B 19 P_IRDY* B 19 P_DEVSEL* B 19 P_PLOCK* B 19 P_PLOCK* B 19 P_PLOCK* B 19 P_PLOCK* B 19 P_PLOCK* B 19 P_PLOCK* B 19	29 30 31 32 34 8 29 30 31 32 34 36 9 28 29 30 31 32 34 36 28 29 30 31 32 34 36	С
A		ICH2_PCISLOT RP6E1 <u>4 5 REQ64A*</u> 2.7K 5X.065W SM IC 36 32 31 30 29 28 19 <u>BI P_AD</u> <u>96 32 31 30 29 28 19 BI P_C/E</u> CAD NOTE:	THE SAME AS ON THE EVAL I	AS2 AS2 AS2 AS4 AS5 AD06 AD04 AS5 AD04 AD04 AS5 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 AD04 A	B51         KEY ADØ7         B52         E           ADØ7         B53         7           P3 30         B54         7           ADØ5         B557         2           ADØ3         B557         2           ADØ3         B567         2           ADØ1         B58         1           ADØ1         B58         1           PSU-5         B50         1           PSU-5         B50         1           PSU-7         B52         1           PSU-7         B52         1		PAGE TITLE	TITLE: >> 845 CHIPSET CUSTOMER	REFERENCE BOARD	REV: 2.1 SHEET: 33
	8	7	6	5	4	3	1	2	1	<u> </u>


	CR-34	8	7	6	5	4	З	2	1
	D CR-34		7D3 PCISL VCC C7B16 122/2 +1 C7B16 122/2 +1 C7B2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 122/2 +1 C7B16 -1 C7B16 -1 -22/2 +1 C7B16 -1 -22/2 +1 C7B16 -1 -22/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 +1 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2 -20/2	LOT DECOUPLING VCC3 4 1 ^{C7D4} 2 .1UF 28% 683 1 ^{C6D6} 2 .1UF 28% 683 1 ^{C6D6} 2 .1UF 28% 683 1 ^{C9D2} 2 .1UF 28% 683 1 ^{C9D2} 2 .1UF 28% 683 1 ^{C9D2} 2 .1UF 28% 683 1 ^{C9D2} 2 .1UF 28%	1 C6D2 ₂         1 C7E3 ₂           1 LIF 28%         1 LIF 28%           683         1 C7E3 ₂           1 LIF 28%         1 LIF 28%           683         1 C7E3 ₂           1 LIF 28%         1 LIF 28%           1 C7C2 ₂         1 LIF 28%           1 C7D2 ₂         1 C7B2 ₂           1 C7D2 ₂         1 LIF 28%           1 C7D2 ₂         683           1 LIF 28%         683           1 C7D2 ₂         683           1 LIF 28%         683           1 C7E2         1 LIF 28%           1 C7E2         1 LIF 28%           1 C7E2         1 C6C8 ₂           1 LIF 28%         683		33 32 31 30 29 28 19 OUT P_S 33 32 31 30 29 28 19 OUT P_D 33 32 31 30 29 28 19 OUT P_I 33 32 31 30 29 28 19 OUT P_I 33 32 31 30 29 28 19 OUT P_P	PCI PULL-UPS	UCC 4 2:7K SM IC RP6F15 5M IC RP6F15 5M IC D 2:7K SM IC D 0 0 0 0 0 0 0 0 0 0 0 0 0
A A A A A A A A A A A A A A	в					36		20Y* POP* 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 2.7K 5m 1 1 1 1 1 1 1 1 1 1 1 1 1	2.7K V V SX. 063W SM IC 2.7K V SX. 063W SM IC SM IC B RP6F1 2.7K V SX. 063W
8 7 6 5 4 3 2 1	A		33 32 31 30 29 28 19 12 000 P 36 19 000 P 19 000 P 19 000 P 19 000 P 36 33 32 31 30 29 28 19 000 P 36 33 32 31 30 29 28 19 000 P	INTE* 2 NPBC B. 2K INTC* 5M INTC* 5M INTE* 8 INTE* 3 RPBG INTF* 3 RPBG INTF* 8 INTG* 5M	4 RP6D3 5 3 B. 2K 5X. 063W 1C 3 RP6D3 6 3 B. 2K 5X. 063W 1C 3 RP6D3 6 3 B. 2K 5X. 063W 1C 5X. 063W 1C 8P6G4 1C 8P6G4		BRAWING DDR.2-1	RPGF1 2.7K SX.063 2.7K SX.063 2.7K SX.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C.063 1C	A REFERENCE BOARD IATION ISED: SHET: SHEET: SHEET:
		8	7	6	5	4	3	2	1



