JUDLR@! | Engineering

Simplicity

Juniper Cloud-Native Router Deployment
Guide

Published
2024-01-08

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Cloud-Native Router Deployment Guide
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

1 Introduction

Juniper Cloud-Native Router Overview | 2
Juniper Cloud-Native Router Components | 5
JCNR Deployment Modes | 10

2 Install Cloud-Native Router on Baremetal Server

Install and Verify Juniper Cloud-Native Router for Baremetal Servers | 12

Install Juniper Cloud-Native Router Using Helm Chart | 12
Verify Installation | 16
System Requirements for Baremetal Servers | 20
Customize JCNR Helm Chart for Baremetal Servers | 29
Customize JCNR Configuration | 54

3 Install Cloud-Native Router on Red Hat OpenShift

Install and Verify Juniper Cloud-Native Router for OpenShift Deployment | 63

Install Juniper Cloud-Native Router Using Helm Chart | 63
Verify Installation | 66
System Requirements for OpenShift Deployment | 73
Customize JCNR Helm Chart for OpenShift Deployment | 84

Customize JCNR Configuration | 109

4 Install Cloud-Native Router on Amazon EKS

Install and Verify Juniper Cloud-Native Router on Amazon EKS | 118

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 118
Install Juniper Cloud-Native Router Using AWS Marketplace Subscription | 121

Verify JCNR Installation on Amazon EKS | 125

System Requirements for EKS Deployment | 130
Customize JCNR Helm Chart for EKS Deployment | 137
Customize JCNR Configuration | 155

Install Cloud-Native Router on Google Cloud Platform

Install and Verify Juniper Cloud-Native Router for GCP Deployment | 164

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 164
Install Juniper Cloud-Native Router Via Google Cloud Marketplace | 167
Verify Installation | 169

System Requirements for GCP Deployment | 173

Customize JCNR Helm Chart for GCP Deployment | 183

Customize JCNR Configuration | 195

Customize JCNR Configuration (Google Cloud Marketplace) | 202

Install Cloud-Native Router on Wind River Cloud Platform

Install and Verify Juniper Cloud-Native Router for Wind River Deployment | 210

Install Juniper Cloud-Native Router Using Helm Chart | 210

Verify Installation | 213
System Requirements for Wind River Deployment | 218
Customize JCNR Helm Chart for Wind River Deployment | 226
Customize JCNR Configuration | 238

Install Cloud-Native Router on Microsoft Azure Cloud Platform

Install and Verify Juniper Cloud-Native Router for Azure Deployment | 246

Install Juniper Cloud-Native Router Using Helm Chart | 246
Verify Installation | 249
System Requirements for Azure Deployment | 254
Customize JCNR Helm Chart for Azure Deployment | 263

Customize JCNR Configuration | 274

10

11

Deploying Service Chain (cSRX) with JCNR
Deploying Service Chain (cSRX) with JCNR | 283
Manage

Manage Juniper Cloud-Native Router | 290

Troubleshoot

Troubleshoot Deployment Issues | 294

Troubleshoot Deployment Issues | 294
Appendix

Kubernetes Overview | 300
Configure Repository Credentials | 301

Juniper Technology Previews (Tech Previews) | 302

CHAPTER

Introduction

Juniper Cloud-Native Router Overview | 2
Juniper Cloud-Native Router Components | 5

JCNR Deployment Modes | 10

Juniper Cloud-Native Router Overview

IN THIS SECTION

Overview | 2
Use Cases | 2
Architecture and Key Components | 3

Features | 4

Overview

While 5G unleashes higher bandwidth, lower latency and higher capacity, it also brings in new
infrastructure challenges such as increased number of base stations or cell sites, more backhaul links
with larger capacity and more cell site routers and aggregation routers. Service providers are integrating
cloud-native infrastructure in distributed RAN (D-RAN) topologies, which are usually small, leased
spaces, with limited power, space and cooling. The disaggregation of radio access network (RAN) and
the expansion of 5G data centers into cloud hyperscalers has added newer requirements for cloud-
native routing.

The Juniper Cloud-Native Router provides the service providers the flexibility to roll out the expansion
requirements for 5G rollouts, reducing both the CapEx and OpEx.

Juniper Cloud-Native Router (JCNR) is a containerized router that combines Juniper's proven routing
technology with the Junos containerized routing protocol daemon (cRPD) as the controller and a high-
performance Contrail® Data Plane Development Kit (DPDK) vRouter forwarding plane. It is
implemented in Kubernetes and interacts seemlessly with a Kubernetes container network (CNI)
framework.

Use Cases

The Cloud-Native Router has the following use cases:
e Radio Access Network (RAN)

The new 5G-only sites are a mix of centralized RAN (C-RAN) and distributed RAN (D-RAN). The C-
RAN sites are typically large sites owned by the carrier and continue to deploy physical routers. The
D-RAN sites, on the other hand, are tens of thousands of smaller sites, closer to the users.

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Optimization of CapEx and OpEx is a huge factor for the large number of D-RAN sites. These sites
are also typically leased, with limited space, power and cooling capacities. There is limited
connectivity over leased lines for transit back to the mobile core. Juniper Cloud-Native Router is
designed to work in the constraints of a D-RAN. It is integrated with the distributed unit (DU) and
installable on an existing 1 U server.

e Telco virtual private cloud (VPC)

The 5G data centers are expanding into cloud hyperscalers to support more radio sites. The cloud-
native routing available in public cloud environments do not support the routing demands of telco
VPCs, such as MPLS, quality of service (QoS), L3 VPN, and more. The Juniper Cloud-Native Router
integrates directly into the cloud as a containerized network function (CNF), managed as a cloud-
native Kubernetes component, while providing advanced routing capabilities.

Architecture and Key Components

The Juniper Cloud-Native Router consists of the Junos containerized routing protocol Daemon (cRPD)
as the control plane (JCNR Controller), providing topology discovery, route advertisement and
forwarding information base (FIB) programming, as well as dynamic underlays and overlays. It uses the
Data Plane Development Kit (DPDK) enabled vRouter as a forwarding plane, providing packet
forwarding for DPDK applications in a pod and host path I/O for protocol sessions. The third component
is the JCNR container network interface (CNI) that interacts with Kubernetes as a secondary CNI to
create pod interfaces, assign addresses and generate the router configuration.

The Data Plane Development Kit (DPDK) is an open source set of libraries and drivers. DPDK enables
fast packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. The applications poll for packets, to avoid the
overhead of interrupts from the NIC. Integrating with DPDK allows a vRouter to process more packets
per second than is possible when the vRouter runs as a kernel module.

In this integrated solution, the JCNR Controller uses gRPC, a high performance Remote Procedure Call,
based services to exchange messages and to communicate with the vRouter, thus creating the fully
functional Cloud-Native Router. This close communication allows you to:

e Learn about fabric and workload interfaces.
e Provision DPDK- or kernel-based interfaces for Kubernetes pods as needed.
e Configure IPv4 and IPvé6 address allocation for Pods.

e Run routing protocols such as ISIS, BGP, and OSPF.

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Features

Easy deployment, removal, and upgrade on general purpose compute devices using Helm.
Higher packet forwarding performance with DPDK-based JCNR-vRouter.

Full routing, switching, and forwarding stacks in software.

Out-of-the-box software-based open radio access network (O-RAN) support.

Quick spin up with containerized deployment.

Highly scalable solution.

L3 features such as transit gateway, support for routing protocols, BFD, VRRP, VRF-Lite, EVPN
Type-5, ECMP and BGP Unnumbered.

L2 functionality, such as MAC learning, MAC aging, MAC limiting, native VLAN and L2 statistics.
L2 reachability to Radio Units (RU) for management traffic.

L2 or L3 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs.
VLAN tagging and bridge domains.

Trunk and access ports.

Support for multiple virtual functions (VF) on Ethernet NICs.

Support for bonded VF interfaces.

Configurable L2 access control lists (ACLs).

Rate limiting of egress broadcast, unknown unicast, and multicast traffic on fabric interfaces.

IPv4 and IPvé routing.

Juniper Cloud-Native Router Components

SUMMARY IN THIS SECTION
The Juniper Cloud-Native Router solution consists of JCNR Components | 5
several components including the JCNR controller, JCNR Controller | 6

JCNR vRouter and the JCNR-CNI. This topic
provides a brief overview of the components of the
Juniper Cloud-Native Router. JCNR-CNI | 8

JCNR vRouter | 7

Syslog-NG | 9

JCNR Components

The Juniper Cloud-Native Router has primarily three components—JCNR Controller control plane, the
JCNR vRouter DPDK forwarding plane and JCNR-CNI for Kubernetes integration. All JCNR components
are deployed as containers.

The Figure 1 on page 6 shows the components of the Juniper Cloud-Native Router inside a
Kubernetes cluster

Figure 1: Components of Juniper Cloud-Native Router

Linux Host running Kubernetes

DPDK Syslog-NG
App App

Pod Pod

Standalone K8s Cluster

etcd Multus Calico
CNI CNI
Control Sched Pod Pod
Plane

JCNR-CNI

JCNR JCNR JCNR

vrouter- vrouter- lelemetry

Controller Portal

agent agent-dpdk

Pod

Intel E-810
or

Intel XL710 rr*_

Data Path

e

—
e

—

jn-000367

. JCNR components TOR Switch

I JCNR Controller

The JCNR Controller is the control-plane of the cloud-native router solution that runs the Junos
containerized routing protocol Daemon (cRPD). It is implemented as a statefulset. The controller
communicates with the other elements of the cloud-native router. Configuration, policies and rules that
you set on the controller at deployment time are communicated to other components, primarily the
JCNR vRouter, for implementation.

For example, firewall filters (ACLs) are supported on the controller to configure L2 access lists with deny
rules. The controller sends the configuration information to the JCNR vRouter through the vRouter
agent.

Juniper Cloud-Native Router Controller Functionality:

e Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

Supports vRouter as the high-speed forwarding plane. This enables applications that are built using
the DPDK framework to send and receive packets directly to the application and the vRouter
without passing through the kernel.

Supports configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled vRouter.

Supports configuration of bridge domains, VLANSs, and virtual-switches.

Advertises DPDK application reachability to core network using routing protocols primarily with
BGP, IS-IS and OSPF.

Distributes L3 network reachability information of the pods inside and outside a cluster.
Maintains configuration for L2 firewall.

Passes configuration information to the vRouter through the vRouter-agent.

Stores license key information.

Works as a BGP Speaker from Release 23.2, establishing peer relationships with other BGP speakers
to exchange routing information.

Configuration Options

During deployment, you can "Customize JCNR Configuration " on page 54 .

After deployment, we recommend that you use the NETCONF protocol with PyEZ to configure the

controller. You can SSH or connect via NETCONF. Finally, you can also configure the cloud-native router

by accessing the JCNR controller CL/using Kubernetes commands.

JCNR vRouter

The JCNR vRouter is a high-performance datapath component. It is an alternative to the Linux bridge or

the Open vSwitch (OVS) module in the Linux kernel. It runs as a user-space process and is integrated
with the Data Plane Development Kit (DPDK) library. The vRouter pod consists of three containers—
vrouter-agent, vrouter-agent-dpdk and vrouter-telemetry-exporter.

JCNR vRouter Functionality:

Performs routing with Layer 3 virtual private networks.
Performs L2 forwarding.

Supports high-performance DPDK-based forwarding.

https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/index.html
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-enabling-ssh
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-connecting-to-a-netconf-server-on-container

Benefits of vRouter:

e Integration of the DPDK into the JCNR-vRouter.
e Forwarding plane provides faster forwarding capabilities than kernel-based forwarding.
e Forwarding plane is more scalable than kernel-based forwarding.
e Support for the following NICs:
¢ Intel E810 (Columbiaville) family

e Intel XL710 (Fortville) family

JCNR-CNI

JCNR-CNI is a new container network interface (CNI) developed by Juniper. JCNR-CNI is a Kubernetes
CNI plugin installed on each node to provision network interfaces for application pods. During pod
creation, Kubernetes delegates pod interface creation and configuration to JCNR-CNI. JCNR-CNI
interacts with JCNR controller and the vRouter to setup DPDK interfaces. When a pod is removed,
JCNR-CNI is invoked to de-provision the pod interface, configuration, and associated state in
Kubernetes and cloud-native router components. JCNR-CNI works as a secondary CNI, along with the
Multus CNI to add and configure pod interfaces.

JCNR-CNI Functionality:

e Manages the networking tasks in Kubernetes pods such as:
e assigning IP addresses.
e allocating MAC addresses.

o setting up untagged, access, and other interfaces between the pod and vRouter in a Kubernetes
cluster.

e creating VLAN sub-interfaces.

e creating L3 interfaces.
e Acts on pod events such as add and delete.
e Generates cRPD configuration.

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JCNR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options such as:

¢ Instantiating different kinds of pod interfaces.
o Creating virtio-based high performance interfaces for pods that leverage the DPDK data plane.

e Creating veth pair interfaces that allow pods to communicate using the Linux Kernel networking
stack.

e Creating pod interfaces in access or trunk mode.

e Attaching pod interfaces to bridge domains and virtual routers.
o Supporting IPAM plug-in for Dynamic IP address allocation.

e Allocating unique socket interfaces for virtio interfaces.

e Managing the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and vRouter in a Kubernetes cluster.

e Connecting pod interface to a network including pod-to-pod and pod-to-network.

Integrating with the vRouter for offloading packet processing.

Benefits of JCNR-CNI:

e Improved pod interface management

e Customizable administrative and monitoring capabilities

¢ Increased performance through tight integration with the controller and vRouter components

The Role of JCNR-CNI in Pod Creation:

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into the controller.

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file. Syslog-ng runs as
a daemonset.

JCNR Deployment Modes

SUMMARY IN THIS SECTION

Read this topic to know about the various modes of Deployment Modes | 10
deploying the cloud-native router.

Deployment Modes

Starting with Juniper Cloud-Native Router Release 23.2, you can deploy and operate Juniper Cloud-
Native Router in L2, L3 and L2-L3 modes, auto-derived based on the interface configuration in the
values.yanml file prior to deployment.

NOTE: In the values.yaml file:

e When all the interfaces have an interface_mode key configured, then the mode of deployment
would be L2.

e When one or more interfaces have an interface_mode key configured and some of the interfaces
do not have the interface_mode key configured, then the mode of deployment would be L2-L3.

e When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

In L2 mode, the cloud-native router behaves like a switch and therefore does not performs any routing
functions and it doesn not run any routing protocols. The pod network uses VLANSs to direct traffic to
various destinations.

In L3 mode, the cloud-native router behaves like a router and therefore performs routing functions and
runs routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod
network is divided into an IPv4 or IPvé6 underlay network and an IPv4 or IPvé6 overlay network. The
underlay network is used for control plane traffic.

The L2-L3 mode provides the functionality of both the switch and the router at the same time. It
enables JCNR to act as both a switch and a router simultaneously by performing switching in a set of
interfaces and routing in the other set of interfaces. Cell site routers in a 5G deployment need to handle
both L2 and L3 traffic. DHCP packets from radio outdoor unit (RU) is an example of L2 traffic and data
packets moving from outdoor unit (ODU) to central unit (CU) is an example of L3 traffic.

CHAPTER

Install Cloud-Native Router on
Baremetal Server

Install and Verify Juniper Cloud-Native Router for Baremetal Servers | 12
System Requirements for Baremetal Servers | 20
Customize JCNR Helm Chart for Baremetal Servers | 29

Customize JCNR Configuration | 54

Install and Verify Juniper Cloud-Native Router for
Baremetal Servers

SUMMARY IN THIS SECTION

The Juniper Cloud-Native Router (cloud-native Install Juniper Cloud-Native Router Using
router) uses the the JCNR-Controller (cRPD) to Helm Chart | 12

provide control plane capabilities and JCNR-CNI to Verify Installation | 16

provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "System Requirements for Baremetal Servers" on page 20 section to ensure the cluster
has all the required configuration.

2. Download the tarball, Juniper_Cloud_Native_Router_release-number.tgz, to the directory of your
choice. You must perform the file transfer in binary mode when transferring the file to your server,
so that the compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to Juniper_Cloud_Native_Router_release-number.

cd Juniper_Cloud_Native_Router_release-number

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_release-number.

View the contents in the current directory.

1s
contrail-tools helmchart images README.md secrets

The JCNR container images are required for deployment. You may choose one of the following
options:

a. Download and deploy images from the Juniper repository—enterprise-hub. juniper.net. Review the
"Configure Repository Credentials" on page 301 topic for instructions on how to configure
repository credentials in the deployment helm chart.

b. You can upload the JCNR images either to a local docker or to your own docker respository
using the docker load command. The images are available in the
Juniper_Cloud_Native_Router_release-number/images directory.

docker load -i images/jcnr-images.tar.gz

Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file. You must enter the password and license in base64 encoded
format.

You can view the sample contents of the jenr-secrets.yaml file below:

apiVersion: vi1
kind: Namespace
metadata:

name: jcnr
apiVersion: vi
kind: Secret
metadata:

name: jcnr-secrets

namespace: jcnr
data:

root-password: <add your password in base64 format>

crpd-license: |

<add your license in base64 format>

To encode the password, create a file with the plain text password on a single line. Then issue the
command:

base64 -w 0 rootPasswordFile

To encode the license, copy the license key into a file on your host server and issue the command:

base64 -w 0 licenseFile

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as instructed above. Without the proper baseé64-encoded license key and
root password in the jenr-secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

Apply the secrets/jcnr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize JCNR Helm Chart for Baremetal Servers" on page 29 for descriptions of the helm
chart configurations.

Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

10. Label the nodes to which JCNR mut be installed based on the nodeaffinity, if defined in the
values.yaml. For example:

kubectl label nodes ip-10.0.100.17.1lab.net keyl=jcnr --overwrite

11. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NOTE: The telemetry exporter in the cRPD pod is disabled by default. Specify the --set jenr-
cni.telemetryExporter.enable=true parameter in the helm install command to enable the cRPD
telemetry exporter deployment. To learn more about cRPD telemetry, see 7elemetry
Capabilities of Cloud-Native Router.

NAME: jcnr

LAST DEPLOYED: Fri Jun 23 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

12. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jenr default 1 2023-09-22 06:04:33.144611017 -0400 EDT

deployed jcnr-23.3.0 23.3.0

Verify Installation

This section enables you to confirm a successful JCNR deployment.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running
0 103s

contrail contrail-vrouter-masters-1qjgk 3/3 Running
0 87s

jenr kube-crpd-worker-sts-0 1/1 Running
0 103s

jenr syslog-ng-ds5qd 1/1 Running
0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running
0 4h2m

kube-system calico-node-28w98 11 Running
0 86d

kube-system coredns-54bf8d85c7-vkpgs 11 Running
0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 11 Running
0 86d

kube-system kube-apiserver-ix-esx-06 11 Running
0 86d

kube-system kube-controller-manager-ix-esx-06 11 Running
0 86d

kube-system kube-multus-ds-amd64-j169w 11 Running
0 86d

kube-system kube-proxy-gm5bl 11 Running
0 86d

kube-system kube-scheduler-ix-esx-06 11 Running

0 86d

kube-system nodelocaldns-bntfp 1/1 Running
0 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE

contrail contrail-vrouter-masters 1 1 1 1 1
<none> 90m

contrail contrail-vrouter-nodes 0 0 0 0 0
<none> 90m

jenr syslog-ng 1 1 1 1 1
<none> 90m

kube-system calico-node 1 1 1 1 1
kubernetes.io/os=1linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1
kubernetes.io/arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1
kubernetes.io/os=1linux 86d

kube-system nodelocaldns 1 1 1 1 1
kubernetes.io/os=1linux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE ~ NAME READY AGE

jenr kube-crpd-worker-sts 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations
a. View the Access cRPD CL/section for instructions to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:

License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al

License SKU: S-CRPD-10-A1-PF-5

License version: 1

Order Type: commercial

Software Serial Number: 1000098711000-iHpgf

Customer ID: Juniper Networks Inc.

License count: 15000

Features:

containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CL/section for instruction to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, MI=MAC-IP Learning Enabled, Me=Multicast
Enabled

vife/e Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vife/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2Vof Q0S:0 Ref:12
RX port packets:66 errors:0
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
RX packets:66 bytes:5116 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vifo/2 PMD: eno3vl NH: 9 MTU: 9000
Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr Q0S:-1 Ref:13 TxXVif:1
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:0 bytes:0 errors:0
TX packets:66 bytes:5116 errors:0
Drops:0

TX queue packets:66 errors:0
TX device packets:66 bytes:5116 errors:@

c. Type the exit command to exit the pod shell.

System Requirements for Baremetal Servers

IN THIS SECTION

Minimum Host System Requirements | 20
Resource Requirements | 22
Miscellaneous Requirements | 23

Port Requirements | 27

Download Options | 28

JCNR Licensing | 28

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a baremetal server.

Minimum Host System Requirements

This section lists the host system requirements for installing the cloud-native router on a baremetal

server.

Table 1: Cloud-Native Router Minimum Host System Requirements

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Table 1: Cloud-Native Router Minimum Host System Requirements (Continued)

Component

Host OS

Kernel Version

NIC

IAVF driver

ICE_COMMS

Value/Version

RedHat Enterprise Linux

Rocky Linux

RedHat Enterprise Linux
(RHEL): 4.18.X

Rocky Linux: 4.18.X

e |ntel E810 CVL with
Firmware 4.22
0x8001alcf 1.3346.0

e Intel E810 CPK with
Firmware 2.20
0x80015dc1 1.3083.0

e Intel EB10-CQDA2
with Firmware 4.20
0x80017785
1.3346.0

e |[ntel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

Version 4.8.2

Version 1.3.35.0

Notes

Version 8.4, 8.5, 8.6

8.6

The tested kernel
version for RHEL is
4.18.0-305.rt7.72.el8.x
86_64

The tested kernel
version for Rocky Linux
is
4.18.0-372.19.1.rt7.17
6.el8_6.x86_64 and
4.18.0-372.32.1.rt7.18
9.el8_6.x86_64

Table 1: Cloud-Native Router Minimum Host System Requirements (Continued)

ICE

i40e

Kubernetes (K8s)

Calico

Multus

Helm

Container-RT

Resource Requirements

Component

Value/Version Notes

Version 1.11.20.13 ICE driver is used only
with the Intel E810
NIC

Version 2.22.18.1 i40e driver is used only
with the Intel XL710
NIC

Version 1.22.x, 1.23.x, The tested K8s version

1.25x is 1.22.4. K8s version

1.22.2 also works.
JCNR supports an all-
in-one or multinode
Kubernetes cluster,
with master and
worker nodes running
on virtual machines
(VMs) or bare metal
servers (BMS).

Version 3.22.x

Version 3.8

3.9.x

Docker CE 20.10.11, crio
1.25x

This section lists the resource requirements for installing the cloud-native router on baremetal servers.

Table 2: Cloud-Native Router Resource Requirements

Resource

Data plane forwarding
cores

Service/Control Cores

UIO Driver

Hugepages (1G)

JCNR Controller cores

JCNR vRouter Agent
cores

Miscellaneous Requirements

Value

2 cores (2P +

25)

VFIO-PCI

6 Gi

Usage Notes

To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio

vfio-pci

Add GRUB_CMDLINE_LINUX_DEFAULT values in /etc/default/grub on the
host. For example: GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=64
intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Verify the hugepage is set by executing the following commands:
cat /proc/cmdline

grep -i hugepages /proc/meminfo

This section lists additional requirements for installing the cloud-native router on baremetal servers.

Table 3: Miscellaneous Requirements

Cloud-Native Router Release Miscellaneous Requirements

Enable VLAN driver at system boot using the command:

cat /etc/modules-load.d/vlan.conf
8021q

Verify by executing the command:

lsmod | grep 8021q

Enable VFIO-PCI driver at system boot.

Enable the host with SR-IOV and VT-d in the system's BIOS.

Set IOMMU and IOMMU-PT in /etc/default/grub file. For example:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=64

intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Disable Spoofcheck on VFs allocated to JCNR. For example: ip link set <interfacename> vf 1 spoofcheck off.

NOTE: Applicable for L2 deployments only.

Set trust on VFs allocated to JCNR. For example: ip link set <interfacename> vf 1 trust on

NOTE: Applicable for L2 deployments only.

Table 3: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

Additional kernel modules need to be loaded on the host before deploying JCNR in L3 mode. These modules are

usually available in 1inux-modules-extra or kernel-modules-extra packages. Run the following commands to add the
kernel modules:

cat /etc/modules-load.d/crpd.conf
tun

fou

foub

ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf

vxlan

NOTE: Applicable for L3 deployments only.

Run the ip fou add port 6635 ipproto 137 command on the Linux host to enable kernel based forwarding.

