
Junos® OS

Chef for Junos OS Getting Started Guide

Published

2022-05-03

RELEASE

11.10

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Chef for Junos OS Getting Started Guide
11.10
Copyright © 2022 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | v

1 Overview

Chef for Junos OS Overview | 2

Chef Overview | 2

Chef for Junos OS Overview | 3

Benefits of Chef for Junos OS | 3

Features of Chef for Junos OS | 4

2 Deploying and Configuring Chef for Junos OS

Deploying Chef for Junos OS | 7

Chef for Junos OS Deployment Overview | 7

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

Devices Supporting Chef for Junos OS | 10

Installing the Chef Client Overview | 14

Installing or Upgrading the Chef Client on Junos | 14

Installing the Chef Client on Junos OS evolved | 16

Using the Chef Client Docker Container | 16

Uninstalling the Chef Client from the Juniper Networks Device | 19

Configuring the Chef Client on Juniper Networks Devices Running Junos OS | 19

Configuring the Chef Client on Juniper Networks Devices Running Junos OS Evolved | 21

Using Chef to Configure Juniper Networks Devices | 23

Example: Using Chef for Junos OS to Configure Ethernet Switching on EX Series, OCX Series,
and QFX Series Switches | 23

Requirements | 24

Overview | 24

Configuration | 26

Verification | 34

Example: Using Chef for Junos OS to Configure Ethernet Switching on MX Series Routers | 36

iii

Requirements | 36

Overview | 37

Configuration | 38

Verification | 47

Example: Using Chef for Junos OS to Configure Any Hierarchy Level | 48

Requirements | 48

Overview | 49

Configuration | 49

Verification | 52

iv

About This Guide

Chef for Junos OS 11.10

Use this guide to automate the provisioning and management of compute, networking, and storage
resources with Chef software. These resources could be on site, in the cloud, or both.

v

https://www.juniper.net/documentation/product/us/en/chef-for-junos-os

1
CHAPTER

Overview

Chef for Junos OS Overview | 2

Chef for Junos OS Overview

IN THIS SECTION

Chef Overview | 2

Chef for Junos OS Overview | 3

Benefits of Chef for Junos OS | 3

Features of Chef for Junos OS | 4

Chef Overview

IN THIS SECTION

Understanding Cookbooks, Recipes, Resources, and Providers | 2

Chef software automates the provisioning and management of compute, networking, and storage
resources, whether these resources are on site, in the cloud, or both. Chef software transforms
infrastructure into code, enabling you to configure, deploy, and scale in real time, while reducing the risk
of human error.

Using Chef, you can write abstract definitions of your infrastructure in Ruby and manage these
definitions like you manage source code. These abstract definitions are applied to the nodes in your
infrastructure by the Chef clients running on those nodes. When you bring a new node online, the Chef
client running on that node needs only to determine which definitions to apply.

DISCLAIMER: Use of Chef for Junos OS software implies acceptance of the terms of the following
disclaimer: Chef for Junos OS Disclaimer.

Understanding Cookbooks, Recipes, Resources, and Providers

Within the Chef framework, the abstract infrastructure definitions are contained in reusable cookbooks
and recipes:

2

https://www.juniper.net/documentation/en_US/junos-chef11.10/topics/reference/general/automation-junos-chef-disclaimer.html

• Cookbooks are packages that contain the recipes, files, attribute definitions, and so on that describe
a portion of your infrastructure and how to deploy, configure, and manage it. For example, the
apache2 cookbook maintained by Chef contains recipes for installing and configuring an Apache
HTTP Server.

• Recipes are written in Ruby and describe the installation, configuration, and management of the
infrastructure elements.

• Resources are the major building blocks of recipes. A resource is a platform-neutral representation of
an element of the system and its desired state—for example, a service that should be started or a file
that should be written into the file system.

• Providers are the underlying platform-specific implementations that bring resources to their desired
states. For example, a resource might specify a particular software package to be installed, without
describing how it is installed. The providers associated with the resource direct the Chef client how
to perform the installation on specific platforms.

Chef for Junos OS Overview

Chef for Junos OS allows Juniper Networks devices running Junos OS to be managed by the Chef
server. You can use Chef for Junos OS to automate common switching network configurations, such as
physical and logical Ethernet link properties and VLANs. See the Chef for Junos OS Release Notes for
information about which Juniper Network devices support Chef clients.

Chef for Junos OS supports providers that are specific to Junos OS for the switching resources. These
providers translate the configuration modeled by the resources into the Network Configuration Protocol
(NETCONF) XML code required to implement the configuration on the device the Chef client is running
on.

The netdev cookbook provides a set of vendor-agnostic resources for managing networking devices.
Together, the netdev cookbook resources and Junos OS providers enable you to automate your
configuration of Juniper Networks devices running Junos OS without requiring knowledge of specific
Junos OS CLI commands or XML code.

The netdev cookbook is available at the Chef supermarket website at https://supermarket.getchef.com/
cookbooks/netdev. For more information about the netdev cookbook resources, see Chef for Junos OS
at https://docs.chef.io/junos.html.

Benefits of Chef for Junos OS

Benefits of Chef for Junos OS are as follows:

3

https://www.juniper.net/documentation/en_US/junos-chef11.10/information-products/topic-collections/release-notes/11.10/index.html
https://supermarket.chef.io/cookbooks/netdev
https://supermarket.chef.io/cookbooks/netdev
https://docs.chef.io/junos.html

• Simplifies management and reduces duplication of effort by enabling you to make orchestrated
configuration changes across multiple types of devices.

• Lowers risk and improves compliance through infrastructure automation. For example, by encoding
your compliance and security policies as part of a Chef recipe, you can automatically test them
before deployment.

• Automates common switching network configurations, such as physical and logical Ethernet link
properties and VLANs.

Features of Chef for Junos OS

IN THIS SECTION

netdev Cookbook Resources | 4

Native Chef Client | 5

Native Ohai | 5

Ruby Interpreter and junos-ez-stdlib | 5

Chef for Junos OS provides the following features:

netdev Cookbook Resources

The netdev cookbook, developed and maintained by Chef, contains platform-neutral primitives for the
following network resources:

• Physical interfaces—Physical Ethernet interface attributes, such as administrative state, description,
speed, duplex mode, and MTU with the netdev_interface resource

• Layer 2 Ethernet switching services—Logical Ethernet switching interface attributes, such as
description, VLAN membership, and port mode (access or trunk) with the netdev_l2_interface
resource

• Link aggregation groups (LAGs)—LAG interface attributes, such as name, member links, Link
Aggregation Control Protocol (LACP) mode, and minimum up links required with the netdev_lag
resource

• VLANs—VLAN attributes, such as name, ID, and description with the netdev_vlan resource

4

• Configuration at any hierarchy level—Custom configuration with the netdev_group resource

NOTE: Juniper Networks OCX1100 switches support only the netdev_interface physical
interface resource.

Native Chef Client

The Chef client (chef-client) is an agent that runs locally on every managed node in a Chef deployment
and performs the configuration defined in recipes. Chef for Junos OS provides a Chef client that runs
natively on supported Juniper Networks devices running Junos OS.

Native Ohai

Ohai is a tool that collects detailed data about a node, such as hardware properties, memory and
processor usage, networking statistics, kernel data, and hostname. It provides this data to the Chef client
at the start of every Chef client run. This data is also uploaded to the Chef server at the end of each
Chef client run, making it available to searches.

Chef for Junos OS provides a version of Ohai that runs natively on supported Juniper Networks devices
running Junos OS. This version includes a plug-in that extends Ohai to collect Junos OS and platform-
specific attributes. For a description of Ohai options and an example of using Ohai, see the Chef website
at https://docs.chef.io/ctl_ohai.html.

Ruby Interpreter and junos-ez-stdlib

Chef for Junos OS provides a version of the Ruby Interpreter that is compatible with the Chef client. It
also provides junos-ez-stdlib, which contains libraries used by the netdev cookbook providers and by
Ohai.