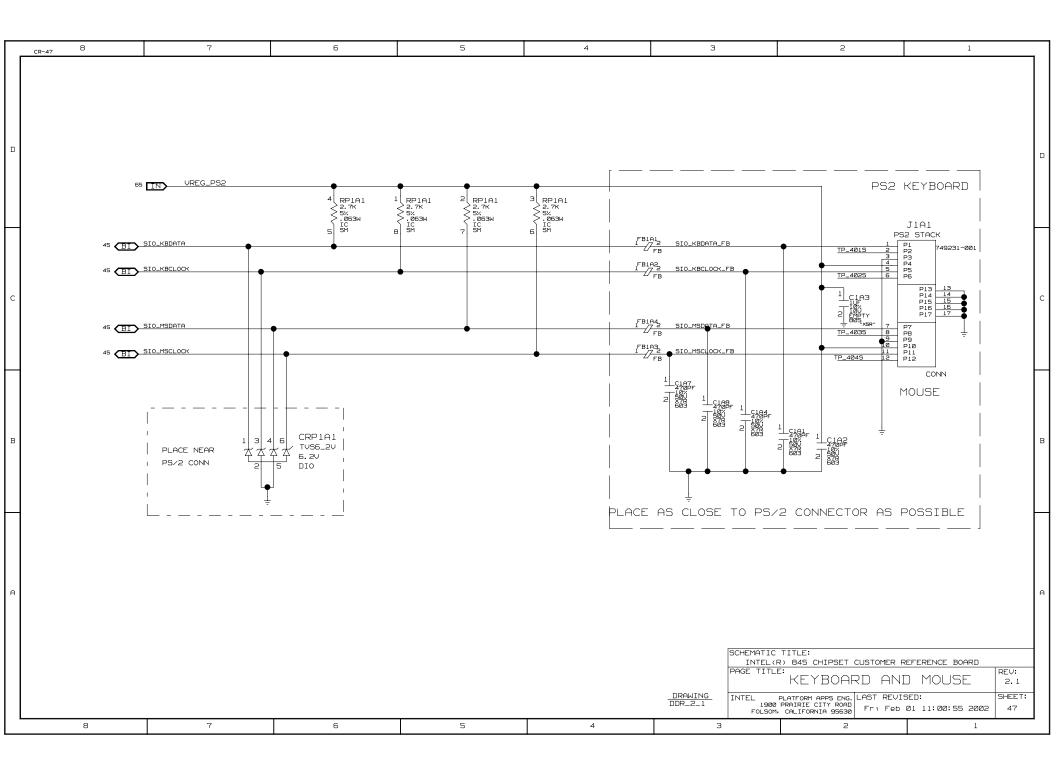



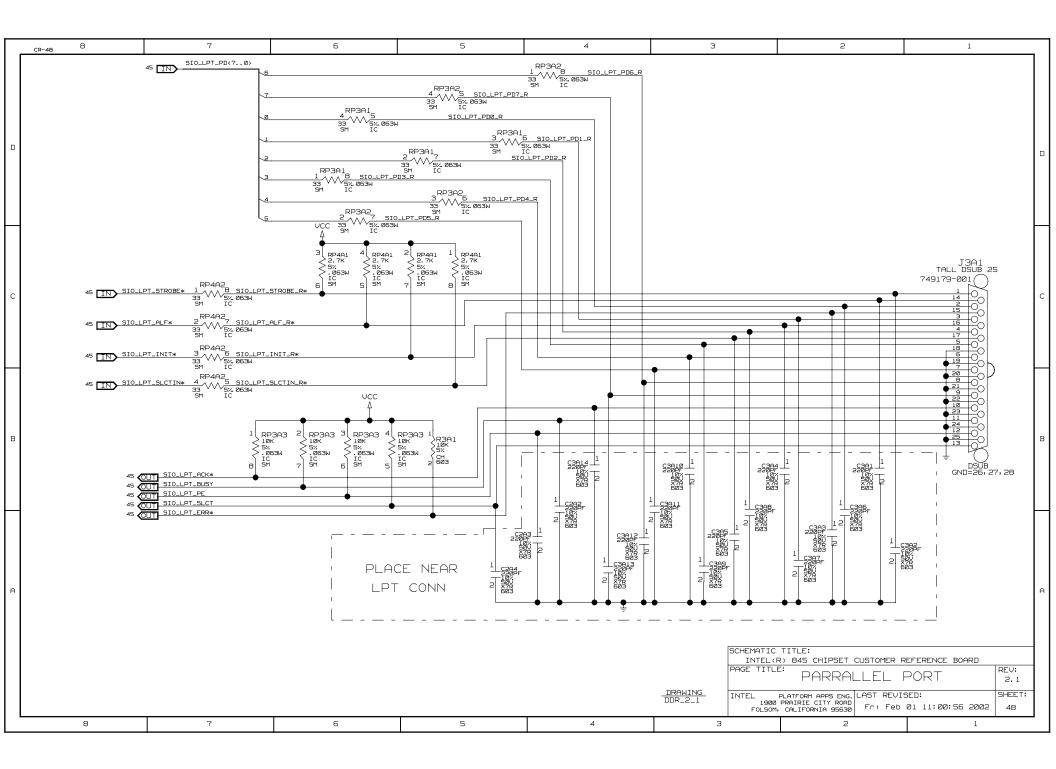


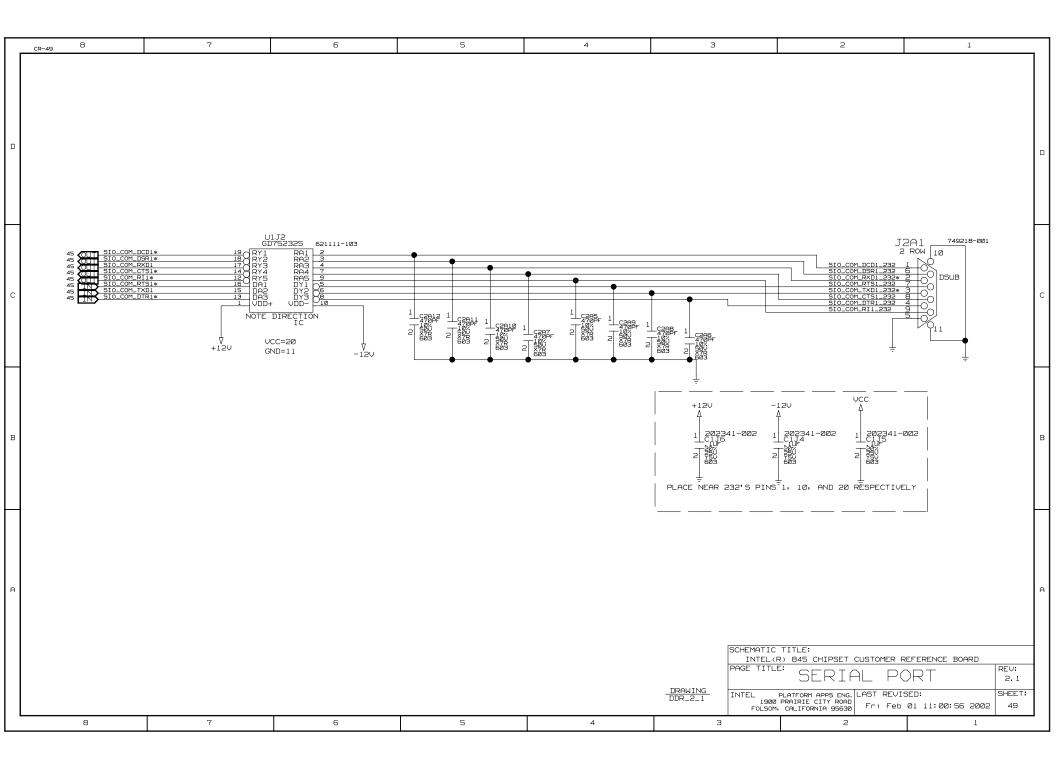


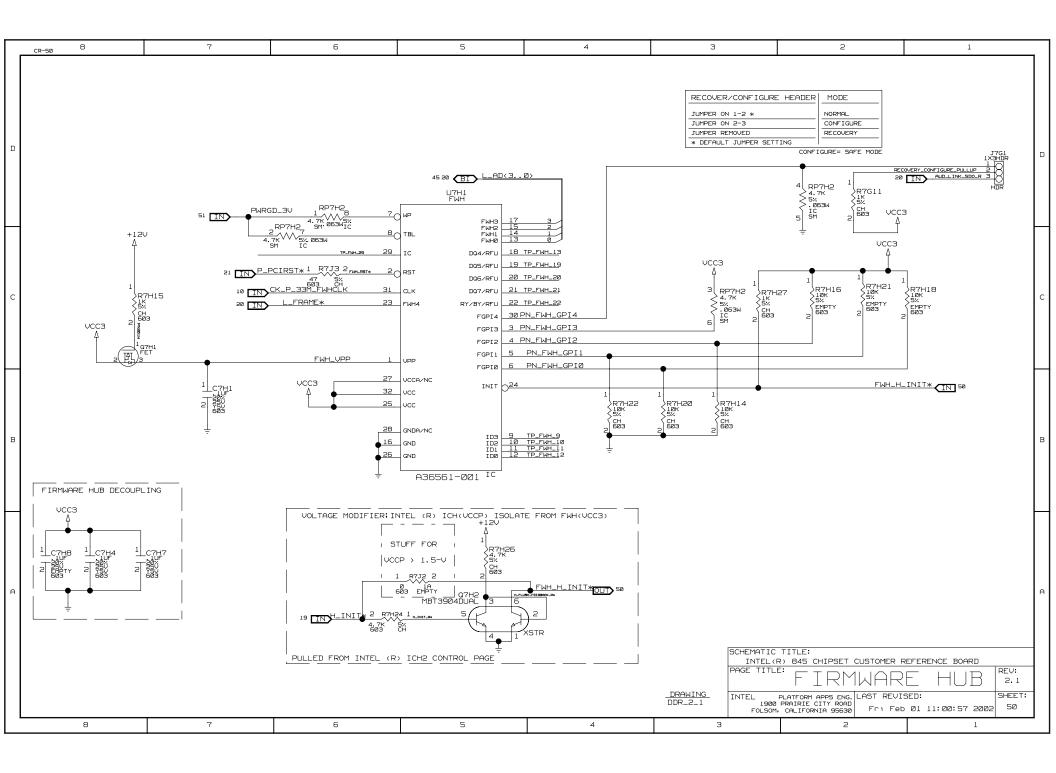


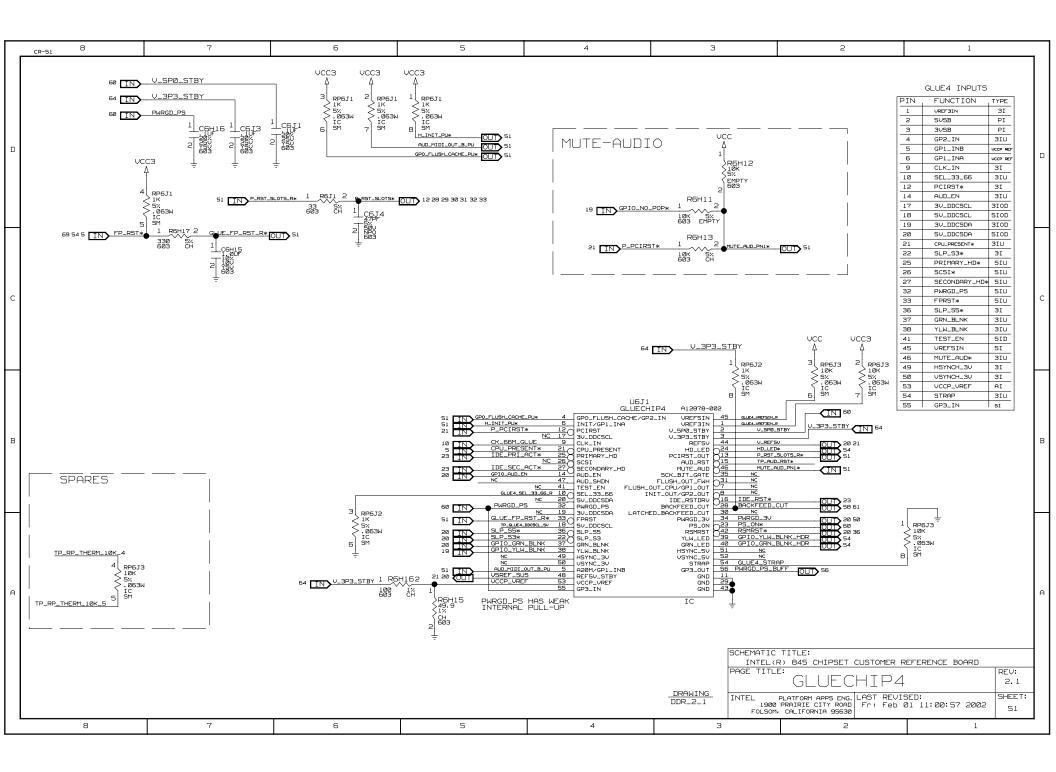




					_		_		-			_
	r	CR-43 8	7	6	5	4	3		2	1		,
a     2000 FERRING TO THE OD NOR AUDIO CONNECTOR       a     ADDITION TO THE OD NOR AUDIO CONNECTOR       a     ADDITION TO THE OD NOR AUDIO CIRCUIT	ם											а
B B B B B B B B B B B B B B	с				AUD_MIC_IN_FP 1 0 0	2 -	0 CONNECTOR					с
DRAWING       INTEL (R) 845 CHIPSET CUSTOMER REFERENCE BOARD         PAGE TITLE:       INTEL (R) 845 CHIPSET CUSTOMER REFERENCE BOARD         PAGE TITLE:       PAGE TITLE:         AUDIO FRONT PANEL       2.1         INTEL PLATTOR APPS ENG, LAST REVISED:       SHEE         1980 PRAIRIE CITY ROAD       Fri Feb 01 11:00:54 2002       43	в			41 <u>IN</u>	AUD <u>LIFNTOUT 9</u> HI 109717-	_10AUD_L_RETIN_DUT JR 205						в
