Test Report

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS

Report No	ES0621-2
Client	Harman International Industries, Incorporated
Address	30001 Cabot Drive Novi MI 48377
Phone	1-248-785-2513
Items tested FCC ID IC	PV602 2AHPN-BE2841 6434C-BE2841
Equipment Type Equipment Code	Digital Transmission System DTS
FCC/IC Rule Parts	CFR Title 47 FCC Part 15.247, ISED Canada RSS-247 Issue 2
Test Dates	03/30/2018 to 04/25/2018
Results	As detailed within this report
Prepared by	Christopher Hamel – EMC Engineer
Authorized by	Yurus Fazilogu - Sr. Engineer
Issue Date	5/16/2018
Conditions of Issue	This Test Report is issued subject to the conditions stated in the ' <i>Conditions of Testing</i> ' section on page 19 of this report.

Contents

Contents	2
Summary	3
Test Methodology	
Product Tested - Configuration Documentation	
Statement of Conformity	
Test Results	7
Radiated Spurious Emissions	7
AC Line Conducted Emissions	
Measurement Uncertainty	18
Conditions Of Testing	
ES0621-2 Appendix A	

Report REV Sep-08-2017 - YF

Summary

This test report supports an application for certification of a transmitter operating pursuant to: CFR Title 47 FCC Part 15.247, ISED Canada RSS-247 Issue 2

The product is the "PV602" automotive infotainment unit with Bluetooth and WLAN. It is a direct sequence spread spectrum transmitter that operates in the 2412 – 2462 MHz frequency range. This report is for the 2.4GHz WLAN portion of the device only.

Antenna Type: PCB Trace Peak Gain: 2.3dBi

There are two variants to the product with the same model number:

HVIN	FVIN	Remarks
(Model)		
PV602	SOC: BR_RC1_R12.0.0_R18102A	Tested variant
PV602	SOC: NA_18.1.1	No hardware differences from the tested variant above.
		Only non-RF related software differences as follows:
		 Updated AM/FM tuner range and step size for
		North American markets
		Removal of backup camera from software
		(external camera will not be connected), rear
		view mirror will have RVC display instead (not
		connected to the head unit)
		HMI tweaks to follow NHTSA guidelines

Test samples were received in good condition.

We found that the product met the above requirements without modifications.

page 3 of 76

Test Methodology

All testing was performed according to the following rules/procedures/documents; CFR Title 47 FCC Part 15.247, RSS-247 Issue 2, RSS-Gen Issue 4, FCC KDB 558074 D01 DTS Measurement Guidance v04 and ANSI C63.10-2013.

Radiated emissions were tested in the installation orientation of the device in a vehicle. Emissions were maximized by rotating the device and varying the test antenna's height and polarity.

EUT operating voltage is 13.8V DC from a vehicle battery, therefore AC line conducted emissions requirements are not applicable.

Following bandwidths were used during radiated spurious emissions testing.

Frequency	RBW	VBW
30-1000MHz	120kHz	1MHz
1-25GHz	1MHz	3MHz

Product Tested - Configuration Documentation

					EUT C	onfiguration							
Work	Order:	S0621	621										
Co	mpany:	Harman	arman International Industries, Incorporated										
Company A	ddress:	30001 C	001 Cabot Drive										
		Novi, M	vi, MI, 48377										
(Contact:	Sarah Re	owland										
				MN	PN			SN					
	EUT:			PV602									
EUT Desc			eo Head Ui	nit									
EUT Max Fre		5825 M											
EUT Min Fre	quency:	5825 MI	Hz										
EUT Components				M					SN				
PV602				FC	-								
PV602				FCC Cor	nducted								
Support Equipmen	t			M	N				SN				
CS Supplied laptop													
USB to Ethernet con	verter												
				T		1	T	<u> </u>	1				
Port Label	Port	Туре	# ports	# populated	cable type	shielded	ferrites	length (m)	in/out	under	comment		
Power	other		2	2	other	No	No	1	in	test			
FM/AM	other		2	4	Coaxial	Yes	No	0.1	in	yes			
	other		1	1	other	No	No		in	yes			
Back up camera USB	USB		1	1	USB	No Yes	No No	1	in in	yes			
Vehicle port			1	1				1		yes			
venicle port	other		1	1 1	other	No	No	1 1	in	ves			

EUT will operate in constant TX mode for WiFi spurious emissions via client supplied test mode where channels and data rates are selectable. EUT will operate in constant TX mode for BT spurious emissions with a link to CMW communication tester where channels and packet types are selectable.

page 5 of 76

Statement of Comonnity											
RSS-GEN	RSP-100	RSS 247	Part 15	Comments							
6.3			15.15(b)	There are no controls accessible to the user that varies the output power to operate in violation of the regulatory requirements.							
	3.1		15.19	The label is shown in the label exhibit.							
	4		15.21	Information to the user is shown in the instruction manual exhibit.							
			15.27	No special accessories are required for compliance.							
3, 6.1			15.31	The EUT was tested in accordance with the measurement standards in this section.							
6.13			15.33	Frequency range was investigated according to this section, unless noted in specific rule section under which the equipment operates.							
8.1			15.35	The EUT emissions were measured using the measurement detector and bandwidth specified in this section, unless noted in specific rule section under which the equipment operates.							
8.3			15.203	EUT employs PCB trace antenna 2.3dBi peak gain.							
8.10			15.205 15.209	The fundamental is not in a Restricted band and the spurious and harmonic emissions in the Restricted bands comply with the general emission limits of 15.209 or RSS-Gen as applicable							
8.8			15.207	N/A. Vehicle battery powered only.							

Statement of Conformity

Refer to Appendix A of this report for antenna port conducted measurements.

Test Results

Radiated Spurious Emissions

LIMITS

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). [15.247(d)]

MEASUREMENTS / RESULTS

Worst case mode found to be 802.11b 1Mbps

Curtis Straus - a Bureau Veritas Company	Work Order - S0621
Radiated Emissions Electric Field 3m Distance	EUT Power Input - 13.8V DC
Top Peaks Horizontal 30-1000MHz	Test Site - CH2
Operator: cch	Conditions - 22.5°C; 34%RH; 1010mBar
Notes:	Witnessed by - N/A
2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH6	0

Data Taken at April 15, 2018

	in all supring	,											
Frequency	Peak Reading	Correction Factor	Adjusted Peak Amplitude	Lim1: FCC_pt15_2 09	Lim1 Margin	Lim1 Test Results	Worst Margin Lim1	Lim2: FCC_pt15_2 09	Lim2 Margin	Lim2 Test Results	Worst Margin Lim2		
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)		
30.145	27	-1.4	25.6	40	-14.4	PASS	-14.4	40	-14.4	PASS	-14.4		
126.297	28.1	-8.4	-8.4 19.7 43.5 -23.8 PASS 43.5 -23.8 P										
184.084	32.6	-11.2	21.4	43.5	-22.1	PASS		43.5	-22.1	PASS			
292.337	31	-8.6	22.4	46	-23.6	PASS		46	-23.6	PASS			
466.33	32.7	-4.2	28.5	46	-17.5	PASS		46	-17.5	PASS			
916.459	28.5	3	31.5	46	-14.5	PASS		46	-14.5	PASS			
Curtis Stra	us - a Bure	au Veritas	Company			Work Order - S0621							
Radiated E	Emissions I	Electric Fiel	ld 3m Dista	nce		EUT Power Input - 13.8V DC							
Top Peaks	Vertical 3	0-1000MHz				Test Site - CH2							
Operator:	cch					Conditions - 22.5°C; 34%RH; 1010mBar							
Notes:						Witnessed by - N/A							
2.4g wifi S	pur. 802.1	1b 1Mbps 2	20MHz BW	CH6		0							

2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH6

Data Taken at April 15, 2018

Frequency (MHz)	Peak Reading (dBμV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Lim1: FCC_pt15_2 09 (dBµV/m)	Lim1 Margin (dB)	Lim1 Test Results (Pass/Fail)	Worst Margin Lim1 (dB)	Lim2: FCC_pt15_2 09 (dBµV/m)	Lim2 Margin (dB)	Lim2 Test Results (Pass/Fail)	Worst Margin Lim2 (dB)
30.873	28	-2	25.9	40	-14.1	PASS	-14.1	40	-14.1	PASS	-14.1
65.72	40.2	-14.7	25.4	40	-14.6	PASS		40	-14.6	PASS	
73.286	35.4	-14.2	21.2	40	-18.8	PASS		40	-18.8	PASS	
466.354	31.1	-4.2	27	46	-19	PASS		46	-19	PASS	
742.514	29.8	-0.1	29.7	46	-16.3	PASS		46	-16.3	PASS	
930.912	27.8	3.1	30.9	46	-15.1	PASS		46	-15.1	PASS	

30-1000MHz Channel Mid

May 16, 2018

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 1-6GHz Horizontal Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH1 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 12, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	•	Av Lim: FCC_pt15_2 09_Average (dBµV/m)	Avg Margin	Avg Results (Pass/Fail)	Worst Average Margin (dB)
1440	34.5	25.1	4.2	38.7	74	-35.3	PASS		29.3	54	-24.7	PASS	
1706	34	24.1	5.5	39.5	74	-34.5	PASS		29.5	54	-24.5	PASS	
1865.2	35.5	29.5	7.6	43	74	-31	PASS		37.1	54	-16.9	PASS	
5259.3	33.2	24.7	13.2	46.4	74	-27.6	PASS		37.9	54	-16.1	PASS	
5582.2	35.3	25.8	13.9	49.1	74	-24.9	PASS		39.7	54	-14.3	PASS	-14.3
5781.8	35.5	25	14.4	49.8	74	-24.2	PASS	-24.2	39.4	54	-14.6	PASS	

Curtis Straus - a Bureau Veritas Company									
Radiated Emissions Electric Field 3m Distance									
1-6GHz Vertical Data									
Operator: cch									
Notes:									
2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH1									

Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 12, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	•	Av Lim: FCC_pt15_2 09_Average (dBµV/m)	Avg Margin	Avg Results (Pass/Fail)	Worst Avg Margin (dB)
1440.3	37.3	26.6	4.2	41.5	74	-32.5	PASS		30.8	54	-23.2	PASS	
1711.4	35.2	24.1	5.5	40.7	74	-33.3	PASS		29.7	54	-24.3	PASS	
1865	36.1	26.5	7.6	43.6	74	-30.4	PASS		34	54	-20	PASS	
5269.1	34.4	24.7	13.3	47.6	74	-26.4	PASS		38	54	-16	PASS	
5582.3	34.8	25.8	13.9	48.7	74	-25.3	PASS	-25.3	39.6	54	-14.4	PASS	-14.4
5794.1	33.9	24.9	14.4	48.2	74	-25.8	PASS		39.3	54	-14.7	PASS	

1-6GHz Channel Low

page 8 of 76

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 1-6GHz Horizontal Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH6 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 12, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	•	Av Lim: FCC_pt15_2 09_Average (dBμV/m)		Avg Results (Pass/Fail)	Worst Average Margin (dB)
1439.1	36.8	26.9	4.2	41.1	74	-32.9	PASS		31.1	54	-22.9	PASS	
1798.6	31.3	24.1	6.8	38.1	74	-35.9	PASS		30.9	54	-23.1	PASS	
1865.8	35	28.8	7.6	42.6	74	-31.4	PASS		36.4	54	-17.6	PASS	
2291.4	35.3	25	9.3	44.6	74	-29.4	PASS		34.3	54	-19.7	PASS	
4288.4	33.2	24.4	12.2	45.4	74	-28.6	PASS		36.7	54	-17.3	PASS	
5728.7	35.3	25.2	14.3	49.6	74	-24.4	PASS	-24.4	39.6	54	-14.4	PASS	-14.4

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 1-6GHz Vertical Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH6 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 12, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	•	Av Lim: FCC_pt15_2 09_Average (dBµV/m)	Avg Margin	Avg Results (Pass/Fail)	Worst Avg Margin (dB)
1865.8	35.6	28.9	7.6	43.2	74	-30.8	PASS		36.5	54	-17.5	PASS	
2686	35.7	25.8	10.6	46.3	74	-27.7	PASS		36.4	54	-17.6	PASS	
5253.8	33.7	24.7	13.2	46.9	74	-27.1	PASS		37.9	54	-16.1	PASS	
5268.6	33	24.7	13.3	46.3	74	-27.7	PASS		38	54	-16	PASS	
5286.8	32.7	24.7	13.4	46	74	-28	PASS		38.1	54	-15.9	PASS	
5583.9	34.6	25.8	13.9	48.5	74	-25.5	PASS	-25.5	39.6	54	-14.4	PASS	-14.4

1-6GHz Channel Mid

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 1-6GHz Horizontal Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH11 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 13, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	0	Av Lim: FCC_pt15_2 09_Average (dBµV/m)	Avg Margin (dB)	Avg Results (Pass/Fail)	Worst Average Margin (dB)
1438.9	38.2	27	4.3	42.6	74	-31.4	PASS		31.4	54	-22.6	PASS	
1795.8	31.2	24	7	38.1	74	-35.9	PASS		31	54	-23	PASS	
1916.9	34.2	24.4	8.2	42.4	74	-31.6	PASS		32.6	54	-21.4	PASS	
2675.4	35.4	25.9	10.5	45.9	74	-28.1	PASS		36.5	54	-17.5	PASS	
5255.8	32.5	24.2	13.1	45.6	74	-28.4	PASS		37.4	54	-16.6	PASS	
5498.2	34.3	24.5	13.6	47.9	74	-26.1	PASS	-26.1	38.1	54	-15.9	PASS	-15.9

Curtis Straus - a Bureau Veritas Company

Radiated Emissions Electric Field 3m Distance 1-6GHz Vertical Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH11 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 13, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	•	Av Lim: FCC_pt15_2 09_Average (dBμV/m)	Avg Margin	Avg Results (Pass/Fail)	Worst Avg Margin (dB)
1187.7	36.9	30.7	3	39.9	74	-34.1	PASS		33.8	54	-20.2	PASS	
1797.7	33.8	23.9	7	40.8	74	-33.2	PASS		30.9	54	-23.1	PASS	
1926.9	33.8	24.3	8.2	42	74	-32	PASS		32.5	54	-21.5	PASS	
5266.3	33.3	24.3	13.1	46.4	74	-27.6	PASS		37.4	54	-16.6	PASS	
5500.4	34.2	24.5	13.6	47.8	74	-26.2	PASS	-26.2	38.1	54	-15.9	PASS	-15.9
5811.1	33.6	24.4	13.7	47.3	74	-26.7	PASS		38.1	54	-15.9	PASS	

1-6GHz Channel High

page 10 of 76

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 1m Distance 6-18GHz Horizontal Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH1 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 15, 2018

Frequency	Raw Peak Reading	Raw Avg Reading	Correction Factor	Adjusted Peak Amplitude	Pk Lim: FCC_pt15_2 09_Peak	Peak Margin	Peak Test Results	Worst Peak Margin	•	Av Lim: FCC_pt15_2 09_Average		Avg Test Results	Worst Avg Margin
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)
17986	39.3	31.1	19.1	58.4	83.5	-25.1	PASS	-25.1	50.2	63.5	-13.3	PASS	-13.3

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 1m Distance 6-18GHz Vertical Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH1 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 15, 2018

		-,											
Frequency	Raw Peak Reading	Raw Avg Reading	Correction Factor	Adjusted Peak Amplitude	Pk Lim: FCC_pt15_2 09_Peak	Peak Margin	Peak Results	Worst Peak Margin	•	Av Lim: FCC_pt15_2 09_Average		Avg Results	Worst Avg Margin
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)
10532.9	40.6	30.2	11.2	51.7	83.5	-31.8	PASS		41.3	63.5	-22.2	PASS	
17975.6	40.9	31.1	19.1	59.9	83.5	-23.6	PASS	-23.6	50.2	63.5	-13.3	PASS	-13.3
					6 10		honnol						

6-18GHz Channel Low

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 1m Distance 6-18GHz Horizontal Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH6 Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at April 15, 2018

