
ARL 9800 Series User Manual

AA83414

Analyze • Detect • Measure • Control[™]

?

USER MANUAL

ARL 9800 SERIES

ReportMANUALNoAA83414-04LanguageEDateAugust 2001DepartmentDocAuthorPNe/KJu

The information in this document is subject to change without notice.

ARL assumes no responsibility for any errors that may appear in this document.

Die Angaben in diesem Dokument können ohne vorherige Information geändert werden.

ARL übernimmt keine Verantwortung für eventuelle Mängel in diesem Dokument.

Les informations contenues dans ce document sont sujettes à changement sans préavis.

ARL n'assume aucune responsabilité pour toutes erreurs éventuelles contenues dans ce document.

L'ARL si riserva il diritto di modificare le informazioni contenute nel presente manuale senza preavviso e non assume alcuna responsabilità quanto ad eventuali errori che potrebbero esservi accidentalmente introdotti.

Las informaciones contenidas en este documento pueden ser modificadas sin previo aviso.

ARL declina toda responsabilidad sobre los eventuales errores contenidos en este documento.

PAGE DE MODIFICATION

ÄNDERUNGSANGABEN

REVISION CONTROL SHEET

Date Datum Date	Modification Änderung Revision	Description Beschreibung Description
1999 February July	01	Introduced Instrument Maintenance table in chapter 4. Chapter 4, Page 4-21 updated. Type of instrument ARL 9800 changed to ARL 9800 XP.
<u>2000</u> February September	02 OM3301	Addition of ARL 9800 OASIS features. Chapter 2, page 2-5, introduced cassette with aperture \varnothing 31 mm.
<u>2001</u> August	03/KJu	General corrections and adaptation to WinXRF 3.0-1
<u>2003</u> September	04/DBo	Addition of Appendix D (Free Lime Procedure)

TABLE OF CONTENTS

INTRODUCTION 1-1 THE ARL 9800 1-1 Simultaneous X-ray Fluorescence 1-1 Sequential X-ray Fluorescence 1-1 X-ray Diffraction 1-2 ARL 9800 without Sample Changer 1-2 ARL 9800 with the 12 Position Sample Changer 1-3 ARL 9800 with the X-Y Sample Changer (98 cassettes) 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 2 INSTRUMENT DESCRIPTION 2-1 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-9 Goniometer Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11
Simultaneous X-ray Fluorescence 1-1 Sequential X-ray Fluorescence 1-1 X-ray Diffraction 1-2 ARL 9800 without Sample Changer 1-2 ARL 9800 with the 12 Position Sample Changer 1-3 ARL 9800 with the X-Y Sample Changer (98 cassettes) 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-8 X-ray Tube Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
Sequential X-ray Fluorescence 1-1 X-ray Diffraction 1-2 ARL 9800 without Sample Changer 1-2 ARL 9800 with the 12 Position Sample Changer 1-3 ARL 9800 with the X-Y Sample Changer (98 cassettes) 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 INSTRUMENT DESCRIPTION 2-1 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-9 Goniometer Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
X-ray Diffraction 1-2 ARL 9800 without Sample Changer 1-2 ARL 9800 with the 12 Position Sample Changer 1-3 ARL 9800 with the X-Y Sample Changer (98 cassettes) 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Cassettes 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-9 Goniometer Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
ARL 9800 without Sample Changer 1-2 ARL 9800 with the 12 Position Sample Changer 1-3 ARL 9800 with the X-Y Sample Changer (98 cassettes) 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-9 Goniometer Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
ARL 9800 with the 12 Position Sample Changer 1-3 ARL 9800 with the X-Y Sample Changer (98 cassettes) 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
ARL 9800 with the X-Y Sample Changer (98 cassettes). 1-4 ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 X-ray Tube Status Display 2-9 Goniometer Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
ARL 9800 integrated for Automation Systems 1-5 X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE 1-5 GENERAL WARNINGS 1-7 USER RESPONSIBILITY 1-8 Total Protection 1-8 VIEW OF THE ARL 9800 2-1 SAMPLE HOLDERS 2-5 Cassettes 2-5 Centring Rings 2-6 Sample Supports 2-7 INSTRUMENT DISPLAY 2-8 X-ray Tube Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
X-RAY FLUORESCENCE SPECTROMETER PRINCIPLE1-5GENERAL WARNINGS1-7USER RESPONSIBILITY1-8Total Protection1-82 INSTRUMENT DESCRIPTION2-1VIEW OF THE ARL 98002-1SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
GENERAL WARNINGS1-7USER RESPONSIBILITY1-8Total Protection1-82 INSTRUMENT DESCRIPTION2-1VIEW OF THE ARL 98002-1SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
USER RESPONSIBILITY
Total Protection1-82 INSTRUMENT DESCRIPTION2-1VIEW OF THE ARL 98002-1SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
2 INSTRUMENT DESCRIPTION2-1VIEW OF THE ARL 98002-1SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
VIEW OF THE ARL 98002-1SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-12
VIEW OF THE ARL 98002-1SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-12
SAMPLE HOLDERS2-5Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
Cassettes2-5Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
Centring Rings2-6Sample Supports2-7INSTRUMENT DISPLAY2-8Spectrometer Status Display2-8X-ray Tube Status Display2-9Goniometer Status Display2-10XRD (Diffraction System) Status Display2-11INSIDE THE ARL 98002-12
Sample Supports
INSTRUMENT DISPLAY 2-8 Spectrometer Status Display 2-8 X-ray Tube Status Display 2-9 Goniometer Status Display 2-10 XRD (Diffraction System) Status Display 2-11 INSIDE THE ARL 9800 2-12
Spectrometer Status Display
X-ray Tube Status Display
Goniometer Status Display
XRD (Diffraction System) Status Display2-11 INSIDE THE ARL 98002-12
INSIDE THE ARL 98002-12
Removal of the Panels2-12
Location of Consumable Parts
Description of the General Parts
Inside the Spectrometer
Curved Crystal Monochromators
Flat Crystal Monochromators
Goniometer Description
Collimator Selection
Diffraction System (XRD)2-22
Primary Beam Device2-23
SAMPLE HANDLING SYSTEM
Sample Loading
Single Position Loading2-24 12 Position Sample Changer2-25

	X-RAY EMISSION	3-1
	INTRODUCTION	3-1
3/	ANALYSIS PRINCIPLE	3-1
	Sample Loading Process	2-55
	SAMPLE LOADING SYSTEM	
	XMI X-ray Monochromator Interface	
	Goniometer Power XDI X-ray Detector Interface	
	XGI X-ray Goniometer Interface	
	XHI X-ray Sample Handler Interface XCM X-ray Cassette Magazine	
	XPSLP X-ray Power Supply for Low Power instrument (OASIS)	
	XGT X-ray Gas and Thermal XPS X-ray Power Supply	
	XST X-ray Sample Transporter	
	XQM X-ray Quantometer Master XSP X-ray Spectrometer Power	
	Description of the Boards	
	Extension Boards Rack	
	Main Boards Rack	
	Philosophy of the Electronics	
		2-47
	Cooling Circuit.	
	X-ray Cooling System (ARL 9800 OASIS)	
	Water Cooling Circuit	
	X-ray Safety Interlock X-ray Cooling System (ARL 9800 XP)	
	Eco Mode	
	X-ray Power Supply (ARL 9800 OASIS)	
	X-ray Power Supply (ARL 9800 XP)	
	X-ray Tube	
	SAMPLE EXCITATION	
	Thermal Regulation of the Crystals	
	Instrument Thermostatisation	
	ARL 9800 OASIS Cooling Devices	
	Instrument Thermostatisation	2-37
	ARL 9800 XP Cooling Devices	
	Thermal Regulation	
	Gas Regulation (Optional) Gas Regulation for Flow Proportional Counter (FPC)	
	•	
	Spectrometer Environment	
	ANALYSIS ENVIRONMENT	
	SMS-800 System: State-of-the-Art Automation	
	X-Y Sample Changer for Simple Automation X-Y Sample Changer Operation	
	X-Y Sample Changer for Samples without Cassettes	
	X-Y Sample Changer for Cassettes	
	X-Y Sample Changer	2-26

Photoelectric absorption	3-1
Scattering	3-3
Transmission	3-5
NOMENCLATURE USED IN XRF	3-6
INSTRUMENTATION	3-7
X-ray Tube	3-7
Continuum	
Characteristic spectra and choice of the X-ray tube target	
Spectral Line Interference Window thickness	
DISPERSION	
Sequential Instruments	
Simultaneous Instruments	
Instrument Components Goniometer	
Collimators	
Crystals	
Diffraction	
Multilayer Structures	3-14
Reflectivity and Resolution	
Dispersion Power	
Stability Flat crystals vs curved crystals	
Higher orders of diffraction	
Resume	
DETECTION	3-18
Gas filled counters	
Primary Ionization	
Avalanche	
Characteristics	
Scintillation Counters	
Pulse Height Discriminator (PHD)	
Final output	3-23
INSTRUMENT PREPARATION	4-1
SWITCH ON INSTRUMENT	
Switch on Instrument with X-Y Sample Changer	
Switch on Instrument with Manual Loading or SMS Automation Syste	
Power-up Sequence	
INSTRUMENT CONFIGURATION AND INITIALISATION	
Instrument Configuration	
Instrument Type	
X-ray Tube Power Supply Type	
Sample Loading Mechanism Type	4-7
Primary Beam Device (PBD)	4-8

4

	Instrument Initialisation	4-8
	Gas Supply	
	Argon-Methane Gas for FPC (optional)	
	Gas Bottle Replacement Environment Setting	
	Switch the X-ray Tube Power Supply on	
	Eco Mode Setting	
	ENTER Eco Mode Parameters	
	EXIT Eco Mode Parameters	
	Report Eco Mode Parameters	
	Goniometer Initialisation X-ray Diffraction (XRD) Initialisation	
	Monochromator (Fixed Channels) Initialisation	
	Status Reading	
	GENERAL SPECIFICATIONS	4-21
	Electrical Data	4-21
	Instrument	
	X-ray Power Supply	
	Water Supply	
	Laboratory Environment	
	Gas Supply	
	Acoustic Noise	
	Dimensions	
	Spectrometer Geometry	
	Safety Standards (all versions)	4-22
	Safety Standards (all versions) ARL 9800 INSTRUMENT MAINTENANCE	
5		4-23
5	ARL 9800 INSTRUMENT MAINTENANCE	4-23 5-1
5	ARL 9800 INSTRUMENT MAINTENANCE	4-23 5-1 5-2
5	ARL 9800 INSTRUMENT MAINTENANCE	4-23 5-1 5-2 5-4
5	ARL 9800 INSTRUMENT MAINTENANCE	
5	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION SAMPLE PREPARATION FOR SOLIDS. SAMPLE PREPARATION FOR POWDERS SAMPLE PREPARATION FOR LIQUIDS Wax Method for Oil	
5	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION SAMPLE PREPARATION FOR SOLIDS SAMPLE PREPARATION FOR POWDERS SAMPLE PREPARATION FOR LIQUIDS	
5	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION SAMPLE PREPARATION FOR SOLIDS SAMPLE PREPARATION FOR POWDERS SAMPLE PREPARATION FOR LIQUIDS Wax Method for Oil Filter Method	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION SAMPLE PREPARATION FOR SOLIDS. SAMPLE PREPARATION FOR POWDERS SAMPLE PREPARATION FOR LIQUIDS Wax Method for Oil Filter Method Precipitation Method	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION FOR SOLIDS. SAMPLE PREPARATION FOR POWDERS. SAMPLE PREPARATION FOR LIQUIDS. Wax Method for Oil Filter Method. Precipitation Method. Absorption Method.	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION SAMPLE PREPARATION FOR SOLIDS. SAMPLE PREPARATION FOR POWDERS SAMPLE PREPARATION FOR LIQUIDS Wax Method for Oil Filter Method Precipitation Method Absorption Method Absorption Method	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION SAMPLE PREPARATION FOR SOLIDS. SAMPLE PREPARATION FOR POWDERS SAMPLE PREPARATION FOR LIQUIDS Wax Method for Oil Filter Method Precipitation Method Absorption Method INTRODUCTION.	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION	
	ARL 9800 INSTRUMENT MAINTENANCE. SAMPLE PREPARATION	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION FOR SOLIDS	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION FOR SOLIDS	
	ARL 9800 INSTRUMENT MAINTENANCE SAMPLE PREPARATION	

	Run an Energy Profile Display Energy Profiles	
	Analytical Program	
	Select Elements	
	Matrix Details	
	More Matrix Details	
	Scan/Energy Profile Overlap Investigation	
	Line Details	
	Create Program	
	Exit	6-28
7	INSTRUMENT CALIBRATION	7-1
	INTRODUCTION	7-1
	WHAT REMAINS TO BE DONE	
	Complete the list of Calibration Standard Samples	
	Define Setting-up Samples	
	Include the Setting-up Samples in the Analytical Program	
	Drift Correction Initialisation	
	Prepare the Drift Correction Initialisation Task	
	Measure the Setting-up Samples Prepare the Calibration Task	
	Prepare a Batch File	
	Measure the Calibration Samples	
	Calculation of the Calibration Curves	
	Drift Correction Update (Recalibration)	
8	ROUTINE ANALYSIS	
Ŭ	CONCENTRATION ANALYSIS	
	Prepare the Concentration Analysis	
	Perform Concentration Analyses	
	Prepare the Intensity Measurement Task	
	Perform Intensity Measurements	
Α	ALARMS	A-1
	STATUS CHANNELS	
С	FIRMWARE STATUS	C-1
D	FREE LIME	D-1
	FREE LIME CALIBRATION PROCEDURE	D-1

	ME RECALIBRATION	
Α.	High point	D-3
В.	Low point	D-3
C.	Analytical Program	D-3
INDEX		I

OVERVIEW AND WARNINGS

1

1 OVERVIEW AND WARNINGS

Introduction

We congratulate you on the purchase of your ARL 9800 Series. This precise and accurate Spectrometer has been produced by ARL to satisfy your analytical needs.

The purpose of this manual is to assist you in the use of your ARL 9800 Series instrument.

