Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 LTE Band 41 20M QPSK 1RB 0 Offset 40620CH Right Tilt with Battery2-Second Antenna

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, LTE-TDD (SC-FDMA, 20MHz, QPSK/16-QAM) (0); Frequency:

2593 MHz;Duty Cycle: 1:1.57943

Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.955$ S/m; $\varepsilon_r = 37.843$; $\rho = 1000$ kg/m³⁼

Phantom section: Right Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.5, 7.5, 7.5) @ 2593 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Head/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.983 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.596 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.607 W/kg; SAR(10 g) = 0.257 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 42.3%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.13 W/kg = 0.54 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 LTE Band 41 20M QPSK 1RB 0 Offset 40620CH Back Side 15mm with Battery2-Second Antenna

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, LTE-TDD (SC-FDMA, 20MHz, QPSK/16-QAM) (0); Frequency: 2593 MHz; Duty Cycle: 1:1.57943

Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.984$ S/m; $\varepsilon_r = 38.343$; $\rho = 1000$ kg/m³⁼

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.5, 7.5, 7.5) @ 2593 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.414 W/kg

Configuration/Body/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.568 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.513 W/kg

SAR(1 g) = 0.278 W/kg; SAR(10 g) = 0.148 W/kg

Smallest distance from peaks to all points 3 dB below = 13.9 mm

Ratio of SAR at M2 to SAR at M1 = 53.3%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.424 W/kg

0 dB = 0.424 W/kg = -3.73 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 LTE Band 41 20M QPSK 50%RB 0 Offset 40185CH Bottom Side 10mm with Battery2-Main Antenna

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, LTE-TDD (SC-FDMA, 20MHz, QPSK/16-QAM) (0); Frequency: 2549.5 MHz; Duty Cycle: 1:1.57943

Medium parameters used (interpolated): f = 2549.5 MHz; $\sigma = 1.92$ S/m; $\varepsilon_r = 37.683$; $\rho = 1000$ kg/m³⁼

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.5, 7.5, 7.5) @ 2549.5 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.789 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.44 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.981 W/kg

SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.236 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 51.4%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.803 W/kg

0 dB = 0.803 W/kg = -0.95 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 LTE Band 66 20M QPSK 1RB 0 Offset 132072CH Right Tilt-Second Antenna

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, LTE-FDD (SC-FDMA, 20MHz, QPSK/16-QAM) (0); Frequency:

1720 MHz;Duty Cycle: 1:1

Medium parameters used: f = 1720 MHz; $\sigma = 1.322$ S/m; $\varepsilon_r = 38.561$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(8.61, 8.61, 8.61) @ 1720 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 29.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Head/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.480 W/kg

Configuration/Head/Zoom Scan (9x9x21)/Cube 0: Measurement grid: dx=3.8mm,

dy=3.8mm, dz=1.4mm

Reference Value = 14.89 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.714 W/kg

SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.138 W/kg

Smallest distance from peaks to all points 3 dB below = 5.5 mm

Ratio of SAR at M2 to SAR at M1 = 79.5%

Maximum value of SAR (measured) = 0.507 W/kg

0 dB = 0.507 W/kg = -2.95 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 LTE Band 66 20M QPSK 1RB 0 Offset 132322CH Back Side 15mm-Main Antenna

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, LTE-FDD (SC-FDMA, 20MHz, QPSK/16-QAM) (0); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.332$ S/m; $\varepsilon_r = 38.556$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7350; ConvF(8.61, 8.61, 8.61) @ 1745 MHz; Calibrated: 2020-12-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1531; Calibrated: 2021-02-24
- Phantom: SAM7; Type: SAM; Serial: 1594
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.483 W/kg

Configuration/Body/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.709 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.699 W/kg

SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.183 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 59.5%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.555 W/kg

0 dB = 0.555 W/kg = -2.56 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 LTE Band 66 20M QPSK 50%RB 0 Offset 132322CH Bottom Side with Battery2 10mm-Main Antenna

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, LTE-FDD (SC-FDMA, 20MHz, QPSK/16-QAM) (0); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.332$ S/m; $\varepsilon_r = 38.556$; $\rho = 1000$ kg/m³⁼⁼

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(8.61, 8.61, 8.61) @ 1745 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.729 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.998 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.895 W/kg

SAR(1 g) = 0.501 W/kg; SAR(10 g) = 0.278 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 57.7%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.750 W/kg

0 dB = 0.750 W/kg = -1.25 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 WiFi 2.4G 802.11n 40M 6CH Left Cheek with Battery2-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 2437 MHz; Duty Cycle: 1:1.00972

Medium parameters used: f = 2437 MHz; $\sigma = 1.782$ S/m; $\varepsilon_r = 39.198$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.72, 7.72, 7.72) @ 2437 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Head/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.482 W/kg

Configuration/Head/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 9.180 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.870 W/kg

SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.148 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 39.3%

Maximum value of SAR (measured) = 0.653 W/kg

0 dB = 0.653 W/kg = -1.85 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 WiFi 2.4G 802.11b 20M 6CH Back Side 15mm with Battery2-Core1=

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 2437 MHz;Duty Cycle: 1:1.00972

Medium parameters used: f = 2437 MHz; $\sigma = 1.782$ S/m; $\varepsilon_r = 39.198$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.72, 7.72, 7.72) @ 2437 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.134 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 2.714 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.194 W/kg

SAR(1 g) = 0.095 W/kg; SAR(10 g) = 0.046 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 49.7%

Maximum value of SAR (measured) = 0.157 W/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 WiFi 2.4G 802.11b 20M 6CH Back Side 10mm with Battery2-Core0=

