

# FCC RF Test Report

| APPLICANT      | : Motorola Mobility LLC                  |
|----------------|------------------------------------------|
| EQUIPMENT      | : Mobile Cellular Phone                  |
| BRAND NAME     | : Motorola                               |
| MODEL NAME     | : XT2215-2, XT2215-3, XT2215-4, XT2215DL |
| FCC ID         | : IHDT56AA4                              |
| STANDARD       | : FCC Part 15 Subpart C §15.247          |
| CLASSIFICATION | : (DSS) Spread Spectrum Transmitter      |
| TEST DATE(S)   | : Dec. 14, 2021 ~ Jan. 16, 2022          |

We, Sporton International Inc. (ShenZhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (ShenZhen), the test report shall not be reproduced except in full.

Doque Cher

Reviewed by: Derreck Chen / Supervisor

Fire Shih

Approved by: Eric Shih / Manager



**Sporton International Inc. (ShenZhen)** 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China



# TABLE OF CONTENTS

| RE | VISIO | N HISTORY                                             | .3 |
|----|-------|-------------------------------------------------------|----|
| SU |       | Y OF TEST RESULT                                      |    |
| 1  | GENE  | ERAL DESCRIPTION                                      | .5 |
|    | 1.1   | Applicant                                             | .5 |
|    | 1.2   | Manufacturer                                          |    |
|    | 1.3   | Product Feature of Equipment Under Test               | .5 |
|    | 1.4   | Product Specification of Equipment Under Test         | .6 |
|    | 1.5   | Modification of EUT                                   | .6 |
|    | 1.6   | Specification of Accessory                            | .6 |
|    | 1.7   | Testing Location                                      | .7 |
|    | 1.8   | Test Software                                         | .8 |
|    | 1.9   | Applicable Standards                                  |    |
| 2  | TEST  | CONFIGURATION OF EQUIPMENT UNDER TEST                 |    |
|    | 2.1   | Carrier Frequency Channel                             | .9 |
|    | 2.2   | Test Mode                                             | 10 |
|    | 2.3   | Connection Diagram of Test System                     | 11 |
|    | 2.4   | Support Unit used in test configuration and system    | 11 |
|    | 2.5   | EUT Operation Test Setup                              |    |
|    | 2.6   | Measurement Results Explanation Example               | 12 |
| 3  | TEST  | RESULT                                                | 13 |
|    | 3.1   | Number of Channel Measurement                         | 13 |
|    | 3.2   | Hopping Channel Separation Measurement                |    |
|    | 3.3   | Dwell Time Measurement                                | 21 |
|    | 3.4   | 20dB and 99% Bandwidth Measurement                    |    |
|    | 3.5   | Output Power Measurement                              |    |
|    | 3.6   | Conducted Band Edges Measurement                      |    |
|    | 3.7   | Conducted Spurious Emission Measurement               |    |
|    | 3.8   | Radiated Band Edges and Spurious Emission Measurement |    |
|    | 3.9   | AC Conducted Emission Measurement                     | 56 |
|    | 3.10  | Antenna Requirements                                  |    |
|    |       | OF MEASURING EQUIPMENT                                |    |
|    |       | ERTAINTY OF EVALUATION                                | 60 |
|    |       | X A. CONDUCTED TEST RESULTS                           |    |
|    |       | X B. AC CONDUCTED EMISSION TEST RESULT                |    |
|    |       | IX C. RADIATED SPURIOUS EMISSION                      |    |
|    |       | X D. DUTY CYCLE PLOTS                                 |    |
| AP | PEND  | X E. SETUP PHOTOGRAPHS                                |    |



# **REVISION HISTORY**

| REPORT NO. | VERSION | DESCRIPTION             | ISSUED DATE   |
|------------|---------|-------------------------|---------------|
| FR1N0903A  | Rev. 01 | Initial issue of report | Jan. 30, 2022 |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |



| Report<br>Section | FCC Rule     | Description                                    | Limit                         | Result      | Remark      |
|-------------------|--------------|------------------------------------------------|-------------------------------|-------------|-------------|
| 3.1               | 15.247(a)(1) | Number of Channels                             | ≥ 15Chs                       | Pass        | -           |
| 3.2               | 15.247(a)(1) | Hopping Channel<br>Separation ≥ 2/3 of 20dB BV |                               | Pass        | -           |
| 3.3               | 15.247(a)(1) | Dwell Time of Each<br>Channel                  | ≤ 0.4sec in 31.6sec<br>period | Pass        | -           |
| 3.4               | 15.247(a)(1) | 20dB Bandwidth                                 | -                             | Report only | -           |
| 3.4               | -            | 99% Bandwidth                                  | -                             | Report only | -           |
| 3.5               | 15.247(b)(1) | Peak Output Power                              | ≤ 125 mW                      | Pass        | -           |
| 3.6               | 15.247(d)    | Conducted Band Edges                           | ≤ 20dBc                       | Pass        | -           |
| 3.7               | 15.247(d)    | Conducted Spurious<br>Emission                 | ≤ 20dBc                       | Pass        | -           |
|                   |              | Radiated Band Edges                            |                               |             | Under limit |
| 3.8               | 15.247(d)    | and Radiated Spurious                          | 15.209(a) & 15.247(d)         | Pass        | 11.02 dB at |
|                   |              | Emission                                       |                               |             | 178.410 MHz |
|                   |              | AC Conducted                                   |                               |             | Under limit |
| 3.9               | 15.207       | Emission                                       | 15.207(a)                     | Pass        | 15.48 dB at |
|                   |              | LIIIISSIUII                                    |                               |             | 0.56 MHz    |
| 3.10              | 15.203 &     | Antenna Requirement                            | 15.203 & 15.247(b)            | Pass        |             |
| 5.10              | 15.247(b)    |                                                | 13.203 & 15.247(D)            | F d 33      | -           |

#### Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

#### **Comments and Explanations:**

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.



# **1** General Description

# 1.1 Applicant

# Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

# 1.2 Manufacturer

### Motorola Mobility LLC

222 W, Merchandise Mart Plaza, Chicago IL 60654 USA

# **1.3 Product Feature of Equipment Under Test**

| Product Feature                 |                                        |  |  |
|---------------------------------|----------------------------------------|--|--|
| Equipment Mobile Cellular Phone |                                        |  |  |
| Brand Name                      | Motorola                               |  |  |
| Model Name                      | XT2215-2, XT2215-3, XT2215-4, XT2215DL |  |  |
| FCC ID                          | IHDT56AA4                              |  |  |
|                                 | Conducted: 351475460011330             |  |  |
| IMEI Code                       | Conduction: 351475460015273            |  |  |
|                                 | Radiation: 35147560011876              |  |  |
| HW Version                      | DVT2                                   |  |  |
| SW Version                      | S1SD32.29                              |  |  |
| EUT Stage                       | Identical Prototype                    |  |  |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



# 1.4 Product Specification of Equipment Under Test

| Standards-related Product Specification  |                                                                                                                                           |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Tx/Rx Frequency Range                    | 2402 MHz ~ 2480 MHz                                                                                                                       |  |  |  |
| Number of Channels                       | 79                                                                                                                                        |  |  |  |
| <b>Carrier Frequency of Each Channel</b> | 2402+n*1 MHz; n=0~78                                                                                                                      |  |  |  |
| Maximum Output Power to Antenna          | Bluetooth BR(1Mbps) : 12.40 dBm (0.0174 W)<br>Bluetooth EDR (2Mbps) : 9.80 dBm (0.0095 W)<br>Bluetooth EDR (3Mbps) : 10.10 dBm (0.0102 W) |  |  |  |
| 99% Occupied Bandwidth                   | Bluetooth BR(1Mbps) : 0.854MHz<br>Bluetooth EDR (2Mbps) : 1.172MHz<br>Bluetooth EDR (3Mbps) : 1.172MHz                                    |  |  |  |
| Antenna Type / Gain                      | Loop Antenna with gain -5.00 dBi                                                                                                          |  |  |  |
| Type of Modulation                       | Bluetooth BR (1Mbps) : GFSK<br>Bluetooth EDR (2Mbps) :π/4-DQPSK<br>Bluetooth EDR (3Mbps) : 8-DPSK                                         |  |  |  |

# 1.5 Modification of EUT

No modifications are made to the EUT during all test items.

# **1.6 Specification of Accessory**

|              | Specification of Accessory |                     |            |            |  |
|--------------|----------------------------|---------------------|------------|------------|--|
| AC Adapter 1 | Brand Name                 | Motorola(Chenyang)  | Model Name | MC-101     |  |
| AC Adapter 2 | Brand Name                 | Motorola(Salcomp)   | Model Name | MC-101     |  |
| AC Adapter 3 | Brand Name                 | Motorola(AOHAI)     | Model Name | MC-101     |  |
| Battery      | Brand Name                 | Motorola(ATL)       | Model Name | MD50       |  |
| USB Cable 1  | Brand Name                 | Motorola(Saibao)    | Model Name | SC18D22297 |  |
| USB Cable 2  | Brand Name                 | Motorola(Cabletech) | Model Name | SC18D22298 |  |
| USB Cable 3  | Brand Name                 | Motorola(Luxshare)  | Model Name | SC18D22299 |  |





# **1.7 Testing Location**

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

| Test Firm             | Sporton International Inc. (Shenzhen)                                                                                                                                      |                     |                  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|--|
| Test Site Location    | 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan,<br>Shenzhen, 518055 People's Republic of China<br>TEL: +86-755-86379589<br>FAX: +86-755-86379595 |                     |                  |  |  |  |
|                       | Sporton Site No.                                                                                                                                                           | FCC Designation No. | FCC Test Firm    |  |  |  |
| Test Site No.         | Sporton Site No.                                                                                                                                                           | TCC Designation No. | Registration No. |  |  |  |
|                       | CO01-SZ<br>TH01-SZ                                                                                                                                                         | CN1256              | 421272           |  |  |  |
| Test Firm             | Sporton International Inc.                                                                                                                                                 | (Shenzhen)          |                  |  |  |  |
| Test Site<br>Location |                                                                                                                                                                            |                     |                  |  |  |  |
|                       | Sporton Site No.                                                                                                                                                           | FCC Designation No. | FCC Test Firm    |  |  |  |
| Test Site No.         | Sporton Site No.                                                                                                                                                           | FCC Designation No. | Registration No. |  |  |  |
|                       | 03CH02-SZ                                                                                                                                                                  | CN1256              | 421272           |  |  |  |



# 1.8 Test Software

| ltem | Site      | Manufacturer | Name | Version      |
|------|-----------|--------------|------|--------------|
| 1.   | 03CH02-SZ | AUDIX        | E3   | 6.2009-8-24a |
| 2.   | CO01-SZ   | AUDIX        | E3   | 6.120613b    |

# 1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

#### Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.



# 2 Test Configuration of Equipment Under Test

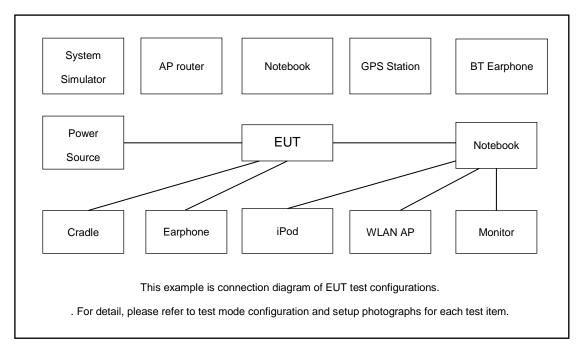
# 2.1 Carrier Frequency Channel

| Frequency Band  | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) |
|-----------------|---------|----------------|---------|----------------|---------|----------------|
|                 | 0       | 2402           | 27      | 2429           | 54      | 2456           |
|                 | 1       | 2403           | 28      | 2430           | 55      | 2457           |
|                 | 2       | 2404           | 29      | 2431           | 56      | 2458           |
|                 | 3       | 2405           | 30      | 2432           | 57      | 2459           |
|                 | 4       | 2406           | 31      | 2433           | 58      | 2460           |
|                 | 5       | 2407           | 32      | 2434           | 59      | 2461           |
|                 | 6       | 2408           | 33      | 2435           | 60      | 2462           |
|                 | 7       | 2409           | 34      | 2436           | 61      | 2463           |
|                 | 8       | 2410           | 35      | 2437           | 62      | 2464           |
|                 | 9       | 2411           | 36      | 2438           | 63      | 2465           |
|                 | 10      | 2412           | 37      | 2439           | 64      | 2466           |
|                 | 11      | 2413           | 38      | 2440           | 65      | 2467           |
|                 | 12      | 2414           | 39      | 2441           | 66      | 2468           |
| 2400-2483.5 MHz | 13      | 2415           | 40      | 2442           | 67      | 2469           |
|                 | 14      | 2416           | 41      | 2443           | 68      | 2470           |
|                 | 15      | 2417           | 42      | 2444           | 69      | 2471           |
|                 | 16      | 2418           | 43      | 2445           | 70      | 2472           |
|                 | 17      | 2419           | 44      | 2446           | 71      | 2473           |
|                 | 18      | 2420           | 45      | 2447           | 72      | 2474           |
|                 | 19      | 2421           | 46      | 2448           | 73      | 2475           |
|                 | 20      | 2422           | 47      | 2449           | 74      | 2476           |
|                 | 21      | 2423           | 48      | 2450           | 75      | 2477           |
|                 | 22      | 2424           | 49      | 2451           | 76      | 2478           |
|                 | 23      | 2425           | 50      | 2452           | 77      | 2479           |
|                 | 24      | 2426           | 51      | 2453           | 78      | 2480           |
|                 | 25      | 2427           | 52      | 2454           | -       | -              |
|                 | 26      | 2428           | 53      | 2455           | -       | -              |



# 2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


| -                                                                                                    | Summary table of Test Cases                                                                           |                               |                            |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|--|--|
|                                                                                                      | Data Rate / Modulation                                                                                |                               |                            |  |  |
| Test Item                                                                                            | Bluetooth BR 1Mbps                                                                                    | Bluetooth EDR 2Mbps           | Bluetooth EDR 3Mbps        |  |  |
|                                                                                                      | GFSK                                                                                                  | π/4-DQPSK                     | 8-DPSK                     |  |  |
| Conducted                                                                                            | Mode 1: CH00_2402 MHz                                                                                 | Mode 4: CH00_2402 MHz         | Mode 7: CH00_2402 MHz      |  |  |
| Test Cases                                                                                           | Mode 2: CH39_2441 MHz                                                                                 | Mode 5: CH39_2441 MHz         | Mode 8: CH39_2441 MHz      |  |  |
| Test Cases                                                                                           | Mode 3: CH78_2480 MHz                                                                                 | Mode 6: CH78_2480 MHz         | Mode 9: CH78_2480 MHz      |  |  |
|                                                                                                      |                                                                                                       | Bluetooth BR 1Mbps GFSK       |                            |  |  |
| Radiated                                                                                             |                                                                                                       | Mode 1: CH00_2402 MHz         |                            |  |  |
| Test Cases                                                                                           |                                                                                                       | Mode 2: CH39_2441 MHz         |                            |  |  |
|                                                                                                      | Mode 3: CH78_2480 MHz                                                                                 |                               |                            |  |  |
| AC                                                                                                   |                                                                                                       | uptooth Link + M/LAN Link (2) | 1C) + USP Coble 1(Charging |  |  |
| Conducted                                                                                            |                                                                                                       | uetooth Link + WLAN Link (2.4 | (Charging                  |  |  |
| Emission                                                                                             | from Adapter1) + Ea                                                                                   | arphone + ballery I           |                            |  |  |
| Remark:                                                                                              |                                                                                                       |                               |                            |  |  |
| 1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate |                                                                                                       |                               |                            |  |  |
| has the hig                                                                                          | has the highest RF output power at preliminary tests, and no other significantly frequencies found in |                               |                            |  |  |
| conducted spurious emission.                                                                         |                                                                                                       |                               |                            |  |  |
| 1                                                                                                    |                                                                                                       |                               |                            |  |  |

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, The tests were performed with Adapter 1, Earphone and USB Cable 1.



