

Intel® Edison

Bluetooth* Guide

February 2015

Revision 004

 Document Number: 331704-004

Notice: This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to
restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with the software
license agreement as defined in FAR 52.227-7013.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

The code names presented in this document are only for use by Intel to identify products, technologies, or services in development that have not
been made commercially available to the public, i.e., announced, launched, or shipped. They are not "commercial" names for products or services
and are not intended to function as trademarks.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. See http://www.intel.com/products/processor_number for details.

Intel and the Intel logo are trademarks of Intel Corporation in the US and other countries.

* Other brands and names may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.

Intel® Edison
Bluetooth* Guide February 2015
2 Document Number: 331704-004

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor_number

Contents
1 Introduction ... 7

1.1 BlueZ software stack ... 7
1.2 Software reference map .. 7
1.3 References .. 7
1.4 Terminology .. 8

2 Bluetooth* Integration in Linux* .. 9
2.1 The bluetoothd daemon ... 10
2.2 Configuration ... 10
2.3 Application interface .. 11

3 Basic Bluetooth* Operation .. 12
3.1 Enable and disable Bluetooth* on Intel® Edison ... 12
3.2 Bluetooth* status control via connman ... 13
3.3 The bluetoothctl utility .. 14
3.4 Device identification (DI) profile .. 14

4 Scanning and Connecting Devices .. 16
4.1 Connecting from a peer device.. 18

5 Changing a Bluetooth* MAC address .. 19
6 Bluetooth Profiles on Intel® Edison .. 20

6.1 Bluetooth* Low Energy (BLE) profile ... 21
 Verifying BLE plugin compilation ... 21 6.1.1
 Preparing to test Bluetooth* profiles.. 22 6.1.2

6.2 Scan and connect ... 24
 bluetoothctl .. 24 6.2.1
 hcitool ... 25 6.2.2
 btmgmt ... 27 6.2.3
 Python test scripts ... 30 6.2.4
 GATTtool .. 31 6.2.5

6.3 Advanced audio distribution profile (A2DP) .. 32
6.4 Device identification (DI) profile .. 34

 Reading and changing the local device identification .. 34 6.4.1
 Retrieving the peer device’s DI information .. 35 6.4.2

6.5 Human interface device (HID) profile .. 37
6.6 Personal area networking (PAN) profile .. 39

 PAN test between Linux* host PC and Intel® Edison device .. 40 6.6.1
 PAN test between two Intel® Edison devices .. 44 6.6.2

6.7 Serial port profile (SPP) ... 48
 SPP verification using DBUS APIs .. 49 6.7.1
 SPP verification using the RFCOMM tool .. 52 6.7.2

6.9 HID over GATT profile (HOGP) ... 56
6.10 Heart rate profile (HRP) ... 58
6.11 Proximity profile (PXP)... 60

 PXP services ... 60 6.11.1
 PXP test .. 60 6.11.2
 Proximity monitor .. 61 6.11.3
 Proximity reporter ... 62 6.11.4

6.12 Time profile (TIP) .. 64

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 3

6.13 File transfer protocol (FTP) profile ... 65
 FTP server .. 66 6.13.1
 FTP client ... 69 6.13.2

Appendix A: SPP-loopback.py ... 71

Figures

Figure 1 Intel® Edison to Broadcom BCM43340 connections ... 7
Figure 2 The BlueZ package .. 9
Figure 3 Help view of available commands ... 14
Figure 4 Show command ... 15
Figure 5 Modalias change .. 15
Figure 6 BLE architecture ... 21
Figure 7 Bluetooth* plugins .. 22
Figure 8 The rfkill unblock bluetooth command .. 22
Figure 9 The hciconfig hci0 lestates command ... 23
Figure 10 HCI events ... 25
Figure 11 hcitool > hcidump traces ... 26
Figure 12 btmgmt > hcidump traces ... 28
Figure 13 btmgmt > hcidump traces (successful pairings) ... 29
Figure 14 The test-discovery Python script ... 30
Figure 15 Scan for the Bluetooth* headset .. 32
Figure 16 Pair/connect the Bluetooth* headset .. 32
Figure 17 Results from uncommented device ID line ... 33
Figure 18 Copy audio and playing using mplayer ... 33
Figure 19 Show command ... 34
Figure 20 Results from uncommented DeviceID line .. 35
Figure 21 sdptool tool results .. 35
Figure 22 bluetoothctl tool retrieval results .. 36
Figure 23 Raw data from the event file using the “more” command ... 38
Figure 24 PAN service networking models .. 39
Figure 25 Linux pairing successful ... 41
Figure 26 Editing the bluetooth.conf file... 48
Figure 27 Serial port absent before running SPP-loopback.py .. 49
Figure 28 Serial port present after running SPP-loopback.py .. 49
Figure 29 Search for peer devices .. 50
Figure 30 Still searching .. 50
Figure 31 Android* screenshots .. 51
Figure 32 Connected devices ... 51
Figure 33 Sequence of screenshots showing the user inputs the text SPP application ... 52
Figure 34 BlueTerm app sending text via SPP .. 54
Figure 35 Minicom window on Linux* PC sending text ... 55
Figure 36 Mirrored text in Intel® Edison device’s cat shell window .. 55
Figure 37 Example event test results from Bluetooth mouse ... 57
Figure 38 Example heart rate monitor data ... 59
Figure 39 Current time service on Android* device ... 64
Figure 40 Checking obex profiles ... 65
Figure 41 Pairing Intel® Edison with Android* peer devices ... 66
Figure 42 Android* FTP screenshots .. 67
Figure 43 Send/browse files ... 68
Figure 44 Bluetooth* file transfer ... 68
Figure 45 Actions available after pairing ... 69
Figure 46 Actions available .. 69

Intel® Edison
Bluetooth* Guide February 2015
4 Document Number: 331704-004

Figure 47 Android* device screenshots ... 70

Tables

Table 1 Supported profiles .. 20

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 5

Revision History
Revision Description Date
001 Initial release. December 17, 2014

002 Added content on Bluetooth# profiles. February 4, 2015

003 Added A2DP profile. February 13, 2015

004 Added python script appendix. February 20, 2015

 §

Intel® Edison
Bluetooth* Guide February 2015
6 Document Number: 331704-004

Introduction

1 Introduction
The host processor on the Intel® Edison development board is connected to a Broadcom* BCM43340 combo chip
via UART (uart0 mapped to /dev/MFD0) as transport layer and uses additional GPIOs to handle power (on, reset,
etc.), OOB (out-of-band) signaling for UART to support low power mode.

Figure 1 Intel® Edison to Broadcom BCM43340 connections

1.1 BlueZ software stack
BlueZ, an open source project, is the official Linux* Bluetooth* protocol stack. The BlueZ package has a doc folder
that contains a DBUS API description text file with some other information related to supported features: settings,
storage, etc. The BlueZ stack sources divide into components in both the kernel and user spaces, which should be
compiled accordingly; the main component is the bluetoothd daemon, which exposes DBUS APIs to the application
layer for development. (DBUS APIs are interfaces exposed to develop application; they do not explain internal
working mechanisms.) We have modified the Yocto recipes to append the BlueZ5.24 version, not the default.

Note: The Intel® Edison board currently runs with Linux* kernel 3.10 with a low-energy patch added to the kernel
to handle Random Address. . For more information on BlueZ, refer to their website at http://www.bluez.org.

1.2 Software reference map
Release-1 https://communities.intel.com/community/makers/edison/documentation

Software Downloads -> Rel-1-Maint-WW42 (is latest for Release-1)

Release-2 TBD (DEC2014)

1.3 References
Reference Name Number/location
331188 Intel® Edison Board Support Package User Guide

331189 Intel® Edison Compute Module Hardware Guide

331190 Intel® Edison Breakout Board Hardware Guide

331191 Intel® Edison Kit for Arduino* Hardware Guide

331192 Intel® Edison Native Application Guide

329686 Intel® Galileo and Intel® Edison Release Notes

[GSG] Intel® Edison Getting Started Guide W: http://www.intel.com/support/edison/sb/CS-035336.htm
M: http://www.intel.com/support/edison/sb/CS-035344.htm
L: http://www.intel.com/support/edison/sb/CS-035335.htm

331438 Intel® Edison Wi-Fi Guide

331704 Intel® Edison Bluetooth* Guide (This document)

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 7

http://www.bluez.org/
https://communities.intel.com/community/makers/edison/documentation
http://www.intel.com/support/edison/sb/CS-035336.htm
http://www.intel.com/support/edison/sb/CS-035344.htm
http://www.intel.com/support/edison/sb/CS-035335.htm

Introduction

1.4 Terminology
Term Definition
BNEP Bluetooth Network Encapsulation Protocol. BNEP is an Ethernet interface created for each Bluetooth*

connection.

BT Bluetooth

BT-LE, BLE Bluetooth low energy

DBUS An interprocess communication protocol

DI Device Identification

GPIO General purpose input/output

HCI Host controller interface

HID Human interface device

MFD Multifunction device

NAP Network access point

OOB Out-of-band

PAN Personal area network

SDP Service Discovery Profile

ssh Secure shell

UART Universal asynchronous receiver/transmitter

TIP Time profile

PXP Proximity Profile

SPP Serial Port Profile

A2DP Advanced Audio Distribution Profile

FTP File Transfer Profile

HRP Heart Rate Profile

HOGP HID over GATT profile

GAP Generic Access Profile

 §

Intel® Edison
Bluetooth* Guide February 2015
8 Document Number: 331704-004

http://en.wikipedia.org/wiki/List_of_Bluetooth_profiles%23Advanced_Audio_Distribution_Profile_.28A2DP.29
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

Bluetooth* Integration in Linux*

2 Bluetooth* Integration in Linux*
Bluetooth* controllers are handled in Linux* via interfaces accessible by the rfkill and hci utilities (rfkill, hcidump,
hciconfig, hcitools, etc.). These utilities, which are provided in the BlueZ package (Figure 2), include the following:

• rfkill: Turns the chip on/off.
• hcitools: A series of utilities that manage controllers:

− hcidump: Retrieves the trace of the HCI device.
− hciconfig: Configures Bluetooth* devices.
− hcitool: Configures Bluetooth* connections and sends commands to Bluetooth* devices.
− hciattach: Attaches an HCI device to a dev interface, like USB or UART; usually it is used to download

patchram to the Bluetooth* controller.

Figure 2 The BlueZ package

In general, hciattach launches automatically whenever a Bluetooth* controller connects over USB. This occurs
when rfkill turns Bluetooth* on and the system calls hciattach with the proper patchram.

Since the Bluetooth* controller connects to the UART, hciattach does not launch automatically, even after starting
Bluetooth* with rfkill. To support the functionalities of hciattach, the Intel® Edison image has a built-in service
called Bluetooth_rfkill_event that starts at bootup and runs in the background, listening for Bluetooth* interface
rfkill events. If Bluetooth_rfkill_event identifies an event intended for BCM43340, it calls the Broadcom download
utility, which does the same job as hciattach (along with some Broadcom-specific functions). Whenever you are
enabling or testing Bluetooth* functionality, make sure Bluetooth_rfkill_event is running in the background.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 9

Bluetooth* Integration in Linux*

2.1 The bluetoothd daemon
The bluetoothd daemon can be started even when the Bluetooth controller is not enabled; at startup, it loads,
initializes plugins, and listens to events from the kernel. As soon as the MGMT_EV_INDEX_ADDED management
indication is received for an HCI device, the daemon registers an adapter entity for the BT controller and initializes.

The plugin is a piece of software that implements features/profile. BlueZ comes with set of built-in plugins (to
support profiles like A2DP, AVRCP, networking/PAN, input/HID, GATT, and items like wiimote and hostname) that
are loaded and enabled at boot time (if not differently specified).

BlueZ also has the support to load and initialize custom plugins developed by third-parties and that are looked for
in init in the /usr/lib/bluetooth/plugins folder. Basically, a plugin lets you run some actions when the bluetoothd
daemon initializes (when the adapter is not already registered).

Typical actions performed at a plugin initialization include the following:

• Defining directly the DBUS interfaces for application layer (like the hostname plugin).
• Registering the adapter driver (btd_adapter_driver structure has a probe entry that is called when an

adapter is registered).
• Register a profile (btd_profile structure has some “pointer-to-function” fields, between them an

adapter_probe entry that is called when the adapter is registered. (There are similar entries for device,
where device is the structure that handles a peer device when connected/paired etc.).

This mechanism allows plugin to be notified or do specific actions to be performed at init, when an adapter is
registered or when a device is paired/connected.

Note: Registering a profile using the plugin mechanism doesn’t mean the profile is advertised to a peer device
since an application has to register the profile via DBUS interface so that SDP (Service Discovery Protocol)
can discover the service provided by it.

All settings are stored under a storage directory (by default /var/lib/bluetooth) that can be inspected for debugging
purposes; this folder structure is documented in the <bluez_package>/doc/settings-storage file.

2.2 Configuration
By default the bluetoothd daemon will load and initialize all built-in plugins, but it is also possible to directly enable
or disable a set of plugins with the –plugin and --noplugin command line options. When you disable a plugin,
the corresponding profile won’t be available, which means that no application will be able to register and advertise
this service. You can do this on an Intel® Edison device by modifying the systemd file for BlueZ
(/etc/systemd/system/bluetooth.target.wants/bluetooth.service) and adding command line arguments in ExecStart.

BlueZ also comes with conf files that let you specify some of the profile features (input.conf, network.conf, and
proximity.conf) plus a more generic conf file (main.conf) that lets you specify name, discoverable and pairable
timeouts, and other settings. These configuration files, which are located under /etc/bluetooth on an Intel® Edison
device, are loaded at the Bluetooth daemon’s boot time (when the bluetooth systemd service is started). If you
modify any of these configurations, you will need to stop and start the systemd Bluetooth service to activate the
changes.

root@edison:~# ls
root@edison:~# systemctl stop bluetooth
root@edison:~# systemctl start bluetooth

Intel® Edison
Bluetooth* Guide February 2015
10 Document Number: 331704-004

Bluetooth* Integration in Linux*

2.3 Application interface
The application layer can use the Bluetooth service provided by the BlueZ stack using the DBUS API interface
registered by each profile/component. The <bluez_package>/doc folder contains a text file that describes these
DBUS API methods and properties.

The main components of this package include the following:

• adapter: Lets you start or stop discovery; remove a paired device; or set/get info about name, alias,
pairable timeout, etc.

• agent: Lets you register or unregister agent; set the default one or all methods related to pairing or
authorization, etc.

• device: Lets you connect or disconnect; pair a device; connect or disconnect a profile on a device, etc.; set
or get info about trusted or blocked class of peer device.

• profile: Lets you register a profile implementation.

The folder also contains a file called mgmt-api.txt, which describes the format of data used for communicating with
kernel using the so-called Bluetooth* management sockets. Profile-specific API documentation (like network, obex)
is also available.

 §

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 11

Basic Bluetooth* Operation

3 Basic Bluetooth* Operation
Before you can perform any Bluetooth operations, connect to the Intel® Edison device via ssh or minicom and call
rfkill to unblock the Broadcom* BCM43340 chip. The Bluetooth_rfkill_event service, which should be running in
background, will intercept the rfkill event, trigger a firmware patch download, configure the Broadcom* BCM43340
chip, and register the HCI device (hci0).