DRAWING       INTEL (R) 845 CHIPSET CUSTOMER REFERENCE BOARD         PAGE TITLE:       PAGE TITLE:         DRAWING       INTEL PLATFORM APPS ENG.         INTEL 00 FRONT PANEL       2.1         1900 PRAIRIE CITY ROAD       Fri Feb 01 11:00:54 2002         Fri Feb 01 11:00:54 2002       43	A											A
		8	7	6	5	4		INTEL (F PAGE TITLE INTEL Folsom,	r) 845 chipset customer f = JDIO FRONT	PANEL	REV: 2.1 SHEET: 43	

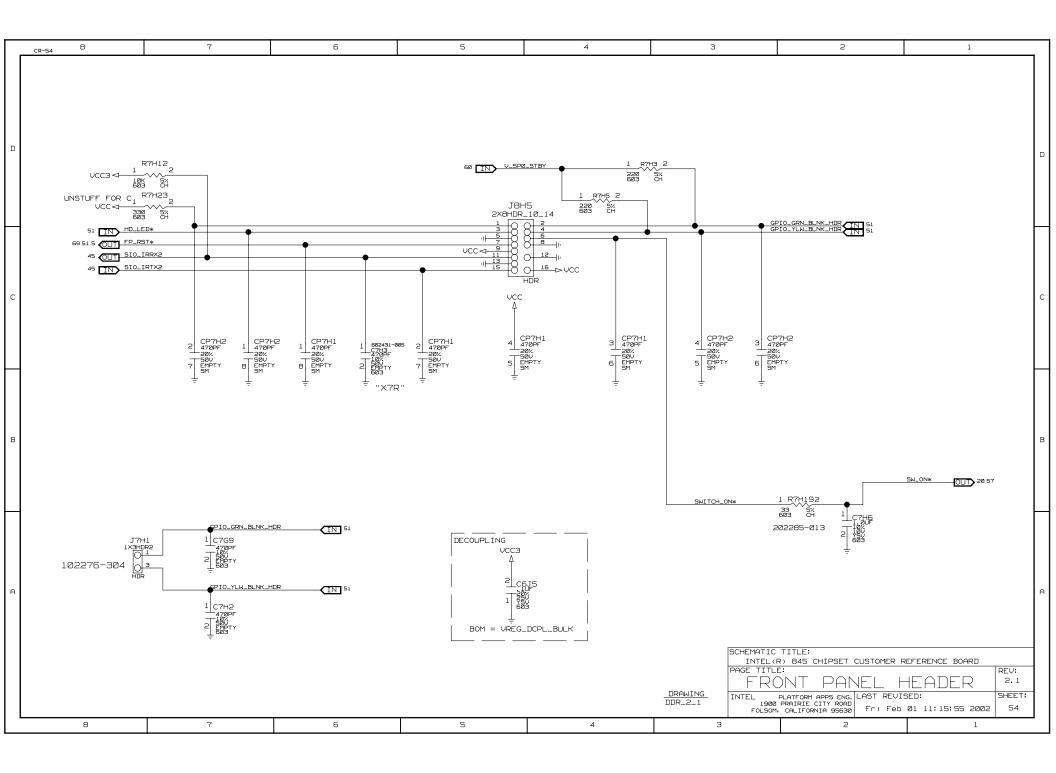

	CR-44 8	7	6	5	4	З	2	1
D		•						۵
с			+12V DSE TO REGULATOR 1 C77B13 2 2 2 2 2 2 2 2 2 2 2 2 2	U7B1 76M05C IN OUT GND J IC Ţ	2 - (TB7 - (10) - (		<b>3</b> 38 40 43	c
в								в
A						PAGE TITL	R) 845 CHIPSET CUSTOMER   E: AUDIO VREG	REV: 2.1
	8	7	6	5	4	DUR_2_1 1982 Folson	PLATFORM APPS ENG. LAST REVI PRAIRIE CITY ROAD , CALIFORNIA 95630 Fri Feb 2	01 11:00:54 2002 44
<u> </u>	_			-	I	_	_	