Table 3: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

NetworkManager is a tool in some operating systems to make the management of network interfaces easier.
NetworkManager may make the operation and configuration of the default interfaces easier. However, it can
interfere with the Kubernetes management and create problems.

To avoid the NetworkManager from interfering with the interface configurations, perform the following steps:
1. Create the file, /etc/NetworkManager/conf.d/crpd. conf.
2. Add the following content in the file.

[keyfile]

unmanaged-devicest=interface-name:enp#*;interface-name:ens*

NOTE: enp* indicates all interfaces starting with enp. For specific interface names, provided a comma-
separated list.

3. Restart the NetworkManager service by running the command, sudo systemctl restart NetworkManager.
4. Edit the sysctl file on the host and paste the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

5. Run the command sysctl -p /etc/sysctl.conf to load the new sysctl.conf values on the host.

6. Create the bond interface manually. For example:

ifconfig ens2f@ down

ifconfig ens2f1 down

ip link add bond@ type bond mode 802.3ad
ip link set ens2f@ master bondo

ip link set ens2f1 master bond@

ifconfig ens2f@ up ; ifconfig ens2f1 up; ifconfig bond@ up

Table 3: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 4: Cloud-Native Router Listening Ports
Protocol Port Description

TCP 8085 vRouter introspect-Used to gain
internal statistical information
about vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 9091 vRouter health check-cloud-native

router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

TCP 50052 gRPC port-JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

Table 4: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 22 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt-Publish/subscribe

messaging utility

TCP 9500 agentd on cRPD
TCP 21883 na-mqttd

TCP 50051 jsd on cRPD
TCP 51051 jsd on cRPD
UDP 50055 Syslog-NG

Download Options

To deploy JCNR on BMS you can download the helm charts from the Juniper Support Site.

JCNR Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile
Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license
agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your
Juniper Account Team. For details about managing multiple license files for multiple cloud-native router
deployments, see Juniper Agile Licensing Overview.

https://support.juniper.net/support/downloads/?p=jcnr
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading to 23.2 or newer releases.

Customize JCNR Helm Chart for Baremetal Servers

IN THIS SECTION

Helm Chart for L2 Only Deployment | 38
Helm Chart for L3 Only Deployment | 43
Helm Chart for L2-L3 Deployment | 49

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router on Baremetal Servers.

You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3 mode on a baremetal
server. You configure the deployment mode by editing the appropriate attributes in the values.yaml file
prior to deployment.

NOTE:

e In the fabricInterface key of the values.yaml file:

o When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

¢ When one or more interfaces have an interface_mode key configured along with the rest of
the interfaces not having the interface_mode key, then the mode of deployment would be
L2-L3.

e When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

Helm Chart Attributes and Descriptions

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The

configuration keys of the helm chart are shown in the table below.

Table 5: Helm Chart Attributes and Descriptions

Key

registry

repository

imagePullSecret

common

Additional Key
Configuration

registryCredentials

secretName

repository

tag

Description

Defines the docker registry for the vRouter, cRPD and jcnr-cni
container images. The default value is enterprise-hub. juniper.net.
The images provided in the tarball are tagged with the default
registry name. If you choose to host the container images to a
private registry, replace the default value with your registry URL.

(Optional) Defines the repository path for the vRouter, cRPD and
jenr-cni container images. This is a global key and takes
precedence over "repository" paths under "common" section. The

default value is jenr-container-prod/.

(Optional) Defines the registry authentication credentials. You can
configure credentials to either the Juniper repository or your
private registry.

Baseb4 representation of your Docker registry credentials. View
the "Configure Repository Credentials" on page 301 topic for more
information.

Name of the secret object that will be created.

Defines repsitory paths and tags for the vRouter, cRPD and jcnr-
cni container images. Use default unless using a private registry.

Defines the repository path. The default value is atom-docker/cn2/

bazel-build/dev/. The global repository key takes precedence if
defined.

Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key

replicas

storageClass

awsregion

nolocalSwitching

Additional Key
Configuration

Description

(Optional) Indicates the number of replicas for cRPD. If the value is
not specified, then the default value 1 is considered. The value for
this key must be specified for multi-node clusters. The value must
be equal to the number of nodes to which JCNR must be
deployed.

Not applicable for non-cloud deployments.

Not applicable for non-EKS deployments.

(Optional) Prevents interfaces in a bridge domain from transmitting
and receiving ethernet frame copies. Enter one or more comma
separated VLAN IDs to ensure that the interfaces belonging to the
VLAN IDs do not transmit frames to one another. This key is
specific for L2 and L2-L3 deployments. Enabling this key provides
the functionality on all access interfaces. For enabling the
functionality on trunk interfaces, configure the no-local-switching
key in the fabricInterface key.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key

fabriclnterface

Additional Key
Configuration

Description

Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in a
multi-node cluster.

NOTE:

e When all the interfaces have an interface_mode key configured,
then the mode of deployment would be L2.

e When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having the
interface_mode key, then the mode of deployment would be L2-
L3.

e When none of the interfaces have the interface_mode key
configured, then the mode of deployment would be L3.

For example:

L2 only

- ethi:
ddp: "auto"
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

no-local-switching: true

L3 only
- ethi:
ddp: "off"

L2L3
- ethl:
ddp: "auto"
- eth2:
ddp: "auto"

interface_mode: trunk

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

subnet

ddp

interface_mode

vlan-id-list

Description

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

no-local-switching: true

An alternative mode of input for interface names. For example:

- subnet: 10.40.1.0/24
gateway: 10.40.1.1
ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary for a
multi-node K8s cluster.

(Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at NIC for traffic like GTPU, SCTP, etc. For a bond
interface, all slave interface NICs must support DDP for the DDP
configuration to be enabled.

Setting options include auto, on, or off. The default setting is off.

NOTE: The interface level ddp takes precedence over the global ddp
configuration.

Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

Provide a list of VLAN IDs associated with the interface.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration
storm-control- Use storm-control-profile to associate appropriate storm control
profile profile for the interface. Profiles are defined under jcnr-

vrouter.stormControlProfiles.

native-vlan-id Configure native-vlan-id with any of the VLAN IDs in the vlan-id-
list to associate it with untagged data packets received on the
physical interface of a fabric trunk mode interface. For example:

fabricInterface:
- bond@:
interface_mode: trunk
vlan-id-1list: [100, 200, 300]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

no-local-switching Prevents interfaces from communicating directly with each other if
the no-local-switching statement is configured. Allowed values are
true or false.

fabricWorkloadInter (Optional) Defines the interfaces to which different workloads are

face connected. They can be software-based or hardware-based
interfaces.

log_level Defines the log severity. Available value options are: DEBUG,

INFO, WARN, and ERR.

NOTE: Leave the log_level set to the default INFO unless
instructed to change it by Juniper support.

log_path The defined directory stores various JCNR related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
The default value is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. The default value
is /var/log/jcnr/jcnr_notifications.json.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration

corePattern Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then JCNR pods will not
overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying JCNR.
You may change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all worker nodes of a
cluster.

In the example below, the node affinity label is defined as
"key1=jcnr". You must apply this label to each node where JCNR
must be deployed:

nodeAffinity:
- key: keyl
operator: In
values:

- jenr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, Notln, Exists, DoesNotExist, Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default cni path with the path in your distribution
e.g. /var/opt/cni/bin.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD

telemetry gRPC server default port of 50051.

grpcVrouterPort (Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

vRouterDeployerPo (Optional) Default value is 8081. Configure to override if the
rt default port is unavailable.
restorelnterfaces Set the value of this key to true to restore the interfaces back to

their original state in case the vRouter pod crashes or restarts.

bondInterfaceConfi (Optional) Enable bond interface configurations only for L2 or L2-
gs L3 deployments.

name Name of the bond interface.

mode Default value is 1 (Active_Backup)

slavelnterfaces Fabric interfaces to be aggregated.

primarylnterface (Optional) Define primary interface for a bond. If this key is not
configured, then the primary interface option is disabled.

mtu Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default value is 9000.

cpu_core_mask Indicates the vRouter forward core mask. If gqos is enabled, you will
need to allocate 4 CPU cores (primary and siblings).

stormControlProfile Configure the rate limit profiles for BUM traffic on fabric interfaces

s in bytes per second.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key

dpdkCommandAddit
ionalArgs

ddp

qosEnable

vrouter_dpdk_uio_d
river

agentModeType

fabricRpfCheckDisa
ble

persistConfig

Additional Key
Configuration

Description

Pass any additional dpdk cmd line parameters. The --yield_option
O is set by default and it implies the dpdk forwarding cores will not
yield the cpu cores it is assigned to. Additional common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

(Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at NIC
for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to be
enabled.

Setting options include auto, on, or off. The default setting is off.

NOTE: The interface level ddp takes precedence over the global ddp
configuration.

Set to true or false to enable or disable QoS.

NOTE: QoS is not supported on Intel X710 NIC.

The uio driver is vfio-pci.

Can be dpdk or xdp. Setting agentModeType to dpdk will bringup
dpdk datapath. Setting agentModeType to xdp uses ebpf. The
default value is dpdk.

Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR. By default RPF check is disabled.

Set this flag to true if you wish jenr-cni generated pod
configuration to persist even after uninstallation. The option must
be set only for L2 mode. The default value is false.

Sample Helm Charts

Helm Chart for L2 Only Deployment

A working L2 only helm chart sample is shown below. The configured sections are highlighted in bold:

SRR R ERHEHEHRE R R

Common Configuration (global vars)
HHHHHHHH R
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:
repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

#storageClass: gp2

Set AWS Region for AWS deployments

#awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
B
L2 only
- bond@:
interface_mode: trunk
vlan-id-list: [1110-1141]
ens2f2vo:
interface_mode: trunk
vlan-id-list: [1110-1141]
ens2f3vo:
interface_mode: trunk
vlan-id-list: [1110-1141]
ens1fovo:
interface_mode: trunk
vlan-id-list: [1110-1141]
ddp: "auto"
interface_mode: trunk

storm-control-profile: rate_limit_pf1
native-vlan-id: 1110

no-local-switching: true

B S i

L3 only

#- eth11:

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
HHHEHHHAHH R

L2L3

#- ethl:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1

native-vlan-id: 100

H OH H H

no-local-switching: true
R S S S

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- subnet: 192.168.1.0/24

gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

HHHHEHHHH AR

fabricWorkloadInterface is applicable only for Pure L2 deployments

#

fabricWorkloadInterface:

- ens1f1vo:
interface_mode: access
vlan-id-list: [1110]

HHHEHHHAHHHAHHR R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs

such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"
"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
#nodeAffinity:

#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master

operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d

#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of

8081
#vRouterDeployerPort: 8082

jenr-vrouter:

restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:
- "ens2fove"
- "ens2f1v0"
primaryInterface: "ens2fovo"
MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)

cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath.

set

agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Helm Chart for L3 Only Deployment

A working L3 only helm chart sample is shown below. The configured sections are highlighted in bold:

AR

Common Configuration (global vars)
AR AR AR
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common :
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:

repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:
repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

#storageClass: gp2

Set AWS Region for AWS deployments

#awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
B
L2 only
#- etht:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1

native-vlan-id: 100

H O oH O H H =

no-local-switching: true

#- bondo:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100
#no-local-switching: true

H OH H H

AR
L3 only
- ens2f2:

ddp: "auto"
- ensif1:

ddp: "auto"
HHHHEHRHHEHHER R

L2L3

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H OoH O H H =

no-local-switching: true
HHHEHHH R

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- subnet: 192.168.1.0/24

gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

HHHHEHHEH R
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1ve:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
AR

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFOQ"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
#nodeAffinity:

#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master

operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE

slavelnterfaces:

- "enp59s0fovo"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0
#rate_limit_pf2:
bandwidth:
level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Helm Chart for L2-L3 Deployment

A working L2-L3 helm chart sample is shown below. The configured sections are highlighted in bold:

B R R g T g e g R S g e

Common Configuration (global vars)
B S T T T s s
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:
repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used
#storageClass: gp2

Set AWS Region for AWS deployments
#awsregion: us-east-1
#nolLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
AR
L2 only
#- ethl:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H OoH O H H =

no-local-switching: true
#- bond@:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100

H OoH O H H =

#no-local-switching: true

HHHHHHHHHHHR R

L3 only

#- eth11:

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
HHHEHHHAHH

L2L3
- bondo:

interface_mode: trunk
vlan-id-list: [1110-1141]
storm-control-profile: rate_limit_pf1
ddp: "auto"

- ens2fovi:
ddp: "auto"

- enp179s0f1vo:
interface_mode: trunk
vlan-id-list: [1110-1141]

ddp: "auto"
- enp179s0fivi:
ddp: "auto"

HHHBHHHEHHEAHEAHRHR AR

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- subnet: 192.168.1.0/24

gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

R S S S

fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1v0:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
HHHEHEHE

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
#nodeAffinity:

#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master

operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d

#cni_bin_dir: /var/lib/cni/bin
grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051

#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052

#grpcVrouterPort: 50060

vRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:
- "ens2fove"
- "ens2f1vQ"
primaryInterface: "enp59s0fovo"
MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)

cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic
vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:
persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode
default value is false if not specfied
#persistConfig: true

Customize JCNR Configuration

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 55
JCNR configuration using a ConfigMap. Configuration Example | 55
Modifying the ConfigMap | 61

Troubleshooting | 61

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the
JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be available in the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory for the configuration to
be applied to the cRPD pods.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with custom
configuration. The cRPD pod must be deleted and respawned should you wish to apply the
configuration parameters any time after JCNR installation. The configuration parameters are
applied by default to any newly spawned cRPD pods. The JCNR customization via ConfigMap is
optional.

NOTE: JCNR also supports customization via node annotations for backward compatibility with
previous releases. Considering that node annotations are coupled with node names, it is highly
recommended to customize JCNR via ConfigMaps, specifically for cloud deployments. Refer to
Customize JCNR Configuration using node annotations for more information.

Configuration Example

Sample ConfigMap and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for different node labels in your cluster. An example of the jcnr-params-
configmap.yaml file is provided below:

apiVersion: vi1
kind: ConfigMap
metadata:

name: jCﬂ r-params

https://www.juniper.net/documentation/us/en/software/cloud-native-router23.2/cloud-native-router-deployment-guide/topics/concept/crpd-customization-node-annotation.html

namespace: jcnr

data:
jenrl: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4LoopbackAddr": "110.1.1.2",
"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"
}
jenr2: |
{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4lLoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"
}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the jcnr-cni-custom-config-cm. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {
unit 0 {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

}

routing-options {

router-id {{.Params.IPv4lLoopbackAddr}}
route-distinguisher-id {{.Params.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;
{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgb start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}

community udp members encapsulation:0L:13;
}
protocols {

bgp {
group jcnrbgpl {
type internal;
local-address {{.Params.IPv4LoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};

family inet-vpn {
unicast;

}

family inet6-vpn {

unicast;

}
routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be
defined as {{.Env. variable_name}}.

Complete the following steps to apply the customizations.

1. Label each node based on the keys used in the ConfigMap.

kubectl label nodes <node_namel> jcnr.juniper.net/params-profile=jcnri
kubectl label nodes <node_name2> jcnr.juniper.net/params-profile=jcnr2

2. Apply the ConfigMap to the cluster nodes using the command provided below:

kubectl apply -f jcnr-params-configmap.yaml

configmap/jcnr-params created

3. Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config-cm. tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/

#

4. Deploy the cloud-native router components, including the cRPD. Once the installation completes,
access the cRPD CL/and issue the show configuration | display set command in the cli mode to view

the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED x/ };
custom {
interfaces {

100 {
unit 0 {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}

community udp members encapsulation:@L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;

dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
}
}
}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {
interface all;
source-packet-routing {
srgh start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;
ipv6-index 3000;
}
}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}

}

cni { /* OMITTED */ };

internal { /* OMITTED */ };
3

apply-groups [custom base internal 1;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jenr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. The rendered configuration is saved in /config directory on the JCNR host as
juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to validate
the configuration and identify issues. For an AWS EKS deployment you can find the rendered config
within the cRPD pod in the /config directory.

CHAPTER

Install Cloud-Native Router on Red
Hat OpenShift

Install and Verify Juniper Cloud-Native Router for OpenShift Deployment | 63
System Requirements for OpenShift Deployment | 73
Customize JCNR Helm Chart for OpenShift Deployment | 84

Customize JCNR Configuration | 109

Install and Verify Juniper Cloud-Native Router for
OpenShift Deployment

SUMMARY IN THIS SECTION

The Juniper Cloud-Native Router (cloud-native Install Juniper Cloud-Native Router Using
router) uses the the JCNR-Controller (cRPD) to Helm Chart | 63

provide control plane capabilities and JCNR-CNI to Verify Installation | 66

provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router on
Red Hat OpenShift Container Platform (OCP).

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for OpenShift Deployment" on page 73 to ensure the cluster
has all the required configuration.

2. Download the tarball, Juniper_Cloud_Native_Router_release-number.tgz, to the directory of your
choice. You must perform the file transfer in binary mode when transferring the file to your server,
so that the compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to Juniper_Cloud_Native_Router_release-number.

cd Juniper_Cloud_Native_Router_release-number

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_release-number.

View the contents in the current directory.

1s
contrail-tools helmchart images README.md secrets

The JCNR container images are required for deployment. You may choose one of the following
options:

a. Download and deploy images from the Juniper repository—enterprise-hub. juniper.net. Review the
"Configure Repository Credentials" on page 301 topic for instructions on how to configure
repository credentials in the deployment helm chart.

b. You can upload the JCNR images to a local registry. The images are available in the
Juniper_Cloud_Native_Router_release-number/images directory.

Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file. You must enter the password and license in base64 encoded
format.

You can view the sample contents of the jenr-secrets.yaml file below:

apiVersion: vi
kind: Namespace
metadata:
name: jcnr
apiVersion: vi
kind: Secret
metadata:
name: jcnr-secrets
namespace: jcnr
data:
root-password: <add your password in base64 format>
crpd-license: |
<add your license in base64 format>

To encode the password, create a file with the plain text password on a single line. Then issue the
command:

base64 -w 0 rootPasswordFile

To encode the license, copy the license key into a file on your host server and issue the command:

base64 -w 0 licenseFile

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as instructed above. Without the proper base64-encoded license key and
root password in the jenr-secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

Apply the secrets/jcnr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

8. Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize JCNR Helm Chart for OpenShift Deployment" on page 84 for descriptions of the
helm chart configurations.

9. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

10. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Fri Sep 22 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

11. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jenr default 1 2023-09-22 06:04:33.144611017 -0400 EDT
deployed jecnr-23.3.0 23.3.0
Verify Installation

This section enables you to confirm a successful JCNR deployment.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE

contrail contrail-vrouter-nodes-

dt8sx 3/3 Running 0 16d
jenr kube-crpd-worker-

sts-0 1/1 Running 0 16d
jenr syslog-ng-

vh89p 11 Running 0
16d

openshift-cluster-node-tuning-operator tuned-

ZCCWC 11 Running

8 69d

openshift-dns dns-default-

wmchn 2/2 Running 14
69d

openshift-dns node-resolver-

dm9b7 11 Running 8

69d

openshift-image-registry image-pruner-28212480-

bpn9w 0/1 Completed 0 2d11h
openshift-image-registry image-

pruner-28213920-9jk74 0/1 Completed

0 35h

openshift-image-registry node-ca-

jbwlx 11 Running

8 69d

openshift-ingress-canary ingress-canary-

k6jgs 1/1 Running 8

69d

openshift-ingress router-default-55dff9cbc5-
kz8bg 1/1 Running 1 62d
openshift-kni-infra coredns-node-

warthog-41 2/2 Running 16
69d

openshift-kni-infra keepalived-node-

warthog-41 2/2 Running 14

69d

openshift-machine-config-operator machine-config-daemon-

w8fbh 2/2 Running 16 69d
openshift-monitoring alertmanager-

main-1 6/6 Running 7

62d

openshift-monitoring node-exporter-

rbht9 2/2 Running 15

69d

openshift-monitoring prometheus-adapter-7d77cfb894-
nx29s 1/1 Running 0 6d18h
openshift-monitoring prometheus-

k8s-1 6/6 Running 6
62d

openshift-monitoring prometheus-operator-admission-
webhook-7d4759d465-mv98x 1/1 Running 1 62d
openshift-monitoring thanos-querier-6d77dcb87-
cdpré 6/6 Running 6 62d
openshift-multus multus-additional-cni-plugins-
jbrv2 1/1 Running 8 69d
openshift-multus multus-

x2ddp 1/1 Running

8 69d

openshift-multus network-metrics-daemon-

tg528 2/2 Running 16 69d
openshift-network-diagnostics network-check-target-

mqrét 11 Running 8 69d
openshift-operator-lifecycle-manager collect-
profiles-28216020-66xqc 0/1 Completed

0 6m8s

openshift-ovn-kubernetes ovnkube-node-

d4g2s 5/5 Running 37

69d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT
READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail contrail-vrouter-masters 0 0
0 0 0

<none> 16d

contrail contrail-vrouter-nodes 2 2
2 2 2

<none> 16d

jenr syslog-ng 2 2
2 2 2

<none> 16d
openshift-cluster-node-tuning-operator tuned 5 5
5 5 5 kubernetes.io/

0s=linux 69d

openshift-dns dns-default 5 5
5 5 5 kubernetes.io/

0s=linux 69d

openshift-dns node-resolver 5 5
5 5 5 kubernetes.io/

0s=linux 69d

openshift-image-registry node-ca 5 5
5 5 5 kubernetes.io/

0s=linux 69d

openshift-ingress-canary ingress-canary 2 2
2 2 2 kubernetes.io/

0s=linux 69d

openshift-machine-api ironic-proxy 3 3
3 3 3 node-role.kubernetes.io/

master= 69d

openshift-machine-config-operator machine-config-daemon 5 5
5 5 5 kubernetes.io/

0s=linux 69d
openshift-machine-config-operator machine-config-server 3 3
3 3 3 node-role.kubernetes.io/

master= 69d

openshift-monitoring node-exporter 5 5

5 5 5 kubernetes.io/

os=linux 69d

openshift-multus multus 5 5
5 5 5 kubernetes.io/

0s=linux 69d

openshift-multus multus-additional-cni-plugins 5 5
5 5 5 kubernetes.io/

os=linux 69d

openshift-multus network-metrics-daemon 5 5
5 5 5 kubernetes.io/

0s=linux 69d

openshift-network-diagnostics network-check-target 5 5
5 5 5 beta.kubernetes.io/

os=linux 69d

openshift-ovn-kubernetes ovnkube-master 3 3
3 3 3 beta.kubernetes.io/os=linux,node-role.kubernetes.io/
master= 69d

openshift-ovn-kubernetes ovnkube-node 5 5
5 5 5 beta.kubernetes.io/

os=linux 69d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jenr kube-crpd-worker-sts 2/2 16d
openshift-monitoring alertmanager-main 2/2 69d
openshift-monitoring prometheus-k8s 2/2 69d

4. Verify if the cRPD is licensed and has the appropriate configurations
a. View the access the cRPD CL/section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:

License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al

License SKU: S-CRPD-10-A1-PF-5

License version: 1

Order Type: commercial

Software Serial Number: 1000098711000-iHpgf

Customer ID: Juniper Networks Inc.

License count: 15000

Features:

containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. lIssue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the access the vRouter CL/section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with two fabric interfaces configured, is provided below:

$ vif --list
Vrouter Interface Table
Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/o Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 QO0S:-1 Ref:3
RX port packets:864 errors:0
RX queue errors to lcore 0 0 0 00 0000000
RX packets:864 bytes:75536 errors:0
TX packets:13609 bytes:1419892 errors:0
Drops:0

vife/1 PCI: 0000:17:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:40:a6:b7:20:f0:6c IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:TcL3L2Vof Q0S:0 Ref:9
RX port packets:243886 errors:0
RX queue errors to lcore 0 0 0 00 0000000
Fabric Interface: 0000:17:00.0 Status: UP Driver: net_ice
RX packets:243886 bytes:20529529 errors:0
TX packets:243244 bytes:20010274 errors:0
Drops:2675
TX port packets:243244 errors:0

vife/2 PCI: 0000:17:00.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
Type:Physical HWaddr:40:a6:b7:20:f0:6d IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:TcL3L2Vof Q0S:0 Ref:8
RX port packets:129173 errors:0
RX queue errors to lcore 0 0 0 00 0000000
Fabric Interface: 0000:17:00.1 Status: UP Driver: net_ice
RX packets:129173 bytes:11623158 errors:0
TX packets:129204 bytes:11624377 errors:0
Drops:0
TX port packets:129204 errors:0

vife/3 PMD: ens1f@ NH: 1@ MTU: 9000

Type:Host HWaddr:40:a6:b7:a0:f0:6c IPaddr:0.0.0.0
DDP: OFF SwLB: ON

Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr Q0S:-1 Ref:11 TxXVif:1
RX device packets:242329 bytes:19965464 errors:0
RX queue packets:242329 errors:0

RX queue errors to lcore 0 0 0 00 0000000
RX packets:242329 bytes:19965464 errors:0

TX packets:241163 bytes:20324343 errors:0
Drops:0

TX queue packets:241163 errors:0

TX device packets:241163 bytes:20324343 errors:0

vife/4 PMD: ens1f1 NH: 15 MTU: 9000
Type:Host HWaddr:40:a6:b7:a0:f0:6d IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QO0S:-1 Ref:11 TxXVif:2
RX device packets:129204 bytes:11624377 errors:0
RX queue packets:129204 errors:0
RX queue errors to lcore 0 0 0 00 0000000
RX packets:129204 bytes:11624377 errors:0
TX packets:129173 bytes:11623158 errors:0
Drops:0
TX queue packets:129173 errors:0
TX device packets:129173 bytes:11623158 errors:Q

c. Type the exit command to exit the pod shell.

