JUDLR@! | Engineering

Simplicity

cSRX Deployment Guide for AWS

Published
2021-07-08

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cSRX Deployment Guide for AWS
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | iv

Overview

Understanding cSRX Deployment in AWS using Elastic Kubernetes Service (EKS) | 2

Understanding cSRX with Kubernetes | 2
cSRX Kubernetes Orchestration in AWS Overview | 5
Amazon Elastic Kubernetes Service | 6

Junos OS Features Supported on cSRX | 8

Deployment

Deployment of cSRX on AWS Cloud Using Elastic Kubernetes Services (EKS) for
Orchestration | 12

Deploy cSRX on AWS Cloud Using Elastic Kubernetes Services (EKS) | 12
Sample File for cSRX Deployment | 13
cSRX as a Service with Ingress Controller on AWS EKS | 15
Microsegmentation with cSRX in AWS | 17

Licensing

Licensing for cSRX on AWS Marketplace | 19

About This Guide

Use this guide to install and configure the cSRX Container Firewall in AWS using Elastic Kubernetes
Service (EKS). This guide also includes basic cSRX container configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further security feature configuration.

CHAPTER

Overview

Understanding cSRX Deployment in AWS using Elastic Kubernetes Service (EKS) |
2

Junos OS Features Supported on cSRX | 8

Understanding cSRX Deployment in AWS using
Elastic Kubernetes Service (EKS)

SUMMARY IN THIS SECTION
This topic provides you an overview of cSRX Understanding cSRX with Kubernetes | 2
Kubernetes Orchestration in AWS Cloud using AWS cSRX Kubernetes Orchestration in AWS

Elastic Kubernetes Service (EKS). Overview | 5

Amazon Elastic Kubernetes Service | 6

Understanding cSRX with Kubernetes

The cSRX Container Firewall is a containerized version of the SRX Series Services Gateway with a low
memory footprint. cSRX provides advanced security services, including content security, AppSecure, and
unified threat management in the form of a container. By using a Docker container the cSRX can
substantially reduce overhead as each container shares the Linux host’s OS kernel. Regardless of how
many containers a Linux server hosts, only one OS instance is in use. Also, because of the containers’
lightweight quality, a server can host many more container instances than virtual machines (VMs),
yielding tremendous improvements in utilization. With its small footprint and Docker as a container
management system, the cSRX Container Firewall enables deployment of agile, high-density security
service.

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of
containerized applications. With K8s support, cSRX scales out in a cluster running as elastic firewall
service with smaller footprint when compared to virtual machines. It groups containers that make up an
application into logical units for easy management and discovery. cSRX running in K8s cluster provides
advantages such as:

e Runs services with smaller footprint
e Enables faster scale out and scale in of cSRX
e Automated management and controlled workflow

K8s defines a set of building objects that collectively provide mechanisms that orchestrate containerized
applications across a distributed cluster of nodes, based on system resources (CPU, memory, or other

custom metrics). K8s masks the complexity of managing a group of containers by providing REST APIs
for the required functionalities.

A node refers to a logical unit in a cluster, such as a server, which can either be physical or virtual. In
context of Kubernetes clusters, a node usually refers specifically to a worker node. Kubernetes nodes in
a cluster are the machines that run the end user applications.

There are two type of nodes in a Kubernetes cluster, and each one runs a well-defined set of processes:

¢ head node: also called primary, or primary node, it is the head and brain that does all the thinking and
makes all the decisions; all of the intelligence is located here.

e worker node: also called node, or minion, it's the hands and feet that conducts the workforce.
The nodes are controlled by the primary in most cases.

The interfaces between the cluster and you is the command-line tool kubectl. It is installed as a client
application, either in the same primary node or in a separate machine.

Kubernetes's objects are:
e Pod

e Service

e Volume

e Namespace
e Replication
e Controller

e ReplicaSet

e Deployment
o StatefulSet
o DaemonSet

e Job

Figure 1 on page 4 illustrates cSRX service in Kubernetes.

Figure 1: cSRX Service in Kubernetes

Scale Out / In Request

Ingress Controller

Kubernetes Cluster

K8s Master

API Server

Scheduler

Master Node

Linux Platform CNI

Worker Node 1

Linux Platform CNI

Worker Node N

=D

=V

=V

O
S |8 |
Database Web App
Servers Servers Servers

In K8s deployment, you can use Multus with both Flannel and Weave CNI.

