PICMG COM-HPC Carrier Design Guide
Rev. 2.1
Christian Eder, congatec, Stefan Milnor, Kontron
Carrier Design Guide
COM-HPC - PICMG
PICMG COM-HPC Carrier Design Guide
COM-HPC Carrier Design Guide
COM-HPC Computer-on-Module - congatec | Mouser
Not Your Device? Search For Manuals or Datasheets below:
File Info : application/pdf, 159 Pages, 4.47MB
Document DEVICE REPORTPICMG COM-HPC CDG R2 1COM-HPC® Carrier Design Guide Guidelines for Designing COM-HPC® Carrier Boards August 10, 2023 Rev. 2.1 This Design Guide is not a specification. It provides COM-HPC® Carrier implementation information but does not replace the PICMG COM-HPC® specification. The full COM-HPC® specification is needed in conjunction with this Design Guide for signal descriptions, signal integrity information and loss budgets, Module and Carrier connector pin-outs, PCB mechanical details and more. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 1/159 © Copyright 2021, 2022, 2023 PCI Industrial Computer Manufacturers Group. The attention of adopters is directed to the possibility that compliance with or adoption of PICMG® specifications may require use of an invention covered by patent rights. PICMG® shall not be responsible for identifying patents for which a license may be required by any PICMG® specification or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. PICMG® specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents. NOTICE: The information contained in this document is subject to change without notice. The material in this document details a PICMG® specification in accordance with the license and notices set forth on this page. This document does not represent a commitment to implement any portion of this specification in any company's products. WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, PICMG® MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall PICMG® be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss of profits, revenue, data or use, incurred by any user or any third party. Compliance with this specification does not absolve manufacturers of equipment from the requirements of safety and regulatory agencies (UL, CSA, FCC, IEC, etc.). IMPORTANT NOTICE: This document includes references to specifications, standards or other material not created by PICMG. Such referenced materials will typically have been created by organizations that operate under IPR policies with terms that vary widely, and under process controls with varying degrees of strictness and efficacy. PICMG has not made any enquiry into the nature or effectiveness of any such policies, processes or controls, and therefore ANY USE OF REFERENCED MATERIALS IS ENTIRELY AT THE RISK OF THE USER. Users should therefore make such investigations regarding referenced materials, and the organizations that have created them, as they deem appropriate. PICMG®, COM-HPC®, CompactPCI®, AdvancedTCA®, ATCA®, AdvancedMC®, CompactPCI® Express, COMHPC®, MicroTCA®, SHB Express®, and the PICMG, CompactPCI, AdvancedTCA, µTCA and ATCA logos are registered trademarks, and cPCI Serial SpaceTM, xTCATM, IRTMTM and the IRTM logo are trademarks of the PCI Industrial Computer Manufacturers Group. All other brand or product names may be trademarks or registered trademarks of their respective holders. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 2/159 Table of Contents 1. Preface.................................................................................................................................... 9 1.1. About This Document.......................................................................................................................9 1.2. Intended Audience.............................................................................................................................9 1.3. No Special Word Usage....................................................................................................................9 1.4. No Statements of Compliance..........................................................................................................9 1.5. Correctness Disclaimer.....................................................................................................................9 1.6. Name and Logo Usage......................................................................................................................9 1.7. Intellectual Property........................................................................................................................11 1.7.1. Necessary IPR Claims (Referring to Mandatory or Recommended Features).......................................11 1.7.2. Unnecessary Claims (Referring to Optional Features or Non-normative Elements)..............................11 1.7.3. Third Party Disclosures...........................................................................................................................12 1.7.4. Copyright Notice......................................................................................................................................12 1.7.5. Trademarks.............................................................................................................................................12 1.8. Acronyms, Abbreviations and Definitions Used..........................................................................13 1.9. Applicable Documents and Standards..........................................................................................16 2. COM-HPC Interfaces............................................................................................................18 2.1. COM-HPC Client and Server Pinout Differences..........................................................................18 3. Reference Schematics and Block Diagrams.....................................................................22 3.1. Sources for Technical Materials.....................................................................................................22 3.2. Schematic Conventions..................................................................................................................22 3.3. Ethernet NBASE-T...........................................................................................................................23 3.4. Ethernet KR and KR4......................................................................................................................24 3.4.1. Ethernet KR CEI Block Diagrams...........................................................................................................24 3.4.2. PHY Addresses.......................................................................................................................................32 3.5. Serial ATA.........................................................................................................................................33 3.5.1. Cabled SATA...........................................................................................................................................33 3.5.2. mSATA SSDs..........................................................................................................................................34 3.5.3. M.2 SATA SSDs......................................................................................................................................34 3.6. PCI Express......................................................................................................................................35 3.6.1. General Notes.........................................................................................................................................35 3.6.2. PCI Express Coupling Capacitor Locations............................................................................................36 3.6.3. PCIe Group 0 Low Examples: Device Down, mini-PCIe, M.2 E-Key, M.2 B-Key...................................37 3.6.4. Dual PCIe x4 M.2 M Key NVME SSDs Examples on PCIe Group 0 High.............................................42 3.6.5. PCIe x16 Slot Card Site on PCIe Group 1..............................................................................................45 3.6.6. PCIe Group 2..........................................................................................................................................46 3.6.7. MXM-3 Graphics Card Module on Carrier..............................................................................................50 3.6.8. PCIe Reference Clocks...........................................................................................................................51 3.6.9. PCIe Redrivers and Retimers.................................................................................................................56 3.7. USB...................................................................................................................................................57 3.7.1. USB Terms and General Information......................................................................................................57 3.7.2. USB 2.0 Type-A Example........................................................................................................................59 3.7.3. USB 3.2 Gen 1 and Gen 2 Type-A..........................................................................................................60 3.7.4. USB 3 Redrivers.....................................................................................................................................60 3.7.5. USB Type-C Overview............................................................................................................................61 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 3/159 3.7.6. USB Type-C Port Multiplexers................................................................................................................65 3.7.7. USB Type-C Power Delivery Controllers................................................................................................66 3.7.8. USB Type-C Port Protection Components..............................................................................................67 3.7.9. USB 3.2 Gen 2x1 Type-C Basic Implementation....................................................................................68 3.7.10. USB 3.2 Gen 2x2 Type-C Example Implementation.............................................................................70 3.7.11. USB4.....................................................................................................................................................76 3.8. Boot SPI on Carrier..........................................................................................................................82 3.9. eSPI...................................................................................................................................................86 3.10. DisplayPort Over DDI....................................................................................................................87 3.11. HDMI Over DDI...............................................................................................................................90 3.12. eDP..................................................................................................................................................92 3.12.1. eDP / DP Conversions to Other Video Formats....................................................................................94 3.13. MIPI-CSI Camera Interface............................................................................................................95 3.14. Audio Interfaces.............................................................................................................................96 3.14.1. General Discussion...............................................................................................................................96 3.14.2. MIPI SoundWire Summary...................................................................................................................96 3.14.3. I2S Implementations on COM-HPC......................................................................................................99 3.15. Asynchronous Serial Port Interfaces.........................................................................................100 3.15.1. COM-HPC UART Interfaces...............................................................................................................100 3.15.2. Legacy Compatibility With 16C550 UART Register Set.....................................................................101 3.15.3. Alternative / Additional Carrier Board UART Implementations............................................................102 3.16. I2C / I3C Ports..............................................................................................................................103 3.16.1. I2C Addressing....................................................................................................................................104 3.16.2. I2C0 Example: Carrier I2C Device in S0 Power Domain....................................................................105 3.16.3. I2C Bus Buffers / Level Translators....................................................................................................105 3.16.4. I2C1 (COM-HPC) and Optional I3C Support......................................................................................106 3.17. Port 80h Debug Display Over COM-HPC USB_PD_I2C............................................................107 3.18. Carrier BMC with IPMB Link to Module.....................................................................................108 3.19. General Purpose SPI...................................................................................................................112 3.20. Rapid Shutdown...........................................................................................................................112 3.21. Thermal Protection......................................................................................................................113 3.22. System Management Bus (SMBus)............................................................................................114 3.23. General Purpose Inputs / Outputs.............................................................................................115 3.24. Module Type Detection and Protection......................................................................................116 4. PCB Design Rule Summaries............................................................................................118 4.1. High Speed PCB Design Information Design Guides and Books..........................................118 4.1.1. Intel and AMD Design Guides...............................................................................................................118 4.1.2. Books on High Speed PCB Design Principles......................................................................................119 4.2. High Speed Serial Interfaces General PCB Design Rules......................................................120 4.3. PCB Design Rule Summaries - High Speed Differential Pair Serial Interfaces.......................123 4.3.1. NBASE-T Design Rule Summary.........................................................................................................123 4.3.2. Ethernet KR Design Rule Summary.....................................................................................................124 4.3.3. SATA Design Rule Summary................................................................................................................125 4.3.4. PCIe Design Rule Summary.................................................................................................................126 4.3.5. USB 2.0 Design Rule Summary............................................................................................................127 4.3.6. USB 3.2 and USB4 Design Rule Summaries.......................................................................................128 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 4/159 4.3.7. DisplayPort Design Rule Summary.......................................................................................................130 4.3.8. eDP Design Rule Summary..................................................................................................................131 4.3.9. HDMI Design Rule Summary................................................................................................................132 4.4. PCB Design Rules for Single Ended (SE) Interfaces.................................................................133 5. Mechanical Considerations.............................................................................................. 134 5.1. Heat Spreader / Module / Carrier Attachment Details................................................................134 5.1.1. Heat Spreader to Module Attachment Notes........................................................................................134 5.1.2. Heat Spreader / Module Assembly Attachment to Carrier and Chassis...............................................135 5.2. Alternative COM-HPC Board Stack Assembly Suggestion.......................................................140 5.2.1. Precision Jack Screw Standoffs............................................................................................................140 5.3. Carrier Board Stiffener..................................................................................................................142 6. Appendices.........................................................................................................................146 6.1. Appendix A: Synchronous Ethernet............................................................................................146 6.2. Appendix B: Alternative eDP Example........................................................................................150 6.3. Appendix C: eSPI Header Example..............................................................................................157 6.4. Appendix D: Useful Books General x86 Computer Topics.....................................................158 6.5. Appendix E: Revision History......................................................................................................159 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 5/159 Index of Tables Table 1: Acronyms, Abbreviations and Definitions Used....................................................................................13 Table 2: Client and Server Type Pinout Difference Table...................................................................................18 Table 3: Power Net Naming...............................................................................................................................22 Table 4: MDIO Addresses for Intel POR External PHYs....................................................................................32 Table 5: mSATA Pin Mapping Relative to miniPCIe...........................................................................................34 Table 6: PCIe Maximum Allowable Clock Jitter..................................................................................................51 Table 7: PCIe Clock Buffer Modes.....................................................................................................................52 Table 8: PCIe Clock Buffer Vendors and Part Numbers....................................................................................53 Table 9: PCIe Redrivers and Retimers...............................................................................................................56 Table 10: USB.org Branding Term Summary.....................................................................................................57 Table 11: USB Type-A Pin-Out...........................................................................................................................58 Table 12: USB 3 Redrivers.................................................................................................................................60 Table 13: USB Type-C Connector Pin-out.........................................................................................................62 Table 14: USB Type-C Port Multiplexers Possible Modes..............................................................................65 Table 15: Boot SPI Socket Suggestions............................................................................................................84 Table 16: DisplayPort Redrivers and Retimers..................................................................................................89 Table 17: SoundWire Audio CODECs................................................................................................................97 Table 18: Alternative / Additional Carrier Board UART Implementations.........................................................102 Table 19: I2C Operating Modes.......................................................................................................................103 Table 20: I2C Bus Buffers / Level Translators / Power Domain Isolation.........................................................105 Table 21: COM-HPC Type Definitions..............................................................................................................116 Table 22: Intel and AMD Design Guides..........................................................................................................118 Table 23: General Design Rules for High Speed Serial interfaces..................................................................121 Table 24: NBASE-T Design Rule Summary.....................................................................................................123 Table 25: Ethernet KR Design Rule Summary.................................................................................................124 Table 26: SATA Design Rule Summary............................................................................................................125 Table 27: PCIe Design Rule Summary............................................................................................................126 Table 28: USB 2.0 Design Rule Summary.......................................................................................................127 Table 29: USB 3.2 and USB4 Design Rule Summaries...................................................................................128 Table 30: DisplayPort Design Rule Summary..................................................................................................130 Table 31: HDMI Design Rule Summary...........................................................................................................132 Table 32: Design Rules for Single Ended Interfaces.......................................................................................133 Table 33: SDP Use in Figure Above.................................................................................................................148 Table 34: SyncE / PTP Matrix..........................................................................................................................149 Table 35: General Books on x86 Computer Topics..........................................................................................158 Table 36: Revision History................................................................................................................................159 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 6/159 Table of Figures Figure 1: Schematic Conventions......................................................................................................................22 Figure 2: NBASE-T............................................................................................................................................23 Figure 3: Intel SoC with CEI Boundary..............................................................................................................25 Figure 4: Intel CEI 4x SFP28.............................................................................................................................26 Figure 5: Intel CEI 4x SFP28 with Retimer C827/XL827...................................................................................27 Figure 6: Intel CEI QSFP28 with Retimer C827/XL827.....................................................................................28 Figure 7: Intel CEI 4x 10GBASE-T Copper PHY X557-AT4..............................................................................29 Figure 8: Intel CEI 4x 1GBASE-T Copper PHY Marvell 88E1543.....................................................................30 Figure 9: AMD SoC 4xSFP+ with CS4223 Retimer...........................................................................................31 Figure 10: Serial ATA - Cabled...........................................................................................................................33 Figure 11: PCIe Data Line Coupling Capacitor Positions (MXM-3 Cards Excluded).........................................36 Figure 12: PCIe Device Down on Carrier PCIe Group 0 Low PCIe Lane 0.................................................37 Figure 13: Mini-PCIe Site PCIe Group 0 Low PCIe Lane 1.........................................................................38 Figure 14: M.2 E-Key Site WiFi Cards PCIe Group 0 Low PCIe Lane 2..................................................39 Figure 15: M.2 B-Key Site Cell Modem Cards PCIe Group 0 Low PCIe Lane 3......................................40 Figure 16: Clock and Reset Buffers for PCIe Group 0 Low Example Circuits...................................................41 Figure 17: M.2 M-Key Site for NVME SSD Card #1 in Group 0 High PCIe Lanes 8:11....................................42 Figure 18: M.2 M -Key Site for NVME SSD #2 in Group 0 PCIe Lanes 12:15..................................................43 Figure 19: Clock Buffer and Reset for PCIe Dual M.2 NVME SSD PCIe Group 0 High....................................44 Figure 20: PCIe x16 Slot Card Site on PCIe Group 1 PCIe Lanes 16:31..........................................................45 Figure 21: PCIe x8 Slot Card Site on PCIe Group 2 PCIe Lanes 32:39............................................................46 Figure 22: PCIe x4 Slot Card Site on PCIe Group 2 PCIe Lanes 40:43............................................................47 Figure 23: PCIe x4 Slot Card Site on PCIe Group 2 PCIe Lanes 44:47............................................................48 Figure 24: PCIe Clock Buffer and Reset Buffer for PCIe Group 2 Example......................................................49 Figure 26: USB 2.0 Type-A Example.................................................................................................................59 Figure 27: USB Type-C Receptacle and Plug Images.......................................................................................62 Figure 28: USB Type-C Receptacle Pin-Out Looking Into Carrier Receptacle...............................................62 Figure 29: USB Type-C Basic Implementation: USB 3.2 Gen 1 and Gen 2......................................................69 Figure 30: USB 3.2 Gen 2x2 Type-C (1 of 6): Option Resistors for Type-C or Type-A......................................70 Figure 31: USB 3.2 Gen 2x2 Type-C (2 of 6): Port Multiplexer and Redriver....................................................71 Figure 32: USB 3.2 Gen 2x2 Type-C (3 of 6): EMI Mitigation and ESD Protection...........................................72 Figure 33: USB 3.2 Gen 2x2 Type-C (4 of 6): Port Port Mux / Redriver Coupling Capacitors..........................73 Figure 34: USB 3.2 Gen 2x2 Type-C (5 of 6): Type-C Power Delivery Controller.............................................74 Figure 35: USB 3.2 Gen 2x2 Type-C (6 of 6): Type-C Connector and Port Protection......................................75 Figure 36: USB4 on COM-HPC USB Port 2 (Fig 1 of 6): COM-HPC Side RX Coupling Caps.........................76 Figure 37: USB4 on COM-HPC USB Port 2 (Fig 2 of 6): Intel JHL8040R Thunderbolt Retimer Part 1............77 Figure 38: USB4 on COM-HPC USB Port 2 (Fig 3 of 6): Intel JHL8040R Thunderbolt Retimer Part 2............78 Figure 39: USB4 on COM-HPC USB Port 2 (Fig 4 of 6): Output Coupling and Protection...............................79 Figure 40: USB4 on COM-HPC USB Port 2 (Fig 5 of 6): Power Delivery Controller.........................................80 Figure 41: USB4 on COM-HPC USB Port 2 (Fig 6 of 6): Type-C Connector and USB Port Protector..............81 Figure 42: Boot SPI on Carrier (Example 1)......................................................................................................82 Figure 43: Boot SPI on Carrier Socketed Flash and Multiplexer to External Programmer.............................85 Figure 44: eSPI Generic Interface Example: SIO, FPGA, LPC Bridge, or Other Peripheral eSPI Device........86 Figure 45: DisplayPort Over DDI........................................................................................................................87 Figure 46: HDMI Over DDI.................................................................................................................................90 Figure 47: eDP Schematic Example..................................................................................................................92 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 7/159 Figure 48: eDP Connector Pin Numbering........................................................................................................93 Figure 49: MIPI-CSI...........................................................................................................................................95 Figure 50: MIPI SoundWire Routing Topologies................................................................................................98 Figure 51: MIPI SoundWire Point to Point Connection With SI Components....................................................98 Figure 52: UART0 and UART1 RS-232 Level Translated Asynchronous Serial Ports....................................101 Figure 53: I2C0 Example: Carrier EEPROM in S5 Power Domain..................................................................104 Figure 54: I2C0 Example: Carrier Temperature Sensor in S0 Power Domain.................................................105 Figure 55: Port 80h Debug Display Over COM-HPC USB_PD_I2C................................................................107 Figure 56: Carrier BMC with IPMB Link to Module Sheet 1..........................................................................109 Figure 57: Carrier BMC with IPMB Link to Module Sheet 2..........................................................................110 Figure 58: Carrier BMC with IPMB Link to Module Sheet 3..........................................................................111 Figure 59: Module Type Detection / Protection ATX Power Supply and Client Type Module / Carrier.........117 Figure 60: Module Type Detection / Protection AT Power Supply and Server Type Module / Carrier..........117 Figure 61: PCB Cross Section Terms and Notations.......................................................................................120 Figure 62: Vendor Specific Heat Spreader to Module Attachment Bottom Side Module PCB Access.........134 Figure 63: Heat Spreader Assembly Mounting to Carrier Bottom Side Screw Access.................................135 Figure 64: Heat Spreader Assembly Mounting to Carrier Top Side Screw Access......................................136 Figure 65: Heat Spreader Assembly Mounting to Carrier With Broaching Nut Top Side Screw Access......137 Figure 66: Heat Spreader Assembly Mounting to Carrier and Chassis Top Side Screw Access..................138 Figure 67: JSOM (Jack Screw Standoff Micro) Diagram and Application Cutaway.....................................140 Figure 68: (a) Hex Nuts to Torque (b) Diagonal Torque Application / De-application (c) Hex Screw Turns....141 Figure 69: COM-HPC Stack Dis-assembly Procedure Using JSOM Hardware..............................................141 Figure 70: FEM Simulation Results 0.0625" FR4 Carrier No Stiffener......................................................142 Figure 71: Mechanical Carrier Stiffener Possibility..........................................................................................143 Figure 72: Carrier Board Stiffener Keep-Out Region (Seen Through Carrier).................................................144 Figure 73: Application Specific Part Number (ASP) Reference Guide............................................................145 Figure 74: Synchronous Ethernet Overview....................................................................................................147 Figure 75: Synchronous Ethernet Example Implementation...........................................................................148 Figure 76: Alternative eDP Example (Sheet 1 of 6): Passive Stuffing Options eDP and DSI.......................151 Figure 77: Alternative eDP Example (Sheet 2 of 6): Backlight Control Options..............................................152 Figure 78: Alternative eDP Example (Sheet 3 of 6): Connector to Display Panel Assembly...........................153 Figure 79: Alternative eDP Example (Sheet 4 of 6): Backlight LED Driver......................................................154 Figure 80: Alternative eDP Example (Sheet 5 of 6): Split Rail (Pos / Neg) PS for AMOLED..........................155 Figure 81: Alternative eDP Example (Sheet 6 of 6): High Side Gate Driver for eDP Backlight.......................156 Figure 82: eSPI Header Example....................................................................................................................157 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 8/159 1. Preface Preface 1.1. About This Document This document provides information for designing project specific Carrier Boards for systems using COMHPC Modules. This document is a design guide and not a specification document. It should be used by together with the COM-HPC Base Specification, with other industry specifications (listed in Section 1.9. below), with silicon and component vendor's documentation and with your COM-HPC Module vendor's product documentation. The PICMG COM Express Carrier Board Design Guide is also a very useful additional source of information. The COM-HPC and COM Express pin names are not the same, but it is not hard to correlate them. The COM Express design guide document is available for free download on the public PICMG website (www.picmg.org). No membership is required to down load the design guides. 1.2. Intended Audience This design guide is intended for electronics engineers and PCB layout engineers designing Carrier Boards for PICMG COM-HPC Modules. It may also be useful to COM-HPC Module designers for them to better understand how COM-HPC Modules are used, and to understand how some of the design rules (trace length recommendations, trace length matching recommendations etc.) are shared between Module and Carrier designs. 1.3. No Special Word Usage Unlike a PICMG specification, which assigns special meanings to certain words such as "shall", "should" and "may", there is no such usage in this document. That is because this document is not a specification; it is a non-normative design guide. 1.4. No Statements of Compliance As this document is not a specification but a set of guidelines, there should not be any statements of compliance made with reference to this document. 1.5. Correctness Disclaimer The schematic examples given in this document are believed to be correct but no guarantee is given. 1.6. Name and Logo Usage The PCI Industrial Computer Manufacturers Group policies regarding the use of its logos and trademarks are as follows: Permission to use the PICMG® organization logo is automatically granted to designated members only as stipulated on the most recent Membership Privileges document (available at www.picmg.org) during the period of time for which their membership dues are paid. Nonmembers may not use the PICMG® organization logo. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 9/159 Preface The PICMG® organization logo must be printed in black or color as shown in the files available for download from the member's side of the Web site. Logos with or without the "Open Modular Computing Specifications" banner can be used. Nothing may be added or deleted from the PICMG® logo. The use of the COM-HPC® logo is a privilege granted by the PICMG® organization to companies who have purchased the relevant specifications (or acquired them as a member benefit), and that believe their products comply with these specifications. Manufacturers' distributors and sales representatives may use the COMHPC® logo in promoting products sold under the name of the manufacturer. Use of the logos by either members or non-members implies such compliance. Only PICMG Executive and Associate members may use the PICMG® logo. PICMG® may revoke permission to use logos if they are misused. The COM-HPC® logo can be found on the PICMG web site, www.picmg.org. The COM-HPC® logo must be used exactly as shown in the files available for download from the PICMG® Web site. The aspect ratios of the logos must be maintained, but the sizes may be varied. Nothing may be added to or deleted from the COM-HPC® logo. The PICMG® name and logo and the COM-HPC® name and logo are registered trademarks of PICMG®. Registered trademarks must be followed by the ® symbol, and the following statement must appear in all published literature and advertising material in which the logo appears: PICMG, the COM-HPC® name and logo and the PICMG logo are registered trademarks of the PCI Industrial Computers Manufacturers Group. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 10/159 Preface 1.7. Intellectual Property The PICMG Consortium draws attention to the fact that it is claimed that compliance with this specification may involve the use of a patent claim(s) ("IPR"). The PICMG Consortium takes no position concerning the evidence, validity or scope of this IPR. The holder of this IPR has assured the Consortium that it is willing to license or sublicense all such IPR to those licensees (Members and non-Members alike) desiring to implement this specification. The statement of the holder of this IPR to such effect has been filed with the Consortium. Attention is also drawn to the possibility that some of the elements of this specification may be the subject of IPR other than those identified below. The Consortium shall not be responsible for identifying any or all such IPR. No representation is made as to the availability of any license rights for use of any IPR inherent in this specification for any purpose other than to implement this specification. This specification conforms to the current PICMG® Intellectual Property Rights Policy and the Policies and Procedures for Specification Development and does not contain any known intellectual property that is not available for licensing under Reasonable and Non-discriminatory terms. In the course of Membership Review the following disclosures were made: 1.7.1. Necessary IPR Claims (Referring to Mandatory or Recommended Features) Samtec Inc. has the following patents, which may cover some aspects of the PICMG® COM-HPC® Module and Carrier Board Connectors. Contact Samtec Inc. at [email protected] for further information. China 202111274151.2 China 201921051845.8 China 202030159171.5 EPO 007814686-0001 EPO 007814686-0002 EPO 007814686-0003 EPO 007814686-0004 EPO 19830502.1 Taiwan 109138672 Taiwan M589915 Taiwan D209464 Taiwan 109304816 US 29/709518 1.7.2. Unnecessary Claims (Referring to Optional Features or Non-normative Elements) US 9374900 CN 201480061913.2 TWM 505072 PCT 2021207390 TW 110112769 CN 11566924 US 17/817659 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 11/159 Preface 1.7.3. Third Party Disclosures (Note that third party IPR submissions do not contain any claim of willingness to license the IPR.) US 10,404,014 B2, FCI USA LLC, Sep. 3, 2019, "STACKING ELECTRICAL CONNECTOR WITH REDUCED CROSS TALK" Refer to PICMG® IPR Policies and Procedures and the company owner of the patent for terms and conditions of usage. PICMG® makes no judgment as to the validity of these claims or the licensing terms offered by the claimants. THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE CONSORTIUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS SPECIFICATION. Compliance with this specification does not absolve manufacturers of COM-HPC® equipment from the requirements of safety and regulatory agencies (UL, CSA, FCC, IEC, etc.). PICMG®, CompactPCI®, AdvancedTCA®, ATCA®, AdvancedMC®, CompactPCI® Express, COM Express®, COM-HPC®, MicroTCA®, SHB Express®, and the PICMG, CompactPCI, AdvancedTCA, µTCA and ATCA logos are registered trademarks, and xTCATM, IRTMTM and the IRTM logo are trademarks of the PCI Industrial Computer Manufacturers Group. All other brand or product names may be trademarks or registered trademarks of their respective holders. 1.7.4. Copyright Notice © 2021, 2022, 2023 PICMG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from PICMG. PICMG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is". 1.7.5. Trademarks Intel is a registered trademark of Intel Corporation. PCI Express is a registered trademark of Peripheral Component Interconnect Special Interest Group (PCI-SIG). COM-HPC® is a registered trademark of PCI Industrial Computer Manufacturers Group (PICMG). I2C is a registered trademark of NXP Semiconductors. Samtec is a registered trademark of Samtec Inc. All product names and logos referenced in this document are property of their owners. Thunderbolt is a registered trademark of the Intel corporation. Accelerate is a trademark of Samtec Inc. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 12/159 Preface 1.8. Acronyms, Abbreviations and Definitions Used Table 1: Acronyms, Abbreviations and Definitions Used Term 10GBASE-KR 25GBASE-KR AC Coupled ACPI AMOLED ARM ATX BIDIR BIOS BMC Carrier Board CCC DDI DIMM DisplayPort DP DPLL DRAM DVI EAPI EC ECN EEPROM Embedded DisplayPort eDP ESD eSPI FAE Flash FPGA FR4 Gb GbE Gbps GPI GPS GPIO GPO GPU Definition 10 Gbps internal copper interface. Operates over a single lane and uses the same physical layer coding (defined in IEEE 802.3 Clause 49) as 10GBASE-LR (Single Mode Fiber 1310 nm ) / ER (Single Mode Fiber 1550 nm) /SR (Multi Mode Fiber 850 nm) 25 Gb/s internal copper interface using 25GBASE-R encoding over one lane in each direction This term means that series capacitors are inserted in the differential pair lines. This allows the transmit and receive lines to have their own, possibly separate DC common mode voltages. Advanced Configuration Power Interface Active Matrix Organic (semiconductor) Light Emitting Diode (a flat panel display technology) Advanced RISC Machine a low power alternative CPU architecture widely used in mobile and embedded systems Advanced Technology Extended Industry standard PC Motherboard form factor and power supply definitions Bidirectional (in reference to electrical signals) Basic Input Output System Baseboard Management Controller or Board Management Controller located on Carrier for COM-HPC, if implemented An application specific circuit board that accepts a COM-HPC Module Current Carrying Capability Digital Display Interface an interface that can serve DisplayPort and HDMI/DVI, Dual In-line Memory Module larger format SDRAM memory module used in desk top systems and server PCs DisplayPort is a digital display interface standard put forth by the Video Electronics Standards Association (VESA). It defines a new license free, royalty free, digital audio/video interconnect, intended to be used primarily between a computer and its display monitor. Digital Phase Locked Loop Dynamic Random Access Memory Digital Visual Interface - a Digital Display Working Group (DDWG) standard that defines a standard video interface supporting both digital and analog video signals. The digital signals use TMDS. Embedded Application Programming Interface Embedded Controller Engineering Change Notice Electrically Erasable Programmable Read-Only Memory Embedded DisplayPort (eDP) is a digital display interface standard defined by the Video Electronics Standards Association (VESA) for digital interconnect of Audio and Video within a closed system such as a laptop computer or a piece of laboratory instrumentation. Electro Static Discharge Enhanced Serial Peripheral Interface Field Application Engineer EEPROM memory used for code storage. It can be updated in place ("flashed"). Field Programmable Gate Array A type of fiber-glass laminate commonly used for printed circuit boards. Gigabit Gigabit Ethernet Gigabits per second General Purpose Input Global Positioning System General Purpose Input Output General Purpose Output Graphics Processing Unit PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 13/159 Preface Term Gtps, GT/sec HDA HDMI I2C I2S I3C IPMB IPMI IPR LAN Legacy Device LPC LS M.2 MAC MAFS MDI MDIO ME MIPI MMC MS NA or N/A NBASE-KR NBASE-T NC NDA Nyquist Frequency NVME OCXO OEM OTP PC-AT PCB PCI Definition Giga Transfers per Second Intel High Definition Audio (HD Audio) refers to the specification released by Intel in 2004 for delivering high definition audio. High Definition Multimedia Interface digital display interface widely used in consumer electronics such as digital TVs Inter Integrated Circuit 2 wire (clock and data) signaling scheme allowing communication between integrated circuits, primarily used to read and load register values. Inter IC Sound a 5 wire serial data interface, used primarily for transmitting and receiving digital audio data Improved Inter Integrated Ciruit builds on I2C and offers higher speeds and in-band interrupts Intelligent Platform Management Bus Intelligent Platform Management Interface Intellectual Property Rights Local Area Network Relics from the PC-AT computer that are not in use in contemporary PC systems: primarily the ISA bus, UART-based serial ports, parallel printer ports, PS-2 keyboards, and mice. Definitions vary as to what constitutes a legacy device. Some definitions include IDE as a legacy device. Low Pin-Count Interface: a low speed interface used for peripheral circuits such as Super I/O controllers, which typically combine legacy-device support into a single IC. Least Significant A small form factor add in card, for storage, WiFi, Cell Modems, etc. Interface options include PCIe x1, x2 or x4, SATA, USB and asynchronous serial. The sandard is maintained by the PCI-SIG. Media Access Control in this document, MAC refers to to the physical hardware bridge device between a CPU interface such as PCIe, and a network interface such as MDI or 10GBASE-KR or many others. A PHY is needed between the MAC and the Ethernet physical layer Term for Master Attached Flash Sharing where the Flash component is attached to the processor interface. Media Dependent Interface between a Ethernet PHY and the system magnetics and copper twisted pairs Management Data Input/Output, or MDIO, is a 2-wire serial bus that is used to manage PHYs or physical layer devices in media access controllers (MACs). Management Engine Intel term for a management microcontroller embedded into the chipset silicon. It is active before the main x86 CPU boots. Industry trade group that sets standards for mobile devices Module Management Controller a small microcontroller on the Module that works in conjunction with a Carrier BMC to implement IPMI functions. Implementation is optional. Most Significant Not Available, Not Applicable Ethernet back plane signaling on PCB differential pairs. `N' signifies the speed 25Gbps or 10Gbps Ethernet physical layer signaling on twisted pairs. `N' signifies the speed 10Gbps, 5Gbps, 2.5Gbps, 1Gbps, 100Mbps or 10Mbps No Connect Non-Disclosure Agreement The critical frequency, sometimes called the "folding frequency", for a digital sampling system. It is (usually) ½ of the maximum data rate for the system. Non Volatile Memory Express - non volatile memory with a PCIe interface x1, x2 or x4 often in an M.2 card form factor Oven Controlled Xtal (crystal) Oscillator Original Equipment Manufacturer One Time Programmable an option offered by some silicon vendors to change IC parameters by programming or blowing device fuses once, before shipment. "Personal Computer Advanced Technology" an IBM trademark term used to refer to Intel x86 based personal computers in the 1990s Printed Circuit Board Peripheral Component Interconnect PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 14/159 Preface Term PCI Express PCIe PEG PHY Pin-out Type PMD POR PPS PTP PU PD Ra ROM RSVD RTC S0, S1, S2, S3, S4, S5 SAFS SATA SDP SKU SGMII SMA SMBus SOC SO-DIMM SPD SPI Super I/O TFT TMDS TPM USB WDT XAUI XGMII XO Definition Peripheral Component Interconnect Express serialized point-to-point version of PCI PCI Express Graphics Physical layer device, usually used in the context of A reference to one of eight COM Express® or COM-HPC definitions for the signals that appear on the COM Express® Module connector pins. Physical Medium Dependent the physical layer of computer network protocols Plan of Record Pulse Per Second (for Ethernet) Precision Time Protocol (for Ethernet) Pull Up Pull Down A connection between a signal and a specified power rail, through a resistor Roughness Average a measure of surface roughness, expressed in units of length. Read Only Memory a legacy term often the device referred to as a ROM can actually be written to, in a special mode. Such writable ROMs are sometimes called Flash ROMs. BIOS is stored in ROM or Flash ROM. Reserved. If a pin is marked RSVD, nothing should be connected to it Real Time Clock battery backed circuit in PC-AT systems that keeps system time and date System states describing the power and activity level S0 Full power, all devices powered S1 CPU powered, CPU and bus clocks off, not in common use S2 S3 Suspend to RAM System context stored in RAM; RAM is in standby S4 Suspend to Disk System context stored on disk S5 Soft Off Main power rail off, only standby power rail present Term for Slave Attached Flash Sharing where the Flash component is attached behind a BMC component. Serial Advanced Technology Attachment: serial-interface standard for hard disks Software Definable Pin Stock Control Unit (a part number for a specific stockable item) Serial Gigabit Media Independent Interface Sub Miniature type A a small form factor circular connector used for miniature coax cables, for WiFi, GPS and Cell Modem antennas System Management Bus a 3 wire bus clock, data and alert based in I2C for system management System On Chip Small Outline Dual In-line Memory Module small form factor SDRAM module Serial Presence Detect refers to serial EEPROM on DRAMs that has DRAM Module configuration information Serial Peripheral Interface An integrated circuit, typically interfaced via the LPC or eSPI bus that provides legacy PC I/O functions including PS2 keyboard and mouse ports, serial and parallel port(s) and a floppy interface. Thin Film Transistor refers to technology used in active matrix flat-panel displays, in which there is one thin film transistor per display pixel. Transition Minimized Differential Signaling - a digital signaling protocol between the graphics subsystem and display. TMDS is used for the DVI digital signals. Trusted Platform Module, chip to enhance the security features of a computer system. Universal Serial Bus Watch Dog Timer. 10 Gbps Attachment Unit Interface. 10 Gbps Media Independent Interface Xtal (crystal) Oscillator PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 15/159 Preface 1.9. Applicable Documents and Standards The list below is a partial list of documents and standards applicable to COM-HPC®. Many of the standards groups listed below (MIPI, PCI-SIG, USB, VESA etc.) have much more additional information available ECNs, supplemental documents, test specifications, SI masks etc. These are too numerous to list here. Please explore the links below for additional documents that may be relevant. Advanced Configuration and Power Interface (ACPI) Specification Version 6.3, January 2019, Copyright © 2018, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All rights reserved. https://uefi.org/specifications ATX Specification Version 2.2 © Intel Corp. 2004 ATX12V Power Supply Design Guide, Version 2.2, March 2005 © Intel Corp. eSPI Enhanced Serial Peripheral Interface, Interface Base Specification Revision 1.0, Copyright © 2016, Intel Corporation. January 2016 https://downloadcenter.intel.com/download/27055/ HDMI (High Definition Multimedia Interface) specifications. http://www.hdmi.org High-Definition Multimedia Interface specification versions 1.3, 1.4b, 2.1 HDMI Alt Mode USB Type-C I2C Specifification NXP UM10204 "I2C-bus specification and user manual" Rev 7 October 1, 2021 http://www.nxp.com use NXP site search tool to locate UM10204 IEEE standards http://www.ieee.org IEEE Std 802.3TM-2018 (Revision of IEEE Std 802.3-2015), IEEE Standard for Information technology, Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications IEEE1588 - 2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, July 24, 2008, Copyright 2016 Intelligent Platform Management Interface Specification Second Generation, v2.0, Document Revision 1.1, October 1, 2013 (c) Intel, Hewlett-Packard, NEC, Dell An E7 red-line markup version of this document, dated April 21 2015, is available see https:// www.intel.com/content/www/us/en/servers/ipmi/ipmi-technical-resources.html Intel Low Pin Count (LPC) Interface Specification Revision 1.1, August 2002 Copyright © 2002 Intel Corporation. All rights reserved. https://www.intel.com/content/www/us/en/design/technologies-and-topics/low-pin-count-interface-specification.html MIPI Alliance specifications https://www.mipi.org MIPI CSI-2 Camera Serial Interface MIPI-CSI-3 Camera Serial Interface MIPI DSI Display Serial Interface MIPI DSI-2 Display Serial Interface MIPI C-PHY Physical layer spec for CSI-2 and DSI-2 (alternative) MIPI D-PHY Physical layer spec for CSI-2 and DSI-2 MIPI M-PHY Physical layer spec for CSI-3 MIPI Soundwire Serialized audio interface MIPI I3C Two wire serial data interface, successor to I2C MXM Graphics Module Mobile PCI Express Module Electromechanical Specification Version 3.0 Revision 1.1 (c) 2009 Nvidia Corporation Note: this document is not publicly available at the time of this writing but it does exist NC-SI Network Controller Sideband Interface Specification http://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.0.0.pdf PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 16/159 Preface Document Number: DSP0222, Jul 21, 2009, Version: 1.0.0 Copyright© 2009 Distributed Management Task Force, Inc. (DMTF). NEBS (Network Equipment Building Systems) This is a collection of documents describing reliability criteria for telecom equipment. The NEBs documents are maintained by Telcordia / Ericsson https://telecom-info.telcordia.com PCI-SIG (Peripheral Component Interconnect Special Interest Group) specifications https://www.pcisig.com PCI Express Base Specification Revision 5.0 PCI Express Card Electromechanical Specification Revision 4.0 PCI Express Mini Card Electromechanical Specification Revision 2.1 Add USB 3.0 to the Mini Card PCI Express M.2 Specification Revision 4.0 V1.0 PCI Local Bus Specification Revisions 3,4 and 5. PICMG (PCI Industrial Computer Manufacturing Group) documents http://www.picmg.org/ PICMG COM.0 COM Express Module Base Specification Revision 3.0 PICMG EAPI Embedded Application Software Interface Specification Revision 1.0 PICMG EEEP Embedded EEPROM Specification Revision 1.0 (for COM-Express) PICMG COM-HPC EEEP Embedded EEPROM Specification Revision 1.0 PICMG COM-HPC Carrier Design Guide Revision 1.0 PICMG COM Express Carrier Design Guide Revision 2.0 PICMG COM-HPC Platform Management Interface Specification Revision 1.0 PICMG Policies and Procedures for Specification Development, Revision 2.0 Serial ATA Revision 3.5a Specification (March 2021) http://www.sata-io.org/ SFP+, SFF-8083 Rev 3.1, SFF-8083 Specification for SFP+ 1X 10 Gb/s Pluggable Transceiver Solution (SFP10) Rev 3.1, Sep. 13, 2014 ftp://ftp.seagate.com/sff/SFF-8083.PDF SGET (Standardization Group for Embedded Technologies) standards and documents (www.sget.org) SMARC Hardware Specification Revision 2.1.1 (Smart Mobility ARChitecture) SMARC Design Guide Revision 2.1.1 SPI, Serial Peripheral Interface Bus See http://elm-chan.org/docs/spi_e.html for some general information on SPI System Management Bus (SMBus) Specification Version 2.0, August 3, 2000 Copyright © 1994, 1995, 1998, 2000 Duracell, Inc., Energizer Power Systems, Inc., Fujitsu, Ltd., Intel Corporation, Linear Technology Inc., Maxim Integrated Products, Mitsubishi Electric Semiconductor Company, PowerSmart, Inc., Toshiba Battery Co. Ltd., Unitrode Corporation, USAR Systems, Inc. see http://www.smbus.org Trusted Computing Group Specifications https://www.trustedcomputinggroup.org Trusted Platform Module (TPM), Trusted Computing Group Specification 1.2 Revision 103, July 9, 2007 TPM 2.0 Library Specification Underwriters Laboratories UL 1642 Standard for Safety for Lithium Batteries USB Specifications https://www.usb.org/ USB 2.0 USB 3.0, 3.1, 3.2 USB4 also known as "Thunderbolt 4" USB Type-C Connector and Power Delivery specifications VESA (Video Electronics Standards Association) https://www.vesa.org DisplayPort Interoperability Guideline Version 1.1a, February 5, 2009 http://www.vesa.org/vesa-standards/free-standards/ DisplayPort Standard Version 1.4 DisplayPort Standard Version 2.0 Embedded DisplayPort (eDP) Specification Rev. 1.4b, Oct 10, 2015 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 17/159 2. COM-HPC Interfaces COM-HPC Interfaces 2.1. COM-HPC Client and Server Pinout Differences The complete listings of signal descriptions and connector pin assignments for the COM-HPC Client and Server pinout types are found in the PICMG COM-HPC Module Base Specification and are not repeated here. Table 2 below details the Module connector pin assignments that differ between the Client and Server types. Table 2: Client and Server Type Pinout Difference Table Pin Row Client Server 20 A DDI1_SDA_AUX- ETH4_RX- 21 A DDI1_SCL_AUX+ ETH4_RX+ 23 A DDI1_PAIR0- ETH5_RX- 24 A DDI1_PAIR0+ ETH5_RX+ 26 A DDI1_PAIR1- ETH6_RX- 27 A DDI1_PAIR1+ ETH6_RX+ 29 A DDI1_PAIR2- ETH7_RX- 30 A DDI1_PAIR2+ ETH7_RX+ 32 A DDI1_PAIR3- RSVD 33 A DDI1_PAIR3+ RSVD 35 A eDP_AUX- ETH4_TX- 36 A eDP_AUX+ ETH4_TX+ 38 A eDP_TX0- ETH5_TX- 39 A eDP_TX0+ ETH5_TX+ 41 A eDP_TX1- ETH6_TX- 42 A eDP_TX1+ ETH6_TX+ 44 A eDP_TX2- ETH7_TX- 45 A eDP_TX2+ ETH7_TX+ 47 A eDP_TX3- USB1_AUX- 48 A eDP_TX3+ USB1_AUX+ 19 B I2S_LRCLK/SNDW_CLK3 RSVD 20 B I2S_DOUT/SNDW_DAT3 RSVD 21 B I2S_MCLK RSVD 22 B I2S_DIN/SNDW_DAT2 RSVD 23 B I2S_CLK/SNDW_CLK2 RSVD 45 B LID# RSVD 46 B SLEEP# RSVD 20 C SNDW_DMIC_CLK1 ETH0_TX- 21 C SNDW_DMIC_DAT1 ETH0_TX+ 23 C SNDW_DMIC_CLK0 ETH1_TX- 24 C SNDW_DMIC_DAT0 ETH1_TX+ 26 C DDI0_DDC_AUX_SEL ETH2_TX- 27 C DDI1_DDC_AUX_SEL ETH2_TX+ 28 C DDI0_HPD GND 29 C DDI1_HPD ETH3_TX- 30 C eDP_HPD ETH3_TX+ 31 C eDP_VDD_EN GND 32 C eDP_BKLT_EN USB3_SSRX- 33 C eDP_BKLTCTL USB3_SSRX+ 35 C USB1_AUX- USB2_SSRX- 36 C USB1_AUX+ USB2_SSRX+ 19 D DDI0_SDA_AUX- ETH0_RX- 20 D DDI0_SCL_AUX+ ETH0_RX+ 22 D DDI0_PAIR0- ETH1_RX- 23 D DDI0_PAIR0+ ETH1_RX+ 25 D DDI0_PAIR1- ETH2_RX- 26 D DDI0_PAIR1+ ETH2_RX+ PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 18/159 Pin Row Client 28 D DDI0_PAIR2- 29 D DDI0_PAIR2+ 31 D DDI0_PAIR3- 32 D DDI0_PAIR3+ 34 D AC_PRESENT 35 D RSVD 3 E DDI2_SDA_AUX- 4 E DDI2_SCL_AUX+ 6 E DDI2_PAIR0- 7 E DDI2_PAIR0+ 9 E DDI2_PAIR1- 10 E DDI2_PAIR1+ 12 E DDI2_PAIR2- 13 E DDI2_PAIR2+ 15 E DDI2_PAIR3- 16 E DDI2_PAIR3+ 18 E DDI2_DDC_AUX_SEL 19 E DDI2_HPD 69 E RSVD 70 E RSVD 71 E RSVD 72 E RSVD 73 E RSVD 74 E RSVD 75 E RSVD 76 E RSVD 77 E RSVD 78 E NBASET1_CTREF 79 E NBASET1_SDP 80 E NBASET1_LINK_MID# 81 E NBASET1_LINK_ACT# 82 E NBASET1_LINK_MAX# 84 E RSVD 85 E RSVD 87 E ETH0_RX- 88 E ETH0_RX+ 90 E ETH1_RX- 91 E ETH1_RX+ 1 F RSVD 2 F RSVD 3 F RSVD 4 F RSVD 5 F RSVD 6 F RSVD 7 F RSVD 8 F RSVD 9 F RSVD 10 F RSVD 11 F RSVD 12 F RSVD 13 F RSVD 14 F RSVD 68 F RSVD 69 F RSVD 71 F NBASET1_MDI0- 72 F NBASET1_MDI0+ 74 F NBASET1_MDI1- 75 F NBASET1_MDI1+ 77 F NBASET1_MDI2- 78 F NBASET1_MDI2+ PICMG® COM-HPC® Carrier Design Guide Server ETH3_RXETH3_RX+ USB3_SSTXUSB3_SSTX+ USB2_SSTXUSB2_SSTX+ RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD PCIe48_TXPCIe48_TX+ GND PCIe49_TXPCIe49_TX+ GND PCIe50_TXPCIe50_TX+ GND PCIe51_TXPCIe51_TX+ GND PCIe52_TXPCIe52_TX+ PCIe53_TXPCIe53_TX+ PCIe54_TXPCIe54_TX+ PCIe55_TXPCIe55_TX+ ETH2_SDP ETH3_SDP ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_I2C_CLK ETH4-7_I2C_DAT ETH4-7_INT# ETH4-7_MDIO_CLK ETH4-7_MDIO_DAT ETH4-7_PHY_INT# ETH4-7_PHY_RST# ETH4-7_PRSNT# PCIe48_RXPCIe48_RX+ PCIe49_RXPCIe49_RX+ PCIe50_RXPCIe50_RX+ PCIe51_RXPCIe51_RX+ COM-HPC Interfaces Rev. 2.1 / Aug 10, 2023 19/159 Pin Row Client 80 F NBASET1_MDI3- 81 F NBASET1_MDI3+ 83 F RSVD 84 F RSVD 86 F ETH0_TX- 87 F ETH0_TX+ 88 F ETH1_TX- 90 F ETH1_TX+ 95 F RSVD 96 F ETH0-1_PRSNT# 97 F ETH0-1_PHY_RST# 2 G GND 3 G USB2_SSRX0- 4 G USB2_SSRX0+ 5 G GND 6 G USB2_SSRX1- 7 G USB2_SSRX1+ 8 G GND 9 G USB3_SSRX0- 10 G USB3_SSRX0+ 11 G GND 12 G USB3_SSRX1- 13 G USB3_SSRX1+ 15 G USB3_LSRX 16 G USB3_LSTX 17 G USB2_LSRX 18 G USB2_LSTX 19 G PEG_LANE_REV# 69 G RSVD 70 G RSVD 72 G CSI0_RX0- 73 G CSI0_RX0+ 75 G CSI0_RX1- 76 G CSI0_RX1+ 78 G CSI0_RX2- 79 G CSI0_RX2+ 81 G CSI0_RX3- 82 G CSI0_RX3+ 84 G CSI0_CLK- 85 G CSI0_CLK+ 87 G CSI0_I2C_CLK 88 G CSI0_I2C_DAT 89 G CSI0_MCLK 90 G CSI0_RST# 91 G CSI0_ENA 93 G RSVD 94 G RSVD 96 G ETH0-1_I2C_CLK 97 G ETH0-1_I2C_DAT 98 G ETH0-1_PHY_INT# 99 G ETH0-1_INT# 1 H GND 2 H USB2_SSTX0- 3 H USB2_SSTX0+ 4 H GND 5 H USB2_SSTX1- 6 H USB2_SSTX1+ 7 H GND 8 H USB3_SSTX0- 9 H USB3_SSTX0+ PICMG® COM-HPC® Carrier Design Guide Server PCIe52_RXPCIe52_RX+ PCIe53_RXPCIe53_RX+ PCIe54_RXPCIe54_RX+ PCIe55_RXPCIe55_RX+ PCIe_CLKREQ3# ETH0-3_PRSNT# ETH0-3_PHY_RST# RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD PCIe56_RXPCIe56_RX+ PCIe57_RXPCIe57_RX+ PCIe58_RXPCIe58_RX+ PCIe59_RXPCIe59_RX+ PCIe60_RXPCIe60_RX+ PCIe61_RXPCIe61_RX+ PCIe62_RXPCIe62_RX+ GND PCIe63_RXPCIe63_RX+ PCIe_REFCLK3PCIe_REFCLK3+ ETH0-3_I2C_CLK ETH0-3_I2C_DAT ETH0-3_PHY_INT# ETH0-3_INT# RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD COM-HPC Interfaces Rev. 2.1 / Aug 10, 2023 20/159 Pin Row Client 10 H GND 11 H USB3_SSTX1- 12 H USB3_SSTX1+ 13 H GND 14 H USB2_AUX- 15 H USB2_AUX+ 16 H GND 17 H USB3_AUX- 18 H USB3_AUX+ 68 H RSVD 69 H RSVD 71 H CSI1_RX0- 72 H CSI1_RX0+ 74 H CSI1_RX1- 75 H CSI1_RX1+ 77 H CSI1_RX2- 78 H CSI1_RX2+ 80 H CSI1_RX3- 81 H CSI1_RX3+ 83 H CSI1_CLK- 84 H CSI1_CLK+ 86 H CSI1_I2C_CLK 87 H CSI1_I2C_DAT 88 H CSI1_MCLK 89 H CSI1_RST# 90 H CSI1_ENA 98 H ETH0-1_MDIO_CLK 99 H ETH0-1_MDIO_DAT Server RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD PCIe56_TXPCIe56_TX+ PCIe57_TXPCIe57_TX+ PCIe58_TXPCIe58_TX+ PCIe59_TXPCIe59_TX+ PCIe60_TXPCIe60_TX+ PCIe61_TXPCIe61_TX+ PCIe62_TXPCIe62_TX+ GND PCIe63_TXPCIe63_TX+ ETH0-3_MDIO_CLK ETH0-3_MDIO_DAT COM-HPC Interfaces PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 21/159 Reference Schematics and Block Diagrams 3. Reference Schematics and Block Diagrams 3.1. Sources for Technical Materials The schematic diagrams, block diagrams and mechanical diagrams in this document were contributed by several companies and organizations, including Adlink, Advantech, Avnet Integrated, Bielefeld University, congatec, Intel, Kontron, Samtec and SECO. Hence the graphic styles vary a bit. An effort has been made to provide part numbers in the drawings that can be located in a web search (except for small generic parts). 3.2. Schematic Conventions Schematic examples are drawn with signal directions shown per the Figure below. Signals that connect directly to the COM-HPC connector are flagged with the text "COM" in the off-page connect symbol, as shown in Figure 1 below. Nets that connect to the COM-HPC Module are named per the PICMG COM-HPC specification in almost all cases. Figure 1: Schematic Conventions Output from IC Output from IC Input to IC Input to IC Bidir Signal Bidir Signal IC Output from IC to Module Output from IC to Module Input to IC from Module Input to IC from Module Bidir Signal to / from Module Bidir Signal to / from Module Power nets shown in the sample schematics and drawings are labeled, for the most part, per the Table below. The power rail behavior under the various system power states is shown in the Table. Table 3: Power Net Naming Power Net S0 On +12V_S +5V_S +3.3V_S +1.5V_S +2.5V_S +5V_A +3.3V_A VCC_RTC 12V 5V 3.3V 1.5V 2.5V 5V 3.3V 3.0V S3 S4 S5 Suspend to Suspend to Soft Off RAM Disk off off off off off off off off off off off off off off off 5V 5V 5V 3.3V 3.3V 3.3V 3.0V 3.0V 3.0V G3 Mechanical Off off off off off off off off 3.0V PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 22/159 Reference Schematics and Block Diagrams 3.3. Ethernet NBASE-T A typical NBASE-T implementation is shown in Figure 2 below. The "N" refers to the link speed, and may be 10 Mbps, 100 Mbps, 1 Gbps, 2.5 Gbps, 5 Gbps or 10 Gbps. However not all speeds may be available on all Module designs. All COM-HPC Modules are required to support at least the 1 Gbps rate. This example shows a "Mag-Jack" (an 8 pin RJ45 jack with integrated isolation magnetics) from Wurth Electronics, p/n 7499611420. This part is claimed by Wurth to support 10 Mbps, 100 Mbps, 1 Gbps and 10 Gbps data rates. There are many similar parts from Wurth and from vendors such as Bel-Fuse, Pulse Electronics and others. It may be advisable to check with your Module vendor on the suitablity of chosen parts. Ethernet RJ45 jacks (including Mag-Jacks and jacks that require external magnetics) come in "tab-up" and "tab-down" versions. The Wurth part shown here is "tab-up". If a "tab-down" part is used then the PCB layout is impacted as the pin orientation is effectively flipped 180 degrees. Implementing magnetics that are external to the jack is of course possible but it is trickier. It may be necessary in certain situations that require a higher than normal isolation between the Ethernet magnetics primary and secondary sides. This can be the case in safety critical designs such as medical equipment. The colors and meanings of the colors used for NBASE-T LEDs are not standardized in the industry. The scheme shown in the diagram below is suggested for COM-HPC but not required The diagram below shows ESD protection diode arrays (Texas Instruments TPD4E02B04) protecting the NBASE-T differential pairs. Many similar parts are available from other vendors. Make sure the selected part has a suitably low pin capacitance. It is very important that the parts (D43 and D44 in the figure) are placed close to the connector and are routed in a "no stub" fashion. For example the net NBASET0+ in the figure should hit D43 pin 6 and continue under the D43 package to catch pin 5 and then on to the RJ45 connector. Pins may be swapped for easier routing, as long as the pairs are kept together and the no-stub routing is followed. Figure 2: NBASE-T NBASET0_MDI0+ NBASET0_MDI0NBASET0_MDI1+ NBASET0_MDI1NBASET0_MDI2+ NBASET0_MDI2NBASET0_MDI3+ NBASET0_MDI3- COM COM COM COM COM COM COM COM NBASET0_MDI0+ NBASET0_CT0 NBASET0_MDI0- NBASET0_MDI1+ NBASET0_CT1 NBASET0_MDI1- NBASET0_MDI2+ NBASET0_CT2 NBASET0_MDI2- NBASET0_MDI3+ NBASET0_CT3 NBASET0_MDI3- X37 8 7 9 D1+ CD1 D1- 3 1 2 D2+ CD2 D2- 4 6 5 D3+ CD3 D3- 11 12 10 D4+ CD4 D4- +3.3V_A LED2_GK LED2_GA 13 14 G 1 8 G/Y LED1_YK LED1_GA/YA LED1_GK 15 16 17 SH2 SH1 SH2 SH1 NBASET0_LA# C608 470p 0402 50V NBASET0_LMAX# NBASET0_LMID# C609 470p 0402 50V WE_7499611420 R394 330R 0402 COM NBASET0_LINK_ACT# R397 R398 330R 0402 330R 0402 COM NBASET0_LINK_MAX_SPEED# COM NBASET0_LINK_MID_SPEED# C610 470p 0402 50V D43 NBASET0_MDI0+ 6 NBASET0_MDI0- 7 8 NBASET0_MDI1- 9 NBASET0_MDI1+ 10 5 NBASET0_MDI0+ 4 NBASET0_MDI03 2 NBASET0_MDI11 NBASET0_MDI1+ TI_TPD4E02B04 D44 NBASET0_MDI2+ 6 5 NBASET0_MDI2+ NBASET0_MDI2- 7 4 NBASET0_MDI2- 8 3 NBASET0_MDI3- 9 2 NBASET0_MDI3- NBASET0_MDI3+ 10 1 NBASET0_MDI3+ TI_TPD4E02B04 NBASET0_SDP COM 1 2 1 2 X36 XMOLEX530470210 Note: Connection of Center Tap should be adjusted depending on Phy used on COM-HPC module. Schematic shown here should offer stuffing options for all common architectures (separated caps at center tap, individual center taps shorted, adjustable CT capcitor values) NBASET0_CTREF COM C607 1u 0603 25V R393 DNI 0R 0402 NBASET0_CT0 R395 DNI 0R 0402 NBASET0_CT1 R396 DNI 0R 0402 NBASET0_CT2 R399 DNI 0R 0402 NBASET0_CT3 C611 C612 C613 C614 4x 100n 0402 25V PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 23/159 Reference Schematics and Block Diagrams 3.4. Ethernet KR and KR4 The Ethernet KR interfaces consist of a single TX pair and single RX pair. These pairs are capacitively coupled off of the COM-HPC Module either on the Carrier board (for Module to PHY or Module to Module situations) or within the SFP assemblies. Ethernet KR4 interfaces are comprised of four TX pairs and four RX pairs, capacitively coupled off of the COM-HPC Module, as per the KR interfaces. In order to save pins, the side band signals for the 10G / 25G / 40G / 100G Ethernet KR interfaces are serialized on the Module silicon per an Intel convention known as CEI. This is an acronym for "Common Electrical Interface". The serialized CEI signals need to be deserialized on the Carrier Board. The block diagrams in this section describe which components are needed and what the functions of the deserialized nets are. The Ethernet KR LED information is carried on one I2C bus per four Ethernet KR channels, known as a Quad. The I2C buses are named ETH0-3_I2C* (where the * indicates the final characters of the net name in that signal group) and ETH4-7_I2C* for the Server type. As the Client only supports 2 Ethernet channels, the group is named ETH0-1_I2C*. There is one MDIO bus per Quad available to configure the PHYs on the Carrier Board. The MDIOs are named ETH0-3_MDIO* and ETH4-7_MDIO* for the Server type. As the Client only supports 2 Ethernet channels, the group is named ETH0-1_MDIO*. The Reset and Interrupt signals also follow the same naming convention. The SDP signals are more critical in timing and are available directly. 3.4.1. Ethernet KR CEI Block Diagrams Ethernet KR CEI concepts are illustrated in block diagram format in Figures 3 through 9 on the following pages. Many of the details of these implementations are vendor NDA protected. Some references to vendor document numbers for confidential material are listed after each Figure, if material is available. Designers interested in these materials need to contact the silicon vendors directly and work out the necessary NDAs. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 24/159 Figure 3: Intel SoC with CEI Boundary Reference Schematics and Block Diagrams Intel SoC New ETH(0..3) ETH0-3_MDIO ETH_I2C_0 ETH_TIMESYNC0 ETH_TIMESYNC1 ETH_TIMESYNC2 ETH_TIMESYNC3 ETH_LED11 ETH_LED9 ETH_LED10 ETH(4..7) ETH4-7_MDIO ETH_I2C_1 ETH_TIMESYNC4 ETH_TIMESYNC5 ETH_TIMESYNC6 ETH_TIMESYNC7 ETH_GPIO5 ETH_GPIO3 ETH_GPIO4 Connector COM-HPC Serv er ETH[0:3] ETH0-3_MDIO ETH0-3_I2C ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-3_PHY_RST# ETH0-3_INT# ETH0-3_PHY_INT# ETH[4:7] ETH4-7_MDIO ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# CEI1 Boundary CEI_PMD_L[4:7] CEI_ADDR0=1 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# For further details on this configuration, refer to NDA protected Intel documents 620640 and 631178. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 25/159 Figure 4: Intel CEI 4x SFP28 Reference Schematics and Block Diagrams Connector COM-HPC Serv er ETH[0:3] CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CCEEII__AADDDDRR12==10 ETH0-3_MDIO ETH0-3_I2C ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-E3T_HP0H-Y3__RINSTT## ETH0-3_PHY_INT# ETH[4:7] ETH4-7_MDIO ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI_MDIO CEI_I2C CEI_PRSNT# CEIC_ERIE_SINETT## CEI1 Boundary CEI_PMD_L[4:7] CEI_ADDR0=1 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# PCA9546A MUX I2C Addr = 0xE0/0xE1 ResetN I2C0 I2C1 I2C2 I2C3 EE PROM I2C WP Addr = 0xA8/0xA9 PCA9575 I/O I2C ResetN IntN Addr = 0x40/0x41 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 PCA9685 LED I2C EX TCL K OE n Addr = 0x80/0x81 LE D0 LE D1 LE D2 LE D3 LE D4 LE D5 LE D6 LE D7 LE D8 LE D9 LE D10 LE D11 LE D12 LE D13 LE D14 LE D15 P0_SPD_A_LED P0_SPD_B_LED P0_ACT_LED P1_SPD_A_LED P1_SPD_B_LED P1_ACT_LED P2_SPD_A_LED P2_SPD_B_LED P2_ACT_LED P3_SPD_A_LED P3_SPD_B_LED P3_ACT_LED This configuration is not supported by additional Intel documentation at the time of this writing. PMD SFP_0 I2C RX_Loss ModPresN RS PMD SFP_1 I2C RX_Loss ModPresN RS PMD SFP_2 I2C RX_Loss ModPresN RS PMD SFP_3 I2C RX_Loss ModPresN RS PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 26/159 Figure 5: Intel CEI 4x SFP28 with Retimer C827/XL827 Reference Schematics and Block Diagrams Connector COM-HPC Serv er ETH[0:3] ETH0-3_MDIO ETH0-3_I2C ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-3_PHY_RST# ETH0-3_INT# ETH0-3_PHY_INT# ETH[4:7] ETH4-7_MDIO ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# CEI1 Boundary CEI_PMD_L[4:7] CEI_ADDR0=1 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# PCA9546A MUX I2C Addr = 0xE0/0xE1 ResetN I2C0 I2C1 I2C2 I2C3 EE PROM I2C WP Addr = 0xA8/0xA9 C827/XL827 Parkvale PMD(0..3) PMD0 Addr0 Addr1 Addr2 Addr3 Addr4=0 PMD1 PMD2 MDI O ResetN IntN PMD3 PCA9575 I/O I2C ResetN IntN Addr = 0x40/0x41 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 PCA9685 LED I2C EX TCL K OE n Addr = 0x80/0x81 LE D0 LE D1 LE D2 LE D3 LE D4 LE D5 LE D6 LE D7 LE D8 LE D9 LE D10 LE D11 LE D12 LE D13 LE D14 LE D15 For further details on this configuration, refer to NDA Intel document 636564. P0_SPD_A_LED P0_SPD_B_LED P0_ACT_LED P1_SPD_A_LED P1_SPD_B_LED P1_ACT_LED P2_SPD_A_LED P2_SPD_B_LED P2_ACT_LED P3_SPD_A_LED P3_SPD_B_LED P3_ACT_LED P0_DISABLE P1_DISABLE P2_DISABLE P3_DISABLE PMD SFP_0 I2C RX_Loss ModPresN RS PMD SFP_1 I2C RX_Loss ModPresN RS PMD SFP_2 I2C RX_Loss ModPresN RS PMD SFP_3 I2C RX_Loss ModPresN RS PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 27/159 Figure 6: Intel CEI QSFP28 with Retimer C827/XL827 Reference Schematics and Block Diagrams Connector COM-HPC Serv er ETH[0:3] ETH0-3_MDIO ETH0-3_I2C CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C C827/XL827 Parkvale PMD(0..3) PMD(0..3) Addr0 Addr1 Addr2 Addr3 Addr4=0 MDI O ResetN IntN QSFP PMD(0..3) I2C ResetN IntN Prese nt N LP Mo de ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-E3T_HP0H-Y3__RINSTT## ETH0-3_PHY_INT# ETH[4:7] ETH4-7_MDIO CEI_PRSNT# CEIC_ERIE_SINETT## CEI1 Boundary CEI_PMD_L[4:7] CCEEII__AADDDDRR01==11 CEI_ADDR2=0 CEI_MDIO EE PROM I2C WP Addr = 0xA8/0xA9 PCA9575 I/O I2C ResetN IntN Addr = 0x40/0x41 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 PCA9685 LED ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# I2C EX TCL K OE n Addr = 0x80/0x81 LE D0 LE D1 LE D2 LE D3 LE D4 LE D5 LE D6 LE D7 LE D8 LE D9 LE D10 LE D11 LE D12 LE D13 LE D14 LE D15 For further details on this configuration, refer to NDA Intel document 636566. P0_SPD_A_LED P0_SPD_B_LED P0_ACT_LED P1_SPD_A_LED P1_SPD_B_LED P1_ACT_LED P2_SPD_A_LED P2_SPD_B_LED P2_ACT_LED P3_SPD_A_LED P3_SPD_B_LED P3_ACT_LED P0_DISABLE P1_DISABLE P2_DISABLE P3_DISABLE PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 28/159 Figure 7: Intel CEI 4x 10GBASE-T Copper PHY X557-AT4 Reference Schematics and Block Diagrams Connector COM-HPC Serv er ETH[0:3] ETH0-3_MDIO ETH0-3_I2C CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C X55 7-AT4 Coppervale PMD(0..3) MDI0_[0:3] LE D_P0 Addr0 = 0 Addr1 = 0 MDI1_[0:3] Ad dr2 LE D_P1 Addr3 Addr4 MDI2_[0:3] LE D_P2 MDI O Rese tN MDI3_[0:3] In tN LE D_P3 ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-3_PHY_RST# ETH0-3_INT# ETH0-3_PHY_INT# ETH[4:7] ETH4-7_MDIO CEI_PRSNT# CEI_RESET# CEI_INT# CEI1 Boundary CEI_PMD_L[4:7] CEI_ADDR0=1 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO EE PROM I2C WP Addr = 0xA8/0xA9 PCA9575 I/O I2C Rese tN In tN Addr = 0x40/0x41 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 PCA9685 LED ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# I2C EX TCL K OE n Addr = 0x80/0x81 LE D0 LE D1 LE D2 LE D3 LE D4 LE D5 LE D6 LE D7 LE D8 LE D9 LE D10 LE D11 LE D12 LE D13 LE D14 LE D15 For further details on this configuration, refer to NDA Intel document 613899. 4x RJ-45 MDI0 10GBASE-T LE D_P0 MDI1_[0:3] LE D_P1 MDI2_[0:3] LE D_P2 MDI3_[0:3] LE D_P3 P0_SPD_A_LED P0_SPD_B_LED P0_ACT_LED P1_SPD_A_LED P1_SPD_B_LED P1_ACT_LED P2_SPD_A_LED P2_SPD_B_LED P2_ACT_LED P3_SPD_A_LED P3_SPD_B_LED P3_ACT_LED P0_DISABLE P1_DISABLE P2_DISABLE P3_DISABLE PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 29/159 Figure 8: Intel CEI 4x 1GBASE-T Copper PHY Marvell 88E1543 Reference Schematics and Block Diagrams Connector COM-HPC Serv er ETH[0:3] ETH0-3_MDIO ETH0-3_I2C CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_I2C 88E1543 Alaska PMD(0..3) MDI0_[0:3] MDI1_[0:3] MDI O Rese tN IntN MDI2_[0:3] MDI3_[0:3] ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-3_PHY_RST# ETH0-3_INT# ETH0-3_PHY_INT# ETH[4:7] ETH4-7_MDIO CEI_PRSNT# CEI_RESET# CEI_INT# CEI1 Boundary CEI_PMD_L[4:7] CEI_ADDR0=1 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO EE PROM I2C WP Addr = 0xA8/0xA9 PCA9575 I/O I2C ResetN IntN Addr = 0x40/0x41 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 PCA9685 LED ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI_I2C CEI_PRSNT# CEI_RESET# CEI_INT# I2C EX TCL K OE n Addr = 0x80/0x81 LE D0 LE D1 LE D2 LE D3 LE D4 LE D5 LE D6 LE D7 LE D8 LE D9 LE D10 LE D11 LE D12 LE D13 LE D14 LE D15 For further details on this configuration, refer to NDA Intel document 613900. 4x RJ-45 MDI0_[0:3] 1GBASE-T MDI1_[0:3] MDI2_[0:3] MDI3_[0:3] P0_SPD_A_LED P0_SPD_B_LED P0_ACT_LED P1_SPD_A_LED P1_SPD_B_LED P1_ACT_LED P2_SPD_A_LED P2_SPD_B_LED P2_ACT_LED P3_SPD_A_LED P3_SPD_B_LED P3_ACT_LED P0_DISABLE P1_DISABLE P2_DISABLE P3_DISABLE PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 30/159 Figure 9: AMD SoC 4xSFP+ with CS4223 Retimer Reference Schematics and Block Diagrams AMD SoC EP YC3000 ETH[0:3] Connector COM-HPC Serv er ETH[0:3] SMBus INTy# PL TRS T# INTx# ETH0-3_MDIO ETH0-3_I2C ETH0_SDP ETH1_SDP ETH2_SDP ETH3_SDP ETH0-3_PRSNT# ETH0-3_PHY_INT# ETH0-3_PHY_RST# ETH0-3_INT# ETH[4:7] ETH4-7_MDIO ETH4-7_I2C ETH4_SDP ETH5_SDP ETH6_SDP ETH7_SDP CEI0 Boundary CEI_PMD_L[0:3] CEI_ADDR0=0 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CEI_PRSNT# CEI_RESET# CEI_INT# CEI1 Boundary CEI_PMD_L[4:7] CEI_ADDR0=1 CEI_ADDR1=1 CEI_ADDR2=0 CEI_MDIO CS4223 PMD(0..3) PMD0 Addr0 Addr1 Addr2 Addr3 Addr4=0 I2C PMD1 PMD2 ResetN IntN PMD3 PCA9545A MUX I2C Addr = 0xE0/0xE1 ResetN I2C0 I2C1 I2C2 I2C3 PCA9555 I/O I2C IntN Addr = 0x40/0x41 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 ETH4-7_PRSNT# ETH4-7_PHY_RST# ETH4-7_INT# ETH4-7_PHY_INT# CEI_PRSNT# CEI_RESET# For further details on this configuration, contact AMD. PMD SFP_0 I2C TX_Disable TX_Fault RX_Loss ModPresN PMD SFP_1 I2C TX_Disable TX_Fault RX_Loss ModPresN PMD SFP_2 I2C TX_Disable TX_Fault RX_Loss ModPresN PMD SFP_3 I2C TX_Disable TX_Fault RX_Loss ModPresN PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 31/159 3.4.2. Table 4: PHY Addresses MDIO Addresses for Intel POR External PHYs PHY Intel "Parkvale" Intel "Coppervale" Marvell offers a similar Phy MDIO Address (Decimal) 2 3 8 9 10 11 12 13 14 15 Reference Schematics and Block Diagrams Ethernet Quad / Port Quad0 Quad1 Quad0 Port0 Quad0 Port1 Quad0 Port2 Quad0 Port3 Quad1 Port0 Quad1 Port1 Quad1 Port2 Quad1 Port3 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 32/159 Reference Schematics and Block Diagrams 3.5. 3.5.1. Serial ATA Cabled SATA The COM-HPC pin-outs offer up to two SATA ports, designated SATA0 and SATA1. The implementation for a cabled interface is straightforward, as illustrated in Figure 10 below. No Carrier coupling capacitors are needed as they are specified to be present on the Module. The connections between the Module and the SATA connector are simple differential pairs. Some routing rules may be found in Section 4. below. Two common connector styles used for cabled SATA implementations are shown in the Figure. The upper image shows a 7 pin data-only connector. Power to the SATA drive is handled separately in this case. The lower image in the Figure shows a 22 pin connector that handles SATA data and power. There are three power rails defined on this connector, but all three are not necessarily used. Smaller format drives tend to use just one or two of these rails, Check the drive specifications. Figure 10 below shows two typical COM-HPC cabled SATA0 implementations. SATA1 is handled in the same way. Note how the data pair polarity order flips along the connector pins: TX+ TX- GND RX- RX+ ... this is not a mistake, but is part of the SATA specification. 5 4 Figure 10: Serial ATA - Cabled D SATA0_TX+ COM SATA0_TX- COM SATA0_RX- COM SATA0_RX+ COM SATA1 PTH H1 1 2 3 4 5 6 7 TTGRRGGXXNXXNN-+D+-DD H2 PTH LOTES_ABA-SAT-010-K21 3 SATA1_TX+ COM SATA1_TX- COM SATA1_RX- COM SATA1_RX+ COM 2 SATA2 PTH H1 1 2 3 4 5 6 7 TTGRRGGXXNXXNN-+D+-DD H2 PTH LOTES_ABA-SAT-010-K21 C +12V_S +5V_S B +3.3V_S SATA0_RX+ COM SATA0_RX- COM SATA0_TX- COM SATA0_TX+ COM A H3 H4 H1 H2 SATA1 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 1GRG1GG1VVV2NSNNN22CCCVDVDDDVVCCCD GND VVVCCCCCC333 S7 S6 S5 S4 S3 S2 S1 GND TGRRXNXX-D-+ GTNXD+ MOLEX_47018-4001 PICMG® COM-HPC® Carrier Design Guide 5 4 +12V_S +5V_S +3.3V_S SATA1_RX+ SATA1_RX- COM COM SATA1_TX- COM SATA1_TX+ COM 3 H4 H2 SATA3 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 1GRG1GG1VVV2NSNNN22CCCVDVDDDVVCCCD GND VVVCCCCCC333 S7 S6 S5 S4 S3 S2 S1 GND TGRRXNXX-D-+ GTNXD+ MOLEX_47018-4001 H1 H3 Rev. 2.1 / Aug 10, 2023 33/159 2 Reference Schematics and Block Diagrams 3.5.2. mSATA SSDs The SATA specification defines a small form factor card for SATA SSDs that is almost identical in mechanical and electrical definition to the PCI-SIG miniPCIe format. The same card connector and mounting holes are used. Both half size and full size cards are in use. Sometimes dual mini-PCIe / mSATA implementations are executed. This involves multiplexing four signals per the following Table: Table 5: mSATA Pin Mapping Relative to miniPCIe MiniPCIe Card Pin Name PETP0 PETN0 PERP0 PERN0 MiniPCIe / mSATA Card Pin Number 33 31 25 23 PCIE Signal Relative to COM-HPC Module PCIe TX+ PCIe TXPCIe RX+ PCIe RX- SATA Signal Relative to COM-HPC Module SATA TX+ SATA TXSATA RXSATA RX+ The SATA_RX- mapping to miniPCIe PERP0 and SATA_RX+ to PERN0 is intentional per the SATA specification. The signals do not have to be multiplexed if a mSATA only or miniPCIe only implementation is desired. SSD implementations are largely moving away from the miniPCIe format and to M.2 formats. In the M.2 formats, there are PCIe interfaces defined (x1, x2 and x4) and a SATA interface defined, similar to the miniPCIe / mSATA pin sharing format shown in the Table above. The M.2 PCIe x 4 format, sometimes referred to as NVMe, offer a much higher interface bandwidth than mSATA. 3.5.3. M.2 SATA SSDs The PCI Express M.2 Specification defines several M.2 format SATA SSD options that may be used in COMHPC systems. These include (but are not limited to): · Socket 2 B-M Key (Table 3-23 in the PCI-SIG Version 4.0 M.2 document) · Socket 3 M Key (Table 3-28) These are not diagrammed here as SATA SSD implementations seem to be losing ground to PCIe based SSD implementations. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 34/159 3.6. 