Note: Whenever you are enabling or testing Bluetooth* functionality, make sure Bluetooth_rfkill_event is running
in the background. This utility downloads patches and registers HCI is brcm_patchram_plus. It operates
like hciattach but has more Broadcom-specific options.

3.1 Enable and disable Bluetooth* on Intel® Edison
To enable or disable Bluetooth, using the following commands respectively:

root@edison:~# rfkill unblock bluetooth
root@edison:~# rfkill block bluetooth

Once Bluetooth is enabled, rfkill will usually list the available interfaces. You can also use the rfkill list command to
show them. For instance, on the Intel® Edison board:

root@edison:~# rfkill block bluetooth
root@edison:~# rfkill list
0: phy0: wlan
 Soft blocked: no
 Hard blocked: no
1: brcmfmac-wifi: wlan
 Soft blocked: no
 Hard blocked: no
2: bcm43xx Bluetooth: bluetooth
 Soft blocked: yes
 Hard blocked: no

And:

root@edison:~# rfkill unblock bluetooth
root@edison:~# rfkill list
0: phy0: wlan
 Soft blocked: no
 Hard blocked: no
1: brcmfmac-wifi: wlan
 Soft blocked: no
 Hard blocked: no
2: bcm43xx Bluetooth: bluetooth
 Soft blocked: no
 Hard blocked: no
3: hci0: Bluetooth
 Soft blocked: no
 Hard blocked: no
root@edison:~#

The string “bcm43xx Bluetooth: bluetooth” is added by the power driver of the Bluetooth* controller, either
already included in the kernel or loaded as module; blocking or unblocking it via the rfkill block or rfkill unblock
command will power the chip off or on. The rfkill unblock command does both the tasks of systemctl start
connman and connmanctl enable bluetooth.

Intel® Edison
Bluetooth* Guide February 2015
12 Document Number: 331704-004

Basic Bluetooth* Operation

3.2 Bluetooth* status control via connman
Connman is a connection manager with a Bluetooth plugin (relying on the BlueZ DBUS interfaces). Connman
manages network connections over Bluetooth using PAN (with a PAN user role). Connman gets information about
connected/paired devices from BlueZ DBUS interfaces (through the PAN NAP/GN service, available on the peer
devices). You cannot use connman for all pairing and connection procedures. It does, however, let you
enable/disable technology (keeping track of the previous status) via the rfkill component.

Because connman does not start automatically at boot time, start it manually.

root@edison:~# systemctl start connman
root@edison:~# connmanctl enable bluetooth
Enabled bluetooth
root@edison:~# rfkill list
0: phy0: wlan
 Soft blocked: no
 Hard blocked: no
1: brcmfmac-wifi: wlan
 Soft blocked: no
 Hard blocked: no
2: bcm43xx Bluetooth: bluetooth
 Soft blocked: no
 Hard blocked: no
3: hci0: bluetooth
 Soft blocked: no
 Hard blocked: no
root@edison:~#

The last item (3: hci0: bluetooth) is added when the serial device is attached to the BlueZ stack. If the kernel
already configures some _BT_ HCI_ driver entries (like CONFIG_BT_HCIBCM203X, CONFIG_BT_HCIBTSDIO), it will
already list an hcix: bluetooth interface.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 13

https://01.org/connman

Basic Bluetooth* Operation

3.3 The bluetoothctl utility
This command line utility can be used to perform basic Bluetooth* operation, such as:

• Register an agent,
• Start or stop discovery,
• Configure pairable or discoverable property of the adapter,
• Pair and connect a device.

The utility interacts with the bluetoothd daemon via DBUS interfaces. Enter help to display the full list of available
commands (Figure 3).

Figure 3 Help view of available commands

3.4 Device identification (DI) profile
The scope of the Device Identification (DI) profile is to provide additional information above and beyond the
Bluetooth class of device and to incorporate the information into both the Service Discovery Profile (SDP) record
and the Extended Inquiry Response (EIR).

A device can be identified by the following information:

• VendorID Source: Indicates if the VendorID refers to Bluetooth or USB.
• The allowed values are:

− 0x0001, which means that the VendorID is assigned by the Bluetooth SIG
(https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers)

− 0x0002, which means that the VendorID is assigned by the USB Group
(https://usb-ids.gowdy.us/read/UD/)

• VendorID (16 bits)
• DeviceId (16 bits)
• Version (16 bits)

Intel® Edison
Bluetooth* Guide February 2015
14 Document Number: 331704-004

https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers
https://usb-ids.gowdy.us/read/UD/

Basic Bluetooth* Operation

The default BlueZ Device Information is:

• VendorID Source = USB
• VendorID = 0x1D6B (Linux Foundation)
• ProductID = 0x0246 (BlueZ)
• Version = 0x0512 (5.18)

You can retrieve this information from the local device with the bluetoothctl program’s show command (Figure 4).

Figure 4 Show command

You can modify this information by changing the /etc/bluetooth/main.conf file by uncommenting (and changing)
the line containing the DeviceID = ... line. For example, the following line will change the modalias, as shown
in Figure 5:

DeviceID = bluetooth:1234:5678:abcd

Figure 5 Modalias change

 §

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 15

Scanning and Connecting Devices

4 Scanning and Connecting Devices
To connect your Intel® Edison device to a Bluetooth network, do the following:

 1. Enable Bluetooth:

root@edison:~# rfkill unblock bluetooth

 2. Enter the BlueZ command line utility bluetoothctl, which will find the Bluetooth controller:

root@edison:~# bluetoothctl
[NEW] Controller 98:4F:EE:01:FD:D6 BlueZ 5.24 [default]
[bluetooth]# 

 3. Register an agent and set it as default. (An agent lets you handle actions such as pairing, when user
interaction is needed.) Options include KeyboardDisplay, DisplayOnly, DisplayYesNo, KeyboardOnly, and
NoInputNoOutput. These settings emulate different capabilities of the application developed by the end-
user for Bluetooth using an Intel® Edison board.

[bluetooth]# agent KeyboardDisplay
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]#

 4. Perform a scan. You can stop the scan as soon as it reports the device you are looking for.  

[bluetooth]# scan on
Discovery started
[CHG] Controller 98:4F:EE:01:FD:D6 Discovering: yes
[NEW] Device F3:18:29:E8:DA:61 Flex
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[NEW] Device 40:2C:F4:86:72:54 TNGU25X-MOBL2
[bluetooth]# scan off

 5. Pair the device. (You will need to confirm the pairing from the peer device, so be sure to have an agent set
as described in step 3 above.)

[bluetooth]# pair 40:2C:F4:DB:EF:AA
Attempting to pair with 40:2C:F4:DB:EF:AA
[CHG] Device 40:2C:F4:DB:EF:AA Connected: yes
Request confirmation
[agent] Confirm passkey 788684 (yes/no): yes
[CHG] Device 40:2C:F4:DB:EF:AA UUIDs:
 00000002-0000-1000-8000-0002ee000002
 00001000-0000-1000-8000-00805f9b34fb
 00001104-0000-1000-8000-00805f9b34fb
[CHG] Device 40:2C:F4:DB:EF:AA Paired: yes
Pairing successful
[CHG] Device 40:2C:F4:DB:EF:AA Connected: no
[CHG] Device 40:2C:F4:DB:EF:AA Connected: yes
[CHG] Device 40:2C:F4:DB:EF:AA Connected: no
[bluetooth]

Intel® Edison
Bluetooth* Guide February 2015
16 Document Number: 331704-004

Scanning and Connecting Devices

 6. Trigger the connection step:

[bluetooth]# connect 10:68:3F:57:90:4F  
Attempting to connect to 10:68:3F:57:90:4F 
[CHG] Device 10:68:3F:57:90:4F Connected: yes  Connection successful

The Bluetooth connection is established at the profile level, so the involved devices have to support
profiles (and roles, if applicable) that let them connect. For HID, there is no need to register the profile at
the application layer. (The HID host is implemented at the kernel level.) So a basic discovery + pair +
connect to an HID peripheral device will lead to a connection.

 7. You can check supported services on a peer device using the info command:

[bluetooth]# info 40:2C:F4:DB:EF:AA
Device 40:2C:F4:DB:EF:AA
 Name: NAGESWAX-MOBL1
 Alias: NAGESWAX-MOBL1
 Class: 0x3e010c
 Icon: computer
 Paired: yes
 Trusted: no 
 Blocked: no
 Connected: no
 LegacyPairing: no
 UUID: Vendor specific (00000002-0000-1000-8000-0002ee000002)
 UUID: Service Discovery Serve.. (00001000-0000-1000-8000-00805f9b34fb)
 UUID: IrMC Sync (00001104-0000-1000-8000-00805f9b34fb)
 UUID: OBEX Object Push (00001105-0000-1000-8000-00805f9b34fb)
 UUID: OBEX File Transfer (00001106-0000-1000-8000-00805f9b34fb)
 UUID: IrMC Sync Command (00001107-0000-1000-8000-00805f9b34fb)
 UUID: Headset (00001108-0000-1000-8000-00805f9b34fb)
 UUID: Audio Source (0000110a-0000-1000-8000-00805f9b34fb)
 UUID: Audio Sink (0000110b-0000-1000-8000-00805f9b34fb)
 UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)
 UUID: A/V Remote Control (0000110e-0000-1000-8000-00805f9b34fb)
 UUID: Headset AG (00001112-0000-1000-8000-00805f9b34fb)
 UUID: PANU (00001115-0000-1000-8000-00805f9b34fb)
 UUID: Imaging Responder (0000111b-0000-1000-8000-00805f9b34fb)
 UUID: Handsfree Audio Gateway (0000111f-0000-1000-8000-00805f9b34fb)
 UUID: Phonebook Access Server (0000112f-0000-1000-8000-00805f9b34fb)
 UUID: Video Sink (00001304-0000-1000-8000-00805f9b34fb)
[bluetooth]#

 8. When you are done, exit the utility:

[bluetooth]# exit
Agent unregistered
[DEL] Controller 98:4F:EE;01;FD;D6 BlueZ 5.24 [default]
root@edison:~#

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 17

Scanning and Connecting Devices

4.1 Connecting from a peer device
To connect your Intel® Edison device from a peer device, do the following:

 1. Follow steps 1 through 3 above.

 2. Set up the Intel® Edison device as “discoverable” in step 4:

[bluetooth]# discoverable on
Changing discoverable on succeeded
[CHG] Controller 98:4F:EE:01:FD:D6 Discoverable: yes
[bluetooth]#

 3. Start the discovery from the peer device and pair the Intel® Edison device.

 §

Intel® Edison
Bluetooth* Guide February 2015
18 Document Number: 331704-004

Changing a Bluetooth* MAC address

5 Changing a Bluetooth* MAC address
Each Intel® Edison device has its own unique Bluetooth* MAC address, which is in /factory/bluetooth_address. The
steps below describe the process to change the Bluetooth* MAC address, by mounting /factory, editing the
/factory/bluetooth_address file, and rebooting the device.

root@edison:~# mount –v | grep factory
/dev/mmcblk0p5 on /factory type ext4 (ro,nosuid,nodev,noatime,discard,
noauto_da_alloc)
root@edison:~# mount –o remount,rw /dev/mmcblk0p5 /factory
root@edison:~# vi /factory/bluetooth_address
root@edison:~# reboot
 Unmounting /home...
[OK] Stopped target Sound Card.
[OK] Removed slice system-systemd\x2dfsck.slice.
[OK] Stopped target Multiuser System.
 Stopped the Edison status and configuration service...

Note: We do not advise changing an Intel® Edison board’s Bluetooth* MAC address. If you do decide to change it,
however, presumably for testing purposes, first make sure to back up the unique MAC address that was
generated when the Intel® Edison board was first dispatched, and revert the MAC address back to what it
originally was (its unique MAC address) as soon as you are finished with your testing.

 §

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 19

Bluetooth Profiles on Intel® Edison

6 Bluetooth Profiles on Intel® Edison
To use Bluetooth* wireless technology, a device must be able to interpret Bluetooth* profiles, which define possible
applications and specify general behaviors that Bluetooth*-enabled devices use to communicate with each other.
Each Bluetooth profile contains the following information:

• Dependencies on other profiles
• Suggested user interface formats
• Specific parts of the Bluetooth protocol stack used by the profile.

Intel® Edison supports all BlueZ profiles, but we have only validated a subset of these profiles and features so far
(listed in Table 1).

Note: For details on all of the BlueZ profiles, visit the BlueZ website: http://www.bluez.org.

Table 1 Supported profiles

 Validated in Release 1 Validated in Release 2

Provided by BlueZ
A2DP Advanced audio distribution profile (A2DP) Yes

AVRCP Audio/video remote control profile

DI Device identification (DI) profile Yes

HDP Health device profile

HID Human interface device (HID) profile Yes Yes

PAN Personal area networking (PAN) profile Yes Yes

SPP Serial port profile (SPP) Yes

GATT (LE) profiles
CSCP Cycling speed and cadence profile

HOGP HID over GATT profile (HOGP) Yes

HRP Heart rate profile (HRP) Yes

HTP Health thermometer profile

PXP Proximity profile (PXP) Yes

TIP Time profile (TIP) Yes

OBEX-based profiles (by obexd)
FTP File transfer protocol (FTP) profile Yes

MAP Message access profile

OPP Object push profile

PBAP Phone book access profile

Provided by the oFono project
HFP (AG and HF) Hands-free profile Yes

Note: While testing Bluetooth* “classic” and low energy (BLE) profiles on the Intel® Edison platform, we used
Linux* PCs, Android* phones, Logic tech HID devices, HTC-Fetch, Polar H7 heart rate monitors, and other
BLE devices as peers. We did not perform any testing on Mac* OS X or Windows* devices.

The first two sections of this chapter explain the Bluetooth* LE (BLE) plugin and means to scan and connect; the
remaining sections explain how to use the validated Bluetooth* profiles on the Intel® Edison platform.

Intel® Edison
Bluetooth* Guide February 2015
20 Document Number: 331704-004

http://www.bluez.org/

Bluetooth Profiles on Intel® Edison

6.1 Bluetooth* Low Energy (BLE) profile
Bluetooth* Low Energy (BLE), marketed by the Bluetooth* SIG as Bluetooth* Smart, is often used for applications
related to healthcare, fitness, and security, or in any situation where low energy consumption is important. BLE is
intended to provide the same functionalities as “classic” Bluetooth* technology, but with better energy and cost
efficiencies. Figure 6 shows a diagram of the BLE architecture.

The BlueZ stack in Intel® Edison fully supports GATT client and server roles through internal native C APIs, but you
will probably have to implement some of your own GATT profiles (custom or standard). For example, some of the
default standard GATT profiles (health, alert, time, proximity, thermometer, heart rate, cycling speed, etc.) are
already implemented in BlueZ as experimental, which means they are fully functional, but their DBUS interface APIs
may change over time. Because the Intel® Edison software build includes the BlueZ stack configured in
experimental mode, these profiles are available in the software by default.