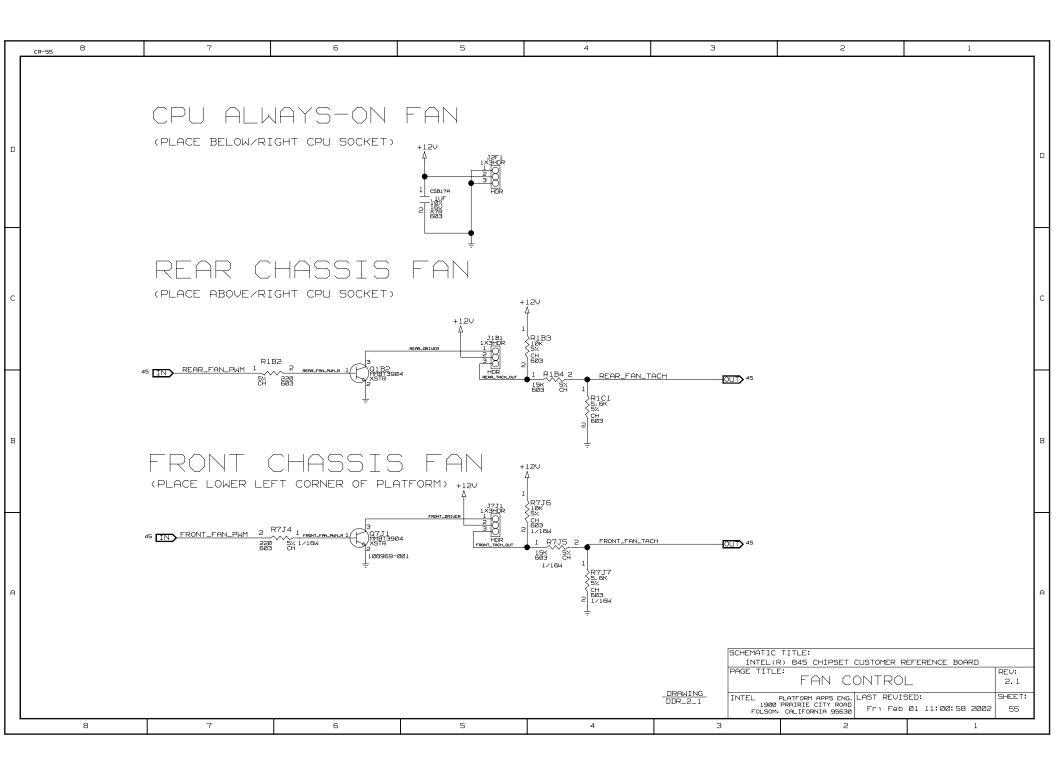


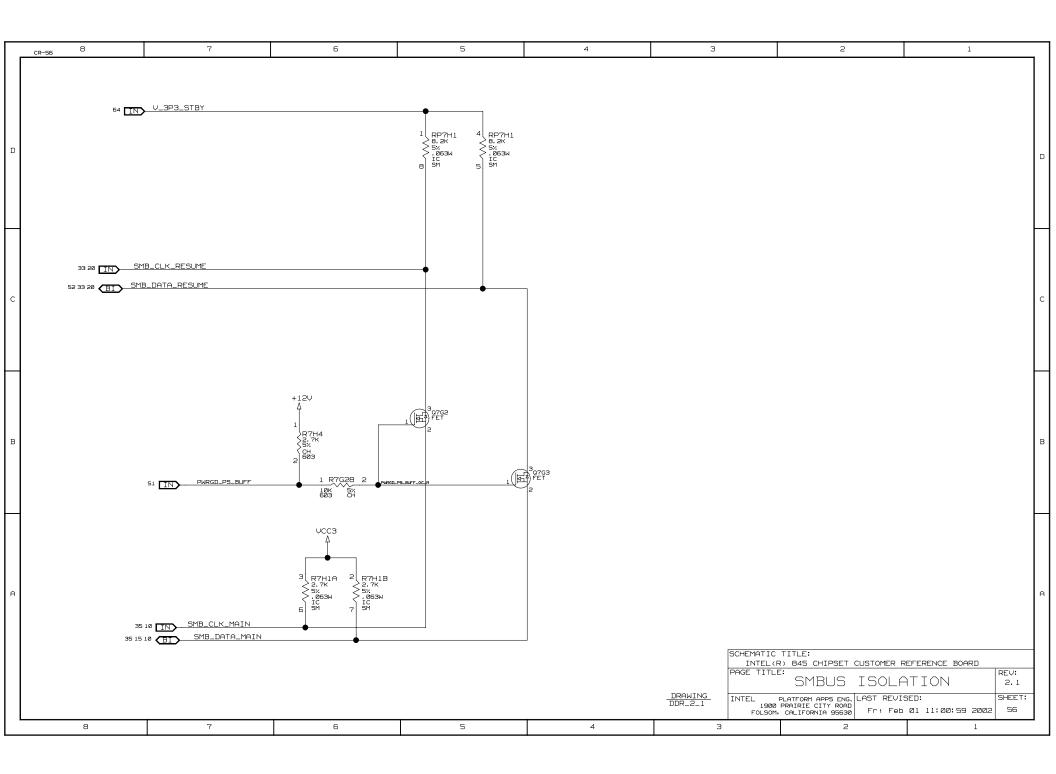


67-45 8	7	6	5	4	з	2	1	—
CR-45	<u>'</u>		5	1 "			1	ן ר
с в		45 IN SIO_FDD_DRVDA 45 IN SIO_FDD_DRVDA 45 IN SIO_FDD_DRVDA 45 IN SIO_FDD_DRVDA 45 IN SIO_FDD_DRVDA 45 IN SIO_FDD_DRX 45 IN SIO_FDD_DRX 45 IN SIO_FDD_DRX 45 IN SIO_FDD_DRX 45 IN SIO_FDD_MAATA 45 IN SIO_FDD_WAATA 45 IN SIO_FDD_WAATA 45 IN SIO_FDD_RAATA 45 IN SIO_FDD_RAATA	NN     5     0653w       5     5     5       2     603     7       2     603     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7       7     7     7   <		J3J1 2X17HDR_3_5 1 2 P2 4 KEY 6 P5 7 P7 8 P8 9 P9 9 P9 10 P10 11 P11 15 P12 15 P12 17 P17 18 P12 19 P19 220 P22 23 P22 25 P23 25			СВ
A		45 OTT SIO_FDD_DSKC			HDR SCHEMAT INTE PAGE TI DRAWING DDR.2-1 INTEL 15	IC TITLE: L(R) 845 CHIPSET CUSTOMER I TLE: FLOPPY CONNE PLATFORM APPS ENG. LAST REVI PLATFORM APPS ENG. LAST REVI PLATFORMA SSSSO Fri Fed	ECTOR REV: 2.1	A
8	7	6	5	4	З	2	1	-

