

FCC Radio Test Report				
FCC ID: QIS-IPP8950				
This report concerns (check one): ⊠Original Grant ⊡Class II Change				
Project No.: 1406C208Equipment: IP PhoneModel Name: eSpace 8950Applicant: Huawei Technologies Co.,Ltd.Address: Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District Shenzhen China				
Date of Receipt : Jun. 26, 2014 Date of Test : Jun. 26, 2014 ~ Sep. 30, 2014 Issued Date : Oct. 06, 2014 Tested by : BTL Inc.				
Testing Engineer : <u>David Mao</u> (David Mao)				
Technical Manager :				
(Leo Hung) Authorized Signatory :				
BTL INC. No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000				

IF

Declaration

BTLrepresents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**., or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL**shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL**issued reports.

BTL's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

	BIL
Table of Contents F	age
1. CERTIFICATION	7
2 . SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	9
2.2 MEASUREMENT UNCERTAINTY	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	13
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	15
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 16
3.5 DESCRIPTION OF SUPPORT UNITS	16
4 . EMC EMISSION TEST	17
4.1 CONDUCTED EMISSION MEASUREMENT	17
4.1.1 POWER LINE CONDUCTED EMISSION	17
4.1.2 TEST PROCEDURE	17
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	17 18
4.1.5 EUT OPERATING CONDITIONS	18
4.1.6 EUT TEST CONDITIONS	18
4.1.7 TEST RESULTS	18
4.2 RADIATED EMISSION MEASUREMENT	19
4.2.1 RADIATED EMISSION LIMITS	19
4.2.2 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD	20 20
4.2.4 TEST SETUP	20
4.2.5 EUT OPERATING CONDITIONS	21
4.2.6 EUT TEST CONDITIONS	21
4.2.7 TEST RESULTS (9K TO 30MHz)	22
4.2.8 TEST RESULTS (BETWEEN 30 TO 1000 MHz) 4.2.9 TEST RESULTS (ABOVE 1000 MHz)	22 22
, , ,	
5.26dB SPECTRUM BANDWIDTH	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.1.1 TEST PROCEDURE 5.1.2 DEVIATION FROM STANDARD	23 23
5.1.3 TEST SETUP	23
5.1.4 EUT OPERATION CONDITIONS	23
5.1.5 EUT TEST CONDITIONS	24
5.1.6 TEST RESULTS	24
6 . MAXIMUM CONDUCTED OUTPUT POWER	25

	J IL
Table of Contents	Page
6.1 APPLIED PROCEDURES / LIMIT	25
6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD	25 26
6.1.3 TEST SETUP	26
6.1.4 EUT OPERATION CONDITIONS	26
6.1.5 EUT TEST CONDITIONS	26
6.1.6 TEST RESULTS	26
7 . ANTENNA CONDUCTED SPURIOUS EMISSION	27
7.1 APPLIED PROCEDURES / LIMIT	27
7.1.1 TEST PROCEDURE	27
7.1.2 DEVIATION FROM STANDARD	27
7.1.3 TEST SETUP	27
7.1.4 EUT OPERATION CONDITIONS	27
7.1.5 EUT TEST CONDITIONS	27
7.1.6 TEST RESULTS	27
8 . POWER SPECTRAL DENSITY TEST	28
8.1 APPLIED PROCEDURES / LIMIT	28
8.1.1 TEST PROCEDURE	28
8.1.1 DEVIATION FROM STANDARD	29
8.1.2 TEST SETUP	29
8.1.3 EUT OPERATION CONDITIONS	29
8.1.4 EUT TEST CONDITIONS	29
8.1.5 TEST RESULTS	29
9. FREQUENCY STABILITY MEASUREMENT	30
9.1 APPLIED PROCEDURES / LIMIT	30
9.1.1 TEST PROCEDURE	30
9.1.2 DEVIATION FROM STANDARD	30
9.1.3 TEST SETUP 9.1.4 EUT OPERATION CONDITIONS	31 31
9.1.5 EUT TEST CONDITIONS	31
9.1.6 TEST RESULTS	31
10 . MEASUREMENT INSTRUMENTS LIST	32
11 . EUT TEST PHOTOS	34
ATTACHMENT A - CONDUCTED EMISSION	38
ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ)	41
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 30MHZ)	41
	43 68
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)	
ATTACHMENT E - BANDWIDTH	201

Table of Contents	Page
ATTACHMENT F - MAXIMUM OUTPUT POWER	226
ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION	231
ATTACHMENT H - POWER SPECTRAL DENSITY	244
ATTACHMENT I - FREQUENCY STABILITY	269

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1406C208	Original Issue.	Oct. 06, 2014

1. CERTIFICATION

Equipment : Brand Name :	
Model Name :	eSpace 8950
Applicant :	Huawei Technologies Co.,Ltd.
Manufacturer :	Huawei Technologies Co.,Ltd.
Address :	Administration Building, Huawei Base, Bantian, Longgang District , Shenzhen
	518129, P.R.China
Factory :	SHENZHEN ACT INDUSTRIAL CO.,LTD
Address :	No.5 building, Beishan Industrial Park, Beishan Road, Yantian District, Shenzhen
Date of Test :	Jun. 26, 2014 ~ Sep. 30, 2014
Test Sample :	ENGINEERING SAMPLE
Standard(s) :	FCC Part15, Subpart E(15.407) / ANSI C63.4: 2009 FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1406C208) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part15, Subpart E					
Standard(s) Section FCC	. Test Item	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	PASS			
15.407(a)	26dB Spectrum Bandwidth	PASS			
15.407(a)	Maximum Conducted Output Power	PASS			
15.407(a)	Power Spectral Density	PASS			
15.407(a)	Radiated Emissions	PASS			
15.407(b)	Band Edge Emissions	PASS			
15.407(g)	Frequency Stability	PASS			
15.203	Antenna Requirements	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

(2) FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. 523792 BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95%** $_{\circ}$

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	3.40	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(B)	NOTE
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.60	
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86	
DG-CD03	CIGEN	200MHz ~ 1,000MHz	Н	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	IP Phone		
Brand Name	HUAWEI		
Model Name	eSpace 8950		
Mode Different	N/A		
	Operation Frequency	UNII-1: 5150~5250MHz UNII-2A: 5250~5350MHz UNII-2C: 5470~5725MHz UNII-3: 5745~5825MHz	
	Modulation Type	OFDM	
	Bit Rate of Transmitter	300Mbps	
Product Description	Output Power (Max.)for UNII-1	802.11a: 12.35dBm 802.11n (20M): 12.84dBm 802.11n (40M): 8.92dBm	
	Output Power (Max.)for UNII-2A	802.11a: 10.73dBm 802.11n (20M): 11.03dBm 802.11n (40M): 8.30dBm	
	Output Power (Max.)for UNII-2C	802.11a: 13.23dBm 802.11n (20M): 13.68dBm 802.11n (40M): 11.03dBm	
	Output Power (Max.)for UNII-3	802.11a: 13.93dBm 802.11n (20M): 14.43dBm 802.11n (40M): 7.78dBm	
Power Source	#1 DC voltage supplied from AC/DC adapter. Brand: HUAWEI Model: HW-120200U1W #2 Supplied from PoE.		
Power Rating	#1 I/P:100-240V~50/60Hz,0.8A O/P:12.0V/2.0A #2 DC -48V		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel List:

802.1 802.11n 2		802.11n 40MHz	
UNII-1		UNII-1	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190
40	5200	46	5230
44	5220		
48	5240		