Figure 6 BLE architecture

 Verifying BLE plugin compilation 6.1.1
BlueZ on the Intel® Edison platform is compiled by default in experimental mode, to enable BLE profiles. To verify
that BlueZ has been compiled with BLE plugins, do the following to enable all the logs:

 1. Stop the bluetoothd daemon:

root@edison:~# systemctl stop bluetooth

 2. Change the Bluetooth* system service file (/etc/systemd/system/bluetooth.target.wants/bluetooth.service)
by adding the –d option:

ExecStart=/usr/lib/bluez5/bluetooth/bluetoothd –d

 3. Restart the Bluetooth* service:

root@edison:~# systemctl start bluetooth

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 21

Bluetooth Profiles on Intel® Edison

 4. Launch the Bluetooth* logs with the journalctl --unit=bluetooth command and verify that they are present
when the Bluetooth* service starts (Figure 7). The Bluetooth* logs show the various plugins supported in
the Intel® Edison image and show whether the bluetoothd daemon is stopped or started.

Figure 7 Bluetooth* plugins

To test the Bluetooth* profiles using the BlueZ test scripts, you need to copy the BlueZ test scripts into the
Intel® Edison device. To test the profiles with commonly available Python scripts, verify that the DBUS policy file
/etc/dbus-1/system.d/bluetooth.conf has the following lines:

<allow send_interface=“org.bluez.ThermometerWatcher1”/>
<allow send_interface=“org.bluez.AlertAgent1”/>
<allow send_interface=“org.bluez.HeartRateWatcher1”/>
<allow send_interface=“org.bluez.CyclingSpeedWatcher1”/>

If these lines are not in the file, you can add them dynamically at runtime.

 Preparing to test Bluetooth* profiles 6.1.2
Before performing any profile test, you should run two commands: rfkill unblock bluetooth and hciconfig hci0
(optional). After you run these commands, you can scan and connect to the BLE devices using different tools. (See
section 6.2.)

To prepare for Bluetooth* profile testing, do the following:

 1. Before testing any Bluetooth* functionality, run the rfkill unblock bluetooth command to make sure that
Bluetooth* is on and that the HCI interface is up and running (Figure 8).

Figure 8 The rfkill unblock bluetooth command

 2. If you want to check the Link Manager states supported by the controller, you can use the hciconfig hci0
lestates command (Figure 9). This command is not necessary to test the profile, but it does check the
supported states of the Bluetooth* controller: Connectable, not advertising, scannable advertising, passive
or active scanning, and all supported combinations. The supported combinations show that the device is
BT4.0 (which means it does not support dual-mode topology).

Intel® Edison
Bluetooth* Guide February 2015
22 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

Figure 9 The hciconfig hci0 lestates command

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 23

Bluetooth Profiles on Intel® Edison

6.2 Scan and connect
From devices that support GAP initiator/observer roles, we can scan and connect to other devices as master of the
connection (Central Role), using command line tools or test scripts that use the bluetoothd daemon. The command
line tools include bluetoothctl (recommended) and a couple of alternative tools, hcitool and btmgmt. For ease of
use, we recommend using bluetoothctl because it does not require checking traces with hcidump to determine if a
peer device address is random or static.

 bluetoothctl 6.2.1
To use the (recommended) BlueZ stack command line utility bluetoothctl to scan and connect, launch a console
and do the following:

 1. Launch bluetoothctl to start scanning for Bluetooth* classic and BLE devices:

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device D0:5F:B8:2A:0C:B9 Moto 360 0CB9
[NEW] Device 00:1F:20:42:27:12 Bluetooth Laser Travel Mouse
[NEW] Device 20:CD:39:A5:3B:62 HTC Fetch

 2. Use the scan on command to scan for Bluetooth* devices to pair with. When you see the desired device,
enter scan off.

[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device 00:22:D0:3B:2F:2A Polar H7 3B2F2A1C
[NEW] Device 88:0F:10:13:7D:CF MI
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[NEW] Device 48:51:B7:15:D1:63 ubuntu-0
[bluetooth]# scan off

Note: Discovery is “interleaved”, which means bluetoothctl finds and reports both classic and LE devices without
distinction. The BlueZ daemon also hides the type of device from discovery, so there is no need to specify
if an address is random or not using this tool.

 3. Connect to the device:

[bluetooth]# connect 00:22:D0:3B:2F:2A
Attempting to connect to 00:22:D0:3B:2F:2A
[CHG] Device 00:22:D0:3B:2F:2A Connected: yes
Connection successful
[CHG] Device 00:22:D0:3B:2F:2A UUIDs:
 00001800-0000-1000-8000-00805f9b34fb
 00001801-0000-1000-8000-00805f9b34fb
 0000180a-0000-1000-8000-00805f9b34fb
 0000180d-0000-1000-8000-00805f9b34fb
 0000180f-0000-1000-8000-00805f9b34fb
 6217ff4b-fb31-1140-ad5a-a45545d7ecf3
[CHG] Device 00:22:D0:3B:2F:2A Appearance: 0x0341
[bluetooth]#

You can use the hcidump -X command to check exchanged HCI packets.

Intel® Edison
Bluetooth* Guide February 2015
24 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 hcitool 6.2.2
This command line tool sends raw packets to the controller from the user space and initiates LE Scan.

On the Intel® Edison device, launch two consoles—one to execute the commands and the other to get hcidump log
traces—then do the following:

 1. Use the hcitool lescan command to scan for devices. In this example, notice that the Intel® Edison device
has detected the reference device, Polar H7:

root@edison:~# hcitool lescan
LE Scan ...

88:0F:10:13:7D:CF (unknown)
88:0F:10:13:7D:CF MI

00:22:D0:3B:2F:2A (unknown)
00:22:D0:3B:2F:2A Polar H7 3B2F2A1C
^Croot@edison:~#

 2. You can enter Ctrl+C to stop scanning as soon as you discover the device you are looking for. If the hcitool
lescan command fails to discover the device, enter the hciconfig hci0 down and hciconfig hci0 up
commands, then reenter the lescan command.

 3. In the second console, launch the HCI traces using the hcidump command:

root@edison:~# hcidump -X
HCI sniffer – Bluetooth packet analyzer ver 5.24
device: hci0 snap_len: 1500 filter: 0xffffffff

This second console will continue to log traces (Figure 10) whenever there is an exchange of info between
the controller and the BlueZ stack.

Figure 10 HCI events

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 25

Bluetooth Profiles on Intel® Edison

 4. Once a peer device is discovered, a connection can be initiated and a connection handler will be returned.
You can identify whether a MAC address is random or public by inspecting the hcidump. For example,
notice that the Polar H7 device MAC address in Figure 10 shows as “Public”. For devices (like the MIO
watch) that use random MAC addresses, you will need to use the --random flag with the lecc command.

root@edison:~# hcitool lecc 00:22:D0:3B:2F:2A
Connection handle 65
root@edison:~#

Note:
• You can interrupt the lescan command with Ctrl+C. (This will trigger Set Scan Enable with the

value 0x0 to stop scanning advertising channels.)
• BlueZ is actively scanning, which means that after having scanned the advertised data it will send

out a SCAN_REQ to get additional data). This is shown by received LE Meta Event with SCAN_RSP
that shows no additional data.

• The Polar H7 advertises its complete local name (POLAR H7 3B2F2A1C) and that it does not
support BD/EDR and General connectable (flags = 0x04).

• The Polar H7 is not using a Static Random access. (Random flag is detected in Tx/Rx field of PDU
that is not shown. Since it is not random, there is no need to give the --random flag while
establishing a connection.)

 5. Check the hcidump traces, where you can see the data exchanges between controller and stack. Logs show
that, after a connection was established, the slave initiated a connection update procedure.

Figure 11 hcitool > hcidump traces

Note: This is just a connection at the link layer; no GATT procedures are exchanged to browse peer device
services and eventually read/write or register to indications/notifications for exposed characteristics.

Intel® Edison
Bluetooth* Guide February 2015
26 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 btmgmt 6.2.3
The btmgmt tool lets you discover peer Bluetooth* devices via the find command, with options (-l, -b) to specify
Low Energy Scanning or Classic Inquiry. In this example, we are pairing an Intel® Edison device with a BLE-enabled
Polar* H7 heart rate monitor. If the devices are already paired, disconnect/unpair them and follow the steps to pair
and connect the BLE device with the Intel® Edison device.

Note: Use the btmgmt code in the BlueZ 5.24 package downloaded by the Yocto recipe. You can also find the
btmgmt source from the BlueZ git repository at http://git.kernel.org/cgit/bluetooth/bluez.git/tree/tools.

 1. Scan the BLE devices using the find command with the btmgmt tool. In the find command below, the -l
option limits the scan to only BLE devices:

root@edison:~# ./btmgmt find –l
Discovery started
hci0 dev_found: 00:22:D0:3B:2F:2A type LE Public rssi -61 flags 0x0000
AD flags 0x04 name Polar H7 3B2F2A1C
hci0 dev_found: 88:0F:10:13:7D:CF type LE Public rssi -91 flags 0x0000
AD flags 0x06 eir_len 11
hci0 dev_found: 00:22:D0:3B:2F:2A type LE Public rssi -94 flags 0x0000
AD flags 0x06 name MI
root@edison:~#

Without the –l option, the tool will scan all Bluetooth* devices (classic and BLE devices):

root@edison:~# ./btmgmt find
Discovery started
hci0 dev_found: 00:22:D0:3B:2F:2A type LE Public rssi -60 flags 0x0000
AD flags 0x04 name Polar H7 3B2F2A1C
hci0 dev_found: 88:0F:10:13:7D:CF type LE Public rssi -90 flags 0x0000
AD flags 0x06 eir_len 11
hci0 dev_found: 00:22:D0:3B:2F:2A type LE Public rssi -90 flags 0x0000
AD flags 0x06 name MI
hci0 dev_found: 48:51:B7:15:D1:63 type BR/EDR rssi -35 flags 0x0000
name ubuntu-0
hci0 dev_found: 40:2C:F4:DB:EF:AA type BR/EDR rssi -47 flags 0x0000
name NAGESWAX-MOBL1
root@edison:~#

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 27

http://git.kernel.org/cgit/bluetooth/bluez.git/tree/tools

Bluetooth Profiles on Intel® Edison

 2. Observe the hcidump traces and the data exchange between the controller and the BlueZ stack
(Figure 12).

Figure 12 btmgmt > hcidump traces

 3. The btmgmt tool doesn’t have a command that lets you connect the link layer, but it does have a pair
command that will send a request to pair using SMP. In this example, the Polar* H7 supports pairing so it
will pair with an Intel® Edison device. Try to pair the Intel® Edison device with the Polar* H7. (Some other
LE devices might not support pairing, in which case this method would fail.)

root@edison:~# ./btmgmt pair –t 1 00:22:D0:3B:2F:2A
Pairing with 00:22:D0:3B:2F:2A (LE Public)
Paired with 00:22:D0:3B:2F:2A (LE Public)
root@edison:~#

Note: In the command above, the -t option specifies the type of address: 0 for Classic devices, 1 for
LE Public, and 2 for LE Random. For the public Polar* H7, we provide a “1”; and for the random
MIO Watch, a “2”.

Intel® Edison
Bluetooth* Guide February 2015
28 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 4. Check the trace logs to see whether pairing is successful or not (Figure 13).

Figure 13 btmgmt > hcidump traces (successful pairings)

Note: Link layer connection is established here and then there is an SMP Pairing Request that is
established between the Intel® Edison device and the Polar* H7 heart rate monitor.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 29

Bluetooth Profiles on Intel® Edison

 Python test scripts 6.2.4
BlueZ provides a set a Python scripts (in the test folder) that interact with the bluetoothd daemon using the
exposed D-Bus API, so it is possible to use these scripts, and get the same results as when using bluetoothctl.

To scan for both classic and LE devices (interleaved discovery) using python test scripts, do the following:

 1. Copy the test package into the Intel® Edison device using the scp command and change the permissions of
the files.

 2. Go to the test folder and launch test-discovery to start the interleaved discovery. In this example, notice
that the Intel® Edison device has detected the reference device, Polar H7 ().

Figure 14 The test-discovery Python script

 3. Pair the Intel® Edison device with the Polar* H7 heart rate monitor using the simple-agent Python script:

root@edison:/usr/lib/bluez/test# ./simple-agent hci0 00:22:D0:3B:2F:2A
Agent registered
Device paired
root@edison:/usr/lib/bluez/test#

The Intel® Edison and Polar* H7 heart rate monitor devices are paired.

Intel® Edison
Bluetooth* Guide February 2015
30 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 GATTtool 6.2.5
Once you establish the link layer using the hcitool tool, it is possible to test BlueZ’s GATT client (but not server)
functionality using GATTtool.

Note: GATTtool is not part of the standard Intel® Edison image, but the code is in the BlueZ 5.24 package. You
can also find the GATTtool source at http://git.kernel.org/cgit/bluetooth/bluez.git/tree/attrib. This folder
contains all the needed source code to compile GATTtool.

Copy the executable into the Intel® Edison device using the scp command, then do the following:

 1. Launch hcitool to scan for BLE devices. In this example, notice that the Intel® Edison device has detected
the reference device, HTC Fetch:

root@edison:~# hcitool lescan
LE Scan ...
00:22:D0:3B:2F:2A Polar H7 3B2F2A1C
20:CD:39:A5:3B:62 (unknown)
20:CD:39:A5:3B:62 HTC Fetch
88:0F:10:13:7D:CF MI
root@edison:~#

 2. After you identify the device you are looking for, launch gatttool with the following command:

root@edison:~# ./gatttool -I –b <BT_MAC_address> -t random

...where :

• -I specifies interactive mode.
• -b specifies the peer device’s Bluetooth* MAC address.
• -t random declares that this is a random MAC address. (This option is required if the MAC

address is random address. In this case, HTC-Fetch is public, so this option is not necessary.)

 3. Once launched, gatttool will start the device shell, which allows you to connect to the end device.

root@edison:~# ./gatttool –I –b 20:CD:39:A5:3B:62
[20:CD:39:A5:3B:62][LE]> sec-level medium
[20:CD:39:A5:3B:62][LE]> connect
Attempting to connect to 20:CD:39:A5:3B:62
Connection successful
[20:CD:39:A5:3B:62][LE]>
attr handle: 0x0001, end grp handle: 0x000b uuid: 00001800-0000-1000-8000-00805f9b34fb
attr handle: 0x000c, end grp handle: 0x000f uuid: 00001801-0000-1000-8000-00805f9b34fb
attr handle: 0x0010, end grp handle: 0x0022 uuid: 0000180a-0000-1000-8000-00805f9b34fb
attr handle: 0x0023, end grp handle: 0x0025 uuid: 00001803-0000-1000-8000-00805f9b34fb
attr handle: 0x002d, end grp handle: 0x0031 uuid: 0000180f-0000-1000-8000-00805f9b34fb
attr handle: 0x0032, end grp handle: 0x0036 uuid: 0000180f-0000-1000-8000-00805f9b34fb
attr handle: 0x0037, end grp handle: 0x0047 uuid: 00001804-0000-1000-8000-00805f9b34fb
attr handle: 0x0048, end grp handle: 0xffff uuid: 00001804-0000-1000-8000-00805f9b34fb
[20:CD:39:A5:3B:62][LE]>

 4. Use the help command to list available commands, optional parameters, and explanations:

root@edison:~# ./gatttool –help

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 31

http://git.kernel.org/cgit/bluetooth/bluez.git/tree/attrib

Bluetooth Profiles on Intel® Edison

6.3 Advanced audio distribution profile (A2DP)
The Intel® Edison platform supports the A2DP profile, which defines how audio can stream from device A to device
B over Bluetooth*. A2DP services are designed to transfer audio streams unidirectionally, in up to 2-channel stereo,
from a Bluetooth* host (source) to another Bluetooth* device (a “sink”). An Intel® Edison device may serve as either
an A2DP source (SRC) or an A2DP sink (SNK).