System Requirements for OpenShift Deployment

IN THIS SECTION

Minimum Host System Requirements | 74
Resource Requirements | 75
Miscellaneous Requirements | 78

Port Requirements | 82

Download Options | 83

JCNR Licensing | 83

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on the Red Hat OpenShift Container Platform (OCP).

Minimum Host System Requirements

This section lists the host system requirements for installing the cloud-native router on OCP.

Table 6: Cloud-Native Router Minimum Host System Requirements
Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel(R) Xeon(R)
Silver 4314 CPU @ 2.40GHz 64 core

Host OS RHCOS 4.12

Kernel Version RedHat Enterprise Linux The tested kernel version for RHEL is
(RHEL): 4.18.X 4.18.0-372.40.1.e18_6.x86_64

NIC e Intel E810 with

Firmware 4.00
0x80014411 1.3236.0

e Intel EB10-CQDA2
with Firmware
4.000x800144111.32
36.0

e |[ntel XL710 with
Firmware 9.00
0x8000cead 1.3179.0

IAVF driver Version 4.5.3.1

ICE_COMMS Version 1.3.35.0

Table 6: Cloud-Native Router Minimum Host System Requirements (Continued)

Component

ICE

i40e

OCP Version

OVN-Kubernetes CNI

Multus

Helm

Container-RT

Resource Requirements

Value/Version

Version 1.9.11.9

Version 2.18.9

4.12

Version 3.8

3.12.x

crio 1.25x

Notes

ICE driver is used only with the Intel
E810 NIC

i40e driver is used only with the Intel
XL710 NIC

The tested versions are:

Client Version:
4.12.0-202301042257.p0.g854f807.a
ssembly.stream-854f807

Kustomize Version: v4.5.7

Server Version: 4.12.0

Kubernetes Version: v1.25.4+77bec7a

This section lists the resource requirements for installing the cloud-native router.

Table 7: Cloud-Native Router Resource Requirements

Resource Value

Data plane 2 cores (2P + 2S)

forwarding cores

Service/Control 0
Cores

Usage Notes

Table 7: Cloud-Native Router Resource Requirements (Continued)

Resource Value Usage Notes

UIO Driver VFIO-PCI To enable, follow the steps below:

Create a Butane config file, 100-worker-vfiopci.bu, binding the PCI
device to the VFIO driver.

variant: openshift
version: 4.8.0
metadata:
name: 100-worker-vfiopci
labels:
machineconfiguration.openshift.io/role: worker
storage:
files:
- path: /etc/modprobe.d/vfio.conf
mode: 0644
overwrite: true
contents:
inline: |
options vfio-pci ids=10de:1eb8
- path: /etc/modules-load.d/vfio-pci.conf
mode: 0644
overwrite: true
contents:

inline: vfio-pci

Create and apply the machine config:

$ butane 100-worker-vfiopci.bu -o 100-worker-vfiopci.yaml

$ oc apply -f 100-worker-vfiopci.yaml

Table 7: Cloud-Native Router Resource Requirements (Continued)

Resource Value Usage Notes
Hugepages (1G) 6 Gi Configure hupages on the worker nodes using the following
commands:

oc create -f hugepages-tuned-boottime.yaml

cat hugepages-tuned-boottime.yaml
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: hugepages
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Boot time configuration for hugepages
include=openshift-node
[bootloader]
cmdline_openshift_node_hugepages=hugepagesz=1G hugepages=8
name: openshift-node-hugepages
recommend:
- machineConfiglabels:
machineconfiguration.openshift.io/role: "worker-hp"
priority: 30
profile: openshift-node-hugepages

oc create -f hugepages-mcp.yaml

cat hugepages-mcp.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
name: worker-hp
labels:
worker-hp: ""
spec:
machineConfigSelector:
matchExpressions:
- {key: machineconfiguration.openshift.io/role, operator:
In, values: [worker,worker-hpl}

nodeSelector:

Table 7: Cloud-Native Router Resource Requirements (Continued)

Resource Value Usage Notes

matchLabels:

node-role.kubernetes.io/worker-hp:

JCNR Controller .5
cores

JCNR vRouter Agent | .5
cores

Miscellaneous Requirements

This section lists additional requirements for installing the cloud-native router.

Table 8: Miscellaneous Requirements
Cloud-Native Router Release Miscellaneous Requirements

Enable VLAN driver at system boot using the command:

cat /etc/modules-load.d/vlan.conf
8021q

Verify by executing the command:

lsmod | grep 8021q

Enable VFIO-PCI driver at system boot

Enable the host with SR-IOV and VT-d in the system's BIOS.

Table 8: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

Set IOMMU and IOMMU-PT

Create a MachineConfig object that defined a kernel argument:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 100-worker-iommu
spec:
config:
ignition:
version: 3.2.0
kernelArguments:

- intel_iommu=on iommmu=pt

$ oc create -f 100-worker-kernel-arg-iommu.yaml

Disable Spoofcheck on VFs allocated to JCNR. For example: ip link set <interfacename> vf 1 spoofcheck off.

NOTE: Applicable only on L2 deployments.

Set trust on VFs allocated to JCNR. For example: ip link set <interfacename> vf 1 trust on

NOTE: Applicable only on L2 deployments.

Table 8: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

Additional kernel modules need to be loaded on the host before deploying JCNR in L3 mode. These modules are

usually available in 1inux-modules-extra or kernel-modules-extra packages. Run the following commands to add the
kernel modules:

cat /etc/modules-load.d/crpd.conf
tun

fou

foub

ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf

vxlan

NOTE: Applicable for L3 deployments only.

Run the ip fou add port 6635 ipproto 137 command on the Linux host to enable kernel based forwarding.

Table 8: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

NetworkManager is a tool in some operating systems to make the management of network interfaces easier.
NetworkManager may make the operation and configuration of the default interfaces easier. However, it can
interfere with the Kubernetes management and create problems.

To avoid the NetworkManager from interfering with the interface configurations, perform the following steps:
1. Create the file, /etc/NetworkManager/conf.d/crpd. conf.
2. Add the following content in the file.

[keyfile]

unmanaged-devicest=interface-name:enp#*;interface-name:ens*

NOTE: enp* indicates all interfaces starting with enp. For specific interface names, provided a comma-
separated list.

3. Restart the NetworkManager service by running the command, sudo systemctl restart NetworkManager.
4. Edit the sysctl file on the host and paste the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

5. Run the command sysctl -p /etc/sysctl.conf to load the new sysctl.conf values on the host.

6. Create the bond interface manually. For example:

ifconfig ens2f@ down

ifconfig ens2f1 down

ip link add bond@ type bond mode 802.3ad
ip link set ens2f@ master bondo

ip link set ens2f1 master bond@

ifconfig ens2f@ up ; ifconfig ens2f1 up; ifconfig bond@ up

Table 8: Miscellaneous Requirements (Continued)

Cloud-Native Router Release Miscellaneous Requirements

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 9: Cloud-Native Router Listening Ports
Protocol Port Description

TCP 8085 vRouter introspect-Used to gain
internal statistical information
about vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 9091 vRouter health check-cloud-native

router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

TCP 50052 gRPC port-JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

Table 9: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 22 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt-Publish/subscribe

messaging utility

TCP 9500 agentd on cRPD
TCP 21883 na-mqttd

TCP 50051 jsd on cRPD
TCP 51051 jsd on cRPD
UDP 50055 Syslog-NG

Download Options

To deploy JCNR on OCP you can download the helm charts from the Juniper Support Site.

JCNR Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile
Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license
agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your
Juniper Account Team. You can apply the licenses by using the CLI of the cloud-native router controller.
For details about managing multiple license files for multiple cloud-native router deployments, see
Juniper Agile Licensing Overview.

https://support.juniper.net/support/downloads/?p=jcnr
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading to 23.2 or newer releases.

Customize JCNR Helm Chart for OpenShift
Deployment

IN THIS SECTION

Helm Chart for L2 Only Deployment on Red Hat OpenShift | 93
Helm Chart for L3 Only Deployment on Red Hat OpenShift | 98
Helm Chart for L2-L3 Deployment on Red Hat OpenShift | 104

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router.

You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3 mode. You configure
the deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

NOTE:

e In the fabricInterface key of the values.yaml file:

e When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

e When one or more interfaces have an interface_mode key configured along with the rest of
the interfaces not having the interface_mode key, then the mode of deployment would be
L2-L3.

¢ When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The
configuration keys of the helm chart are shown in the table below.

Table 10: Helm Chart Attributes and Descriptions

Key Additional Key
Configuration

registry

repository

imagePullSecret

registryCredentials

secretName
common
repository
tag
replicas

storageClass

Description

Defines the docker registry where the vRouter, cRPD and jcnr-cni
container images are hosted. The default value is enterprise-
hub. juniper.net.

(Optional) Defines the repository path for the vRouter, cRPD and
jenr-cni container images. This is a global key and takes
precedence over "repository" paths under "common" section.

(Optional) Defines the registry authentication credentials. You can
configure credentials to either the Juniper repository or your
private registry.

Base64 representation of your Docker registry credentials. View
the "Configure Repository Credentials" on page 301 topic for more
information.

Name of the secret object that will be created.

Defines repsitory paths and tags for the vRouter, cRPD and jcnr-
cni container images. Use default unless using a private registry.

Defines the repository path. The default value is atom-docker/cn2/

bazel-build/dev/. The global repository key takes precedence if
defined.

Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

(Optional) Indicates the number of replicas for cRPD. If the value is
not specified, then the default value 1 is considered. The value for
this key must be specified for multi-node clusters.

Not applicable for OCP deployment.

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration
awsregion Not applicable for OCP deployment.
nolocalSwitching (Optional) Prevents interfaces in a bridge domain from transmitting

and receiving ethernet frame copies. Enter one or more comma
separated VLAN IDs to ensure that the interfaces belonging to the
VLAN IDs do not transmit frames to one another. This key is
specific for L2 and L2-L3 deployments. Enabling this key provides
the functionality on all access interfaces. For enabling the
functionality on trunk interfaces, configure the no-local-switching
key in the fabriclnterface key.

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key

fabriclnterface

Additional Key

Configuration

Description

Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface

name and the subnet are specified, then the interface name takes

precedence over subnet/gateway combination. The subnet/

gateway combination is useful when the interface names vary in a

multi-node cluster.

NOTE:

When all the interfaces have an interface_mode key configured,
then the mode of deployment would be L2.

e When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having the
interface_mode key, then the mode of deployment would be L2-

e When none of the interfaces have the interface_mode key
configured, then the mode of deployment would be L3.

For example:

L2 only

- ethi:
ddp: "auto"
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100
no-local-switching: true

- bond@:
ddp: "auto" # auto/on/off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100
#no-local-switching: true

L3 only

- ethl:

ddp: "off"

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

subnet

ddp

Description

- eth2:
ddp: "off"

L2L3

- ethi:
ddp: "auto"

- eth2:
ddp: "auto"
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100
no-local-switching: true

An alternative mode of input for interface names. For example:

- subnet: 10.40.1.0/24
gateway: 10.40.1.1
ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary for a
multi-node K8s cluster.

(Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at NIC for traffic like GTPU, SCTP, etc. For a bond
interface, all slave interface NICs must support DDP for the DDP
configuration to be enabled.

Setting options include auto, on, or off. The default setting is off.

NOTE: The subnet/interface level ddp takes precedence over the

global ddp configuration.

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

interface_mode

vlan-id-list

storm-control-
profile

native-vlan-id

no-local-switching

fabricWorkloadInter
face

log_level

Description

Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

Provide a list of VLAN IDs associated with the interface.

Use storm-control-profile to associate appropriate storm control
profile for the interface. Profiles are defined under jcnr-

vrouter.stormControlProfiles.

Configure native-vlan-id with any of the VLAN IDs in the vlan-id-
list to associate it with untagged data packets received on the
physical interface of a fabric trunk mode interface. For example:

fabricInterface:
- bond@:
interface_mode: trunk
vlan-id-list: [100, 200, 300]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

Prevents interfaces from communicating directly with each other if
the no-local-switching statement is configured. Allowed values are
true or false.

(Optional) Defines the interfaces to which different workloads are
connected. They can be software-based or hardware-based
interfaces.

Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave the log_level set to the default INFO unless
instructed to change it by Juniper support.

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key

log_path

syslog_notifications

corePattern

coreFilePath

nodeAffinity

Additional Key
Configuration

key

Description

The defined directory stores various JCNR related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
The default value is /var/log/jcnr/.

Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. The default value
is /var/log/jcnr/jcnr_notifications.json.

Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then JCNR pods will not
overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying JCNR.
You may change the value in /etc/sysctl.conf. For example,

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

(Optional) Defines labels on nodes to determine where to place
the vRouter and pods. For example:

nodeAffinity:

- key: node-role.kubernetes.io/worker
operator: Exists

- key: node-role.kubernetes.io/master

operator: DoesNotExist

NOTE: This key is a global setting.

On an OCP setup node affinity must be configured to bring up
JCNR only on worker nodes.

Key-value pair that represents a node label that must be matched
to apply the node affinity.

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key

cni_bin_dir

grpcTelemetryPort

grpcVrouterPort

vRouterDeployerPo

rt

restorelnterfaces

bondInterfaceConfi
gs

mtu

Additional Key
Configuration

operator

name

mode

slavelnterfaces

primarylnterface

Description

Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, NotlIn, Exists, DoesNotEXxist, Lt, or Gt.

(Optional) The default path is /opt/cni/bin. You can override the
default cni path with a path of your choice e.g. /var/opt/cni/bin.
For Red Hat OpenShift the default CNI path should be configured
to /var/lib/cni/bin, which is the default path on any OCP
deployment. Leaving the path variable (cni_bin_dir) empty, isn't a
viable option in OCP.

(Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

(Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

(Optional) Default value is 8081. Configure to override if the
default port is unavailable.

Set the value of this key to true to restore the interfaces back to
their original state in case the vRouter pod crashes or restarts.

(Optional) Enable bond interface configurations only for L2 or L2-
L3 deployments.

Name of the bond interface.

Default value is 1 (Active_Backup)

Fabric interfaces to be aggregated.

(Optional) Define primary interface for a bond. If this key is not
configured, then the primary interface option is disabled.

Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs).

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key

Configuration

cpu_core_mask

stormControlProfile

s
rate_limit_pf1
bandwidth
level

dpdkCommandAddit

ionalArgs

ddp

qgosEnable

Description

Indicates the vRouter forward core mask. If gqos is enabled, you will
need to allocate 4 CPU cores (primary and siblings).

Configure the rate limit profiles for BUM traffic on fabric interfaces
in bytes per second.

Pass any additional dpdk cmd line parameters. The --yield_option
0 is set by default and it implies the dpdk forwarding cores will not
yield the cpu cores it is assigned to. Additional common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

(Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at NIC
for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to be
enabled.

Setting options include auto, on, or off. The default setting is off.

NOTE: The interface level ddp takes precedence over the global ddp
configuration.

Set to true or false to enable or disable QoS.

NOTE: QoS is not supported on Intel X710 NIC.

Table 10: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration
vrouter_dpdk_uio_d The uio driver is vfio-pci.
river
agentModeType Can be dpdk or xdp. Setting agentModeType to dpdk will bringup

dpdk datapath. Setting agentModeType to xdp uses ebpf. The
default value is dpdk.

fabricRpfCheckDisa Set this flag to false to enable the RPF check on all the fabric
ble interfaces of the JNCR. By default RPF check is disabled.
persistConfig Set this flag to true if you wish jenr-cni generated pod

configuration to persist even after uninstallation. The option must
be set only for L2 mode. The default value is false.

Sample Helm Charts

Helm Chart for L2 Only Deployment on Red Hat OpenShift

A working L2 only helm chart sample is shown below. The configured sections are highlighted in bold:

AR

Common Configuration (global vars)
AR AR AR
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials

secretName - Name of the Secret object that will be created

#imagePullSecret:
#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:

repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified
#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

#storageClass: gp2

Set AWS Region for AWS deployments

#awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
HHHHHHHHHHHR R
L2 only
- bond0:
interface_mode: trunk
vlan-id-list: [1110-1141]
ens2f2ve:
interface_mode: trunk
vlan-id-list: [1110-1141]
ens2f3vo:

interface_mode: trunk
vlan-id-list: [1110-1141]

- ens1fovo:

interface_mode: trunk
vlan-id-list: [1110-1141]

ddp: "auto"

interface_mode: trunk

storm-control-profile: rate_limit_pf1

native-vlan-id: 1110

no-local-switching: true

B S i

L3 only

#- eth11:

ddp: "off"
off; default: off

#- eth2:

ddp: "off"
off; default: off

B S S S S

L2L3

#- ethi:

ddp: "auto"
off; default: off

#- eth2:

ddp: "auto"
off; default: off

interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

H H H =

native-vlan-id:

no-local-switching: true

ddp parameter

ddp parameter

ddp parameter

ddp parameter

HHHEHHHEHHERHEAHRHREH AR

Provide subnets instead of interface names

is optional;

is optional;

is optional;

is optional;

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24
gateway: 10.40.1.1

options include auto or on or

options include auto or on or

options include auto or on or

options include auto or on or

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
#- subnet: 192.168.1.0/24
gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off

B

fabricWorkloadInterface is applicable only for Pure L2 deployments

#

fabricWorkloadInterface:

- ens1f1vo:
interface_mode: access
vlan-id-list: [1110]

HHHEHHHEHHHAHHR R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
nodeAffinity:

key: node-role.kubernetes.io/worker

operator: Exists
- key: node-role.kubernetes.io/master

operator: DoesNotExist

+H=

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

+H

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slaveInterfaces:
- "ens2fovo"
- "ens2f1vQ"
primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:
rate_limit_pf1:
bandwidth:
level: 0

#rate_limit_pf2:
bandwidth:
level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Helm Chart for L3 Only Deployment on Red Hat OpenShift

A working L3 only helm chart sample is shown below. The configured sections are highlighted in bold:

AR AR AR
Common Configuration (global vars)
AR AR

global:
registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:

repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

#storageClass: gp2

Set AWS Region for AWS deployments

#awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk

You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)

Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster

fabricInterface:

HHHHHHHHHHHR R

L2 only

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1

native-vlan-id: 100

H O OHF H H =

no-local-switching: true
#- bondo:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100
#no-local-switching: true

H O OHF H H =

B
L3 only
- ens2f2:

ddp: "auto"
- ensif1:

ddp: "auto"
HHHHEHRHHE R

L2L3

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off
interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1

native-vlan-id: 100

H OH H H

no-local-switching: true
R S S S S

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- subnet: 192.168.1.0/24

gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

HHHHEHHHH R
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1ve:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFOQ"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
nodeAffinity:
- key: node-role.kubernetes.io/worker

operator: Exists
- key: node-role.kubernetes.io/master

operator: DoesNotExist

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fove"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if qos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

Helm Chart for L2-L3 Deployment on Red Hat OpenShift

A working L2-L3 helm chart sample is shown below. The configured sections are highlighted in bold:

HHHHHHHEHERAHHEHEEAHERHERHEHEHAHHEHEHHEHAHHRHHEHHEREHER R

Common Configuration (global vars)
HHHEHHHHHHHHHAHHHAHHHAR R
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcreds

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:
repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used
#storageClass: gp2

Set AWS Region for AWS deployments
#awsregion: us-east-1
#nolLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
AR
L2 only
#- ethl:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H OoH O H H =

no-local-switching: true
#- bond@:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100

H OoH O H H =

#no-local-switching: true

HHHHHHHHHHHR R

L3 only

#- eth11:

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
HHHEHHHAHH

L2L3
- bondo:

interface_mode: trunk
vlan-id-list: [1110-1141]
storm-control-profile: rate_limit_pf1
ddp: "auto"

- ens2fovi:
ddp: "auto"

- enp179s0f1vo:
interface_mode: trunk
vlan-id-list: [1110-1141]

ddp: "auto"
- enp179s0fivi:
ddp: "auto"

HHHBHHHEHHEAHEAHRHR AR

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- subnet: 192.168.1.0/24

gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

R S S S

fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1v0:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
HHHEHEHE

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly

nodeAffinity:

- key: node-role.kubernetes.io/worker
operator: Exists

- key: node-role.kubernetes.io/master

operator: DoesNotExist

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d

cni_bin_dir: /var/lib/cni/bin
grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051

#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

vRouterDeployerPort: use this parameter to override vRouter deployer port default port of

8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slavelInterfaces:
- "ens2fovo"
- "ens2f1vo"
primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)

cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.

gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Customize JCNR Configuration

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 109
JCNR configuration using a ConfigMap. Configuration Example | 110
Modifying the ConfigMap | 116

Troubleshooting | 116

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the

JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be available in the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory for the configuration to
be applied to the cRPD pods.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with custom
configuration. The cRPD pod must be deleted and respawned should you wish to apply the
configuration parameters any time after JCNR installation. The configuration parameters are
applied by default to any newly spawned cRPD pods. The JCNR customization via ConfigMap is
optional.

NOTE: JCNR also supports customization via node annotations for backward compatibility with
previous releases. Considering that node annotations are coupled with node names, it is highly
recommended to customize JCNR via ConfigMaps, specifically for cloud deployments. Refer to
Customize JCNR Configuration using node annotations for more information.

Configuration Example

Sample ConfigMap and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for different node labels in your cluster. An example of the jcnr-paranms-
configmap.yaml file is provided below:

apiVersion: vi1
kind: ConfigMap
metadata:
name: jcnr-params
namespace: jcnr
data:
jenrl: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4LoopbackAddr": "110.1.1.2",

https://www.juniper.net/documentation/us/en/software/cloud-native-router23.2/cloud-native-router-deployment-guide/topics/concept/crpd-customization-node-annotation.html

"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"

}
jenr2: |

{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4LoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"

}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the jcnr-cni-custom-config-cm. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {
unit 0 {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

}
routing-options {
router-id {{.Params.IPv4lLoopbackAddr}}
route-distinguisher-id {{.Params.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;

{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgb start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}

community udp members encapsulation:0L:13;
}
protocols {

bgp {

group jcnrbgpl {
type internal;
local-address {{.Params.IPv4LoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};
family inet-vpn {

unicast;

}
family inet6-vpn {

unicast;

}
routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be
defined as {{.Env. variable_name}}.

Complete the following steps to apply the customizations.

1. Label each node based on the keys used in the ConfigMap.

kubectl label nodes <node_namel> jcnr.juniper.net/params-profile=jcnri

kubectl label nodes <node_name2> jcnr.juniper.net/params-profile=jcnr2

2. Apply the ConfigMap to the cluster nodes using the command provided below:

kubectl apply -f jcnr-params-configmap.yaml

configmap/jcnr-params created

3. Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config-cm.tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/
#

4. Deploy the cloud-native router components, including the cRPD. Once the installation completes,
access the cRPD CL/and issue the show configuration | display set command in the cli mode to view
the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED x/ };
custom {
interfaces {

loo {
unit @ {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:0L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {
interface all;
source-packet-routing {
srgh start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;
ipv6-index 3000;
}
}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}
}

3

cni { /% OMITTED %/ };

internal { /x OMITTED */ };
}

apply-groups [custom base internal J;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jcnr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}3}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. The rendered configuration is saved in /config directory on the JCNR host as
juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to validate
the configuration and identify issues. For an AWS EKS deployment you can find the rendered config
within the cRPD pod in the /config directory.