To support Kubernetes Node Port/Ingress controller with cSRX, environment variable

CSRX_MGMT_PORT_REORDER allows cSRX to use container management interface as revenue
interface. The Kubernetes Node Port/Ingress controller feature with cSRX is only supported with

2301054

Flannel/Weave CNI. With CSRX_MGMT_PORT_REORDER set to "yes", you can explicitly control the re-
configuration of the management port behavior. Like the access to cSRX shell or SD discovery on to the
interface attached to cSRX using Multus CNI.

For example, if cSRX is brought up with ethO/eth1/eth2 with CSRX_MGMT_PORT_REORDER=yes, you
can use eth2 as the new management interface.

NOTE: The traffic forwarding to this eth2 has to be done through the iptables rules defined
explicitly by you.

See "Junos OS Features Supported on cSRX" on page 8 for a summary of the features supported on
cSRX.

cSRX Kubernetes Orchestration in AWS Overview

AWS provides Managed Kubernetes (K8s), for short) services as part of their offerings. These managed
services benefit you by reducing the dependencies on setting up and operation of the K8s environment.
The orchestration and management of the cSRX in a K8s environment using the Multus CNI is already
supported. With support for the K8s, you can now deploy, manage and orchestrate the cSRX along with
other container workloads in their environment.

The cSRX Container Firewall protects your containerized environments with advanced security services,
including content security, intrusion prevention system (IPS), AppSecure, and unified threat management
(UTM).

Benefits:

e Automated service provisioning and orchestration
e Distributed and multi-tenancy traffic securing

e Scalable security services with small footprints

Currently, the orchestration and management of the cSRX in a Kubernetes (K8s) environment using the
Multus CNI is supported. You can deploy cSRX as Kubernetes Service or Pods. With Kubernetes
support, you can deploy, manage, and orchestrate, scale out and scale in cSRX in a cluster that provides
an elastic firewall service to application containers along with other container workloads in AWS
environment.

For more information, see cSRX Deployment Guide Kubernetes.

AWS provides managed K8s for short services as part of their offerings. With these managed services
you can benefit by reducing dependencies on setting up and operation of the K8s environment.
Customers also need to be provided with an option for deploying a containerized Firewall (cSRX) to
secure their workloads in the public cloud on public cloud platform. While companies migrating to
container workloads rely on K8s for management and orchestration of the containers, services provided
by the AWS (and GCP and Microsoft Azure) are increasing in demand for their ease of use and low
maintenance.

https://www.juniper.net/documentation/en_US/csrx/information-products/pathway-pages/security-csrx-deploy-guide-pwp.html

AWS provides two orchestration services for containers: Elastic Container Service (ECS) and Elastic
Kubernetes Service (EKS).

Elastic Kubernetes Service (EKS): This is a fully managed Kubernetes service. An open source
Kubernetes adaptation and fully supports the open source version. EKS is Amazon managed service that
helps in running Kubernetes application on AWS cloud. EKS helps in setting up Kubernetes control plane
on multiple zones providing high-availability, EKS has the capability to detect and replace unhealthy
control plane instances with automated version upgrades and patches as when required. EKS is fully
integrated with Elastic Container Registry (ECR) which holds container images, Identity and Access
Management (IAM) roles for authentication, AWS VPC for network isolation and Elastic Load Balancing
for load distribution.

You can deploy and manage cSRX on the AWS cloud using Elastic Kubernetes Services (EKS)
orchestration for cluster management with bring your own license (BYOL) licensing model.

Amazon Elastic Kubernetes Service

IN THIS SECTION

Benefits | 7

Amazon Elastic Kubernetes Service (Amazon EKS) gives you the flexibility to start, run, and scale
Kubernetes applications in the AWS cloud or on-premises. Amazon EKS helps you provide highly-
available and secure clusters and automates key tasks such as patching, node provisioning, and updates.

EKS runs upstream Kubernetes and is certified Kubernetes conformant for a predictable experience. You
can easily migrate any standard Kubernetes application to EKS without needing to refactor your code.

