
cSRX Deployment Guide for Contrail

Published

2020-03-27

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks
are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cSRX Deployment Guide for Contrail
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with)
Juniper Networks software. Use of such software is subject to the terms and conditions of the EndUser License Agreement
(“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you
agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About the Documentation | vi

Documentation and Release Notes | vi

Documentation Conventions | vi

Documentation Feedback | ix

Requesting Technical Support | ix

Self-Help Online Tools and Resources | x

Creating a Service Request with JTAC | x

Overview1
Understanding cSRX with Contrail | 12

cSRX Overview | 12

cSRX Benefits and Uses | 15

Docker Overview | 16

Juniper Networks Contrail Overview | 17

cSRX Scale-Up Performance | 20

Junos OS Features Supported on cSRX | 21

Supported SRX Series Features on cSRX | 21

SRX Series Features Not Supported on cSRX | 24

cSRX Service Chaining in Contrail2
Requirements for Deploying cSRX on Contrail | 32

Platform and Server Requirements | 32

cSRX Basic Configuration Settings | 33

Service Chains Overview | 34

Understanding Service Chains | 34

Service Chain Modes | 35

Components of a Service Chain | 35

Service Templates | 35

Virtual Networks | 36

Service Instances | 36

iii

Network Policies | 36

Preparing a Contrail Cluster | 36

Configuring cSRX in a Contrail Service Chain | 39

Before You Begin | 39

Configuring the Docker Registry and Compute Node | 40

Creating an Availability Zone for the cSRX Container | 42

Importing the cSRX Image | 45

Creating Virtual Networks in Contrail | 48

Launching the cSRX Container | 52

Creating a Service Template for the cSRX | 54

Creating and Launching the Service Instance | 56

Creating a Network Policy (Optional) | 58

Adding a Network Policy to a Virtual Network (Optional) | 59

Managing cSRX Containers in Contrail3
cSRX Configuration Data File and Environment Variables | 62

Openstack User Data File | 63

Openstack Metadata | 65

Specifying an Initial Root Password for Logging into a cSRX Container | 65

Configuring cSRX for Routing Mode | 66

Changing the Size of a cSRX Container | 69

Specifying the Packet I/O Driver for a cSRX Container | 70

Specifying the Poll Mode Driver | 71

Specifying the Interrupt Mode Driver | 72

Configuring CPU Affinity for a cSRX Container | 72

Managing cSRX Containers | 73

Powering On the cSRX Container from OpenStack CLI | 74

Powering On the cSRX Container from OpenStack Dashboard | 74

Pausing the cSRX Container from OpenStack CLI | 74

Pausing the cSRX Container from OpenStack Dashboard | 75

Restarting the cSRX Container from OpenStack CLI | 75

iv

Restarting the cSRX Container from OpenStack Dashboard | 75

Deleting the cSRX Container from OpenStack CLI | 75

Deleting the cSRX Container from Contrail | 76

Monitoring Basic cSRX Statistics with the Contrail Monitor | 76

Configuring cSRX4
Configuring cSRX Using the Junos OS CLI | 78

v

About the Documentation

IN THIS SECTION

Documentation and Release Notes | vi

Documentation Conventions | vi

Documentation Feedback | ix

Requesting Technical Support | ix

Use this guide to install and configure the cSRX Container Firewall as a dedicated compute node in a
Contrail service chain. This guide also includes basic cSRX container configuration and management
procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further software configuration.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product
documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the
product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts.
These books go beyond the technical documentation to explore the nuances of network architecture,
deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Documentation Conventions

Table 1 on page vii defines notice icons used in this guide.

vi

https://www.juniper.net/documentation/
https://www.juniper.net/books

Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware
damage.

Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Indicates helpful information.Tip

Alerts you to a recommended use or implementation.Best practice

Table 2 on page vii defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

ExamplesDescriptionConvention

To enter configuration mode, type
the configure command:

user@host> configure

Represents text that you type.Bold text like this

user@host> show chassis alarms

No alarms currently active

Represents output that appears on
the terminal screen.

Fixed-width text like this

• A policy term is a named structure
that defines match conditions and
actions.

• Junos OS CLI User Guide

• RFC 1997, BGP Communities
Attribute

• Introduces or emphasizes important
new terms.

• Identifies guide names.

• Identifies RFC and Internet draft
titles.

Italic text like this

vii

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

Configure the machine’s domain
name:

[edit]
root@# set system domain-name
domain-name

Represents variables (options for
which you substitute a value) in
commands or configuration
statements.

Italic text like this

• To configure a stub area, include
the stub statement at the [edit
protocols ospf area area-id]
hierarchy level.

• The console port is labeled
CONSOLE.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy
levels; or labels on routing platform
components.

Text like this

stub <default-metric metric>;Encloses optional keywords or
variables.

< > (angle brackets)

broadcast | multicast

(string1 | string2 | string3)

Indicates a choice between the
mutually exclusive keywords or
variables on either side of the symbol.
The set of choices is often enclosed
in parentheses for clarity.

| (pipe symbol)

rsvp { # Required for dynamic MPLS
only

Indicates a comment specified on the
same line as the configuration
statement to which it applies.

(pound sign)

community name members [
community-ids]

Encloses a variable for which you can
substitute one or more values.

[] (square brackets)

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

}
}

}

Identifies a level in the configuration
hierarchy.

Indention and braces ({ })

Identifies a leaf statement at a
configuration hierarchy level.

; (semicolon)

GUI Conventions

viii

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

• In the Logical Interfaces box, select
All Interfaces.

• To cancel the configuration, click
Cancel.

Represents graphical user interface
(GUI) items you click or select.

Bold text like this

In the configuration editor hierarchy,
select Protocols>Ospf.

Separates levels in a hierarchy of
menu selections.

> (bold right angle bracket)

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either
of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper
Networks TechLibrary site, and do one of the following:

• Click the thumbs-up icon if the information on the page was helpful to you.

• Click the thumbs-down icon if the information on the page was not helpful to you or if you have
suggestions for improvement, and use the pop-up form to provide feedback.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name,
URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
If you are a customer with an active Juniper Care or Partner Support Services support contract, or are

ix

https://www.juniper.net/documentation/index.html
https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=

covered under warranty, and need post-sales technical support, you can access our tools and resources
online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTACUser
Guide located at https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Productwarranties—For productwarranty information, visit https://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week,
365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called
the Customer Support Center (CSC) that provides you with the following features:

• Find CSC offerings: https://www.juniper.net/customers/support/

• Search for known bugs: https://prsearch.juniper.net/

• Find product documentation: https://www.juniper.net/documentation/

• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

• Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

• Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

• Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool:
https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

• Visit https://myjuniper.juniper.net.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://support.juniper.net/support/requesting-support/.

x

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/

1
CHAPTER

Overview

Understanding cSRX with Contrail | 12

Junos OS Features Supported on cSRX | 21

Understanding cSRX with Contrail

IN THIS SECTION

cSRX Overview | 12

cSRX Benefits and Uses | 15

Docker Overview | 16

Juniper Networks Contrail Overview | 17

cSRX Scale-Up Performance | 20

The cSRX Container Firewall is a containerized version of the SRX Series Services Gateway with a low
memory footprint. cSRX provides advanced security services, including content security, AppSecure, and
unified threat management in a container form factor. By using a Docker container in Contrail the cSRX
can substantially reduce overhead because each container shares the Linux host’s OS kernel. Regardless
of howmany containers a Linux server hosts, only oneOS instance is in use. And because of the containers’
lightweight quality, a server can host many more container instances than it can virtual machines (VMs),
yielding tremendous improvements in utilization. With its small footprint and Docker as a container
management system, the cSRXContainer Firewall enables agile, high-density security service deployment.

This section includes the following topics:

cSRX Overview

The cSRX Container Firewall deploys as a single container on a Docker Engine compute node running in
a Contrail cluster. It runs on a Linux bare-metal server as the hosting platform for the Docker container
environment. The cSRX container packages all of the dependent processes (or daemons) and libraries to
support the different Linux host distributionmethods (Ubuntu, RedHat Enterprise Linux, or CentOS). cSRX
is built on the Junos operating system (Junos OS) and delivers networking and security features similar to
those available on the software releases for the SRX Series.

When the cSRX container runs, there are several processes (or daemons) inside the Docker container that
launch automatically when the cSRX becomes active. Some daemons support Linux features, providing
the same service as if they are running on a Linux host (for example, sshd, rsyslogd, monit, and so on).
Other daemons are compiled and ported from Junos OS to perform configuration and control jobs for
security service (for example, MGD, NSD, UTM, IDP, AppID, and so on). srxpfe is the data-plane daemon

12

that receives and sends packets from the two revenue ports of a cSRX container. The cSRX uses srxpfe
for Layer 2 through 3 forwarding functions as well as for Layer 4 through 7 network security services.

The cSRX Container Firewall enables advanced security at the network edge in a multitenant virtualized
environment. cSRX provides Layer 4 through 7 advanced security features such as firewall, IPS, and
AppSecure. The cSRX container also provides an additional interface to manage the cSRX. When cSRX is
operating in Layer 2 mode, incoming Layer 2 frames from one interface go through Layer 4 through 7
processing based on the configured cSRX services. cSRX then sends the frames out of the other interface.
The cSRX container either allows the frames to pass through unaltered or drops the frames, based on the
configured security policies.

Launch the cSRX instance in secure-wire mode using the following command:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

Figure 1 on page 13 illustrates the cSRX operating in secure-wire mode.

Figure 1: cSRX in Secure-Wire Mode

g2
00

09
4

Docker cSRX Instance

srxpfe Process

L4-7 Services (NAT/UTM/...)

Secure-wire Mode

eth1-br eth2-br

eth1 eth2

ge-0/0/0 ge-0/0/1

eth1 eth2

Virtual
Ethernet

Virtual
Ethernet

Interface
Pair

Figure 2 on page 14 illustrates a high-level view of a cSRX container instance in routing mode. It is an
example of how a cSRX container is bridged with an external network. In this illustration, cSRX eth1 is
bridged with host physical NIC eth1 and cSRX eth2 is bridged with host physical NIC eth2.

13

NOTE: As part of your Docker container configuration, you must connect the cSRX container
to three virtual networks: one virtual network for out-of-band management sessions, and the
other two virtual networks to receive and transmit in-band data traffic. See “Configuring cSRX
in a Contrail Service Chain” on page 39.

Figure 2 on page 14 illustrates the cSRX operating in routing mode.

Figure 2: cSRX Container Overview

g0
43

63
9

USER SPACE

KERNEL SPACE

Other Linux
Daemons...

Docker cSRX Instance

Docker Engine

eth0-br

eth0

eth0

Dependent Libraries/Binaries/Files

srxpfe Process

L4-7 Services (NAT/UTM/...)

Junos Control Daemons
(mgd/nsd/idpd/utmd/...)

Linux Daemons
(sshd/rsyslogd/...)