CHAPTER

Install Cloud-Native Router on
Amazon EKS

Install and Verify Juniper Cloud-Native Router on Amazon EKS | 118
System Requirements for EKS Deployment | 130
Customize JCNR Helm Chart for EKS Deployment | 137

Customize JCNR Configuration | 155

Install and Verify Juniper Cloud-Native Router on
Amazon EKS

IN THIS SECTION

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 118
Install Juniper Cloud-Native Router Using AWS Marketplace Subscription | 121

Verify JCNR Installation on Amazon EKS | 125

The Juniper Cloud-Native Router uses the the JCNR-Controller (cRPD) to provide control plane
capabilities and JCNR-CNI to provide a container network interface. Juniper Cloud-Native Router uses
the DPDK-enabled vRouter to provide high-performance data plane capabilities and Syslog-NG to
provide notification functions. This section explains how you can install these components of the Cloud-
Native Router.

Install Juniper Cloud-Native Router Using Juniper Support Site Package

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for EKS Deployment" on page 130 to ensure the setup has all
the required configuration.

2. Download the tarball, Juniper_Cloud_Native_Router_ <release-number>.tgz, to the directory of
your choice. You must perform the file transfer in binary mode when transferring the file to your
server, so that the compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_ <release-number>.tgz.

tar xzvf Juniper_Cloud_Native_Router_<release-number>.tgz

4. Change directory to Juniper_Cloud_Native_Router_ <release-number>.

cd Juniper_Cloud_Native_Router_<release-number>

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_ <release-number>.

View the contents in the current directory.

1s
contrail-tools helmcharts images README.md secrets

Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file. You must enter the password and license in base64 encoded

format.

You can view the sample contents of the jcnr-secrets.yaml file below:

apiVersion: vi
kind: Namespace
metadata:
name: jcnr
apiVersion: vi1
kind: Secret
metadata:
name: jcnr-secrets
namespace: jcnr
data:
root-password: <add your password in base64 format>
crpd-license: |
<add your license in base64 format>

To encode the password, create a file with the plain text password on a single line. Then issue the

command:

base64 -w 0 rootPasswordFile

To encode the license, copy the license key into a file on your host server and issue the command:

base64 -w 0 licenseFile

10.

11.

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as instructed above. Without the proper baseé64-encoded license key and
root password in the jenr-secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

Apply the secrets/jcnr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

Create the "JCNR ConfigMap" on page 134 if using the Virtual Router Redundancy Protocol (VRRP)
for your JCNR cluster. A sample jcnr-aws-config.yaml manifest is provided in cRPD_examples directory in
the installation bundle. Apply the jcnr-aws-config.yaml to the Kubernetes system.

kubectl apply -f jcnr-aws-config.yaml

configmap/jcnr-aws-config created

Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize JCNR Helm Chart for EKS Deployment" on page 137 for descriptions of the helm
chart configurations and a sample helm chart for EKS deployment.

Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

Install Multus CNI using the following command:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/master/config/
multus/v3.7.2-eksbuild.1/aws-k8s-multus.yaml

Install the Amazon Elastic Block Storage (EBS) Container Storage Interface (CSI) driver.

12. Label the nodes to which JCNR must be installed based on the nodeAffinity defined in the values.yaml.
For example:
kubectl label nodes ip-10.0.100.17.us-east-2.compute.internal keyl=jcnr --overwrite

13. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Fri Sep 22 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

14. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

jenr default 1 2023-09-22 06:04:33.144611017 -0400 EDT
deployed jcnr-23.3.0 23.3.0

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for EKS Deployment" on page 130 to ensure the setup has all
the required configuration.

2. Configure AWS credentials using the command: aws configure.
3. Authenticate to the Amazon ECR repo.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-
stdin 709825985650.dkr.ecr.us-east-1.amazonaws.com

aws ecr get-login-password --region us-east-1 | helm registry login --username AWS --
password-stdin 709825985650.dkr.ecr.us-east-1.amazonaws.com

4. Download the helm package from the ECR repo.
helm pull oci://709825985650.dkr.ecr.us-east-1.amazonaws.com/juniper-networks/jcnr --
version 23.3.0

5. Expand the file jenr-23.3.0.tgz.

tar xzvf jcnr-23.3.0.tgz

6. Change directory to jenr.

cd jenr

NOTE: All remaining steps in the installation assume that your current working directory is
now jcnr.

7. View the contents in the current directory.

1s

Chart.yaml charts cRPD_examples values.yaml

8. Create a jenr_secrets.yaml file to define the root password for your host server and your Juniper
Cloud-Native Router license. You must enter the password and license in base64 encoded format.

You can view the sample contents of the jenr-secrets.yaml file below:

apiVersion: vi1

kind: Namespace
metadata:
name: jcnr
apiVersion: vi1
kind: Secret
metadata:
name: jcnr-secrets
namespace: jcnr
data:
root-password: <add your password in base64 format>
crpd-license: |

<add your license in base64 format>

The manifest creates the jenr namespace, a jenr-secrets secret with the root password and cRPD
license.

To encode the password, create a file with the plain text password on a single line. Then issue the
command:

base64 -w 0 rootPasswordFile

To encode the license, copy the license key onto your host server and issue the command:

base64 -w 0 licenseFile

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE:
jenr-secrets.yamljcnr-secrets.yaml

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

10.

11.

12.

13.
14.

15.

Apply the jenr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

Create the "JCNR ConfigMap" on page 134 if using the Virtual Router Redundancy Protocol (VRRP)
for your JCNR cluster. Apply the jcnr-aws-config.yaml to the Kubernetes system.

kubectl apply -f jcnr-aws-config.yaml

configmap/jcnr-aws-config created

Customize the helm chart for your deployment using the values.yaml file.

See, "Customize JCNR Helm Chart for EKS Deployment" on page 137 for descriptions of the helm
chart configurations and a sample helm chart for EKS deployment.

Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

Install the Amazon EBS CSI driver.

Label the nodes to which JCNR must be installed based on the nodeAffinity defined in the values.yaml.
For example:

kubectl label nodes ip-10.0.100.17.us-east-2.compute.internal keyl=jcnr --overwrite

Deploy the Juniper Cloud-Native Router using the helm chart.

Run the following command:

helm install jcnr .

NAME: jcnr

LAST DEPLOYED: Fri Sep 22 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

16. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME
STATUS
jenr

deployed

Verify JCNR Installation on Amazon EKS

NAMESPACE REVISION UPDATED
CHART APP VERSION

default 1 2023-09-22 06:04:33.144611017 -0400 EDT
jenr-23.3.0 23.3.0

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command. The output of the

kubectl command shows all of the pods in the Kubernetes cluster in all namespaces. Successful

deployment means that all pods are in the running state. In this example we have marked the Juniper

Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE
RESTARTS

contrail-deploy

13d
contrail
13d

jenr

13d

jenr

13d
kube-system
15d
kube-system
15d

NAME

AGE

contrail-k8s-deployer-5b6c9656d5-nw9t9

contrail-vrouter-nodes-wmr26

kube-crpd-worker-sts-3

syslog-ng-tct27

aws-node-k8hx1

ebs-csi-node-c8rbh

READY

11

3/3

11

11

11

3/3

STATUS

Running

Running

Running

Running

Running

Running

1 (15d ago)

3 (15d ago)

kube-system kube-multus-ds-8nzhs
13d
kube-system

15d

kube-proxy-h669c

1/1 Running 1 (13d ago)

1/1 Running 1 (15d ago)

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command. Use the kubectl get ds -A
command to get a list of daemonsets. The JCNR daemonsets are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED
NODE SELECTOR AGE

contrail contrail-vrouter-masters 0
<none> 13d

contrail contrail-vrouter-nodes 1
<none> 13d

jenr syslog-ng 1
<none> 13d

kube-system aws-node 8
<none> 15d

kube-system ebs-csi-node 8
kubernetes.io/os=1linux 15d

kube-system ebs-csi-node-windows 0
kubernetes.io/os=windows 15d

kube-system kube-multus-ds 8
<none> 13d

kube-system kube-proxy 8
<none> 15d

3. Verify the JCNR statefulsets by issuing the kubectl get
provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE

jenr

NAME

kube-crpd-worker-sts

READY
1/1

AGE
27m

CURRENT ~ READY UP-TO-DATE AVAILABLE
0 0 0 0
1 1 1 1
1 1 1 1
8 8 8 8
8 8 8 8
0 0 0 0
8 8 8 8
8 8 8 8

statefulsets -A command. The command output

4. Verify if the cRPD is licensed and has the appropriate configurations.

a. View the Access the cRPD CL/section for instructions to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:

License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al

License SKU: S-CRPD-10-A1-PF-5

License version: 1

Order Type: commercial

Software Serial Number: 1000098711000-iHpgf

Customer ID: Juniper Networks Inc.

License count: 15000

Features:

containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration.

a. View the Access the vRouter CL/section for instructions on how to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, MI=MAC-IP Learning Enabled, Me=Multicast
Enabled

vife/e Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 00 0000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vife/1 PCI: 0000:00:07.0 (Speed 1000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:0e:d0:2a:58:46:4f IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2 Q0S:0@ Ref:8
RX device packets:20476 bytes:859992 errors:0
RX port packets:20476 errors:0
RX queue errors to lcore 0 0 0 00 0000000
Fabric Interface: 0000:00:07.0 Status: UP Driver: net_ena
RX packets:20476 bytes:859992 errors:0
TX packets:2 bytes:180 errors:0
Drops:0
TX port packets:2 errors:Q

TX device packets:8 bytes:740 errors:0

vife/2 PCI: 0000:00:08.0 (Speed 1000, Duplex 1) NH: 7 MTU: 9000
Type:Physical HWaddr:0e:6a:9e:04:da:6f IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2 Q0S:0@ Ref:8
RX device packets:20476 bytes:859992 errors:0
RX port packets:20476 errors:0
RX queue errors to lcore 2 0 0 0 0 0 000000

Fabric Interface: 0000:00:08.0 Status: UP Driver: net_ena
RX packets:20476 bytes:859992 errors:0

TX packets:2 bytes:180 errors:0

Drops:0

TX port packets:2 errors:0

TX device packets:8 bytes:740 errors:0

vifo/3 PMD: eth2 NH: 10 MTU: 9000
Type:Host HWaddr:0e:d0:2a:58:46:4f IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr Q0S:-1 Ref:11 TxXVif:1
RX device packets:2 bytes:180 errors:0
RX queue packets:2 errors:0
RX queue errors to lcore 0 0 0 00 0000000
RX packets:2 bytes:180 errors:0
TX packets:20476 bytes:859992 errors:0
Drops:0
TX queue packets:20476 errors:0
TX device packets:20476 bytes:859992 errors:0

vife/4 PMD: eth3 NH: 15 MTU: 9000
Type:Host HWaddr:0@e:6a:9e:04:da:6f IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QO0S:-1 Ref:11 TxXVif:2
RX device packets:2 bytes:180 errors:0
RX queue packets:2 errors:0
RX queue errors to lcore 0 0 0 00 0000000
RX packets:2 bytes:180 errors:0
TX packets:20476 bytes:859992 errors:0
Drops:0
TX queue packets:20476 errors:0
TX device packets:20476 bytes:859992 errors:0

c. Type exit to exit from the pod shell.

System Requirements for EKS Deployment

IN THIS SECTION

Minimum Host System Requirements | 130
Resource Requirements | 131
Miscellaneous Requirements | 132

JCNR ConfigMap for VRRP | 134

Port Requirements | 135

Download Options | 137

JCNR Licensing | 137

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Amazon Elastic Kubernetes Service (EKS).

Minimum Host System Requirements

This section lists the host system requirements for installing the cloud-native router.

Table 11: Cloud-Native Router Minimum Host System Requirements

Component Value/Version
EKS Deployment Self-managed Nodes
Host OS Amazon Linux 2
EKS version 1.25.12
Instance Type Any instance type with ena adapters

Kernel Version The tested kernel version is 5.15.0-1040-aws

Table 11: Cloud-Native Router Minimum Host System Requirements (Continued)

Component Value/Version
NIC Elastic Network Adapter (ENA)
Kubernetes (K8s) 1.26.3, 1.28.x
AWS CLI version 2.11.9
VPC CNI v1.14.0-eksbuild.3
Multus 3.7.2

(kubectl apply -f https://
raw.githubusercontent.com/aws/amazon-vpc-cni-
k8s/master/config/multus/v3.7.2-eksbuild.1/
aws-k8s-multus.yaml)

Helm 3.11

Container-RT containterd

Resource Requirements

This section lists the resource requirements for installing the cloud-native router.

Table 12: Cloud-Native Router Resource Requirements

Resource Value Usage Notes
Data plane 2 cores (2P +
forwarding cores 2S)

Service/Control Cores | O

Table 12: Cloud-Native Router Resource Requirements (Continued)

Resource Value
UIO Driver VFIO-PCI
Hugepages (1G) 6 Gi
JCNR Controller .5

cores

JCNR vRouter Agent .5
cores

Usage Notes

To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio

vfio-pci
Enable Unsafe IOMMU mode
echo Y > /sys/module/vfio_iommu_typel/parameter/

allow_unsafe_interrupts

echo Y > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Add GRUB_CMDLINE_LINUX_DEFAULT values in /etc/default/grub on the
host. For example: GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=8
intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Verify the hugepage is set by executing the following commands:
cat /proc/cmdline

grep -i hugepages /proc/meminfo

Miscellaneous Requirements

This section lists additional requirements for installing the cloud-native router.

Table 13: Miscellaneous Requirements

Cloud-Native Router Release Miscellaneous Requirements

Disable source/destination checks on the AWS Elastic Network Interfaces (ENI) interfaces attached to JCNR.
JCNR being a transit router, is neither the source nor the destination of any traffic that it receives.

Attach the AmazonEBSCSIDriverPolicy IAM policy to the role assigned to the EKS cluster.

Set IOMMU and IOMMU-PT in /etc/default/grub file. For example:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=8
intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Additional kernel modules need to be loaded on the host before deploying JCNR in L3 mode. These modules are
usually available in linux-modules-extra or kernel-modules-extra packages. Add each of following kernel modules

on a separate line to /etc/modules-load.d/crpd. conf to load the modules at boot:

cat /etc/modules-load.d/crpd.conf
tun

fou

fou6

ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf

vxlan

NOTE: Applicable for L3 deployments only.

Table 13: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

JCNR ConfigMap for VRRP

You can enable Virtual Router Redundancy Protocol (VRRP) for your JCNR cluster.

You must create a JCNR ConfigMap to define the behavior of VRRP for your JCNR cluster in an EKS
deployment. Considering that AWS VPC supports exactly one next-hop for a prefix, the ConfigMap
defines how the VRRP mastership status is used to copy prefixes from routing tables in JCNR to specific
routing tables in AWS. An example jcnr-aws-config.yaml manifest is provided:

apiVersion: v1
kind: ConfigMap
metadata:
name: jcnr-aws-config
namespace: jcnr
data:
aws-rttable-map.json: |

[

"jcnr-table-name": "default-rt.inet.0",
"jenr-policy-name": "default-rt-to-aws-export",
"jcnr-nexthop-interface-name":"eth4",

"vpc-table-tag":"jcnr-aws-vpc-internal-table"

"jcnr-table-name": "default-rt.inet6.0",
"jenr-policy-name": "default-rt-to-aws-export",
"jcnr-nexthop-interface-name":"eth4",

"vpc-table-tag":"jcnr-aws-vpc-internal-table"

The table provided below describes the ConfigMap elements:

Table 14: JCNR ConfigMap Elements

Element

jenr-table-name

jenr-policy-name

jenr-nexthop-interface-name

vpc-table-tag

Description

The routing table in JCNR from which prefixes should
be copied.

A routing policy in JCNR that imports the prefixes in
the named routing table to copy to the AWS routing
table.

Name of the JCNR interface which should be used as
the next-hop by the AWS routing table when this
instance of the JCNR is VRRP master.

A freeform tag applied to the routing table in AWS to
which the prefixes should be copied.

The jenr-aws-config.yaml must be applied to the Kubernetes system before JCNR installation. The JCNR
CNI deployer renders the cRPD configuration based on the ConfigMap.

NOTE: When not using VRRP, you must provide an empty list as the data for aws-rttable-map. json.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port

requirements for the cloud-native router.

Table 15: Cloud-Native Router Listening Ports

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

ubP

Port

8085

8072

9091

50052

8081

22

830

666

1883

9500

21883

50051

51051

50055

Description

vRouter introspect-Used to gain
internal statistical information
about vRouter

Telemetry Information-Used to see
telemetry data from JCNR control
plane

vRouter health check-cloud-native
router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

gRPC port-JCNR listens on both
IPv4 and IPv6

JCNR Deployer Port

cRPD SSH

cRPD NETCONF

rpd

Mosquito mqtt-Publish/subscribe
messaging utility

agentd on cRPD

na-mqttd

jsd on cRPD

jsd on cRPD

Syslog-NG

Download Options

To deploy JCNR on an EKS cluster you can either download the helm charts from the Juniper Support
Site or subscribe via the AWS Marketplace.

NOTE:
https://enterprise.hub. juniper.net

JCNR Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile
Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license
agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your
Juniper Account Team. You can apply the licenses by using the CLI of the cloud-native router controller.
For details about managing multiple license files for multiple cloud-native router deployments, see
Juniper Agile Licensing Overview.

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading to 23.2 or newer releases.

Customize JCNR Helm Chart for EKS Deployment

IN THIS SECTION

Helm Chart for Amazon EKS Deployment (Subscription via Juniper Support Site) | 144
Helm Chart for EKS Deployment (Subscription via AWS Marketplace) | 150

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on Amazon EKS.

https://support.juniper.net/support/downloads/?p=jcnr
https://support.juniper.net/support/downloads/?p=jcnr
https://aws.amazon.com/marketplace/pp/prodview-3n2m4cm4oidb2
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

You can deploy and operate Juniper Cloud-Native Router in the L3 mode on Amazon EKS. You configure

the deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Attributes and Descriptions

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The

configuration keys of the helm chart are shown in the table below.

Table 16: Helm Chart Attributes and Descriptions

Key

registry

repository

imagePullSecret

common

Additional Key
Configuration

registryCredentials

secretName

Description

Defines the docker registry for the vRouter, cRPD and jcnr-cni
container images.

The default value is set to:

e Juniper Enterprise Hub for helm charts downloaded from the
Juniper Support Site.

e Amazon Elastic Container Registry (ECR) for helm charts
downloaded from the AWS marketplace.

Defines the repository path for the vRouter, cRPD and jcnr-cni
container images. This is a global key and takes precedence over
"repository" paths under "common" section. The default value is:

e jcnr-container-prod/ for Juniper Support package.

e juniper-networks for AWS Marketplace subscriptions.

Defines the registry authentication credentials. View the
"Configure Repository Credentials" on page 301 topic for more
information.

Base64 representation of your Docker registry credentials.

Name of the secret object that will be created.

Defines repository paths and tags for the vRouter, cRPD and jcnr-
cni container images. Use default.

Table 16: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration
repository
tag

replicas

storageClass

awsregion

nolocalSwitching

Description

Defines the repository path. The global repository key takes
precedence if defined.

The default value is set to:

e atom-docker/cn2/bazel-build/dev/ for Juniper Support package.

e juniper-networks for AWS Marketplace subscriptions.

Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

(Optional) Indicates the number of cRPD replicas deployed on the
worker nodes in a multi-node cluster. If the value is not specified,
the default value 1 is considered. The value for this key must be
specified for multi-node clusters and must match the number of
nodes to which JCNR must be deployed.

Indicates the name of the storage class for cRPD. Must be
specified as gp2 for EKS deployments.

Defines the AWS region for the EKS deployment.

Not applicable for EKS deployments.

Table 16: Helm Chart Attributes and Descriptions (Continued)

Key

fabriclnterface

Additional Key
Configuration

subnet

ddp

interface_mode

vlan-id-list

Description

Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in a
multi-node cluster.

NOTE: Use the L3 only section to configure fabric interfaces for
Amazon EKS. The L2 only and L2-L3 sections are not applicable
for EKS deployments.

For example:

L3 only
- ethi:

ddp: "off"
- eth2:

ddp: "off"

An alternative mode of input for interface names. For example:

- subnet: 10.40.1.0/24
gateway: 10.40.1.1
ddp: "off"

With the subnet mode of input, interfaces are auto-detected in
each subnet. Specify either subnet/gateway or the interface name.
Do not configure both. The subnet/gateway form of input is

particularly helpful in environments where the interface names
vary for a multi-node K8s cluster.

Not applicable for EKS deployments.

Not applicable for EKS deployments.

Not applicable for EKS deployments.

Table 16: Helm Chart Attributes and Descriptions (Continued)

Key

fabricWorkloadInter
face

log_level

log_path

syslog_notifications

corePattern

coreFilePath

Additional Key
Configuration

storm-control-
profile

native-vlan-id

no-local-switching

Description

Not applicable for EKS deployments.

Not applicable for EKS deployments.

Not applicable for EKS deployments.

Not applicable for EKS deployments.

Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave the log_level set to the default INFO unless
instructed to change it by Juniper support.

The defined directory stores various JCNR related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
The default value is /var/log/jcnr/.

Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. The default value
is /var/log/jcnr/jcnr_notifications.json.

Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then JCNR pods will not
overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying JCNR.
You may change the value in /etc/sysctl.conf. For example,

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

Table 16: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration
nodeAffinity
key
operator
cni_bin_dir
grpcTelemetryPort
grpcVrouterPort

vRouterDeployerPo
rt

Description

(Optional) Defines labels on nodes to determine where to place
the vRouter pods. By default the vRouter pods are deployed to all
worker nodes of a cluster.

In the example below, the node affinity label is defined as
"keyl1=jcnr". You must apply this label to each node where JCNR
must be deployed:

nodeAffinity:
- key: keyl
operator: In
values:

- jenr

NOTE: This key is a global setting.

Key-value pair that represents a node label that must be matched
to apply the node affinity.

Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, Notln, Exists, DoesNotExist, Lt, or Gt.

(Optional) The default path is /opt/cni/bin. You can override the
default cni path with a path used by your distribution
e.g. /var/opt/cni/bin.

(Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

(Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

(Optional) Default value is 8081. Configure to override if the
default port is unavailable.

Table 16: Helm Chart Attributes and Descriptions (Continued)

Key

restorelnterfaces

bondinterfaceConfi
gs

mtu

cpu_core_mask

stormControlProfile
s

dpdkCommandAddit
ionalArgs

ddp

qgosEnable

vrouter_dpdk_uio_d
river

agentModeType

Additional Key
Configuration

Description

Recommend to set the value of this key to true to restore the
interfaces back to their original state in case the vRouter pod
crashes or restarts.

Not applicable for EKS deployments.

Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default value is 9000.

Indicates the vRouter forward core mask. If qos is enabled, you will
need to allocate 4 CPU cores. Use the cores not used by the host
OS in your EC2 instance.

Not applicable for EKS deployments.

Pass any additional dpdk cmd line parameters. The --yield_option
0 is set by default and it implies the dpdk forwarding cores will not
yield the cpu cores it is assigned to. Additional common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

Not applicable for EKS deployments.

Set to false for EKS deployments.

The uio driver is vfio-pci.

Can be dpdk or xdp. Setting agentModeType to dpdk will bringup
dpdk datapath. Setting agentModeType to xdp uses ebpf. The
default value is dpdk.

Table 16: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description

Configuration
fabricRpfCheckDisa Set this flag to false to enable the RPF check on all the fabric
ble interfaces of the JNCR. By default RPF check is disabled.
persistConfig Set this flag to true if you wish jenr-cni generated pod

configuration to persist even after uninstallation. The option must
be set only for L2 mode. The default value is false.