The ARL 9800

X-ray fluorescence allows measurement of up to 83 elements of the periodic table in samples of various forms and nature: solids, conductive or non-conductive. Typical samples include glasses, plastics, all metals, ores, refractories, cement and geological materials. Any sample which may react violently to X-rays must be avoided. The samples must withstand analysis under vacuum (4-5 Pa). Advantages of XRF over other techniques are speed of analysis, generally easy sample preparation, very good stability, precision and wide dynamic range.

The ARL 9800 XRF Instrument can be provided in two different versions.

The ARL 9800 XP provides high performance measurements on all types of solid samples with high power X-ray generator.

The ARL 9800 Oasis is a lower power version independent of external water cooling.

The heart of the ARL 9800 can be made of various modules: monochromators for rapid, dedicated routine analysis, a Moiré fringe universal goniometer for flexible elemental analysis and an integrated X-ray diffraction system for specific phase and mineral analysis. The combination of fixed channels and goniometer guarantees speed, flexibility and reliability of analysis.

Simultaneous X-ray Fluorescence

The instrument can be equipped with up to 32 fixed channels or monochromators for simultaneous elemental analysis. Fixed channels ensure that analysis is rapid, precise and reliable.

The Oasis version is limited with maximum 20 monochromators in the simultaneous configuration.

Sequential X-ray Fluorescence

The instrument can also be equipped with a goniometer which gives the instrument great flexibility as it can analyse sequentially up to 83 elements of the periodic table providing that the necessary analysing crystals are fitted.

In addition, the goniometer allows for the use of semi-quantitative software (UniQuant, QuantAS) which provide the capacity to analyse rapidly totally unknown samples without the need to calibrate the instrument with standard reference materials.

The ARL 9800 XP with XRF goniometer can be further equipped with 24 monochromators.

The ARL 9800 Oasis version with XRF goniometer can be further equipped with 14 monochromators.

X-ray Diffraction

The instrument can also be equipped with an XRD system that permits the determination of phases or mineral compounds in the sample in various applications. For example, free lime in clinker and limestone in cement or the various states of iron oxide in iron ores can be determined.

With an XRD system, the ARL 9800 XP instrument can be further equipped with 24 monochromators. With one goniometer and one XRD system, the ARL 9800 XP accepts 14 additional monochromators.

In the Oasis version, the number of monochromator is limited to 14 with an XRD system and to 8 when the instrument is equipped with the XRD system and the goniometer.

The ARL 9800 should be configured according to your applications and your needs.

ARL 9800 without Sample Changer

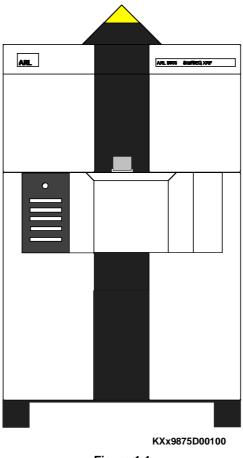


Figure 1.1

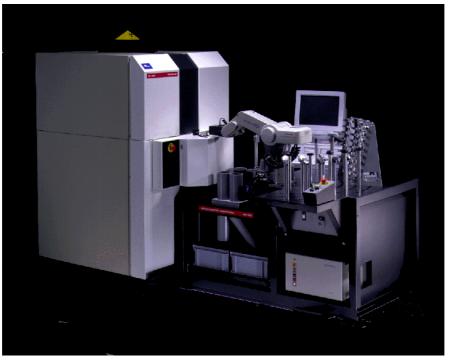

ARL 9800 with the 12 Position Sample Changer

Figure 1.2

ARL 9800 with the X-Y Sample Changer (98 cassettes)

Figure 1.3

ARL 9800 integrated for Automation Systems

Figure 1.4

X-ray Fluorescence Spectrometer Principle

The sample to be measured is loaded into the spectrometer and excited by the X-ray beam coming from the X-ray tube. The spectrum of the tube is composed of the characteristic wavelengths of the anode element (Rh in general) and the continuum (or white radiation). The emitted radiation from the sample is a mixture of the tube spectrum and the characteristic wavelengths of the elements in the sample.

The reflected beam is guided onto wavelength dispersive systems called, in our case, monochromator or goniometer. These elements produce spectral lines, which are related to the elements present in the measured sample.

The XRD system collects in its detector the diffracted X-ray of one specific wavelength emitted by the X-ray tube. The incident beam is diffracted by the various crystallographic planes of the crystallites which are present in the sample. For more details about XRD analysis, please refer to the specific brochure about the "ARL 9800 - Integrated XRD system".

All XRF and XRD spectrometers measure intensities. The concentrations can only be obtained after the instrument has been calibrated. It should be stressed that an XRF quantometer is a very accurate comparator, but the accuracy of the final analysis is entirely dependent on the quality of the standard samples used for calibration. The intensity concentration relationship is generally linear, but in some case a second order curve can be used.

$$\begin{split} C(\%) &= a_0 + a_1 * I & \text{First degree} \\ C(\%) &= a_0 + a_1 * I + a_2 * I^2 & \text{Second degree} \end{split}$$

 $\begin{array}{lll} \mbox{Where}: & I \mbox{ is the intensity measured by the XRF spectrometer} \\ a_j \mbox{ are the constants computed during the calibration} \\ C \mbox{ is the concentration in \%} \end{array}$

In practice, the intensity of an element is not only a function of the concentration of the element analysed but may also be influenced by interferences such as line overlapping, absorption or enhancement (matrix effects), grain size effects and mineralogical effects. The chapter *Analysis principle* gives more information.

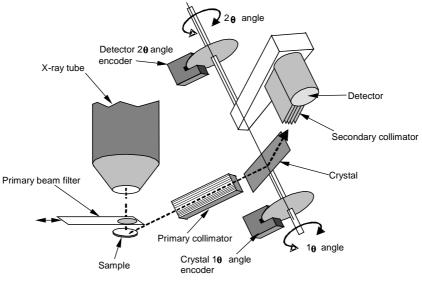


Figure 1.5

General Warnings

The XRF instrument uses several components which can be dangerous to manipulate if you have to open the cabinet or the tank. Whenever one of the following signs is seen stuck to a support (tank cover, panels etc...) you are accessing a potentially dangerous area.

In case of problem or injury, ARL will accept no responsibility if the user has personally removed one or several covers or panels having any of the following signs affixed.

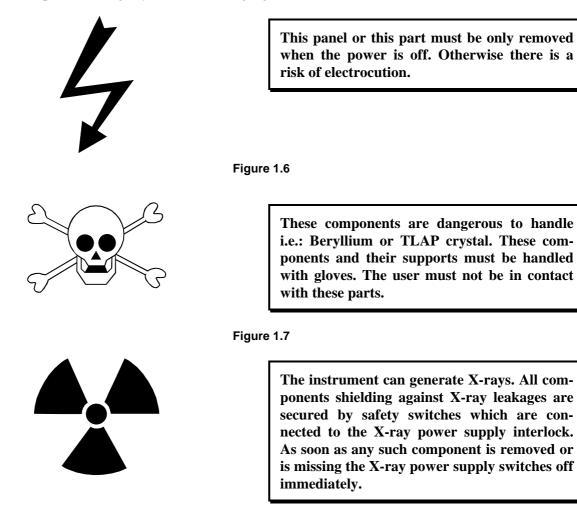


Figure 1.8

The ARL 9800 is equipped with an emergency button that switches off the main power of the spectrometer when it is pushed. There is also an interlock safety system used to protect the instrument if the normal conditions of use are not reached.

The user must contact the nearest local service if he needs to open the instrument. The user can also attend a special training course at our factory in Switzerland to learn how to maintain the instrument in good working order.

User Responsibility

It is the user responsibility to follow **general warnings**.

It is the responsibility of the user to ensure that the recommended **laboratory environ**mental conditions are maintained in the future.

It is the responsibility of the user to ensure that compliance with local **X-ray safety regulations** are fulfilled. Since X-rays are produced in the instrument, **special authorisation** is requested in several countries to be allowed to run such equipment.

It is the responsibility of the user to be sure that **the samples** loaded into the ARL 9800 do not react with the X-ray beam or the vacuum environment. All spectrometer damages due to **bad samples** are considered as misuse.

X-ray radiation can be used with minimal risk if the user follows X-ray safety guidelines established by state, local, and institutional regulations. Additionally, the user must use the instrument with all safety features engaged and in proper working order. The ARL 9800 instrument itself, including the access panels, is designed to absorb or otherwise prevent X-ray radiation from escaping the instrument. Thus, whenever a measurement is performed, it is very important to have all panels and safety features engaged. Do not try to defeat the safety features of the machine.

Total Protection

This instrument is designed to fulfil the Swiss law about X-ray Safety for the total protection class. The total protection class means that the leaks rate around the instrument is lower than 1 μ Sievert/hour (0.1 mRem/h) at 10 cm of the surface of the cabinet. This also means that the instrument is equipped with safety features that close the shutter or shut down the X-ray Power Supply if the user attempts to reach the unprotected area inside the cabinet.

This instrument was checked and its radiation measured by a neutral official organisation before the authorization was given to ARL by the Swiss authority. See the authorization in *Appendix A* of the *Pre-installation Manual*.

This authorization is not valid in any other country but can be used by the user to get the local authorization.

2

INSTRUMENT DESCRIPTION

2 INSTRUMENT DESCRIPTION

View of the ARL 9800

The ARL 9800 requires approximately 1 square meter floor space. It is therefore designed to be placed in very small areas. Its weight is about 750 kg.

The displays of the instrument inform the user about the spectrometer status, X-ray tube conditions, the monochomators, the goniometer or the XRD system status with all parameters related to the measured element lines. Three to six displays are available depending on the configuration of the instrument.

The yellow pyramid located on top of the instrument is the "X-ray on" signal. This lamp is illuminated when the X-ray power supply is on. The red button is used to switch off the main power supply in emergency cases.

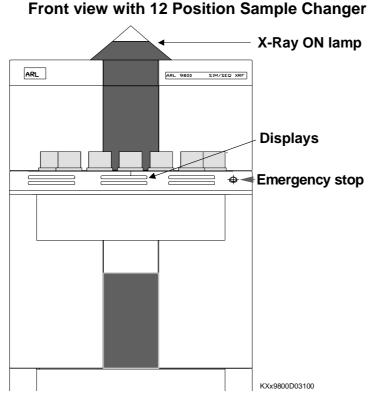
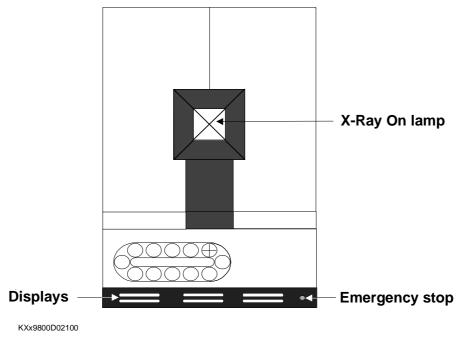



Figure 2.1

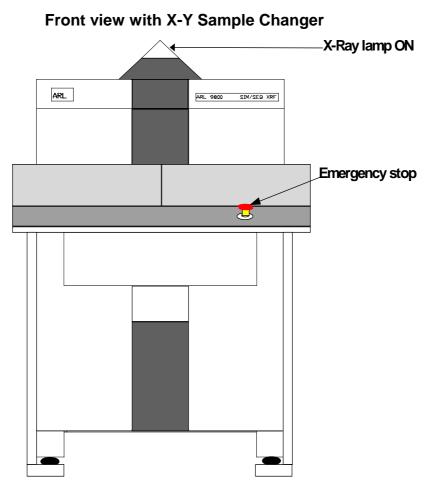


Figure 2.3

Front view of the instrument prepared for the Automation System

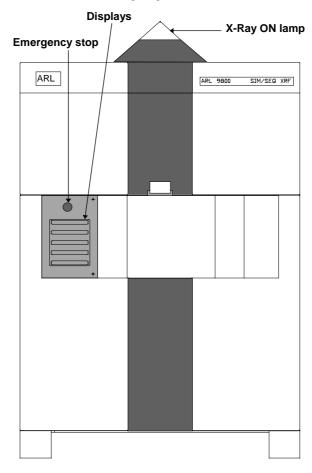
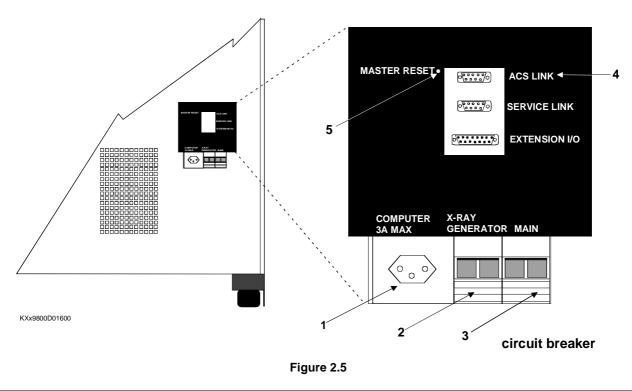


Figure 2.4


On the back side of the ARL 9800 and as shown in the figure below, we can find the following features:

- 1. The 230 V plug for the computer (max. 3.15 A).
- 2. The main breaker (32 A) for the X-ray tube generator.

Note: With the ARL 9800 Oasis, this breaker is used like a switch, to turn on off the low power generator. In this instrument, the low power generator has its own breaker (25 A) which is located in the generator front panel.

3. The main breaker (16 A) for the electronic.

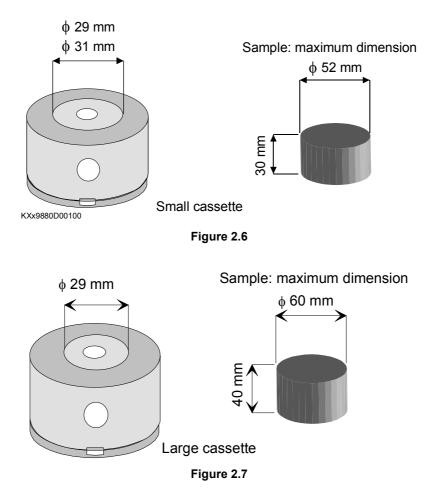
- 4. The connector for the computer instrument link (ACS Link).
- 5. The master reset, to activate the master reset, use for example a small screwdriver, insert it and press.

