

FCC SAR TEST REPORT

 Report No.
 <GTSE15030032004>

 FCC ID
 2AEB5-A17

Client:	AOC		
Sample:	Feature Phone		
Type/Model:	A17		
Client Address:	8F-3, No. 166, Jian 1 Road, Zhonghe Dist., New Taipei City 23511, Taiwan		
Manufacturer:	New Flying		
Manufacturer Address:	10/F Block C, Tairan Building, Tairan 8 Road, Chegongmiao, Shenzhen City, Guangdong Province, China		
Date of Test:	2015-3-25		
Approved b	by: Avvin		
	3th Floor, Block A, Huafeng Jinyuan Business Buil Road, Baoan District, Shenzhen 518102		
Tel: +86-0755-27798480	0/27911080 Fax		
Vebsite: www.gtstest.com Email: sales@gtstest.com			

Note:

- 1. The test results presented in this report relate only to the object tested.
- 2. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Reference documents (Code, Name):

- : IEEE Std. 1528-2013, 47CFR § 2.1093
- : FCC KDB Publication 447498 D01v05r02
- : FCC KDB Publication 648474 D04v01r02
- : FCC KDB Publication 865664 D01v01r03
- : FCC KDB Publication 941225 D01~D06

Subcontractor:

- The Probe is rented from Shenzhen Academy of Metrology and Quality Inspection(SMQ) EMC Laboratory by National Institute of Metrology (NIM
 and the DASY52 test system is subcontracted from National Institute of Metrology (NIM)
- 2. SMQ Address : No.4 Tongfa Road, Xili Town, Nanshan District, Shenzhen, Guangdong, China

NIM Address: No.18 Bei San Huan Dong Lu, Beijing, P.R.China

- 3. Because SMQ is NIM 's subordinate relationship, so the SAR test is finished finally form NIM
- 4. Test location: National Institute of Metrology SAR test Laboratory.

	CNAS number			
1	NIM	L0502		
Ś	SMQ	L0579		

SMQ and NIM are subordinate relationship

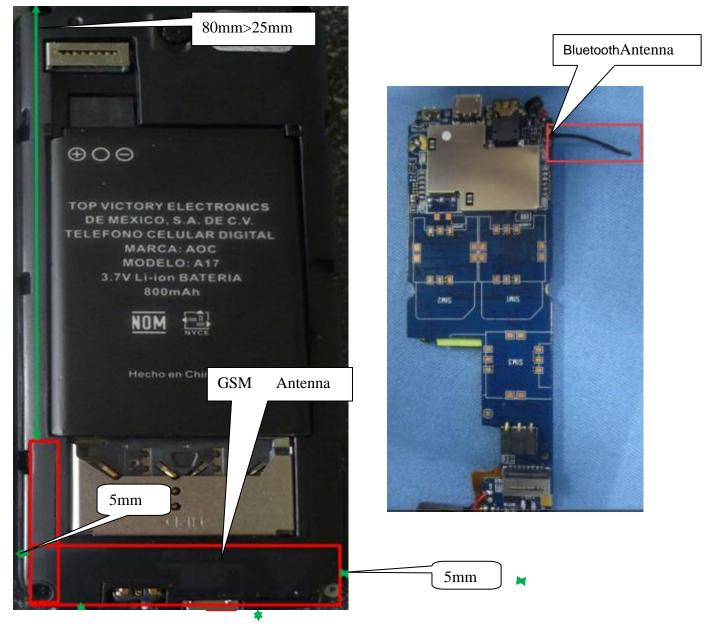
Tested by:BerlChecked:JoyceFinish Date:2015-03-28Finish Date:2015-03-28

TABLE OF CONTENTS

1.	GENERAL INFORMATION	. 5
	1.1. DUT Description	. 5
	1.2. EUT Antenna Locations	
	1.3. SAR Test Exclusions Applied	. 7
2.	TEST CONDITIONS	. 8
	2.1. Measurement Uncertainty	. 8
	2.2. Temperature and Humidity	
	2.3. Introduction of SAR	. 8
	2.4. Test Configuration	. 8
3.	SAR MEASUREMENT SYSTEM	. 9
	3.1. DASY5 System Description	. 9
	3.2. Applications	
	3.3. Area Scans	10
	3.4. Zoom scan	
	3.5. DASY5 E-Field Probe	
	3.6. Boundary Detection Unit and Probe Mounting Device	
	3.7. DATA Acquisition Electronics (DAE) and Measurement Server	
	3.8. Robot	
	3.9. Light Beam Unit	
	3.10. Device holder description3.11. Phantom description	
	3.11. Phantom description3.12. Tissue-equivalent Liquids	
4.	TISSUE SIMULATING LIQUID.	
4.		
	4.1. Tissue Calibration Result4.2. Tissue Dielectric Parameters for Head and Body Phantoms	
-		
5.	SAR MEASUREMENT PROCEDURE	
	5.1. SAR System Validation	
_	5.2. Validation Result	
6.	SAR EXPOSURE LIMITS	-
7.	DESCRIPTION OF THE TEST EQUIPMENTS	21
	7.1. Measurement System and Components	
	7.2. Test Position	
	7.3. Scan Procedures	
	7.4. SAR Averaging Methods	
8.	MEASUREMENT UNCERTAINTY	
	8.1. Uncertainty for Sar Test	
	8.2. Uncertainty for System Validation	
9.	EUT TUNE-UP PROCEDURES AND TEST MODE	
	9.1. Conducted Power Measurement	
	9.2. Bluetooth 2.1 Conducted output power (dBm):	
	9.3. The scaling factor of the test mode	
10.	SAR MEASUREMENT RESULTS	31
	10.1. SAR measurement Result of GSM850	31

	10.2.	SAR n	neasuren	nent Resu	It of PCS1	900			32
	10.3.	REPE	ATED SA	AR MEAS	UREMENT	- (N/A)			33
11.	SULT O	F SUM	Σ SAR1	G					34
	11.1.	Result	of SUM	Σ SAR1g	of Head				34
	11.2.	Result	of SUM	Σ SAR1g	for Body .				35
12.	APPENI	DIX A:	SYSTEM	CHECKI	NG SCAN	S			36
13.	APPENI	DIX B:	MEASU	JREMENT	SCANS				44
14.	APPENI	DIX C:	RELEVA	NT PAGE	S FROM I	PROBE C/		N REPORT(S)	68
15.	APPENI	DIX D:	RELEV	ANT PAG	ES FRON		VALIDATIO	ΝΚΙΤ	
REPC	DRT(S)								79
16.	APPENI	DIX F:D	OUT PHO	TOS					02
17.	APPEN	DIX G:	TEST PC	OSITION F	PHOTOS				04

Report No.: GTSE15030032004


1. GENERAL INFORMATION

1.1. DUT Description

Product Name	Feature Phone				
Model No.	A17				
IMEI1	3515 4807 0019 347				
IMEI2	3515 4807 0019 354				
Device Category	Portable				
RF Exposure Environment	Uncontrolled	Uncontrolled			
Antenna Type	Internal	Internal			
Support Band	GSM850 :824.2~848.8MHz				
	PCS1900:1850.2~1909.8MHz				
	Bluetooth:2420~2480MHz				
Type of modulation	GSMK for GSM/GPRS				
GPRS Class	12				
Max. Reported	Head: 0.729 W/g	Body: 0.645 W/g			
SAR(1g)	GSM850 : 0.440 W/g	GSM850 : 0.447 W/g			
	PCS1900: 0.729 W/g PCS1900: 0.645 W/g				
Bluetooth					
Bluetooth Frequency	2402~2480MHz				
Bluetooth Version	BT2.1				
Type of modulation	GFSK				
Data Rate	1Mbps(GFSK)				

1.2. EUT Antenna Locations

Mode	Back	Front	Тор	Bottom	Left	Right
GPRS850	Yes	Yes	NO	NO	NO	NO
GPRS1900	Yes	Yes	NO	NO	NO	NO

Note: EUT does not support hotspot mode.

1.3. SAR Test Exclusions Applied

(A) Bluetooth

Per FCC KDB 447498 D01v05R02, the SAR exclusion threshold for distances<50mmis defined by the following equation:

Based on the maximum output power of Bluetooth and the antenna to use separation distance, Bluetooth SAR was not required;

 $\frac{Max Power of Channel (mW)}{Frequency(GHz)} * \sqrt{Frequency(GHz)} \le 3.0$ (B) Licensed Test Separation Dist (mm)

GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data.

This device is only capable of QPSK HSPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSPA in KDB 941225D01v02. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

2. TEST CONDITIONS

2.1. Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 21.5%
--------------------------------	---------

2.2. Temperature and Humidity

ITEMS	Required	Actual
Ambient temperature (°C):	18-25	22±2
Ambient humidity (RH %):	30-70	50

2.3. Introduction of SAR

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for general public group.

SAR Definition:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right) \qquad SAR = C \frac{\delta T}{\delta t} SAR = \frac{\sigma |E|^2}{\rho}$$

In the first equation, the SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ρ).

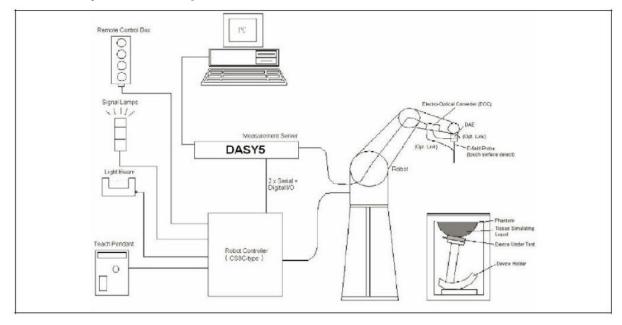
In the second equation, C is the specific head capacity, δT is the temperature rise and δt is the exposure duration.

The last equation relates to the electrical field, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

SAR is expressed in units of Watts per kilogram (W/kg)

2.4. Test Configuration


GSM Test Configuration

The tests for GSM850 and GSM1900, a communication link is set up with a System Simulator by air link. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 189 and 251 respectively in the case of GSM850, to 512, 661 and 810 respectively in the case of GSM1900. The tests in the band of GSM850 and GSM1900 are performed in the mode of GSM and GPRS function.

3. SAR MEASUREMENT SYSTEM

3.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

A computer running WinXP and the DASY5 software.

Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

The phantom, the device holder and other accessories according to the targeted measurement.

3.2. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN50383, EN62311 and others

3.3. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

3.4. Zoom scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm)providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

3.5. DASY5 E-Field Probe

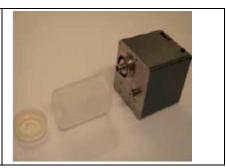
The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG.