	Dave Davela	Da A	Compation.	Adjusted	Pk Lim:	Deels	Deale Test	Ward Daals	Adjusted	Av Lim:		Ave Test	14/
	Raw Peak	Raw Avg	Correction	Peak	FCC_pt15_2	Peak	Peak Test	Worst Peak	Avg	FCC_pt15_2		Avg Test	Worst Avg
Frequency	Reading	Reading	Factor	Amplitude	09_Peak	Margin	Results	Margin	Amplitude	09_Average	Avg Margin	Results	Margin
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)
17945.3	39.9	31.1	18.9	58.8	83.5	-24.7	PASS	-24.7	50.1	63.5	-13.4	PASS	-13.4

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 1m Distance 6-18GHz Vertical Data Operator: cch Notes: 2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH6
 -24.7
 PASS
 -24.7
 50.1

 Work Order - S0621
 EUT Power Input - 13.8V DC
 Test Site - CH2

 Conditions - 22.5°C; 34%RH; 1010mBar
 Witnessed by - N/A

 0

Data Taken at April 15, 2018

Frequency	Raw Peak Reading	Raw Avg Reading	Correction Factor	Adjusted Peak Amplitude	Pk Lim: FCC_pt15_2 09_Peak	Peak Margin	Peak Results	Worst Peak Margin	•	Av Lim: FCC_pt15_2 09_Average	Avg Margin	Avg Results	Worst Avg Margin
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)
17949.1	39.6	31.2	18.9	58.5	83.5	-25	PASS	-25	50.1	63.5	-13.4	PASS	-13.4
						<u></u>							

6-18GHz Channel Mid

Curtis Straus - a Bureau Veritas Company
Radiated Emissions Electric Field 1m Distance
6-18GHz Horizontal Data
Operator: cch
Notes:
2.4g wifi Spur. 802.11b 1Mbps 20MHz BW CH11

Work Order - S0621 EUT Power Input - 13.8V DC Test Site - CH2 Conditions - 22.5°C; 34%RH; 1010mBar Witnessed by - N/A 0

Data Taken at , April 15, 2018

Freework	Raw Peak	Raw Avg	Correction	Adjusted Peak	Pk Lim: FCC_pt15_2			Worst Peak		Av Lim: FCC_pt15_2	Aug Margin	Avg Test	Worst Avg
Frequency (MHz)	Reading (dBµV)	Reading (dBµV)	Factor (dB/m)	Amplitude (dBµV/m)	09_Peak (dBµV/m)	Margin (dB)	Results (Pass/Fail)	Margin (dB)	Amplitude (dBµV/m)	09_Average (dBμV/m)	(dB)	Results (Pass/Fail)	Margin (dB)
17947.2	39.5	31.1	18.9	58.4	83.5	-25.1	PASS	-25.1	50	63.5	-13.5	PASS	-13.5
Curtis Stra	us - a Bure	au Veritas	Company			Work Ord	er - S0621						
			d 1m Dista	nce		EUT Powe	r Input - 13	.8V DC					
6-18GHz V	ertical Data	a				Test Site -	CH2						
Operator:	cch					Condition	s - 22.5°C; 3	34%RH; 101	.0mBar				
Notes:						Witnesse	d by - N/A	,					
2.4g wifi S	pur. 802.1	1b 1Mbps 2	20MHz BW	CH11		0							
-	-	-											
Data Taker	n at April 1	5. 2018											
Data raite		0) 2010											
				ار محمد بالد ۵	Dis Lines				A allowed as all	A 1			
	Raw Peak	Raw Avg	Correction	Adjusted Peak	Pk Lim:	Peak	Peak	Worst Peak	Adjusted	Av Lim: ECC nt15 2			Worst Avg
Frequency	Raw Peak Reading	Raw Avg Reading	Correction Factor	-	Pk Lim: FCC_pt15_2 09_Peak	Peak Margin	Peak Results	Worst Peak Margin	Avg	Av Lim: FCC_pt15_2 09_Average	Avg Margin	Avg Results	Worst Avg Margin
Frequency (MHz)				Peak	FCC_pt15_2				Avg	FCC_pt15_2	Avg Margin (dB)	Avg Results (Pass/Fail)	•
	Reading	Reading	Factor	Peak Amplitude	FCC_pt15_2 09_Peak	Margin	Results	Margin	Avg Amplitude	FCC_pt15_2 09_Average		-	Margin
(MHz)	Reading (dBµV)	Reading (dBµV)	Factor (dB/m)	Peak Amplitude (dBµV/m)	FCC_pt15_2 09_Peak (dBµV/m)	Margin (dB)	Results (Pass/Fail)	Margin	Avg Amplitude (dBμV/m)	FCC_pt15_2 09_Average (dBµV/m)	(dB)	(Pass/Fail)	Margin
(MHz) 10532.7	Reading (dBμV) 39.4	Reading (dBµV) 30.1	Factor (dB/m) 11.2	Peak Amplitude (dBµV/m) 50.6	FCC_pt15_2 09_Peak (dBµV/m) 83.5 83.5	Margin (dB) -32.9 -23.4	Results (Pass/Fail) PASS PASS	Margin (dB) -23.4	Avg Amplitude (dBµV/m) 41.3	FCC_pt15_2 09_Average (dBµV/m) 63.5	(dB) -22.2	(Pass/Fail) PASS	Margin (dB)
(MHz) 10532.7	Reading (dBμV) 39.4	Reading (dBµV) 30.1	Factor (dB/m) 11.2	Peak Amplitude (dBµV/m) 50.6	FCC_pt15_2 09_Peak (dBµV/m) 83.5 83.5	Margin (dB) -32.9 -23.4	Results (Pass/Fail) PASS	Margin (dB) -23.4	Avg Amplitude (dBµV/m) 41.3	FCC_pt15_2 09_Average (dBµV/m) 63.5	(dB) -22.2	(Pass/Fail) PASS	Margin (dB)
(MHz) 10532.7	Reading (dBμV) 39.4	Reading (dBµV) 30.1	Factor (dB/m) 11.2	Peak Amplitude (dBµV/m) 50.6	FCC_pt15_2 09_Peak (dBµV/m) 83.5 83.5	Margin (dB) -32.9 -23.4	Results (Pass/Fail) PASS PASS	Margin (dB) -23.4	Avg Amplitude (dBµV/m) 41.3	FCC_pt15_2 09_Average (dBµV/m) 63.5	(dB) -22.2	(Pass/Fail) PASS	Margin (dB)
(MHz) 10532.7	Reading (dBμV) 39.4	Reading (dBµV) 30.1	Factor (dB/m) 11.2	Peak Amplitude (dBµV/m) 50.6	FCC_pt15_2 09_Peak (dBµV/m) 83.5 83.5	Margin (dB) -32.9 -23.4	Results (Pass/Fail) PASS PASS	Margin (dB) -23.4	Avg Amplitude (dBµV/m) 41.3	FCC_pt15_2 09_Average (dBµV/m) 63.5	(dB) -22.2	(Pass/Fail) PASS	Margin (dB)

Itaalatoe			510											
Date:	15-Apr-18			Company:	Harman In	ternationa	al						Work Order:	S0621
Engineer:	Chris Hamel			EUT Desc:	PV602						EUT Operat	ing Voltage	/Frequency:	13.8V DC
Temp:	22.7°C			Humidity:	27%			Pressure:	1023mBar					
		Freque	ency Range	18-25GHz							Measureme	nt Distance:	: 0.1 m	
Notes:	Tested channe	els 1 6 11.	No emission	s found.							EU	T Max Freq:	: 5825MHz	
Antenna		Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	FCC Clas	s B High Fre Peak	equency -	FCC Cla	iss B High Fr Average	equency -
Polarization	Frequency	Reading	Reading	Factor	Factor	Factor	Peak Reading	Avg Reading	Limit	Margin	Result	Limit	Margin	Result
(H/V)	(MHz)	(dBµV)	(dBµV)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dBµV/m)	(dB)	(Pass/Fail)
Table	e Result:		Pass	by	N/A	dB					W	orst Freq:	N/A	MHz
Test Site:	EMI Chamber	2		Cable 1:	Asset #23	23				Cable 2:			Cable 3:	
Analyzer:	2093			Preamp:	18-26.5GH	z				Antenna:	18-26.5GHz	Horn	Preselector:	
CSsoft Radiate	d Emissions C	Calculator	v 1.017.203										Copyright Curti	is-Straus LLC 2000
Adjusted Read	ing = Reading	- Preamp Fa	actor + Anter	nna Factor +	 Cable Fac 	tor								

18-25GHz All Channels

page 12 of 76

Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Du
Brown	9kHz-26.5GHz	E4407B	Agilent	SG44210511	1510	1	7/26/2018
2093 MXE EMI Receiver	20Hz-26.5GHz	N9038A	Agilent	MY51210181	2093	1	11/16/2018
Rental MXE EMI Receiver(1170725)	20Hz-26.5GHz	N9038A	Agilent	MY51210151	1170725	I	4/10/2019
Radiated Emissions Sites	FCC Code	IC Code	VCCI Code	Range	Asset	Cat	Calibration Du
EMI Chamber 1	719150	2762A-6	A-0015	30-1000M Hz	1685	1	12/21/2018
EMI Chamber 1	719150	2762A-6	A-0015	1-18GHz	1685	1	12/21/2018
EMI Chamber 2	719150	2762A-7	A-0015	30-1000M Hz	1686	1	12/21/2018
EMI Chamber 2	719150	2762A-7	A-0015	1-18GHz	1686	I	12/21/2018
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration D
2443 PA	9KHz-6GHz	BBV 9744	SCWARZBECK	63	2443	1	2/5/2019
2444 PA	9KHz-6GHz	BBV 9744	SCWARZBECK	67	2444	1	2/5/2019
2111 HF Preamp	0.5-18GHz	PAM-118A	COM-POWER	551063	2111	11	11/19/2018
HF (Y ellow)	18-26.5GHz	AFS4-18002650-60-8P-4	CS	467559	1266	П	10/16/2018
Antennas	Range	MN	Mfr	SN	Asset	Cat	Calibration D
Red-Black Bilog	30-2000MHz	JB1	Sunol	A091604-2	1106	1	2/28/2019
Orange Horn	1-18GHz	3115	EMCO	0004-6123	390	1	10/13/2018
HF (White) Horn	18-26.5GHz	801-WLM	Waveline	758	758	11	Verify before U
Blue Hom	1-18Ghz	3117	ETS	157647	1861	I	2/14/2019
Meteorological Meters/Chambers		MN	Mfr	SN	Asset	Cat	Calibration D
Weather Clock (Pressure Only)		BA 928	Oregon Scientific	C3166-1	831	1	4/28/2018
TH A#2084		HTC-1	HDE		2084	11	3/22/2019
TH A#2085		HTC-1	HDE		2085	Ш	3/22/2019
Cables	Range		Mfr			Cat	Calibration D
Asset #2456	9KHz-18GHz		M egaP hase			11	10/29/2018
Asset #2458	9KHz-18GHz		M egaP hase			11	10/29/2018
Asset #2459	9KHz-18GHz		MegaPhase			11	10/29/2018
Asset #2480	9KHz-18GHz		MegaPhase				10/29/2018
Asset #2323	1-26.5GHz	TM26-S1S1-120	MEGAPHASE	17139101 002	2323		8/19/2018
Asset #2466	9KHz-18GHz		MegaPhase			1	10/29/2018

Test Equipment Used

Radiated Band Edge

hris Hamel 3.4°C					ternationa	11						Vork Order:	30021
3.4°C			EUT Desc:	PV602						EUT Operat	ing Voltage/	Frequency:	13.8V DC
			Humidity:	24%			Pressure:	1000mBar					
Frequency Range: 2300-2500MHz Measurement Distance: 3 m													
02.11b 1Mbp	s									EUT	Г Max Freq:		
	Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	FCC Clas	s B High Fre Peak	equency -	FCC Cla	ss B High Fr Average	equency -
Frequency (MHz)	Reading (dBµV)	Reading (dBµV)	Factor (dB)	Factor (dB/m)	Factor (dB)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result (Pass/Fail)	Limit (dBµV/m)	Margin (dB)	Result (Pass/Fail
													Pass Pass
2369.5	36.03	36.0									••		Pass
	85.1												
	84.9												
2483.5	33.9	33.9	25.4	32.4	3.3	44.2	44.2	74.0	-29.8	Pass	54.0	-9.8	Pass
2495.6	38.8	38.8	25.4	32.4	3.3	49.1	49.1	74.0	-24.9	Pass	54.0	-4.9	Pass
Result:		Pass	by	-6.9	dB					We	orst Freq:	2495.6	MHz
MI Chamber ental SA#1	1												
l N e	(MHz) 2390.0 2389.5 2483.5 2495.6 Result: M Chamber ntal SA#1	requency (M+2) Reading (dBµV) 86.05 87.3 2389.5 38.03 2389.5 38.03 2483.5 33.9 2495.6 38.8 Result: 41 Chamber 1	Reading (MHz) Reading (dBµV) Reading (dBµV) 86.05 87.3 (dBµV) 2390.0 34.6 34.6 2389.5 38.03 38.0 85.1 84.9 2483.5 2483.5 33.9 33.9 2485.6 38.8 88.8 Result: Pass Il Chamber 1 148 A#1	Reading (M+z) Reading (dBµV) Factor (dBµV) 86.05 (dB) 87.3 (dB) 2390.0 34.6 34.6 2389.5 38.03 38.0 25.6 (dB) (dB) 2483.5 33.9 25.4 2485.6 38.8 25.4 2485.4 38.8 25.4 2485.4 38.8 25.4 2485.4 25.4 2485.4 25.4 2485.5 7 85.1 85.1 85.1 84.9 2495.6 38.8 25.4 Cable 1: Pass by 41 Chamber 1 Cable 1: 1 Kal SA#1 Preamp:	Reading (M+z) Reading (dB,uV) Reading (dB,uV) Factor (dB) Factor (dB) Factor (dB/m) 86.05 2390.0 34.6 34.6 25.6 32.2 2389.5 38.03 38.0 25.6 32.2 2483.5 33.9 25.4 32.4 2483.5 33.9 25.4 32.4 2495.6 32.2 86.11 85.1 2483.5 33.9 33.9 25.4 32.4 Result: Pass by -6.9 It Chamber 1 Cable 1: Asset #24 Preamp: Asset #24	Reading (M+z) Reading (dBµV) Factor (dBµV) Factor (dB) Factor (dB) Factor (dB) Factor (dB) 86.05 87.3 2390.0 34.6 34.6 25.6 32.2 3.2 2389.5 38.03 38.0 25.6 32.2 3.2 2483.5 33.9 25.4 32.4 3.3 2485.6 32.2 32.4 3.3 2485.6 32.8 25.4 32.4 3.3 Result: Pass by -6.9 dB It Chamber 1 tal SA#1 Cable 1: Asset #2480 Preamp: Asset #2484	requency (MHz) Reading (dBµV) Reading (dBµV) Factor (dB) Factor (dBm) Factor (dBm) Factor (dBm) Peak Reading (dBµV) 86.05 86.05 2390.0 34.6 34.6 25.6 32.2 3.2 44.4 2389.5 38.0 25.6 32.2 3.2 47.8 85.1 84.9 2483.5 33.9 33.8 25.4 32.4 3.3 44.2 2495.6 38.8 25.4 32.4 3.3 49.1 Result: Pass by -6.9 dB 1d Chamber 1 Cable 1: Asset #2480 Preamp: Asset #2480	requency (M+z) Reading (BL/V) Reading (BL/V) Factor (BL/V) Factor (BL/V) Factor (BL/V) Factor (BL/V) Peak Reading (BL/V/m) Avg Reading (BL/V/m) 86.05 87.3	Peak (M+2) Average (dBµV) Preamp (dBµV) Antenna Factor (dBµV) Cable Factor (dBµV) Adjusted Peak Reading (dBµV) Adjusted Avg Reading (dBµV) Adjusted Avg Reading (dBµV) Adjusted Mug Rading Mug Rad	Peak requency (M+z) Average (dBµV) Preamp (dBµV) Antenna Factor (dBµV) Cable Factor (dBµV) Adjusted Factor (dBµV) Adjusted (dBµV) Adjusted Factor (dBµV) Adjusted Facto	Reading (MHz) Reading (dBµV) Factor (dB/m) Factor (dB/m) Factor (dB/m) Factor (dB/m) Factor (dB/m) Pactor (dB/m) Pactor (dBµV/m) Limit (dBµV/m) Margin (dBµV/m) Result (dBµV/m) 86.05 87.3 2390.0	Peak (M+z) Average (dBµV) Preamp (dBµV) Antenna Factor (dBµV) Cable Factor (dBµV) Adjusted Factor (dBµV) Adjustd Factor (dBµV) Adjusted Factor (Peak (M+z) Average (dBµV) Preamp (dBµV) Antenna Factor (dBµV) Cable Factor (dBµV) Adjusted Factor (dBµV) Adjusted (dBµV/m) Imit (dBµV/m) Margin (dBµV/m) Margin (dBµV/m) Margin (dBµV/m) 2390.0 34.6 34.6 25.6 32.2 3.2 44.4 44.4 74.0 -26.2 Pass 54.0 -6.2 2389.5 38.03 38.0 25.6 32.2 3.2 447.8 47.8 74.0 -26.2 Pass 54.0 -6.2 85.1