We used an Intel® Edison device as the A2DP source and an LG* Bluetooth* headset as the A2DP sink for this use
case:

 1. From the Intel® Edison device, scan for the LG* headset.

Figure 15 Scan for the Bluetooth* headset

 2. From the Intel® Edison device, pair with and connect to the Bluetooth* headset.

Figure 16 Pair/connect the Bluetooth* headset

Intel® Edison
Bluetooth* Guide February 2015
32 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 3. Verify that your A2DP device (the LG* headset in this case) is recognized in pulse audio as a sink device
and that its sink name starts with bluez_sink.

Figure 17 Results from uncommented device ID line

 4. Configure the default sink to use pulse audio server with the following command:

root@edison:/usr/lib/bluez/test# pactl set-default-sink bluez_sink.00_
18_6B_4e_A4_B8

 5. Copy an audio file (*.wav) to the Intel® Edison device using scp, and play the audio file using mplayer.

Figure 18 Copy audio and playing using mplayer

You should be able to hear the audio file play on the LG* Bluetooth headset.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 33

Bluetooth Profiles on Intel® Edison

6.4 Device identification (DI) profile
The scope of the Device Identification (DI) profile is to provide additional information above and beyond the
Bluetooth* Class of Device and also to incorporate the information into Service Discovery Profile (SDP) record and
EIR response.

A device can be identified by the following information:

• VendorID source: Indicates if the VendorID refers to Bluetooth* or USB. The allowed values are:
− 0x0001 means that the VendorID is assigned by the Bluetooth* SIG

(https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers)
− 0x0002 means that the VendorID is assigned by the USB Group (https://usb-ids.gowdy.us/read/UD/)

• VendorID (16 bits)
• DeviceId (16 bits)
• Version (16 bits)

 Reading and changing the local device identification 6.4.1
The default BlueZ’s device information is:

• VendorID Source = USB
• VendorID = 0x1D6B (Linux Foundation)
• ProductID = 0x0246 (BlueZ)
• Version = 0x0518 (5.18)

You can retrieve this information from the local device with the bluetoothctl program’s show command (Figure 4).

Figure 19 Show command

You can modify this information by editing the /etc/bluetooth/main.conf file and uncommenting (and changing) the
line containing the DeviceID =. For example, uncommenting DeviceID = bluetooth:1234:5678:abcd gives
the result in Figure 20.

Intel® Edison
Bluetooth* Guide February 2015
34 Document Number: 331704-004

https://confluence.ndg.intel.com/display/EDISON/Bluetooth%3A+central+page%23Bluetooth:centralpage-DeviceIdentification
https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers
https://usb-ids.gowdy.us/read/UD/

Bluetooth Profiles on Intel® Edison

Figure 20 Results from uncommented DeviceID line

Note: You must restart the Bluetooth* service and the bluetoothctl utility after modifying the
/etc/bluetooth/main.conf file.

 Retrieving the peer device’s DI information 6.4.2
You can retrieve the DI information of a peer device with the following tools:

• sdptool: Available on both versions 4.x and 5.x of BlueZ. (Can be executed on both Intel® Edison device or
Ubuntu computer.)

• bluetoothctl: Available only in version 5.x of BlueZ. (Can be executed on both Intel® Edison but doesn’t
exist in Ubuntu 12.04 computer.)

The sdptool tool retrieves the information by connecting the SDP server of the peer device (ACL connection):

Figure 21 sdptool tool results

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 35

Bluetooth Profiles on Intel® Edison

The bluetoothctl tool retrieves the information from the EIR packet received from the peer device (no ACL
connection created/needed).

Figure 22 bluetoothctl tool retrieval results

Intel® Edison
Bluetooth* Guide February 2015
36 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

6.5 Human interface device (HID) profile
With the HID profile, you can connect any human interface device (mouse, keyboard, etc.) directly without needing
to register any service on the Intel® Edison device. To connect an HID, do the following:

 1. Unblock the Bluetooth* device to make sure Bluetooth* is enabled, then launch the bluetoothctl utility and
register an agent, set the default agent, and scan for HID and other Bluetooth* devices.

root@edison:~# rfkill unblock bluetooth
root@edison:~# bluetoothctl
[NEW] Controller 98:4F:EE:01:FD:E4 BlueZ 5.18 [default]
[bluetooth]# agent DisplayYesNo
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]# scan on
Discovery started
[CHG] Controller 98:4F:EE:01:FD:E4 Discovering: yes
[NEW] Device 40:2C:F4:DB:EF:AA 40:2C:F4:DB:EF:AA
[CHG] Device 40:2C:F4:DB:EF:AA Name: NAGESWAX-MOBL1
[CHG] Device 40:2C:F4:DB:EF:AA Alias: NAGESWAX-MOBL1
[NEW] Device 5C:51:4F:9E:49:AD DSGAO-MOBL1
[NEW] Device 00:1F:20:42:27:12 00:1F:20:42:27:12
[NEW] Device FC:F8:AE:1E:ED:98 XSDONGX-MOBL2
[NEW] Device 00:1B:DC:06:59:9C RJGUARIN-MOBL1
[CHG] Device 00:1F:20:42:27:12 LegacyPairing: no
[CHG] Device 00:1F:20:42:27:12 Name: Bluetooth Laser Travel Mouse
[CHG] Device 00:1F:20:42:27:12 Alias: Bluetooth Laser Travel Mouse
[CHG] Device 00:1F:20:42:27:12 LegacyPairing: yes
[NEW] Device 40:2C:F4:86:72:54 40:2C:F4:86:72:54
[NEW] Device B8:76:3F:AB:7E:D1 B8:76:3F:AB:7E:D1
[bluetooth]# pair 00:1F:20:42:27:12

 2. Pair the devices and verify that the pairing is successful:

[bluetooth]# pair 00:1F:20:42:27:12
Attempting to pair with 00:1F:20:42:27:12
[CHG] Device 00:1F:20:42:27:12 Connected: yes
[CHG] Device 00:1F:20:42:27:12 Modalias: usb:v046DpB008d0318
[CHG] Device 00:1F:20:42:27:12 UUIDs:
 00001124-0000-1000-8000-00805f9b34fb
 00001200-0000-1000-8000-00805f9b34fb
[CHG] Device 00:1F:20:42:27:12 Paired: yes
Pairing successful
[CHG] Device 00:1F:20:42:27:12 Connected: no
[bluetooth]# scan off
[CHG] Device B8:76:3F:AB:7E:D1 RSSI is nil
[CHG] Device 40:2C:F4:86:72:54 RSSI is nil
[CHG] Device 00:1B:DC:06:59:9C RSSI is nil
Discovery stopped
[CHG] Controller 98:4F:EE:01:FD:E4 Discovery: no
[bluetooth]# pair 00:1F:20:42:27:12
Attempting to pair with 00:1F:20:42:27:12
Failed to pair: org.bluez.Error.AlreadyExists

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 37

Bluetooth Profiles on Intel® Edison

 3. Use the connect command to connect the mouse as an input device to the Intel® Edison device:

[bluetooth]# connect 00:1F:20:42:27:12
Attempting to connect to 00:1F:20:42:27:12
[CHG] Device 00:1F:20:42:27:12 Connected: yes
[bluetooth]# [3144.632878] hid-generic 0005:046D:B008.0001: unknown...
Connection successful
[bluetooth]# info 00:1F:20:42:27:12
Device 00:1F:20:42:27:12
 Name: Bluetooth Laser Travel Mouse
 Alias: Bluetooth Laser Travel Mouse
 Class: 0x002580
 Icon: input-mouse
 Paired: yes
 Trusted: no
 Blocked: no
 Connected: yes
 LegacyPairing: yes
 UUID: Human Interface Device... (00001124-0000-1000-8000-
00805f9b34fb)
 UUID: PnP Information
 Modalias: usb:v046DpB008d0318 (00001200-0000-1000-8000-
00805f9b34fb)
[bluetooth]# more /dev/input/event1
Invlaid command
[bluetooth]# quit
[DEL] Controller 98:4F:EE:01:FD:E4 BlueZ 5.18 [default]

 4. Check the kernel logs to verify that the device is correctly connected. The example below is for a
Bluetooth mouse:

[15337.082135] hid-generic 0005:0A5C:2004.0001: unknown main item tag 0x0
[15337.083809] input: MoGo Mouse BT as
/devices/pci0000:00/0000:00:04.1/tty/ttyMFD0/hci0/hci0:12/input1
[15337.086105] hid-generic 0005:0A5C:2004.0001: input,hidraw0:
BLUETOOTH HID v3.00 Mouse [MoGo Mouse BT] on 43:34:1b:00:1f:ac

 5. When you make a connection, a /dev/input/eventX file is created. Use the more command to check this
event file (Figure 23) and verify that events are correctly received.

Figure 23 Raw data from the event file using the “more” command

 6. To decode these incoming events, use this freedesktop utility: http://cgit.freedesktop.org/~whot/evtest.
Either compile the code for Intel® Edison, copy the binary to the Intel® Edison device, and then launch
freedesktop; or copy the freedesktop utility into the Intel® Edison device, and then launch it.

Note: For compilation instructions, visit http://cgit.freedesktop.org/~whot/evtest/tree/INSTALL.

Intel® Edison
Bluetooth* Guide February 2015
38 Document Number: 331704-004

http://cgit.freedesktop.org/%7Ewhot/evtest
http://cgit.freedesktop.org/%7Ewhot/evtest/tree/INSTALL

Bluetooth Profiles on Intel® Edison

root@edison:~# ./evtest /dev/input/event1
Input driver version is 1.0.1
Input device ID: bus 0x5 vendor 0x1131 product 0x1616 version 0x410
Input device name: "Bluetooth Keyboard"
Supported events:
Event type 0 (Sync)
 ...
Event type 20 (Repeat)
Testing ... (interrupt to exit)
Event: time 1404754634.580274, type 4 (Misc), code 4 (ScanCode), value 70014
Event: time 1404754634.580274, type 1 (Key), code 16 (Q), value 1
Event: time 1404754634.580274, -------------- Report Sync ------------
Event: time 1404754634.736606, type 4 (Misc), code 4 (ScanCode), value 70014
Event: time 1404754634.736606, type 1 (Key), code 16 (Q), value 0
Event: time 1404754634.736606, -------------- Report Sync ------------
Event: time 1404754645.460014, type 4 (Misc), code 4 (ScanCode), value 7001a
Event: time 1404754645.460014, type 1 (Key), code 17 (W), value 1

After listing the mapping between events and character, evtest will listen for incoming events and trace them.

6.6 Personal area networking (PAN) profile
The personal area networking (PAN) profile describes how two or more Bluetooth-enabled devices can form a
network and access other networks through a network access point (NAP). The PAN profile defines how to use the
Bluetooth Network Encapsulation Protocol (BNEP) to provide networking capabilities for Bluetooth devices. PAN
profile roles include the following:

• NAP: Network access point.
• GN: Group ad-hoc network.
• PANU: Personal area network user.

NAP and GN offer services for different networking requirements. NAP provides network services to each Bluetooth
device connected, while GN allows two or more devices to become part of an ad-hoc network (Figure 24).

Figure 24 PAN service networking models

Network access point (NAP) Group ad-hoc network (GN)

For Intel® Edison software, we have validated the PAN profile in NAP and GN. However, to perform a PAN test, you
will need to download test scripts that are part of the BlueZ package, but which are not included in the Intel®
Edison image. (You can also find these at http://git.kernel.org/cgit/bluetooth/bluez.git/tree/test in the test folder.)

• Select the role with the -s option.
• Compress and copy the BlueZ test package into the Intel® Edison board via scp.
• Unzip and copy BlueZ test package into the Intel® Edison board.
• Enable Bluetooth* as described in chapter 4 Scanning and Connecting Device.

After you have performed the above steps, you can perform the PAN test between a Linux* host PC and an
Intel® Edison device, or between two Intel® Edison devices.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 39

https://developer.bluetooth.org/TechnologyOverview/Pages/PAN.aspx
http://git.kernel.org/cgit/bluetooth/bluez.git/tree/test
https://confluence.ndg.intel.com/download/attachments/58589194/test-bluez-5.18.tar.gz?version=1&modificationDate=1400161444862&api=v2

Bluetooth Profiles on Intel® Edison

 PAN test between Linux* host PC and Intel® Edison device 6.6.1
To perform the PAN test between a Linux* host PC and an Intel® Edison device, do the following:

 1. Start connman and enable Bluetooth* on both the Intel® Edison device and on the Linux* PC.

On the Intel® Edison device:

root@edison:~# systemctl start connman
root@edison:~# connmanctl enable Bluetooth
root@edison:~# hciconfig
hci0: Type: BR/EDR Bus: UART
 BD Address: 00:11:22:33:55:77 ACL MTU: 1021:8 SCO MTU: 64:1
 UP RUNNING PSCAN
 RX bytes:41408 acl:308 sco:0 events:300 errors:0
 TX bytes:31530 acl:270 sco:0 commands:65 errors:0
root@edison:~#

 2. On the Linux* PC, the “RSSI” line provides the Bluetooth* address of the PC.

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device 48:51:B7:15:D1:63 ubuntu-0
[bluetooth]# agent DisplayYesNo
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]# discoverable on
Changing discoverable on succeeded
[CHG] Controller 00:11:22:33:55:77 Discoverable: yes
[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device E8:BE:82:BE:75:19 E8-BE-82-BE-75-19
[NEW] Device D5:B3:ED:7E:A5:83 D5-B3-ED-7E-A5-83
[CHG] Device D5:B3:ED:7E:A5:83 Name: Halitoshi
[CHG] Device D5:B3:ED:7E:A5:83 Alias: Halitoshi
[NEW] Device C8:F7:33:2C:A8:93 JSWALKEN-MOBL1
[NEW] Device 3C:15:C2:DC:E9:41 adaniele-mac01
[CHG] Device 48:51:B7:15:D1:63 RSSI: -35
[CHG] Device 48:51:B7:15:D1:63 UUIDs:
 0000112d-0000-1000-8000-00805f9b34fb
 00001112-0000-1000-8000-00805f9b34fb
 00001234-0000-1000-8000-00805f9b34fb
 00001700-0000-1000-8000-00805f9b34fb
 00001701-0000-1000-8000-00805f9b34fb
 00001708-0000-1000-8000-00805f9b34fb
[CHG] Device 48:51:B7:15:D1:63 Paired: yes
Pairing successful
[CHG] Device 40:2C:F4:DB:EF:AA Connected: no
[CHG] Device 40:2C:F4:DB:EF:AA Connected: yes
[CHG] Device 40:2C:F4:DB:EF:AA Connected: no
[bluetooth]

Intel® Edison
Bluetooth* Guide February 2015
40 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 3. Pair the devices.