EKS makes it easy to standardize operations across every environment. You can run fully managed EKS
clusters on AWS. You can have an open source, proven distribution of Kubernetes wherever you want
for consistent operations with Amazon EKS. You can host and operate your Kubernetes clusters on-
premises and at the edge and have a consistent cluster management experience with Amazon EKS.

You can completely utilize the open-source Kubernetes functionality with their Elastic Kubernetes
Solution (EKS) on AWS cloud. All latest Kubernetes updates are available on EKS framework.

cSRX is supported only on EKS with EC2 instances. EKS is fully integrated with Amazon cloud watch,
Autoscaling groups, AWS Identity and Access Management (IAM) and Amazon Virtual Private Cloud
(VPC) enabling seamless environment to monitor and load balance the cloud application.

AWS with EKS provides highly scalable control plane which will be running on two different zones to

provide high availability support. EKS is completely compatible with open-source Kubernetes and any
standard Kubernetes application can be easily migrated to EKS.

Figure 2 on page 7 illustrates AWS EKS abstraction architecture.

Figure 2: AWS EKS Abstraction Architecture

kubectl l

AWS EKS
Cluster

Amazon VPC

EKS worker Node 1 EKS worker Node 2 EKS worker Node 3

2301525

AWS proprietary Multus with flannel CNI is supported for EKS cluster deployments.
Benefits

The cSRX also integrates with other next-generation cloud orchestration tools such as Kubernetes.

The cSRX adds security enforcement points where none have existed before, offering the most
comprehensive network security for Kubernetes deployments.

e Provides faster boot time and is very cost effective.

e Supports small footprint to deliver highly agile, advanced security services in a container form factor.

cSRX supports easy, flexible, and highly scalable deployment options covering various customer use
cases, including application protection, and microsegmentation through a Docker container
management solution.

The cSRX deployed as a service in a deployment object, will allow for scale-up and scale down of the
cSRX on demand. It functions as a firewall, protecting workloads deployed in the cluster with the
configuration of rich advanced services.

Some deployments require highly agile and lightweight security VNF that can scale massively. For
such deployments VM based VNF is not a scalable solution and requires container based security
VNF.

e Supports network function service chains, allowing high availability as well as containerized security
that scales in individual network functions as needed.

e Provides management flexibility with NETCONF and Security Director to support integration with
third-party management and cloud orchestration tools like Kubernetes.

Also, with EKS, the latest security patches are applied to your cluster’s control plane to ensure
security of your cluster.

Junos OS Features Supported on cSRX

IN THIS SECTION

Supported SRX Series Features on cSRX | 8

cSRX provides Layer 4 through 7 secure services in a containerized environment.

Supported SRX Series Features on cSRX

Table 1 on page 9 provides a high-level summary of the feature categories supported on cSRX and
any feature considerations.

To determine the Junos OS features supported on cSRX, use the Juniper Networks Feature Explorer, a
Web-based application that helps you to explore and compare Junos OS feature information to find the

right software release and hardware platform for your network. See Feature Explorer.

Table 1: Security Features Supported on cSRX

Security Features

Application Tracking (AppTrack)

Application Firewall (AppFW)

Application Identification (ApplID)

Basic Firewall Policy

Brute force attack mitigation

DoS/DDoS protection

Intrusion Prevention System (IPS)

IPv4 and IPvé

Jumbo Frames

SYN cookie protection

Malformed packet protection

Considerations

Understanding Applrack

Application Firewall Overview

Understanding Application Identification Techniques

Understanding Security Basics

DoS Attack Overview

DoS Attack Overview
For SRX Series IPS configuration details, see:
Understanding Intrusion Detection and Prevention for

SRX Series

Understanding IPv4 Addressing

Understanding IPvé6 Address Space

Understanding Jumbo Frames Support for Ethernet
Interfaces

Understanding SYN Cookie Protection

https://apps.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html

Table 1: Security Features Supported on cSRX (Continued))

Security Features

Unified Threat Management (UTM)

User Firewall

Zones and Zone based IP spoofing

Considerations

Includes support for all UTM functionality on the cSRX
platform, such as:

e Antispam

e Sophos Antivirus

e Web filtering

e Content filtering

For SRX Series UTM configuration details, see:

Unified Threat Management Overview

For SRX Series UTM antispam configuration details, see:

