

Intel® Edison

Native Application Guide

February 2015

Revision 003

 Document Number: 331192-003

Notice: This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to
restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with the software
license agreement as defined in FAR 52.227-7013.

All Code placed under the MIT License. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE

The main algorithm has been derived from https://github.com/bagilevi/android-pedometer, which has copyleft license (without any real license). Still
this item needs to be checked with legal to make sure there are no compatibility issues. Some functions have been taken from MPU6050 specific
libraries which shares the same licensing conditions with this code.

Some of the code is taken or derived from i2c-dev.h - i2c-bus driver, char device interface (Copyright ©1995-97 Simon G. Vogl Copyright © 1998-
99 Frodo Looijaard frodol@dds.nl) and from i2c.h (Copyright © 2013 Parav Nagarsheth), which is under GNU General Public License as published by
the Free Software Foundation.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

The code names presented in this document are only for use by Intel to identify products, technologies, or services in development that have not
been made commercially available to the public, i.e., announced, launched, or shipped. They are not "commercial" names for products or services
and are not intended to function as trademarks.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. See http://www.intel.com/products/processor_number for details.

Intel and the Intel logo are trademarks of Intel Corporation in the US and other countries.

* Other brands and names may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.

Intel® Edison
Native Application Guide February 2015
2 Document Number: 331192-003

https://github.com/bagilevi/android-pedometer/
mailto:frodol@dds.nl
http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor_number

Contents
1 Introduction ... 6

1.1 References .. 6
1.2 Acronyms and abbreviations ... 7

2 Native Application Development .. 8
2.1 Setting up the host machine .. 8
2.2 Install the Intel® Edison toolchain ... 8
2.3 Configure host environment .. 9
2.4 Develop a simple application .. 9
2.5 Deploy application to target device .. 10

 Deploy application binary with SCP .. 10 2.5.1
 Deploy application binary with SFTP.. 10 2.5.2

2.6 Debugging ... 10
 Onboard debugging ... 10 2.6.1
 Remote debugging .. 11 2.6.2

3 Using Eclipse ... 12
3.1 Eclipse configuration .. 12
3.2 Set up the Yocto plugin ... 12
3.3 Set up toolchain location in Eclipse .. 14
3.4 Set up remote hardware ... 15
3.5 Creating a new project on Eclipse .. 19
3.6 Development process on Eclipse ... 21
3.7 Deployment with Eclipse .. 22
3.8 Debugging with Eclipse ... 24

4 Porting an existing project to Intel® Edison .. 26
4.1 Using external libraries .. 27

5 Simple Native Applications .. 28
5.1 Windows native applications .. 28
5.2 Linux native applications .. 28
5.3 Sample GPIO Write Application .. 29

6 Sample Pedometer Application... 31
6.1 Reading accelerometer raw data .. 32

 I2C operations .. 32 6.1.1
 Communication with MPU6050 .. 34 6.1.2
 Reading raw data .. 36 6.1.3
 Pedometer algorithm ... 36 6.1.4

6.2 Saving data and distance, calorie calculation ... 38

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 3

Figures

Figure 1 Toolchain download files ... 8
Figure 2 Add repository .. 13
Figure 3 Select Yocto plugin... 13
Figure 4 Preferences window ... 14
Figure 5 Open perspective .. 15
Figure 6 New connection ... 15
Figure 7 New connection details .. 16
Figure 8 Active provider ... 16
Figure 9 Transfer with ssh ... 17
Figure 10 Enter password ... 17
Figure 11 A connected Edison file system .. 18
Figure 12 Select a new project ... 19
Figure 13 A new C project .. 19
Figure 14 C project basic settings ... 20
Figure 15 Defined toolchain for the new project ... 20
Figure 16 Project folder structure .. 21
Figure 17 Configure project ... 22
Figure 18 Run configurations .. 23
Figure 19 Problem occurred ... 23
Figure 20 Run the binary from the Intel® Edison device’s shell .. 24
Figure 21 Debug configurations .. 24
Figure 22 Debug .. 25
Figure 23 Confirm perspective switch .. 25
Figure 24 Hardware required for the pedometer application ... 31
Figure 25 Software block diagram ... 31

Tables

Table 1. Terminology .. 7

Intel® Edison
Native Application Guide February 2015
4 Document Number: 331192-003

Revision History
Revision Description Date

ww33 Initial release. August 14, 2014

001 First public release. September 9, 2014

002 Fixed incorrect link. October 6, 2014

003 Validated code and made minor corrections. February 4, 2015

 §

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 5

Introduction

1 Introduction
This document is written for software developers who are developing native software applications with C and C++
on the Edison Development platform. It covers basic preparation to set up your host to develop apps for the Intel®
Edison Development Board, and provides a sample application for a pedometer.

The reader should have a basic understanding of C and C++ software development and knowledge of the Linux
operating system.

1.1 References
Reference Name Number/location

331188 Intel® Edison Board Support Package User Guide

331189 Intel® Edison Compute Module Hardware Guide

331190 Intel® Edison Breakout Board Hardware Guide

331191 Intel® Edison Kit for Arduino* Hardware Guide

331192 Intel® Edison Native Application Guide (This document)

329686 Intel® Galileo and Intel® Edison Release Notes

331438 Intel® Edison Wi-Fi Guide

331704 Intel® Edison Bluetooth* Guide

[YPQSG] Yocto Project Quick Start Guide http://www.yoctoproject.org/docs/current/
yocto-project-qs/yocto-project-qs.html

[YDM] Yocto Developer Manual http://www.yoctoproject.org/docs/current/
dev-manual/dev-manual.html

[YKDM] Yocto Kernel Developer Manual http://www.yoctoproject.org/docs/latest/
kernel-dev/kernel-dev.html

 Yocto Project http://www.yoctoproject.org/docs/1.5.1/dev-manual/
dev-manual.html

 GPIO Linux documentation https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

 GNU Automake http://www.gnu.org/software/automake/

 GCC Cross Compiler wiki http://wiki.osdev.org/GCC_Cross-Compiler

 GDB (GNU debugger) https://www.gnu.org/software/gdb/

 MPU6050 Product Specification: http://www.invensense.com/mems/gyro/documents/
PS-MPU-6000A-00v3.4.pdf