802.11b: Worst Case 1Mbps

Date:	13-Apr-18			Company:	Harman Int	ternationa	al					١	Vork Order:	S0621
Engineer:	Chris Hamel			EUT Desc:	PV602						EUT Operat	ing Voltage	Frequency:	13.8V DC
Temp:	23.4°C			Humidity:	24%			Pressure:	1000mBar					
		Freque	ncy Range:	2300-2500	MHz						Measureme	nt Distance:	3 m	
Notes:	802.11g 6Mbp	S									EU	T Max Freq:		
Antenna		Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	FCC Clas	s B High Fre Peak	equency -	FCC Cla	ss B High Fr Average	equency -
Polarization (H/V)	Frequency (MHz)	Reading (dBuV)	Reading (dBµV)	Factor (dB)	Factor (dB/m)	Factor (dB)	Peak Reading (dBuV/m)	Avg Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Result (Pass/Fail)	Limit (dBuV/m)	Margin (dB)	Result (Pass/Fai
Low Edge	(111112)	(ubµv)	(ubµv)	(ub) 	(dB/II)	(ub)	(dbµv/m)	(dbµ1/m)	(ubµ v/m)	(ub) 	(1 a33/1 all)	(ubµv/iii) 	(ub) 	
MaxH		90.4												
MaxV		92.1												
V	2390.0	50.6	35.3	25.6	32.2	3.2	60.4	45.1	74.0	-13.6	Pass	54.0	-8.9	Pass
V	2388.2	47.8	34.3	25.6	32.2	3.2	57.6	44.1	74.0	-16.4	Pass	54.0	-9.9	Pass
V	2384.4	47.2	32.6	25.6	32.2	3.2	57.0	42.4	74.0	-17.0	Pass	54.0	-11.6	Pass
V	2383.9	46.3	32.3	25.6	32.2	3.2	56.1	42.1	74.0	-17.9	Pass	54.0	-11.9	Pass
High edge														
MaxH		89.7												
MaxV		89.4												
н	2483.5	49.6	35.4	25.4	32.4	3.3	59.9	45.7	74.0	-14.1	Pass	54.0	-8.3	Pass
н	2488.3	48.05	33.3	25.4	32.4	3.3	58.4	43.6	74.0	-15.6	Pass	54.0	-10.4	Pass
н	2487.2	47.3	33.7	25.4	32.4	3.3	57.6	44.0	74.0	-16.4	Pass	54.0	-10.0	Pass
н	2491.2	48.3	32.3	25.4	32.4	3.3	58.6	42.6	74.0	-15.4	Pass	54.0	-11.4	Pass
Н	2492.8	46.3	31.9	25.4	32.4	3.3	56.6	42.2	74.0	-17.4	Pass	54.0	-11.8	Pass
Table	e Result:		Pass	by	-10.3	dB					We	orst Freq:	2483.5	MHz
	EMI Chamber Rental SA#1	1			Asset #24 Asset #24						Asset #2456 Blue Horn		Cable 3: Preselector:	

802.11g: Worst Case 6Mbps

Test Report for Harman International Industries, Incorporated • Report No. ES0621-2

Date:	13-Apr-18			Company:	Harman In	ternationa	al					v	Vork Order:	S0621
Engineer:	Chris Hamel			EUT Desc:	PV602						EUT Operat	ing Voltage/	Frequency:	13.8V DC
Temp:	23.4°C			Humidity:	24%			Pressure:	1000mBar					
		Freque	ncy Range:	2300-2500	MHz						Measureme	nt Distance:	3 m	
Notes:	802.11n MCS	0 20MHz									EU	T Max Freq:		
									FCC Clas	s B High Fr	equency -	FCC Clas	ss B High Fr	equency -
Antenna	_	Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted		Peak			Average	
Polarization (H/V)	Frequency (MHz)	Reading (dBµV)	(dBµV)	Factor (dB)	Factor (dB/m)	Factor (dB)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result (Pass/Fail)	Limit (dBµV/m)	Margin (dB)	Result (Pass/Fai
Low Edge	(11112)	(ubµv)	(uph t)	(ub)	(db/m)	(ub)	(00000000000000000000000000000000000000	(ubµv/m)	(ubµ v/m)	(ub)	(1 233/1 211)	(dbµv/m)	(ub)	(1835/181
MaxH		89.7												
Max V		90.62												
V	2390.0	52.9	38.0	25.6	32.2	3.2	62.7	47.8	74.0	-11.3	Pass	54.0	-6.2	Pass
V	2385.9	48.1	33.5	25.6	32.2	3.2	57.9	43.3	74.0	-16.1	Pass	54.0	-10.7	Pass
V	2381.7	46.4	31.9	25.6	32.1	3.2	56.1	41.6	74.0	-17.9	Pass	54.0	-12.4	Pass
V	2380.6	46.1	31.5	25.6	32.1	3.2	55.8	41.2	74.0	-18.2	Pass	54.0	-12.8	Pass
V	2379.2	45.7	31.2	25.6	32.1	3.2	55.4	40.9	74.0	-18.6	Pass	54.0	-13.1	Pass
High edge														
Max H		88.5												
MaxII		88.7												
V	2483.5	42.2	34.2	25.4	32.4	3.3	52.5	44.5	74.0	-21.5	Pass	54.0	-9.5	Pass
V	2484.1	52.9	33.7	25.4	32.4	3.3	63.2	44.0	74.0	-10.8	Pass	54.0	-10.0	Pass
V	2485.5	52.8	32.8	25.4	32.4	3.3	63.1	43.1	74.0	-10.9	Pass	54.0	-10.9	Pass
V	2485.3	52.8	32.9	25.4	32.4	3.3	63.1	43.2	74.0	-10.9	Pass	54.0	-12.8	Pass
Table	e Result:		Pass	by	-8.2	dB					W	orst Freq:	2390.0	MHz
Test Site:	EMI Chamber	1		Cable 1:	Asset #24	80				Cable 2:	Asset #2456	6	Cable 3:	
Analyzer:	Rental SA#1			Preamp:	Asset #24	44				Antenna	Blue Horn	F	reselector:	

802.11n (HT20): Worst Case MCS0

Date:	25-Apr-18			Company:	Harman Int	ternationa	al					W	Vork Order:	S0621
Engineer:	Chris Hamel			EUT Desc:	PV602						EUT Operat	ing Voltage/I	Frequency:	13.8V DC
Temp:	24.4°C			Humidity:	27%			Pressure:	1012mBar					
			ncy Range:	2300-2500	MHz						Measureme	nt Distance:	ince: 3 m	
Notes:	802.11n MCS	5 40MHz									EU	Г Max Freq:		
Antenna		Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	FCC Clas	s B High Fr Peak	equency -	FCC Clas	s B High Fr Average	
Polarization	Frequency	Reading	Reading	Factor	Factor	Factor	Peak Reading	Avg Reading	Limit	Margin	Result	Limit	Margin	Result
(H/V)	(MHz)	(dBµV)	(dBµV)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dBµV/m)	(dB)	(Pass/Fai
Low Edge Max H Max V		90.1 91.5												
V	2390.0	53.4	38.2	25.4	32.2	3.2	63.4	48.2	74.0	-10.6	Pass	54.0	-5.8	Margina
V	2385.0	49.1	33.4	25.4	32.2	3.2	59.1	43.4	74.0	-14.9	Pass	54.0	-10.6	Pass
V	2383.0	46.0	32.1	25.4	32.2	3.2	56.0	42.1	74.0	-18.0	Pass	54.0	-11.9	Pass
V	2382.0	46.1	31.6	25.4	32.2	3.2	56.1	41.6	74.0	-17.9	Pass	54.0	-12.4	Pass
V	2378.3	45.4	29.9	25.4	32.1	3.2	55.3	39.8	74.0	-18.7	Pass	54.0	-14.2	Pass
High edge Max H		90.2												
MaxV	2483.5	91.1	35.6	25.3	32.4	3.3	52.6	46.0	74.0	-21.4	Pass	54.0	-8.0	Pass
V V	2483.5 2485.1	42.2 52.9	35.6	25.3	32.4	3.3	52.6 63.3	46.0	74.0	-21.4	Pass	54.0 54.0	-8.0	Pass
v	2485.1	52.9 52.8	34.2 34.0	25.3	32.4	3.3	63.2	44.6	74.0	-10.7	Pass	54.0 54.0	-9.4	Pass
v	2407.2	52.8	33.4	25.3	32.4	3.3	63.2	44.4	74.0	-10.8	Pass	54.0	-10.2	Pass
Table	e Result:	02.0	Pass	by	-5.8		00.2	1010	1 110	10.0		orst Frea:	2390.0	
Test Site:	EMI Chamber	1		Cable 1:	Asset #24	56				Cable 2	: Asset #2480		Cable 3:	
Analyzer:	Rental SA#3			Preamp:	Asset #24	43				Antenna	: Blue Horn	P	reselector:	

802.11n (HT40): Worst Case MCS5

page 15 of 76

Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
2093 MXE EMI Receiver	20Hz-26.5GHz	N9038A	Agilent	MY51210181	2093	L	11/16/2018
Rental MXE EMI Receiver(1170725)	20Hz-26.5GHz	N9038A	Agilent	MY51210151	1170725	I	4/10/2019
Radiated Emissions Sites	FCC Code	IC Code	VCCI Code	Range	Asset	Cat	Calibration Due
EMI Chamber 1	719150	2762A-6	A-0015	1-18GHz	1685	I	12/21/2018
EMI Chamber 2	719150	2762A-7	A-0015	1-18GHz	1686	I	12/21/2018
Antennas	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
Orange Horn	1-18GHz	3115	EMCO	0004-6123	390	L	10/13/2018
Blue Horn	1-18Ghz	3117	ETS	157647	1861	I	2/14/2019
Meteorological Meters/Chambers		MN	Mfr	SN	Asset	Cat	Calibration Due
TH A#2084		HTC-1	HDE		2084	Ш	3/22/2019
TH A#2085		HTC-1	HDE		2085	II	3/22/2019
Cables	Range		Mfr			Cat	Calibration Du
Asset #2456	9KHz-18GHz		MegaPhase			Ш	10/29/2018
Asset #2458	9KHz-18GHz		MegaPhase			Ш	10/29/2018
Asset #2459	9KHz-18GHz		MegaPhase			Ш	10/29/2018
Asset #2480	9KHz-18GHz		MegaPhase			Ш	10/29/2018

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Test Equipment Used

AC Line Conducted Emissions

LIMITS

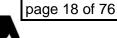
Frequency of emission (MHz)	Quasi-peak limit (dBµV)	Average limit (dBµV)
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

[47 CFR 15.207(a)]

MEASUREMENTS / RESULTS

N/A. Vehicle battery powered only.


Measurement Uncertainty

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Expanded Uncertainty k=2	Maximum allowable uncertainty
Radiated Emissions (30-1000MHz) NIST	5.6dB	N/A
CISPR	4.6dB	5.2dB (Ucispr) N/A
Radiated Emissions (1-26.5GHz)	4.6dB	
Radiated Emissions (above 26.5GHz)	4.9dB	N/A
Magnetic Radiated Emissions Conducted Emissions	5.6dB	N/A
NIST CISPR	3.9dB 3.6dB	N/A 3.6dB (Ucispr)
Telco Conducted Emissions (Current)	2.9dB	N/A
Telco Conducted Emissions (Voltage)	4.4dB	N/A
Electrostatic Discharge	11.5%	N/A
Radiated RF Immunity (Uniform Field)	1.6dB	N/A
Electrical Fast Transients	23.1%	N/A
Surge	23.1%	N/A
Conducted RF Immunity	3dB	N/A
Magnetic Immunity	12.8%	N/A
Dips and Interrupts	2.3V	N/A
Harmonics	3.5%	N/A
Flicker	3.5%	N/A
Radio frequency (@ 2.4GHz)	3.23 x 10 ⁻⁸	1 x 10 ⁻⁷
RF power, conducted	0.40dB	0.75dB
Maximum frequency deviation: • Within 300Hz and 6kHz of audio frequency / Within 6kHz and 25kHz of audio frequency	3.4% 0.3dB	5% 3dB
Adjacent channel power	1.9dB	3dB
Conducted spurious emission of transmitter, valid up to 12.75GHz	2.39dB	3dB
Conducted emission of receivers	1.3dB	3dB
Radiated emission of transmitter, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of transmitter, valid up to 80GHz	3.3dB	6dB
Radiated emission of receiver, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of receiver, valid up to 80GHz	3.3dB	6dB
Humidity	2.37%	5%
Temperature	0.7°C	1.0°C
Time	4.1%	10%
RF Power Density, Conducted	0.4dB	3dB
DC and low frequency voltages	1.3%	3%
Voltage (AC, <10kHz)	1.3%	2%
Voltage (DC)	0.62%	1%
The above reflects a 95% confidence level		

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

ACCREDITED

Conditions Of Testing

[Bureau Veritas Consumer Products Services, Inc., a Massachusetts corporation], and/or its affiliates (collectively, the "Company") will conduct, at the request of the Submitter ("Client"), the tests specified on the submitted Test Request Form or equivalent in accordance with, and subject to, the following terms and conditions (collectively, "Conditions"): 1. All orders for tests are subject to acceptance by the Company, and no order will constitute a binding commitment of the Company unless

1. All orders for tests are subject to acceptance by the Company, and no order will constitute a binding commitment of the Company unless and until such order is accepted by it, as evidenced by the issuance of a written report ("Test Report") by the Company. The Test Report is issued solely by the Company, is intended for the exclusive use of Client and shall not be published, used for advertising purposes, copied or replicated for distribution to any other person or entity or otherwise publicly disclosed without the prior written consent of the Company. By submitting a request for services to the Company, Client consents to the disclosure to accreditation bodies of those records of Client relevant to the accreditation body's assessment of the Company's competence and compliance with relevant accreditation criteria. The Company shall not be liable for any loss or damage whatsoever resulting from the failure of the Company to provide its services within any time period for completion estimated by the Company. If Client anticipates using the Test Report in any legal proceeding, arbitration, dispute resolution forum or other proceeding, it shall so notify the Company prior to submitting the Test Report in such proceeding. The Company has no obligation to provide a fact or expert witness at such proceeding unless the Company agrees in advance to do so for a separate and additional fee.

2. The Test Report will set forth the findings of the Company solely with respect to the test samples identified therein. Unless specifically and expressly indicated in the Test Report, the results set forth in such Test Report are not intended to be indicative or representative of the quality or characteristics of the lot from which a test sample is taken, and Client shall not rely upon the Test Report as being so indicative or representative of the lot or of the tested product in general. The Test Report will reflect the findings of the Company at the time of testing only, and the Company shall have no obligation to update the Test Report after its issuance. The Test Report will set forth the results of the tests performed by the Company based upon the written information provided to the Company. The Test Report will be based solely on the samples and written information submitted to the Company by Client, and the Company shall not be obligated to conduct any independent investigation or inquiry with respect thereto.

 The Company may, in its sole discretion, destroy samples which have been furnished to the Company for testing and which have not been destroyed in the course of testing. The Company may delegate the performance of all or a portion of the services contemplated hereunder to an affiliate, agent or subcontractor of the Company, and Client consents to such delegation.
 These Conditions and the Test Report represent the entire understanding of the parties hereto with respect to the subject matter hereof

4. These Conditions and the Test Report represent the entire understanding of the parties hereto with respect to the subject matter hereof and of the Test Report, and no modification, variance or extrapolation with respect thereto shall be permitted without the prior written consent of the Company.