The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

le e tree	is E Eicld Dacks EV2DV4 for Desirectric Messagers ante					
Isotrop	Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements					
Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Calibration	ISO/IEC 17025 calibration service available.	and the second se				
Frequency	10 MHz to >6 GHz (dosimetry); Linearity: \pm 0.2 dB (30 MHz to 6 GHz)	Report Contra				
Directivity	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)					
Dynamic range	10 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically<1 μ W/g)					
Dimensions	Overall length: 337 mm (Tip: 20mm) Tip length: 2.5 mm (Body: 12mm) Typical distance from probe tip to dipole centers: 1mm					
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.					

Isotrop	Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements					
Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Calibration	ISO/IEC 17025 calibration service available.					
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)					
Directivity	\pm 0.2 dB in HSL (rotation around probe axis) \pm 0.3 dB in tissue material (rotation normal to probe axis)					
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB					
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm					
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones					



3.6. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response

system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

3.7. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. The DASY5 measurement server is based on a PC/104CPU board with a 400MHz intel ULV Celeron, 128MBChipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter

Page 12 of 106

3.8. Robot

The DASY5 system uses the high precision robots TX60 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

3.9. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within0.1 mm, even if the other probe has different dimensions.

During probe rotations, the probe tip will keep its actual position.

3.10. Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent σ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The device holder permits the device to be positioned with a tolerance of $\pm 1^{\circ}$ in the tilt angle.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

3.11. Phantom description SAM Twin Phantom

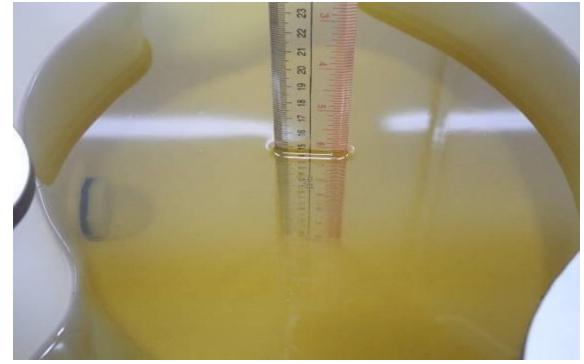
Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 25 liters	a started a
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm	
Filling Volume	Approximately 30 liters	
Dimensions	Major axis:600mm; Minor axis:400mm	
Measurement Areas	Flat phantom	
The ELI4 phantom in handheld and body-modern range of 30MHz to 6GH draft of the standard simulating liquids.		

The phantom shell material is resistant to all ingredients used in the tissue-equivalent liquid recipes. The shell of the phantom including ear spacers is constructed from low permittivity and low loss material, with a relative permittivity ≤5 and a loss tangent ≤0.05. Tissue-equivalent liquid Recipes


3.12. Tissue-equivalent Liquids

Tissue-equivalent liquids that are used for testing, which are made mainly of sugar, salt and water solution. All tests were carried out using tissue-equivalent liquids whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the Tissue-equivalent liquid was 15.0±0.5 cm measured from the ear reference point (ERP) during system checking and device measurements.

Tissue-equivalent liquid Recipes

The following recipe(s) were used for Head Tissue-equivalent liquid(s):

4. TISSUE SIMULATING LIQUID

4.1. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer.

Head Tissue-equivalent liquid measurements: Reference result (+/-5%)							
Fraguanay	Description	Dielectric Pa	arameters	Temp			
Frequency	Description	٤r	σ(S/m)	(°C)			
	calibration date	41.50	0.90	N/A			
850MHz	calibration date	39.43 to 43.58	0.85 to 0.95				
	2015-03-25	41.50	0.89	22			
	calibration date	40.0	1.40	N/A			
1900MHz	calibration date	38.00 to 42.00	1.33 to 1.47				
	2015-03-25	39.75	1.45	22			
	ϵ r= Relative permittivity, σ = Conductivity						

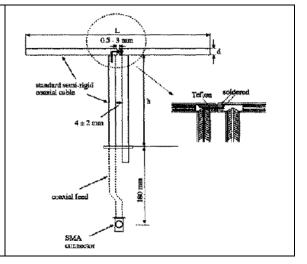
Body Tissue-equivalent liquid measurements: Reference result (+/-5%)						
	Description	Dielectric Pa	arameters	Temp		
Frequency	Description	εr	σ(S/m)	(°C)		
	calibration date	55.2	0.97	N/A		
850MHz		52.44 to57.96	0.92to 1.02			
	2015-03-25	55.87	0.96	22		
		53.3	1.52	N/A		
1900MHz		50.64 to 55.97	1.44 to 1.60			
	2015-03-25	51.05	1.57	22		
	εr= Relative ا	permittivity, σ= Cond	uctivity			

4.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Вс	ody
(MHz)	ε _r	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)



5. SAR MEASUREMENT PROCEDURE

5.1. SAR System Validation

Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles

Frequency	L (mm)	h (mm)	d (mm)
900MHz	149.0	83.3	3.6
1800MHz	72.0	41.7	3.6
1900MHz	68.0	39.5	3.6
2450MHz	53.5	30.4	3.6
5200MHz	20.6	14.2	3.6
5500 MHz	20.6	14.2	3.6
5800 MHz	20.6	14.2	3.6

5.2. Validation Result

Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the stimulant, using the dipole system check kit. A power level of 250 mW as supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the following table.

Results system check

System Check	Target SAR (1W) (+/-10%) 1-g (W/Kg)	Measured SAR (Normalized to 1W) 1-g (W/kg)	Liquid Temp	Test Date
D850 Head	9.35 (8.415~10.285)	9.32	22	2015-3-25
D1900 Head	39.4 (35.46~43.34)	40.4	22	2015-3-25

System Check	Target SAR (1W) (+/-10%) 1-g (mW/g)	Measured SAR (Normalized to 1W) 1-g (mW/g)		Test Date
D850 Body	9.46 (8.514~10.406)	9.92	22	2015-3-25
D1900 Body	40.70 (36.63~44.77)	44.4	22	2015-3-25

6. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

7. DESCRIPTION OF THE TEST EQUIPMENTS

7.1. Measurement System and Components

No.	Equipment	Model No.	Serial No.	Manufacturer	Last Calibration Date	Period
1	SAR test system	TX60L	F08/5AY8A1/A/01+F08/	SPEAG	NCR	NCR
2	Electronic Data Transmitter	DAE4	876	SPEAG	2015.03.09	1year
3	SAR Probe	ES3DV3	3203	SPEAG	2014.12.19	1year
4	SAR Probe	EX3DV4	3881	SPEAG	2014.07.22	1year
5	System Validation Dipole,835MHz	D835V2	4d141	SPEAG	2012.09.24	3year
6	System Validation Dipole,900MHz	D900V2	101077	SPEAG	2012.10.16	3year
7	System Validation Dipole,1900MHz	D1900V2	5d162	SPEAG	2012.09.21	3year
8	System Validation Dipole,2450MHz	D2450V2	818	SPEAG	2012.10.18	3year
9	Dielectric Probe Kit	85070E	MY44300455	Agilent	NCR	NCR
10	Dual-directional coupler,0.10-2.0GHz	778D	MY48220198	Agilent	NCR	NCR
11	Dual-directional coupler,2.00-18GHz	772D	MY46151160	Agilent	NCR	NCR
12	Coaxial attenuator	8491A	MY39266348	Agilent	NCR	NCR
13	Power Amplifier	ZHL42W	81709	Agilent	NCR	NCR
14	Signal Generator	SMR20	100047	R&S	2015.01.14	1year
15	Power Meter	NRVD	100041	R&S	2015.01.22	1year
16	Call Tester	CMU 200	100110	R&S	2015.01.06	1year
17	Network Analyzer	E5071C	MY46109550	Agilent	2015.01.24	1Year
18	Flat Phantom	ELI4.0	TP-1904	SPEAG	NCR	NCR
19	Twin Phantom	SAM	TP-1504	SPEAG	NCR	NCR

Note:

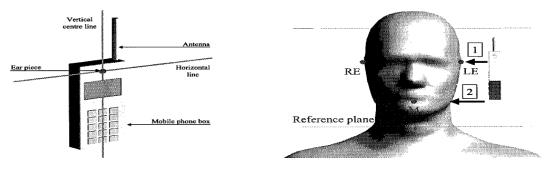
- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated values;
 - c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50 Ω from the provious measurement.

7.2. Test Position

Against Phantom Head

The Mobile phone shall be tested in the "cheek" and "tilted" position on left and right sides of the phantom.

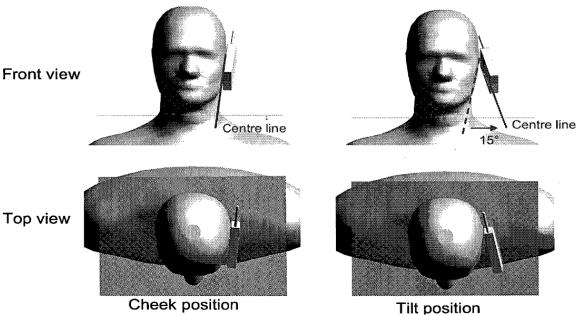
Define of the "cheek" position:

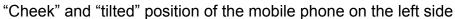

a) Position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.

b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Define of the "tilted" position:

a) Position the device in the "cheek" position described above.


b) While maintaining the device the reference planes described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.



Define of the reference lines and points, on the phone and on the phantom and initial position

GTS

Report No.: GTSE15030032004

Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between of the device and the phantom was kept 15mm.

7.3. Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

7.4. SAR Averaging Methods

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. The base for the evaluation is a "cube" measurement in a volume of (30mm)3 (7x7x7 points). The maximum SAR value was averaged over the cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy5 are all based on the modified Quadratic Shepard's method.