Static Routing

Interface
Pair

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

ge-0/0/15ge-0/0/0

eth1-br

eth1

eth1 eth16eth3

eth2-br eth16-breth4-br

eth2 eth3 eth16

ge-0/0/1 ge-0/0/3

eth2 eth4

ge-0/0/2

eth3-br

eth4

Starting in Junos OS Release 19.2R1, in routing mode, the default number of interfaces supported are
three and maximum of 16 interfaces (1 management and 16 data interfaces). Also, you must configure
zones explicitly and add interfaces to zones, no zones or interfaces are bemapped statically. If the interfaces
configured are less than what is supported, then the PFE will not be launched.

Prior to JunosOS Release 19.2R1, in routingmode, eth0wasmapped as out of bandmanagement interface,
eth1 as ge-0/0/1, and eth2 as ge-0/0/0.

14

Starting in Junos OS Release 19.2R1, in routing mode, with this increase in the number of supported
interfaces, the mapping of ge interfaces are reordered as:

• eth0 - out of band management interface

• eth1 - ge-0/0/0

• eth2 - ge-0/0/1

• eth3 - ge-0/0/2

• eth4 - ge-0/0/3 and so on

cSRX Benefits and Uses

The cSRX Container Firewall enables you to quickly introduce new firewall services, deliver customized
services to customers, and scale security services based on dynamic needs. The cSRX container differs
from VMs in several important ways. It runs with no guest OS overhead, has a notably smaller footprint,
and is easier to migrate or download. The cSRX container uses less memory, and its spin-up timemeasures
in subseconds—all leading to higher density at a lower cost. The boot time is reduced from several minutes
with a VM-based environment to less than a few seconds for the cSRX container. The cSRX is ideal for
public, private, and hybrid cloud environments.

Some of the key benefits of cSRX in a containerized private or public cloud multitenant environment
include:

• Stateful firewall protection at the tenant edge.

• Faster deployment of containerized firewall services into new sites.

• With a small footprint and minimum resource reservation requirements, the cSRX can easily scale to
keep up with customers’ peak demand.

• Provides significantly higher density without requiring resource reservation on the host than what is
offered by VM-based firewall solutions.

• Flexibility to run on a bare-metal Linux server or Juniper Networks Contrail.

• In the Contrail Networking cloud platform, cSRX can be used to provide differentiated Layer 4 through
7 security services for multiple tenants as part of a service chain.

• With the Contrail orchestrator, cSRX can be deployed as a large scale security service.

• Application security features (including IPS and AppSecure).

• UTMcontent security features (including antispam, Sophos Antivirus, web filtering, and content filtering).

• Authentication and integrated user firewall features.

15

NOTE: While the security services features between cSRX and vSRX are similar, there are
scenarios in which each product is the optimal option in your environment. For example, the
cSRX does not support routing instances and protocols, switching features,MPLS LSPs andMPLS
applications, chassis cluster, and software upgrade features. For environments that require
routing or switching, a vSRX VM provides the best feature set. For environments focused on
security services in a Docker containerized deployment, cSRX is a better fit.

See “JunosOS Features Supported on cSRX” on page 21 for a summary of the feature categories
supported on cSRX, and also for a summary of features not supported on cSRX.

You can deploy the cSRX Container Firewall in the following scenarios:

• Cloud CPE–For service providers (SPs) and managed security service providers (MSSPs) where there is
a large subscriber base of branch offices or residential subscribers. MSSPs can offer differentiated
services to individual subscribers.

• Contrail microsegmentation–Within a Contrail environment running mixed workloads of VMs and
containers, cSRX can provide security for Layer 4 through 7 traffic, managed by Security Director.

• Private clouds–cSRX can provide security services in a private cloud running containerized workloads
and can include Contrail integration.

Docker Overview

Docker is an open source software platform that simplifies the creation, management, and teardown of a
virtual container that can run on any Linux server. A Docker container is an open source software
development platform, with its main benefit being to package applications in “containers” to allow them
to be portable among any system running the Linux operating system (OS). A container provides anOS-level
virtualization approach for an application and associated dependencies that allow the application to run
on a specific platform. Containers are not VMs, rather they are isolated virtual environments with dedicated
CPU, memory, I/O, and networking.

A container image is a lightweight, standalone, executable package of a piece of software that includes
everything required to run it: code, runtime, system tools, system libraries, settings, and so on. Because
containers include all dependencies for an application, multiple containers with conflicting dependencies
can run on the same Linux distribution. Containers use the host OS Linux kernel features, such as groups
and namespace isolation, to allow multiple containers to run in isolation on the same Linux host OS. An
application in a container can have a small memory footprint because the container does not require a
guest OS, which is required with VMs, because it shares the kernel of its Linux host’s OS.

16

Containers have a high spin-up speed and can take much less time to boot up as compared to VMs. This
enables you to install, run, and upgrade applications quickly and efficiently.

Figure 3 on page 17 provides an overview of a typical Docker container environment.

Figure 3: Docker Container Environment

Containers are
created with Linux,
but share a kernel
with almost any
type of host OS.

Containers are
isolated, but share
bins and libraries
where possible to
improve efficiency.

Server

Host Operating System

Docker Engine

App 2 App 3 App 3 App 3App 1

Bins /
Libraries

Bins /
Libraries

Bins /Libraries

Containers

g2
00

10
0

Juniper Networks Contrail Overview

Juniper Networks Contrail is an open, standards-based software-defined networking (SDN) platform that
delivers network virtualization and service automation for federated cloud networks. It provides self-service
provisioning and improves network troubleshooting and diagnostics. It also enables service chaining for
dynamic application environments across an enterprise virtual private cloud (VPC), managed Infrastructure
as a Service (IaaS), and Network Functions Virtualization (NFV) use cases. You can use Contrail with open
cloud orchestration systems such as OpenStack or CloudStack to instantiate instances of cSRX in a
containerized environment.

The cSRX Container Firewall can be deployed on a Docker Engine compute node as a dedicated firewall
in the Contrail Networking cloud environment to provide differentiated Layer 4 through 7 security services
for multiple tenants as part of a service chain. With the Contrail orchestrator, cSRX is deployed as a large
scale security service, and is configured to steer traffic from vRouter with vRouter interface (VIF). Traffic
and health statistics are monitored by the Contrail service orchestrator.

When you deploy the cSRX container in a Contrail Networking cloud environment, Contrail:

17

• Stores the cSRX image in an Openstack glance service so it can be used to launch new service instances.

• Distributes the cSRX image to different computer nodes from the Docker registry service.

• Launches the cSRX container with the Openstack Nova service.

• Spawns a cSRX service chain in the Contrail controller with a service template, virtual network, service
instance, and network policy.

• Monitors cSRX container status and statistics in the Contrail service orchestrator.

Figure 4 on page 18 illustrates how the cSRX Container Firewall provides security services in a Contrail
Networking cloud environment.

Figure 4: cSRX Container Firewall in an SDN Environment

VM VMVMVM

Scale-out Mode

g0
43

64
2

Routers

Firewall/
Intrusion

Prevention
System

Load
Balancers

Physical
servers Orchestrator

SDN Controller

Overlay Network
(VXLAN/MPLS over GRE/...)

Standalone Mode

VLAN

VLAN

VLAN

WAN WAN

Virtual Server or Hypervisor Cluster

Storage Pool

Compute Pool

Load Balancer Pool

cSRX (FW Service) Pool

Contrail is logically centralized and behaves as a single logical unit, despite the fact that it is implemented
as a cluster of multiple nodes. Contrail Networking nodes include:

• Contrail Control Nodes–Control nodes implement the logically centralized portion of the control plane.
Control nodes are responsible for the routing control plane, configuration management, analytics, and
UI.

• Contrail Compute Nodes–Compute nodes are general-purpose virtualized servers that host VMs and
containers (such as the cSRX). These VMs can be tenants running general applications, or these VMs
can be service VMs running network services such as a virtual load balancer or virtual firewall. Each

18

compute node contains a vRouter that implements the forwarding plane and the distributed part of the
control plane. Compute nodes are responsible for managing the data plane.

In the Contrail network, a compute node is a general-purpose x86 server that hosts VMs and containers
running applications such as Web servers, database servers, enterprise applications or hosting virtualized
services used to create service chains. You install and configure the Docker Engine on at least one compute
node to implement the Linux container environment, and the cSRX container is installed on the compute
node that is running theDocker Engine. A cSRX service pool can consist of multiple Docker Engine compute
nodes.

The control node hosts the Docker registry, Openstack Controller, and Contrail Controller to orchestrate
the virtual services. The cSRX image is automatically pulled from the Docker registry to the Docker Engine
compute node when a cSRX instance is initially launched. The cSRX compute node communicates with
the control node to receive instructions to start each cSRX container and to set up the service chain by
inserting the cSRX network interface into the different vRouter virtual networks in the Contrail cluster.
Virtual networks can be shared across different tenants.

Figure 5 on page 19 illustrates the role of the cSRX Container Firewall in a Contrail Networking cloud
environment and how it provides multitenancy.

Figure 5: cSRX Service in Contrail Networking Cloud Environment

Compute Nodes

VM VM VM

Compute Nodes

VM VM VM

Compute Nodes

cSRX cSRX

Compute Nodes

SD SD

WAN/INTERNET

PHYSICAL IP
FABRIC-UNDERLAY

Underlay network

VN-1 - overlay

VN-2 - overlay

VN-3 - overlay

Control Nodes

Docker Registry

OpenStack
Controller

Contrail
Controller

g0
43

64
0

Hypervisor Hypervisor Docker Engine Hypervisor

vRouter vRouter vRouter vRouter

Figure 6 on page 20 illustrates the cSRX compute nodes in a Contrail Networking cloud environment.

19

AdedicatedNovaDocker Agent runs on the cSRX compute node to receive instructions from theOpenstack
Controller and to act on behalf of the cSRX. When the Nova Docker Agent starts the cSRX container, the
agent will first check if the cSRX image is located in the local host Docker Engine. If not, the agent will
then attempt to pull the cSRX image from the remote Docker registry. Once a cSRX container starts, the
Nova Docker Agent also creates a vRouter interface (VIF) for the cSRX container and “plugs” the VIF to
the different virtual routing and forwarding (VRF) instances of the vRouter according to the service
template’s virtual network configuration.

Figure 6: cSRX Compute Node

Control Nodes

Docker Registry

OpenStack
Controller

Contrail
Controller

USER SPACE

g0
43

64
1

KERNEL SPACE

Docker Engine

XMPP

Nova Docker Agent

vRouter Host Agent

Docker cSRX Instance

srxpfe Processnsd/mgd/...

cSRX
Image Pull

Script/API

vRouter
Interface

vRouter
Forwarding
Plane

vRouter
Interface

vRouter
Interface

VRF VRF VRF

cSRX Scale-Up Performance

You can scale the performance and capacity of a cSRX container by increasing the allocated amount of
virtual memory or the number of flow sessions. Table 3 on page 21 shows the cSRX scale-up performance
applied to a cSRX container based on its supported sizes: small, medium, and large. The default size for a
cSRX container is large.