802.11a 802.11n 20MHz		802.11n 40MHz	
UNII-2A		UNII-2A	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270
56	5280	62	5310
60	5300		
64	5320		

802.1 802.11n 2		802.11n 40MHz		
UNII-2	2C	UI	NII-2C	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
100	5500	102	5510	
104	5520	110	5550	
108	5540	118	5590	
112	5560	126	5630	
116	5580	134	5670	
132	5660			
136	5680			
140	5700			

802. ⁻ 802.11n		802.1	11n 40MHz
UNI	I-3	l	UNII-3
Channel	Frequency (MHz)	Chann I	Frequency (MHz)
149	5745	151	5755
153	5765	159	5795
157	5785		
161	5805		
165	5825		

3. Antenna Specification:

Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain (dBi)
1	Shenzhen Sunway Communication Co.,Ltd	111003WS322A	Integral	N/A	4.6

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Test Mode	Description
Mode 1	TX A Mode / CH36, CH40, CH48 (UNII-1)
Mode 2	TX N20 Mode / CH36, CH40, CH48 (UNII-1)
Mode 3	TX N40 Mode / CH38, CH46 (UNII-1)
Mode 4	TX A Mode / CH52, CH60, CH64 (UNII-2A)
Mode 5	TX N20 Mode / CH52, CH60, CH64 (UNII-2A)
Mode 6	TX N40 Mode / CH54, CH62 (UNII-2A)
Mode 7	TX A Mode / CH100, CH116, CH140 (UNII-2C)
Mode 8	TX N20 Mode / CH100, CH116, CH140 (UNII-2C)
Mode 9	TX N40 Mode / CH102, CH110, CH134 (UNII-2C)
Mode 10	TX A Mode / CH149,CH157,CH165 (UNII-3)
Mode 11	TX N20 Mode / CH149,CH157,CH165 (UNII-3)
Mode 12	TX N40 Mode / CH151,CH159 (UNII-3)
Mode13	TX Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test		
Final Test Mode	Description	
Mode 13	TX Mode	

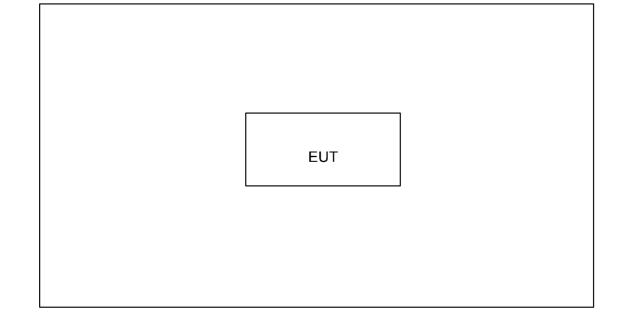
	For Radiated Test				
Final Test Mode	Description				
Mode 1	TX A Mode / CH36, CH40, CH48 (UNII-1)				
Mode 2	TX N20 Mode / CH36, CH40, CH48 (UNII-1)				
Mode 3	TX N40 Mode / CH38, CH46 (UNII-1)				
Mode 4	TX A Mode / CH52, CH60, CH64 (UNII-2A)				
Mode 5	TX N20 Mode / CH52, CH60, CH64 (UNII-2A)				
Mode 6	TX N40 Mode / CH54, CH62 (UNII-2A)				
Mode 7	TX A Mode / CH100, CH116, CH140 (UNII-2C)				
Mode 8	TX N20 Mode / CH100, CH116, CH140 (UNII-2C)				
Mode 9	TX N40 Mode / CH102, CH110, CH134 (UNII-2C)				
Mode 10	TX A Mode / CH149,CH157,CH165 (UNII-3)				
Mode 11	TX N20 Mode / CH149,CH157,CH165 (UNII-3)				
Mode 12	TX N40 Mode / CH151,CH159 (UNII-3)				

Note: For Radiated Below 1G test, the 802.11a mode is found to be the worst case and recorded.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product

UNII-1				
Test Software Version		XSHELL		
Frequency (MHz)	5180	5200	5240	
A Mode	18	20	20	
N20 Mode	17	17	20	
Frequency (MHz)	5190	5230		
N40 Mode	12	20		


UNII-2A				
Test Software Version		XSHELL		
Frequency (MHz)	5260	5300	5320	
A Mode	20	20	18	
N20 Mode	20	19	16	
Frequency (MHz)	5270	5310		
N40 Mode	20	12		

UNII-2C					
Test Software Version		XSHELL			
Frequency (MHz)	5500	5580	5700		
A Mode	17	20	17		
N20 Mode	18	20	16		
Frequency (MHz)	5510	5550	5670		
N40 Mode	14	20	16		

UNII-3					
Test Software Version		XSHELL			
Frequency (MHz)	5745	5785	5825		
A Mode	15	20	17		
N20 Mode	17	20	18		
Frequency (MHz)	5755	5795			
N40 Mode	13	16			

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
-	-	-	-	-	-	

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

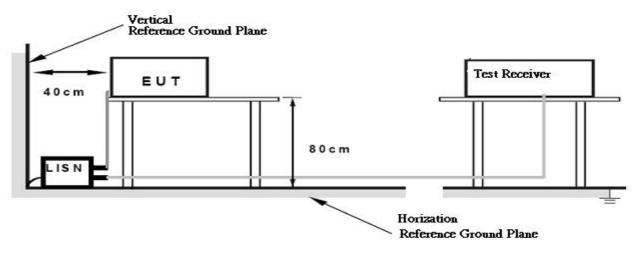
	Class A (dBuV)		Class B (dBuV)	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 -5.0	73.00	60.00	56.00	46.00
5.0 -30.0	73.00	60.00	60.00	50.00

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting/TX Mode mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of ^ℂNote_⊥. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform ∘ In this case, a "*" marked in AVG Mode column of Interference Voltage Measured ∘
- (2) Measuring frequency range from 150KHz to 30MHz \circ

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note:

(1) The limit for radiated test was performed according to FCC PART 15C.

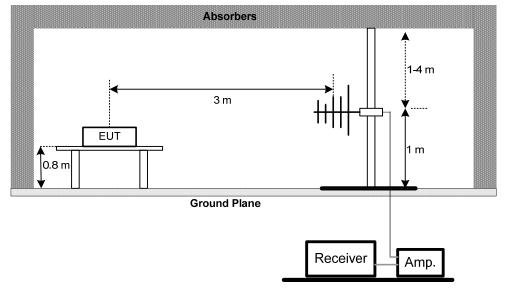
(2) The tighter limit applies at the band edges.