# 2.3 Connection Diagram of Test System



# 2.4 Support Unit used in test configuration and system

| Item | Equipment             | Trade Name | Model Name | FCC ID      | Data Cable | Power Cord                                                 |
|------|-----------------------|------------|------------|-------------|------------|------------------------------------------------------------|
| 1.   | Base<br>Station(LTE)  | Anritsu    | MT8820C    | N/A         | N/A        | Unshielded,1.8m                                            |
| 2.   | WLAN AP               | Dlink      | DIR-820L   | KA2IR820LA1 | N/A        | Unshielded,1.8m                                            |
| 3.   | NOTE BOOK             | Lenovo     | E540       | FCC DoC     | N/A        | AC I/P:<br>Unshielded, 1.2 m<br>DC O/P:<br>Shielded, 1.8 m |
| 4.   | Bluetooth<br>Earphone | Samsung    | EO-MG900   | PYAHS-107W  | N/A        | N/A                                                        |
| 5.   | Earphone              | МОТО       | N/A        | N/A         | N/A        | N/A                                                        |
| 6.   | NFC Card              | N/A        | N/A        | N/A         | N/A        | N/A                                                        |



# 2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

# 2.6 Measurement Results Explanation Example

### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss13.0 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 13.0 + 10 =23.0(dB)

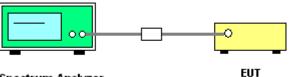


# 3 Test Result

# 3.1 Number of Channel Measurement

# 3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

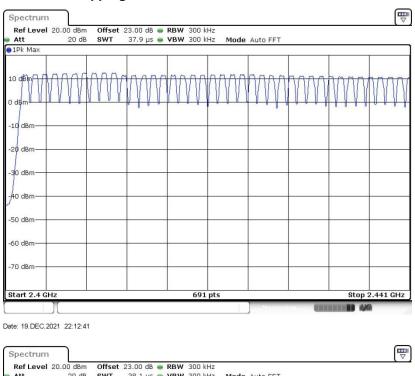

### **3.1.2 Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

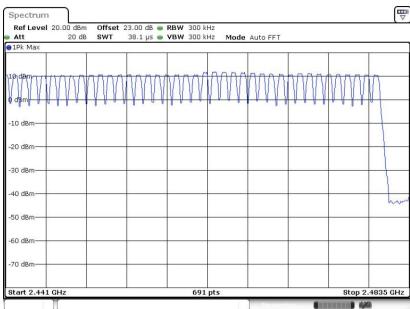
### 3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
   RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

# 3.1.4 Test Setup




Spectrum Analyzer


# 3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.





#### Number of Hopping Channel Plot on Channel 00 - 78



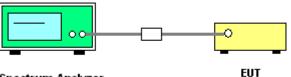
Date: 19.DEC.2021 22:13:20



# 3.2 Hopping Channel Separation Measurement

# 3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


# **3.2.2 Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

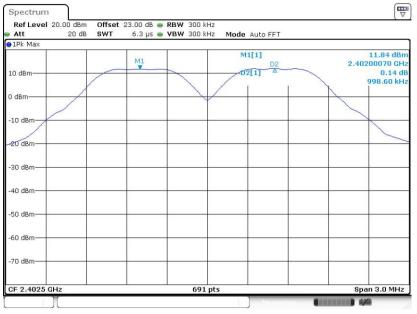
### 3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
   Span = wide enough to capture the peaks of two adjacent channels;
   RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

# 3.2.4 Test Setup

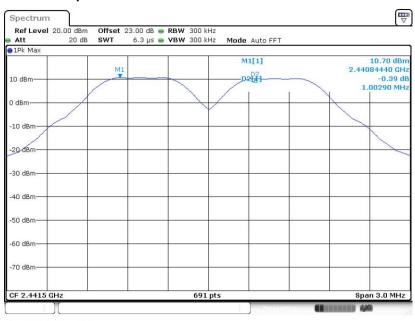


Spectrum Analyzer


# 3.2.5 Test Result of Hopping Channel Separation

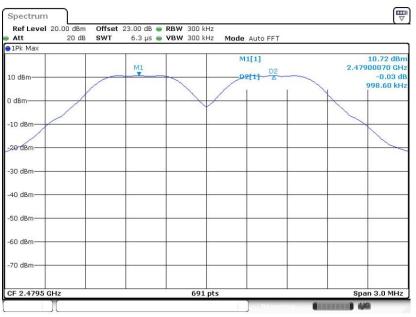
Please refer to Appendix A.




#### <1Mbps>

#### **Channel Separation Plot on Channel 00 - 01**



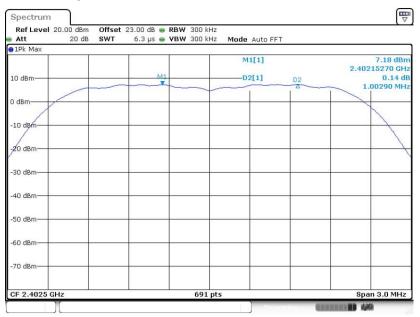

Date: 19.DEC.2021 21:57:52

#### **Channel Separation Plot on Channel 39 - 40**



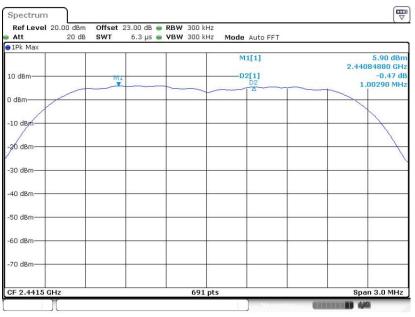
Date: 19.DEC.2021 22:10:24






#### Channel Separation Plot on Channel 77 - 78

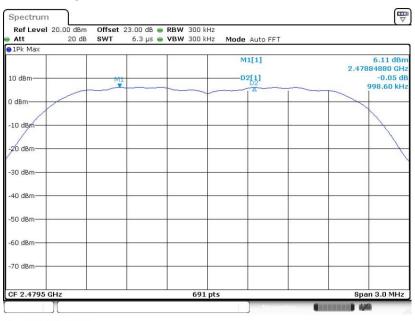
Date: 19.DEC.2021 22:11:18


#### <2Mbps>

#### **Channel Separation Plot on Channel 00 - 01**



Date: 19.DEC.2021 22:45:17

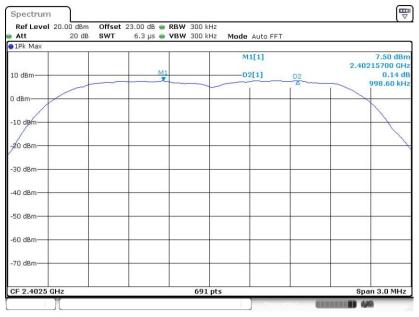





### Channel Separation Plot on Channel 39 - 40

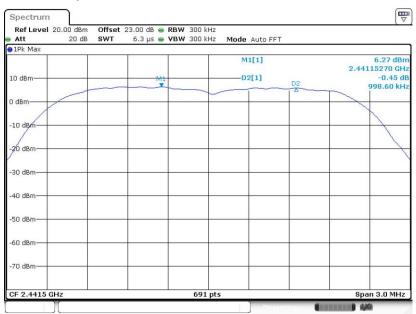
Date: 19.DEC.2021 22:51:59

#### **Channel Separation Plot on Channel 77 - 78**



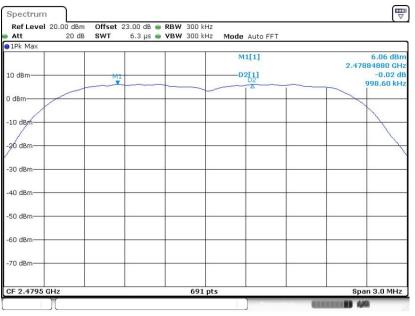

Date: 19.DEC.2021 22:52:53




#### <3Mbps>

#### **Channel Separation Plot on Channel 00 - 01**




Date: 19.DEC.2021 23:04:20

#### **Channel Separation Plot on Channel 39 - 40**



Date: 19.DEC.2021 23:05:57





# Channel Separation Plot on Channel 77 - 78

Date: 19.DEC.2021 23:14:36



# 3.3 **Dwell Time Measurement**

# 3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

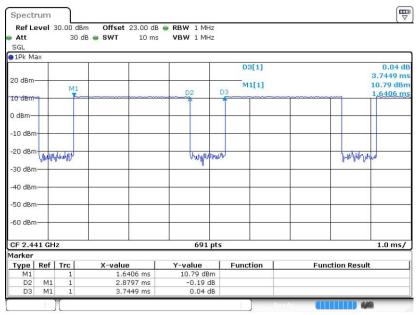

# 3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

# 3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

# 3.3.4 Test Setup




Spectrum Analyzer



# 3.3.5 Test Result of Dwell Time

Please refer to Appendix A.



#### Package Transfer Time Plot

Date: 14.DEC.2021 20:33:41

#### Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.

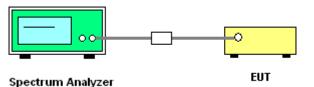
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
  With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
  Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



# 3.4 20dB and 99% Bandwidth Measurement

### 3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


### 3.4.2 Measuring Instruments

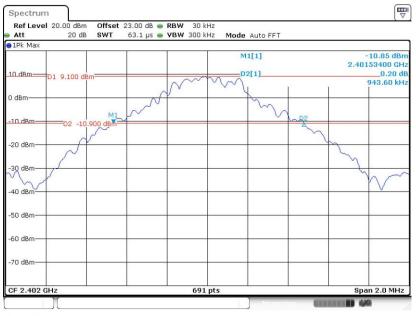
The measuring equipment is listed in the section 4 of this test report.

### 3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
  Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
  Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
  Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
  Sweep = auto; Detector function = peak;
  - Trace = max hold.
- 6. Measure and record the results in the test report.

### 3.4.4 Test Setup




# 3.4.5 Test Result of 20dB Bandwidth

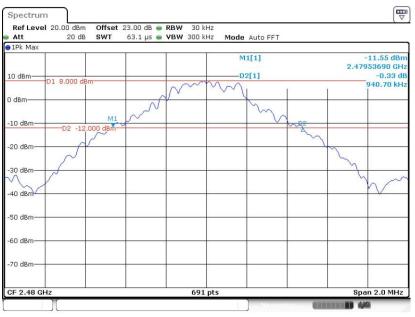
Please refer to Appendix A.