Features and External Connections of the ARL 9800

Note: The connectors "SERVICE LINK" and "EXTENSION I/O" located just below the "ICS LINK" are for future applications and for service use only. The user should not connect any devices to these, unless specifically informed.

Sample Holders

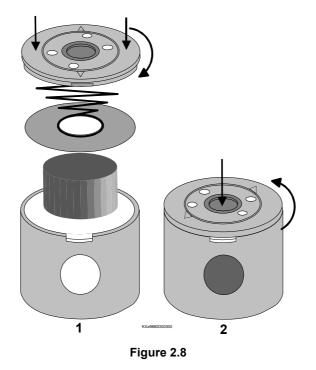
Every sample must be placed in a sample holder before it can be introduced into the ARL 9800. The introduction of a sample without the correct holder will stop or damage the sample handling system.


There are two different kinds of sample holders:

- Cassettes are used for handling any kind of solid and pressed powder samples. Large cassettes are used with the 12 Position Sample Changer. Small cassettes are used with the X-Y sample changer and with the single position loading.
- Sample Adapters are used for handling samples without cassettes.
 4 different families of sample diameters are defined for the large X-Y sample changer.
 In case of automation, the centring ring can be adapted to the production sample size and shape.

Cassettes

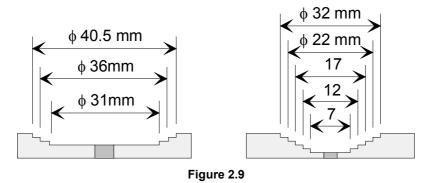
The standard cassette aperture is \emptyset 29 mm and 31 mm. Special coated cassettes with smaller aperture can be obtained on request.


The following picture describes the maximum sample size that can be used with each model of sample changer.

The sample is placed and centred in the cassette.

Note: Do NOT touch the surface of a sample! Touching the sample surface will enrich it with Na, Cl and C among other elements, which might affect the analysis.

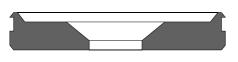
It is very important to put the cover on and to turn it clockwise until the stopper is reached. Then the cassette can be put onto the sample changer with the sample facing upward.



- 1. Sample loading and closing the cassette.
- 2. Opening the cassette.

To avoid any problems the user has to make sure that the cover of the cassette is well closed.

Centring Rings


In order to facilitate the centring of the samples special rings are available for the cassettes.

These special centring rings can be ordered from your ARL office. To find the part numbers of these rings, please refer to the "*Spare Parts*" Catalogue.

Sample Supports

The following picture describes the sample supports for the X-Y sample changer in the version where no cassette is used. The supports can be chosen in 4 different diameter ranges according to the samples to be loaded.

For sample diameter ranges of:

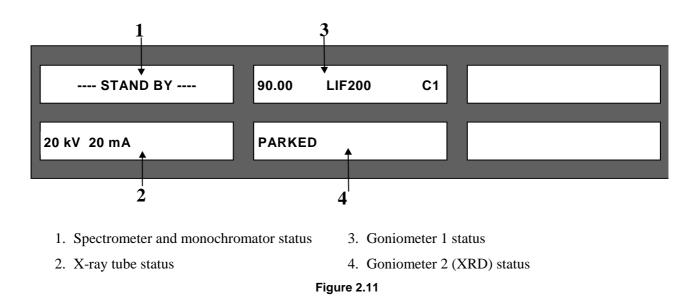

- ◆ 30.5 to 32 mm
- ◆ 32 to 35 mm
- ♦ 35 to 41 mm
- ◆ 41 to 50 mm

Figure 2.10

For list of available cassettes, see catalogue.

Instrument Display

The ARL 9800 is equipped with displays. Several lines give messages about the spectrometer status, X-ray tube conditions, monochromators, XRD and goniometer status. Figure 2.11 shows an example of the display and the corresponding status.

Spectrometer Status Display

The spectrometer status display shows the general state of the ARL 9800. The following list gives the messages and their meanings. Some messages appear simultaneously or alternately on the display.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	DESCRIPTION
-	-	-	-	-	-		R	E	S	E	Т		-	-	-	-	-	-	-	The spectrometer is being reset or in the power-up sequence
-	-		Ν	0	Т		С	0	Ν	F	Ι	G	U	R	E	D		-	-	The spectrometer needs to be configured
С	h	e	c	k		c	0	m	р	a	t	i	b	i	1	i	t	у		Check master firmware to slave firmware compatibility
С	0	m	p	u	t	e		Х	Μ	Ι	0	s			c	h	k	s	m	Compute monos downloaded code checksum
С	h	e	с	k		Х	Μ	Ι	s			с	0	m	р	a	t			Check monos resident and downloaded code compatibility
D	0	w	n	1	0	a	d		Х	M	Ι	0	s							Download code to all monochromators (XMI nodes)
S	t	a	r	t		Х	Μ	Ι	0	1		c	0	d	e					Start the downloaded code on monochromator 1
С	h	e	c	k		Х	Μ	Ι	0	1		r	u	n	n	i	n	g		Check if the downloaded code on mono 1 is running
-	-	-	-	-		S	Т	А	Ν	D		В	Y		-	-	-	-	-	The spectrometer is ready to analyse
Р	U	M	P	Ι	Ν	G		P	С	:	>	1	0	0	0		Р	a		PC only is pumped, PC pressure > 1000 Pa
Р	U	M	P	Ι	N	G		P	С	:	1	2	3		4		Р	a		PC only is pumped, PC pressure = 123.4 Pa
Р	U	M	P	Ι	Ν	G		S	P	:	>	2	5		k	P	a			PC and SP are pumped, SP pressure > 25 kPa
Р	U	M	P	Ι	N	G		S	P	:	>	1	0	0	0		P	a		PC and SP are pumped, SP pressure > 1000 Pa
Р	U	M	P	Ι	N	G		S	P	:	1	2	3		4		P	a		PC and SP are pumped, SP pressure > 123.4 Pa
Р	U	M	P	Ι	N	G		S	P	:				2	:	3	4			SP is pumped, remaining pumping time is 2 min 34 s
W	A	Ι	Т	:	A	С	0													Process is waiting for analytical conditions (kV/mA/PBD)
W	A	Ι	Т	:			8													Process is waiting for sample 8
									S	E	E	K	:			8				The sample 8 is being sought on the sample magazine

									L	0	А	D	:			8				The sample 8 is being loaded in analysis pos.
									А	Ν	А	:				8				The sample 8 is in analysis position
									E	V	А	С	:			8				The sample 8 is being unloaded
																		F	2	Primary beam device 2 is in position
																			*	Sample is rotating
Μ	E	A	S	U	R	E														Instrument is measuring
Μ	E	А	S	U	R	E	-	А	1	K	a	_	m	-			1	2	s	Alt. display for MEASURE on mono Al, remaining time: 12s
							-							-						
F	A	S	Т	S	С	A	N													Fast Scan for Goniometer/XRD is in progress
S	Т	E	P	S	С	A	Ν							-	-					Incremental Scan for Goniometer/XRD is in progress
Р	0	S	С	A	L															Position calibration for Goniometer/XRD is in progress
Η			R	0	F															HV profile for Goniometer/XRD/Mono is in progress
Μ	g	K	a	_	m				2	0	5	0			2	1	8		7	Alternate display for HVPROF on mono Mg
	g			_	m							1	0	0	6	4	c	р	s	Alternate display for HVPROF on mono Mg
E	P	R	0	F																Energy Profile for Goniometer/XRD/Mono is in progress
Е	P	R	0	F		M	g	K	a	_	m						1	2	s	Alternate display for EPROF on mono Mg

X-ray Tube Status Display

The X-ray tube status display shows the kV and the mA settings of the tube and some other information about the power supply state. The following list gives the messages and their meanings.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	DESCRIPTION
	0	k	V				0	m	А								0	F	F	X-ray power supply OFF
	0	k	V				0	m	A		W	A	Т	E	R		0	N		Cooling water is switched ON
	0	k	V				0	m	A		Р	0	W	E	R		0	N		X-ray power supply is switched ON
	0	->	4	0	k	V				0		5	0	m	А					Settings are changed to 40kV and 50mA
4	0	k	V			5	0	m	A			W	A	Ι	Т		Т	0	L	Waiting to be in tolerance on settings
4	0	k	V			5	0	m	А											X-ray tube settings are 40KV and 50mA
4	0	->	2	0	k	V			5	0		1	0	0	m	А				Settings are changing to 20kV and 100mA
2	0	k	V		1	0	0	m	A			W	A	Ι	Т		Т	0	L	Waiting for the settings to be within tolerance
2	0	k	V		1	0	0	m	A											X-ray tube settings are 20kV and 100mA
2	0	->	4	0	k	V		1	0	0		2	0	m	A			->	E	Entering economic mode
4	0	k	V			2	0	m	A								E	С	0	X-ray power supply in economic mode
4	0	->	3	0	k	V			2	0		8	0	m	A			E	->	Exiting economic mode
3	0	k	V			8	0	m	A			W	A	Ι	Т		Т	0	L	Waiting for the settings to be within tolerance
3	0	k	V			8	0	m	A											X-ray tube settings are 30kV and 80mA

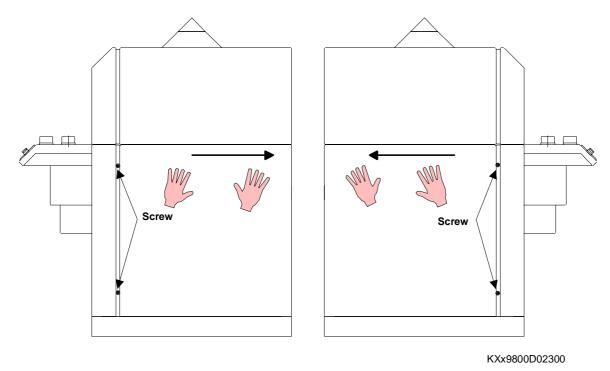
Goniometer Status Display

The goniometer status display informs the user about the crystal, detector and collimator selection. It also shows the intensity currently being measured.

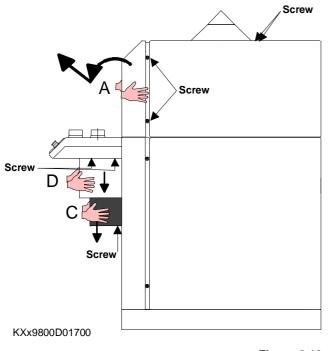
Some messages can appear simultaneously or alternately on the display.

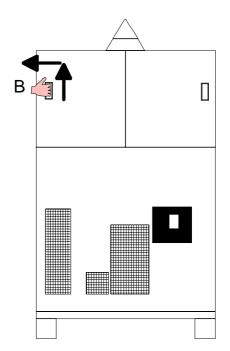
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	DESCRIPTION
Ζ	E	R	0		R	E	Q	U	Ι	R	E	D								The gonio is waiting for a zero command
															-					
R	E							D							-					The DSP is reset
S	W	Ι	Т	С	Η		Μ	0	Т	0	R	S		0	Ν	-				The 2 motors are switched on
Μ	0	V	E		Х	+	D				W				-					The 2 axis are moved for collimator initialis.
Ι	N	Ι	Т		С	0	L	L		M	А	Т	0	R	-	-				The collimator changer is initialised
Ι	N	Ι	Т		С	R		S		А	L				-					The crystal changer is initialised
Х	+	D	:	M	0	V	E		Т	0		U	P		L	Ι	Μ	Ι	Т	The 2 motors are moved over the
Х	+	D	:	M	0	V	E		Т	0		L		W		L	Ι	Μ	•	angular range to find the limits
Х	+	D	:	С	A	L	Ι	В	:	E	Ν	С	0	D	Е	R				The 2 encoders are calibrated in magnitude
Μ	E	A	S	U				Х	-	D		D	Ι		Т	A	N	С	E	The crystal detector distance is measured
Х	+	D	:	С	0	A	R	S	E		Ζ	E	R	0	-	S	С	А	N	Coarse measure of the 2 zero marks
Х	+	D	:	F	Ι	N	E		Ζ	E	R	0		S	С	A	N			Fine measure of the 2 zero marks
A	Ι	K	a	1			F	Р	С					С	3					Gonio on Al, detector is FPC, collim. C3
1	4	4	•	7	1		Р	E	Т					С	3		1	5	s	2θ angle 144.71, crystal PET, remaining
A	1	K	a	1														Е	4	counting time 15 s, countrate 90 kcps
4		4	4	9	5	0	/	m	i	n						5	••	2	3	A fast scan is performed at 4.45 deg/min,
1	2	2		4	5		F	Р	С					С	1	5	:	2	3	remaining measuring time is 5min23s,
1	2	2		4	5		L	i	F	2	0	0		С	1	5	••	2	3	detector FPC, crystal LiF200, collim C1
1	2	2		4	5													Е	3	actual 20 angle is 122.45, intensity 4kcps
Η	V	:	1	6	5	0			A	G	С	:			1	2	3		4	A HV profile is performed

XRD (Diffraction System) Status Display

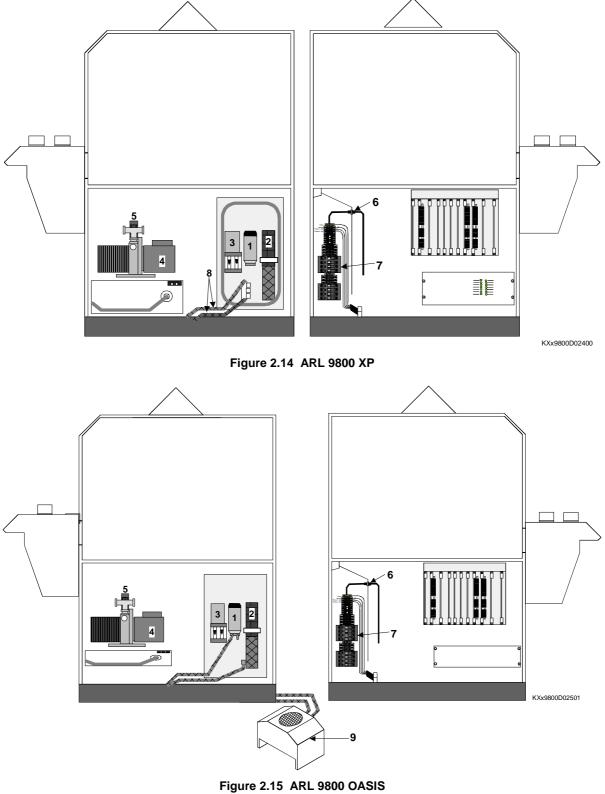

The XRD status display informs the user about the angle and element selection. It also shows the intensity currently being measured.