RELATED DOCUMENTATION

Chef for Junos OS Deployment Overview | 7

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

Configuring the Chef Client on Juniper Networks Devices Running Junos OS | 19

5

https://docs.chef.io/ctl_ohai.html

2
CHAPTER

Deploying and Configuring Chef for
Junos OS

Deploying Chef for Junos OS | 7

Using Chef to Configure Juniper Networks Devices | 23

Deploying Chef for Junos OS

IN THIS SECTION

Chef for Junos OS Deployment Overview | 7

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

Configuring the Chef Client on Juniper Networks Devices Running Junos OS | 19

Configuring the Chef Client on Juniper Networks Devices Running Junos OS Evolved | 21

Chef for Junos OS Deployment Overview

IN THIS SECTION

Chef for Junos OS Deployment Overview | 8

A Chef for Junos OS deployment consists of the following major components:

• Chef server—The server acts as a hub for configuration data. The server stores cookbooks and the
node object metadata that describes each registered node managed by the Chef client.

• Workstations—You can perform most of your work on a workstation. Use the Chef CLI, called knife,
to develop cookbooks and recipes and store them in a local Chef repository. From the workstation,
you can synchronize the local repository with your version-control system, upload cookbooks to the
Chef server, and perform operations on nodes.

• Nodes—A node is any physical or virtual device that is configured for the Chef client to manage. Ruby
Interpreter, Native Ohai and junos-ez-stdlib (Ruby Gems) are also installed on all nodes to aid the
Chef client in managing the node.

To manage a node, the Chef client running on the node obtains the configuration details, such as
recipes, templates, and file distributions, from the Chef server. It also collects detailed data about a
node, such as hardware properties, memory and processor usage, networking statistics, kernel data,
and hostname using Ohai. The Chef client performs as much of the configuration as possible on the

7

node using Ruby Interpreter and junos-ez-stdlib to help interpret Chef recipes into configuration
details.

For a Juniper Networks device to be a Chef node, it must have the Chef client installed and
configured on it. See the Chef for Junos OS Release Notes for information about Juniper Networks
devices running Junos OS that support the Chef client.

Figure 1 on page 8 shows the major components of a Chef for Junos OS deployment. For more details
about all the components that constitute a Chef deployment, see the Chef documentation at https://
docs.chef.io/.

Figure 1: Major Components of a Chef for Junos OS Deployment

Chef for Junos OS Deployment Overview

The following major steps describe how you deploy Chef for Junos OS:

1. Set up the Chef server. For more information on setting up the Chef server, see the Chef
documentation at https://docs.chef.io/.

8

https://www.juniper.net/documentation/en_US/junos-chef11.10/information-products/topic-collections/release-notes/11.10/index.html
https://docs.chef.io
https://docs.chef.io
https://docs.chef.io

2. Set up the Chef workstation. The major steps for doing so are:

a. Install the Chef client from https://docs.chef.io/ and Ruby Interpreter on your workstation. You
can install both at the same time by using the Chef installer. install the Chef Client for the
Workstation installation

b. Set up the Chef repository (chef-repro) and the version-control system.

c. Install authentication keys and verify that you can connect to the Chef server from your
workstation.

For more information about setting up the Chef workstation, see the Chef documentation at
https://docs.chef.io/.

d. After you have set up the workstation, download the netdev cookbook to the chef-repro
repository and extract the cookbook files.

knife cookbook site download netdev

tar -zxvf netdev-n.n.n.tar.gz -C cookbooks

The netdev cookbook is available at the Chef supermarket website at https://
supermarket.getchef.com/cookbooks/netdev.

3. If the Chef client is not already installed on the Junos OS nodes, install the client by using the Chef
for Junos OS installation package as described in "Installing or Uninstalling the Chef Client on Juniper
Networks Devices Running Junos OS" on page 10.

NOTE: On Juniper Networks switches running Junos OS with Junos Automation
Enhancements, you do not need to install the Chef client because the Chef client and related
components are installed with the Junos OS software.

For more information on Junos Automation Enhancements, see Junos Automation
Enhancements Documentation.

4. Configure the Chef client on the Junos OS nodes so that it can connect with the Chef server. For
more information, see "Configuring the Chef Client on Juniper Networks Devices Running Junos OS"
on page 19.

SEE ALSO

Chef Overview | 2

Chef for Junos OS Overview | 3

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

9

https://docs.chef.io
https://docs.chef.io
https://supermarket.chef.io/cookbooks/netdev
https://supermarket.chef.io/cookbooks/netdev
https://www.juniper.net/documentation/en_US/junos16.1/topics/concept/junos-flex-overview.html
https://www.juniper.net/documentation/en_US/junos16.1/topics/concept/junos-flex-overview.html

Installing or Uninstalling the Chef Client on Juniper Networks Devices
Running Junos OS

IN THIS SECTION

Devices Supporting Chef for Junos OS | 10

Installing the Chef Client Overview | 14

Installing or Upgrading the Chef Client on Junos | 14

Installing the Chef Client on Junos OS evolved | 16

Using the Chef Client Docker Container | 16

Uninstalling the Chef Client from the Juniper Networks Device | 19

This topic describes how to install, upgrade, or uninstall the Chef client on Juniper Networks devices
running Junos OS.

NOTE: The Chef client is automatically installed on Juniper Networks switches running Junos OS
with Junos Automation Enhancements. If your switch is running Junos OS with Junos
Automation Enhancements, skip this installation procedure and configure the Chef client as
described in "Configuring the Chef Client on Juniper Networks Devices Running Junos OS" on
page 19.

For more information on Junos Automation Enhancements, see Junos Automation
Enhancements Documentation.

This topic covers:

Devices Supporting Chef for Junos OS

Table 1 shows devices running the Junos OS release and the installation package that we recommend
you use to install the Chef client. You can download the package or bundle at Chef for Junos Software
Download. .

10

https://www.juniper.net/documentation/en_US/junos16.1/topics/concept/junos-flex-overview.html
https://www.juniper.net/documentation/en_US/junos16.1/topics/concept/junos-flex-overview.html
https://www.juniper.net/support/downloads/?p=chefforjunos#sw
https://www.juniper.net/support/downloads/?p=chefforjunos#sw

Table 1: Supported Devices and Junos OS Versions

Device Junos OS
Version

Chef Client Installation Package
Example

Support for
agent as
Docker
container

Compatible Versions of
netdev

EX4300 Release
15.1X53-D10
or later

chef-powerpc-11.10.4_1.0.tgz – –

MX80
MX104

Release
14.2R2 or later

chef-powerpc-11.10.4_1.1.tgz – –

MX240
MX480
MX960

Release
14.2R2 or later
14.2 release

chef-i386-11.10.4_1.1.tgz – –

Release
15.1R1 or later
15.1 release

Chef not supported – –

Release
16.1R1
through 17.4

chef-x86-32-11.10.4_2.0.tgz – –

Release
18.1R1

chef-x86-32-11.10.4_2.1.tgz – –

Release
18.2R1
through 21.1

chef-x86-32-11.10.4_3.0.tgz – –

OCX1100 Release
14.1X53-D20
or later

Not Applicable – –

11

Table 1: Supported Devices and Junos OS Versions (Continued)

Device Junos OS
Version

Chef Client Installation Package
Example

Support for
agent as
Docker
container

Compatible Versions of
netdev

PTX10003-80
C
PTX10003-16
0C

Release
19.1R1
through 21.4

Not Applicable – –

Release
19.4R2
through 21.4
(Junos OS
Evolved only)

Not Applicable Y 2.1.0 or later

PTX10008 Release
19.4R2
through 21.4
(Junos OS
Evolved only)

Not Applicable Y 2.1.0 or later

QFX5100 Release
13.2X51-D15
or later

Not Applicable – –

Release
15.1X53-D70
or later (Non-
TVP based
images using
JET based
packages)

chef-x86-32-11.10.4_2.0.tgz – –

Release
18.1R1

chef-x86-32-11.10.4_2.1.tgz – –

Release
18.2R1
through 21.1

chef-x86-32-11.10.4_3.0.tgz – –

12

Table 1: Supported Devices and Junos OS Versions (Continued)

Device Junos OS
Version

Chef Client Installation Package
Example

Support for
agent as
Docker
container

Compatible Versions of
netdev

QFX10002 Release
15.1X53-D20
or later

Not Applicable Not
Applicable

Not Applicable

Release
15.1X53-D70
or later (TVP
Unix SDK
based
packages
across all the
branches)

chef-x86-32-11.10.4_2.0.tgz – –

Release
18.1R1

chef-x86-32-11.10.4_2.1.tgz – –

Release
18.2R1
through 21.1

chef-x86-32-11.10.4_3.0.tgz – –

QFX10008 Release
17.1R1
through 21.1

Not Applicable – –

QFX10016 Release
17.1R1
through 21.1

Not Applicable – –

QFX5220-32C
D
QFX5220-128
C

Release
19.4R2
through 21.4
(Junos OS
Evolved only)

Not Applicable Y 2.1.0 or later

13

See the Chef for Junos OS Release Notes for information about which Juniper Network devices support
Chef clients.