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

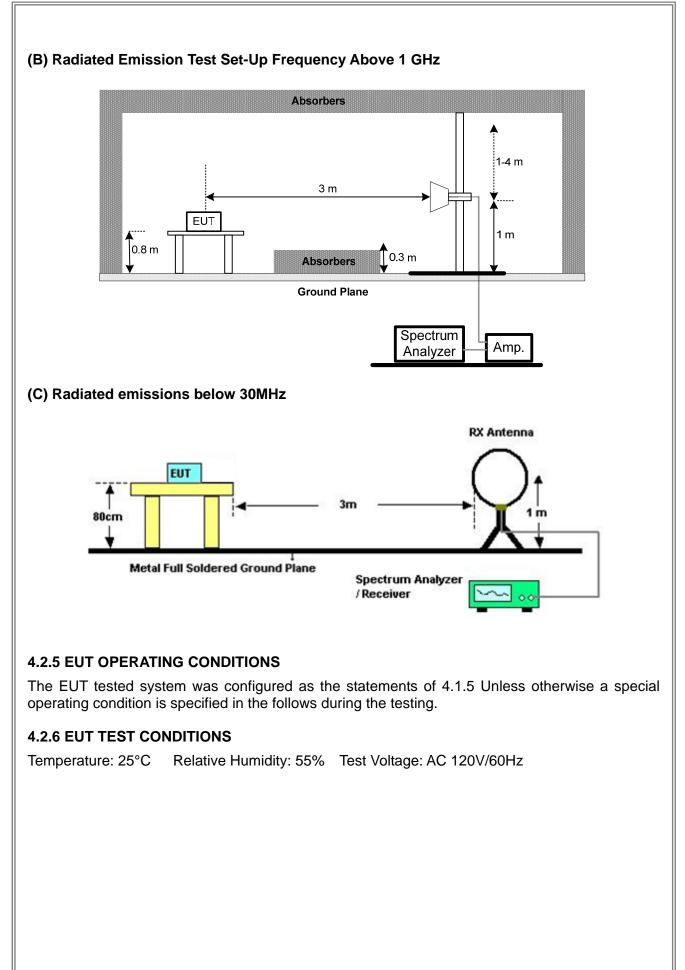
Frequencies (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
E725 5025	-27 (beyond 10MHz of the band edge)	68.3
5725~5825	-17 (within 10 MHz of band edge)	78.3

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{3} \mu V/m$, where P is the eirp (Watts)

4.2.2 TEST PROCEDURE


- a. The measuring distance of at 3m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD


No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency30 - 1000MHz

4.2.7 TEST RESULTS (9K TO 30MHz)

Please refer to the Attachment B

4.2.8 TEST RESULTS (BETWEEN 30 TO 1000 MHz)

Please refer to the Attachment C.

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz ∘
- (2) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform \circ
- (3) Measuring frequency range from 30MHz to 1000MHz \circ
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table \circ

4.2.9 TEST RESULTS (ABOVE 1000 MHz)

Please refer to the Attachment D.

Remark:

- (1) Spectrum Setting: 30MHz 1000MHz , RBW= 100KHz, VBW=100KHz, Sweep time = 200 ms. 1GHz- 40GHz, RBW= 1MHz, VBW= 1MHz, Sweep time = Auto
- (2) All readings are Peak unless otherwise stated AV in column of "Note]. Peak denotes that the Peak reading compliance with the AV Limits and then AV Mode measurement didn't perform.
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission \circ
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axes:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1GHz it is taken care of that the EUT is always within the 3dB cone of radiation BW of the used antenna.

5. 26dB SPECTRUM BANDWIDTH

5.1 APPLIED PROCEDURES / LIMIT

	FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	Result	
		5150~5250	PASS	
	26 dB Bandwidth	5250~5350	PASS	
Bandwidth		5470~5725	PASS	
	Minimum 500KHz 6dB		DASS	
	Bandwidth	5725~5850	PASS	

5.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.	Spectrum Parameters	Setting
	Attenuation	Auto
	Span Frequency	> 26dB Bandwidth
	RBW	300 kHz
	VBW	1000 kHz
	Detector	Peak
	Trace	Max Hold
	Sweep Time	Auto

c. Measured the spectrum width with power higher than 26dB below carrier

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM	
		ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

5.1.6 TEST RESULTS

Please refer to the Attachment E.

6. MAXIMUM CONDUCTED OUTPUT POWER

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15, Subpart E		
Test Item	Test Item Limit		Result
	Fixed:1 Watt (30dBm)		
	Mobile and portable:	5150~5250	PASS
Conducted Output	250mW (24dBm)		
Power		5250~5350	PASS
	250mW (24dBm)	5470~5725	PASS
1 Watt (30dBm)		5725~5850	PASS

6.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.

Spectrum Parameter	Setting
Attenuation	Auto
	Encompass the entire emissions bandwidth (EBW) of the
Span Frequency	signal
RBW	= 1MHz.
VBW	≥ 3MHz.
Detector	RMS
Trace	Max Hold
Sweep Time	auto

c. Test was performed in accordance with method of KDB 789033 D02.

6.1.2 DEVIATION FROM STANDARD No deviation. 6.1.3 TEST SETUP EUT SPECTRUM ANALYZER 6.1.4 EUT OPERATION CONDITIONS The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS

Please refer to the Attachment F.

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	Result
		5150~5250	PASS
Antenna conducted	-27dBm/MHz	5250~5350	PASS
		5470~5725	PASS
Spurious Emission	Below -17dBm/MHz within 10MHz of band edge, below -27dBm/MHz beyond 10MHz of the band edge	5725~5850	PASS

7.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.	Spectrum Parameter	Setting
	Attenuation	Auto
	RBW	1000kHz
	VBW	1000kHz
	Trace	Max Hold
	Sweep Time	Auto

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

7.1.6 TEST RESULTS Please refer to the Attachment G.

8. POWER SPECTRAL DENSITY TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)	Result
Power Spectral	Other then Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz	5150~5250	PASS
Density	11dBm/MHz	5250~5350	PASS
		5470~5725	PASS
	30dBm/500KHz		PASS

8.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.	Spectrum Parameter	Setting
	Attenuation	Auto
	Shan Eraquanay	Encompass the entire emissions bandwidth (EBW) of the
	Span Frequency	signal
	RBW	= 1MHz.
	VBW	≥ 3MHz.
	Detector	RMS
	Trace	Max Hold
	Sweep Time	Auto

Note:

- 1. For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v01, section II.F.5., it is acceptable to set RBW at 1MHz and VBW at 3MHz if the spectrum analyzer does not have 500kHz RBW.
- The value measured with RBW=1MHz is to be added with 10log(500kHz/1MHz) which is -3dB. For example, if the measured value is +10dBm using RBW=1MHz (that is +10dBm/MHz), then the converted value will be +7dBm/500kHz.

8.1.1 DEVIATION FROM STANDARD

No deviation.

8.1.2 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.1.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.4 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

8.1.5 TEST RESULTS Please refer to the Attachment H.

9. FREQUENCY STABILITY MEASUREMENT

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15, Subpart E						
Test Item	Limit	Frequency Range (MHz)	Result			
		5150~5250	PASS			
	Specified in the	5250~5350	PASS			
Frequency Stability	user's manual	5470~5725	PASS			
		5725~5850	PASS			

9.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b.	Spectrum Parameter	Setting
	Attenuation	Auto
	Span Frequency	Entire absence of modulation emissions bandwidth
	RBW	10 kHz
	VBW	10 kHz
	Sweep Time	Auto

- c. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- d. User manual temperature is $0^{\circ}C$ ~45°C.

9.1.2 DEVIATION FROM STANDARD

No deviation.