Some messages can appear simultaneously or alternately on the display.


1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	DESCRIPTION
Ζ	E	R	0		R	E	Q	U	Ι	R	E	D								The XRD is waiting for a zero command
R	E		E					D												The DSP is reset
S	W	Ι	Т	С	Η		Μ	0	Т	0	R		0	Ν	-					The motor is switched on
М	0	V	E			0		U	P		L	Ι	M	Ι	Т					The motor is moved over the
М	0	V	Е					L	0	W		L	Ι	Μ	Ι	Т				angular range to find the limits
С				В			Т	Е		E	N	С	0	D	E	R				The encoder is calibrated in magnitude
С	0	A	R	S	E		Ζ	Е	R	0		S	С	А	Ν					The zero mark is coarse measured
F	Ι	N	E		Ζ	E	R	0		S	С	A	Ν							The zero mark is fine measured
Р	a	r	k	e	d		I	5		d	e	g								The XRD detection motor is switched OFF,
																				the primary beam collimator -5 deg. is ON
Ζ	n	0		A			I	5		d	e	g								The XRD detection is on phase ZnO_A
Ζ	n	0	_	С													1	5	s	Remaining measuring time is 15s on phase
1	1	4		3	3													Е	3	ZnO_C at 114.33 deg. and intensity of 8cps
4		4	4	9	5	0	/	m	i	n						5	:	2	3	A fast scan is performed at 4.45 deg/min,
1	2	2		4	5													Е	3	remaining measuring time is 5min23s, the
																				actual angle is 122.45, and intensity is 4kcps


Inside the ARL 9800

Removal of the Panels



Location of Consumable Parts

All usual consumables are located at the right of the instrument. By removing the right panel the consumable parts can be accessed. This design simplifies the maintenance to be carried out by the user.

- 1. Water pump
- 4. Vacuum pump with oil 7. Main connection
- 2. Deionizing cartridge
- 5. Oil vapour filter
- 3. Deionized water tank
- 6. Gas connection
- 8. Water connection
- - 9. Deionized water air exchanger

Description of the General Parts

This section describes the features and devices located inside the ARL 9800. Some devices are optional and may therefore not be fitted on your instrument.

When the panels of the instrument are removed the different assemblies which can be divided into five main functions (see Figure 2.16).

Spectrometer tank with analytical devices

The spectrometer tank is the main component responsible for maintaining a vacuum and a thermally controlled environment for analysis, for protecting the user against radiation and for positioning all the analytical devices around the sample, namely:

Monochromators, Goniometers, Diffraction System (XRD) and Primary Beam Devices (PBD).

Sample introduction

Different sample magazines allow unattended operation, prepare the sample for introduction into the Primary Chamber and finally move it into the analytical position where sample rotation is possible.

Analytical environment

Environment (vacuum or air) in the Spectrometer tank, thermal regulation of the instrument and the analytical devices, gas regulation for the detectors.

Sample excitation

X-ray tube, X-ray tube power supply, X-ray tube cooling system.

Electronic devices

Electronic rack and boards, main power connections, power distribution for the main and for low voltage.

The next figure shows the general parts of the ARL 9800.

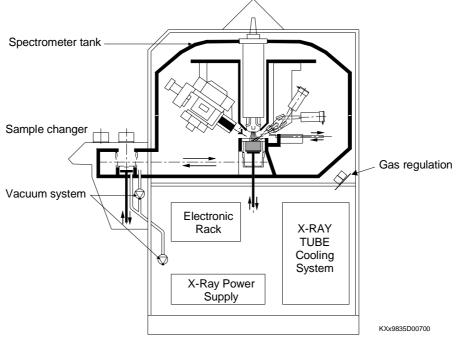


Figure 2.16

Inside the Spectrometer

The analytical devices inside the spectrometer are shown in the next two figures. All these analytical devices are options and the choice for the configuration depends on the analytical application.

- X-ray tube. The controlled X-ray source to excite the sample.
- Monochromators. The simultaneous fixed channels. Each monochromator allows the measurement of one element.
- Goniometer for sequential measurement. The ARL 9800 can be equipped with 2 goniometers. Each of them can measure sequentially up to 83 elements of the periodic table (if appropriate crystals are mounted).
- Diffraction system (XRD) for determination of specific phases. The ARL 9800 can be equipped with one XRD system. The XRD system uses primary beam collimators driven by the PBD.
- Sample. Figure 2.17 shows the sample in the analysis position.
- Primary Beam Device. The PBD allows various Primary Beam Filters for the XRF analysis and Primary Beam Collimators for the Diffraction System to be used depending on the analytical program (PBD must be installed when XRD is mounted).

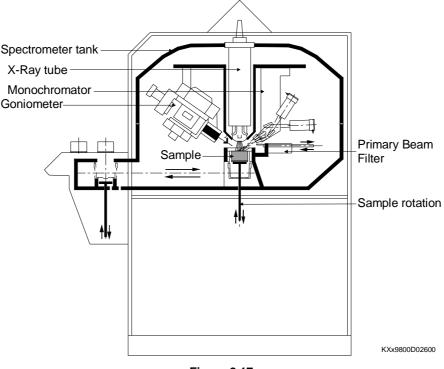


Figure 2.17

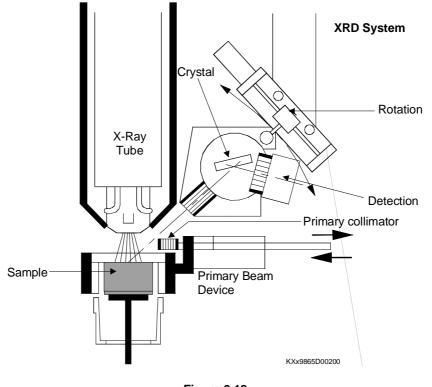


Figure 2.18

The next table shows typical configurations of the instrument.

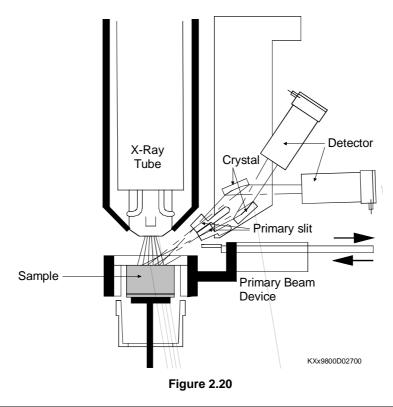
Number of Goniometers	Number of Monochromators XP/Oasis	XRD System	Instrument Type
0	32/20	NO	Simultaneous
0	24/14	YES	Simultaneous
1	0	NO	Sequential
1	0	Yes	Sim / Seq
1	24/14	NO	Sim / Seq
1	14/8	YES	Sim / Seq
2	16/8	NO	Sim / Seq
2	6/0	YES	Sim / Seq

Monochromator Description

The monochromators are fixed assemblies of three parts satisfying Bragg's law ($n\lambda = 2d \sin\theta$), a crystal, a detector and a focalisation or collimation system. There are two distinct types of monochromators:

- Curved Crystal Monochromators
- Flat Crystal Monochromators

The table below shows the monochromators available for the ARL 9800 instrument.

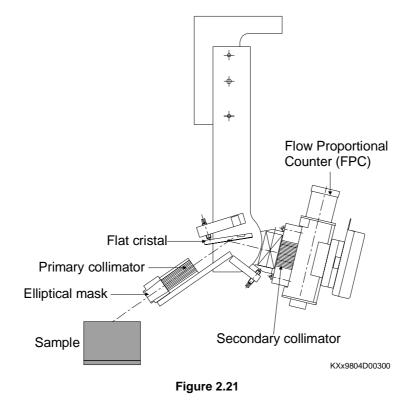

Curved Crystal Monochromators

Crystals such as LiF, ADP or PET allow for the utilisation of curved crystal focussing systems of great precision and resolution. These crystals ensure excellent analytical results for elements from sodium (atomic number 11) upwards.

The crystals used by ARL are curved according to a perfectly focussing trajectory and aligned on a very narrow primary slit thus ensuring very good spectral resolution. The choice of crystal is made according to its reflection capacities of the wavelength of the element to be analysed.

Various types of gas detectors or scintillation counters are used according to their measurement efficiency for the wavelength of the element to be analysed.

In most cases, two monochromators can be assembled in pairs and thus each monochromator assembly allows the analysis of 2 different elements.



Note: Special monochromators were designed specifically for Na and Mg with curved multilayer and thin Be window sealed detectors to allow the instrument to run without P10 gas supply for specific applications.

Flat Crystal Monochromators

The multilayers are very efficient reflectors for soft X-rays and permit excellent analytical results for the light elements from Boron to Magnesium. The physical characteristics of multilayers favour the use of an arrangement of flat crystals equipped with collimators and gas flow detectors (Ar/CH4) with extremely thin windows which are transparent to soft X-rays.

Each flat crystal monochromator is equipped with an elliptical mask which narrows the solid angle to the cassette opening and thus prevents any spectral contaminations from the cassette bottom superimposing on the radiation from the sample.

Goniometer Description

The goniometer is the heart of the ARL 9800 and its gearless design allows a fast and accurate positioning of the crystals and the detectors. The two encoder systems ensure fully independent positioning for both the crystal and the detector.

To measure the intensity of an element the user defines a line or the parameters of a scan in order to position the goniometer (2θ angle) with the selected parameters (crystal, detector and collimator).

The goniometer has three parts:

Detector System

Two detectors are fitted: the Flow Proportional Counter (FPC) used for light elements (B to Fe) and for L and M lines, and the Scintillation Counter (SC) used for medium and heavy elements (Fe to U).

Crystal Changer

This device can support up to nine crystals.

Collimator Changer

This device can support up to four collimators.

Figure 2.22

Crystal Selection

Crystals with fixed inter-atomic distance (d) are used to disperse the wavelength of the elements to be measured at a corresponding reflection angle of the crystal according to Bragg's Law (position θ of the crystal and 2θ of the detector on the goniometer).

The following table shows the crystal choice regarding the different element lines. It should be noticed that a maximum of 9 crystals are (or can be) mounted. If there are free positions available additional crystals can be ordered at any time.

K Lines L Lines	Sensitivity	Resolution	Be	В	С	Ν	0	F	Na	Mg	AI	Si	Ρ	S	CI	К	CaFe SnYb	NiSn HfU
AX20	Good	Low	•	▶•														
AX16	High	Low			٠													
AX09	Good	Low			•	•												
AX06	High	Low					•	•	•	•								
TLAP	Good	Good					•	•	•	▶•		•						
ADP	Low	High								•								
PET	Good	High									•	•			•			
InSb	High	High										•						
Ge	High	High											•4	•	•	•	•	
LiF 200	Good	Good														•4	•	
LiF 220	Fair	High															Ti◀	→•
LiF 420	Low	Very high															Ni◀	▶•

Collimator Selection

The collimator changer can have up to four collimators $(0.15^\circ, 0.25^\circ, 0.60^\circ, 2.60^\circ)$. The 0.25° and the 0.6° are fitted as standard and the 0.15° and 2.60° are available as options.

K Lines L Lines	Sensitivity	Resolution	Be	В	С	N	0	F	Na	Mg	AI	Si	Ρ	S	CI	К	CaSn SnU
Coarse 2.6°	Very high	Low	•4	•	•	▶•											
Medium 0.6°	High	Fair				•	•	•	•	•	•	•	•	•	•	•	
Fine 0.25°	Good	Good						•	•	•	•	•	•	•	•	٠	•
Fine 0.15° (LiF220, LiF420)	Low	High									•						→•

The following table shows the relation between the different names of the collimators within the WinXRF software and the instrument display:

Name on the display	Resolution	Name
C1	0.25°	Fine
C2	2.60°	Coarse
C3	0.60°	Medium
C4	0.15°	Fine (LiF220, LiF420)

Diffraction System (XRD)

The XRD system is a combination of three different components used to measure the structure of the crystalline phases present in the sample:

- The detection device is a flat monochromator able to select one of the specific wavelengths of the X-ray tube spectrum. It is made up of a Soller collimator, a flat graphite crystal and a sealed Krypton detector.
- The primary beam collimators are used to irradiate the sample with a parallel beam of photons that has a well defined incident angle. These collimators are fitted on the PBD system and placed between the X-ray tube and the sample.
- The scanning screw rotates the whole assembly in an arc around the sample (where the sample corresponds to the centre) in order to detect a specific phase or to perform a scan.

The fixed wavelength measured by the system is modulated by the crystalline structures of the sample and thus can be used for qualitative and quantitative measurements of specific phases present in the sample.

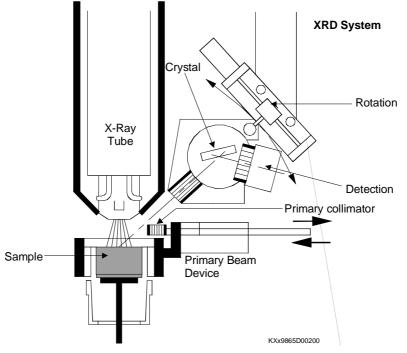


Figure 2.23

Two primary beam collimators are mounted. These are used to collimate the incident beam at two different incidence angles of 20° and -5° . This allows to cover a wide 2d range with the XRD system.