#### <1Mbps>

#### 20 dB Bandwidth Plot on Channel 00




Date: 19.DEC.2021 21:47:45

#### 20 dB Bandwidth Plot on Channel 39



Date: 19.DEC.2021 21:48:38





#### 20 dB Bandwidth Plot on Channel 78

Date: 19.DEC.2021 21:49:24

#### <2Mbps>

#### 20 dB Bandwidth Plot on Channel 00



Date: 19.DEC.2021 22:41:36





#### 20 dB Bandwidth Plot on Channel 39

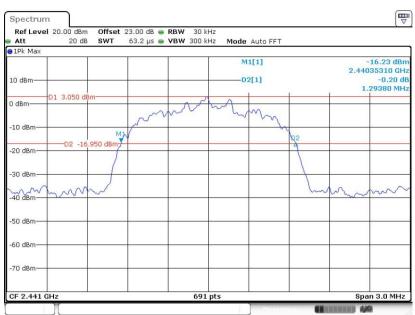
Date: 19.DEC.2021 22:38:46

#### 20 dB Bandwidth Plot on Channel 78



Date: 19.DEC.2021 22:37:28




#### <3Mbps>

#### 20 dB Bandwidth Plot on Channel 00



Date: 30.DEC.2021 23:21:09

#### 20 dB Bandwidth Plot on Channel 39



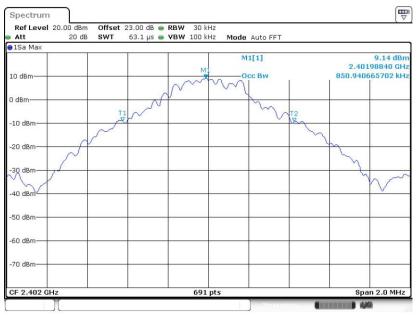
Date: 30.DEC.2021 23:17:52





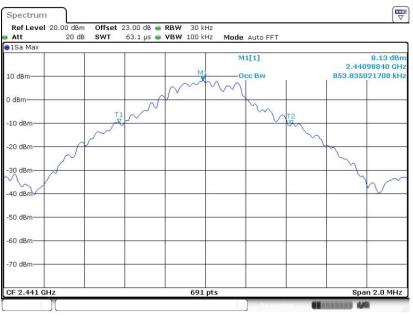
#### 20 dB Bandwidth Plot on Channel 78

Date: 30.DEC.2021 23:19:08




# 3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


#### <1Mbps>

#### 99% Occupied Bandwidth Plot on Channel 00



Date: 19.DEC.2021 21:55:17





#### 99% Occupied Bandwidth Plot on Channel 39

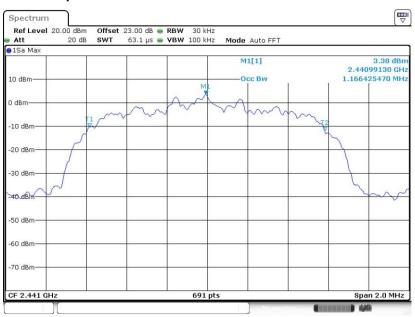
Date: 19.DEC.2021 21:52:24



#### 99% Occupied Bandwidth Plot on Channel 78

Date: 19.DEC.2021 21:49:59




#### <2Mbps>

#### 99% Occupied Bandwidth Plot on Channel 00



Date: 19.DEC.2021 22:42:51

#### 99% Occupied Bandwidth Plot on Channel 39



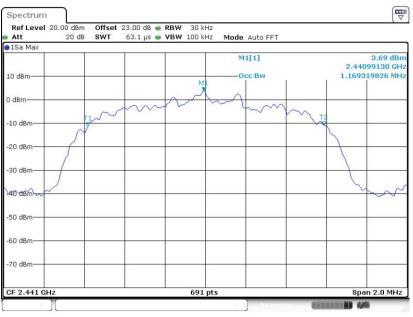
Date: 19.DEC.2021 22:39:22





#### 99% Occupied Bandwidth Plot on Channel 78

Date: 19.DEC.2021 22:32:47


#### <3Mbps>

#### 99% Occupied Bandwidth Plot on Channel 00




Date: 19.DEC.2021 23:01:48





### 99% Occupied Bandwidth Plot on Channel 39

Date: 19.DEC.2021 23:07:21



#### 99% Occupied Bandwidth Plot on Channel 78

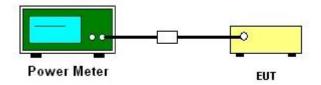
Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



# 3.5 Output Power Measurement

# 3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


# 3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

### 3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

### 3.5.4 Test Setup



# 3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

# 3.5.6 Test Result of Average Output Power (Reporting Only)

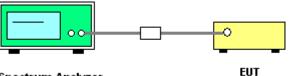
Please refer to Appendix A.



# 3.6 Conducted Band Edges Measurement

# 3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


# 3.6.2 Measuring Instruments

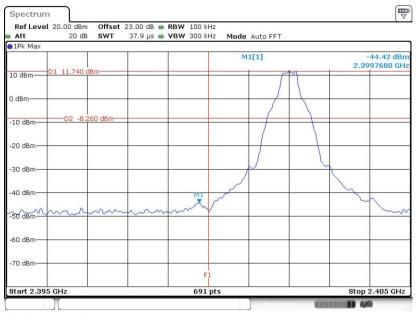
The measuring equipment is listed in the section 4 of this test report.

### 3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

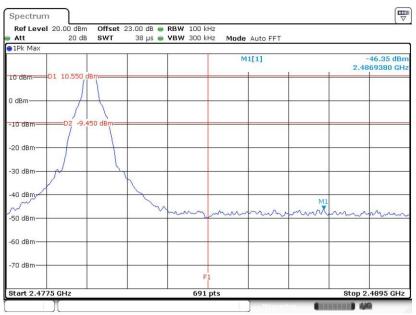
### 3.6.4 Test Setup




Spectrum Analyzer



# 3.6.5 Test Result of Conducted Band Edges

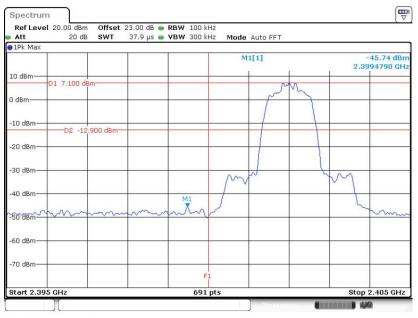

#### <1Mbps>

#### Low Band Edge Plot on Channel 00



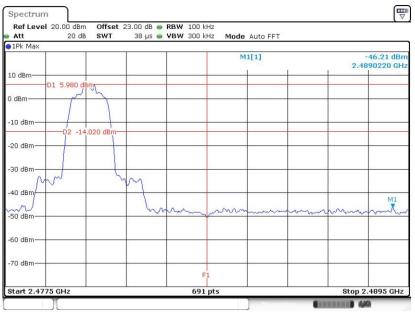
Date: 19.DEC.2021 21:54:22

#### High Band Edge Plot on Channel 78




Date: 19.DEC.2021 21:51:22



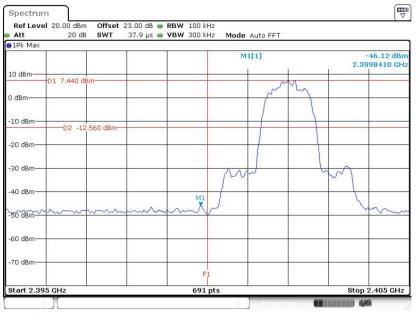

#### <2Mbps>

#### Low Band Edge Plot on Channel 00



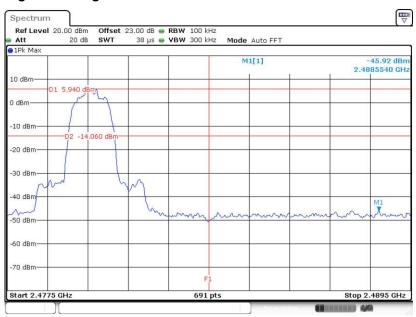
Date: 19.DEC.2021 22:42:17

#### High Band Edge Plot on Channel 78




Date: 19.DEC.2021 22:36:10




#### <3Mbps>

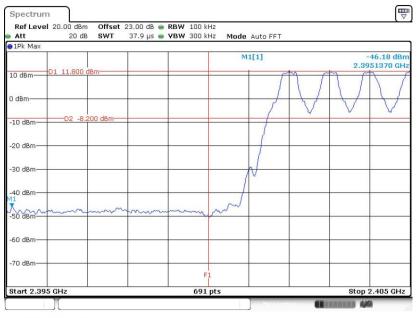
#### Low Band Edge Plot on Channel 00



Date: 19.DEC.2021 23:01:01

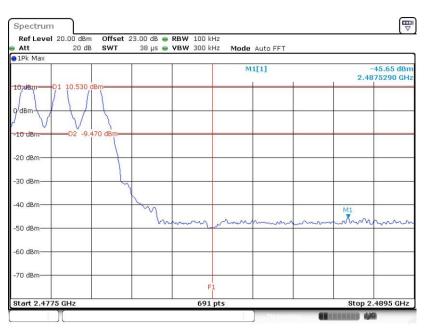
#### High Band Edge Plot on Channel 78




Date: 19.DEC.2021 23:14:58



## 3.6.6 Test Result of Conducted Hopping Mode Band Edges

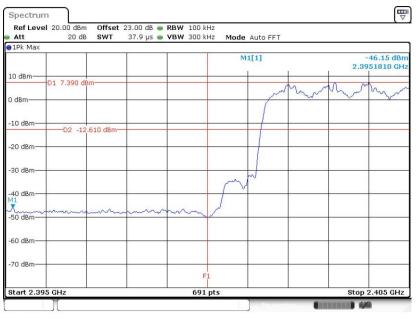

#### <1Mbps>

#### Hopping Mode Low Band Edge Plot



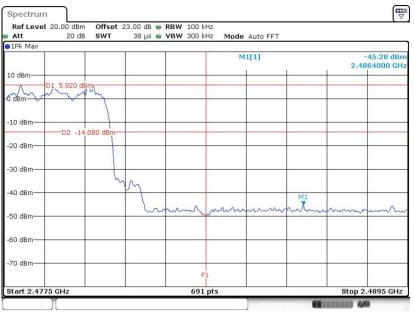
Date: 19.DEC.2021 22:14:12

#### Hopping Mode High Band Edge Plot




Date: 19.DEC.2021 22:15:05



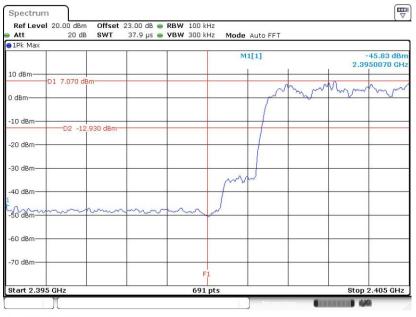

#### <2Mbps>

#### Hopping Mode Low Band Edge Plot



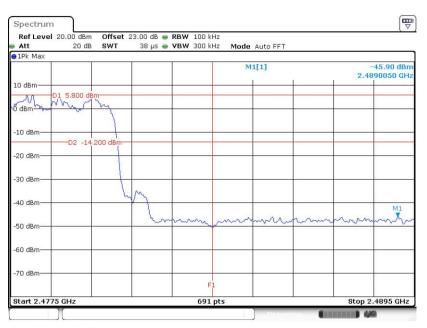
Date: 19.DEC.2021 22:31:03

#### Hopping Mode High Band Edge Plot




Date: 19.DEC.2021 22:31:59




#### <3Mbps>

#### Hopping Mode Low Band Edge Plot



Date: 19.DEC.2021 23:20:31

### Hopping Mode High Band Edge Plot



Date: 19.DEC.2021 23:19:46



## 3.7 Conducted Spurious Emission Measurement

## 3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


## 3.7.2 Measuring Instruments

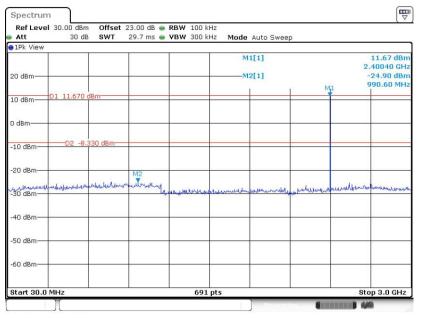
The measuring equipment is listed in the section 4 of this test report.

## 3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

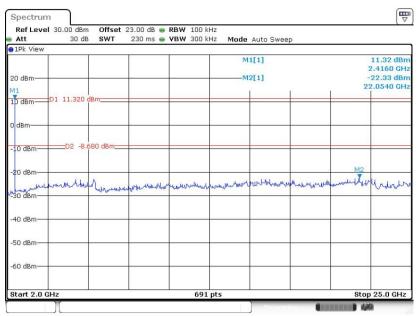
## 3.7.4 Test Setup




**Sporton International Inc. (Shenzhen)** TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: IHDT56AA4



## 3.7.5 Test Result of Conducted Spurious Emission


#### <1Mbps>

#### CSE Plot on Ch 00 between 30MHz ~ 3 GHz



Date: 19.DEC.2021 21:56:31

#### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz



Date: 19.DEC.2021 21:56:59



| Att      | 30 dB SWT              | 29.7 ms 👄 '      | <b>ARM</b> 300 K | Hz Mode        | Auto Swee | p           |                                                    |             |  |
|----------|------------------------|------------------|------------------|----------------|-----------|-------------|----------------------------------------------------|-------------|--|
| 20 dBm   |                        |                  |                  | M1[1]<br>M2[1] |           |             | 10.30 dBn<br>2.43910 GH<br>-25.18 dBn<br>904.70 MH |             |  |
| 0 dBm D1 | 10.300 dBm             | _                |                  |                |           |             | M1                                                 |             |  |
| ) dBm    |                        |                  |                  |                |           |             |                                                    | -           |  |
| 10 dBm   | -D2 -9.700 dBm-        |                  |                  |                |           |             |                                                    |             |  |
| 20 dBm   |                        | M2               |                  | -              |           |             |                                                    |             |  |
| 30 dBm   | wonderwood the mention | phillipping hard | number           | halyndaria     | hadenwere | portantella | www.loandoamen                                     | entromleden |  |
| 40 dBm   |                        |                  |                  |                |           | -           |                                                    |             |  |
| 50 dBm   |                        |                  |                  |                |           |             |                                                    |             |  |
| 60 dBm   |                        |                  |                  |                |           |             |                                                    |             |  |

## CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 19.DEC.2021 21:53:02

#### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

| Ref Level 3<br>Att       | 30.00 dBm<br>30 dB | Offset<br>SWT | 23.00 dB 👄 | RBW 100 k<br>VBW 300 k |           | Auto Swee | n     |           |                        |
|--------------------------|--------------------|---------------|------------|------------------------|-----------|-----------|-------|-----------|------------------------|
| 1Pk View                 |                    |               |            |                        |           |           | -     |           |                        |
|                          |                    |               |            |                        | M         | 1[1]      |       |           | 10.21 dBn<br>2.4490 GH |
| 20 dBm                   |                    |               |            |                        | M         | 2[1]      |       |           | -22.84 dBr             |
| M1                       |                    |               |            |                        |           | 1         | [     | 2         | 21.4220 GH             |
| 1 <mark>0 dBm D</mark> : | L 10.210 dB        | m             |            |                        |           |           |       |           |                        |
| 0 dBm                    |                    |               |            |                        |           |           |       |           |                        |
| -10 dBm                  | -D2 -9.79          | 0 dBm         |            |                        |           |           |       |           |                        |
| -20 dBm                  |                    |               |            |                        |           |           |       | M2        |                        |
| 20 dBm                   | white              | Concerna      | human      | Mul markeret en        | newsburgh | ghannun   | human | werterner | monum                  |
| -30 dBm                  |                    | whetheres     | ×          | 1                      |           |           |       |           | a state in a second    |
| -40 dBm                  |                    |               |            |                        |           |           |       |           |                        |
| -50 dBm                  |                    |               |            |                        |           |           |       |           |                        |
| 60 dBm                   |                    |               |            |                        |           |           |       |           |                        |
|                          |                    |               |            |                        |           |           |       |           |                        |
| Start 2.0 GH             | z                  |               |            | 691                    | pts       |           |       | Sto       | p 25.0 GHz             |