 MPU6050 resources http://playground.arduino.cc/Main/MPU-6050

 I2C Linux documentation https://www.kernel.org/doc/Documentation/i2c/
dev-interface

 I2C SMBus-protocol documentation https://www.kernel.org/doc/Documentation/i2c/
smbus-protocol

 MPU6050 library https://github.com/jrowberg/i2cdevlib/tree/master/
Arduino/MPU6050

Intel® Edison
Native Application Guide February 2015
6 Document Number: 331192-003

http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/latest/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/latest/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.5.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.5.1/dev-manual/dev-manual.html
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
http://www.gnu.org/software/automake/
http://wiki.osdev.org/GCC_Cross-Compiler
https://www.gnu.org/software/gdb/
http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://playground.arduino.cc/Main/MPU-6050
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://www.kernel.org/doc/Documentation/i2c/smbus-protocol
https://www.kernel.org/doc/Documentation/i2c/smbus-protocol
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

Introduction

1.2 Acronyms and abbreviations
Table 1. Terminology

Term Definition

FTP File Transfer Protocol

IDE Integrated development environment

GDB GNU Debugger

GPL GNU General Public License

SCP Secure copy

SFTP Secure File Transfer Protocol

ssh Secure shell

 §

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 7

Native Application Development

2 Native Application Development
The processes in this section have been verified on an Ubuntu* 12.04 host machine.

2.1 Setting up the host machine
Install the required packages before you install the Intel® Edison development board toolchain on your Ubuntu
host PC. Required packages for C/C++ development on an Ubuntu host machine include:

• gcc
• g++
• gcc-multilib
• build-essential

If you will work with makefiles, you must also install the following required GNU tools:

• make
• automake

Install the required packages with the following command:

sudo apt-get install make automake gcc g++ build-essential gcc-multilib

2.2 Install the Intel® Edison toolchain
Go to https://communities.intel.com/docs/DOC-23242 and download the appropriate Intel® Edison Development
Platform toolchain installer file for your platform.

Figure 1 Toolchain download files

The installer zip file will be edison-sdk-<host_arch>-weekly-XX.zip (where <host_arch> is the host computer’s
operating system and XX is the week number of the release. Unzip the zip file with the following command:

unzip edison-sdk-<host_arch>-weekly-XX.zip

The command above extracts the file poky-edison-eglibc-<host_arch>-edison-image-core2-32-toolchain-1.6.sh
into your working directory. You must execute this .sh file to install the toolchain, in the desired path, on your host
machine.

sudo ./poky-edison-eglibc-<host_arch>-edison-image-core-2-32-toolchain-1.6.sh
Enter target directory for SDK (default: /opt/poky-edison/1.6):
You are about to install the SDK to "/opt/poky-edison/1.6". Proceed[Y/n]?Y
[sudo] password for ubuntu:
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

Intel® Edison
Native Application Guide February 2015
8 Document Number: 331192-003

https://communities.intel.com/docs/DOC-23242

Native Application Development

2.3 Configure host environment
For convenience, you can initialize the Intel® Edison development board cross-compiler and library paths for cross-
compiling your application. The toolchain provides an environment setup file. Execute it from your working
terminal with the following command:

source /opt/poky-edison/1.6/environment-setup-core2-32-poky-linux

Check the settings of the $CC, $CPP, $CXX, and $LD variables with the following:

echo $CC
i586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky-edison/1.6/sysroots/core2-32-
poky-linux
echo $CXX
i586-poky-linux-g++ -m32 -march=i586 --sysroot=/opt/poky-edison/1.6/sysroots/core2-32-
poky-linux
echo $CPP
i586-poky-linux-gcc -E -m32 -march=i586 --sysroot=/opt/poky-edison/1.6/sysroots/core2-
32-poky-linux
echo $LD
i586-poky-linux-ld --sysroot=/opt/poky-edison/1.6/sysroots/core2-32-poky-linux
echo $GDB
i586-poky-linux-gdb

Note: Using the source command and setting environment variables will only work on the current terminal
session where environment-setup-i586-poky-linux was run. Each time you open a new terminal for
development purposes, you must set environment variables for the Intel® Edison development board.

2.4 Develop a simple application
A typical first step is to develop a classic Hello World sample. Create a *.c file with a text editor (for example, vi
hello_world.c) and write the first Hello World sample, as shown below:

#include <stdio.h>
int main(){
 printf("Hello World\n");
 return 0;
}

Compile and build hello_world.c source code with the following:

$CC -o hello hello_world.c

Similar to the C application, create a hello_world.cpp file and implement your hello world cpp code as shown
below:

#include <iostream>
int main(){
 std::cout<<”Hello World”<<std::endl;
 return 0;
}

Compile and build the hello_world.cpp source code with the following:

$CXX -o hello_cpp hello_world.cpp

Note: See chapter 5 for a GPIO write application and chapter 6 for a more sophisticated pedometer/calorie-
burning application.

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 9

Native Application Development

2.5 Deploy application to target device
After you have built the application, you may use any of the following methods to deploy binary to the target
device, if the board has connected to the LAN.

 Deploy application binary with SCP 2.5.1
You can use a remote file copy program such as SCP (secure copy) that copies files between hosts on a network.
SCP uses ssh for data transfer; it uses the same authentication, and provides the same security as ssh. To transfer
files with SCP, do the following:

scp file_name username@host.address:/remote/path/to/transfer

For the hello world C and CPP samples:

scp hello root@192.168.2.15:/home/root/sample
scp hello_cpp root@192.168.2.15:/home/root/sample

 Deploy application binary with SFTP 2.5.2
In addition to SCP, you may also use SFTP (Secure File Transfer Protocol) to transfer or deploy a binary file to a
remote target board. Similar to FTP, SFTP is an interactive file transfer protocol that performs all operations over
an encrypted ssh transport. To transfer files with SFTP, do the following:

sftp username@host.address
sftp> put filename

For the hello world C and CPP samples:

sftp root@192.168.2.15
sftp> put /path/to/hello
sftp> put /path/to/hello_cpp

2.6 Debugging
When developers compile, build, and run their applications, they may encounter runtime errors or other problems.
Debugging the generated binary is the best way to troubleshoot these problems. As the preferred debugger on
Linux systems, GNU Debugger (GDB) is included with the Intel® Edison development board software package. GDB
is free software protected by the GNU General Public License.