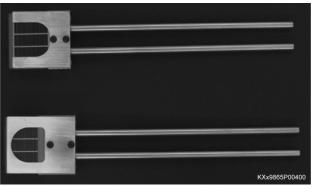
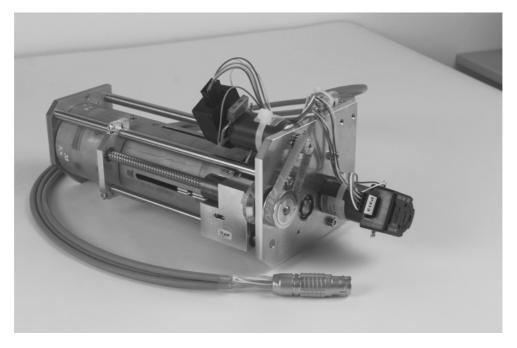



Figure 2.24

Primary Beam Device

The Primary Beam Device (PBD) is the mechanical changer for Primary Beam Filters and Collimators.

This changer can handle 4 devices, i.e. filters or collimators. Only two spaces are available for filters when the XRD system is installed.

Figure 2.26

Filter type	Name on the display	Use
Cu 0.25mm	F1	For the analysis of Ru, Rh, Pd, Ag and Cd (elements that are interfered by Rh lines from the X-ray tube).
Fe 0.01mm	F2	To improve the peak to background ratio of NiK α and CuK α lines.
Al 0.5mm	F3	To improve the peak to background ratio of PbL α , PbL β and AsK α , AsK β lines in light matrices.

Sample Handling System

The sample handling is undertaken by two main devices:

- **The sample changer** or **loader** used to bring the chosen cassette with the sample or the sample by itself onto the loading position.
- The sample introduction system is the combination of different components operating between the two environments, vis. the atmospheric pressure of the lab and the vacuum environment inside the spectrometer, and which ultimately brings the cassette or the sample by itself into the analytical position.

Sample Loading

Three sample loading systems are available:

- Single position loading.
- 12 Position Sample Changer.
- X-Y sample changer.

The sample changers move the samples automatically onto the loading position.

For complete unattended operation including sample preparation, the sample handling is performed by:

• The SMS 800 fully automated system.

Single Position Loading

Figure 2.27

12 Position Sample Changer

The 12 Position Sample Changer is part of the basic configuration of the instrument. The sample changer brings the cassette onto the loading position. The sample changer has 12 encoded positions and can move in both directions. The cassettes which are all identical are not coded. The coding for addressing the desired cassette is determined by the numbered position occupied by the cassette on the sample loader. This position is entered as the cassette number in the WinXRF Software.

Figure 2.28

X-Y Sample Changer

This sample loader is a large capacity sample changer available as an option in various configurations. The identification of the sample to be loaded is done by the position of the same on the tray. It can either load up to:

- ♦ 98 cassettes
- ♦ 98 samples

Figure 2.29

In this latter configuration, the X-Y sample changer is able to load samples directly into the ARL 9800 using a special sample support system. The X-Y sample changer is designed to have two trays and accepts the following configurations:

- Two trays for samples in conventional cassettes.
- Two trays for samples on support without cassettes.

X-Y Sample Changer for Cassettes

The sample is put into a conventional cassette and put on a tray of the X-Y sample changer. The position numbers range is from 1 to 49 for the left tray and from 101 to 149 for the right tray. Figure 2.30 shows the X-Y sample changer equipped with trays for cassettes only.

Figure 2.30

X-Y Sample Changer for Samples without Cassettes

The samples are put onto the sample supports that are delivered with the X-Y sample changer and then on the tray of the X-Y sample changer. The samples are handled and loaded into the instrument with the supports.

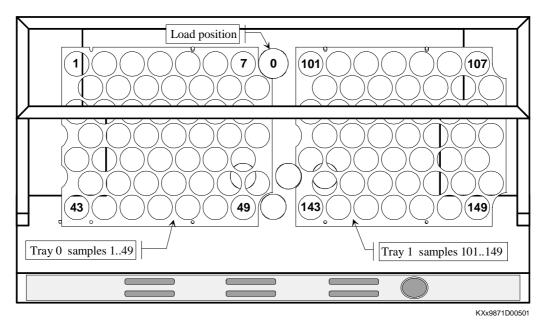


Figure 2.31

Depending on the sample size, different supports are available, as this is shown in the next figure.

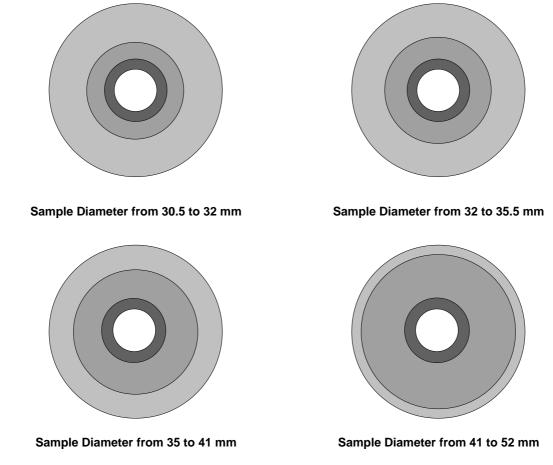


Figure 2.32

The next figure shows the X-Y Sample Changer with several types of samples.

Figure 2.33

X-Y Sample Changer for Simple Automation

A simple automation applications can be achieved using the X-Y sample changer adapted for belts and using the so called OEM protocol (see software documentation) to drive the instrument from a host computer.

Half of the surface (one tray on the right or on the left side) is dedicated for Setting-up Samples or manual samples without cassettes. On the other half of the surface, left or right depending on the configuration of the lab, space is available for one or two belts with the associated waiting positions, as well as for up to three trash basket positions (see Figures 2.34 and 2.35).

For production samples coming from the belt, the unloading position can be defined as follows:

- After analysis, the sample goes back to the same belt for evacuation before the next sample arrives.
- After analysis, the sample is placed on a waiting position until the next sample is loaded.
- After analysis, the sample is placed onto a second belt for evacuation.
- After analysis, the sample is discarded in a trash basket.

For samples placed manually on the tray, the unloading position can be defined as follows:

- After analysis, the sample goes back to its previous position.
- After analysis, the sample is discarded in a trash basket.

Setting-up Samples always go back to their original positions.

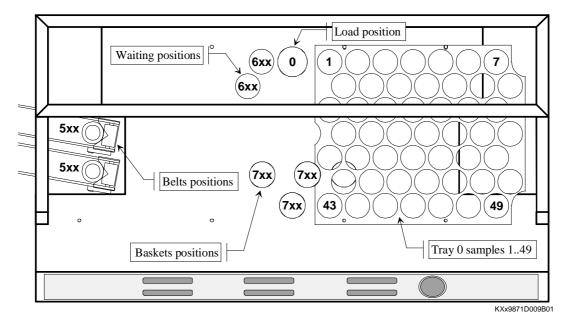


Figure 2.34

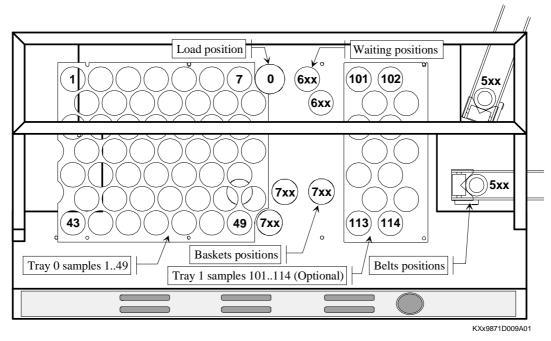


Figure 2.35

Note: The maximum height for the samples used with the trays is 25 mm and the weight should not exceed 200 g.

X-Y Sample Changer Operation

The X-Y sample changer can work only when the covers are closed and it is not recommended to open them during movements. Nevertheless, it is possible to open the covers to introduce or to remove a sample.

SMS-800 System: State-of-the-Art Automation

This system provides powerful sample handling capabilities by a robot.

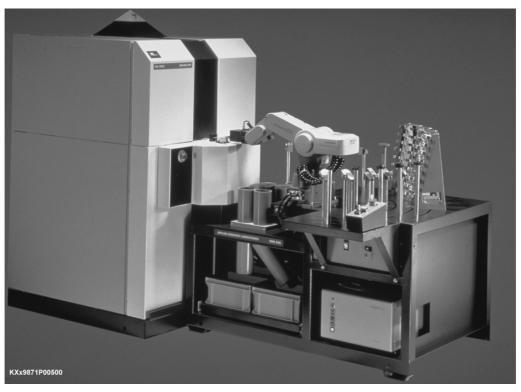


Figure 2.36

The figure below shows the main sample loading components.

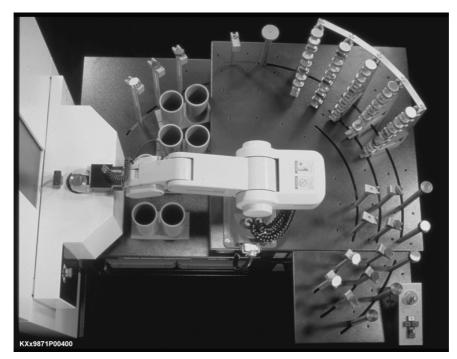
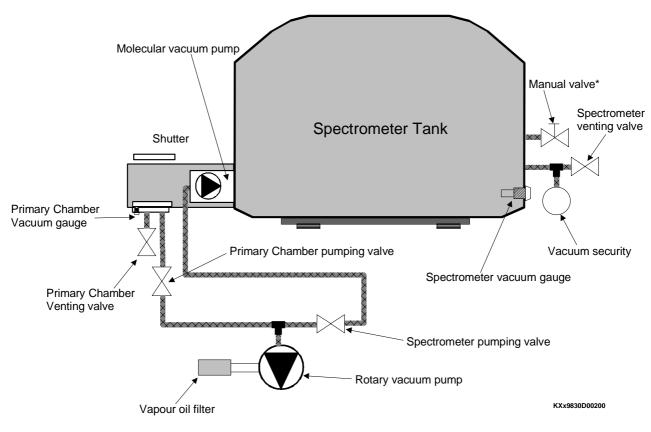


Figure 2.37

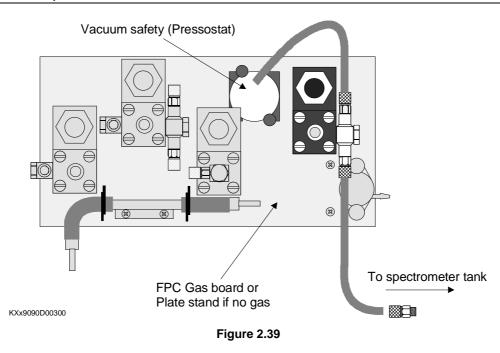
Analysis Environment

Spectrometer Environment


There are two possible environments:

- Vacuum This is the environment used for the measurement of all samples.
- Atmosphere This mode ventilates the spectrometer tank and is only used for maintenance.

The vacuum system utilizes a molecular pump to evacuate the spectrometer and to keep a clean and stable environment for the sample and the detection devices. In addition to this, the molecular pump is more efficient at low pressure and this helps to speed up the pumping procedure.


The molecular pump needs a primary vacuum of 1000 Pa to work properly. This primary vacuum is achieved with a vane pump. Since the volume of the primary chamber is really small compared to the tank (ratio of 1000), the pumping time can be greatly reduced and achieved with the same vane pump.

During this phase the instrument is pumped down. The pumping procedure is made up of a certain number of pumping phases. The process is started by opening the shell on the primary chamber and subsequent pumping through the primary chamber pumping valve with the vane pump. The more the vacuum pressure continues to decrease, the more the molecular vacuum pump speed increases from 12000 rpm to 27000 rpm to reach a normal functioning vacuum pressure below 8 Pa.

Note: The manual valve on the ARL 9800 should only be opened by trained and qualified personnel.

The vacuum security is present to prevent the analysis of a sample under air. This security is connected directly to the X-ray generator, and will also switch off the X-ray tube if the vacuum is lost.

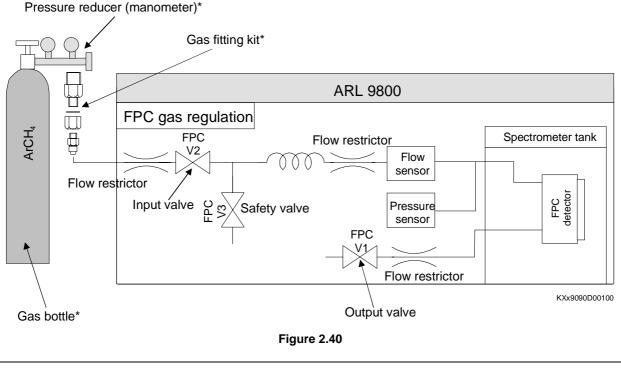
WARNING :

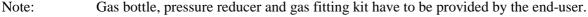
Never by-pass security that is installed in the ARL 9800 instrument. ARL will not be held responsible for any damage if the security is by-passed.

Gas Regulation (Optional)

The ARL 9800 requires one type of gas: Argon-Methane (P10 gas) for the flow proportional counter (FPC). This detector is installed on the goniometer and on some monochromators. The gas regulation system is controlled by the XGT board. In addition to these functions this electronic board drives the venting valve of the tank, checks the vacuum safety in order to prevent any X-ray leaks and controls the thermal stability.

Gas Regulation for Flow Proportional Counter (FPC)


Figure 2.40 shows the principle of the gas regulation. At the input of the ARL 9800 there is a restrictor R1 used to stabilise the argon-methane flow and the valve FPC V2 regulates the flow at 20ml per minute. The filter and the restrictor R2 smooth the flow to improve the reading of the flow sensor. The pressure sensor measures the argon-methane pressure at the gas input of the detector(s).


The valve FPC V1 regulates the pressure in the FPC detector(s) and the restrictor R3 avoids pressure shocks. The FPC V1 and the FPC V2 valve are proportional.

The valve FPC V3 is a safety valve to balance the pressure inside the detector with the atmospheric pressure when the main power supply is switched off or in case of problems with the regulation. The valve FPC V3 is an on/off device.

The pressure reducer fitted on the gas bottle must be adjusted according to the local pressure to have an absolute pressure of 1.25 bar at the gas inlet.

Example: the pressure reducer must be adjusted to 0.25 bar if the instrument is located at the sea level with 1 bar of local pressure.