Installing the Chef Client Overview

The Chef client is part of an installation package that includes the Chef client, Ohai, the Ruby
Interpreter, and junos-ez-stdlib.

On a device with redundant Routing Engines, you must run the Chef client from the primary Routing
Engine.

When the Chef client runs, it obtains an exclusive configuration lock, which it releases after it commits
all pending configuration changes. If you enable the reporting add-on on your Enterprise Chef server,
the Chef client reports the results of the run back to the server. On successful Chef client runs, the Chef
client sends a list of updated resources to the server; on failed Chef client runs, it sends a full exception
stacktrace to the server.

The configuration of a resource on a managed node always reflects the resource state defined in the last
recipe that was run that contains that resource. For example, if you run a recipe that defines a LAG
resource as containing the member links ge-0/0/0 and ge-0/0/1 and then later run a recipe that defines
the same LAG resource as containing the member links ge-0/0/2 and ge-0/0/03, the resulting
configuration for the LAG on the managed node contains only the member links ge-0/0/2 and ge-0/0/3.

Installing or Upgrading the Chef Client on Junos

To install or upgrade the Chef client on a Juniper Networks device:

NOTE: The procedure to upgrade a Chef client is the same as that of installation. During an
upgrade, the previous version of the Chef client is overwritten with the latest version.

1. Access the Chef for Junos OS download page at https://www.juniper.net/support/downloads/?
p=chefforjunos#sw.

The Chef for Junos OS Release Notes are also available at the download site. Consult them for
information about what package to install on your platform.

2. Download the Chef for Junos OS software package that is specific to your platform to the /var/tmp/
directory on the device.

BEST PRACTICE: We recommend you install the software package from the /var/tmp/
directory on your device to ensure the maximum amount of disk space and RAM for the
installation.

The following template describes the package naming format of Chef Bundles for Junos:

14

https://www.juniper.net/documentation/en_US/junos-chef11.10/information-products/topic-collections/release-notes/11.10/index.html
https://www.juniper.net/support/downloads/?p=chefforjunos#sw
https://www.juniper.net/support/downloads/?p=chefforjunos#sw

chef-<platform>-<chef version>_<SDK indicator>.<Release count>.tgz

where:

• platform is the platform microprocessor architecture whose values can be i386 , powerpc or x86-32.

• chef version is the version of the Chef client (for example, 11.10.4).

• SDK indicator indicates the Junos OS SDK infrastructure used to create the package. A 1 indicates
the Junos SDK; a 2 indicates the Junos Extension Toolkit (JET).

• Release count is the version of Juniper Networks version of the package.

You must use the installation package that matches the microprocessor architecture of your device. If
you do not know the architecture used by your device, you can use the UNIX shell command uname -a
to determine it.

3. If you are accessing a Juniper device externally through remote access, you must configure the device
for external remote access through SSH. For more information on configuring a Juniper device for
external remote access, see Configuring SSH Service for Remote Access to the Router or Switch.

4. In the Junos OS CLI, enter configuration mode.

user@host> configure

5. Configure the provider name, license type, and deployment scope associated with the application.

[edit]
user@host# set system extensions providers chef license-type juniper deployment-scope commercial
user@host# commit and-quit

6. Install the software package by using the request system software add operational mode command.

user@host> request system software add /var/tmp/chef-package.tgz

7. Verify that the installation is successful by issuing the show version operational mode command.

If the installation is successful, the list of installed software includes the Chef, Ruby Interpreter, and
junos-ez-stdlib packages. For example:

• If your installation package was built with the Junos Extension Toolkit, only one package is
installed, JET app chef. This package includes all the required components, including the Ruby
Interpreter and junos-ez-stdlib. To verify the installation:

user@host> show version | match chef
JET app chef [11.10.4_2.0]

15

https://www.juniper.net/documentation/en_US/junos16.1/topics/task/configuration/ssh-services-configuring.html

• If your installation package was built with the Junos SDK, three packages are installed: the Chef,
Ruby Interpreter, and junos-ez-stdlib packages. To verify the installation:

user@host> show version

fpc0:
-
Hostname: host
Model: ex4300-24p
Junos: 14.1X53-D10.2
JUNOS EX Software Suite [14.1X53-D10.2]
JUNOS FIPS mode utilities [14.1X53-D10.2]
JUNOS Online Documentation [14.1X53-D10.2]
JUNOS EX 4300 Software Suite [14.1X53-D10.2]
JUNOS Web Management Platform Package [14.1X53-D10.2]
JUNOS py-base-powerpc [14.1X53-D10.2]
Ruby Interpreter [11.10.4_1.junos.powerpc]
Chef [11.10.4_1.junos.powerpc]
junos-ez-stdlib [11.10.4_1.junos.powerpc]

After you install the Chef client, you must configure it as described in "Configuring the Chef Client on
Juniper Networks Devices Running Junos OS" on page 19.

Installing the Chef Client on Junos OS evolved

Starting in Junos OS evolved Release 19.1R1, the Junos OS evolved image includes the Chef client
package; therefore, you do not need to install Chef client package separately on your device.

Using the Chef Client Docker Container

Starting in Junos OS Evolved Release 19.4R2, certain devices running Junos OS Evolved support running
the Chef client as a Docker container. As an alternative to using the Chef client that is integrated into
the Junos OS Evolved software image, you can use the Chef client Docker container provided by Juniper
Networks. Using a container enables you to use standard Docker tools to manage the container and
mount or unmount the Chef client as needed

Docker is a software container platform that is used to package and run an application and its
dependencies in an isolated container. Juniper Networks provides a Docker image for the Chef client on
Docker Hub.

When you run the Chef client using the Docker container, the container:

• Shares the hostname and network namespace of the host

16

https://hub.docker.com/

• Uses the host network to communicate with the Chef server

• Authenticates to the host using key-based SSH authentication

To use the Chef client Docker container on supported devices:

1. Log in as the root user.

2. Switch to the default VRF for management traffic, vrf0.

[vrf:none] root@host:~# switchvrf $$ vrf0

3. Start the Docker service, and bind it to the default VRF for management traffic, vrf0.

[vrf:none] root@host:~# systemctl start docker@vrf0

4. Set the DOCKER_HOST environment variable.

[vrf:none] root@host:~# export DOCKER_HOST=unix:///run/docker-vrf0.sock

5. Start the Chef client Docker container as follows, and set the NETCONF_USER to the Junos OS user
account that was set up to run the client.

[vrf:none] root@host:~# docker run -d -e PATH="/usr/local/bundle/bin:$PATH" -e
NETCONF_USER=chef --network=host --name=chef-client juniper/chef-client:latest

6. Generate the SSH key pair that will be used to authenticate the container to the host.

[vrf:none] root@host:~# docker exec -it chef-client ssh-keygen -t rsa -N "" -f /root/.ssh/
id_rsa
Generating public/private rsa key pair.
Created directory '/root/.ssh'.
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
aa:69:77:b0:47:b0:c4:8f:90:39:f7:0d:04:61:ca:d1 root@host
The key's randomart image is:
+---[RSA 2048]----+
...

17

7. Copy the public key to the host, and add it to the root user’s authorized_keys file.

[vrf:none] root@host:~# docker cp chef-client:/root/.ssh/id_rsa.pub .
[vrf:none] root@host:~# cat id_rsa.pub >> .ssh/authorized_keys

8. Verify the connection from the container to the host.

[vrf:none] root@host:~# docker exec -it chef-client ssh chef@localhost
The authenticity of host 'localhost (127.0.0.1)' can't be established.
ECDSA key fingerprint is 3c:3c:ed:5c:ce:ee:34:09:79:22:d3:cd:af:d0:68:4a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
--- JUNOS 19.4-20191105.0-EVO Linux (none) 4.8.28-WR2.2.1_standard #1 SMP PREEMPT Thu Jun
13 00:19:16 PDT 2019 x86_64 x86_64 x86_64 GNU/Linux
[vrf:none] chef@host:~#

9. Create a client.rb configuration file and copy the file to container’s working directory/chef-client.

[vrf:none] root@host:~# docker cp /var/tmp/client.rb chef-client:/chef-client

current_dir = File.dirname(__FILE__)
log_level :auto
log_location STDOUT
chef_server_url " value"
validation_client_name "value"
node_name "value"
validation_key "#{current_dir}/value"
file_cache_path "#{current_dir}/cache"
trusted_certs_dir "/home/root/trusted_certs"
verbose_logging true
ssl_verify_mode :verify_none
Ohai::Config[:disabled_plugins] = [:Network]

where:

• chef_server_url is the URL of your Chef server

• validation_client_name is chef-validator if you are using Open Source Chef and orgname-validator if
you are using Enterprise Chef

• node_name is optional if the switch has a hostname configured

18

• validation_key is chef-validator.pem if you are using Open Source Chef and orgname-validator.pem if
you are using Enterprise Chef

10. Copy the validation key before chef-client run. For more details about validation key, see Step 3
in"Configuring the Chef Client on Juniper Networks Devices Running Junos OS" on page 19 .