5. The names, service marks, trademarks and copyrights of the Company and its affiliates, including the names "BUREAU VERITAS," "BUREAU VERITAS CONSUMER PRODUCTS SERVICES," "BVCPS", "MTL", "ACTS", "MTL-ACTS" and CURTIS-STRAUS (collectively, the "Marks") are and shall remain the sole property of the Company or its affiliates and shall not be used by Client except solely to the extent that Client obtains the prior written approval of the Company and then only in the manner prescribed by the Company. Client shall not contest the validity of the Marks or take any action that might impair the value or goodwill associated with the Marks or the image or reputation of the Company or its affiliates.

6. Payment in full shall be due 30 days after the date of invoice. Interest shall be due on overdue amounts from the due date until paid at an interest rate of 1.5% per month or, if less, the maximum rate permitted by law. The Company reserves the right, at any time and from time to time, to revoke any credit extended to Client. Client shall reimburse the Company for any costs it incurs in collecting past due amounts, including court costs and fees and expenses of attorneys and collection agencies. The Test Report may not be used or relied upon by Client if and for so long as Client fails to pay when due any invoice issued by the Company or any affiliate of it to Client or any affiliate or subsidiary of Client together with interest and penalties, if any, accrued thereon.

The Company disclaims any and all responsibility or liability arising out of or in connection with e-mail transmissions of such information.
 Client understands and agrees that the Company is neither an insurer nor a guarantor, that the Company does not take the place of Client or any designer, manufacturer, agent, buyer, distributor or transportation or shipping company, and that the Company disclaims all liability in such capacities. Client further understands that if it seeks assurance against loss or damage, it should obtain appropriate insurance.

9. Client agrees that the Company, by providing the services, does not take the place of Client nor any third party, nor does the Company release them from any of their obligations, nor does the Company otherwise assume, abridge, abrogate or undertake to discharge any duty of any third party to Client or any duty of Client or any third party to any other third party, and Client will not release any third party from its obligations and duties with respect to the tested goods.

10. Client shall, on a timely basis, (a) provide adequate instructions to the Company in order to enable the Company to perform properly its services, (b) provide, or cause Client's suppliers and contractors to provide, the Company with all documents necessary to enable the Company to perform its services, (c) furnish the Company with all relevant information regarding Client's intended use and purposes of the tested goods, (d) advise the Company of essential dates and deadlines relevant to the tested goods and (e) fully exercise all rights and remedies available to Client against third parties in respect of the tested goods.

11. The Company shall undertake due care and ordinary skill in the performance of its services to Client, and the Company shall accept responsibility only were such skill has not been exercised and, even in such event, only to the extent of the limitation of liability set forth herein.

12. If Client desires to assert a claim arising from or relating to (i) the performance, purported performance or non-performance of any services by the Company or (ii) the sale, resale, manufacture, distribution or use of any tested goods, it must submit that claim to the Company in a writing that sets forth with particularity the basis for such claim within 60 days from discovery of the potential claim and not more than six months after the date of issuance of the Test Report to Client. Client waives any and all such claims including, without limitation, claims that the Test Report is inaccurate, incomplete or misleading or that additional or different testing is required, unless and then only to the extent that Client submits a written claim to the Company within both such time periods.

13. CLIÉNT SHALL, EXCEPT TO THE EXTENT OF COMPANY'S LIABILITY TO CLIENT HEREUNDER (WHICH IN NO EVENT SHALL EXCEED THE LIMITATION OF LIABILITY HEREIN), HOLD HARMLESS AND INDEMNIFY THE COMPANY, ITS AFFILIATES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, AGENTS AND SUBCONTRACTORS AGAINST ALL ACTUAL OR ALLEGED THIRD PARTY CLAIMS FOR LOSS, DAMAGE OR EXPENSE OF WHATSOEVER NATURE AND HOWSOEVER ARISING FROM OR RELATING TO (i) THE PERFORMANCE, PURPORTED PERFORMANCE OR NON-PERFORMANCE OF ANY SERVICES BY THE COMPANY OR (ii) THE SALE, RESALE, MANUFACTURE, DISTRIBUTION OR USE OF ANY TESTED GOODS.

14. EXCEPT AS MAY OTHERWISE BE EXPRESSLY AGREED TO IN WRITING BY THE COMPANY AND NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN OR IN ANY TEST REPORT, NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, IS MADE.

page 19 of 76

15. (A) IN NO EVENT WHATSOEVER SHALL THE COMPANY BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE TEST REPORT OR THE SERVICES PROVIDED BY THE COMPANY HEREUNDER, INCLUDING WITHOUT LIMITATION LOSS OF OR DAMAGE TO PROPERTY; LOSS OF INCOME, PROFIT OR USE; OR ANY CLAIMS OR DEMANDS MADE AGAINST CLIENT OR ANY OTHER PERSON BY ANY THIRD PARTY IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE SERVICES PROVIDED BY THE COMPANY HEREUNDER.

(B)NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN, AND IN RECOGNITION OF THE RELATIVE RISKS AND BENEFITS TO CLIENT AND THE COMPANY ASSOCIATED WITH THE TESTING SERVICES CONTEMPLATED HEREBY, THE RISKS HAVE BEEN ALLOCATED SUCH THAT UNDER NO CIRCUMSTANCES WHATSOEVER SHALL THE LIABILITY OF THE COMPANY TO CLIENT OR ANY THIRD PARTY IN RESPECT OF ANY CLAIM FOR LOSS, DAMAGE OR EXPENSE, OF WHATSOEVER NATURE OR MAGNITUDE, AND HOWSOEVER ARISING, EXCEED AN AMOUNT EQUAL TO FIVE (5) TIMES THE AMOUNT OF THE FEES PAID TO THE COMPANY FOR THE SPECIFIC SERVICES WHICH GAVE RISE TO SUCH CLAIM OR U.S.\$10,000, WHICHEVER IS THE LESSER AMOUNT.

16. The Company shall not be liable for any loss or damage resulting from any delay or failure in performance of its obligations hereunder resulting directly or indirectly from any event of force majeure or any event outside the control of the Company. If any such event occurs, the Company may immediately cancel or suspend its performance hereunder without incurring any liability whatsoever to Client.

17. Company's services, including these Conditions, shall be governed by, and construed in accordance with, the local laws of the country where the Company performs the tests or, in the case of tests performed in the United States of America, the laws of Massachusetts without regard to conflicts of laws principles. If any aspect(s) of these Conditions is found to be illegal or unenforceable, the validity, legality and enforceability of all remaining aspects of these Conditions shall not in any way be affected or impaired thereby. Any proceeding related to the subject matter hereof shall be brought, if at all, in the courts of the country where the Company performs the tests or, in the case of tests performed in the United States of America, in the courts of Massachusetts. Client waives the right to interpose any counterclaim or setoffs of any litigation arising hereunder.

The complete list of the Approved Subcontractors Curtis-Straus may use to delegate the performance of work can be provided upon request. Rev.160009121(2)_#684340 v14CS

page 20 of 76

ES0621-2 Appendix A CFR Title 47 FCC Part §15.247 and ISED Canada RSS-247 Issue 2

Model: Manufacturer: Serial Number: Software Version: PV602 Harman International Industries, Inc. 34670010475 SOC: BR_RC1_R12.0.0_R18102A

Mode Channel Frequency 802.11b/g/n(HT20) 2412 MHz 1 802.11b/g/n(HT20) 2 2417 MHz 802.11b/g/n(HT20) 3 2422 MHz 802.11b/g/n(HT20) 4 2427 MHz 802.11b/g/n(HT20) 5 2432 MHz 802.11b/g/n(HT20) 6 2437 MHz 802.11b/g/n(HT20) 7 2442 MHz 802.11b/g/n(HT20) 8 2447 MHz 802.11b/g/n(HT20) 9 2452 MHz 802.11b/g/n(HT20) 10 2457 MHz 802.11b/g/n(HT20) 2462 MHz 11

Mode	Channel	Frequency
802.11n(HT40)	3	2422 MHz
802.11n(HT40)	4	2427 MHz
802.11n(HT40)	5	2432 MHz
802.11n(HT40)	6	2437 MHz
802.11n(HT40)	7	2442 MHz
802.11n(HT40)	8	2447 MHz
802.11n(HT40)	9	2452 MHz

Antenna:

2400-2500MHz Gain: 2.3dBi Peak

WIFI Antenna			
Frequency	Efficiency	Efficiency . dB	Peak Gain
2400	33%	-4.8	2.2
2410	34%	-4.7	2.3
2420	34%	-4.7	2.1
2430	35%	-4.6	2.0
2440	35%	-4.6	1.6
2450	36%	-4.5	1.3
2460	35%	-4.5	1.5
2470	34%	-4.6	1.5
2480	33%	-4.9	1.3
2490	31%	-5.1	0.9
2500	29%	-5.4	0.9
AVG	33%	-4.8	1.6

1

Number of transmission chains Equipment Type

Digital Transmission System (DTS)

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

page 21 of 76

Test Equipment Used:

Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated or
FSV40 Signal/Spectrum Analyzer	10Hz-40GHz	FSV40	ROHDE & SCHWARZ	101551	2200	I	6/30/2018	6/30/2017
Signal Generators/Comparaison Noise Emitter	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated or
SMBV100A Vector Signal Generator	9KHz-6GHz	SMBV100A	ROHDE & SCHWARZ	261919	2201	1	6/26/2018	6/26/2017
SMB100A Signal Generator	100kHz-40GHz	SMB100A	ROHDE & SCHWARZ	179846	2434	Т	5/30/2018	5/30/2017
Power/Noise Meters		MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated or
OSP - open switch and control platform	30MHz-18GHz	OSP120	ROHDE & SCHWARZ	101674		Т	6/1/2018	6/1/2017
Cables	Range		Mfr			Cat	Calibration Due	Calibrated or
DUT1	30MHz-26GHz		Micro-Coax			Ш	6/21/2018	6/21/2017
DUT2	30MHz-26GHz		Micro-Coax			Ш	6/22/2018	6/22/2017
DUT3	30MHz-26GHz		Micro-Coax			Ш	6/23/2018	6/23/2017
DUT4	30MHz-26GHz		Micro-Coax			Ш	6/24/2018	6/24/2017
Attenuators / Couplers	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated or
10dB Attenuator-01 Brown	30MHz-26GHz		Mini Curcuits			II	7/13/2018	7/14/2017
10dB Attenuator-02 Yellow	30MHz-26GHz		Mini Curcuits			II	7/13/2018	7/14/2017
10dB Attenuator-03 Red	30MHz-26GHz		Mini Curcuits			Ш	7/13/2018	7/14/2017
10dB Attenuator-04 orange	30MHz-26GHz		Mini Curcuits			II	7/13/2018	7/14/2017
API - 30dB 20W Attenuator	9KHz-40GHz	89-30-11	API Weinschel	703	2121	1	3/23/2019	3/23/2018
Directional Coupler	0.5GHz-18GHz	UDC	AA MCS	001040		I	8/11/2018	8/11/2017
Communication Tester	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated o
MW500 Wideband Radio Communication Tester	DC to 6GHz	CMW500	ROHDE & SCHWARZ	155905		I	6/2/2018	6/2/2017
Meteorological Meters/Chambers		MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated or
Temp/Humidity Chamber #18		EPX-2H	Espec	137664	1645	I	1/5/2019	1/5/2018

page 22 of 76

Test Results Summary

Test	Frequency			802.11n
	(MHz)	802.11b	802.11g	(HT20)
Average Output Power	2412.000	PASS	PASS	PASS
Peak Power Spectral Density	2412.000	PASS	PASS	PASS
DTS Bandwidth (6dB)	2412.000	PASS	PASS	PASS
Conducted Band Edges	2412.000	PASS	PASS	PASS
Conducted Spurious Emissions	2412.000	PASS	PASS	PASS
Average Output Power	2437.000	PASS	PASS	PASS
Peak Power Spectral Density	2437.000	PASS	PASS	PASS
DTS Bandwidth (6dB)	2437.000	PASS	PASS	PASS
Conducted Band Edges	2437.000	PASS	PASS	PASS
Conducted Spurious Emissions	2437.000	PASS	PASS	PASS
Average Output Power	2462.000	PASS	PASS	PASS
Peak Power Spectral Density	2462.000	PASS	PASS	PASS
DTS Bandwidth (6dB)	2462.000	PASS	PASS	PASS
Conducted Band Edges	2462.000	PASS	PASS	PASS
Conducted Spurious Emissions	2462.000	PASS	PASS	PASS

Test	Frequency (MHz)	802.11n (HT40)
Average Output Power	2422.000	PASS
Peak Power Spectral Density	2422.000	PASS
DTS Bandwidth (6dB)	2422.000	PASS
Conducted Band Edges	2422.000	PASS
Conducted Spurious Emissions	2422.000	PASS
Average Output Power	2437.000	PASS
Peak Power Spectral Density	2437.000	PASS
DTS Bandwidth (6dB)	2437.000	PASS
Conducted Band Edges	2437.000	PASS
Conducted Spurious Emissions	2437.000	PASS
Average Output Power	2452.000	PASS
Peak Power Spectral Density	2452.000	PASS
DTS Bandwidth (6dB)	2452.000	PASS
Conducted Band Edges	2452.000	PASS
Conducted Spurious Emissions	2452.000	PASS

Average Output Power (Gated)

Test according to FCC KDB 558074 DTS Measurement Guidance v04 Section 9.2.3.2.

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Combined Uncertainty of absolute Level Measurement (K=2) < 1 dB

802.11b

Data Rate	Gated RMS (dBm) 2412 MHz	Gated RMS (dBm) 2437 MHz	Gated RMS (dBm) 2462 MHz	Limit (dBm)	Duty Cycle (%)
1 Mbps	11.637	14.685	12.876	30	99.755
2 Mbps	11.641	13.116	13.343	30	99.511
5.5 Mbps	12.515	12.359	11.888	30	98.717
11 Mbps	12.33	12.338	12.305	30	97.609

802.11g

Data Rate	Gated RMS (dBm) 2412 MHz	Gated RMS (dBm) 2437 MHz	Gated RMS (dBm) 2462 MHz	Limit (dBm)	Duty Cycle (%)
6 Mbps	13.847	13.96	14.578	30	98.502
9 Mbps	13.815	13.653	13.509	30	97.776
12 Mbps	13.878	13.658	13.502	30	97.093
18 Mbps	13.555	13.548	13.495	30	95.762
24 Mbps	13.856	13.657	13.507	30	94.512
36 Mbps	13.608	13.48	13.51	30	92.151
48 Mbps	13.595	13.463	13.371	30	90.151
54 Mbps	13.558	13.499	13.378	30	89.196

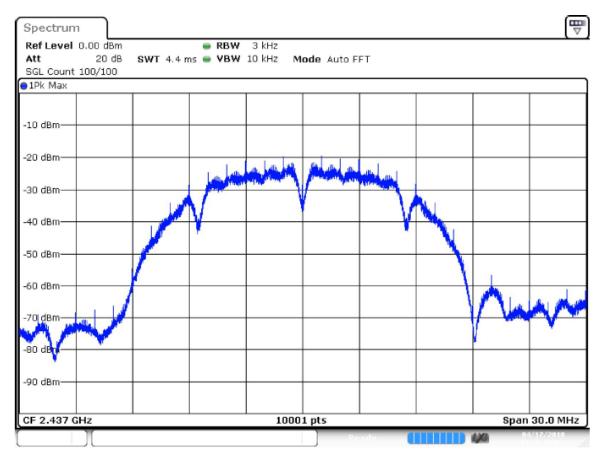
802.11n(HT20)

Data Rate	Gated RMS (dBm) 2412 MHz	Gated RMS (dBm) 2437 MHz	Gated RMS (dBm) 2462 MHz	Limit (dBm)	Duty Cycle (%)
MCS0	13.627	13.575	13.601	30	98.399
MCS1	13.548	13.563	13.082	30	96.923
MCS2	13.638	13.622	13.6	30	95.584
MCS3	13.605	13.588	13.505	30	94.348
MCS4	13.802	13.677	13.496	30	92.153
MCS5	13.546	13.673	13.558	30	90.163
MCS6	13.782	13.621	13.565	30	89.402
MCS7	13.62	13.612	13.571	30	88.499