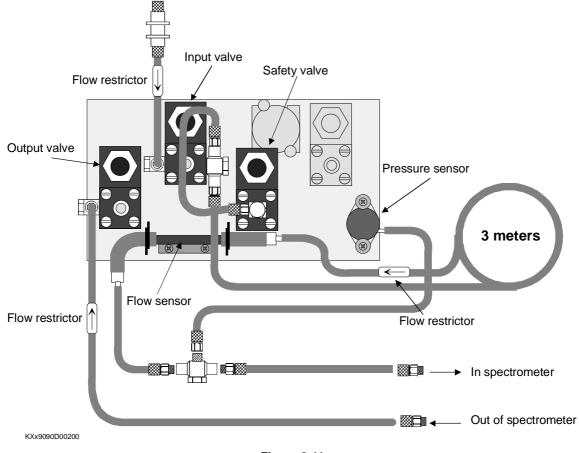


Figure 2.41 shows the location of the valves and sensors involved in the gas regulation.

Figure 2.41

Thermal Regulation

The ARL 9800 instrument is designed to provide a precise thermal regulation. To permit this regulation all components which generate a lot of heat that would have a significant influence on the temperature stability have been located into an non thermostatised area. On the other hand, all the components that need to have a precise thermal stability have been located into a thermostatised area (called oven). Figure 2.42 shows these two areas.

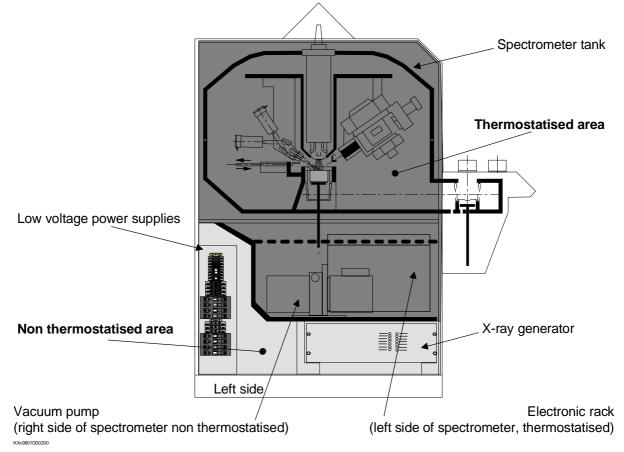


Figure 2.42

ARL 9800 XP Cooling Devices

This system cools the X-ray tube during operation. It also has all the water valves responsible for maintaining thermal stabilization of the spectrometer tank

The following figure shows the main cooling device components.

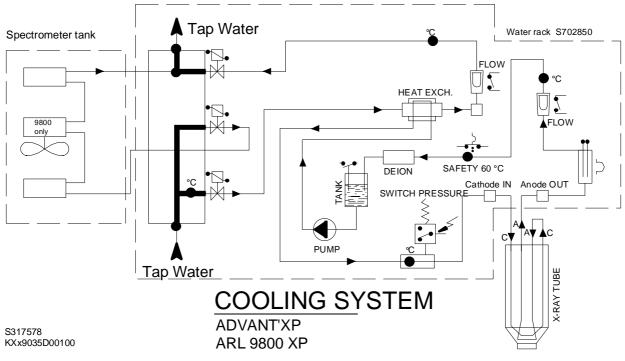
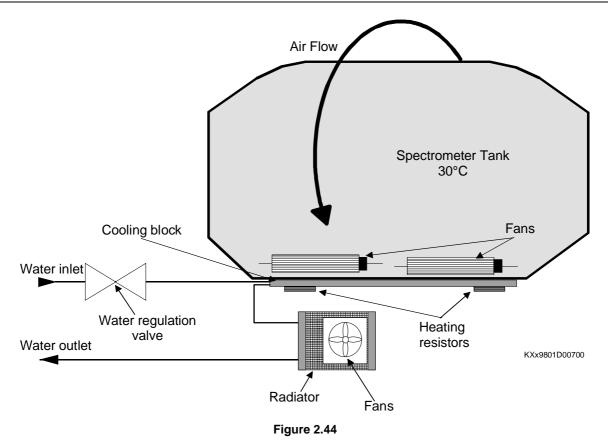


Figure 2.43

Instrument Thermostatisation

This system made up of radiators and heating resistors keeps the spectrometer tank and its delicate optical components at a carefully controlled temperature thereby ensuring superior analytical stability.


The temperature of the spectrometer tank is regulated by cooling with tap water and by heating with electrical resistors (see Figure 2.44). A temperature sensor located on the tank gives the information to the XGT electronic board. The XGT board drives the water valve and the heating resistors.

As shown in Figure 2.44, the spectrometer tank itself is cooled down with two water exchangers and an air/water exchanger to help cooling down the air around the tank. The water flow is controlled by a valve. Four electrical resistors are mounted on each exchange plate for heating.

The temperature tank is 30° C +/- 0.5° C. In order to optimise the thermal regulation, the crystals have also a heating system which stabilises their temperature at 38° C +/- 0.1° C. If the instrument has been turned off for a long period, it is recommended to wait about 4 hours before precise measurements are undertaken. An alarm message will indicate that the right temperature is not yet reached.

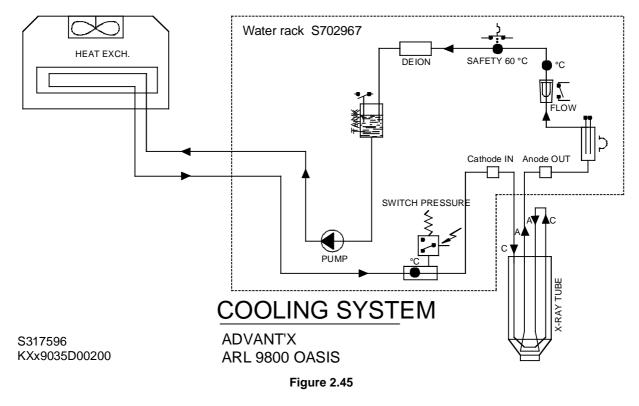

Note: The only component that is outside of the instrument and which could affect the stability due to a lack of thermal stability is the P10 gas bottle. The gas bottle needs to be protected from high temperature fluctuations or the gas needs to be transported in Cu pipes so as to reach the stable lab temperature before entering the instrument.

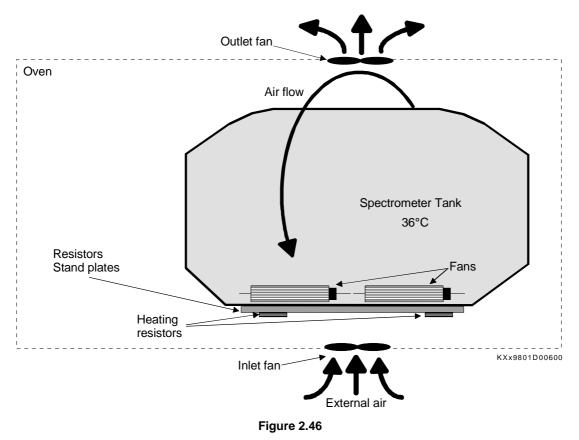
Figure 2.44 shows where the fans and the blocks with their resistors are located. An air flow also helps the temperature stabilisation.

ARL 9800 OASIS Cooling Devices

The following figure shows the components of the main cooling devices.

Instrument Thermostatisation

This system made up of heating resistors and fans keeps the spectrometer tank and its delicate optical components at a carefully controlled temperature thereby ensuring superior analytical stability.


The temperature of the spectrometer tank is regulated by cooling with fans and by heating with electrical resistors (see Figure 2.46). A temperature sensor located on the tank gives the information to the XGT electronic board. The XGT board drives the heating resistors and the fans.

As shown in Figure 2.46, the spectrometer tank is cooled down with two fans to help cooling down the air around the tank. At the button, the inlet fan inputs fresh air into the oven. At the top, the outlet fan outputs hot air from the oven. The air flow is controlled by this two fans. Height electrical resistors are mounted on two plates below the tank for heating.

The temperature tank is 36° C +/- 0.5° C. In order to optimise the thermal regulation, the crystals have also a heating system which stabilises their temperature at 43° C +/- 0.1° C. If the instrument has been turned off for a long period, it is recommend to wait about 4 hours before precise measurements are to be undertaken. An alarm message will indicate that the right temperature is not yet reached.

Note: The only component that is outside the instrument and could affect the stability by a lack of thermal stability is the P10 gas bottle. The gas bottle needs to be protected from high temperature variations or the gas needs to be transported in Cu pipes to reach the stable lab temperature before it gets into the instrument.

Figure 2.46 shows where the fans and the plates with their resistors are located. In the oven, an air flow helps also the temperature stabilisation.

Thermal Regulation of the Crystals

All crystals mounted on the Goniometers, the Monochromators and the Diffraction System (XRD) are equipped with a thermal sensor and a heating resistor to guarantee a stable temperature and thus very stable analytical results.

Sample Excitation

Sample excitation is achieved by means of an end window X-ray tube which is energised by a solid state power supply. The X-ray tube cooling is achieved with a closed circuit water system. This water circuit is cooled by tap water or ambiant air through an exchanger.

In order to avoid any problems with X-rays or high voltage, the ARL 9800 is equipped with a complete safety interlock system.

Note: Never by-pass security that is installed in the ARL 9800 instrument. ARL will not be held responsible for any damage if the security is by-passed.

X-ray Tube

The X-ray tube is perpendicular to the horizontal plane and the distance between the anode and the sample surface is 30 mm.

The end window tube design allows also a very high sensitivity for light elements and thus low limits of detection. Light element analysis is very efficient with the 75 micron beryllium window because the radiation which is optimal for exciting the light elements is poorly absorbed by the thinner tube window. The usual target is Rhodium.

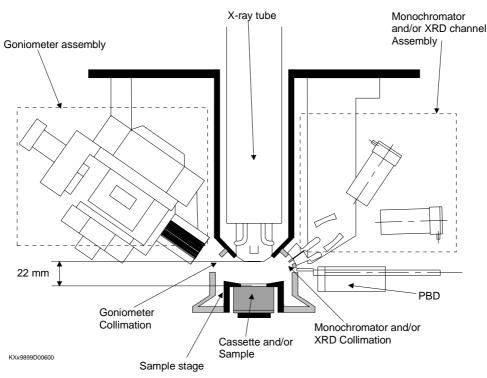


Figure 2.47

The power supply is a solid state generator. This unit controls the high voltage and the current applied to the tube. The interface with the electronic is the XPS electronic board. The voltage can be selected between 0 and 60 kV by steps of 1 kV; an option is available to reach 70 kV. The current can be selected between 0 and 120 mA by steps of 1 mA with some restrictions if the voltage selected is lower than 20 kV because it is physically not possible to get for example 0 kV 120 mA. With the following formula the maximum current according to the desired high voltage can be calculated:

$$\text{Imax} = \frac{4}{100} \left(26 \text{*kV} + 5 \text{*kV}^2 \right)$$

where:

Imax is the maximum current authorised kV is the desired voltage

Examples:

kV desired	I maximum	kV desired	I maximum
0 kV	0 mA	10 kV	30 mA
5 kV	10 mA	≥ 30 kV	120 mA

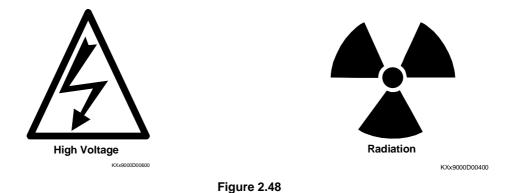
The resulting power of the chosen combinations must not exceed the maximum power (XP: 3.6 kW).

X-ray Power Supply (ARL 9800 OASIS)

The power supply is a solid state generator. This unit controls the high voltage applied to the tube. The current applied to the filament tube and the interface with the electronic is the XPSLP electronic board. The voltage can be selected between 0 and 50 kV by steps of 1 kV. The current can be selected between 0 and 20 mA by steps of 1 mA with some restrictions if the voltage selected is lower than 20 kV because it is physically not possible to get for example 0 kV 20 mA.

Eco Mode

The Eco mode is a function which allows you to lower the power consumption and to increase the life time of the X-ray tube. When the instrument is idle for a few hours the power is reduced to a stand-by value. For example, if the working condition is 50 kV and 50 mA and the instrument has been idle for 1 hour the power will be reduced to 40 kV and 20 mA in 30 minutes. As soon as the user starts a new measurement the required working condition will be reached automatically.


Another function is available to program the time to raise the X-ray tube to a certain working condition. This can be helpful if the instrument needs to be stabilised before the analysis is started. For example, the X-ray tube is at 40 kV / 20 mA during the night and in the morning it is raised to 50 kV / 50 mA 1 hour before the user arrives in the lab.

The Chapter Instrument Preparation explains how this mode can be set up.

Chapter 2

X-ray Safety Interlock

All panels or covers with one of the signs shown in Figure 2.48 are controlled by an interlock system. It will prevent from switching on the power on the X-ray tube if they are not in place. We strongly recommend the user to contact an ARL office if the user needs to remove these protections.

This safety interlock operates only on the high voltage for the X-ray tube but the emergency button will switch off the main voltage power supply.

X-ray Cooling System (ARL 9800 XP)

The cooling of the X-ray tube is achieved with an internal closed circuit de-ionised water system, which in turn is cooled through a heat exchanger which uses either tap water. Figure 2.49 shows the details of the cooling system.

Figure 2.49

Water Cooling Circuit

The principle of the water cooling system is shown in Figure 2.50. The ARL 9800 XP checks several parameters of the water system like for the primary water circuit:

- Water flow
- Input water temperature
- Output water temperature

For the secondary water circuit:

- Water tank level
- Input water temperature
- Water resistivity
- Water flow (minimum 2.0 litre per minute)
- Water pressure at the tube inlet (maximum 4 bars)
- Output water temperature safety
- Output water temperature

Note: If one or several parameters are not within their tolerance, the X-ray tube power will be switched off immediately.

The water to cool down the X-ray tube goes first through the external cooling (called also cathode cooling) and then to the anode.