Antispam Filtering Overview

Includes support for all user firewall functionality on the
cSRX platform, such as:

e Policy enforcement with matching source identity
criteria

e Logging with source identity information

e |Integrated user firewall with active directory

e Local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

Understanding IP Spoofing

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html

CHAPTER

Deployment

Deployment of cSRX on AWS Cloud Using Elastic Kubernetes Services (EKS) for
Orchestration | 12

cSRX as a Service with Ingress Controller on AWS EKS | 15

Microsegmentation with cSRX in AWS | 17

Deployment of cSRX on AWS Cloud Using Elastic
Kubernetes Services (EKS) for Orchestration

SUMMARY IN THIS SECTION

cSRX deployment on AWS can be achieved as plain Deploy cSRX on AWS Cloud Using Elastic
docker container on EC2 instance using Amazon Kubernetes Services (EKS) | 12

Elastic Kubernetes Service (Amazon EKS). The Seiivelie File o eS8 Bepllagimat || 98

cluster management is done by Kubernetes, assisted
by AWS and all Kubernetes commands work as is in
case of EKS for container creation and management.
This topic provides you details on how you can
deploy cSRX on AWS cloud using Elastic Kubernetes
Services (EKS) for Orchestration.

Deploy cSRX on AWS Cloud Using Elastic Kubernetes Services (EKS)

This topic provides you details to deploy the cSRX on AWS cloud.

1. As a prerequisite, install AWS CLI, eksctl, and kubectl packages. For more information, see Getting
started with Amazon EKS.

2. Create cluster on EKS using the following CLI command:

eksctl create cluster --name <cluster_name> --version 1.17 --region us-west-2 --nodegroup-name

<node_group_name> --node-type t3.medium --nodes 2 --nodes-min 1 --nodes-max 3 --ssh-access --ssh-public-

key ~/.ssh/id_rsa.pub --managed --asg-access
3. Monitor the cluster status using the eksctl commands listed below:
ubuntu@ip-172-31-0-168:~$ eksctl get cluster

NAME REGION

csrx-eks-cluster us-west-2

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

4. Verify the cluster created. Cluster with instance type of t3.medium and 2 worker nodes is created.

kubectl get nodes

NAME STATUS ROLES AGE VERSION
ip-192-168-10-52.us-west-2.compute.internal Ready <none> 7d21h v1.17.9
ip-192-168-33-89.us-west-2.compute.internal Ready <none> 7d21h v1.17.9

5. Start a ¢SRX pod on the EKS cluster using the following .yaml file. Use this yaml file as reference and
run the kubectl command to deploy cSRX pod. Use the cSRX image available on AWS marketplace to
spawn cSRX containers.

kubectl create -f csrx.yaml

6. Verify the deployment using the kubectl command below:

kubectl get deployment csrx
NAME READY UP-TO-DATE AVAILABLE AGE
csrx5 11 1 1 2m

Sample File for cSRX Deployment

This topic provides you sample file for deploying cSRX in AWS cloud using AWS EKS orchestration.

vim csrx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: csrx-byol
labels:
app: csrx-byol
spec:
replicas: 2
selector:
matchLabels:
app: csrx-byol
template:
metadata:

name: csrx-byol

labels:
app: csrx-byol
annotations:
k8s.v1.cni.cncf.io/networks: br-51@eth1, br-52@eth2
spec:
serviceAccountName: csrxpod
containers:
- name: csrx-byol
securityContext:
privileged: true
image: <csrx-image> ## replace image name with repo:tag
ports:
- containerPort: 80
env:
- name: CSRX_SIZE
value: "large"
- name: CSRX_HUGEPAGES
value: "no"
- name: CSRX_PACKET_DRIVER
value: "interrupt"
- name: CSRX_FORWARD_MODE
value: "routing"
- name: CSRX_AUTO_ASSIGN_IP
value: "yes"
- name: CSRX_MGMT_PORT_REORDER
value: "yes
- name: CSRX_TCP_CKSUM_CALC
value: "yes
- name: CSRX_JUNOS_CONFIG
value: "/var/jail/csrx_config"
- name: CSRX_LICENSE_FILE
value: "/var/jail/.csrx_license"
volumeMounts:
- name: disk
mountPath: "/dev"
- name: config
mountPath: "/var/jail"
volumes:
- name: disk
hostPath:
path: /dev
type: Directory