802.11n(HT40)

Data Rate	Gated RMS (dBm) 2422 MHz	Gated RMS (dBm) 2437 MHz	Gated RMS (dBm) 2452 MHz	Limit (dBm)	Duty Cycle (%)
MCS0	13.938	13.966	13.804	30	96.837
MCS1	13.94	13.903	13.813	30	94.216
MCS2	13.883	13.564	13.522	30	91.978
MCS3	13.683	13.788	13.713	30	90.073
MCS4	13.804	13.922	13.777	30	86.933
MCS5	13.988	13.987	13.835	30	84.313
MCS6	14.077	13.975	13.834	30	83.331
MCS7	13.768	13.951	13.905	30	82.232

Peak Power Spectral Density

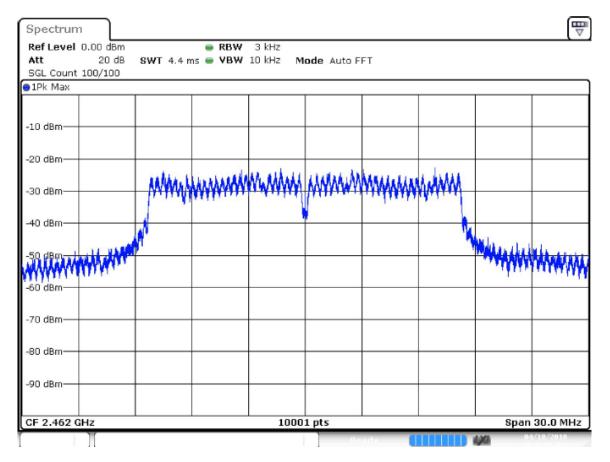

Test according to FCC KDB 558074 DTS Measurement Guidance v04 Section 10.2

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 1.3 dB

802.11b

Data Rate	Peak PSD (dBm) 2412 MHz	Peak PSD (dBm) 2437 MHz	Peak PSD (dBm) 2462 MHz	Limit (dBm)
1 Mbps	-10.959	-7.835	-9.802	8
2 Mbps	-10.914	-10.447	-10.071	8
5.5 Mbps	-11.513	-11.605	-11.633	8
11 Mbps	-12.257	-12.310	-12.778	8

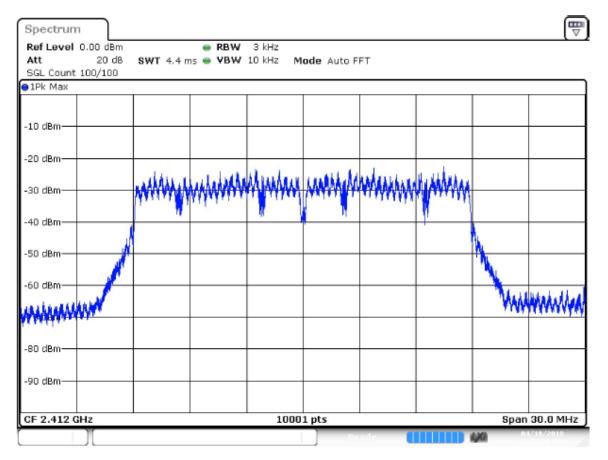
802.11b 1 Mbps 2437MHz



<u></u>				
Data Rate	Peak PSD (dBm)	Peak PSD (dBm)	Peak PSD (dBm)	Limit (dBm)
	2412 MHz	2437 MHz	2462 MHz	(abiii)
6 Mbps	-11.484	-11.251	-10.888	8
9 Mbps	-11.845	-11.807	-12.393	8
12 Mbps	-12.252	-11.705	-12.363	8
18 Mbps	-12.234	-11.723	-12.144	8
24 Mbps	-11.548	-12.011	-12.114	8
36 Mbps	-11.897	-12.355	-12.168	8
48 Mbps	-12.173	-12.418	-12.282	8
54 Mbps	-11.425	-11.479	-11.503	8

802.11g

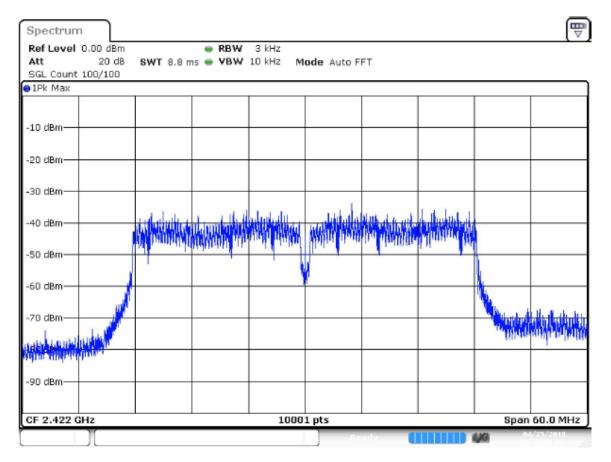
802.11g 6Mbps 2462MHz



802.11n(HT20)

Data Rate	Peak PSD (dBm) 2412 MHz	Peak PSD (dBm) 2437 MHz	Peak PSD (dBm) 2462 MHz	Limit (dBm)
MCS0	-11.338	-11.180	-11.180	8
MCS1	-11.709	-12.132	-12.224	8
MCS2	-11.700	-11.391	-11.589	8
MCS3	-11.893	-12.199	-12.345	8
MCS4	-11.271	-11.159	-11.496	8
MCS5	-11.357	-11.599	-12.127	8
MCS6	-10.799	-11.134	-11.272	8
MCS7	-11.598	-11.617	-11.827	8

802.11n(HT20) MCS6 2412MHz



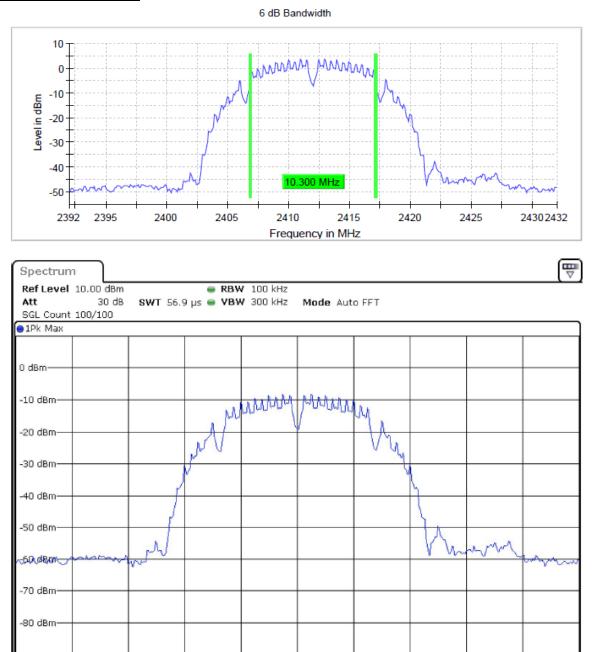
802.11n(HT40)

Data Rate	Peak PSD (dBm) 2422 MHz	Peak PSD (dBm) 2437 MHz	Peak PSD (dBm) 2452 MHz	Limit (dBm)
MCS0	-14.570	-14.730	-14.834	8
MCS1	-13.467	-13.876	-14.299	8
MCS2	-13.194	-13.341	-13.414	8
MCS3	-13.755	-13.935	-14.378	8
MCS4	-13.473	-13.539	-13.785	8
MCS5	-11.917	-12.093	-12.274	8
MCS6	-12.420	-12.618	-12.851	8
MCS7	-13.001	-13.217	-13.236	8

802.11n(HT40) MCS5 2422MHz

DTS Bandwidth (6dB) Test according to FCC KDB 558074 DTS Measurement Guidance v04 Section 8.1

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%


Data Rate	DUT Frequency (MHz)	Bandwidth (MHz)	Minimum Limit (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)
802.11b 1 Mbps	2412.000	10.300000	0.5	2406.850000	2417.150000
802.11g 6 Mbps	2412.000	16.500000	0.5	2403.750000	2420.250000
802.11n(HT20) MCS4	2412.000	17.900000	0.5	2403.050000	2420.950000
802.11n(HT40) MCS6	2422.000	37.000000	0.5	2403.750000	2440.750000
802.11b 1 Mbps	2437.000	10.300000	0.5	2431.850000	2442.150000
802.11g 6 Mbps	2437.000	16.500000	0.5	2428.750000	2445.250000
802.11n(HT20) MCS4	2437.000	17.900000	0.5	2428.050000	2445.950000
802.11n(HT40) MCS6	2437.000	37.500000	0.5	2418.250000	2455.750000
802.11b 1 Mbps	2462.000	10.300000	0.5	2456.850000	2467.150000
802.11g 6 Mbps	2462.000	16.500000	0.5	2453.750000	2470.250000
802.11n(HT20) MCS4	2462.000	17.900000	0.5	2453.050000	2470.950000
802.11n(HT40) MCS6	2452.000	37.500000	0.5	2433.250000	2470.750000

page 29 of 76

802.11b 1Mbps 2412MHz

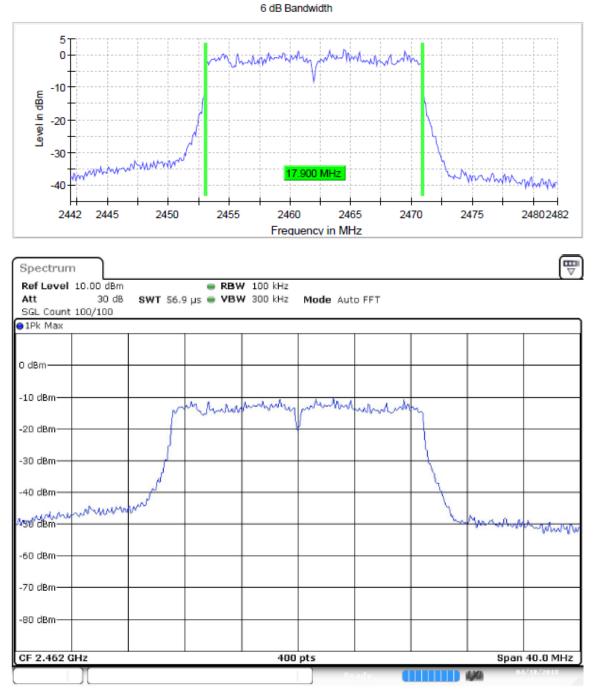
CF 2.412 GHz

400 pts

Span 40.0 MHz

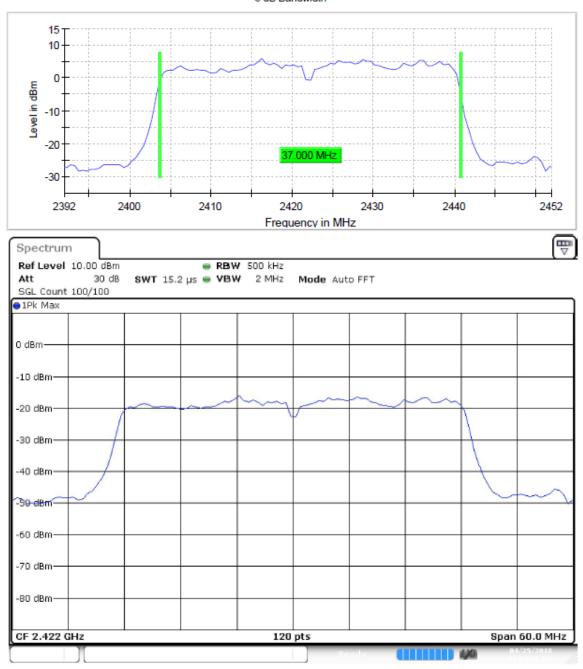
page 30 of 76

802.11g 6 Mbps 2437MHz



May 16, 2018

page 31 of 76



802.11n(HT40) MCS6 2422MHz

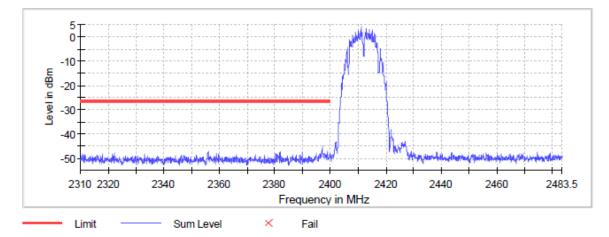
6 dB Bandwidth

Conducted Band Edge

Test according to FCC KDB 558074 DTS Measurement Guidance v04 Section 11.

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 0.8 dB

802.11b 1Mbps 2412MHz

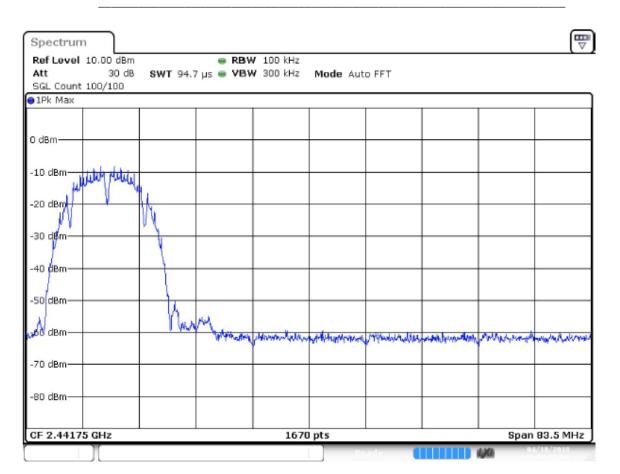

Band Edge Low

Inband Peak

Frequency	Level
(MHz)	(dBm)
2412.975000	3.7

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2396.975000	45.9	19.6	-26.3	PASS
2397.025000	-46.0	19.7	-26.3	PASS
2397.075000	-47.1	20.7	-26.3	PASS
2397.125000	-47.2	20.9	-26.3	PASS
2389.925000	-47.4	21.1	-26.3	PASS
2381.825000	-47.5	21.1	-26.3	PASS
2397.225000	-47.5	21.2	-26.3	PASS
2389.875000	-47.5	21.2	-26.3	PASS
2355.925000	-47.7	21.3	-26.3	PASS
2381.775000	-47.7	21.4	-26.3	PASS
2398.825000	-47.7	21.4	-26.3	PASS
2396.925000	-47.8	21.5	-26.3	PASS
2398.775000	-47.9	21.5	-26.3	PASS
2397.925000	-47.9	21.5	-26.3	PASS
2359.075000	-47.9	21.6	-26.3	PASS
			Bar	nd Edge

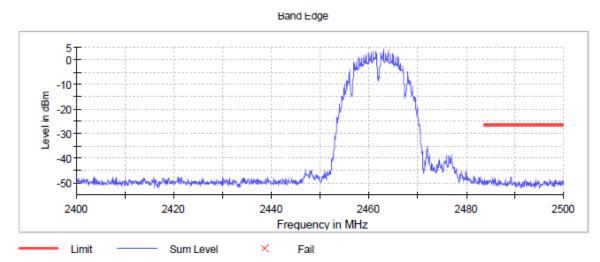


Spectrun									₿
Ref Level 10.00 dBm e RBW 100 kHz									
Att	30 dB	SWT 113	.7 µs 🖷 VB	W 300 kHz	Mode Au	ito FFT			
SGL Count	100/100								
⊖1Pk Max									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
00 000									
~60 dBm									-
and the second	multiply where	with the second second	Mar Maleri	1. HAR BURNER	/www.witchind.on.ma	yutudhe have	mahalana mahalana mahana ma	anon a worked the	en internet
-70 dBm									
-80 dBm									
oo dom									
CF 2.355 C	Hz			1800	pts			Span	90.0 MHz
)I				Re	ady 🚺		4/4	/18/2018