NOTE: For Amazon EKS, you need to additionally update the dpdkCommandAdditionalArgs key and set
tx and rx descriptors to 256. For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 256 --dpdk_rxd_sz 256"

Sample Helm Charts

Sample EKS JCNR helm charts are provided below:

Helm Chart for Amazon EKS Deployment (Subscription via Juniper
Support Site)

A working Amazon EKS L3 helm chart sample is shown below. The configured sections are highlighted in
bold:

B R g T g e g R S g i

Common Configuration (global vars)
HHHEHHHHHHHHHAHHHAHHHH AR
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:

repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

replicas: “2”

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

storageClass: gp2

Set AWS Region for AWS deployments

awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
AR
L2 only
#- ethl:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

native-vlan-id: 100

H OH H H

no-local-switching: true
#- eth2:
ddp: "auto"
off; default: off
interface_mode: trunk
vlan-id-list: [700]

native-vlan-id: 100

H O OHF H H =

no-local-switching: true
#- bondo:

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1

ddp parameter is optional; options include auto or on or

storm-control-profile: rate_limit_pf1

ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or

off; default: off
interface_mode: trunk

#native-vlan-id: 100
#no-local-switching: true

H O OHF H H =

B S i

L3 only

#- ethl1:

ddp: "off"
off; default: off

#- eth2:

ddp: "off"

off; default: off
HHHEHHHAHHAR

L2L3

#- ethi:

ddp: "auto"
off; default: off

#- eth2:

ddp: "auto"
off; default: off

interface_mode: trunk

native-vlan-id: 100

H H H R

no-local-switching: true

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1

ddp parameter

ddp parameter

ddp parameter

ddp parameter

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

is optional;

is optional;

is optional;

is optional;

options include auto or on or

options include auto or on or

options include auto or on or

options include auto or on or

FHHHHHEH AR

Provide subnets instead of interface names
Interfaces will be auto-detected in each subnet
Only one of the interfaces or subnet range must
be configured. This form of input is particularly
helpful when the interface names vary in a multi-node
K8s cluster
- subnet: 10.0.3.0/24
gateway: 10.0.3.1
ddp: "off"
- subnet: 10.0.5.0/24
gateway: 10.0.5.1
ddp: "off"

HHHHEHHHH AR
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1ve:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified
coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
nodeAffinity:
- key: keyl

operator: In

values:

- jenr

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restoreInterfaces: true

Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fove"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)

mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Helm Chart for EKS Deployment (Subscription via AWS Marketplace)

A working Amazon EKS L3 helm chart sample is shown below. The configured sections are highlighted in
bold:

AR AR

Common Configuration (global vars)
AR AR AR
global:

registry: 709825985650.dkr.ecr.us-east-1.amazonaws.com/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: juniper-networks/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common :
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:
repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

replicas: “2”

storageClass: Name of the storage class for cRPD. This option is must for

cloud deployments such as AWS where gp2 can be used

storageClass: gp2

Set AWS Region for AWS deployments
awsregion: us-east-1
#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
HHHHHHHHHHHR AR
L2 only
#- ethi:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1

native-vlan-id: 100

H O OHF H H =

no-local-switching: true

#- bondo:

ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

#native-vlan-id: 100

#no-local-switching: true

AR

L3 only

#- eth11:

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

B S S S S

L2L3

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H OoH O H H =

no-local-switching: true
HHHEHHH R

Provide subnets instead of interface names
Interfaces will be auto-detected in each subnet
Only one of the interfaces or subnet range must
be configured. This form of input is particularly
helpful when the interface names vary in a multi-node
K8s cluster
- subnet: 10.0.3.0/24
gateway: 10.0.3.1
ddp: "off"
- subnet: 10.0.5.0/24
gateway: 10.0.5.1
ddp: "off"

R S S S
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1v0:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
HHHEHHHAHHHAHHR R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
nodeAffinity:
- key: key1

operator: In

values:

- jenr

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restoreInterfaces: true

Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fovo"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if qos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Customize JCNR Configuration

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 155
JCNR configuration using a ConfigMap. Configuration Example | 156
Modifying the ConfigMap | 162

Troubleshooting | 162

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the
JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be available in the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory for the configuration to
be applied to the cRPD pods.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with custom
configuration. The cRPD pod must be deleted and respawned should you wish to apply the
configuration parameters any time after JCNR installation. The configuration parameters are
applied by default to any newly spawned cRPD pods. The JCNR customization via ConfigMap is
optional.

NOTE: JCNR also supports customization via node annotations for backward compatibility with
previous releases. Considering that node annotations are coupled with node names, it is highly
recommended to customize JCNR via ConfigMaps, specifically for cloud deployments. Refer to
Customize JCNR Configuration using node annotations for more information.

Configuration Example

Sample ConfigMap and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for different node labels in your cluster. An example of the jcnr-params-
configmap.yaml file is provided below:

apiVersion: v
kind: ConfigMap
metadata:
name: jcnr-params
namespace: jcnr
data:
jenrl: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4LoopbackAddr": "110.1.1.2",
"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",

https://www.juniper.net/documentation/us/en/software/cloud-native-router23.2/cloud-native-router-deployment-guide/topics/concept/crpd-customization-node-annotation.html

"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"

}
jenr2: |

{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4LoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"

}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go

template. An example of the jcnr-cni-custom-config-cm. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {
unit 0 {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

3
routing-options {
router-id {{.Params.IPv4lLoopbackAddr}}

route-distinguisher-id {{.Params.IPv4LoopbackAddr}}

}
protocols {
isis {

interface all;

{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}

source-packet-routing {

srgb start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}

community udp members encapsulation:0L:13;
}
protocols {

bgp {

group jcnrbgpl {
type internal;
local-address {{.Params.IPv4LoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};
family inet-vpn {

unicast;

}
family inet6-vpn {

unicast;

}
routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be

defined as {{.Env. variable_name}}.

Complete the following steps to apply the customizations.

1. Label each node based on the keys used in the ConfigMap.

kubectl label nodes <node_namel> jcnr.juniper.net/params-profile=jcnri

kubectl label nodes <node_name2> jcnr.juniper.net/params-profile=jcnr2

2. Apply the ConfigMap to the cluster nodes using the command provided below:

kubectl apply -f jcnr-params-configmap.yaml

configmap/jcnr-params created

3. Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config-cm.tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/
#

4. Deploy the cloud-native router components, including the cRPD. Once the installation completes,
access the cRPD CL/and issue the show configuration | display set command in the cli mode to view
the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED x/ };
custom {
interfaces {

loo {
unit @ {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:0L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {
interface all;
source-packet-routing {
srgh start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;
ipv6-index 3000;
}
}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}
}

3

cni { /% OMITTED %/ };

internal { /x OMITTED */ };
}

apply-groups [custom base internal J;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jcnr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}3}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. The rendered configuration is saved in /config directory on the JCNR host as
juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to validate
the configuration and identify issues. For an AWS EKS deployment you can find the rendered config
within the cRPD pod in the /config directory.

CHAPTER

Install Cloud-Native Router on Google
Cloud Platform

Install and Verify Juniper Cloud-Native Router for GCP Deployment | 164
System Requirements for GCP Deployment | 173

Customize JCNR Helm Chart for GCP Deployment | 183

Customize JCNR Configuration | 195

Customize JCNR Configuration (Google Cloud Marketplace) | 202

Install and Verify Juniper Cloud-Native Router for
GCP Deployment

SUMMARY IN THIS SECTION
The Juniper Cloud-Native Router (cloud-native Install Juniper Cloud-Native Router Using
router) uses the the JCNR-Controller (cRPD) to Juniper Support Site Package | 164

provide control plane capabilities and JCNR-CNI to Install Juniper Cloud-Native Router Via
provide a container network interface. Juniper Google Cloud Marketplace | 167
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install

these components of the Cloud-Native Router.

Verify Installation | 169

Install Juniper Cloud-Native Router Using Juniper Support Site Package

Read this section to learn the steps required to load the cloud-native router image components using
Helm charts.

1. Review the "System Requirements for GCP Deployment" on page 173 section to ensure the setup
has all the required configuration.

2. Download the JCNR helm charts, Juniper_Cloud_Native_Router_release-number.tgz, to the
directory of your choice. You must perform the file transfer in binary mode when transferring the
file to your server, so that the compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to Juniper_Cloud_Native_Router_release-number.

cd Juniper_Cloud_Native_Router_release-number

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_release-number.

View the contents in the current directory.

1s
contrail-tools helmchart images README.md secrets

Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file. You must enter the password and license in base64 encoded

format.

You can view the sample contents of the jcnr-secrets.yaml file below:

apiVersion: vi
kind: Namespace
metadata:
name: jcnr
apiVersion: vi1
kind: Secret
metadata:
name: jcnr-secrets
namespace: jcnr
data:
root-password: <add your password in base64 format>
crpd-license: |
<add your license in base64 format>

To encode the password, create a file with the plain text password on a single line. Then issue the

command:

base64 -w 0 rootPasswordFile

To encode the license, copy the license key into a file on your host server and issue the command:

base64 -w 0 licenseFile

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as instructed above. Without the proper baseé64-encoded license key and
root password in the jenr-secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

Apply the secrets/jcnr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

7. Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize JCNR Helm Chart for GCP Deployment" on page 183 for descriptions of the helm
chart configurations and a sample helm chart for GCP deployment..

8. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

9. Label the nodes to which JCNR must be installed based on the nodeaffinity defined in the values.yaml.
For example:

kubectl label nodes ip-10.0.100.17.lab.net keyl=jcnr --overwrite

10. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Fri Sep 22 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

11. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

jenr default 1 2023-09-22 06:04:33.144611017 -0400 EDT
deployed jecnr-23.3.0 23.3.0

Install Juniper Cloud-Native Router Via Google Cloud Marketplace

Read this section to learn the steps required to deploy the cloud-native router.

1. Launch the Juniper Cloud-Native Router (PAYG) deployment wizard from the Google Cloud
Marketplace.

2. The table below lists the settings to be configured:

Settings Value

Deployment name Name of your deployment.

(Continued)

Settings

Zone

Series

Machine Type

SSH-Keys

JCNR License

cRPD Config Template

cRPD Config Map

Boot disk type

Boot disk size in GB

Value

GCP zone.

N2

n2-standard-32 (32 vCPU, 16 core, 128 GB)

SSH key pair for Compute Engine virtual machine
(VM) instances.

Base64 encoded license key.

To encode the license, copy the license key into a file
on your host server and issue the command:

base64 -w 0 licenseFile

Copy and paste the base64 encoded license key in
the JCNR license field.

Create a config template to customize JCNR
configuration. See, "Customize JCNR Configuration
(Google Cloud Marketplace)" on page 202 for sample
cRPD template. The config template must be saved in
the GCP bucket as an object. Provide the gsutil URI
for the object in the cRPD Config Template field.

Create a config template to customize JCNR
configuration. See, "Customize JCNR Configuration
(Google Cloud Marketplace)" on page 202 for sample
cRPD config map. The config template must be saved
in the GCP bucket as an object. Provide the gsutil
URI for the object in the cRPD Config Map field.

Standard Persistent Disk

50

(Continued)

Settings Value

Network Interfaces Define additional network interface. An interface in
the VPC network is available by default.

3. Review the "System Requirements for GCP Deployment" on page 173 section for additional
minimum system requirements. Please note that the settings are pre-configured for the JCNR
deployment via Google Cloud Marketplace.

4. Click Deploy to complete the JCNR deployment.

5. Once deployed, you can customize the JCNR helm chart. Review the "Customize JCNR Helm Chart
for GCP Deployment" on page 183 topic for more information. Once configured issue the helm upgrade
command to deploy the customizations.

helm upgrade jcnr .

Release "jcnr" has been upgraded. Happy Helming!
NAME: jcnr

LAST DEPLOYED: Thu Dec 21 03:58:28 2023
NAMESPACE: default

STATUS: deployed

REVISION: 2

TEST SUITE: None

Verify Installation

This section enables you to confirm a successful JCNR deployment.
1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running

0 103s
contrail contrail-vrouter-masters-1qjgk 3/3 Running
0 87s
jenr kube-crpd-worker-sts-0 1/1 Running
0 103s
jenr syslog-ng-ds5qd 1/1 Running
0 103s
kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running
0 4h2m
kube-system calico-node-28w98 1/1 Running
0 86d
kube-system coredns-54bf8d85c7-vkpgs 1/1 Running
0 3h8m
kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running
0 86d
kube-system kube-apiserver-ix-esx-06 1/1 Running
0 86d
kube-system kube-controller-manager-ix-esx-06 1/1 Running
0 86d
kube-system kube-multus-ds-amd64-3j169w 1/1 Running
0 86d
kube-system kube-proxy-gm5bl 1/1 Running
0 86d
kube-system kube-scheduler-ix-esx-06 1/1 Running
0 86d
kube-system nodelocaldns-bntfp 1/1 Running
0 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE

contrail contrail-vrouter-masters 1 1 1 1 1

<none> 90m

contrail contrail-vrouter-nodes 0 0 0 0 0

<none> 90m

jenr syslog-ng 1 1 1 1 1

<none> 90m
kube-system calico-node 1 1 1 1 1
kubernetes.io/os=1linux 86d
kube-system kube-multus-ds-amd64 1 1 1 1 1
kubernetes.io/arch=amd64 86d
kube-system kube-proxy 1 1 1 1 1
kubernetes.io/os=1linux 86d
kube-system nodelocaldns 1 1 1 1 1
kubernetes.io/os=1linux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE ~ NAME READY AGE

jenr kube-crpd-worker-sts 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations
a. View the Access cRPD CL/section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al
License SKU: S-CRPD-10-A1-PF-5
License version: 1
Order Type: commercial
Software Serial Number: 1000098711000-iHpgf
Customer ID: Juniper Networks Inc.
License count: 15000

C.

d.

Features:
containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a.

b.

View the Access vRouter CL/section to access the vRouter CLI.

Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HosL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, MI=MAC-IP Learning Enabled, Me=Multicast
Enabled

vife/e Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 000000000

RX packets:0 bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vife/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2Vof Q0S:0 Ref:12
RX port packets:66 errors:@
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
RX packets:66 bytes:5116 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vifo/2 PMD: eno3vl NH: 9 MTU: 9000
Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr Q0S:-1 Ref:13 TxXVif:1
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:0 bytes:0 errors:0
TX packets:66 bytes:5116 errors:0
Drops:0
TX queue packets:66 errors:0
TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for GCP Deployment

IN THIS SECTION

Minimum Host System Requirements | 174
Resource Requirements | 175
Miscellaneous Requirements | 177

Port Requirements | 181

Download Options | 182
JCNR Licensing | 182

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Google Cloud Platform (GCP).

Minimum Host System Requirements

This section lists the host system requirements for installing the cloud-native router.

NOTE: The settings below are pre-configured when you deploy JCNR via the Google Cloud
Marketplace.

Table 17: Cloud-Native Router Minimum Host System Requirements

Component Value/Version Notes
GCP Deployment VM-based
Instance Type n2-standard-16
CPU Intel x86 The tested CPU is Intel

Cascade Lake

Host OS Rocky Linux 8.8 (Green Obsidian)

Kernel Version Rocky Linux: 4.18.X The tested kernel version is
4.18.0-477.15.1.el8_8.clou
d.x86_64

NIC VirtlO NIC

Table 17: Cloud-Native Router Minimum Host System Requirements (Continued)

Component Value/Version
Kubernetes (K8s) Version 1.25.x
Calico Version 3.25.1
Multus Version 4.0
Helm 3.9.x
Container-RT containerd

Resource Requirements

Notes

The tested K8s version is
1.25.5.

The K8s version for Google
Cloud Marketplace JCNR
subscription is v1.27.5.

This section lists the resource requirements for installing the cloud-native router.

Table 18: Cloud-Native Router Resource Requirements

Resource Value

Data plane forwarding cores 2 cores

Service/Control Cores 0

Usage Notes

Table 18: Cloud-Native Router Resource Requirements (Continued)

Resource

UIO Driver

Hugepages (1G)

JCNR Controller cores

Value

VFIO-PCI

6 Gi

Usage Notes

To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio

vfio-pci
Enable Unsafe IOMMU mode

echo Y > /sys/module/
vfio_iommu_typel/parameter/
allow_unsafe_interrupts
echo Y > /sys/module/vfio/
parameters/

enable_unsafe_noiommu_mode

Add GRUB_CMDLINE_LINUX_DEFAULT
values in /etc/default/grub and
reboot the host. For example:

GRUB_CMDLINE_LINUX_DEFAULT="consol
e=ttyl console=ttyS@
default_hugepagesz=1G
hugepagesz=1G hugepages=64

intel_iommu=on iommu=pt"

Update grub and reboot the host.
For example:

grub2-mkconfig -o /boot/grub2/
grub.cfg

Verify the hugepage is set by
executing the following commands:

cat /proc/cmdline

grep -i hugepages /proc/meminfo

Table 18: Cloud-Native Router Resource Requirements (Continued)
Resource Value Usage Notes

JCNR vRouter Agent cores 5

Miscellaneous Requirements

This section lists additional requirements for installing the cloud-native router.

Table 19: Miscellaneous Requirements
Cloud-Native Router Release Miscellaneous Requirements

Set IOMMU and IOMMU-PT in /etc/default/grub file. For example:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=64
intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Table 19: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

Additional kernel modules need to be loaded on the host before deploying JCNR in L3 mode. These modules are
usually available in 1inux-modules-extra or kernel-modules-extra packages. Run the following commands to add the
kernel modules:

cat /etc/modules-load.d/crpd.conf
tun

fou

foub

ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf

vxlan

NOTE: Applicable for L3 deployments only.

Run the ip fou add port 6635 ipproto 137 command on the Linux host to enable kernel based forwarding.

Enable IP Forwarding for VMs in GCP. Use one of the two methods to enable it:

1. Specify it as an option while creating the VM. For example:

gcloud compute instances create instance-name --can-ip-forward

2. For an exisiting VM, enable IP forwarding by updating the compute instance via a file. For example:

gcloud compute instances export transit-jcnr@l --project jcnr-ci-admin --zone us-westl-a --
destination=instance_file_1

Edit the instance file to set the value canIpForward=true.
Update the compute instance from the file:

gcloud compute instances update-from-file transit-jcnr@1 --project jcnr-ci-admin --zone us-westl-a --
source=instance_file_1 --most-disruptive-allowed-action ALLOWED_ACTION

Table 19: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

Enable Multi-IP subnet on Guest OS:

gcloud compute images create debian-9-multi-ip-subnet \
--source-disk debian-9-disk \
--source-disk-zone us-westl-a \
--guest-os-features MULTI_IP_SUBNET

Add firewall rules for loopback address for VPC.

Configure the VPC firewall rule to allow ingress traffic with source filters set to the subnet range to which JCNR
is attached, along with the IP ranges or addresses for the loopback addresses.

For example:

Navigate to Firewall policies on the GCP console and create a firewall rule with the following attributes:
1. Name: Name of the firewall rule

2. Network: Choose the VPC network

3. Priority: 1000

4. Direction: Ingress

5. Action on Match: Allow

6. Source filters: 10.2.0.0/24,2.51.2.0/23, 2.51.1.0/24, 2.2.2.2/32, 3.3.3.3/32

7. Protocols: all

8. Enforcement: Enabled

where 10.2.0.0/24 is the subnet to which JCNR is attached and 2.51.2.0/24, 2.51.1.0/24, 2.2.2.2/32, 3.3.3.3/32
are loopback IP ranges.

JCNR supports only IPv4 for GCP.

JCNR deployment on GCP supports only N8-standard for VM deployments. The N16-standard is not supported.

Table 19: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

NetworkManager is a tool in some operating systems to make the management of network interfaces easier.
NetworkManager may make the operation and configuration of the default interfaces easier. However, it can
interfere with the Kubernetes management and create problems.

To avoid the NetworkManager from interfering with the interface configurations, perform the following steps:
1. Create the file, /etc/NetworkManager/conf.d/crpd. conf.
2. Add the following content in the file.

[keyfile]

unmanaged-devicest=interface-name:enp#*;interface-name:ens*

NOTE: enp* indicates all interfaces starting with enp. For specific interface names, provided a comma-
separated list.

3. Restart the NetworkManager service by running the command, sudo systemctl restart NetworkManager.
4. Edit the sysctl file on the host and paste the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

5. Run the command sysctl -p /etc/sysctl.conf to load the new sysctl.conf values on the host.

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 20: Cloud-Native Router Listening Ports

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Port

8085

8072

9091

50052

8081

22

830

666

1883

9500

21883

50051

51051

Description

vRouter introspect-Used to gain
internal statistical information
about vRouter

Telemetry Information-Used to see
telemetry data from JCNR control
plane

vRouter health check-cloud-native
router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

gRPC port-JCNR listens on both
IPv4 and IPv6

JCNR Deployer Port

cRPD SSH

cRPD NETCONF

rpd

Mosquito mqtt-Publish/subscribe
messaging utility

agentd on cRPD

na-mqttd

jsd on cRPD

jsd on cRPD

Table 20: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

UDP 50055 Syslog-NG

Download Options

To deploy JCNR on GCP you can either download the helm charts from the Juniper Support Site or
subscribe via the Google Cloud Marketplace.

NOTE:
https://enterprise.hub. juniper.net

JCNR Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile

Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license

agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your

Juniper Account Team. You can apply the licenses by using the CLI of the cloud-native router controller.

For details about managing multiple license files for multiple cloud-native router deployments, see
Juniper Agile Licensing Overview.

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading to 23.2 or newer releases.

https://support.juniper.net/support/downloads/?p=jcnr
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

Customize JCNR Helm Chart for GCP Deployment

IN THIS SECTION

Helm Chart Attributes and Descriptions | 183
Sample Helm Charts | 189
Helm Chart for GCP Deployment | 189

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on GCP.

You can deploy and operate Juniper Cloud-Native Router in L3 mode on GCP. You configure the
deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Attributes and Descriptions

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The
configuration keys of the heml chart are shown in the table below.

Table 21: Helm Chart Attributes and Descriptions

Key Additional Key Description
Configuration

registry Defines the docker registry where the vRouter, cRPD and jcnr-cni
container images are hosted. The default value is set to Juniper
Enterprise Hub.

repository Defines the repository path for the vRouter, cRPD and jenr-cni
container images. This is a global key and takes precedence over
"repository" paths under "common" section. The default value is

jenr-container-prod/

Table 21: Helm Chart Attributes and Descriptions (Continued)

Key

imagePullSecret

common

replicas

storageClass

awsregion

nolocalSwitching

Additional Key
Configuration

registryCredentials

secretName

repository

tag

Description

(Optional) Defines the registry authentication credentials. You can
configure credentials to either the Juniper repository or your
private registry. View the "Configure Repository Credentials" on
page 301 topic for more information.

Baseb64 representation of your Docker registry credentials.

Name of the Secret object that will be created.

Defines repository paths and tags for the vRouter, cRPD and jcnr-
cni container images.

Defines the repository path. The global repository key takes
precedence if defined.

The default value is set to atom-docker/cn2/bazel-build/dev/.

Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

(Optional) Indicates the number of replicas for cRPD. If the value is
not specified, then the default value 1 is considered.

The value for this key must be specified for multi-node clusters
and must match the number of nodes to which JCNR must be
deployed.

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Table 21: Helm Chart Attributes and Descriptions (Continued)

Key

fabriclnterface

Additional Key
Configuration

subnet

ddp

interface_mode

vlan-id-list

Description

Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in a
multi-node cluster.

NOTE: Use the L3 only section to configure fabric interfaces for
GCP. The L2 only and L2-L3 sections are not applicable for GCP
deployments.

For example:

L3 only
- ethi:

ddp: "off"
- eth2:

ddp: "off"

An alternative mode of input for interface names. For example:

- subnet: 10.40.1.0/24
gateway: 10.40.1.1
ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary for a
multi-node K8s cluster.

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Table 21: Helm Chart Attributes and Descriptions (Continued)

Key

fabricWorkloadInter
face

log_level

log_path

syslog_notifications

corePattern

coreFilePath

Additional Key
Configuration

storm-control-
profile

native-vlan-id

no-local-switching

Description

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Not applicable for GCP deployments.

Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave the log_level set to INFO unless instructed to change
it by Juniper support.

The defined directory stores various JCNR related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.

Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format.

Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then JCNR pods will not
overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying JCNR.
You may change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_lkp_%i_%s_%h_%t.gz

Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

Table 21: Helm Chart Attributes and Descriptions (Continued)

Key

nodeAffinity

cni_bin_dir

grpcTelemetryPort

grpcVrouterPort

restorelnterfaces

vRouterDeployerPo
rt

Additional Key

Configuration

key

operator

Description

(Optional) Defines labels on nodes to determine where to place
the vRouter pods. By default the vRouter pods are deployed to all
worker nodes of a cluster.

In the example below, the node affinity label is defined as
"keyl1=jcnr". You must apply this label to each node where JCNR
must be deployed:

nodeAffinity:

- key: keyl
operator: In
values:

- jenr

NOTE: This key is a global setting.

Key-value pair that represents a node label that must be matched
to apply the node affinity.

Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, Notln, Exists, DoesNotExist, Lt, or Gt.

(Optional) The default path is /opt/cni/bin. You can override the
default cni path with a path of used by your distribution
e.g. /var/opt/cni/bin.

(Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

(Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

Set the value of this key to true to restore the interfaces back to
their original state in case the vRouter pod crashes or restarts.

(Optional) Default value is 8081. Configure to override if the
default port is unavailable.

Table 21: Helm Chart Attributes and Descriptions (Continued)

Key

bondInterfaceConfi
gs

mtu

cpu_core_mask

stormControlProfile
s

dpdkCommandAddit
ionalArgs

ddp

qosEnable

vrouter_dpdk_uio_d
river

agentModeType

fabricRpfCheckDisa
ble

Additional Key
Configuration

Description

Not applicable for GCP deployments.

Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default value is 9000.

Indicates the vRouter forward core mask. If qos is enabled, you will
need to allocate 4 CPU cores (primary and siblings).