Note: For more information on GDB, visit: https://sourceware.org/gdb/current/onlinedocs/gdb.html.

Use GDB for onboard and remote debugging. Add the -g flag to include appropriate debug information on the
generated binary to debug the native application with GDB and deploy to the target device. For example:

$CC –g -o hellod hello_world.c

$CXX –g -o hello_cppd hello_world.cpp

 Onboard debugging 2.6.1
Start debugging and run the application with the following:

gdb debugthisprogram
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

Intel® Edison
Native Application Guide February 2015
10 Document Number: 331192-003

https://sourceware.org/gdb/current/onlinedocs/gdb.html

Native Application Development

This GDB was configured as "i686-linux-gnu".
For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-linaro/>...
Reading symbols from /home/root/debugthisprogram...done.
(gdb) run

It is also possible to set breakpoints, watch variables, and change preprocessors, arguments, and other debugging
capabilities. Run the help command to view some of the options.

(gdb) help
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program………

 Remote debugging 2.6.2
When developing native applications, you will use a host machine to cross-compile the application and deploy it on
the remote Intel® Edison board. To enable remote debugging, start gdbserver (included in the standard Linux*
distribution) to open a port on the Intel® Edison board for the host machine, so that developers can debug binaries
from the host machine remotely.

On the Intel® Edison device, start gdbserver on port 1234:

gdbserver :1234 debugthisprogram
Process debugthis created; pid = 2625
Listening on port 1234

On the host machine, run gdb, then connect target device using <target_ip>:<port> and run with continue as
shown below:

gdb
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04
Copyright (C) 2012 Free Software Foundation Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i686-linux-gnu".
For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-linaro/>.
(gdb) target remote 192.168.2.15:1234
Remote debugging using 192.168.2.15:1234
0xb7fdf1d0 in ?? ()
(gdb) continue

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 11

Using Eclipse

3 Using Eclipse
The Eclipse* integrated development environment (IDE) is a good choice as a cross-compile IDE. There is a Yocto
plugin for Eclipse that enables native application developers to develop, build, debug, and deploy native
applications for the Edison development platform.

Before installing Eclipse, make sure Oracle* Java* has been installed on your Ubuntu host machine. See the Ubuntu
community page for detailed instructions (https://help.ubuntu.com/community/Java).

Note: We use the standard package of Eclipse Kepler (https://www.eclipse.org/downloads) in these examples.
Depending upon your host machine configuration, you can download the 32-bit or 64-bit version. Windows
users can directly download the Eclipse software from https://software.intel.com/en-us/iot/downloads. The
whole package comes with a default Eclipse configuration, cross-compiler, and a few sample examples that
you can use as a reference.

3.1 Eclipse configuration
You will need to configure Eclipse for C/C++ cross-compile development environments. The Yocto Project
Developer Manual provides step-by-step instructions to configure Eclipse for the native application development.
For details, see: http://www.yoctoproject.org/docs/1.5.1/dev-manual/dev-manual.html#adt-eclipse

3.2 Set up the Yocto plugin
To set up the Yocto plugin, do the following:

1. Start Eclipse and select Help > Install New Software. A new window displays.

2. From the Work with pull-down menu, select: Kepler - http://download.eclipse.org/releases/kepler.

3. In the boxes listed below, select the following:

a. Linux tools:

 LTTng - Linux Tracing Toolkit

b. Mobile device development:

 C/C++ remote launch
 Remote system explorer end-user runtime
 Remote system explorer user actions
 Target management terminal
 TCF remote system explorer add-in
 TCF target explorer

c. Programming languages:

 Autotools support for CDT and C/C++ development tools

4. Complete the installation of selected plugins and reboot Eclipse.

Intel® Edison
Native Application Guide February 2015
12 Document Number: 331192-003

https://help.ubuntu.com/community/Java
https://www.eclipse.org/downloads/
https://software.intel.com/en-us/iot/downloads
http://www.yoctoproject.org/docs/1.5.1/dev-manual/dev-manual.html%23adt-eclipse
http://download.eclipse.org/releases/kepler

Using Eclipse

To install the Yocto plugin for Eclipse, do the following:

1. Select Help > Install New Software. A new window displays.

2. Click the Add button to the right of the Work with field (Figure 2).

3. In the Add repository window, enter a meaningful name like Yocto ADT and enter the following link for
Eclipse Kepler: http://downloads.yoctoproject.org/releases/eclipse-plugin/1.5.1/kepler.

Figure 2 Add repository

4. Click OK.

5. Select the Yocto plugin (Figure 3), then complete the Eclipse plugin installation.

Figure 3 Select Yocto plugin

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 13

http://downloads.yoctoproject.org/releases/eclipse-plugin/1.5.1/kepler

Using Eclipse

3.3 Set up toolchain location in Eclipse
To set up toolchain locations in Eclipse, do the following:

6. Select Window > Preferences. The Preferences window displays (Figure 4).

7. In the left column, select Yocto Project ADT and enter the Intel® Edison board toolchain location you
previously installed.

 /opt/poky-edison/1.5.1
 /opt/poky-edison/1.5.1/sysroots

8. Click OK.

Figure 4 Preferences window

Intel® Edison
Native Application Guide February 2015
14 Document Number: 331192-003

Using Eclipse

3.4 Set up remote hardware
To make Eclipse automatically deploy the application binary to the Intel® Edison board, you must configure remote
hardware. This option simplifies remote debugging.

To add the remote target, open the Remote System Explorer perspective in Eclipse and select Window > Open
Perspective > Remote System Explorer.

Figure 5 Open perspective

In the initial state, you only see the local host as a defined system. Define a new connection by clicking on the new
connection button on the Remote Systems tab. The New Connection window displays (Figure 6), allowing you to
add the new remote target. (Alternatively, you can select File > New > Remote to create a new remote connection.)