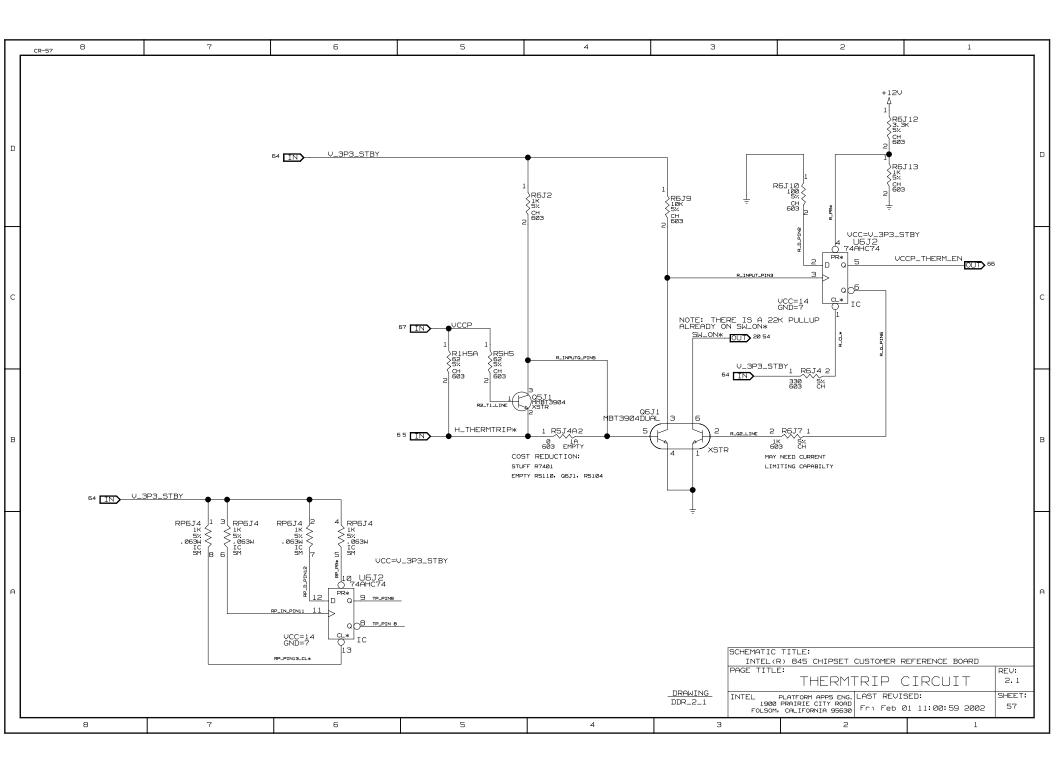


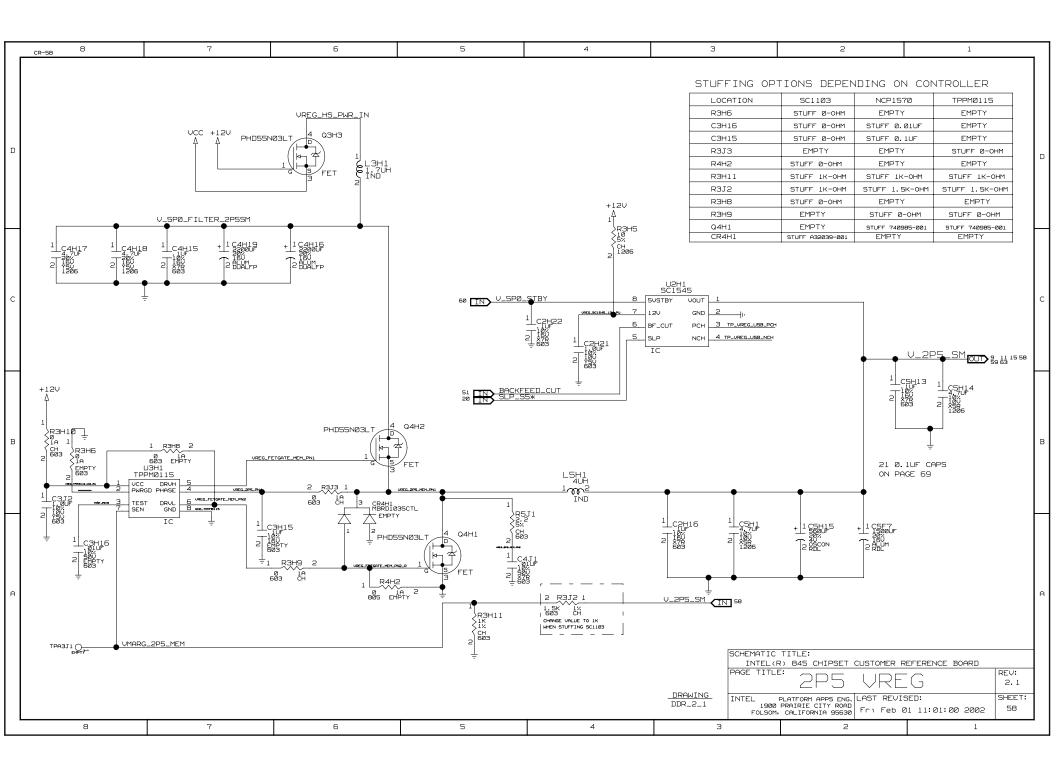


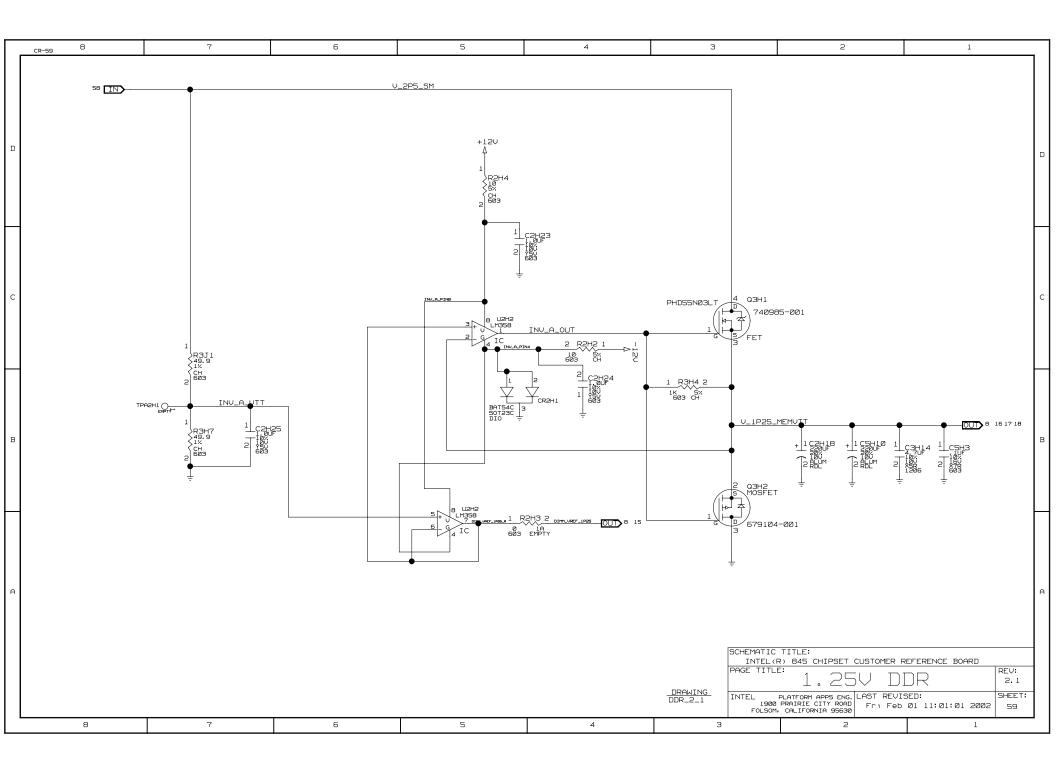


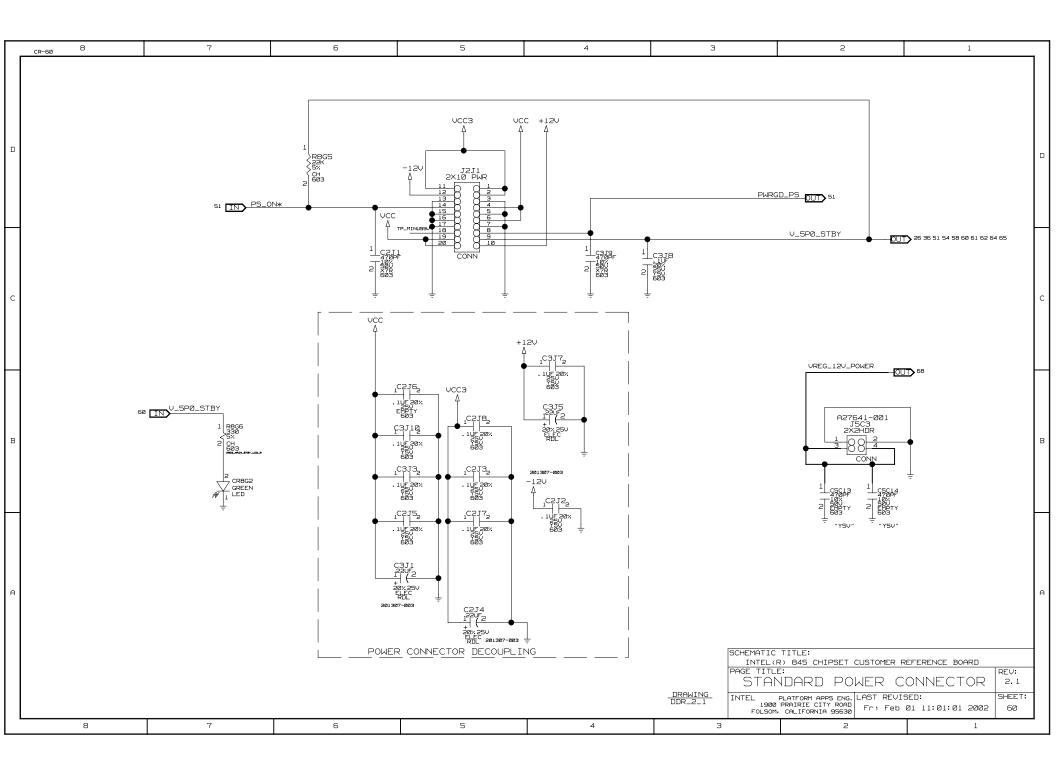



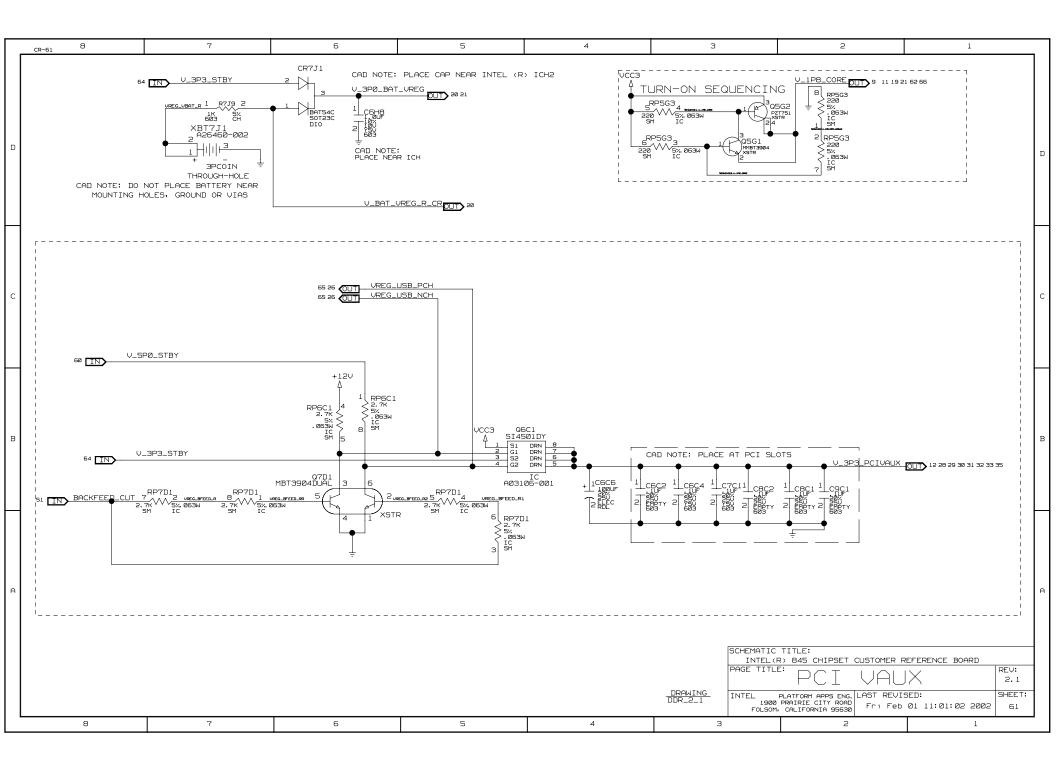



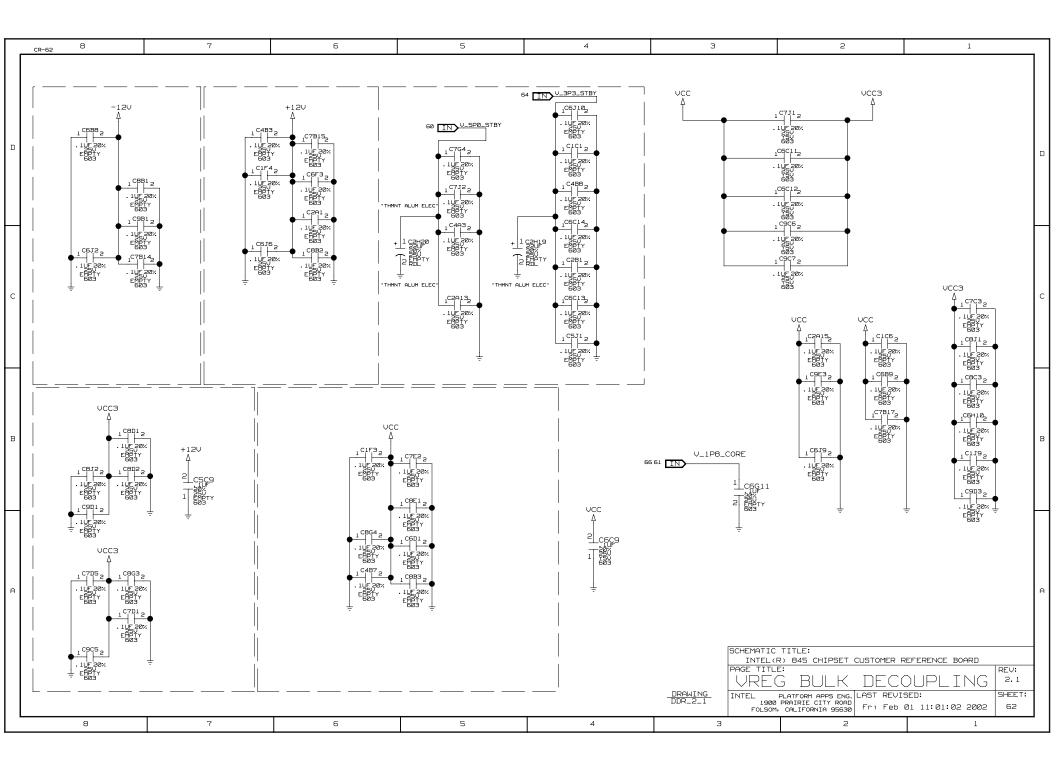


		Б	5	4	з	2	1	
	CR-52 8 7	S CUT H_TEMP_RET	]	4			1	D
B A A A A A A A A A A A A A	c			U1F1 HECETA4				с
A SCHEMATIC TITLE: INTEL (R) 845 CHIPSET CUSTOMER REFERENCE BOARD PAGE TITLE: HECETA REV: 2.1 DRAWING DDR_2_1 INTEL PLATFORM APPS ENG. INTEL PLATFORM APPS ENG. INTEL PLATFORM APPS ENG. INTEL PLATFORM APPS ENG. FOLSOM, CALIFORNIA 95630 FOLSOM, FOLSOM FOLSOM, FOLSOM FOLSOM, FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FOLSOM FO	в			16         PØ/NTEST_OUT         +VCC           1         SDA         +2:           2         SCL         VDD/3:           10         RMT_DIODE+         +3           9         RMT_DIODE-         +3	3, 30 IC			В
	A	6	5	4	SCHEMATIC INTEL PAGE TITL	<del>ir) 845 chipset customer i</del> ^{e:} HECETA	REV: 2.1	A