On the Intel® Edison device:

[bluetooth]# pair 00:11:22:33:55:77
Attempting to pair with 00:11:22:33:55:77
[CHG] Device 00:11:22:33:55:77 Connected: yes
[CHG] Device 00:11:22:33:55:77 UUIDs:
 0000110c-0000-1000-8000-00805f9b34fb
 0000110e-0000-1000-8000-00805f9b34fb
 00001200-0000-1000-8000-00805f9b34fb
 00001800-0000-1000-8000-00805f9b34fb
 00001801-0000-1000-8000-00805f9b34fb
 0000a004-0000-1000-8000-00805f9b34fb
 feee74dc-a8de-3196-1149-d43596c00a4f
[CHG] Device 00:11:22:33:55:77 Paired: yes
Pairing successful
[CHG] Device 00:11:22:33:55:77 Connected: no
[CHG] Device E4:F5:9F:82:56:94 RSSI: -89
[bluetooth]# scan off
[CHG] Device E4:F5:9F:82:56:94 RSSI is nil
[CHG] Device 7C:7A:91:F2:6E:84 RSSI is nil
[CHG] Controller 00:11:22:33:55:66 Discovering: no
Discovery stopped
[bluetooth]#

On the Linux* PC:

You will see that pairing is successful between the Intel® Edison device and the Linux PC when the right
pane of the Bluetooth window indicates that Paired equals Yes (Figure 25).

Figure 25 Linux pairing successful

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 41

Bluetooth Profiles on Intel® Edison

 4. Create a bridge and configure its address on the Intel® Edison device:

root@edison:~# brctl addbr br0
root@edison:~# ip addr add 192.168.10.1 dev br0
root@edison:~# ip link set br0 up
root@edison:~# ifconfig
br0: Link encap:Ethernet HWaddr e2:68:df:c3:6f:1f
 inet addr:192.168.10.1 Bcast:0.0.0.0 Mask: 255.255.255.255
 inet6 addr: fe80::e086:dfff:fec3:6f1f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:18 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (o.0 B) TX bytes:4284 (4.1 KiB)

Once the bridge has been created on the Intel® Edison device, you can check with the ifconfig command.

 5. Launch the PAN test script for NAP service; this will register the NAP service so a peer device will see this
service available. Use one of the following commands:

root@edison:~/test-bluez# ./test-pan -s nap br0
root@edison:~/test-bluez# ./test-nap br0

The bnep0 interface will be added to the br0 bridge (the same one created at step 0).

Note: This test script will only keep NAP registered for a few minutes then disconnect. If you need more
time, you will have to modify the script.

 6. Connect to the peer device as a PAN user. Before you can do this from a Linux* PC, you will need to install
the BlueZ package (if you haven’t already) and use the pand command.

Note: The pand service interface is available in BlueZ4 but not in BlueZ5.

a. To install the BlueZ package, enter the following: sudo apt-get install bluez-compat.
b. Use the pand command to connect. In this example, 00:11:22:33:55:77 is the Intel® Edison device’s

Bluetooth* MAC address.

user1@ndg05:~/$ sudo pand -n --connect 00:11:22:33:55:77 --service NAP
pand[2990]: Bluetooth PAN daemon version 4.101
pand[2990]: Connecting to 00:11:22:33:55:77
pand[2990]: bnep0 connected

 7. If everything succeeds, the bnep interface will be added to the bridge in Intel® Edison; the bnep interface
will be listed on the Linux* PC as well. Enter the ifconfig command on each device to verify.

On an Intel® Edison device:

root@edison:~# ifconfig –a

bnep0 Link encap:Ethernet HWaddr 00:43:34:b1:de:ad
 inet6 addr: fe80::243f:34ff:feb1:dead/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:16 (16.0 B) TX bytes:64 (64.0 B)

Intel® Edison
Bluetooth* Guide February 2015
42 Document Number: 331704-004

http://feb1dead/
http://txqueuelen:1000/

Bluetooth Profiles on Intel® Edison

 8. On a Linux* PC:

user1@ndg05:~/$ ifconfig -a
bnep0 Link encap:Ethernet HWaddr 00:43:34:b1:de:ad
 inet6 addr: fe80::243f:34ff:feb1:dead/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:100 (100.0 B) TX bytes:2443 (2.4 KB)

eth0 Link encap:Ethernet HWaddr 00:43:34:b1:de:ad
 inet addr:10.3.83.69 Bcast:10.3.83.255 Mask 255.255.255.0
 inet6 addr: fe80::243f:34ff:feb1:dead/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1307577 (1.3 MB) TX bytes:60367 (60.3 KB)
 Interrupt:20 Memory:f7d00000- f7d20000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask 255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MULTICAST MTU:65536 Metric:1

Note: Sometimes bnep0 will not be visible in ifconfig until you execute the following command:
sudo ip link set bnep0 up

 9. Configure both bnep interfaces with an IP address and try to ping them.
On a Linux* PC:

user1@ndg05:~/$ sudo ip link set bnep0 up
user1@ndg05:~/$ sudo ip addr add 192.168.10.10 dev bnep0
user1@ndg05:~/$ sudo ip route add 192.168.10.0/24 via 192.168.10.10

On a Edison device :  

root@edison:~# ip addr add 192.168.10.2 dev bnep0
root@edison:~# ip route add 192.168.10.0/24 via 192.168.10.1

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 43

http://feb1dead/
http://txqueuelen:1000/
http://feb1dead/
http://txqueuelen:1000/

Bluetooth Profiles on Intel® Edison

 10. With a connection established between the Intel® Edison device and the Linux* PC, you can ping the
Intel® Edison device from the Linux* PC (and vice versa).

Note: Pinging the Access Point from the Linux* PC over Bluetooth to the Intel® Edison device provides
basic verification. Successfully accessing the web from the PC provides functional verification.

From the Intel® Edison device, pinging the Linux* PC (IP address: 192.168.10.10):

root@edison:~# ping 192.168.10.10
PING 192.168.10.10 (192.168.10.10): 56 data bytes
64 bytes from 192.168.10.10: seq=0 ttl=64 time=19.563 ms
64 bytes from 192.168.10.10: seq=1 ttl=64 time=11.526 ms
64 bytes from 192.168.10.10: seq=2 ttl=64 time=13.279 ms
...

From the Linux* PC, pinging the Intel® Edison device (IP address: 192.168.10.2):

user1@ndg05:~/$ ping 192.168.10.2

PING 192.168.10.2 (192.168.10.102) 56(84) bytes of data.
64 bytes from 192.168.10.2: icmp_seq=1 ttl=64 time=20.1 ms
64 bytes from 192.168.10.2: icmp_seq=2 ttl=64 time=22.4 ms
64 bytes from 192.168.10.2: icmp_seq=3 ttl=64 time=7.08 ms
...

 PAN test between two Intel® Edison devices 6.6.2
This section explains how to test PAN, using one Intel® Edison device as PANU and the second as PAN-NAP.

Note: While you can use connman to connect a NAP service on a peer device, you cannot use connman to
discover, scan, or pair devices; you must use normal BlueZ tools beforehand for these basic operations.

To perform the PAN test between two Intel® Edison devices, do the following:

 1. Enable Bluetooth* on both Intel® Edison devices. (See Chapter 4 Scanning and Connecting Device.)

 2. Start connman and enable Bluetooth* on both devices using connmanctl.

root@edison:~# systemctl start connman
root@edison:~# connmanctl enable bluetooth
Enabled bluetooth
root@edison:~#

 3. Use hciconfig to verify that Bluetooth* is enabled on both devices:

root@edison:~# hciconfig
hcio: Type: BR/EDR Bus: UART
 BD Address: 00:11:22:33:55:77 ACL MTU: 1021:8 SCO MTU: 64:1
 UP RUNNING PSCAN
 RX bytes:41408 acl:308 sco:0 events:300 errors:0
 TX bytes:31530 acl:270 sco:0 commands:65 errors:0
root@edison:~#

Intel® Edison
Bluetooth* Guide February 2015
44 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 4. Prepare the second device (PAN-NAP) for pairing:

a. If the second device does not have the bluez-test packages, download test-bluez-5.18.tar.gz to the
device using the scp command and untar it to create the test folder containing the test code.

b. In a console, enter the following to register the NAP service:

root@edison:~# ./test/test-nap br0
Server for nap registered to br0
Press CTRL-C to disconnect

c. Add a bridge using the brctl command and configure the bridge to use a static IP address:

root@edison:~# brctl addbr br0
root@edison:~# ifconfig br0 192.168.1.1
root@edison:~#

d. Launch the Bluetooth* controller utility, then set discoverable on and register an agent.

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device 00:11:22:33:55:66 BlueZ 5.24
[bluetooth]# discoverable on
Changing discoverable on succeeded
[CHG] Controller 00:11:22:33:44:77 Discoverable: yes
[bluetooth]# agent DisplayOnly
Agent registered
[bluetooth]# default-agent
Default agent request successful
[CHG] Controller 00:11:22:33:55:77 Discoverable: no
[bluetooth]#

 5. To pair the first device (PANU) with the second device (PAN-NAP), use bluetoothctl to register an agent:

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:66 BlueZ 5.24 [default]
[NEW] Device 40:2C:F4:60:C1:02 MKODANDX-MOBL
[NEW] Device B4:B6:76:4F:60:F4 Edison-temp-2-0
[NEW] Device E4:F5:9F:82:56:94 Force
[NEW] Device 30:76:6F:50:DB:FC LGA340
[NEW] Device 7C:7A:91:F2:6E:84 GPHATAK-MOBL1
[NEW] Device 00:02:72:C9:5C:A4 ndg-leb-sys-0
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[NEW] Device C6:22:DD:95:29:E1 tkr
[NEW] Device 00:1F:20:8E:7C:45 Dell Travel Mouse WM524
[NEW] Device 98:0D:2E:C8:BD:2C HTC One nag
[bluetooth]# agent DisplayOnly
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]#

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 45

Bluetooth Profiles on Intel® Edison

 6. Scan for the second (PAN-NAP) device:

[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:44:66 Discovering: yes
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[NEW] Device 5C:51:4F:9E:49:AD DSGAO-MOBL1
[NEW] Device 00:11:22:33:44:77 BlueZ 5.24
[NEW] Device FC:F8:AE:1E:ED:98 XSDONGX-MOBL2
[NEW] Device 3C:5A:37:4C:3A:11 3C:5A:37:4C:3A:11
[CHG] Device 3C:5A:37:4C:3A:11 LegacyPairing: no
[CHG] Device 3C:5A:37:4C:3A:11 Name: SHG-A777
[CHG] Device 3C:5A:37:4C:3A:11 Alias: SHG-A777
[CHG] Device FC:F8:AE:1E:ED:98 RSSI: -85
[CHG] Device FC:F8:AE:1E:ED:98 RSSI: -77
[CHG] Device 3C:5A:37:4C:3A:11 LegacyPairing: yes
[bluetooth]#

 7. Pair the devices:

[bluetooth]# pair 00:11:22:33:55:77
Attempting to pair with 00:11:22:33:55:77
[CHG] Device 00:11:22:33:55:77 Connected: yes
Request confirmation
[agent] Confirm passkey 804573 (yes/no): yes
[CHG] Device 00:11:22:33:55:77 UUIDs:
 0000110c-0000-1000-8000-00805f9b34fb
 0000110e-0000-1000-8000-00805f9b34fb
 00001200-0000-1000-8000-00805f9b34fb
 00001800-0000-1000-8000-00805f9b34fb
 00001801-0000-1000-8000-00805f9b34fb
 0000a004-0000-1000-8000-00805f9b34fb
 feee74dc-a8de-3196-1149-d43596c00a4f
[CHG] Device 00:11:22:33:55:77 Paired: yes
Pairing successful
[CHG] Device 00:11:22:33:55:77 Connected: no
[CHG] Device E4:F5:9F:82:56:94 RSSI: -89
[bluetooth]# scan off
[CHG] Device E4:F5:9F:82:56:94 RSSI is nil
[CHG] Device 7C:7A:91:F2:6E:84 RSSI is nil
[CHG] Device B4:B6:76:4F:60:F4 RSSI is nil
[CHG] Device 00:02:72:C9:5C:A4 RSSI is nil
[CHG] Device 00:11:22:33:55:77 RSSI is nil
[CHG] Device 40:2C:F4:D8:EF:AA RSSI is nil
[CHG] Device DA:0D:F3:BA:56:CB RSSI is nil
[CHG] Controller 00:11:22:33:55:66 Discovering: no
Discovery stopped
[bluetooth]# exit
Agent unregistered

Intel® Edison
Bluetooth* Guide February 2015
46 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 8. From the second (PAN-NAP) device, use the trust command to trust the first (PANU) device:

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:44:66 BlueZ 5.18 [default]
[NEW] Device 00:11:22:33:44:77 BlueZ 5.24
[bluetooth]# trust 00:11:22:33:44:77
[CHG] Device 00:11:22:33:44:77 Trusted: yes
Changing 00:11:22:33:44:77 trust succeeded
[bluetooth]#

 9. From the first (PANU) device, connect to the second (PAN-NAP) device using the connmanctl utility:

root@edison:~# connmanctl
connmanctl> services
 BlueZ 5.24 bluetooth_001122335577_001122335566
connmanctl> connect bluetooth_001122335577_001122335566
 /net/connman/service/bluetooth_001122335577_001122335566: connected

 10. If the second (PAN-NAP) device does not trust the first device, you will have to authenticate the first
device:

connmanctl> config bluetooth_001122335577_001122335566 --ipv4 manual 192.168.1.10

 11. At this point, each Intel® Edison device should have its own bnep interface, in a place where you can
configure and test it with ping or iperf. For example, on the first device (PANU):

root@edison:~# ping 192.168.1.10
PING 192.168.1.10 (192.168.1.10): 56 data bytes
64 bytes from 192.168.1.10: seq=0 ttl=64 time=0.463 ms
64 bytes from 192.168.1.10: seq=1 ttl=64 time=0.295 ms
64 bytes from 192.168.1.10: seq=2 ttl=64 time=0.295 ms
64 bytes from 192.168.1.10: seq=3 ttl=64 time=0.296 ms
64 bytes from 192.168.1.10: seq=4 ttl=64 time=0.301 ms
64 bytes from 192.168.1.10: seq=5 ttl=64 time=0.294 ms
64 bytes from 192.168.1.10: seq=6 ttl=64 time=0.296 ms
64 bytes from 192.168.1.10: seq=7 ttl=64 time=0.294 ms
64 bytes from 192.168.1.10: seq=8 ttl=64 time=0.294 ms
64 bytes from 192.168.1.10: seq=9 ttl=64 time=0.295 ms
64 bytes from 192.168.1.10: seq=10 ttl=64 time=0.293 ms
64 bytes from 192.168.1.10: seq=11 ttl=64 time=0.292 ms
64 bytes from 192.168.1.10: seq=12 ttl=64 time=0.294 ms
64 bytes from 192.168.1.10: seq=13 ttl=64 time=0.369 ms
64 bytes from 192.168.1.10: seq=14 ttl=64 time=0.296 ms

Note: You can also use the ping command on the second Intel® Edison device for verification.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 47

Bluetooth Profiles on Intel® Edison

6.7 Serial port profile (SPP)
SPP (serial port profile), which is based on ETSI 07.10 and RFCOMM protocol, defines how two Bluetooth*-enabled
devices create a virtual/emulated serial port connection and communicate with each other.

• SDP is the Bluetooth* Service Discovery Protocol, which allows devices to provide browsing services to
each other.

• Devices accepting an incoming connection over RFCOMM expose a record in SDP for SPP indicating that
the RFCOMM channel is listening.