NOTE: See “Changing the Size of a cSRX Container” on page 69 for the procedure on how to
scale the performance and capacity of a cSRX container by changing the container size.

20

Table 3: cSRX Scale Up Performance

Release IntroducedNumber of Flow SessionsPhysicalMemoryOverheadcSRX Size

JunosOSRelease 18.1R18K256MSmall

64K1GMedium

512K4GLarge

RELATED DOCUMENTATION

Docker Overview

What is Docker?

What is a Container?

Get Started With Docker

Junos OS Features Supported on cSRX

IN THIS SECTION

Supported SRX Series Features on cSRX | 21

SRX Series Features Not Supported on cSRX | 24

cSRX provides Layer 4 through 7 secure services in a containerized environment.

This section presents an overview of the Junos OS features on cSRX.

Supported SRX Series Features on cSRX

Table 4 on page 22 provides a high-level summary of the feature categories supported on cSRX and any
feature considerations.

21

https://docs.docker.com/engine/docker-overview/
https://www.docker.com/what-docker
https://www.docker.com/what-container
https://docs.docker.com/get-started/

To determine the Junos OS features supported on cSRX, use the Juniper Networks Feature Explorer, a
Web-based application that helps you to explore and compare Junos OS feature information to find the
right software release and hardware platform for your network. See Feature Explorer.

Table 4: SRX Series Features Supported on cSRX

ConsiderationsFeature

Application Firewall OverviewApplication Firewall (AppFW)

Understanding Application Identification TechniquesApplication Identification (AppID)

Understanding AppTrackApplication Tracking (AppTrack)

Understanding Security BasicsBasic firewall policy

Brute force attack mitigation

CLI only. No J-Web support.Central management

DoS Attack OverviewDDoS protection

DoS Attack OverviewDoS protection

A cSRX container supports 17 interfaces:

• 1 Out-of-band management Interface (eth0)

• 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Network Interfaces

Interfaces

For SRX Series IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX Series

IntrusionDetection and Prevention
(IDP)

Understanding IPv4 Addressing

Understanding IPv6 Address Space

IPv4 and IPv6

Understanding Jumbo Frames Support for Ethernet InterfacesJumbo frames

Malformed packet protection

22

https://pathfinder.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/interface-security-network.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html

Table 4: SRX Series Features Supported on cSRX (continued)

ConsiderationsFeature

Includes support for all NAT functionality on the cSRX platform, such as:

• Source NAT

• Destination NAT

• Static NAT

• Persistent NAT and NAT64

• NAT hairpinning

• NAT for multicast flows

For SRX Series NAT configuration details, see:

Introduction to NAT

NetworkAddress Translation (NAT)

Basic Layer 3 forwarding with VLANs.

Layer 2 through 3 forwarding functions: secure-wire forwarding or static
routing forwarding

Routing

Understanding SYN Cookie ProtectionSYN cookie protection

Starting in Junos OS Release 20.1R1, you can monitor traffic using system
logs and RTlogs.

System Logs and Real-Time Logs

Includes support for all user firewall functionality on the cSRX platform, such
as:

• Policy enforcement with matching source identity criteria

• Logging with source identity information

• Integrated user firewall with active directory

• Local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

User Firewall

23

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-nat.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html

Table 4: SRX Series Features Supported on cSRX (continued)

ConsiderationsFeature

Includes support for all UTM functionality on the cSRX platform, such as:

• Antispam

• Sophos Antivirus

• Web filtering

• Content filtering

For SRX Series UTM configuration details, see:

Unified Threat Management Overview

For SRX Series UTM antispam configuration details, see:

Antispam Filtering Overview

Unified ThreatManagement (UTM)

Understanding IP SpoofingZones and zone-based IP spoofing

SRX Series Features Not Supported on cSRX

Table 5 on page 24 lists SRX Series features that are not applicable in a containerized environment, that
are not currently supported, or that have qualified support on cSRX.

Table 5: SRX Series Features Not Supported on cSRX

SRX Series Feature

Application Layer Gateways

Avaya H.323

Authentication with IC Series Devices

Layer 2 enforcement in UAC deployments

NOTE: UAC-IDP andUAC-UTMalso are not supported.

Class of Service

High-priority queue on SPC

Tunnels

24

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

Data Plane Security Log Messages (StreamMode)

TLS protocol

Diagnostics Tools

Flow monitoring cflowd version 9

Ping Ethernet (CFM)

Traceroute Ethernet (CFM)

DNS Proxy

Dynamic DNS

Ethernet Link Aggregation

LACP in standalone or chassis cluster mode

Layer 3 LAG on routed ports

Static LAG in standalone or chassis cluster mode

Ethernet Link Fault Management

Physical interface (encapsulations)

ethernet-ccc
ethernet-tcc

extended-vlan-ccc
extended-vlan-tcc

Interface family

ccc, tcc

ethernet-switching

Flow-Based and Packet-Based Processing

25

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

End-to-end packet debugging

Network processor bundling

Services offloading

Interfaces

Aggregated Ethernet interface

IEEE 802.1X dynamic VLAN assignment

IEEE 802.1X MAC bypass

IEEE 802.1X port-based authentication control with
multisupplicant support

Interleaving using MLFR

PoE

PPP interface

PPPoE-based radio-to-router protocol

PPPoE interface

Promiscuous mode on interfaces

IP Security and VPNs

Acadia - Clientless VPN

DVPN

Hardware IPsec (bulk crypto) Cavium/RMI

IPsec tunnel termination in routing instances

Multicast for AutoVPN

Suite B implementation for IPsec VPN

26

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

IPv6 Support

DS-Lite concentrator (also known as AFTR)

DS-Lite initiator (also known as B4)

Log File Formats for System (Control Plane) Logs

Binary format (binary)

WELF

Miscellaneous

AppQoS

Chassis cluster

GPRS

Hardware acceleration

High availability

J-Web

Logical systems

MPLS

Outbound SSH

Remote instance access

RESTCONF

Sky ATP

SNMP

Spotlight Secure integration

27

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

USB modem

Wireless LAN

MPLS

CCC and TCC

Layer 2 VPNs for Ethernet connections

Network Address Translation

Maximize persistent NAT bindings

Packet Capture

Packet capture

NOTE: Only supported on physical interfaces and tunnel
interfaces, such as gr, ip, and st0. Packet capture is not
supported on a redundant Ethernet interface (reth).

Routing

BGP extensions for IPv6

BGP Flowspec

BGP route reflector

Bidirectional Forwarding Detection (BFD) for BGP

CRTP

Switching

Layer 3 Q-in-Q VLAN tagging

28

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

cSRX does not support all the log functions supported
on other SRX devices or vSRX instances due to limited
CPU power and disk capacity.

Unsupported system logs and real-time log functions on
cSRX are:

• The binary log

• On box logs (the LLMD daemon is not ported.)

• On box reports (the LLMD daemon is not ported.)

• TLS is not supported for sending streammode security
log to remote log server.

• LSYS and Tenant related functions.

Unsupported System Logs and Real-Time log functions

Transparent Mode

UTM

Unified Threat Management

Express AV

Kaspersky AV

Upgrading and Rebooting

Autorecovery

Boot instance configuration

Boot instance recovery

Dual-root partitioning

OS rollback

User Interfaces

NSM

SRC application

29

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

Junos Space Virtual Director

Application Security

SSL proxy

30

2
CHAPTER

cSRX Service Chaining in Contrail

Requirements for Deploying cSRX on Contrail | 32

Service Chains Overview | 34

Preparing a Contrail Cluster | 36

Configuring cSRX in a Contrail Service Chain | 39

Requirements for Deploying cSRX on Contrail

IN THIS SECTION

Platform and Server Requirements | 32

cSRX Basic Configuration Settings | 33

This section presents an overview of requirements for deploying a cSRX container on Contrail:

Platform and Server Requirements

Table 6 on page 32 lists the Contrail platform requirement specifications and Table 7 on page 33 lists the
server requirements for deploying a cSRX container in a compute node.

NOTE: The cSRX can run either on a physical server or virtual machine. For scalability and
availability reasons, we recommend using a physical server to deploy the cSRX container.

Table 6: Platform Requirements

Operating System and Kernel VersionsComponent

Contrail 3.2Contrail Release

OpenStack Release

• CentOS 7.2—Linux Kernel version-3.10.0-327.10.1

• Ubuntu 14.04.4—Linux kernel versions 3.13.0-85-generic and 4.4.0-34-generic

• Red Hat 7.2—Linux Kernel version- 3.10.0-327.10.

• VMware vCenter 5.5, 6.0—Ubuntu 14.04.4 kernel version 3.13.0-85-generic

• OpenStack Liberty

• CentOS 7.2—Linux kernel version 3.10.0-327.10.1

• Ubuntu 14.04.4—Linux kernel version 3.13.0-85-generic
• OpenStack Mitaka

The cSRX container compute node requirements should be same as the other compute nodes running in
Contrail cloud. Each server must have the minimum requirements outlined in Table 7 on page 33.

32

Table 7: Server Requirement Specifications

Release IntroducedSpecificationComponent

Junos OS Release 18.1R1Docker Engine 1.9 or later installed on the same
compute node as the cSRX

Docker Engine

2 CPU coresvCPUs

8 GBMemory

40 GB hard driveDisk space

Support for additional
revenue ports are eth 3 and
eth4 is added in Junos OS
Release 19.2R1.

1 Ethernet port (minimum)

cSRX container includes 5 network interfaces (eth0,
eth1, eth2, eth3, and eth4), and requires that you create
5 virtual interfaces and attach those interfaces to a
virtual network.

One interface is intended for out-of-bandmanagement
to accept management sessions and traffic, and the
other four interfaces are used by the cSRX as the
revenue ports to process in-band data traffic.

Network interface

cSRX Basic Configuration Settings

The cSRX container requires the following basic configuration settings:

• Interfaces must be assigned IP addresses.

• Interfaces must be bound to security zones.

• Policies must be configured between zones to permit or deny traffic.

By default, interface ge-0/0/0 is bound to the untrust security zone (eth2) and interface ge-0/0/1 is bound
to the trust security zone (eth1).

33

Service Chains Overview

IN THIS SECTION

Understanding Service Chains | 34

Service Chain Modes | 35

Components of a Service Chain | 35

You can use Contrail to chain various Layer 2 through Layer 7 services such as firewall, NAT, and IDP
through one or more cSRX containers. For example, you can insert a cSRX firewall container between two
other virtual machines (VMs, containers, or both). By using cSRX and service chains, you can tailor your
security needs to a targeted virtual network and container set. This provides agility and scalability in line
with the fluidity of cloud network environments.

Understanding Service Chains

To create a service through cSRX, you instantiate one or more cSRX containers to dynamically apply single
or multiple services to network traffic.

Figure 7 on page 34 shows a basic service chain with a single cSRX container. The cSRX service container
spawns a service, such as a firewall. The left interface (left IF) points to the internal end customer, who
uses the service; and the right interface (right IF) points to the external network or Internet. You can also
instantiate multiple cSRX containers to chain multiple services together. For example, you could add an
IDP service after the firewall.