Figure 6 New connection

In the System type list, enter a type field descriptor. (In this case, choose Linux as shown in Figure 6).

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 15

Using Eclipse

Click Next and enter the Intel® Edison device’s IP address and connection name (Figure 7).

Figure 7 New connection details

If the host system is using a proxy and Edison is connected via RNDIS USB to connect (using IP address
192.168.2.15), click Configure proxy settings. The Preferences window displays (Figure 8).

Figure 8 Active provider

Select Direct for Active Provider. If your Intel® Edison device is on the network, you can continue to use the native
proxy for Eclipse.

Click Next and check the ssh.files checkbox to transfer/deploy files with the ssh protocol (Figure 9).

Intel® Edison
Native Application Guide February 2015
16 Document Number: 331192-003

Using Eclipse

Figure 9 Transfer with ssh

Click Finish to complete the new device definition.

The new connection will appear on the connection explorer as Edison. Right-click on the device and select Connect.
A new window displays asking for user ID and password. The new device inherits the user ID from the host. Change
the user ID to root as the default user and leave the password empty (Figure 10).

Figure 10 Enter password

The host will connect to Edison, and developers will be able to see the file system and processes on the device
(Figure 11).

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 17

Using Eclipse

Figure 11 A connected Edison file system

Intel® Edison
Native Application Guide February 2015
18 Document Number: 331192-003

Using Eclipse

3.5 Creating a new project on Eclipse
After you set up the Edison toolchain, it is easy to create a new project with Eclipse:

9. Select File > New > Project.

10. Select a C or C++ project from the C/C++ folder and click Next (Figure 12).

Figure 12 Select a new project

11. Enter a project name and select Hello World ANSI C Autotools Project. In this example (Figure 13), we
selected a C project. If you select a C++ project, the project type will be C++.

Figure 13 A new C project

12. Fill in the fields for author, license, and copyright for your project (Figure 14).

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 19

Using Eclipse

Figure 14 C project basic settings

13. In the next window, enter the defined toolchain and you are ready to start your new project.

Figure 15 Defined toolchain for the new project

Intel® Edison
Native Application Guide February 2015
20 Document Number: 331192-003

Using Eclipse

3.6 Development process on Eclipse
As soon as we created the hello world project in Section 3.5, it was ready to build and run on the target. Adding new
code to the *.c or *.cpp file, or a new header or source files, is also quick and easy. Eclipse provides a text editor to
implement C/C++ code because it recognizes compile time errors instantaneously. Autotools makes it a simple
click to compile and build an application.

To make changes and add new source files, you can create new folders and change the Makefile.am file to build
them together. A review of Makefile.am and folder structure is a good start. Figure 16 shows the Makefile.am file
and the project folder’s structure.

Figure 16 Project folder structure

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 21

Using Eclipse

3.7 Deployment with Eclipse
To run your application automatically on the remote Edison device, you must configure the project by doing the
following:

14. Right-click on the project and select Run As > Run Configurations (Figure 17).

Figure 17 Configure project

Intel® Edison
Native Application Guide February 2015
22 Document Number: 331192-003

Using Eclipse

Figure 18 Run configurations

15. In the Run configurations window (Figure 18), complete the following:

a. Double-click C/C++ Remote Applications, then select your build configuration, (samplecproject Build
(GNU) in this example).

b. On the Main tab, from the Connection dropdown menu, select the connection you created (in this case
edison).

c. In the C/C++ Application field, enter the project path/filename. You can click Search project or Browse
to search for projects.

d. In the Remote Absolute File Path for C/C++ Application field, enter the path where you want to deploy
your application. You can also click Browse to see the folder structure on the target device.

e. If your application has dependencies or if you need to change ownership of the created path, you can
execute a command before running the application on the target device by entering the command in
the Commands to execute before application field at the bottom.

16. Click Run.

17. If there is a problem running the project, you might see an error message (Figure 19).

Figure 19 Problem occurred

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 23

Using Eclipse

18. Go to the absolute file path in the Intel® Edison device’s shell where the binaries have been deployed and
change the permission of the binaries to executable, then run the binary from the Intel® Edison device’s
shell (Figure 20).

Figure 20 Run the binary from the Intel® Edison device’s shell

3.8 Debugging with Eclipse
Debugging a configuration is similar to running a configuration (previous section), but instead of selecting Run As >
Run Configurations, select Debug As > Debug Configurations (Figure 21).

Figure 21 Debug configurations

After you complete the configuration, you can start debugging by clicking Debug (Figure 22).

Intel® Edison
Native Application Guide February 2015
24 Document Number: 331192-003

Using Eclipse

Figure 22 Debug

If this is the first time you have used this debugger, it will ask you to confirm the perspective switch (Figure 23).

Figure 23 Confirm perspective switch

After confirmation, Eclipse will change to Debug perspective.

 §

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 25

Porting an existing project to Intel® Edison

4 Porting an existing project to Intel® Edison
In many cases, you may have an existing project that already runs on a different platform and you want to run it on
the Edison Development Platform. To use an existing project on the Edison Development Platform, you will need to
compile and build the source code of the library with the Edison toolchain.

Note: This example uses the libjpeg open source library, a widely used free software library written in C that
implements JPEG encoding/decoding functions alongside various utilities for handling JPEG images.

To start the porting process, download the libjpeg source code from the official website (http://ijg.org/files) and
untar the source to your working directory:

wget http://ijg.org/files/jpegsrc.v9.tar.gz
tar xzf jpegsrc.v9.tar.gz
jpeg-9/
jpeg-9/wrppm.c
jpeg-9/wrrle.c
jpeg-9/maketdsp.vc6
jpeg-9/jdinput.c
jpeg-9/testimg.bmp
jpeg-9/testimg.jpg …………

Because libjpeg is an Autotools project, it is fairly easy to configure for a build. Before starting for the build, set the
Edison toolchain environment variables as described in Section 2.3, configure the host environment, and change
directories to the extract folder jpeg-9.

source /opt/poky-edison/1.5.1/environment-setup-i586-poky-linux
cd jpeg-9

Since environment setup for Edison will configure $CC and $LD variables, running the configure script in the source
folder will configure the build variables for libjpeg.