• Devices initiating a connection will first search for SPP records on the peer device database and in turn
may initiate a connection to the RFCOMM server channel on a peer device.

We can test this by creating a virtual serial port between two devices via Bluetooth* and using SPP to send info
from one Bluetooth* device to another. We can verify using the following methods:

• SPP verification using DBUS APIs (recommended)
• SPP verification using the RFCOMM tool

Note: SPP verification using DBUS interface APIs is the preferred way to test and use SPP because it exposes the
file descriptor (fd) of the connection in the user space, and it can be directly used to send and receive data
over SPP. The RFCOMM tool is deprecated if the fd is available in the user space. RFCOMM is used to set
up, maintain, and inspect the RFCOMM configuration of the Bluetooth* subsystem in the Linux kernel. (an
emulated TTY device file is created and it has to be opened to read/write data over SPP, whereas when
using DBUS interfaces opening of the device file is not needed as fd of connection is already available with
DBUS interfaces in userspace).

To have the connection method called in the test-profile script (or in the modified version), modify the Intel® Edison
device’s DBUS BlueZ policy file /etc/dbus-1/system.d/bluetooth.conf using the vi editor:

root@edison:~# vi /etc/dbus-1/system.d/bluetooth.conf

If the bluetooth.conf file (Figure 26) doesn’t have the line <allow send_interface="org.bluez.Profile1"/>, add this line
and save the file.

Figure 26 Editing the bluetooth.conf file

Intel® Edison
Bluetooth* Guide February 2015
48 Document Number: 331704-004

https://confluence.ndg.intel.com/display/EDISON/Serial+Port+Profile%23SerialPortProfile-SPPverificationusingDBUSapi
https://confluence.ndg.intel.com/display/EDISON/Serial+Port+Profile%23SerialPortProfile-SPPverificationusingrfcommtool

Bluetooth Profiles on Intel® Edison

 SPP verification using DBUS APIs 6.7.1
It is possible to get at the application layer of the RFCOMM socket file using the test-profile python script in the
BlueZ test folder (http://git.kernel.org/cgit/bluetooth/bluez.git/tree/test). We have modified the original file slightly
to loopback received data on the other side to verify SPP, and renamed the modified file SPP-loopback.py. This file
is included in Appendix A: SPP-loopback.py and is also available for download at:

• http://downloadmirror.intel.com/24698/eng/SPP-loopback.py

Copy this script into your Intel® Edison device. Find the changes in the test-profile.py file, make the necessary
changes, and push the SPP_loopback.py file into your Intel® Edison device using scp.

Before running the SPP-loopback.py script, notice that the bluetoothctl utility does not display the serial profile
(Figure 27).

Figure 27 Serial port absent before running SPP-loopback.py

After you run the SPP-loopback.py script on your Intel® Edison device, the serial port does display (Figure 28).

Figure 28 Serial port present after running SPP-loopback.py

Search for the peer devices (we have taken Android* device) with the discoverable on and scan on commands
(Figure 29).

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 49

http://git.kernel.org/cgit/bluetooth/bluez.git/tree/test
http://downloadmirror.intel.com/24698/eng/SPP-loopback.py

Bluetooth Profiles on Intel® Edison

Figure 29 Search for peer devices

Figure 30 Still searching

Pair with the Android* device. Request Android* device to pair with the Intel® Edison board. Confirm in the Intel®
Edison for pairing or Android* device can be added as trusted device.

Download the Bluetooth spp pro (a free app) from the Google playstore. Make sure Bluetooth* is enabled. After you
install this application, launch it and give connect request from the application to the Intel ® Edison device.

Figure 31 shows a series of screenshots from the launch of the application to scanning for Bluetooth* devices,
connecting to the Intel® Edison Bluetooth* device (BlueZ 5.24), and the communication mode screen once the SPP
connection has been established.

Intel® Edison
Bluetooth* Guide February 2015
50 Document Number: 331704-004

https://play.google.com/store/apps/details?id=mobi.dzs.android.BLE_SPP_PRO

Bluetooth Profiles on Intel® Edison

Figure 31 Android* screenshots

The Intel® Edison device is now connected to the Android* peer device.

Figure 32 Connected devices

On the Intel® Edison SPP-loopback.py terminal, you can see that the SPP connection has been established with the
Android* device:

root@edison:~# python ./SPP-loopback.py –C 22
NewConnection(/org/bluez/hci0/dev_98_0D_2E_C8_BD_2C, 10)

Once the Intel® Edison and Android* devices are connected with SPP, the devices can exchange profile data.
Figure 33 shows a series of user-entered text in the device.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 51

Bluetooth Profiles on Intel® Edison

Figure 33 Sequence of screenshots showing the user inputs the text SPP application

And on the Intel® Edison side, you can see the data received and retransmitted back:

root@edison:~# python ./SPP-loopback.py –C 22
NewConnection(/org/bluez/hci0/dev_98_0D_2E_C8_BD_2C, 10)
received: cmd line mode testing SPP test

received: byte mode testing SPP profile in Edison

This completes testing SPP verification over DBUS APIs.

 SPP verification using the RFCOMM tool 6.7.2
The Intel® Edison device must listen for incoming connections. You can do this with the RFCOMM tool, which is
used to set up, maintain, and inspect the RFCOMM configuration of the Bluetooth* subsystem in the Linux* kernel.

After you successfully pair an Intel® Edison device with both a Linux* PC and an Android* device, you should also be
able to pair with other Bluetooth*-enabled devices.

 Intel® Edison configuration 6.7.2.1

Use the RFCOMM tool to set up, maintain, and inspect configuration of the Bluetooth* subsystem in the Linux*
kernel:

 1. Add the RFCOMM channel SDP entry:

root@edison:/usr/lib/bluez/test# ./test-profile –u 1101 –n edisonSpp –s
–P 3 –C 22 serial22

 2. Start RFCOMM to listen to the incoming connection from a peer device:

root@edison:~# rfcomm listen 0 22
Waiting for connection on channel 22

...where 0 is the/dev/rfcommX device that will be created, and 22 is the RFCOMM channel.

Note: Because Android* apps connect to RFCOMM channel 1, we need to pass channel 1 instead of 22
as an inline parameter for test-profile.

Intel® Edison
Bluetooth* Guide February 2015
52 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 3. Using the bluetoothctl scan on command, discover a peer device, such as a Linux* PC or Android * phone:

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device 98:0D:2E:C8:BD:2C HTC One nag
[NEW] Device D0:5F:B8:2A:0C:B9 Moto 360 0CB9
[NEW] Device 48:51:B7:15:D1:63 ubuntu-0
[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[NEW] Device FC:F8:AE:1E:ED:98 XSDONGX-MOBL2
[bluetooth]#

 4. Pair the Intel® Edison device with the discovered peer device:

[bluetooth]# pair 48:51:B7:15:D1:63
Attempting to pair with 48:51:B7:15:D1:63
[CHG] Device 48:51:B7:15:D1:63 Connected: yes
[CHG] Device 48:51:B7:15:D1:63 UUIDs:
 0000110a-0000-1000-8000-00805f9b34fb
 0000110b-0000-1000-8000-00805f9b34fb
 0000110c-0000-1000-8000-00805f9b34fb
 0000110e-0000-1000-8000-00805f9b34fb
 00001112-0000-1000-8000-00805f9b34fb
 0000111e-0000-1000-8000-00805f9b34fb
 0000111f-0000-1000-8000-00805f9b34fb
 0000112d-0000-1000-8000-00805f9b34fb
[CHG] Device 48:51:B7:15:D1:63 Paired: yes
Pairing successful

 Android* devices 6.7.2.2

To test SPP using RFCOMM between an Android* device and an Intel® Edison device, you will need to download
and install an SPP app (such as Bluetooth SPP Pro or BlueTerm/BlueTerm+) into an Android* device and pair the
Android* device with the Intel® Edison device, as described in the Linux* setup. After you have successfully paired
the devices, do the following:

 1. As explained in the Intel® Edison configuration section, start RFCOMM on the Intel® Edison device to listen
to the incoming connection from peer devices.

Note: If you are using BlueTerm/BlueTerm+, use channel 1 for Android* devices instead of channel 22.

 2. Launch the BlueTerm/BlueTerm+/Bluetooth SPP Pro app on your Android* device and, in the App menu,
tap on Connect devices. Select the Intel® Edison Bluetooth* device (BlueZ 5.24) and select Connected.
Once they are connected, you should be able to see the status listed as “connected” on the right side of
the Android* screen. You can see the same status on the Intel® Edison device.

On an Intel® Edison device:

root@edison:~# rfcomm listen 0 1
Waiting for connection on channel 1
Connection from D0:C1:B1:BD:17:97 to /dev/rfcomm0
Press CTRL-C for hangup

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 53

https://play.google.com/store/apps/details?id=mobi.dzs.android.BLE_SPP_PRO
https://play.google.com/store/apps/details?id=es.pymasde.blueterm
https://play.google.com/store/apps/details?id=de.jentsch.blueterm

Bluetooth Profiles on Intel® Edison

 3. Text that you enter in the Android* app (Figure 34) will transmit to and display on the Intel® Edison device
via SPP.

Figure 34 BlueTerm app sending text via SPP

 4. Use the cat /dev/rfcommX command to see the text transmitted from the Android* device:

root@edison:~# cat /dev/rfcomm0
hi

vejbshs
 this is spp testing with android phone

Note: Because the BlueTerm/BlueTerm+ apps use the RFCOMM channel exposed by the SDP entry and
they don’t work with Android* 4.1/4.2+ devices, we tested this process on Samsung* S and
Nexus* 4 devices. Also note that because BlueTerm does not take care of the RFCOMM channel
exposed in the SDP entry, we recommend using RFCOMM channel 1.

 Linux* PC 6.7.2.3

To test SPP between a Linux* PC and an Intel® Edison device, discover the Intel® Edison RFCOMM channel exposed,
then do the following:

 1. Connect to both the Intel® Edison device and the Linux* PC using the RFCOMM tool that is also available
on the Linux* PC. (It comes with the BlueZ package.)

On a Linux* PC:

ram@ram-desktop:~$ sudo rfcomm connect 0 00:11:22:33:55:77 22
Connected /dev/rfcomm0 to 00:11:22:33:55:77 on channel 22
Press CTRL-C for hangup

On an Intel® Edison device:

root@edison:~# rfcomm listen 0 22
Waiting for connection on channel 22
Connection from 48:51:B7:15:D1:63 to /dev/rfcomm0
Press CTRL-C for hangup

Intel® Edison
Bluetooth* Guide February 2015
54 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 2. Once the connection is established, a /dev/rfcommX device node is created on both devices. If you see a
“NewConnection” description (in the shell where test-profile is running) that looks like this:

NewConnection(/org/bluz/hci0/dev_48_51_B7_15_D1_63, 10)

...it means that the script and not the RFCOMM tool is handling the file description. In this case, stop the
test-profile script and run the previous steps on both the Intel® Edison device and the Linux* PC to
establish a connection.

 3. On the Linux* PC, verify /dev/rfcommX with sudo cat /dev/rfcommX on the command line or launch
Minicom and enter cat /dev/rfcommX. On the Intel® Edison device, echo ‘<Text>’ >
/dev/rfcommX.

On the Linux* PC

sudo minicom -D /dev/rfcomm0

On the Intel® Edison device:

root@edison:~# cat /dev/rfcomm0

 4. On the Linux* PC, enter text in the minicom window (Figure 35).

Figure 35 Minicom window on Linux* PC sending text

 5. On the Intel® Edison device, verify that the text displays in the cat shell window (Figure 36).

Figure 36 Mirrored text in Intel® Edison device’s cat shell window

 6. On the Intel® Edison device, run the echo command:

root@edison:~# echo “This is an SPP test from Edison.” > /dev/rfcomm0

 7. On the Linux* PC, use the cat command to view the text string:

ram@ram-desktop:~$ sudo cat /dev/rfcomm0
[sudo] password for ram:

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 55

Bluetooth Profiles on Intel® Edison

6.9 HID over GATT profile (HOGP)
The HID over GATT profile (HOGP) defines how a Bluetooth* Low Energy (BLE) device can support HID services over
the BLE protocol stack, which is itself using the generic attribute profile (GAP). BlueZ supports HOGP as host.
Regardless of what role (boot/report host or HID device) the device plays, the mandatory services HID service,
Device Information service, and Battery service are always available.

For more information on HOGP, visit https://developer.bluetooth.org/TechnologyOverview/Pages/HOGP.aspx.

We used a Logitech* mouse for this use case:

 1. Enable Bluetooth* and set default agents with the bluetoothctl utility:

root@edison:~# rfkill unblock bluetooth
root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device D0:5F:B8:2A:0C:B9 Moto 360 0CB9
[bluetooth]# agent DisplayOnly
Agent registered
[bluetooth]# default-agent
Default agent request successful

 2. Turn on the Bluetooth* mouse and enable it into pairing mode before scanning in the Intel® Edison device.

 3. Run the scan on command on the Intel® Edison device to discover the MAC address of the mouse, pair the
Intel® Edison device with the mouse, and connect the Intel® Edison device to the mouse:

[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device 00:1F:20:42:27:12 Bluetooth Laser Travel Mouse
[NEW] Device 5C:51:4F:9E:49:AD DSGAO-MOBL1
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[NEW] Device F0:79:59:03:69:FC Nexus Player
[CHG] Device 40:2C:F4:DB:EF:AA RSSI: -53
[bluetooth]# pair 00:1F:20:42:27:12
Attempting to pair with 00:1F:20:42:27:12
[CHG] Device 00:1F:20:42:27:12 Connected: yes
[CHG] Device 00:1F:20:42:27:12 Modalias: usb:v046DpB008d0318
[CHG] Device 00:1F:20:42:27:12 UUIDs:
 00001124-0000-1000-8000-00805f9b34fb
 00001200-0000-1000-8000-00805f9b34fb
[CHG] Device 00:1F:20:42:27:12 Paired: yes
Pairing successful
[CHG] Device 00:1F:20:42:27:12 Connected: yes
[CHG] Device 40:2C:F4:DB:EF:AA RSSI: -76
[bluetooth]# connect 00:1F:20:42:27:12
Attempting to connect with 00:1F:20:42:27:12
[CHG] Device 00:1F:20:42:27:12 Connected: yes
Connection successful

Intel® Edison
Bluetooth* Guide February 2015
56 Document Number: 331704-004

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.human_interface_device.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.battery_service.xml
https://developer.bluetooth.org/TechnologyOverview/Pages/HOGP.aspx

Bluetooth Profiles on Intel® Edison

 4. Verify the services supported by the Bluetooth* mouse with the info command:

[bluetooth]# info 00:1F:20:42:27:12
Device 00:1F:20:42:27:12
 Name: Bluetooth Laser Travel Mouse
 Alias: Bluetooth Laser Travel Mouse
 Class: 0x002580
 Icon: input-mouse
 Paired: yes
 Trusted: no
 Blocked: no
 Connected: yes
 LegacyPairing: yes
 UUID: Human Interface Device (00001124-0000-1000-8000-00805f9b34fb)
 UUID: PnP Information
 Modalias: usb:v046DpB008d0318 (00001200-0000-1000-8000-00805f9b34fb)

 5. Verify that the mouse has connected successfully to the Intel® Edison device. When you make a
connection, the system creates a /dev/input/eventX file. Viewing the file with the cat command yields
unreadable code, but you can decode these incoming events with the free desktop utility evtest, available
at this website: http://cgit.freedesktop.org/~whot/evtest.