9.1.3 TEST SETUP

9.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

9.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

9.1.6 TEST RESULTS Please refer to the Attachment I.

10. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	LISN	EMCO	3816/2	00052765	Mar. 29, 2015	
2	LISN	R&S	ENV216	100087	Mar. 29, 2015	
3	Test Cable	N/A	C_17	N/A	Mar. 14, 2015	
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Mar. 29, 2015	
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Mar. 29, 2015	

Radiated Emission Measurement

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 29, 2015
2	Amplifier	HP	8447D	2944A09673	Mar. 29, 2015
3	Test Receiver	R&S	ESCI	100382	Mar. 29, 2015
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2015
5	Antenna	ETS	3115	00075789	Mar. 29, 2015
6	Amplifier	Agilent	8449B	3008A02274	Mar. 29, 2015
7	Spectrum	Agilent	E4408B	US39240143	Nov. 09, 2014
8	Test Cable	HUBER+SUHNER	C-45	N/A	Mar. 29, 2015
9	Controller	СТ	SC100	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	Mar. 29, 2015
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Mar. 29, 2015
12	Broad-Band Horn Antenna (40G)	Schwarzbeck	BBHA 9170	9170319	Feb. 22, 2015

	Spectrum Bandwidth Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014	

Ī	Maximum Conducted Output Power Measurement					
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014

Antenna Conducted Spurious Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014

Power Spectral Density Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014

	Frequency Stability Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014	
2	Precision Oven Tester	HOLINK	H-T-1F-D	BA03101701	May. 24, 2015	

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

11. EUT TEST PHOTOS

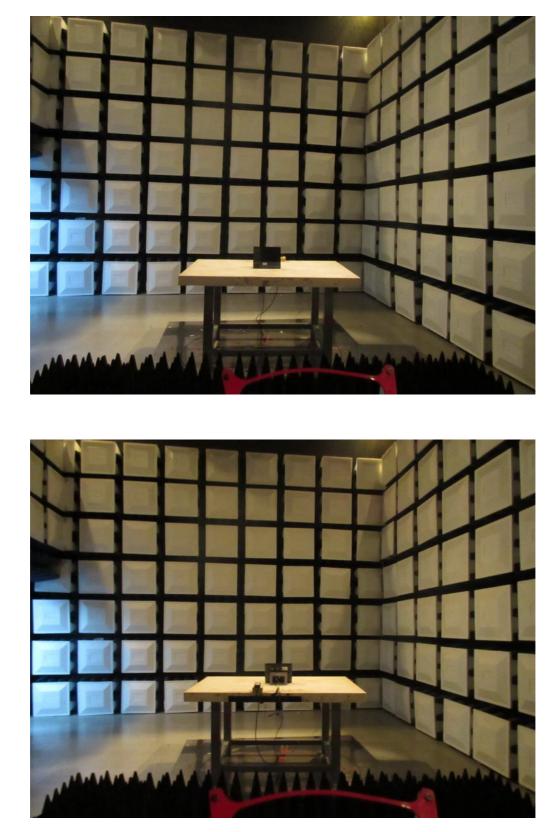
Conducted Measurement Photos

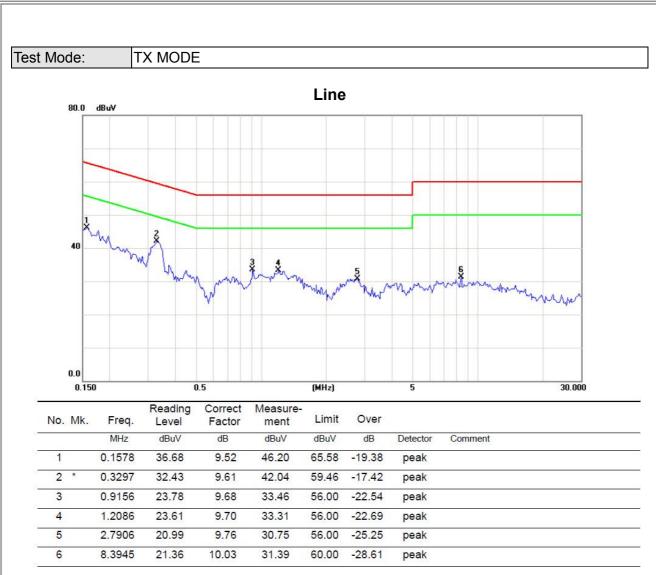
Radiated Measurement Photos

9KHz to 30MHz

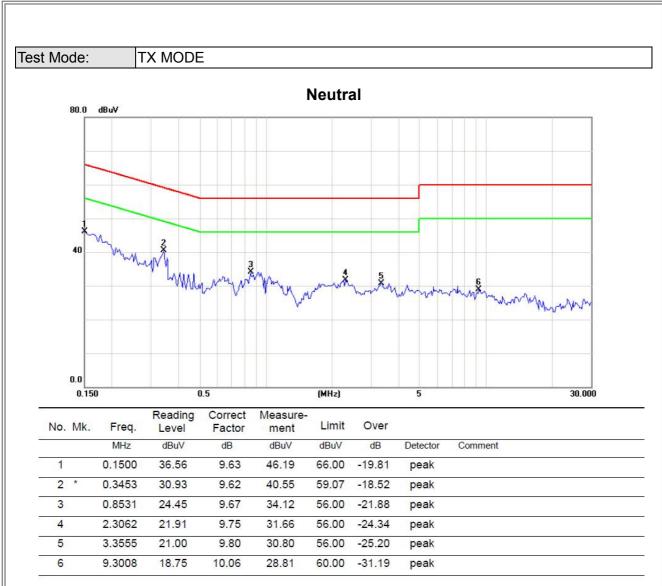
Report No.: BTL-FCCP-1-1406C208

Radiated Measurement Photos


30MHz to 1000MHz


Radiated Measurement Photos

Above 1000MHz


ATTACHMENT A - CONDUCTED EMISSION

Note : The test result has included the cable loss.

Note : The test result has included the cable loss.

ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ)

TX MODE

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
0.0826	0°	-2.04	21.75	19.71	89.26	-69.56	AVG
0.0826	0°	2.69	21.75	24.44	109.26	-84.83	PEAK
0.1034	0°	-3.25	21.35	18.10	87.31	-69.22	AVG
0.1034	0°	1.87	21.35	23.22	107.31	-84.10	PEAK
0.1278	0°	-3.98	20.96	16.98	85.47	-68.50	AVG
0.1278	0°	1.61	20.96	22.57	105.47	-82.91	PEAK
0.1569	0°	-1.23	20.59	19.36	83.69	-64.34	AVG
0.1569	0°	3.25	20.59	23.84	103.69	-79.86	PEAK
2.5971	0°	8.39	19.14	27.53	69.54	-42.01	QP
18.3670	0°	10.23	17.63	27.86	69.54	-41.68	QP
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
0.0523	90°	-3.26	22.35	19.09	113.23	-94.14	AVG
0.0523	90°	1.23	22.35	23.58	133.23	-109.65	PEAK
0.1125	90°	-1.39	21.20	19.81	106.58	-86.77	AVG
0.1125	90°	0.63	21.20	21.83	126.58	-104.75	PEAK
0.1354	90°	-2.47	20.83	18.36	104.97	-86.61	AVG
0.1354	90°	1.24	20.83	22.07	124.97	-102.90	PEAK
0.2172	90°	-4.21	20.47	16.26	100.87	-84.61	AVG

Remark:

0.2172

3.6870

17.6530

90°

90°

90°

0.69

6.97

9.36

(1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

21.16

25.94

27.09

120.87

69.54

69.54

-99.71

-43.60

-42.45

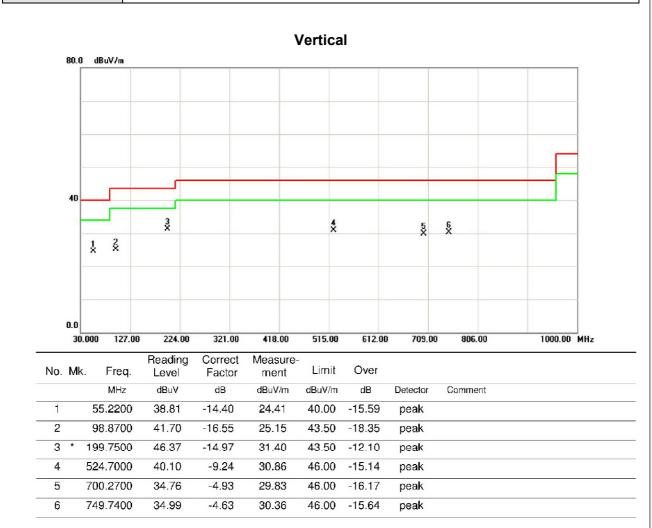
PEAK

QP

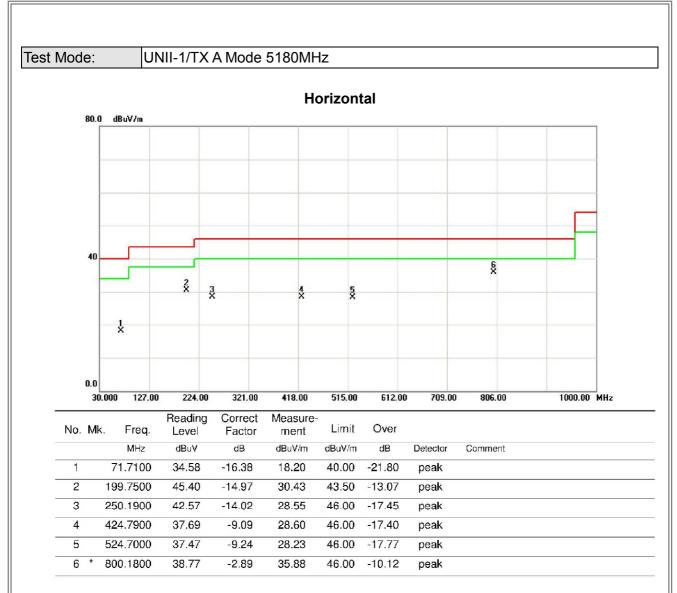
QP

- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

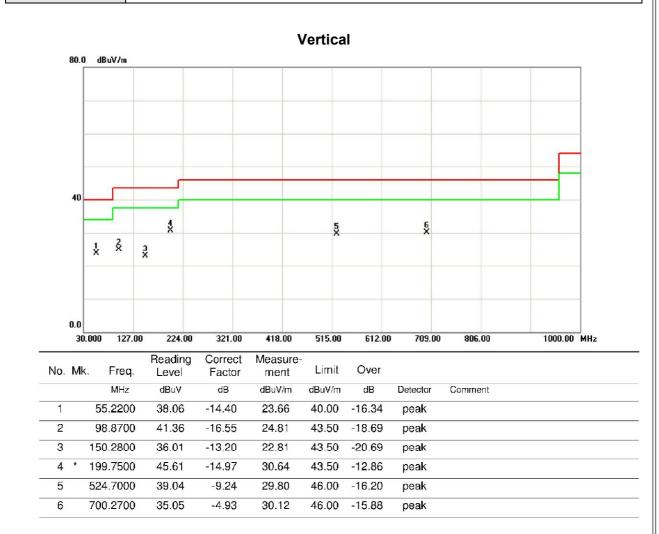
20.47


18.97

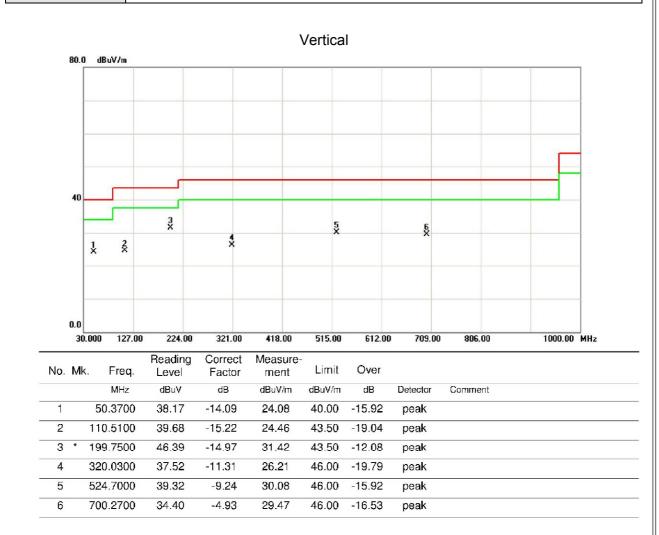
17.73

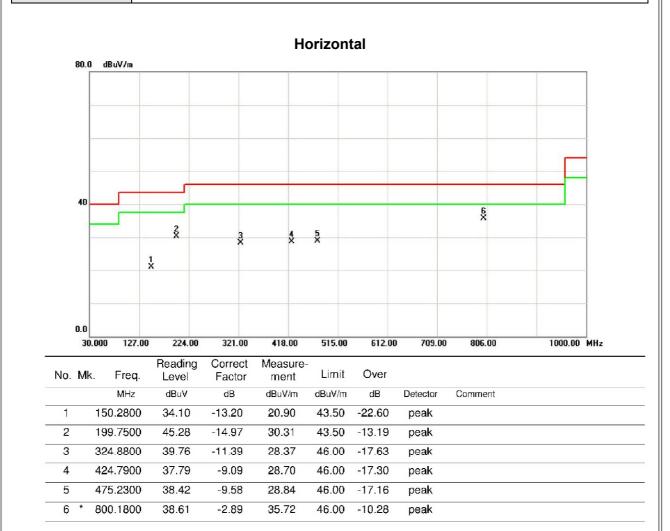

ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