Date: 19.DEC.2021 21:53:50

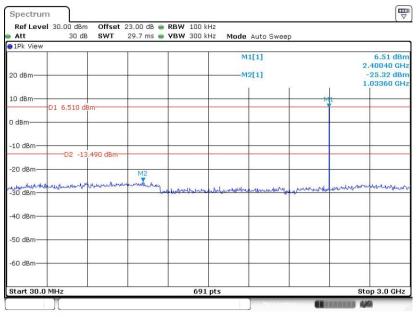


| Ref Level<br>Att | 30.00 dbm     | SWT            |                | RBW 100 k<br>VBW 300 k |        | Auto Sweep    | )              |         |                         |
|------------------|---------------|----------------|----------------|------------------------|--------|---------------|----------------|---------|-------------------------|
| ∋1Pk View        |               |                |                |                        |        |               |                |         |                         |
|                  |               |                |                |                        | M1[1]  |               |                |         | 10.60 dBn<br>2.48210 GH |
| 20 dBm           |               |                |                |                        | M      | 2[1]          |                |         | -25.12 dBn              |
|                  |               |                |                |                        |        | 1 1           |                | M1      | 590.90 MH               |
| 10 dBm D         | 1 10.600 dB   | m              |                |                        |        |               |                |         |                         |
| 377              |               |                |                |                        |        |               |                |         |                         |
| 0 dBm            |               |                | 0              |                        |        |               |                |         |                         |
| -10 dBm          | D2 -9.40      | 0 dBm          |                |                        |        |               |                |         |                         |
| -10 UBIII-       | -02 -9.40     | o ubm          |                |                        |        |               |                |         |                         |
| -20 dBm          |               |                |                |                        | -      |               | G              |         |                         |
|                  | M2            |                | distriction of |                        |        |               |                |         | and the second second   |
| -30 dBm          | up manutation | AND GROUPER OF | an manual      | a Martinetanona        | noused | aller formery | - Andrew March | unterne | bernortellesnews        |
|                  |               |                |                |                        |        |               |                |         |                         |
| -40 dBm          |               |                |                |                        |        |               |                |         | -                       |
|                  |               |                |                |                        |        |               |                |         |                         |
| -50 dBm          |               |                |                |                        |        |               |                |         |                         |
| -60 dBm          |               |                |                |                        |        |               |                |         |                         |
| 00 00.00         |               |                |                |                        |        |               |                |         |                         |
| Start 30.0 M     |               |                |                |                        | pts    |               |                |         | top 3.0 GHz             |

## CSE Plot on Ch 78 between 30MHz ~ 3 GHz

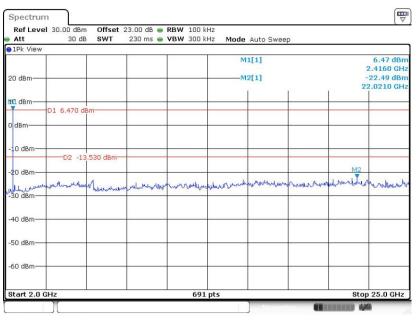
Date: 19.DEC.2021 21:50:33

#### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


| Ref Level 30.0<br>Att | 00 dBm Offse<br>30 dB SWT | t 23.00 dB 👄<br>230 ms 👄 | RBW 100 k<br>VBW 300 k |                 | Auto Swe | ep            |              |                        |
|-----------------------|---------------------------|--------------------------|------------------------|-----------------|----------|---------------|--------------|------------------------|
| 1Pk View              |                           |                          |                        |                 |          |               |              |                        |
|                       |                           |                          |                        | м               | 1[1]     |               |              | 10.05 dBn<br>2.4830 GH |
| 20 dBm                |                           |                          |                        | M               | 2[1]     |               |              | -22.31 dBr             |
| M1                    |                           |                          |                        |                 | I        | T             | 1            | 6.2960 GH              |
| 10 dBm D1 1           | .0.050 dBm                |                          |                        |                 |          |               |              |                        |
| D dBm                 |                           | _                        |                        |                 |          |               |              |                        |
| -10 dBm               | D2 -9.950 dBm-            |                          |                        |                 |          |               |              |                        |
|                       |                           |                          |                        |                 | M2       |               |              |                        |
| 20 dBm                | moneyout and              | wanter Made              | then a                 | I. Junit        | -        | 10 Marken der | 1 multiching | ne la hun              |
| 30 dBm                | ly where                  | when we we down          | www.warrow.com         | WIN-to-ware - 0 |          |               |              | 4.040.0                |
| 40 dBm                |                           | -                        |                        |                 | -        | -             |              |                        |
| 50 dBm                |                           |                          |                        |                 |          |               |              |                        |
| 60 dBm                |                           |                          |                        |                 |          |               |              |                        |
|                       |                           |                          |                        |                 |          |               |              |                        |
|                       |                           |                          |                        | pts             |          |               |              | 25.0 GHz               |

Date: 19.DEC.2021 21:51:02




#### <2Mbps>

#### CSE Plot on Ch 00 between 30MHz ~ 3 GHz



Date: 19.DEC.2021 22:43:23

#### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz



Date: 19.DEC.2021 22:43:52



| Att        | 30.00 dBm 30 dB                                                                                                 |                | 23.00 dB 👄<br>29.7 ms 👄 | VBW 300 ki    |                     | Auto Sweep                                           | 5       |             |                   |
|------------|-----------------------------------------------------------------------------------------------------------------|----------------|-------------------------|---------------|---------------------|------------------------------------------------------|---------|-------------|-------------------|
| 1Pk View   |                                                                                                                 |                |                         |               |                     |                                                      |         |             |                   |
| 20 dBm     |                                                                                                                 | M1[1]<br>M2[1] |                         |               |                     | 5.71 dBn<br>2.43910 GH:<br>-25.43 dBn<br>1.05080 GH: |         |             |                   |
| 10 dBm     | D1 5.710 di                                                                                                     | Bm             |                         |               | )                   |                                                      |         | MI          |                   |
| 0 dBm      | 01 0.010 0                                                                                                      |                |                         |               |                     |                                                      |         |             |                   |
| -10 dBm    |                                                                                                                 | .290 dBm-      |                         |               |                     |                                                      |         |             |                   |
| -20 dBm    |                                                                                                                 |                | M2                      |               |                     |                                                      |         |             |                   |
| 30 dBm-    | ulitoria de la contractione de la c | pulinente      | multingle               | Marthmethy in | never for after der | and rules                                            | Mirmuno | - amerikana | represhatineously |
| 40 dBm     |                                                                                                                 |                |                         |               |                     |                                                      |         |             |                   |
| -50 dBm    |                                                                                                                 |                |                         |               |                     |                                                      | 0       |             |                   |
| -60 dBm    |                                                                                                                 |                |                         |               |                     |                                                      | 2       |             |                   |
| Start 30.0 |                                                                                                                 |                |                         | 691           |                     |                                                      |         |             | top 3.0 GHz       |

## CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 19.DEC.2021 22:39:55

#### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

| Ref Level 30<br>Att | 30 dB SW                 | set 23.00 dB (<br>T 230 ms ( | VBW 300      |               | to Sweep                                        |                  |             |
|---------------------|--------------------------|------------------------------|--------------|---------------|-------------------------------------------------|------------------|-------------|
| 1Pk View            |                          |                              |              |               |                                                 |                  |             |
| 20 dBm              | M1[1]<br>M2[1]           |                              |              |               | 5.41 dB<br>2.4490 GI<br>-22.59 dB<br>22.5870 GI |                  |             |
|                     | 5.410 dBm                |                              |              |               |                                                 |                  |             |
| ) dBm               |                          |                              | _            |               |                                                 |                  |             |
| 10 dBm              |                          | Bm                           |              |               |                                                 |                  |             |
| 20 dBm              | a total presidential and |                              |              |               | rownumber                                       | Multime with the | to days and |
| 30 dBm              | Contra Conta             | hunder                       | and an and a | and an an a s |                                                 |                  | C. Marcola  |
| 40 dBm              |                          |                              |              |               |                                                 |                  |             |
| 50 dBm              |                          |                              |              |               |                                                 |                  |             |
| 60 dBm              |                          |                              |              |               |                                                 |                  |             |
|                     |                          |                              |              |               |                                                 |                  |             |

Date: 19.DEC.2021 22:40:24

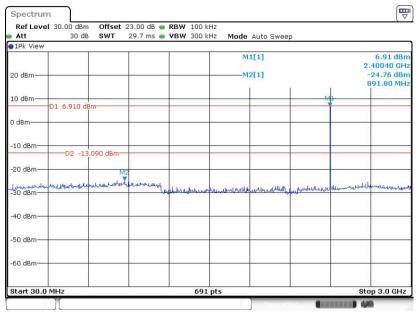


|                    | 30 dB       | SWT             | 29.7 ms 🖷 | <b>VBW</b> 300 k  | Hz Mode    | Auto Sweep  | 0       |                                                   |              |  |  |
|--------------------|-------------|-----------------|-----------|-------------------|------------|-------------|---------|---------------------------------------------------|--------------|--|--|
| 1Pk View<br>20 dBm |             | M1[1]<br>M2[1]  |           |                   |            |             |         | 5.07 dBr<br>2.48210 GH<br>-24.52 dBr<br>943.40 MH |              |  |  |
| LO dBm             |             |                 |           |                   |            |             |         | M1                                                |              |  |  |
| ) dBm              | D1 5.070 de | 3m-             |           |                   |            |             |         |                                                   |              |  |  |
| 10 dBm             |             |                 |           |                   |            |             |         |                                                   |              |  |  |
| 20 dBm             |             | .930 dBm—       | M2        |                   |            |             |         |                                                   |              |  |  |
| 30 dBm             | ilmandudurh | -he-hyrlaullaul | Armony    | hal-Alaenther-enc | Manual Min | anne deller | workand | manna                                             | enallementer |  |  |
| 40 dBm             |             |                 |           |                   |            |             |         |                                                   |              |  |  |
| 50 dBm             |             |                 |           |                   |            |             |         |                                                   |              |  |  |
| 60 dBm             |             |                 |           |                   |            |             |         |                                                   |              |  |  |

## CSE Plot on Ch 78 between 30MHz ~ 3 GHz

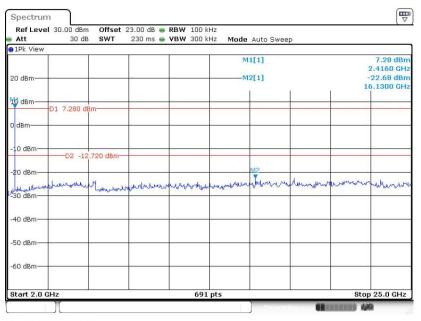
Date: 19.DEC.2021 22:35:18

#### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


| Ref Level 30.0<br>Att | 0 dBm Offsel<br>30 dB SWT | 23.00 dB 👄 | RBW 100 kH<br>VBW 300 kH |                 | Auto Swee    | 0              |           |                                                  |
|-----------------------|---------------------------|------------|--------------------------|-----------------|--------------|----------------|-----------|--------------------------------------------------|
| 1Pk View              |                           |            |                          |                 |              |                |           |                                                  |
| 20 dBm                |                           |            |                          |                 | 1[1]<br>2[1] |                |           | 3.85 dBn<br>2.4830 GH<br>-22.33 dBn<br>0.1240 GH |
|                       | .850 dBm                  |            |                          |                 |              |                |           |                                                  |
| 10 dBm                |                           |            |                          |                 |              |                |           | e                                                |
| 20 dBm                | 02 -16.150 dBm            |            | man                      | entropher marke | holmen       | M2<br>Mangarah | unombahrd | humh                                             |
| 40 dBm                |                           |            |                          |                 |              |                |           |                                                  |
| 50 dBm                |                           |            |                          |                 |              |                |           |                                                  |
| 60 dBm                |                           |            |                          |                 |              |                |           |                                                  |
| Start 2.0 GHz         |                           |            | 691                      | nte             |              |                | Stor      | 25.0 GHz                                         |

Date: 19.DEC.2021 22:35:47




#### <3Mbps>

#### CSE Plot on Ch 00 between 30MHz ~ 3 GHz



Date: 19.DEC.2021 23:02:18

#### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz



Date: 19.DEC.2021 23:02:48



| Att        | 30.00 dBm<br>30 dB |                | 23.00 dB 👄<br>29.7 ms 👄 |               |              | Auto Sweep |                                                    |             |             |
|------------|--------------------|----------------|-------------------------|---------------|--------------|------------|----------------------------------------------------|-------------|-------------|
| 1Pk View   |                    |                |                         |               |              |            |                                                    |             |             |
| 20 dBm     |                    | M1[1]<br>M2[1] |                         |               |              |            | 4.71 dBm<br>2.43910 GH<br>-24.79 dBm<br>1.04650 GH |             |             |
| 10 dBm     |                    |                |                         |               |              |            |                                                    | M1          |             |
| D dBm      | D1 4.710 d         | Bm             |                         |               |              |            |                                                    |             |             |
| -10 dBm    |                    |                |                         |               |              |            |                                                    |             |             |
| -20 dBm    | and a factor       | 5.290 dBm-     | M2                      |               |              |            | 10                                                 |             |             |
| 30 dBm-    | with the harden    | nducentul      | monteren                | Jun Law Manha | - hyphtheren | myshing    | when no                                            | ablightered | Immillion   |
| 40 dBm     |                    |                |                         |               |              |            |                                                    |             |             |
| 50 dBm     | -                  |                |                         |               |              |            | 0                                                  |             |             |
| 60 dBm     |                    |                |                         |               |              |            |                                                    |             |             |
| Start 30.0 |                    |                |                         | 691           |              |            |                                                    |             | top 3.0 GHz |

## CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 19.DEC.2021 23:08:13

#### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

| Ref Level 30.0<br>Att              | 30 dBm Offse<br>30 dB SWT | t 23.00 dB 👄 I<br>230 ms 👄 ' | <b>RBW</b> 100 kH:<br><b>/BW</b> 300 kH: |       | Auto Swee | р                |                 |                       |
|------------------------------------|---------------------------|------------------------------|------------------------------------------|-------|-----------|------------------|-----------------|-----------------------|
| 1Pk View                           |                           |                              |                                          |       |           |                  |                 |                       |
|                                    |                           |                              |                                          | M     | 1[1]      |                  |                 | 3.41 dBn<br>2.4490 GH |
| 20 dBm                             |                           |                              |                                          | M     | 2[1]      |                  |                 | 21.44 dBr             |
|                                    |                           |                              |                                          |       |           | r 1              | 24              | 4.7170 GH             |
| 10 dBm                             |                           |                              |                                          |       |           |                  |                 |                       |
|                                    | .410 dBm                  |                              |                                          |       |           |                  |                 |                       |
| dBm-                               |                           |                              |                                          |       |           |                  |                 |                       |
|                                    |                           |                              |                                          |       |           |                  |                 |                       |
| 10 dBm                             |                           |                              |                                          |       |           |                  |                 | <i></i>               |
|                                    | D2 -16.590 dBm            |                              |                                          |       |           | -                |                 | M                     |
| 20 dBm                             |                           | and the star                 | a see this is                            |       | . A . the | 4                | . Ashendaka a   | land a lating         |
| 20 dBm<br>ungendenstreet<br>30 dBm | and frencher              | ununununun                   | them when the                            | manan | n www.w   | h and word wound | Color-on-on-on- | Mahrenan              |
| 30 UBIII                           |                           |                              |                                          |       |           |                  |                 |                       |
| 40 dBm                             |                           |                              |                                          |       |           |                  |                 |                       |
|                                    |                           |                              |                                          |       |           |                  |                 |                       |
| 50 dBm                             |                           |                              |                                          |       |           |                  |                 |                       |
|                                    |                           |                              |                                          |       |           |                  |                 |                       |
| 60 dBm                             |                           |                              |                                          |       |           |                  |                 |                       |
|                                    |                           |                              |                                          |       |           |                  |                 |                       |
| Start 2.0 GHz                      |                           |                              | 691 p                                    |       |           |                  |                 | 25.0 GHz              |

Date: 19.DEC.2021 23:11:22



| Att        | 30 dB       | SWT           | 29.7 ms 👄             | <b>VBW</b> 300 k | Hz Mode         | Auto Sweep     | 5           |         |                         |
|------------|-------------|---------------|-----------------------|------------------|-----------------|----------------|-------------|---------|-------------------------|
| 1Pk View   |             |               |                       |                  | M               | 1[1]           |             | 2       | 5.69 dBn                |
| 20 dBm     |             |               |                       |                  | M               | 2[1]           |             |         | -25.10 dBn<br>939.10 MH |
| 10 dBm     | D1 5.690 de | 3m            |                       |                  |                 |                |             |         |                         |
| 0 dBm      |             |               |                       |                  |                 |                |             |         |                         |
| -10 dBm    | D2 -14      | .310 dBm-     |                       |                  |                 |                |             |         |                         |
| -20 dBm    |             | 1.1.1.4       | M2                    |                  |                 |                |             |         |                         |
| -30 dBm    | lhowen      | AN Male Carry | and the second second | Murahar Mala     | endlovera.right | advandender of | walterbarry | Merohan | montherad               |
| -40 dBm    |             |               |                       |                  |                 |                |             |         |                         |
| -50 dBm    |             |               | -                     |                  |                 |                |             |         |                         |
| -60 dBm    |             |               |                       |                  |                 |                |             |         |                         |
| Start 30.0 | MU 2        |               |                       | 691              | nte             |                |             | C+      | op 3.0 GHz              |

## CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 19.DEC.2021 23:18:03

#### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

| Ref Level<br>Att | 30.00 dBm<br>30 dB |            | 23.00 dB 👄<br>230 ms 👄 | VBW 300 k |             | Auto Swee | p     |                       |           |  |
|------------------|--------------------|------------|------------------------|-----------|-------------|-----------|-------|-----------------------|-----------|--|
| 1Pk View         |                    |            |                        |           |             |           |       |                       |           |  |
|                  |                    |            |                        |           | M           | 1[1]      |       | 5.26 dBn<br>2.4830 GH |           |  |
| 20 dBm           |                    |            |                        |           | M           | 2[1]      |       |                       | 22.66 dBn |  |
|                  |                    |            |                        |           |             | I         | Ĩ.    | 2                     | 2.0210 GH |  |
| 10 dBm           |                    |            |                        |           |             |           |       |                       |           |  |
| 17.1             | D1 5.260 d         | Bm         | -                      |           | 1           |           |       |                       |           |  |
| 0 dBm            |                    |            |                        |           |             |           |       |                       |           |  |
| 10 dBm-          |                    |            |                        | 5         |             |           |       |                       | e.        |  |
| 10 ubm           | D2 -14             | 1.740 dBm- |                        |           |             |           | -     |                       |           |  |
| -20 dBm          |                    |            | -                      |           | -           |           |       | M2                    | 8         |  |
| . I a related    | when you have      | M . da w   | Malunture              | maghthown | Hvennunslum | www.uster | Aunne | deducerounder         | hangert   |  |
| 30 dBm           |                    | Produce .  |                        |           |             |           |       |                       |           |  |
|                  |                    |            |                        |           |             |           |       |                       |           |  |
| -40 dBm          |                    |            |                        |           |             |           | -     |                       |           |  |
| 50 dBm-          |                    |            |                        |           |             |           |       |                       |           |  |
| JU UBIII         |                    |            |                        |           |             |           |       |                       |           |  |
| 60 dBm-          |                    |            |                        |           |             |           |       |                       |           |  |
|                  |                    |            |                        |           |             |           |       |                       |           |  |
| Start 2.0 G      |                    |            |                        |           | pts         |           |       |                       | 25.0 GHz  |  |

Date: 19.DEC.2021 23:18:33



## 3.8 Radiated Band Edges and Spurious Emission Measurement

## 3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

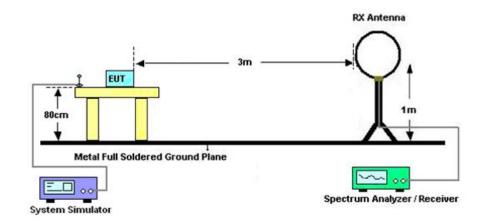
| Frequency     | Field Strength     | Measurement Distance |
|---------------|--------------------|----------------------|
| (MHz)         | (microvolts/meter) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |
| 1.705 – 30.0  | 30                 | 30                   |
| 30 - 88       | 100                | 3                    |
| 88 – 216      | 150                | 3                    |
| 216 - 960     | 200                | 3                    |
| Above 960     | 500                | 3                    |

## 3.8.2 Measuring Instruments

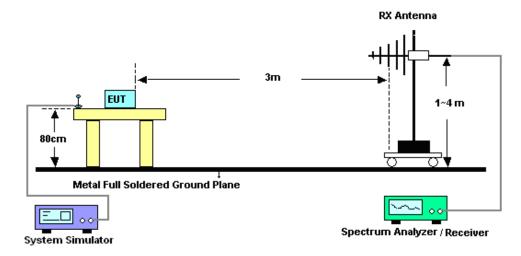
The measuring equipment is listed in the section 4 of this test report.



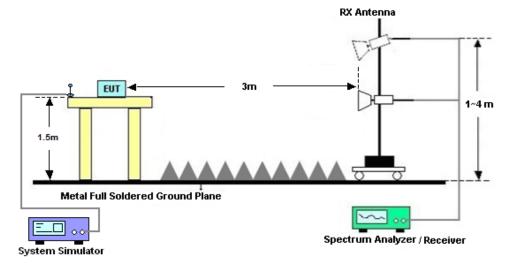
## 3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW  $\ge$  RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
  - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N<sub>1</sub>\*L<sub>1</sub>+N<sub>2</sub>\*L<sub>2</sub>+...+N<sub>n-1</sub>\*LN<sub>n-1</sub>+N<sub>n</sub>\*L<sub>n</sub> Where N<sub>1</sub> is number of type 1 pulses, L<sub>1</sub> is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20\*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.




## 3.8.4 Test Setup


## For radiated emissions below 30MHz



## For radiated emissions from 30MHz to 1GHz







**Sporton International Inc. (Shenzhen)** TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: IHDT56AA4 Page Number : 54 of 60 Report Issued Date : Jan. 30, 2022 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0



## 3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

## 3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

## 3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.



## 3.9 AC Conducted Emission Measurement

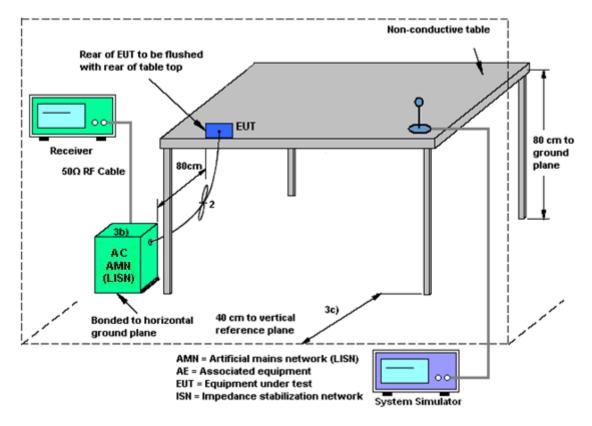
## 3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

| Frequency of emission (MHz) | Conducted  | limit (dBµV) |
|-----------------------------|------------|--------------|
| Frequency of emission (MHZ) | Quasi-peak | Average      |
| 0.15-0.5                    | 66 to 56*  | 56 to 46*    |
| 0.5-5                       | 56         | 46           |
| 5-30                        | 60         | 50           |

\*Decreases with the logarithm of the frequency.

## 3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

## 3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



## 3.9.4 Test Setup



## 3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.



## 3.10 Antenna Requirements

## 3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

## 3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

## 3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.



# 4 List of Measuring Equipment

| Instrument                              | Manufacturer | Model No.                        | Serial No.       | Characteristics    | Calibration<br>Date | Test Date                       | Due Date      | Remark                   |
|-----------------------------------------|--------------|----------------------------------|------------------|--------------------|---------------------|---------------------------------|---------------|--------------------------|
| Spectrum<br>Analyzer                    | R&S          | FSV40                            | 101078           | 10Hz~40GHz         | Apr. 08, 2021       | Dec. 14, 2021~<br>Dec. 30, 2021 | Apr. 07, 2022 | Conducted<br>(TH01-SZ)   |
| Pulse Power<br>Senor                    | Anritsu      | MA2411B                          | 1207253          | 30MHz~40GHz        | Dec. 25, 2020       | Dec. 14. 2021~                  | Dec. 24, 2021 | Conducted<br>(TH01-SZ)   |
| Pulse Power<br>Senor                    | Anritsu      | MA2411B                          | 1339473          | 30MHz~40GHz        | Dec. 24, 2021       | Dec. 30, 2021                   | Dec. 23, 2022 | Conducted<br>(TH01-SZ)   |
| Power Meter                             | Anritsu      | ML2495A                          | 1218010          | 50MHz<br>Bandwidth | Dec. 25, 2020       | Dec. 14, 2021~                  | Dec. 24, 2021 | Conducted<br>(TH01-SZ)   |
| Power Meter                             | Anritsu      | ML2495A                          | 1218010          | 50MHz<br>Bandwidth | Dec. 24, 2021       | Dec. 30, 2021                   | Dec. 23, 2022 | Conducted<br>(TH01-SZ)   |
| EXA Spectrum<br>Analyzer                | KEYSIGHT     | N9010A                           | MY551502<br>13   | 10Hz~44GHz         | Jul. 13, 2021       | Jan. 16, 2022                   | Jul. 13, 2022 | Radiation<br>(03CH02-SZ) |
| Loop Antenna                            | R&S          | HFH2-Z2                          | 100354           | 9kHz~30MHz         | Jun. 22, 2020       | Jan. 16, 2022                   | Jun. 21, 2022 | Radiation<br>(03CH02-SZ) |
| Bilog Antenna                           | TeseQ        | CBL6112D                         | 35407            | 30MHz-2GHz         | Jul. 15, 2021       | Jan. 16, 2022                   | Jul. 14, 2022 | Radiation<br>(03CH02-SZ) |
| Double Ridge<br>Horn Antenna            | ETS-Lindgren | 3117                             | 00119436         | 1GHz~18GHz         | Jul. 25, 2021       | Jan. 16, 2022                   | Jul. 24, 2022 | Radiation<br>(03CH02-SZ) |
| SHF-EHF Horn                            | com-power    | AH-840                           | 101071           | 18Ghz-40GHz        | Apr. 11 2021        | Jan. 16, 2022                   | Apr. 10, 2022 | Radiation<br>(03CH02-SZ) |
| LF Amplifier                            | Burgeon      | BPA-530                          | 102211           | 0.01~3000Mhz       | Oct. 22,2021        | Jan. 16, 2022                   | Oct. 21,2022  | Radiation<br>(03CH02-SZ) |
| HF Amplifier                            | MITEQ        | AMF-7D-0010<br>1800-30-10P-<br>R | 1943528          | 1GHz~18GHz         | Oct. 22,2021        | Jan. 16, 2022                   | Oct. 21,2022  | Radiation<br>(03CH02-SZ) |
| HF Amplifier                            | KEYSIGHT     | 83017A                           | MY532701<br>05   | 0.5GHz~26.5Gh<br>z | Oct. 22,2021        | Jan. 16, 2022                   | Oct. 21,2022  | Radiation<br>(03CH02-SZ) |
| HF Amplifier                            | MITEQ        | TTA1840-35-<br>HG                | 1871923          | 18GHz~40GHz        | Jul. 13, 2021       | Jan. 16, 2022                   | Jul. 13, 2022 | Radiation<br>(03CH02-SZ) |
| AC Power Source                         | Chroma       | 61601                            | 616010002<br>470 | N/A                | NCR                 | Jan. 16, 2022                   | NCR           | Radiation<br>(03CH02-SZ) |
| Turn Table                              | Chaintek     | T-200                            | N/A              | 0~360 degree       | NCR                 | Jan. 16, 2022                   | NCR           | Radiation<br>(03CH02-SZ) |
| Antenna Mast                            | Chaintek     | MBS-400                          | N/A              | 1 m~4 m            | NCR                 | Jan. 16, 2022                   | NCR           | Radiation<br>(03CH02-SZ) |
| EMI Receiver                            | R&S          | ESR7                             | 101630           | 9kHz~7GHz;         | Mar. 08, 2021       | Dec. 23, 2021                   | Mar. 07, 2022 | Conduction<br>(CO01-SZ)  |
| AC LISN                                 | R&S          | ENV216                           | 100063           | 9kHz~30MHz         | Sep. 01, 2021       | Dec. 23, 2021                   | Aug. 31, 2022 | Conduction<br>(CO01-SZ)  |
| AC LISN<br>(for auxiliary<br>equipment) | EMCO         | 3816/2SH                         | 00103892         | 9kHz~30MHz         | Oct. 28, 2021       | Dec. 23, 2021                   | Oct. 27, 2022 | Conduction<br>(CO01-SZ)  |
| AC Power Source                         | Chroma       | 61602                            | 616020000<br>891 | 100Vac~250Vac      | Jul. 14, 2021       | Dec. 23, 2021                   | Jul. 13, 2022 | Conduction<br>(CO01-SZ)  |