./configure
configure: loading site script /opt/poky-edison/1.5.1/site-config-i586-poky-linux
checking build system type... i686-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
checking target system type... i686-pc-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking whether make supports nested variables... yes
checking whether make supports nested variables... (cached) yes
checking whether to enable maintainer-specific portions of Makefiles... no
checking for gcc... i586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky-
edison/1.5.1/sysroots/i586-poky-linux ………
….
make
make[1]: Entering directory `/home/linuxvm/Templates/jpeg-9'
 CC jaricom.lo
 CC jcapimin.lo
 CC jcapistd.lo
 CC jcarith.lo
 CC jccoefct.lo
 CC jccolor.lo
 CC jcdctmgr.lo
 CC jchuff.lo …….

Intel® Edison
Native Application Guide February 2015
26 Document Number: 331192-003

Porting an existing project to Intel® Edison

The configure script will create the necessary files for the build. Then you can run make as shown above to create
binaries and libraries. After you build the libjpeg with the Edison toolchain, the binaries are ready to use and deploy
to the file system on board.

4.1 Using external libraries
Porting libjpeg is simpler than porting a more complex project with many dependencies. With mainstream Linux
distributions like Ubuntu, you can get external dependencies via apt-get, if the library exists in a defined repository.

If a project that you want to run needs external libraries that are not included in the Edison toolchain, you can port
the library with the method described in Section 0 and statically link headers and library to the project
environment. For example, we have a basic project that needs to use libjpeg. To include the header and link the
ported library for the example project, use the gcc flags -I and –L:

$CC –o jpegSample jpegtest.c –I/path/to/jpeg-9 –L/path/to/libJpeg –ljpeg

 §

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 27

Simple Native Applications

5 Simple Native Applications
This section explains how to build a native application in Windows and Linux environments.

5.1 Windows native applications
To build a native application in a Windows environment, do the following:

1. Unzip the edison-sdk-win32-weekly-14.zip file to a directory of your choice.
/* Hello World program */
#include<stdio.h>
int main(void){
main()
{
printf("Hello World\n");
}

2. If you extract the zip archive to the C:\ drive, the command to build helloworld.c would be this:
C:\edison-sdk-win32-weekly-14\poky-edison-eglibc-i686-edison-image-core2-32-
toolchain-1.6\sysroots\i686-pokysdk-mingw32\usr\bin\i586-poky-linux\i586-poky-
linux-gcc.exe --sysroot=C:\edison-sdk-win32-weekly-14\poky-edison-eglibc-i686-
edison-image-core2-32-toolchain-1.6\sysroots\core2-32-poky-linux
c:\test\helloworld.c -o c:\test\helloworld

5.2 Linux native applications
To build a native application for the target using the cross-compilation toolchain, do the following:

3. Install the cross-compiler in /opt/poky:
sudo ./tmp/deploy/sdk/poky-eglibc-x86_64-edison-image-i586-toolchain-1.5.1.sh

4. Initialize the environment to use the proper cross-compiler:
source /opt/poky/1.6/environment-setup-i586-poky-linux

5. Build a “helloworld” C program:
/* Hello World program */
#include<stdio.h>
main()
{
 printf("Hello World\n");
}

6. Save it as helloworld.c.
7. Compile the helloworld.c program and deploy it on the device:

CC -o helloworld helloworld.c
scp helloworld root@192.168.2.15:/home/root

Intel® Edison
Native Application Guide February 2015
28 Document Number: 331192-003

Simple Native Applications

5.3 Sample GPIO Write Application
The write_gpio_pin.c sample code is listed below. This sample code changes GPIO pin 17’s direction to OUT
and sets its value as HIGH.

/* A Sample Program to set GPIO pin 17 direction OUT and value as HIGH
**
** Author: Onur Dundar
**
*/

#include <stdio.h>
#include <fcntl.h>
#define GPIO_DIRECTION_PATH "/sys/class/gpio/gpio%d/direction"
#define GPIO_VALUE_PATH "/sys/class/gpio/gpio%d/value"
#define GPIO_EXPORT_PATH "/sys/class/gpio/export"
#define BUFFER 50

int main()
{
//GPIO Pin 17
 int gpio_pin = 17;
//Path Variables
 char gpio_exp_path[BUFFER];
 char gpio_direction_path[BUFFER];
 char gpio_value_path[BUFFER];
//Files
 int fd_export, fd_val, fd_dir;
 int err = 0;
//Set GPIO Paths

 snprintf(gpio_exp_path, BUFFER, GPIO_EXPORT_PATH, gpio_pin);
 snprintf(gpio_direction_path, BUFFER, GPIO_DIRECTION_PATH, gpio_pin);
 snprintf(gpio_value_path, BUFFER, GPIO_VALUE_PATH, gpio_pin);

//Set Direction
 fd_dir = open(gpio_direction_path, O_WRONLY);
 if (fd_dir < 0) {
 perror("Can't Open GPIO Direction File");
//Export GPIO
 fd_export = open(gpio_exp_path, O_WRONLY);
 if (fd_export < 0) {
 perror("Can't Open Export File");
 return -1;
 } else {
//Export GPIO
 char buf[15];
 sprintf(buf, "%d", gpio_pin);
 err = write(fd_export, buf, sizeof(buf));
 if (err == -1) {
 perror("Can't export GPIO");
 return err;
 }
 close(fd_dir);

 fd_dir = open(gpio_direction_path, O_WRONLY);
 if (fd_dir < 0) {
 perror
 ("Can't Open Exported GPIO Direction File");
 return -1;
 }
 }

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 29

Simple Native Applications

 }

 fd_val = open(gpio_value_path, O_WRONLY);
 if (fd_val < 0) {
 perror("Can't Open GPIO Value File");
 return -1;
 }
//Now Continue to Set Direction as out
 err = write(fd_dir, "out", sizeof("out"));
 if (err == -1) {
 perror("Can't set direction");
 return err;
 } else {
 printf("Set gpio %d direction as out\n", gpio_pin);
 }

 err = write(fd_val, "1", sizeof("1"));
 if (err == -1) {
 perror("Can't set value");
 return err;
 } else {
 printf("Set gpio %d value as HIGH\n", gpio_pin);
 }

// Close the Files
 close(fd_dir);
 close(fd_val);

 return 0;
}
/** End of GPIO Program **/

 §

Intel® Edison
Native Application Guide February 2015
30 Document Number: 331192-003

Sample Pedometer Application

6 Sample Pedometer Application
This chapter shows how to implement a native software application for a pedometer that counts a person’s steps. It
uses an Intel® Edison Development Board and an Invensense* MPU6050* 6-axis accelerometer/gyroscope
(Figure 24).