11. Start the chef client.

[vrf:none] root@host:~# docker exec -it chef-client -c client.rb

Uninstalling the Chef Client from the Juniper Networks Device

To uninstall the Chef client from the Juniper Networks device, use the request system software delete CLI
command to delete the installed packages. For example:

• To delete a Chef client package built by the Junos Extension Toolkit (JET), enter:

user@host> request system software delete chef

• To delete the Chef client and related packages built by the Junos SDK, enter:

user@host> request system software delete chef user@host> request system software delete junos-ez-
stdlib user@host> request system software delete ruby

RELATED DOCUMENTATION

Using Chef to Configure Juniper Networks Devices | 23

Chef Overview | 2

Configuring the Chef Client on Juniper Networks Devices Running Junos
OS

To enable the Chef client to communicate with the Chef server, you must configure the Chef client after
it is installed on the Juniper Networks device.

NOTE: You must set up the Chef workstation and the Chef server so that they can communicate
before you perform this procedure.

To configure the Chef client:

19

1. On your Juniper Networks device that is running Junos OS, log in as the root user and create
the /var/db/chef directory.

mkdir -p /var/db/chef

2. Copy your validation key into the /var/db/chef directory.

If you do not have your validation key, you can obtain it as follows:

• If you are using Open Source Chef, you can obtain your validation key from /etc/chef on your
server. The key is named chef-validator.pem.

• If you are using Enterprise Chef (hosted or on-premise), you can obtain your validation key from
the Enterprise Chef management console. The key is named orgname-validator.pem, where
orgname is your organization name.

3. Create a client.rb file with the following statements in /var/db/chef directory:

current_dir = File.dirname(__FILE__)
log_level :auto
log_location STDOUT
chef_server_url "value"
validation_client_name "value"
node_name "value"
validation_key "#{current_dir}/value"
client_key "#{current_dir}/client.pem"
file_cache_path "#{current_dir}/cache"
verbose_logging true

where:

• chef_server_url is the URL of your Chef server

• validation_client_name is chef-validator if you are using Open Source Chef and orgname-validator if you
are using Enterprise Chef

• node_name is optional if the switch has a hostname configured

• validation_key is chef-validator.pem if you are using Open Source Chef and orgname-validator.pem if you
are using Enterprise Chef

For more information about the settings in the client.rb file, see https://docs.chef.io/
config_rb_client.html.

4. Run the Chef client on Junos OS.

• If the Juniper Networks version of the Chef client is 2.x (for example, Chef client version
11.10.4_2.0), enter:

20

https://docs.chef.io/config_rb_client.html
https://docs.chef.io/config_rb_client.html

%/opt/jet/chef/bin/ruby /opt/jet/chef/bin/chef-client -c /var/db/chef/client.rb

• If the Juniper Networks version of the Chef client is 1.x (for example, Chef client version
11.10.4_1.1), enter:

%/opt/sdk/chef/bin/ruby /opt/sdk/chef/bin/chef-client -c /var/db/chef/client.rb

These commands assume that your client.rb file resides in the /var/db directory. We recommend
using this directory.

SEE ALSO

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

Using Chef to Configure Juniper Networks Devices | 23

Chef Overview | 2

Configuring the Chef Client on Juniper Networks Devices Running Junos
OS Evolved

To enable the Chef client to communicate with the Chef server, you must configure the Chef client on
the Juniper Networks device.

NOTE: You must set up the Chef workstation and the Chef server so that they can communicate
before you perform this procedure.

To configure the Chef client:

1. On your Juniper Networks device that is running Junos OS evolved, log in as the root user and create
the /etc/chef directory.

mkdir /etc/chef

2. Copy your validation key into the /etc/chef directory.

If you do not have your validation key, you can obtain it as follows:

• If you are using Open Source Chef, you can obtain your validation key from /etc/chef on your
server. The key is named chef-validator.pem.

• If you are using Enterprise Chef (hosted or on-premise), you can obtain your validation key from
the Enterprise Chef management console. The key is named orgname-validator.pem, where
orgname is your organization name.

21

3. Create a client.rb file with the following statements in /etc/chef directory:

current_dir = File.dirname(__FILE__)
log_level :auto
log_location STDOUT
chef_server_url "value"
validation_client_name "value"
node_name "value"
validation_key "#{current_dir}/value"
client_key "#{current_dir}/client.pem"
file_cache_path "#{current_dir}/cache"
verbose_logging true
ssl_verify_mode verify_peer
verify_api_cert true

where:

• chef_server_url is the URL of your Chef server

• validation_client_name is chef-validator if you are using Open Source Chef and orgname-validator if you
are using Enterprise Chef

• node_name is optional if the switch has a hostname configured

• validation_key is chef-validator.pem if you are using Open Source Chef and orgname-validator.pem if you
are using Enterprise Chef

For more information about the settings in the client.rb file, see https://docs.chef.io/
config_rb_client.html.

4. Fetch certificate from Chef server.

From the /etc/chef directory, type knife ssl fetch -s server-name statement, to fetch the certificate
from the Chef server.

5. Check certificate.

From the /etc/chef directory, type knife ssl check -s server-name statement, to verify the certificate
fetched from the Chef server.

Connecting to host <server-name>
Successfully verified certificates from `<server-name>'

6. Run the Chef client on Junos OS evolved.

On devices running Junos OS evolved, to start the Chef client:

22

https://docs.chef.io/config_rb_client.html
https://docs.chef.io/config_rb_client.html

• Enter the shell.

user@host> start shell

• switch to the default VRF for management traffic, vrf0, and then start the client.

[vrf:none] user@host:~# switchvrf $$ vrf0

[vrf:vrf0] user@host:~# /usr/bin/chef-client -c /etc/chef/client.rb

These commands assume that your client.rb file resides in the /etc/chef directory. We recommend
using this directory.

SEE ALSO

Using Chef to Configure Juniper Networks Devices | 23

Chef Overview | 2

Using Chef to Configure Juniper Networks Devices

IN THIS SECTION

Example: Using Chef for Junos OS to Configure Ethernet Switching on EX Series, OCX Series, and QFX Series
Switches | 23

Example: Using Chef for Junos OS to Configure Ethernet Switching on MX Series Routers | 36

Example: Using Chef for Junos OS to Configure Any Hierarchy Level | 48

Example: Using Chef for Junos OS to Configure Ethernet Switching on EX
Series, OCX Series, and QFX Series Switches

IN THIS SECTION

Requirements | 24

23

Overview | 24

Configuration | 26

Verification | 34

This example shows how you can use resources in the netdev cookbook to write recipes that configure
the switching interfaces on EX Series switches, OCX Series switches, and QFX Series switches running
the Chef client. For more information about the light-weight resources in the netdev cookbook, see Chef
for Junos OS at https://docs.chef.io/junos.html.

Requirements

This example uses the following hardware and software components:

• A properly set up and configured Chef workstation and Chef server

• A supported Junos OS release (as specified in the Chef for Junos OS Release Notes)

• A Juniper Networks switch that the Chef client manages

NOTE: This example uses netdev resources not supported on an OCX1100 switch. Only the
netdev_interface resource is supported on an OCX1100 switch.

Before you begin, the number of aggregated Ethernet interfaces supported on the switch must have
been already configured before you run the Chef client. To verify that a sufficient number of aggregated
Ethernet interfaces has been configured, use the show chassis aggregated-devices configuration mode CLI
command. Use the set chassis aggregated-devices ethernet device-count command to set the number of
supported aggregated Ethernet interfaces.

Overview

This example takes you through using Chef for Junos OS to configure the switching interfaces on an
access switch.