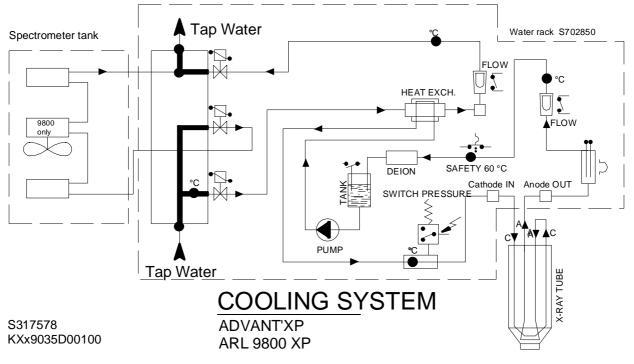
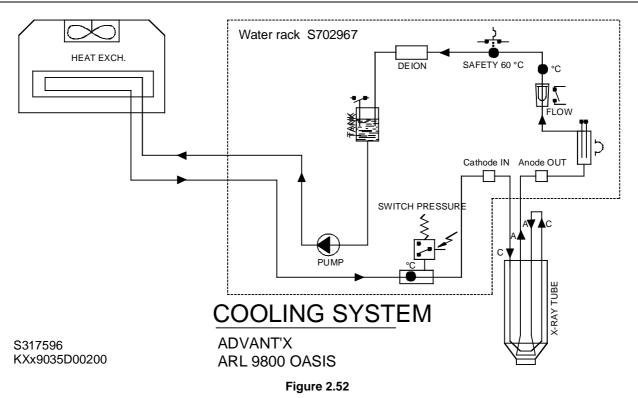


Figure 2.50

X-ray Cooling System (ARL 9800 OASIS)

The cooling of the X-ray tube is assumed by an internal closed circuit which is cooled through a external heat exchanger with air. Figure 2.51 shows the details of the cooling system.

Figure 2.51


Cooling Circuit

The principle of the cooling system is shown in Figure 2.52. The ARL 9800 OASIS checks several parameters of the water circuit:

- Water tank level
- Input water temperature
- Water resistivity
- Water flow (minimum 2.0 litre per minute)
- Water pressure at the tube inlet (maximum 4 bars)
- Output water temperature safety
- Output water temperature

Note: If one or several parameters are not within their tolerance, the X-ray tube power will be switched off immediately.

The water used to cool down the X-ray tube goes first through the external cooling (called also cathode cooling) and then to the anode.

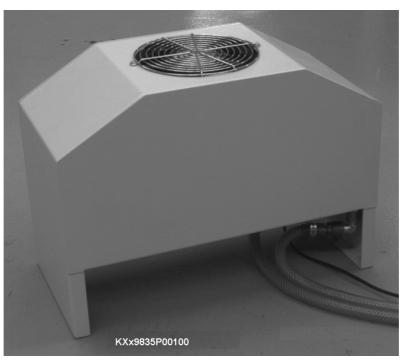


Figure 2.53 Water/heat exchanger (ARL 9800 OASIS version only)

The electronics of the ARL 9800 can be divided into the following groups:

Main Connections

These connections are made to connect the main power to the different internal components. It also allows to interface the ARL 9800 instrument with the external devices (water cooler, UPS, computer, etc.).

Electronic Rack

The ARL 9800 instrument is controlled by the electronic boards mounted in this rack. They also provide various status information to the operator via the instrument display.

X-ray Generator

This power supplies delivers the high voltage and current for the X-ray tube.

Low Voltage Power Supplies

These components generate all necessary low voltage powers for all the internal engines, valves, electronic boards, etc.

IMPORTANT NOTE

Never manipulate or touch electrical components without having switched off the complete ARL 9800 instrument with the main breakers.

Connection of the ARL 9800 to the main power must be made by a certified ARL specialist.

Philosophy of the Electronics

The following figure shows the basic electronics interconnection principle of the analytical components.

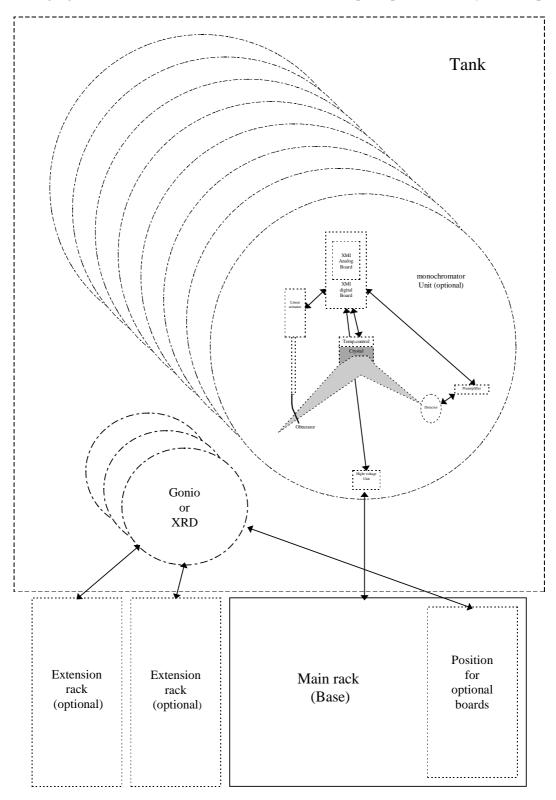


Figure 2.54

Main Boards Rack

The following standard boards are contained in the main rack:

• XQM, XST, XGT, XPS, XSP

Depending on the sample handling system, one of the following boards is installed:

- 12 Position Sample Changer (XCM)
- X-Y Sample Changer (XHI)
- No Sample Changer (no board)

3 positions for one goniometer or one XRD system:

- One F44 goniometer (XGI, GonioPowerBoard and XDI)
- One XRD system (XRDI, GonioPowerBoard and XDI)
- Nothing (three free positions)

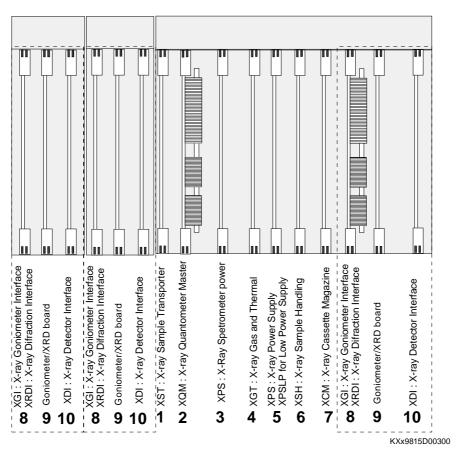


Figure 2.55

Extension Boards Rack

The extension rack contains 3 positions (see Figure 2.55, positions 8, 9 and 10) for one goniometer or one XRD system:

- One F44 goniometer (XGI, GonioPowerBoard and XDI)
- One XRD system (XRDI, GonioPowerBoard and XDI)

Note: A maximum of two goniometers and one XRD system or 32 monochromators can be installed in the instrument.

Description of the Boards

Position	
1	XST X-ray Sample Transporter This board manages all the sample loading devices.
2	XQM X-ray Quantometer Master This board is the interface with the computer and it manages all the other boards. The vacuum is controlled by the board.
3	XSP X-ray Spectrometer Power This electronic board is the power interface between the XQM and its devices.
4	XGT X-ray Gas and Thermal This electronic board monitors and controls the FPC gas part and the thermal part of the spectrometer.
5	XPS X-ray Power Supply This electronic board controls the X-ray power supply and the X-ray tube cooling system.
5'	XPSLP X-ray Power Supply for Low Power instrument (OASIS) This electronic board controls the HV X-ray power supply and the X-ray tube cooling system, and supply the X-ray tube filament current.
6	XHI X-ray Sample Handler Interface This electronic board drives the large sample changer (XY samples magazine).
7	XCM X-ray Cassette Magazine This electronic board drives the 12 Position Sample Changer.
8	XGI X-ray Goniometer Interface This electronic board drives the goniometer movements, the collimator and crystal changers.
	XRDI X-ray Diffractometer Interface This electronic board drives the diffraction system.
9	Goniometer Power This electronic board is the power interface between the XGI/XRDI and the mechanical movements. It supplies also the high voltage for the detectors.
10	XDI X-ray Detector Interface This electronic board counts the number of photons received by the detectors.

In the tank XMI X-ray Monochromator Interface

For each monochromator such an electronic board is in charge of the monochromator control including the high voltage for the detector, the intensity attenuators and the photons counting.

XQM X-ray Quantometer Master

This board is the master board of the electronics. It dialogues to slaves by two serial links. One is used to dialogue with XST, XGT, XPS, XCM, XHI, XSP and XMI's (called XSN X-ray Services Network). The other dialogues with XGI's or XRDI board (called XGN X-ray Goniometer Network). Its principal task is to synchronise the slaves.

It controls also the vacuum components like the 4 vacuum valves, the 2 vacuum pumps and the vacuum gauges, helped by the XSP board, and the 'PowerDistributionBoard' which is located at the rear of the instrument.

The board checks and monitors all the important status. The most important status are:

- The speed of the molecular pump
- The vacuum pressure in the tank and in the primary chamber airlock
- The temperature of the electronic rack
- The low voltage power supplies used on the board

XSP X-ray Spectrometer Power

This board drives the molecular pump, the 4 vacuum valves and the PBD (Primary Beam Device). It generates -5V used in the instrument and +55V used to drive the molecular pump.

The board checks and monitors all the important status. The most important status are:

- The main voltage line 1 and line 2 (true RMS)
- The voltage of the molecular pump
- The current of the molecular pump
- The temperature of the molecular pump
- The low voltage power supplies used on the board

XST X-ray Sample Transporter

This board is used to control the shutter of the primary chamber, the load lift, the transfer axis, the analysis lift and the sample rotation. When a sample is loaded into the spectrometer its height is checked.

The board checks and monitors all the important status. The most important status are:

- The angular error of the rotation
- The low voltage power supplies used on the board

XGT X-ray Gas and Thermal

This board controls the pressure and the flow of the FPC gas helped by the board 'FpcGasControlBoard' located in the thermostatised part below the tank. It also controls the temperature of the spectrometer with one water valve and 8 power resistors.

The board checks and monitors all the important status. The most important status are:

- The gas pressure
- The gas flow
- The tank temperature

• The low voltage power supplies used on the board

XPS X-ray Power Supply

This board controls the generator which supplies the high voltage to the anode and the current to the filament of the X-ray tube. It controls also the safety circuit and the internal and external water circuit.

The board checks and monitors all the important status. The most important status are:

- The voltage of the X-ray tube
- The emission current of the X-ray tube
- The filament current
- The number of X-ray tube arc events
- The X-ray tube running time
- The temperature of the water
- The resistivity of the internal water which is used to cool the anode of the X-ray tube
- The low voltage power supplies used on the board

XPSLP X-ray Power Supply for Low Power instrument (OASIS)

This board controls the generator which supplies the high voltage to the anode. It generates the current for the filament and controls the emission current of the X-ray tube. It controls also the safety circuit and the deionized water circuit.

The board checks and monitors all the important status. The most important status are:

- The voltage of the X-ray tube
- The emission current of the X-ray tube
- The X-ray tube leakage current
- The filament current
- ♦ The filament voltage
- The number of X-ray tube arc events
- The X-ray tube running time
- The temperature of the deionized water
- The temperature of the laboratory
- The temperature of the board
- The temperature of the outlet air of the HV generator
- The resistivity of the deionized water which is used to cool the anode of the X-ray tube
- The low voltage power supplies used on the board

XHI X-ray Sample Handler Interface

This board controls the large X-Y sample changer. It also controls the belt(s) if the instrument is automated and has belt(s) to convey the samples.

The board checks and monitors all the important status. The most important status is:

• The low voltage power supplies used on the board

XCM X-ray Cassette Magazine

This board controls the 12 Position Sample Changer.

The board checks and monitors all the important status. The most important status is:

• The low voltage power supplies used on the board

XGI X-ray Goniometer Interface

This board controls all movements of the goniometer by reading the encoder signals of the 2 axis. It controls also the collimators changer, the crystal changer and the temperature of the crystal changer. It synchronises the different motion according to the analysis.

The board checks and monitors all the important status. The most important status are:

- The high voltage of the detectors
- The temperature of the crystal changer
- The low voltage power supplies used on the board

Goniometer Power

This board generates the current for the 2 motors and the high voltage for the 2 detectors on the goniometer.

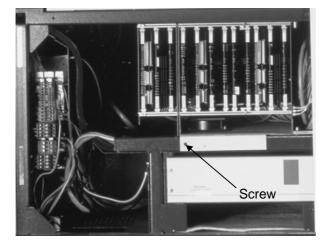
XDI X-ray Detector Interface

This board counts the photons which are detected by the detectors on the goniometer. The pulses are first corrected in magnitude (AGC) and in time (to decrease the pile-up effect), then converted and selected according to the PHD settings.

The board checks and monitors all the important status. The most important status are:

- The AGC value
- The reference voltages
- The low voltage power supplies used on the board

XMI X-ray Monochromator Interface


This board, positioned in the tank, counts the photons which are detected by the detector on the monochromator. The pulses are first corrected in magnitude (AGC). Then the pulses are converted and selected according to the PHD settings. It also controls the intensity attenuators and the high voltage unit which is positioned at the bottom of the tank.

The board checks and monitors all the important status. The most important status are:

- ♦ The AGC value
- The temperature of the board
- The high voltage of the detector
- The temperature of the crystal
- The low voltage power supplies used on the board

Sample Loading System

To access the spectrometer lift, the electronic rack can be rotated forward by loosening the locking screw.

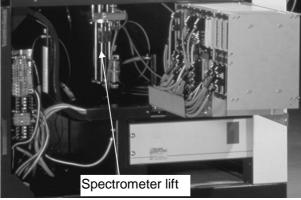


Figure 2.56

The following figure shows the principle of the sample loading system.

Sample Changer

The sample changer allows to prepare several samples in advance. Furthermore, the required samples can then be selected by the analytical task through the coded positions of the sample changer. Various types of sample changers can be mounted (12 position, X-Y sample changer, SMS Automation System).

Shutter Mechanism to isolate the cassette and/or the sample in the primary chamber from the outside world in order to pump down the sample to the pressure corresponding to the vacuum inside the spectrometer.