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner

The measurements were performed using an automated near-field scanning system, DASY5, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the "advanced extrapolation" algorithm

8. MEASUREMENT UNCERTAINTY

8.1. Uncertainty for Sar Test

Uncertainty Component	Tol. (%)	Prob Dist.	Div	ci (1g)	ci.ui(%) (1g)	Vi
Measurement System						
Probe Calibration	±5.9	Ν	1	1	±5.9	8
Axial Isotropy	±4.7	R		0.7	±1.9	8
Hemispherical Isotropy	±9.6	R		0.7	±3.9	8
Boundary Effect	±1.0	R		1	±0.6	8
Linearity	±4.7	R		1	±2.7	8
System Detection Limits	±1.0	R		1	±0.6	8
Readout Electronics	±0.3	N	1	1	±0.3	8
Response Time	±0.8	R		1	±0.5	8
Integration Time	±2.6	R		1	±1.5	8
RF Ambient Conditions – Noise	±3.0	R		1	±1.7	8
RF Ambient Conditions – Reflections	±3.0	R		1	±1.7	8
Probe Positioner Mechanical Tolerance	±0.4	R		1	±0.2	8
Probe Positioning with respect to Phantom Shell	±2.9	R		1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	±1.0	R		1	±0.6	8
Test Sample Related						
Test Sample Positioning	±2.9	Ν	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Ν	1	1	±3.6	5
Output Power Variation - SAR drift measurement	±5.0	R		1	±2.9	8
Phantom and Tissue Parameters						
Phantom Uncertainty (shape and thickness tolerances)	±4.0	R		1	±2.3	8
Conductivity Target – tolerance	±5.0	R		0.43	±1.2	8
Conductivity - measurement uncertainty	±2.5	Ν	1	0.43	±1.1	8
Permittivity Target – tolerance	±5.0	R		0.49	±1.4	8
Permittivity - measurement uncertainty	±2.5	Ν	1	0.49	±1.2	5
Combined Standard Uncertainty					±10.7	387
Expanded STD Uncertainty					±21.5	

8.2. Uncertainty for System Validation

Uncertainty Component	Uncert. value	Prob. Dist.	Div.	(ci) (1g)	Std. Unc. (1g)	(vi) veff
Probe Calibration	±6.55 %	N	1	1	±6.55 %	1
Axial Isotropy	±4.7 %	R		1	±2.7 %	1
Hemispherical Isotropy	±9.6 %	R		0	±0 %	1
Boundary E_ects	±1.0 %	R		1	±0.6 %	1
Linearity	±4.7 %	R		1	±2.7 %	1
System Detection Limits	±1.0 %	R		1	±0.6 %	1
Modulation Response	±0 %	R		1	±0 %	1
Readout Electronics	±0.3 %	N	1	1	±0.3 %	1
Response Time	±0 %	R		1	±0 %	1
Integration Time	±0 %	R		1	±0 %	1
RF Ambient Noise	±1.0 %	R		1	±0.6 %	1
RF Ambient Re ections	±1.0 %	R		1	±0.6 %	1
Probe Positioner	±0.8 %	R		1	±0.5 %	1
Probe Positioning	±6.7 %	R		1	±3.9 %	1
Max. SAR Eval.	±2.0 %	R		1	±1.2 %	1
Dipole Related						
Deviation of exp. dipole	±5.5 %	R		1	±3.2 %	1
Dipole Axis to Liquid Dist.	±2.0 %	R		1	±1.2 %	1
Input power & SAR drift	±3.4 %	R		1	±2.0 %	1
Phantom and Setup						
Phantom Uncertainty	±4.0 %	R		1	±2.3 %	1
SAR correction	±1.9 %	R		0.84	±0.9 %	1
Liquid Conductivity (meas.)	±2.5 %	N	1	0.71	±1.8 %	1
Liquid Permittivity (meas.)	±2.5 %	N	1	0.26	±0.7 %	1
Temp. uncConductivity	±1.7 %	R		0.71	±0.7 %	1
Temp. uncPermittivity	±0.3 %	R		0.26	±0.0 %	8
Combined Std. Uncertainty					±10.1 %	
Expanded STD Uncertainty					±20.2%	

9. EUT TUNE-UP PROCEDURES AND TEST MODE

The following procedure had been used to prepare the EUT for the SAR test. To setup the desire channel frequency and the maximum output power. A Radio Communication Tester. "CMU200" was used to program the EUT.

General Note:

1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

2. For head SAR testing, the EUT was set in GSM Voice for GSM850 and PCS1900

3. For body worn SAR testing, the EUT was set in GPRS 2Tx slots for GSM850 and GPRS 2Tx PCS1900 due to its highest frame-average power.

9.1. Conducted Power Measurement

Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Duty Cycle Factor (dB)	Frame Power (dBm)
	128	824.2	32.36	-9	23.36
GSM850	189	836.6	32.40	-9	23.4
	251	848.8	32.44	-9	23.44
	128	824.2	32.56	-9	23.56
GPRS850(1 Slot)	189	836.6	32.70	-9	23.7
	251	848.8	32.73	-9	23.73
	128	824.2	30.22	-6	24.22
GPRS850(2 Slot)	189	836.6	30.20	-6	24.2
	251	848.8	30.24	-6	24.24
	128	824.2	27.95	-4.25	23.7
GPRS850 (3 Slot)	189	836.6	28.10	-4.25	23.85
	251	848.8	28.14	-4.25	23.89
	128	824.2	25.98	-3	22.98
GPRS850 (4 Slot)	189	836.6	26.07	-3	23.07
	251	848.8	26.13	-3	23.13
	512	1850.2	29.42	-9	20.42
PCS1900	810	1880.0	29.59	-9	20.59
	661	1909.8	29.45	-9	20.45
	512	1850.2	29.23	-9	20.23
GPRS1900(1 Slot)	810	1880.0	29.82	-9	20.82
	661	1909.8	29.91	-9	20.91
	512	1850.2	26.92	-6	20.92
GPRS1900(2 Slot)	810	1880.0	26.70	-6	20.07
	661	1909.8	26.31	-6	20.31
	512	1850.2	25.27	-4.25	21.02
GPRS1900(3 Slot)	810	1880.0	24.89	-4.25	20.64
	661	1909.8	24.53	-4.25	20.28

Report No.: GTSE15030032004

GPRS1900(4 Slot)	512	1850.2	23.20	-3	20.2
	810	1880.0	22.49	-3	19.49
	661	1909.8	22.13	-3	19.13

Note

1: This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02.

2: Both burst-averaged and calculated frame-averaged powers are included.
Frame-averaged powers were calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots
3: The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table per KDB 941225 D03v01

4: GPRS (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

		Average power(dBm)							
Channel	Frequency	Date Rate							
		1Mbps	2Mbps	3Mbps					
CH00	2402MHZ	5.30	/	/					
CH39	2441MHZ	5.20	/	/					
CH78	2480MHZ	5.22	/	/					

9.2. Bluetooth 2.1 Conducted output power (dBm):

• According to KDB447498 D01:The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,24 where • f(GHz) is the RF channel transmit frequency in GHz

• Power and distance are rounded to the nearest mW and mm before calculation25

• The result is rounded to one decimal place for comparison

• 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

If the test separation distance (antenna-user) is < 5mm, 5mm is used for excluded SAR Calculation

Bluetooth							
Tune-up	Tune-up Maximum power (dBm)						
Tune-up M	Tune-up Maximum rated power (mW)						
	Antenna to user (mm)	5					
Head	Frequency(GHz)	2.480					
	SAR exclusion threshold	0.167					
	Antenna to user (mm)	10					
Body	Frequency(GHz)	2.480					
	SAR exclusion threshold	0.079					

Mode	Channel	Frequency (MHz)	Avg.BurstPower(dBm)	Tune-upLimit (dBm)	Scaling Factor
	128	824.2	32.36	33	1.158
GSM850	189	836.4	32.40	33	1.148
	251	848.8	32.44	33	1.137
0000050	128	824.2	30.22	31	1.196
GPRS850 (2 Slot)	189	836.4	30.20	31	1.202
(2 0101)	251	848.8	30.24	31	1.191
	512	1850.2	29.42	30	1.142
PCS1900	661	1880.0	29.59	30	1.099
	810	1909.8	29.45	30	1.135
00004000	512	1850.2	26.92	27	1.018
GPRS1900 (2 Slot)	661	1880.0	26.70	27	1.071
	810	1909.8	26.31	27	1.172

9.3. The scaling factor of the test mode

Note: Scaling Factor = Max. Power(mW) -Avg. Burst Power(mW)/10.The powers of 10 for it.

10. SAR MEASUREMENT RESULTS

10.1. SAR measurement Result of GSM850

Test Mode GSM850										
Limit (W/kg)	Scaled SAR 1g(W/kg)	Scaling Factor	Test SAR 1g(W/kg)	uency MHz	Frequ Channel	Position Head				
1.6				824.2	128	Left-Cheek				
1.6	0.440	1.148	0.383	836.4	189	Left-Cheek				
1.6				848.8	251	Left-Cheek				
1.6	0.274	1.148	0.239	836.4	189	Left-Tilt				
1.6				824.2	128	Right-Cheek				
1.6	0.338	1.148	0.294	836.4	189	Right-Cheek				
1.6				848.8	251	Right-Cheek				
1.6	0.186	1.148	0.162	836.4	189	Right-Tilt				
	0.186	1.148	0.162	836.4 848.8 836.4	189 251 189	Right-Cheek Right-Cheek				

Test Mode GPRS850 (2 Slot)										
Position	Frequ	lency	Test SAR	Scaling	Scaled SAR	Limit				
Head	Channel	MHz	1g(W/kg)	Factor	1g(W/kg)	(W/kg)				
Face up	128	824.2				1.6				
Face up	189	836.4	0.337	1.202	0.405	1.6				
Face up	251	848.8				1.6				
Face down	128	824.2				1.6				
Face down	189	836.4	0.372	1.202	0.447	1.6				
Face down	251	848.8				1.6				
Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02										

			Test Mode PCS1900			
Position Head	Freq Channel	uency MHz	— Test SAR 1g(W/kg)	Scaling Factor	Scaled SAR 1g(W/kg)	Limit (W/kg)
Left-Cheek	512	1850.2				1.6
Left-Cheek	661	1880.0	0.663	1.099	0.729	1.6
Left-Cheek	180	1909.8				1.6
Left-Tilt	661	1880.0	0.357	1.099	0.392	1.6
Right-Cheek	512	1850.2				1.6
Right-Cheek	661	1880.0	0.460	1.099	0.506	1.6
Right-Cheek	180	1909.8				1.6
Right-Tilt	661	1880.0	0.273	1.099	0.300	1.6

10.2. SAR measurement Result of PCS1900

Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02

Test Mode GPRS1900 (2 Slot)										
Position	Frequ	uency	Test SAR 1g	Scaling	Scaled	Limit				
Head	Channel	MHz	(W/kg)	Factor						
Face up	512	1850.2				1.6				
Face up	661	1880.0	0.557	1.071	0.597	1.6				
Face up	180	1909.8				1.6				
Face down	512	1850.2				1.6				
Face down	661	1880.0	0.602	1.071	0.645	1.6				
Face down	180	1909.8				1.6				
Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498 D01 v05r02										

According to October 2013TCB Workshop, For GSM / GPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for body-worn SAR testing, the EUT was set in GPRS (2Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Estimated SAR for Bluetooth

Estimated SAR= $\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$

Bluetooth

	Max Power	Head (5mm distance)	Body (10mm distance)
Estimated SAR(W/kg)	6dBm	0.167 W/Kg	0.084 W/Kg

10.3. REPEATED SAR MEASUREMENT (N/A)

Band	Test position	channel	Original Measured SAR1g (mW/g)	1st Repeated SAR1g (mW/g	Ratio	Scaled SAR1g (mW/g)
N/A						

Note:

1. Per KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg

2. Per KDB 865664 D01v01, if the ratio of largest to smallest SAR for the original and first repeated measurement is \leq 1.2 and the measured SAR < 1.45W/Kg, only one repeated measurement is required.