In this example, you create a cookbook, called netdev_access_switch, that is based on the netdev
cookbook. Within the cookbook, you create three recipes:

• vlan_create recipe—Defines netdev_vlan resources for the VLANs shown in Table 2 on page 25.

• access_interface_create recipe—Defines netdev_interface and netdev_l2_interface resources for the access
interfaces shown in Table 3 on page 25.

24

https://docs.chef.io/junos.html

• uplink_interface_create recipe—Defines netdev_lag and netdev_l2_interface resources for the link
aggregation group (LAG) interfaces shown in Table 4 on page 25.

Table 2: VLANs Defined in the vlan_create Recipe

Name VLAN ID Description

blue 100 the blue VLAN

green 200 the green VLAN

red 300 the red VLAN

Table 3: Access Interfaces Defined in the access_interface_create Recipe

Name Port Mode VLAN Membership Description

et-0/0/4 Access blue Access interface

et-0/0/5 Access green Access interface

et-0/0/6 Access red Access interface

Table 4: LAGs Defined in the uplink_interface_create Recipe

Name Member
Interfaces

Mininum
Links

LACP Port
Mode

VLAN
Membership

Description

ae0 et-0/1/0
et-0/1/2

1 Active Trunk blue, green, red Uplink interface

ae1 et-0/2/0
et-0/2/2

1 Active Trunk blue, green, red Uplink interface

In your own implementation of Chef for Junos OS, you can structure recipes in any way that makes
sense for deploying and managing your switching resources. The recipes used in this example are simply
one way of doing so.

25

After you create the recipes, you upload the cookbook to the Chef server and add the recipes to the run
list for the access switch. Finally, you run the Chef client on the access switch. The client then uses the
Junos OS providers in the netdev cookbook to implement the configuration described in the recipes.

Configuration

IN THIS SECTION

Procedure | 26

Results | 32

Procedure

Step-by-Step Procedure

To configure the access switch by using Chef for Junos OS:

1. From the chef-repo directory on the Chef workstation, download the netdev cookbook and extract
the cookbook files to the cookbooks directory:

knife cookbook site download netdev

tar -zxvf netdev-n.n.n.tar.gz -C cookbooks

2. Copy the netdev cookbook to create a new cookbook, netdev_access_switch, in the cookbooks
directory.

3. In an editor of your choice, write the vlan_create recipe for creating the blue, green, and red VLANs.

#
Cookbook Name:: netdev_access_switch
Recipe:: vlan_create
#
Copyright 2013, YOUR_COMPANY_NAME
#
All rights reserved - Do Not Redistribute
#

netdev_vlan "blue" do
 vlan_id 100
 description "the blue VLAN"

26

 action :create
end

netdev_vlan "green" do
 vlan_id 200
 description "the green VLAN"
 action :create
end

netdev_vlan "red" do
 vlan_id 300
 description "the red VLAN"
 action :create
end

4. Save the recipe in cookbooks/netdev_access_switch/recipes/ vlan_create.rb.

5. In an editor of your choice, write the access_interface_create recipe, which configures the physical
and Layer 2 properties of the access interfaces.

#
Cookbook Name:: netdev_access_switch
Recipe:: access_interface_create
#
Copyright 2013, YOUR_COMPANY_NAME
#
All rights reserved - Do Not Redistribute
#

Physical interface creation using the following defaults:
auto-negotiation on, MTU 1500, administratively up

netdev_interface "et-0/0/4" do
 description "access interface"
 action :create
end

netdev_interface "et-0/0/5" do
 description "access interface"
 action :create
end

27

netdev_interface "et-0/0/6" do
 description "access interface"
 action :create
end

Logical interface creation, setting port mode to access (vlan_tagging false)
and assigning interface to a VLAN

netdev_l2_interface "et-0/0/4" do
 description "belongs to blue VLAN"
 untagged_vlan "blue"
 vlan_tagging false
 action :create
end

netdev_l2_interface "et-0/0/5" do
 description "belongs to green VLAN"
 untagged_vlan "green"
 vlan_tagging false
 action :create
end

netdev_l2_interface "et-0/0/6" do
 description "belongs to red VLAN"
 untagged_vlan "red"
 vlan_tagging false
 action :create
end

6. Save the recipe in
cookbooks/netdev_access_switch/recipes/ access_interface_create.rb.

7. In an editor of your choice, write the uplink_interface_create recipe, which configures the LAG
trunk interfaces.

#
Cookbook Name:: netdev-access-switch
Recipe:: uplink_interface_create
#
Copyright 2013, YOUR_COMPANY_NAME
#
All rights reserved - Do Not Redistribute

28

#

netdev_l2_interface "et-0/1/0" do
 action :delete
end

netdev_l2_interface "et-0/1/2" do
 action :delete
end

netdev_l2_interface "et-0/2/0" do
 action :delete
end

netdev_l2_interface "et-0/2/2" do
 action :delete
end

Create the LAGs

netdev_lag "ae0" do
 links ["et-0/1/0", "et-0/2/0"]
 minimum_links 1
 lacp "active"
 action :create
end

netdev_lag "ae1" do
 links ["et-0/2/2", "et-0/1/2"]
 minimum_links 1
 lacp "active"
 action :create
end

Configure Layer 2 switching on the LAGs. Define the port mode as trunk
(vlan_tagging true), with membership in the blue, green, and red VLANs.

netdev_l2_interface "ae0" do
 description "Uplink interface"
 tagged_vlans ["blue", "green", "red"]
 vlan_tagging true
 action :create
end

29

netdev_l2_interface "ae1" do
 description "Uplink interface"
 tagged_vlans ["blue", "green", "red"]
 vlan_tagging true
 action :create
end

8. Save the recipe in
cookbooks/netdev_access_switch /recipes/uplink_interface_create.rb.

9. Upload the netdev_access_switch cookbook to the Chef server.

$ knife cookbook upload netdev_access_switch

10. Edit the node object that represents the access switch.

$ knife node edit access_switch_node_name

Knife starts your editor and opens a JSON file that contains the node attributes.

11. Enter the recipes in the run-list attribute and then save the JSON file.

{
 "name": "access_switch_node_name",
 "chef_environment": "_default",
 "normal": {
 },
 "run_list": [
 "recipe[netdev_access_switch::vlan_create]",
 "recipe[netdev_access_switch::access_interface_create]",
 "recipe[netdev_access_switch::uplink_interface_create]"
]
}

The order in which you enter the recipes matters—for example, the Chef client runs the
vlans_create recipe first because it is listed first.

12. If the number of aggregated Ethernet interfaces supported on the switch is not already configured,
log in to the access switch, enter configuration mode, and configure the number of aggregated
Ethernet interfaces supported.

30

root@access-switch-node# set chassis aggregated-devices ethernet device-count 2

root@access-switch-node# commit and-quit

13. On the access switch, log in as the root user.

14. From the UNIX-level shell, run the Chef client.

• If the Juniper Networks version of the Chef client is 2.x (for example, Chef client version
11.10.4_2.0), enter:

%/opt/jet/chef/bin/ruby /opt/jet/chef/bin/chef-client -c /var/db/chef/client.rb

• If the Juniper Networks version of the Chef client is 1.x (for example, Chef client version
11.10.4_1.1), enter:

%/opt/sdk/chef/bin/ruby /opt/sdk/chef/bin/chef-client -c /var/db/chef/client.rb

The Chef client displays status messages during its run to indicate its progress in performing the
configuration. For example:

[2014-02-24T15:17:53-08:00] INFO: Forking chef instance to converge...
Starting Chef Client, version 11.10.4
[2014-02-24T15:17:53-08:00] INFO: *** Chef 11.10.4 ***
[2014-02-24T15:17:53-08:00] INFO: Chef-client pid: 41108
[2014-02-24T15:17:54-08:00] INFO: Run List is [recipe[netdev::vlan_create_doc],
recipe[netdev::access_interface_create_doc], recipe[netdev::uplink_interface_create_doc]]
[2014-02-24T15:17:54-08:00] INFO: Run List expands to [netdev::vlan_create_doc,
netdev::access_interface_create_doc, netdev::uplink_interface_create_doc]
[2014-02-24T15:17:54-08:00] INFO: Starting Chef Run for access-switch-node

.

.