Figure 7: cSRX Service Chaining

34

When you create a service chain, Contrail creates tunnels across the underlay network that span all services
in the chain.

Service Chain Modes

You can configure the following service modes:

• In-network or routedmode—Provides a gateway service that routes packets between the service instance
interfaces. Examples include NAT, Layer 3 firewall, and load balancing.

• In-network-nat mode—Similar to in-network mode; however, packets from the left (private) network
are not routed to the right (public) source network. In-network-nat mode is particularly useful for NAT
services.

NOTE: Ensure that you define the service policy with the private network on the left and
public on the right to get the public routes (usually the default) advertised into the left network.

Components of a Service Chain

Service chaining requires the following configuration components to build the chain:

• Service template

• Virtual networks

• Service instance

• Network policy

Service Templates

Service templates map out the basic configuration that Contrail uses to instantiate a service instance or
container. Within Contrail, you configure service templates in the scope of a domain, and you can use the
templates on all projects within a domain. You can use a template to launch multiple service instances of
the same type in different projects within a domain.Within a service template, you select the service mode,
a cSRX image name for the container that will provide the service, and an ordered list of interfaces for the
service. cSRX service containers require the management interface to be the first interface in that ordered
list. The service template launches the cSRX as part of the service chain. A dedicated Nova Docker Agent
runs on the cSRX compute node to receive instructions from theOpenstack Controller and to act on behalf

35

of the cSRX.When the Nova Docker Agent starts the cSRX container, the agent will first check if the cSRX
image is located in the local host Docker Engine. If not, the agent will then attempt to pull the cSRX image
from the remote Docker registry.

Virtual Networks

Virtual networks provide the link between the service instance and the network traffic in the containerized
environment. You can create the virtual networks in Contrail or OpenStack and use those networks to
direct traffic to or through the service instance.

Service Instances

A service instance is the instantiation of the selected service template to create one or more containers
that provide the service (for example, a firewall). When you create a service instance, you select a service
template that defines the instance. You also associate the interfaces in the service template with the virtual
networks needed to direct traffic into and out of the service instance. If you enable service scaling in the
selected service template, you can instantiate more than one container when you create the service
instance.

Network Policies

By default, all traffic in a virtual network remains isolated. You configure a network policy to allow traffic
between virtual networks and through the service instance. The network policy filters traffic to and from
the service container based on the rules you configure. You select the service instance container and the
virtual networks for the right and left interfaces of that container that the network policy applies to. As a
final step, you associate the network policy with each virtual network the policy applies to.

RELATED DOCUMENTATION

Contrail - Service Chaining

Preparing a Contrail Cluster

Before you can add the cSRX firewall service to Contrail, you must first add a control node and compute
node to an existing Contrail cluster and install the Docker Engine on that compute node to support cSRX.
This procedure outlines the steps in preparing the Contrail cluster to support cSRX.

If you have not done so already, install the operating system (Ubuntu, CentOS, or RedHat Enterprise Linux
(RHEL)) and Contrail software package (see Contrail Getting Started Guide (Contrail 3.2)).

36

https://www.juniper.net/documentation/en_US/contrail3.2/topics/task/configuration/service-chaining-vnc.html
https://www.juniper.net/documentation/en_US/contrail3.2/information-products/pathway-pages/getting-started-pwp.html

Optionally, ensure OpenStack Glance is installed (see OpenStack - Add the Image Service (glance)).

To prepare the Contrail cluster:

1. Add a minimum of one control node and two compute nodes to the Contrail cluster. One compute
node is running a KVM hypervisor and the other compute node is running the Docker Engine (see
Configuring the Control Node and Adding or Removing a ComputeNode in an Existing Contrail Cluster).

NOTE: The KVM hypervisor and Docker Engine cannot run on the same host.

If using Contrail 3.2, to deploy a compute node to work with Nova Docker in a Contrail cluster, ensure
that the Nova DockerDriver is defined in place of the LibvirtDriver in the env.hypervisor dictionary in
the testbed.py file. See Configuring Open Stack Nova Docker with Contrail.

2. Install and configure theDocker Engine on at least one compute node to implement the Linux container
environment. There must be at least one compute node configured with the Docker Engine. Docker
installation requirements vary based on the platform and the host OS (Ubuntu, Red Hat Enterprise
Linux (RHEL), or CentOS).

See Install Docker for installation instructions on the different supported Linux host operating systems.

3. UseMonitor > Infrastructure > Dashboard to get a view of the system infrastructure components for
Contrail cluster status, including the numbers of virtual routers, control nodes, analytics nodes, and
configuration nodes that are currently operational. Any of the control nodes, virtual routers, analytics
nodes, and configuration nodes can be monitored individually and in detail from the Dashboard by
clicking an associated box, and drilling down for more detail.

4. Specify the compute node that is to run the cSRX container as Docker typeHypervisor in the testbed.py
file, underOPTIONALCOMPUTEHYPERVISORCHOICE. See Setting Up the Testbed Definitions File
for the procedure on how to edit the testbed.py file.

The following example shows the testbed.py file for a Contrail cluster configuration.

… …

#Management ip addresses of hosts in the cluster

host1 = 'root@10.208.29.2'

host2 = 'root@10.208.29.1'

… …

… …

#Role definition of the hosts.

env.roledefs = {

37

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_glance.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/task/installation/admin-control-node.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/task/installation/add-new-compute-node-vnc.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/nova-docker-vnc.html
https://docs.docker.com/engine/installation/
https://www.juniper.net/documentation/en_US/contrail3.2/topics/task/installation/testbed-file-vnc.html

 'all': [host1],

 'cfgm': [host1],

 'openstack': [host1],

 'control': [host1],

 'compute': [host1,host2],

 'collector': [host1],

 'webui': [host1],

 'database': [host1],

 'build': [host_build],

 'storage-master': [host1],

 'storage-compute': [host1],

}

… …

… …

#For reimage purpose

env.ostypes = {

 host1:'ubuntu',

 host2:'ubuntu',

}

#env.orchestrator = 'openstack' #other values are 'vcenter', 'none'

default:openstack

#ntp server the servers should point to

#env.ntp_server = 'ntp.juniper.net'

OPTIONAL COMPUTE HYPERVISOR CHOICE:

#======================================

Compute Hypervisor

env.hypervisor = {

 host2: 'docker',

}

… …

38

Configuring cSRX in a Contrail Service Chain

IN THIS SECTION

Before You Begin | 39

Configuring the Docker Registry and Compute Node | 40

Creating an Availability Zone for the cSRX Container | 42

Importing the cSRX Image | 45

Creating Virtual Networks in Contrail | 48

Launching the cSRX Container | 52

Creating a Service Template for the cSRX | 54

Creating and Launching the Service Instance | 56

Creating a Network Policy (Optional) | 58

Adding a Network Policy to a Virtual Network (Optional) | 59

This section outlines the steps to install and configure the cSRX Container Firewall as a dedicated compute
node in a Contrail service chain. You use Contrail to chain various Layer 2 through Layer 7 services such
as firewall, NAT, and IDP through the cSRX containers.

This section includes the following topics:

Before You Begin

Before you deploy the cSRX Container Firewall as an advanced security service in the Contrail Networking
cloud environment, ensure that you:

• Review “Requirements for Deploying cSRX on Contrail” on page 32 to verify the Contrail platform
requirement specifications and server requirements for deploying a cSRX container in a compute node.

• Install Contrail and prepare the Contrail cluster to support the cSRX (see “Preparing a Contrail Cluster”
on page 36).

39

Configuring the Docker Registry and Compute Node

This topic describes how to configure the Docker registry on the control node and install the cSRX-Contrail
software package on the compute node. The cSRX-Contrail software package automates installation of
the necessary software to the control node and compute node required to use the cSRX container.

To configure the Docker registry server and the compute node:

1. Install and configure the Docker Engine on the control node to implement the Linux container
environment. Docker installation requirements vary based on the platform and the host OS (Ubuntu,
Red Hat Enterprise Linux (RHEL), or CentOS).

See Install Docker for installation instructions on the different supported Linux host operating systems.

2. Copy the cSRX-Contrail software package to the control node and extract it.

[root@eng--shell6 ~/contrail_csrx]$ ls

 container- srx- contrail.tgz

[root@eng--shell6 ~/contrail_csrx]$ pwd
/homes/user/contrail_csrx

3. On the control node, configure and install the cSRX-Contrail software package.

root@ubtvm02:~/container-srx-contrail# ./configure --with-registry --registry-addr 10.208.29.2

Maximum instances per node: 2

Registry server name: csrx-registry

Registry server IP address: 10.208.29.2

Registry port number: 5050

Registry user name: regress

Registry password: MaRtInI

root@ubtvm02:~/container-srx-contrail# ./install
cp -rf ./etc/csrx/* /etc/csrx

cp -f bin/csrx-configure-compute /usr/bin/

cp -f bin/csrx-configure-control /usr/bin/

cp -f bin/csrx-gen-cert /usr/bin/

cp -f bin/csrx-run-registry /usr/bin/

root@ubtvm02:~/container-srx-contrail# csrx-

csrx-configure-compute csrx-configure-control csrx-gen-cert csrx-run-registry

4. Start the Docker registry service on the control node.

40

https://docs.docker.com/engine/installation/

root@ubtvm02:~/container-srx-contrail# csrx-run-registry

Stop and remove existing registry ...

….

Starting registry server

..

root@ubtvm02:~/container-srx-contrail# csrx-configure-control
Start to configure docker registry client....

..

..

Login Succeeded

5. Configure the cSRX compute nodes.

NOTE: csrx-configure-compute enables the cSRX compute nodes to receive information
from /opt/contrail/utils/fabfile/testbed/testbed.py and to configure them automatically.

root@ubtvm02:~/container-srx-contrail# csrx-configure-compute

[info][10.208.29.1]:Uploading file /etc/csrx/novadocker.patch

[info][10.208.29.1]:Uploading file /etc/csrx/profile

[info][10.208.29.1]:Uploading file /etc/csrx/csrx-configure-local

[info][10.208.29.1]:Uploading file /etc/csrx/cert/csrx-registry.crt

[info][10.208.29.1]:chmod u+x /usr/bin/csrx-configure-local

[info][10.208.29.1]:/usr/bin/csrx-configure-local

[info][10.208.29.1]:/usr/bin/csrx-configure-local

Start to configure docker registry client....

Updating certificates in /etc/ssl/certs... 0 added, 0 removed; done.

Running hooks in /etc/ca-certificates/update.d....done.

docker stop/waiting

docker start/running, process 25081

[info][10.208.29.1]:Configure registry client done.

Now Login to csrx-registry:5050

docker login -u regress -p MaRtInI -e xxx@juniper.net csrx-registry:5050

WARNING: login credentials saved in /root/.dockercfg.

Login Succeeded

Start to configure huge page ...