802.11b 1Mbps 2462MHz

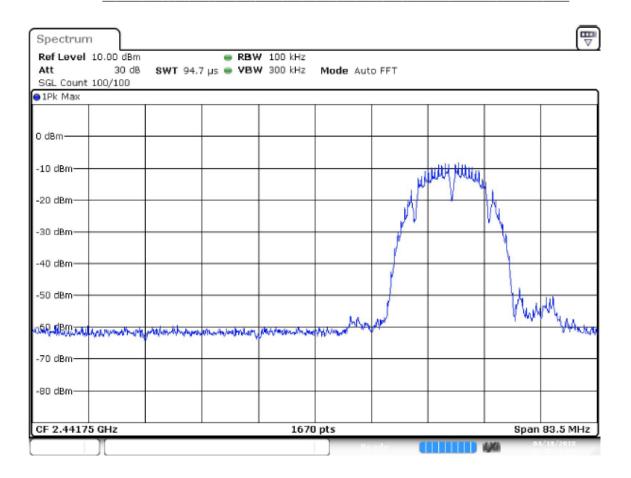
Band Edge High

Inband Peak


Frequency	Level
(MHz)	(dBm)
2462.975000	3.5

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2489.175000	-47.9	21.4	-26.5	PASS
2489.225000	-47.9	21.5	-26.5	PASS
2485.925000	-48.4	21.9	-26.5	PASS
2497.175000	-48.5	22.1	-26.5	PASS
2485.975000	-48.6	22.2	-26.5	PASS
2497.125000	-48.6	22.2	-26.5	PASS
2492.225000	-48.6	22.2	-26.5	PASS
2485.425000	-48.7	22.2	-26.5	PASS
2485.475000	-48.7	22.3	-26.5	PASS
2486.675000	-48.8	22.4	-26.5	PASS
2492.175000	-48.8	22.4	-26.5	PASS
2499.825000	-48.8	22.4	-26.5	PASS
2484.875000	-48.9	22.4	-26.5	PASS
2485.775000	-48.9	22.4	-26.5	PASS
2483.825000	-48.9	22.5	-26.5	PASS



page 37 of 76

May 16, 2018

page 38 of 76

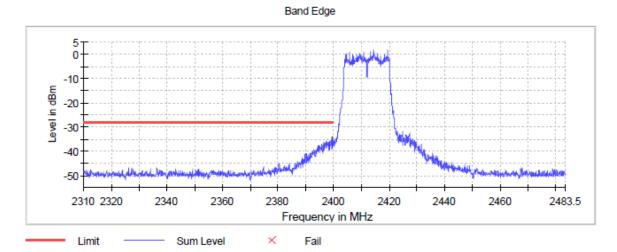
Spectrun									₩
	10.00 dBm			W 100 kHz					
Att	30 dB	SWT 18).9 µs 🖷 VB	W 300 kHz	Mode Aut	to FFT			
SGL Count	100/100								
1Pk Max									
				1					
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm								<u> </u>	
-40 dBm									
-50 dBm									
Je galling	min	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	m	mon	mound	mm	m	mm
-70 dBm									
-80 dBm									
CF 2.4917	5 GHz			330	pts			Snan	16.5 MHz

802.11g 6 Mbps 2412MHz

Band Edge Low

Inband Peak

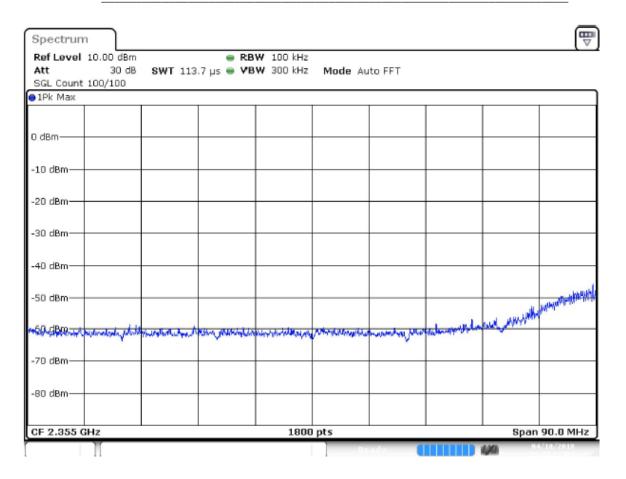
Frequency	Level
(MHz)	(dBm)
2414.475000	2.1



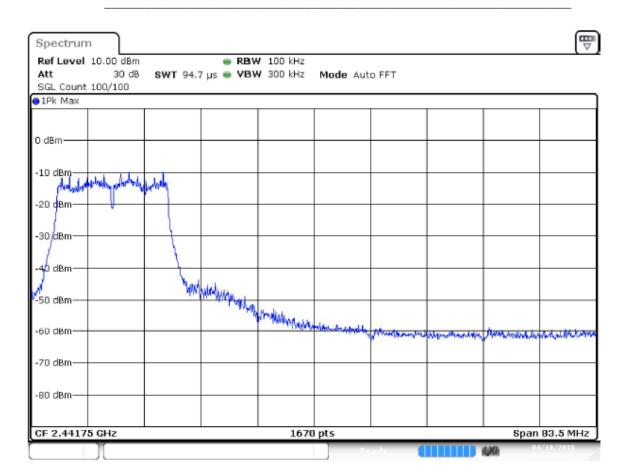
page 39 of 76

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2399.475000	-33.9	6.0	-27.9	PASS
2399.425000	-34.4	6.5	-27.9	PASS
2399.525000	-34.5	6.6	-27.9	PASS
2398.875000	-35.5	7.6	-27.9	PASS
2398.475000	-35.8	7.9	-27.9	PASS
2398.525000	-35.9	8.0	-27.9	PASS
2399.825000	-36.0	8.1	-27.9	PASS
2399.875000	-36.0	8.1	-27.9	PASS
2397.875000	-36.1	8.2	-27.9	PASS
2397.575000	-36.1	8.2	-27.9	PASS
2398.825000	-36.1	8.2	-27.9	PASS
2397.625000	-36.1	8.2	-27.9	PASS
2396.375000	-36.1	8.3	-27.9	PASS
2399.075000	-36.2	8.3	-27.9	PASS
2397.825000	-36.3	8.4	-27.9	PASS



page 40 of 76



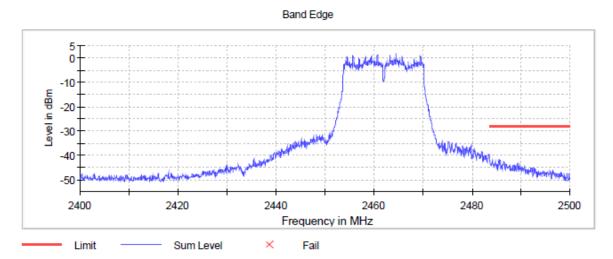
page 41 of 76

802.11g 6 Mbps 2462MHz

Band Edge High

Inband Peak

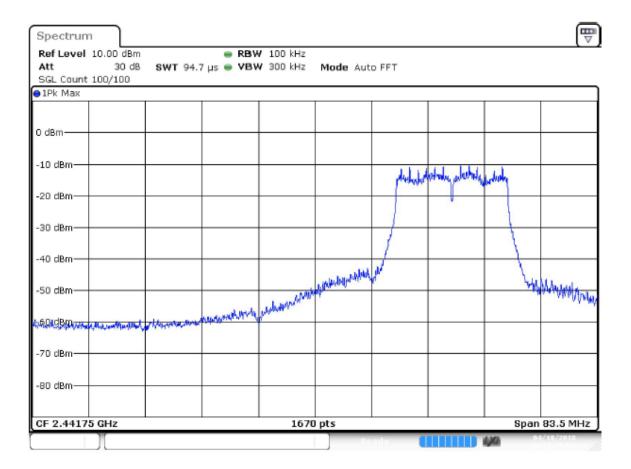
Frequency	Level
(MHz)	(dBm)
2464.475000	1.9



page 42 of 76

Measurements

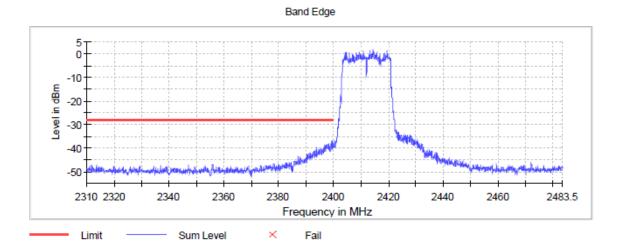
Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2483.575000	-39.5	11.4	-28.1	PASS
2483.525000	-39.6	11.5	-28.1	PASS
2483.625000	-40.0	11.8	-28.1	PASS
2485.725000	-42.0	13.9	-28.1	PASS
2483.675000	-42.1	13.9	-28.1	PASS
2485.775000	-42.2	14.1	-28.1	PASS
2484.175000	-42.3	14.2	-28.1	PASS
2485.475000	-42.4	14.3	-28.1	PASS
2484.125000	-42.4	14.3	-28.1	PASS
2485.675000	-42.4	14.3	-28.1	PASS
2484.225000	-42.5	14.4	-28.1	PASS
2486.525000	-42.5	14.4	-28.1	PASS
2485.425000	-42.6	14.5	-28.1	PASS
2486.475000	-42.6	14.5	-28.1	PASS
2484.725000	-42.7	14.6	-28.1	PASS



page 43 of 76

Spectrun	n)								T
	10.00 dBm		_	/ 100 kHz					
Att	30 dB	SWT 18.	9 µs 🖷 VBV	V 300 kHz	Mode Aut	o FFT			
SGL Count	100/100								
●1Pk Max			1						
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
	~ ~								
-60 dBm-	N. W. I	m	m	mon	mm	1 mg 000	man	AAAAA	
00 0.011									which
-70 dBm									
-80 dBm									
-co dom									
CF 2.4917	5 GHz			330	pts			Span	16.5 MHz
	Tr.				Re	ady		4,49	/18/2018

page 45 of 76

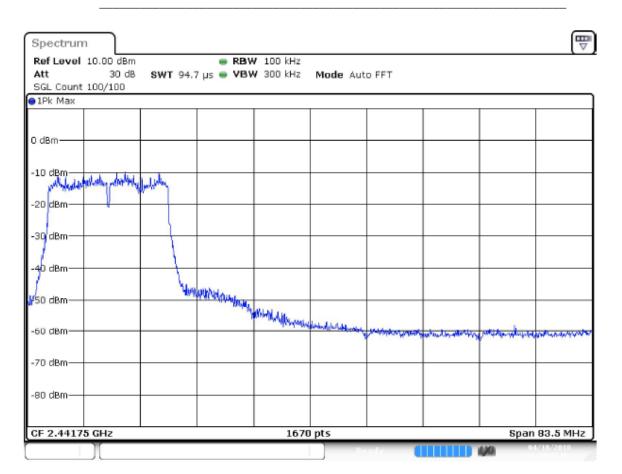

802.11n(HT20) MCS4 2412MHz **Band Edge Low**

Inband Peak

Frequency	Level
(MHz)	(dBm)
2414.475000	2.1

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2399.475000	-36.9	9.0	-27.9	PASS
2399.425000	-37.0	9.1	-27.9	PASS
2399.525000	-37.6	9.7	-27.9	PASS
2399.175000	-38.0	10.1	-27.9	PASS
2399.125000	-38.2	10.3	-27.9	PASS
2398.225000	-38.2	10.3	-27.9	PASS
2398.875000	-38.2	10.3	-27.9	PASS
2397.675000	-38.4	10.4	-27.9	PASS
2396.675000	-38.6	10.7	-27.9	PASS
2398.825000	-38.6	10.7	-27.9	PASS
2399.575000	-38.6	10.7	-27.9	PASS
2399.825000	-38.7	10.8	-27.9	PASS
2397.625000	-38.7	10.8	-27.9	PASS
2398.925000	-38.7	10.8	-27.9	PASS
2396.625000	-38.8	10.8	-27.9	PASS


May 16, 2018

page 46 of 76

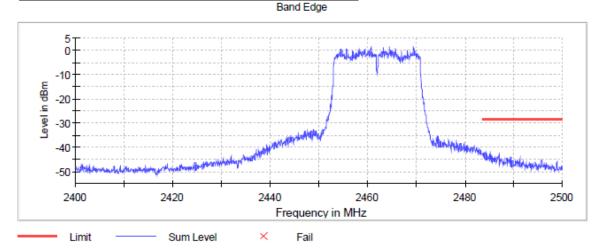
Spectrun									(₩)
	10.00 dBm		_	₩ 100 kHz					
Att	30 dB	SWT 113	.7 µs 🖷 VB	W 300 kHz	Mode Au	ito FFT			
SGL Count 1Pk Max	100/100								
отык мах									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
169.180	alandah Mada	hat was a start of the start of	entertyle oliversations, a	atrothrowskie	Antologiant	when the man	and the second second	wayallowat	No. WHERE AND
-70 dBm									
-80 dBm									
CF 2.355 0	Hz			1800	pts			Span	90.0 MHz
)(Re	ady		4,40	/18/2018

802.11n(HT20) MCS4 2462MHz

Band Edge High

Inband Peak

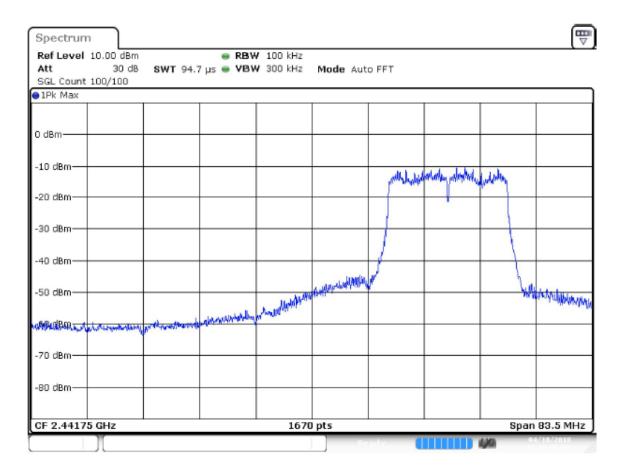
Frequency	Level
(MHz)	(dBm)
2464.475000	1.7



page 48 of 76

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2483.825000	-42.1	13.7	-28.3	PASS
2484.125000	-42.3	13.9	-28.3	PASS
2484.425000	-42.3	14.0	-28.3	PASS
2484.475000	-42.3	14.0	-28.3	PASS
2484.075000	-42.4	14.0	-28.3	PASS
2485.125000	-42.4	14.1	-28.3	PASS
2483.625000	-42.4	14.1	-28.3	PASS
2483.875000	-42.5	14.1	-28.3	PASS
2483.525000	-42.7	14.3	-28.3	PASS
2483.575000	-42.7	14.4	-28.3	PASS
2485.175000	-42.8	14.5	-28.3	PASS
2485.425000	-42.9	14.5	-28.3	PASS
2484.175000	-42.9	14.5	-28.3	PASS
2486.975000	-43.0	14.7	-28.3	PASS
2483.675000	-43.0	14.7	-28.3	PASS



page 49 of 76

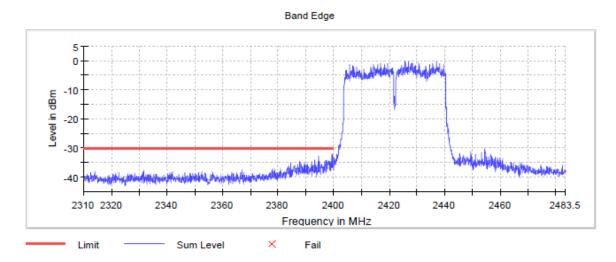
page 50 of 76

Spectrun									Ē
Ref Level	10.00 dBm		■ RBW	/ 100 kHz					
Att	30 dB	SWT 18.9	us 🖷 VBW	/ 300 kHz	Mode Aut	o FFT			
SGL Count	100/100								
●1Pk Max									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
	0								
-60 dBm	num	min	man	m	maran	mon	man		mon
-70 dBm									
-80 dBm									
CF 2.4917	5 GHz			330	pts			Span	16.5 MHz