- name: config

configMap:
name: cm-byol
items:
- key: csrx_config
path: csrx_config
- key: csrx_license
path: .csrx_license
apiVersion: vi
kind: Service
metadata:
labels:
app: csrx-byol
name: csrx-byol
spec:
selector:
app: csrx-byol
ports:
- protocol: TCP
port: 80
targetPort: 80

cSRX as a Service with Ingress Controller on AWS
EKS

The cSRX can be deployed as a service using a Network Load Balancer with NGINX Ingress Controller
on Amazon EKS. The cSRX deployed as a service in a deployment object allows you to scale up and scale
down by distributing the traffic among different cSRX PODs. Also, cSRX functions as a firewall,
protecting workloads deployed in the cluster with rich advanced security services.

16

Figure 3 on page 16 illustrates AWS EKS ingress controller.

Figure 3: AWS EKS Ingress Controller

Incoming request

EC2 Worker Node
- POD Ingress controller -

Amazon VPC

4 | v N

WEB Servers

WEB Servers WEB Servers

8301526

To deploy the cSRX as Ingress controller on AWS EKS:

1.

Define and deploy cSRX as K8s POD or as ReplicaSet. This type of deployment is the standard K8s to
define and to manage resource. Also, allows you to deploy cSRX container on specified work nodes,
update or rollback based on your request.

Use Kubectl and YAML templates to define and to deploy cSRX related resource on command line.
K8s API server can process the request from other applications.

Expose cSRX as K8s service with load balancing. EKS supports Kubernetes Network Load Balancer
(NLB) and EKS specific Application Load Balancer (ALB).

The cSRX POD is identified with predefined selectors and exposed with supported load balancer. The
load balancer is the NGINX ingress controller and AWS NLB as external load balancer.

17

5. Connect cSRX container to the external network using Multus with flannel CNI. cSRX requires at
least three interfaces (1 management port and 2 revenue ports).

Microsegmentation with cSRX in AWS

With micro-segmentation (East and the West firewall) application interacting in the same EKS, VPC is
secured with the supported application layer security provided by cSRX. Multus-CNI and flannel is used
to support multiple interfaces per POD for micro-segmentation. Multus-CNI and flannel leverages the
Linux native CNI support of bridge and the MAC VLAN to connect to external interfaces.

Figure 4 on page 17 illustrates AWS EKS microsegmentation with cSRX in AWS.

Figure 4: AWS EKS Microsegmentation

EC2 Worker Node

B o

AWS EKS
Cluster

Amazon VPC
vSwitch vSwitch
Front-End — —
Wep —— | CSRX — . — Database
Service — —

2301527

CHAPTER

Licensing

Licensing for cSRX on AWS Marketplace | 19

Licensing for cSRX on AWS Marketplace

e cSRX is available with 60 days free trial eval license (5-CSRX-A1 SKU). The eval license in cSRX
expires after 60 days.

e AWS supports Bring Your Own License (BYOL) licensing model. The BYOL license model allows you
to customize your license, subscription and support to fit your needs. You can purchase BYOL from
Juniper Networks or Juniper Networks authorized reseller.

e The ¢SRX Container Firewall software features require a license to activate the feature. To
understand more about cSRX Container Firewall licenses, see

e Supported Features on cSRX.
e Juniper Agile Licensing Guide.
e Flex Software License for cSRX.

e To add, delete, and manage licenses, see Managing cSRX Licenses.

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/juniper-agile-licensing-guide.html
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/concept/flex-licenses-for-csrx.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html

	Table of Contents
	About This Guide
	Overview
	Understanding cSRX Deployment in AWS using Elastic Kubernetes Service (EKS)
	Understanding cSRX with Kubernetes
	cSRX Kubernetes Orchestration in AWS Overview
	Amazon Elastic Kubernetes Service

	Junos OS Features Supported on cSRX

	Deployment
	Deployment of cSRX on AWS Cloud Using Elastic Kubernetes Services (EKS) for Orchestration
	Deploy cSRX on AWS Cloud Using Elastic Kubernetes Services (EKS)
	Sample File for cSRX Deployment

	cSRX as a Service with Ingress Controller on AWS EKS
	Microsegmentation with cSRX in AWS

	Licensing
	Licensing for cSRX on AWS Marketplace