3.6.1. PCI Express General Notes The COM-HPC PCIe resources are divided into 5 Groups: Reference Schematics and Block Diagrams · Group 0 Low ( 8 lanes) Generally used for smaller links (x1, x2, x4) and slower PCIe link speeds (PCIe Gen 1,2,3). · Group 0 High (8 lanes) Recommended for use with one or two PCIe x4 NVME SSD instances The COM-HPC specification recommends that higher bandwidth PCIe links be steered to this Group · Group 1 (16 lanes) Recommended for PEG use The COM-HPC specification recommends that higher bandwidth PCIe links be steered to this Group · Group 2 (16 lanes) General purpose links x16 or combinations of x8 and / or x4 · Group 3 (16 lanes) Available on the Server pinout only Each PCIe Group listed above has it's own 100 MHz PCIe Reference Clock pair from the COM-HPC Module. Additionally, there is a CLKREQ# (Clock Request) input to the Module for each PCIe Group. There is one additional PCIe link available on both the Client and Server pinouts. This is a x1 link for use with a Carrier BMC (Board Management Controller). The BMC PCIe link makes use of the Group 0 PCIe Reference Clock pair. If only a single PCIe link (of any link width x1, x2, x4, x8 or x16) is used from a PCIe Group, then the COMHPC PCIe Reference Clock pair may be used directly with the link target. If a Group uses more than one link (i.e. 2 or more links) then a Carrier Board PCIe Reference Clock buffer is needed for that Group. Many PCIe clock buffer products are available on the market. Buffers with 2,4,6 or 8 and more output pairs are available. The buffer must be appropriate for the fastest PCIe link in the Group (PCIe Gen 3, 4 or 5). Several examples are shown in the schematics below. If the link's PCIe target is located on a slot card or a mezzanine board such as an M.2 site, the connector involved must be rated for the fastest PCIe link in use for that target. At the time of this writing, most such connectors are PCIe Gen 3 capable. Gen 4 and Gen 5 capable connectors are becoming available, most visibly from Amphenol FCI. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 35/159 Reference Schematics and Block Diagrams 3.6.2. PCI Express Coupling Capacitor Locations The proper positions for PCIe data pair coupling capacitors is shown in Figure 11 below. · COM-HPC Module TX pair coupling caps are on the COM-HPC Module. · COM-HPC Module RX pair coupling caps are NOT on the COM-HPC Module. For most Device Up mezzanine card implementations (Slot card, Mini-PCIe, and M.2 card) the coupling caps are up on the mezzanine card, close to the mezzanine target device TX pins. The exception to this rule is with MXM-3 graphics cards: there are no PCIe coupling caps at all on a MXM-3 graphics card. The COM-HPC Module TX lines are AC coupled on the COMHPC Module. The COM-HPC Module RX lines are AC coupled on the Carrier, near the MXM-3 Module TX pins. For Device Down implementations, the coupling caps are down on the Carrier board, close to the target device TX pins. Figure 11: PCIe Data Line Coupling Capacitor Positions (MXM-3 Cards Excluded) COM-HPC Module TX+ TXRX+ RX- Device Up RX+ RXTX+ TX- PCIe Add-in Device Device Down TX+ TXRX+ RX- RX+ RXTX+ TX- PCIe Add-in Device Carrier Board PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 36/159 3.6.3. Reference Schematics and Block Diagrams PCIe Group 0 Low Examples: Device Down, mini-PCIe, M.2 E-Key, M.2 B-Key Figure 12: PCIe Device Down on Carrier PCIe Group 0 Low PCIe Lane 0 +3.3V_S SECTION 1 OF 4 WAKE0# 0ohms 1% 5.1Kohms 5.1Kohms 5.1Kohms COM COM 5 5 5 R55 0402 R64 R65 R66 PCIe0_TX+ PCIe0_TX- PCIe_CLK_G0L_0+ PCIe_CLK_G0L_0- PCI_RESET_G0L_0# WAKE_G0L_1# LAN1_SMB_SCL LAN1_SMB_SDA LAN1_SMB_ALERT# 24 PE_R+ 23 PE_R26 PECLK+ 25 PECLK17 PE_RST# 16 PE_WAKE# 34 SMB_CLK 36 SMB_DATA 35 SMB_ALRT# i210 U9 PE_T+ 21 PE_T- 20 NC_SI_CLK_IN 2 NC_SI_CRS_DV 3 NC_SI_TX_EN 7 NC_SI_ARB_IN 43 NC_SI_ARB_OUT 44 NC_SI_TXD0 9 NC_SI_TXD1 8 NC_SI_RXD0 6 NC_SI_RXD1 5 This reference sheet does not show the full Intel WGI210T device but only shows the PCIe, Wake, and Clocking interfaces PE_i210_G0L_RX+ PE_i210_G0L_RXNCSI0_LAN_CLK NCSI0_LAN_CRS_DV NCSI0_LAN_TXEN NCSI0_LAN_ARB_IN NCSI0_LAN_ARB_OUT NCSI0_LAN_TXD[0] NCSI0_LAN_TXD[1] NCSI0_LAN_RXD[0] NCSI0_LAN_RXD[1] 0.22uF 10V 0.22uF 10V C44 0402 C45 0402 PCIe0_RX+ PCIe0_RX- COM COM To i210 Strapping Resistors This figure shows a portion of an Intel i210 Gigabit Ethernet implementation, the portion that is relevant to the COM-HPC Module interface. This figure shows the interface to the COM-HPC and to some Carrier board circuit elements such as an appropriate PCIe Clock buffer, shown later in this section. The key point of this Figure is that coupling caps (C44 and C45 in the Figure) are needed on the Carrier, for the Carrier target device TX pair pins. These are the PCIe RX lines for the Module. These Carrier coupling caps are to be placed close to the i210 device, in a symmetric manner consistent with high speed PCB design practices. Coupling caps for COM-HPC PCIe TX lines are on the Module, and are never needed on a COM-HPC Carrier. If the PCIe target device is a slot or mezzanine card, the coupling caps for the target device are on the slot or mezzanine card and not on the Carrier. - except for MXM graphics card implementations. This case is discussed in Section 3.6.7. below. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 37/159 Figure 13: Mini-PCIe Site PCIe Group 0 Low PCIe Lane 1 Reference Schematics and Block Diagrams +3.3V_S PCIe_CLK_G0L_1+ PCIe_CLK_G0L_1- COM COM COM COM COM COM PCIe1_RX+ PCIe1_RX- PCIe1_TX+ PCIe1_TX- PCI_RESET_G0L_1# PCIe_CLKREQ_G0L_1# WAKE0# R50 0402 USB4+ USB4- PCIe_CLK_SDA PCIe_CLK_SCL 0ohms 1% 400mA 1 2 90R R47 0402 R48 0402 L1 4 3 0805 0ohms 1% 0ohms 1% 1% 10Kohms 1% 10Kohms 1% 10Kohms DNI 0402 R3 DNI 0402 R4 0402 R5 WAKE_G0L_2# USB4_CMC_+ USB4_CMC_- R42 0402 DNI 0ohms 1% +3.3V_A +3.3V_S_G0L_MPCIE 0ohms DNI R40 1% 0402 +3.3V_S 0ohms 1% R41 0402 C31 0402 C30 0402 C42 0603 +3.3V_S_G0L_MPCIE +3.3V_S_G0L_MPCIE 0402 C29 0603 C41 50V 0.1uF 10V 22uF 0.1uF 50V 0.1uF 50V 22uF 10V 13 REFCLK+ 11 REFCLK- 25 PER0+ 23 PER0- 33 PET0+ 31 PET0- 22 PERST# 7 CLKREQ# 1 WAKE# 38 USB_D+ 36 USB_D- 32 SMB_DATA 30 SMB_CLK 46 NC 44 NC 42 NC LED_WPAN# LED_WLAN# LED_WWAN# 20 W_DISABLE1# 51 W_DISABLE2# 16 NC 8 NC 14 NC 10 NC 12 NC UIM_SPU UIM_PWR UIM_RESET UIM_DATA UIM_CLK 19 NC 17 NC UIM_IC_D+ UIM_IC_D- MINI-PCI-EXP PCIE UIM J3 V_3V3_AUX_2 2 V_3V3_AUX_24 24 GND V_3V3_AUX_39 39 V_3V3_AUX_41 41 V_3V3_AUX_52 52 V_1V5_6 6 V_1V5_28 28 V_1V5_48 48 +1.5V_S_G0L_MPCIE 0ohms 1% C33 0402 C32 0402 C43 0603 0.1uF 50V 0.1uF 50V 22uF 10V RESERVED_45 RESERVED_47 RESERVED_49 45 NC 47 NC 49 NC GND COEX1 3 NC COEX2 5 NC MTG1 MTG2 53 NC 54 NC GND_4 4 GND_9 9 GND_15 15 GND_18 18 GND_21 21 GND_26 26 GND_27 27 GND_29 29 GND_34 34 GND_35 35 GND_37 37 GND_40 40 GND_43 43 GND_50 50 GND GND +1.5V_S_G0L R39 0402 0ohms 1% GND 0ohms 1% GND R43 0402 R44 0402 HW1 MM_DS_M2.5x0.45x2.5MM HW6 M2.5X7MM 0ohms 1% GND 0ohms 1% GND R45 0402 R46 0402 HW2 MM_DS_M2.5x0.45x2.5MM HW7 M2.5X7MM +5.0V_S +3.3V_S +1.5V_S_G0L R37 0402 4.7uF C22 10V 0402 10uF DNI C25 16V 0603 C23 0402 10uF DNI C24 16V 0603 R49 0402 R7 0402 R6 0402 4.7uF 10V ICT1 ICT2 GND 0.1uF 50V C34 0402 0ohms 1% 10Kohms 1% 10Kohms 1% U5 1 IN_1 2 IN_2 GND OUT_9 9 OUT_10 10 5 EN FB 8 1V5_FB 3 PG SS 7 1V5_SS 4 BIAS GND 6 AP7173 THMPAD 11 560pF DNI C28 50V 0402 R38 0402 4.12Kohms 1% GND +1.5V_S Vout = 1.5V Iout = 0.4A DC tolerance = 2% 4.75Kohms 1% GND GND GND PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 38/159 Reference Schematics and Block Diagrams Figure 14: M.2 E-Key Site WiFi Cards PCIe Group 0 Low PCIe Lane 2 +3.3V_S_G0L_M2_1 +3.3V_S_G0L_M2_1 GPIO 0402 R30 DNI 1% 10Kohms 0402 R29 DNI 1% 10Kohms PCIe_CLK_SCL PCIe_CLK_SDA W_DISABLE# 0ohms 1% DNI R60 0402 PCI_RESET_G0L_2# 0ohms 1% DNI 0ohms R57 1% 0402 DNI M_2_EXP_DISABLE_2 R31 1% DNI 0402 10Kohms GND +3.3V_S_G0L_M2_1 74 72 70 NC 68 NC 66 NC 64 NC 62 R56 60 0402 58 56 54 52 50 NC 48 NC 46 NC 44 NC 42 NC 40 NC 38 NC 36 NC 34 NC 32 NC 30 NC 28 NC 26 NC 24 NC 22 NC 20 NC 18 16 NC 14 NC 12 NC 10 NC 8 NC 6 NC 4 2 J4 V_3V3_74 V_3V3_72 UIM_POWER_SRC/GPIO1/PEWAKE1# UIM_POWER_SNK/CLKREQ1# UIM_SWP/PERST1# RSVD_64 ALERT# I2C_CLK I2C_DATA W_DISABLE1# W_DISABLE2# PERST0# SUSCLK COEX1 COEX2 COEX3 VENDOR_DEFINED_42 VENDOR_DEFINED_40 VENDOR_DEFINED_38 UART_RTS UART_CTS UART_TXD CONNECTOR_KEY_30 CONNECTOR_KEY_28 CONNECTOR_KEY_26 CONNECTOR_KEY_24 UART_RXD UART_WAKE# GND_18 LED2# PCM_OUT/I2S_SD_OUT PCM_IN/I2S_SD_IN PCM_SYNC/I2S_WS PCM_CLK/I2S_SCK LED1# V_3V3_4 V_3V3_2 77 M_77 GND TE-Connectivity_1-2199230 GND_75 RSVD/REFCLK1_N RSVD/REFCLK1_P GND_69 RSVD/PER1_N RSVD/PER1_P GND_63 RSVD/PET1_N RSVD/PET1_P GND_57 PEWAKE0# CLKREQ0# GND_51 REFCLK0_N REFCLK0_P GND_45 PER0_N PER0_P GND_39 PET0_N PET0_P GND_33 CONNECTOR_KEY_31 CONNECTOR_KEY_29 CONNECTOR_KEY_27 CONNECTOR_KEY_25 SDIO_RESET# SDIO_WAKE# SDIO_DATA3 SDIO_DATA2 SDIO_DATA1 SDIO_DATA0 SDIO_CMD SDIO_CLK GND_7 USB_DUSB_D+ GND_1 75 73 NC 71 NC 69 67 NC 65 NC 63 61 NC 59 NC 57 55 53 51 49 47 45 43 41 39 37 35 33 31 NC 29 NC 27 NC 25 NC 23 NC 21 NC 19 NC 17 NC 15 NC 13 NC 11 NC 9 NC 7 5 3 1 M_76 76 WAKE_G0L_2# PCIe_CLKREQ_G0L_2# 0ohms 1% PCIe_CLK_G0L_2PCIe_CLK_G0L_2+ PCIe2_RXPCIe2_RX+ PCIe2_TXPCIe2_TX+ R61 0402 WAKE0# USB5_CMC_USB5_CMC_+ GND 0805 2 3 1 4 L2 400mA 90R USB5USB5+ COM COM COM COM COM COM Mounting hole for M.2 EXPANSION MM_DS_M2.5x0.45x2.5MM DNI HW4 0402 R59 DNI 1% 0ohms GND ZNL1 Move solderpaste layer of HW5 to top side. MM_DS_M2.5x0.45x2.5MM 0402 HW5 R58 1% 0ohms GND +3.3V_A +3.3V_S 0ohms 50mR 0ohms 50mR R62 0805 DNI R63 0805 2.5 A +3.3V_S_G0L_M2_1 C26 0603 C27 0603 0402 C35 0402 C36 10uF 16V 50V 0.1uF 50V 0.1uF 10uF 16V GND PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 39/159 Reference Schematics and Block Diagrams Figure 15: M.2 B-Key Site Cell Modem Cards PCIe Group 0 Low PCIe Lane 3 +3.3V_S_3V7_3V3 J2 UIM_DETECT_G0L_BL NC WAKE0# R53 0402 5 5 0ohms WAKE_G0L_2# 1% PCIe_CLKREQ_G0L_3# PCI_RESET_G0L_3B# V_UIM_VCC_G0L_BU UIM_RST_G0L_BU UIM_CLK_G0L_BU UIM_DATA_G0L_BU UIM_DETECT_G0L_BU NC V_UIM_VCC_G0L_BL UIM_DATA_G0L_BL UIM_CLK_G0L_BL UIM_RST_G0L_BL GPIO External Buff G0L_M2_1_WIFI_DIS_2# 0402 R9 DNI 1% 10Kohms GND 0402 R10 DNI 1% 10Kohms GPIO GPIO 0402 R11 DNI 1% 10Kohms 0402 R13 DNI 1% 10Kohms GND G0L_M2_1_WIFI_DIS_1# MODEM_PWR_EN 0402 R12 DNI 1% 10Kohms 0402 R14 DNI 1% 10Kohms 74 72 70 68 NC 66 64 NC 62 NC 60 NC 58 NC 56 NC 54 52 50 48 46 44 42 40 38 NC 36 34 32 30 28 NC 26 24 NC 22 NC 20 NC 18 NC 16 NC 14 NC 12 NC 10 NC 8 6 4 2 V_3V3_74 V_3V3_72 V_3V3_70 SUSCLK SIM_DETECT COEX1 COEX2 COEX3 NC_58 NC_56 PEWAKE# CLKREQ# PERST# GPIO_4 GPIO_3 GPIO_2/ALERT# GPIO_1/SMB_DATA GPIO_0/SMB_CLK DEVSLP UIM_PWR UIM_DATA UIM_CLK UIM_RESET GPIO_8 GPIO_10 GPIO_7 GPIO_6 GPIO_5 CONNECTOR-KEY_18 CONNECTOR-KEY_16 CONNECTOR-KEY_14 CONNECTOR-KEY_12 GPIO_9/DAS/DSS#/LED1# W_DISABLE#1 FULL_CARD_POWER_OFF# V_3V3_4 V_3V3_2 77 M_77 GND TE-Connectivity_1-2199230_CARD CONFIG_2 GND_73 GND_71 CONFIG_1 RESET# ANTCTL3 ANTCTL2 ANTCTL1 ANTCTL0 GND_57 REFCLKP REFCLKN GND_51 PETP0/SATA_A+ PETN0/SATA_A- GND_45 PERP0/SATA_BPERN0/SATA_B+ GND_39 PETP1/USB3_TX+/SSIC_TxP PETN1/USB3_TX-/SSIC-TxN GND_33 PERP1/USB3_RX+/SSIC_RXP PERN1/USB3_RX-/SSIC_RXN GND_27 DPR GPIO_11 CONFIG_0 CONNECTOR-KEY_19 CONNECTOR-KEY_17 CONNECTOR-KEY_15 CONNECTOR-KEY_13 GND_11 USB_DUSB_D+ GND_5 GND_3 CONFIG_3 M_76 75 NC 73 71 69 NC 67 65 NC 63 NC 61 59 NC 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 NC 21 NC 19 NC 17 NC 15 NC 13 NC 11 9 7 5 3 1 NC 76 PCI_RESET_G0L_3A# MOD1_V_3V7_3V3_SEL_G0L *3.7 or 3.3 voltage select pin not shown PCIe_CLK_G0L_3+ PCIe_CLK_G0L_3PCIe3_TX+ PCIe3_TXPCIe3_RX+ PCIe3_RXUSB0_SSTX0+ USB0_SSTX0USB0_SSRX0+ USB0_SSRX0M2_DPR_G0L_B USB0USB0+ 0402 GND 10Kohms DNI R8 1% Pinout based on using a +3.3V_S_3V7_3V3 Sierra Wireless EM7455 GND 5 5 5 COM COM COM COM COM COM COM COM COM COM C12 1210 C13 1210 C14 0402 C1 0402 C18 0402 C21 0402 C19 0402 C20 0402 100uF 10V 100uF 10V 1uF 16V 0.1uF 25V 0.01uF 16V 0.001uF 16V 33pF 50V 10pF 50V 0402 C4 VCC_G0L_T3 U8 5 V_VCC 2 GND SRV05-4 IO1 1 IO2 3 IO3 4 IO4 6 NC 25V 0.1uF GND GND UIM_DATA_G0L_BU UIM_CLK_G0L_BU UIM_RST_G0L_BU UIM_DATA_G0L_BL UIM_CLK_G0L_BL UIM_RST_G0L_BL U7 VCC_G0L_T2 5 V_VCC GND GND 2 GND 1045-5110 SRV05-4 IO1 1 IO2 3 IO3 4 IO4 6 NC 0402 C3 25V 0.1uF GND M.2 Retention Hardware HW3 GND M2.5x2.5MM Dual SIM card socket 7-U IO_7-U 3-U CLK_3-U J1 UPPER CARD V_VCC_1-U 1-U V_VPP_6-U 6-U 2-U RST_2-U 5-U GND_5-U RSVD_4-U 4-U NC RSVD_8-U 8-U NC 7-L IO_7-L 3-L CLK_3-L LOWER CARD 2-L RST_2-L 5-L GND_5-L S1 S1 S3 S3 GND CH_GND GRADCONN_CH03-AN080-0BR V_VCC_1-L 1-L V_VPP_6-L 6-L RSVD_4-L 4-L NC RSVD_8-L 8-L NC S2 S2 S4 S4 CH_GND V_UIM_VCC_G0L_BU V_UIM_VPP_G0L_BU 0ohms 1% DNI R51 0402 V_UIM_VCC_G0L_BL V_UIM_VPP_G0L_BL 0ohms 1% DNI R52 0402 1 IO1 3 IO2 4 IO3 6 IO4 U6 V_VCC 5 GND 2 SRV05-4 VCC_G0L_T1 GND GND C2 0402 0.1uF 25V PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 40/159 Reference Schematics and Block Diagrams Figure 16: Clock and Reset Buffers for PCIe Group 0 Low Example Circuits +3.3V_S +3.3V_S_VDD 600 FB1 2A 0805 +3.3V_S_VDD 600 1A FB3 0603 +3.3V_S_VDDR +3.3V_S_VDD 600 1A FB2 0603 +3.3V_S_VDDA C39 0603 C8 0402 1uF C17 16V 0402 C38 0603 C7 0402 1uF C16 16V 0402 C37 0603 C5 0402 C6 0402 C15 0402 C40 0603 10uF 10V 0.1uF 25V 10uF 10V 0.1uF 25V 10uF 10V 0.1uF 25V 0.1uF 25V 1uF 16V 10uF 10V GND PCIe_CLKREQ_G0L_1# PCIe_CLKREQ_G0L_2# PCIe_CLKREQ_G0L_3# COM COM PCIe_REFCLK0_LO+ PCIe_REFCLK0_LO- COM PCIe_CLKREQ0_LO# GND GND GND BW_MODE_G0L PWRGD_PD_G0L# SADR_G0L U1 1 HIBW_BYPM_LOBW# 31 CK_PWRGD_PD# 32 SADR PCIe_CLK_SDA PCIe_CLK_SCL 0ohms 1% DNI 0402 0ohms 1% DNI 0402 PCIe_CLKREQ_G0L_0# 10 SDATA_3V3 9 SCLK_3V3 12 OE0# 19 OE1# 24 OE2# 29 OE3# 5 CLK_IN+ 6 CLK_IN- V_3V3_DIG V_3V3_VDDR V_3V3_VDDA GND GND +3.3V_S +3.3V_S_VDDR 11 +3.3V_S_VDDA 4 +3.3V_S_VDD 21 V_3V3_VDDO_15 15 V_3V3_VDDO_25 25 DIF0+ 13 DIF0- 14 DIF1+ 17 DIF1- 18 DIF2+ 22 DIF2- 23 DIF3+ 27 DIF3- 28 PCIe_CLK_G0L_0+ PCIe_CLK_G0L_0- PCIe_CLK_G0L_1+ PCIe_CLK_G0L_1- PCIe_CLK_G0L_2+ PCIe_CLK_G0L_2- PCIe_CLK_G0L_3+ PCIe_CLK_G0L_3- NC 2 FB_DNC+ NC 3 FB_DNC- 8 GND_DIG 33 GND_TAB NC_7 NC_16 NC_20 NC_26 NC_30 7 NC 16 NC 20 NC 26 NC 30 NC GND 9DBL0452 0ohms R54 0402 GND COM-HPD external PCIe Clock always requested due to i210 chip down +3.3V_S_VDD R25 0402 0402 10Kohms DNI R27 R23 0402 R21 0402 R19 0402 R17 0402 R15 0402 DNI 10Kohms 1% 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% PCIe_CLKREQ_G0L_3# PCIe_CLKREQ_G0L_2# PCIe_CLKREQ_G0L_1# PCIe_CLKREQ_G0L_0# SADR_G0L PWRGD_PD_G0L# BW_MODE_G0L +3.3V_S 0402 0402 0402 R22 0402 0402 R28 0402 0402 SADR: SMBUS ADDR 0 0x6B (7-bit) M 0x6C (7-bit) 1 0x6D (7-bit) (Default) BW_MODE 0 LOW BW MODE M BYPASS MODE (Default) 1 HIGH BW MODE 10Kohms DNI R26 10Kohms DNI R24 10Kohms DNI R20 10Kohms DNI R18 10Kohms DNI R16 1% 10Kohms 1% 1% 10Kohms 1% 1% 1% 1% R1 0402 R2 0402 C10 0402 PCIe_CLK_SCL PCIe_CLK_SDA 2.8Kohms 1% 2.8Kohms 1% 0.1uF 25V GND U2 8 V_VCCB V_VCCA +3.3V_S 1 *Only on buffer per board needed 7 B0 6 B1 A0 2 A1 3 SMB_CLK SMB_DAT COM COM 4 GND OE 5 GND FXMA2102 COM PLTRST# U3 1 VCC 5 +3.3V_S 2 1 4 GND GND 3 0.1uF 25V C9 0402 74LVC1G125 GND 22ohms 1% 22ohms 1% 22ohms 1% R34 0402 R32 0402 R33 0402 PCI_RESET_G0L_0# PCI_RESET_G0L_1# PCI_RESET_G0L_2# U4 1 VCC 5 +3.3V_S 2 1 4 GND GND 3 0.1uF 25V C11 0402 74LVC1G125 GND 22ohms 1% 22ohms 1% R35 0402 R36 0402 PCI_RESET_G0L_3A# PCI_RESET_G0L_3B# *Max 4 outputs per buffer *Push/Pull design use LVC07 wih PU resistor for OC designs PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 41/159 Reference Schematics and Block Diagrams 3.6.4. Dual PCIe x4 M.2 M Key NVME SSDs Examples on PCIe Group 0 High The following three figures illustrate a dual PCIe x4 M.2 M Key deployment for NVME SSDs. The COM-HPC specification recommends that PCIe Group 0 High be used for this purpose. Figure 17: M.2 M-Key Site for NVME SSD Card #1 in Group 0 High PCIe Lanes 8:11 22x80mm M-type +3.3V_S 4.2mm connector height C28 0805 C29 0805 C22 0603 C7 0402 C8 0402 C9 0402 C10 0402 C11 0402 C12 0402 22uF 6.3V 22uF 6.3V 10uF 10V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V J2 REV 1.1 G0H_M2_1_SUSCLK R8 0402 R9 10Kohms 1% 10Kohms GND GND GND GND GND GND GND GND GND PCIe_CLKREQ_G0H_1# PCI_RESET_G0H_1# Not connecting SMBus on connectors to COM-HPD main SMBus due to the inability to garantee unique SMBus addresses 0ohms 1% GND G0H_1_PEWAKE# R32 G0H_1_PERST# 0402 SMB_DAT_G0H_1 SMB_CLK_G0H_1 M2_G0H_1_DEVSLP R10 0402 10Kohms 10Kohms 1% 1% R13 R12 +1.8V_S_G0H GND M2_G0H_1_SSD_ACT# 10Kohms 1% 1.5Kohms 1% R27 0402 +3.3V_S R25 0402 74 72 70 68 66 NC 64 NC 62 NC 60 NC 58 NC 56 NC 54 52 50 48 NC 46 NC 44 NC 42 40 38 36 NC 34 NC 32 NC 30 NC 28 NC 26 NC 24 NC 22 NC 20 NC 18 16 14 12 10 8 NC 6 NC 4 2 V_3V3_74 V_3V3_72 V_3V3_70 SUSCLK CONNECTOR_KEY_66 CONNECTOR_KEY_64 CONNECTOR_KEY_62 CONNECTOR_KEY_60 NC_58 NC_56 PEWAKE# CLKREQ# PERST# NC_48 NC_46 ALERT# SMB_DATA SMB_CLK DEVSLP NC_36 NC_34 NC_32 NC_30 NC_28 NC_26 NC_24 NC_22 NC_20 V_3V3_18 V_3V3_16 V_3V3_14 V_3V3_12 DAS/DSS/LED1# NC_8 NC_6 V_3V3_4 V_3V3_2 77 MTG_77 GND TE-Connectivity_1-2199230_CARD 2.21Kohms 1% GND GND_75 GND_73 GND_71 PEDET NC_67 CONNECTOR_KEY_65 CONNECTOR_KEY_63 CONNECTOR_KEY_61 CONNECTOR_KEY_59 GND_57 REFCLK+ REFCLKGND_51 PET0+/SATA-A+ PET0-/SATA-AGND_45 PER0+/SATA-BPER0-/SATA-B+ GND_39 PET1+ PET1GND_33 PER1+ PER1GND_27 PET2+ PET2GND_21 PER2+ PER2GND_15 PET3+ PET3GND_9 PER3+ PER3GND_3 GND_1 MTG_76 75 73 71 69 NC 67 NC 65 NC 63 NC 61 NC 59 NC 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 76 GND Stagered spin-up isn't disabled by default. From SATA specification, DAS pullup voltage is Vhh = 1.8V to 2.1V max. It must be buffered to drive a LED. M.2 Retention Hardware HW2 GND M2.5x2.5MM PCIe_CLK_G0H_1+ PCIe_CLK_G0H_1- PCIe8_TX+ PCIe8_TX- PCIe8_RX+ PCIe8_RX- PCIe9_TX+ PCIe9_TX- PCIe9_RX+ PCIe9_RX- PCIe10_TX+ PCIe10_TX- PCIe10_RX+ PCIe10_RX- PCIe11_TX+ PCIe11_TX- PCIe11_RX+ PCIe11_RX- COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM +3.3V_S 270ohms R31 0402 M2_G0H_1_SSD_ACT_D# R11 0402 Y D2 90 to 180mcd @ 20mA, 25C 22 to 45mcd @ 6mA, 25C Vf @ 20mA = 1.9V min; 2.0V typ; 2.4V max Vf @ 6mA = 1.85V typ. M2_G0H_1_SSD_ACT# 1 3 Q3 MMBT3904 SOT23 2 GND 10Kohms 1% M2_G0H_1_SSD_ACT_Q# M2_G0H_1_SSD_ACT 3 Q4 1 MMBT3904 SOT23 2 GND +3.3V_S R33 0402 +3.3V_S +3.3V_S R38 0402 4.02Kohms 1% V_1V8_PGOOD C34 0805 C35 0805 10uF 10V 10uF 10V GND GND 1uF C33 10V 0402 0ohms 1 IN_1 2 IN_2 5 EN 3 PG 4 BIAS AP7173 GND @0.58A max U2 OUT_9 9 OUT_10 10 FB 8 SS 7 GND 6 THMPAD 11 1V8_FB 1V8_SS C32 0402 R1 0402 1.24Kohms 1% R37 0402 VOUT = 0.8*(1+R1/R2) 1.792V (typ) 0.001uF 50V 1Kohms 0.1% GND GND GND 22uF 6.3V C30 0805 +1.8V_S_G0H GND PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 42/159 Reference Schematics and Block Diagrams Figure 18: M.2 M -Key Site for NVME SSD #2 in Group 0 PCIe Lanes 12:15 22x80mm M-type +3.3V_S 4.2mm connector height C26 0805 C27 0805 C21 0603 C1 0402 C2 0402 C3 0402 C4 0402 C5 0402 C6 0402 22uF 6.3V 22uF 6.3V 10uF 10V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V G0H_M2_2_SUSCLK 74 V_3V3_74 J1 R2 0402 R3 0402 72 V_3V3_72 70 V_3V3_70 68 SUSCLK 66 NC CONNECTOR_KEY_66 10Kohms 1% 10Kohms 64 NC CONNECTOR_KEY_64 GND GND GND GND GND GND GND GND GND 62 NC CONNECTOR_KEY_62 60 NC CONNECTOR_KEY_60 GND 58 NC NC_58 56 NC NC_56 G0H_2_PEWAKE# 54 PEWAKE# PCIe_CLKREQ_G0H_2# 52 CLKREQ# PCI_RESET_2# 50 PERST# 48 NC NC_48 Not connecting SMBus on connectors 46 NC NC_46 to COM-HPD main SMBus due to the inability to garantee unique SMBus addresses SMB_DAT_G0H_2 SMB_CLK_G0H_2 44 NC 42 40 ALERT# SMB_DATA SMB_CLK REV 1.1 R4 0402 10Kohms 10Kohms M2_G0H_1_DEVSLP 38 DEVSLP 36 NC NC_36 1% 1% 34 NC NC_34 32 NC NC_32 30 NC NC_30 +3.3V_S 28 NC NC_28 R26 0402 10Kohms 1% R6 R7 26 NC NC_26 24 NC NC_24 22 NC NC_22 +1.8V_S_G0H GND 20 NC NC_20 18 V_3V3_18 1.5Kohms 1% 16 V_3V3_16 14 V_3V3_14 12 V_3V3_12 M2_G0H_2_SSD_ACT# 10 DAS/DSS/LED1# R24 0402 NC 8 NC_8 NC 6 NC_6 4 V_3V3_4 2 V_3V3_2 77 MTG_77 GND TE-Connectivity_1-2199230_CARD 2.21Kohms 1% GND GND_75 GND_73 GND_71 PEDET NC_67 CONNECTOR_KEY_65 CONNECTOR_KEY_63 CONNECTOR_KEY_61 CONNECTOR_KEY_59 GND_57 REFCLK+ REFCLKGND_51 PET0+/SATA-A+ PET0-/SATA-AGND_45 PER0+/SATA-BPER0-/SATA-B+ GND_39 PET1+ PET1GND_33 PER1+ PER1GND_27 PET2+ PET2GND_21 PER2+ PER2GND_15 PET3+ PET3GND_9 PER3+ PER3GND_3 GND_1 MTG_76 75 73 71 69 NC 67 NC 65 NC 63 NC 61 NC 59 NC 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 76 GND Stagered spin-up isn't disabled by default. From SATA specification, DAS pullup voltage is Vhh = 1.8V to 2.1V max. It must be buffered to drive a LED. M.2 Retention Hardware HW1 GND M2.5x2.5MM PCIe_CLK_G0H_2+ PCIe_CLK_G0H_2- PCIe12_TX+ PCIe12_TX- PCIe12_RX+ PCIe12_RX- PCIe13_TX+ PCIe13_TX- PCIe13_RX+ PCIe13_RX- PCIe14_TX+ PCIe14_TX- PCIe14_RX+ PCIe14_RX- PCIe15_TX+ PCIe15_TX- PCIe15_RX+ PCIe15_RX- COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM SSD Activity LED 270ohms R30 M2_G0H_2_SSD_ACT_D# 0402 +3.3V_S R5 0402 Y D1 90 to 180mcd @ 20mA, 25C 22 to 45mcd @ 6mA, 25C Vf @ 20mA = 1.9V min; 2.0V typ; 2.4V max Vf @ 6mA = 1.85V typ. M2_G0H_2_SSD_ACT# 1 3 Q1 MMBT3904 SOT23 2 GND 10Kohms 1% M2_G0H_2_SSD_ACT_Q# 3 M2_G0H_2_SSD_ACT 1 Q2 MMBT3904 SOT23 2 GND The M.2 M-Key connector used must have a PCIe "speed rating" at least as high as the link speed being used (PCIe Gen 3, 4 or 5). PCIe Gen 3 capable M.2 connectors are common. At the time of this writing, PCIe Gen 4 and 5 capable M.2 connectors are not common. PCIe Gen 4 capable M.2 connectors are available from Amphenol FCI. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 43/159 Reference Schematics and Block Diagrams Figure 19: Clock Buffer and Reset for PCIe Dual M.2 NVME SSD PCIe Group 0 High +3.3V_S_G0H_VDD +3.3V_S_G0H_VDD R40 0402 R39 0402 0402 R22 0402 R20 0402 R18 0402 R16 0402 R14 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms BW_MODE_G0H PWRGD_PD_G0H# SADR_G0H PCIe_CLKREQ_G0H_1# PCIe_CLKREQ_G0H_2# 1Kohms 1% 1Kohms 1% SADR: SMBUS ADDR 0 0x6B (7-bit) M 0x6C (7-bit) 1 0x6D (7-bit) (Default) BW_MODE 0 LOW BW MODE M BYPASS MODE (DEFAULT) 1 HIGH BW MODE +3.3V_S_G0H_VDDA 0402 R15 0402 R17 0402 R19 0402 R21 0402 R23 COM COM COM COM COM DNI DNI DNI DNI 1% 10Kohms 1% 10Kohms 1% 10Kohms SMB_DAT SMB_CLK PCIe_CLKREQ_G0H_1# PCIe_CLKREQ_G0H_2# GND 0ohms 1% DNI R41 0603 0ohms 1% DNI R42 0603 1% 10Kohms 1% 10Kohms BW_MODE_G0H PWRGD_PD_G0H# SADR_G0H U4 24 HIBW_BYPM_LOBW# 22 CK_PWRGD_PD# 23 SADR CLK_BUFF_SMB_DATA CLK_BUFF_SMB_CLK 7 SDATA_3V3 9 SCLK_3V3 15 OE0# 19 OE1# PCIe_REFCLK0_HI+ PCIe_REFCLK0_HIPCIe_CLKREQ0_HI# +3.3V_S 5 +3.3V_S 4 0.1uF 25V C20 3 0402 GND VCC GND 0ohms DNI R34 0402 GND U1 1 2 74LVC1G08 4 CLK_IN+ 5 CLK_IN- NC 1 FB_DNC+ NC 2 FB_DNC- 6 GND_DIG 25 GND_PAD 9DBL0252 GND +3.3V_S_G0H_VDDR +3.3V_S_G0H_VDD V_3V3_DIG 8 V_3V3_VDDR 3 V_3V3_VDDA 16 V_3V3_VDDO_21 21 V_3V3_VDDO_10 10 DIF0+ 13 DIF0- 14 DIF1+ 17 DIF1- 18 PCIe_CLK_G0H_1+ PCIe_CLK_G0H_1- PCIe_CLK_G0H_2+ PCIe_CLK_G0H_2- NC_11 NC_12 NC_20 11 NC 12 NC 20 NC +3.3V_S +3.3V_S_G0H_VDD +3.3V_S_VDD +3.3V_S_G0H_VDDR +3.3V_S_VDD +3.3V_S_G0H_VDDA 80 FB1 4A 1206 0ohms 1% R35 0402 0ohms 1% R36 0402 C25 0603 C18 0402 C24 0603 C17 0402 C31 0805 C23 0603 C13 0402 C14 0402 C15 0402 C16 0402 10uF 10V 0.1uF 25V 10uF 10V 0.1uF 25V 22uF 6.3V 10uF 10V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V GND COM PLTRST# GND GND U3 1 VCC 5 +3.3V_S 2 1 4 PCI_RESET# GND GND 3 0.1uF 25V C19 0402 74LVC1G125 GND 22ohms 1% 22ohms 1% R28 0402 R29 0402 G0H_PCI_RESET_1# G0H_PCI_RESET_2# A dual channel clock buffer is used as there are two PCIe x4 links implemented in this PCIe Group 0 High example. The COM-HPC PCIe_CLKREQ0_HI# signal is driven by logic gate U1 in the Figure just above, resulting in a clock request if either one or both of the NVMe cards are present. Alternatively, U1 could be removed and the COM-HPC Group 0 High clock request line held low by R34, in which case the Group 0 High PCIe clock pair would always run. The clock buffer shown is the 9DBL0252 from Renesas / IDT. It is PCIe Gen 1,2,3,4 and 5 capable. The PLTRST# buffer shown, U3, is a 74LVC1G125 device that tolerates a signal input between 0 and 5.5V even in the absence of the VCC to the device. The PLTRST# signal is in the S5 power domain; the VCC applied to U3 is in the S0 domain. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 44/159 Reference Schematics and Block Diagrams 3.6.5. PCIe x16 Slot Card Site on PCIe Group 1 Figure 20: PCIe x16 Slot Card Site on PCIe Group 1 PCIe Lanes 16:31 ICT1 ICT2 ICT3 ICT4 ICT5 J1 A5 JTAG2_TCK A6 JTAG3_TDI A7 JTAG4_TDO A8 JTAG5_TMS B9 JTAG1_TRST# COM COM PCIe_REFCLK1+ PCIe_REFCLK1- A13 REFCLK+ A14 REFCLK- SECTION 1 OF 2 COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM PCIe16_TX+ PCIe16_TXPCIe17_TX+ PCIe17_TXPCIe18_TX+ PCIe18_TXPCIe19_TX+ PCIe19_TXPCIe20_TX+ PCIe20_TXPCIe21_TX+ PCIe21_TXPCIe22_TX+ PCIe22_TXPCIe23_TX+ PCIe23_TXPCIe24_TX+ PCIe24_TXPCIe25_TX+ PCIe25_TXPCIe26_TX+ PCIe26_TXPCIe27_TX+ PCIe27_TXPCIe28_TX+ PCIe28_TXPCIe29_TX+ PCIe29_TXPCIe30_TX+ PCIe30_TXPCIe31_TX+ PCIe31_TX- B14 PET0+ B15 PET0B19 PET1+ B20 PET1B23 PET2+ B24 PET2B27 PET3+ B28 PET3B33 PET4+ B34 PET4B37 PET5+ B38 PET5B41 PET6+ B42 PET6B45 PET7+ B46 PET7B50 PET8+ B51 PET8B54 PET9+ B55 PET9B58 PET10+ B59 PET10B62 PET11+ B63 PET11B66 PET12+ B67 PET12B70 PET13+ B71 PET13B74 PET14+ B75 PET14B78 PET15+ B79 PET15- COM WAKE0# 0ohms 1% R5 B11 0402 COM SMB_CLK 0ohms 1% DNI R6 0402 B5 COM SMB_DAT 0ohms 1% DNI R7 0402 B6 A19 Not connecting SMBus on connectors NC A32 to COM-HPD main SMBus due to the inability to garantee unique SMBus NC NC A33 addresses A50 NC B12 NC EPRBRK_G1_1# B30 B82 NC WAKE# SMCLK SMDAT RSVD_A19 RSVD_A32 RSVD_A33 RSVD_A50 RSVD_B12 RSVD_B30 RSVD_B82 FCI_10141523-123A SECTION 2 OF 2 J1 A4 GND_A4 A12 GND_A12 A15 GND_A15 A18 GND_A18 A20 GND_A20 A23 GND_A23 A24 GND_A24 A27 GND_A27 A28 GND_A28 A31 GND_A31 A34 GND_A34 A37 GND_A37 A38 GND_A38 A41 GND_A41 A42 GND_A42 A45 GND_A45 A46 GND_A46 A49 GND_A49 A51 GND_A51 A54 GND_A54 A55 GND_A55 A58 GND_A58 A59 GND_A59 A62 GND_A62 A63 GND_A63 A66 GND_A66 A67 GND_A67 A70 GND_A70 A71 GND_A71 A74 GND_A74 A75 GND_A75 A78 GND_A78 A79 GND_A79 A82 GND_A82 M1 M1 GND FCI_10141523-123A +12V_S +3.3V_S +3.3V_A V_12V0_A2 A2 V_12V0_A3 A3 V_3V3_A9 A9 V_3V3_A10 A10 V_12V0_B1 B1 V_12V0_B2 B2 V_12V0_B3 B3 V_3V3_B8 B8 V_3V3_AUX B10 PERST# A11 PER0+ A16 PER0- A17 PER1+ A21 PER1- A22 PER2+ A25 PER2- A26 PER3+ A29 PER3- A30 PER4+ A35 PER4- A36 PER5+ A39 PER5- A40 PER6+ A43 PER6- A44 PER7+ A47 PER7- A48 PER8+ A52 PER8- A53 PER9+ A56 PER9- A57 PER10+ A60 PER10- A61 PER11+ A64 PER11- A65 PER12+ A68 PER12- A69 PER13+ A72 PER13- A73 PER14+ A76 PER14- A77 PER15+ A80 PER15- A81 PCI_RESET_G1_1# PCIe16_RX+ PCIe16_RXPCIe17_RX+ PCIe17_RXPCIe18_RX+ PCIe18_RXPCIe19_RX+ PCIe19_RXPCIe20_RX+ PCIe20_RXPCIe21_RX+ PCIe21_RXPCIe22_RX+ PCIe22_RXPCIe23_RX+ PCIe23_RXPCIe24_RX+ PCIe24_RXPCIe25_RX+ PCIe25_RXPCIe26_RX+ PCIe26_RXPCIe27_RX+ PCIe27_RXPCIe28_RX+ PCIe28_RXPCIe29_RX+ PCIe29_RXPCIe30_RX+ PCIe30_RXPCIe31_RX+ PCIe31_RX- COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM PRSNT1# A1 PRSNT2#_B17 B17 PRSNT2#_B31 B31 PRSNT2#_B48 B48 PRSNT2#_B81 B81 GND PCIe_CLKREQ_G1_1# Signal can also be used as a present 1% DNI 0402 +3.3V_S 10Kohms R4 COM GND_B4 B4 GND_B7 B7 GND_B13 B13 GND_B16 B16 GND_B18 B18 GND_B21 B21 GND_B22 B22 GND_B25 B25 GND_B26 B26 GND_B29 B29 GND_B32 B32 GND_B35 B35 GND_B36 B36 GND_B39 B39 GND_B40 B40 GND_B43 B43 GND_B44 B44 GND_B47 B47 GND_B49 B49 GND_B52 B52 GND_B53 B53 GND_B56 B56 GND_B57 B57 GND_B60 B60 GND_B61 B61 GND_B64 B64 GND_B65 B65 GND_B68 B68 GND_B69 B69 GND_B72 B72 GND_B73 B73 GND_B76 B76 GND_B77 B77 GND_B80 B80 M2 M2 GND +12V_S +3.3V_S +3.3V_A C7 0603 C5 1210 C6 1210 C3 7343-31 C4 7343-31 10uF 16V X6S 100uF 10V X6S 100uF 10V X6S 100uF 25V PTA 100uF 25V PTA GND GND GND GND GND +3.3V_S +3.3V_S 0402 R3 0402 R2 0402 C2 EPRBRK_G1_1# Open Drain Signal GND 1% 10Kohms 25V 0.1uF Optional 1% 10Kohms U1 5 VCC 4 NC 1 NC 2 3 GND 74LVC1G07 GPIO_EPRBRK_G1_1# +3.3V_S U2 5 VCC 1 PCI_RESET_G1_1# R1 0402 22ohms 4 1% 1 2 PLTRST# COM C1 0402 0.1uF 25V 3 GND GND GND 74LVC1G125 No PCIe clock buffer is needed as there is only one PCIe link in this example. The COM-HPC Group 1 PCIe clock pair is used directly. If the group is split into two or more links, then a PCIe clock buffer would be required. The slot connector used must be rated and qualified for the PCIe link speed expected. Slot connectors rated for PCIe Gen 3 and below are common. Connectors rated for PCIe Gen 4 and Gen 5 are at the time of this writing are still new. Such parts are available from Amphenol FCI and others. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 45/159 Reference Schematics and Block Diagrams 3.6.6. PCIe Group 2 Figures 21 through 24 below illustrate the implementation of 3 PCIe slots on COM-HPC PCIe Group 2, along with a PCIe clock buffer appropriate for use with PCIe Gen 4 and below. The slot RESET# signals come from a buffer in Figure 24. Additional notes are provided after the last Figure in this series. Figure 21: PCIe x8 Slot Card Site on PCIe Group 2 PCIe Lanes 32:39 ICT11 ICT12 ICT13 ICT14 ICT15 J1 A5 JTAG2_TCK A6 JTAG3_TDI A7 JTAG4_TDO A8 JTAG5_TMS B9 JTAG1_TRST# PCIe_CLK_G2_1+ PCIe_CLK_G2_1- A13 REFCLK+ A14 REFCLK- COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM PCIe32_TX+ PCIe32_TXPCIe33_TX+ PCIe33_TXPCIe34_TX+ PCIe34_TXPCIe35_TX+ PCIe35_TXPCIe36_TX+ PCIe36_TXPCIe37_TX+ PCIe37_TXPCIe38_TX+ PCIe38_TXPCIe39_TX+ PCIe39_TX- B14 PET0+ B15 PET0B19 PET1+ B20 PET1B23 PET2+ B24 PET2B27 PET3+ B28 PET3B33 PET4+ B34 PET4B37 PET5+ B38 PET5B41 PET6+ B42 PET6B45 PET7+ B46 PET7- COM WAKE0# R28 0402 0ohms WAKE0_G2_3# 1% B11 WAKE# PCIe_CLK_SCL R33 0402 DNI 0ohms 1% B5 SMCLK PCIe_CLK_DAT R34 0402 DNI 0ohms 1% B6 SMDAT Not connecting SMBus on connectors NC A19 RSVD_A19 to COM-HPD main SMBus due to the inability to garantee unique SMBus addresses NC A32 RSVD_A32 NC A33 RSVD_A33 NC B12 RSVD_B12 EPRBRK_G2_1# B30 RSVD_B30 A4 GND_A4 A12 GND_A12 A15 GND_A15 A18 GND_A18 A20 GND_A20 A23 GND_A23 A24 GND_A24 A27 GND_A27 A28 GND_A28 A31 GND_A31 A34 GND_A34 A37 GND_A37 A38 GND_A38 A41 GND_A41 A42 GND_A42 A45 GND_A45 A46 GND_A46 A49 GND_A49 M1 M1 GND FCI_10141523-122Y +12V_S V_12V0_A2 A2 V_12V0_A3 A3 V_3V3_A9 A9 V_3V3_A10 A10 V_12V0_B1 B1 V_12V0_B2 B2 V_12V0_B3 B3 V_3V3_B8 B8 V_3V3_AUX B10 +3.3V_S +3.3V_A PERST# A11 PER0+ A16 PER0- A17 PER1+ A21 PER1- A22 PER2+ A25 PER2- A26 PER3+ A29 PER3- A30 PER4+ A35 PER4- A36 PER5+ A39 PER5- A40 PER6+ A43 PER6- A44 PER7+ A47 PER7- A48 PCI_RESET_G2_1# PCIe32_RX+ PCIe32_RXPCIe33_RX+ PCIe33_RXPCIe34_RX+ PCIe34_RXPCIe35_RX+ PCIe35_RXPCIe36_RX+ PCIe36_RXPCIe37_RX+ PCIe37_RXPCIe38_RX+ PCIe38_RXPCIe39_RX+ PCIe39_RX- COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM COM PRSNT1# A1 PRSNT2#_B17 B17 PRSNT2#_B31 B31 PRSNT2#_B48 B48 GND_B4 B4 GND_B7 B7 GND_B13 B13 GND_B16 B16 GND_B18 B18 GND_B21 B21 GND_B22 B22 GND_B25 B25 GND_B26 B26 GND_B29 B29 GND_B32 B32 GND_B35 B35 GND_B36 B36 GND_B39 B39 GND_B40 B40 GND_B43 B43 GND_B44 B44 GND_B47 B47 GND_B49 B49 M2 M2 GND PCIe_CLKREQ_G2_1# Signal can also be used as a present +12V_S +3.3V_S +3.3V_A C11 0603 C6 1210 C3 7343-31 100uF 10V X6S 100uF 25V PTA GND GND GND GND +3.3V_S +3.3V_S 10uF 16V X6S COM 0402 R17 0402 R16 0402 C14 1% 10Kohms EPRBRK_G2_1# Open Drain Signal 1% 10Kohms 25V 0.1uF Optional U5 5 VCC 4 NC 1 NC 2 GPIO_EPRBRK__G2_1# 3 GND Driven from any source os GPIO logic GND 74LVC1G07 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 46/159 Reference Schematics and Block Diagrams Figure 22: PCIe x4 Slot Card Site on PCIe Group 2 PCIe Lanes 40:43 +12V_S +3.3V_S +3.3V_S +3.3V_A C1 7343-31 C4 1210 C9 0603 100uF 25V PTA 100uF 10V X6S 10uF 16V X6S GND GND GND ICT2 ICT3 ICT4 ICT5 PCI_RESET_G2_2# COM COM COM COM PCIe_CLK_G2_2+ PCIe_CLK_G2_2- PCIe40_RX+ PCIe40_RX- COM COM PCIe41_RX+ PCIe41_RX- COM COM PCIe42_RX+ PCIe42_RX- COM COM PCIe43_RX+ PCIe43_RX- +12V_S A1 PRSNT1# A2 V_12V0_A2 GND A3 V_12V0_A3 A4 GND_A4 A5 JTAG2_TCK A6 JTAG3_TDI A7 JTAG4_TDO A8 JTAG5_TMS A9 V_3V3_A9 A10 V_3V3_A10 A11 PERST# J2 V_12V0_B1 V_12V0_B2 V_12V0_B3 GND_B4 SMCLK SMDAT GND_B7 V_3V3_B8 JTAG1_TRST# V_3V3_AUX_B10 WAKE# A12 GND_A12 A13 REFCLK+ A14 REFCLKA15 GND_A15 A16 PER0+ A17 PER0A18 GND_A18 NC A19 RSVD_A19 A20 GND_A20 A21 PER1+ A22 PER1A23 GND_A23 A24 GND_A24 A25 PER2+ A26 PER2A27 GND_A27 A28 GND_A28 A29 PER3+ A30 PER3A31 GND_A31 NC A32 RSVD_A32 RSVD_B12 GND_B13 PET0+ PET0GND_B16 PRSNT2#_B17 GND_B18 PET1+ PET1GND_B21 GND_B22 PET2+ PET2GND_B25 GND_B26 PET3+ PET3GND_B29 RSVD_B30 PRSNT2#_B31 GND_B32 MTG1 CASE1 GND FCI_10141523-121Y CASE2 +12V_S B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 NC B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 MTG2 +3.3V_S +3.3V_A 0ohms 1% DNI 0ohms 1% DNI ICT1 WAKE0_G2_2# 0ohms 1% R31 0402 R32 0402 PCIe_CLK_SCL PCIe_CLK_DAT COM COM Not connecting SMBus on connectors to COM-HPD main SMBus due to the inability to garantee unique SMBus addresses R27 WAKE0# 0402 COM PCIe40_TX+ PCIe40_TX- COM COM PCIe41_TX+ PCIe41_TX- COM COM PCIe42_TX+ PCIe42_TX- COM COM PCIe43_TX+ PCIe43_TX- COM COM EPRBRK_G2_2# PCIe_CLKREQ_G2_2# Signal can also be used as a present GND +3.3V_S 0402 R12 R13 0402 EPRBRK_G2_2# Open Drain Output Signal 10Kohms 1% 25V 0.1uF 0402 C12 Optional 1% 10Kohms U3 5 VCC NC 1 NC 4 2 3 GND GND 74LVC1G07 GPIO_EPRBRK_G2_2# Driven from any source os GPIO logic PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 47/159 Reference Schematics and Block Diagrams Figure 23: PCIe x4 Slot Card Site on PCIe Group 2 PCIe Lanes 44:47 +12V_S +3.3V_S +3.3V_S +3.3V_A C2 7343-31 C5 1210 C10 0603 100uF 25V PTA 100uF 10V X6S 10uF 16V X6S ICT7 ICT8 ICT9 ICT10 GND GND GND PCI_RESET_G2_3# COM COM COM COM PCIe_CLK_G2_3+ PCIe_CLK_G2_3- PCIe44_RX+ PCIe44_RX- COM COM PCIe45_RX+ PCIe45_RX- COM COM PCIe46_RX+ PCIe46_RX- COM COM PCIe47_RX+ PCIe47_RX- +12V_S A1 PRSNT1# A2 V_12V0_A2 GND A3 V_12V0_A3 A4 GND_A4 A5 JTAG2_TCK A6 JTAG3_TDI A7 JTAG4_TDO A8 JTAG5_TMS A9 V_3V3_A9 A10 V_3V3_A10 A11 PERST# J3 V_12V0_B1 V_12V0_B2 V_12V0_B3 GND_B4 SMCLK SMDAT GND_B7 V_3V3_B8 JTAG1_TRST# V_3V3_AUX_B10 WAKE# A12 GND_A12 A13 REFCLK+ A14 REFCLKA15 GND_A15 A16 PER0+ A17 PER0A18 GND_A18 NC A19 RSVD_A19 A20 GND_A20 A21 PER1+ A22 PER1A23 GND_A23 A24 GND_A24 A25 PER2+ A26 PER2A27 GND_A27 A28 GND_A28 A29 PER3+ A30 PER3A31 GND_A31 NC A32 RSVD_A32 RSVD_B12 GND_B13 PET0+ PET0GND_B16 PRSNT2#_B17 GND_B18 PET1+ PET1GND_B21 GND_B22 PET2+ PET2GND_B25 GND_B26 PET3+ PET3GND_B29 RSVD_B30 PRSNT2#_B31 GND_B32 MTG1 CASE1 GND FCI_10141523-121Y CASE2 +12V_S +3.3V_S B1 +3.3V_A B2 B3 B4 B5 0ohms 1% DNI R29 0402 PCIe_CLK_SCL COM B6 B7 B8 0ohms 1% DNI R30 PCIe_CLK_DAT COM 0402 Not connecting SMBus on connectors B9 ICT6 to COM-HPD main SMBus due to the inability to garantee unique SMBus B10 addresses B11 WAKE0_G2_3# 0ohms 1% R26 WAKE0# 0402 COM B12 NC B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 MTG2 PCIe44_TX+ PCIe44_TX- COM COM PCIe45_TX+ PCIe45_TX- COM COM PCIe46_TX+ PCIe46_TX- COM COM PCIe47_TX+ PCIe47_TX- COM COM EPRBRK_G2_3# PCIe_CLKREQ_G2_3# Signal can also be used as a present GND +3.3V_S 0402 R15 R25 0402 EPRBRK_G2_3# Open Drain Output Signal 10Kohms 1% 25V 0.1uF 0402 C13 Optional U4 5 VCC 4 NC 1 NC 2 1% 10Kohms GPIO_EPRBRK_G2_3# 3 GND GND 74LVC1G07 Driven from any source os GPIO logic PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 48/159 Reference Schematics and Block Diagrams Figure 24: PCIe Clock Buffer and Reset Buffer for PCIe Group 2 Example PCIe_CLKREQ_G2_1# PCIe_CLKREQ_G2_2# PCIe_CLKREQ_G2_3# COM COM PCIe_REFCLK2+ PCIe_REFCLK2- +3V3_S +1V8_S PCIe_CLK_SCL PCIe_CLK_SDA 0ohms 1% DNI R36 0402 0ohms 1% DNI R35 0402 PCIe_CLKREQ_G3_0# GND U22 10 SCLK 11 SDATA 32 SADR_TRI 1 BW_SEL_TRI 31 PD# 12 OE0# 17 OE1# 24 OE2# 29 OE3# 5 IN+ 6 IN- 15 GND1 26 GND2 30 GND3 8 GND_DIG 7 GND_R 20 GND_A PI6CB18401ZH1EX +1V8_S C40 0603 C33 0402 C34 0402 C35 0402 C36 0402 C37 0402 VDD_DIG 9 VDD_R 4 VDD_O1 16 VDD_O2 25 VDD_A 21 Q0+ 13 Q0- 14 +1.8V_S +1.8V_S_PI6CB148401 0402 C31 0603 C39 25V 0.1uF 10V 10uF PCIe_CLK_G2_0+ PCIe_CLK_G2_0- GND GND Q1+ 18 Q1- 19 PCIe_CLK_G2_1+ PCIe_CLK_G2_1- Q2+ 22 Q2- 23 PCIe_CLK_G2_2+ PCIe_CLK_G2_2- Q3+ 27 Q3- 28 PCIe_CLK_G2_3+ PCIe_CLK_G2_3- NC1 2 NC NC2 3 NC +1.8V_S R59 0402 +1.8V_S 1ohms 1% 0402 C32 25V 0.1uF GND ICT17 ICT18 GND GND GND GND GND GND R42 0402 R44 0402 R46 0402 R48 0402 R50 0402 R54 0402 R52 0402 10uF 10V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V PCIe_CLKREQ_G2_3# PCIe_CLKREQ_G2_2# PCIe_CLKREQ_G2_1# PCIe_CLKREQ_G3_0# PCIe_G2_CLKPD# BW_SEL_TRI_G2 SADR_TRI_G2 +1V8_S 0402 0402 0402 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 10Kohms 1% 0402 0402 R55 0402 0402 SADR: SMBUS ADDR 0 0x6B (7-bit) M 0x6C (7-bit) 1 0x6D (7-bit) BW_SEL_TRI 0 LOW BW MODE M BYPASS MODE (Default) 1 HIGH BW MODE 10Kohms DNI R53 10Kohms DNI R51 10Kohms DNI R49 10Kohms DNI R47 10Kohms DNI R45 10Kohms DNI R43 C7 0402 R1 0402 C8 0402 1% 10Kohms 1% 1% 1% 1% 1% 1% 0.1uF 25V 10Kohms 1% 0.1uF 25V COM PCIe_CLKREQ2# U2 5 VCC 4 3 GND NC 1 NC 2 U1 5 VCC 4 2 GND 1 GND 3 6 GND SN74LVC1G07 GND SN74LVC1G11 +3.3V_S U7 1 VCC 5 22ohms 1% R39 0402 PCI_RESET_G2_1# 1 COM PLTRST# 2 1 4 22ohms 1% R37 0402 PCI_RESET_G2_2# 2 GND GND 3 0.1uF 25V C29 0402 22ohms 1% R38 0402 PCI_RESET_G2_3# 3 74LVC1G125 GND *Max 4 outputs per buffer *Push/Pull design use LVC07 wih PU resistor for OC designs PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 49/159 Reference Schematics and Block Diagrams 3.6.7. MXM-3 Graphics Card Module on Carrier The COM Express Carrier Design Guide Rev 2.0 Section 2.6 has a good schematic example of a MXM-3 graphics card implementation on COM Express Carriers. The net names used are not the same as the COMHPC net names, but the correlation is straightforward. MXM-3 cards use a 16 lane PCI Express interface. Most MXM cards also allow x8 implementations (and all PCIe devices must work in x1 configurations per the PCI-SIG specification). COM-HPC recommends but does not require that COM-HPC PCIe Group 1 be used for PEG (PCI Express Graphics). No Carrier PCIe clock buffer is needed for the MXM card (assuming that the MXM card is only PCIe device used in the COMHPC PCIe Group). The COM-HPC PCIe reference clock that goes with the COM-HPC PCIe group can be used directly with the MXM card. Coupling capacitors for the COM-HPC Module PCIe RX pairs (MXM card PCIe TX pairs) must be present on the Carrier, preferably close to the MXM connector. Use discrete 0402 or 0201 package size parts. The MXM-3 specification document is currently hard to find. The document was created and is owned by Nvidia but is not publicly available. Information found in the COM Express Carrier Design Guide, from the MXM-3 connector vendors (Aces, Amphenol / FCI, Foxconn, JAE, Yamaichi), from the MXM GPU card vendors and from the COM-HPC Module vendor should be sufficient to carry out a design. The Amphenol / FCI MXM-3 connector part number 10151114-001TLF supports all PCIe signal rates up to and including Gen 5. Note that MXM cards operate in the S0 power domain only. Any signals that are active in the S5 (suspend) power state must be isolated, in the S5 power state, from the MXM card. Note also that MXM-3 connectors have 314 individual pins, but the MXM-3 specification gangs multiple connector pins together for power delivery. The 314 individual connector pins are grouped together in the NVIDIA MXM-3 specification into PWR and GND blocks labeled E1, E2, E3 and E4, and then the pins left over are numbered 1 through 281. The MXM-3 connector drawings from the connector vendors usually illustrate this. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 50/159 Reference Schematics and Block Diagrams 3.6.8. PCIe Reference Clocks COM-HPC, like COM Express and like most commercial and embedded PCI Express implementations, uses the "Common Clock" architecture defined in the PCI-SIG PCI Express Base Specification, Revisions 1 through 5. In this arrangement, there is a common 100 MHz reference clock source that feeds the PCIe Root complex and copies are fed to each PCIe Target device serviced by that Root. The maximum skew allowed between any two PCIe reference clocks, at their destinations, is 10 ns for PCIe Gen 1 and 12 ns for Gen 2 through 5. In most cases, the 100 MHz reference source is integrated into the SOC or chipset and the reference clock routing to the Root is internal to the SOC or chipset. In some cases, a clock generator IC that is external to the SOC or chipset is used. In any case, the 100 MHz reference source for a COM-HPC Root device is on the COM-HPC Module, either internal or external to the SOC or chipset. The SOC or chipset may provide one or multiple copies of the PCIe reference clock. If the SOC, chipset or Module does not provide enough copies of the reference clock for the Carrier PCIe targets then one or more PCIe clock buffers are used, on and / or off Module, depending on the situation. The PCIe targets use the 100 MHz reference clock copy, along with the clocking information embedded into the PCIe data stream to quickly form a local copy of the appropriate high frequency clock (2.5 GHz for Gen1, 5 GHz for Gen 2, and so on) needed to correctly interpret the incoming PCIe data stream, and to correctly time and encode the target's outgoing data stream. Table 6 below lists the maximum clock jitter allowed for each PCIe generation, per the PCI-SIG source specifications, for the Common Clock architecture. Note the ever shrinking jitter allowance as the generations advance. For example, the Gen 5 jitter allowance is only 15% of the Gen 3 allowance. However, PCIe Gen 5 uses a different filtering transfer function than Gen 3 and Gen 4, so the comparison is more nuanced than indicated here. Table 6: PCIe Maximum Allowable Clock Jitter PCIe Signaling Generation Rate 1 2.5 Gbps 2 5.0 Gbps 3 8.0 Gbps 4 16.0 Gbps 5 32.0 Gbps 6 64.0 Gbps Reference Clock Max Jitter Allowed 86 ps PTP 3.1 ps RMS 1.0 ps RMS 0.5 ps RMS 0.15 ps RMS 0.10 ps RMS Notes PTP is Peak to Peak RMS is Root Mean Square Table 7 on the following page defines some PCIe Clock Buffer mode terminology. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 51/159 Reference Schematics and Block Diagrams Table 7: PCIe Clock Buffer Modes Mode Description Pros and Cons Zero Delay A Clock Buffer PLL keeps the output clock copies in phase with the input clock. Also known as ZDB (Zero Delay Buffer) mode or as PLL mode. Some clock buffers have High Bandwidth and Low Bandwidth PLL modes. Pro: Zero delay makes it easier to meet the maximum skew of 12 ns between any two clocks, especially if the PCIe traces are very long, or if buffers are cascaded The PLL tends average out the jitter contribution from the source clock (see jitter discussion later in this document section, following Table 8) Con: PLLs buffers may have trouble with a Spread Spectrum source (see discussion following Table 8) Fan Out or PLL Bypass No PLL used. The output clock copies are an Pro: lower jitter from the buffer exact frequency copy of the input but are not in itself, in most cases (but the phase with the input. source clock jitter must be added to the that of the fan out buffer, per discussion following Table 8) Fan out buffers track a SpreadSpectrum clock source easily Con: may be harder to meet 12 ns max clock skew Although the fan out buffer jitter itself is low, the source clock jitter adds to the fan out buffer jitter Timing Delay Discussion For Various PCIe Clock Buffer Scenarios Regarding the max PCIe Reference Clock skew of 12 ns (or 10 ns for PCIe Gen 1) and the use of Fan Out (non PLL) based clock buffers: a modern Fan Out buffer will have a worst case skew of well under 5 ns (several vendors claim 3 ns max, and at least one claims 1.5 ns max). Signals propagate at about 6 inches per ns, so a system with a 5 ns buffer delay and about 12 inches of PCB trace (2 ns delay) would have a worst case skew of 7 ns which is comfortably within the 12 ns Gen 2 through Gen 5 skew limit. Very long PCIe trace situations might need the Zero Delay Buffer be aware of the possible issues with spread spectrum sources. However .. if there is a clock buffer on the COM-HPC Module in-between the Root complex PCIe reference clock and the clock(s) going out to the COM-HPC pins, then there will likely be an additional delay time that factors into the analysis in the previous paragraph. Check with your Module vendor on that. As: "what is the skew between the PCIe Reference Clock to the CPU or SOC Root Complex, and the COM-HPC PCIe Clock Reference pins" ... it could be anywhere from 0 ns to 5 ns, depending on Module design details. Also: "what is the jitter contribution of a Module PCIe clock buffer" - if there is one. PCIe Clock Buffer Options Keep Them Open PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 52/159 Reference Schematics and Block Diagrams A PCIe Clock Buffer IC usually has pin-strap(s) and / or SMBus options allowing the Clock Buffer operational modes to be set. It is best to keep access to these options open as sometimes issues can be resolved late in the design cycle (i.e. during regulatory and compliance testing) by changing the operational mode of the PCIe Clock Buffer. For example, Spread Spectrum PCIe reference clock operation may work with some but not all of the Clock Buffer modes. Additionally, some PCIe Clock Buffer devices have mechanisms (such as SMBus registers or OTP ordering options) to change parameters such as output clock slew rate, signal amplitude and / or the output termination values. Sample PCIe Clock Buffer List A sample collection of PCIe Clock Buffers is given in Table 8 below. Of course this is just a snapshot of what is available and appropriate at the time of this writing. Fan Out Mode jitter is additive (meaning the Module source jitter needs to be added together with the Fan Out buffer jitter). PLL Mode jitter is not additive, hence is marked as Total in the Table. The Module source jitter tends to get averaged out in the PLL. This is described in more detail on the page following Table 8. Table 8: PCIe Clock Buffer Vendors and Part Numbers Vendor Diodes Inc. (Pericom) Diodes Inc. (Pericom) Diodes Inc. (Pericom) Renesas (IDT) Renesas (IDT) Part Numbers Notes RMS Jitter (picoseconds) PI6CB18200 (dual, no internal term) PCIe Gen 4 capable PLL Mode (Total) PI6CB18401 (quad, internal term) 1.8V supplies Gen 1 5.0 PI6CB18601 (hex, internal term) OE# on each output Gen 2 0.3 PI6CB18801 (octal, internal term) SMBus configuration option Gen 3 0.1 Pin strap configuration option Gen 4 0.05 A internal termination value for 100 ohm dif- Zero Delay Buffer modes ferential traces is implied in the data sheet High BW PLL Fan Out Mode but not explicitly stated. Low BW PLL Values not shown in PLL Bypass (aka Fan Out) Mode public data sheet PI6CB33202 (dual, 85 ohm internal term) PI6CB33402 (quad, 85 ohm internal term) PI6CB33602 (hex, 85 ohm internal term) PI6CB33802 (octal, 85 ohm internal term) PI6CB33201 (dual, 100 ohm internal term) PI6CB33401 (quad, 100 ohm internal term) PI6CB33601 (hex, 100 ohm internal term) PI6CB33801 (octal, 100 ohm internal term) PCIe Gen 5 capable PLL Mode (Total) 3.3V power supply Gen 1 0.05 OE# on each output Gen 2 0.05 SMBus configuration option Gen 3 0.05 Pin strap configuration option Gen 4 0.05 Zero Delay Buffer modes Gen 5 0.05 High BW PLL Low BW PLL PLL Bypass (aka Fan Out) Mode PI6CB332001A (20 outputs, 85 ohm internal PCIe Gen 5 capable Fan Out (Additive) term) 3.3V power supply Gen 1 0.03 OE# for 8 outputs Gen 2 0.03 SMBus, Side-Band interface sup- Gen 3 0.03 port Gen 4 0.03 20 HCSL outputs with On-chip Gen 5 0.12 Termination 9DBL0252 (dual, 85 ohm internal term) 9DBL0452 (quad, 85 ohm internal term) 9DBL0651 (hex, 85 ohm internal term) 9DBL0851 (octal, 85 ohm internal term) 9DBL0242 (dual, 100 ohm internal term) 9DBL0442 (quad, 100 ohm internal term) 9DBL0641 (hex, 100 ohm internal term) 9DBL0841 (octal, 100 ohm internal term) PCIe Gen 5 capable Fan Out (Additive) 3.3V power supplies Gen 1 5.0 OE# on each output Gen 2 0.428 SMBus configuration option Gen 3 0.149 Pin strap configuration option Gen 4 0.156 Zero Delay Buffer modes Gen 5 0.05 High BW PLL Low BW PLL PLL Mode (Total) PLL Bypass (aka Fan Out) Mode Gen 1 33 Gen 2 1.9 Gen 3 0.53 Gen 4 0.48 Gen 5 0.149 9DBL0255 (dual, 85 ohm internal term) 9DBL0455 (quad, 85 ohm internal term) Ultra low jitter PCIe Gen 5 capable Fan Out (Additive) Gen 3 0.033 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 53/159 Reference Schematics and Block Diagrams Vendor Part Numbers Notes RMS Jitter (picoseconds) 100 ohm option with ext resistors Gen 4 3.3V power supplies Gen 5 OE# for each output 0.033 0.012 Renesas (IDT) Skyworks (Silicon Labs) 9ZXL0451E (quad, 85 ohm internal term) 9ZXL0651E (hex , 85 ohm internal term) 9ZXL0851E (octal, 85 ohm internal term) 9ZXL1251E (12 out, 85 ohm internal term) PCIe Gen 5 capable Fan Out (Additive) 3.3V power supplies Gen 1 1.9 OE# on each output Gen 2 0.126 SMBus configuration option Gen 3 0.062 Zero Delay Buffer modes Gen 4 0.062 High BW PLL Gen 5 0.024 Low BW PLL PLL Bypass (aka Fan Out) Mode Low BW PLL Mode (Total Jitter) Gen 1 6.8 Gen 2 0.12 Gen 3 0.07 Gen 4 0.07 Gen 5 0.018 Si53204-A02 (quad, 85 ohm internal term) PCIe Gen 5 capable Si53208-A02 (octal, 85 ohm internal term) 1.8V power supplies Si53212-A02 (12 out, 85 ohm internal term) OE# on each output SMBus configuration option Si53204-A01 (quad, 100 ohm internal term) Fan Out Mode only (no PLL) Si53208-A01 (octal, 100 ohm internal term) Si53212-A01 (12 out, 100 ohm internal term) Fan Out (Additive) Gen 1 17 (PTP) Gen 2 0.2 Gen 3 0.06 Gen 4 0.06 Gen 5 0.021 Texas Instruments Silicon Labs has many other PCIe Clock Buffers, too numerous to list here. LMK00334 (quad output, external term) Texas LMK00338 (octal output, external term) Instruments Texas CDCB2000 (20 outputs, 85 ohm int term) Instruments Texas CDCDB800 (octal output, 85 or 100ohm Instruments software selectable term) PCIe Gen 4 capable 3.3V and 2.5V supplies Single OE# Fan Out Mode only Fan Out (Additive) Gen 3 0.15 Gen 4 0.05 PCIe Gen 3 capable 3.3V and 2.5V supplies Single OE# Fan Out Mode only Fan Out (Additive) Gen 3 0.15 PCIe Gen 5 capable PLL Mode (Total) 3.3V supplies Gen 1 5.0 OE# for 8 outputs Gen 2 0.2 SMBus configuration option Gen 3 0.15 Side Band Interface config option Gen 4 0.08 Gen 5 0.03 PCIe Gen 5 capable Fan Out (Additive) 3.3V supplies Gen 3 0.1 OE# on each output Gen 4 0.1 SMBus configuration options Gen 5 0.025 Fan Out Mode only Propagation delay 0.5 ns typically 3 ns max There may be more subtleties in the jitter numbers than is immediately apparent here. For example, some buffers allow the clock output slew rate to be adjusted, but the slew rate may in turn affect the jitter values. Check the vendor data sheets and make use of the vendor application engineers. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 54/159 Reference Schematics and Block Diagrams Note on the Additive and Total Jitter values in Table 8 Above: These values are taken from silicon vendor data sheets and are meant here as a rough guide. The jitter values for all operational modes (e.g. high PLL BW, low PLL BW etc) of the clock buffer devices may not be shown here. The values in the Table for Fan Out buffers are the "Maximum Additive Jitter" values listed in the vendor data sheets. For PLL buffers, the typical values are usually much lower, often less than half, of the maximum values. Jitter analysis can be tricky. Designers should consult the actual vendor data sheets and vendor application notes before making design decisions. Note on Fan Out Buffer Jitter vs. PLL or Zero Delay Buffers If a Fan-Out mode PCIe clock buffer is used, then the clock jitter at the target is the square root of the sum of the squares of the COM-HPC Module clock source and of the Fan-Out buffer jitter, per the expression shown here: For PLL or Zero Delay mode buffers, the clock jitter at the target is simply the jitter of the PLL buffer as listed in the vendor data sheet. The PLL buffer tends to average out the source clock jitter, unless it is extreme. In other words, with regard to the jitter values shown in Table 8 above, the Fan-Out buffer jitter values are not the full story, as the clock generator source jitter values need to be factored in per the equation above. The source clock generator jitter values need to be obtained from the Module vendor or the SOC vendor data sheets. Note on the Internal Termination Impedances in Table 8 Above: PCIe Clock Buffer internal output termination values suitable for both 85 ohm and 100 ohm differential traces are shown as being available in Table 8 above. The COM-HPC Base Specification recommends an 85 ohm differential impedance for the PCIe Reference Clocks coming off the Module, and hence into the Carrier Clock Buffer. Designers are free to choose either 85 ohms or 100 ohm differential impedances for their Clock Buffer output distribution. The phrasing "85 ohm internal term" in the Table above means that the device internal termination is appropriate for 85 ohm differential pairs, and similarly for "100 ohm internal term". Spread Spectrum Clock (SSC) Operation SSC profiles for different PCIe generations are different, so a PLL based buffer with support for SSC needs to have an appropriate loop bandwidth for the PFD (Phase Frequency Detector) within the PLL. Therefore, it is advisable to check whether a PLL based buffer supports SSC for the PCIe generation it is to be used with. Some clock buffer vendors recommend against using a Spread Spectrum Clock source with their PLL mode parts and recommend the use of a Fan Out buffer instead. Check with your clock buffer vendor and allow for a PLL bypass mode (Fan Out Mode) option if possible. COM-HPC Reference Clocks vs COM Express / Use of Clock Buffers COM Express Rev 3.0 defines a single PCIe Reference Clock in it's pinout. COM-HPC Rev 1.0 allows up to five PCIe Reference Clock pairs there is one COM-HPC Module PCIe Reference Clock pair for each of the five COM-HPC PCIe groups, as outlined in Section 3.6.1. above. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 55/159 Reference Schematics and Block Diagrams 3.6.9. PCIe Redrivers and Retimers PCIe maximum trace length guidelines are given in Section 4.3.4. below and are presented along with loss budgets and more context in the COM-HPC Base Specification. However, PCIe Gen 3, 4, and 5 implementations may well need a redriver or retimer on the Carrier to make up for signal degradation. A redriver is an analog circuit that reshapes the PCIe signal using sophisticated analog techniques. A nearly closed PCIe signal eye can become a compliant open eye with a redriver. Redrivers may have a digital section in the form of I2C accessible registers or strap pins to set redriver parameters. A retimer is a digital and analog circuit that clocks in the PCIe signal using the PCIe 100 MHz reference clock and an on-chip PLL and reissues the reclocked signal in pristine form. Two popular vendors for PCIe redriver and retimer products are Diodes Inc. (formerly Pericom) (www.diodes.com) and Texas Instruments (www.ti.com). A retimer may possibly yield better results than a redriver, at a cost. Table 9: PCIe Redrivers and Retimers Vendor P/N Notes Diodes Inc Texas Instruments PI3EQX16904GL PI3EQX16908GL DS160PR410 DS160PR810 DS160PT801 DS320PR810 DS320PR822 PCIe Gen 4 capable quad lane redriver (4 lanes in one direction) PCIe Gen 4 capable octal lane redriver (8 lanes in one direction) PCIe Gen 4 capable quad lane redriver (4 lanes in one direction) PCIe Gen 4 capable octal lane redriver (8 lanes in one direction) PCIe Gen 4 capable 16 lane retimer (8 lanes TX and 8 lanes RX) PCIe Gen 5 capable octal lane redriver (8 lanes in one direction) PCIe Gen 5 capable quad 2x2 crosspoint redriver The items shown in Table 9 above represent only a small sample of parts available on the market. Texas Instruments, for example, has quite a few additional redriver and retimer parts not listed here. Some of the unlisted parts incorporate redriver or retimer functions along with analog multiplexer and cross-point switch functions. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 56/159 Reference Schematics and Block Diagrams 3.7. 3.7.1. USB USB Terms and General Information Table 10: USB.org Branding Term Summary USB.org Nominal Bit Current Branding Rates Notes USB.org Former Branding USB 2.0 USB 3.2 Gen 1 480 Mbps Single half duplex DC coupled pair (High Speed mode) Also supports slower USB 1.1 and 1.0 legacy modes 5 Gbps Dual simplex AC coupled transmit pair and a receive pair. Also requires a specific USB 2.0 link, on a separate set of conductors. USB 2.0 USB 3.0 USB 3.1 Gen 1 USB 3.2 Gen 2 10 Gbps Dual simplex AC coupled transmit pair and a receive pair. Also requires a USB 3.1 specific USB 2.0 link, on a separate set of conductors. USB 3.1 Gen 2 USB 3.2 Gen 2x2 USB4 Gen 2x2 USB4 Gen 3x2 USB SuperSpeed USB SuperSpeed+ 10 Gbps (per lane) Two AC coupled transmit pairs and two receive pairs allowing 20 Gbps 20 Gbps (two operation in each direction. Also requires a specific USB 2.0 link, on a sep- lanes) arate set of conductors. 10 Gbps (per lane) Incorporates USB 3.2 Gen 2x2 and USB 2.0 features, along with addi- 20 Gbps (two tional features such as DisplayPort operation, USB Type-C (reversible) lanes) connector, and Thunderbolt 4 support. 20 Gbps (per lane) 40 Gbps (two lanes) Features 20 Gbps bit rate per lane and uses 2 lanes TX and 2 lanes RX. Also includes USB 2.0 features, along with additional features such as DisplayPort operation, USB Type-C (reversible) connector, and Thunderbolt 4 support. 5 Gbps 10 or 20 Gbps The high speed interface used in USB 3.2 Gen 1, Gen 2, Gen 2x2 and USB4 is referred to as the SuperSpeed or SuperSpeed+ interface. A USB 3.2 Gen 1, Gen 2, Gen 2x2 or USB4 implementation require both SuperSpeed / SuperSpeed+ support and USB 2.0 support. The SuperSpeed / SuperSpeed+ interface is implemented on a separate set of pins from the USB 2.0 interface. However, every SuperSpeed implementation needs a specific companion USB 2.0 interface. Actual payload data rates are lower than what is implied by the "Nominal Bit Rates" in the chart above, due to the encoding methods used in the serialized data stream. The most common connector for USB host ports is the Type-A connector. Figure 25 below is a view looking into a USB 3 Type-A host receptacle (the Carrier connector is receptacle, the cable connector is the plug). Some points about this illustration: · A USB 2.0 Type-A connector only has pins 1 through 4 present. Pin-out details are in Table 11 below. · A USB 3 Type-A connector has 9 pins: Pins 1 through 4 from the USB 2.0 definition are used for power, GND and a USB 2.0 data pair. Pins 5 through 9 are used for SuperSpeed or SuperSpeed+ TX and RX pairs and a GND. · A USB 2.0 cable plug may be used with a USB 3 receptacle, but only the USB 2.0 link will function. · A USB 3 cable plug may be used with a USB 2.0 receptacle, but only the USB 2.0 link will function. The USB 3 pins 5 through 9 are cleverly positioned so that they are invisible to the USB 2.0 plug. · USB 2.0 target devices are allowed to consume up to 500 mA at 5V on a Type-A connector. · USB 3 target devices are allowed to consume up to 900 mA at 5V on a Type-A connector. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 57/159 Reference Schematics and Block Diagrams Figure 25: USB 3 Type-A Connector Receptacle Looking Into the Receptacle 9 8 7 6 5 1 2 3 4 Table 11: USB Type-A Pin-Out Pin Signal Signal Description 1 VBUS 5V current limited USB target power 2 D- USB 2.0 differential signal (-) 3 D+ USB 2.0 differential signal (+) 4 GND GND for USB 2.0 pair and power 5 SSRX- USB SuperSpeed RX(-) 6 SSRX+ USB SuperSpeed RX(+) 7 GND GND for SuperSpeed RX and TX cable drain wire 8 SSTX- USB SuperSpeed TX(-) 9 SSTX+ USB SuperSpeed TX(+) Notes 500mA (USB 2) or 900mA (USB 3) Not used / not present on USB 2.0 Not used / not present on USB 2.0 Not used / not present on USB 2.0 Not used / not present on USB 2.0 Not used / not present on USB 2.0 Type-A Connector Electrical Distinctions There are three general categories of USB Type-A connectors: · USB 2.0 · USB 3.2 Gen 1 · USB 3.2 Gen 2 480 Mbps USB 2.0 signaling (no USB 3) 4 pin connector 5 Gbps SuperSpeed signaling (along with USB 2.0) - 9 pin connector 10 Gbps SuperSpeed+ signaling (along with USB 2.0) 9 pin connector For USB 2.0 and USB 3.2 Gen 1 Type-A connectors, there are many vendors and styles (R/A, vertical, single, dual, quad combinations, combinations with other standards such as GbE etc). For USB 3.2 Gen 2 (10 Gbps pair signaling), there are not many Type-A connector parts available as of this writing. Amphenol FCI is a connector vendor that has several 10 Gbps capable Type-A connectors available. Amphenol FCI GSB4111312HR, for example is a single R/A version of such a part. Most USB 3.2 Gen 2 implementations use a Type-C connector rather than Type-A. Type-C implementations are covered in Sections 3.7.5. through 3.7.11. below. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 58/159 Reference Schematics and Block Diagrams 3.7.2. USB 2.0 Type-A Example Figure 26: +5V_A C201 C202 1u 16V 100n 25V 0402 0402 +5V_A C206 C207 1u 16V 100n 25V 0402 0402 USB 2.0 Type-A Example R155 10K 0402 U32 1 VIN VOUT 6 2 GND ILIM 5 3 EN FAULT# 4 RT9728AHGE 43K 0402 R156 C203 BLM18PG121SN1J FB7 +5V_USB5 C204 150u 10V Size C 100n 25V 0402 D32 ESD9X5.0ST5G R2138 0 0402 EN_RSMRST R157 10K 0402 U33 1 VIN VOUT 6 2 GND ILIM 5 3 EN FAULT# 4 RT9728AHGE R2140 0 0402 EN_RSMRST USB5- COM USB5+ COM 43K 0402 R158 C205 BLM18PG121SN1J FB8 +5V_USB4 C208 150u 10V Size C 100n 25V 0402 COM USB45_OC# USB4- COM USB4+ COM D34 ESD9X5.0ST5G DLW 21HN900SQ2 T10 USB5_N USB5_P DLW 21HN900SQ2 T9 USB4_N USB4_P +5V_A RSMRST_OUT# COM 5 R2147 100K 0402 4 3 R2146 4.7K 0402 2 6 EN_RSMRST Q76A 2N7002DW 1 Q76B 2N7002DW D33 5 VDD 2 GND 7 PAD 1 CH1 3 CH2 4 CH3 6 CH4 DRTR5V0U4LP16 USB5_N USB5_P USB4_P USB4_N CN20 TE 5787745 UPPER USB 1 2 3 4 +5VA DD+ GNDA LOWER USB 5 6 7 8 +5VB DD+ GNDB SH(4) 9 1 0 1 1 12 SHIELD 0 R301 0603 Figure 26 above illustrates a typical USB 2.0 implementation on a Carrier. · The USB 2.0 data lines must be routed as differential pairs, in a no-stub fashion. · Components T9 and T10 are common-mode chokes that are an EMI mitigation measure. · Component D33 is a ESD protection diode array. Pins 1,3,4,6 may be exchanged if needed to provide the easiest no-stub routing. · Components U32 and U33 are USB power switches and current limiters. For USB 2.0, the current deliv- ered to a USB target device is to be limited to about 500 mA. The power switch / current limiter shown is from Richtek. There are many similar parts available from Texas Instruments, Micrel, Microchip and others. · The current limiter IC FAULT# pins are tied to the COM Module USB port 4 and 5 over-current input. There are 4 such inputs (for USB 0,1 and USB 2,3 and USB 4,5 and USB 6,7). · The 5V power traces involved between the USB power switches, through FB7 and FB8 and on to connec- tor CN20 must be sized to carry the 1A current (and this should be increased to 1.5 or 2 A to allow for a safety factor). · The power switches are enabled by the COM-HPC RSMRST_OUT# signal. This signal going high indicates that the +5V_A power rail is stable. USB 2.0 Allocation Note The COM-HPC Client and Server pin-outs allow up to eight USB 2.0 ports each. Note however that the first four USB 2.0 ports (COM-HPC USB0+/- through USB3+/-) are paired with the corresponding USB SuperSpeed ports (COM-HPC USB0_SSTX0+/- and USB0_SSRX0+/- through USB3_SSTX0+/- and USB3RX0+/-). A USB SuperSpeed port needs a specific companion USB 2.0 pair for certain setup functions. Thus ... if the Carrier needs one or more USB 2.0 only ports (no SuperSpeed) in addition to the four SuperSpeed capable ports, the above pairings need to be considered. COM-HPC USB4+/- through USB7+/- are USB 2.0 only ports. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 59/159 Reference Schematics and Block Diagrams 3.7.3. USB 3.2 Gen 1 and Gen 2 Type-A A USB 3.2 Gen 1 example on a Type-A connector is given in the COM Express Carrier Design Guide Rev 2.0 Section 2.9. At the time that the COMe Design Guide was written, USB 3.2 Gen 1 (single SuperSpeed TX pair and single RX pair, 5 Gbps signaling, plus a USB 2.0 pair) was referred to as USB 3.0. A USB 3.2 Gen 2 Type-A connector implementation (single SuperSpeed+ TX pair and single RX pair, 10 Mbps signaling) is basically the same as a Gen 1 implementation, except that the components involved may need an upgrade for the 10 Gbps signaling: lower capacitance ESD diodes, different common mode choke choices and a connector receptacle appropriate for 10 Gbps signaling. An additional consideration is that there may be a greater need for a redriver. Most USB 3.2 Gen 2 implementations use a Type-C connector rather than Type-A. Type-C implementations are covered in Sections 3.7.5. through 3.7.11. below. No USB 3 redriver is shown in the COM Express Carrier Design Guide example. If the traces from the COMHPC Module connector to the Type-A host receptacle are more than a few inches, then a Carrier redriver may be advisable. 3.7.4. USB 3 Redrivers Table 12: USB 3 Redrivers Vendor P/N Notes Diodes Inc PI3EQX7841 USB 3.1 Gen 1 capable single port redriver (1 TX pair and 1 RX pair) 5 Gbps per pair PI3EQX1004E USB 3.1 Gen 2 capable dual port redriver (2 TX pairs and 2 RX pairs ) 10 Gbps per pair Texas TUSB522P USB 3.2 Gen 1 capable single port redriver (1 TX pair and 1 RX pair) Instruments 5 Gbps per pair TUSB1002A USB 3.2 Gen 2 capable single port redriver (1 TX pair and 1 RX pair) 10 Gbps per pair TUSB1004 USB 3.2 Gen 2 capable dual port redriver (2 TX pairs and 2 RX pairs ) 10 Gbps per pair May be used to support two USB 3.2 Gen 2 ports The items shown in Table 12 above represent only a small sample of such parts available on the market. USB Type-C Port Multiplexers, which may include redriver and retimer capabilities, are listed in Table 14 below. USB Type-C implementations are covered in Sections 3.7.5. through 3.7.10. below, and USB4 in Section 3.7.11. . USB Hubs May Serve as Retimers USB 2 and USB 3 hubs are plentiful and may be considered as a form of a USB retimer: they clock the USB 2 and 3 signals in, process them and clock them out in fresh form. Of course the downstream bandwidth is shared, if more than one downstream hub port is used. Microchip Technologies (www.microchip.com) seems to be the dominant USB hub supplier and has dozens of offerings. Granted, there may be some software subtleties concerning the use of USB hubs versus true USB retimers (a true retimer should be invisible to software apart from possible setup; a hub has to be enumerated by the operating system, etc.). PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 60/159 Reference Schematics and Block Diagrams 3.7.5. USB Type-C Overview USB Type-C refers to a small form factor reversible connector definition (reversible cable plug, no polarity, can be inserted with either orientation), and to the USB and other data and negotiated power delivery formats that it supports. Some highlights include: · Polarity free operation Cable plug can be used in either orientation · USB 2.0 ( 480 Mbps signaling) · USB 3.2 Gen 1 x1 and Gen 2 x 1 ( 5 Gbps, 10 Gbps signaling) (single lane) · USB 3.2 Gen 1 x2 and Gen 2 x 2 ( 10 Gbps, 20 Gbps signaling) (2 lanes) · "Alternate Modes" including DisplayPort (2 lanes) + USB 3.2 DisplayPort (4 lanes) HDMI Intel Thunderbolt Other vendor specific Alternate Modes · USB4, described Section 3.7.11. below. · USB Power Delivery (PD) protocol and implementation Allows negotiated power delivery, from 5V up to 20V and up to 100W. · Active cable support (electronics within the USB cable assembly) For an excellent explanation of USB Type-C features, capabilities and details on how they work, see the Microchip Technologies Application Note AN1953 Introduction to USB Type-C. Much of the information in this section has been adapted from this note. A typical Type-C receptacle is shown in Figure 27 below, at the left. A typical cable plug is shown at the right. The connector is fairly small, with an overall width less than 9mm and body height just under 3mm. These dimensions are similar but slightly larger than the Apple Computer "Lightening" connectors that are popular on consumer cell phones. The USB Type-C connector system has more capabilities than the "Lightening" system. The receptacle and corresponding cable plugs are mechanically symmetrical and the cable plug can be used in either orientation. The connector pin-out, presented on the following page, is almost completely symmetrical. There are some locking versions of the USB Type-C connector available. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 61/159 Figure 27: USB Type-C Receptacle and Plug Images Reference Schematics and Block Diagrams Figure 28: USB Type-C Receptacle Pin-Out Looking Into Carrier Receptacle A1 A2 A3 A4 A5 A6 GND TX1+ TX1- VBUS CC1 D+ GND RX1+ RX1- VBUS SBU2 DB12 B11 B10 B9 B8 B7 A7 A8 A9 A10 A11 A12 D- SBU1 VBUS RX2- RX2+ GND D+ CC2 VBUS TX2- TX2+ GND B6 B5 B4 B3 B2 B1 Note that the Type-C receptacle connector pin-out is mostly symmetrical with respect to flipping the plug connector. If the connector plug is inserted "right side up" (plug A1 to receptacle A1 etc.), all plug and receptacle signals match. If the connector plug is inserted "upside down" (plug A1 to receptacle B1 etc) then a few things must be sorted out by Carrier hardware, as explained on the following pages. Table 13: USB Type-C Connector Pin-out Pin Signal Signal Name Description A1 GND A2 TX1+ SuperSpeed TX1+ A3 TX1- SuperSpeed TX1A4 VBUS Bus Power to Peripheral USB device A5 CC1 Configuration Channel 1 or VCONN A6 D+ USB 2.0 D+ A7 D- USB 2.0 DA8 SBU1 Side Band Use 1 A9 VBUS Bus Power to Peripheral USB device A10 RX2- SuperSpeed RX2A11 RX2+ SuperSpeed RX2+ A12 GND Pin Signal Signal Name Description B12 GND B11 RX1+ SuperSpeed RX1+ B10 RX1- SuperSpeed RX1- B9 VBUS Bus Power to Peripheral USB device B8 SBU2 Side Band Use 2 B7 D- USB 2.0 D- B6 D+ USB 2.0 D+ B5 CC2 Configuration Channel 2 or VCONN B4 VBUS Bus Power to Peripheral USB device B3 RX1- SuperSpeed TX2- B2 RX1+ SuperSpeed TX2+ B1 GND PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 62/159 Reference Schematics and Block Diagrams For the yellow shaded cells in the Table above, the `A' and `B' signals have complete symmetry and nothing at all needs to be done to sort them out if the cable plug is "upside down". The non-shaded signals need some help in the "upside down" case to get the plug signals to the correct Carrier destinations. Multiplexers are involved, and, to reduce stubs and preserve signal integrity, the "right side up" signals are usually routed through multiplexers along with the "upside down". signals. USB 2.0 D+ and D- The USB 2.0 D+ and D- differential pair data lines are arranged in a symmetrical block in the USB Type-C pin-out definition. This arrangement has the result that no signal multiplexing is needed for "right side up" and "upside down" cable plug insertions. However, as a consequence of this arrangement, there are some short signal stubs. Since the USB 2.0 signaling rate is relatively low (480 Mbps), this is not a problem. VBUS VBUS is the power source provided by the host system (the COM-HPC Carrier in this case) to the attached downstream port. It can be the traditional fixed 5V current limited supply per USB 2.0 or USB 3.x, or it can be a higher voltage supply, up to 20V, and up to 100W, as negotiated by implementations following the USB Type-C Power Delivery Specification. The Power Delivery (PD) negotiation and implementation capability is optional, but necessary for higher powered peripherals. The PD negotiation happens over one of the two CC lines. Note that there are four VBUS pins and four GND pins. All eight pins should be used, to handle the possibly high power and current levels. VCONN VCONN is 5V nominal 1W max power source for active USB cables. Active cables have internal electronics that boost the signals carried, allowing longer cable assembles. The electronics in an Active cable may take their power from VCONN or VBUS. VCONN is routed to the receptacle CC2 pin if the plug is "right side up" or to the receptacle CC1 pin if the plug is "upside down". CC1 and CC2 Configuration Channel Signals The CC1 and CC2 signals serve several purposes in USB Type-C implementations: · The CC1 and CC2 pins are used by the host system to identify whether the cable plug is inserted "right side up" or "upside down", through an analog detection process, relying on certain resistor values on the host side and on the downstream port side. · The CC1 and CC2 signals are also used to identify the basic host power delivery requirements to the downstream peripheral. A resistor scheme and analog measurements are used to identify 5V 500 mA. 1.5A and 3A possibilities. · The receptacle CC1 pin (if the plug connector is "rightside up") or the receptacle CC2 pin (plug connector is "upside down") may be used to negotiate the USB Type-C Power Delivery using a one wire protocol defined in the USB Power Delivery Specification. This is optional but necessary if the peripheral needs a VBUS voltage over 5V. · VCONN power is distributed to the "unused" CC pin (CC2 for plug "rightside up" and CC1 for plug "upside down"). · The Microchip application note AN1953 explains the CC1 and CC2 operational details very well. SuperSpeed TX1+, TX1-, RX1+, RX1- PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 63/159 Reference Schematics and Block Diagrams · If the cable plug is "rightside up" then these pins are used for the USB 3.2 Gen 1 and Gen 2 single lane SuperSpeed signals, or for the first lane of a two lane implementation. · If the cable plug is "upside down" then the cable TX1+, TX1-, RX1+ and RX1- signals land on the receptacle TX2+, TX2-, RX2+ and RX2- pins. In this case, Carrier hardware has to route these signals to the proper TX1+, TX1-, RX1+ and RX1- destinations on the Carrier board. · In practice, a Carrier Board multiplexor is used to route the receptacle TX1 and RX1 pairs to the proper Carrier destination, as the signals are high speed and stubs must be avoided. · In some cases, the TX1 and RX1 high speed pairs are used for "Alternate Mode" purposes. Alternate Mode use is negotiated as part of the USB Power Delivery protocol. SuperSpeed TX2+, TX2-, RX2+, RX2- · If the cable plug is "rightside up" then these pins may be used for the second lane set of a USB 3.2 Gen 1x2 or Gen 2x2 implementation. · If the cable plug is "upside down" then the cable TX2+. TX2-, RX2+ and RX2- signals land on the receptacle TX1+, TX1-, RX1+ and RX1- pins. In this case, Carrier hardware has to route these signals to the proper TX2+. TX2-, RX2+ and RX2- destinations on the Carrier board. · In practice, a Carrier Board multiplexer is used to route the receptacle TX2 and RX2 pairs to the proper Carrier destination. · In some cases, the TX2 and RX2 high speed pairs are used for "Alternate Mode" purposes. Alternate Mode use is negotiated as part of the USB Power Delivery protocol. · A common Alternate Mode usage of these pairs is for a DisplayPort implementation. SBU1 and SBU2 · SBU is an acronym for Side Band Use. · These are optional signals, not needed for USB only implementations. · For the DisplayPort Alternate Mode, these signals are used for the DisplayPort Aux Channel pair. · For an HDMI Port Alternate Mode, these signals are used for the HDMI I2C channel. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 64/159 Reference Schematics and Block Diagrams 3.7.6. USB Type-C Port Multiplexers Selecting a USB Type-C Port Multiplexer can be tricky. It is important to understand what it does, and does not do, and what software support is available. Tables 14 lays out some of the possibilities. It is best to work with the silicon vendor and Module vendor FAEs on the details. It's pretty difficult, but not impossible, to cover all the possible USB Type-C modes in a single design. All the USB Type-C Port Multiplexers listed in this Table incorporate redriver or retimer functions, reducing part count. Table 14: USB Type-C Port Multiplexers Possible Modes Ref Mode Notes Possible Part(s) Part Notes 1 USB 3.2 Gen 1x1 5 Gbps signaling single SuperSpeed TX pair and single RX pair used TUSB542 TUSB1042 TUSB1104 TUSB1142 TUSB1146 Intel JHL8040R TUSB542 is 5 Gbps Others are 10 Gbps capable 2 USB 3.2 Gen 2x1 10 Gbps signaling single SuperSpeed+ TX pair and single RX pair used TUSB1042 TUSB1044 TUSB1046 TUSB1104 TUSB1142 TUSB1146 Intel JHL8040R 10 Gbps capable parts TUSB1104 is pre release 3 USB 3.2 Gen 1x2 5 Gbps signaling per pair dual SuperSpeed TX pairs and dual RX pairs used 10 Gbps net TX speed, 10 Gbps net RX speed TUSB1104 TUSB1104 is pre release 4 USB 3.2 Gen 2x2 10 Gbps signaling per pair dual SuperSpeed+ TX pairs and dual RX pairs used 20 Gbps net TX speed, 20 Gbps net RX speed TUSB1104 TUSB1104 is pre release 5 DisplayPort Alternate USB 3.2 Gen 1x1 or Gen 2x1 on TX1 / RX1 TUSB546A-DCI TUSB546A-DCI is 5 Mode Two DP pairs on TX2 / RX2 (RX2 used as DP TX TUSB1044 Gbps 2 DP lanes + USB 3 pair) TUSB1046 Separate DP Source DP sourced externally, from GPU pins TUSB1046A-DCI Others are 10 Gbps TUSB1146 capable 6 DisplayPort Alternate No USB 3 at all (USB 2 remains) Mode Four DisplayPort pairs on TX1,RX1,TX2,RX2 4 DP lanes DP sourced externally, from GPU pins Separate DP Source TUSB546A-DCI TUSB546A-DCI is 5 TUSB1046A-DCI Gbps TUSB1046 TUSB1146 Others are 10 Gbps capable 7 DisplayPort Alternate USB 3.2 Gen 1x1 or Gen 2x1 on TX1 / RX1 TUSB544 Mode Two DP pairs on TX2 / RX2 (RX2 used as DP TX TUSB1044 2 DP lanes + USB 3 pair) Intel JHL8040R DP multiplexed with USB 3 within chip-set 8 DisplayPort Alternate No USB 3 at all (USB 2 remains) Mode Four DisplayPort pairs on TX1,RX1,TX2,RX2 4 DP lanes DP multiplexed with USB 3 within chip-set TUSB544 TUSB1044 Intel JHL8040R 9 HDMI Alternate Modes Similar to DP Alternate Modes TUSB546 10 USB4: 20 Gbps only 11 Thunderbolt Modes All USB3 modes USB4: 20 Gbps signaling using 2 lanes DP Alternate Modes All USB 3 modes USB4: 20 Gbps signaling, 40 Gbps using 2 lanes DP Alternate Modes PCIe Alternate Mode Intel JHL8040R Intel JHL8040R PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 65/159 Reference Schematics and Block Diagrams Notes on Table 14: · All the "TUSB" prefixed parts listed above are from Texas Instruments · The TUSB1104 part is, as of this writing, a pre release TI part, referenced with permission, and optimized for USB 3.2 Gen 2x2 Type-C use. · The Intel JHL8040R is a USB4 retimer part, formerly known as the "Burnside Bridge". 3.7.7. USB Type-C Power Delivery Controllers The USB Type-C specification is an ambitious specification with many features. For Power Delivery, the specification allows up to 100W of power, over a voltage range from 5V to 20V, to be delivered either out of the device in question or accepted into the device. For example, a laptop computer might want to provide power to an external display or printer in some situations. In a different situation, the same laptop may want to accept power from an external charger for battery recharging. The Power Delivery options are negotiated over the USB Type-C CC lines. If there is no negotiation, than a simple old style USB 3.0 or USB 2.0 Type-A power delivery out of the COM-HPC host is assumed Sections 3.7.10. and 3.7.11. below, and more specifically in Figures 34 and 40 below show a USB Type-C Power Delivery solution that allows 15W max power at 5V, out of the COM-HPC carrier to an external device. The Texas Instruments TPS65994 Power Delivery controller is shown. This is actually a dual part that could support two USB Type-C ports. Only one port is used in the Section 3.7.10. USB 3.2 Gen 2x2 example, and similarly for the Section 3.7.11. USB4 port example. Higher power levels (up to 100W, voltages over 5V to 20V range), either out or into the COM-HPC Carrier are possible with other PD controllers. For example, the Texas Instruments TPS65987D device allows up to 100W power delivery, over a 5V to 20V range, out of or into the system, using integrated power FETs. The voltage level, the current level and the current direction are negotiated over the CC lines before power is applied to, or accepted from, the USB Type-C VBUS. The TPS65994 device used in the USB 3,2 Gen 2x2 and USB4 design examples below has a provision, using external power FETs, for up to 100W to come in to the design, but this capability is not used in these examples. There are many additional USB Type-C Power Delivery controllers available from Cypress Semiconductor (now part of Infineon), Microchip Technologies, NXP, On Semiconductor, Texas Instrruments and others. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 66/159 Reference Schematics and Block Diagrams 3.7.8. USB Type-C Port Protection Components It is important to protect USB Type-C port pins against accidental exposure to 20V VBUS contact, and against ESD events. The USB 3.2 Gen 2x2 and USB4 schematic examples (Sections 3.7.10. and 3.7.11. below) illustrate this. The examples here use a Texas Instruments TPD6S300 USB Type-C Port Protector to protect the Type-C CC lines (2 pins), SBU lines (2 pins) and the USB 2.0 lines (4 pins, in the Type-C implementation). This is shown in Figures 35 and 41 below. Note: since these examples were created, Texas Instruments has upgraded their Type-C Port Protector to the TPD6S300A and that should be used for new designs. The high speed data pairs (2 TX pairs and 2 RX pairs, for USB, DP, HDMI etc) are protected separately in these schematic examples, using discrete low capacitance ESD diodes. This is shown in Figures 32 and 39 below. There are many other possible USB Type-C Port Protection components, from Texas Instruments, Microchip Technologies, On Semiconductor, NXP and others. If the COM-HPC is implementing a battery powered option, then there are battery charging and dead battery concerns to consider. Refer to the Texas Instruments and Microchip Technologies data sheets and application notes for more technical information on this. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 67/159 Reference Schematics and Block Diagrams 3.7.9. USB 3.2 Gen 2x1 Type-C Basic Implementation A basic USB Type-C implementation that supports USB 2.0, USB 3.2 Gen 1 x1 and USB 3.2 Gen 2x1 is straightforward. An example is presented in Figure 29 on the following page. Although this example is in block diagram format and does not include the many passive components needed for a complete design, it only requires two small ICs. This Type-C example is hardly any more complex than a traditional USB 3 Type A , design, especially if a redriver is included in the Type A design. The example in Figure 29 includes a USB Type-C port multiplexer and USB 3 redriver in a single IC package that can be placed close to the Type-C connector receptacle to best launch the signal over the USB cable. Note that TX line coupling capacitors are needed on the redriver output pins. The example also includes a USB Type-C Power Source controller that performs cable detection, provides cable orientation information, provides VBUS power and VCONN power and current limiting for both, along with fault detection. This part does not implement the full USB Power Delivery protocol this is not necessary here as the VBUS power is limited to traditional USB 3 values of 5V nominal, 1A operational and 1.5A fault current. An implementation that allows the full USB Type-C Power Delivery gamut (5V to 20V, up to 100W) requires a more complex Power Source or Delivery part, that implements the one-wire negotiation on the CC1 or CC2 lines (depending on cable plug insertion polarity). There are many useful parts for USB Type-C support available from Texas Instruments, Microchip Technology, Diodes Inc. and other vendors. Figure 29 below uses the COM-HPC USB0 port as an example (for USB 2.0 and USB 3.2 signals). Any of the first four COM-HPC USB ports (USB0 through USB3) may be used. Remember that COM-HPC USB 2 and USB 3 ports are paired together. See the notes on this in the COM-HPC Base Specification V1.0 Table 15. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 68/159 Reference Schematics and Block Diagrams Figure 29: USB Type-C Basic Implementation: USB 3.2 Gen 1 and Gen 2 COM USB0+ COM USB0- COM USB0_SSTX0+ COM USB0_SSTX0- COM USB0_SSRX0+ COM USB0_SSRX0- RX PAIR MUX TX PAIR MUX USB Type-C Mux and Redriver USB 3.1 Gen 2 Capable (10 Gbps) Texas Inst TUSB1142 or TUSB1042 TX1+ TX1- TX2+ TX2- RX1+ RX1- RX2+ RX2- USB Type-C Receptacle FLIP CTL0 POL# SINK# COM USB01_OC# 5V BUS POWER IN OUT CC1 FAULT# CC2 VBUS CC or VCONN CC or VCONN Texas Inst TPS25820 USB Type-C Power Source Controller PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 69/159 Reference Schematics and Block Diagrams 3.7.10. USB 3.2 Gen 2x2 Type-C Example Implementation A detailed schematic example of a USB 3.2 Gen 2x2 implementation (meaning two USB SuperSpeed TX pairs and two RX pairs, each pair capable of 10 Gbps signaling) is shown in Figures 30 through 35 below. The net TX signaling over two pairs is 20 Gbps, and the net RX signalining over two pairs is 20 Gbps This is delivered over a Type-C reversible connector. The Type-C port multiplexer shown in Figure 31 below, Texas Instruments (TI) TUSB1104, is the optimal part for this application but it is a non-released part as of this writing. It is shown here with permission from TI. The TI TUSB1044 is a similar part that is released and may be used for context but may not be totally suitable here. A single TX and RX SuperSpeed pair Type-A connector option is implied by some resistor stuffing options in Figure 30 below (R5W6 through R5W9, not populated) but the Type-A connector details are not shown in this Figure set. The Type-A implementation is discussed in Section 3.7.3. above. This example includes a USB Power Delivery controller, Texas Instruments TPS65994, in Figure 34 below. In this example, the power delivery is out of the COM-HPC Carrier, at 5V and at up to 3A. See Section 3.7.7. above more some discUuSsBs3io.n2 oGnENP2ow#0er(DHeSlIivOe)ry-cHoPnCtroClOleNrNs.ROW C & D Figure 30: USB 3.2 Gen 2x2 Type-C (1 of 6): Option Resistors for Type-C or Type-A FROM COM-HPC CONN COM USB0_SSTX0COM USB0_SSTX0+ COM USB0_SSRX0COM USB0_SSRX0+ CAD NOTE: TRI-PAD OPTION R5W9 1 0201 0.05W R5W8 1 0201 0.05W R4W15 1 0201 0.05W R4W14 1 0201 0.05W 2 RES 0 0% 2 RES 0 0% 2 RES 0 0% 2 RES 0 0% USB0_SSTX0_TCPUSB0_SSTX0_TCP+ USB0_SSRX0_TCPUSB0_SSRX0_TCP+ OUT OUT IN IN COM COM USB0USB0+ R5W7 R5W6 R4W9 R4W8 CAD NOTE: 1 0201 1 0201 1 0201 1 0201 2 EMPTY 0 20% EMPTY 0 20% EMPTY 0 20% EMPTY 0 0% H30143-001 TRI-PAD OPTION R6J10 1 0201 0.05W R6J5 1 0201 0.05W 2 RES 0 0% 2 RES 0 0% USB0_SSTX0_TYPAUSB0_SSTX0_TYPA+ USB0_SSRX0_TYPAUSB0_SSRX0_TYPA+ USB2_P0_TCPUSB2_P0_TCP+ R6J11 1 2 0201 EMPTY 0 0% R6J6 1 2 0201 EMPTY 0 0% H30143-001 USB2_P0_TYPAUSB2_P0_TYPA+ PICMG® COM-HPC® Carrier Design Guide OUT OUT IN IN BI BI BI BI Rev. 2.1 / Aug 10, 2023 70/159 Reference Schematics and Block Diagrams Figure 31: USB 3.2 Gen 2x2 Type-C (2 of 6): Port Multiplexer and Redriver +V3P3_A IN IN COM COM COM COM IN IN OUT OUT USBC0_RDVR_EN BUF_PLT_RST# USB0_SSTX1+ USB0_SSTX1USB0_SSRX1+ USB0_SSRX1USB0_SSTX0_TCP+ USB0_SSTX0_TCPUSB0_SSRX0_TCP+ USB0_SSRX0_TCP- R4W54 RES 1 R5W20 RES 1 R5W13 RES R5W12 RES 1 1 C5W3 X5R C5W2 X5R 1 1 R5W10 RES R5W11 RES 1 1 C4W1 X5R C4W2 X5R 1 1 10% 25V 20 0402 20 0402 A93549-001 2 2 0 0 0201 0201 2 2 H30143-001 220NF 0201 220NF 0201 2 2 J95198-001 0 0 0201 0201 2 2 H30143-001 220NF 0201 220NF 0201 J95198-001 +V3P3_A IN USBC0_RDVR_FLIP R4W28 1 0 0% IN USBC0_RDVR_SCL R4W32 1 0 0% BI USBC0_RDVR_SDA R4W34 1 0 0% IN 2 0402 EMPTY 2 0402 RES 2 0402 RES R5W27 R5J2 1 1K 1 1K 5% 5% 2 EMPTY 2 EMPTY 0402 0402 R4W22 R4W59 R5J1 1 1K 5% 1 1K 5% 1 1K 5% 2 EMPTY 2 EMPTY 2 EMPTY 0402 0402 0402 R5W15 R4W45 R5W24 1 1K 1 1K 1 A93549-016 1K 5% 5% 5% 0.0625W 2 EMPTY 2 EMPTY 2 EMPTY 0402 0402 0402 USBC0_RDVR_A1_SSEQ1 USBC0_RDVR_A0_SSEQ0 USBC0_RDVR_MODE USBC0_RDVR_CEQ1 USBC0_RDVR_CEQ0 USBC0_RDVR_VIO_SEL USBC0_RDVR_AEQCFG USBC0_RDVR_EQCFG R5W28 R5J5 1 1K 5% 1 1K 5% 2 EMPTY 2 RES 0402 0402 R4W20 R4W61 R5J4 1 1K 1 1K 1 1K 5% 5% 5% 2 EMPTY 2 EMPTY 2 EMPTY 0402 0402 0402 R5W16 R4W42 R5W21 A93549-016 1 1K 1 1K 1 1K 5% 5% 5% 0.0625W 2 EMPTY 2 EMPTY 2 EMPTY 0402 0402 0402 GND R4W49 A93549-023 10K 1 5% 0.0625W EMPTY 2 0402 USBC0_RDVR_EN_R USBC0_RDVR_SLP_S0# USB0_SSTX1_TCP_R+ USB0_SSTX1_TCP_R- USB0_SSRX1_TCP_C+ USB0_SSRX1_TCP_C- USB0_SSTX0_TCP_R+ USB0_SSTX0_TCP_R- USB0_SSRX0_TCP_C+ USB0_SSRX0_TCP_C- IN IN USBC0_RDVR_A1_SSEQ1 USBC0_RDVR_A0_SSEQ0 IN USBC0_RDVR_TEST1 IN USBC0_RDVR_MODE USBC0_RDVR_SCL_FLIP USBC0_RDVR_SDA_AEQENZ IN IN USBC0_RDVR_CEQ1 USBC0_RDVR_CEQ0 IN USBC0_RDVR_VIO_SEL IN USBC0_RDVR_AEQCFG IN USBC0_RDVR_EQCFG OUT OUT OUT OUT OUT OUT OUT OUT R5W19 A93549-023 1 10K 5% 0.0625W 2 EMPTY 0402 EU5W2 IC TUSB1104 26 EN 4 SLP_S0_N 9 SSTX2_DP 10 SSTX2_DN 12 13 SSRX2_DP SSRX2_DN 16 15 SSTX1_DP SSTX1_DN 19 SSRX1_DP 18 SSRX1_DN 2 35 SSEQ1/A1 SSEQ0/A0 27 TEST1 17 MODE 21 FLIP/SCL 22 AEQENZ/SDA 29 38 CEQ1 CEQ0 14 VIO_SEL 23 AEQCFG 3 EQCFG VCC VCC VCC VCC CTX2_DP CTX2_DN CRX2_DP CRX2_DN CTX1_DP CTX1_DN CRX1_DP CRX1_DN TESTOUT2 TESTOUT1 NC NC NC NC NC TP_TPD +V3P3_A C5W9 A36096-125 1 10UF 20% 10V 1 6 2 X5R 0402 20 28 40 USB0_SSTX1_RDVR+ 39 USB0_SSTX1_RDVR- 37 USB0_SSRX1_RDVR+ 36 USB0_SSRX1_RDVR- 33 USB0_SSTX0_RDVR+ 34 USB0_SSTX0_RDVR- 30 USB0_SSRX0_RDVR+ 31 USB0_SSRX0_RDVR- 8 NC_USBC0_RDVR_TESTOUT2 7 NC_USBC0_RDVR_TESTOUT1 5 NC_USBC0_RDVR_5 11 NC_USBC0_RDVR_11 24 NC_USBC0_RDVR_24 25 NC_USBC0_RDVR_25 32 NC_USBC0_RDVR_32 41 M28498-001 GND +V3P3_A R4W36 1 1K 5% 2 EMPTY 0402 R4W56 1 A93549-023 10K 5% 0.0625W 2 RES 0402 R4W40 USBC0_RDVR_TEST1 USBC0_RDVR_SDA_AEQENZ OUT OUT 1 1K 5% 2 EMPTY 0402 CAD NOTE: PLACE RESISTORS THAT CONNECT TO PIN 21/22 CLOSE TO IC C5W10 1 0.1UF 10% 25V 2 X7R 0402 C4W14 1 0.1UF 10% 25V 2 X7R 0402 C5W4 1 0.1UF 10% 25V 2 X7R 0402 C4W7 A36096-112 1 0.1UF 10% 25V 2 X7R 0402 GND OUT OUT IN IN OUT OUT IN IN PIN STRAP MODE = F (I2C MODE) VIO_SEL = F (3.3V I2C) A1 = F A0 = 0 I2C ADR = 0X10 (7BIT) AEQENC = SDA AEQCFG = CTRL BY FULLAEQ_UPPER_EQ REGISTER GND PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 71/159 USB3.2 GEN2 #0 (HSIO) - HPC CONN ROW C & D FigFuROrMeR3ED2R:IVERUSB 3.2 Gen 2x2 Type-C (3 of 6): EMI Mitigation and ESD Protection IN USB0_SSTX0_RDVR- IN USB0_SSTX0_RDVR+ IN USB0_SSTX1_RDVR+ IN USB0_SSTX1_RDVR- R4Y6 1 2 0201 EMPTY 0.05W 0 0% L4Y3 1 2 J16541-001 CHOKE 4 3 100MA SM_A 90 30% R4Y5 1 2 0201 EMPTY H30143-001 0.05W 0 0% R4Y12 1 2 0201 EMPTY 0.05W 0 0% L4Y6 1 2 4 SM_A J16541-001 CHOKE 3 100MA 90 30% R4Y11 1 2 0201 EMPTY 0.05W 0 0% H30143-001 USB0_SSTX0_L- OUT USB0_SSTX0_L+ USB0_SSTX1_L+ OUT OUT USB0_SSTX1_L- OUT OUT USB0_SSRX0_RDVROUT USB0_SSRX0_RDVR+ OUT USB0_SSRX1_RDVR+ OUT USB0_SSRX1_RDVR- R4Y18 1 2 0201 EMPTY 0.05W 0 0% L4Y7 1 2 4 SM_A J16541-001 CHOKE 3 100MA 90 30% USB0_SSRX0_L- IN R4Y21 1 2 USB0_SSRX0_L+ IN 0201 EMPTY H30143-001 0.05W 0 0% R4Y8 1 2 0201 EMPTY 0.05W 0 0% L4Y4 1 2 4 SM_A J16541-001 CHOKE 3 100MA 90 30% USB0_SSRX1_L+ IN R4Y7 1 2 0201 EMPTY H30143-001 USB0_SSRX1_L- IN 0.05W 0 0% Reference Schematics and Block Diagrams USB0_SSRX1_LUSB0_SSRX1_L+ USB0_SSTX1_LUSB0_SSTX1_L+ CAD NOTE: PLACE ESD CLOSE TO CONNECTOR 2 2 2 CR4Y13 CR4Y12 CR4Y8 20KV ESD SM 1 20KV ESD SM 1 20KV ESD SM 1 2 CR4Y7 K74755-001 PESD3V3Z1BSF 20KV ESD SM 1 GND USB0_SSRX0_L+ USB0_SSRX0_L- USB0_SSTX0_L+ USB0_SSTX0_L- CAD NOTE: PLACE ESD CLOSE TO CONNECTOR 2 CR4Y6 20KV ESD SM 1 2 CR4Y5 20KV ESD SM 1 2 CR4Y14 20KV ESD SM 1 2 CR4Y16 K74755-001 PESD3V3Z1BSF 20KV ESD SM 1 +V3P3S GND COM USB0_AUX- COM USB0_AUX+ C4V10 0.1UF 125V 0402 C4V9 0.1UF 125V 0402 A36096-112 10% EMP2TY A36096-112 10% EMP2TY USB0_AUX_RUSB0_AUX_R+ DESIGN NOTE: USBC0 REDRIVER NOT SUPPORT DP MODE, AUX PATH DEFAULT DISCONNECTED BI USB2_P0_TCP- R6K6 1 0402 0.0625W 2 A93549-001 EMPTY 0 0% L6K3 90 0.4A 1 752402-015 25% IND 4 USB2_P0_L- R4V28 1 A93549-027 100K 5% 2 0.0625W EMPTY 0402 BI BI R4V27 1 A93549-027 100K 5% 2 0.0625W EMPTY 0402 GND BI BI USB2_P0_TCP+ 2 3 SM USB2_P0_L+ BI R6K5 1 2 0402 0.0625W EMPTY A93549-001 0 0% PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 72/159 Reference Schematics and Block Diagrams FiguUSrBe33.23:GEUN2SB#03(.2HSGIOe)n-2xH2PCTyCOpNeN-CRO(W4 oC f&6)D: P- oCrAtPPS oArFtTMERuxCH/ORKEe/dErSiDver Coupling Capacitors IN USB0_SSTX0_L- IN USB0_SSTX0_L+ IN USB0_SSTX1_L- IN USB0_SSTX1_L+ C4Y6 1 2 X5R 0201 10% 25V 220NF C4Y5 1 2 X5R 0201 10% 25V 220NF C4Y9 1 2 X5R 0201 10% 25V 220NF C4Y10 1 2 X5R 0201 10% 25V J95198-001 220NF USB0_SSTX0_C- OUT USB0_SSTX0_C+ OUT USB0_SSTX1_C- OUT USB0_SSTX1_C+ OUT OUT USB0_SSRX0_LOUT USB0_SSRX0_L+ OUT USB0_SSRX1_LOUT USB0_SSRX1_L+ RC SHORT PROTECTION C4Y17 330NF 1 25V 0201 C4Y19 330NF 1 25V 0201 C4Y7 330NF 1 25V 0201 C4Y8 330NF 1 25V 0201 J96611-001 10% X5R 2 J96611-001 10% X5R 2 J96611-001 10% X5R 2 J96611-001 10% X5R 2 USB0_SSRX0_C- IN USB0_SSRX0_C+ IN USB0_SSRX1_C- IN USB0_SSRX1_C+ IN R4Y17 1 220K 1% R4Y22 1 220K 1% R4Y14 1 220K 1% R4Y13 G13778-001 1 220K 1% 2 RES 0201 2 RES 0201 2 RES 0201 2 RES 0201 GND PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 73/159 Reference Schematics and Block Diagrams Figure 34: USB 3.2 Gen 2x2 Type-C (5 of 6): Type-C Power Delivery Controller +V3P3_PD1_LDO A93549-016 R4V20 1 1K 5% 2 RES 0402 R4V18 1 1K 5% 2 RES 0402 R4V16 1 A93549-023 10K 5% 2 RES 0402 PD1_I2C3_IRQ# PD1_I2C3_SDA PD1_I2C3_SCL COM USB01_OC# R4V5 1 0 2 RES BI PD2_CONN R4V4 1 0 0% 2 RES 0402 COM COM COM COM COM COM USB_PD_I2C_CLK USB_PD_I2C_DAT USB_PD_ALERT# SML1_CLK SML1_DAT PMCALERT# R4V12 R4V10 R4V14 R4V11 R4V15 R4V9 1 1 1 0 0 0 2 2 2 RES RES RES 1 1 1 0 0 0 2 2 2 RES RES RES 0% 0402 A93549-001 DESIGN NOTE: TARGET I2C SALVES ADDR FROM PD CTRL USBC0_RDVR = 0X10 (7BIT) USBC1_RDVR = 0X12 (7BIT) EEPROM = 0X50 (7BIT) OUT OUT OUT OUT OUT BI IN IN IN IN IN OUT BI USBC0_RDVR_SCL USBC0_RDVR_SDA R4V26 R4V19 0 0 1 1 2 2 RES RES 0% 0% PD1_I2C3_SCL PD1_I2C3_SDA IN BI OUT BI USBC1_RDVR_SCL USBC1_RDVR_SDA R4V23 R4V22 0 0 1 1 2 2 RES RES 0% 0% J6J1 CON HDR_1X3 1 2 3 PD1_I2C3_SCL PD1_I2C3_SDA A91829-001 GND USBC PD CTRL EEPROM PROGRAMMING HEADER R4W5 5% R4W6 5% R4W7 5% 10K 10K 10K 1 1 1 0402 2 2 2 RES RES RES PD1_FLASH_A2 PD1_FLASH_A1 PD1_FLASH_A0 A93549-023 PD1_I2C3_SCL GND +V3P3_PD1_LDO PD1_FLASH_WP +V3P3_PD1_LDO U4W1 IC 24AA256 C4W10 A36096-143 1UF 10% 25V X5R 0402 GND 3 A2 2 A1 1 A0 6 SCL 7 WP VCC 8 SDA 5 PD1_I2C3_SDA VSS 4 R4W46 1 20K 1% R4W53 1 2 2 EMPTY 0402 0402 10K RES 5% GND K67554-001 GND 24AA256 (K67554-001) ADDR = 0X50 (7BIT) EU4V1 IC TPS65994 +V3P3_A_SBY C4V5 G33975-001 1 10UF 20% 25V 2 X5R 0603 GND +V3P3_A +V3P3_SBY D71825-002 1 R5V1 2 1% 0.01 0.1W R4V1 0603 RES 1 2 0.01 0603 0.1W 1% EMPTY +V5_A +V3P3_A_SBY PD1_GPIO9 PD1_GPIO8 USB_TCP01_OC# PD1_GPIO6 USBC1_RDVR_FLIP USBC0_RDVR_FLIP PD1_CONN TP_TCP01_LS_EN USBC1_RDVR_EN USBC0_RDVR_EN PD1_EC_I2C_CLK PD1_EC_I2C_DAT PD1_EC_ALERT# PD1_SML1_CLK PD1_SML1_DAT PD1_PMCALERT# PD1_I2C3_SCL PD1_I2C3_SDA PD1_I2C3_IRQ# +VTCPC1_CC2 +VTCPC1_CC1 +VTCPC0_CC2 +VTCPC0_CC1 8 10 27 GPIO9 GPIO8 GPIO7 29 GPIO6 46 GPIO5 2 GPIO4 28 GPIO3 9 GPIO2 38 GPIO1 45 GPIO0 42 40 43 I2C_EC_SCL I2C_EC_SDA I2C_EC_IRQ_N 41 I2C2S_SCL 44 I2C2S_SDA 39 I2C2S_IRQ_N 1 I2C3M_SCL 48 47 I2C3M_SDA I2C3M_IRQ_N 7 6 PB_CC2 PB_CC1 30 PA_CC2 31 PA_CC1 M21651-001 TP_TCP01_LS_EN PD1_GPIO9 PD1_GPIO8 PD1_GPIO6 R4V3 1 1K 5% 0.0625W 2 RES 0402 R4W4 1 1K 5% 0.0625W 2 RES 0402 VIN_3V3 PP5V PP5V PP5V PP5V PP5V PP5V PB_VBUS PB_VBUS PB_VBUS PB_VBUS PA_VBUS PA_VBUS PA_VBUS PA_VBUS ADCIN2 ADCIN1 LDO_1V5 LDO_3V3 PB_GATE_VSYS PB_GATE_VBUS PA_GATE_VSYS PA_GATE_VBUS VSYS GND THPAD 32 C4V19 H14975-001 C4V16 H14975-001 11 12 17 20 25 1 47UF 20% 10V 2 X5R 0805 1 47UF 20% 10V 2 X5R 0805 26 13 +V_TCP_C1_VBUS_CONN 14 15 16 21 +V_TCP_C0_VBUS_CONN 22 23 24 C4V15 1 2 0402 20% 10V 4.7UF X5R C4V11 1 2 0402 4.7UF 20% 10V X5R 35 PD1_ADCIN2 33 PD1_ADCIN1 C4V14 1 A36096-125 10UF 20% 10V 2 X5R 0402 GND C4V13 1 A36096-125 10UF 20% 10V 2 X5R 0402 C4V7 A36096-143 1 1UF 10% 25V 2 X5R 0402 GND +V1P5_PD1_LDO 37 34 4 TP_PD1B_GATE_VSYS 18 TP_PD1B_GATE_VBUS 5 TP_PD1A_GATE_VSYS 19 TP_PD1A_GATE_VBUS 3 PD1_VSYS 36 49 GND R4V21 1 A93549-001 0 0% 0.0625W 2 RES 0402 GND +V3P3_PD1_LDO C4V4 1 A36096-125 10UF 20% 10V 2 X5R 0402 GND C4V6 A36096-121 1 2.2UF 10% 10V 2 X5R 0402 C4V8 1 A36096-134 4.7UF 2 20% 10V X5R 0402 GND +V3P3_PD1_LDO R4W2 1 1K 5% 0.0625W 2 RES 0402 R4W3 A93549-016 1 1K 5% 0.0625W 2 RES 0402 GND DESIGN NOTE: I2C_EC ADDR (7BIT) PORT 0 0X20 PORT 1 0X24 SINK MODE DISABLED PD1_ADCIN1 PD1_ADCIN2 R4V8 A93549-001 0 0% 0.0625W RES 0402 R4V7 1 20K 1% 2 EMPTY 0402 R4V2 1 10K 1% 0.0625W 2 EMPTY 0402 R4V6 A93549-001 0 0% 0.0625W RES 0402 GND > PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 74/159 Figure 35: USB 3.2 Gen 2x2 Type-C (6 of 6): Type-C Connector and Port Protection IN IN BI BI BI BI OUT OUT +V_TCP_C0_VBUS_CONN CR5Y2 C J58608-001 NSR20F30NXT5G 2A DIO SM A GND USB0_SSTX0_C+ USB0_SSTX0_C+VTCPC0_CC1_CONN USB2_P0_L+ USB2_P0_LTCP0_SBU1_CONN USB0_SSRX1_CUSB0_SSRX1_C+ GND DESIGN NOTE: SUPPORT USB MODE ONLY J5K4 SCON A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 USB3_C_SHLD_24P_6M GND_A1 GND_B2 TX1_DP RX1_DP TX1_DN RX1_DN VBUS_A1 VBUS_B2 CC1 SBU2 D_A_DP D_B_DN D_A_DN D_B_DP SBU1 CC2 VBUS_A2 VBUS_B1 RX2_DN TX2_DN RX2_DP TX2_DP GND_A2 GND_B1 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 MH1 MH2 MH3 MH4 MH5 MH6 MH1 MH2 MH3 MH4 MH5 MH6 J40583-001 C5Y16 1 0.1UF 10% 10V 2 X5R 0402 GND C5Y17 1 0.1UF 10% 10V 2 X5R 0402 GND C5Y13 1 0.1UF 10% 10V 2 X5R 0402 C5Y14 A36096-043 1 0.1UF 10% 10V 2 X5R 0402 GND GND USB0_SSRX0_C+ USB0_SSRX0_CTCP0_SBU2_CONN USB2_P0_LUSB2_P0_L+ +VTCPC0_CC2_CONN USB0_SSTX1_CUSB0_SSTX1_C+ OUT OUT BI BI BI BI IN IN GND Reference Schematics and Block Diagrams +V3P3_PD1_LDO +V3P3_PD1_LDO TCP0_FLT# R4V17 BI BI +VTCPC0_CC2_CONN 0402 +VTCPC0_CC1_CONN 1 01R5V17 2 TCP0_RPD_G2 2RES 0% TCP0_RPD_G1 0402 0 RES 0% R4V13 1 A93549-027 100K 5% 0.0625W 2 RES 0402 U4V1 IC TPD6S300 6 RPD_G2 7 RPD_G1 VBIAS 3 VPWR 10 C_SBU1 1 C_SBU2 2 9 FLT_N C_CC1 4 BI USB0_AUX_R+ 15 SBU1 BI USB0_AUX_R- 14 SBU2 C_CC2 5 CC1 12 CC2 11 20 D1 19 D2 GND_1 8 GND_2 13 16 NC1 GND_3 18 17 NC2 GND_TPD 21 +VBIAS_TCP0 C4V20 602433-020 1 0.1UF 10% 50V 2 X7R 0603 GND TCP0_SBU1_CONN TCP0_SBU2_CONN +VTCPC0_CC1_CONN +VTCPC0_CC2_CONN +VTCPC0_CC1 +VTCPC0_CC2 C4V12 A36096-088 1 2.2UF 20% 6.3V 2 X5R 0402 GND BI BI BI BI BI BI J52027-001 GND GND +VTCPC0_CC1_CONN C4V18 1 220PF 10% 50V 2 X7R 0402 GND +VTCPC0_CC2_CONN C4V17 1 220PF 10% 50V 2 X7R 0402 A36096-050 GND BI TCP0_SBU1_CONN BI BI TCP0_SBU2_CONN BI R4V24 R4V25 1 1M 1% 0.0625W 2 EMPTY 0402 1 1M 1% 0.0625W 2 EMPTY 0402 A93548-209 GND 2 SM DIO 3.5A ESD131-B1-W0201 J76907-001 CR6K3 1 USB2_P0_L+ BI USB2_P0_L- BI 2 SM DIO 3.5A ESD131-B1-W0201 J76907-001 CR6K4 1 GND PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 75/159 Reference Schematics and Block Diagrams 3.7.11. USB4 An example COM-HPC USB4 implementation, that supports all USB modes up to USB4 Gen 3x2 and the USB Type-C Alternate Modes is shown in Figures 36 through 41 below. Of course this support requires that the COM-HPC Module used supports these modes as well. See Table 10 above for a summary of all the USB modes. This example includes a USB Power Delivery controller, Texas Instruments TPS65994, in Figure 40 below. In this example, the power delivery is out of the COM-HPC Carrier, at 5V and at up to 3A. See Section 3.7.7. above more some discussion on Power Delivery controllers. Figure 36: USB4 on COM-HPC USB Port 2 (Fig 1 of 6): COM-HPC Side RX Coupling Caps Intel NDA is required https://thunderbolttechnology.net/user/register https://cdrdv2.intel.com/v1/dl/getContent/631030 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 76/159 Figure 37: USB4 on COM-HPC USB Port 2 (Fig 2 of 6): Intel JHL8040R Thunderbolt Retimer Part 1 Reference Schematics and Block Diagrams Intel NDA is required https://thunderbolttechnology.net/user/register https://cdrdv2.intel.com/v1/dl/getContent/631030 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 77/159 Figure 38: USB4 on COM-HPC USB Port 2 (Fig 3 of 6): Intel JHL8040R Thunderbolt Retimer Part 2 Reference Schematics and Block Diagrams Intel NDA is required https://thunderbolttechnology.net/user/register https://cdrdv2.intel.com/v1/dl/getContent/631030 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 78/159 Figure 39: USB4 on COM-HPC USB Port 2 (Fig 4 of 6): Output Coupling and Protection Reference Schematics and Block Diagrams Intel NDA is required https://thunderbolttechnology.net/user/register https://cdrdv2.intel.com/v1/dl/getContent/631030 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 79/159 Figure 40: USB4 on COM-HPC USB Port 2 (Fig 5 of 6): Power Delivery Controller Reference Schematics and Block Diagrams Intel NDA is required https://thunderbolttechnology.net/user/register https://cdrdv2.intel.com/v1/dl/getContent/631030 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 80/159 Figure 41: USB4 on COM-HPC USB Port 2 (Fig 6 of 6): Type-C Connector and USB Port Protector Reference Schematics and Block Diagrams IInntteell NNDDAA iiss rreeqquuiirreedd https://thunderbolttechnology.net/user/register https://cdrdv2.intel.com/v1/dl/getContent/631030 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 81/159 3.8. Boot SPI on Carrier Reference Schematics and Block Diagrams The COM-HPC Base Specification V1.0 describes various boot SPI options at some length in Sections 4.3.9 and 4.3.10. The layout topology for the BOOT_SPI bus is given in Section 6.11.1 of the COM-HPC Base Specification V1.0. Please refer to those Base document sections in addition to the materials presented here to get a bigger picture. Contemporary x86 chipsets typically have a SPI boot bus with three chip-selects: two for up to two SPI Flash devices to hold various pieces of boot firmware including the BIOS, and possibly a backup BIOS, and a 3rd chip-select dedicated to an on-Module TPM. device. The two chip-set chip-selects for boot SPI flash devices can be routed to either two on-Module SPI Flash devices, or to one on-Module SPI Flash and to one Carrier based SPI Flash device. The various possible permutations are selected by a set of three Module strap pins named BSEL0, 1, and 2. See COM-HPC Base Specification V1.0 Section 4.3.10 Table 10 for the decoding of the BSEL[0:2] pins. It is possible to have the entire boot firmware image reside in a Carrier based SPI Flash device. It is also possible of course to have the entire boot image on the module, and it is possible to split the boot image to have some parts on the Module and some on the Carrier. Some Module designs implement multiplexers to allow even more options. A typical Carrier Boot SPI Flash implementation is shown in Figure 42 below.. Some points about this Figure are given on the following page. Figure 42: Boot SPI on Carrier (Example 1) SPI MODE COM QSPI MODE COM VCC_BOOT_SPI COM COM COM COM COM BOOT_SPI_IO3 BOOT_SPI_IO2 BOOT_SPI_IO1 15 ohm R3 15 ohm R4 15 ohm R5 COM BOOT_SPI_IO0 15 ohm R6 COM COM COM COM BOOT_SPI_CLK BOOT_SPI_CS# 15 ohm R7 COM BSEL0 COM BSEL1 COM BSEL2 Jumper Block R1 10K R2 10K C1 100 nF U1 8 VCC 7 HOLD# / IO3 3 WP# / IO2 2 DO / IO1 5 DI / IO0 6 CLK 1 CS# 4 GND Winbond W25Q64JV ( 64 Mbit) W25Q128JV (128 Mbit) W25Q256JV (256 Mbit) PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 82/159 Reference Schematics and Block Diagrams · Notes on Figure 42 above: · The Carrier SPI Flash device power is provided by a special COM-HPC Module pin named VCC_BOOT_SPI. This should be the only power source for the Carrier SPI Flash device and any related pull-ups and bypass capacitors., as shown in the Figure. · The VCC_BOOT_SPI voltage level may be 3.3V or 1.8V. This is Module vendor specific. It is not common or expected that a given SPI Flash device will be able to operate at both 3.3V and 1.8V. A few devices might be able to do so. The SPI Flash devices listed in the Figure above are 3.3V devices, and are not rated at 1.8V. · The VCC_BOOT_SPI power net may be in the S5 (suspend) or S0 (on) power domains. This is Module vendor specific. · QSPI devices from Microchip / SST are shown in the Figure above. Windbond is a very popular selection for QSPI devices: W25Q16JV is a sample Winbond base part number for their 16 Mbit part. There are 16, 32, 64 and 128 Mbit offerings from Winbond. · There are many packaging options available from the QSPI vendors There are package size differences between vendors even for package names that at first glance sound the same (like SOIC8 etc) ... so care must be taken. The Winbond SOIC8 packages are smaller than the Microchip devices. · There are register differences between various SPI Flash vendor offerings. The Module firmware / BIOS may not be compatible with some devices. Check with the Module vendor. Carrier designers should use parts from the same SPI Flash vendor(s) and family as the Module vendor uses. There may be reasons to use different package types on the Carrier: The Module vendor likely uses the smallest possible package size. Carrier designs may want to implement a removable (socketed) SPI Flash device. Carrier designers may elect to use a SPI package that is easier to rework. · Contemporary SPI Flash devices may operate in one of several modes: Traditional SPI mode (noted at left side of Figure 42 above). This mode has one data line into the SPI device and one out. QSPI ("Quad SPI") mode: This mode has 4 bidirectional data lines, offering a higher net data bandwidth. The SPI Flash devices typically power up in the traditional SPI Flash mode and must be put into the QSPI mode by software. · The HOLD# and WP# inputs of a traditional SPI device are disabled by pull-ups R1 and R2 in the Figure above. For QSPI mode operation, the PCB trace stubs from the QSPI data lines to these pull-ups should be minimized. If the SPI device is to immediately be put into QSPI mode, it is likely possible that R1 and R2 can be omitted. · There are specific routing rules for the BOOT_SPI_xx nets. See Section 4.4. of this document and Section 6.11.1 of the COM-HPC Base Specification V1.0. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 83/159 Reference Schematics and Block Diagrams Removable / Reprogrammable SPI Flash Devices In some situations it is desirable or even required to have a socketed or removable Boot SPI Flash device. This is the case, for example, in some casino gaming jurisdictions, to allow the BIOS device to be removed and inspected by a regulatory technician. A socketed or removable BIOS can also be useful in product development situations, allowing easy replacement of a corrupted BIOS device. Some possible socket solutions are listed in Table 15 below: Table 15: Boot SPI Socket Suggestions Vendor Vendor P/N Notes Enplas Lotes Generic ACA-SPI-004-K ACA-SPI-006-T01 Enplas offers a variety of sockets that accept several 8 and 16 pin SOIC sizes. Winbond and other vendors offer some of their SPI Flash devices in a 16 pin SOIC along with a variety of smaller form factors. It may be easier to find a socket for an SOIC16 device. The Carrier Boot SPI Flash device should be from the same flash vendor and family as the part used on the Module. The package details may be different. Should be suitable for the Microchip SST26VFxxxB SOIJ8 parts. Suitable for Macronix MX77U25650F (32 MB 1.8V QSPI) or MX77L25650F (32 MB 3.3V QSPI) 16 pin 300 mil SOIC parts shown in Figure 43 below. Other Lotes socket parts may be relevant here. Winbond offers some of their Flash devices in 300 mil DIP format, for which there are many generic sockets. Some gaming firms design their own removable BIOS assembles. These are sometimes referred to as "cartridges". This allows the use of any SPI Flash device desired, and it can ensure easy removal and replacement of the device.. Some Carrier designers add features that multiplex signals and power to the Carrier SPI Flash device allowing the device to be used as usual in the system or cut the device off from the system and allow the device to be reprogrammed by a cable to an external piece of programming equipment. An example of such implementations (SPI device in a socket and a multiplexer to allow the SPI flash device to be programmed by an external programming tool) is shown in Figure 43 below. The programming tool in this case is from a company called Dediprog. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 84/159 Reference Schematics and Block Diagrams Figure 43: Boot SPI on Carrier Socketed Flash and Multiplexer to External Programmer +V5_SBY DESIGN NOTE: +VCC_BOOT_SPI C5B20 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND S G D 3 1 2 R5B17 1 A93549-023 10K 5% 0.0625W 2 RES 0402 VCC_BOOT_SPI_GATE +V1P8_A +VCC_SPI R4R7 10K 5% EMPTY 0402 Q6B1 MFET D45305-001 FDN339AN SOT23 CAD NOTE: DO NOT OVERLAP PAD. PLACE 2 RES BRANCH CLOSE TOGETHER & LOW STUB COM BOOT_SPI_CS# COM BOOT_SPI_IO0 COM BOOT_SPI_IO1 COM BOOT_SPI_IO2 COM BOOT_SPI_IO3 COM BOOT_SPI_CLK R7E7 1 2 SPI_CS0_R# OUT 0402LF CHIP 16.90 1% R3R20 1 0402 2 RES 0 0% SPI_CS0_TTK# OUT R7F1 1 2 SPI_IO0_R BI 0402LF CHIP 16.90 1% R3R27 1 0402 2 RES 0 0% SPI_IO0_TTK BI R7E8 1 2 SPI_IO1_R BI 0402LF CHIP 16.90 1% R3R31 1 2 SPI_IO1_TTK BI 0402 RES 0 0% R7F2 1 2 SPI_IO2_R BI 0402LF CHIP 16.90 1% R4R9 1 2 SPI_IO2_TTK BI 0402 RES 0 0% R7E6 1 2 SPI_IO3_R BI 0402LF CHIP 16.90 1% R4R10 1 0402 2 RES 0 0% SPI_IO3_TTK BI R7E9 1 2 SPI_CLK_R OUT 0402LF CHIP 16.90 1% R3R26 1 0402 2 RES 0 0% SPI_CLK_TTK OUT +V3P3_A +VCC_SPI +V3P3S R4R8 10K 5% EMPTY 0402 R4R5 10K 5% EMPTY 0402 R4R11 10K 5% EMPTY 0402 SPI_MUX_EN# SPI_MUX_IN R4R12 R6B11 A93549-016 1 1K 5% 0.0625W 2 RES 0402 10K 5% RES +VCC_SPI 0402 R6B4 GND +V3P3_A 1 A93549-023 10K 5% R6B8 A93549-023 1 10K 0.0625W 2 RES 0402 5% 0.0625W 2 EMPTY 0402 +VCC_SPI TTK_PCH_RTC_RST BI BI OUT OUT IN OUT IN IN IN OUT BI IN IN BI IN C4R1 A36096-112 0.1UF 10% 25V X7R 0402 CAD NOTE: PLACE IC NEAR SPI SOCKET EU4R1 IC GND IN IN BI BI BI BI SPI_CS0_TTK# SPI_CLK_TTK SPI_IO0_TTK SPI_IO1_TTK SPI_IO2_TTK SPI_IO3_TTK IN SPI_MUX_EN# IN SPI_MUX_IN 5 TS3A27518E VCC NC1 23 SPI_MUX_CS0_TTK# 24 NC NC2 NC3 NC4 22 SPI_MUX_CLK_TTK 20 SPI_MUX_IO0_TTK 18 SPI_MUX_IO1_TTK 1 COM1 NC5 16 SPI_MUX_IO2_TTK 3 COM2 NC6 19 SPI_MUX_IO3_TTK 4 COM3 6 COM4 7 COM5 9 COM6 NO1 8 17 EN_N NO2 NO3 10 12 NO4 14 21 11 IN1 IN2 NO5 NO6 15 13 2 GND 25 THPAD USB2_P4_TTK_L+ USB2_P4_TTK_LTTK_PWR_BTN# TTK_UART0_RX TTK_UART0_TX TTK_UART0_CTS# TTK_UART0_RTS# PWRGOOD_TTK TTK_SUS_S3# TTK_SUS_S4# TTK_PCH_RTC_RST TTK_SMB_DAT TTK_SMB_CLK SPI_TPM_GPIO_RST# SPI_MUX_CLK_TTK SPI_MUX_IO3_TTK TTK_PLTRST# OUT OUT BI BI BI BI J6B1 SCON HDR_2X25_K29_K30_K31 (BUE) TTK3 + DEDIPROG PROG CONN 1 3 2 TTK_RST_BTN 4 NC_ECUART_CTS# OUT 5 6 NC_EC_UART_RTS# 7 8 NC_EC_UART0_RX 9 10 NC_EC_UART_TX 11 12 V3P3_EC_TTK 13 15 17 14 PORT80_SMB_DAT 16 PORT80_SMB_CLK 18 IN IN 19 20 NC_TTK_SUS_S0# 21 23 25 27 22 TTK_I2C0_DAT 24 TTK_I2C0_CLK 26 TTK_SUS_S5# 28 TTK_CATERR# BI IN IN IN 33 32 SPI_MUX_CS0_TTK# 34 NC_SPI_CS1_TTK# IN 35 36 37 39 41 43 38 SPI_MUX_IO2_TTK 40 SPI_MUX_IO1_TTK 42 SPI_MUX_IO0_TTK 44 BI BI BI 45 46 TTK_PLT_DET R6B17 1 47 48 49 50 +VCC_SPI_TTK_R R6B18 1 K18833-001 GND GND +V3P3_A R6B24 1 2 10K 0402 RES A93549-023 +VCC_SPI C6B3 A36096-112 0.1UF 10% 25V +VCC_SPI X7R 0402 GND 2 RES 10K 0402 GND 2 EMPTY 0 0402 C6B2 A36096-112 1 0.1UF 10% 25V 2 X7R 0402 COM PLTRST# R6B3 1 0 2 RES 0402 GND TTK_PLTRST# OUT OUT OUT RST_BTN_FP PWR_BTN_FP R6B25 R6B16 1 1 0 0 2 2 RES RES 0402 0402 TTK_RST_BTN TTK_PWR_BTN# IN IN COM COM COM COM UART0_TX UART0_RX UART0_RTS# UART0_CTS# R6B14 R6B15 R6B12 R6B13 1 1 1 1 0 0 0 0 2 2 2 2 RES RES RES RES 0402 0402 0402 0402 TTK_UART0_TX TTK_UART0_RX TTK_UART0_RTS# TTK_UART0_CTS# OUT IN OUT IN COM COM OUT COM SUS_S3# SUS_S4_S5# RTC_RST_N RTC_RST# GPIO_09 R6B10 R6B20 R6B9 1 1 1 0 0 0 FROM FUSA CONN R6B7 R6B19 1 1 0 0 2 2 2 RES 0402 EMPTY 0402 RES 0402 TTK_SUS_S3# TTK_SUS_S5# TTK_SUS_S4# C6B1 1 2 EMPTY 0402 A36096-112 0.1UF GND 2 2 RES RES 0402 0402 TTK_PCH_RTC_RST TTK_CATERR# OUT OUT OUT IN OUT +VCC_SPI C3R2 1 0.1UF 10% 25V 2 X7R 0402 C3R3 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND BI BI BI BI IN IN SPI_IO3_R SPI_IO2_R SPI_IO1_R SPI_IO0_R SPI_CLK_R SPI_CS0_R# NC_SPI_16P_RST# R7E5 1 10K 5% EMPTY 2 0402 R7F3 A93549-023 1 10K 5% EMPTY 2 0402 DESIGN NOTE: BOM: SPI CHIP MACRONIX K91180-001 MX77L25650FMI42 (3.3V SOP16) M35512-001 MX77U25650FMI42 (1.8V SOP16) XU7E1 SKT SPI_FLASH_16P BOARD S0 BOARD G3 , TTK POWERED 2 VCC 1 NC0/SIO3 9 WP_N/SIO2 8 15 SO/SIO1 SI/SIO0 16 SCLK 7 3 CS_N RESET_N NC NC NC 4 13 14 DNU DNU 5 6 DNU DNU 11 12 GND 10 D91187-001 GND CAD NOTE: G75680-001 GND +VCC_SPI GPIO9 = LVL_SFTED 3.3V CATERR FROM MODULE COM COM COM COM COM COM SMB_CLK SMB_DAT I2C0_CLK I2C0_DAT USB_PD_I2C_CLK USB_PD_I2C_DAT R6B5 R6B6 R6B21 R6B26 R6B22 R6B23 1 1 1 1 1 1 0 0 0 0 0 0 2 2 2 2 2 2 RES RES RES RES RES RES 0402 0402 0402 0402 0402 0402 TTK_SMB_CLK TTK_SMB_DAT TTK_I2C0_CLK TTK_I2C0_DAT PORT80_SMB_CLK PORT80_SMB_DAT OUT BI OUT BI OUT BI COM RSMRST_OUT# R4R4 1 2 0402 RES 0 R4R2 A93549-023 10K 1 5% 0.0625W EMPTY 2 0402 Q4R1 C81974-001 BSS138LT1G MFET SOT23 RSMRST_OUT_R# G 1 R4R1 A93549-023 1 10K 5% 0.0625W 2 RES 0402 RSMRST_OUT_R_FET 3 D G 1 S 2 R4R6 1 A93549-023 10K 5% 0.0625W 2 RES 0402 RSMRST_OUT_R_FET2 3 D Q4R2 C81974-001 BSS138LT1G MFET S SOT23 2 R4R3 1 2 0402 RES SPI_MUX_EN# 0 OUT PLACE SPI SOCKET NEAR HPC CONN GND GND GND PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 85/159 Reference Schematics and Block Diagrams 3.9. eSPI The COM-HPC Client and Server pin-outs support an eSPI (Enhanced Serial Peripheral Interface) port. There may be up to two eSPI devices on the Module and up to two eSPI devices on the Carrier. The eSPI interface is promoted as the successor to to the LPC (Low Pin Count) general x86 I/O interface. The eSPI data and clock signals run at about 50 MHz. The COM-HPC Base Specification Section 6.11.2 recommends a "balanced tree" routing topology. This is also referenced in Section 4.4. of this document. Figure 44 below illustrates a "generic" eSPI implementation example for one branch of the tree, that might apply to a Carrier Super I/O, FPGA, CPLD, eSPI to LPC bridge, or other eSPI peripheral. The COM-HPC eSPI interface is a 1.8V level interface that operates in all power states, S5 through S0. The Figure shows some additional signals that are 3.3V level signals, also active in all power domains, that may be needed for some eSPI peripheral implementations. Some Carrier situations may require legacy Intel LPC (Low Pin Count) compatibility. The Microchip ECE1200 is a suitable eSPI to LPC bridge device that is referenced in some Intel literature for this task. Microchip is also a popular vendor for Carrier based management micro-controllers with an eSPI interface. Figure 44: eSPI Generic Interface Example: SIO, FPGA, LPC Bridge, or Other Peripheral eSPI Device COM COM COM COM COM COM COM COM COM COM COM COM COM 1.8V S5 Power Domain Signals to / from COM-HPC eSPI_IO3 eSPI_IO2 eSPI_IO1 eSPI_IO0 eSPI_CLK 15 ohm R1 15 ohm R2 15 ohm R3 15 ohm R4 15 ohm R5 Series Damping Resistors eSPI_CS0# eSPI_CS1# eSPI_ALERT0# eSPI_ALERT1# 0 ohm R6 Open R7 0 ohm R8 Open R9 Opt on Resistors eSPI_RST# PLTRST# RSMRST_OUT# SUS_CLK 3.3V S5 Power Domain Signals from COM-HPC +1.8V_A C1 100 nF VCC_1V8_S5 U1 VCC_3V3_S5 eSPI_IO3 eSPI_IO2 eSPI_IO1 eSPI_IO0 eSPI_CLK eSPI_CS# eSPI_ALERT# eSPI_RESET# RESET# RESUME_RESET_IN# SUS_CLK GND Super I/O FPGA / CPLD eSPI to LPC Bridge eSPI Peripheral +3.3V_A C1 100 nF PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 86/159 3.10. DisplayPort Over DDI Reference Schematics and Block Diagrams Figure 45: DisplayPort Over DDI R? 0 0603 SHIELD DDI0_PAIR0+ COM DDI0_PAIR0- COM DDI0_PAIR1+ COM DDI0_PAIR1- COM DDI0_PAIR2+ COM DDI0_PAIR2- COM DDI0_PAIR3+ COM DDI0_PAIR3- COM DDI0_DDC_AUX_SEL COM DDI0_SDA_AUX+ COM DDI0_SDA_AUX- COM 8x 0402 25V 100n C310 C311 C312 C313 C314 C315 C316 C317 DP0_CEC DP0_HPD DLP11TB800UL2L TR31 DP0_TXP0 DP0_TXN0 DLP11TB800UL2L TR30 DP0_TXP1 DP0_TXN1 DLP11TB800UL2L TR32 DP0_TXP2 DP0_TXN2 DLP11TB800UL2L TR33 DP0_TXP3 DP0_TXN3 DLP11TB800UL2L TR34 DP0_AUXP DP0_AUXN +3.3V_S F7 NANOSMDC075F +5V_S R278 2 1 L28 D57 SDM2U40CSP-7B Q30 2 3 1K 0402 1 SI2312CDS-T1-GE3 BLM18PG121SN1J C319 100n 25V 0402 3.3V_DP0 D58 ESD9X3.3ST5G G1 CN52 G2 1 2 D0+ 3 4 D0- 5 6 GND 7 8 D2+ 9 10 D2- 11 12 GND 13 14 CAD/GND 15 16 AUX+ 17 18 AUX- 19 20 GND G3 G4 GND D1+ D1GND D3+ D3CEC/GND GND HPD PWR W DPE-20F5L1BU3 R200 0 0603 R279 SHIELD 100K 0402 DP0_CEC DP0_HPD DDI0_DDC_AUX_SEL R275 R276 R277 5.1M 0402 100K 0402 1M 0402 DP0_AUXN 10 DP0_AUXP 9 DP0_HPD 7 DDI0_DDC_AUX_SEL 6 D54 1 2 4 5 DP0_AUXN DP0_AUXP DP0_HPD DDI0_DDC_AUX_SEL AOZ8809ADI-05 8 3 DDI0_HPD COM U49 6 +3.3V_S Y1 A1 1 C318 5 VCC GND 2 100n 4 Y2 A2 3 25V 0402 NC7W Z16P6X DP0_HPD DP0_TXN1 10 DP0_TXP1 9 DP0_TXN0 7 DP0_TXP0 6 DP0_TXN3 10 DP0_TXP3 9 DP0_TXN2 7 DP0_TXP2 6 3 8 D55 1 2 4 5 DP0_TXN1 DP0_TXP1 DP0_TXN0 DP0_TXP0 AOZ8809ADI-05 D56 1 2 4 5 DP0_TXN3 DP0_TXP3 DP0_TXN2 DP0_TXP2 AOZ8809ADI-05 8 3 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 87/159 Reference Schematics and Block Diagrams Notes on DisplayPort over DDI: · COM-HPC supports three DDI channels, designated DDI0, DDI1 and DDI2. The Figure above uses DDI0 as an example. · DisplayPort data pairs are capacitively coupled, near the DisplayPort cable connector, as seen in the Figure above (C310 through C317). This is in contrast to HDMI data pairs which are typically DC coupled. However, some HDMI buffers / level shifters / redrivers use AC coupling at the buffer inputs and DC coupling at the buffer outputs. · The DisplayPort AUX channel data pair (net names DDI0_SDA_AUX+ and in this example) are AC coupled on the COM-HPC Module, when the DDI channel is used in DisplayPort mode. When the DDI channel is used in HDMI mode, the DDIx_SDA_AUX+ and pair (where `x' is 0,1 or 2) are DC coupled on the Module, for the HDMI SDA and SCL I2C setup channel. · The COM-HPC signal DDIx_DDC_AUX_SEL signals are Module input signals that are used to select either DisplayPort or HDMI mode. If the signal is pulled or driven low, or left NC, then the Module invokes DisplayPort mode. If the signal is driven to a logic high, then the Module invokes HDMI mode. In this schematic example, the DDI0_AUX_SEL Module input signal is pulled low by R277 and ESD protected by part of ESD diode array D54. · Almost all connections to the DP connector CN52 in the Figure are provided with EMI suppression components (common mode choke elements TR30 through TR34) and ESD protection arrays (D54 through D56). The EMI and ESD mitigation components used must be appropriate for the high data rates used by the DisplayPort data pairs. For the ESD diode arrays, this means selecting parts with a sufficiently low pin capacitance. For the EMI chokes, the selected parts should have a low differential impedance but a relatively high common mode impedance. It is extremely important that all the nets the DisplayPort data path be routed as differential pairs, preferably against an unbroken GND plane and without any stubs, or with minimal stubs. Note that the ESD protection arrays used in the example have 2 lands for each net being protected. This is to facilitate no-stub "flow through" routing. The ESD diode arrays should be positioned next to the DP connector pins. ESD diode array pins can be pin-swapped if needed to provide a cleaner PCB layout. DP connector pin 18 is used as a "Hot Plug Detect" signal. The external display drives this signal to a logic high to signal a display hot plug event. This signal is ESD protected by an element of D54 and buffered and level translated by U49 before being passed on to the COM-HPC module. The buffer input is pulled down by R276 in the example, ensuring that the COM-HPC HPD input signal is low if no DP display is present. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 88/159 Reference Schematics and Block Diagrams Some COM-HPC DisplayPort implementations may require a Carrier based redriver. A few industry offerings are listed in Table 16 below. There are of course more parts available on the market. Table 16: DisplayPort Redrivers and Retimers Vendor P/N Notes Diodes Inc PI3DPX1203B PI3DPX8121 Parade Semicon- PS8463 ductor Texas Instruments DS160PR410 4 lane DisplayPort 1.4 redriver; up to 8.1 Gbps link rate DisplayPort 1.4 and 2.0 compatible 2:1 mux and redriver, 2 sets of 4 lane inputs and a 4 lane output, with up to a 10 Gbps link rate. DisplayPort 1.4 redriver (8.1 Gbps) HDMI 2.0 redriver (6 Gbps) 4 lanes This part is primarily a 4 lane PCIe Gen 4 capable redriver. However, the TI literature states that the part can be used for DisplayPort 2.0 redriver purposes, by setting a certain strap to disable the "PCIe Detect" mode. This is a very high bandwidth part and may work well with all DisplayPort modes. There are quite a few USB Type-C and a few USB4 port multiplexers that incorporate redriver and in some cases retimer circuits. Such products come from Diodes Inc., Texas Instruments, and others. The Intel JHL8040R, also known as the "Burnside Bridge", does DisplayPort, USB and PCIe retiming along with other USB Type-C and Thunderbolt functions. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 89/159 3.11. HDMI Over DDI Figure 46: HDMI Over DDI Reference Schematics and Block Diagrams R38 0402 R39 0402 R40 0402 I2C addr = 0x70 0ohms 1% 0ohms 1% 0ohms 1% DDI0_A0 DDI0_A1 DDI0_A4 R41 0402 R42 0402 R43 0402 R46 0402 R47 0402 R48 0402 R49 0402 R50 0402 R51 0402 R52 0402 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% 0ohms 1% DDI0_PM DDI0_DE0 DDI0_DE1 DDI0_BST0 DDI0_BST1 DDI0_BST2 DDI0_BST3 DDI0_VOD1 DDI0_PS0 DDI0_PS1 GND *HDMI buffer has internal pull ups COM DDI0_DDC_AUX_SEL 10Kohms 1% DDI0_A0 DDI0_A1 DDI0_A4 DDI0_PM DDI0_DE0 DDI0_DE1 COM COM COM COM COM COM COM COM +3.3V_S R57 0402 DDI0_PAIR0+ DDI0_PAIR0- DDI0_PAIR1+ DDI0_PAIR1- DDI0_PAIR2+ DDI0_PAIR2- DDI0_PAIR3+ DDI0_PAIR3- HDMI_SCL HDMI_SDA DDI0_BST0 DDI0_BST1 DDI0_BST2 DDI0_BST3 DDI0_VOD1 DDI0_PS0 DDI0_PS1 22 16 17 20 NC 21 1 2 U6 A0 A1 A4 PEN PIN_MODE DE1 DE0 V_VDD_3 V_VDD_9 V_VDD_15 V_VDD_24 V_VDD_27 V_VDD_33 V_VDD_36 +3.3V_S_DDI0 3 9 15 24 27 33 36 4 A0RX_+ 5 A0RX_- A0TX_+ 35 A0TX_- 34 HDMI0_PAIR2+ HDMI0_PAIR2- 7 A1RX_+ 8 A1RX_- A1TX_+ 32 A1TX_- 31 HDMI0_PAIR1+ HDMI0_PAIR1- 10 A2RX_+ 11 A2RX_- A2TX_+ 29 A2TX_- 28 HDMI0_PAIR0+ HDMI0_PAIR0- 13 A3RX_+ 14 A3RX_- A3TX_+ 26 A3TX_- 25 HDMI0_CLK+ HDMI0_CLK- 19 SCL 18 SDA 39 BST0 40 BST1 41 BST2 42 BST3 23 VOD1 37 PS0 38 PS1 GND_6 6 GND_12 12 GND_30 30 THMPAD_43 43 GND PI3HDX1204-B HDMI0_PAIR0+ HDMI0_PAIR0- HDMI0_PAIR1+ HDMI0_PAIR1- L1 1 IN_1+ 2 IN_1- OUT_1+ 10 OUT_1- 9 4 IN_2+ 5 IN_2- OUT_2+ 7 OUT_2- 6 3 GND_3 GND_8 8 EMI8042MUTAG HDMI0_PAIR2+ HDMI0_PAIR2- L2 1 IN_1+ 2 IN_1- OUT_1+ 10 OUT_1- 9 HDMI0_CLK+ HDMI0_CLK- 4 IN_2+ 5 IN_23 GND_3 OUT_2+ 7 OUT_2- 6 GND_8 8 GND EMI8042MUTAG GND HDMI0_SCL HDMI0_SDA HDMI0_HPD HDMI0_DATA0+ HDMI0_DATA0- HDMI0_DATA1+ HDMI0_DATA1- HDMI0_DATA2+ HDMI0_DATA2- HDMI0_DCLK+ HDMI0_DCLK- J2 7 TMDS_DATA0+ 9 TMDS_DATA08 TMDS_DATA0_SHIELD 4 TMDS_DATA1+ 6 TMDS_DATA15 TMDS_DATA1_SHIELD 1 TMDS_DATA2+ 3 TMDS_DATA22 TMDS_DATA2_SHIELD 10 TMDS_CLOCK+ 12 TMDS_CLOCK11 TMDS_CLOCK_SHIELD +5.0V_S_DDI0 V_+5V_POWER 18 15 SCL DDC/HEC/CEC_GND 17 16 SDA S1 S1 19 HOT_PLUG_DETECT/HEC_DATA+ S2 S2 13 NC CEC S3 S3 14 NC RESERVED/HEC_DATA- S4 S4 GND FCI_10029449-001TLF GND +5.0V_S 1A1-S D2 F1 +5.0V_S_FDDI0 2 1 1812 PMEG2010AE +5.0V_S_DDI0 +3.3V_S D1 2 1 PMEG2010AE +3.3V_S_DDI0 C41 0603 C43 0402 C44 0402 C45 0402 C46 0402 C47 0402 C48 0402 C49 0402 C42 0603 C50 0402 10uF 16V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 0.1uF 25V 10uF 16V 0.1uF 25V GND GND +3.3V_S_DDI0 GND GND GND GND GND GND GND GND +5.0V_S *Optional HDMI I2C configuration control COM COM +3.3V_S U7 1 V_VCCA V_VCCB 8 I2C0_CLK I2C0_DAT 2 A0 3 A1 B0 7 B1 6 25V 0.1uF 1% 2.8Kohms 1% 2.8Kohms 0402 C51 0402 R54 0402 R53 4 BSS138DW Q1 5 3 D4 2 MMBZ6V8 3 1 COM DDI0_HPD HDMI_SCL HDMI_SDA To Buffer HDMI0_HPD NC To connector GND 5 OE FXMA2102 GND 4 GND +3.3V_S +5.0V_S_DDI0 0402 C52 0402 R45 0402 R44 R55 1% DNI 0402 R56 1% DNI 0402 COM COM DDI0_SCL__AUX+ DDI0_SDA__AUX- 2.8Kohms 2.8Kohms +3.3V_S U8 1 V_VCCA V_VCCB 8 2 A0 3 A1 B0 7 B1 6 5 OE GND 4 FXMA2102 GND *Video I2C needs one buffer per port 25V 0.1uF 1% 2.8Kohms 1% 2.8Kohms 2 D3 MMBZ6V8 3 1 HDMI0_SCL HDMI0_SDA GND To connector PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 90/159 Reference Schematics and Block Diagrams Notes on Figure 46: HDMI Over DDI Above · COM-HPC DDI signals can generally operate in DP mode or HDMI mode. · COM-HPC input signal DDIx_DDC_AUX_SEL (where x is 0, 1 or 2) selects between DP mode and HDMI mode. DDIx_DDC_AUX_SEL left open or pulled low selects DP mode for DDIx. DDIx_DDC_AUX_SEL pulledor driven high to +3.3V_S selects HDMI mode for DDIx. · DP signals are AC coupled DP data pairs are AC coupled on the Carrier near the DP connectors, as can be seen in Figure 45: Dis- playPort Over DDI above. DP AUX_SEL pairs are AC coupled on the COM-HPC Module (nets DDIx_SDA_AUX+ and in Figure 45). · HDMI signals are generally DC coupled at least from the HDMI / TMDS driver outputs, across the HDMI cable and on to the HDMI / TMDS receiver. DC coupling is shown for the HDMI / TMDS data pairs and the SDA / SCL setup lines in Figure 46 above. · Figure 46 uses a Diodes Inc / Pericom PI3HDX1204B combination HDMI level translator and redriver (U6 in the Figure). This part can be configured by resistor straps or over I2C. Both options are shown in the Figure. Components L1 and L2 are On Semiconductor EMI8042MUT offering combined ESD protection and EMI suppression. Note that the +3.3V level DDIx_SDA_AUX+ and HDMI setup signals are translated to a +5V level with component U8. ESD protection is included for all signals facing the outside world. · There are many alternative HDMI level translators on the market. Texas Instruments, Analog Devices, Silicon Labs, Diodes Inc. and others offer HDMI level translators, redrivers and retimers. Many devices have built in ESD protection and level translation for the HDMI data pairs and the SDA / SCL setup channel. See Texas Instruments TPD12S016 for a basic HDMI level translator with integrated ESD protection. Some HDMI redrivers / retimers use AC coupling at their inputs, and DC coupling to the cable at their outputs. See, for example, Texas Instruments TDP158. · There may be licensing fees involved if HDMI implementations are used, and strict rules about logo use. Check with the HDMI organization (www.hdmi.org). PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 91/159 Reference Schematics and Block Diagrams 3.12. eDP Figure 47: eDP Schematic Example R290 0 0603 G 1 SHI ELD G2 eDP_BKLT_CTRL COM U66 +3.3V_S 3 1 6 A B C VCC Y GND 5 4 2 BKLT_CTRL 74AUP1T97L6X C664 100n R566 100K 25V 0402 0402 eDP_HPD COM U52 6 +3.3V_S Y1 A1 1 C361 5 VCC GND 2 25V 100n 4 Y2 A2 3 0402 NC7W Z16P6X R291 0402 100K VDISP_BKLT eDP_VDD_EN EDPHPD VDISP_VDD eDP_AUX- COM eDP_AUX+ COM eDP_TX0+ COM eDP_TX0- COM eDP_TX1+ COM eDP_TX1- COM eDP_TX2+ COM eDP_TX2- COM eDP_TX3+ COM eDP_TX3- COM 10x 0402 25V 100n C1654 C1655 EXT_EDP_AUX_DN EXT_EDP_AUX_DP C1651 C1650 EXT_EDP_TXP0 EXT_EDP_TXN0 C1653 C1652 EXT_EDP_TXP1 EXT_EDP_TXN1 C1657 C1656 EXT_EDP_TXP2 EXT_EDP_TXN2 C1659 C1658 EXT_EDP_TXP3 EXT_EDP_TXN3 DLP11TB800UL2L TR1 DLP11TB800UL2L TR2 DLP11TB800UL2L TR3 DLP11TB800UL2L TR4 DLP11TB800UL2L TR5 EXT_EDP_AUX_DN_Filt EXT_EDP_AUX_DP_Filt EXT_EDP_TXP0_Filt EXT_EDP_TXN0_Filt EXT_EDP_TXP1_Filt EXT_EDP_TXN1_Filt EXT_EDP_TXP2_Filt EXT_EDP_TXN2_Filt EXT_EDP_TXP3_Filt EXT_EDP_TXN3_Filt CN42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 I-PEX 20455-040E PIN 1 G4 G3 SHI ELD NOTE: To use with straight eDP cables R300 0 0603 PANEL BACKLIGHT VOLTAGE SELECTION Set 1-2: 12V Set 2-3: 5V (Default) +3.3V_A 100n C666 JP12 +12V_S 1 U67 NCP45521IMNTW G-H 0402 25V VCC 3 2 V_BKLT +5V_S 3 2211S-03G P12 2228CG 10C06n68 25V 0402 1 9 VIN VIN 2 EN VOUT VOUT 7 8 BLEED 5 R567 1K 0402 10C06n69 25V 0402 VDISP_BKLT F12 5004V02 miniSMDC150F/24-2 10n C670 4 GND 6 PG/SR eDP_BKLT_EN COM R568 100K 0402 C10607n1 25V 0402 VDISP_BKLT C341 C342 C343 C344 C345 22u 25V 100n 25V 100n 25V 100n 25V 100n 25V 0805 0402 0402 0402 0402 PANEL VDD VOLTAGE SELECTION Set 1-2: 5V Set 2-3: 3.3V (Default) +3.3V_A 100n C674 JP13 +5V_S 1 U69 NCP45521IMNTW G-H 0402 25V VCC 3 2 V_VDD +3.3V_S 3 2211S-03G P13 2228CG 10204C500V6n276 1 9 VIN VIN 2 EN VOUT VOUT 7 8 BLEED 5 4 GND 6 PG/SR eDP_VDD_EN COM R570 100K 0402 eDP_VDD_EN C10608n0 2054V02 R569 402 0402 10204C500V6n277 VDISP_VDD F13 C1500046nV0728 microSMD150F-2 VDISP_VDD C346 C347 C350 C348 C349 22u 25V 100n 25V 100n 25V 100n 25V 100n 25V 0805 0402 0402 0402 0402 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 92/159 Figure 48: eDP Connector Pin Numbering 1 I-PEX 20455-040E Pin Numbering Cable Entry Reference Schematics and Block Diagrams 40 40 1 VESA and Display Vendor Pin Numbering Cable Entry The connector used for most eDP implementations is the I-PEX 20455-040E or equivalent. There can be some confusion about the pin numbering used in eDP systems. The connector vendor defines pin 1 at the left, as shown in the upper part of Figure 48 above. For reasons perhaps better lost to history, VESA and hence the eDP display vendors put pin 1 at the right side of the connector, as illustrated in the lower portion of the Figure, in spite of the datum mark at the left end of the connector. The eDP schematic sample in Figure 47 above uses the I-PEX pin numbering (as PCB designers generally prefer to follow the component vendor's data sheet when making up PCB footprints). The net result here is that I-PEX pin 1 needs to map to VESA / Display pin 40, I-PEX pin 2 to VESA / Display pin 39 and so on. This happens with the straight through cable shown in Figure 47 above (which uses the I-PEX pin numbering on both ends of the cable). This cable works between a COM-HPC Carrier and a VESA eDP display (which uses the VESA pin order). Display cables for eDP typically use micro-coax wiring. The + and conductors of an eDP data pair travel in separate but adjacent coax lines. Hence they are not electromagnetically coupled within the cable assembly, but since each conductor is completely shielded and are equal length, the differential transmission properties are preserved and this works very well even at the highest eDP data rates. The PCB traces on the Carrier and within the display assembly should be edge coupled differential pairs, as per usual. Additional eDP Example Material An alternative eDP example implementation is presented in Section 6.2. , Appendix B: Alternative eDP Example near the end of this document. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 93/159 3.12.1. eDP / DP Conversions to Other Video Formats Reference Schematics and Block Diagrams There are a number of video format conversion bridges available from NXP (www.nxp.com), Chrontel (www.chrontel.com) and others. These products allow conversion from eDP or DP to LVDS, analog VGA , HDMI, DVI and a host of older video formats such as CVBS, S-Video, BT656, BT1120, YPbPr etc. LVDS displays are not directly supported by COM-HPC. However conversion from an eDP or DP source (from COM-HPC) to LVDS input format displays is easily achieved using either the NXP PTN3460 (PTN3460I for the industrial temperature version) or the Chrontel CH7515. All common LVDS formats (single channel, dual channel, 16 / 18 / 24 bit color depths) are supported by these NXP and Chrontel parts. COM-Express Modules from several vendors routinely use the NXP PTN3460I behind the scenes to produce the COM-Express LVDS outputs from the chipset eDP channel. It may be wise to check with your Module vendor before selecting an eDP / DP conversion part, as the vendor may have a preference and have software / firmware support favoring a particular part. Some subtleties such as VESA EDID support, backlight control etc. may be easier using the video conversion part(s) supported by the COM-HPC Module vendor. Analog VGA support is still important in some limited markets. The NXP PTN3355 and the Chrontel CH7517 are popular parts for this task. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 94/159 3.13. MIPI-CSI Camera Interface Figure 49: MIPI-CSI CSI0_RX0- R1 0ohm CSI0_RX1+ CSI0_CLK- R2 0ohm R5 0ohm CSI0_RX2+ CSI0_RX3- R8 0ohm R9 0ohm CSI0_RST#_3V CSI0_I2C_CLK_3V +3.3V_S R12 0ohm R13 0Ohm C1 0.1uF_10V CN1 FPC/FFC_22 G3 G4 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 G1 G2 Molex/525592253 R3 0ohm R4 0ohm R6 0ohm R7 0ohm R10 0ohm R11 0ohm Reference Schematics and Block Diagrams CSI0_RX0+ CSI0_RX1CSI0_CLK+ CSI0_RX2CSI0_RX3+ CSI0_ENA_3V CSI0_MCLK_3V CSI0_I2C_DAT_3V +1.8V_S +3.3V_S C4 1uF_6.3V CSI0_ENA CSI0_RST# U2 2 VCCA VCCB 19 C5 1uF_6.3V C2 1uF_6.3V 1 3 4 5 6 7 8 9 A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 20 18 17 16 15 14 13 12 CSI0_ENA_3V CSI0_RST#_3V CSI0_I2C_CLK CSI0_I2C_DAT 10 OE GND 11 +3.3V_S +1.8V_S +3.3V_S C3 1uF_6.3V +3.3V_S U1 1 2 3 4 VCCA SCLA SDAA GND VCCB SCLB SDAB EN 8 7 6 5 TCA9517ADGKR_VSSOP8 R14 2.2K_+-1% R15 2.2K_+-1% CSI0_I2C_CLK_3V CSI0_I2C_DAT_3V TXS0108EPWR_TI 1 5 CSI0_MCLK 3 R16 0ohm NI Vcc OE 2 4 R1 1k NI Gnd U3 NI 74LVC1G125_SOT23-5 CSI0_MCLK_3V R18 0ohm_+-1% A typical Carrier board MIPI-CSI implementation is shown in Figure 49 above. There is no standard connector for MIPI-CSI use. The Molex part shown in the Figure above is a reasonable choice but many others are used in various situations. The example above distributes +3.3V_S power to the camera, appropriate for many camera assemblies. However, many MIPI cameras are 1.8V devices, and the COM-HPC MIPI-CSI is defined as a 1.8V interface in the COM-HPC Base Specification document. Camera and support software selection is an important part of implementing a MIPI-CSI system. The cameras have particular data formats and non-linear data compensation requirements to account for camera characteristics. It is important to have a software driver plan that aligns with the camera choice and the Module chipset or SOC choice. There may well be NRE charges from the Module vendor to get a MIPI-CSI camera solution working, unless the vendor has a "canned" solution to offer. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 95/159 Reference Schematics and Block Diagrams 3.14. 3.14.1. Audio Interfaces General Discussion The COM-HPC Client Module pin-out allows for up to four SoundWire audio ports and one I2S audio port. No audio support at all is offered on the COM-HPC Server Module pin-out. The first two COM-HPC Client Mode SoundWire ports, numbered as 0 and 1, are free and clear and are not shared. Port 0 and Port 1 are two pins each, with CLK and DAT lines. The 3rd and 4th COM-HPC SoundWire ports, numbered as 2 and 3, are pin shared with an I2S audio port. No Intel HD Audio support at all is offered with COM-HPC revision 1.0. However it is to be offered in COMHPC Base Specification revision 1.1 due to some delays in the industry SoundWire rollout. SoundWire is expected to be the mainstream x86 system audio interface going forward. I2S audio interfaces are also available on many contemporary x86 chipsets. I2S is the most popular audio interface on ARM designs at the time of this writing. This may shift to SoundWire over time. 3.14.2. MIPI SoundWire Summary · A 2 wire interface (CLK and DAT) is used. For most implementations there is a single Master and there may be multiple Slaves The CLK is an output from the Master DAT is bidirectional signal, with data to and from Slaves The Master controls the DAT line direction, per MIPI SoundWire protocol · The SoundWire CLK and DAT lines may be run at 1.8V or 1.2V (per the MIPI specification) COM-HPC uses 1.8V SoundWire signaling This signaling should be available in all system states, S5 through S0 · There may be up to 11 Slave devices on a SoundWire bus It is more common to have up to 4 Slave devices on a single SoundWire bus There is a MIPI defined enumeration process to identify the Slaves It involves a bit of trial and error but in time all Slaves are identified · Some details on SoundWire clocking and signaling include: The CLK frequency used is set by the Master, and may be as high as 12.288 MHz The lowest appropriate frequency is used DDR (Double Data Rate) signaling is used (meaning that data is clocked on the rising CLK edge and the next bit on the falling CLK edge) The CLK frequency may be slowed or completely stopped by the Master, as required These clocking / data features allow lower power operation SoundWire uses a "modified" NRZI (Non Return to Zero Inverted) protocol on the data line This allows the enumeration capability and other features described in the MIPI specification Audio data may be encoded in several formats: PCM (Pulse Code Modulation) the most common format PDM (Pulse Density Modulation) has low hardware implementation overhead and is useful for simple devices such as digital microphones Bulk Mode for large data blocks Slaves may initiate in-band interrupts and wake events I2C support for SoundWire devices is generally not needed (unlike for I2S) PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 96/159 Reference Schematics and Block Diagrams MIPI Slave devices may be wired together either in daisy-chain fashion or in a branched tree topology, as shown in Figure 50 on the next page. In either case, the SoundWire CLK and DAT lines should be routed together not as a differential pair, but as a signal pair following approximately the same route paths, with approximate length matching all along the paths and for each branch, so that the signal flight time from Master to Slave for both the SoundWire CLK and DAT are about the same. If the balanced tree topology is used, the length of branches of the tree should be about the same. Chipset design guide examples tend to show a point to point SoundWire implementations with signal integrity measures. These include series damping resistors and snubbing capacitors, as depicted in Figure 51 below, The component values are design and layout dependent and may range from 0 to about 22 ohms for the series resistors and from 0 (i.e. not loaded) to about 22 pf for the capacitors. The MIPI Master to Slave implementation is straightforward, as it only involves the CLK and DAT lines. There are sure to be many more CODEC or MIPI Slave device implementation details such as filtered analog power supplies, decoupling and other component recommendations, analog layout recommendations etc., not covered here. This information is available from the CODEC and Slave device vendors. Table 17: SoundWire Audio CODECs Vendor Vendor P/N Notes Cirrus Logic CS42L42 Realtek ALC711-VD SoundWire and I2S Audio CODEC data freely available on the web SoundWire and I2S Audio CODEC data restricted at time of this writing There are quite a few SoundWire Slave devices available, such as microphones and amplifiers, that are simpler than full CODECs. Vendors include Analog Devices, Maxim Integrated Products, TDK, Texas Instruments and more. From a hardware compatibility view, these low end devices may be tied directly to one of the COMHPC SoundWire ports but be sure to check out the software support situation before putting hardware together. The reference designs from some x86 SOC and chipset vendors show SoundWire device implementations grouped into functions. For example, the first SOC or chipset SoundWire bus may host two or more output amplifiers, the second SoundWire bus an audio CODEC, and the third Soundwire bus hosts an array of SoundWire microphones. Check with your COM-HPC Module vendor to see if they have any specific SoundWire device recommendations and port mapping recommendations. Intel SoundWire Sample Schematics and Design Guide Sample SoundWire implementations may be found in some Intel reference schematics. See, for example, NDA protected Intel document numbers 627073 and 627205. Intel NDA protected document number 627205 devotes several pages to SoundWire design They basically show a "balanced tree" with two branches of approximately equal length, and with two SoundWire loads. An alternative daisy chain arrangement with up to four loads is described as well. Also recommended are some optional series damping resistors. In the COM-HPC case, the optional damping resistors would be placed in the SoundWire clock and data lines near the COM-HPC connector. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 97/159 Figure 50: MIPI SoundWire Routing Topologies COM-HPC Connector SNDW_DMIC_DAT0 SNDW_DMIC_CLK0 Daisy Chain Topology SNDW_DMIC_DAT1 SNDW_DMIC_CLK1 Balanced Tree Topology Reference Schematics and Block Diagrams SoundWire Slave SNDW_DAT SNDW_CLK SoundWire Slave SNDW_DAT SNDW_CLK SoundWire Slave SNDW_DAT SNDW_CLK SoundWire Slave SNDW_DAT SNDW_CLK SoundWire Slave SNDW_DAT SNDW_CLK SoundWire Slave SNDW_DAT SNDW_CLK Figure 51: MIPI SoundWire Point to Point Connection With SI Components COM-HPC Connector SoundWire CODEC SNDW_DMIC_DAT0 C1 R1 SNDW_DAT R2 C2 SNDW_DMIC_CLK0 C3 R3 SNDW_CLK R4 C4 MK1 MK3 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 98/159 Reference Schematics and Block Diagrams 3.14.3. I2S Implementations on COM-HPC An I2S audio implementation example specifically for COM-HPC is not available at the time of this writing. There are two I2S audio CODEC examples in the SMARC Design Guide that may be useful for reference: · Cirrus Logic WM8904 Ultra Low Power CODEC · Texas Instruments TLV320AIC3105 Low Power CODEC SMARC defines two I2S ports versus a single I2S port defined for COM-HPC. Apart from that, the definitions are very close: · 1.8V logic level signaling. · S0 power domain operation. · Same signal definitions (although pin names do not quite match): An I2S clock out pin from the Module to a Carrier Slave. An I2S data out pin defined. An I2S data in pin defined. An I2S Left Right audio channel clock output pin defined. An I2S audio master clock output defined. I2S implementations generally require a companion I2C interface to setup I2S device registers. This is evident in the SMARC sample drawings. The digital I/O levels for I2S and I2C on an I2S CODEC are generally the same. The COM-HPC I2S interface is a 1.8V interface, and hence the I2C interface used would need to be at 1.8V. The COM-HPC I2C1 interface is defined to be a 1.8V interface; the COM-HPC I2C0 is a 3.3V interface. Of course level translation can be implemented. Intel NDA protected document 616553, a schematic for an Elkhart Lake validation platform, shows an I2S CODEC implemented in an x86 based system. Elkhart Lake is an Atom class SOC and is not likely to be implemented on COM-HPC. Nonetheless the example may be useful to designers looking to implement I2S audio on a COM-HPC Carrier. SoundWire does not require a companion I2C interface. Just the SoundWire Clock and Data lines are sufficient for both audio data and SoundWire slave register setup. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 99/159 Reference Schematics and Block Diagrams 3.15. 3.15.1. Asynchronous Serial Port Interfaces COM-HPC UART Interfaces Two 3.3V logic level asynchronous serial ports, designated UART0 and UART1 are defined by COM-HPC. Each port has TX and RX signals for data use and RTS# and CTS# signals for optional handshake / flow control use. For logic level use, the TX and RX signals are active high and the RTS# and CTS# signals are active low. Some data sheets omit the trailing `#' signal but the logic level handshake signals are active low nonetheless. The idle state, or `mark' state, of the logic level TX line is high, or 3.3V in the COM-HPC case. These ports may be used directly as logic level asynchronous serial connections between COM-HPC Module and Carrier based devices, or between COM-HPC Module and Carrier based mezzanine devices such as certain Mini-PCIe or M.2 cards. Care has to be taken that the logic I/O levels match up. Note, for example, the (unused) UART connections on the left side of the M.2 E-Key card shown in Figure 14 above. The PCI-SIG M.2 specification defines the E-Key UART pins to be 1.8V signals so some non-inverting level translation would be needed in this case: 3.3V to 1.8V on the TX and RTS# lines leaving the COM-HPC Module, and 1.8V to 3.3V translation for the RX and CTS# lines coming into the COM-HPC Module. Dozens of suitable logic level translation products are available on the market. One such product is the Texas Instruments SN74LV1T125. For off-board, cabled connections, the logic level UART signals are usually translated into one of three common formats: RS-232, RS-422 or RS-485. RS-232 is a single ended format in which the `mark' or `idle' or `logic 1' state is a negative voltage between -3V and -25V, and the `space' or `logic 0' state is a positive voltage between +3V and +25V. An RS-232 level translation implementation for UART0 and UART1 is shown in Figure 52 below. This example uses a pair of Maxim (Texas Instruments) MAX3243E level translators. These parts have built in capacitor based charge pumps that create RS-232 compliant voltage levels and avoid the need to distribute a negative voltage on the Carrier. Note that the signal polarities are inverted by the device. This particular Maxim device has built-in +/-15 kV air gap and +/-8 kV contact ESD discharge survivability. There are many similar devices from Texas Instruments, Analog Devices / Linear Technology, Diodes Inc. and others. The cable length that can be achieved with RS-232 interfaces depends on the data rate used. Generally, RS-232 cables lengths are limited to about 50 feet or less. RS-232 signals are most often used with D subminiature DB-9 or DB-25connectors. The RS-232 standard defines DTE (Data Terminal Equipment) and DCE (Data Communications Equipment) connector pin-outs. A DTE chassis connector is a male connector, and a DCE chassis connector is female. The DTE and DCE pinouts are defined such that a straight cable (pin 1 to pin 1, pin 2 to pin2 etc. on the cable) may be used. With the straight cable, the DTE TX pin (or TX# pin if using that notation) lands on the DCE RX(or RX#) pin, and so on. For longer cable lengths, on the order of 1000 feet or more , differential signaling formats such as RS-422 or RS-485 are often used. These implementations are usually terminated in the twisted pair cable impedance at the receiving endpoints. Many suitable parts are available from Analog Devices / Linear Technology, Texas Instruments and others. These vendors offer very informative Application Notes. They also offer "multi-protocol" devices devices that can handle RS-232, RS-422 and / or RS-485 hardware protocols. Some of these devices have switchable internal cable termination. Some products from these vendors offer galvanic isolation. The RTS# handshake line is often used in RS-485 implementations as a transceiver enable line. This of course needs appropriate software support. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 100/159 Reference Schematics and Block Diagrams Figure 52: UART0 and UART1 RS-232 Level Translated Asynchronous Serial Ports COM COM COM COM 0.22uF 16V 1uF 16V UART0_TX UART0_RTS# UART0_CTS# UART0_RX 10Kohms 1% GND C1 0402 C5 0402 R1 0402 +3.3V_S U1 28 C1+ 24 C1- 1 C2+ 2 C2- 14 T1IN 13 T2IN 12 T3IN 20 NC 19 18 17 NC 16 NC 15 NC R2OUTB R1OUT R2OUT R3OUT R4OUT R5OUT 21 INVALID# 23 FORCEON 22 FORCEOFF# MAX3243E V_VCC 26 V+ V- T1OUT T2OUT T3OUT 27 3 9 10 11 NC 1uF C6 16V 0402 1uF C7 16V 0402 RS232_TX0# RS232_RTS0 R1IN 4 R2IN 5 R3IN 6 NC R4IN 7 NC R5IN 8 NC RS232_CTS0 RS232_RX0# +3.3V_S C2 0402 0.22uF 16V GND 25 GND GND GND COM COM COM COM 0.22uF 16V 1uF 16V UART1_TX UART1_RTS# UART1_CTS# UART1_RX 10Kohms 1% GND C3 0402 C8 0402 R2 0402 +3.3V_S U2 28 C1+ 24 C1- 1 C2+ 2 C2- 14 T1IN 13 T2IN 12 T3IN 20 NC 19 18 17 NC 16 NC 15 NC R2OUTB R1OUT R2OUT R3OUT R4OUT R5OUT 21 INVALID# 23 FORCEON 22 FORCEOFF# MAX3243E V_VCC 26 V+ V- T1OUT T2OUT T3OUT 27 3 9 10 11 NC 1uF C9 16V 0402 1uF C10 16V 0402 RS232_TX1# RS232_RTS1 R1IN 4 R2IN 5 R3IN 6 NC R4IN 7 NC R5IN 8 NC RS232_CTS1 RS232_RX1# +3.3V_S C4 0402 0.22uF 16V GND 25 GND GND GND J1 1T NC P1 2T P2 3T P3 4T NC P4 5T P5 6T NC P6 7T P7 8T P8 9T NC P9 S1 S1T S2 S2T GND GND KYCON_K42X-E9P-P-A4N * T- top pins, B- bot pins Pinouts of DB9 are configured as DTE ports J1 1B NC P1 2B P2 3B P3 4B NC P4 5B P5 6B NC P6 7B P7 8B P8 9B NC P9 S1 S1B S2 S2B GND GND KYCON_K42X-E9P-P-A4N * T- top pins, B- bot pins 3.15.2. Legacy Compatibility With 16C550 UART Register Set The I/O mapped UART that was the defacto standard defined at the dawn of the personal computer age is the National Semiconductor (now Texas Instruments) 16550 or 16C550. Many BIOSes support 16C550 operations early in the BIOS boot (before USB devices are enumerated). Console redirect and Port 80 debug codes are often directed to a 16C550 compatible I/O register set. Windows, Linux and other popular operating systems used in embedded system almost universally support the 16C550 UARTs. The COM-HPC Base Specification encourages but does not require 16C550 register compatibility for the UART0 and UART1 ports. Check with your Module vendor. Once the operating system is running and drivers are loaded, 16C550 compatibility is a non-issue, but for early boot support it is valuable. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 101/159 Reference Schematics and Block Diagrams 3.15.3. Alternative / Additional Carrier Board UART Implementations If additional or perhaps higher performance UARTs beyond what the COM-HPC Module provides are needed, there are a number of excellent options available. A few of these are summarized in the Table below.. Table 18: Alternative / Additional Carrier Board UART Implementations Vendor Interface Sample Vendor 16C550 Features / Notes P/Ns Compatible ? FTDI USB 2.0 FS FT232RUSB No Future Technology Devices Inc Web www.FTDIchip.com Several similar parts available Win 10 and Linux drivers MaxLinear USB 2.0 FS XR21V1410 No (Exar) XR21B1420 Web www.maxlinear.com MaxLinear PCIe x1 XR17V352 Yes (Exar) Gen 2 XR17V354 XR17V358 Microchip USB 2.0 FS MCP2220 No Web www.maxlinear.com Dual, Quad and Octal parts Very deep FIFOs, high bit rates Native Windows and Linux support Vendor drivers also available RS485 support Web www.microchip.com PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 102/159 Reference Schematics and Block Diagrams 3.16. I2C / I3C Ports The COM-HPC pin-out definition supports a traditional I2C port, designated I2C0, and a second port designated I2C1, targeting (optional) MIPI I3C use along with with backward compatibility to traditional I2C.The I2C0 port runs at 3.3V and I2C1 at 1.8V. Both are active in suspend and full-on power states. I2C is an abbreviation for "Inter Integrated Circuit". It was defined by Philips (and later inherited by NXP) as an easy to use two wire method for a Master device to set and read back Slave peripheral IC registers and data values. It uses, in it's basic form, open-drain drivers and passive pull-ups. The current NXP specification document is freely available (see reference in Section 1.9. ) and defines several modes of operation, summarized in the following Table: Table 19: I2C Operating Modes I2C Mode Standard Fast Operating Frequency 100 KHz 400 KHz Max Rise Time 1000 nsec 300 nsec Fast Plus 1 MHz High Speed 3.4 MHz 120 nsec Max Bus Capacitance Notes 400 pF 200 pF (passive pull-up) 400 pF (active pull-up) 550 pF (active pull-up) See NXP UM10204 Section 5.2 3 Mbps throughput Not described in NXP UM10204 Referenced in some literature including Intel The COM-HPC Base Specification V1.0 document recommends a 2.2K ohm on-Module pull-up on the I2C0 and I2C1 Clock and Data lines. This value is sufficient for all Standard Mode (100 Khz) situations as the RC time constant is 880 nsec (= 2.2K * 400 pF) in the worst case, under 1000 nsec. In most situations, the I2C bus capacitance is much lower than 400 pF: · Typical IC pin capacitances are 6 to 8 pF · A typical PCB trace capacitance is 4 pF / inch this varies with stackup details · If, for example, there are 10 devices on the bus and there is a 20 inch total trace length, the bus capaci- tance would be about 160 pF (= 8 pF * 10 + 4 pF / inch * 20 inch) · This rough calculation includes both the Module and Carrier I2C devices and trace lengths, with about 5 inches assumed on the Module. The 2.2K Module pull-up is not sufficient for the worst case Fast Mode (400 Khz) passive mode bus capacitance of 200 pF. The 2.2K value handles up to about 100 pF of bus capacitance. A 2nd, parallel set of 2.2K pull-ups on the Carrier I2C Clock and Data lines would be advisable if the bus loading is over 100 pF. The Carrier pull-ups can always be left unpopulated if they are not needed. There are various application notes on this subject available on-line. See, for example, Texas Instruments document SLVA689 titled "I2C Bus Pullup Resistor Calculation". The Module design may include active circuitry to better support I2C Fast Mode and to support Fast Mode Plus. Check with the Module documentation or with the Module vendor. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 103/159 Reference Schematics and Block Diagrams 3.16.1. I2C Addressing I2C uses a 7 bit addressing scheme to differentiate I2C resources. The address lines are designated A6 ... A0, but they are part of an 8 bit frame, in bit positions 7 through 1. Bit position 0 is used in the I2C device address to designate whether the current operation is a Read (a logic `1') or a Write (a logic `0'). Thus I2C addresses can be described in either 7 bit or 8 bit formats. If using the 8 bit format to describe I2C addresses, the R/W bit is always assumed to be `0'. The 8 bit frame is transmitted MS bit first. The 4 most significant bits in the 7 bit I2C address field are used to define I2C device categories that are fixed by the I2C specification. The 3 least significant bits allow up to 8 devices within an I2C category to be identified by the I2C silicon vendor and / or the user. There are usually pin straps or specific product SKUs that define the 3 bit LS bit addresses. It is useful to put together a table of I2C devices and addresses used in a design on both the Module and the Carrier, to ensure that there are no conflicts and to provide the information to software engineers. The Module vendor should provide such a list for I2C devices on the Module that are exposed / accessible on the COMHPC I2C0 and I2C1 buses. Two I2C memory devices for COM-HPC use, at specific I2C0 addresses, are designated in the COM-HPC Base Specification, Version 1.0, Section 5.2 : · A Module EEPROM device at hexadecimal address 0x50 (7 bit I2C addressing) or 0xA0 (8 bit addressing) · A Carrier EEPROM device at hex address 0x57 (7 bit addressing) or 0xAE (8 bit addressing) The Module and Carrier EEPROM data structures and contents are described in the PICMG documents EeeP for COM-HPC (Embedded EEPROM for COM-HPC) and the PICMG COM-HPC Platform Management Interface Specification. Figure 53: I2C0 Example: Carrier EEPROM in S5 Power Domain +3.3V_A R1 DNI R2 DNI R3 DNI R4 DNI COM I2C0_CLK COM I2C0_DAT COM GPIO_00 R9 DNI +3.3V_A U2 6 SCL 5 SDA 7 WP VCC 8 C1 100 nF 3 2 A2 A1 1 A0 GND 4 Microchip / Atmel AT24C32 (32 Kbit) AT24C64 (64 Kbit) R5 4.7K R6 4.7K R7 4.7K R8 4.7K PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 104/159 Reference Schematics and Block Diagrams 3.16.2. I2C0 Example: Carrier I2C Device in S0 Power Domain The COM-HPC I2C0 port is a basic 3.3V I2C port active in all power states (S5 through S0). It is a three wire port with CLK, DAT and ALERT# pins. The ALERT# pin, if supported by the COM-HPC Module, can serve as an interrupt input to the Module. An implementation example is given in Figure 54 below. In this example, a temperature sensor that is in the S0 power domain (+3.3V_S power net) is connected to the S5 domain COMHPC Module I2C0 port through isolation FETs T2, T3 and T4. These FETs serve to prevent the S5 power domain I2C0 port from being dragged down when the +3.3V_S power rail is absent. I2C0 bus pull-up resistors to the +3.3V_A (Always on) power rail are on the COM-HPC Module. Secondary pull-ups to the +3.3V_S (Switched) power rail are shown in the Figure below. The ALERT# pin on the IC shown in the Figure is asserted by the LM75B device when a temperature threshold that had been previously set using the I2C0 interface is crossed. The 5I2C address of the LM75B devic4e is set at 0x90 (8 bit addressing3 ). The lower 3 bits of the LM75B2 I2C address are set by the A2, A1,A0 pin straps. Up to 7 additional devices could be deployed by setting different addresses options on these pin straps. Figure 54: I2C0 Example: Carrier TemperaItu2reCSenTseormipn eS0rPaotwuerrDeomSaien nsor +3.3V_S 1 I2C0_DAT COM T4 2N7002T 3 R542 4k7 0402 2 I2C0_DAT_S0 +3.3V_S 1 I2C0_CLK COM I2C0_ALERT# COM T2 2N7002T 3 R540 4k7 0402 2 I2C0_CLK_S0 +3.3V_S 1 T3 2N7002T 3 R541 10k0 0402 2 I2C0_ALERT#_S0 U64 1 2 3 SDA SCL OS 5 6 7 A2 A1 A0 VCC 8 GND 4 LM75B I2C addr: 0x90 +3.3V_S C713 100n 0402 25V 3.16.3. I2C Bus Buffers / Level Translators There are a number of bus buffers and level translators that target I2C and SMBus situations. Some suggested vendors and parts to consider are listed in Table 20 below. These parts allow for power domain isolation as the I/O pins go into a high impedance mode if one or both of power rails collapse. Table 20: I2C Bus Buffers / Level Translators / Power Domain Isolation Vendor Part Notes Texas Instruments On Semiconductor TCA9517 FXMA2102 An upgrade and replacement for the popular NXP PCA9517 PICM5G® COM-HPC® Carrier Design Guide 4 3 Rev. 2.1 / A2ug 10, 2023 105/159 Reference Schematics and Block Diagrams 3.16.4. I2C1 (COM-HPC) and Optional I3C Support The COM-HPC Base Specification defines a second I2C port, designated I2C1. This port is a 2 wire port (clock and data; no ALERT#) that operates from the 1.8V S5 and S0 power rails. The COM-HPC specification states that this port supports I2C and optionally supports I3C operation. I3C is mostly backward compatible with I2C but there are some caveats and differences, summarized in the section just below. If the user "just" wants an additional I2C port, than the I2C / I3C differences are not important and the user may proceed with a traditional I2C implementation, bearing in mind the 1.8V operating voltage and the S5 / S0 power domain. If combined I3C / I2C operation is expected, then the material presented just below is important. MIPI I3C Discussion The MIPI Alliance has defined a significant enhancement to traditional I2C, known as I3C, an acronym for "Improved Inter Integrated Circuit" communication. I3C is significantly faster than I2C, and has some notable feature improvements, summarized below. It is largely, but not completely, backward compatible with I2C, also noted below. Recall that I2C is a 2 wire interface (with an optional 3rd wire for an ALERT# input) that operates in most cases as a 100 KHz or 400 KHz interface, with some 1 MHz and 3.4 MHz implementations. I3C enhancements beyond I2C include: · 12.5 Mbps SDR (Standard Data Rate) operation using a 12.5 MHz clock · 25 Mbps DDR (Double Data Rate) operation (12.5 MHz clock, using rising and falling clock edges) · 33.3 Mbps Ternary Encoding operation (too complicated to explain here; see the MIPI documentation) · Higher bandwidth and lower power operation Active pull-ups rather than passive pull-ups increase speed and lower power consumption · In band interrupts (ALERT# pin not needed) 2 wire operation only · Error detection · Error correction, in the Ternary mode · Dynamic addressing · Hot Join operation (devices may be powered down and rejoin at power up; not same as Hot-Plug) However, there are some issues with complete backward compatibility between I3C and legacy I2C: · I2C devices on an active I3C bus need "50 nsec spike filters" in series with their Clock and Data pins to prevent the legacy I2C devices from getting confused by some fast short signals ("spikes") present in I3C traffic. The spike filters can be simple RC circuits (series resistor in front of I2C device pin, capacitor between IC pin and GND). · I2C clock stretching is not allowed on an I3C bus · I2C bus 10 bit addressing mode is not allowed in I3C Check with your COM-HPC Module vendor for details about their possible I3C support on the COM-HPC I2C1 port. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 106/159 Reference Schematics and Block Diagrams 3.17. Port 80h Debug Display Over COM-HPC USB_PD_I2C Figure 55: Port 80h Debug Display Over COM-HPC USB_PD_I2C +3.3V_A C701 100n 0402 25V DIG2_G DIG2_F DIG2_E DIG2_D DIG2_A DIG2_B DIG2_C R533 R516 R519 R521 R523 R525 R527 R529 100k 0402 270R 0402 270R 0402 270R 0402 270R 0402 270R 0402 270R 0402 270R 0402 DIG2_NU DIG2_G_R DIG2_F_R DIG2_E_R DIG2_D_R DIG2_A_R DIG2_B_R DIG2_C_R U58 10 11 12 13 14 15 16 17 P1_0 P1_1 P1_2 P1_3 P1_4 P1_5 P1_6 P1_7 +3.3V_A R531 USB_PD_I2C_DAT COM USB_PD_I2C_CLK COM 10k 0402 INT_PCD1# 22 20 19 INT SDA SCL I2C Pull-Up on COM-HPC module PCA6416A 25 TP 9 VSS VDD(P) 21 VDD(I2C) 23 C702 100n 0402 25V P0_0 P0_1 P0_2 P0_3 P0_4 P0_5 P0_6 P0_7 ADDR RESET 1 DIG1_NU 2 DIG1_G_R 3 DIG1_F_R 4 DIG1_E_R 5 DIG1_D_R 6 DIG1_A_R 7 DIG1_B_R 8 DIG1_C_R R534 R518 R520 R522 R524 R526 R528 R530 100k 0402 270R 0402 270R 0402 270R 0402 270R 0402 270R 0402 270R 0402 270R 0402 DIG1_G DIG1_F DIG1_E DIG1_D DIG1_A DIG1_B DIG1_C 18 +3.3V_A 24 RES_PCD1# R532 10k 0402 8 bit addr: 0x40 DIG2_A DIG2_B DIG2_C DIG2_D DIG2_E DIG2_F DIG2_G +3.3V_A MSB D66 10 9 7 5 4 2 1 6 CA0 CA1 3 8 a b c a f b g d e f g e c d DP DP +3.3V_A 7SEG10CAGRN Kingbright SA39-11GWA DIG1_A DIG1_B DIG1_C DIG1_D DIG1_E DIG1_F DIG1_G +3.3V_A LSB D67 10 9 7 5 4 2 1 6 CA0 CA1 3 8 a b c a f b g d e f g e c d DP DP +3.3V_A 7SEG10CAGRN The COM-HPC hardware specification allows for BIOS Port 80h debug codes to be serialized and transmitted over the USB Power Delivery I2C bus (COM-HPC pins USB_PD_I2C_DAT and _CLK). Figure 55 above illustrates how the codes can be de-serialized and displayed on a pair of 7-segment LED displays. This feature is optional. There are other methods for Port 80h codes to be conveyed for debug use. The Port 80h I/O writes can be picked off of the eSPI bus or even a PCIe x1 link by appropriate hardware such as a CPLD, FPGA or some Super I/O devices. Some BIOSes provide 4 digit codes as opposed to 2 digit codes. It is also possible for special debug versions of a BIOS to transmit ASCII versions of the Port 80h debug codes over one of the asynchronous serial ports ... check with your Module vendor. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 107/159 Reference Schematics and Block Diagrams 3.18. Carrier BMC with IPMB Link to Module A high end Carrier BMC (Board Management Controller) using an Aspeed AST2500 / AST2520 is shown in Figures 56, 57 and 58 below. The three Figures do not show the complete implementation the DDR4 memory devices and the Aspeed power section are omitted. What is shown are the features relevant to COM-HPC operation the interfaces to the COM-HPC and to the user. Refer to the Aspeed documentation for complete design information. The BMC interfaces to the Module include IPMB, eSPI, UART1, I2C0 and a collection of status and control signals such as power state status, reset, power button etc. BMC operator interfaces include a USB port for keyboard and mouse use, a VGA port, and a 1000BASE-T management network interface. The primary management interface to the COM-HPC Module is over the IPMB. The Module, if it supports management functions, includes a small satellite controller known as the MMC (Module Management Controller). The MMC has at minimum an IPMB slave interface to the BMC. The design shown includes two SPI Flash devices attached to the BMC, and an eSPI interface to the COMHPC. The COM-HPC BIOS image can reside in the BMC attached SPI Flash. This allows the BMC to manage Out of Band Flash BIOS updates, if so desired. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 108/159 Reference Schematics and Block Diagrams 5 Figure 56: Carrier BMC with IPM4 B Link to Module Sheet 1 3 2 U5A R45 DNI X_100K_+-1% PLTRST# COM R44 0ohm_+-5% PCIE_BMC_RSTN L20 PERST AST2500/2520 Rev.1.5 PETXP PETXN For DDR4 Memory PCIe_REFCLK0_LO+ COM PCIe_REFCLK0_LO- COM PCIe_BMC_TX+ COM PCIe_BMC_TX- COM V_M_BMC_DDR4_DQ0 V_M_BMC_DDR4_DQ1 V_M_BMC_DDR4_DQ2 V_M_BMC_DDR4_DQ3 V_M_BMC_DDR4_DQ4 V_M_BMC_DDR4_DQ5 V_M_BMC_DDR4_DQ6 V_M_BMC_DDR4_DQ7 V_M_BMC_DDR4_DQ8 V_M_BMC_DDR4_DQ9 V_M_BMC_DDR4_DQ10 V_M_BMC_DDR4_DQ11 V_M_BMC_DDR4_DQ12 V_M_BMC_DDR4_DQ13 V_M_BMC_DDR4_DQ14 V_M_BMC_DDR4_DQ15 V_M_BMC_DDR4_DQS0_DP V_M_BMC_DDR4_DQS1_DP V_M_BMC_DDR4_DQS0_DN V_M_BMC_DDR4_DQS1_DN V_M_BMC_DDR4_RST_N V_M_BMC_DDR4_ALERT_N +1.2V_A +0.6V_A C6 K21 K22 M21 M22 U10 W10 Y10 AA10 U9 Y9 W9 V9 AA8 Y8 Y7 W8 AA6 W7 V7 U7 AB9 AB7 AB10 AB6 AB17 U16 R3512 DNI 4.7K_+-1% T9 0.1uF_25V eSPI_CLK COM eSPI_CS0# COM eSPI_CS1# COM eSPI_ALERT0# CO M eSPI_ALERT1# CO M eSPI_RST# C O M R70 R72 R74 R76 R78 R80 +3.3V_A R68 240ohm_+-1% W11 0ohm_+-5% 0ohm_+-5% C22 DNI 0ohm_+-5% F21 0ohm_+-5% F22 DNI 0ohm_+-5% G22 0ohm_+-5% J20 H21 R81 10K_+-1% LPC_PME_N H22 H20 C12 A12 B12 D9 D10 E12 C11 B11 F19 E21 F20 D20 D21 E20 G18 C21 B14 D14 D13 E13 PEREFCLKP PEREFCLKN PERXP PERXN PCI-Express PEREXT MDQ0 MDQ1 MDQ2 MDQ3 MDQ4 MDQ5 MDQ6 MDQ7 MDQ8 MDQ9 MDQ10 MDQ11 MDQ12 MDQ13 MDQ14 MDQ15 MDQS0 MDQS1 MDQS0 MDQS1 MRESET MALERT MVREF MIOZ DDR3/DDR4 MCK MCK MCKE MODT MCS MRAS MCAS MWE MBA0 MBA1 MBA2_MBG0 MA0 MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9 MA10 MA11 MA12 MA13 MA14_MACT MA15 MDM0 MDM1 GPIOAC4_ESPICK_LCLK GPIOAC5_ESPICS_LFRAME GPIOAC6_ESPIALT_LSIRQ GPIOAC7_ESPIRST_LPCRST LPC ESPI GPIOAC0_ESPID0_LAD0 GPIOAC1_ESPID1_LAD1 GPIOAC2_ESPID2_LAD2 GPIOAC3_ESPID3_LAD3 GPIOB4_USBCKI GPIOB5_LPCPD_LPCSMI GPIOB6_LPCPME GPIOB7 GPIOB0 GPIOB1 GPIOB2 GPIOB3 GPIOC0_SD1CLK_SCL10 GPIOC1_SD1CMD_SDA10 GPIOC2_SD1DAT0_SCL11 GPIOC3_SD1DAT1_SDA11 GPIOC4_SD1DAT2_SCL12 GPIOC5_SD1DAT3_SDA12 GPIOC6_SD1CD_SCL13 GPIOC7_SD1WP_SDA13 GPIOY4_SCL1 GPIOY5_SDA1 GPIOY6_SCL2 GPIOY7_SDA2 GPIOQ0_SCL3 GPIOQ1_SDA3 GPIOQ2_SCL4 GPIOQ3_SDA4 SD/SDIO I2 C GPIOD0_SD2CLK GPIOD1_SD2CMD GPIOD2_SD2DAT0 GPIOD3_SD2DAT1 GPIOD4_SD2DAT2 GPIOD5_SD2DAT3 GPIOD6_SD2CD GPIOD7_SD2WP GPIOK0_SCL5 GPIOK1_SDA5 GPIOK2_SCL6 GPIOK3_SDA6 GPIOK4_SCL7 GPIOK5_SDA7 GPIOK6_SCL8 GPIOK7_SDA8 GPIOA4_TIMER5_SCL9 GPIOA5_TIMER6_SDA9 GPIOA0_MAC1LINK GPIOA1_MAC2LINK GPIOA2_TIMER3_SPI1CS1 GPIOA3_TIMER4 GPIO GPIOQ4_SCL14 GPIOQ5_SDA14 GPIOQ6_OSCCLK GPIOQ7_PEWAKE 1 OF 4 AST2500A2-GP L21 PCIE_BMC_RX_P_C L22 PCIE_BMC_RX_N_C C4 0.1uF_25V C5 0.1uF_25V K20 PD_P2E_BMC_PEREXT R47 200ohm_+-1% COM PCIe_BMC_RX+ COM PCIe_BMC_RX- AB11 AB12 Y11 V11 AA12 W12 AB13 Y12 U12 Y13 W13 V13 AB14 W14 U14 W15 V15 AB16 AA16 W16 Y16 U13 AA14 Y14 AB15 Y15 U15 U8 AB8 G21 G20 D22 E22 K19 L19 L18 K18 V_M_BMC_DDR4_CLK_DP V_M_BMC_DDR4_CLK_DN V_M_BMC_DDR4_CKE V_M_BMC_DDR4_ODT V_M_BMC_DDR4_CS_N V_M_BMC_DDR4_MA16 V_M_BMC_DDR4_MA15 V_M_BMC_DDR4_MA14 V_M_BMC_DDR4_BA0 V_M_BMC_DDR4_BA1 V_M_BMC_DDR4_BG0 V_M_BMC_DDR4_MA0 V_M_BMC_DDR4_MA1 V_M_BMC_DDR4_MA2 V_M_BMC_DDR4_MA3 V_M_BMC_DDR4_MA4 V_M_BMC_DDR4_MA5 V_M_BMC_DDR4_MA6 V_M_BMC_DDR4_MA7 V_M_BMC_DDR4_MA8 V_M_BMC_DDR4_MA9 V_M_BMC_DDR4_MA10 V_M_BMC_DDR4_MA11 V_M_BMC_DDR4_MA12 V_M_BMC_DDR4_MA13 V_M_BMC_DDR4_ACT_N For DDR4 Memory V_M_BMC_DDR4_DM0 V_M_BMC_DDR4_DM1 R73 R75 R77 R79 0ohm_+-5% 0ohm_+-5% 0ohm_+-5% 0ohm_+-5% COM COM COM COM eSPI_IO0 eSPI_IO1 eSPI_IO2 eSPI_IO3 eSPI BMC_SCL1 BMC_SDA1 BMC_SCL3 BMC_SDA3 BMC_SCL8 BMC_SDA8 M18 BMC_SCL1 R82 M19 BMC_SDA1 R83 M20 P20 A11 BMC_SCL3 R86 A10 BMC_SDA3 R87 A9 B9 0ohm_+-5% 0ohm_+-5% COM COM I2C0_CLK I2C0_DAT 0ohm_+-5% 0ohm_+-5% COM COM IPMB_CLK IPMB_DAT I2C0 IPMB L3 L4 L1 N2 N1 P1 P2 BMC_SCL8 R96 R1 BMC_SDA8 R97 C14 A13 0ohm_+-5% 0ohm_+-5% SENSOR_SCL SENSOR_SDA For Thermal Sensor N21 N22 B10 N20 R3516 DNI 0ohm_+-5% R3515 DNI X_4.7K_+-1% COM WAKE0# +3.3V_A 5 4 PICMG® COM-HPC® Carrier Board Design Guide Draft 3 2 Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 1 +3.3V_A R48 DNI X_4.7K_+-1% R49 DNI X_4.7K_+-1% R52 DNI 4.7K_+-1% R53 DNI 4.7K_+-1% R62 DNI X_4.7K_+-1% R63 DNI X_4.7K_+-1% 1 D C B A 109/159 Reference Schematics and Block Diagrams 5 4 3 2 1 Figure 57: Carrier BMC with IPMB Link to Module Sheet 2 +3.3V_A +3.3V_A +3.3V_A EEPROM_0 +3.3V_A D BMC_SPICK R102 R105 BMC_SPIMOSI R106 BMC_SPIMISO R108 +3.3V_A R110 R111 4.7K_+-1% BMC_SPICS0 7 22ohm_+-1% BMC_SPICK1_R 16 22ohm_+-1% BMC_SPI1_MOSI_R15 22ohm_+-1% BMC_SPI1_MISO_R 8 4.7K_+-1% 4.7K_+-1% BMC_SPI1_WP_N 9 BMC_SPI1_HOLD_N 1 CS SCLK SI/SIO0 SO/SIO1/PO7 WP/SIO2 HOLD/IO3 VCC 2 PO0 PO1 PO2 PO3 PO4 PO5 PO6 6 5 4 11 12 13 14 3 NC GND 10 SPI-FLASH-SKT_16 C7 0.1uF_25V BMC_SPICK R103 R107 BMC_SPIMOSI R104 BMC_SPIMISO R109 +3.3V_A R112 R114 4.7K_+-1% 22ohm_+-1% 22ohm_+-1% 22ohm_+-1% 4.7K_+-1% 4.7K_+-1% BMC_SPICS1 BMC_SPICK2_R EEPROM_1 7 16 CS SCLK BMC_SPI2_MOSI_R15 SI/SIO0 BMC_SPI2_MISO_R 8 SO/SIO1/PO7 BMC_SPI2_WP_N 9 BMC_SPI2_HOLD_N 1 WP/SIO2 HOLD/IO3 VCC 2 PO0 PO1 PO2 PO3 PO4 PO5 PO6 6 5 4 11 12 13 14 3 NC GND 10 C8 0.1uF_25V D SSKT_LOTES_ACA-SPI-006-K01 SPI-FLASH-SKT_16 SSKT_LOTES_ACA-SPI-006-K01 U5B BMC_SPICS0 BMC_SPICS1 R118 R117 22ohm_+-1% BMC_SPICS0_R 22ohm_+-1% BMC_SPICS1_R AB19 AA19 T19 CARRIER_HOT# COM R124 T17 22ohm_+-1% Y19 W19 V19 FWSPICS0 GPIOR0_FWSPICS1 GPIOR1_FWSPICS2 GPIOR2_SPI2CS0 GPIOR3_SPI2CK GPIOR4_SPI2MOSI GPIOR5_SPI2MISO AST2500/2520 Rev.1.5 BMC SPI SPI2 ACPI FWSPICK FWSPIMOSI FWSPIMISO GPIOY0_SIOS3 GPIOY1_SIOS5 GPIOY2_SIOPWREQ GPIOY3_SIOONCTRL AA18 BMC_SPICK U17 BMC_SPIMOSI T18 BMC_SPIMISO R22 FM_SLPS3_N R21 FM_SLPS5_N P22 P21 R1002 R122 CARRIER_HOT# 0ohm_+-5% 0ohm_+-5% COM COM SUS_S3# SUS_S4_S5# CARRIER_HOT# +3.3V_A R120 DNI 4.7K_+-1% R123 DNI X_10K_+-1% R129 DNI 4.7K_+-1% +3.3V_S C R3549 0ohm_+-5%C2783 0.1uF_25V DNI RST_BTN 1 3 2 4 SW-TACT-TS-A02 +3.3V_A +3.3V_A +3.3V_A C110 0.1uF_25V 5 N19 T21 T22 R20 V20 U19 R18 P18 R19 W20 U20 AA20 T2 T1 U1 U2 P4 P3 V1 W1 Digital Video O utput GPIOAB0_VPODE_NOROE GPIOAB1_VPOHS_NORWE GPIOAB2_VPOVS_WDTRST1 GPIOAB3_VPOCLK_WDTRST2 GPIOS0_VPOB2_SPI2CS1 GPIOS1_VPOB3_BMCINT GPIOS2_VPOB4_SALT5 GPIOS3_VPOB5_SALT6 GPIOS4_VPOB6 GPIOS5_VPOB7 GPIOS6_VPOB8 GPIOS7_VPOB9 GPIOL0_NCTS1 GPIOL1_NDCD1_VPIDE GPIOL2_NDSR1 GPIOL3_NRI1_VPIHS GPIOL4_NDTR1_VPIVS GPIOL5_NRTS1_VPICLK GPIOL6_TXD1 GPIOL7_RXD1 GPIOZ0_VPOG2_NORA0_SIOPBI GPIOZ1_VPOG3_NORA1_SIOPWRGD GPIOZ2_VPOG4_NORA2_SIOPBO GPIOZ3_VPOG5_NORA3_SIOSCI GPIOZ4_VPOG6_NORA4 GPIOZ5_VPOG7_NORA5 GPIOZ6_VPOG8_NORA6 GPIOZ7_VPOG9_NORA7 GPIOAA0_VPOR2_NORD0_SALT7 GPIOAA1_VPOR3_NORD1_SALT8 GPIOAA2_VPOR4_NORD2_SALT9 GPIOAA3_VPOR5_NORD3_SALT10 GPIOAA4_VPOR6_NORD4_SALT11 GPIOAA5_VPOR7_NORD5_SALT12 GPIOAA6_VPOR8_NORD6_SALT13 GPIOAA7_VPOR9_NORD7_SALT14 GPIOM0_NCTS2_VPIB2 GPIOM1_NDCD2_VPIB3 GPIOM2_NDSR2_VPIB4 GPIOM3_NRI2_VPIB5 GPIOM4_NDTR2_VPIB6 GPIOM5_NRTS2_VPIB7 GPIOM6_TXD2_VPIB8 GPIOM7_RXD2_VPIB9 Y20 AB20 AB21 AA21 U21 W22 V22 W21 Y21 V21 Y22 AA22 U22 T20 N18 P19 Y1 AB2 AA1 Y2 AA2 P5 R5 T5 +3.3V_A +3.3V_A 4.7K_+-1% R3547 5 FM_BMC_PWRBTN_OUT_N Vcc 1 U14A Gnd SN74LVC2G07DBVR_SOT23-6 2 R131 0ohm_+-5% R132 R133 R134 0ohm_+-5% 0ohm_+-5% 0ohm_+-5% UART1 COM UART1_CTS# COM UART1_RTS# COM UART1_RX COM UART1_TX +3.3V_A C 4.7K_+-1% R3546 6 R3548 COM PWRBTN# 0ohm_+-5% PWR_BTN 3 1 4 2 SW-TACT-TS-A02 R3550 0ohm_+-5% C2782 0.1uF_25V DNI R377 4.7K_+-1% R378 4.7K_+-1% RSTBTN# COM B R379 0ohm_+-5% 4 2 Vcc 3 RST_BMC_SYSRST_BTN_OUT_N Gnd U14B SN74LVC2G07DBVR_SOT23-6 B20 C20 F18 F17 E18 D19 A20 B19 GPIOE0_NCTS3 GPIOE1_NDCD3 GPIOE2_NDSR3 GPIOE3_NRI3 GPIOE4_NDTR3 GPIOE5_NRTS3 GPIOE6_TXD3 GPIOE7_RXD3 GPIOF0_NCTS4_LHAD0 GPIOF1_NDCD4_LHAD1 GPIOF2_NDSR4_LHAD2 GPIOF3_NRI4_LHAD3 GPIOF4_NDTR4_LHCLK GPIOF5_NRTS4_LHFRAME GPIOF6_TXD4_LHSIRQ GPIOF7_RXD4_LHRST J19 J18 B22 B21 A21 H19 G17 H18 B For BMC Console Port BMC_UART_TXD5 BMC_UART_RXD5 K1 K2 TXD5 RXD5 BMC/System U ART GPIOH0_NCTS6 GPIOH1_NDCD6 GPIOH2_NDSR6 GPIOH3_NRI6 GPIOH4_NDTR6 GPIOH5_NRTS6 GPIOH6_TXD6 GPIOH7_RXD6 A18 B18 D17 C17 A17 B17 A16 D18 For Management A BMC_RMII1_50M_CLK BMC_RMII1_RXD0 BMC_RMII1_RXD1 BMC_RMII1_CRS_DV R150 R151 R152 R153 R154 DNI X_10K_+-1% DNI X_10K_+-1% DNI X_10K_+-1% DNI X_10K_+-1% DNI X_10K_+-1% R136 R137 R138 R139 R140 0ohm_+-5% RMII1_REF_CLK B4 10K_+-1% A4 0ohm_+-5% RMII1_RXD0 A3 0ohm_+-5% RMII1_RXD1 D6 0ohm_+-5% RMII1_CRSDV C5 RMII1_RXER C4 RGMII1RXCK_RMII1RCLKI_GPIOU4 RGMII1TXCK_RMII1RCLKO_GPIOT0 RGMII1RXCTL_GPIOU5 RGMII1TXCTL_RMII1TXEN_GPIOT1 RGMII1RXD0_RMII1RXD0_GPIOU6 RGMII1TXD0_RMII1TXD0_GPIOT2 RGMII1RXD1_RMII1RXD1_GPIOU7 RGMII1TXD1_RMII1TXD1_GPIOT3 RGMII1RXD2_RMII1CRSDV_GPIOV0 RGMII1TXD2_GPIOT4 RGMII1RXD3_RMII1RXER_GPIOV1 RGMII1TXD3_GPIOT5 MAC1 GPIOR6_MDC1 GPIOR7_MDIO1 B5 E9 F9 A5 E7 D7 D8 E10 RMII1_REF_CLK RMII1_RXD0 RMII1_RXD1 RMII1_CRSDV RMII1_RXER C2 C1 C3 D1 D2 E6 D3 RGMII2RXCK_RMII2RCLKI_GPIOV2 RGMII2TXCK_RMII2RCLKO_GPIOT6 RGMII2RXCTL_GPIOV3 RGMII2TXCTL_RMII2TXEN_GPIOT7 RGMII2RXD0_RMII2RXD0_GPIOV4 RGMII2TXD0_RMII2TXD0_GPIOU0 RGMII2RXD1_RMII2RXD1_GPIOV5 RGMII2TXD1_RMII2TXD1_GPIOU1 RGMII2RXD2_RMII2CRSDV_GPIOV6 RGMII2TXD2_GPIOU2 RGMII2RXD3_RMII2RXER_GPIOV7 RGMII2TXD3_GPIOU3 RGMIICK MAC2 GPIOA6_TIMER7_MDC2 GPIOA7_TIMER8_MDIO2 B2 B1 A2 B3 D5 D4 C13 B13 +3.3V_A Network BMC_RMII1_TX_EN BMC_RMII1_TXD0 BMC_RMII1_TXD1 L1 120_100MHz_2A C9 0.1uF_25V C10 0.1uF_25V OSC1 4 1 VCC ST OUT GND 3 2 CLK_50M 50MHz_15pF SG210-50M-STF-L-4085 R145 +3.3V_A DNI 33ohm_+-1% BMC_RMII1_50M_CLK A AST2500A2-GP 2 OF 4 R149 X_10K_+-1% 5 4 PICMG® COM-HPC® Carrier Board Design Guide Draft 3 2 1 Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 110/159 Reference Schematics and Block Diagrams 5 4 3 2 1 Figure 58: Carrier BMC with IPMB Link to Module Sheet 3 +3.3V_A OSC2 D C12 0.1uF_25V DNI R161 4 1 VCC ST OUT GND 3BMC_24M 2 R160 X_10K_+-1% 24MHz_15pF 22ohm_+-1% EPSON-SG210STF-24M-L BMC_24M_R U5C AST2500/2520 D C +3.3V_A W18 BMC_SRST_BTM_N 0ohm_+-5% R165 +3.3V_A 4.7K_+-1% R169 BMC_SYS_RESET_N U18 BMC_EXT_RST V18 BMC_HB BMC_HB_LED Y18 A K Y LG-170Y-CT R174 330ohm_+-1% R170 PD_BMC_ENTEST K3 10K_+-1% BMC_FAN_TACH0 U5 U4 For FAN connector V5 AB4 AB3 Y4 AA4 W4 V4 W5 AA5 AB5 Y6 ADC Power Y5 W6 Monitor V6 CLKIN Rev.1.5 SRST EXTRST MISC DAC HBLED ENTEST GPIOO0_TACH0_VPIG8 GPIOO1_TACH1_VPIG9 GPIOO2_TACH2 GPIOO3_TACH3 GPIOO4_TACH4_VPIR2 GPIOO5_TACH5_VPIR3 GPIOO6_TACH6_VPIR4 GPIOO7_TACH7_VPIR5 GPIOP0_TACH8_VPIR6 GPIOP1_TACH9_VPIR7 GPIOP2_TACH10_VPIR8 GPIOP3_TACH11_VPIR9 GPIOP4_TACH12 GPIOP5_TACH13 GPIOP6_TACH14 GPIOP7_TACH15 FAN DACB DACG DACR GPIOJ4_VGAHS GPIOJ5_VGAVS GPIOJ6_DDCCLK GPIOJ7_DDCDAT GPION0_PWM0 GPION1_PWM1 GPION2_PWM2_VPIG2 GPION3_PWM3_VPIG3 GPION4_PWM4_VPIG4 GPION5_PWM5_VPIG5 GPION6_PWM6_VPIG6 GPION7_PWM7_VPIG7 J2 J3 J4 N5 R4 R3 T3 V2 W2 V3 U3 W3 AA3 Y3 T4 VGA_BLU VGA_GRN VGA_RED For VGA connector VGA_HSYNC VGA_VSYNC VGA_I2C_CLK VGA_I2C_DAT BMC_FAN_PWM0 For FAN connector P3V3_BMC_USB2AV33_AUX FB1 120_100MHz_2A C14 0.01uF_50V C15 4.7uF_6.3V +3.3V_A BLM18PG121SN1D C B +2 .5 V _A C16 1.43K_+-1% 1K_+-1% 0.1uF_25V R193 R198 For BMC Reset +3.3V_A +3.3V_A +1.15V_A R168 3.3K_+-1% 1 R163 10K_+-1% 5 Vcc NC 2 1 4 BMC_SRST_BTM_N 3 Gnd U7 74AHC1G14_SOT23-5 3 B C Q2 E PMBT3904_200mA/40V 2 C13 1uF_16V R171 10K_+-1% BMC_ADC0 F4 F5 E2 E1 F3 E3 G5 G4 F2 G3 G2 F1 H5 G1 H3 H4 AA17 AB18 E11 D12 C8 C10 C9 D11 ADC0_GPIW0 ADC1_GPIW1 ADC2_GPIW2 ADC3_GPIW3 ADC4_GPIW4 ADC5_GPIW5 ADC6_GPIW6 ADC7_GPIW7 ADC8_GPIX0 ADC9_GPIX1 ADC10_GPIX2 ADC11_GPIX3 ADC12_GPIX4 ADC13_GPIX5 ADC14_GPIX6 ADC15_GPIX7 PECIVDD PECI NTRST TDI TMS TCK RTCK TDO ADC PECI JTAG USB USB2AV33 C7 C17 USB2AVRES USB2BVRES B8 B7 PD_BMC_USB2A_VREF R175 PD_BMC_USB2B_VREF R176 33pF_50V 8.2K_+-1% 8.2K_+-1% USB2A_DP USB2A_DN A7 A8 USB2B_DP USB2B_DN B6 A6 R3536 R3537 0ohm_+-5% 0ohm_+-5% COM USB3+ COM USB3- For BMC KVM Keyboard/Mouse SGPIO GPIOJ0_SGPMCK GPIOJ1_SGPMLD GPIOJ2_SGPMO GPIOJ3_SGPMI GPIOG0_SGPS1CK GPIOG1_SGPS1LD GPIOG2_SGPS1I0 GPIOG3_SGPS1I1 GPIOG4_SGPS2CK_SALT1 GPIOG5_SGPS2LD_SALT2 GPIOG6_SGPS2I0_SALT3 GPIOG7_SGPS2I1_SALT4 R2 L2 N3 N4 COM A19 E19 C19 BMC_THRMTRIP-L E16 VIN_PWR_OK E17 CNBMC_I2C0_ALERT-L D16 D15 E14 R186 0ohm_+-5% COM I2C0_ALERT# +3.3V_A R1013 4.7K_+-1% 3 Q53 D BSS138LT1_200mA/50V S +3.3V G 1 COM PLTRST# B 2 R166 0ohm_+-5% C2784 0.1uF_25V DNI BMC_BTN 1 3 2 4 SW-TACT-TS-A02 C18 E15 B16 C16 GPIOI0_SYSCS GPIOI1_SYSCK GPIOI2_SYSMOSI GPIOI3_SYSMISO AST2500A2-GP System S PI GPIOI4_SPI1CS0_VBCS GPIOI5_SPI1CK_VBCK GPIOI6_SPI1MOSI_VBMOSI GPIOI7_SPI1MISO_VBMISO B15 C15 A14 A15 3 OF 4 System BIOS R188 22ohm_+-1% BMC_SPI1_CS0_N BMC_SPI1_CLK BMC_SPI1_MOSI BMC_SPI1_MISO For System BIOS Flash 4.7K_+-1% R126 X_10K_+-1% DNI R127 COM THERMTRIP# A A PICMG® COM-HPC® Carrier Board Design Guide Draft 5 4 Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 3 2 111/159 1 Reference Schematics and Block Diagrams 3.19. General Purpose SPI The COM-HPC General Purpose SPI port is, from a hardware view, an easy to use interface for Carrier peripherals that requires only four signal pins on the peripheral device (data in, data out, clock and chip select), plus an optional interrupt output. It may be used to implement a wide variety of low to medium speed (circa 4 to 20 MHz signaling rate) peripheral devices such as A/D and D/A converters, touch controllers, CPLDs, FPGAs, Flash memories and many more. The GP SPI interface is significantly faster than traditional I2C ports (400 KHz max for most I2C implementations) but much slower than PCI Express (2.5 GHz signaling and up). A SPI interface is easier to implement within a peripheral device than PCIe, resulting in lower costs. The COM-HPC pinout definitions allow for four General Purpose SPI chip selects, allowing up to four Carrier GP SPI devices. The COM-HPC GP SPI interface uses 3.3V signal levels, active in the S0 (full on) power state. Carrier GP SPI devices may be daisy-chained or routed in a branch topology with the root at the COMHPC connector. The data in, data out and clock lines for a particular target device on the Carrier should be loosely kept together and have approximately the same length from the COM-HPC connector to the particular target device. The chip-select lines should be routed directly from the COM-HPC connector to the target device. 3.20. Rapid Shutdown Rapid Shutdown is a rarely used feature but one that is important to some defense industry segment customers. It's purpose is to rapidly collapse all Module and Carrier power rails and remove all bias voltages to prevent damage to the electronics in certain extreme wartime situations. It is purely a hardware feature, without any consideration for an orderly software shutdown. It is expected that some COM-HPC Module designs will incorporate Rapid Shutdown capability, but that the feature be depopulated unless needed by certain customers. The feature is both fairly simple in concept but potentially tricky in implementation: if the Module Rapid Shutdown pin is asserted by a 5V logic level signal, all power Module and Carrier rails are collapsed by a N-channel FET and appropriately sized drain resistor on each power rail. The +12V or Wide Range power source to the system must be immediately cut as well, and isolated from any bulk capacitance that might provide hold-up power. This usually is achieved by using hotswap controller devices to gate the system power input, with the bulk hold-up capacitance located at the input side of the hot-swap controller circuitry. All power rails on the Carrier must be collapsed as well. Design drawings are not shown here. If your Module vendor supports Rapid Shutdown, then they should be able to provide implementation design support. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 112/159 Reference Schematics and Block Diagrams 3.21. Thermal Protection COM-HPC defines two pins related to thermal protection of the system: · CARRIER_HOT# This is a 3.3V level S0 power domain input signal, with an on-Module pull-up This signal may be left open, or it may be driven low by Carrier hardware if a system over-temperature situation is detected. Module support for this signal is required, per the COM-HPC Base Specification. There is no definition in the COM-HPC Base Specification as to how long CARRIER_HOT# should stay low in an system over-temperature situation · THERMTRIP# This is a 3.3V level S0 power domain output If driven low, it indicates that the CPU is in an over-temperature situation There is no definition in the COM-HPC Base Specification as to how long THERMTRIP# should stay low in an over-temperature situation Carriers may leave this signal open, or they may act on it Ideally, a Carrier circuit removes system S0 power if the situation persists and is not a short term glitch, and sets a bit in a non-volatile memory that can be read by Module firmware on the next S0 power up. A Carrier BMC may also track / process this COM-HPC output signal PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 113/159 3.22. System Management Bus (SMBus) Reference Schematics and Block Diagrams SMBus Introduction The SMBus is primarily used to manage system peripherals on the COM-HPC Module and on the Carrier. SMBus devices such as the Serial Presence Detect (SPD) EEPROM(s) for the system RAM, thermal sensors, PCIe devices, clock buffers, Smart Battery, etc. are managed over the SMBus. Designers need to take note of several implementation issues to ensure reliable SMBus interface operation. The SMBus is derived from I2C. However, I2C devices have the potential to lock up the data line while sending information and require a power cycle to clear the fault condition. SMBus devices contain a timeout to monitor for and correct this condition. Designers are urged to use SMBus devices when possible over standard I2C devices. COM-HPC Modules are required to power SMBus devices from the suspend power rail in order to have control in all system power states. The COM-HPC Module may not function correctly or at all if Carrier SMBus devices interfere with proper Module SMBus device operation. SMBus Power Domain Isolation The devices on the Carrier Board using the SMBus are usually powered by the main 3.3V (S0) power rail. To avoid current leakage between the suspend (S5) and the main (S0) power rails, the SMBus devices in the S5 power domain must be separated by a bus switch from S0 domain SMBus devices. FET devices, as shown in Figure 54 above, or I2C / SMBus isolation devices, as shown in Table 20 above may be used to achieve the S5 / S0 power domain isolation. SMBus Addresses Since the SMBus is used by the Module and Carrier, care must be taken to ensure that Carrier based devices do not overlap the address space of Module based devices. Typical Module SMBus devices and their binary I2C / SMBus addresses include memory SPD (Serial Presence Detect) addresses 1010 000x, 1010 001x, up to 1010 111x for 8 DIMMs, programmable clock synthesizers (1101 001x), clock buffers (1101 110x), thermal sensors (1001 000x), and management controllers (vendor defined address). The `x' in the binary addresses is the SMBus / I2C R/W bit. Contact your Module vendor for information on the SMBus addresses used on the Module. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 114/159 3.23. General Purpose Inputs / Outputs Reference Schematics and Block Diagrams COM-HPC defines 12 General Purpose I/O pins. It is expected that the 12 pins can be individually configured as either inputs or outputs, that they be configured as inputs on power up, that they be powered by the Module 3.3V suspend (S5) power rail, that there be a 100K pull-up on the Module, and that the Module GPIO pins be able to generate interrupts to the Module CPU. As the COM-HPC GPIO may be inputs, outputs or bidirectional signals, there are a variety of ways to use and protect them. If the target I/O devices are in a different power domain from (I.e targets are in the S0 domain), that needs to be taken into account by an appropriate logic buffer or FET arrangement, similar to the S5 S0 power domain isolation shown in this document for I2C and the SMBus. If any of the GPIO signals are exposed to the outside world and exposed to human contact and ESD events, then there needs to be appropriate ESD protection, EMI mitigation, and hardening against accidents such as short circuiting or exposure to power rails. The details of the protection implemented depend on the factors such as: · What level of ESD protection is expected ? · What is the GPIO signal bandwidth ? Low bandwidth GPIO signals may be protected with simple measures including: Dual Schottky diodes: · 1st diode with anode (A) at GND and cathode (K) at the GPIO signal level · 2nd diode with anode at GPIO signal level and cathode at the GPIO VCC level Alternatives to the dual Schottky diodes proposed above may be specialty diodes or diode arrays designed for ESD mitigation such as those shown in the NBASE-T, Ethernet, USB, DP and HDMI sections of this document. A series resistor between the Schottky diode K A node and the COM-HPC GPIO pin-out Possibly a ferrite in between the COM-HPC GPIO pin and the external connector If the GPIO signal bandwidth is somewhat higher, then adjustments have to be made: The ESD diode pin capacitance needs to be lower, and appropriately sized for the bandwidth at hand The series resistor value needs to be lowered The ferrite inductance value may need adjustment · If user abuse is expected (hot plugging, sudden removal etc) then protection measures may include: Some or all of the protection measures listed just above Robust buffer ICs that stand between the COM-HPC pins and the protection measures If the GPIO is to be used as a single direction input or output, then robust buffering is easy Many bidirectional buffers are available, including buffers that auto-sense the signal direction PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 115/159 Reference Schematics and Block Diagrams 3.24. Module Type Detection and Protection There are three TYPE pins defined in the COM-HPC pin-outs allowing up to eight Types to be defined. At present, three Types are defined, per Table 21 below: Table 21: COM-HPC Type Definitions Module Connections Ref TYPE2 TYPE1 7 NC NC 6 NC NC 5 NC GND 4 NC GND 3 GND NC 2 GND NC 1 GND GND 0 GND GND TYPE0 NC GND NC GND NC GND NC GND Meaning Reserved Reserved Reserved Server Module Fixed 12V input Reserved Reserved Client Module - Wide Range 8V to 20V input Client Module Fixed 12V input COM-HPC Carrier hardware may optionally implement hardware to hold off the application of power to the main Carrier circuits and to the Module if the Module and Carrier Types do not match up. The COM-HPC Client and Server pin-outs are different (the differences are noted in Table 2 earlier in this document) and it is not desirable to power up a system in which the Carrier and Module Types do not match. The Carrier hardware shown in Figure 59 below holds off power distribution if the Module Type is not a fixed input voltage Client or a wide-range input Client. The example uses and ATX style power supply. The 5V Standby power to the Carrier and Module is cut off by power switch U60 in the Figure. The open drain FET T1 along with pull-down resistor R539 ensure that the ATX power control line (ATX_PSON#) is floating and not pulled low. This prevents the main ATX power rails from coming on. FET T1 should not be replaced by a logic gate as the gate's internal ESD protection diodes might provide a path for the ATX_PSON# signal to be pulled low unintentionally. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 116/159 Reference Schematics and Block Diagrams Figure 59: Module TTyyppeeDeDteecttieocnt/ iPorontecLtioognicATX Power Supply and Client Type Module / Carrier C +5V_SBY_ATX VCC_5V_SBY R534 100k 0402 R535 100k 0402 C703 100n 0402 25V C704 1u0 0603 16V U60 1 2 VIN VOUT VIN VOUT 8 7 C706 22u 1206 16V TYPE2 COM TYPE1 COM TYPE0 not evaluated. Carrier with ATX PSU supports 'Fixed 12V' and 'Wide Range' Modules U59 1 5 VCC 2 3 4 GND SN74LVC1G02 SBY_EN_LSW 4 VBIAS CT 6 SBY_LSW_CT 9 PAD 3 ON R536 100k 0402 GND 5 TPS22975 C705 4n7 0402 25V Rise time ~8ms B ATX_PSON# 5 4 3 2 3 Example: Server Carrier with AT PSU 12V Runtime Voltage (+VCSCUS__ISN3#) COM no Standby Voltage D 1 R539 100k 0402 2 T1 2N7002A 1 A D 4 3 2 1 The Carrier hardware shown in Figure 60 below holds off power distribution if the Module Type is not a Server Type Module. The example uses and AT style supply. Type Detection Logic C Figure 60: Module Type Detection / Protection AT Power Supply and Server Type Module / Carrier C +VCC_IN U62 1 IN C707 1u0 0805 25V 3 EN +3.3V_initial OUT 5 NC 4 LDK320M33R C708 1u0 0402 10V 2 GND B +3.3V_initial R534 100k 0402 R535 100k 0402 C703 100n 0402 25V +VCC_IN TYPE1 COM TYPE0 COM A TYPE2 COM +3.3V_initial U59 1 5 VCC 2 3 4 GND SN74LVC1G02 R537 100k 0402 C709 100n 0402 25V U61 1 2A 3B GND 5 VCC 4 Y NC7SZ08 C712 22u 1206 25V +3.3V_initial LSW_EN R538 100k 0402 C710 1u0 0402 10V LSW_EN U63 12 13 VIN VIN 10 VCC 11 1 5 EN NC1 NC5 NCP45750 B VCC to COM-HPC module Vout Vout Vout 2 3 4 OCP PG SR VSS 9 8 7 6 SR_VCC A C711 100n 0402 25V rise time ~12ms 5 4 3 2 1 Server Modules may use either AT or ATX or other style power supplies. An AT supply is used here just as an example. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 117/159 4. PCB Design Rule Summaries PCB Design Rule Summaries 4.1. High Speed PCB Design Information Design Guides and Books 4.1.1. Intel and AMD Design Guides Intel and AMD have a wealth of design guide material available, although most current materials are NDA (Non Disclosure Agreement) protected and Carrier designers must obtain their own NDAs with these vendors to access these documents. A few useful documents are listed in Table 22 below. Although these guides are centered around CPU board development there is also much general high speed design information, often in graphical format, about topics such as how to keep differential pairs length matched, about stackups, about via stubs, about voiding planes under certain components and features, and so on. There is also information about peripheral interfaces such as PCIe, USB 3 and 4 etc. Table 22: Intel and AMD Design Guides Vendor Doc # Description / Title Notes AMD Intel Intel Intel Intel Intel 5515 576513 607872 618429 627205 406926 Socket SP3 Processor Mother Board DG Some general high speed PCB design info Fiber weave effect information PCIe Gen 3 and 4 information Intel Confidential Some general high speed PCB design info PCB differential pair length matching techniques PCIe Gen 3 and 4 information USB 3.1 Ethernet KR 10G/25G information Tiger Lake UP3 UP4 Platform DG Fiber weave effect information PCIe Gen 3 and 4 length matching information USB4 routing information Tiger Lake H Platform DG Intel Confidential Fiber weave effect information No stub routing techniques Voiding advice PCIe Gen 4 and Gen 5 advice Fiberweave Effect White Paper PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 118/159 PCB Design Rule Summaries 4.1.2. Books on High Speed PCB Design Principles The publications listed below are much more academic than the design guides listed in Section Error: Reference source not found above. These books may be useful to designers interested in the engineering and physics details of what is going on with very fast signal propagation. The book titled High Speed Digital Design: Design Of High Speed Interconnects And Signaling is the newest and perhaps most relevant book in this list. It was written by a trio of Intel engineers and covers contemporary high speed serial interface topics quite thoroughly. · Advanced Signal Integrity For High-Speed Digital Designs Stephen H.; Heck and Howard L Hall ISBN 13: 9780470192351 ISBN 10: 0470192356 © 2009 Wiley-IEEE Press · High Speed Digital Design: Design Of High Speed Interconnects And Signaling Hanqiao Zhang, Steven Krooswyk and Jeffrey Ou © 2015 Morgan Kaufman, Elsevier Inc. ISBN: 978-0-12-418663-7 · High-Speed Signal Propagation - Advanced Black Magic Howard Johnson and Martin Graham © 2003 Pearson Education, Prentice Hall Professional Technical Reference · Right the First Time - A Practical Handbook on High Speed PCB and System Design Volumes 1 and 2 Lee W. Ritchey ©2006 Speeding Edge · Signal Integrity Issues and Printed Circuit Board Design Douglas Brooks ©2003 Pearson Education, Prentice Hall Professional Technical Reference PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 119/159 PCB Design Rule Summaries 4.2. High Speed Serial Interfaces General PCB Design Rules Figure 61: PCB Cross Section Terms and Notations Diff Pair - Surface Plane Microstrip Symmetric Stripline WS W H2 Asymmetric Stripline T D D H1 or H Diff Pair DX Other Periodic Signal Dual Stripline or Dual Asymmetric Stripline Some of the terms and notations in the Figure above are used in the Tables and text on the following pages. The long copper colored thin rectangles represent the GND or PWR planes and the smaller rectangles, for the most part, the edge coupled differential pairs. The upper and lower signal layers within a Dual Stripline structure should be routed orthogonally to each other to minimize coupling and thereby crosstalk. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 120/159 PCB Design Rule Summaries Table 23: General Design Rules for High Speed Serial interfaces Ref Rule / Recommendation 1 High speed pairs should be routed as edge-coupled differential pairs referenced to and closely coupled to an un- broken GND plane. 2 High speed pairs with Nyquist frequencies at 4 GHz or more (PCIe Gen 3,4,5, USB 3.2 Gen2, USB4 Gen 3, Dis- playPort, eDP, HDMI, Ethernet KR) require the most PCB routing care. 3 The preferred routing environments for high speed pairs are ranked here, from most desirable to least: 1. Symmetric Stripline routing with clean GND planes above and below gives the best signal integrity, but it is often an impractical luxury. The two GND planes should be periodically tied together with stitching vias, every inch or so in both X and Y. 2. Asymmetric Stripline routing with the differential pair traces close the primary reference plane, an unbroken GND plane, and further from the secondary plane. The secondary plane can be a GND plane (preferred) or a power plane, possibly with plane splits. 3. Asymmetric Dual Stripline routing with high speed pairs close to the primary reference plane, a GND plane. The traces on the "other" routing layer should be as far away as possible and be routed orthogonally to the GND referenced high speed pairs. The "other" traces can be high speed pairs as well, if their primary reference plane is also GND and if the two signal layers are orthogonal. If the routes on the Asymmetric Dual Stripline routing layers are not be truly orthogonal (90 degrees) they should be angled at at least 30 degrees relative to each other. 4. Microstrip routing. 4 Use as few vias as possible. What few vias there are should be symmetrically placed, such that the + and lines in the pair "see" the same obstacles and impedance discontinuities. If there is a reference plane change, there must be a stitching via close to the signal via. If the planes are at the same potential (e.g. both GND), direct (DC coupled) stitching vias are used. If the reference planes are at different potentials (not desirable for high speed pairs) then a stitching capacitor is used near the signal vias. These concepts are illustrated in some of the Design Guides referenced in Table 22 above. 5 The higher speed interfaces may need no-stub vias or very short stub vias. This may mean backdrilling the vias with controlled depth drills to hollow out the unused portion of the via barrel. Alternatively, via structures that are built up or are laser drilled and only transit a limited number of layers (say from Layer 1 to Layer 3, with Layer 2 being a GND plane) may be used. Another strategy to avoid via stubs is to arrange that the vias connect layers on opposite sides of the PCB. Then there is no stub (for outer layer to outer layer) or perhaps a shorter stub. Yet another strategy is to use sequential lamination PCB construction. For example, a 12 layer PCB can be built as two 6 layer PCBs and then laminated together to form a 12 layer PCB, with short vias spanning layers1-6 and layers 7-12 and longer vias spanning layers 1-12. 6 If layer transitions must be done, having the high speed signals in question straddle a common GND plane is beneficial as there is no change in the reference layer. For example, if signal pairs are on Layer 1 and 3 and Layer 2 is GND, then there is no change in GND reference plane for the Layer 1 3 transitions. If the layer changes result in a change in GND reference planes, then there need to be GND stitching vias close to the trace vias. The stitching vias tie the GND planes together in the vicinity of the signal pair layer transition. 7 It is critically important that the + and signal lines in a differential pair are closely length matched. The matching is on the order of a few mils for the faster interfaces. This is sometimes called intra-pair length matching. In this document, this is referred to as differential pair + and length matching. The different pairs in a group (e.g. the four TX+ and pairs in x4 PCIe link) do not need to be matched very closely at all for many modern interfaces. This is sometimes called inter-pair length matching. In this document, it is referred to as pair to pair length matching (or similar). For some interfaces, this mismatch can be on the order of inches. 8 Coupling capacitors should be discrete 0402 or 0201 package size parts. Do not use capacitor arrays as these can have internal cross coupling that can severely attenuate the differential signal. 9 The plane under the coupling capacitors for the higher speed interfaces should be voided (meaning that rectangular holes about the same size as the capacitor lands, or slightly larger, should be created in the plane) whether it is a GND or PWR plane. See the Intel Document 627205 referenced in Table 22 above for details. 10 Plane layers that do NOT connect to a particular via should be voided with a circular void around the via barrel. This is done anyway so that the plated via hole does not connect to the plane, but the void should be expanded somewhat to avoid signal coupling to the plane. See the Intel Document 627205 referenced in Table 22 above for details. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 121/159 PCB Design Rule Summaries Ref Rule / Recommendation 11 High speed traces should not be run close to the board edges, especially for long runs parallel to the edge. If they are run this way, they may be creating an EMI hazard. 12 Sometimes the differential pairs are serpentined to adjust the pair length to match another pair. There is usually a "minimum distance to self", listed in some of the Tables below. 13 The fastest interfaces need to account for the "Fiberweave Effect". This effect is due to the periodic variations in the PCB material dielectric constant caused by the fiberglass weave pattern within a PCB layer. The mitigation strategies are to either arrange that the PCB routes are not parallel (in x or y) to the glass fibers in the weave, or to use a PCB material that does not show this effect. Some of the references in Table 22 have details and illustrations on this effect. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 122/159 PCB Design Rule Summaries 4.3. PCB Design Rule Summaries - High Speed Differential Pair Serial Interfaces The COM-HPC high speed serial interfaces and two of the fastest single ended interfaces were extensively simulated by a Signal Integrity subgroup during the development of the COM-HPC specification. These efforts resulted in a set of loss budgets, maximum trace length values and other related recommendations. This is documented in Section 6 of the COM-HPC Base Specification. The loss-budget approach allows the findings to be adapted to various different PCB materials (e.g. Standard Loss, Mid Loss, Low Loss and Very Low Loss). The Base Specification recommendations as they apply to COM-HPC Carrier designs are summarized in the Sections below . Some recommendations such as trace length matching requirements are not found in the Base Specification document; rather they are compiled from industry sources. 4.3.1. NBASE-T Design Rule Summary Table 24: NBASE-T Design Rule Summary Ref Parameter Description 1 Signaling Rate / Nyquist Frequency 2 Preferred PCB Routing Environment 3 Differential Trace Impedance 4 Single Ended Trace Impedance 5 Max Module Trace Length 6 Max Carrier Trace Length 7 Differential Pair +/- Length Matching (Carrier / Module) 8 TX Pair to TX Pair Length Matching (Carrier / Module) 9 RX Pair to RX Pair Length Matching (Carrier / Module) 10 TX Pair to RX Pair Length Matching (Carrier / Module) 11 TX Pair to RX Pair Spacing (Carrier / Module) 12 TX or RX pair Spacing to Other Signals 13 Max Via Stub Length Parameter Value 1000BASE-T: 250 Mbps / ~80 MHz 10GBASE-T: 2.5 Gbps / ~450 MHz Asymmetric Stripline Unbroken GND plane primary reference Microstrip routing may be used Microstrip is necessary near connectors Quiet unbroken well bypassed power plane may be used as a reference plane. 100 ohm +/- 10% 55 ohm +/- 15% 1GBASE-T STD Loss PCB Material: 3000 mils 10GBASE-T STD Loss PCB Material: 1500 mils 10GBASE-T MID Loss PCB Material: 1500 mils 1GBASE-T STD Loss PCB Material: 5000 mils 10GBASE-T STD Loss PCB Material: 2500 mils 10GBASE-T MID Loss PCB Material: 4500 mils 5 mil / 5 mil 500 mil / 500 mil 500 mil / 500 mil 500 mil / 500 mil D 5*H (Asymmetric Stripline) DX 8*H (Asymmetric Stripline) 80 mil See Figure 61 above for definitions of D, DX and H. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 123/159 PCB Design Rule Summaries 4.3.2. Ethernet KR Design Rule Summary Table 25: Ethernet KR Design Rule Summary Ref Parameter Description Parameter Value 1 Signaling Rate / Nyquist Frequency 10G KR: 10.3125 Gtps / ~5.1 GHz 25G KR: 25.78125 Gtps / ~12.9 GHz 40G KR4: 10.3125 Gtps / ~5.1 GHz 100G KR4: 25.78125 Gtps / ~12.9 GHz 2 Preferred PCB Routing Environment Asymmetric Stripline Unbroken GND plane primary reference 3 Differential Trace Impedance 93 ohm +/- 10% 4 Single Ended Trace Impedance 50 ohm +/- 15% 5 Maximum Trace Lengths on Carrier (adapted from COM-HPC Base Specification V1.0 Tables 79, 81, 83) PHY Down on Carrier Carrier Trace Lengths 10GBASE-KR 25GBASE-KR RS-FEC 25GBASE-KR BASE-R FEC 25GBASE-KR No FEC Budget (dB) 16.0 20.0 16.0 12.0 Standard Loss (SL) PCB Material (inches) 13.2 7.9 6.3 Mid Loss (ML) PCB Material (inches) 21.0 12.9 10.3 Low Loss (LL) PCB Material (inches) 27.4 16.5 13.2 Very Low Loss (VLL) PCB Material (inches) 37.3 23.1 18.5 4.7 7.8 9.9 13.8 Module1 MAC to Module2 MAC Carrier Trace Lengths 10GBASE-KR 25GBASE-KR RS-FEC 25GBASE-KR BASE-R FEC 25GBASE-KR No FEC Budget (dB) 12.0 12.0 8.0 3.0 Standard Loss (SL) PCB Material (inches) 9.9 4.7 3.2 Mid Loss (ML) PCB Material (inches) 15.7 7.8 5.2 Low Loss (LL) PCB Material (inches) 20.5 9.9 6.6 Very Low Loss (VLL) PCB Material (inches) 28.0 13.8 9.2 1.2 1.9 2.5 3.5 SFP Connector on Car- Budget rier (dB) Carrier Trace Lengths SFP+ Max Carrier Trace 1.50 SFP28 Max Carrier Trace 2.00 Standard Loss (SL) PCB Material (inches) 1.24 0.79 Mid Loss (ML) PCB Material (inches) 1.97 1.29 Low Loss (LL) PCB Material (inches) 2.56 1.65 Very Low Loss (VLL) PCB Material (inches) 3.50 2.31 6 Differential Pair +/- Length Matching (Carrier / Module) Note the very tight matching for 25GBASE-KR This is actually relaxed from some Intel recommendations, per PICMG consultation with Intel 7 TX Pair to Pair Length Matching (Carrier / Module) 8 RX Pair to Pair Length Matching (Carrier / Module) 9 TX Pair to RX Pair Length Matching (Carrier / Module) 10 TX Pair to RX Pair Spacing (Carrier / Module) 11 TX or RX pair Spacing to Other Signals 12 Max Via Stub Length 2.5 mil / 2.5 mil for 10GBASE-KR 1.5 mil / 1.5 mil for 25G BASE-KR 500 mil / 500 mil (KR4 only; N/A for KR) 500 mil / 500 mil (KR4 only; N/A for KR) 500 mil / 500 mil D 5*H (Asymmetric Stripline) DX 8*H (Asymmetric Stripline) 10 mil (KR and KR4) PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 124/159 PCB Design Rule Summaries 4.3.3. SATA Design Rule Summary Table 26: SATA Design Rule Summary Ref Parameter Description Parameter Value 1 Signaling Rate / Nyquist Frequency Gen 1: 1.5 Gtps / 0.75 GHz Gen 2: 3 Gtps / 1.5 GHz Gen 3: 6 Gtps / 3 GHz 2 Preferred PCB Routing Environment Asymmetric Stripline Unbroken GND plane primary reference 3 Differential Trace Impedance 85 ohm +/- 10% 4 Single Ended Trace Impedance 45 ohm +/- 15% 5 Maximum Trace Lengths (from COM-HPC Base Specification V1.0 Tables 58 and 60 ) Device Up on M.2 or mSATA Card SATA Gen1 Carrier Trace SATA Gen2 Carrier Trace SATA Gen3 Carrier Trace Budget dB 1.1 1.8 2.9 Standard Loss (SL) Mid Loss (ML) PCB Material PCB Material Inches Inches 4.07 6.88 3.91 6.55 3.74 6.03 Low Loss (LL) PCB Material Inches 8.46 8.14 7.80 Very Low Loss (VLL) PCB Material Inches 9.17 10.11 10.21 Cabled Interface SATA Gen1 Carrier Trace SATA Gen2 Carrier Trace SATA Gen3 Carrier Trace Budget dB 0.7 1.1 1.8 Standard Loss (SL) Mid Loss (ML) PCB Material PCB Material Inches Inches 2.59 4.38 2.39 4.00 2.32 3.74 Low Loss (LL) PCB Material Inches 5.38 4.98 4.84 Very Low Loss (VLL) PCB Material Inches 5.83 6.18 6.34 6 Differential Pair +/- Length Matching (Carrier / Module) 7 TX Pair to RX Pair Length Matching (Carrier / Module) 8 TX Pair to RX Pair Spacing (Carrier / Module) 9 TX or RX pair Spacing to Other Signals 10 Max Via Stub Length 2.5 mil / 2.5 mil to support SATA Gen 3 No requirement D 5*H (Asymmetric Stripline) DX 8*H (Asymmetric Stripline) 80 mil PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 125/159 PCB Design Rule Summaries 4.3.4. PCIe Design Rule Summary Table 27: PCIe Design Rule Summary Ref Parameter Description Parameter Value 1 Signaling Rate / Nyquist Frequency Gen 3: 8 Gtps / 4 GHz Gen 4: 16 Gtps / 8 GHz Gen 5: 32 Gtps / 16 GHz 2 Preferred PCB Routing Environment Asymmetric Stripline Unbroken GND plane primary reference 3 Differential Trace Impedance (PCIe data and Ref CLK pairs) 85 ohm +/- 10% 4 Single Ended Trace Impedance 45 ohm +/- 15% 5 Maximum Trace Lengths (from COM-HPC Base Specification V1.0 Tables 52 and 54) Device Down Budget (dB) Gen 3 Max Carrier Trace Gen 4 Max Carrier Trace Gen 5 Max Carrier Trace 11.00 12.50 13.00 Standard Loss (SL) PCB Material (inches) 10.37 7.11 4.23 Mid Loss (ML) PCB Material (inches) 15.65 10.77 6.86 Low Loss (LL) PCB Material (inches) 20.16 13.44 8.97 Very Low Loss (VLL) PCB Material (inches) 26.68 17.64 12.65 Device Up Budget (dB) Gen 3 Max Carrier Trace 6.50 Gen 4 Max Carrier Trace 7.50 Gen 5 Max Carrier Trace 8.00 Standard Loss (SL) PCB Material (inches) 6.13 4.26 2.60 Mid Loss (ML) PCB Material (inches) 9.25 6.46 4.22 Low Loss (LL) PCB Material (inches) 11.91 8.06 5.52 Very Low Loss (VLL) PCB Material (inches) 15.77 10.58 7.78 6 Differential Pair +/- Length Matching (Carrier / Module) 7 TX Pair to TX Pair Length Matching (Carrier / Module) RX Pair to RX Pair Length Matching (Carrier / Module) 8 TX Pair to RX Pair Length Matching (Carrier / Module) 9 TX Pair to RX Pair Spacing 10 TX or RX pair Spacing to Other Signals 11 PCIe Data Pair Distance to Self 12 PCIe RX or TX Data Pair Length relative to PCIe Reference Clock Pair Length 13 Maximum Via Stub Lengths: 14 Land Pattern and Via Voiding Recommendations: 15 Fiberweave Effect Mitigation Gen 3, 4, 5: 2.5 mil / 2.5 mil Gen 3, 4, 5: 500 mil / 500 mil No TX to RX matching required Gen 3, 4, 5: D 5H Gen 3, 4, 5: DX 8H Gen 3, 4, 5: D 3W No matching required. The Reference Clock Pairs should be routed as directly as possible. Gen 3: 80 mil Gen 4: 30 mil Gen 5: 10 mil Gen 3, 4, 5: planes adjacent to component lands should be voided. All layers that a PCIe coupling via passes through should be voided, unless the via connects on that layer. See the Intel Document 627205 referenced in Table 22 above for illustrations on voiding and length matching. See Fiberweave Effect references in Table 22 above. Alternatively, use a PCB material that does not exhibit this effect. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 126/159 4.3.5. USB 2.0 Design Rule Summary Table 28: USB 2.0 Design Rule Summary Ref Parameter Description 1 Signaling Rate / Nyquist Frequency 2 PCB Routing Environment 3 Differential Trace Impedance (USB 2.0 data pair) 4 Single Ended Trace Impedance 5 Max Carrier Trace Length 6 Differential Pair +/- Length Matching (Carrier / Module) 7 Pair Spacing to other USB 2.0 Pairs (Carrier / Module) 8 TX or RX pair Spacing to Other Signals 9 Max Via Stub Length PCB Design Rule Summaries Parameter Value 480 Mbps / 240 MHz (USB 2.0 High Speed) Asymmetric Stripline is best Microstrip may be used Unbroken GND plane primary reference is best Quiet PWR plane may be used as a reference Plane splits should be avoided If plane splits are unavoidable, stitching capacitors should be used to tie the plane regions together, for AC signals 90 ohm +/- 10% Circa 45 to 50 ohm Cabled Interface: 14 inches Device Down on Carrier: 28 inches 20 mil / 20 mil D 5*H (Asymmetric Stripline) DX 8*H (Asymmetric Stripline) 80 mil PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 127/159 PCB Design Rule Summaries 4.3.6. USB 3.2 and USB4 Design Rule Summaries Table 29: USB 3.2 and USB4 Design Rule Summaries Ref Parameter Description Parameter Value 1 Signaling Rate / Nyquist Frequency USB 3.2 Gen 1: USB 3.2 Gen 2: USB4 Gen 2: USB4 Gen 3: 5 Gtps / 2.5 GHz 10 Gtps / 5 GHz 10 Gtps / 5 GHz 20 Gtps / 10 GHz 2 Preferred PCB Routing Environment Asymmetric Stripline Unbroken GND plane primary reference 3 Differential Trace Impedance (USB SuperSpeed Pairs) USB 3.2 Gen 1: Historically was 90 ohm Going forward, 85 ohm is OK USB 3.2 Gen 2: 85 ohm +/- 10% USB4 Gen 2: 85 ohm +/- 10% USB4 Gen 3: 85 ohm +/- 10% 4 Single Ended Trace Impedance 45 ohm +/- 15% 5 Maximum Carrier Trace Lengths (from COM-HPC Base Specification V1.0 Tables 67 and 69 ) USB SuperSpeed Device Down USB 3.2 Gen 1 USB 3.2 Gen2 USB4 Gen 2 USB4 Gen 3 Budget (dB) 3.2 5.5 5.5 10.5 Standard Loss (SL) PCB Material (Inches) 4.7 4.7 4.7 5.2 Mid Loss (ML) PCB Material (Inches) 7.6 7.6 7.6 7.6 Low Loss (LL) PCB Material (Inches) 10 9.8 9.8 10.7 Very Low Loss (VLL) PCB Material (Inches) 12.8 13.4 13.4 15 USB SuperSpeed Cabled Interface USB 3.2 Gen 1 USB 3.2 Gen 2 USB4 Gen 2 USB4 Gen 3 Budget (dB) 3.2 5.5 5.5 10.5 Standard Loss (SL) PCB Material (Inches) 4.7 4.7 4.7 NA Mid Loss (ML) PCB Material (Inches) 7.6 7.5 7.5 NA Low Loss (LL) PCB Material (Inches) 10 9.8 9.8 NA Very Low Loss (VLL) PCB Material (Inches) 12.8 13.4 13.4 NA The values marked in red in the Table just above indicate that there is insufficient overall margin for a direct cabled interface with USB 3.2 Gen 2 or USB4 Gen 2 or USB4 Gen 3. Redrivers or retimers placed close to the cable connectors are advised. The Carrier maximum trace lengths in the Device Down Table above may be used for the run between the COM-HPC Module and the redrivers or retimers. 6 Differential Pair +/- Length Matching (Carrier / Module) 2.5 mil / 2.5 mil 7 TX Pair to TX Pair Length Matching (Carrier / Module) RX Pair to RX Pair Length Matching (Carrier / Module) 100 mil / 100 mil Applies only to x2 configurations (2 TX pairs and 2 RX pairs) 8 TX Pair to RX Pair Length Matching (Carrier / Module) 100 mil / 100 mil 9 TX Pair to RX Pair Spacing D 5H 10 TX or RX pair Spacing to Other Signals DX 8H 11 TX or RX Data Pair Distance to Self 13 Maximum Via Stub Lengths: USB 3.2 Gen 1 80 mil USB 3.2 Gen 2 30 mil USB4 Gen 2 30 mil USB4 Gen 3 10 mil PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 128/159 Ref Parameter Description 14 Land Pattern and Via Voiding Recommendations: 15 Fiberweave Effect Mitigation Parameter Value PCB Design Rule Summaries Gen 3, 4, 5: planes adjacent to component lands should be voided. All layers that a coupling via passes through should be voided, unless the via connects on that layer. See the Intel Document 627205 referenced in Table 22 above for illustrations on voiding and length matching. See Fiberweave Effect references in Table 22 above. Alternatively, use a PCB material that does not exhibit this effect. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 129/159 PCB Design Rule Summaries 4.3.7. DisplayPort Design Rule Summary Table 30: DisplayPort Design Rule Summary Ref Parameter Description 1 Preferred PCB Routing Environment Parameter Value Asymmetric Stripline Unbroken GND plane primary reference Microstrip is necessary in region near DP connector 2 Differential Trace Impedance 85 ohm +/- 10% 3 Single Ended Trace Impedance 45 ohm +/- 15% 4 Maximum Carrier Trace Lengths (adapted from COM-HPC Base Specification V1.0 Tables 86 and 87 ) DisplayPort Cabled Interfaces No Carrier Redriver DP HBR DP HBR2 DP HBR3 DP UHBR10 DP UHBR13.5 DP UHBR20 Bit Rate / Nyquist (per Lane) Gbps / GHz 2.7 / 1.3 5.4 / 2.7 8.1 / 4.0 10 / 5.0 13.5 / 6.7 20 / 10 Standard Loss PCB Material inches 3.2 2.9 2.3 1.65 1.8 1.3 Mid Loss PCB Material inches 5.4 4.6 3.6 2.6 3.0 2.2 Low Loss PCB Material inches 6.7 6.0 4.7 3.4 3.8 2.8 Very Low Loss PCB Material inches 8.3 7.8 6.3 4.6 5.3 3.8 DisplayPort With Carrier Retimer/Redriver DP2.0 UHBR13.5 DP2.0 UHBR20 Bit Rate / Nyquist (per Lane) Gbps / GHz 13.5 / 6.7 20 / 10 Standard Loss PCB Material inches 5 3.7 Mid Loss PCB Material inches 8 6 Low Loss PCB Material inches 10.4 7.6 Very Low Loss PCB Material inches 14.4 10.7 Red text in upper table above indicates that there is insufficient margin in the overall channel and that that particular configuration should not be used. 5 Differential Pair +/- Length Matching (Carrier / Module) 2.5 mil / 2.5 mil 6 Data Pair to Pair Length Matching (Carrier / Module) 100 mil / 100 mil 7 Pair to Pair Spacing D 5H 8 TX or RX pair Spacing to Other Signals DX 8H 9 TX or RX Data Pair Distance to Self 10 Maximum Via Stub Lengths: 80 mil (per lane bit rate 5.4 Gtps) 30 mil (per lane bit rate 13.5 Gtps) 10 mil (per lane bit rate 20 Gtps) 11 Land Pattern and Via Voiding Recommendations: For DP modes with bit-rate at or above 8 Gtps per lane: Planes adjacent to component lands should be voided. All layers that a coupling via passes through should be voided, unless the via connects on that layer. See the Intel Document 627205 referenced in Table 22 above for illustrations on voiding and length matching. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 130/159 4.3.8. eDP Design Rule Summary PCB Design Rule Summaries Embedded DisplayPort signal integrity considerations were not explicitly addressed by the COM-HPC Signal Integrity subgroup. As such, it would be reasonable for COM-HPC Carrier designers to use the COM-HPC DisplayPort Design Rule Summary outlined in Section 4.3.7. for eDP layouts. For eDP panels, only the lower bit rate formats (HBR, HBR2, HBR3) are likely to come into play. Alternatively, Carrier Designers can consult some of the Intel and AMD Design Guides listed in Table 22 above for eDP guidance. The Intel Document 627205 in particular has lots of eDP advice. However, these Design Guides are targeting laptop and motherboard designs and it can be tricky to map these recommendations to the COM-HPC system case. The general rule of thumb is that about half of the motherboard or laptop board budget goes to the COM-HPC Module and half to the COM-HPC Carrier. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 131/159 4.3.9. HDMI Design Rule Summary PCB Design Rule Summaries Table 31: HDMI Design Rule Summary Ref Parameter Description 1 Preferred PCB Routing Environment Parameter Value Asymmetric Stripline Unbroken GND plane primary reference Microstrip may necessary in the region near the HDMI connector 2 Differential Trace Impedance 85 ohm +/- 10% (on Carrier before HDMI buffer) 100 ohm +/- 10% (after buffer) 3 Single Ended Trace Impedance 45 ohm +/- 15% (before buffer) 55 ohm +/- 15% (after buffer) 4 Maximum Carrier Trace Lengths (adapted from COM-HPC Base Specification V1.0 Table 88) ) HDMI Buffer / Driver Bit Rate / Nyquist on Carrier near (per Lane) HDMI Connector Gbps / GHz HDMI 1.4 3 / 1.5 HDMI 2.1 6 / 3 HDMI 2.1 12 / 6 Standard Loss PCB Material inches 4 Mid Loss PCB Material inches Low Loss PCB Material inches Very Low Loss PCB Material inches 5.75 6.75 10 5 Differential Pair +/- Length Matching (Carrier / Module) 6 Data Pair to Pair Length Matching (Carrier / Module) 7 Pair to Pair Spacing 8 TX or RX pair Spacing to Other Signals 9 TX or RX Data Pair Distance to Self 10 Maximum Via Stub Lengths: 11 Land Pattern and Via Voiding Recommendations: 2.5 mil / 2.5 mil 100 mil / 100 mil D 5H DX 8H 80 mil (per lane bit rate 6 Gtps) 30 mil (per lane bit rate = 12 Gtps) For HDMI modes with bit-rate at 12 Gtps per lane: Planes adjacent to component lands should be voided. All layers that a coupling via passes through should be voided, unless the via connects on that layer. See the Intel Document 627205 referenced in Table 22 above for illustrations on voiding and length matching. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 132/159 4.4. PCB Design Rules for Single Ended (SE) Interfaces PCB Design Rule Summaries Table 32: Design Rules for Single Ended Interfaces Ref Rule / Recommendation 1 Most COM-HPC SE traces may be routed using a 55 ohm +/- 15 %. trace impedance. The BOOT_SPI_xxx , eSPI_xxx and GP_SPI_xxx nets are the exceptions and should be routed as 50 ohm +/- 15% 2 SE nets may be routed as Stripline or Microstrip traces, referenced to a GND plane or to a quiet PWR plane. 3 Crossing plane splits should be avoided for the faster SE interfaces (BOOT_SPI_xxx, eSPI_xxx and GP_SPI_xxx). If these nets do cross a split in the reference plane, then the split should be "stitched" with a small capacitor that bridges the split for AC signals. 4 SE signals with higher bit rates and faster edge rates need more routing care than slower signals. The higher bit rate SE signals include: · BOOT_SPI_xxx Up to circa 100 Mhz in some cases; up to circa 50 MHz is more typical · eSPI_xxx Up to circa 50 MHz · GP_SPI_xxx Up to circa 50 MHz · I3C Up to circa 33 MHz · Soundwire Up to circa 12 MHz · Various I2C signals Up to circa 1 MHz or 400 kHz in some cases but more typically are 100 kHz max · UART_xxx Up to circa 1 MHz in some cases usually less 115 kHz max is more common COM-HPC SE signals not listed just above are likely to be very slow, almost static in many cases. "More routing care" can mean: · Signal should be GND referenced · No plane split crossings · Stripline routing preferred, with primary reference to GND · Series damping resistors for the signals listed as 50 MHz or more · BOOT_SPI_xxx, eSPI_xxx and GP_SPI_xxx have specific routing rules (see below) 5 The COM-HPC BOOT_SPI_xxx signals are arranged in a "balanced tree" topology. Full details can be found in the COM-HPC Base Specification Version 1.0 Section 6.11.1. Up to 4 BOOT_SPI_xxx devices are allowed, but 3 are on the Module and only 1 (or 0) are allowed on the Carrier. The trace lengths for the BOOT_SPI Data and Clock between the COM-HPC connector balls and the Carrier device must be at least 2000 mils long and no more than 3000 mils long. This is to "balance" the on-Module and off-Module branches of the tree. The Data and Clock lines for this branch of the tree should be length matched to within 250 mil. A series damping resistor is recommended. Refer to the COM-HPC Base specification for more details and a diagram. The Chip Select line associated with the Carrier BOOT_SPI_xxx signals does not need length matching and should be routed as directly as possible. 6 The COM-HPC eSPI_xxx signals are arranged in a "balanced tree" topology. Full details can be found in the COMHPC Base Specification Version 1.0 Section 6.11.2. Up to 4 eSPI_xxx devices are allowed: up to 2 on the Module and up to 2 on the Carrier. The trace lengths for the eSPI Data and Clock lines between the COM-HPC connector balls and the Carrier device(s) must be at least 2000 mils long and no more than 3000 mils long. This is to "balance" the on-Module and off-Module branches of the tree. A series damping resistor is recommended. There should be separate branches in the tree if there are 2 Carrier devices. Refer to the COM-HPC Base specification for more details and a diagram. The Chip Select line associated with the Carrier eSPI_SPI_xxx signals does not need length matching and should be routed as directly as possible. 7 GP_SPI_xxx net routing should follow the same rules as the eSPI_xxx nets. If there are 2 GP_SPI devices, there should be 2 separate tree branches. 8 If any SE signals leave the Carrier and are exposed to the outside world and to potential contact with users, there should be both EMI and ESD mitigation measures implemented close to the connectors that face outside. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 133/159 5. Mechanical Considerations Mechanical Considerations 5.1. Heat Spreader / Module / Carrier Attachment Details 5.1.1. Heat Spreader to Module Attachment Notes The COM-HPC Base Specification calls out Module PCB mounting holes that are are to align with corresponding Heat Spreader Plate, Carrier board and possibly system chassis mounting holes or features to hold the entire assembly together. However, the COM-HPC Base Specification also recommends that there be a separate set of vendor-specific holes to secure the Heat Spreader Plate (HSP), the Thermal Interface Materials (TIM) and the COM-HPC Module board together as a subsystem that can be shipped as a unit, independent of the larger system that includes the Carrier and other components (chassis, heat sinks, etc.). This is desirable as the TIM stack can be a sensitive, precision assembly that is best handled once and only once by the Module vendor. The reference to separate, design specific holes in the Module and HSP for this purpose are in the COM-HPC Base Specification V1.0 in Section 7.5.4 Table 93 Ref 5, reproduced here: The implementation specific holes / spacers / standoffs used to secure the HSP to the Module should be different from those used at the COM-HPC defined mounting hole sites. The x-y positions, the number of the vendor-specific HSP / TIM / Module attachment points and other implementation details are not defined by the COM-HPC specification document. However, a typical vertical cross section diagram of how this can be implemented is shown in Figure 62 below. Figure 62: Vendor Specific Heat Spreader to Module Attachment Bottom Side Module PCB Access Legend: Heat Spreader Plate Vendor Specific Implementation Details HSP to Module Spacers or Standoffs Vendor Specific Locations and Implementation Details TIM Vendor Specific Implementation Details Typically, Compliant Foam or Phase Change Material CPU / SOC Die or Lid Module PCB Spacers / Standoffs at COM-HPC Defined X-Y Positions, For Module Mounting Vendor Specific Implementation Details Module to Carrier Connectors PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 134/159 Mechanical Considerations 5.1.2. Heat Spreader / Module Assembly Attachment to Carrier and Chassis Figures 63 through 66 illustrate a variety of hardware mechanical component and assembly options to secure the COM-HPC HSP, Module, Carrier and system chassis together, Figure 63: Heat Spreader Assembly Mounting to Carrier Bottom Side Screw Access Detail B Cross section view of Detail B HSP Stand-Off (M2.5 thread) Carrier Board Stand-Off (Ø 2.7 clearance hole) M2.5 Screw and Washer Heatspreader (HSP) CPU Module Carrier Board PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 135/159 Mechanical Considerations Figure 64: Heat Spreader Assembly Mounting to Carrier Top Side Screw Access Detail A Cross section view of Detail A M2.5 Screw (flat head) HSP Stand-Off (Ø 2.7 clearance hole) Baseboard Stand-Off (M2.5 thread) Heatspreader (HSP) CPU Module Carrier Board PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 136/159 Mechanical Considerations Figure 65: Heat Spreader Assembly Mounting to Carrier With Broaching Nut Top Side Screw Access Detail A Cross section view of Detail A M2.5 Screw (flat head) Heatspreader Stand-Off (Ø 2.7 clearance hole) Broaching Stand-Off (M2.5 thread) Heatspreader CPU Module Carrier Board PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 137/159 Mechanical Considerations Figure 66: Heat Spreader Assembly Mounting to Carrier and Chassis Top Side Screw Access Detail A Cross section view of Detail A M2.5 Screw (flat head) Heatspreader Stand-Off (Ø 2.7 clearance hole) Carrier Board Stand-Off (Ø 2.7 clearance hole) Broaching Stand-Off (M2.5 thread) Heatspreader CPU Module Carrier Board Chassis PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 138/159 Mechanical Considerations Some useful vendors and vendor part numbers for mechanical parts that may be used in Figures 63 through 66 above are listed here: PEM TSOS-M25-1500 M2.5 threaded blind standoff for sheet metal / plate use - 15 mm overall length (for Client) PEM TSOS-M25-1800 (18 mm for Server) M2.5 threaded blind standoff for sheet metal / plate use - 18 mm overall length (for Server) www.pemnet.com Wurth 9774050951 5 mm Length x 5.1 mm OD x 2.7 mm ID SS SMT Clearance Hole Spacer Wurth 9774100951 10 mm Length x 5.1 mm OD x 2.7 mm ID SS SMT Clearance Hole Spacer May be SMT soldered to Carrier Top side as shown in the Figures 63 and 66 above www.wuerth.com EFCO (Taiwan) has numerous mechanical parts for COM-HPC and other Module standards www.efcotec.com Or use a search engine, look for " efcotec com accessories " PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 139/159 Mechanical Considerations 5.2. Alternative COM-HPC Board Stack Assembly Suggestion An alternative COM-HPC board stack assembly method and set of mechanical hardware is presented just below. This material has been submitted by Samtec. These assembly mechanics make use of Samtec defined connector hardware components, known as JSOM, for "Jack Screw Stand-off Micro". These mechanical hardware parts are used in PC-104 and in some VITA assemblies. Samtec JSOM data sheets and drawings are readily available online. This approach defines an assembly stack allowing a COM-HPC Module and Carrier to be mounted to a metal chassis which is below the Carrier. This assembly method does not include considerations for a Heat Spreader Plate. Thermal management components such as heat sinks or HSP / heat sink combinations would be handled on separate holes. The `ASP' references in some of the Figures below are Samtec designations for "Application Specific Parts". There is an ASP summary in Figure 73 several pages below. 5.2.1. Precision Jack Screw Standoffs Precision jack screw standoff hardware (referred to as JSOM by Samtec) can be used to help mating and unmating procedures in high-normal-force, multi-connector applications. They work like traditional stand-offs but contain an internal machined hex screw that can be turned in a counterclockwise direction to lift the Module Card from the Carrier Board. JSOM based assemblies can mitigate damage to the connector pins, components, boards, and solder joints. Assembly / Dis-assembly Procedure Overview Before mating the Module Card to the Carrier Board, use a 1.5mm hex driver to turn the JSOM screw clockwise until the screw is fully seated in the JSOM standoff. Figure 67: JSOM (Jack Screw Standoff Micro) Diagram and Application Cutaway PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 140/159 Mechanical Considerations Once all four JSOM screws are fully seated, apply even downward pressure over the J1 and J2 connector regions to mate the Module Card to the Carrier Board. Once the Module Card is fully mated secure the Module Card to the Carrier Board with four hex nuts and lock washers as shown in Figure 68 (a). Use a torque wrench to tighten the hex nuts to 3.0 (+/- 0.5) in-lbs. Tighten the nuts in an alternating diagonal pattern shown in Figure 68 (b). For detailed mating recommendations, refer to section 7.5.5 of the COMHPC® Module Base Specification, Revision 1.0. Figure 68: (a) Hex Nuts to Torque (b) Diagonal Torque Application / De-application (c) Hex Screw Turns Figure 3. (a) Hex nut torque, (b) diagonal unmate pattern, (c) hex screw turning ratio Unmating the Module Card from the Carrier Board To unmate the boards remove the locking nuts and washers. Using the diagonal pattern shown in Figure 68 (b) insert the 1.5mm hex key shown in Figure 68 (c) into the JSOM screw labeled 1 and turn counterclockwise a ¼ turn. Repeat this procedure for all JSOM screws labeled 2, 3, and 4 until the connectors unmate. The Module Card can then be removed from the Carrier Board. Figure 69: COM-HPC Stack Dis-assembly Procedure Using JSOM Hardware PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 141/159 Mechanical Considerations 5.3. Carrier Board Stiffener FEM (Finite Element Method) mechanical simulations were conducted to understand the amount of deflection and temporary stress that can occur in the Carrier Board as it is being mated with a Module Card. The simulations assumed that the Carrier Board was fabricated using standard 0.0625" thick FR4 material and fixed to a stiff chassis using metal stand-offs attached to the mounting holes adjacent to both the Carrier P1 and P2 connectors. As shown in Figure 70, a downward force was applied evenly over the length of the connector, and the amount of deflection was measured. The results confirmed that 0.0625" Carrier Boards should be supported using some type of stiffening mechanism. Figure 70: FEM Simulation Results 0.0625" FR4 Carrier No Stiffener PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 142/159 Mechanical Considerations Note however that the stiffness of a piece of sheet material such as a PCB is proportional to the cube of the sheet thickness. Hence using a thicker PCB may relax or obviate the need for a Carrier stiffener. PCB thickness of 0.079" (2mm), 0.092" and even 0.125" are common. However, be aware that if the Carrier uses through hole parts (typically for I/O connectors) then increasing the PCB thickness too much will result in a soldering problem as the through hole part leads need protrude beyond the PCB a bit for wave soldering. A metal simple stiffener design is shown in Figure 71 below with the corresponding keep-out regions shown in Figure 72. This Figure shows the Carrier PCB Top side. The Carrier stiffener keep-out regions are on the Bottom side of the Carrier board, as indicated by the dashed lines. When designing a Carrier Board stiffener there are some points to consider. The stiffener should provide uniform support directly underneath the Carrier Board connector and span the entire length of the connector region. This should be done for both the P1 and P2 Carrier connectors. The stiffener should be securely anchored to the chassis through mechanical mounting hardware or attached to the bottom side of the Carrier Board using an adhesive. The stiffener thickness should be as thick as the application allows. Care must be taken when using conductive materials such as steel or alloys. This stiffener concept will require a keep-out region where peripheral components cannot be placed. It may be necessary to exclude via pads from the PCB Bottom side in the in the keep-out region, or to insulate vias from a metallic stiffener. Kapton tape is the usual remedy for this situation. But such a solution may not be appropriate for high vibration situations. A thicker, compliant foam material may also be considered. Figure 71: Mechanical Carrier Stiffener Possibility PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 143/159 Figure 72: Carrier Board Stiffener Keep-Out Region (Seen Through Carrier) Mechanical Considerations Dimensions in the two Figures above are in mm. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 144/159 Figure 73: Application Specific Part Number (ASP) Reference Guide Mechanical Considerations Non-Metallic Stiffener Possibilities A simple but effective Carrier board stiffener option is to fabricate a simple non-metallic rectangular bar that is positioned between the Carrier PCB Bottom side and the system chassis. The stiffener bar extent shadows the Carrier connector and the adjacent mounting holes as shown by the dashed lines in Figure 72 above. Nylon is a suitable material. Metal press fit inserts at the mounting hole positions may be beneficial. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 145/159 6. Appendices Appendices 6.1. Appendix A: Synchronous Ethernet Synchronous Ethernet, or SyncE, is an ITU-T standard that allows precision timing information to be embedded into Ethernet physical layer. This signal can be correlated to an external high precision master clock. It is important to telecom providers as the telecom infrastructure moves away from TDM based standards such as SONET and to packet based Ethernet implementations. Introduction to SyncE · Synchronous Ethernet (SyncE) distributes a frequency signal through Ethernet - Defined in ITU-T G.8261, G.8262, G.8262.1, G.8264 · GbE and above always sends symbols (data or idle) · SyncE recovers received data rate - Ethernet requires ±100 ppm clocking - Receivers must handle up to 200 ppm clock delta - SyncE saves off a fractional rate to drive DPLL External DPLLs · External DPLLs can take in multiple clock sources - 1PPS and 10 MHz inputsGPS/GNSS input(s) - often 1PPS as well - SyncE recovered clocks - IEEE 1588/PTP-driven clocks (also often 1PPS) - Local oscillator - Long-term oscillator (TCXO or OCXO) · DPLL sets a priority of inputs · All outputs driven synchronously off selected input(s) -TX side of all PHYs and/or SoCs driven from PLL clock SyncE on PHYs · Some SoCs support SyncE on internal PHYs · Some external PHYs support SyncE clock recovery · Each RX port adapts to meet incoming data rate - Each RX port may be different - Fractional clock rate from selected port(s) sent to DPLL · Tx side driven from DPLL - All TX ports driven at same rate · Driver support for SyncE with external DPLLs may vary Implications for Modules / Pin-outs · If Module SoC and Carrier Board PHY both need SyncE, need SyncE info across connectors · Carrier sends recovered clock(s), 1PPS input(s) · Module sends TX clock(s), 1PPS output(s) PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 146/159 Figure 74: Synchronous Ethernet Overview Appendices SDA SCL OUT0p PPS Output OUT1p 10M Sync Clock Output SMA SMA 25 MHz SE-to-DS From DPLL Out7p NAC_OPPS_P/N SMA PPS from GPS or 1588 DS-to-SE SMA External Sync Clock NAC_CLK_SYNCED_P/N ETH_I2C_CLK2 ETH_I2C_DATA2 SyncE Clock Output from SoC AC Coupled NAC_TIME_SYNC_P/N SoC REF4p REF0n REF3p OUT3p/n OUT5p/n OUT6p REF1p/n OUT7p DPLL REF4n OSCB Internal PHY clock for SyncE 1588 Time Sync Clock PLL_INT_N PPS Output To ICX-D OCXO XO SRC_CLKREQ5_N_GPP_W81 Notes: 1. DS = Differential; SE = Single-ended 2. PPS from GPS and 1588 Eth can be input to DPLL 3. ESD protection needs be considered for SMA header 4. Any unused LVDS signals should be left unconnected NAC_TIME_REF_P/N NAC_CLKIN_EREF0_P/N Differential Signal Single-ended Signal PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 147/159 Figure 75: Synchronous Ethernet Example Implementation Appendices SMA 1PPS 156,25 to PV PHY RCLK_A/B SMA GPS 1PPS 1PPS SDP SDP 5 2 / 3 i225 StoD Module NAC_TIME_SYNC INT_N TIME_REF CLK_EREF0 SoC CLK_SYNCE0 SDP 0 / 1 SDP 6 DtoS ON_PPS_OUT SDP 7 OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 IN 0 IN 1 IN 2 IN 3 IN 4 XTAL DPLL no Stuff XO OCXO Table 33: SDP Use in Figure Above SDP Meaning Direction Notes 0 Recovered Clock A In 1 Recovered Clock B In 2 Output Clock (+) Out 3 Output Clock (-) Out 4 5 1 PPS Out Out 6 1 PPS In In 7 1 PPS In (GNSS) In In (to Module) Differential Pair on SDP2 and 3 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 148/159 SyncE Summary · Provides physical layer synchronization signal over Ethernet Allows expensive central clock to be shared across the network · Defined in ITU-T G.8261, G.8262, G.8262.1, and G.8264 specs G.8261 and G.8262 series define physical layer interface G.8264 defines messaging channel used to provide pedigree of clock sources SyncE can be used alone or in conjunction with PTP: Table 34: SyncE / PTP Matrix Attribute SyncE Only Frequency Accuracy Yes Phase Accuracy No Time of Day (ToD) No PTP Only Yes Yes Yes SyncE + PTP Yes Yes Yes Appendices PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 149/159 Appendices 6.2. Appendix B: Alternative eDP Example The alternative eDP example presented in Figures 76 through 81 below comes, with permission, from an Intel reference schematic for a late model CORE series processor. Some parts of the example may not be directly relevant to COM-HPC embedded designs in that they dwell on eDP back-light display power supplies and on a display connector used in certain reference platforms. Nonetheless, the materials may be of interest to some readers and are included in this Appendix. PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 150/159 Figure 76: Alternative eDP Example (Sheet 1 of 6): Passive Stuffing Options eDP and DSI COM COM COM COM COM COM COM COM EDP_TX0EDP_TX0+ EDP_TX1EDP_TX1+ EDP_TX2EDP_TX2+ EDP_TX3EDP_TX3+ C7G3 C7G2 C7G1 C7F9 C7F8 C7F7 C7F6 C7F5 1 2 01.1UF X7R2 01.1UF X7R2 01.1UF X7R2 01.1UF X7R2 01.1UF X7R2 01.1UF X7R2 01.1UF X7R2 0.1UF X7R EDP_TX0_CEDP_TX0_C+ EDP_TX1_CEDP_TX1_C+ EDP_TX2_CEDP_TX2_C+ EDP_TX3_CEDP_TX3_C+ OUT OUT OUT OUT OUT OUT OUT OUT COM EDP_AUX- C7F4 1 2 EDP_AUX_C- BI 0.1UF X7R COM EDP_AUX+ C7F3 1 2 EDP_AUX_C+ BI 0.1UF X7R A36096-110 0402 AC CAP SHOULD BE REPLACED WITH 0R RESISTOR FOR THE MIPI-DSI DISPLAY IN EDP_TX3_C+ H30143-001 R7F20 1 2 0 0% 0.05W EMPTY 0201 EDP_LANE3_MIPI_D3_L+ IN EDP_TX3_C- IN EDP_TX2_C+ 4 3 L7F2 90 CHOKE 30% SM_A J16541-001 1 2 H30143-001 R7F21 1 2 0 0% 0201 0.05W EMPTY H30143-001 R7F22 1 2 0 0% 0.05W EMPTY 0201 EDP_LANE3_MIPI_D3_LEDP_LANE2_MIPI_CLK_L+ 4 3 L7F3 90 CHOKE 30% SM_A J16541-001 1 2 IN EDP_TX2_C- H30143-001 R7F23 1 2 0 0% 0.05W EMPTY 0201 EDP_LANE2_MIPI_CLK_L- CAD NOTE: CMC PAD SHARING WITH RESISTOR IN EDP_AUX_C+ IN EDP_AUX_C- OUT IN EDP_TX1_C+ OUT IN EDP_TX1_C- OUT IN EDP_TX0_C+ OUT IN EDP_TX0_C- 3 H30143-001 R7F18 1 2 0 0% 0.05W RES 0201 EDP_AUX_MIPI_D0_L+ OUT 4 L7F1 90 EMPTY 30% SM_A J16541-001 NEED TO STUFF CMC FOR MDSI 1 EDP_AUX_MIPI_D0_L- OUT H30143-001 R7F19 1 2 0 0% 0201 0.05W RES 2 H30143-001 R7F24 1 2 0 0% 0.05W EMPTY 0201 EDP_LANE1_MIPI_D2_L+ OUT 4 3 L7F4 90 CHOKE 30% SM_A J16541-001 1 2 EDP_LANE1_MIPI_D2_L- OUT H30143-001 R7F25 1 2 0 0% 0201 0.05W EMPTY H30143-001 R7G1 1 2 0 0% 0.05W EMPTY 0201 EDP_LANE0_MIPI_D1_L+ OUT 4 3 L7G1 90 CHOKE 30% SM_A J16541-001 1 2 EDP_LANE0_MIPI_D1_L- OUT H30143-001 R7G2 1 2 0 0% 0.05W EMPTY 0201 CAD NOTE: CMC PAD SHARING WITH RESISTOR PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 Appendices 151/159 Figure 77: Alternative eDP Example (Sheet 2 of 6): Backlight Control Options BACKLIGHT CONTROL COM EDP_BKLTCTL COM EDP_BKLT_EN R7F12 1 0 0402 R3R13 1 0 0402 2 RES 2 EMPTY EDP_BRIGHTNESS_CONN MIPI1_PWM R7F15 1 0 2 0402 RES R3T6 1 0 2 0402 RES R7E4 1 0 0402 2 EMPTY R3R4 1 0 0402 2 EMPTY EDP_BKLT_EN_CONN EDP_BKLT_EN_R MIPI1_BKLTEN_R MIPI1_EN OUT OUT OUT OUT OUT OUT ADDITIONAL AMOLED POWER REQUIREMENTS +VCC_EDP1_AMOLED1 J7E1 CON HDR_1X3 -V_ELVSS_EDP1_AMOLED1 +VCC_EDP1_AMOLED1 1 JA 2 3 A91829-001 GND C7F1 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND DESIGN NOTE: THE HEADER JA SHOULD NEVER BE SHORTED WITH JUMPER SHORTING LINK NORMAL EDP PANEL AMOLED EDP PANEL STUFF RA & RC RB & RD UNSTUFF RB & RD RA & RC -V_ELVSS_EDP1_AMOLED1 R7E1 0.01 0.1 25W H11304-001 1% EMP2TY 0805 RB -VSS_EDP1_AMOLED1 R8E1 A93552-004 10 0% 0.1W RA 2 RES 0603 GND +VCC_EDP1_BKLT +VCC_EDP1_BKLT_R +VCC_EDP1_AMOLED1 RD D71825-002 1 R7F5 2 1% 0.01 0.1W 0603 RES RC R7F4 1 2 0.01 0603 0.1W 1% EMPTY COM EDP_VDD_EN IN BUF_PLT_RST# COM EDP_HPD COM GPIO_03 R3T2 R3T1 1 0 2 0402 RES 10 2 0402 EMPTY A93549-001 R7F17 10 2 0402 EMPTY A93549-001 R7F16 R7F11 R7F10 1 0 0402 2 RES 1 0 2 0402 EMPTY A93549-001 1 0 2 0402 EMPTY A93549-001 EDP1_EN_BKLT_SHDN# OUT MIPI1_VDD_EN_R OUT EDP_HPD_MIPI_PNL_RST_R IN PANEL_MDSI_A_TE1 IN DESIGN NOTE: MAKESURE COMPUTE SIDE IS 1.8V BEFORE ENABLE THIS PATH +VCC_EDP1_AMOLED1 +V5P5P_MIPI1 +V5P5N_MIPI1 -VSS_EDP1_AMOLED1 R7F9 R7F8 R7F7 R7F6 0.01 1 2 EMPTY 0603 0.1W 1% 0.01D171825-0022 EMPTY 0603 0.1W 1% 0.01D171825-0022 EMPTY 0603 0.1W 1% 0.01D171825-0022 RES 0603 0.1W 1% D71825-002 +V5P5P_MIPI1_AMOLED1 +V5P5N_MIPI1_AMOLED1 Appendices PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 152/159 Appendices Figure 78: Alternative eDP Example (Sheet 3 of 6): Connector to Display Panel Assembly J7F1 SCON +V3P3DX_EDP1_MIPI1 C7G6 602433-081 1 22UF 20% 6.3V 2 X5R 0603 GND +V3P3S C7G4 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 +VCC_EDP1_BKLT_R C7F2 602433-081 1 22UF 20% 6.3V 2 X5R 0603 C3T5 602433-081 1 22UF 20% 6.3V 2 X5R 0603 C3T6 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND C3T1 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND +V3P3S IN IN OUT EDP_BKLT_EN_CONN EDP_BRIGHTNESS_CONN PANEL_MDSI_A_TE1 R7F14 1 A93549-016 1K 5% 0.0625W 2 EMPTY 0402 DESIGN NOTE: PIN 20 MDSI_A_TE1 IS 1.8V R7F13 1 A93549-016 1K 5% 0.0625W 2 EMPTY 0402 OUT DISP_BKLPWM_OUT_MDSI1 IN IN EDP_LANE0_MIPI_D1_LEDP_LANE0_MIPI_D1_L+ IN IN EDP_LANE1_MIPI_D2_LEDP_LANE1_MIPI_D2_L+ IN IN EDP_LANE2_MIPI_CLK_LEDP_LANE2_MIPI_CLK_L+ IN IN EDP_LANE3_MIPI_D3_LEDP_LANE3_MIPI_D3_L+ BI BI EDP_AUX_MIPI_D0_LEDP_AUX_MIPI_D0_L+ OUT EDP_HPD_MIPI_PNL_RST_R TP_VSYNC_EDP1 +V3P3DX_EDP1_MIPI1 +V3P3S +V1P8_MIPI1 +VCC_MIPI1 +VCC_EDP1_BKLT_R +VCC_MIPI1 +V1P8_MIPI1 +V5P5P_MIPI1_AMOLED1 +V5P5N_MIPI1_AMOLED1 A_DISP0_VLED_FB0 A_DISP0_VLED_FB1 A_DISP0_VLED_FB2 A_DISP0_VLED_FB3 A_DISP0_VLED_FB4 A_DISP0_VLED_FB5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 IO1 IO2 IO3 IO4 IO5 IO6 IO7 IO8 IO9 IO10 IO11 IO12 IO13 IO14 IO15 IO16 IO17 IO18 IO19 IO20 IO21 IO22 IO23 IO24 IO25 IO26 IO27 IO28 IO29 IO30 IO31 IO32 IO33 IO34 IO35 IO36 IO37 IO38 IO39 IO40 IO41 IO42 IO43 IO44 IO45 IO46 IO47 IO48 IO49 IO50 IO51 IO52 IO53 IO54 IO55 IO56 IO57 IO58 IO59 IO60 C3T2 C3R8 C3R7 602433-081 H48130-001 G21127-001 1 22UF 1 10UF 1 0.1UF 20% 10% 10% 6.3V GND 25V 50V 2 X5R 2 EMPTY 2 X7R 0603 0805 0402 GND GND CON_1X60_27EM MH1 MH2 MH3 MH4 MH5 MH6 MH7 MH8 MH9 MH10 MH11 MH12 MH13 MH14 MH15 MH16 MH17 MH18 MH19 MH20 MH21 MH22 MH23 MH24 MH25 MH26 MH27 MH1 MH2 MH3 MH4 MH5 MH6 MH7 MH8 MH9 MH10 MH11 MH12 MH13 MH14 MH15 MH16 MH17 MH18 MH19 MH20 MH21 MH22 MH23 MH24 MH25 MH26 MH27 GND K22036-001 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 153/159 Appendices Figure 79: Alternative eDP Example (Sheet 4 of 6): Backlight LED Driver IN MIPI1_EN IN MIPI1_PWM IN DISP_BKLPWM_OUT_MDSI1 +V12_ATX C7E1 G33975-001 1 10UF 20% 25V 2 X5R 0603 GND R3R16 0402 10 2 EMPTY A93549-001 R3R5 1 A93549-027 100K 5% 2 0.0625W RES 0402 GND C3R4 1 A36096-112 0.1UF 10% 25V 2 EMPTY 0402 GND R3R8 A93549-085 1 5.1K 5% 0.0625W 2 RES 0402 MIPI1_COMP_19.6_R C3R1 1 22NF 10% 25V 2 X7R 0402 A36096-089 GND +VCC_MIPI1 R7E3 G22026-041 1 10 1% 0.1W 2 RES 0603 C7E2 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 L7E1 10UH 11.89A SM 652666-125 20% IND 2 +VCC_MIPI1_L MIPI1_VDC C3R5 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND CR7E1 A C MBRS340T3G DIO 3A SM C81983-001 VOUT_OVP = 21V R3R28 A93549-001 1 0 0% 0.0625W 2 EMPTY 0402 MIPI1_OVP_VOLT1 R3R22 A93548-219 1 154K 1% 0.0625W 2 RES 0402 R3R30 A93549-001 1 0 0% 0.0625W 2 RES 0402 MIPI1_OVP_VOLT2 R3R24 A93548-412 1 165K 1% 0.0625W 2 RES 0402 R3R29 A93549-001 1 0 0% 0.0625W 2 EMPTY 0402 MIPI1_OVP_VOLT3 R3R23 A93548-222 1 174K 1% 0.0625W 2 RES 0402 C3R9 G66843-002 1 4.7UF 10% 25V 2 X7R 1206 GND VOVP =1.2V GND +V12S_MIPI1_R_VIN MIPI1_COMP MIPI1_ISET MIPI1_FREQ R3R2 A93548-450 1 12K 1% 0.0625W 2 RES 0402 R3R3 G64084-106 1 22K 1% 0.0625W 2 RES 0402 EU3R1 IC RT8532 19 VIN 1 EN 17 PWM 20 COMP 3 ISET 2 FREQ 5 AGND 13 14 21 PGND PGND GND VDC LX LX OVP MIX LED6 LED5 LED4 LED3 LED2 LED1 G55311-001 18 15 16 12 MIPI1_OVP 4 MIPI1_MIX R3R1 1 A93549-023 10K 5% 0.0625W 2 RES 0402 GND R3R21 1 A93548-034 10K 1% 0.0625W 2 RES 0402 GND C3R6 1 A36095-025 47PF 5% 50V 2 C0G 0402 GND 6 A_DISP0_MIPI1_VLED_FB5_R_TI 7 A_DISP0_MIPI1_VLED_FB4_R_TI 8 A_DISP0_MIPI1_VLED_FB3_R_TI 9 A_DISP0_MIPI1_VLED_FB2_R_TI 10 A_DISP0_MIPI1_VLED_FB1_R_TI 11 A_DISP0_MIPI1_VLED_FB0_R_TI R3R7 10 0% 2 RES 0402 R3R6 R3R9 R3R11 R3R14 R3R17 R3R25 0402 0402 0402 0402 0402 0402 1 1 1 1 1 1 0 0 0 0 0 0 R3R10 R3R12 R3R15 R3R18 R3R19 1 0 0% 1 0 0% 10 0% 1 0 0% 1 0 0% 2 RES 0402 2 EMPTY 2 EMPTY 2 EMPTY 2 EMPTY 0402 0402 0402 0402 A93549-001 2 2 2 2 2 2 EMPTY EMPTY RES RES RES RES A_DISP0_VLED_FB5 A_DISP0_VLED_FB4 A_DISP0_VLED_FB3 A_DISP0_VLED_FB2 A_DISP0_VLED_FB1 A_DISP0_VLED_FB0 CAD NOTE: 3 PAD OUT OUT OUT OUT OUT OUT GND GND GND GND PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 154/159 Figure 80: Alternative eDP Example (Sheet 5 of 6): Split Rail (Pos / Neg) PS for AMOLED +V3P3_ATX +V1P8_MIPI1 R8E6 0.01 1 EMPTY 0603 2 +V3P3A_IN_MIPI1 0.1W 1% D71825-002 R7E2 1 A93549-023 10K 5% 0.0625W 2 RES 0402 V1P8_MIPI1_EN R8E4 1 2 C8E4 1 A36096-125 10UF 20% 10V 2 X5R 0402 0402 EMPTY 0 GND 1 IN MIPI1_BKLTEN_R C8E1 A36096-143 1 1UF 10% 25V 2 X5R 0402 GND 8 +V5_MIPI1_L2 13 2 L8E1 14 G52290-004 2.2UH 0806 1 30% IND 1.2A 15 +V5_MIPI1_L1 16 MIPI1_AUX 4 C8E2 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 5 11 12 17 GND EU8E1 IC TPS65135 VIN OUTP OUTP EN L2 L2 FB L1 L1 VAUX GND PGND PGND THPAD FBG OUTN OUTN G84590-001 9 10 7 V5P5_MIPI1_FB 6 V5P5_MIPI1_FBG 2 3 GND +V3P3_DUAL R3T3 1 2 0402 RES MIPI1_VDD_LS_VIN 0 C3T7 1 A36096-112 0.1UF 10% 2 25V X7R 0402 GND IN MIPI1_VDD_EN_R MIPI1_VDD_SR C3T4 1 A36096-075 2.2NF 10% 50V 2 X7R 0402 GND +V1P8_A U3T1 IC SLG7NT402V 1 VDD 2 ON 7 CAP D 3 S 5 GND 8 C3T3 1 A36096-125 10UF 20% 10V 2 X5R 0402 GND G54192-001 GND R8E2 1 A93548-601 365K 1% 0.0625W 2 RES 0402 R8E5 A93548-564 1 107K 1% 0.0625W 2 RES 0402 R8E3 1 G21796-216 475K 1% 0.0625W 2 RES 0402 +V5P5P_MIPI1 C7E3 1 A36096-125 10UF 20% 10V 2 X5R 0402 GND +V5P5N_MIPI1 C8E3 1 A36096-125 10UF 20% 10V 2 X5R 0402 GND +V1P8_MIPI1 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 Appendices 155/159 Figure 81: Alternative eDP Example (Sheet 6 of 6): High Side Gate Driver for eDP Backlight +V5_ATX R7G6 10 0402 2 RES VDD_EDP1_BKLT C7G9 A36096-143 1 1UF 10% 25V 2 X5R 0402 GND EU7G1 IC SLG55021-200010 1 VCC D G 5 7 EDP1_GATE_DRV IN EDP_BKLT_EN_R 2 ON PG 8 TP_EDP1_BKLT_PG 4 GND SHDN_N 3 EDP1_EN_BKLT_SHDN# IN S 6 9 THPAD GND G56246-001 +V12_ATX +VCC_EDP1_BKLT 5 D 4 GS 1 23 Q7G1 MFET AON6500 J91717-001 +V3P3_ATX R7G5 10 0402 2 RES VDD_EDP1_SUPPLY C7G8 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND IN EDP1_EN_BKLT_SHDN# U7G1 IC SLG5NT1458V 1 VDD CAP 7 2 ON S 5 3 D GND 8 V3P3DX_EDP1_SR_CAP C7G7 1 A36096-075 2.2NF 10% 50V 2 X7R 0402 GND +V3P3_ATX H10115-001 GND C7G5 1 A36096-125 10UF 20% 10V 2 X5R 0402 GND +V3P3DX_EDP1_MIPI1 PICMG® COM-HPC® Carrier Board Design Guide Draft Rev. 2.1 / (c) Copyright 2021, 2022, 2023 PICMG August 15, 2023 Appendices 156/159 6.3. Appendix C: eSPI Header Example Appendices Figure 82: eSPI Header Example ESPI HEADER +V3P3_A +V5S +V1P8_A +V3P3_A R9G3 0.1W R9G4 0.1W 1 0603 1 0603 +V3P3_A_V1P8A_ESPI 2 EMPTY 0 A93552-004 0% 2 RES 0 A93552-004 0% C9G1 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND IN IN IN BI ESPI_CLK_HDR ESPI_CS0_HDR# PLTRST_1P8_ESPI# ESPI_IO3_HDR BI IN ESPI_IO0_HDR ESPI_SMB_CLK DESIGN NOTE: ALL PU AT COMPUTE MODULE SIDE IN BUF_PLT_RST_1.8# COM ESPI_ALERT0# COM ESPI_ALERT1# COM ESPI_CS0# COM ESPI_CS1# COM ESPI_IO0 COM ESPI_IO1 COM ESPI_IO2 COM ESPI_IO3 COM ESPI_CLK COM ESPI_RST# R9F3 1 2 0402 RES 0 0% 0.0625W A93549-001 R1U4 1 2 0402 RES 0 0% 0.0625W A93549-001 R9G6 1 2 0402 RES 0 0% 0.0625W A93549-001 R9F2 1 2 0402 RES 0 0% 0.0625W A93549-001 R1U3 1 2 0402 RES 0 0% 0.0625W A93549-001 R9G1 1 2 0402 RES 0 0% 0.0625W A93549-001 R1U1 1 2 0402 RES 0 0% 0.0625W A93549-001 R1T1 1 2 0402 RES 0 0% 0.0625W A93549-001 R9F4 1 2 0402 RES 0 0% 0.0625W A93549-001 R9F1 1 2 0402 RES 0 0% 0.0625W A93549-001 R9G5 1 2 0402 RES 0 0% 0.0625W A93549-001 PLTRST_1P8_ESPI# ESPI_ALERT0_HDR# ESPI_ALERT1_HDR# ESPI_CS0_HDR# ESPI_CS1_HDR# ESPI_IO0_HDR ESPI_IO1_HDR ESPI_IO2_HDR ESPI_IO3_HDR ESPI_CLK_HDR ESPI_RST_HDR# IN OUT ESPI_RST_HDR# ESPI_ALERT1_HDR# +V5_A C9G2 1 A36096-112 0.1UF OUT 10% 25V 2 X7R 0402 IN GND IN IN OUT BI OUT BI BI BI BI OUT OUT C9F2 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 GND J9G1 SCON HDR_2X14_K4_K21_K22 C9F1 1 A36096-112 0.1UF 10% 25V 2 X7R 0402 1 2 3 5 6 GND 7 8 ESPI_IO2_HDR 9 10 ESPI_IO1_HDR 11 12 BI BI 13 15 17 14 ESPI_SMB_DATA 16 ESPI_CS1_HDR# 18 BI IN 19 20 ESPI_ALERT0_HDR# OUT 23 24 25 26 27 28 H46981-001 GND GND PCIE_X4_G0_SMB_CLK PCIE_X4_G0_SMB_DATA R9G2 1 2 ESPI_SMB_CLK 0402 RES 0 0% 0.0625W A93549-001 R1U2 1 2 ESPI_SMB_DATA 0402 RES 0 0% 0.0625W A93549-001 OUT BI PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 157/159 Appendices 6.4. Appendix D: Useful Books General x86 Computer Topics Table 35: General Books on x86 Computer Topics Title Author Note PCI Express System Architecture Ravi Budruk, Don Anderson, Tom Shanley www.mindshare.com PCI System Architecture (4th Edition) Tom Shanley, Don Anderson www.mindshare.com Universal Serial Bus System Architecture Don Anderson www.mindshare.com SATA Storage Technology Don Anderson www.mindshare.com Protected Mode Software Architecture (The PC System Architecture Series) Tom Shanley www.mindshare.com The Unabridged Pentium 4 Tom Shanley www.mindshare.com Building the Power-Efficient PC: A Developer's Guide to ACPI Power Management, First Edition Jerzy Kolinski, Ram Chary, Andrew Intel Press, 2002, ISBN 0-9702846- Henroid, and Barry Press 8-3 Hardware Bible Winn L. Rosch SAMS, 1997, 0-672-30954-8 The Indispensable PC Hardware Book Hans-Peter Messmer Addison-Wesley, 1994, ISBN 0-20162424-9 The PC Handbook: For Engineers, Programmers, and Other Se- John P. Choisser and John O. Fos- Annabooks, 1997, ISBN 0-929392- rious PC Users, Sixth Edition ter 36-1 PC Hardware in a Nutshell, 3rd Edition Robert Bruce Thompson and Barbara Fritchman Thompson O'Reilly, 2003, ISBN 0-596-00513-X PCI & PCI-X Hardware and Software Architecture & Design, Fifth Edition Edward Solari and George Willse Annabooks, Intel Press, 2001, ISBN 0-929392-63-9 PCI System Architecture Tom Shanley and Don Anderson Addison-Wesley, 2000, ISBN 0-20130974-2 PCI Express Electrical Interconnect Design: Practical Solutions for Board-level Integration and Validation, First Edition Dave Coleman, Scott Gardiner, Mo- Intel Press, 2005, hamad Kolberhdari, and Stephen Pe- ISBN 0-9743649-9-1 ters Introduction to PCI Express: A Hardware and Software Developer's Guide, First Edition Adam Wilen, Justin Schade, and Ron Thornburg Intel Press, 2003, ISBN 0-97028469-1 Serial ATA Storage Architecture and Applications, First Edition Knut Grimsrud and Hubbert Smith Intel Press, 2003, ISBN 0-97178618-6 USB Design by Example, A Practical Guide to Building I/O De- John Hyde vices, Second Edition Intel Press, ISBN 0-9702846-5-9 Universal Serial Bus System Architecture, Second Edition Don Anderson and Dave Dzatko Mindshare, Inc., ISBN 0-201-309750 Printed Circuits Handbook, Fourth Edition Clyde F. Coombs Jr. McGraw-Hill, 1996, ISBN 0--07012754-9 High Speed Signal Propagation, First Edition Howard Johnson and Martin Graham Prentice Hall, 2003, ISBN 0-13084408-X High Speed Digital Design: A Handbook of Black Magic, First Edition Howard Johnson Prentice Hall, ISBN: 0133957241 C Programmer's Guide to Serial Communications, Second Edi- Joe Campbell tion SAMS, 1987, ISBN 0-672-22584-0 The Programmer's PC Sourcebook, Second Edition Thom Hogan Microsoft Press, 1991, ISBN 155615-321-X The Undocumented PC, A Programmer's Guide to I/O, CPUs, and Fixed Memory Areas Frank van Gilluwe Addison-Wesley, 1997, ISBN 0-20147950-8 VHDL Modeling for Digital Design Synthesis Yu-Chin Hsu, Kevin F. Tsai, Jessie T. Kluwer Academic Publishers, 1995, Liu and Eric S. Lin ISBN: 0-7923-9597-2 PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 158/159 Appendices 6.5. Appendix E: Revision History Table 36: Revision History Release Interim Date Rev Rev 1.0 Mar 17, 2021 RC2.0 Oct 2, 2021 RC2.0a Nov 14, 2021 Author C. Eder S. Milnor C. Eder S. Milnor C. Eder RC2.0b RC2.0c RC2.0d Nov 17, 2021 Dec 6, 2021 Dec 7, 2021 S. Milnor S. Milnor S. Milnor 2.0 Jan 14, 2022 S. Milnor C. Eder RC2.1a Apr 29, 2022 S. Milnor RC2.1b May 11, 2022 S, Milnor RC2.1c Mar 28, 2023 S. Milnor 2.1 August 10, 2023 S. Milnor C. Eder Notes / Changes CDG preliminary version with Ethernet KR and KR4 CEI diagrams. Release Candidate for first version of complete COM-HPC CDG. Revise Figure 35 to show a 50V capacitor for C4V20 Revise Figure 41 to show a 50V capacitor for C5W7 Section 3.14.1 Page 96 insert short statement about adding HD Audio support to pending COM-HPC Base Spec Rev 1.1 due to lack of Soundwire support Remove references to code names for unreleased Intel products ADL and ICL Revise code name references to show only Intel document numbers Incorporate nVent Change Requests Change Rev to RC2.0c, change date, re-issue. No other changes. Add note to Figure 39 (USB4 ESD diodes) explaining diode positioning Replace Figures 67 and 73 (JSOM diagrams) with revised Figures that call out metric M2.5 hardware rather than 4-40 Imperial hardware Formal PICMG release of CDG Revision 2.0 Section 4.3.3 SATA Design Rule Summary Delete erroneous requirements in Ref lines 7 and 8 Renumber Rev 2.0 Ref lines 9, 10, 11, 12 to Rev 2.1 Ref lines 7, 8, 9, 10 Remove TX pair to RX pair length matching requirement (Ref line 9 in in Rev 2.0, Ref line 7 in Rev 2.1) Section 4.3.4 PCIe Design Rule Summary Remove TX pair to RX pair length matching requirement (Ref line 8) Add missing information on serpentine trace distance to self (Ref line 11) Updated Figure 8 (CEI Marvel 88E1543 "Alaska" typo) Updated copyright claims to include year 2022 Update Samtec patent claims in Sections 1.71 and 1.72 This is per request from Samtec patent lawyer on 4/25/2022 Section 1.7.2 Page 11 Update Samtec "Unnecessary" patent claims per 3/3/2023 and 3/27/2023 input from Samtec Section 1.7.4 Page 12 Add year 2023 to Copyright claim Copyright updated to include 2023 in various other parts of the document Section 1.8 Pages 14 and 13 Correct PCI and PCIe abbreviation explanation ("Interconnect" not "Interface") Fully expand the SATA abbreviation explanation ("Advanced Technology" instead of "AT") Section 3.6.9 Page 56 Add two PCIe Gen 5 capable redriver parts to Table 9 Section 3.10 Page 88 Correct HPD level translator IC reference from U54 to U49 Formal PICMG release of CDG Revision 2.1 USB4 schematics (Figures 36 through 41) deliberately blurred to satisfy Intel NDA concerns PICMG® COM-HPC® Carrier Design Guide Rev. 2.1 / Aug 10, 2023 159/159Writer LibreOffice 7.4