NCR: No Calibration Required



# 5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

## Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

| Measuring Uncertainty for a Level of Confidence | 2.2dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 2.200 |

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.0dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 3.00B |

### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.1dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 5.106 |

#### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.1dB        |
|-------------------------------------------------|--------------|
| of 95% (U = 2Uc(y))                             | <b>3.10B</b> |



# **Appendix A. Conducted Test Results**

Report Number : FR1N0903A

## Appendix A. Test Result of Conducted Test Items

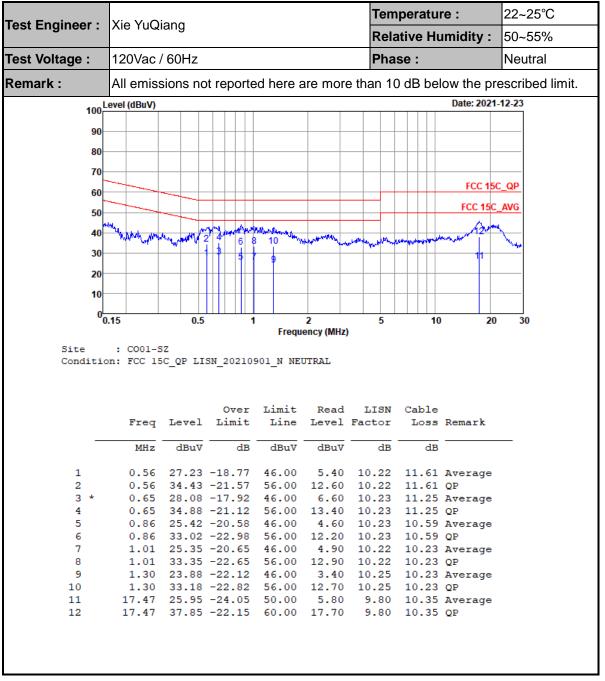
L

| Test Engineer: | Zhang Xue Yi          | Temperature:       | 21~25 | °C |
|----------------|-----------------------|--------------------|-------|----|
| Test Date:     | 2021/12/14~2021/12/30 | Relative Humidity: | 51~54 | %  |

|      |              |     | 20d | B and 9        | 99% Осси         |                        | <u>ULTS DATA</u><br>th and Hopping (                  | Channel Separat                                             | ion       |
|------|--------------|-----|-----|----------------|------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------|
| Mod. | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | 20db BW<br>(MHz) | 99% Bandwidth<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>Limit (MHz) | Pass/Fail |
| DH   | 1Mbps        | 1   | 0   | 2402           | 0.944            | 0.851                  | 0.999                                                 | 0.6291                                                      | Pass      |
| DH   | 1Mbps        | 1   | 39  | 2441           | 0.944            | 0.854                  | 1.003                                                 | 0.6291                                                      | Pass      |
| DH   | 1Mbps        | 1   | 78  | 2480           | 0.941            | 0.851                  | 0.999                                                 | 0.6271                                                      | Pass      |
| 2DH  | 2Mbps        | 1   | 0   | 2402           | 1.285            | 1.169                  | 1.003                                                 | 0.8567                                                      | Pass      |
| 2DH  | 2Mbps        | 1   | 39  | 2441           | 1.281            | 1.166                  | 1.003                                                 | 0.8539                                                      | Pass      |
| 2DH  | 2Mbps        | 1   | 78  | 2480           | 1.281            | 1.172                  | 0.999                                                 | 0.8539                                                      | Pass      |
| 3DH  | 3Mbps        | 1   | 0   | 2402           | 1.303            | 1.172                  | 0.999                                                 | 0.8683                                                      | Pass      |
| 3DH  | 3Mbps        | 1   | 39  | 2441           | 1.294            | 1.169                  | 0.999                                                 | 0.8625                                                      | Pass      |
| 3DH  | 3Mbps        | 1   | 78  | 2480           | 1.298            | 1.169                  | 0.999                                                 | 0.8654                                                      | Pass      |

|       |                                   |                                      | <u>TES</u>                         | ST RESULTS<br>Dwell Time |                 |           |
|-------|-----------------------------------|--------------------------------------|------------------------------------|--------------------------|-----------------|-----------|
| Mod.  | Hopping<br>Channel Number<br>Rate | Hops Over<br>Occupancy<br>Time(hops) | Package<br>Transfer<br>Time (msec) | Dwell Time<br>(sec)      | Limits<br>(sec) | Pass/Fail |
| Nomal | 79                                | 106.67                               | 2.88                               | 0.31                     | 0.4             | Pass      |
| AFH   | 20                                | 53.33                                | 2.88                               | 0.15                     | 0.4             | Pass      |

|      |     |     |                     |                      | <u>ST RESUL</u><br>eak Powe |
|------|-----|-----|---------------------|----------------------|-----------------------------|
| DH   | CH. | NTX | Peak Power<br>(dBm) | Power Limit<br>(dBm) | Test<br>Result              |
|      | 0   | 1   | 12.40               | 20.97                | Pass                        |
| DH5  | 39  | 1   | 11.20               | 20.97                | Pass                        |
|      | 78  | 1   | 11.30               | 20.97                | Pass                        |
|      | 0   | 1   | 9.80                | 20.97                | Pass                        |
| 2DH5 | 39  | 1   | 8.20                | 20.97                | Pass                        |
| Ī    | 78  | 1   | 8.40                | 20.97                | Pass                        |
|      | 0   | 1   | 10.10               | 20.97                | Pass                        |
| 3DH5 | 39  | 1   | 8.60                | 20.97                | Pass                        |
|      | 78  | 1   | 8.80                | 20.97                | Pass                        |


|                                |                                            | <u>TEST RES</u><br>Number of Ho | SULTS DA<br>ppina Fred |
|--------------------------------|--------------------------------------------|---------------------------------|------------------------|
| Number of Hopping<br>(Channel) | Adaptive Frequency<br>Hopping<br>(Channel) | Limits<br>(Channel)             | Pass/Fail              |
| 79                             | 20                                         | > 15                            | Pass                   |