41

….

…

Patching novadocker ...

patching file driver.py

/usr/bin/csrx-configure-local done!

Creating an Availability Zone for the cSRX Container

Contrail creates a separate Nova availability zone (nova/docker) for compute nodes deployed with
DockerDriver. An availability zone is an aggregate of the compute nodes running Docker services. You
can add the compute nodes to availability zones that are running the Docker services. In this case, an
availability zone is required for the cSRX container to start the cSRX services. When launching the cSRX,
you specify it by the availability zone to start the container for the cSRX service.

NOTE: An availability zone is necessary only when your environment includes amixture of KVM
and Docket computer nodes.

This topic outlines how to create a new availability zone for the cSRX, and then to add the compute node
to the availability zone. Availability zone can be created with the nova command or from the OpenStack
Dashboard (Horizon).

To create an availability zone for cSRX using the nova commands:

1. Create a host aggregate that is exposed as the availability zone using the nova aggregate-create
command.

root@ubtvm02:~# source /etc/contrail/openstackrc

root@ubtvm02:~# nova aggregate-create aggregate-docker az-docker

root@ubtvm02:~# ……

root@ubtvm02:~# nova aggregate-list

+----+-----------------+-------------------+

| Id | Name | Availability Zone |

+----+-----------------+-------------------+

42

| 1 | aggregate-docker | az-docker |

+----+-----------------+-------------------+

2. Add a host to the host aggregate using the nova aggregate-add-host command.

root@ubtvm02:~# nova aggregate-add-host 1 ubtvm01

Aggregate 1 has been successfully updated.

3. Check the availability zone with the nova aggregate-details command.

root@ubtvm02:~# nova aggregate-details 1

+----+-----------------+-------------------+-----------+-------------------------------+

| Id | Name | Availability Zone | Hosts | Metadata

 |

+----+-----------------+-------------------+-----------+-------------------------------+

| 1 | aggreate-docker | az-docker | 'ubtvm01' |

'availability_zone=az-docker' |

To create an availability zone for cSRX using the OpenStack Dashboard (Horizon):

1. Log in to the Dashboard.

2. Open the System tab and click the Host Aggregates category.

3. In the Create Host Aggregate page (see Figure 8 on page 44), enter or select the following values in
the Host Aggregate Information tab:

• Name: The host aggregate name.When you create a host aggregate, you have the option of providing
an availability zone name.

• Availability Zone: The cloud provider defines the default availability zone, such as us-west.

43

Figure 8: Create Host Aggregate Dialog Box

4. Click Create Host Aggregate to create the host aggregate.

5. Check the availability zone on the Host Aggregates screen (see Figure 9 on page 44).

Figure 9: Host Aggregates Screen

44

Importing the cSRX Image

To launch a cSRX container based on the images stored in the Openstack Image service (or Glance), you
must first add the cSRX image from the Juniper Internal Docker registry. Glance provides discovery,
registration, and delivery services for disk and server images. The cSRX image is automatically pulled from
the Docker registry to the compute node when a cSRX instance is initially launched.

The cSRX image is available as a cSRX Docker file from the Juniper Internal Docker registry.

To import the cSRX image file to the Openstack Glance image service:

1. Login to the Juniper Internal Docker registry using the login name and password that you received as
part of the sales fulfillment process when ordering cSRX.

root@ubtvm02:~# docker login hub.juniper.net -u <username> -p <password>

2. To browse the existing images from the Juniper Internal Docker registry for a cSRX image:

root@ubtvm02:~# curl -u <<username>> -X GET https://hub.juniper.net/v2/security/csrx/tags/list

Enter host password for user '<<username>>:

{"name":"security/csrx","tags":["18.1R1.9","18.2R1.9"]}

root@ubtvm02:~#

NOTE: To browse the existing images from the Juniper Internal Docker registry by using a
Web browser instead of using the curl CLI command, you can launch a Web browser with
https://hub.juniper.net/v2/security/csrx/tags/list. Use the login name and password that
you received as part of the sales fulfillment process.

3. Pull the cSRX image from the Juniper Internal Docker registry.

root@ubtvm02:~# docker pull hub.juniper.net/security/csrx:<version>

For example, to pull cSRX image version 18.2R1.9:

root@ubtvm02:~# docker pull hub.juniper.net/security/csrx:18.2R1.9

4. Create a tag target image of the cSRX source image and push it to the Docker registry on the control
node. You tag the cSRX target image to the cSRX image in the Docker registry. The cSRX registry is a
service installed on the control node to help automate the distribution of the cSRX image to other
compute nodes in the Contrail Networking cloud environment.

45

https://hub.juniper.net/v2/security/csrx/tags/list
https://hub.juniper.net/v2/security/csrx/tags/list

root@ubtvm02:~# docker tag csrx:18.1R1.0 csrx-registry:5050/csrx:18.1R1.0

root@ubtvm02:~# docker images

REPOSITORY TAG IMAGE ID CREATED

 SIZE

csrx 18.1R1.0 918aa1636f22 27 hours ago

 799 MB

csrx-registry:5050/csrx 18.1R1.0 918aa1636f22 27 hours ago

 799 MB

… …

root@ubtvm02:~# docker push csrx-registry:5050/csrx:18.1R1.0

……

096c5913d0b0: Pushed

5. Import the cSRX image to the Openstack Glance image service using the appropriate values for your
Contrail environment and disk image.

root@ubtvm02:~# source /etc/contrail/openstackrc

root@ubtvm02:~# docker save csrx-registry:5050/csrx:18.1R1.0 | glance image-create
--container-format=docker --disk-format=raw --name csrx-registry:5050/csrx:18.1R1.0

6. Check the Openstack Glance image using the nova image-list command.

root@ubtvm02:~# nova image-list

..

…

| | fd4532bc-edfe-4fe6-835f-20304f53c115 | csrx-registry:5050/csrx:18.1R1.0 |

ACTIVE |

You can also check the Glance image from the Images page (see Figure 10 on page 47) of theOpenStack
Dashboard (Horizon).

46

Figure 10: Images Screen

47

Creating Virtual Networks in Contrail

48

The cSRX container requires three virtual networks: one virtual network for out-of-band management
sessions, and the other two virtual networks to receive and transmit in-band data traffic. You create a left,
right, and management virtual network on Contrail, and then connect the cSRX to the virtual networks.
You create networks and network policies at the user dashboard of Contrail, then associate policies with
each network. The trusted and untrusted interfaces required by a cSRX connector are connected to eth1
and eth2.

NOTE: If there is already a virtual network created in your Contrail Networking cloud
environment, the cSRX container can be launched and attached to the existing virtual networks.
Virtual networks can be shared across different tenants.

This topic summarizes how to create the three virtual networks required by the cSRX container: mgt-vn
(eth0), west-vn (eth1), and east-vn (eth2). mgt-vn is used by the cSRX for out-of-band management to the
accept management sessions and traffic, and west-vn and east-vn are both used by the cSRX as the two
revenue ports to process in-band data traffic (the ge-0/0/0 and ge-0/0/1 interfaces).

Figure 11 on page 50 illustrates three virtual networks used by a cSRX in an East West firewall.

49

Compute Node 1

VM VM

west-pc-01 east-pc-01

g0
43

64
3

Underlay network

mgt-vn

west-vn

east-vn

west-pc-01 csrx-fw-instance

eth0

eth1

eth0

eth1

ge-0/0/1 ge-0/0/0

fxp0

east-vn

192.168.60.0/24

Compute Node 2

csrx-fw-instance

Control Nodes

Docker Registry

OpenStack
Controller

Contrail
Controller

east-pc-01

LOGICAL VIEW

PHYSICAL VIEW

mgt-vn

192.168.100.0/24

VM VM

192.168.50.0/24

west-vn

For the procedure on creating a virtual network in Contrail, see Creating a Virtual Network with Juniper
Networks Contrail.

NOTE: This procedure assumes that “left” and “right” VMs exist in your Contrail virtual network.

To create the virtual networks required by cSRX:

50

https://www.juniper.net/documentation/en_US/contrail3.2/topics/task/configuration/creating-virtual-network-juniper-vnc.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/task/configuration/creating-virtual-network-juniper-vnc.html

1. Before creating a virtual network, ensure that you have IP AddressManagement (IPAM) set up for your
project. Select Configure > Networking > IP Address Management, and then click the Create button.

2. From the Contrail GUI, select Configure > Networking > Networks to access the Configure Network
page. The list of existing networks appears.

3. Click the Create Network (+) icon. The Create Network page appears (see Figure 12 on page 51).

Figure 12: Create Network Page

4. Enter a name for the virtual network (mgt-vn (eth0), west-vn (eth1), or east-vn (eth1)).

Do not select a network policy yet. You create the network policy after you create the service instance
and then you update this virtual network to add the policy.

5. Expand Subnet and click + to add IPAM to this virtual network.

6. Select the appropriate IPAM from the list.

7. Set the CIDR and Gateway fields. Depending on the virtual network you are creating, ensure that the
eth0 network address is assigned to the mgt-vn, the ge-0/0/0 network address is assigned to the “left”
network, and the ge-0/0/1 network address is assigned to the “right” network.

8. Expand Advanced Options and select appropriate options for your network.

NOTE: When creating a virtual network for west-vn (eth1) and east-vn (eth2), ensure that
you enable Advanced Options. This is a requirement for Layer 2 forwarding.

9. Click Save. The new virtual network appears in the list of configured networks.

51

10.Repeat this procedure for the remaining virtual networks required by the cSRX container.

11.Verify the completed virtual networks for the cSRX container in the Networks page (see
Figure 13 on page 52).

Figure 13: Completed Virtual Networks for cSRX

Launching the cSRX Container

Launch the cSRX container in Openstack using the nova boot CLI command. You have a series of cSRX
environment variables that enable you to modify operating characteristics of the cSRX container when it
is launched.

You can modify:

• Initial root account password to log in to the cSRX container using SSH

• cSRX container size (small, medium, or large)

• Packet I/O driver (polled or interrupt)

• CPU affinity for cSRX control and data daemons

• Address Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) entry timeout values

NOTE: Specification of an environment variable is not mandatory when launching the cSRX
container; most environment variables have a default value as shown in “cSRX Configuration
Data File and Environment Variables” on page 62. You can launch the cSRX using the default
environment variable settings.

To launch the cSRX container:

52

1. Use the nova boot command to launch the cSRX container. If you intend to log into the cSRX container
using SSH, you must specify an initial root password when launching the cSRX.

Metadata is the key value pair that can be specified when you launch a compute instance in Openstack.
For the cSRX container, the metadata is used to pass one or more environment variables when you
launch the cSRX. Any environment variable supported by the cSRX container can be passed to the
cSRX by including the –meta option in the nova boot command.

“cSRX Configuration Data File and Environment Variables” on page 62 summarizes the list of available
cSRX environment variables along with a link to the topic that outlines its usage.