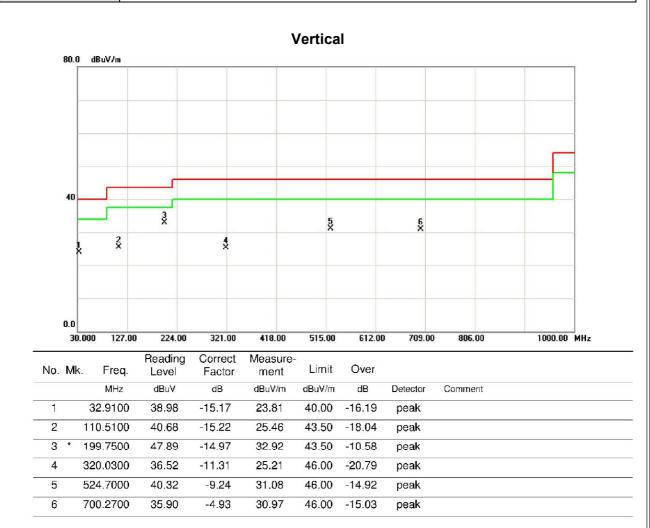
UNII-1/TX A Mode 5180MHz



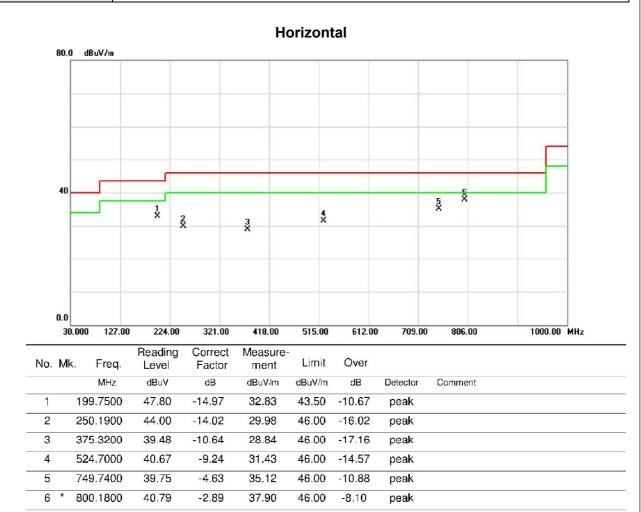
UNII-1/TX A Mode 5200MHz



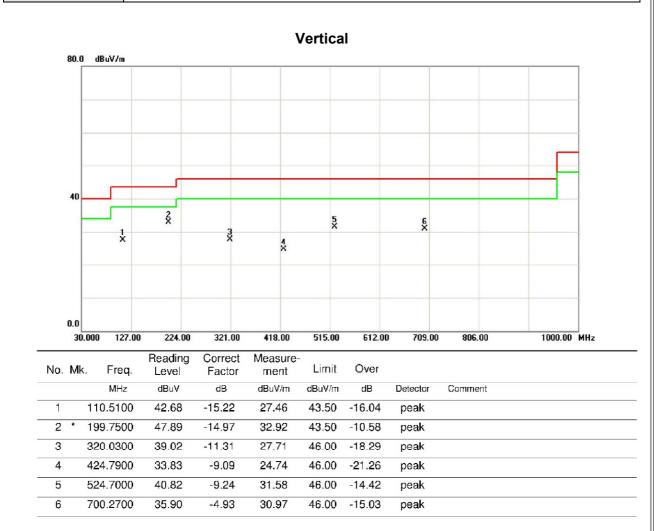

UNII-1/TX A Mode 5240MHz

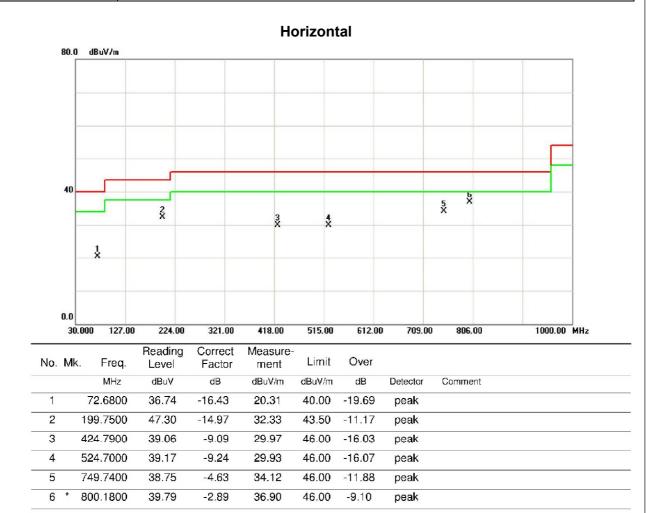


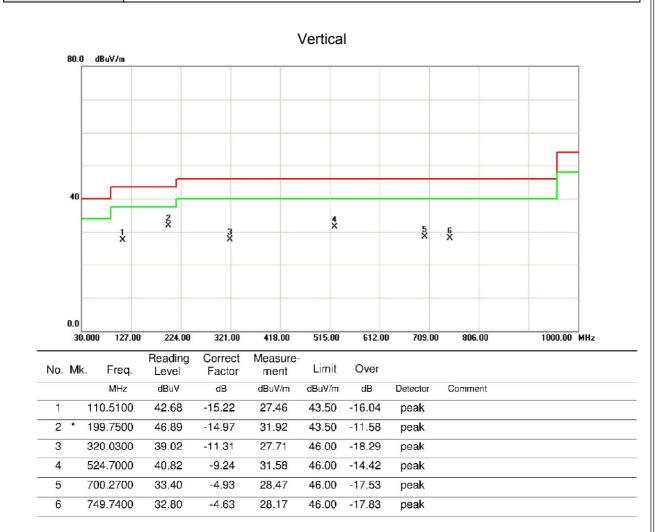
UNII-1/TX A Mode 5240MHz

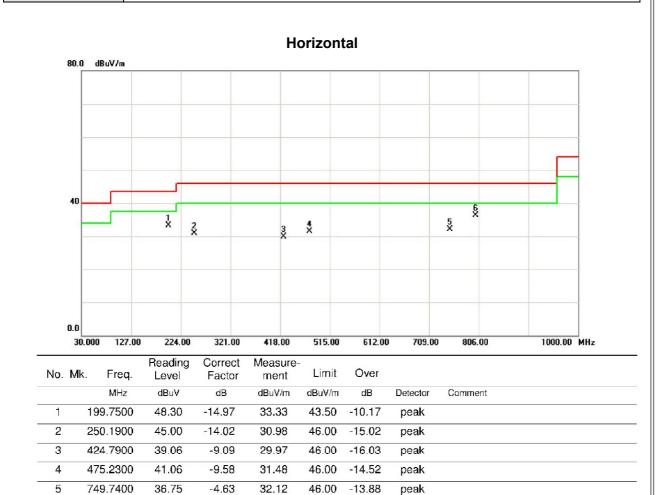


UNII-2A/TX A Mode 5260MHz


UNII-2A/TX A Mode 5260MHz


UNII-2A/TX A Mode 5300MHz


UNII-2A/TX A Mode 5300MHz


UNII-2A/TX A Mode 5320MHz