# **Appendix B. AC Conducted Emission Test Results**

| Relative Humidity:50-55Test Voltage :120Vac / 60HzPhase :LineAll emissions not reported here are more than 10 dB below the prescribedDate: 2021-12.2399Date: 2021-12.2399Date: 2021-12.2399Date: 2021-12.2399Date: 2021-12.2399Date: 2021-12.2399Date: 2021-12.2399Date: 2021-12.2399Date: 2021-12.23Date: 2021-12.230Date: 2021-12.230Date: 2021-12.230Date: 2021-12.23Date: 2021-12.23Date: 2021-12.23Date: 2021-12.23Date: 2021-12.23Date: 2021-12.24Date: 2021-12.23Date: 2021-12.24Date: 2021-12.23Date: 2021-12.23Date: 2021-12.23Frequency (MHz)Site: :::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Relative Humidity :S0~55%Ditage :LineAll emissions not reported here are more than 10 dB below the prescribed limit.Date: 2021-12-23Date: 2021-12-23 <th>Teet Engineer .</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Tem</th> <th>peratu</th> <th>re :</th> <th>22~25°C</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Teet Engineer .                 |                 |               |              |           |                | Tem         | peratu         | re :              | 22~25°C         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|---------------|--------------|-----------|----------------|-------------|----------------|-------------------|-----------------|--|
| Remark :           All emissions not reported here are more than 10 dB below the prescribed           Date: 2021-12.23           Date: 2021-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k : All emissions not reported here are more than 10 dB below the prescribed limit.<br>$\frac{100^{100} (1000)}{1000} (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Engineer :                 |                 | lang          |              |           |                | Rela        | ative Hu       | umidity :         | 50~55%          |  |
| $\frac{1}{1} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{100}{100} = \frac{100}{100} = \frac{1000}{100} = \frac{100}{100} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Voltage :                  | 120Vac /        | / 60Hz        |              |           |                | Pha         | se :           |                   | Line            |  |
| $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark :                        | All emiss       | sions no      | ot reporte   | ed here a | are mor        | e than 10   | ) dB be        | ow the pr         | escribed limit. |  |
| $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 Level (dBuV) Date: 2021-12- |                 |               |              |           |                |             |                |                   |                 |  |
| $\frac{1}{1} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \frac{1}{1} = \frac{1}{1} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| $ \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \frac{1}{1} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| $ \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \frac{1}{1} \qquad 0.16 \qquad 27.77 \qquad -27.61 \qquad 55.38 \qquad 6.90 \qquad 10.20 \qquad 10.67 \qquad \text{Average} \\ 2 \qquad 0.16 \qquad 40.47 \qquad -24.91 \qquad 65.38 \qquad 19.60 \qquad 10.20 \qquad 10.67 \qquad \text{Average} \\ 3 \qquad 0.35 \qquad 36.51 \qquad -22.36 \qquad 58.87 \qquad 15.21 \qquad 10.08 \qquad 11.22 \qquad \text{Average} \\ 4 \qquad 0.35 \qquad 36.51 \qquad -22.36 \qquad 58.87 \qquad 15.21 \qquad 10.08 \qquad 11.22 \qquad \text{Average} \\ 4 \qquad 0.35 \qquad 36.51 \qquad -22.36 \qquad 58.87 \qquad 15.21 \qquad 10.08 \qquad 11.22 \qquad \text{Average} \\ 4 \qquad 0.35 \qquad 36.51 \qquad -22.36 \qquad 58.87 \qquad 15.21 \qquad 10.08 \qquad 11.22 \qquad \text{Average} \\ 4 \qquad 0.35 \qquad 36.51 \qquad -22.36 \qquad 58.87 \qquad 15.21 \qquad 10.08 \qquad 11.22 \qquad \text{Average} \\ 5 \qquad 0.47 \qquad 25.05  -21.49 \qquad 46.54 \qquad 3.20 \qquad 10.11 \qquad 11.74 \qquad \text{Average} \\ 6 \qquad 0.47 \qquad 34.95  -21.59 \qquad 56.54 \qquad 13.10 \qquad 10.11 \qquad 11.74 \qquad \text{Average} \\ 8 & \qquad 0.56 \qquad 40.52  -15.48 \qquad 56.00 \qquad 18.80 \qquad 10.11 \qquad 11.61 \qquad \text{Average} \\ 8 & \qquad 0.56 \qquad 40.52  -15.48 \qquad 56.00 \qquad 18.80 \qquad 10.12 \qquad 11.31 \qquad \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  46.00 \qquad 8.90 \qquad 10.12 \qquad 11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  46.00 \qquad 8.90 \qquad 10.12 \qquad 11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  46.00 \qquad 8.90  10.12 \qquad 11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  46.00 \qquad 8.90  10.12  11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  46.00 \qquad 8.90  10.12  11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  56.00  18.50  10.12  11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  56.00  18.50  10.12  11.31  \text{Average} \\ 1 \qquad 0.63  30.33  -15.67  56.00  18.50  10.12  11.31  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0.63  30.95  -15.28  50.00  10.50  9.87  10.35  \text{Average} \\ 1 \qquad 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80-                             |                 |               |              |           |                |             |                |                   |                 |  |
| $\frac{1}{1} \qquad \begin{array}{c} 0.16 \\ 2 \\ 2 \\ 0.15 \\ 2 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{1} \qquad \begin{array}{c} 0.16 \\ 0.15 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                              |                 |               |              |           |                |             |                |                   |                 |  |
| $ \frac{1}{1} \qquad \begin{array}{c} 0.16 & 27.77 & -27.61 & 55.38 & 6.90 & 10.20 & 10.67 & Average \\ 2 & 0.16 & 40.47 & -24.91 & 65.38 & 19.60 & 10.20 & 10.67 & Average \\ 2 & 0.16 & 40.47 & -24.91 & 65.38 & 19.60 & 10.20 & 10.67 & Average \\ 4 & 0.35 & 25.71 & -23.16 & 48.87 & 4.41 & 10.08 & 11.22 & Average \\ 4 & 0.35 & 25.71 & -23.16 & 48.87 & 4.41 & 10.08 & 11.22 & Average \\ 4 & 0.35 & 36.51 & -22.36 & 58.87 & 15.21 & 10.08 & 11.22 & QP \\ 5 & 0.47 & 25.05 & -21.49 & 46.54 & 3.20 & 10.11 & 11.74 & Average \\ 6 & 0.47 & 34.95 & -21.59 & 56.54 & 13.10 & 10.11 & 11.74 & Average \\ 8 & * & 0.56 & 40.52 & -15.48 & 56.00 & 18.80 & 10.11 & 11.61 & QP \\ 9 & 0.63 & 39.93 & -16.07 & 56.00 & 18.50 & 10.12 & 11.31 & QP \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \frac{\int_{0}^{0} \int_{0}^{0} \int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |               |              |           |                |             |                | FCC 150           | C_QP            |  |
| $\frac{1}{1} \qquad \begin{array}{c} 0.16 & 27.77 & -27.61 \\ 0.16 & 27.77 & -27.61 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.5 & -21.49 \\ 0.16 & 0.47 & -24.91 \\ 0.16 & 0.17 & -27.61 \\ 0.16 & 0.17 & -27.61 \\ 0.16 & 0.17 & -27.61 \\ 0.16 & 0.10 & 0 \\ 0.16 & 0.10 & 0 \\ 0.16 & 0.16 \\ 0.16 & 0.17 & -27.61 \\ 0.16 & 0.17 & -27.61 \\ 0.16 & 0.17 & -27.61 \\ 0.16 & 0.10 & 0 \\ 0.10 & 0 & 0 \\ 0.10 & 0 & 0 \\ 0.10 & 0 & 0 \\ 0.10 & 0 & 0 \\ 0.10 & 0 & 0 \\ 0.10 & 0 & 0 \\ 0.10 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.11 & 0 & 0 \\ 0.1 & 0 \\ 0.1 & 0 \\ 0.1 & 0 \\ 0.1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \frac{30}{0} \frac{1}{0} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00                              |                 |               |              |           |                |             |                | FCC 4FC           | AVIC            |  |
| $\frac{1}{30} \underbrace{1}{0} 1$ | $\frac{1}{0} \underbrace{0}_{0,15} \underbrace{0}_{0,5} \underbrace{0}_{0,5} \underbrace{1}_{0} \underbrace{2}_{0} \underbrace{1}_{0} \underbrace{1}$ | 50                              | A               |               |              |           |                |             |                | 12                | AVG             |  |
| $\frac{30}{10} \underbrace{1}_{0} $                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                              | 2 hand have and | my my P       | SVIQ MAN HIN | V         |                |             |                | The second second | my              |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                 | <b>*</b> v* 6 |              | Marken    | Margaret March | N.M. Margan | and the second | 11                | ance            |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-                             |                 | 3 5           |              |           |                |             |                |                   |                 |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                              |                 |               |              |           |                |             |                |                   |                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| Site : $COOl-SZ$<br>Condition: FCC 15C_QP LISN_20210901_L LINE<br>$\frac{Freq}{MHz} \frac{Level}{Level} \frac{Limit}{dBuV} \frac{Limit}{dB} \frac{Livel}{Level} \frac{Factor}{Factor} \frac{Loss}{Loss} \frac{Remark}{dB}$ $\frac{1}{0.16} \frac{27.77}{27.61} \frac{27.61}{65.38} \frac{55.38}{19.60} \frac{6.90}{10.20} \frac{10.67}{10.67} \frac{Average}{dB}$ $\frac{1}{4} \frac{0.35}{0.35} \frac{25.71}{25.71} \frac{-23.16}{23.16} \frac{48.87}{48.87} \frac{4.41}{4.41} \frac{10.08}{10.20} \frac{11.22}{10.67} \frac{Average}{QP}$ $\frac{4}{5} \frac{0.47}{0.35} \frac{36.51}{22.36} \frac{-22.36}{58.87} \frac{58.87}{15.21} \frac{15.21}{10.08} \frac{11.22}{11.22} \frac{QP}{QP}$ $\frac{5}{5} \frac{0.47}{0.47} \frac{25.05}{21.49} \frac{46.54}{46.54} \frac{3.20}{3.20} \frac{10.11}{10.11} \frac{11.74}{11.74} \frac{Average}{Average}$ $\frac{6}{6} \frac{0.47}{0.47} \frac{34.95}{21.59} \frac{-21.59}{56.54} \frac{56.54}{13.10} \frac{10.11}{10.11} \frac{11.61}{11.61} \frac{Average}{Average}$ $\frac{8}{10.56} \frac{40.52}{40.52} \frac{-15.48}{15.67} \frac{46.00}{46.00} \frac{8.90}{10.12} \frac{11.31}{11.31} \frac{Average}{Average}$ $\frac{10}{0.63} \frac{39.93}{39.93} \frac{-16.07}{56.00} \frac{56.00}{18.50} \frac{10.12}{10.12} \frac{11.31}{11.31} \frac{QP}{Average}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency (MHz)         Site : C001-SZ         Condition: FCC 15C_QP LISN_20210901_L LINE         Over Limit Line Level Factor Loss Remark         MHz       Over Limit Line Level Factor Loss Remark         MHz       Over Jumit Line Level Factor Loss Remark         MHz       Over Jumit Line Level Factor Loss Remark         MHz       Over Jumit Line Level Factor Loss Remark         1       0.16       27.77 -27.61       55.38       6.90       10.20       10.67 Average         2       0.16       40.47 -24.91       65.38       19.60       10.20       10.67 Average         3       0.35       25.71 -23.16       48.87       4.41       10.08       11.22 Average         4       0.35       36.51 -22.36       58.87       15.21       10.08       11.22 QP         5       0.47       25.05 -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95 -21.59       56.54       13.10       10.11       11.61       Average         8 *       0.56       40.52 -15.48       56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                              |                 |               |              |           |                |             |                |                   |                 |  |
| Site : $COOl-SZ$<br>Condition: FCC 15C_QP LISN_20210901_L LINE<br>$\frac{Freq}{MHz} \frac{Level}{dBuV} \frac{Dver}{dB} \frac{Limit}{Lime} \frac{Read}{Level} \frac{LISN}{Factor} \frac{Cable}{Loss} \frac{Remark}{dB}$ $\frac{1}{0.16} \frac{27.77}{27.61} \frac{55.38}{6.90} \frac{6.90}{10.20} \frac{10.67}{10.20} \frac{Average}{10.67} \frac{Average}{2}$ $\frac{0.16}{40.47} \frac{40.47}{-24.91} \frac{55.38}{65.38} \frac{6.90}{10.20} \frac{10.67}{10.67} \frac{Average}{QP}$ $\frac{3}{3} \frac{0.35}{0.35} \frac{25.71}{2.71} \frac{-23.16}{2.36} \frac{48.87}{58.87} \frac{4.41}{10.08} \frac{11.22}{11.22} \frac{QP}{QP}$ $\frac{5}{5} \frac{0.47}{25.05} \frac{21.49}{21.59} \frac{46.54}{56.54} \frac{3.20}{10.11} \frac{10.11}{11.74} \frac{11.74}{Average}$ $\frac{6}{6} \frac{0.47}{0.56} \frac{29.82}{2.16.18} \frac{46.00}{46.00} \frac{8.10}{8.10} \frac{10.11}{10.11} \frac{11.61}{11.61} \frac{QP}{QP}$ $\frac{8}{9} \frac{0.63}{0.63} \frac{30.33}{30.33} \frac{-15.67}{15.67} \frac{46.00}{46.00} \frac{8.90}{8.90} \frac{10.12}{10.12} \frac{11.31}{11.31} \frac{QP}{QP}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency (MHz)         Site : C001-SZ         Condition: FCC 15C_QP LISN_20210901_L LINE         Treq Level Limit Lime Level Factor Loss Remark         MHz       Over Limit Line Level Factor Loss Remark         MHz       dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                               |                 |               |              |           |                |             |                |                   |                 |  |
| Site : CO01-SZ<br>Condition: FCC 15C_QP LISN_20210901_L LINE<br>$\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site : CO01-SZ<br>Condition: FCC 15C_QP LISN_20210901_L LINE<br>$\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L L                             | 0.15            | 0.5           | 1            |           |                | -           | 10             | 20                | 30              |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                 |               | SN_202109    | 901_L LI  | NE             |             |                |                   |                 |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                 |               | Over         | Limit     | Read           | LISN        | Cable          |                   |                 |  |
| 1       0.16       27.77       -27.61       55.38       6.90       10.20       10.67       Average         2       0.16       40.47       -24.91       65.38       19.60       10.20       10.67       QP         3       0.35       25.71       -23.16       48.87       4.41       10.08       11.22       Average         4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22       QP         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | Freq            | Level         | Limit        |           |                |             |                | Remark            |                 |  |
| 2       0.16       40.47       -24.91       65.38       19.60       10.20       10.67 QP         3       0.35       25.71       -23.16       48.87       4.41       10.08       11.22 Average         4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22 QP         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74 Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74 QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61 Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61 QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31 Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2       0.16       40.47       -24.91       65.38       19.60       10.20       10.67 QF         3       0.35       25.71       -23.16       48.87       4.41       10.08       11.22 Average         4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22 QF         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74 Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74 QF         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61 Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61 QF         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31 Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31 QF         11       17.47       30.72       -19.28       50.00       10.50       9.87       10.35 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                               | MHz             | dBuV          | dB           | dBuV      | dBuV           | dB          | dB             |                   |                 |  |
| 3       0.35       25.71       -23.16       48.87       4.41       10.08       11.22       Average         4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22       QP         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3       0.35       25.71       -23.16       48.87       4.41       10.08       11.22       Average         4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22       QP         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP         11       17.47       30.72       -19.28       50.00       10.50       9.87       10.35       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                 |               |              |           |                |             |                | -                 |                 |  |
| 4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22       QP         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4       0.35       36.51       -22.36       58.87       15.21       10.08       11.22       QP         5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       Average         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP         11       17.47       30.72       -19.28       50.00       10.50       9.87       10.35       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| 5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5       0.47       25.05       -21.49       46.54       3.20       10.11       11.74       Average         6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP         11       17.47       30.72       -19.28       50.00       10.50       9.87       10.35       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| 6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6       0.47       34.95       -21.59       56.54       13.10       10.11       11.74       QP         7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       Average         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP         11       17.47       30.72       -19.28       50.00       10.50       9.87       10.35       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| 7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7       0.56       29.82       -16.18       46.00       8.10       10.11       11.61       Average         8 *       0.56       40.52       -15.48       56.00       18.80       10.11       11.61       QP         9       0.63       30.33       -15.67       46.00       8.90       10.12       11.31       Average         10       0.63       39.93       -16.07       56.00       18.50       10.12       11.31       QP         11       17.47       30.72       -19.28       50.00       10.50       9.87       10.35       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                 |               |              |           |                |             |                | -                 |                 |  |
| 8 * 0.56 40.52 -15.48 56.00 18.80 10.11 11.61 QP<br>9 0.63 30.33 -15.67 46.00 8.90 10.12 11.31 Average<br>10 0.63 39.93 -16.07 56.00 18.50 10.12 11.31 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 * 0.56 40.52 -15.48 56.00 18.80 10.11 11.61 QP<br>9 0.63 30.33 -15.67 46.00 8.90 10.12 11.31 Average<br>10 0.63 39.93 -16.07 56.00 18.50 10.12 11.31 QP<br>11 17.47 30.72 -19.28 50.00 10.50 9.87 10.35 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                 |               |              |           |                |             |                | _                 |                 |  |
| 9 0.63 30.33 -15.67 46.00 8.90 10.12 11.31 Average<br>10 0.63 39.93 -16.07 56.00 18.50 10.12 11.31 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9         0.63         30.33         -15.67         46.00         8.90         10.12         11.31         Average           10         0.63         39.93         -16.07         56.00         18.50         10.12         11.31         QP           11         17.47         30.72         -19.28         50.00         10.50         9.87         10.35         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                 |               |              |           |                |             |                | -                 |                 |  |
| 10 0.63 39.93 -16.07 56.00 18.50 10.12 11.31 QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 0.63 39.93 -16.07 56.00 18.50 10.12 11.31 QP<br>11 17.47 30.72 -19.28 50.00 10.50 9.87 10.35 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 |               |              |           |                |             |                |                   |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 17.47 30.72 -19.28 50.00 10.50 9.87 10.35 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                 |               |              |           |                |             |                |                   |                 |  |
| 11 17.47 30.72 -19.28 50.00 10.50 9.87 10.35 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                 |               |              |           |                |             |                |                   |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                 |               |              |           |                |             |                | -                 |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                 |               |              |           |                |             |                |                   |                 |  |





Note:

- 1. Level(dB $\mu$ V) = Read Level(dB $\mu$ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)



# Appendix C. Radiated Spurious Emission

| 2.4GHz | 2400~2 | 483.5MHz |
|--------|--------|----------|
|--------|--------|----------|