Not applicable for GCP deployments.

Pass any additional dpdk cmd line parameters. The --yield_option
0 is set by default and it implies the dpdk forwarding cores will not
yield the cpu cores it is assigned to. Additional common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

Not applicable for GCP deployments.

Set to false for GCP deployments.

The uio driver is vfio-pci.

Can be dpdk or xdp. Setting agentModeType to dpdk will bringup
dpdk datapath. Setting agentModeType to xdp uses ebpf. The
default value is dpdk.

Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR. By default RPF check is disabled.

Table 21: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration

persistConfig Set this flag to true if you wish jenr-cni generated pod
configuration to persist even after uninstallation. The option must
be set only for L2 mode. The default value is false.

NOTE: If you are installing JCNR on GCP, then update the dpdkCommandAdditionalArgs key and set tx
and rx descriptors to 256. For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 256 --dpdk_rxd_sz 256"

Sample Helm Charts

Sample GCP JCNR helm chart is provided below:

Helm Chart for GCP Deployment

A working GCP L3 helm chart sample is shown below. The configured sections are highlighted in bold:

R R R R R

Common Configuration (global vars)
AR AR AR HEHRHE AR
global:

registry: enterprise-hub.juniper.net/

uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below
repository: jcnr/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created

#imagePullSecret:
#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:

repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified
replicas: “2”

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

storageClass: gp2

Set AWS Region for AWS deployments

awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk

You can also provide subnets instead of interface names. Interfaces name take precedence over

Subnet/Gateway combination if both specified (although there is no reason to specify both)

Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster

fabricInterface:

HHHHHHHHHHHR R

L2 only

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

#
#-
#
of f;

H OoH O H H =

#-
#
of f;

H OoH O H H =

no-local-switching: true

eth2:
ddp: "auto"
default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1

native-vlan-id:

no-local-switching: true

bondo:

100

ddp parameter is optional; options include auto or on or

ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or

default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

#native-vlan-id:

#no-local-switching: true

100

FHHHHHEHEHEHHHEHHEEH

L3 only

#- eth11:

ddp: "off"
off; default: off

#- eth2:

ddp: "off"
off; default: off

THHEHHEHHHE A

L2L3

#- etht:

ddp: "auto"
off; default: off

#- eth2:

ddp: "auto"
off; default: off

H O OHF H H R

interface_mode: trunk

ddp parameter

ddp parameter

ddp parameter

ddp parameter

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1

native-vlan-id:

no-local-switching: true

100

FHHHHHHH AR

Provide subnets instead of interface names

is optional;

is optional;

is optional;

is optional;

options include auto or on or

options include auto or on or

options include auto or on or

options include auto or on or

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly
helpful when the interface names vary in a multi-node
K8s cluster

- subnet: 10.0.3.0/24

gateway: 10.0.3.1

ddp: "off"

- subnet: 10.0.5.0/24

gateway: 10.0.5.1

ddp: "off"

R S S S
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1v0:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
HHHEHHHEHHHAHHR R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly

#nodeAffinity:
#- key: keyl

operator: In
values:

- jenr

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fove"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask

if qos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Customize JCNR Configuration

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 195

JCNR configuration using a ConfigMap. Configuration Example | 196

Modifying the ConfigMap | 201
Troubleshooting | 201

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the
JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be available in the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory for the configuration to
be applied to the cRPD pods.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with custom
configuration. The cRPD pod must be deleted and respawned should you wish to apply the
configuration parameters any time after JCNR installation. The configuration parameters are
applied by default to any newly spawned cRPD pods. The JCNR customization via ConfigMap is
optional.

NOTE: JCNR also supports customization via node annotations for backward compatibility with
previous releases. Considering that node annotations are coupled with node names, it is highly
recommended to customize JCNR via ConfigMaps, specifically for cloud deployments. Refer to
Customize JCNR Configuration using node annotations for more information.

https://www.juniper.net/documentation/us/en/software/cloud-native-router23.2/cloud-native-router-deployment-guide/topics/concept/crpd-customization-node-annotation.html

Configuration Example

Sample ConfigMap and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for different node labels in your cluster. An example of the jcnr-params-
configmap.yaml file is provided below:

apiVersion: vi1
kind: ConfigMap
metadata:

name: jcnr-params

namespace: jcnr

data:
jenrl: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4LoopbackAddr": "110.1.1.2",
"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"
}
jenr2: |
{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4lLoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"
}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the jcnr-cni-custom-config-cm. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {

unit @ {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

}
routing-options {
router-id {{.Params.IPv4LoopbackAddr}}
route-distinguisher-id {{.Params.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;
{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgh start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

3
policy-options {

policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}
community udp members encapsulation:0L:13;
}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address {{.Params.IPv4LoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
}
}
}

routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be
defined as {{.Env. variable_name}}.

Complete the following steps to apply the customizations.

1. Label each node based on the keys used in the ConfigMap.

kubectl label nodes <node_namel> jcnr.juniper.net/params-profile=jcnri

kubectl label nodes <node_name2> jcnr.juniper.net/params-profile=jcnr2

2. Apply the ConfigMap to the cluster nodes using the command provided below:

kubectl apply -f jcnr-params-configmap.yaml

configmap/jcnr-params created

3. Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config-cm. tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/

#

4. Deploy the cloud-native router components, including the cRPD. Once the installation completes,
access the cRPD CL/and issue the show configuration | display set command in the cli mode to view

the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED */ };
custom {
interfaces {

100 {
unit 0 {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:@L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
}
}
}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {

interface all;
source-packet-routing {
srgh start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;

ipv6-index 3000;

}
level 1 disable;
}
ldp {
interface all;
}
mpls {
interface all;

}

cni { /* OMITTED */ };

internal { /* OMITTED */ };
3

apply-groups [custom base internal 1;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jenr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. The rendered configuration is saved in /config directory on the JCNR host as
juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to validate
the configuration and identify issues. For an AWS EKS deployment you can find the rendered config
within the cRPD pod in the /config directory.

Customize JCNR Configuration (Google Cloud
Marketplace)

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 202

JCNR configuration using a ConfigMap. Configuration Example | 202

Modifying the ConfigMap | 208
Troubleshooting | 208

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the
JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be uploaded to the JCNR deployment wizard in the
Google Cloud Marketplace.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with default
or custom configuration. The cRPD pod must be deleted and respawned should you wish to
apply the configuration parameters any time after JCNR installation. The configuration
parameters are applied by default to any newly spawned cRPD pods.

Configuration Example

Sample ConfigMap and template files are provided below.

You define the key-value pair for different node labels in your cluster. An example of the cRPD Config
Template file is provided below:

apiVersion: vi
kind: ConfigMap
metadata:

name: jcnr-params

namespace: jcnr

data:
jenrl: |
{
"isolLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4lLoopbackAddr": "110.1.1.2",
"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"
}
jenr2: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4LoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"
}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the cRPD Config Map template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {
unit @ {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};

{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

}
routing-options {
router-id {{.Params.IPv4lLoopbackAddr}}
route-distinguisher-id {{.Params.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;
{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgb start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;
}

community udp members encapsulation:0L:13;

}
protocols {
bgp {
group jenrbgpl {
type internal;
local-address {{.Params.IPv4lLoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};
family inet-vpn {
unicast;
}
family inet6-vpn {

unicast;

}
routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be
defined as {{.Env. variable_name}}.

Deploy the cloud-native router. Once the installation completes, access the cRPD CL/and issue the show
configuration | display set command in the cli mode to view the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;

groups {
base { /x OMITTED */ };
custom {
interfaces {

100 {
unit 0 {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:@L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
}
}
}
protocols {
bgp {

group jenrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {

unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;

}
}
isis {
interface all;
source-packet-routing {
srgb start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;
ipv6-index 3000;
}
}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}

3

cni { /* OMITTED %/ };

internal { /x OMITTED %/ };
}

apply-groups [custom base internal J;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jcnr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}3}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. You can apply the rendered configuration manually to a running cRPD pod
to validate the configuration and identify issues. For GCP deployment you can find the rendered config
in /config directory on the JCNR host as juniper.conf.master.

CHAPTER

Install Cloud-Native Router on Wind
River Cloud Platform

Install and Verify Juniper Cloud-Native Router for Wind River Deployment | 210
System Requirements for Wind River Deployment | 218
Customize JCNR Helm Chart for Wind River Deployment | 226

Customize JCNR Configuration | 238

Install and Verify Juniper Cloud-Native Router for
Wind River Deployment

SUMMARY IN THIS SECTION

The Juniper Cloud-Native Router (cloud-native Install Juniper Cloud-Native Router Using
router) uses the the JCNR-Controller (cRPD) to Helm Chart | 210

provide control plane capabilities and JCNR-CNI to Verify Installation | 213

provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "System Requirements for Wind River Deployment" on page 218 section to ensure the
server has all the required configuration.

2. Download Juniper_Cloud_Native_Router_release-number.tgz, to the directory of your choice. You
must perform the file transfer in binary mode when transferring the file to your server, so that the
compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to Juniper_Cloud_Native_Router_release-number.

cd Juniper_Cloud_Native_Router_release-number

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_release-number.

View the contents in the current directory.

1s
contrail-tools helmchart images README.md secrets

The JCNR container images are required for deployment. You may choose one of the following
options:

a. Download and deploy images from the Juniper repository—enterprise-hub. juniper.net. Review the
"Configure Repository Credentials" on page 301 topic for instructions on how to configure
repository credentials in the deployment helm chart.

b. You can upload the JCNR images to a local registry. The images are available in the
Juniper_Cloud_Native_Router_release-number/images directory.

Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file. You must enter the password and license in base64 encoded
format.

You can view the sample contents of the jenr-secrets.yaml file below:

apiVersion: vi
kind: Namespace
metadata:
name: jcnr
apiVersion: vi
kind: Secret
metadata:
name: jcnr-secrets
namespace: jcnr
data:
root-password: <add your password in base64 format>
crpd-license: |
<add your license in base64 format>

To encode the password, create a file with the plain text password on a single line. Then issue the
command:

base64 -w 0 rootPasswordFile

To encode the license, copy the license key into a file on your host server and issue the command:

base64 -w 0 licenseFile

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as instructed above. Without the proper base64-encoded license key and
root password in the jenr-secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

Apply the secrets/jcnr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize JCNR Helm Chart for Wind River Deployment" on page 226 for descriptions of the
helm chart configurations.

Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

10. Label the nodes to which JCNR mut be installed based on the nodeaffinity, if defined in the

values.yaml. For example:

kubectl label nodes ip-10.0.100.17.1lab.net keyl=jcnr --overwrite

11. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Fri Jun 23 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

12. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jenr default 1 2023-06-23 06:04:33.144611017 -0400 EDT
deployed jcnr-23.2.0 23.2.0
Verify Installation

This section enables you to confirm a successful JCNR deployment.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS

RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running

0 103s

contrail contrail-vrouter-masters-1qjgk 3/3 Running

0 87s

jenr kube-crpd-worker-sts-0 1/1 Running

0 103s

jenr syslog-ng-ds5qd 1/1 Running

0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 1 (3h13m
ago) 4h2m

kube-system calico-node-28w98 11 Running 3 (4d1h
ago) 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running

0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 11 Running 3 (4d1h
ago) 86d

kube-system kube-apiserver-ix-esx-06 11 Running 4 (4d1h
ago) 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 8 (4d1h
ago) 86d

kube-system kube-multus-ds-amd64-j169w 1/1 Running 3 (4d1h
ago) 86d

kube-system kube-proxy-gm5bl 1/1 Running 3 (4d1h
ago) 86d

kube-system kube-scheduler-ix-esx-06 11 Running 9 (4d1h
ago) 86d

kube-system nodelocaldns-bntfp 11 Running 4 (4d1h
ago) 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE

contrail contrail-vrouter-masters 1 1 1 1 1
<none> 90m

contrail contrail-vrouter-nodes 0 0 0 0 0
<none> 90m

jenr syslog-ng 1 1 1 1 1
<none> 90m

kube-system calico-node 1 1 1 1 1
kubernetes.io/os=1inux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1
kubernetes.io/arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1
kubernetes.io/os=1inux 86d

kube-system nodelocaldns 1 1 1 1 1
kubernetes.io/os=1inux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jenr kube-crpd-worker-sts 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations
a. View the Access cRPD CL/section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli

root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:

License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al

License SKU: S-CRPD-10-A1-PF-5

License version: 1

Order Type: commercial

Software Serial Number: 1000098711000-iHpgf

Customer ID: Juniper Networks Inc.

License count: 15000

Features:

containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. lIssue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CL/section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list
Vrouter Interface Table
Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/o Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:Q bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vifo/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2Vof Q0S:0 Ref:12
RX port packets:66 errors:Q
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
RX packets:66 bytes:5116 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vife/2 PMD: eno3vl NH: 9 MTU: 9000
Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QO0S:-1 Ref:13 TxXVif:1
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:Q bytes:0 errors:0
TX packets:66 bytes:5116 errors:0
Drops:0
TX queue packets:66 errors:0
TX device packets:66 bytes:5116 errors:@

c. Type the exit command to exit the pod shell.

System Requirements for Wind River Deployment

IN THIS SECTION

Minimum Host System Requirements | 218
Resource Requirements | 220
Miscellaneous Requirements | 221

Port Requirements | 224

Download Options | 225

JCNR Licensing | 225

Read this section to understand the system, resource, port, and licensing requirements for installing

Juniper Cloud-Native Router on a Wind River deployment.

Minimum Host System Requirements

This section lists the host system requirements for installing the cloud-native router on a baremetal

server.

Table 22: Cloud-Native Router Minimum Host System Requirements

Component Value/Version
CPU Intel x86
Host OS Debian GNU/Linux

Kernel Version 5.10

Notes

The tested CPU is
Intel(R) Xeon(R) Silver
4314 CPU @ 2.40GHz

11.3 (Bullseye)

5.10.0-6-amd64

Table 22: Cloud-Native Router Minimum Host System Requirements (Continued)

Component Value/Version Notes

NIC e Intel E810 with
Firmware 4.00
0x80014411
1.3236.0

e Intel EB10-CQDA2
with Firmware
4.000x800144111.32
36.0

e |ntel XL710 with
Firmware 9.00
0x8000cead 1.3179.0

Wind River Cloud Platform 22.12

IAVF driver Version 4.5.3.1

ICE_.COMMS Version 1.3.35.0

ICE Version 1.9.11.9 ICE driver is used only
with the Intel E810
NIC

i40e Version 2.18.9 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (K8s) Version 1.24 The tested K8s version
is 1.24.4

Calico Version 3.24.x

Multus Version 3.8

Helm 3.9.x

Container-RT containerd

Resource Requirements

This section lists the resource requirements for installing the cloud-native router on baremetal servers.

Table 23: Cloud-Native Router Resource Requirements
Resource Value Usage Notes

Data plane forwarding 2 cores (2P +
cores 2S)

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:
cat /etc/modules-load.d/vfio.conf

vfio

vfio-pci

Hugepages (1G) 6 Gi Lock the controller and get the memory processors using below
command:

source /etc/platform/openrc
system host-lock controller-0

system host-memory-list controller-0

To set the huge pages, run the following command for each
controller:

system host-memory-modify controller-0 0 -1G 64
system host-memory-modify controller-0 1 -1G 64

View the huge pages with the following command:

system host-memory-list controller-0

Unlock the controller:

system host-unlock controller-0

JCNR Controller cores 5

Table 23: Cloud-Native Router Resource Requirements (Continued)

Resource Value Usage Notes

JCNR vRouter Agent .5
cores

Miscellaneous Requirements

This section lists additional requirements for installing the cloud-native router on baremetal servers.

Table 24: Miscellaneous Requirements

Cloud-Native Router Release Miscellaneous Requirements
Enable the host with SR-IOV and VT-d in the system's BIOS.

Isolate CPUs from the kernel scheduler:

source /etc/platform/openrc

system host-lock controller-0

system host-cpu-list controller-0

system host-cpu-modify -f application-isolated -c 4-59 controller-0

system host-unlock controller-0

Set IOMMU. For example:

echo Y > /sys/module/vfio_iommu_typel/parameters/allow_unsafe_interrupts

echo Y > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Configure persistence for vfio and vfio-pci kernel modules after node reboot:

Add the module names to /etc/modules-1load.d/vfio.conf:

sudo su
cat /etc/modules-load.d/vfio.conf
vfio

vfio-pci

Table 24: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

Configure IPv4 and IPvé6 addresses for the interfaces allocated to JCNR. For example:

source /etc/platform/openrc

system host-lock controller-0

system host-if-modify -n ens1f@ -c platform --ipv4-mode static controller-@ ens1f@
system host-addr-add 1 ens1f@ 11.11.11.29 24

system host-if-modify -n ens1f@ -c platform --ipv6-mode static controller-0 ens1f@
system host-addr-add 1 ens1f@ abcd::11.11.11.29 112

system host-if-list controller-0

system host-addr-list controller-0

system host-unlock controller-0

Additional kernel modules need to be loaded on the host before deploying JCNR in L3 mode. These modules are
usually available in linux-modules-extra or kernel-modules-extra packages. Run the following commands to add the
kernel modules:

cat /etc/modules-load.d/crpd.conf
tun

fou

fou6

ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf

vxlan

NOTE: Applicable for L3 deployments only.

Run the ip fou add port 6635 ipproto 137 command on the Linux host to enable kernel based forwarding.

Table 24: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

NetworkManager is a tool in some operating systems to make the management of network interfaces easier.
NetworkManager may make the operation and configuration of the default interfaces easier. However, it can
interfere with the Kubernetes management and create problems.

To avoid the NetworkManager from interfering with the interface configurations, perform the following steps:
1. Create the file, /etc/NetworkManager/conf.d/crpd. conf.
2. Add the following content in the file.

[keyfile]

unmanaged-devicest=interface-name:enp#*;interface-name:ens*

NOTE: enp* indicates all interfaces starting with enp. For specific interface names, provided a comma-
separated list.

3. Restart the NetworkManager service by running the command, sudo systemctl restart NetworkManager.
4. Edit the sysctl file on the host and paste the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

5. Run the command sysctl -p /etc/sysctl.conf to load the new sysctl.conf values on the host.

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 25: Cloud-Native Router Listening Ports

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Port

8085

8072

9091

50052

8081

22

830

666

1883

9500

21883

50051

51051

Description

vRouter introspect-Used to gain
internal statistical information
about vRouter

Telemetry Information-Used to see
telemetry data from JCNR control
plane

vRouter health check-cloud-native
router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

gRPC port-JCNR listens on both
IPv4 and IPv6

JCNR Deployer Port

cRPD SSH

cRPD NETCONF

rpd

Mosquito mqtt-Publish/subscribe
messaging utility

agentd on cRPD

na-mqttd

jsd on cRPD

jsd on cRPD

Table 25: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

UDP 50055 Syslog-NG

Download Options

To deploy JCNR on a Wind River deployment you can download the helm charts from the Juniper
Support Site.

NOTE:
https://enterprise.hub. juniper.net

JCNR Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile
Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license
agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your
Juniper Account Team. For details about managing multiple license files for multiple cloud-native router
deployments, see Juniper Agile Licensing Overview.

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading to 23.2 or newer releases.

https://support.juniper.net/support/downloads/?p=jcnr
https://support.juniper.net/support/downloads/?p=jcnr
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

Customize JCNR Helm Chart for Wind River
Deployment

IN THIS SECTION

Helm Chart for L3 Only Deployment on Wind River Deployment | 232

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router on a Wind River Deployment.

You can deploy and operate Juniper Cloud-Native Router in the L3 mode on a Wind River deployment.
You configure the deployment mode by editing the appropriate attributes in the values.yaml file prior to
deployment.

Helm Chart Attributes and Descriptions

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The
configuration keys of the helm chart are shown in the table below.

Table 26: Helm Chart Attributes and Descriptions

Key Additional Key Description
Configuration

registry Defines the docker registry for the vRouter, cRPD and jenr-cni
container images. The default value is enterprise-hub. juniper.net.
The images provided in the tarball are tagged with the default
registry name. If you choose to host the container images to a
private registry, replace the default value with your registry URL.

repository (Optional) Defines the repository path for the vRouter, cRPD and
jenr-cni container images. This is a global key and takes
precedence over "repository" paths under "common" section. The
default value is jcnr-container-prod/.

imagePullSecret (Optional) Defines the registry authentication credentials. You can
configure credentials to either the Juniper repository or your
private registry.

Table 26: Helm Chart Attributes and Descriptions (Continued)

Key

common

replicas

storageClass

awsregion

nolocalSwitching

Additional Key
Configuration

registryCredentials

secretName

repository

tag

Description

Base64 representation of your Docker registry credentials. View
the "Configure Repository Credentials" on page 301 topic for more
information.

Name of the secret object that will be created.

Defines repsitory paths and tags for the vRouter, cRPD and jcnr-
cni container images. Use default unless using a private registry.

Defines the repository path. The default value is atom-docker/cn2/
bazel-build/dev/. The global repository key takes precedence if
defined.

Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

(Optional) Indicates the number of replicas for cRPD. If the value is
not specified, then the default value 1 is considered. The value for
this key must be specified for multi-node clusters. The value must
be equal to the number of nodes to which JCNR must be
deployed.

Not applicable for non-cloud deployments.

Not applicable for non-EKS deployments.

(Optional) Prevents interfaces in a bridge domain from transmitting
and receiving ethernet frame copies. Enter one or more comma
separated VLAN IDs to ensure that the interfaces belonging to the
VLAN IDs do not transmit frames to one another. This key is
specific for L2 and L2-L3 deployments. Enabling this key provides
the functionality on all access interfaces. For enabling the
functionality on trunk interfaces, configure the no-local-switching
key in the fabricInterface key.

Table 26: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

fabriclnterface

subnet

ddp

interface_mode

vlan-id-list

Description

Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in a
multi-node cluster.

For example:

L3 only
- ethi:
ddp: "off"

An alternative mode of input for interface names. For example:

- subnet: 10.40.1.0/24
gateway: 10.40.1.1
ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary for a
multi-node K8s cluster.

(Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at NIC for traffic like GTPU, SCTP, etc.

Setting options include auto, on, or off. The default setting is off.

NOTE: The subnet/interface level ddp takes precedence over the
global ddp configuration.

Not applicable for Wind River deployment.

Not applicable for Wind River deployment.

Table 26: Helm Chart Attributes and Descriptions (Continued)

Key

fabricWorkloadInter
face

log_level

log_path

syslog_notifications

corePattern

coreFilePath

Additional Key
Configuration

storm-control-
profile

native-vlan-id

no-local-switching

Description

Not applicable for Wind River deployment.

Not applicable for Wind River deployment.

Not applicable for Wind River deployment.

Not applicable for Wind River deployment.

Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave the log_level set to the default INFO unless
instructed to change it by Juniper support.

The defined directory stores various JCNR related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
The default value is /var/log/jcnr/.

Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. The default value
is /var/log/jcnr/jcnr_notifications.json.

Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then JCNR pods will not
overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying JCNR.
You may change the value in /etc/sysctl.conf. For example,

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

Table 26: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration
nodeAffinity
key
operator
cni_bin_dir
grpcTelemetryPort
grpcVrouterPort

vRouterDeployerPo
rt

restorelnterfaces

Description

(Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all worker nodes of a
cluster.

In the example below, the node affinity label is defined as
"keyl=jcnr". You must apply this label to each node where JCNR
must be deployed:

nodeAffinity:
- key: keyl
operator: In
values:

- jenr

NOTE: This key is a global setting.

Key-value pair that represents a node label that must be matched
to apply the node affinity.

Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, Notln, Exists, DoesNotExist, Lt, or Gt.

Set the value to /var/opt/cni/bin.

(Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

(Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

(Optional) Default value is 8081. Configure to override if the
default port is unavailable.

Set the value of this key to true to restore the interfaces back to
their original state in case the vRouter pod crashes or restarts.

Table 26: Helm Chart Attributes and Descriptions (Continued)

Key

bondInterfaceConfi
gs

mtu

cpu_core_mask

stormControlProfile
s

dpdkCommandAddit
ionalArgs

ddp

qosEnable

vrouter_dpdk_uio_d
river

Additional Key
Configuration

Description

Not applicable for Wind River deployment.

Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default value is 9000.

Indicates the vRouter forward core mask. If qos is enabled, you will
need to allocate 4 CPU cores (primary and siblings).

Configure the rate limit profiles for BUM traffic on fabric interfaces
in bytes per second.

Pass any additional dpdk cmd line parameters. The --yield_option
0 is set by default and it implies the dpdk forwarding cores will not
yield the cpu cores it is assigned to. Additional common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

(Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at NIC
for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to be
enabled.