UNII-2A/TX A Mode 5320MHz

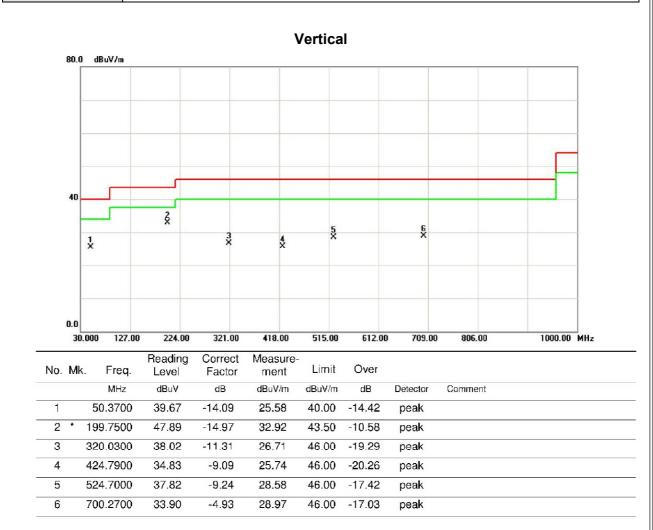
6 *

800.1800

39.29

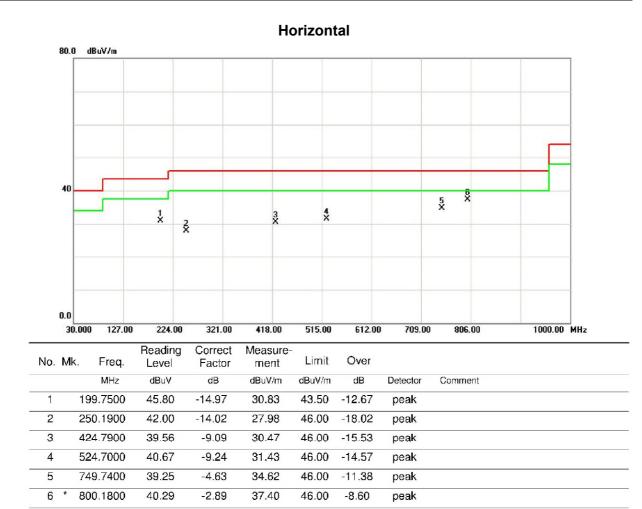
-2.89

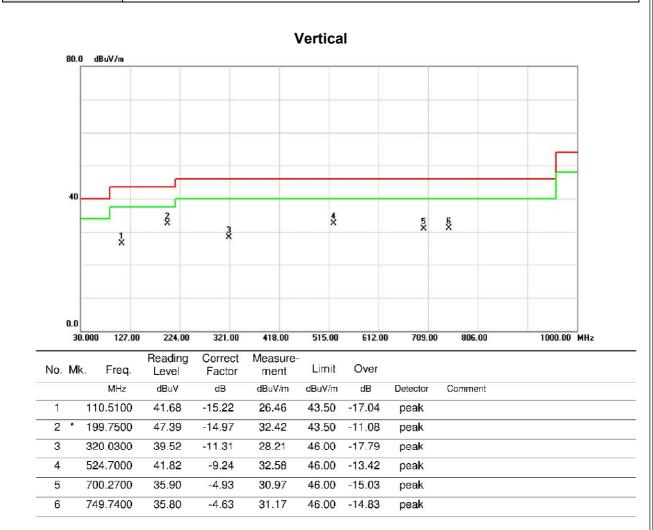
36.40

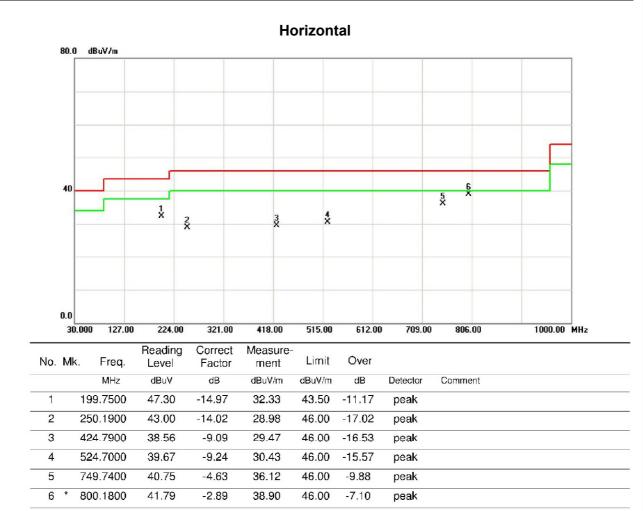

46.00

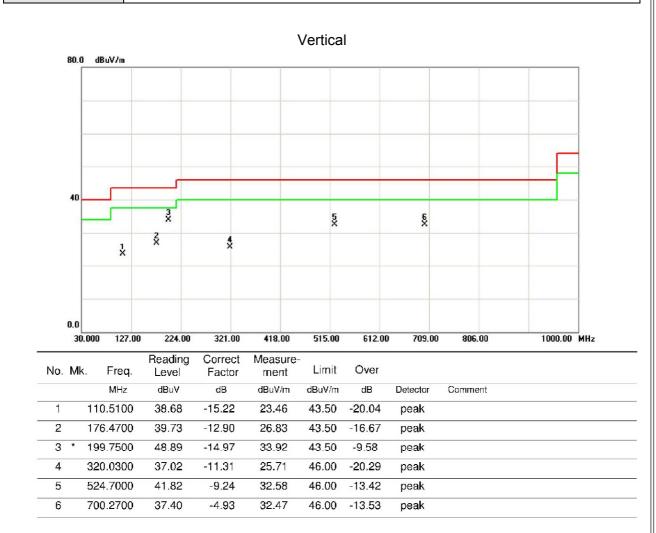
-9.60

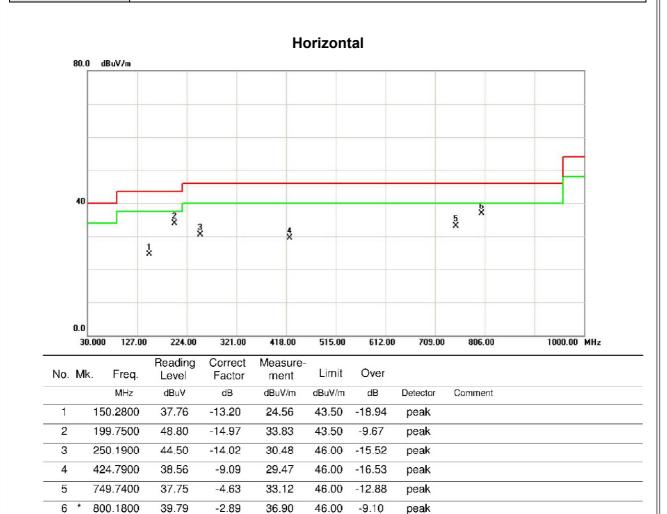
peak

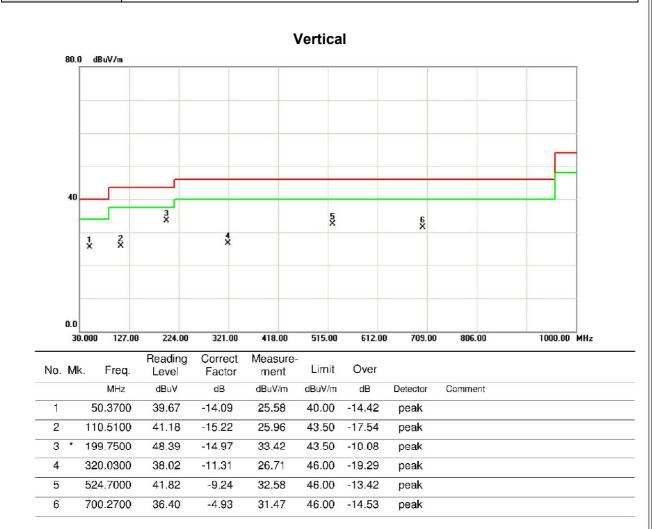

UNII-2C/TX A Mode 5500MHz


UNII-2C/TX A Mode 5500MHz

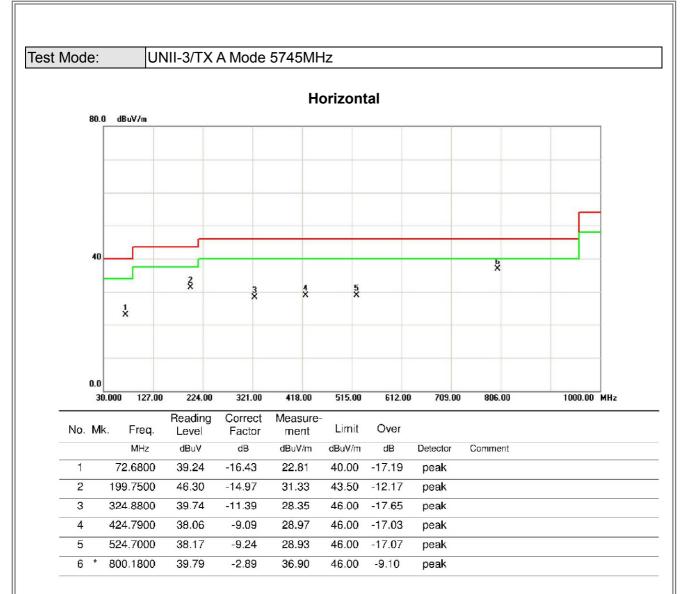

UNII-2C/TX A Mode 5580MHz


UNII-2C/TX A Mode 5580MHz