Figure 24 Hardware required for the pedometer application

Intel® Edison Development Board Invensense* MPU6050* 6 Axis
Accelerometer/Gyroscope

Figure 25 shows the software block diagram for integrating the hardware for this application.

Figure 25 Software block diagram

Intel® Edison

Pedometer algorithm
detects step

Invensense*
MPU6050* 6 Axis
Accelerometer/

Gyroscope

I2C class: Read raw
accelerometer data

Save raw accelerometer
data to file

Save step history to file

I2C busRaw data

R
aw

 d
at

a

Before developing this application, configure your host environment or configure Eclipse to use the Edison
toolchain. (See section 2 for details.)

This sample project includes three source files named pedometer.c (includes ‘main’ function), i2c.c and i2c.h to
define a simple i2c library to use for I2C communication.

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 31

Sample Pedometer Application

6.1 Reading accelerometer raw data
The Edison device connects to the MPU6050 device via I2C, to read the MPU6050’s registers. The Linux kernel
provides an i2c-dev library to communicate with I2C devices from the user space, accessing I2C char device interface in
the /dev directory, in this case i2c-0. For details about I2C, refer to the I2C documentation listed in section 1.1.

 I2C operations 6.1.1
Because we need to access MPU6050 via I2C, some basic functions to open I2C adapter, setting I2C slave, read and
write registers have been implemented in i2c class in this sample. Because the i2c-dev library has SMBus protocol
functions for read and write operations that are not included in the toolchain, we must implement these functions
as inline functions in an i2c.h file. Also note that we have copied SMBus functions from the Intel® Galileo libraries
into the ../hardware/arduino/x86/cores/arduino/i2c-dev.h file.

Here is a list of SMBus functions used in i2c.h:

static inline __s32 i2c_smbus_access(int file, char read_write, __u8 command,
 int size, union i2c_smbus_data *data)
static inline __s32 i2c_smbus_read_byte(int file)
static inline __s32 i2c_smbus_write_byte(int file, __u8 value)
static inline __s32 i2c_smbus_read_byte_data(int file, __u8 command)
static inline __s32 i2c_smbus_write_byte_data(int file, __u8 command,__u8 value)
static inline __s32 i2c_smbus_read_block_data(int file, __u8 command,__u8 *values)
static inline __s32 i2c_smbus_write_block_data(int file, __u8 command,
 __u8 length, const __u8 *values)
static inline __s32 i2c_smbus_block_process_call(int file, __u8 command,__u8 length,
__u8 *values)

Here is a list of I2C functions used. These functions were implemented with SMBus protocol functions:

//Open i2c adapter file
int i2c_open_device(int adapter_num)
//Set i2c slave address
int i2c_set_slave(int dev_file, int dev_addr)
//Read
int i2c_receive_byte(int dev_file);
int i2c_read_byte(int dev_file, uint8_t regaddr)
int i2c_read_bytes(int dev_file, uint8_t *buf, uint8_t length,uint8_t regaddr)
//Write
int i2c_send_byte(int dev_file,uint8_t value)
int i2c_write_byte(int dev_file,uint8_t regaddr,uint8_t value)
int i2c_write_bytes(int dev_file,uint8_t *bytes, uint8_t length)

Before starting I2C read and write operations, we must connect with I2C devices from the user space. To connect
with device, I2C adapter file should be accessed. i2c_open_device function includes the I2C file open operation. The
adapter number is passed as a parameter.

int i2c_open_device(int adapter_num) {
 char buf[MAX_BUF];
 if(snprintf(buf, sizeof(buf), "/dev/i2c-%d", adapter_num)>0){
 perror("Can't create adapter path\n");
 }
 int dev_file = open(buf, O_RDWR);
 if (dev_file < 0) {
 perror("Failed to open adapter\n");
 return -1;
 }
 return dev_file;
}

Intel® Edison
Native Application Guide February 2015
32 Document Number: 331192-003

Sample Pedometer Application

After accessing I2C device file, we have to set the slave address for the I2C device to connect and perform read and
write operations from device through I2C adapter.

int i2c_set_slave(int dev_file, int dev_addr) {
 if (ioctl(dev_file, I2C_SLAVE_FORCE, dev_addr) < 0) {
 puts("Failed to acquire bus access and/or talk to slave.\n");
 return -1;
 }
 return 0;
}

After accessing the I2C char device file and set slave bus address, read and write operations can occur. Read and
write functions have been developed with previously defined SMBus functions.

//Receives Bytes from i2c device
int i2c_receive_byte(int dev_file) {
 int byte;
 if ((byte = i2c_smbus_read_byte(dev_file)) < 0) {
 perror("Failed to receive byte from I2C slave\n");
 return -1;
 }
 return byte;
}
// Send Byte to i2c device
int i2c_send_byte(int dev_file, uint8_t value) {
 if (i2c_smbus_write_byte(dev_file, value) < 0) {
 perror("Failed to write byte to I2C slave\n");
 return -1;
 }
 return 0;
}
//Read a chunk of Bytes from device registers
int i2c_read_bytes(int dev_file, uint8_t *buf, uint8_t length, uint8_t regaddr) {
 int ret;
 if ((ret = i2c_smbus_read_i2c_block_data(dev_file, regaddr, length, buf))
 < 0) {
 perror("Failed to read bytes from I2C slave\n");
 return -1;
 }
 return ret;
}
//Write a chunk of bytes to device registers
int i2c_write_bytes(int dev_file, uint8_t *bytes, uint8_t length) {
 if (i2c_smbus_write_i2c_block_data(dev_file, bytes[0], length - 1,
 bytes + 1) < 0) {
 perror("Failed to write bytes to I2C slave\n");
 return -1;
 }
 return 0;
}

Above I2C functions are enough for this sample to access, read, and write MPU6050 registers, even though in the
main function read and write operation has been completed with below functions in one step. To read from the
device’s specific register, the register address needs to be sent to the device, and then the slave should be reset for
the read process. MPU6050 functions are also defined to work with bit operation functions, which call below-byte
read/write functions in the MPU6050 library. Implementing these functions would make the porting process easier.