1,00

page 51 of 76

802.11n(HT40) MCS6 2422MHz

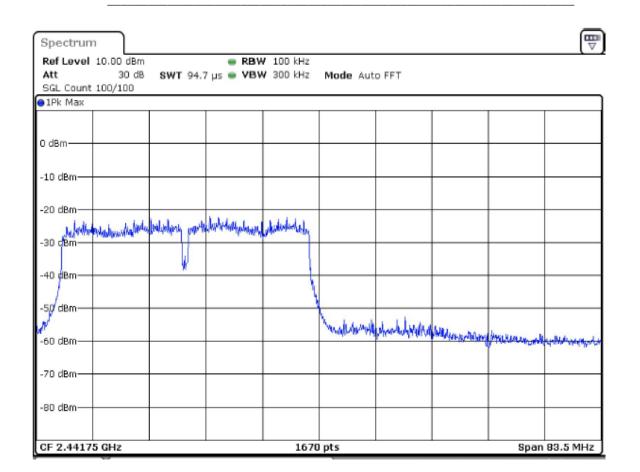

Band Edge Low

Inband Peak

Frequency	Level
(MHz)	(dBm)
2425.725000	-0.2

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2399.475000	-32.0	1.8	-30.2	PASS
2399.425000	-32.4	2.2	-30.2	PASS
2399.525000	-32.7	2.5	-30.2	PASS
2394.475000	-32.9	2.7	-30.2	PASS
2394.525000	-33.2	3.0	-30.2	PASS
2394.425000	-33.4	3.2	-30.2	PASS
2393.275000	-34.1	3.9	-30.2	PASS
2393.225000	-34.2	4.0	-30.2	PASS
2397.275000	-34.4	4.2	-30.2	PASS
2397.325000	-34.4	4.2	-30.2	PASS
2398.475000	-34.6	4.4	-30.2	PASS
2398.025000	-34.6	4.4	-30.2	PASS
2398.525000	-34.7	4.5	-30.2	PASS
2399.125000	-34.7	4.5	-30.2	PASS
2399.175000	-34.7	4.5	-30.2	PASS



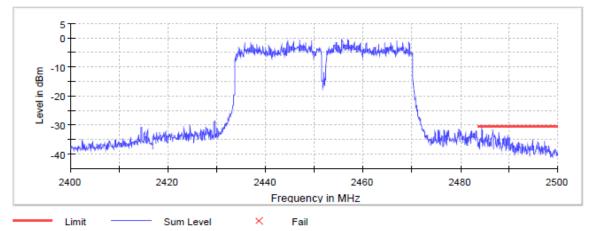
Spectrun									₩	
Ref Level 10.00 dBm										
Att 30 dB SWT 113.7 µs WBW 300 kHz Mode Auto FFT										
SGL Count 1Pk Max	SGL Count 100/100									
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm	with the way the with	demostiles the control of	Here and the second	thelinitation	Manualati	wm.lilewew.e	berry and the state	and any house	ulabalkpullimat	
-70 dBm										
-80 dBm										
CF 2.355 0	Hz			1800	pts			Span	90.0 MHz	
	Y				Re	adv		100	/25/2018	

802.11n(HT40) MCS6 2452MHz

Band Edge High

Inband Peak

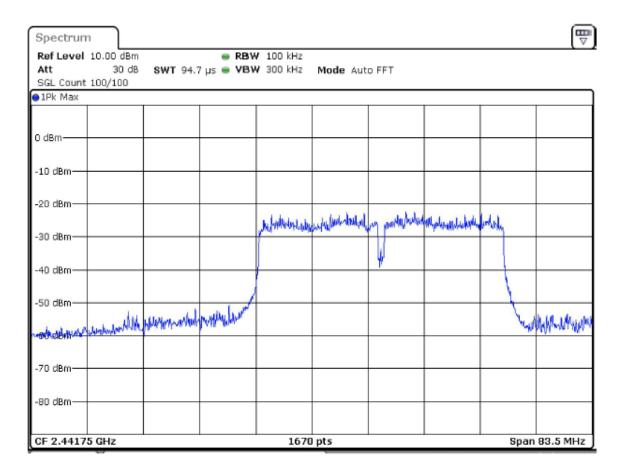
Frequency	Level
(MHz)	(dBm)
2456.975000	-0.5



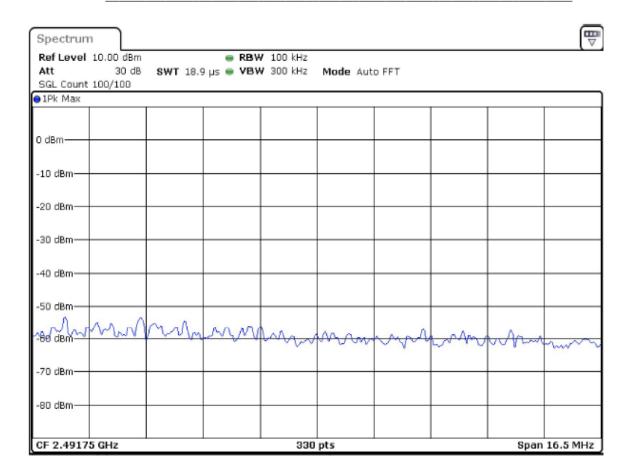
page 54 of 76

Measurements

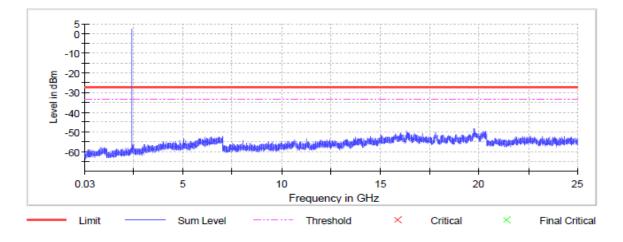
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2484.475000	-31.2	0.7	-30.5	PASS
2486.675000	-31.5	1.0	-30.5	PASS
2484.425000	-31.6	1.1	-30.5	PASS
2486.625000	-31.8	1.3	-30.5	PASS
2484.525000	-32.3	1.8	-30.5	PASS
2486.725000	-32.3	1.8	-30.5	PASS
2487.925000	-32.6	2.1	-30.5	PASS
2487.975000	-32.9	2.4	-30.5	PASS
2486.575000	-32.9	2.4	-30.5	PASS
2485.375000	-33.1	2.6	-30.5	PASS
2485.425000	-33.2	2.6	-30.5	PASS
2487.075000	-33.3	2.8	-30.5	PASS
2485.825000	-33.4	2.9	-30.5	PASS
2485.775000	-33.4	2.9	-30.5	PASS
2487.025000	-33.6	3.1	-30.5	PASS



page 55 of 76

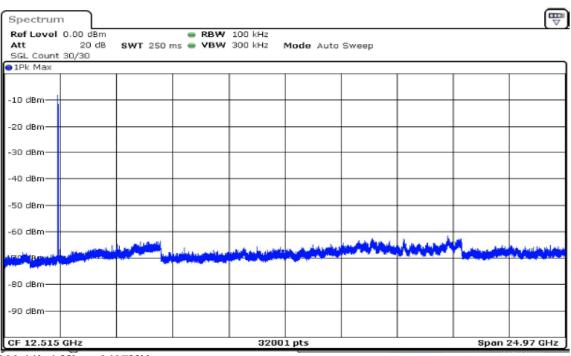


page 56 of 76

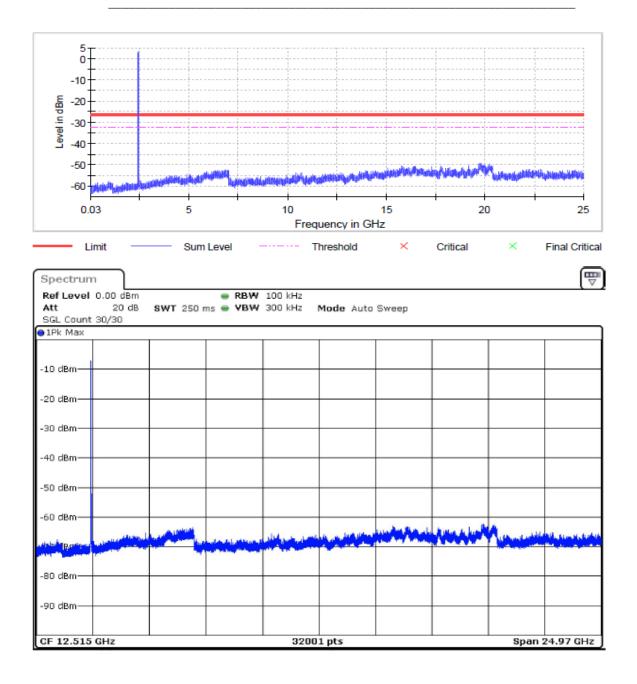


page 57 of 76

Conducted Spurious Emissions

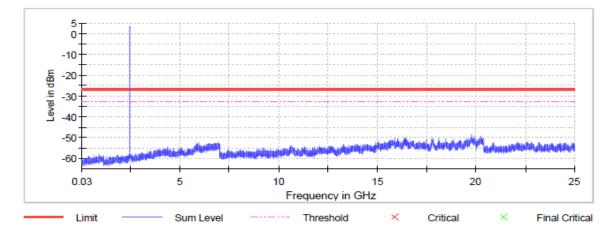

Test according to FCC KDB 558074 DTS Measurement Guidance v04 Section 11. Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 1.8 dB

<u>802.11b 1 Mbps 2412MHz</u> Pre Measurements									
Frequency	Level	Margin	Limit						
(MHz)	(dBm)	(dB)	(dBm)						
19754.513140	48.2	20.8	-27.4						
19763.096309	-48.3	20.9	-27.4						
19805.231868	-49.4	22.0	-27.4						
19750.611700	-49.5	22.1	-27.4						
19793.527546	-49.6	22.1	-27.4						
20257.798975	-49.6	22.2	-27.4						
20362.357583	-49.7	22.3	-27.4						
19817.716478	-49.8	22.4	-27.4						
20310.078279	-49.8	22.4	-27.4						
17806.133715	-49.8	22.4	-27.4						
20263.260992	-49.9	22.4	-27.4						
19771.679479	-49.9	22.5	-27.4						
16392.251648	-50.0	22.5	-27.4						
19798.989563	-50.0	22.5	-27.4						
19784.164089	-50.0	22.6	-27.4						


802.11b 1 Mbps 2437MHz

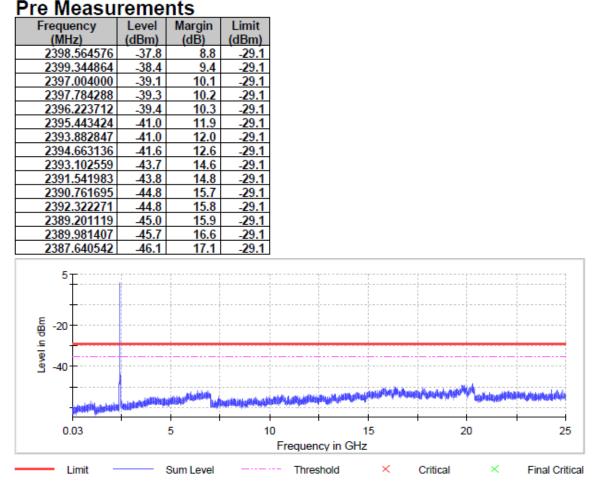
Pre Measurements

Frequency	Level	Margin	Limit						
(MHz)	(dBm)	(dB)	(dBm)						
19795.088122	-49.0	22.6	-26.4						
19745.929971	-49.3	22.8	-26.4						
19815.375613	-49.4	23.0	-26.4						
19791.186682	-49.4	23.0	-26.4						
19775.580919	-49.5	23.1	-26.4						
19776.361207	-49.6	23.1	-26.4						
19701.453548	-49.6	23.1	-26.4						
20245.314365	-49.6	23.2	-26.4						
19800.550139	-49.8	23.3	-26.4						
19762.316021	-49.8	23.3	-26.4						
19777.921784	-49.8	23.4	-26.4						
20226.587450	-49.9	23.5	-26.4						
20247.655230	-49.9	23.5	-26.4						
19820.057342	-50.0	23.5	-26.4						
19790.406394	-50.0	23.5	-26.4						



802.11b 1Mbps 2462MHz

Pre Measurements Frequency Level Margin Limit (MHz) (dBm) (dB)(dBm) 19759.975157 48.2 21.5 -26.8 19780.262648 48.6 21.8 26.8 19774.800631 48.9 22.1 26.8 20239.852348 49.2 22.4 26.8 19958.948627 49.5 22.7 -26.8 20253.117246 49.5 22.7 -26.8 19781.042936 49.8 23.0 -26.8 20232.829755 49.8 23.0 -26.8 49.9 23.1 20296.813381 -26.8 49.9 23.1 19803.671292 -26.8 <u>19767.778038</u> 49.9 23.2 -26.8 49.9 23.2 <u>19792.747258</u> -26.8 -50.0 17788.187088 23.2 -26.8 -50.0 23.2 26.8 17794.429393 -50.0 19754.513140 23.3 26.8

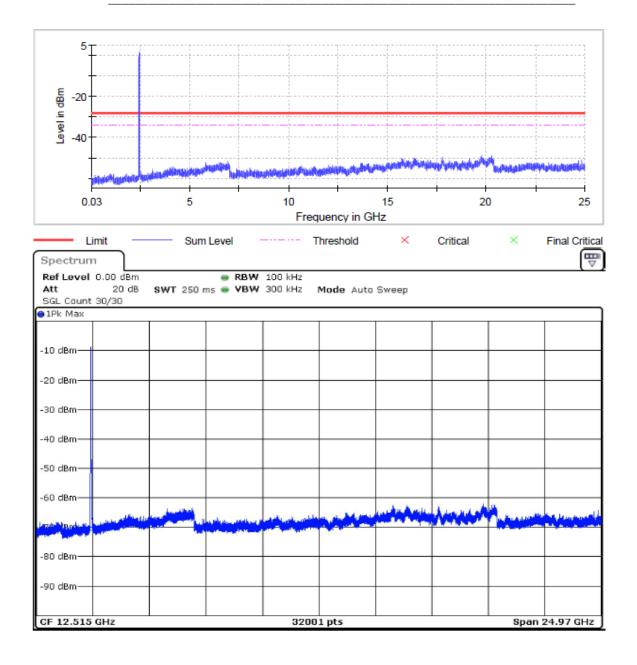


page 61 of $7\overline{6}$

Spectrun	٦								₽
Ref Level			RBW						
Att	20 dB	SWT 250 r	ns 👄 VBW	300 kHz	Mode Auto	Sweep			
SGL Count	30/30								
⊖1Pk Max									
-10 dBm-									
-10 0.011									
-20 dBm									
-20 abm-									
-30 dBm									
-30 aBm									
-40 dBm									
-50 dBm									
-60 dBm									
	a sumal a s	and and the second second	190	. At the second	and the second second	and the states	A had a loss of	A	A A second at
Beller	1.4.4	-			a second second	and the second	A SAME		
and a state of the second state of									
-80 dBm									
-90 dBm									
50 0.011									
CF 12.515	GHz			3200	1 pts			Span 2	24.97 GHz

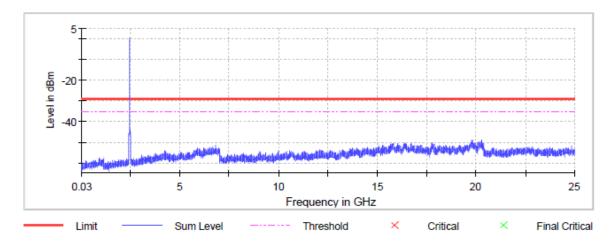
802.11g 6 Mbps 2412MHz

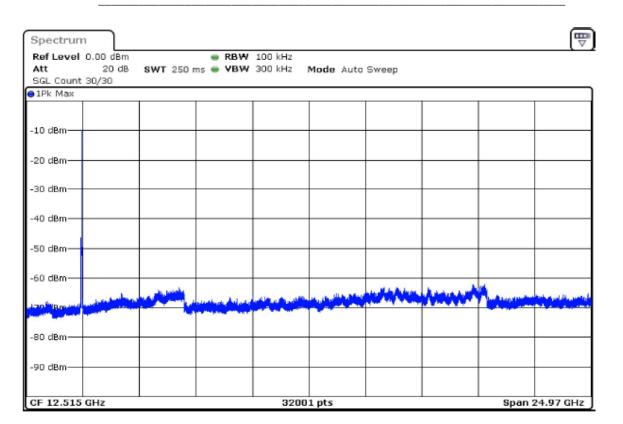
Spectrun	n								
Ref Level Att	20 dB	SWT 250 r	e RBW		Mode Auto	Sweep			
SGL Count	: 30/30								
●1Pk Max									
-10 dBm									
-20 dBm-									
-30 dBm									
-30 abm-									
-40 dBm									
-50 dBm—									
-60 dBm—		and their					the stand	4	
Bohula	a la sub la faith and		ALL MARKEN	a fin planter and	in Jacobsky		WWW.	Anderstein	and the second state
Castle Inchest			A strategy in the second						
-80 dBm									
-90 dBm									
CF 12.515	GHz			3200	1 pts			Span 2	24.97 GHz