For example:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:18.1R1.0 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9 --nic
net-id=3e744a74-2579-455f-aea9-92e0655abec6 --meta CSRX_SIZE=middle --meta
CSRX_ROOT_PASSWORD=<password> --meta CSRX_PACKET_DRIVER=interrupt --meta csrx-fw

2. Confirm that the cSRX container is listed as a running Docker container.

root@csrx-ubuntu3:~/csrx# nova list

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

35e33e8aa4af csrx "/etc/rc.local init" 7 minutes ago Up 7 minutes 22/tcp, 830/tcp csrx2

3. Confirm that the cSRX container is up and running. You should see the expected Junos OS processes,
such as nsd, srxpfe, and mgd.

root@csrx-ubuntu3:~/csrx# docker top csrx2

UID PID PPID C

 STIME TTY TIME CMD

root 1809 1788 0

 07:51 pts/0 00:00:00 /bin/bash -e

/etc/rc.local init

root 2271 1809 0

 07:51 ? 00:00:00 /usr/sbin/rsyslogd

 -M/usr/lib/rsyslog

root 2290 1809 0

 07:51 ? 00:00:00 /usr/sbin/sshd

root 2308 1809 0

 07:51 ? 00:00:00 /usr/bin/monit

root 2314 1809 0

 07:51 ? 00:00:00 /usr/sbin/nstraced

53

root 2325 1809 0

 07:51 ? 00:00:00 /usr/sbin/nsd

root 2335 1809 14

 07:51 ? 00:00:02 /usr/sbin/appidd

 -N

root 2349 1809 0

 07:51 ? 00:00:00 /usr/sbin/idpd -N

root 2358 1809 0

 07:51 ? 00:00:00 /usr/sbin/wmic -N

root 2366 1809 0

 07:51 ? 00:00:00 /usr/sbin/useridd

 -N

root 2380 1809 0

 07:51 ? 00:00:00 /usr/sbin/mgd

root 2439 1809 96

 07:51 ? 00:00:17 /usr/sbin/srxpfe

 -a -d

root 2467 1809 0

 07:51 ? 00:00:00 /usr/sbin/utmd -N

root 2488 1809 0

 07:51 ? 00:00:00 /usr/sbin/kmd

root 2623 1809 0

 07:51 pts/0 00:00:00 /bin/bash

Creating a Service Template for the cSRX

Creation of a service template (version 2) in Contrail is a critical step in adding the cSRX container to a
service chain. The Contrail service template is used in a service instance to launch the cSRX as part of a
service chain.

To create a cSRX service template:

1. From the Contrail GUI, select Configure > Services > Service Templates. The list of existing service
templates appears.

2. Click the Create (+) button on Service Templates. The Create Service Template page appears (see
Figure 14 on page 55).

54

Figure 14: Create Service Template Page

3. Add a name for the service template in the Name box.

4. Select v2 in the Version field

5. Select Virtual Machine as Virtualization Type from the list.

6. Select In-Network as Service Mode and Firewall as Service Type from the lists.

7. Under Interface(s), click + to add three interfaces. SelectManagement for the first interface type, Left
for the second interface type, and Right for the third interface type. You associate the left and right
interfaces with the left and right virtual networks when you create the service instance. Any additional
interfaces must be of type Other.

8. Click Save to save the new service template. The cSRX service template appears on the Service Templates
page.

9. Confirm the cSRX service template settings from the Service Templates page.

55

Creating and Launching the Service Instance

You are now ready to create and launch the service instance from the Docker registry.

To create and launch the service instance:

1. From the Contrail GUI, configure a service instance for an in-network service template. Navigate to
Configure > Services > Service Instances and then click Create on the Service Templates window. The
Create Service Instance page appears (see Figure 15 on page 56).

Figure 15: Create Service Instance Page

2. Enter a name for the cSRX service instance.

NOTE: Do not use white space in the service instance name.

3. Select the service template you created for cSRX from the Service Template list.

56

4. Under Virtual Network. select the virtual network for the management, left, and right interfaces.

5. Under Port Tuples, select the port tuples from Tuples list. Ports for the cSRX container are created as
part of the cSRX container launch in Openstack using the nova boot CLI command. With a port-tuple
object, you can create ports and pass the port information when creating the service instance. The
ports are linked to a port-tuple object that is a child of a service instance.

6. Click Save to save this service instance. Contrail launches the cSRX container for this service instance.

7. Confirm that the service instance status is Active .

8. Check the cSRX compute node. Confirm that the cSRX imagewas automatically pulled from theDocker
registry and that the Docker instance is running.

NOTE: It might take longer for the first cSRX instance to launch because it has to pull the
image from the Docker registry server.

root@ubtvm02:~# nova image list

REPOSITORY TAG IMAGE ID CREATED

 VIRTUAL SIZE

csrx- registry:5050/- csrx 18.1R1.0 4b7fcaf7f30d 39 hours

 ago 551.1 MB

ubuntu trusty bec964527be1 7 weeks

 ago 188 MB

csrx- registry:5000/ubuntu- 14 1.0 a4c8a0f2f25f 16 months

 ago 589 MB

root@ubtvm02:~# nova list

CONTAINER ID IMAGE COMMAND

 CREATED

STATUS PORTS NAMES

b4002acca1ac csrx- registry:5050/- csrx:18.1R1.0 "/etc/rc.local init"

11 minutes ago Up

11 minutes nova- 85d5f949- 97e7- 4f46- b18f--

 0ddf227fe4fe

57

Creating a Network Policy (Optional)

(Optional) To create a network policy to allow traffic between virtual networks and the service instance:

1. From the Contrail GUI, select Configure > Networking > Policies. The table of policies appears.

2. Click + to create a new policy. The Create Policy page appears, as shown in Figure 16 on page 58.

Figure 16: Creating a Network Policy in Contrail

3. Name the policy.

4. Click + to create a new rule for this policy.

5. Select the left virtual network you created from the Source list and select the right virtual network
from the Destination list.

6. Select the appropriate protocol from the Protocol list and select the source and destination ports for
this policy.

7. Select Services and select the cSRX instance you want to apply this policy to.

8. Optionally, add more policy rules to this policy.

9. Click Save to create this policy.

See Creating a Network Policy—Juniper Networks Contrail for more details.

58

https://www.juniper.net/documentation/en_US/contrail2.2/topics/task/configuration/creating-policies-juniper-vnc.html

Adding a Network Policy to a Virtual Network (Optional)

(Optional) To add a network policy to a virtual network:

1. From the Contrail GUI, select Configure > Networking, and select the settings icon to the right of the
virtual network you want to add a network policy to, as shown in Figure 17 on page 59.

Figure 17: Networks Window Page

2. Click Edit. The Edit Networks page appears, as shown in Figure 18 on page 59.

Figure 18: Adding a Network Policy to a Virtual Network

3. Select the appropriate policy from the Network Policy(s) list.

59

4. Click Save to save this change.

5. Repeat this procedure for the other virtual network in this service chain.

See Associating a Network to a Policy—Juniper Networks Contrail for more details.

60

https://www.juniper.net/documentation/en_US/contrail2.2/topics/task/configuration/associating-policies-vnc.html

3
CHAPTER

Managing cSRX Containers in Contrail

cSRX Configuration Data File and Environment Variables | 62

Specifying an Initial Root Password for Logging into a cSRX Container | 65

Configuring cSRX for Routing Mode | 66

Changing the Size of a cSRX Container | 69

Specifying the Packet I/O Driver for a cSRX Container | 70

Configuring CPU Affinity for a cSRX Container | 72

Managing cSRX Containers | 73

cSRX Configuration Data File and Environment
Variables

Docker allows you to store data such as configuration settings as environment variables. At runtime, the
environment variables are exposed to the application inside the container. A series of cSRX environment
variables enable you to modify the characteristics of the cSRX instance when it is launched. You can set
any number of parameters to take effect when the cSRX image launches. You can pass configuration
settings in the form of a configuration data file or environment variables to the cSRX when it launches at
boot time.

NOTE: The specification of an environment variable is notmandatory;most environment variables
have a default value as shown in Table 8 on page 62. If desired, you can launch the cSRX using
the default environment variable settings.

You pass configuration settings by using the following methods:

• Openstack user data file– Passes a validated Junos OS configuration file to automate the initialization
of a cSRX instance when it is launched.

• Openstack metadata–Passes a series of cSRX environment variables to modify the characteristics of the
cSRX instance when it is launched.

Table 8 on page 62 summarizes the list of available cSRX environment variables along with a link to the
topic that outlines its usage.

Table 8: Summary of cSRX Environment Variables

TopicDefaultValuesDescriptionEnvironment Variable

“Changing the Size of a
cSRX Container” on
page 69

largesmall |
middle |
large

cSRX size.CSRX_SIZE

“Specifying the Packet I/O
Driver for a cSRX
Container” on page 70

pollpoll |
interrupt

Packet I/O driver.CSRX_PACKET_DRIVER

“Specifying an Initial Root
Password for Logging into
a cSRX Container” on
page 65

No default
root
password

stringInitial root account
password to log in to the
cSRX container using SSH.

CSRX_ROOT_PASSWORD

62

Table 8: Summary of cSRX Environment Variables (continued)

TopicDefaultValuesDescriptionEnvironment Variable

“Configuring CPU Affinity
for a cSRX Container” on
page 72

No CPU
affinity

hex valueCPUmask, indicating which
CPU is running the cSRX
control plane daemons (such
as nsd, mgd, nstraced, utmd,
and so on).

CSRX_CTRL_CPU

“Configuring CPU Affinity
for a cSRX Container” on
page 72

No CPU
affinity

hex valueCPUmask, indicating which
CPU is running the cSRX
data plane daemon (srxpfe).

CSRX_DATA_CPU

“Configuring cSRX for
RoutingMode” on page 66

Same as the
Linux host

decimal
value

ARP entry timeout value for
the control plane ARP
learning or response.

CSRX_ARP_TIMEOUT

“Configuring cSRX for
RoutingMode” on page 66

Same as the
Linux host

decimal
value

NDPentry timeout value for
the control plane NDP
learning or response.

CSRX_NDP_TIMEOUT

Openstack User Data File

User data enables you to pass a Junos OS configuration contained in a local file to a cSRX instance at
launch time. A typical use case would be to pass something similar to a shell script or a configuration file
as user data. The Openstack user data file for cSRX is organized as an XML formatted file, enclosed with
the <csrx_conf> and </csrx_conf> tags. .

You can also specify the following subelements in an XML file:

• conf–Configuration to be pushed for the cSRX service after launching the cSRX container.

• boot_script–Script to be executed in the shell after launching the cSRX container.