_{CR-53} 8 7 5 4 3 2	1
	α
C B B	С
	A REFERENCE BOARD
B       7       5       4       3       2	REV: 2.1



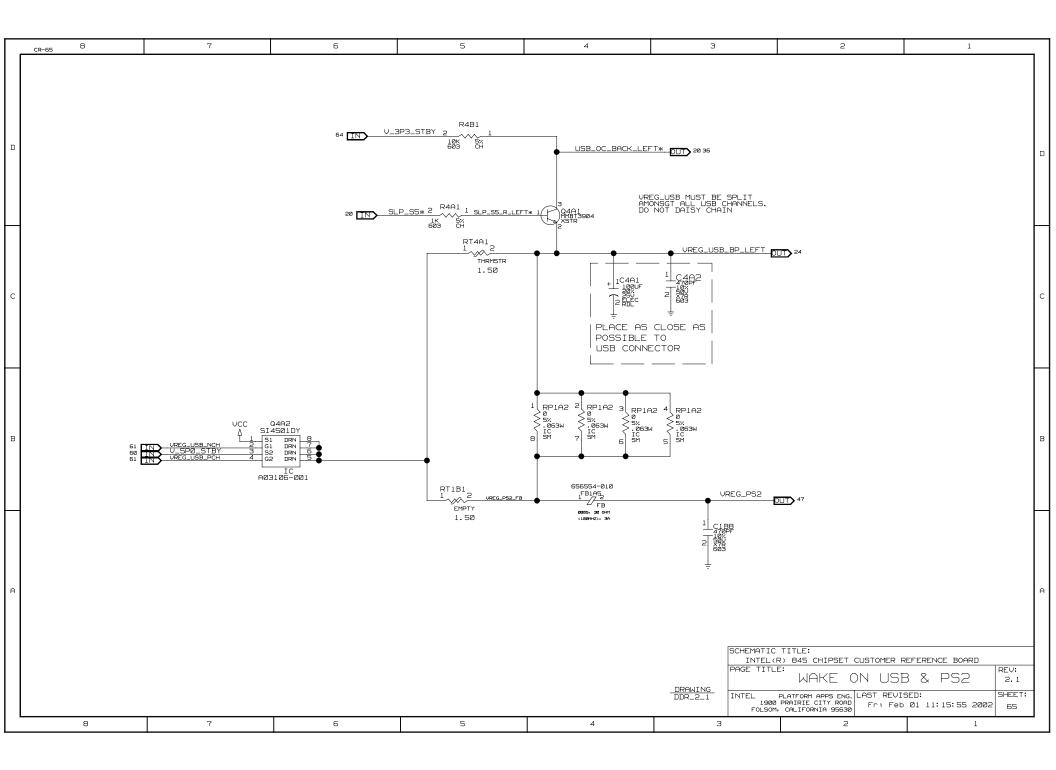



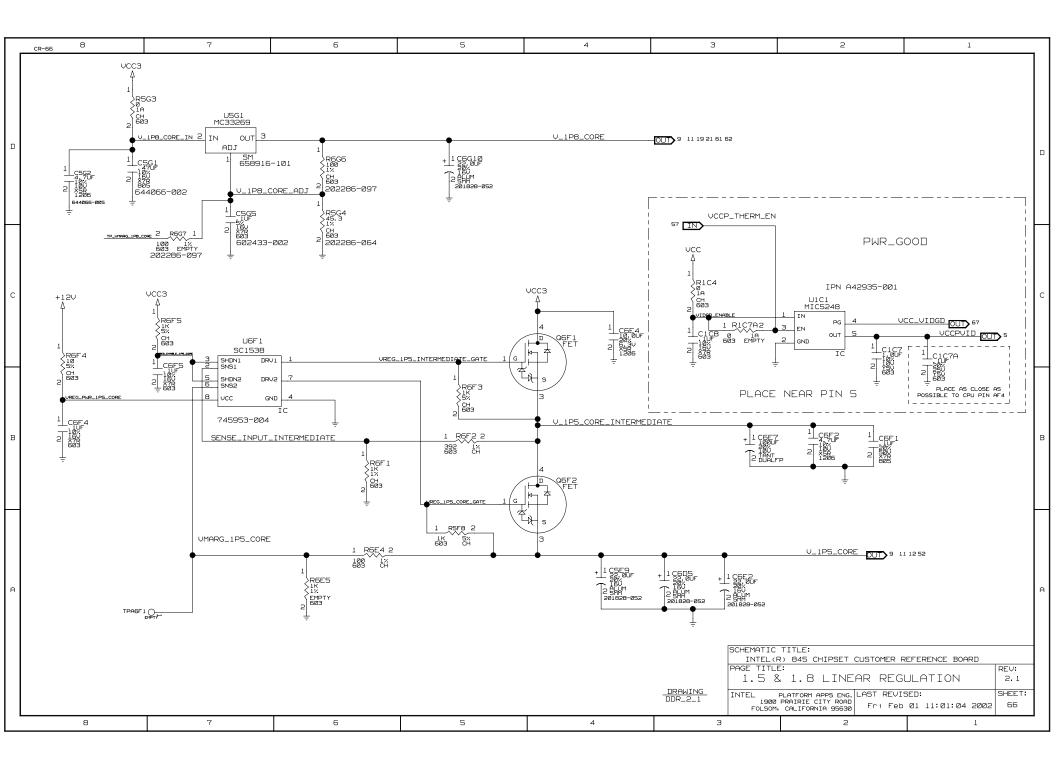



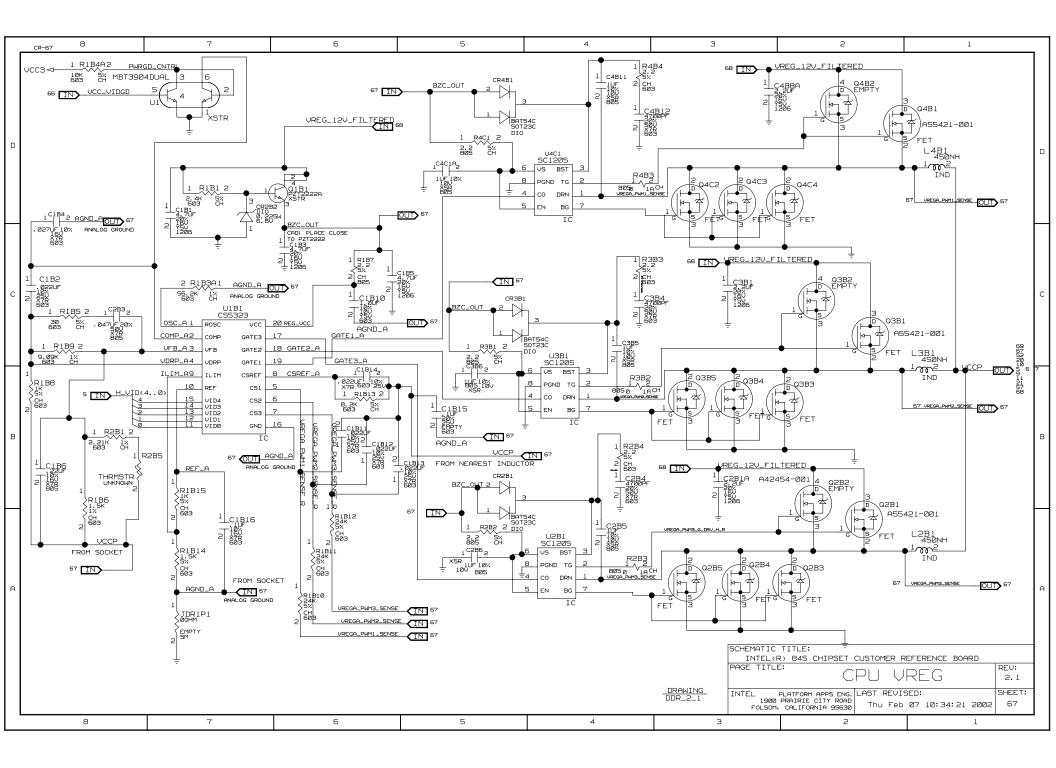



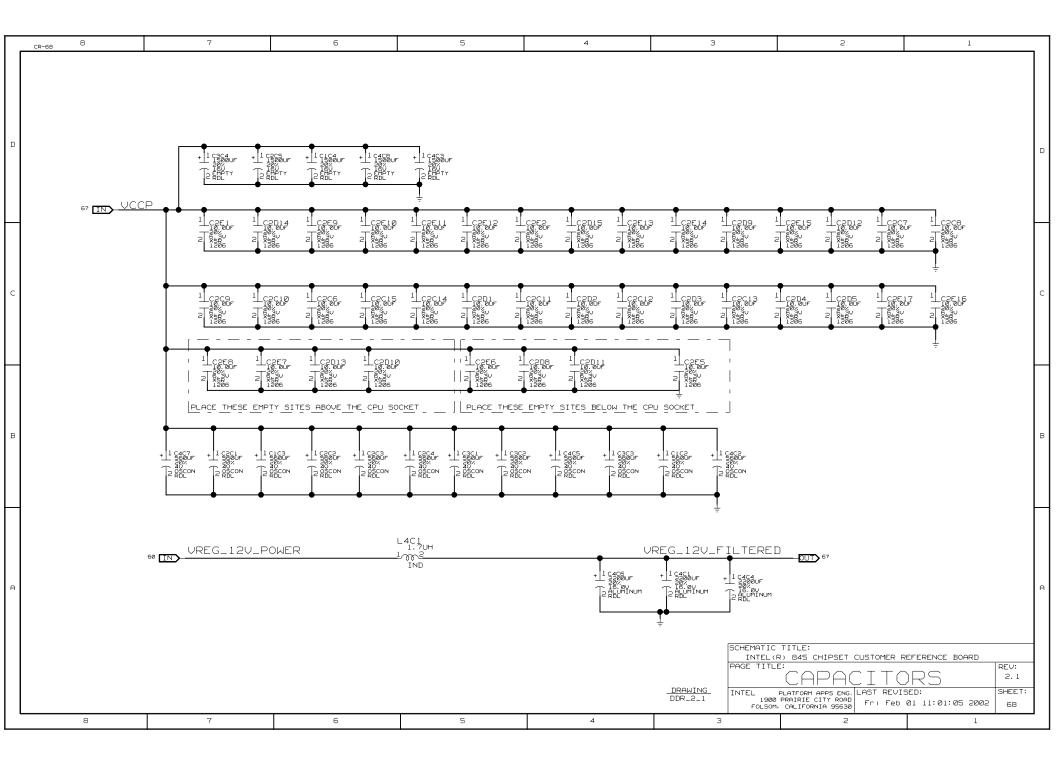


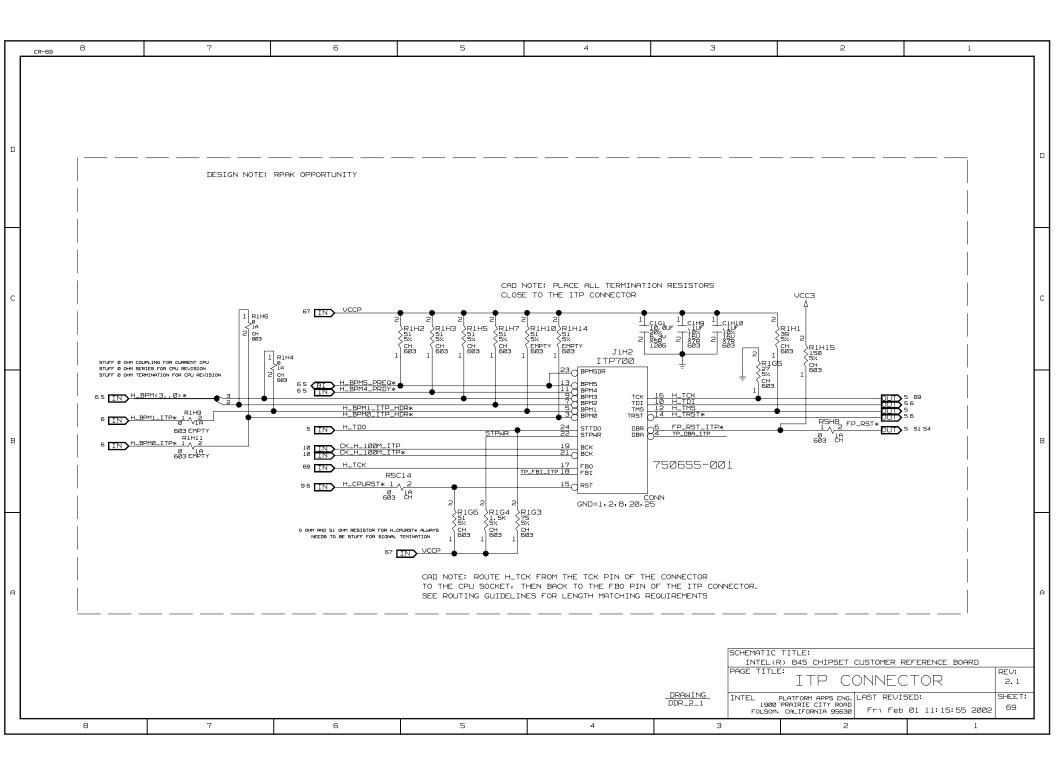




Г	CR-63 8	7	6	5	4	З		2	1		Π
ם					58 <u>U.2P5_SM</u> "X7R"						а
с					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						с
в			CAD NOTE: PLACE NE 58 II + 1 C4F5 + 1 C4F5 2 800F 2 800F		C2G3 C2G3 C2G3 C2G2 C2G3 C2G2 C2G3 C2G2 C2G3 C2G2 C2G3 C2G2 C2G3 C2G2 C2G3 C2G2 C2G3 C2G2 C2G3 C2G3 C2G2 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3 C2G3						в
A						5	SCHEMATIC				A
	8	 7	6	5	4	P	INTEL (F PAGE TITLE DDR INTEL 1900	2) 845 CHIPSET CUSTOMER : 2P5_SM_DEC 2P5_SM_DEC 2P5_SM_DEC	OUPLING	REV: 2.1 SHEET: 63	
	0	r	0		4	3		E			


Γ	ск-б4 8	7	б	5	4	З	2	1	
ם									٦
с		50 <b>(</b> <u>T</u>	V_5P0_STBY	UTG1 TPPM0110 5 SUCC 1. BUOUT 8 20 GND 3. 3VOUT 4 CND_PAD IC		V_1P8_STBY	19 21		с
в					+1 C7F_10 28U 12 RbLC =	<u>3P3_STB</u>	Y DUT 19 21 26 35 36 37 45	51 52 56	в
A						SCHEMAT I	C TITLE: R> 845 CHIPSET CUSTOMER		A
	8	7	6	5	4	PAGE TIT	PLATFORM APPS ENG. LAST REVI PLATFORM APPS ENG. LAST REVI PRAIRIE CITY ROAD M. CALIFORNIA 95530 Fri Feb	TANDBY 2	EV: 2.1 HEET: 64