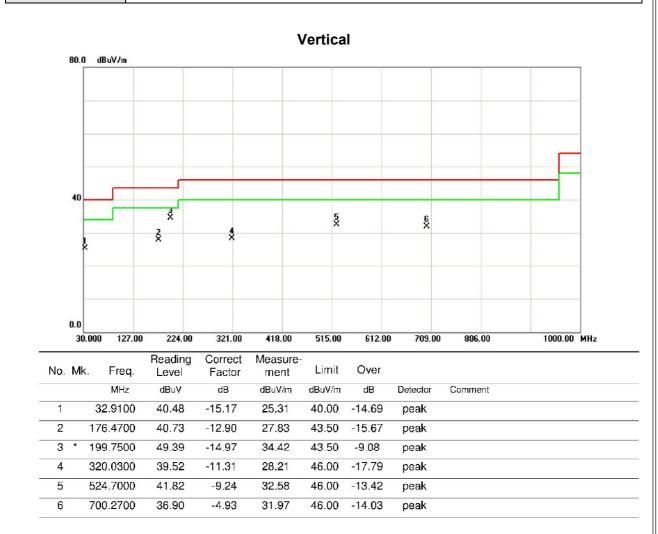

UNII-2C/TX A Mode 5700MHz

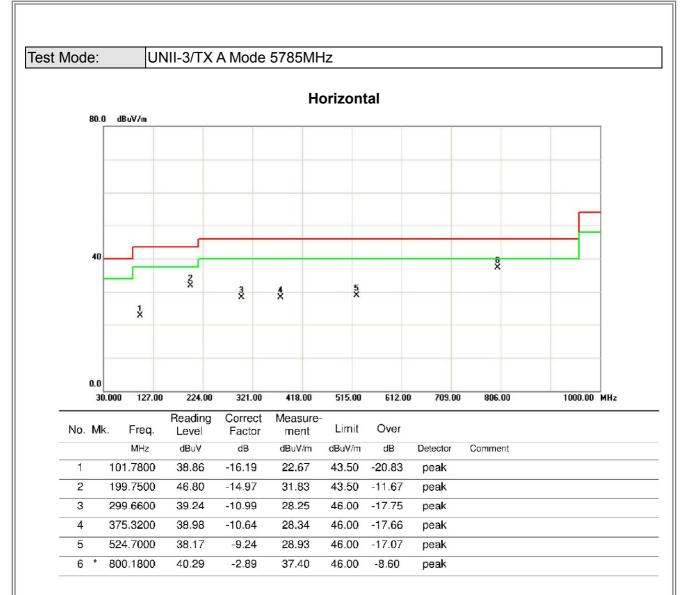


UNII-2C/TX A Mode 5700MHz

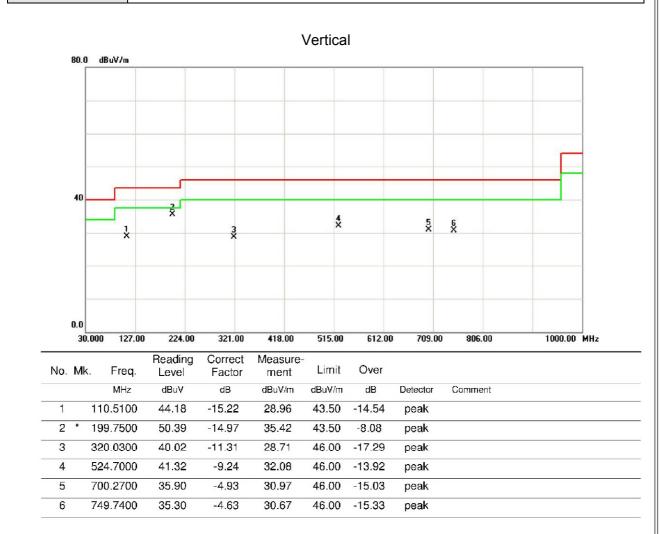


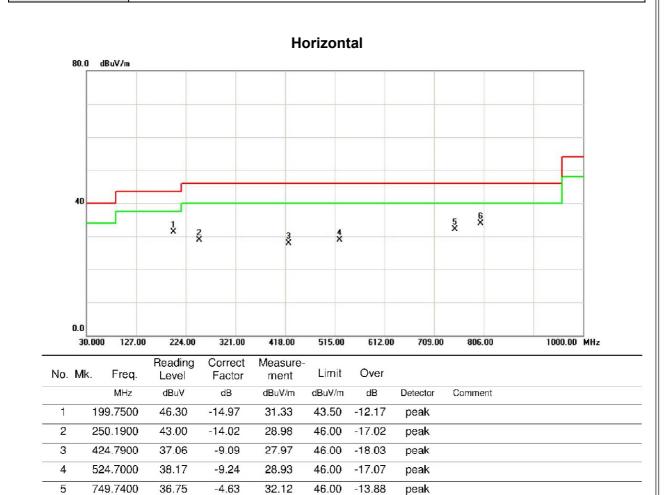
UNII-3/TX A Mode 5745MHz





UNII-3/TX A Mode 5785MHz




UNII-3/TX A Mode 5825MHz

UNII-3/TX A Mode 5825MHz

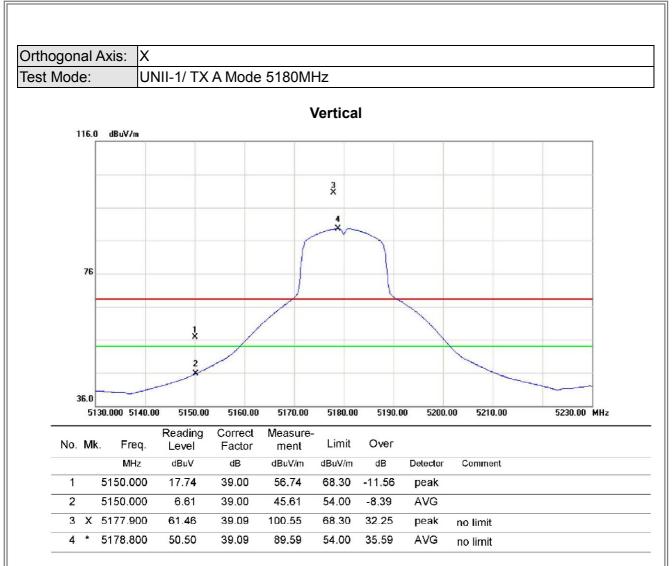
6 *

800.1800

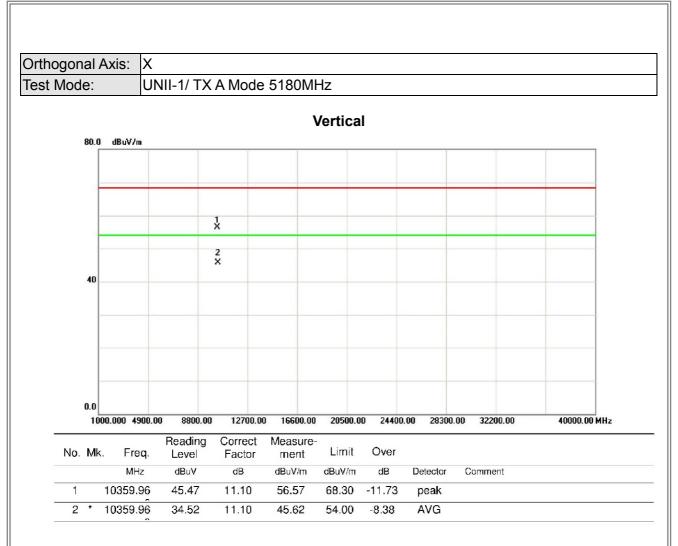
36.79

-2.89

33.90


46.00

-12.10


peak

ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)