The following example shows an Openstack user data file configured to pass a Junos OS configuration :

 <csrx_conf>

 <conf>

edit

set system root-authentication encrypted-password

"$1$91fRgcxz$Vc8dgodJiPR61Rd59/Lza/"

63

set system root-authentication ssh-rsa "ssh-rsa <<<PUBLIC.SSH.KEY.HERE user

@juniper.net>>>”

set system name-server 8.8.8.8

set system host-name csrx33

set interfaces ge-0/0/0 unit 0 family inet address 192.168.60.33/24

set interfaces ge-0/0/1 unit 0 family inet address 192.168.50.33/24

set routing-options static route 0.0.0.0/0 next-hop 192.168.60.1

set routing-options static route 172.26.0.0/16 next-hop 10.0.109.1

set security policies from-zone trust to-zone untrust policy t2u match

source-address any

set security policies from-zone trust to-zone untrust policy t2u match

destination-address any

set security policies from-zone trust to-zone untrust policy t2u match application

 any

set security policies from-zone trust to-zone untrust policy t2u then permit

set security policies from-zone trust to-zone untrust policy t2u then log

session-init

set security policies from-zone trust to-zone untrust policy t2u then log

session-close

set security policies default-policy deny-all

commit

 </conf>

 <boot_script>

#!/bin/sh

echo "my boot script"

 </boot_script>>

</csrx_conf>

After you create the user data file, you can then use it to pass a Junos OS configuration to the cSRX
container when you launch the cSRXwith the nova boot command. You send the user data file by including
the --user-data /path/to/filename option.

For example:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/-csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9--nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_USER_DATA=yes --user-data ./user-data.xml csrx-fw

64

Openstack Metadata

Metadata is the key value pair that can be specified when you launch a compute instance in Openstack.
For the cSRX, themetadata is used to pass one or more environment variables to the cSRX container when
you launch the cSRX with the nova boot command. Any environment variable supported by the cSRX
container (see Table 8 on page 62) can be passed to the cSRX by including the –meta option in the nova
boot command.

For example:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9--nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_SIZE=middle --meta CSRX_ROOT_PASSWORD=<password> --meta
CSRX_PACKET_DRIVER=interrupt csrx-fw

Specifying an Initial Root Password for Logging into
a cSRX Container

If you intend to log into the cSRX container using SSH, specify an initial root password when launching
the cSRX. When a cSRX container is launched, remote access using SSH will be enforced with username
and password.

NOTE: After the cSRX container is started, change the password and, if desired, the authentication
method for the root-level user.

To specify an initial root password for logging into the cSRX container, include the
CSRX_ROOT_PASSWORD environment variable in the –meta option as part of the nova boot command
syntax. For example:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic

65

net-id=326eb329-1e66-46b7-8438-a8f41c88bec9 --nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_ROOT_PASSWORD=<password> csrx-fw

Configuring cSRX for Routing Mode

With the cSRX container operating in routing mode, the cSRX uses a static route to forward traffic for
routes destined to interfaces ge-0/0/0 and ge-0/0/1. You will need to create a static route and specify
the next-hop address of egress traffic.

NOTE: The cSRX uses routing as the default environment variable for traffic forwarding mode.

To configure the cSRX container to operate in static routing mode:

1. Launch the cSRX container.

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9 --nic
net-id=3e744a74-2579-455f-aea9-92e0655abec6 --meta CSRX_SIZE=middle --meta
CSRX_ROOT_PASSWORD=<password> csrx-fw

2. After you start the cSRX container, log in to it and configure static routes.

root@csrx# cli

root@csrx> configure

[edit]

root@csrx# show | display set

root@csrx# set interfaces ge-0/0/0 unit 0 family inet address 1.0.0.1/8

root@csrx# set interfaces ge-0/0/1 unit 0 family inet address 2.0.0.1/8

root@csrx# set routing-options static route 3.0.0.0/28 next-hop 1.0.0.10/32

3. View the forwarding table to verify the static routes.

root@csrx> show route forwarding-table

66

Routing table: default.inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif

0.0.0.0 perm 0 dscd 517 1

1.0.0.1 perm 0 1.0.0.1 locl 2006 1

1.0.0.10 perm 0 1.0.0.10 ucast 5501 1

1.255.255.255 perm 0 bcst 2007 1

1/8 perm 0 rslv 2009 1

2.0.0.1 perm 0 2.0.0.1 locl 2001 1

2.0.0.10 perm 0 2.0.0.10 ucast 5500 1

2.255.255.255 perm 0 bcst 2002 1

2/8 perm 0 rslv 2004 1

224.0.0.1 perm 0 mcst 515 1

224/4 perm 0 mdsc 516 1

3.0.0.0/28 perm 0 1.0.0.10 ucast 5501 1

Routing table: default.inet6

Internet6:

Destination Type RtRef Next hop Type Index NhRef Netif

:: perm 0 dscd 527 1

ff00::/8 perm 0 mdsc 526 1

ff02::1 perm 0 mcst 525 1

4. Specify a route for the management interface. Static routes can only configure routes destined for
interfaces ge-0/0/0 and ge-0/0/1. The route destined for the management interfaces (eth0) must be
added by using the Linux route shell command.

root@csrx% route add -net 10.10.10.0/24 gw 172.31.12.1

root@csrx% route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 0.0.0.0 0.0.0.0 U 0 0 0 pfe_tun

1.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 tap1

2.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 tap0

3.0.0.0 1.0.0.10 255.255.255.240 UG 0 0 0 tap1

10.10.10.0 172.31.12.1 255.255.255.0 UG 0 0 0 eth0

172.31.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

5. If required for your network environment, you can configure an IPv6 static route for the cSRX using
the set routing-options rib inet6.0 static route command.

67

[edit routing-options]

root@csrx# set routing-options rib inet6.0 static route 3000::0/64 next-hop 1000::10/128

[edit interfaces]

root@csrx# commit

root@csrx# show routing-options rib inet6.0

static {

route 3000::0/64 next-hop 1000::10/128;

}

6. Under routing mode, the control plane ARP/NDP learning/response is provided by the Linux kernel
through the TAP 0 and TAP 1 interfaces created to host the traffic for eth1 and eth2 through srxpfe.
You can view ARP entries by using the Linux arp shell command.

NOTE: While there are multiple interfaces created inside the cSRX container, only two
interfaces, ge-0/0/0 and ge-0/0/1, are visible in srxpfe and added to security zones by default.

root@csrx% arp -a

? (2.0.0.10) at 6e:81:38:41:5e:0e [ether] on tap0

? (1.0.0.10) at 96:33:66:a1:e5:03 [ether] on tap1

? (172.31.12.1) at 02:c4:39:fa:0a:0d [ether] on eth0

The default ARP/NDP entries timeout is set to 1200 seconds. You can adjust this value by modifying
either theARP_TIMEOUT orNDP_TIMEOUT environment variablewhen launching the cSRX container.
For example:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9 --nic
net-id=3e744a74-2579-455f-aea9-92e0655abec6 --metaCSRX_ARP_TIMEOUT=<seconds> --meta
CSRX_ROOT_PASSWORD=<password> csrx-fw

The maximum ARP entry number is controlled by the Linux host kernel. If there are a large number of
neighbors, you might need to adjust the ARP or NDP entry limitations on the Linux host. There are
options in the sysctl command on the Linux host to adjust the ARP or NDP entry limitations.

68

For example, to adjust the maximum ARP entries to 4096:

sysctl -w net.ipv4.neigh.default.gc_thresh1=1024

sysctl -w net.ipv4.neigh.default.gc_thresh2=2048

sysctl -w net.ipv4.neigh.default.gc_thresh3=4096

For example, to adjust the maximum NDP entries to 4096:

sysctl -w net.ipv6.neigh.default.gc_thresh1=1024

sysctl -w net.ipv6.neigh.default.gc_thresh1=2048

sysctl -w net.ipv6.neigh.default.gc_thresh1=4096

Changing the Size of a cSRX Container

Based on your specific cSRX container deployment requirements, scale requirements, and resource
availability, you can scale the performance and capacity of a cSRX instance by specifying a specific size
(small, middle, or large). Each cSRX size has certain characteristics and can be applicable to certain
deployments. By default, the cSRX container launches using the large size configuration.

Table 9 on page 69 compares the scale requirements of a cSRX instance depending on the specified size.

Table 9: cSRX Size Comparison

cSRX: Large Size (Default)cSRX: Middle SizecSRX: Small SizeSpecification

4G1G256MPhysical Memory
Overhead

512K64K8KNumber of Flow
Sessions

To assign a specific size for a cSRX instance, include the CSRX_SIZE environment variable in the –meta
option as part of the nova boot command syntax. For example, to launch a cSRX instance using the middle
size configuration:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic

69

net-id=326eb329-1e66-46b7-8438-a8f41c88bec9--nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_SIZE=middle csrx-fw

Specifying the Packet I/ODriver for a cSRXContainer

IN THIS SECTION

Specifying the Poll Mode Driver | 71

Specifying the Interrupt Mode Driver | 72

The cSRX container exchanges packets by using the Linux host user space driver over the VETH interface.
The setting of the packet I/O driver can impact the forwarding performance and scalability of a cSRX
container. You can launch a cSRX to use either the poll mode driver (default seting) or interrupt mode
driver to define how packets are exchanged.

NOTE: Poll mode is the default setting for the CSRX_PACKET_DRIVER environment variable.

Table 10 on page 70 compares the two packet I/O drivers supported by cSRX.

Table 10: cSRX Poll and Interrupt Mode Driver Comparison

Interrupt Mode DriverPoll Mode DriverSpecification

Lower forwarding performance per
cSRX.

Higher forwarding performance per cSRX.Performance

Improved scalability; support formultiple
cSRX containers per CPU.

Reduced scalability; support for a single
cSRX per CPU.

Scalability

Deployment of a cSRX supporting a large
number of concurrent security services.

Deployment of a cSRX supporting a
virtualized network function (VNF).

Scenario

70

This section includes the following topics:

Specifying the Poll Mode Driver

The poll mode driver uses a PCAP-based DPDK driver to poll packets from the Linux VETH driver. Packets
are exchanged between user and kernel space by using a Berkeley Packet Filter (BPF). The poll mode driver
can obtain the best performance for a single cSRX container (for example, as a VNF).

NOTE: When using the poll mode driver, the srxpfe process will always keep a CPU core at
100% utilization, even when the cSRX has no traffic to process.

To configure the cSRX container to use the poll mode driver, include the CSRX_PACKET_DRIVER=poll
environment variable in the –meta option as part of the nova boot command syntax.

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9--nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_PACKET_DRIVER=poll --meta CSRX_ROOT_PASSWORD=<password> csrx-fw

71

Specifying the Interrupt Mode Driver

The interrupt mode driver receives and transmits packets using the packet socket on user space. By using
the epoll mechanism provided by the Linux operating system, the interrupt mode driver can aid the srxpfe
process in waiting until packets arrive on the VETH interfaces. If no packets load on the revenue ports of
a cSRX instance, the srxpfe process remains in a sleep state to help preserve CPU resources. With the
support of the epoll mechanism, the Linux server can then sustain a large number of cSRX instances, in
particular when there aremultiple cSRX instances per CPU. In this case, the scheduler keeps track of which
srxpfe process is busy and allocates CPU resources to that srxpfe process.