.
2014-02-24T15:18:07-08:00] INFO: Chef Run complete in 12.618406061 seconds
Running handlers:
[2014-02-24T15:18:07-08:00] INFO: Running report handlers
[2014-02-24T15:18:09-08:00] INFO: Committed pending Junos candidate configuration changes
[2014-02-24T15:18:09-08:00] INFO: Released exclusive Junos configuration lock
 - JunosCommitTransactionHandler
Running handlers complete

31

Results

To check the results of the configuration:

1. On the access switch, enter the CLI.

% cli

2. Enter the following CLI operational mode command:

root@access-switch-node> show configuration | compare rollback 1
[edit]
+ interfaces {
+ et-0/0/4 {
+ description "access interface";
+ unit 0 {
+ description "belongs to blue VLAN";
+ family ethernet-switching {
+ interface-mode access;
+ vlan {
+ members blue;
+ }
+ }
+ }
+ }
+ et-0/0/5 {
+ description "access interface";
+ unit 0 {
+ description "belongs to green VLAN";
+ family ethernet-switching {
+ interface-mode access;
+ vlan {
+ members green;
+ }
+ }
+ }
+ }
+ et-0/0/6 {
+ description "access interface";
+ unit 0 {
+ description "belongs to red VLAN";
+ family ethernet-switching {
+ interface-mode access;

32

+ vlan {
+ members red;
+ }
+ }
+ }
+ }
+ et-0/1/0 {
+ ether-options {
+ 802.3ad ae0;
+ }
+ }
+ et-0/1/2 {
+ ether-options {
+ 802.3ad ae1;
+ }
+ }
+ et-0/2/0 {
+ ether-options {
+ 802.3ad ae0;
+ }
+ }
+ et-0/2/2 {
+ ether-options {
+ 802.3ad ae1;
+ }
+ }
+ ae0 {
+ aggregated-ether-options {
+ minimum-links 1;
+ lacp {
+ active;
+ }
+ }
+ unit 0 {
+ description "Uplink interface";
+ family ethernet-switching {
+ interface-mode trunk;
+ vlan {
+ members [blue green red];
+ }
+ }
+ }
+ }

33

+ ae1 {
+ aggregated-ether-options {
+ minimum-links 1;
+ lacp {
+ active;
+ }
+ }
+ unit 0 {
+ description "Uplink interface";
+ family ethernet-switching {
+ interface-mode trunk;
+ vlan {
+ members [blue green red];
+ }
+ }
+ }
+ }
+ }
+ vlans {
+ blue {
+ description "the blue VLAN";
+ vlan-id 100;
+ }
+ green {
+ description "the green VLAN";
+ vlan-id 200;
+ }
+ red {
+ description "the red VLAN";
+ vlan-id 300;
+ }
+ }

Verification

IN THIS SECTION

Verifying the Status of the VLANs | 35

34

Verifying the Status of the VLANs

Purpose

Verify the VLANs and VLAN memberships are correct.

Action

Use the show vlans command to verify VLAN membership.

root@access-switch-node> show vlans

Routing instance VLAN name Tag Interfaces
default-switch blue 100
 ae0.0*
 ae1.0*
 et-0/0/4.0*
default-switch green 200
 ae0.0*
 ae1.0*
 et-0/0/5.0*
default-switch red 300
 ae0.0*
 ae1.0*
 et-0/0/6.0*

Meaning

The output shows that the VLANs have been created correctly and contain the correct member
interfaces.

SEE ALSO

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

Configuring the Chef Client on Juniper Networks Devices Running Junos OS | 19

Example: Using Chef for Junos OS to Configure Ethernet Switching on MX Series Routers | 36

Example: Using Chef for Junos OS to Configure Any Hierarchy Level | 48

Chef Overview | 2

35

Example: Using Chef for Junos OS to Configure Ethernet Switching on
MX Series Routers

IN THIS SECTION

Requirements | 36

Overview | 37

Configuration | 38

Verification | 47

This example shows how you can use resources in the netdev cookbook to write recipes that configure
the switching interfaces on MX Series routers running the Chef client. For more information about the
light-weight resources in the netdev cookbook, see Chef for Junos OS at https://docs.chef.io/junos.html.

Requirements

This example uses the following hardware and software components:

• A properly set up and configured Chef workstation and Chef server

• An MX Series router that the Chef client manages

• Junos OS Release 16.1 or later

Before you begin, the number of aggregated Ethernet interfaces supported on the router must already
be configured before you run the Chef client.

• To verify that a sufficient number of aggregated Ethernet interfaces has been configured, use the show
chassis aggregated-devices configuration mode CLI command. Use the set chassis aggregated-devices
ethernet device-count command to set the number of supported aggregated Ethernet interfaces.

• If the number of aggregated Ethernet interfaces supported on the router is not already configured,
log in to the router, enter configuration mode, and configure the number of aggregated Ethernet
interfaces supported:

root@router-node# set chassis aggregated-devices ethernet device-count 2

root@router-node# commit and-quit

36

https://docs.chef.io/junos.html

Overview

This example takes you through using Chef for Junos OS to configure the switching interfaces on an MX
Series router.

In this example, you create a cookbook, called netdev_router, that is based on the netdev cookbook.
Within the cookbook, you create four recipes:

• vlan_create recipe—Defines netdev_vlan resources for the VLANs shown in Table 5 on page 37.

• interface_create recipe—Defines the netdev_interface resources for the interfaces shown in Table 6 on
page 37.

• l2interface_create recipe—Defines the netdev_l2_interface resources for the interfaces shown in Table 6
on page 37.

• lag_interface_create recipe—Defines netdev_lag and netdev_l2_interface resources for the link aggregation
group (LAG) interfaces shown in Table 7 on page 38.

Table 5: VLANs Defined in the vlan_create Recipe

Name VLAN ID Description

blue 100 Chef-created blue VLAN

green 200 Chef-created green VLAN

red 300 Chef-created red VLAN

Table 6: Interfaces Defined in the interface_create and l2interface_create Recipes

Name Port Mode VLAN Membership Description

ge-1/0/1 Access blue Chef-created interface

ge-1/0/2 Access green Chef-created interface

ge-1/0/3 Access red Chef-created interface

37

Table 7: LAGs Defined in the lag_interface_create Recipe

Name Member
Interfaces

Mininum
Links

LACP Port
Mode

VLAN
Membership

Description

ae0 ge-1/0/6
ge-1/0/7

1 Active Trunk blue, green, red Chef-created LAG
interface

ae1 ge-1/0/8
ge-1/0/9

1 Active Trunk blue, green, red Chef-created LAG
interface

In your own implementation of Chef for Junos OS, you can structure recipes in any way that makes
sense for deploying and managing your switching resources. The recipes used in this example are simply
one way of doing so.

After you create the recipes, you upload the cookbook to the Chef server and add the recipes to the run
list for the managed router. Finally, you run the Chef client on the router. The client then uses the Junos
OS providers in the netdev cookbook to implement the configuration described in the recipes.

NOTE: The number of aggregated Ethernet interfaces supported on the router must already be
configured before you run the Chef client.

Configuration

IN THIS SECTION

Procedure | 38

Results | 44

Procedure

Step-by-Step Procedure

To configure the router by using Chef for Junos OS:

1. From the chef-repo directory on the Chef workstation, download the netdev cookbook and extract
the cookbook files to the cookbooks directory.

38

knife cookbook site download netdev

tar -zxvf netdev-n.n.n.tar.gz -C cookbooks

2. Copy the netdev cookbook to create a new cookbook, netdev_router, in the cookbooks directory.

3. In an editor of your choice, write the vlan_create recipe for creating the blue, green, and red VLANs.

#
Cookbook Name:: netdev_router
Recipe:: vlan_create
#

netdev_vlan "blue" do
 vlan_id 100
 description "Chef-created blue VLAN"
 action :create
end

netdev_vlan "green" do
 vlan_id 200
 description "Chef-created green VLAN"
 action :create
end

netdev_vlan "red" do
 vlan_id 300
 description "Chef-created red VLAN"
 action :create
end

4. Save the recipe in cookbooks/netdev_router/recipes/vlan_create.rb.

5. In an editor of your choice, write the interface_create recipe, which configures the physical
properties of the interfaces.

#
Cookbook Name:: netdev_router
Recipe:: interface_create
#

Physical interface creation using the following defaults:

39

auto-negotiation on, MTU 1500, administratively up

netdev_interface "ge-1/0/1" do
 description "Chef-created interface"
 action :create
end

netdev_interface "ge-1/0/2" do
 description "Chef-created interface"
 action :create
end

netdev_interface "ge-1/0/3" do
 description "Chef-created interface"
 action :create
end

6. Save the recipe in cookbooks/netdev_router/recipes/interface_create.rb.

7. In an editor of your choice, write the l2interface_create recipe, which configures the Layer 2
properties of the interfaces.