3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg

4. The ratio is the difference in percentage between original and repeated measured SAR.

11. SULT OF SUM \sum SAR1G

11.1. Result of SUM ∑SAR1g of Head

	SUM ∑SAR1g (GSM850+ Bluetooth)										
Position	Distance	Stand a	alone SAR(1g)	[W/kg]	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]					
POSITION	[mm]	GSM850	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN +Bluetooth					
Right Cheek	0	0.338	/	0.167	/	0.505					
Right Tilted	0	0.186	/	0.167	/	0.353					
Left Cheek	0	0.440	/	0.167	/	0.607					
Left Tilted	0	0.274	/	0.167	/	0.441					

	SUM ∑SAR1g (PCS1900+ Bluetooth)										
Position	Distance	Stand a	alone SAR(1g)	SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]						
FOSICION	[mm]	PCS1900	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN +Bluetooth					
Right Cheek	0	0.506	/	0.167	/	0.673					
Right Tilted	0	0.300	/	0.167	/	0.467					
Left Cheek	0	0.729	/	0.167	/	0.896					
Left Tilted	0	0.392	/	0.167	/	0.559					

11.2. Result of SUM ∑SAR1g for Body

SUM ∑SAR1g (GSM850+ Bluetooth)										
Position	Distance	Stand alone SAR(1g) [W/kg]			SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]				
	[mm]	GSM850	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN +Bluetooth				
Face up	10	0.405	/	0.084	/	0.489				
Face down	10	0.447	/	0.084	/	0.531				

SUM ∑SAR1g (PCS1900+ Bluetooth)										
Position	Distance	Stand alone SAR(1g) [W/kg]			SUM SAR(1g)[W/kg]	SUM SAR(1g)[W/kg]				
	[mm]	PCS1900	WLAN 2.4G	Bluetooth	WWAN + WLAN(2.4G)	WWAN +Bluetooth				
Face up	10	0.597	/	0.084	/	0.681				
Face down	10	0.645	/	0.084	/	0.729				

12. APPENDIX A: SYSTEM CHECKING SCANS

Date: 2015.3.26

Test Laboratory: NIM SAR Test

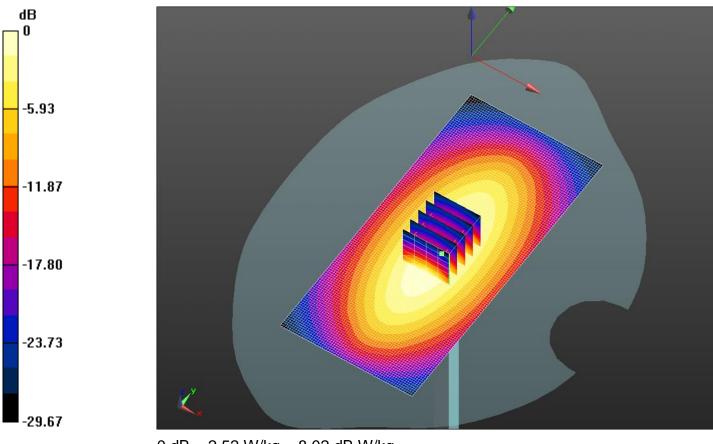
Dipole835V2 Head 1

DUT: Dipole 835 MHz D835V2; Type: D835V2;

Communication System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV4 SN3881; ConvF(8.25, 8.25, 8.25); Calibrated: 2014.07.22.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.09.
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1504
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)


Head/Dipole835/Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 53.222 V/m; Power Drift = 0.00 dB Fast SAR: SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (interpolated) = 2.52 W/kg

Head/Dipole835/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.222 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.557 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.51 mW/g Maximum value of SAR (measured) = 2.52 W/kg

Report No.: GTSE15030032004

0 dB = 2.52 W/kg = 8.02 dB W/kg

Date: 2015.3.26

Test Laboratory: NIM SAR Test

Dipole1900V2 Head 1

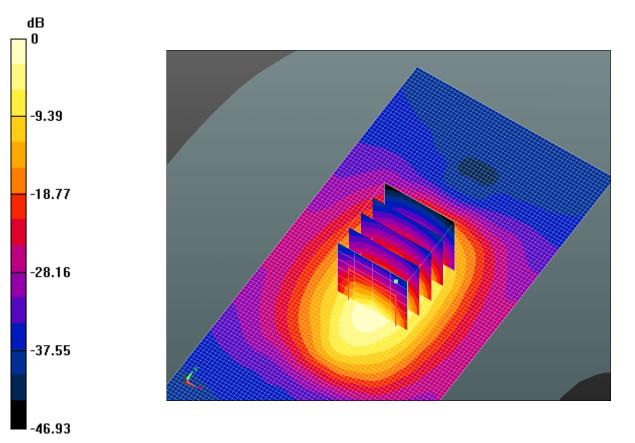
DUT: Dipole 1900 MHz D1900V2; Type: D1900V2;

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 39.75; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV4 SN3881; ConvF(8.25, 8.25, 8.25); Calibrated: 2014.07.22.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.09.
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1504
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Head/Dipole1900/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 86.469 V/m; Power Drift = 0.07 dB **Fast SAR: SAR(1 g) = 10.1 mW/g; SAR(10 g) = 4.9 mW/g** Maximum value of SAR (interpolated) = 11.9 W/kg

Head/Dipole1900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 86.469 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 19.751 mW/g SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5 mW/g

Maximum value of SAR (measured) = 11.6 W/kg

Report No.: GTSE15030032004

0 dB = 11.9 W/kg = 21.50 dB W/kg

Date: 2015.3.26

Test Laboratory: NIM SAR Test

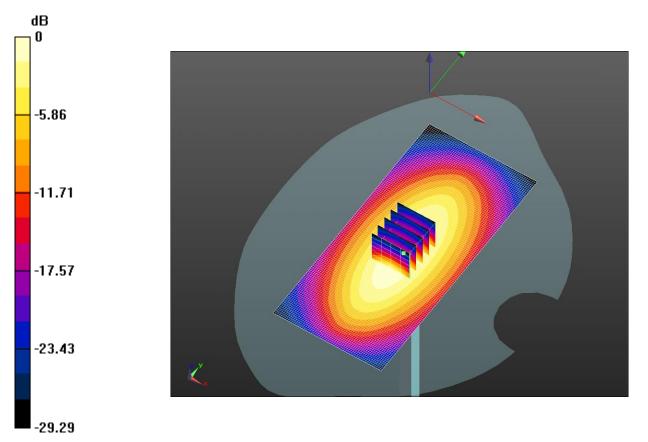
Dipole835V2 Body 1

DUT: Dipole 835 MHz D835V2; Type: D835V2;

Communication System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.96 mho/m; ϵ_r = 55.87; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV4 SN3881; ConvF(8.25, 8.25, 8.25); Calibrated: 2014.07.22.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.09.
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1504
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)


Body/Dipole835/Area Scan (61x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 55.902 V/m; Power Drift = -0.52 dB Fast SAR: SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.67 mW/g Maximum value of SAR (interpolated) = 2.76 W/kg

Body/Dipole835/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 55.902 V/m; Power Drift = -0.52 dB Peak SAR (extrapolated) = 3.791 mW/g SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.69 W/kg

Report No.: GTSE15030032004

0 dB = 2.76 W/kg = 8.82 dB W/kg

Date: 2015.3.26

Test Laboratory: NIM SAR Test

Dipole1900V2 Body 1

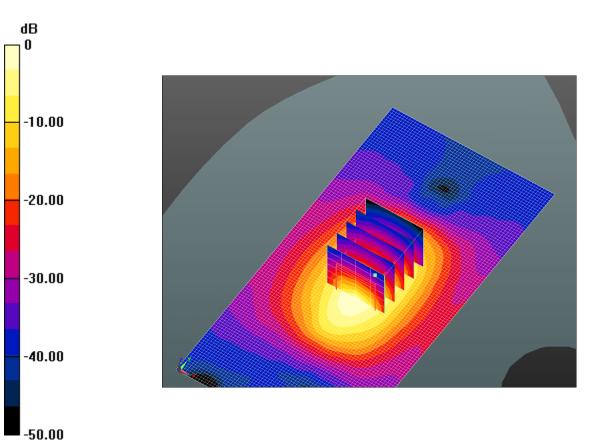
DUT: Dipole 1900 MHz D1900V2; Type: D1900V2;

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ϵ_r = 51.05; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV4 SN3881; ConvF(8.25, 8.25, 8.25); Calibrated: 2014.07.22.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.09.
- Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1504
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Body/Dipole1900/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 87.333 V/m; Power Drift = 0.06 dB **Fast SAR: SAR(1 g) = 11 mW/g; SAR(10 g) = 5.38 mW/g** Maximum value of SAR (interpolated) = 13.0W/kg

Body/Dipole1900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 87.333 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 21.434 mW/g SAR(1 g) = 11.1 mW/g; SAR(10 g) = 5.54 mW/g

Maximum value of SAR (measured) = 12.7W/kg

Report No.: GTSE15030032004

0 dB = 13.0 W/kg = 22.31 dB W/kg

Report No.: GTSE15030032004

13. APPENDIX B: MEASUREMENT SCANS

AOC A17 GSM 850 Head Left Cheek Mid

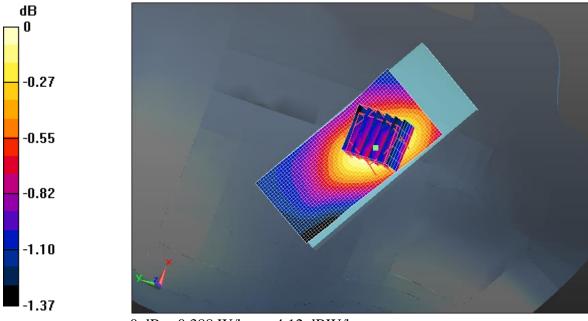
DUT: AOC; Type: A17;

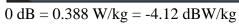
Communication System: UID 0, Left Cheek-Mid; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz;Communication System PAR: 7.78 dB Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.89 S/m; ϵ_r = 41.478; ρ = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(9.13, 9.13, 9.13); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

GSM 850 Left cheek/Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 19.64 V/m; Power Drift = -0.09 dB Fast SAR: SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.259 W/kg


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.388 W/kg


GSM 850 Left cheek/Mid/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.64 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.457 W/kg SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.351 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.389 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 7:10:14 PM

AOC A17 GSM 850 Head Left Tilted Mid

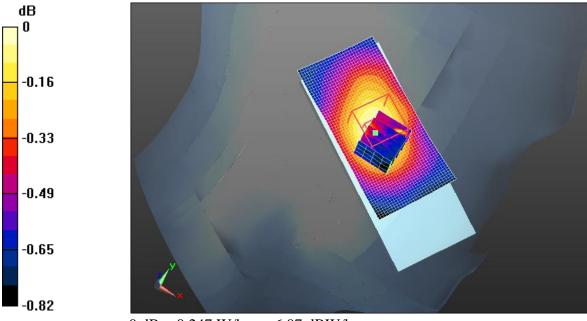
DUT: AOC; Type: A17;