//I2C Read and Write Operations in main function
int writeByte(uint8_t regAddr, uint8_t* data);
int writeBytes(uint8_t regAddr, uint8_t length, uint8_t* data);
int readByte(uint8_t regAddr, uint8_t *data);
int readBytes(uint8_t regAddr, uint8_t length, uint8_t *data);

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 33

Sample Pedometer Application

The i2cdev library provides writeBit, writeBits, and readBits functions (below). MPU6050 functions directly calls
these functions to perform I2C operations.

//Bit Operations
int8_t readBits(uint8_t regAddr, uint8_t bitStart,uint8_t length, uint8_t *data);
int writeBits(uint8_t regAddr, uint8_t bitStart,uint8_t length, uint8_t data);
int writeBit(uint8_t regAddr, uint8_t bitNum, uint8_t data);

 Communication with MPU6050 6.1.2
Getting raw accelerometer data from an MPU6050 device is implemented with the main function. To get the values,
you will need the above I2C functions by MPU6050 functions. The first step is to access the I2C adapter.

int i2c_device_address; i2c_adapter;
….//some definitions here
int main(int argc, char *argv[]){
 ….//Some code here
 i2c_device_address = MPU6050_DEFAULT_ADDRESS;
 i2c_adapter = i2c_open_device(I2CAdapter);
 if (i2c_adapter < 0) {
 printf("Can't Open i2c Adapter\n");
 return -1;
 }…//Some code here

Global variables to define MPU6050 registers and required device command values have been defined. Other
global variables are defined to store accelerometer values, device file, and so on.

#define I2CAdapter 0
#define BUFFER_LENGTH 32
//Accelerometer Values
int16_t ax, ay, az;
//Gyroscope Values
int16_t gx, gy, gz;
uint8_t buffer[14];
//MPU6050 vars
#define MPU6050_ADDRESS_AD0_LOW 0x68 // address pin low (GND), default for
InvenSense evaluation board
#define MPU6050_ADDRESS_AD0_HIGH 0x69 // address pin high (VCC)
#define MPU6050_DEFAULT_ADDRESS MPU6050_ADDRESS_AD0_LOW
//Bit and Byte Macros
#define MPU6050_RA_PWR_MGMT_1 0x6B
#define MPU6050_PWR1_CLKSEL_BIT 2
#define MPU6050_PWR1_CLKSEL_LENGTH 3
//Initialization
#define MPU6050_CLOCK_PLL_XGYRO 0x01
#define MPU6050_GYRO_FS_250 0x00
#define MPU6050_ACCEL_FS_2 0x00
//MPU6050 configurations
#define MPU6050_RA_ACCEL_CONFIG 0x1C
#define MPU6050_ACONFIG_AFS_SEL_BIT 4
#define MPU6050_ACONFIG_AFS_SEL_LENGTH 2
#define MPU6050_RA_GYRO_CONFIG 0x1B
#define MPU6050_GCONFIG_FS_SEL_BIT 4
#define MPU6050_GCONFIG_FS_SEL_LENGTH 2
#define MPU6050_RA_PWR_MGMT_1 0x6B
#define MPU6050_PWR1_SLEEP_BIT 6
#define MPU6050_RA_WHO_AM_I 0x75
#define MPU6050_WHO_AM_I_BIT 6
#define MPU6050_WHO_AM_I_LENGTH 6
#define MPU6050_RA_ACCEL_XOUT_H 0x3B

Intel® Edison
Native Application Guide February 2015
34 Document Number: 331192-003

Sample Pedometer Application

Note: MPU6050-related operations and constant variables reference the MPU6050.cpp, MPU6050.h,
I2Cdev.cpp, and I2Cdev.h libraries from https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050.
Only necessary functions and global variables are used from these libraries to keep development simple. It is
also possible to use the MPU6050 and I2Cdev libraries within the project.

Functions to use from the MPU6050 and i2cdev libraries:

//MPU6050 Functions
//MPU6050 Initialization
void setClockSource(uint8_t source);
void setFullScaleGyroRange(uint8_t range);
void setSleepEnabled(int enabled);
//Get Raw Data
void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t*
gy,int16_t* gz);
void getAcceleration(int16_t* x, int16_t* y, int16_t* z);
//Connection Test
uint8_t getDeviceID();
int testConnection();

Device initialization needs to call functions to set the clock source and the accelerometer range, and to disable the
sleep function (to get continuous data).

..// main function
// Initialize MPU6050
printf("Initializing MPU6050 devices...\n");
setClockSource(MPU6050_CLOCK_PLL_XGYRO);
setFullScaleGyroRange(MPU6050_GYRO_FS_250);
setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
setSleepEnabled(0);
///… Some code here

Next we have to verify that the device is connected to the MPU6050 by reading the MPU6050’s device ID, a
required step to verify connection. Connection test functions.

..// main function
// Test Connection
printf("Testing device connections...\n");
printf(testConnection() ? "MPU6050 connection successful\n" : "MPU6050
connection failed\n");
///… Some code here

The application is ready to read data from the MPU6050.