Note: Compile the evtest code for Intel® Edison, copy the binary to the Intel® Edison device, and then
launch the app.

 6. As you move the mouse or press the mouse buttons, you should see the evtest app decode mouse events
into human readable events (Figure 37).

Figure 37 Example event test results from Bluetooth mouse

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 57

http://cgit.freedesktop.org/%7Ewhot/evtest

Bluetooth Profiles on Intel® Edison

6.10 Heart rate profile (HRP)
An Intel® Edison device may act as a heart rate collector, receiving heart rate information from a wearable heart rate
sensor like the Mio* ALPHA, Polar* H7, or Intel Basis Peak. The BlueZ test package contains Python scripts to test
the BLE profiles. One of these, test-heartrate, decodes notifications sent by heart rate sensors. We tested this using
a Polar H7 as a peer device.

Copy the test scripts into the Intel® Edison device using scp and do the following:

 1. Unblock bluetoothctl:

root@edison:/usr/lib/bluez/test# rfkill unblock bluetooth

 2. Launch bluetoothctl and scan for the heart rate sensor device:

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device 00:18:6B:4E:A4:B8 LG HBS730
[NEW] Device D0:5F:B8:2A:0C:B9 Moto 360 0CB9
[bluetooth]# agent DisplayYesNo
Agent registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device 00:22:D0:3B:2F:2A Polar H7 3B2F2A1C
[NEW] Device D9:A8:B4:0F:3D:A7 D9-A8-B4-0F-3D-A7
[CHG] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[bluetooth]#

 3. Add the heart rate sensor (Polar* H7 heart rate monitor) as a trusted device and pair it with the
Intel® Edison device:

[bluetooth]# trust 00:22:D0:3B:2F:2A
[CHG] Device 00:22:D0:3B:2F:2A Trusted: yes
Changing 00:22:D0:3B:2F:2A trust succeeded
[CHG] Device 48:51:B7:15:D1:63 RSSI: -50
[bluetooth]# pair 00:22:D0:3B:2F:2A
Attempting to pair with 00:22:D0:3B:2F:2A
[CHG] Device 00:22:D0:3B:2F:2A Connected: yes
[CHG] Device 00:22:D0:3B:2F:2A UUIDs:
 00001800-0000-1000-8000-00805f9b34fb
 00001801-0000-1000-8000-00805f9b34fb
 0000180a-0000-1000-8000-00805f9b34fb
 0000180d-0000-1000-8000-00805f9b34fb
 0000180f-0000-1000-8000-00805f9b34fb
 6217ff4b-fb31-1140-ad5a-a45545d7ecf3
[CHG] Device 00:22:D0:3B:2F:2A Paired: yes
Pairing successful
[CHG] Device 00:22:D0:3B:2F:2A Appearance: 0x0341
[CHG] Device 50:4C:EF:64:8B:BB RSSI: -71

Intel® Edison
Bluetooth* Guide February 2015
58 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 4. Connect to the heart rate sensor device:

[bluetooth]# connect 00:22:D0:3B:2F:2A
Attempting to connect to 00:22:D0:3B:2F:2A
Connection successful

 5. Inspect the supported services on the peer device (heart rate monitor). You should see heart rate in the
UUID list:

[bluetooth]# info 00:22:D0:3B:2F:2A
Device 00:22:D0:3B:2F:2A
 Name: Polar H7 3B2F2A1C
 Alias: Polar H7 3B2F2A1C
 Appearance: 0x0341
 Paired: yes
 Trusted: yes
 Blocked: no
 Connected: yes
 LegacyPairing: no
 UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
 UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
 UUID: Device Information (0000180a-0000-1000-8000-00805f9b34fb)
 UUID: Heart Rate (0000180d-0000-1000-8000-00805f9b34fb)
 UUID: Battery Service (0000180f-0000-1000-8000-00805f9b34fb)
 UUID: Vendor Specific (6217ff4b-fb31-1140-ad5a-a45545d7ecf3)

 6. Run the test-heartrate script on the Intel® Edison device. This script registers notification, reads the sensor
location, then decodes the received notification packets transmitted by the heart rate monitor. The
example below shows the data retrieved from the notifications that the heart rate monitor published.

Figure 38 Example heart rate monitor data

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 59

Bluetooth Profiles on Intel® Edison

6.11 Proximity profile (PXP)
Commonly used in security-related appliances, the proximity profile (PXP) defines behavior when a device moves
away from a peer and results in a dropped connection or a path loss. This produces an alert, which notifies the user
that the device is moving away.

PXP supports the following roles:

• Monitor, which acts as a GATT client that makes use of services on the peer device. The Proximity Monitor
may alert when the path loss exceeds the threshold.

• Reporter (with the following services):
− Mandatory services: Link Loss Service. This is instantiated as a primary service.
− Optional services: Immediate Alert Service and Tx Power Service.

Note: PXP devices can support both of the optional services or neither; they cannot support only one.

DBUS APIs for PXP are documented at http://git.kernel.org/cgit/bluetooth/bluez.git/tree/doc/proximity-api.txt, and
you can find sources at http://git.kernel.org/cgit/bluetooth/bluez.git/tree/profiles/proximity. There is also a test
script to test the monitor role by setting a link loss alert level on a peer device and allowing it to trigger an
immediate alert. Visit https://developer.bluetooth.org/TechnologyOverview/Pages/PXP.aspx for details on PXP.

 PXP services 6.11.1
PXP supports the following services:

• Link Loss: This service can be initiated only as a primary service, and only one instance may run on a
device. The service will have only one alert status in the Link Loss service. The service has three alert levels
(None, Mild, High), which are used to notify how the device alerts the user when the connection/link is lost.
For example, the proximity monitor writes the alert characteristics into the proximity reporter, and the
reporter will alert at this level when a link with the peer device is lost.

• Immediate Alert Service: This service is used to alert the user when there is a path loss. This service uses
alert level characteristics and causes an alert whether a value other than “No Alert” is written to it.

• Tx Power Service: This service is also used to alert the user when there is a path loss, and only one
instance may run on a device. This service enables the GATT client to retrieve the device’s current transmit
power level when there is a connection.

Note: As mentioned in the official documentation (http://www.bluez.org/proximity-link-loss-and-find-me),
currently only link loss is functional; path loss needs some tweaking to test.

 PXP test 6.11.2
To perform the PXP test between an HTC-Fetch device and an Intel® Edison device, do the following:

 1. Check whether Bluetooth* is active. If it is not, turn it on using the rfkill command.

 2. Run the bluetoothctl utility to scan and pair with the HTC-Fetch device.

root@edison:~# bluetoothctl
[NEW] Controller 00:11:22:33:55:77 BlueZ 5.24 [default]
[NEW] Device D0:5F:B8:2A:0C:B9 Moto 360 0CB9
[NEW] Device 00:1F:20:42:27:12 Bluetooth Laser Travel Mouse
[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device 20:CD:39:A5:3B:62 20-CD-39-A5-3B-62
[CHG] Device 20:CD:39:A5:3B:62 Name: HTC Fetch
[CHG] Device 20:CD:39:A5:3B:62 Alias: HTC Fetch

Intel® Edison
Bluetooth* Guide February 2015
60 Document Number: 331704-004

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.link_loss.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.tx_power.xml
http://git.kernel.org/cgit/bluetooth/bluez.git/tree/doc/proximity-api.txt
http://git.kernel.org/cgit/bluetooth/bluez.git/tree/profiles/proximity
https://developer.bluetooth.org/TechnologyOverview/Pages/PXP.aspx

Bluetooth Profiles on Intel® Edison

 3. Connect to the HTC-Fetch device.

[bluetooth]# connect 20:CD:39:A5:3B:62
Attempting to connect to 20:CD:39:A5:3B:62
[CHG] Device 20:CD:39:A5:3B:62 Connected: yes
Connection successful

 4. Use the info command to verify whether the peer-device (HTC-Fetch) has the desired services. As the
highlights below show, the HTC Fetch device supports the mandatory (Link Loss) and optional (Tx Power
and Immediate Alert) services. It also supports custom services (Device Information and Battery Service).

[bluetooth]# info 20:CD:39:A5:3B:62
Device 20:CD:39:A5:3B:62
 Name: HTC Fetch
 Alias: HTC Fetch
 Paired: no
 Trusted: no
 Blocked: no
 Connected: yes
 LegacyPairing: no
 UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
 UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
 UUID: Immediate Alert (00001802-0000-1000-8000-00805f9b34fb)
 UUID: Link Loss (00001803-0000-1000-8000-00805f9b34fb)
 UUID: Tx Power (00001804-0000-1000-8000-00805f9b34fb)
 UUID: Device Information (0000180a-0000-1000-8000-00805f9b34fb)
 UUID: Battery Service (0000180f-0000-1000-8000-00805f9b34fb)
 UUID: Unknown (0000ffe0-0000-1000-8000-00805f9b34fb)
 UUID: Vendor Specific (f000ffc0-)
 UUID: Vendor Specific (f000ffc0-)
 Modalias: bluetooth:v000Dp0000d0110
[NEW] Device C8:F7:33:8B:48:08 C8-F7-33-8B-48-08
[bluetooth]#

 Proximity monitor 6.11.3
The python test script test-proximity monitors the proximity profile. This script lets you use arguments, such as the
level/value of an alert (None, Mild, High) and whether the alert is ImmediateAlertLevel or LinkLossAlertLevel, to
configure the alert levels of an HTC-Fetch device.

To use the test-proximity script, do the following:

 1. Configure the HTC-Fetch device with an ImmediateAlertLevel set to mild. The script will write the
immediate alert characteristics (values) into the peer device, and you will see the HTC-Fetch device start
alerting. After some time, it will set itself to none and become idle.

root@edison:/usr/lib/bluez/test# ./test-proximity –b 20:CD:39:A5:3B:62
ImmediateAlertLevel mild
Proximity SetProperty(‘ImmediateAlertLevel’, ‘mild’)
Property ImmediateAlertLevel changed: mild
Property ImmediateAlertLevel changed: none

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 61

Bluetooth Profiles on Intel® Edison

 2. Enter the same command with parameters LinkLossAlertLevel and a value of high:

root@edison:/usr/lib/bluez/test# ./test-proximity –b 20:CD:39:A5:3B:62
LinkLossAlertLevel high
Proximity SetProperty(‘LinkLossAlertLevel’, ‘high’)
Property LinkLossAlertLevel changed: high
Property LinkLossAlertLevel changed: high

 3. As soon as you notice the command is effective, move the HTC-Fetch device some distance away, until the
link breaks—typically 50 ft. (15 m) or more. The HTC-Fetch will emit an alert sound until you stop it.

Note: This test script works for the proximity monitor role only.

 Proximity reporter 6.11.4
BlueZ registers a list of GATT servers—among them Link Loss, Immediate Alert, and Tx Power—that support the
proximity profile in reporter mode.

To manually set one Intel® Edison device in advertising mode and use a second Intel® Edison device as the
connecting device, do the following:

 1. On the first Intel® Edison device (the proximity reporter), start LE advertising data, set advertising data, and
eventually disable scan in BT classic.

root@edison:~# hciconfig hci0 noscan
root@edison:~# hciconfig hci0 leadv
root@edison:~#
root@edison:~# hciconfig -i hci0 cmd 0x08 0x0008 16 02 01 06 07 02 03
18 02 18 04 18 0a 09 45 64 69 73 6f 6e 2d 4c 45
< HCI Command: ogf 0x08, ocf 0x0008, plen 23
 16 02 01 06 07 02 03 18 02 18 04 18 0A 09 45 64 69 73 6F 6E 2D 4C 45
> HCI Event: 0x0e plen 4
 01 08 20 00
root@edison:~#

 2. On the second Intel® Edison device (the proximity monitor), do a normal scan on and connect:

[bluetooth]# scan on
Discovery started
[CHG] Controller 00:11:22:33:55:77 Discovering: yes
[NEW] Device 98:4F:EE:02:E8:4B Edison-LE
[NEW] Device 40:2C:F4:DB:EF:AA NAGESWAX-MOBL1
[CHG] Device 00:1F:20:42:27:12 Connected: yes
[NEW] Device 48:51:B7:15:D1:63 ubuntu-0
[CHG] Device 98:4F:EE:02:E8:4B RSSI: -60
[CHG] Device 00:1F:20:42:27:12 Connected: no

 3. Connect the second Intel® Edison device (proximity monitor) with the first device (proximity reporter).

[bluetooth]# connect 98:4F:EE:02:E8:4B
Attempting to connect to 98:4F:EE:02:E8:4B
[CHG] Device 98:4F:EE:02:E8:4B Connected: yes
Connection successful
[CHG] Device 98:4F:EE:02:E8:4B UUIDs:
 00001800-0000-1000-8000-00805f9b34fb
 00001801-0000-1000-8000-00805f9b34fb
 00001802-0000-1000-8000-00805f9b34fb
 00001803-0000-1000-8000-00805f9b34fb
 00001804-0000-1000-8000-00805f9b34fb

Intel® Edison
Bluetooth* Guide February 2015
62 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 00001805-0000-1000-8000-00805f9b34fb
 00001806-0000-1000-8000-00805f9b34fb
 0000180e-0000-1000-8000-00805f9b34fb
 00001811-0000-1000-8000-00805f9b34fb
[CHG] Device 98:4F:EE:02:E8:4B Appearance: 0x0110
[bluetooth]#

 4. Use the info <BT_MAC_address> command to verify that the first BLE device supports the services from
the second device.

[bluetooth]# info 98:4F:EE:02:E8:4B
Device 98:4F:EE:02:E8:4B
 Name: Edison-LE
 Alias: Edison-LE
 Appearance: 0x0110
 Paired: no
 Trusted: no
 Blocked: no
 Connected: yes
 LegacyPairing: no
 UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
 UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
 UUID: Immediate Alert (00001802-0000-1000-8000-00805f9b34fb)
 UUID: Link Loss (00001803-0000-1000-8000-00805f9b34fb)
 UUID: Tx Power (00001804-0000-1000-8000-00805f9b34fb)
 UUID: Current Time Service (00001805-0000-1000-8000-00805f9b34fb)
 UUID: Reference Time Update S.. (00001806-0000-1000-8000-00805f9b34fb)
 UUID: Phone Alert Status Serv.. (0000180e-0000-1000-8000-00805f9b34fb)
 UUID: Alert Notification Serv.. (00001811-0000-1000-8000-00805f9b34fb)

 5. The two Intel® Edison devices are connected. On the proximity monitor (second device), we can start the
test-proximity script (acting as monitor) that sets immediate alerts and link loss alerts on the proximity
reporter board. Notice the status of the second device as soon as the link is lost:

root@edison:/usr/lib/bluez/test# ./test-proximity –b 98:4F:EE:02:E8:4B
ImmediateAlertLevel high
Proximity SetProperty(‘ImmediateAlertLevel’, ‘high’)
Property ImmediateAlertLevel changed: high
Property ImmediateAlertLevel changed: none

^CTraceback (most recent call last):
 File “./test-proximity”, line 70, in <module>
 mainloop.run()
KeyboardInterrupt
root@edison:/usr/lib/bluez/test# ./test-proximity –b 98:4F:EE:02:E8:4B
LinkLossAlertLevel high
Proximity SetProperty(‘LinkLossAlertLevel’, ‘high’)

Note: There is no script to validate the proximity reporter role in BlueZ.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 63

Bluetooth Profiles on Intel® Edison

6.12 Time profile (TIP)
The time profile (TIP) controls the functionalities related to time and allows devices to retrieve various information
parameters, such as date, time, time zone, and daylight saving time (DST), as exposed by peer devices. Using this
profile, a device can request the time from a peer device using the time update service. BlueZ can act as a Time
Server because it implements mandatory Current Time Service and optional Reference Time Update Service. (It does
not implement other optional services, such as Next DST Change Service.)