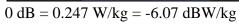
Communication System: UID 0, Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz;Communication System PAR: 9.191 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(9.13, 9.13, 9.13); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

GSM 850_Left Tilted/Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 16.60 V/m; Power Drift = -0.13 dB Fast SAR: SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.167 W/kg


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.247 W/kg


GSM 850_Left Tilted/Mid/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.60 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.261 W/kg SAR(1 g) = 0.239 W/kg; SAR(10 g) = 0.213 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.245 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 7:22:35 PM

AOC A17 GSM 850 Head Right Cheek Mid

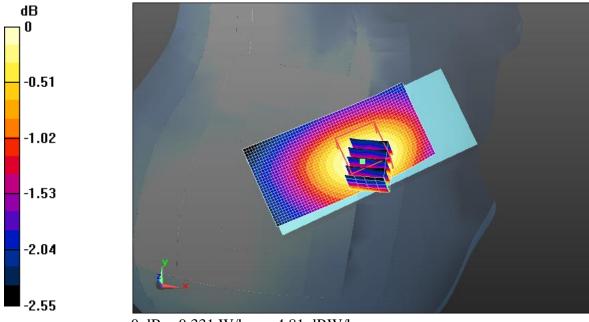
DUT: AOC; Type: A17;

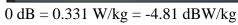
Communication System: UID 10001, Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz;Communication System PAR: 9.191 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(9.13, 9.13, 9.13); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

GSM 850_Right Cheek/Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 16.43 V/m; Power Drift = -0.09 dB Fast SAR: SAR(1 g) = 0.313 W/kg; SAR(10 g) = 0.219 W/kg


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.331 W/kg


GSM 850_Right Cheek/Mid/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.43 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.341 W/kg SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.193 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.300 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 7:32:28 PM

AOC A17 GSM 850 Head Right Tilted Mid

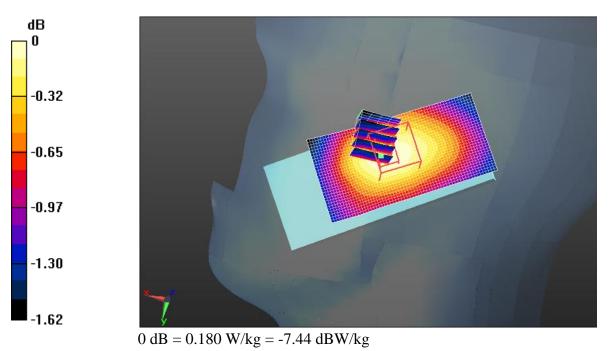
DUT: AOC; Type: A17;

Communication System: UID 10001, Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz;Communication System PAR: 9.191 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 41.478$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(9.13, 9.13, 9.13); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

GSM 850_Right_Tilted/Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 13.28 V/m; Power Drift = -0.17 dB Fast SAR: SAR(1 g) = 0.171 W/kg; SAR(10 g) = 0.121 W/kg


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.180 W/kg

GSM 850_Right_Tilted/Mid/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 13.28 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.198 W/kg SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.106 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.167 W/kg

Report No.: GTSE15030032004

AOC A17 GPRS 850 Body Faceup Mid

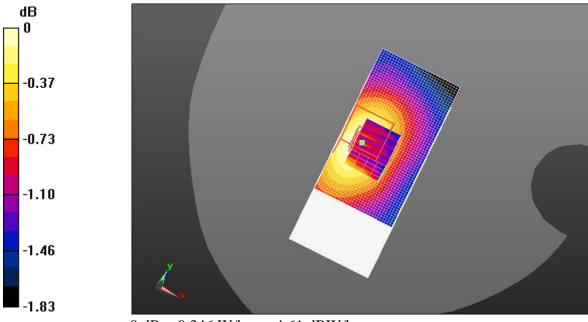
DUT: AOC; Type: A17;

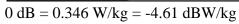
Communication System: UID 0, GPRS FDD(TDMA,GSMK); Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz;Communication System PAR: 7 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55.858$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(9.14, 9.14, 9.14); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

GPRS 850_Faceup/Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 17.33 V/m; Power Drift = -0.11 dB **Fast SAR: SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.230 W/kg**


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.346 W/kg


GPRS 850_Faceup/Mid/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.33 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.368 W/kg **SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.239 W/kg**

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.346 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 8:06:37 PM

AOC A17 GPRS 850 Body Facedown Mid

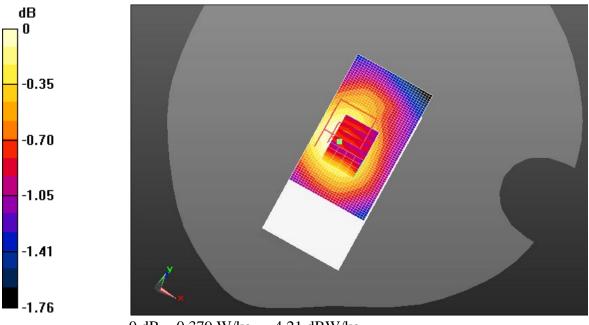
DUT: AOC; Type: A17; Serial: IMEI Number

Communication System: UID 0, GPRS FDD(TDMA,GSMK); Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz;Communication System PAR: 7 dB Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.858$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(9.14, 9.14, 9.14); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

GPRS 850_Facedown/Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 18.13 V/m; Power Drift = 0.06 dB **Fast SAR: SAR(1 g) = 0.363 W/kg; SAR(10 g) = 0.257 W/kg**


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.382 W/kg

GPRS 850_Facedown/Mid/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.13 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.407 W/kg **SAR(1 g) = 0.372 W/kg; SAR(10 g) = 0.327 W/kg**

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.379 W/kg

Report No.: GTSE15030032004

 $\overline{0 \text{ dB} = 0.379 \text{ W/kg}} = -4.21 \text{ dBW/kg}$

Date/Time: 3/27/2015 4:58:33 PM

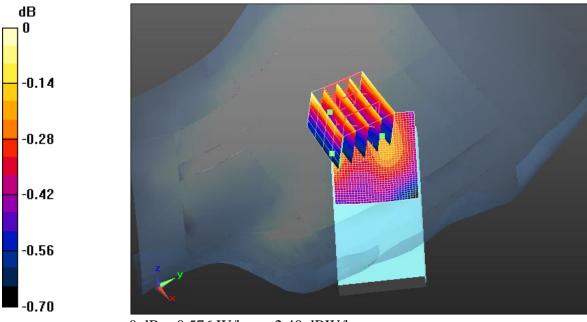
AOC A17 GSM1900 Head Left Cheek Mid

DUT: AOC; Type: A17;

Communication System: UID 0, Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz;Communication System PAR: 9.191 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ S/m; $\varepsilon_r = 39.74$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(7.91, 7.91, 7.91); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


1900_Left GSM Head/1900 GSM Cheek-Mid/Area Scan (31x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 19.80 V/m; Power Drift = -0.13 dB **Fast SAR: SAR(1 g) = 0.527 W/kg; SAR(10 g) = 0.337 W/kg**

Maximum value of SAR (interpolated) = 0.576 W/kg

1900_Left GSM Head/1900 GSM Cheek-Mid/Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=6mm Reference Value = 19.80 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.745 W/kg **SAR(1 g) = 0.663 W/kg; SAR(10 g) = 0.618 W/kg**

Maximum value of SAR (measured) = 0.745 W/kg

Report No.: GTSE15030032004

 $\overline{0 \ dB} = 0.576 \ W/kg = -2.40 \ dBW/kg$

Date/Time: 3/27/2015 5:08:50 PM

AOC A17 GSM1900 Head Left Tilted Mid

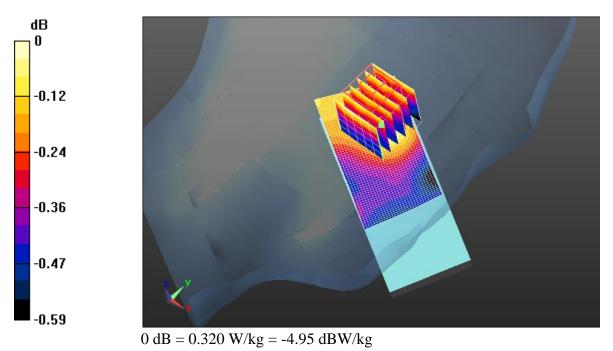
DUT: AOC; Type: A17;

Communication System: UID 10001, Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz;Communication System PAR: 9.191 dB Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.74; ρ = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(7.91, 7.91, 7.91); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900_Left GSM Head/1900GSM Tilted-Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 15.20 V/m; Power Drift = -0.13 dB **Fast SAR: SAR(1 g) = 0.300 W/kg; SAR(10 g) = 0.194 W/kg** Maximum value of SAR (interpolated) = 0.320 W/kg


1900_Left GSM Head/1900GSM Tilted-Mid/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=6mm Reference Value = 15.20 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.394 W/kg

SAR(1 g) = 0.357 W/kg; SAR(10 g) = 0.336 W/kg

Maximum value of SAR (measured) = 0.394 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 5:23:29 PM

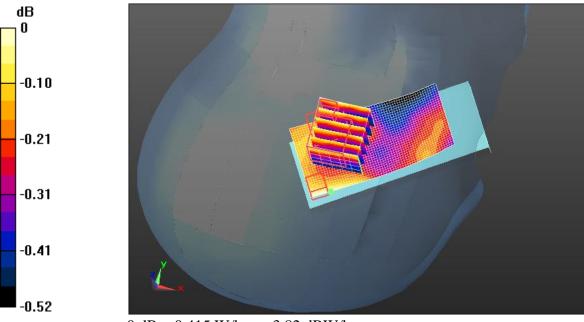
AOC A17 GSM1900 Head Right Cheek- Mid

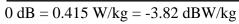
DUT: AOC; Type: A17;

Communication System: UID 0, Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz;Communication System PAR: 9.191 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ S/m; $\varepsilon_r = 39.74$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(7.91, 7.91, 7.91); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


1900_Right GSM Head/1900 GSM Cheek-Mid/Area Scan (31x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 17.16 V/m; Power Drift = -0.11 dB **Fast SAR: SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.247 W/kg**


Maximum value of SAR (interpolated) = 0.415 W/kg

1900_Right GSM Head/1900 GSM Cheek-Mid/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=6mm Reference Value = 17.16 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.507 W/kg SAR(1 g) = 0.460 W/kg; SAR(10 g) = 0.430 W/kg

Maximum value of SAR (measured) = 0.507 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 5:39:03 PM