802.11g 6 Mbps 2437MHz Pre Measurements

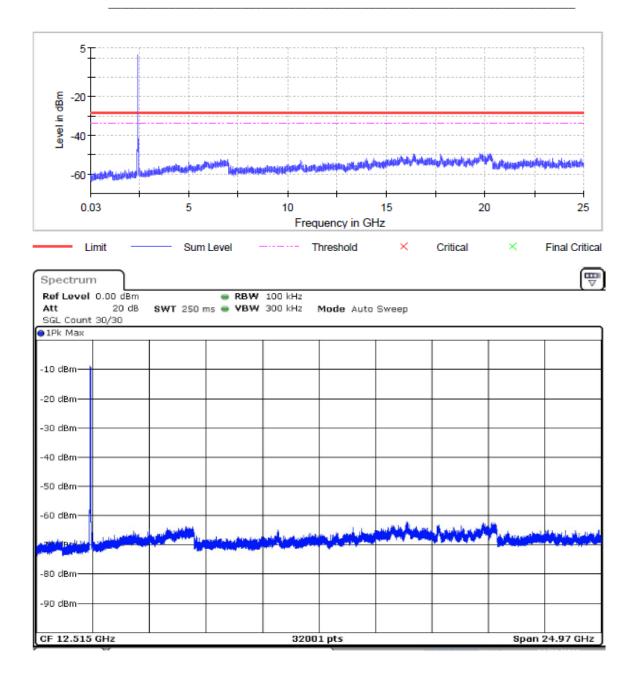
Frequency	Level	Margin	Limit						
(MHz)	(dBm)	(dB)	(dBm)						
19777.921784	-48.7	20.7	-28.0						
20293.692228	-49.5	21.4	-28.0						
19738.907378	-49.6	21.5	-28.0						
20264.821568	-49.6	21.6	-28.0						
20167.285554	-49.7	21.6	-28.0						
19750.611700	-49.7	21.6	-28.0						
19773.240055	-49.7	21.7	-28.0						
19762.316021	-49.8	21.8	-28.0						
19798.989563	-49.8	21.8	-28.0						
17787.406800	-49.9	21.9	-28.0						
19781.042936	-49.9	21.9	-28.0						
19734.225649	-49.9	21.9	-28.0						
19738.127090	-50.0	21.9	-28.0						
19741.248242	-50.0	21.9	-28.0						
19852.049155	-50.0	21.9	-28.0						

page 64 of 76



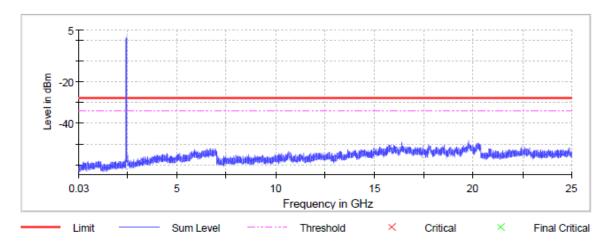

802.11g 6 Mbps 2462MHz Pre Measurements

Frequency	Level	Margin	Limit						
(MHz)	(dBm)	(dB)	(dBm)						
2484.396269	42.5	13.3	-29.2						
2485.956845	-42.6	13.3	-29.2						
2483.615981	-43.8	14.6	-29.2						
2485.176557	-44.9	15.7	-29.2						
2487.517421	-45.5	16.3	-29.2						
2489.858286	-45.9	16.7	-29.2						
2486.737133	-46.0	16.8	-29.2						
2490.638574	-46.2	17.0	-29.2						
2489.077998	-46.3	17.1	-29.2						
2488.297709	-46.7	17.4	-29.2						
2492.979438	-47.7	18.5	-29.2						
2491.418862	-47.9	18.7	-29.2						
2495.320302	-48.4	19.1	-29.2						
2494.540014	-48.8	19.6	-29.2						
19759.975157	-48.9	19.7	-29.2						


802.11n(HT20) MCS4 2412MHz

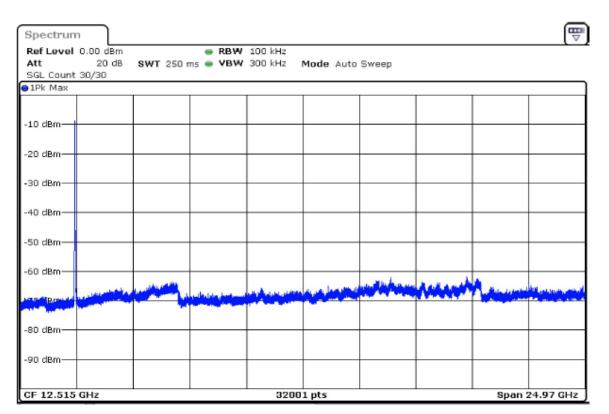
Pre Measurements

Frequency	Level	Margin	Limit					
(MHz)	(dBm)	(dB)	(dBm)					
2398.564576	-38.1	10.0	-28.1					
2399.344864	-39.4	11.3	-28.1					
2397.784288	-40.4	12.3	-28.1					
2395.443424	-40.5	12.4	-28.1					
2396.223712	-40.8	12.7	-28.1					
2397.004000	-40.8	12.7	-28.1					
2394.663136	-42.2	14.0	-28.1					
2393.102559	-42.5	14.4	-28.1					
2393.882847	-42.6	14.5	-28.1					
2392.322271	-43.7	15.5	-28.1					
2391.541983	-43.8	15.7	-28.1					
2390.761695	-44.0	15.9	-28.1					
2389.981407	-44.3	16.2	-28.1					
2389.201119	-45.5	17.4	-28.1					
2385.299678	-47.0	18.9	-28.1					



802.11n(HT20) MCS4 2437MHz

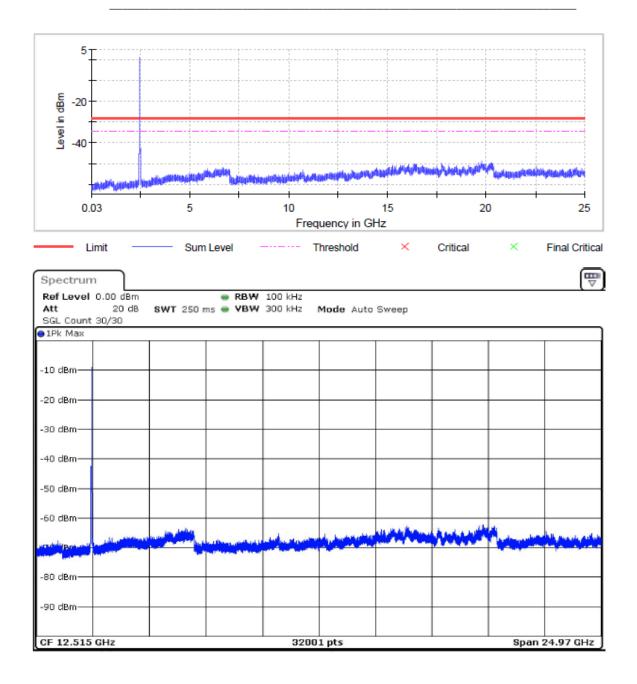
Pre Measurements


Frequency	Level	Margin	Limit	
(MHz)	(dBm)	(dB)	(dBm)	
19761.535733	-48.5	20.4	-28.0	
16400.054530	-49.3	21.3	-28.0	
19779.482360	-49.3	21.3	-28.0	
20232.049467	-49.5	21.4	-28.0	
20271.063873	-49.8	21.8	-28.0	
20209.421112	-49.8	21.8	-28.0	
19731.884785	-49.8	21.8	-28.0	
16396.153089	-49.9	21.8	-28.0	
19767.778038	-49.9	21.8	-28.0	
19769.338614	-49.9	21.8	-28.0	
19765.437174	-49.9	21.9	-28.0	
19805.231868	-50.0	22.0	-28.0	
20207.860536	-50.0	22.0	-28.0	
20278.866754	-50.0	22.0	-28.0	
19778.702072	-50.0	22.0	-28.0	

page 69 of 76

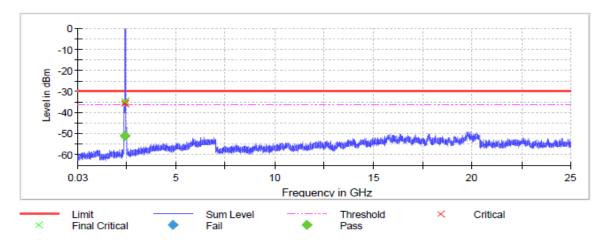
802.11n(HT20) MCS4 2462MHz

Pre Measurements


Frequency Level Margin Limit							
(MHz)	(dBm)	(dB)	(dBm)				
2483.615981	-40.9	12.6	-28.3				
2485.176557	-41.3	13.0	-28.3				
2484.396269	-41.8	13.5	-28.3				
2486.737133	-43.0	14.7	-28.3				
2485.956845	-44.5	16.2	-28.3				
2488.297709	-44.7	16.4	-28.3				
2487.517421	-45.2	17.0	-28.3				
2489.077998	-46.3	18.0	-28.3				
2491.418862	-46.4	18.1	-28.3				
2496.100591	-46.4	18.1	-28.3				
2493.759726	-46.5	18.2	-28.3				
2492.199150	-46.8	18.5	-28.3				
2490.638574	-47.1	18.8	-28.3				
2489.858286	-47.3	19.0	-28.3				
2492.979438	-47.7	19.4	-28.3				

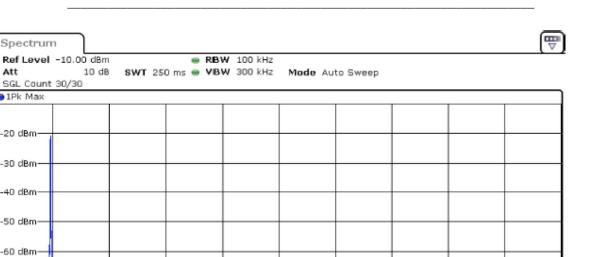
May 16, 2018

page 70 of 76



802.11n(HT40) MCS6 2422MHz

Pre Measurements


Frequency	Level	Margin	Limit	
(MHz)	(dBm)	(dB)	(dBm)	
2394.663136	-34.7	4.6	-30.1	
2399.344864	-34.7	4.6	-30.1	
2398.564576	-35.4	5.3	-30.1	
2397.004000	-35.8	5.7	-30.1	
2397.784288	-36.3	6.2	-30.1	
2384.519390	-37.1	7.0	-30.1	
2386.860254	-37.6	7.5	-30.1	
2388.420831	-37.8	7.7	-30.1	
2393.102559	-37.9	7.8	-30.1	
2395.443424	-38.0	7.9	-30.1	
2389.201119	-38.3	8.2	-30.1	
2396.223712	-38.3	8.2	-30.1	
2393.882847	-38.4	8.3	-30.1	
2390.761695	-38.4	8.3	-30.1	
2386.079966	-38.4	8.3	-30.1	

32001 pts

802.11n(HT40) MCS6 2437MHz

Spectrum

Att

1Pk Max

-20 dBm-

-30 dBm-

-40 dBm-

-50 dBm

-60 dBm-

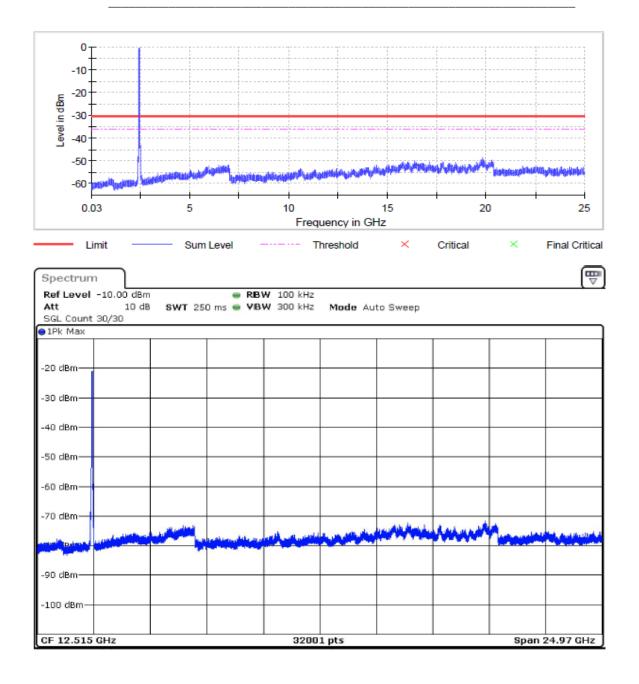
-70 dBm

-90 dBm-

-100 dBm-

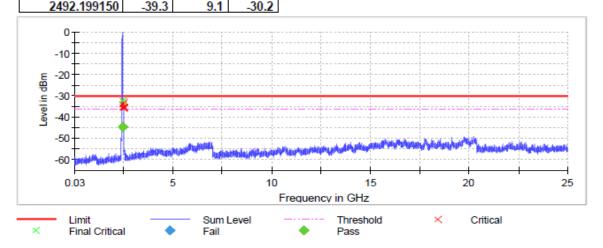
CF 12.515 GHz

Pre Measurements


Frequency	Level	Margin	Limit				
(MHz)	(dBm)	(dB)	(dBm)				
2399.344864	-38.3	8.1	-30.2				
2394.663136	-42.5	12.2	-30.2				
2489.858286	-42.8	12.6	-30.2				
2483.615981	-43.0	12.8	-30.2				
2484.396269	-43.1	12.8	-30.2				
2485.176557	-43.3	13.0	-30.2				
2398.564576	-43.3	13.1	-30.2				
2397.784288	-43.7	13.5	-30.2				
2487.517421	-43.8	13.6	-30.2				
2397.004000	-43.8	13.6	-30.2				
2486.737133	-43.8	13.6	-30.2				
2395.443424	-44.1	13.9	-30.2				
2392.322271	-44.1	13.9	-30.2				
2393.102559	-44.2	14.0	-30.2				
2492.199150	-44.3	14.1	-30.2				

Span 24.97 GHz

page 73 of 76



page 74 of 76

802.11n(HT40) MCS6 2452MHz

Pre Measurements

Frequency	Level	Margin	Limit
(MHz)	(dBm)	(dB)	(dBm)
2484.396269	-32.2	2.0	-30.2
2486.737133	-33.1	2.9	-30.2
2483.615981	-34.0	3.8	-30.2
2485.956845	-34.3	4.1	-30.2
2487.517421	-35.3	5.2	-30.2
2488.297709	-35.5	5.3	-30.2
2489.858286	-35.5	5.3	-30.2
2485.176557	-35.5	5.4	-30.2
2489.077998	-36.1	5.9	-30.2
2494.540014	-37.2	7.0	-30.2
2491.418862	-38.7	8.6	-30.2
2492.979438	-38.8	8.6	-30.2
2496.880879	-39.1	8.9	-30.2
2490.638574	-39.2	9.0	-30.2
2402 100150	20.2	0.1	20.2

page 75 of 76

Spectrun									E
Ref Level	-10.00 dBm		RB\	₩ 100 kHz					
		SWT 25	D ms 🖷 VBN	W 300 kHz	Mode Au	to Sweep			
SGL Count	30/30								
●1Pk Max									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm—									
-60 dBm—									
-70 dBm							100 C 100	i.	
ملائمة ا	A STREET BOOM		والمراجع والمعامر	التحرير بالبروبا البل	No. of Lot of Lot		A ANA	And when be the	A. A. M. LOW
Poly		ALC: NO	and the second						
-90 dBm									
-100 dBm—									

32001 pts

CF 12.515 GHz

Span 24.97 GHz