NOTE: When you launch a cSRX instance, you can include the CSRX_CTRL_CPU and
CSRX_DATA_CPU environmental variables to specify a specific CPU to run control plane and
data plane tasks. The CPUwill schedule the srxpfe process among those CPUs according to their
CPU status. See“Configuring CPU Affinity for a cSRX Container” on page 72 for details on the
CSRX_CTRL_CPU and CSRX_DATA_CPU environmental variables.

To configure the cSRX container to use the interrupt mode driver, include the
CSRX_PACKET_DRIVER=interrupt environment variable in the –meta option as part of the nova boot
command syntax.

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9--nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_PACKET_DRIVER=interrupt --meta CSRX_ROOT_PASSWORD=<password> --meta
CSRX_CTRL_CPU=0x1 --meta CSRX_DATA_CPU=0x2 csrx-fw

Configuring CPU Affinity for a cSRX Container

A cSRX instance requires two CPU cores in the Linux server. To help schedule the Linux server tasks and
adjust performance of the cSRX container running on a Linux host, you can launch the cSRX container and
assign its control and data processes (or daemons) to a specific CPU. In a cSRX container, srxpfe is the
data plane daemon and all other daemons (such as nsd, mgd, nstraced, utmd, and so on) are control plane
daemons.

CPU affinity ensures that the cSRX control and data plane daemons are pinned to a specific physical CPU,
which can improve the cSRX container performance by using the CPU cache efficiently. By default, there
is not a defined CPU affinity for the cSRX control and data plane daemons; the CPU on which the control
and data plane daemons run depends on Linux kernel scheduling.

72

To assign cSRX container control and data daemons to a specific CPU, include the CSRX_CTRL_CPU and
CSRX_DATA_CPU environment variables in the –meta option as part of the nova boot command syntax.

For example, to configure the cSRX container to launch the control plane daemons on CPU 1 and the data
plane daemon on CPU 2:

root@csrx-ubuntu3:~/csrx# nova boot --image csrx-registry:5050/csrx:20171214 --flavor m1.small
--availability-zone az-docker --nic net-id=039e73e4-6033-4851-8379-21e1cedf1a30 --nic
net-id=326eb329-1e66-46b7-8438-a8f41c88bec9--nicnet-id=3e744a74-2579-455f-aea9-92e0655abec6
--meta CSRX_CTRL_CPU=0x1 --meta CSRX_DATA_CPU=0x2 --meta
CSRX_ROOT_PASSWORD=<password> csrx-fw

Managing cSRX Containers

IN THIS SECTION

Powering On the cSRX Container from OpenStack CLI | 74

Powering On the cSRX Container from OpenStack Dashboard | 74

Pausing the cSRX Container from OpenStack CLI | 74

Pausing the cSRX Container from OpenStack Dashboard | 75

Restarting the cSRX Container from OpenStack CLI | 75

Restarting the cSRX Container from OpenStack Dashboard | 75

Deleting the cSRX Container from OpenStack CLI | 75

Deleting the cSRX Container from Contrail | 76

Monitoring Basic cSRX Statistics with the Contrail Monitor | 76

Each cSRX instance is an independent container in Contrail that you can directly manage. You can also
monitor basic statistics with the Contrail Monitor.

73

This section includes the following topics:

Powering On the cSRX Container from OpenStack CLI

To power on the cSRX container from the OpenStack CLI:

1. From the OpenStack CLI, enter nova list. The list of existing instances appears, including the cSRX
container.

2. Enter nova start<csrx_name>.

Powering On the cSRX Container from OpenStack Dashboard

To power on the cSRX container from the OpenStack Dashboard:

1. From the OpenStack Dashboard, select Compute > Instances. The list of existing instances appears.

2. Check the cSRX container you want to power on.

3. From the Actions column, select Start Instance from the list.

Pausing the cSRX Container from OpenStack CLI

To pause and resume a cSRX container from the OpenStack CLI:

1. From the OpenStack CLI, enter nova list. The list of existing instances appears, including the cSRX
container.

2. To pause the cSRX container, select nova pause<csrx_name>.

3. To resume the cSRX container, select nova unpause<csrx_name>.

74

Pausing the cSRX Container from OpenStack Dashboard

To pause the cSRX container from the OpenStack Dashboard:

1. From the OpenStack Dashboard, select Compute > Instances. The list of existing instances appears.

2. Check the cSRX container that you want to pause.

3. From the Actions column, select Pause Instance from the list.

Restarting the cSRX Container from OpenStack CLI

To restart the cSRX container from the OpenStack CLI:

1. From the OpenStack CLI, enter nova list. The list of existing instances appears, including the cSRX
container.

2. Enter nova reboot<csrx_name> to perform a soft reboot of the cSRX container.

Restarting the cSRX Container from OpenStack Dashboard

To restart the cSRX container from the OpenStack Dashboard:

1. From the OpenStack Dashboard, select Compute > Instances. The list of existing instances appears.

2. Check the container that you want to reboot.

3. Select Soft Reboot Instance from the More list to restart the container.

Deleting the cSRX Container from OpenStack CLI

To delete the cSRX container from the OpenStack CLI:

1. From the OpenStack CLI, enter nova list. The list of existing instances appears, including the cSRX
container.

75

2. Enter nova delete<csrx_name>.

Deleting the cSRX Container from Contrail

To delete the container from Contrail:

1. From the Contrail GUI for your project, select Configure > Services > Service Instances. The list of
existing service instances appears.

2. Select the container that you want to delete.

3. Click the trash icon on the upper right menu to delete the selected containers.

Monitoring Basic cSRX Statistics with the Contrail Monitor

To monitor basic statistics on the cSRX container with the Contrail Monitor:

1. From the Contrail GUI, selectMonitor > Networking>Instances. The list of existing VMs appears.

2. Expand the row for the cSRX that you want to monitor. The CPU and memory statistics appear.

3. SelectMonitor > Networking > Networks. The list of existing virtual networks appears.

4. Expand the row for the virtual network that you want to monitor and select Traffic Statistics. The
traffic and throughput statistics appear.

RELATED DOCUMENTATION

Monitoring the System

OpenStack End User Guide

76

https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/monitor-vnc.html
http://docs.openstack.org/user-guide/content/

4
CHAPTER

Configuring cSRX

Configuring cSRX Using the Junos OS CLI | 78

Configuring cSRX Using the Junos OS CLI

This section provides basic CLI configurations that can be used for configuring cSRX containers. For more
details see, Introducing the Junos OS Command-Line Interface.

To configure the cSRX container using the Junos OS CLI:

1. Log in to the cSRX container using SSH.

root@csrx-ubuntu3:~/csrx#ssh 192.168.42.81

2. Start the CLI as root user.

NOTE: When a cSRX container is launched, if you specified to log into the cSRX container
with an initial root password, access to the cSRX container using SSH will be enforced with
user name and password.

root#cli
root@>

3. Verify the interfaces.

root@> show interfaces

Physical interface: ge-0/0/1, Enabled, Physical link is Up

 Interface index: 100

 Link-level type: Ethernet, MTU: 1514

 Current address: 02:42:ac:13:00:02, Hardware address: 02:42:ac:13:00:02

Physical interface: ge-0/0/0, Enabled, Physical link is Up

 Interface index: 200

 Link-level type: Ethernet, MTU: 1514

 Current address: 02:42:ac:14:00:02, Hardware address: 02:42:ac:14:00:02

4. Enter configuration mode.

configure
[edit]
root@#

78

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

5. Set the root authentication password by entering a cleartext password, an encrypted password, or an
SSH public key string (DSA or RSA).

[edit]
root@# set system root-authentication plain-text-password
New password: password
Retype new password: password

6. Configure the hostname.

[edit]
root@# set system host-name host-name

7. Configure the two traffic interfaces.

NOTE: Docker automatically connects the fxp0 management interface (eth0) to the Linux
bridge and automatically assigns an IP address. If is not necessary for you to configure the
management interface for the cSRX container.

[edit]
root@# set interfaces ge-0/0/0 unit 0 family inet address 192.168.20.2/24
root@# set interfaces ge-0/0/1 unit 0 family inet address 192.168.10.2/24

8. Configure basic security zones for the public and private interfaces and bind them to traffic interfaces.

[edit]
root@# set security zones security-zone untrust interfaces ge-0/0/0.0
root@# set security zones security-zone trust interfaces ge-0/0/1.0
root@# set security policies default-policy permit-all

9. Verify the configuration.

[edit]
root@# commit check
configuration check succeeds

10.Commit the configuration to activate it on the cSRX instance.

79

[edit]
root@# commit
commit complete

11. (Optional) Use the show command to display the configuration to verify that it is correct.

RELATED DOCUMENTATION

Junos OS for SRX Series

Introducing the Junos OS Command-Line Interface

80

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/srx-series/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

	Table of Contents
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC

	Overview
	Understanding cSRX with Contrail
	cSRX Overview
	cSRX Benefits and Uses
	Docker Overview
	Juniper Networks Contrail Overview
	cSRX Scale-Up Performance

	Junos OS Features Supported on cSRX
	Supported SRX Series Features on cSRX
	SRX Series Features Not Supported on cSRX

	cSRX Service Chaining in Contrail
	Requirements for Deploying cSRX on Contrail
	Platform and Server Requirements
	cSRX Basic Configuration Settings

	Service Chains Overview
	Understanding Service Chains
	Service Chain Modes
	Components of a Service Chain
	Service Templates
	Virtual Networks
	Service Instances
	Network Policies

	Preparing a Contrail Cluster
	Configuring cSRX in a Contrail Service Chain
	Before You Begin
	Configuring the Docker Registry and Compute Node
	Creating an Availability Zone for the cSRX Container
	Importing the cSRX Image
	Creating Virtual Networks in Contrail
	Launching the cSRX Container
	Creating a Service Template for the cSRX
	Creating and Launching the Service Instance
	Creating a Network Policy (Optional)
	Adding a Network Policy to a Virtual Network (Optional)

	Managing cSRX Containers in Contrail
	cSRX Configuration Data File and Environment Variables
	Openstack User Data File
	Openstack Metadata

	Specifying an Initial Root Password for Logging into a cSRX Container
	Configuring cSRX for Routing Mode
	Changing the Size of a cSRX Container
	Specifying the Packet I/O Driver for a cSRX Container
	Specifying the Poll Mode Driver
	Specifying the Interrupt Mode Driver

	Configuring CPU Affinity for a cSRX Container
	Managing cSRX Containers
	Powering On the cSRX Container from OpenStack CLI
	Powering On the cSRX Container from OpenStack Dashboard
	Pausing the cSRX Container from OpenStack CLI
	Pausing the cSRX Container from OpenStack Dashboard
	Restarting the cSRX Container from OpenStack CLI
	Restarting the cSRX Container from OpenStack Dashboard
	Deleting the cSRX Container from OpenStack CLI
	Deleting the cSRX Container from Contrail
	Monitoring Basic cSRX Statistics with the Contrail Monitor

	Configuring cSRX
	Configuring cSRX Using the Junos OS CLI