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 2437 MHz; Duty Cycle: 1:1.00972

Medium parameters used: f = 2437 MHz; $\sigma = 1.782$ S/m; $\varepsilon_r = 39.198$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.72, 7.72, 7.72) @ 2437 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.340 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 2.872 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.243 W/kg; SAR(10 g) = 0.117 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 49.1%

Maximum value of SAR (measured) = 0.396 W/kg

0 dB = 0.396 W/kg = -4.02 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 BT 3DH5 39CH Left Cheek with Battery2-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1.29957 Medium parameters used: f = 2441 MHz; $\sigma = 1.784$ S/m; $\varepsilon_r = 39.192$; $\rho = 1000$ kg/m³⁼

Phantom section: Left Section

DASY Configuration:

- Probe: EX3DV4 SN7350; ConvF(7.72, 7.72, 7.72) @ 2441 MHz; Calibrated: 2020-12-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1531; Calibrated: 2021-02-24
- Phantom: SAM7; Type: SAM; Serial: 1594
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Head/Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.162 W/kg

Configuration/Head/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.426 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.284 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.050 W/kg

Smallest distance from peaks to all points 3 dB below = 7.3 mm

Ratio of SAR at M2 to SAR at M1 = 40%

Maximum value of SAR (measured) = 0.212 W/kg

0 dB = 0.212 W/kg = -6.74 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 BT 3DH5 39CH Back Side 15mm with Battery2-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1.29957

Medium parameters used (interpolated): f = 2441 MHz; σ = 1.784 S/m; ϵ_r = 39.192; ρ = 1000 kg/m³⁼⁼⁼⁼

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7350; ConvF(7.72, 7.72, 7.72) @ 2441 MHz; Calibrated: 2020-12-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1531; Calibrated: 2021-02-24
- Phantom: SAM7; Type: SAM; Serial: 1594
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0185 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.2850 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.0270 W/kg

SAR(1 g) = 0.013 W/kg; SAR(10 g) = 0.00539 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid

Ratio of SAR at M2 to SAR at M1 = 43.4%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0208 W/kg

0 dB = 0.0208 W/kg = -16.82 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 BT 3DH5 39CH Back Side 10mm-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: DASY5

Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1.29957

Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.784$ S/m; $\varepsilon_r = 39.192$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(7.72, 7.72, 7.72) @ 2441 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.102 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 1.058 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.030 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.3%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.106 W/kg

0 dB = 0.106 W/kg = -9.75 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 5G Wi-Fi 802.11n 40M 159CH Left Cheek-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 5795 MHz; Duty Cycle: 1:1.00972

Medium parameters used: f = 5795 MHz; $\sigma = 5.127$ S/m; $\varepsilon_r = 33.795$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(4.72, 4.72, 4.72) @ 5795 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Head/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.42 W/kg

Configuration/Head/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.733 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.60 W/kg

SAR(1 g) = 0.601 W/kg; SAR(10 g) = 0.189 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.9%

Maximum value of SAR (measured) = 1.52 W/kg

0 dB = 1.52 W/kg = 1.82 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 5G Wi-Fi 802.11n 40M 110CH Back Side 15mm-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 5550 MHz; Duty Cycle: 1:1.00972

Medium parameters used: f = 5550 MHz; $\sigma = 4.855$ S/m; $\varepsilon_r = 34.193$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(4.53, 4.53, 4.53) @ 5550 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Body/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.05 W/kg

Configuration/Body/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.4680 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.192 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 1.08 W/kg

0 dB = 1.08 W/kg = 0.33 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 5G Wi-Fi 802.11a 20M 157CH Back Side 10mm-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 5785 MHz; Duty Cycle: 1:1.00972

Medium parameters used: f = 5785 MHz; $\sigma = 5.12$ S/m; $\varepsilon_r = 33.799$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(4.72, 4.72, 4.72) @ 5785 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Hotspot/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.39 W/kg

Configuration/Hotspot/Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.593 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.40 W/kg

SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.233 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 63.8%

Maximum value of SAR (measured) = 1.43 W/kg

0 dB = 1.43 W/kg = 1.55 dBW/kg

Place of testing: HUAWEI SAR/HAC Lab

NAM-LX9 5G Wi-Fi 802.11a 20M 60CH Top Side 0mm-Core0

DUT: NAM-LX9; Type: Smart Phone; Serial: SAR1

Communication System: UID 0, WiFi(802.11a/b/g/n) (0); Frequency: 5300 MHz; Duty Cycle:

1:1.00972

Medium parameters used: f = 5300 MHz; $\sigma = 4.587 \text{ S/m}$; $\varepsilon_r = 34.62$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

• Probe: EX3DV4 - SN7350; ConvF(5.23, 5.23, 5.23) @ 5300 MHz; Calibrated: 2020-12-21

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0

• Electronics: DAE4 Sn1531; Calibrated: 2021-02-24

• Phantom: SAM7; Type: SAM; Serial: 1594

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/Product Specific 10-g/Area Scan (6x14x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 13.3 W/kg

Configuration/Product Specific 10-g/Zoom Scan (9x9x8)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 20.92 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 40.8 W/kg

SAR(1 g) = 6.08 W/kg; SAR(10 g) = 1.45 W/kg

Smallest distance from peaks to all points 3 dB below = 4 mm

Ratio of SAR at M2 to SAR at M1 = 57.6%

Maximum value of SAR (measured) = 20.5 W/kg

0 dB = 20.5 W/kg = 13.12 dBW/kg