#
Cookbook Name:: netdev_router
Recipe:: l2interface_create
#

Logical interface creation, setting port mode to access (vlan_tagging false)
and assigning interface to a VLAN

netdev_l2_interface "ge-1/0/1" do
 description "belongs to blue VLAN"
 untagged_vlan "blue"
 vlan_tagging false
 action :create
end

netdev_l2_interface "ge-1/0/2" do
 description "belongs to green VLAN"
 untagged_vlan "green"
 vlan_tagging false
 action :create

40

end

netdev_l2_interface "ge-1/0/3" do
 description "belongs to red VLAN"
 untagged_vlan "red"
 vlan_tagging false
 action :create
end

8. Save the recipe in cookbooks/netdev_router/recipes/l2interface_create.rb.

9. In an editor of your choice, write the lag_interface_create recipe, which configures the LAG trunk
interfaces.

#
Cookbook Name:: netdev-router
Recipe:: lag_interface_create
#

netdev_l2_interface "ge-1/0/6" do
 action :delete
end

netdev_l2_interface "ge-1/0/7" do
 action :delete
end

netdev_l2_interface "ge-1/0/8" do
 action :delete
end

netdev_l2_interface "ge-1/0/9" do
 action :delete
end

Create the LAGs

netdev_lag "ae0" do
 links ["ge-1/0/6", "ge-1/0/7"]
 minimum_links 1
 lacp "active"
 action :create

41

end

netdev_lag "ae1" do
 links ["ge-1/0/8", "ge-1/0/9"]
 minimum_links 1
 lacp "active"
 action :create
end

Configure Layer 2 switching on the LAGs. Define the port mode as trunk
(vlan_tagging true), with membership in the blue, green, and red VLANs.

netdev_l2_interface "ae0" do
 description "Chef-created LAG interface"
 tagged_vlans ["blue", "green", "red"]
 vlan_tagging true
 action :create
end

netdev_l2_interface "ae1" do
 description "Chef-created LAG interface"
 tagged_vlans ["blue", "green", "red"]
 vlan_tagging true
 action :create
end

10. Save the recipe in cookbooks/netdev_router /recipes/lag_interface_create.rb.

11. Upload the netdev_router cookbook to the Chef server.

$ knife cookbook upload netdev_router

12. Edit the node object that represents the router.

$ knife node edit router_node_name

Knife starts your editor and opens a JSON file that contains the node attributes.

13. Enter the recipes in the run-list attribute and then save the JSON file.

{
 "name": "router_node_name",
 "chef_environment": "_default",
 "normal": {

42

 },
 "run_list": [
 "recipe[netdev_router::interface_create]",
 "recipe[netdev_router::vlan_create]",
 "recipe[netdev_router::l2interface_create]",
 "recipe[netdev_router::lag_interface_create]"
]
}

The order in which you enter the recipes matters—for example, the Chef client runs the
interfaces_create recipe first because it is listed first.

14. Log in as the root user.

15. From the UNIX-level shell, run the Chef client.

• If the Juniper Networks version of the Chef client is 2.x (for example, Chef client version
11.10.4_2.0), enter:

%/opt/jet/chef/bin/ruby /opt/jet/chef/bin/chef-client -c /var/db/chef/client.rb

• If the Juniper Networks version of the Chef client is 1.x (for example, Chef client version
11.10.4_1.1), enter:

%/opt/sdk/chef/bin/ruby /opt/sdk/chef/bin/chef-client -c /var/db/chef/client.rb

The Chef client displays status messages during its run to indicate its progress in performing the
configuration. For example:

[2015-08-21T18:07:27+05:30] INFO: Forking chef instance to converge...
Starting Chef Client, version 11.10.4
[2015-08-21T18:07:28+05:30] INFO: *** Chef 11.10.4 ***
[2015-08-21T18:07:28+05:30] INFO: Chef-client pid: 9351
[2015-08-21T18:07:32+05:30] INFO: Run List is [recipe[netdev::interface_create],
recipe[netdev::vlan_create], recipe[netdev::l2interface_create],
recipe[netdev::lag_interface_create]]
[2015-08-21T18:07:32+05:30] INFO: Run List expands to [netdev::interface_create,
netdev::vlan_create, netdev::l2interface_create, netdev::lag_interface_create]
[2015-08-21T18:07:32+05:30] INFO: Starting Chef Run for router-node
.
.
.
[2015-08-21T18:09:36+05:30] INFO: Chef Run complete in 123.446606904 seconds

43

Running handlers:
[2015-08-21T18:09:36+05:30] INFO: Running report handlers
[2015-08-21T18:09:54+05:30] INFO: Committed pending Junos candidate configuration changes
[2015-08-21T18:09:58+05:30] INFO: Released exclusive Junos configuration lock
 - JunosCommitTransactionHandler
Running handlers complete

[2015-08-21T18:09:58+05:30] INFO: Report handlers complete
Chef Client finished, 13/17 resources updated in 150.983654211 seconds

Results

From operational mode, confirm your configuration by entering the show configuration | compare
rollback 1 command. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

root@router-node> show configuration | compare rollback 1
[edit]
+ interfaces {
+ ge-1/0/1 {
+ description "Chef-created interface";
+ unit 0 {
+ description "belongs to blue VLAN";
+ family bridge {
+ interface-mode access;
+ vlan-id 100;
+ }
+ }
+ }
+ ge-1/0/2 {
+ description "Chef-created interface";
+ unit 0 {
+ description "belongs to green VLAN";
+ family bridge {
+ interface-mode access;
+ vlan-id 200;
+ }
+ }
+ }
+ ge-1/0/3 {
+ description "Chef-created interface";

44

+ unit 0 {
+ description "belongs to red VLAN";
+ family bridge {
+ interface-mode access;
+ vlan-id 300;
+ }
+ }
+ }
+ ge-1/0/6 {
+ gigether-options {
+ 802.3ad ae0;
+ }
+ }
+ ge-1/0/7 {
+ gigether-options {
+ 802.3ad ae0;
+ }
+ }
+ ge-1/0/8 {
+ giether-options {
+ 802.3ad ae1;
+ }
+ }
+ ge-1/0/9 {
+ gigether-options {
+ 802.3ad ae1;
+ }
+ }
+ ae0 {
+ aggregated-ether-options {
+ minimum-links 1;
+ lacp {
+ active;
+ }
+ }
+ apply-macro "netdev_lag[:links]" {
+ ge-1/0/6;
+ ge-1/0/7;
+ }
+ unit 0 {
+ description "Chef-created LAG interface";
+ family bridge {
+ interface-mode trunk;

45

+ vlan-id-list [100 200 300];
+ }
+ }
+ }
+ ae1 {
+ aggregated-ether-options {
+ minimum-links 1;
+ lacp {
+ active;
+ }
+ }
+ apply-macro "netdev_lag[:links]" {
+ ge-1/0/8;
+ ge-1/0/9;
+ }
+ unit 0 {
+ description "Chef-created LAG interface";
+ family bridge {
+ interface-mode trunk;
+ vlan-id-list [100 200 300];
+ }
+ }
+ }
+ }
+ bridge-domains {
+ blue {
+ description "Chef-created blue VLAN";
+ domain-type bridge;
+ vlan-id 100;
+ }
+ green {
+ description "Chef-created green VLAN";
+ domain-tye bridge;
+ vlan-id 200;
+ }
+ red {
+ description "Chef-created blue VLAN";
+ domain-type bridge;
+ vlan-id 300;
+ }
+ }

46

NOTE: The apply-macro statement under the ae0 and ae1 interface configuration is a normally
hidden statement that is exposed when the configuration is generated by a Chef client.

Verification

IN THIS SECTION

Verifying the Status of the VLANs | 47

Verifying the Status of the VLANs

Purpose

Verify the VLANs and VLAN memberships are correct.

Action

Use the show bridge domain command to verify VLAN membership.

root@mx-node> show bridge domain
Routing instance Bridge domain VLAN ID
Interfaces
default-switch blue
100
 ae0.0*
 ae1.0*
 ge-1/0/1.0*
default-switch green
200
 ae0.0*
 ae1.0*

ge-1/0/2.0*
default-switch red
300
 ae0.0*

47

 ae1.0*
 ge-1/0/3.0*

Meaning

The output shows that the VLANs have been created correctly and contain the correct member
interfaces.