Setting options include auto, on, or off. The default setting is off.
NOTE: The interface level ddp takes precedence over the global ddp
configuration.

Set to false for Wind River Deployment.

The uio driver is vfio-pci.

Table 26: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration

agentModeType Can be dpdk or xdp. Setting agentModeType to dpdk will bringup
dpdk datapath. Setting agentModeType to xdp uses ebpf. The
default value is dpdk.

fabricRpfCheckDisa Set this flag to false to enable the RPF check on all the fabric
ble interfaces of the JNCR. By default RPF check is disabled.
persistConfig Set this flag to true if you wish jenr-cni generated pod

configuration to persist even after uninstallation. The option must
be set only for L2 mode. The default value is false.

Sample Helm Charts

Helm Chart for L3 Only Deployment on Wind River Deployment

A working L3 only helm chart sample is shown below. The configured sections are highlighted in bold:

SRR AR AR AR

Common Configuration (global vars) i
HHHHHHHHHHEHHEHHESHHEHBHEHBHRHA R EHEHEHEHEHEHEHHE R
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:

vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:

repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified
#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used

#storageClass: gp2

Set AWS Region for AWS deployments

#awsregion: us-east-1

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
AR
L2 only
#- etht:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100
no-local-switching: true
- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

H OoH O H O H OH =

off; default: off
interface_mode: trunk
vlan-id-list: [700]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100
no-local-switching: true
- bond0:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100
#no-local-switching: true

H OHF H H H O

H OH H H

B
L3 only
- ens2f2:

ddp: "auto"
- ensif1:

ddp: "auto"
HHHHBHHHHE R

L2L3

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H OH H =

no-local-switching: true
HHHEHHH AR

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node
K8s cluster

#- subnet: 10.40.1.0/24
gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
#- subnet: 192.168.1.0/24
gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off

B R
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1ve:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFOQ"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods

You may label the nodes where we wish to deploy JCNR and inject affinity accodingly

#nodeAffinity:
#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master
operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
cni_bin_dir: /var/opt/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts

restoreInterfaces: false
Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fove"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if gos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Customize JCNR Configuration

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 238

JCNR configuration using a ConfigMap. Configuration Example | 239

Modifying the ConfigMap | 244
Troubleshooting | 244

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the
JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be available in the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory for the configuration to
be applied to the cRPD pods.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with custom
configuration. The cRPD pod must be deleted and respawned should you wish to apply the
configuration parameters any time after JCNR installation. The configuration parameters are
applied by default to any newly spawned cRPD pods. The JCNR customization via ConfigMap is
optional.

NOTE: JCNR also supports customization via node annotations for backward compatibility with
previous releases. Considering that node annotations are coupled with node names, it is highly
recommended to customize JCNR via ConfigMaps, specifically for cloud deployments. Refer to
Customize JCNR Configuration using node annotations for more information.

https://www.juniper.net/documentation/us/en/software/cloud-native-router23.2/cloud-native-router-deployment-guide/topics/concept/crpd-customization-node-annotation.html

Configuration Example

Sample ConfigMap and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for different node labels in your cluster. An example of the jcnr-params-
configmap.yaml file is provided below:

apiVersion: vi1
kind: ConfigMap
metadata:

name: jcnr-params

namespace: jcnr

data:
jenrl: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4LoopbackAddr": "110.1.1.2",
"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"
}
jenr2: |
{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4lLoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"
}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the jcnr-cni-custom-config-cm. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {

unit @ {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

}
routing-options {
router-id {{.Params.IPv4LoopbackAddr}}
route-distinguisher-id {{.Params.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;
{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgh start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

3
policy-options {

policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}
community udp members encapsulation:0L:13;
}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address {{.Params.IPv4LoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
}
}
}

routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be
defined as {{.Env. variable_name}}.

Complete the following steps to apply the customizations.

1. Label each node based on the keys used in the ConfigMap.

kubectl label nodes <node_namel> jcnr.juniper.net/params-profile=jcnri

kubectl label nodes <node_name2> jcnr.juniper.net/params-profile=jcnr2

2. Apply the ConfigMap to the cluster nodes using the command provided below:

kubectl apply -f jcnr-params-configmap.yaml

configmap/jcnr-params created

3. Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config-cm. tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/

#

4. Deploy the cloud-native router components, including the cRPD. Once the installation completes,
access the cRPD CL/and issue the show configuration | display set command in the cli mode to view

the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED */ };
custom {
interfaces {

100 {
unit 0 {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:@L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
}
}
}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {

interface all;
source-packet-routing {
srgh start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;

ipv6-index 3000;

}
level 1 disable;
}
ldp {
interface all;
}
mpls {
interface all;

}

cni { /* OMITTED */ };

internal { /* OMITTED */ };
3

apply-groups [custom base internal 1;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jenr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. The rendered configuration is saved in /config directory on the JCNR host as
juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to validate
the configuration and identify issues. For an AWS EKS deployment you can find the rendered config
within the cRPD pod in the /config directory.

CHAPTER

Install Cloud-Native Router on
Microsoft Azure Cloud Platform

Install and Verify Juniper Cloud-Native Router for Azure Deployment | 246
System Requirements for Azure Deployment | 254
Customize JCNR Helm Chart for Azure Deployment | 263

Customize JCNR Configuration | 274

Install and Verify Juniper Cloud-Native Router for
Azure Deployment

SUMMARY IN THIS SECTION

The Juniper Cloud-Native Router (cloud-native Install Juniper Cloud-Native Router Using
router) uses the the JCNR-Controller (cRPD) to Helm Chart | 246

provide control plane capabilities and JCNR-CNI to Verify Installation | 249

provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

NOTE: This is a Juniper Technology Preview (Tech Preview) feature.

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components using
Helm charts.

1. Review the "System Requirements for Azure Deployment" on page 254 section to ensure the setup
has all the required configuration.

2. Download the JCNR helm charts, Juniper_Cloud_Native_Router_release-numbertgz, to the
directory of your choice. You must perform the file transfer in binary mode when transferring the
file to your server, so that the compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4,

Change directory to Juniper_Cloud_Native_Router_release-number.

cd Juniper_Cloud_Native_Router_release-number

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_release-number.

View the contents in the current directory.

1s
contrail-tools helmchart images README.md secrets

Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file. You must enter the password and license in base64 encoded
format.

You can view the sample contents of the jenr-secrets.yaml file below:

apiVersion: vi1
kind: Namespace
metadata:
name: jcnr
apiVersion: vi
kind: Secret
metadata:
name: jcnr-secrets
namespace: jcnr
data:
root-password: <add your password in base64 format>
crpd-license: |
<add your license in base64 format>

To encode the password, create a file with the plain text password on a single line. Then issue the

command:

base64 -w 0 rootPasswordFile

To encode the license key, copy the license key into a file on your host server and issue the
command:

base64 -w 0 licenseFile

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as instructed above. Without the proper base64-encoded license key and
root password in the jenr-secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

Apply the secrets/jcnr-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a
new license key from the JAL portal before deploying or upgrading to 23.2 or newer
releases.

7. Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize JCNR Helm Chart for Azure Deployment" on page 263 for descriptions of the helm
chart configurations and a sample helm chart for Azure deployment..

8. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 54 for creating and applying the cRPD
customizations.

9. Label the nodes to which JCNR must be installed based on the nodeaffinity defined in the values.yaml.
For example:

kubectl label nodes ip-10.0.100.17.1lab.net keyl=jcnr --overwrite

10. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Fri Sep 22 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

11. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jenr default 1 2023-09-22 06:04:33.144611017 -0400 EDT
deployed jecnr-23.3.0 23.3.0
Verify Installation

This section enables you to confirm a successful JCNR deployment.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running
0 103s

contrail contrail-vrouter-masters-1qjgk 3/3 Running
0 87s

jenr kube-crpd-worker-sts-0 1/1 Running
0 103s

jenr syslog-ng-ds5qd 1/1 Running
0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running
0 4h2m

kube-system calico-node-28w98 11 Running
0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running
0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 11 Running
0 86d

kube-system kube-apiserver-ix-esx-06 11 Running
0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running
0 86d

kube-system kube-multus-ds-amd64-j169w 1/1 Running
0 86d

kube-system kube-proxy-gm5bl 1/1 Running
0 86d

kube-system kube-scheduler-ix-esx-06 11 Running
0 86d

kube-system nodelocaldns-bntfp 11 Running
0 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE

contrail contrail-vrouter-masters 1 1 1 1 1
<none> 90m

contrail contrail-vrouter-nodes 0 0 0 0 0
<none> 90m

jenr syslog-ng 1 1 1 1 1
<none> 90m

kube-system calico-node 1 1 1 1 1
kubernetes.io/os=1inux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1
kubernetes.io/arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1
kubernetes.io/os=1inux 86d

kube-system nodelocaldns 1 1 1 1 1
kubernetes.io/os=1inux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jenr kube-crpd-worker-sts 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations
a. View the Access cRPD CL/section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli

root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:

License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al

License SKU: S-CRPD-10-A1-PF-5

License version: 1

Order Type: commercial

Software Serial Number: 1000098711000-iHpgf

Customer ID: Juniper Networks Inc.

License count: 15000

Features:

containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. lIssue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CL/section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list
Vrouter Interface Table
Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/o Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:Q bytes:0 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vifo/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2Vof Q0S:0 Ref:12
RX port packets:66 errors:Q
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
RX packets:66 bytes:5116 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vife/2 PMD: eno3vl NH: 9 MTU: 9000
Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QO0S:-1 Ref:13 TxXVif:1
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:Q bytes:0 errors:0
TX packets:66 bytes:5116 errors:0
Drops:0
TX queue packets:66 errors:0
TX device packets:66 bytes:5116 errors:@

c. Type the exit command to exit the pod shell.

System Requirements for Azure Deployment

IN THIS SECTION

Minimum Host System Requirements | 254
Resource Requirements | 255
Miscellaneous Requirements | 256

Port Requirements | 261

Download Options | 262

JCNR Licensing | 262

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Microsoft Azure Cloud Platform.

Minimum Host System Requirements

This section lists the host system requirements for installing the cloud-native router.

Table 27: Cloud-Native Router Minimum Host System Requirements

Component Value/Version Notes
Azure Deployment VM-based
Instance Type Standard_F16s_v2
CPU Intel x86 The tested CPU is Intel

Cascade Lake

Host OS Rocky Linux 8.7

Kernel Version Rocky Linux: 4.18.X The tested kernel version is
4.18.0-477.15.1.el8_8.clou
d.x86_64

Table 27: Cloud-Native Router Minimum Host System Requirements (Continued)

Component Value/Version Notes
Kubernetes (K8s) Version 1.25.x The tested K8s version is
1.255
Calico Version 3.25.1
Multus Version 4.0
Helm 3.9.x
Container-RT containerd

Resource Requirements

This section lists the resource requirements for installing the cloud-native router.

Table 28: Cloud-Native Router Resource Requirements

Resource Value Usage Notes
Data plane forwarding cores 2 cores (2P + 2S)
Service/Control Cores 0]
UIO Driver uio_hv_generic To enable, follow the below steps

cat /etc/modules-load.d/k8s.conf
uio

uio_hv_generic

ib_uverbs

mix4_ib

The above libraries are provided by
ibverbs package.

Table 28: Cloud-Native Router Resource Requirements (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT
values in /etc/default/grub and
reboot the host. For example:

GRUB_CMDLINE_LINUX_DEFAULT="consol
e=ttyl console=ttyS@
default_hugepagesz=1G
hugepagesz=1G hugepages=6
intel_iommu=on iommu=pt"

Update grub and reboot the host.
For example:

grub2-mkconfig -o /boot/grub2/
grub.cfg

Verify the hugepage is set by
executing the following commands:

cat /proc/cmdline

grep -i hugepages /proc/meminfo

JCNR Controller cores .5

JCNR vRouter Agent cores .5

Miscellaneous Requirements

This section lists additional requirements for installing the cloud-native router.

Table 29: Miscellaneous Requirements

Cloud-Native Router Release Miscellaneous Requirements

Set IOMMU and IOMMU-PT in /etc/default/grub file. For example:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=64
intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Additional kernel modules need to be loaded on the host before deploying JCNR in L3 mode. These modules are

usually available in linux-modules-extra or kernel-modules-extra packages. Run the following commands to add the
kernel modules:

cat /etc/modules-load.d/crpd.conf
tun

fou

foué

ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf

vxlan

NOTE: Applicable for L3 deployments only.

Run the ip fou add port 6635 ipproto 137 command on the Linux host to enable kernel based forwarding.

Table 29: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

Add firewall rules for loopback address for VPC.

Configure the VPC firewall rule to allow ingress traffic with source filters set to the subnet range to which JCNR
is attached, along with the IP ranges or addresses for the loopback addresses.

For example:

Navigate to Firewall policies on the Azure console and create a firewall rule with the following attributes:
1. Name: Name of the firewall rule

2. Network: Choose the VPC network

3. Priority: 1000

4. Direction: Ingress

5. Action on Match: Allow

6. Source filters: 10.2.0.0/24,2.51.2.0/23, 2.51.1.0/24, 2.2.2.2/32, 3.3.3.3/32

7. Protocols: all

8. Enforcement: Enabled

where 10.2.0.0/24 is the subnet to which JCNR is attached and 2.51.2.0/24, 2.51.1.0/24, 2.2.2.2/32, 3.3.3.3/32
are loopback IP ranges.

JCNR for Azure supports IPv4 only.

Table 29: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

Ensure accelerated networking is enabled for the fabric interface. If accelerated networking is enabled properly,
two interfaces become available for the fabric interface. For example:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default glen 1000
link/ether 00:22:48:23:3b:9e brd ff:ff:ff:ff.ff.ff
inet 10.225.0.6/24 brd 10.225.0.255 scope global ethi
valid_1ft forever preferred_1ft forever
inet6 fe80::222:48ff:fe23:3b9e/64 scope link
valid_1ft forever preferred_1ft forever
4: enP22960s2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master ethl state UP group default
glen 1000
link/ether 00:22:48:23:3b:9e brd ff:ff:ff:ff:ff:ff
altname enP22960p0s2

When configuring the fabric interface in the helm chart, you must provide the interface with hv_netvsc binded to

it. Issue the ethtool -i interface_name command to verify it. For example:

user@jcnr@1:~# ethtool -i ethl
driver: hv_netvsc

version: 5.15.0-1049-azure
firmware-version: N/A
expansion-rom-version:
bus-info:

supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes

supports-priv-flags: no

NOTE: Do not enable accelerated networking for the management interface.

Table 29: Miscellaneous Requirements (Continued))

Cloud-Native Router Release Miscellaneous Requirements

NetworkManager is a tool in some operating systems to make the management of network interfaces easier.
NetworkManager may make the operation and configuration of the default interfaces easier. However, it can
interfere with the Kubernetes management and create problems.

To avoid the NetworkManager from interfering with the interface configurations, perform the following steps:
1. Create the file, /etc/NetworkManager/conf.d/crpd. conf.
2. Add the following content in the file.

[keyfile]

unmanaged-devicest=interface-name:enp#*;interface-name:ens*

NOTE: enp* indicates all interfaces starting with enp. For specific interface names, provided a comma-
separated list.

3. Restart the NetworkManager service by running the command, sudo systemctl restart NetworkManager.
4. Edit the sysctl file on the host and paste the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

5. Run the command sysctl -p /etc/sysctl.conf to load the new sysctl.conf values on the host.

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 30: Cloud-Native Router Listening Ports

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Port

8085

8072

9091

50052

8081

22

830

666

1883

9500

21883

50051

51051

Description

vRouter introspect-Used to gain
internal statistical information
about vRouter

Telemetry Information-Used to see
telemetry data from JCNR control
plane

vRouter health check-cloud-native
router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

gRPC port-JCNR listens on both
IPv4 and IPv6

JCNR Deployer Port

cRPD SSH

cRPD NETCONF

rpd

Mosquito mqtt-Publish/subscribe
messaging utility

agentd on cRPD

na-mqttd

jsd on cRPD

jsd on cRPD

Table 30: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

UDP 50055 Syslog-NG

Download Options

To deploy JCNR on Azure you can download the helm charts from the Juniper Support Site.

NOTE:
https://enterprise.hub. juniper.net

JCNR Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile
Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license
agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your
Juniper Account Team. You can apply the licenses by using the CLI of the cloud-native router controller.
For details about managing multiple license files for multiple cloud-native router deployments, see
Juniper Agile Licensing Overview.

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading to 23.2 or newer releases.

https://support.juniper.net/support/downloads/?p=jcnr
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

Customize JCNR Helm Chart for Azure Deployment

IN THIS SECTION

Helm Chart Attributes and Descriptions | 263

Helm Chart for Azure Deployment | 269

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on Microsoft Azure Cloud Platform.

You can deploy and operate Juniper Cloud-Native Router in L3 mode on Azure. You configure the
deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Attributes and Descriptions

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The
configuration keys of the heml chart are shown in the table below.

Table 31: Helm Chart Attributes and Descriptions

Key Additional Key Description
Configuration

registry Defines the docker registry where the vRouter, cRPD and jcnr-cni
container images are hosted. The default value is enterprise-

hub. juniper.net.

repository (Optional) Defines the repository path for the vRouter, cRPD and
jenr-cni container images. This is a global key and takes
precedence over "repository" paths under "common" section. The

default value is jenr-container-prod/.

imagePullSecret (Optional) Defines the registry authentication credentials. You can
configure credentials to either the Juniper repository or your
private registry.

Table 31: Helm Chart Attributes and Descriptions (Continued)

Key

common

replicas

storageClass

awsregion

nolLocalSwitching

Additional Key
Configuration

registryCredentials

secretName

repository

tag

Description

Base64 representation of your Docker registry credentials. View
the "Configure Repository Credentials" on page 301 topic for more
information.

Name of the Secret object that will be created.

Defines repository paths and tags for the vRouter, cRPD and jcnr-
cni container images.

Defines the repository path. The default value is atom-docker/cn2/
bazel-build/dev/. The global repository key takes precedence if
defined.

Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

(Optional) Indicates the number of replicas for cRPD. If the value is
not specified, then the default value 1 is considered.

The value for this key must be specified for multi-node clusters
and must match the number of nodes to which JCNR must be
deployed.

Not applicable for Azure deployments.

Not applicable for Azure deployments.

Not applicable for Azure deployments.

Table 31: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration

fabriclnterface Provide a list of interfaces to be bound to the DPDK.

NOTE: Use the L3 only section to configure fabric interfaces for
Azure. The L2 only and L2-L3 sections are not applicable for Azure
deployments.

For example:
L3 only
- ethl:
ddp: "off"
- eth2:
ddp: "of "
subnet Not applicable for Azure deployments.
ddp Not applicable for Azure deployments.
interface_mode Not applicable for Azure deployments.
vlan-id-list Not applicable for Azure deployments.
storm-control- Not applicable for Azure deployments.
profile
native-vlan-id Not applicable for Azure deployments.

no-local-switching Not applicable for Azure deployments.

fabricWorkloadinter Not applicable for Azure deployments.
face
log_level Defines the log severity. Available value options are: DEBUG,

INFO, WARN, and ERR.

NOTE: Leave the log_level set to INFO unless instructed to change
it by Juniper support.

Table 31: Helm Chart Attributes and Descriptions (Continued)

Key

log_path

syslog_notifications

corePattern

coreFilePath

nodeAffinity

Additional Key
Configuration

key

Description

The defined directory stores various JCNR related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.

Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format.

Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then JCNR pods will not
overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying JCNR.
You may change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_lkp_%i_%s_%h_%t.gz

Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

(Optional) Defines labels on nodes to determine where to place
the vRouter pods. By default the vRouter pods are deployed to all
worker nodes of a cluster.

In the example below, the node affinity label is defined as
"keyl1=jcnr". You must apply this label to each node where JCNR
must be deployed:

nodeAffinity:

- key: keyl
operator: In
values:

- jenr

NOTE: This key is a global setting.

Key-value pair that represents a node label that must be matched
to apply the node affinity.

Table 31: Helm Chart Attributes and Descriptions (Continued)

Key

cni_bin_dir

grpcTelemetryPort

grpcVrouterPort

restorelnterfaces

vRouterDeployerPo
rt

bondinterfaceConfi
gs

mtu

cpu_core_mask

stormControlProfile
3

Additional Key
Configuration

operator

Description

Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, NotlIn, Exists, DoesNotEXxist, Lt, or Gt.

(Optional) The default path is /opt/cni/bin. You can override the
default cni path with a path of used by your distribution
e.g. /var/opt/cni/bin.

(Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

(Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

Set the value of this key to true to restore the interfaces back to
their original state in case the vRouter pod crashes or restarts.

(Optional) Default value is 8081. Configure to override if the
default port is unavailable.

Not applicable for Azure deployments.

Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default value is 9000.

Indicates the vRouter forward core mask. If qos is enabled, you will
need to allocate 4 CPU cores (primary and siblings).

Not applicable for Azure deployments.

Table 31: Helm Chart Attributes and Descriptions (Continued)

Key

dpdkCommandAddit
ionalArgs

ddp

qgosEnable

vrouter_dpdk_uio_d
river

agentModeType

fabricRpfCheckDisa
ble

persistConfig

Additional Key
Configuration

Description

Pass any additional dpdk cmd line parameters. The --yield_option
0 is set by default and it implies the dpdk forwarding cores will not
yield the cpu cores it is assigned to. Additional common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

Not applicable for Azure deployments.

Set to false for Azure deployments.

The uio driver is uio_hv_generic.

Can be dpdk or xdp. Setting agentModeType to dpdk will bringup
dpdk datapath. Setting agentModeType to xdp uses ebpf. The
default value is dpdk.

Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR. By default RPF check is disabled.

Set this flag to true if you wish jenr-cni generated pod
configuration to persist even after uninstallation. The option must
be set only for L2 mode. The default value is false.

Helm Chart for Azure Deployment

A working L3 only helm chart sample is shown below. The configured sections are highlighted in bold:

B g g R T g e g R S g i

Common Configuration (global vars)
HHHHHHHHHHHHHAHHHAHHHA AR
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85
crpd:
repository: junos-docker-local/warthog/amd64/
tag: 23.4R1.8
jenreni:
repository: junos-docker-local/warthog/amd64/
tag: 23.4-20231215-50817e3
telemetryExporter:
repository: atom-docker/cn2/bazel-build/dev/x86_64/
tag: R23.4-85

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified

#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used
#storageClass: gp2

Set AWS Region for AWS deployments
#awsregion: us-east-1
#nolLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk
You can also provide subnets instead of interface names. Interfaces name take precedence over
Subnet/Gateway combination if both specified (although there is no reason to specify both)
Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster
fabricInterface:
AR
L2 only
#- ethl:
ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk

vlan-id-list: [700]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H OoH O H H =

no-local-switching: true
#- bond@:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100

H OoH O H H =

#no-local-switching: true

HHHHHHHHHHHR R
L3 only
- ens2f2:

ddp: "auto"
- ensif1:

ddp: "auto"
HHHHHHHRHRHR R

L2L3
#- ethl:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off
#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

H H H =

no-local-switching: true
HHHEHHH R

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node
K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
#- subnet: 192.168.1.0/24
gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off

R S S S
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1v0:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
HHHEHHHAHHHAHHR R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR

log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

core pattern to denote how the core file will be generated
if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified

coreFilePath: /var/crash

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
#nodeAffinity:

#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master

operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla

K8s
e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d

#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

VRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081

#vRouterDeployerPort: 8082

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts

restoreInterfaces: false
Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fovo"

- "enp59s0fov1"

primaryInterface: "enp59s0fovo"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if qos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "uio_hv_generic"

agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
agentModeType: dpdk

fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
#fabricRpfCheckDisable: false

#jcnr-cni:

persistConfig: set this flag to true if you wish jcnr-cni generated pod configuration to
persist even after uninstallation

use this option only in case of 12 mode

default value is false if not specfied

#persistConfig: true

Customize JCNR Configuration

SUMMARY IN THIS SECTION

Read this topic to understand how to customize JCNR ConfigMap | 274
JCNR configuration using a ConfigMap. Configuration Example | 275
Modifying the ConfigMap | 281

Troubleshooting | 281

JCNR ConfigMap

Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports customizing
configuration using a ConfigMap when deployed in L3 mode. In cloud-based deployments, in the event
of a node failure, the JCNR pods may be spawned on newer or different nodes. A ConfigMap decouples
the configuration parameters from node names and is based on node labels instead. This enables the

JCNR CNI deployer to consume the configuration parameters, apply them to the cRPD configuration
template and render the configuration, as long as a matching label is available for the node.

A ConfigMap is an API object to store data in key-values pairs. A ConfigMap defines per node variables
that are consumed by nodes matching the label. The key-value pairs are used to render the configuration
via a go template. The configured template must be available in the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory for the configuration to
be applied to the cRPD pods.