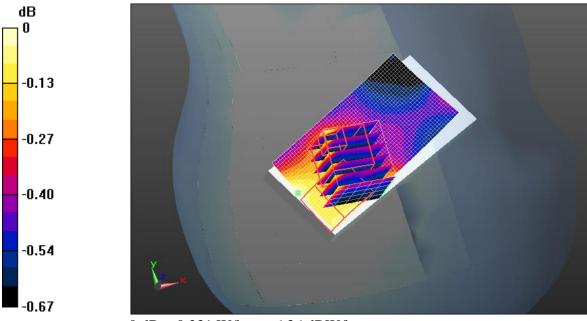
AOC A17 GSM1900 Head Right Tilted- Mid

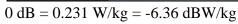
DUT: AOC; Type: A17;

Communication System: UID 10001, Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz;Communication System PAR: 9.191 dB Medium parameters used: f = 1880 MHz; σ = 1.45 S/m; ϵ_r = 39.74; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(7.91, 7.91, 7.91); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Phantom: SAM with CRP; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


1900_RightGSMHead/1900GSMTilted-Mid/AreaScan(31x61x1):Interpolated grid: dx=1.500 mm, dy=1.500 mmReference Value = 12.83 V/m; Power Drift = 0.12 dBFast SAR: SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.138 W/kg


Maximum value of SAR (interpolated) = 0.231 W/kg

1900_Right GSM Head/1900 GSM Tilted-Mid/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=6mmReference Value = 12.83 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.379 W/kg SAR(1 g) = 0.273 W/kg; SAR(10 g) = 0.244 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

Report No.: GTSE15030032004

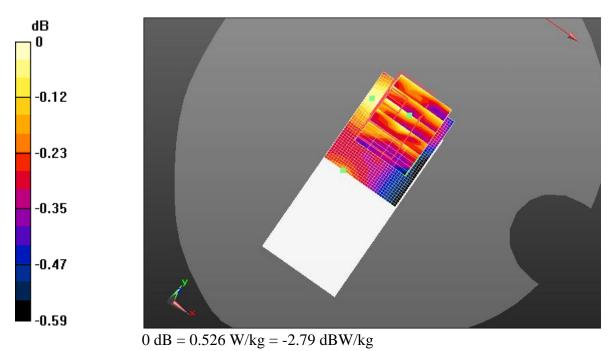
Date/Time: 3/27/2015 6:06:15 PM

AOC A17 GRPS1900 Body Faceup Mid

DUT: AOC; Type: A17;

Communication System: UID 0, GPRS FDD(TDMA,GSMK); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz;Communication System PAR: 7 dB Medium parameters used: f = 1880 MHz; σ = 1.57 S/m; ϵ_r = 51.14; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 SN3381; ConvF(7.49, 7.49, 7.49); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900_GPRS/GPRS1900 Faceup-Mid/Area Scan (31x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 18.22 V/m; Power Drift = 0.14 dB **Fast SAR: SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.319 W/kg** Maximum value of SAR (interpolated) = 0.526 W/kg

1900_GPRS/GPRS1900Faceup-Mid/ZoomScan(5x5x6)/Cube0:Measurement grid: dx=8mm, dy=8mm, dz=6mmReference Value = 18.22 V/m; Power Drift = 0.14 dBPeak SAR (extrapolated) = 0.594 W/kgSAR(1 g) = 0.557 W/kg; SAR(10 g) = 0.537 W/kg

Maximum value of SAR (measured) = 0.594 W/kg

Report No.: GTSE15030032004

Date/Time: 3/27/2015 6:32:53 PM

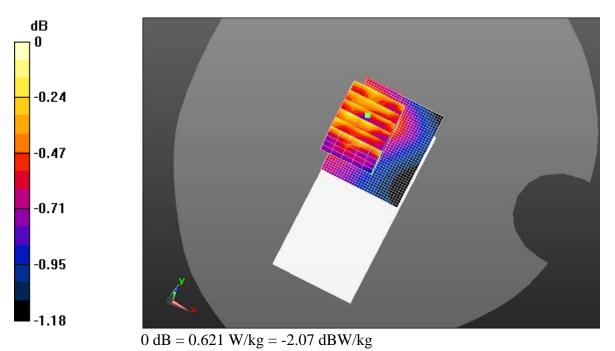
AOC A17 GRPS1900 Body Facedown Mid

DUT: AOC; Type: A17;

Communication System: UID 0, GPRS FDD(TDMA,GSMK); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz;Communication System PAR: 7 dB Medium parameters used: f = 1880 MHz; $\sigma = 1.57$ S/m; $\varepsilon_r = 51.14$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3381; ConvF(7.49, 7.49, 7.49); Calibrated: 07/22/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 03/09/2015
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


1900_GPRS/GPRS1900 Facedown-Mid/Area Scan (31x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Reference Value = 19.33 V/m; Power Drift = 0.04 dB **Fast SAR: SAR(1 g) = 0.595 W/kg; SAR(10 g) = 0.373 W/kg**

Maximum value of SAR (interpolated) = 0.643 W/kg

1900_GPRS/GPRS1900 Facedown-Mid/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=6mm Reference Value = 19.33 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.677 W/kg**SAR(1 g) = 0.602 \text{ W/kg}; SAR(10 g) = 0.561 \text{ W/kg}**

Maximum value of SAR (measured) = 0.621 W/kg

Report No.: GTSE15030032004

14. APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Engineering AG aughausstrasse 43, 8004 Zuric	' y of :h, Switzerland	Hac MRA	S Schweizerischer Kallbrierdien: C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Callbration Service				
credited by the Swiss Accredita to Swiss Accreditation Service ultilateral Agreement for the re	e is one of the signatories	to the EA ertificates	Accreditation No.: SCS 108				
ient SMQ (Auden)			Certifical	te No:	EX3-3881_Jul14		
ALIBRATION (CERTIFICATE						
Dbject	EX3DV4 - SN:388	- 1					
Calibration procedure(s)	QA CAL-01.v9, Q Calibration procee	A CAL-12.v9, 0 dure for dosime	QA CAL-23.v5 tric E-field pro	i, QA obes	CAL-25.v6		
Calibration date:	July 22, 2014						
This calibration certificate docum The measurements and the unco	nents the traceability to nation entainties with confidence providence	onal standards, which obability are given or	the following page	es and	are part of the certificate.		
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8	ertainties with confidence pr ucted in the closed laborator	obability are given or	the following page	es and	are part of the certificate.		
The measurements and the unce NI catibrations have been condu Catibration Equipment used (M8	ertainties with confidence pr ucted in the closed laborator kTE critical for calibration)	obability are given or y facility: environmen	n the following page It temperature (22 :	es and	are part of the certificate.		
he measurements and the unce Il calibrations have been condu calibration Equipment used (M8 Primary Standards	ertainties with confidence pr ucted in the closed laborator RTE critical for calibration)	obability are given or y facility: environmen Cal Date (Co	n the following page It temperature (22 : prlificate No.)	es and	are part of the certificate.		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B	ertainties with confidence pr Incled in the closed laboration ATE critical for calibration)	obability are given or y facility: environmen Cal Date (Co 03-Apr-14 (N	t temperature (22 : ertificate No.) lo. 217-01911)	es and	are part of the certificate. and humidity < 70%. Scheduled Calibration		
he measurements and the unco II calibrations have been condu alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087	obability are given or y facility: environmen Cal Date (Cr 03-Apr-14 (h 03-Apr-14 (h	n the following page It temperature (22 : ertificate No.) Io. 217-01911) Io. 217-01911)	es and	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15		
e measurements and the unce I calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence pr ucted in the closed laboration ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c)	obability are given or y facility: environmen Cal Date (Co 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h	t temperature (22 : ertificate No.) lo. 217-01911)	es and	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	ertainties with confidence pr ucted in the closed laboration ATE critical for calibration) ID GB41293874 MY4149087 SN: S5054 (3c) SN: S50277 (20x)	Cal Date (Cr 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h	n the following page t temperature (22 : entificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01919)	es and	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b)	Cal Date (Cr 03-Apr-14 (t 03-Apr-14 (t 03-Apr-14 (t 03-Apr-14 (t	n the following page it temperature (22 : ertificate No.) Io. 217-01911) Io. 217-01911) Io. 217-01915) Io. 217-01919) Io. 217-01920)	es and ± 3)°C i	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2	ertainties with confidence pr ucted in the closed laboration ATE critical for calibration) ID GB41293874 MY4149087 SN: S5054 (3c) SN: S50277 (20x)	Cal Date (Cc 03-Apr-14 (h	n the following page t temperature (22 : entificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01919)	es and ± 3)°C : 	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2	ertainties with confidence pr ucled in the closed laboration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5077 (20x) SN: S5129 (30b) SN: 3013	Cal Date (Cc 03-Apr-14 (h	n the following page etilificate No.) Io. 217-01911) Io. 217-01911) Io. 217-01915) Io. 217-01919) Io. 217-01920) No. ES3-3013_Dee	es and ± 3)°C : 	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence pr ucled in the closed laboration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5077 (20x) SN: S5129 (30b) SN: 3013	Cal Date (Cc 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 13-Dec-13 (- Check Date	n the following page t temperature (22 : ortificato No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01919) to. 217-01920) No. ES3-3013_Det No. DAE4-660_De (in house)	es and ± 3)°C ; c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b) SN: 3013 SN: 660	Cal Date (Cr 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 13-Dec-13 (13-Dec-13 (Check Date 4-Aug-99 (ir	t temperature (22 : entificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01919) to. 217-01920) No. ES3-3013_Der No. DAE4-660_De (in house) house check Apr-	es and ± 3)°C = c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power sensor E4412B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence pr ucted in the closed laboration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S55277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID	Cal Date (Cr 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 13-Dec-13 (13-Dec-13 (Check Date 4-Aug-99 (ir	n the following page t temperature (22 : ortificato No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01919) to. 217-01920) No. ES3-3013_Det No. DAE4-660_De (in house)	es and ± 3)°C = c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power sensor E4419B Power sensor E4419A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: S013 SN: 660 ID US3642U01700 US37390585	Cal Date (Cr. 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 03-Apr-14 (h 13-Dec-13 (h 13-Dec-13 (h Check Date 4-Aug-99 (h 18-Oct-01 (h	n the following page t temperature (22 : ertificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01915) to. 217-01919) to. 217-01920) No. ES3-3013_Der No. DAE4-660_De (in house) n house check Apr- n house check Apr-	es and ± 3)°C = c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name	Cal Date (Cd 03-Apr-14 (t) 13-Dec-13 (t) Check Date 4-Aug-99 (tr) 18-Oct-01 (t) Funcl	n the following page t temperature (22 : ortificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01915) to. 217-01920) No. ES3-3013_Der No. DAE4-660_De (in house) thouse check Apr- n house check Apr- n house check Apr- lion	es and ± 3)°C = c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Catibration Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14		
he measurements and the unce Il calibrations have been condu- alibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: S013 SN: 660 ID US3642U01700 US37390585	Cal Date (Cd 03-Apr-14 (t) 13-Dec-13 (t) Check Date 4-Aug-99 (tr) 18-Oct-01 (t) Funcl	n the following page t temperature (22 : ertificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01915) to. 217-01919) to. 217-01920) No. ES3-3013_Der No. DAE4-660_De (in house) n house check Apr- n house check Apr-	es and ± 3)°C = c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Catibration Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14		
he measurements and the unco Il calibrations have been condu	ertainties with confidence pr ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name	Obability are given or Y facility: environmen Cal Date (CC 03-Apr-14 (h 13-Dec-13 (h Check Date 4-Aug-99 (ir 18-Oct-01 (i Funct Labor	n the following page t temperature (22 : ortificate No.) to. 217-01911) to. 217-01911) to. 217-01915) to. 217-01915) to. 217-01920) No. ES3-3013_Der No. DAE4-660_De (in house) thouse check Apr- n house check Apr- n house check Apr- lion	es and ± 3)°C = c13) c13)	are part of the certificate. and humidity < 70%. Scheduled Catibration Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-14		