Note: Typically, a Time Server acts as a central role in a connection provided to a peripheral Time Service. (In
most cases, peripherals won’t have time information available.)

For testing purposes, we used the Android* Nordic app to retrieve the information. To do so, we had to assign the
Intel® Edison device the peripheral role, and the Android* device the central role. (We cannot make the phone
behave as a peripheral device.) We tested with this feature with an Android* Moto G device and an Intel® Edison
device connected as peers. To test TIP functionality on an Intel® Edison device, do the following:

 1. Download and install the https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp app
into the Android* device.

 2. Set up the Intel® Edison device as a peripheral device and start the Intel® Edison device in advertise mode
by executing these commands:

root@edison:~# hciconfig hci0 noscan
root@edison:~# hciconfig hci0 leadv
root@edison:~#

 3. Set the advertising data by publishing the data in the peripheral role.

root@edison:~# hciconfig -i hci0 cmd 0x08 0x0008 16 02 01 06 07 -2 -3
18 02 18 04 18 0a 09 45 64 69 73 6f 6e 2d 4c 45
< HCI Command: ogf 0x08, ocf 0x0008, plen 23
 16 02 01 06 07 FE FD 18 02 18 04 18 0A 09 45 64 69 73 6F 6E 2D 4C 45
> HCI Event: 0x0e plen 4
 01 08 20 00
root@edison:~#

 4. The Intel® Edison device will publish the information above. Launch the Nordic app and scan for
Bluetooth* devices. When you identify the Intel® Edison device, connect to it. It should display the service
supported by the Intel® Edison device. Tap on the current time service where BlueZ mandatory services
(current time, local time information) appear (Figure 39).

Figure 39 Current time service on Android* device

For more information on TIP, visit: https://developer.bluetooth.org/TechnologyOverview/Pages/TIP.aspx.

Intel® Edison
Bluetooth* Guide February 2015
64 Document Number: 331704-004

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://developer.bluetooth.org/TechnologyOverview/Pages/TIP.aspx

Bluetooth Profiles on Intel® Edison

6.13 File transfer protocol (FTP) profile
FTP (File Transfer Protocol) allows two or more devices in a network to share folders/files. The devices can be
Windows* PCs, laptops, mobile devices, Intel® Edison boards, Mac* or Linux* computers, or devices like Android*
phones. Once an FTP client identifies and connects with a valid FTP server, it can “put” files/folders into the
location or “get” files/folders from it. Any FTP device can act as client or server.

• FTP client: Initiates put/get of objects (files/folders) to and from the server.
• FTP server: Provides an object exchange server and folder browsing (using the OBEX Folder Listing

format).

To complete profile registration, do the following:

 1. Enable Bluetooth*.

 2. Start the obex service and verify that it has stated correctly:

root@edison:~# systemctl start obex
root@edison:~# systemctl status obex
● obex.service – Bluetooth OBEX service
 Loaded: loaded (/lib/systemd/system/obex.service; disabled)
 Active: active (running) since Fri 2015-01-02 19:08:27 UTC, 2s ago
MAIN PID: 817 (obexd)
 CGroup: /system.slice/obex.service
 ∟ 817 /usr/lib/bluez5/bluetooth/obexd

Jan 02 19:08:27 edison obexd[817]: OBEX daemon 5.24
Jan 02 19:08:27 edison systemd[1]: Started Bluetooth OBEX service.
root@edison:~#

 3. In the bluetoothctl utility console, check whether the obex profiles are correctly registered BlueZ 5.24.

Figure 40 Checking obex profiles

An Intel® Edison device can act as FTP client and server. The above profile registration is common for both FTP
server as well as FTP client use case.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 65

Bluetooth Profiles on Intel® Edison

 FTP server 6.13.1
When the obexd daemon starts, it will by default support FTP server functionality. So Intel® Edison will become an
FTP server, and its peer device can be used as FTP client. You can use either a Linux* PC or Android* device as the
FTP client device.

 Android* 6.13.1.1

Because the Android* phone doesn’t support FTP, you will probably need to download and install an app to your
Android* device from the playstore, such as the freeware app used in this example, Bluetooth File Transfer.

To pair an Intel® Edison device with Android* peer devices, do the following:

 1. Set discoverable on, scan on, and agent registration.

Figure 41 Pairing Intel® Edison with Android* peer devices

 2. Pair with a peer Android* device. If you are pairing from an Android* phone, you may pair Intel® Edison
from Settings > Bluetooth. You can also set a peer device as trusted to avoid confirmation when
connecting to the FTP service.

[CHG] Device 98:0D:2E:C8:BD:2C Paired: yes
Authorize service
o): yes Authorize service 0000110d-0000-1000-8000-00805f9b34fb (yes/no)
Request confirmation
[NEW] Device D5:B3:ED:7E:A5:83 D5-B3-ED-7E-A5-83
[agent] Confirm passkey 144410 (yes/no): yes
[NEW] Device E8:BE:82:BE:75:19 E8-BE-82-BE-75-19
[CHG] Device 98:0D:2E:C8:BD:2C UUIDs:
 00001105-0000-1000-8000-00805f9b34fb
 0000110a-0000-1000-8000-00805f9b34fb
 0000110c-0000-1000-8000-00805f9b34fb
 0000110d-0000-1000-8000-00805f9b34fb
 0000110e-0000-1000-8000-00805f9b34fb
 00001112-0000-1000-8000-00805f9b34fb
[NEW] Device 80:86:B7:15:D1:66 BAT-MOBL

Intel® Edison
Bluetooth* Guide February 2015
66 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

o): yes Authorize service 0000110e-0000-1000-8000-00805f9b34fb (yes/no
[CHG] Device 5D:C6:FB:1F:38:3C RSSI: -72
[CHG] Device EC:55:F9:F0:14:EA Name: YTORRES-MOBL3
[CHG] Device EC:55:F9:F0:14:EA Alias: YTORRES-MOBL3
[bluetooth]

 3. Verify that the Intel® Edison and Android* devices are paired:

 # paired-devices
Device 48:51:B7:15:D1:63 ubuntu-0
Device 98:0D:2E:C8:BD:2C HTC One nag

 4. After you launch the FTP client app on your Android* phone, do the following:

a. Connect to FTP on Intel® Edison by clicking on the Bluetooth* icon in the app.
b. Select the Intel® Edison device in the listed peripherals.
c. Select FTP option in the target Bluetooth* screen.

Figure 42 Android* FTP screenshots

The screenshots in Figure 42 are for reference. This would establish the FTP connection to Intel® Edison device and
you could see the files in the obex folder (by default, in ~/.cache/obexd under the user’s home folder).

From the app, you can download the files to your Android* device or push files from the local Android* device
folder to the Intel® Edison device. Pull the file from the Intel® Edison device as mentioned above.

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 67

Bluetooth Profiles on Intel® Edison

 Linux* PC 6.13.1.2

Pair the Intel® Edison device and Linux* PC as described above. As soon as you pair and connect the Intel® Edison
device from a Linux* PC, you will see the Send Files and Browse Files buttons (Figure 43).

Figure 43 Send/browse files

You can send or browse files to/from the Intel® Edison device (Figure 44).

Figure 44 Bluetooth* file transfer

Intel® Edison
Bluetooth* Guide February 2015
68 Document Number: 331704-004

Bluetooth Profiles on Intel® Edison

 FTP client 6.13.2
BlueZ provides obexctl, a command line utility that you can use as an FTP client.

To connect as an FTP client, do the following:

 1. Unblock Bluetooth* on the device:

root@edison:~# rfkill unblock Bluetooth

 2. Add the DBUS_SESSION_BUS_ADDRESS variable to the environment path:

root@edison:~# export DBUS_SESSION_BUS_ADDRESS=unix:path=/var/run/dbus/
system_bus_socket

 3. Start the obexctl utility:

root@edison:~# obexctl
[NEW] Client /org/bluez/obex

Once you start the command line utility, a previously paired device can be connected over FTP, and once it is
connected, you can browse its file system, create or delete folders, delete or copy files, etc. (Figure 45).

Figure 45 Actions available after pairing

Figure 46 shows actions done interacting with an Android* phone with the FTP app.

Figure 46 Actions available

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 69

Bluetooth Profiles on Intel® Edison

On the Intel® Edison device: Execute the FTP operations to change the remote folder into Download, then create a
folder named tmp inside the Download folder, and copy a file “testing.log” in there from the Intel® Edison device.
(Figure 47 shows an FTP put function.)

Figure 47 Android* device screenshots

Here are some tips that may be helpful when using FTP:

• When obexctl starts, a blue [obex] prompt displays with [NEW] Client at the start of the line.
• When triggering a connection, specify FTP after the peer BD address; otherwise, other obex profiles may

connect.
• When a remote device connection succeeds, a [remote BD addr] prompt will display.
• Enter help at the prompt to list available commands.
• Remote files are located in the current browsed remote folder. You can change directories with the cd

command, and list a folder’s contents with the ls command.
• With file transfer commands like cp and mv, the first argument is the source file and the second is the

destination.
• For local files, include a colon character before the file path; for remote files, use just the path/filename.

 §

Intel® Edison
Bluetooth* Guide February 2015
70 Document Number: 331704-004

Appendix A: SPP-loopback.py

Appendix A: SPP-loopback.py

#!/usr/bin/python

from __future__ import absolute_import, print_function, unicode_literals

from optparse import OptionParser, make_option
import os
import sys
import socket
import uuid
import dbus
import dbus.service
import dbus.mainloop.glib
try:
 from gi.repository import GObject
except ImportError:
 import gobject as GObject

class Profile(dbus.service.Object):
 fd = -1

 @dbus.service.method("org.bluez.Profile1",
 in_signature="", out_signature="")
 def Release(self):
 print("Release")
 mainloop.quit()

 @dbus.service.method("org.bluez.Profile1",
 in_signature="", out_signature="")
 def Cancel(self):
 print("Cancel")

 @dbus.service.method("org.bluez.Profile1",
 in_signature="oha{sv}", out_signature="")
 def NewConnection(self, path, fd, properties):
 self.fd = fd.take()
 print("NewConnection(%s, %d)" % (path, self.fd))

 server_sock = socket.fromfd(self.fd, socket.AF_UNIX,
socket.SOCK_STREAM)
 server_sock.setblocking(1)
 server_sock.send("This is Edison SPP loopback test\nAll data will
be loopback\nPlease start:\n")

 try:
 while True:
 data = server_sock.recv(1024)
 print("received: %s" % data)
 server_sock.send("looping back: %s\n" % data)
 except IOError:
 pass

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 71

Appendix A: SPP-loopback.py

 server_sock.close()
 print("all done")

 @dbus.service.method("org.bluez.Profile1",
 in_signature="o", out_signature="")
 def RequestDisconnection(self, path):
 print("RequestDisconnection(%s)" % (path))

 if (self.fd > 0):
 os.close(self.fd)
 self.fd = -1

if __name__ == '__main__':
 dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)

 bus = dbus.SystemBus()

 manager = dbus.Interface(bus.get_object("org.bluez",
 "/org/bluez"), "org.bluez.ProfileManager1")

 option_list = [
 make_option("-C", "--channel", action="store",
 type="int", dest="channel",
 default=None),
]

 parser = OptionParser(option_list=option_list)

 (options, args) = parser.parse_args()

 options.uuid = "1101"
 options.psm = "3"
 options.role = "server"
 options.name = "Edison SPP Loopback"
 options.service = "spp char loopback"
 options.path = "/foo/bar/profile"
 options.auto_connect = False
 options.record = ""

 profile = Profile(bus, options.path)

 mainloop = GObject.MainLoop()

 opts = {
 "AutoConnect" : options.auto_connect,
 }

 if (options.name):
 opts["Name"] = options.name

 if (options.role):
 opts["Role"] = options.role

 if (options.psm is not None):
 opts["PSM"] = dbus.UInt16(options.psm)

Intel® Edison
Bluetooth* Guide February 2015
72 Document Number: 331704-004

Appendix A: SPP-loopback.py

 if (options.channel is not None):
 opts["Channel"] = dbus.UInt16(options.channel)

 if (options.record):
 opts["ServiceRecord"] = options.record

 if (options.service):
 opts["Service"] = options.service

 if not options.uuid:
 options.uuid = str(uuid.uuid4())

 manager.RegisterProfile(options.path, options.uuid, opts)

 mainloop.run()

 §

 Intel® Edison
February 2015 Bluetooth* Guide
Document Number: 331704-004 73

	1 Introduction
	1.1 BlueZ software stack
	1.2 Software reference map
	1.3 References
	1.4 Terminology

	2 Bluetooth* Integration in Linux*
	2.1 The bluetoothd daemon
	2.2 Configuration
	2.3 Application interface

	3 Basic Bluetooth* Operation
	3.1 Enable and disable Bluetooth* on Intel® Edison
	3.2 Bluetooth* status control via connman
	3.3 The bluetoothctl utility
	3.4 Device identification (DI) profile

	4 Scanning and Connecting Devices
	4.1 Connecting from a peer device

	5 Changing a Bluetooth* MAC address
	6 Bluetooth Profiles on Intel® Edison
	6.1 Bluetooth* Low Energy (BLE) profile
	6.1.1 Verifying BLE plugin compilation
	6.1.2 Preparing to test Bluetooth* profiles

	6.2 Scan and connect
	6.2.1 bluetoothctl
	6.2.2 hcitool
	6.2.3 btmgmt
	6.2.4 Python test scripts
	6.2.5 GATTtool

	6.3 Advanced audio distribution profile (A2DP)
	6.4 Device identification (DI) profile
	6.4.1 Reading and changing the local device identification
	6.4.2 Retrieving the peer device’s DI information

	6.5 Human interface device (HID) profile
	6.6 Personal area networking (PAN) profile
	6.6.1 PAN test between Linux* host PC and Intel® Edison device
	6.6.2 PAN test between two Intel® Edison devices

	6.7 Serial port profile (SPP)
	6.7.1 SPP verification using DBUS APIs
	6.7.2 SPP verification using the RFCOMM tool
	6.7.2.1 Intel® Edison configuration
	6.7.2.2 Android* devices
	6.7.2.3 Linux* PC

	6.8
	6.9 HID over GATT profile (HOGP)
	6.10 Heart rate profile (HRP)
	6.11 Proximity profile (PXP)
	6.11.1 PXP services
	6.11.2 PXP test
	6.11.3 Proximity monitor
	6.11.4 Proximity reporter

	6.12 Time profile (TIP)
	6.13 File transfer protocol (FTP) profile
	6.13.1 FTP server
	6.13.1.1 Android*
	6.13.1.2 Linux* PC

	6.13.2 FTP client