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 35

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

Sample Pedometer Application

 Reading raw data 6.1.3
When above operations successfully developed, the device is ready to provide raw accelerometer data. In order to
do that, below functions has been defined in the MPU6050 library.

void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t*
gy,int16_t* gz) {
 readBytes(MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
 *ax = (((int16_t) buffer[0]) << 8) | buffer[1];
 *ay = (((int16_t) buffer[2]) << 8) | buffer[3];
 *az = (((int16_t) buffer[4]) << 8) | buffer[5];
 *gx = (((int16_t) buffer[8]) << 8) | buffer[9];
 *gy = (((int16_t) buffer[10]) << 8) | buffer[11];
 *gz = (((int16_t) buffer[12]) << 8) | buffer[13];
}
void getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
 readBytes(MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
}

 Pedometer algorithm 6.1.4
In the previous section, raw values have been read from MPU6050. All we need to do is to provide raw data to the
algorithm to detect the user’s steps and tally them.

int main(int argc, char *argv[]){
…..
….
 y_offset = 240;
 //gravity mean of the read z-axis raw data from MPU6050
 scale[0] = -(int16_t) (480 * 0.5f * (1.0f / GRAVITY));

 //magnetic field check if required 269
 scale[1] = -(int16_t) (480 * 0.5f * (1.0f / (60)));
 int i = 0;
 for (; i < 6; i++) {
 lastValues[i] = 0;
 lastDirections[i] = 0;
 }
 for (;;) {
 vSum = 0;
 int16_t v;
 /**
 * Poll Accel Raw Data
 */
 getAcceleration(&ax, &ay, &az);
 printf("accel: %d\t%d\t%d\t\n", ax, ay, az);
 /**
 * Vector Sum Calculation
 */
 vSum = (ax * scale[1] + y_offset) + (ay * scale[1] + y_offset)
 + (az * scale[1] + y_offset);
 v = vSum / 2300;
 int k = 0;
 /**
 * Detect Direction Change
 */
 int16_t direction = (
 v > lastValues[k] ? 1 : (v < lastValues[k] ? -1 : 0));
 if (direction == -lastDirections[k]) {

Intel® Edison
Native Application Guide February 2015
36 Document Number: 331192-003

Sample Pedometer Application

 // Check if Direction changed

 int etype = (direction > 0 ? 0 : 1); // minumum or maximum?
 lastExtremes[etype][k] = lastValues[k];
 int16_t diff = abs(
 lastExtremes[etype][k] - lastExtremes[1 -
etype][k]);

 if (diff > limit) {

 // if is almost as large as prev and is previous is
large enough

 if ((diff > ((lastDiff[k] * 99) / 100))
 && (lastDiff[k] > (diff / 100))
 && (lastMatch != 1 - etype)) {
 stepCount++;
 printf("Step Count: %d\n", stepCount);
 lastMatch = etype;
 }
 else {
 lastMatch = -1;
 }
 }
 lastDiff[k] = diff;
 }
 lastDirections[k] = direction;
 lastValues[k] = v;
 usleep(200000);
 }

…
return 0;
}

 Intel® Edison
February 2015 Native Application Guide
Document Number: 331192-003 37

Sample Pedometer Application

6.2 Saving data and distance, calorie calculation
Detecting step is the main course of this sample but more can be done with the counted step data. In this sample
application, counted steps have been saved and number of steps used to calculate approximate distances walked
and calories burned.

Data saved in xml format to make it easy to be read by NodeJS service for web visualization.

….//some code here
file_ptr = fopen("data.xml","w+");
 if(!file_ptr){
 perror("Can't open file");
 }
 clock_t timestamp = clock();
 /**
 * Write Data with XML Format
 */
 fprintf(file_ptr,"<data>\n");
 fprintf(file_ptr,"<timestamp>%f</timestamp>\n",(float)timestamp);
 fprintf(file_ptr,"<x>%d</x>\n",ax);
 fprintf(file_ptr,"<y>%d</y>\n",ay);
 fprintf(file_ptr,"<z>%d</z>\n",az);
 fprintf(file_ptr,"<vector>%d</vector>\n",v);
 fprintf(file_ptr,"<count>%d</count>\n",stepCount);
 fprintf(file_ptr,"<distance>%f</distance>\n",distance);
 fprintf(file_ptr,"<calorie>%f</calorie>\n",calories_burnt);
 fprintf(file_ptr,"</data>\n");
 fclose(file_ptr);
……//some code here

We define the length of each step as 0.5 (meters) and calculate the distance walked using this value.

#define DistancePerStep 0.5
float distance = 0.0;
//at each step …//some code

Distance += DistancePerStep; // some code here

To calculate burned calories, we refer to an article from livestrong.com (http://www.livestrong.com/article/238020-
how-to-convert-pedometer-steps-to-calories), which calculates calories burned for each mile. In the sample
application, we altered this formula to approximate the calories expended for each step and multiplied this by the
number of steps to show the total number of calories burned. In this sample, the user’s weight is hardcoded as 80
kilograms.

#define Weight 80.0
#define CaloriePerStep (((0.57)*(2.20462)*Weight)/(3218.69))
float calories_burnt = 0.0;
..// At each step
calories_burnt += CaloriePerStep; //some code here

 §

Intel® Edison
Native Application Guide February 2015
38 Document Number: 331192-003

http://www.livestrong.com/article/238020-how-to-convert-pedometer-steps-to-calories/
http://www.livestrong.com/article/238020-how-to-convert-pedometer-steps-to-calories/

	1 Introduction
	1.1 References
	1.2 Acronyms and abbreviations

	2 Native Application Development
	2.1 Setting up the host machine
	2.2 Install the Intel® Edison toolchain
	2.3 Configure host environment
	2.4 Develop a simple application
	2.5 Deploy application to target device
	2.5.1 Deploy application binary with SCP
	2.5.2 Deploy application binary with SFTP

	2.6 Debugging
	2.6.1 Onboard debugging
	2.6.2 Remote debugging

	3 Using Eclipse
	3.1 Eclipse configuration
	3.2 Set up the Yocto plugin
	3.3 Set up toolchain location in Eclipse
	3.4 Set up remote hardware
	3.5 Creating a new project on Eclipse
	3.6 Development process on Eclipse
	3.7 Deployment with Eclipse
	3.8 Debugging with Eclipse

	4 Porting an existing project to Intel® Edison
	4.1 Using external libraries

	5 Simple Native Applications
	5.1 Windows native applications
	5.2 Linux native applications
	5.3 Sample GPIO Write Application

	6 Sample Pedometer Application
	6.1 Reading accelerometer raw data
	6.1.1 I2C operations
	6.1.2 Communication with MPU6050
	6.1.3 Reading raw data
	6.1.4 Pedometer algorithm

	6.2 Saving data and distance, calorie calculation