## BT (Band Edge @ 3m)

| вт                     | Note | Frequency                           | Level    | Over      | Limit            | Read   | Antenna  | Cable  | Preamp | Ant    | Table | Peak  | Pol.     |
|------------------------|------|-------------------------------------|----------|-----------|------------------|--------|----------|--------|--------|--------|-------|-------|----------|
|                        |      |                                     |          | Limit     | Line             | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |          |
|                        |      | (MHz)                               | (dBµV/m) | (dB)      | (dBµV/m)         | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V     |
|                        |      | 2359.98                             | 44.04    | -29.96    | 74               | 40.42  | 31.7     | 5.51   | 33.59  | 322    | 121   | Р     | Н        |
|                        |      | 2359.98                             | 19.25    | -34.75    | 54               | -      | -        | -      | -      | -      | -     | А     | Н        |
| вт                     | *    | 2402                                | 103.95   | -         | -                | 100.26 | 31.7     | 5.55   | 33.56  | 322    | 121   | Р     | Н        |
| CH00                   | *    | 2402                                | 79.16    | -         | -                | -      | -        | -      | -      | -      | -     | А     | Н        |
|                        |      | 2333.625                            | 43.97    | -30.03    | 74               | 40.47  | 31.63    | 5.47   | 33.6   | 322    | 71    | Р     | V        |
| 2402MHz                |      | 2333.625                            | 19.18    | -34.82    | 54               | -      | -        | -      | -      |        |       | А     | V        |
|                        | *    | 2402                                | 101.7    | -         | -                | 98.01  | 31.7     | 5.55   | 33.56  | 322    | 71    | Р     | V        |
|                        | *    | 2402                                | 76.91    | -         | -                | -      | -        | -      | -      | -      | -     | Α     | V        |
|                        |      | 2363.76                             | 43.95    | -30.05    | 74               | 40.33  | 31.7     | 5.51   | 33.59  | 322    | 103   | Р     | Н        |
|                        |      | 2363.76                             | 19.16    | -34.84    | 54               | -      | -        | -      | -      | -      | -     | Α     | Н        |
|                        | *    | 2441                                | 104.31   | -         | -                | 114.97 | 32.3     | 9.7    | 52.66  | 322    | 103   | Р     | Н        |
|                        | *    | 2441                                | 79.52    | -         | -                | -      | -        | -      | -      | -      | -     | А     | Н        |
| BT<br>CH 39<br>2441MHz |      | 2492.23                             | 44.42    | -29.58    | 74               | 40.14  | 32.1     | 5.68   | 33.5   | 322    | 103   | Р     | Н        |
|                        |      | 2492.23                             | 19.63    | -34.37    | 54               | -      | -        | -      | -      | -      | -     | А     | Н        |
|                        |      | 2339.4                              | 44.42    | -29.58    | 74               | 40.82  | 31.7     | 5.49   | 33.59  | 322    | 70    | Р     | V        |
|                        |      | 2339.4                              | 19.63    | -34.37    | 54               | -      | -        | 1      | -      | -      | -     | А     | V        |
|                        | *    | 2441                                | 101.02   | -         | -                | 111.68 | 32.3     | 9.7    | 52.66  | 322    | 70    | Р     | V        |
|                        | *    | 2441                                | 76.23    | -         | -                | -      | -        | -      | -      | -      | -     | А     | V        |
|                        |      | 2490.83                             | 44.42    | -29.58    | 74               | 40.15  | 32.1     | 5.68   | 33.51  | 322    | 70    | Р     | V        |
|                        |      | 2490.83                             | 19.63    | -34.37    | 54               | -      | -        | -      | -      | -      | -     | А     | V        |
|                        | *    | 2480                                | 104.42   | -         | -                | 100.2  | 32.07    | 5.66   | 33.51  | 309    | 95    | Ρ     | н        |
|                        | *    | 2480                                | 79.63    | -         | -                | -      | -        | -      | -      | -      | -     | А     | н        |
|                        |      | 2483.52                             | 51.89    | -22.11    | 74               | 47.67  | 32.07    | 5.66   | 33.51  | 309    | 95    | Р     | н        |
| BT                     |      | 2483.52                             | 27.1     | -26.9     | 54               | -      | -        | -      | -      | -      | -     | А     | н        |
| CH 78                  | *    | 2480                                | 102.49   | -         | -                | 98.27  | 32.07    | 5.66   | 33.51  | 322    | 65    | Р     | V        |
| 2480MHz                | *    | 2480                                | 77.7     | -         | -                | -      | -        | -      | -      | -      | -     | Α     | V        |
|                        |      | 2483.76                             | 48.73    | -25.27    | 74               | 44.51  | 32.07    | 5.66   | 33.51  | 322    | 65    | Р     | V        |
|                        |      | 2483.76                             | 23.94    | -30.06    | 54               | -      | -        | -      | -      | -      | -     | А     | V        |
| Remark                 |      | other spurious f<br>results are PAS |          | c and Ave | rage limit line. | ·      |          |        |        |        |       |       | <u>.</u> |





## 2.4GHz 2400~2483.5MHz

## BT (Harmonic @ 3m)

| вт               | Note | Frequency                             | Level      | Over            | Limit              | Read              | Antenna            | Cable        | Preamp         | Ant           | Table          | Peak          | Pol.  |
|------------------|------|---------------------------------------|------------|-----------------|--------------------|-------------------|--------------------|--------------|----------------|---------------|----------------|---------------|-------|
|                  |      | (MHz)                                 | ( dBµV/m ) | Limit<br>( dB ) | Line<br>( dBµV/m ) | Level<br>( dBµV ) | Factor<br>( dB/m ) | Loss<br>(dB) | Factor<br>(dB) | Pos<br>( cm ) | Pos<br>( deg ) | Avg.<br>(P/A) | (H/V) |
|                  |      | 4804                                  | 43.2       | -30.8           | 74                 | 49.45             | 33.9               | 12           | 52.15          | -             | -              | Ρ             | Н     |
| ВТ               |      | 4804                                  | 18.41      | -35.59          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | н     |
| CH 00            |      | 4804                                  | 42.18      | -31.82          | 74                 | 48.43             | 33.9               | 12           | 52.15          | -             | -              | Р             | V     |
| 2402MHz          |      | 4804                                  | 17.39      | -36.61          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | V     |
|                  |      | 4882                                  | 43.44      | -30.56          | 74                 | 49.76             | 33.73              | 12.05        | 52.1           | -             | -              | Ρ             | Н     |
|                  |      | 4882                                  | 18.65      | -35.35          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | Н     |
|                  |      | 7323                                  | 45.7       | -28.3           | 74                 | 47.53             | 35.77              | 14.17        | 51.77          | -             | -              | Ρ             | Н     |
| ВТ               |      | 7323                                  | 20.91      | -33.09          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | Н     |
| CH 39            |      | 4882                                  | 42.25      | -31.75          | 74                 | 48.57             | 33.73              | 12.05        | 52.1           | -             | -              | Ρ             | V     |
| 2441MHz          |      | 4882                                  | 17.46      | -36.54          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | V     |
|                  |      | 7323                                  | 45.74      | -28.26          | 74                 | 47.57             | 35.77              | 14.17        | 51.77          | -             | -              | Р             | V     |
|                  |      | 7323                                  | 20.95      | -33.05          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | V     |
|                  |      | 4960                                  | 44.09      | -29.91          | 74                 | 50.3              | 33.73              | 12.09        | 52.03          | -             | -              | Р             | Н     |
|                  |      | 4960                                  | 19.3       | -34.7           | 54                 | -                 | -                  | -            | -              | -             | -              | А             | Н     |
|                  |      | 7440                                  | 46         | -28             | 74                 | 47.62             | 35.79              | 14.24        | 51.65          | -             | -              | Р             | Н     |
| BT               |      | 7440                                  | 21.21      | -32.79          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | Н     |
| CH 78<br>2480MHz |      | 4960                                  | 42.66      | -31.34          | 74                 | 48.87             | 33.73              | 12.09        | 52.03          | -             | -              | Р             | V     |
| 240010172        |      | 4960                                  | 17.87      | -36.13          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | V     |
|                  |      | 7440                                  | 45.94      | -28.06          | 74                 | 47.56             | 35.79              | 14.24        | 51.65          | -             | -              | Р             | V     |
|                  |      | 7440                                  | 21.15      | -32.85          | 54                 | -                 | -                  | -            | -              | -             | -              | А             | V     |
| Remark           |      | o other spurious f<br>results are PAS |            | and Ave         | rage limit line.   |                   |                    |              |                |               |                |               |       |



## Emission below 1GHz

| вт       | Note   | Frequency        | Level           | Over   | Limit    | Read   | Antenna  | Cable | Preamp | Ant    | Table | Peak  | Pol.  |
|----------|--------|------------------|-----------------|--------|----------|--------|----------|-------|--------|--------|-------|-------|-------|
|          |        |                  |                 | Limit  | Line     | Level  | Factor   | Loss  | Factor | Pos    | Pos   | Avg.  |       |
|          |        | (MHz)            | (dBµV/m)        | ( dB ) | (dBµV/m) | (dBµV) | ( dB/m ) | (dB)  | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
|          |        | 47.46            | 19.12           | -20.88 | 40       | 31.75  | 20.27    | 2.17  | 35.07  | -      | -     | Р     | Н     |
|          |        | 182.29           | 32.25           | -11.25 | 43.5     | 46.96  | 17.71    | 2.68  | 35.1   | 151    | 213   | Р     | н     |
|          |        | 277.35           | 25.17           | -20.83 | 46       | 37.86  | 19.22    | 3.04  | 34.95  | -      | -     | Р     | н     |
|          |        | 383.08           | 22.16           | -23.84 | 46       | 31.97  | 21.74    | 3.28  | 34.83  | -      | -     | Р     | н     |
|          |        | 480.08           | 22.76           | -23.24 | 46       | 30.52  | 23.54    | 3.4   | 34.7   | -      | -     | Ρ     | н     |
| 2.4GHz   |        | 533.43           | 23.65           | -22.35 | 46       | 30.24  | 24.45    | 3.59  | 34.63  | -      | -     | Ρ     | н     |
| BT<br>LF |        | 30               | 25.05           | -14.95 | 40       | 39.35  | 18.85    | 1.85  | 35     | -      | -     | Ρ     | V     |
| LF       |        | 178.41           | 32.48           | -11.02 | 43.5     | 46.73  | 18.19    | 2.66  | 35.1   | 100    | 241   | Ρ     | V     |
|          |        | 278.32           | 21.29           | -24.71 | 46       | 33.92  | 19.27    | 3.04  | 34.94  | -      | -     | Ρ     | V     |
|          |        | 386.96           | 21.49           | -24.51 | 46       | 31.18  | 21.85    | 3.29  | 34.83  | -      | -     | Ρ     | V     |
|          |        | 502.39           | 23.42           | -22.58 | 46       | 30.76  | 23.88    | 3.48  | 34.7   | -      | -     | Ρ     | V     |
|          |        | 634.31           | 25.47           | -20.53 | 46       | 29.89  | 26.19    | 3.89  | 34.5   | -      | -     | Р     | V     |
| Remark   | 1. No  | other spurious f | ound.           |        |          |        |          |       |        |        |       |       |       |
| Acilia K | 2. All | results are PASS | S against limit | line.  |          |        |          |       |        |        |       |       |       |



## Note symbol

| *   | Fundamental Frequency which can be ignored. However, the level of any       |
|-----|-----------------------------------------------------------------------------|
|     | unwanted emissions shall not exceed the level of the fundamental frequency. |
| !   | Test result is <b>over limit</b> line.                                      |
| P/A | Peak or Average                                                             |
| H/V | Horizontal or Vertical                                                      |



## A calculation example for radiated spurious emission is shown as below:

| вт      | Note | Frequency | Level    | Over   | Limit    | Read   | Antenna  | Path   | Preamp | Ant    | Table | Peak  | Pol.  |
|---------|------|-----------|----------|--------|----------|--------|----------|--------|--------|--------|-------|-------|-------|
|         |      |           |          | Limit  | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|         |      | (MHz)     | (dBµV/m) | ( dB ) | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
| вт      |      | 2390      | 55.45    | -18.55 | 74       | 54.51  | 32.22    | 4.58   | 35.86  | 103    | 308   | Р     | н     |
| CH 00   |      |           |          |        |          |        |          |        |        |        |       |       |       |
| 2402MHz |      | 2390      | 43.54    | -10.46 | 54       | 42.6   | 32.22    | 4.58   | 35.86  | 103    | 308   | А     | Н     |

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level( $dB\mu V/m$ ) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB $\mu$ V/m) – Limit Line(dB $\mu$ V/m)

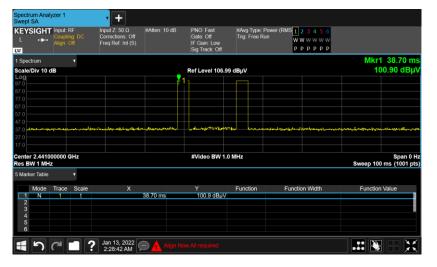
### For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

## For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".




# Appendix D. Duty Cycle Plots

## DH5 on time (One Pulse) Plot on Channel 39

| ectrum Ana<br>ept SA               | ·                              |       | •    | +                                           |                      |      |                                                     |                 |                   |                                                 |         |                           |
|------------------------------------|--------------------------------|-------|------|---------------------------------------------|----------------------|------|-----------------------------------------------------|-----------------|-------------------|-------------------------------------------------|---------|---------------------------|
| EYSIGHT                            | Couplin<br>Couplin<br>Align: ( |       | Corr | t Z: 50 Ω<br>ections: Off<br>  Ref: Int (S) | #Atten: 10           | ) dB | PNO: Fast<br>Gate: Off<br>IF Gain: Lo<br>Sig Track: | Trig: Free<br>w | : Power (F<br>Run | RMS 1 2 3 4 5 6<br>W W W W W W<br>P P P P P P P |         |                           |
| spectrum                           |                                | •     |      |                                             |                      |      |                                                     |                 |                   |                                                 | ΔM      | kr1 2.880 n               |
| ale/Div 10                         | dB                             |       |      |                                             |                      |      |                                                     | 06.99 dBµV      |                   |                                                 |         | 100.20 d                  |
| 9<br>0<br>0<br>0                   |                                |       |      |                                             |                      |      | ¥2                                                  |                 |                   | <u></u> 1Δ2                                     | ¥3∆4    |                           |
|                                    | Ja                             |       |      |                                             |                      |      | erunte                                              |                 |                   |                                                 | ,c.wity |                           |
| 0<br>0<br>nter 2.4410<br>s BW 1 MH |                                | €Hz   |      |                                             |                      |      | #Video B                                            | W 1.0 MHz       |                   |                                                 | Sweep   | Span 0<br>10.0 ms (1001 p |
| farker Table                       |                                | •     |      |                                             |                      |      |                                                     |                 |                   |                                                 | · · ·   |                           |
| Mode                               | Trace                          | Scale |      | х                                           |                      |      | Y                                                   | Function        |                   | Function Width                                  | Fund    | tion Value                |
| 1 Δ2                               | 1                              | t     | (Δ)  |                                             | 2.880 ms             | (Δ)  | -0.443                                              |                 |                   |                                                 |         |                           |
| 2 N<br>3 Δ4                        |                                |       | (Δ)  |                                             | 4.440 ms<br>3.750 ms | (4)  | 101.0 d<br>-0.00514                                 |                 |                   |                                                 |         |                           |
| 4 N<br>5                           |                                |       | (Δ)  |                                             | 4.440 ms             | (4)  | -0.00514<br>101.0 d                                 |                 |                   |                                                 |         |                           |
| 6                                  |                                |       |      |                                             |                      |      |                                                     |                 |                   |                                                 |         |                           |
|                                    |                                |       |      | n 13, 2022 🛛                                |                      |      |                                                     |                 |                   |                                                 |         |                           |

## DH5 on time (Count Pulses) Plot on Channel 39



#### Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 \* 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20\*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.