SEE ALSO

Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS | 10

Configuring the Chef Client on Juniper Networks Devices Running Junos OS | 19

Example: Using Chef for Junos OS to Configure Ethernet Switching on EX Series, OCX Series, and
QFX Series Switches | 23

Example: Using Chef for Junos OS to Configure Any Hierarchy Level | 48

Chef Overview | 2

Example: Using Chef for Junos OS to Configure Any Hierarchy Level

IN THIS SECTION

Requirements | 48

Overview | 49

Configuration | 49

Verification | 52

This example shows how you can use the netdev_group resource in the netdev cookbook to write recipes
that configure any hierarchy level on devices running Chef for Junos OS. For more information about the
light-weight resources in the netdev cookbook, see Chef for Junos OS at https://docs.chef.io/
junos.html .

Requirements

This example uses the following hardware and software components:

48

https://docs.chef.io/junos.html
https://docs.chef.io/junos.html

• A properly set up and configured Chef workstation and Chef server

• Junos OS Release 16.1

• A Juniper Networks device that the Chef client manages

NOTE: This example uses the netdev_group resource that is not supported on an OCX1100
switch. Only the netdev_interface resource is supported on an OCX1100 switch.

Before you begin, make sure that the local autonomous system number is already defined on the device.

Overview

The netdev_group resource specifies an Embedded Ruby (ERB) template file that defines a Junos OS
configuration to be applied to the groups hierarchy level on the device. For information about Chef
cookbook templates, see https://docs.chef.io/templates.html. When the client downloads the catalog, it
adds the configuration data generated by the template under the [edit groups] hierarchy level and
configures the apply-groups statement to include the group name. If the commit succeeds, the
configuration inherits the statements in the configuration group. The configuration file is created
in /var/tmp/name, where name is the name of a Junos OS group on the Chef client.

The netdev_group resource has the following actions:

• :create–Create a Junos OS group (default).

• :delete–Delete a Junos OS group.

The netdev_group resource has the following attributes:

• name–The name of the Junos OS group under which configuration is applied.

• template_path–The path of the template used to create the Junos OS configuration file in the format
template-file-name.config-format.erb, where template-file-name is the name of the file and config-
format is one of xml, set, or text. If config-format is not specified, xml is the default format.

• variables–(Optional) Variables input to the template file.

Configuration

IN THIS SECTION

Creating the netdev_group Resource | 50

Creating the ERB Template | 51

49

https://docs.chef.io/templates.html

Creating the Attributes for the Template | 51

Configuring the Device by Using Chef for Junos OS | 51

This example creates a ntedev_group resource named bgp_create.rb that configures statements for internal
and external BGP peering. The netdev_group resource references the bgp.xml.erb template that generates
the configuration data for the resource. The template is located in the netdev/templates/junos
directory. The attributes that apply to the template are defined in netdev/attributes/default.rb under
the variable name bgp.

The BGP variable definition contains the node-specific configuration values that the template uses to
generate the configuration data for that group. The data is provided in a hash that uses the BGP group
names as keys. Each key maps to another hash that contains the details for that group including the
group type, and the IP addresses and AS number of the peers. When the template is referenced, it
iterates over the hash and generates the Junos OS configuration data for the groups command.

Creating the netdev_group Resource

Step-by-Step Procedure

To create the netdev_group resource:

1. From the chef-repo directory on the Chef workstation, download the netdev cookbook and extract
the cookbook files to the cookbooks directory.

knife cookbook site download netdev

tar -zxvf netdev-n.n.n.tar.gz -C cookbooks

2. Copy the netdev cookbook to create a new cookbook, netdev_device, in the cookbooks directory.

3. In an editor of your choice, write the bgp_group recipe for creating the BGP configuration in the
cookbooks/netdev_device/recipes/ bgp_create.rb file.

#
Cookbook Name:: netdev_device
Recipe:: bgp_create
#
netdev_group 'bgp_create' do
 template_path 'bgp.xml.erb'
 action :create

50

 variables({
 :bgp => node[:netdev][:bgp]
 })
end

Creating the ERB Template

Creating the Attributes for the Template

Configuring the Device by Using Chef for Junos OS

Step-by-Step Procedure

To configure the device by using Chef for Junos OS:

1. Upload the netdev_device cookbook to the Chef server.

$ knife cookbook upload netdev_device

2. Edit the node object that represents the device.

$ knife node edit device_node_name

Knife starts your editor and opens a JSON file that contains the node attributes.

3. Enter the recipe in the run-list attribute and then save the JSON file.

{
 "name": "device_node_name",
 "chef_environment": "_default",
 "normal": {
 },
 "run_list": [
 "recipe[netdev_group:bgp_create]",
]
}

The order in which you enter the recipes matters. The last configuration overrides any previous
configuration.

4. Log in as the root user.

51

5. From the UNIX-level shell, run the Chef client.

• If the Juniper Networks version of the Chef client is 2.x (for example, Chef client version
11.10.4_2.0), enter:

%/opt/jet/chef/bin/ruby /opt/jet/chef/bin/chef-client -c /var/db/chef/client.rb

• If the Juniper Networks version of the Chef client is 1.x (for example, Chef client version
11.10.4_1.1), enter:

%/opt/sdk/chef/bin/ruby /opt/sdk/chef/bin/chef-client -c /var/db/chef/client.rb

The Chef client displays status messages during its run to indicate its progress in performing the
configuration.

Verification

IN THIS SECTION

Verifying the Commit | 52

Verifying the Configuration | 53

To verify that the commit was successful and the configuration reflects the new BGP resource, perform
these tasks:

Verifying the Commit

Purpose

Action

Meaning

The JUNOS: OK: COMMIT success! message and the commit log indicate that the Chef client successfully
applied the configuration changes generated by the template.

52

Verifying the Configuration

Purpose

Verify that the BGP configuration group is in the active configuration on the device and that the
configuration group name is configured for the apply-groups statement.

Action

From operational mode, enter the show configuration groups bgp_group and the show configuration apply-groups
commands.

chef@chef-client> show configuration groups bgp_group

protocols {
 bgp {
 group internal {
 type internal;
 local-address 20.20.20.20;
 peer-as 100;
 neighbor 10.10.10.10;
 neighbor 10.10.10.11;
 }
 group external {
 type external;
 local-address 20.20.20.20;
 peer-as 200;
 neighbor 30.30.10.10;
 neighbor 30.30.10.11;
 }
 }
}

chef@chef-client> show configuration apply-groups
apply-groups [global re0 re1 bgp_group];

53

Meaning

The output shows that the BGP configuration was successfully configured in the groups hierarchy and
that bgp_group was added to the apply-groups hierarchy.

SEE ALSO

Example: Using Chef for Junos OS to Configure Ethernet Switching on MX Series Routers | 36

Example: Using Chef for Junos OS to Configure Ethernet Switching on EX Series, OCX Series, and
QFX Series Switches | 23

groups

54

	Table of Contents
	About This Guide
	Overview
	Chef for Junos OS Overview
	Chef Overview
	Chef for Junos OS Overview
	Benefits of Chef for Junos OS
	Features of Chef for Junos OS

	Deploying and Configuring Chef for Junos OS
	Deploying Chef for Junos OS
	Chef for Junos OS Deployment Overview
	Installing or Uninstalling the Chef Client on Juniper Networks Devices Running Junos OS
	Devices Supporting Chef for Junos OS
	Installing the Chef Client Overview
	Installing or Upgrading the Chef Client on Junos
	Installing the Chef Client on Junos OS evolved
	Using the Chef Client Docker Container
	Uninstalling the Chef Client from the Juniper Networks Device

	Configuring the Chef Client on Juniper Networks Devices Running Junos OS
	Configuring the Chef Client on Juniper Networks Devices Running Junos OS Evolved

	Using Chef to Configure Juniper Networks Devices
	Example: Using Chef for Junos OS to Configure Ethernet Switching on EX Series, OCX Series, and QFX Series Switches
	Requirements
	Overview
	Configuration
	Verification

	Example: Using Chef for Junos OS to Configure Ethernet Switching on MX Series Routers
	Requirements
	Overview
	Configuration
	Verification

	Example: Using Chef for Junos OS to Configure Any Hierarchy Level
	Requirements
	Overview
	Configuration
	Verification