Certificate No: EX3-3881...Jul14

Page 1 of 11

Report No.: GTSE15030032004

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWIS

ų

18RP

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
i.e., $9 = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013.
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3881_Jul14

Page 2 of 11

EX3DV4 - SN:3881

July 22, 2014

Probe EX3DV4

SN:3881

Manufactured: April 30, 2012 Calibrated: July 22, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3881_Jul14

Page 3 of 11

EX3DV4- SN:3881

July 22, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	² γ ^A 0.18	0.37	0.53	± 10.1 %	
DCP (mV) ^B	96.5	100.9	101.1		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc [⊏] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	133.4	±4.1 %
		Y	0.0	0.0	1.0		131.0	
		Z	0.0	0.0	1.0		132.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage method. probability of approximately 95%.

Certificate No: EX3-3881_Jul14

Page 4 of 11

 ^A The uncertainties of NormX, Y, Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-- SN:3881

July 22, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	10.60	10.60	10.60	0.18	1.80	± 13.3 %
835	41.5	0.90	9.41	9.41	9.41	0.49	0.70	± 12.0 %
1900	40.0	1.40	8.09	8.09	8.09	0.57	0.64	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
^F At frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3881_Jul14

Page 5 of 11

EX3DV4-- SN:3881

July 22, 2014

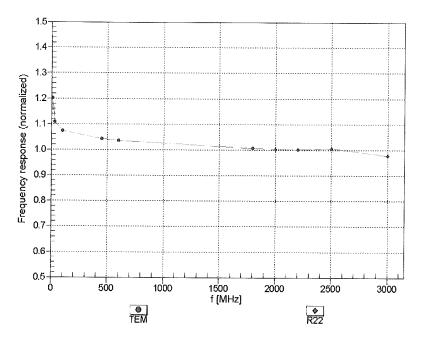
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	10.75	10.75	10.75	0.10	1.50	± 13.3 %
835	55.2	0.97	9.34	9.34	9.34	0.30	1.03	± 12.0 %
1900	53.3	1.52	8.25	8.25	8.25	0.46	1.00	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity is the respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^E At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^C Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3881_Jul14

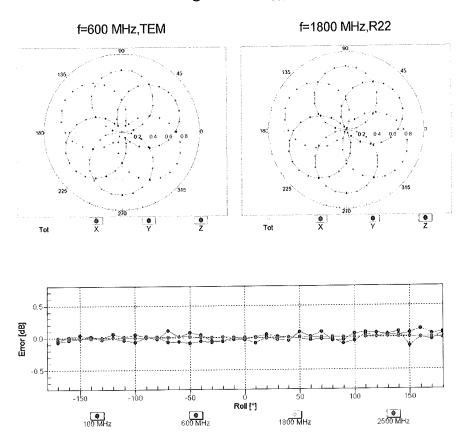

Page 6 of 11

EX3DV4-- SN:3881

July 22, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3881_Jul14

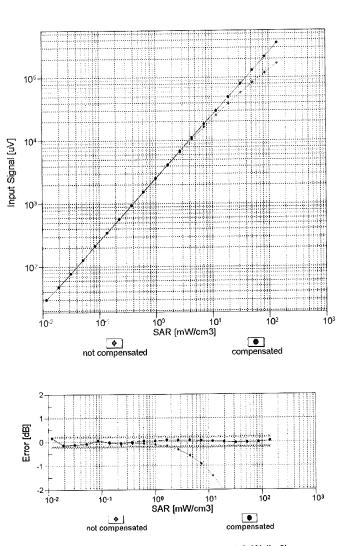
Page 7 of 11

EX3DV4-- SN:3881

July 22, 2014

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3881_Jul14

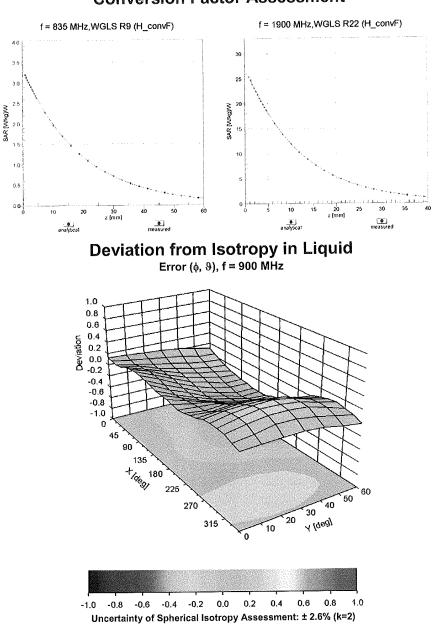
Page 8 of 11

EX3DV4- SN:3881

July 22, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3881_Jul14

Page 9 of 11

July 22, 2014

Conversion Factor Assessment

Certificate No: EX3-3881_Jul14

Page 10 of 11

EX3DV4- SN:3881

Probe Tip to Sensor Z Calibration Point

Recommended Measurement Distance from Surface

July 22, 2014

-10.2

10 mm

9 mm

1 mm

1 mm

1 mm 1.4 mm

2.5 mm

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

Other Probe Parameters Triangular Sensor Arrangement Connector Angle (°) enabled Mechanical Surface Detection Mode disabled Optical Surface Detection Mode 337 mm Probe Overall Length Probe Body Diameter Tip Length Tip Diameter Probe Tip to Sensor X Calibration Point Probe Tip to Sensor Y Calibration Point

Certificate No: EX3-3881_Jul14

Page 11 of 11

15. APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzeriend

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

364/01

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SMQ (Auden)

Certificate No: D835V2-4d141_Sep12

CALIBRATION C	ERTIFICATE		
Object	D835V2 - SN: 40	i141	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits a	bove 700 MHz
Calibration date:	September 24, 2	012	
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical robability are given on the following pages	and are part of the certificate.
All calibrations have been conduc	rted in the closed laborato	ry facility: environment temperature (22 a 2	IJ°C and humidity < 70%.
Calibration Equipment used (M&)	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Nacuq	Laboratory Technician	When Et-Dason
Approved by:	Katja Pokovic	Technical Manager	26 kg
This calibration certificate shall no	I be reproduced except in	full without written approval of the laborate	Issued: September 24, 2012

Certificate No: D835V2-4d141_Sep12

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

(ap)

S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio avizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d141_Sep12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.34 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.35 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2±6%	1.00 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR averaged over 10 cm ² (10 g) of Body TSL SAR measured	condition 250 mW input power	1.60 mW / g

Certificate No: D835V2-4d141_Sep12

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω - 2.7 jΩ
Return Loss	- 28.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω - 1.9 jΩ
Return Loss	- 34.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 27, 2012

Certificate No: D835V2-4d141_Sep12

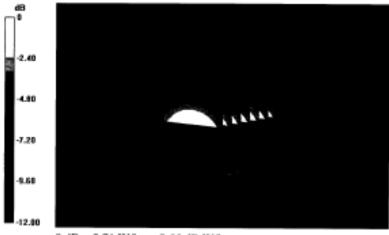
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141

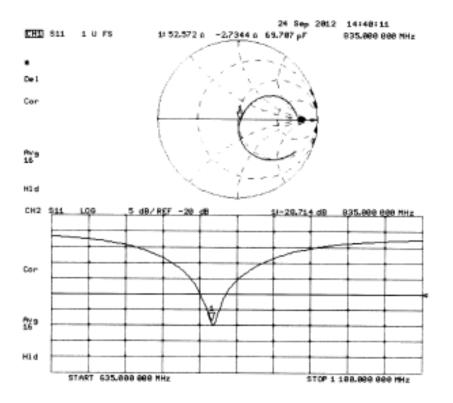

Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.647 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.447 mW/g SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.71 W/kg


0 dB = 2.71 W/kg = 8.66 dB W/kg

Certificate No: D635V2-4d141_Sep12

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d141_Sep12

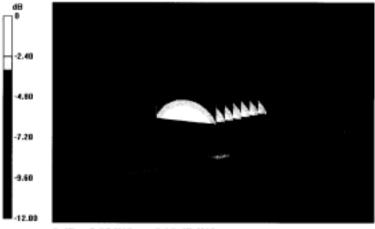
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141

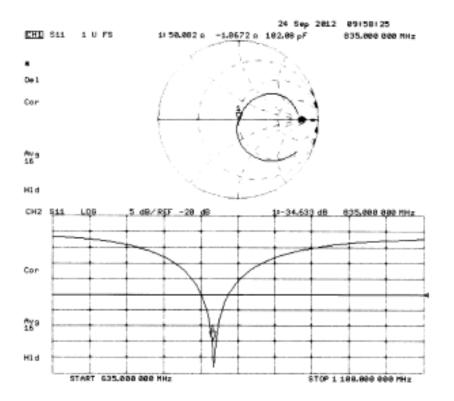

Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.345 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.541 mW/g SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.85 W/kg


0 dB = 2.85 W/kg = 9.10 dB W/kg

Certificate No: D835V2-4d141_Sep12

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d141_Sep12

Page 8 of 8

Head						
Date of	Return-Loss	Delta	Real	Delta	Imaginary	Delta
Measurement	(dB)	(%)	Impedance	(ohm)	Impedance	(ohm)
			(ohm)		(ohm)	
September	-28.7		52.6		-2.7j	
24, 2012						
September	-29.8	3.8	51.4	1.2	-2.3j	0.4j
22, 2013						
September	-29.6	3.1	51.9	0.7	-2.2 j	0.5j
20, 2014						

Justification of the extended calibration Dipole D835V2

Body						
Date of	Return-Loss	Delta	Real	Delta	Imaginary	Delta
Measurement	(dB)	(%)	Impedance	(ohm)	Impedance	(ohm)
			(ohm)		(ohm)	
September	-34.6		50.1		-1.9j	
24, 2012					-	
September	-32.7	5.5	51.2	1.1	-2.0j	0.1
22, 2013					-	
September	-32.9	4.9	50.8	0.7	-2.1j	0.2
20, 2014					-	