NOTE: You must apply the ConfigMap before installing JCNR to create cRPD pods with custom
configuration. The cRPD pod must be deleted and respawned should you wish to apply the
configuration parameters any time after JCNR installation. The configuration parameters are
applied by default to any newly spawned cRPD pods. The JCNR customization via ConfigMap is
optional.

NOTE: JCNR also supports customization via node annotations for backward compatibility with
previous releases. Considering that node annotations are coupled with node names, it is highly
recommended to customize JCNR via ConfigMaps, specifically for cloud deployments. Refer to
Customize JCNR Configuration using node annotations for more information.

Configuration Example

Sample ConfigMap and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for different node labels in your cluster. An example of the jcnr-paranms-
configmap.yaml file is provided below:

apiVersion: vi1
kind: ConfigMap
metadata:
name: jcnr-params
namespace: jcnr
data:
jenrl: |
{
"isoLoopbackAddr": "49.0004.1000.0000.0001.00",
"IPv4LoopbackAddr": "110.1.1.2",

https://www.juniper.net/documentation/us/en/software/cloud-native-router23.2/cloud-native-router-deployment-guide/topics/concept/crpd-customization-node-annotation.html

"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"

}
jenr2: |

{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4LoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3001",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"

}

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the jcnr-cni-custom-config-cm. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {
unit 0 {
{{if .Params.isolLoopbackAddr}}
family iso {
address {{.Params.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Params.IPv4lLoopbackAddr}};

}
routing-options {
router-id {{.Params.IPv4lLoopbackAddr}}
route-distinguisher-id {{.Params.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;

{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgb start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Params.srIPv4NodeIndex}}
ipv4-index {{.Params.srIPv4NodeIndex}};
{{end}}
{{if .Params.srIPv6NodeIndex}}
ipv6-index {{.Params.srIPv6NodeIndex}};

{{end}}
}

}

{{end}}

level 1 disable;
}
1dp {

interface all;
}
mpls {

interface all;
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}

community udp members encapsulation:0L:13;
}
protocols {

bgp {

group jcnrbgpl {
type internal;
local-address {{.Params.IPv4LoopbackAddr}};
local-as {{.Params.BGPLocalAsn}};
neighbor {{.Params.BGPIPv4Neighbor}};
family inet-vpn {

unicast;

}
family inet6-vpn {

unicast;

}
routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Params.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Params.BGPIPv4Neighbor}}/32;

NOTE: You can define additional cRPD configuration hierarchies in the template. The values to
be rendered from the ConfigMap defined in the jcnr-params-configmap.yaml must be defined as
{{.Params. var-name}}. Any environment variables, such as variables defined in values.yaml, must be
defined as {{.Env. variable_name}}.

Complete the following steps to apply the customizations.

1. Label each node based on the keys used in the ConfigMap.

kubectl label nodes <node_namel> jcnr.juniper.net/params-profile=jcnri

kubectl label nodes <node_name2> jcnr.juniper.net/params-profile=jcnr2

2. Apply the ConfigMap to the cluster nodes using the command provided below:

kubectl apply -f jcnr-params-configmap.yaml

configmap/jcnr-params created

3. Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the
Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config-cm.tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/
#

4. Deploy the cloud-native router components, including the cRPD. Once the installation completes,
access the cRPD CL/and issue the show configuration | display set command in the cli mode to view
the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED x/ };
custom {
interfaces {

loo {
unit @ {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:0L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
protocols {
bgp {
group jcnrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {
interface all;
source-packet-routing {
srgh start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;
ipv6-index 3000;
}
}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}
}

3

cni { /% OMITTED %/ };

internal { /x OMITTED */ };
}

apply-groups [custom base internal J;

Modifying the ConfigMap

If you wish to change the ConfigMap any time after JCNR installation, you must delete the cRPD pod
and respawn it using the following command:

kubectl patch sts kube-crpd-worker-sts -n jcnr -p '{"spec":{"template":{"metadata":
{"annotations":{"configmap-reload/timestamp":"'$(date +%s)'"}}}3}}'

This triggers a rolling restart of all cRPD pods. Alternatively, you can identify the cRPD pods on nodes
for which the ConfigMap has changed and manually delete the pod. The ConfigMap changes will be
applied automatically to any respawned pods.

Troubleshooting

The cRPD pod continues to restart in CrashLoopBack0ff state if invalid configuration is rendered and
applied via the go template. The rendered configuration is saved in /config directory on the JCNR host as
juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to validate
the configuration and identify issues. For an AWS EKS deployment you can find the rendered config
within the cRPD pod in the /config directory.

CHAPTER

Deploying Service Chain (cSRX) with
JCNR

Deploying Service Chain (cSRX) with JCNR | 283

Deploying Service Chain (cSRX) with JCNR

IN THIS SECTION

Customize cSRX Helm Chart | 283
Install cSRX | 286

Read this section to customize and deploy a security services instance (cSRX) with the Cloud-Native
Router.

Starting Release 23.4, the Juniper Cloud-Native Router (JCNR) can be integrated with Juniper's
containerized SRX (cSRX) platform to provide security services such as IPsec. This functionality is
achieved using host-based service chaining. The cloud-native router is chained with a security service
instance (cSRX) in the same Kubernetes cluster. The cSRX instance runs as a pod service in L3 mode.
The cSRX instance is customized and deployed via a helm chart.

Customize cSRX Helm Chart

The cSRX service chaining instance is deployed via a helm chart. The configuration parameters are
provided via the values.yaml manifest file. The deployment consists of two essential components:

e csrx-init: This is an init container that prepares the configuration for the main cSRX application. It
extracts the necessary information from the values.yaml manifest file, processes it, and generates the
configuration data for cSRX. This ensures that the main cSRX application starts with a valid, up-to-
date configuration.

e csrx: The csrx is the main application container and the core component of the cSRX deployment. It
relies on the configuration provided by the csrx-init container to function correctly.

You can customize the cSRX deployment by specifying a range of configuration parameters in the
values.yaml manifest file. Key configuration options include:

e interfacelype: This is the type of interface on the cSRX to connect to JCNR. Must be set to vhost only.

o interfaceConfigs: This is an array defining the interface IP address, gateway address and optionally
routes. The interface IP must match the localAddress element in the ipSecTunnelConfigs array. The routes
should contain prefixes to steer decrypted traffic to JCNR and reachability route for IPSec gateway.

https://www.juniper.net/us/en/products/security/srx-series/csrx-containerized-firewall.html
https://www.juniper.net/us/en/products/security/srx-series/csrx-containerized-firewall.html

e ipSecTunnelConfigs: This is an array defining the IPsec configuration details such as ike-phase1,
proposal, policy and gateway configuration. Traffic selector should contain traffic that is expected to
be encrypted.

e jcnr_config: This is an array defining the routes to be configured in JCNR to steer traffic from JCNR
to cSRX and to steer IPsec traffic from the remote IPsec gateway to the cSRX to apply the security
service chain.

Here is a sample values.yaml for cSRX deployment:

Default values for cSRX.
This is a YAML-formatted file.

Declare variables to be passed into your templates.

common:
registry: enterprise-hub.juniper.net

repository: jcnr-container-prod

csrxInit:
image: junos-csrx-init
tag: 23.4R1.9
imagePullPolicy: IfNotPresent
resources:
#limits:
memory: 1Gi
cpu: 1
#requests:
memory: 1Gi

cpu: 1

csrx:
image: junos-csrx
tag: 23.4R1.9
imagePullPolicy: IfNotPresent
resources:
limits:
hugepages-1Gi: 4Gi
memory: 4Gi
requests:
hugepages-1Gi: 4Gi

memory: 4Gi

uncomment below if you are using a private registry that needs authentication

registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:

#registryCredentials: <base64-encoded-credential>

#secretName: regcred

nodeAffinity: Can be used to inject nodeAffinity for cSRX

you may label the nodes where we wish to deploy cSRX and inject affinity accordingly
#nodeAffinity:

#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master

operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

replicas: 1

interfaceType: "vhost"

interfaceConfigs:

- name: ethi
ip: 171.1.1.1/30 # should match ipSecTunnelConfigs localAddress if configured
gateway: 171.1.1.2 # gateway configuration
#ip6: 171:1:1::1/64 # optional
#ip6Gateway: 171:1:1::2 # optional
routes: # this field is optional
- "181.1.1.0/24"
#- "200.1.1.0/24"

- name: eth2
ip: 1.21.1.1/30 # should match ipSecTunnelConfigs localAddress if configured
gateway: 1.21.1.2 # gateway configuration
#ip6: 181:2:1::1/64 # optional
#ip6Gateway: 181:2:1::2 # optional
routes: # this field is optional
- "222.1.1.0/24"

#- "192.1.1.0/24"

ipSecTunnelConfigs: # untrust
- interface: ethl ## section ike-phasel, proposal, policy, gateway

gateway: 181.1.1.1

localAddress: 171.1.1.1
authenticationAlgorithm: sha-256
encryptionAlgorithm: aes-256-cbc
preSharedKey: "9zt313AuIRhev8FnNVsYoaApu@RcSyev8XO1NVYoDj.P5F9AyrKv8X"
trafficSelector:
- name: tsi
locallP: 222.1.1.0/24 ## IP cannot be 0.0.0.0/0
remoteIP: 111.1.1.0/24 ## IP cannot be 0.0.0.0/0

jenr_config:
- name: eth2
routes:
- "111.1.1.0/24"

csrx_ctrl_cpu: "0x01"

csrx_data_cpu: "Ox0A"

Install cSRX

The cSRX service chain is deployed after the JCNR deployment. Read this section to install the cSRX
instance.

1. Ensure you have the latest cSRX installation bundle downloaded and expanded. You must be in
junos_csrx_release_number directory.

2. The cSRX container images are required for deployment. You may choose one of the following
options:

a. Download and deploy images from the Juniper repository—enterprise-hub. juniper.net. Review the
Configure Repository Credentials topic for instructions on how to configure repository credentials
in the deployment helm chart.

b. You can upload the cSRX images either to a local docker or to your own docker respository using
the docker load command. The images are available in the junos_csrx_release_number/images
directory.

docker load -i images/csrx-images.tgz

https://uat.juniper.net/documentation/test/us/en/software/cloud-native-router/cloud-native-router-deployment-guide/topics/concept/cn-cloud-native-k8s-configure-secrets.html

3. Enter the cSRX license into the secrets/csrx-secrets.yaml file. You must enter the password and license
in base64 encoded format. You can view the sample contents of the csrx-secrets.yaml file below:

apiVersion: vl

kind: Secret

metadata:
name: service-chain-instance
namespace: jcnr

data:
csrx_license: |

<add your license in base64 format>

To encode the license file, copy the license file onto your host server and issue the command:

base64 -w 0 licenseFile

You must copy the baseé64 output and paste it into the secrets/csrx-secrets.yaml file in the appropriate
location.

NOTE: You must obtain your license file from your account team and install it in the
secrets.yaml file as instructed above. The csrx-init container performs a license check and
proceeds only if the required secret service-chain-instance is found.

4. Apply the csrx-secrets.yaml to the Kubernetes system.

kubectl apply -f secrets/secrets.yaml
secret/service-chain-instance created

5. Ensure all components of JCNR are up and running before installing the cSRX instance.

6. Ensure you have customized the cSRX helm chart. Navigate to the junos_csrx_release_number/
helmchart directory. Expand the bundle to view the helmcharts. Refer to the example given above to
configure the values.yaml. Navigate to the junos_csrx_release_number/helmchart/junos-csrx
directory and issue the following command to install the cSRX instance.

helm install csrx .

288

RELATED DOCUMENTATION

No Link Title

CHAPTER

Manage

Manage Juniper Cloud-Native Router | 290

Manage Juniper Cloud-Native Router

IN THIS SECTION

Upgrading JCNR | 290
Downgrading JCNR | 291
Uninstalling JCNR | 291

This topic provides high-level information about the available upgrade, downgrade and uninstall options
for JCNR.

Upgrading JCNR

You can upgrade from JCNR release 23.2 to 23.3 using the following steps:

1. Download the tarball, Juniper_Cloud_Native_Router_release_number.tgz, to the directory of your
choice. You must perform the file transfer in binary mode when transferring the file to your server, so
that the compressed tar file expands properly.

2. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

3. Change directory to Juniper_Cloud_Native_Router_release-number.

cd Juniper_Cloud_Native_Router_release-number

NOTE:
Juniper_Cloud_Native_Router_release-number

4. Customize the helm chart for your deployment using the helmchart/values.yaml file to match the helm
chart configuration in your current installation.

5. Deploy the Juniper Cloud-Native Router using the helm chart. Navigate to the helmchart directory
and run the following command:

helm upgrade jcnr

Release "jcnr" has been upgraded. Happy Helming!
NAME: jcnr

LAST DEPLOYED: Thu Sep 21 03:58:28 2023
NAMESPACE: default

STATUS: deployed

REVISION: 2

TEST SUITE: None

6. Confirm Juniper Cloud-Native Router deployment.

helm 1s
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jenr default 2 2023-09-21 03:58:28.024244633 -0400 EDT
deployed jcnr-23.3.0 23.3.0
Downgrading JCNR

Currently, there is no procedure for downgrading to an older version. To change from a current version
to an older version, you must uninstall the current version and install an older version.

Uninstalling JCNR

JCNR can be uninstalled by using the following command:

helm uninstall jcnr

Uninstalling JCNR restores interfaces to their original state by unbinding from DPDK and binding back
to the original driver. It also delete contents of JCNR directories, deletes cRPD created interfaces and
removes any Kubernetes objects created for JCNR.

NOTE: The jenr namespace is not deleted as a part of the helm uninstallation and must be
deleted manually.

After the triggering of helm uninstall command, please wait for all Kubernetes resources to be fully
deleted before attempting a re-installation. Premature re-installation can lead to installation stalls and
may require manual steps for recovery. The recovery steps are provided below:

helm uninstall jcnr --no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>

kubectl delete ns jcnrops

CHAPTER

Troubleshoot

Troubleshoot Deployment Issues | 294

Troubleshoot Deployment Issues

SUMMARY IN THIS SECTION

This topic provides information about how to Troubleshoot Deployment Issues | 294
troubleshoot deployment issues using Kubernetes

commands and how to view the cloud-native router

configuration files.

Troubleshoot Deployment Issues

IN THIS SECTION

Verify Cloud-Native Router Controller Configuration | 296
View Log Files | 297

Uninstallation Issues | 298

This topic provides information on some of the issues that might be seen during deployment of the
cloud-native router components and provides a number of Kubernetes (K8s) and shell commands that
you run on the host server to help determine the cause of deployment issues.

Table 32: Investigate Deployment Issues

Potential issue What to check Related Commands

Image not found Check if the images are uploaded to
the local docker using the ® kubectl -n jcnr describe pod
command docker images. If not, then <crpd-pod-name>

the registry configured in
values.yaml should be accessible.
Ensure image tags are correct.

Table 32: Investigate Deployment Issues (Continued))

Potential issue

Initialization errors

What to check

Check if jenr-secrets is loaded and
has a valid license key

Related Commands

[root@jcnr-011# kubectl get
secrets -n jcnr
NAME
TYPE

DATA AGE
crpd-token-zp8kc
kubernetes.io/service-account-
token 3 29d
default-token-zn6p9
kubernetes.io/service-account-
token 3 29d
jenr-secrets
Opaque

2 29d

Confirm that root password and
license key are present in /var/run/

jenr/juniper. conf

Table 32: Investigate Deployment Issues (Continued))

Potential issue What to check Related Commands
cRPD Pod in CrashLoopBackOff e Check if startup/liveness probe
state ® kubectl get pods -A

is failing or vrouter pod not
running

kubectl -n jcnr describe pod

e rpd-vrouter-agent gRPC <crpd-pod-name>

connection not UP

e Composed configuration is tail -f /var/log/jcnr/jcnr-
invalid or config template is cni.log
invalid

tail -f /var/log/jcnr/

jenr_notifications.json

e See Access cRPD CL/to enter
the cRPD CLI and run the
following command:

show krt state channel vrouter

® cat /var/run/jcnr/juniper.conf

vRouter Pod in CrashLoopBackOff Check the contail-k8s-deployer pod
state for errors kubectl logs contrail-k8s-

deployer-<pod-hash> -n contrail-
deploy

Verify Cloud-Native Router Controller Configuration

The cloud-native router deployment process creates a configuration file for the cloud-native router
controller (cRPD) as a result of entries in the values.yaml file for L2 mode and custom configuration via
node annotations in L3 mode. You can view this configuration file to see the details of the cRPD

configuration. To view the cRPD configuration, navigate to the /var/run/jcnr folder to access the
configuration file details and view the contents of the configuration file.

[root@jcnr-011# 1s
cni config containers envars juniper.conf reboot-canary

[root@jcnr-011# cat juniper.conf

The cRPD configuration may be customized using node annotations. The cRPD pod will stay in pending
state if the applied configuration is invalid.

You can view the rendered custom configuration in the /etc/crpd/ directory.

[root@jcnr-011# cat /etc/crpd/juniper.conf.master

In an AWS EKS deployment you can review the rendered custom configuration by accessing the cRPD
CL/and reviewing the contents of the /config directory.

View Log Files

You can view the jenr log files in the default log_path directory, /var/log/jcnr/. You can change the
location of the log files by changing the value of the log_path: or syslog_notifications: keys in the
values.yaml file prior to deployment.

Navigate to the following path and issue the 1s command to list the log files for each of the cloud-native

router components.

cd /var/log/jcnr/

[root@jcnr-01 jenrl# 1s

action.log contrail-vrouter-dpdk-init.log filter

12cos.log __policy_names_rpdc__

contrail-vrouter-agent.log contrail-vrouter-dpdk.log filter.log

license mgd-api

__policy_names_rpdn__ cos jenr-cni.log

messages mosquitto

vrouter-kernel-init.log cscript.log jenr_notifications. json

messages.0.gz na-grpcd

Uninstallation Issues

After the triggering of helm uninstall command, please wait for all Kubernetes resources to be fully
deleted before attempting a re-installation. Premature re-installation can lead to installation stalls and
may require manual steps for recovery. The recovery steps are provided below:

helm uninstall jcnr -no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>

kubectl delete ns jcnrops

CHAPTER

Appendix

Kubernetes Overview | 300
Configure Repository Credentials | 301

Juniper Technology Previews (Tech Previews) | 302

Kubernetes Overview

IN THIS SECTION

Kubernetes Overview | 300

Kubernetes Overview

NOTE: Juniper Networks refers to primary nodes and backup nodes. Kubernetes refers to master
nodes and worker nodes. References in this guide to primary and backup correlate with master
and worker in the Kubernetes world.

Kubernetes is an orchestration platform for running containerized applications in a clustered computing
environment. It provides automatic deployment, scaling, networking, and management of containerized
applications.

A Kubernetes pod consists of one or more containers, with each pod representing an instance of the
application. A pod is the smallest unit that Kubernetes can manage. All containers in the pod share the
same network name space.

We rely on Kubernetess to orchestrate the infrastructure that the cloud-native router needs to operate.
However, we do not supply Kubernetes installation or management instructions in this documentation.
See https:/kubernetes.io for Kubernetes documentation. Currently, Juniper Cloud-Native Router
requires that the Kubernetes cluster be a standalone cluster, meaning that the Kubernetes primary and
backup functions both run on a single node.

The major components of a Kubernetes cluster are:

e Nodes

Kubernetes uses two types of nodes: a primary (control) node and a compute (worker) node. A
Kubernetes cluster usually consists of one or more master nodes (in active/standby mode) and one or
more worker nodes. You create a node on a physical computer or a virtual machine (VM).

e Pods

Pods live in nodes and provide a space for containerized applications to run. A Kubernetes pod
consists of one or more containers, with each pod representing an instance of the application(s). A

https://kubernetes.io

pod is the smallest unit that Kubernetes can manage. All containers in a pod share the same network
namespace.

o Namespaces

In Kubernetes, pods operate within a namespace to isolate groups of resources within a cluster. All
Kubernetes clusters have a kube-system namespace, which is for objects created by the Kubernetes
system. Kubernetes also has a default namespace, which holds all objects that don't provide their
own namespace. The last two preconfigured Kubernetes namespaces are kube-public and kube-
node-lease. The kube-public namespace is used to allow authenticated and unauthenticated users to
read some aspects of the cluster. Node leases allow the kubelet to send heartbeats so that the
control plane can detect node failure.

o Kubelet

The kubelet is the primary node agent that runs on each node. In the case of Juniper Cloud-Native
Router, only a single kubelet runs on the cluster since we do not support multinode deployments.

e Containers

A container is a single package that consists of an entire runtime environment including the
application and its:

e Configuration files
e Dependencies

o Libraries

e Other binaries

Software that runs in containers can, for the most part, ignore the differences in the those binaries,
libraries, and configurations that may exist between the container environment and the environment
that hosts the container. Common container types are docker, containerd, and Container Runtime
Interface using Open Container Initiative compatible runtimes (CRI-O).

Configure Repository Credentials

SUMMARY

Read this topic to understand how to configure the enterprise-hub.juniper.net repository credentials
for JCNR installation.

Use this procedure to configure your repository login credentials in your manifests.

1. Install docker if you don't already have docker installed.

2. Login to the Juniper Networks repository where you pull the container images.

docker login enterprise-hub.juniper.net

Enter your login credentials when prompted.

Once you've logged in, your credentials are automatically stored in ~/.docker/config.json. (If you
installed docker using snap, then the credentials are stored in the ~/snap/docker directory hierarchy.)

3. Encode your credentials in base64 and store the resulting string.

ENCODED_CREDS=$(base64 -w @ config.json)

Take a look at the encoded credentials.

echo $ENCODED_CREDS

4. Navigate to Juniper_Cloud_Native_Router_<release-number>/helmchart directory. Replace the credentials
placeholder in the manifest with the encoded credentials.

The manifests have a <base64-encoded-credential> credentials placeholder. Simply replace the
placeholder with the encoded credentials in all manifests.

sed -i s/'<base64-encoded-credential>'/$ENCODED_CREDS/ values.yaml

Double check by searching for the encoded credentials in the manifests.

grep $ENCODED_CREDS values.yaml

You should see the encoded credentials in the manifests.

Juniper Technology Previews (Tech Previews)

Tech Previews enable you to test functionality and provide feedback during the development process of
innovations that are not final production features. The goal of a Tech Preview is for the feature to gain

wider exposure and potential full support in a future release. Customers are encouraged to provide
feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

https://support.juniper.net/support/

	Table of Contents
	Introduction
	Juniper Cloud-Native Router Overview
	Juniper Cloud-Native Router Components
	JCNR Deployment Modes

	Install Cloud-Native Router on Baremetal Server
	Install and Verify Juniper Cloud-Native Router for Baremetal Servers
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Baremetal Servers
	Customize JCNR Helm Chart for Baremetal Servers
	Customize JCNR Configuration

	Install Cloud-Native Router on Red Hat OpenShift
	Install and Verify Juniper Cloud-Native Router for OpenShift Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for OpenShift Deployment
	Customize JCNR Helm Chart for OpenShift Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on Amazon EKS
	Install and Verify Juniper Cloud-Native Router on Amazon EKS
	Install Juniper Cloud-Native Router Using Juniper Support Site Package
	Install Juniper Cloud-Native Router Using AWS Marketplace Subscription
	Verify JCNR Installation on Amazon EKS

	System Requirements for EKS Deployment
	Customize JCNR Helm Chart for EKS Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on Google Cloud Platform
	Install and Verify Juniper Cloud-Native Router for GCP Deployment
	Install Juniper Cloud-Native Router Using Juniper Support Site Package
	Install Juniper Cloud-Native Router Via Google Cloud Marketplace
	Verify Installation

	System Requirements for GCP Deployment
	Customize JCNR Helm Chart for GCP Deployment
	Customize JCNR Configuration
	Customize JCNR Configuration (Google Cloud Marketplace)

	Install Cloud-Native Router on Wind River Cloud Platform
	Install and Verify Juniper Cloud-Native Router for Wind River Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Wind River Deployment
	Customize JCNR Helm Chart for Wind River Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on Microsoft Azure Cloud Platform
	Install and Verify Juniper Cloud-Native Router for Azure Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Azure Deployment
	Customize JCNR Helm Chart for Azure Deployment
	Customize JCNR Configuration

	Deploying Service Chain (cSRX) with JCNR
	Deploying Service Chain (cSRX) with JCNR

	Manage
	Manage Juniper Cloud-Native Router

	Troubleshoot
	Troubleshoot Deployment Issues
	Troubleshoot Deployment Issues

	Appendix
	Kubernetes Overview
	Configure Repository Credentials
	Juniper Technology Previews (Tech Previews)