The return loss is < -20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

2010364/02

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 6004 Zurich, Switzerland

GNISS

ARP.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

С Servizio svizzero di taratura

s Swiss Calibration Service

Accreditation No.: SCS 108

s

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates

SMQ (Auden) Client

Certificate No: D1900V2-5d162_Sep12

CALIBRATION C	CERTIFICATI		
Object	D1900V2 - SN: 5	5d162	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits at	oove 700 MHz
Calibration date:	September 21, 2	012	
	-	ional standards, which realize the physical u robability are given on the following pages a	
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 ± 3)	°C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GEI37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-05	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	U\$37390565 \$4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Neme	Function	Signature
Calibrated by:	Israe El-Nacuq	Laboratory Technician	Wren G-Jacon
Approved by:	Katja Pokovic	Technical Manager	26th
This calibration certificate shall on	of be reproduced except in	full without written approval of the laborato	Issued: September 21, 2012
Construction of the part of the last	and a suprementation of the second of the	and the second sec	7

Certificate No: D1900V2-5d162_Sep12

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausetrasse 43, 8904 Zurich, Switzerland

s

С

Schweizerischer Kallbrierdienst Service suisse d'étaionnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d162_Sep12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.69 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.13 mW / g

SAR measured	250 mW input power	5.13 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.45 mW / g

Certificate No: D1900V2-5d162_Sep12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 4.0 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω + 5.0 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	December 20, 2011		

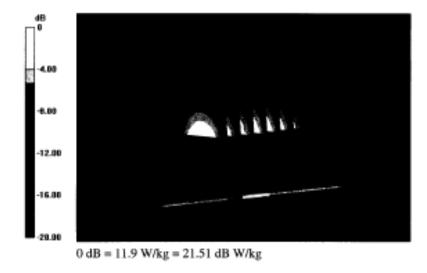
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d162

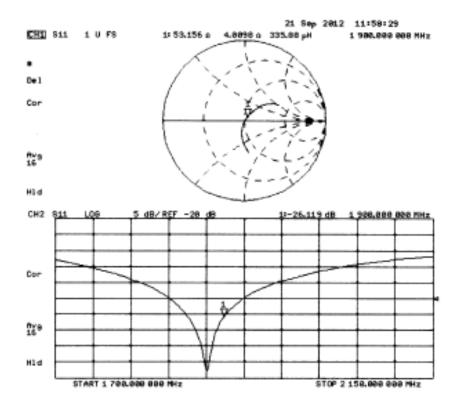

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.423 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.236 mW/g SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.13 mW/g Maximum value of SAR (measured) = 11.9 W/kg


Certificate No: D1900V2-5d162_Sep12

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d162_Sep12

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d162

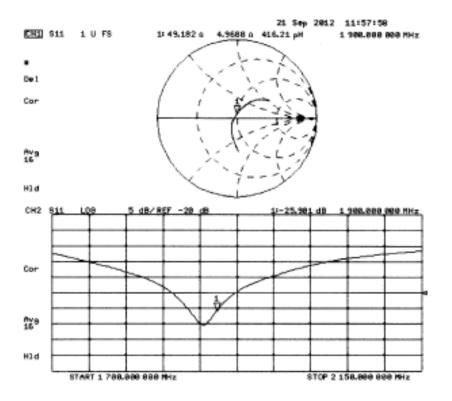
Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; v_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.423 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.979 mW/g SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.45 mW/g Maximum value of SAR (measured) = 12.9 W/kg


0 dB = 12.9 W/kg = 22.21 dB W/kg

Certificate No: D1900V2-5d162_Sep12

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d162_Sep12

Page 8 of 8

Head						
Date of	Return-Loss	Delta	Real	Delta	Imaginary	Delta
Measurement	(dB)	(%)	Impedance	(ohm)	Impedance	(ohm)
			(ohm)		(ohm)	
September	-26.1		53.2		4.0j	
21, 2012						
September	-25.1	3.8	51.6	1.6	3.1j	0.9j
20, 2013						
September	-24.8	5.0	51.9	1.3	3.5j	0.5j
18, 2014						

Justification of the extended calibration Dipole D1900V2

Body						
Date of	Return-Loss	Delta	Real	Delta	Imaginary	Delta
Measurement	(dB)	(%)	Impedance	(ohm)	Impedance	(ohm)
			(ohm)		(ohm)	
September 21, 2012	-25.9		49.2		5.0j	
September 20, 2013	-24.6	5.0	48.2	1.0	4.3j	0.7j
September 18, 2014	-24.9	3.9	47.9	1.3	4.9j	0.1j

The return loss is < -20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

APPENDIX E: DAE VALIDATION KIT REPORT(S)

T	TLS	boration with D C A G			CNAS
Add: No.51 Xu Tel: +86-10-62 E-mail: cttl@cl Client : SM	eyuan Road, Haidian 304633-2218 Fa inattl.com <u>Fh</u>	ATION LABORATORY District, Beijing, 100191, China x: +86-10-62304633-2209 tp://www.chinattLen	Certificate	No: Z15-9703	CALIBRATION No. L0570
CALIBRATION	CERTIFIC/	ATE			
Object	DAE	4 - SN: 876			
Calibration Procedure(s)	FD-2	211-2-002-01 pration Procedure for the Ex)	Data Acquisit	tion Electronics	3
Calibration date:	Marc	h 09, 2015			
humidity<70%. Calibration Equipment us	ed (M&TE critica	-	ŗ	·	
Primary Standards	1D# (Cal Date(Calibrated by, Ce	rtificate No.)	Scheduled C	alibration
Process Calibrator 753	1971018	01-July-14 (CTTL, No:J	14X02147)	July	-15
Calibrated by:	Name Yu Zongying	Function SAR Test Enginee		Signature	
Reviewed by:	Qi Dianyuan	SAR Project Leade	ar.	-2-15	?
Approved by:	Lu Bingsong	Deputy Director of	the laboratory	Ben	mp.
This calibration certificate	shall not be rep	oduced except in full with		sued: March 10 oval of the labo	-

Certificate No: Z15-97033

Page 1 of 3

Add: No.51 Xueyuan Road, Haidima District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ett@chinattl.com Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z15-97033

Page 2 of 3

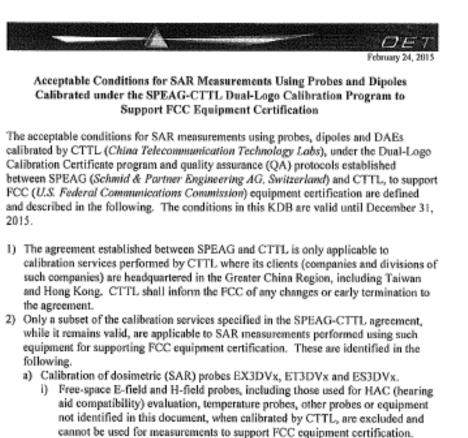
 Add: No.51 Xneyaan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.com

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec


Calibration Factors	х	Y	z
High Range	405.537 ± 0.15% (k=2)	$405.188 \pm 0.15\% \ (\text{k=2})$	$405.399 \pm 0.15\% \ (k{=}2)$
Low Range	3.99003 ± 0.7% (k=2)	3.97261 ± 0.7% (k=2)	3.99803 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	181.5° ± 1 °

Page 3 of 3

- ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or probe sensor model based linearization methods that are not fully described in SAR standards are excluded and cannot be used for measurements to support FCC equipment certification.
- b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
- c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
- d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the CTTL QA protocol (a separate attachment to this document).
- e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by CTTL. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC.
- f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB.
- The SPEAG-CTTL agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by CTTL under this SPEAG-

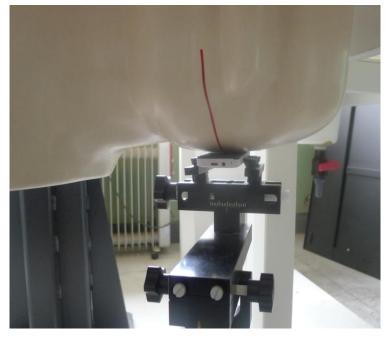
1

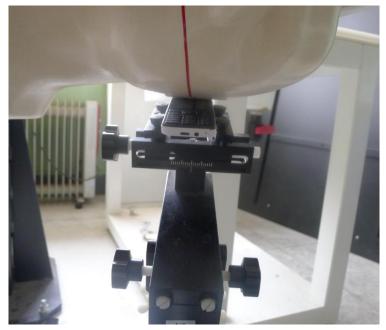
CTTL Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. CTTL shall apply the required protocols without modification and, upon request, provide copies of documentation to the FCC to substantiate program implementation.

- a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the CTTL QA protocol shall be performed between SPEAG and CTTL at least once every 12 months. The ILCE acceptance criteria defined in the CTTL QA protocol shall be satisfied for the CTTL, SPEAG and FCC agreements to remain valid.
- b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by CTTL. Written confirmation from SPEAG is required for CTTL to issue calibration certificates under the SPEAG-CTTL Dual-Logo calibration program. Quarterly reports for all calibrations performed by CTTL under the program are also issued by SPEAG.
- c) The calibration equipment and measurement system used by CTTL shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the CTTL QA protocol before each actual calibration can commence. CTTL shall maintain records of the measurement and calibration system verification results for all calibrations.
- d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit CTTL facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- A copy of this document shall be provided to CTTL clients that accept calibration services according to the SPEAG-CTTL Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval.
- CTTL shall address any questions raised by its clients or TCBs relating to the SPEAG-CTTL Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

2

16. APPENDIX F:DUT PHOTOS



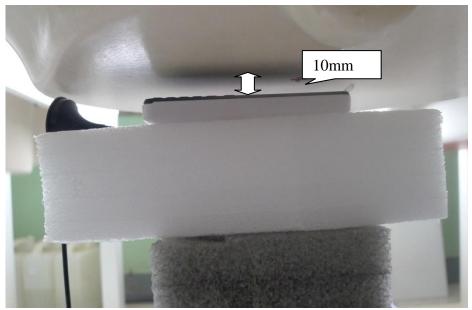


17. APPENDIX G: TEST POSITION PHOTOS

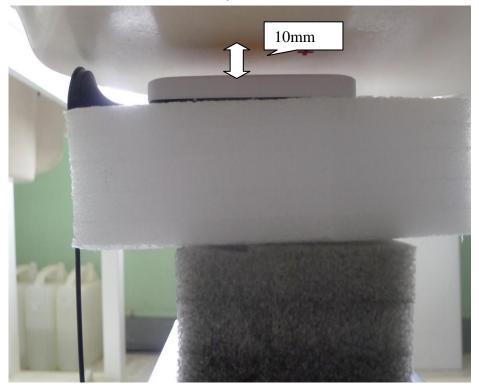
Left Cheek

Left Tilted

Right Cheek



Right Tilted



Faceup position 10mm

Facedown position 10mm