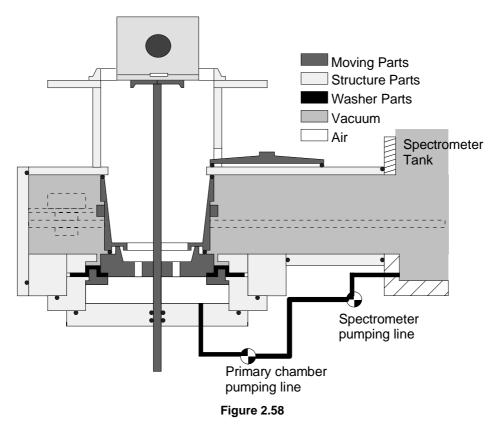
- **Loading lift** Mechanism to transport the cassette and/or the sample from the sample changer into the primary chamber.
- **Transfer** Mechanism to move the sample from the loading lift to the spectrometer lift.

Spectrometer lift

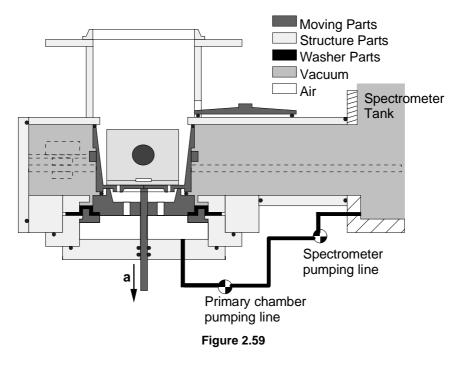
The spectrometer lift raises the cassette and/or the sample to the analytical position after it has been transferred from the primary chamber.

Sample rotation

Mechanism that spins the cassette and/or the sample during the analysis in order to compensate for inhomogeneities and irregular surface structures due to surface preparations, like grinding and milling. The sample rotation motor spins the sample at 1 revolution per second (default value) during the analysis time.

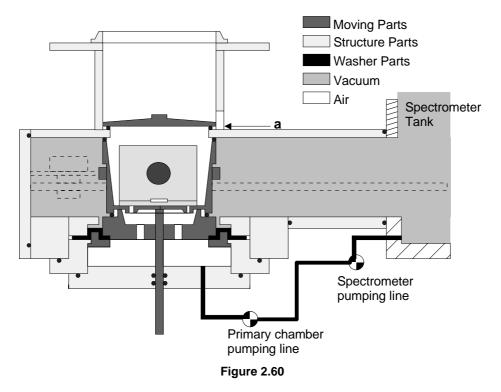

Sample Loading Process

The ARL 9800 is designed to analyse solid samples. These samples can be inserted into a cassette or can be put onto an adapter ring for analysis.

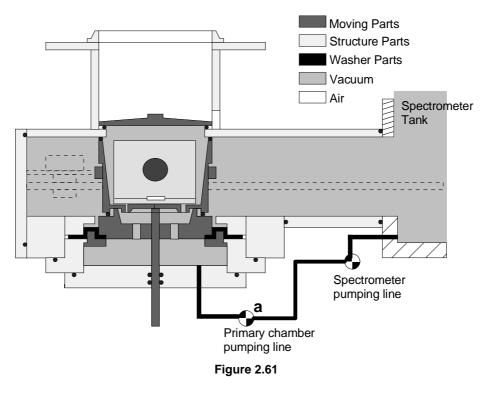

The analysis of the samples is done under vacuum. The sample is first loaded into the primary chamber which is under air. The shutter closes and the primary chamber is pumped down to a low pressure. The sample is then transferred to the spectrometer and raised to the analytical position, as this is explained hereafter.

• Step 1

Figure 2.58 shows the instrument ready to load a sample. The sample changer brings the desired sample onto the primary chamber lift.

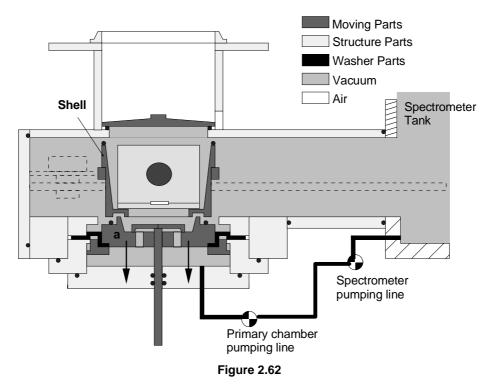


The loading lift places the cassette and/or the sample into the shell (see movement 'a').

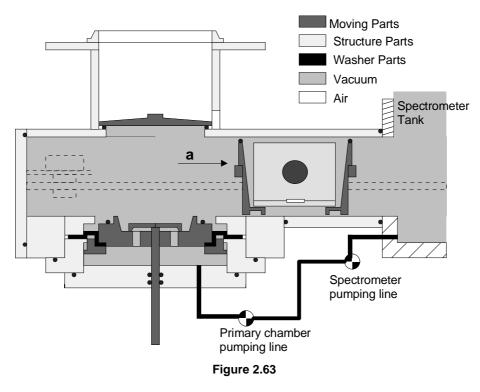


• Step 3

The shutter is closed (see movement 'a').

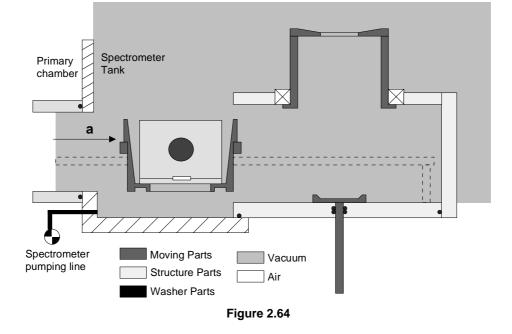


The primary chamber is then evacuated to a low pressure by the mechanical vacuum pump (see action 'a').

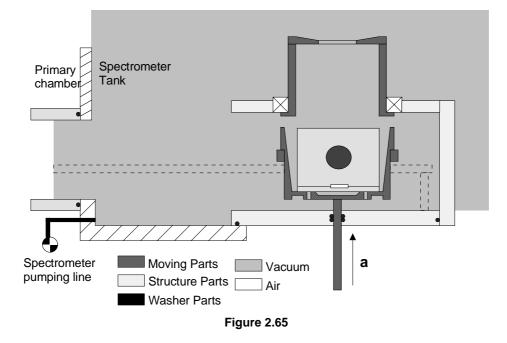


• Step 5

When the required vacuum is reached, the lift goes down further to open the ring and free the shell (see movement 'a').



The shell and cassette are moved out of the primary chamber by the transfer mechanism (see movement 'a').



• Step 7

The cassette and/or the sample is then transferred into the spectrometer (see movement 'a').

As soon as the shell is under the analysis position, the spectrometer lift raises the cassette and/or the sample to the analysis position (see movement 'a').

• Step 9 (Sample in Cassette)

The sample is raised to the analysis position by the spectrometer lift (see movement 'a').

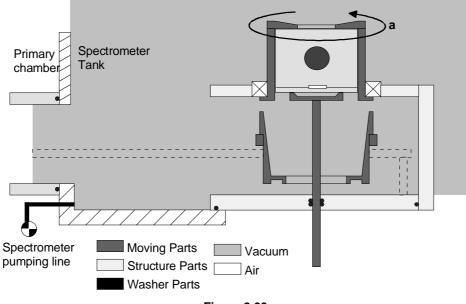


Figure 2.66

• Step 9 (Sample without Cassette)

The figure below shows a sample in the analytical position without a cassette, only placed on an adapter ring. The spectrometer lift moves the sample up into the analysis position. This movement is controlled by a sensor and therefore allows that the thickness of a sample can vary. The lift can also compensate for a non-parallelism of samples of 2 mm.

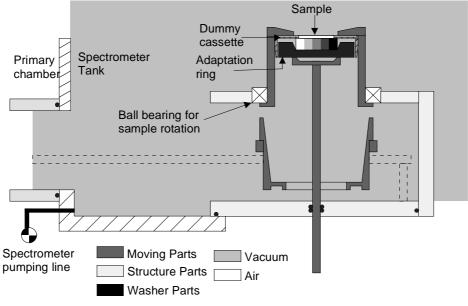
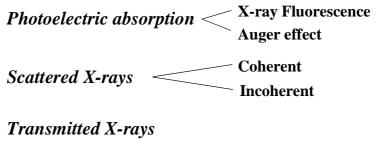


Figure 2.67

3

ANALYSIS PRINCIPLE

3 ANALYSIS PRINCIPLE


Introduction

X-ray spectrochemical analysis is based on the fact that the chemical elements emit characteristic radiations when subjected to appropriate excitation. The emission of characteristic line spectra can be induced by either the impact of accelerated particles such as electrons, photons, alpha particles and ions; or by the impact of high-energy radiation from an X-ray tube or from a suitable radioactive source. Generally, direct electron excitation is used in electron microprobe techniques, while radioisotope sources and proton generators are commonly associated with energy dispersion.

X-ray Emission

In a typical spectroscopic experiment, we usually interact with the neutral atom by supplying it with a certain amount of energy. The nature of the supplied energy can vary depending on the technique. For example, in a XRF experiment, we expose the atoms to X-radiation (called primary X-rays) while in an optical emission experiment we might use an electrical discharge or a high temperature plasma source to provide certain quantity of energy. The atom then absorbs some or all of this energy if this helps to displace the electrons. The displacement of electrons can occur within the atom, i.e. the electron goes to a higher energy state within the same atom by absorbing the incident energy, in which case we obtain an excited atom. The electron can also leave the atom in which case we get an ionized atom (a positive ion) since there will be excess positive charge in the nucleus. In a general situation, both excited atoms and ions may be present together.

In our case, when the primary X-rays from the X-ray tube interact with the sample, the following phenomena take place:

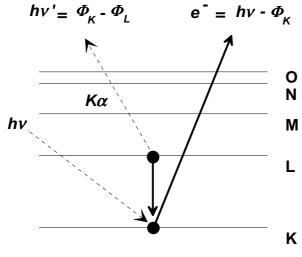
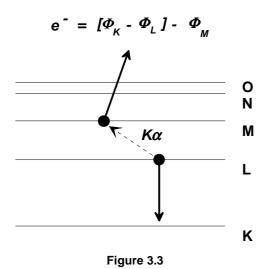
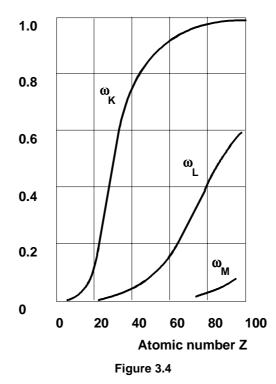


Figure 3.1

Photoelectric absorption


When a sufficiently energetic X-ray photon interacts with an atom, several phenomena take place. One interaction involves the transfer of the photon energy to one of the electrons of the atom (e.g. a K shell electron) resulting in its ejection from the atom. The distribution of electrons in the ionized atom is then out of equilibrium and within an extremely short time returns to the normal state, by transitions of electrons from outer shells to inner shells. Each such electron transfer, for example from the L shell to the K shell, represents a loss in the potential energy of the atom; this energy reappears as a photon (in this case a K α photon) whose energy is the difference between the binding energies of the two shells. One of the two processes can take place, namely:

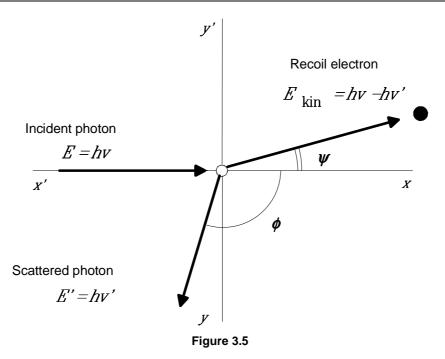
a) The X-ray photon escapes from the atom and contributes to a characteristic radiation of the atom (Figure 3.2 left).


b) Or the photon is absorbed within the atom itself on its way out and ionizes the atom in an outer shell; for example a Kα photon can eject an L, M or N electron; this phenomenon is called the Auger effect. Again, the ionized atom becomes a source of radiation as explained above (Figure 3.3). It should also be noticed that because of the Auger effect in the higher levels two or more vacancies could be created. The creation of double vacancies is responsible for the appearance of satellite peaks.

c) The Auger emission is more probable for low atomic numbers while X-ray emission is more likely for high atomic numbers. The probability that an X-ray photon will be emitted (instead of an Auger electron) is called Fluorescence Yield.

The Figure 3.4 shows the fluorescence yield as a function of atomic number. The K lines are more probable than the L lines which explains the difference in the yield for the K and L type transitions. In practical X-ray spectrometry, we use the K lines to measure elements with low to medium atomic number while we switch over to measure L lines for the heavy elements, or even to the M lines.

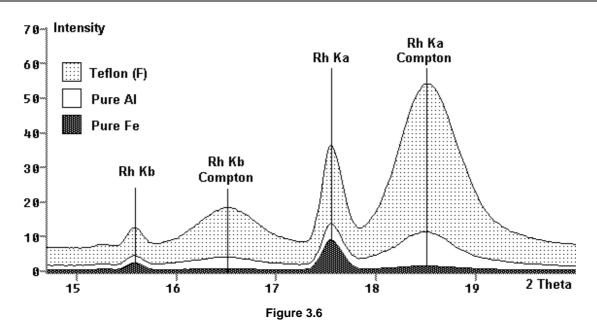
Fluorescent yield ω


Scattering

Scattering of primary X-rays by the sample results in two processes: Coherent scattering (without loss of energy) and Compton scattering (with a little loss of energy). As mentioned before, not all of the incident X-rays participate in the photoelectric absorption. Some of them do not reach the inner shells and thus they do not give rise to absorption. Instead, they are deflected by the atoms in two ways:

- a) The incident X-ray photon is deflected without loss of energy.
- b) The X-ray photon is deflected with a slight loss in energy and thus with an increase in wavelength.

In a) the sample scatters primary X-rays with exactly the same energy. This scattering is thus called coherent or elastic scattering. In b), as shown in Figure 3.5, some of the photons collide with a loosely bound electron in an outer shell of the atom. The electron recoils under the impact and leaves the atom carrying with it some of the energy of the incident photon. Thus the primary photon is scattered with a slightly lower energy. This phenomena is called Compton scattering. The difference in energy between the incident photon and the Compton photon depends only on the angle (ϕ) between the unscattered and the scattered X-rays. It is given by the following equation:


$$\Delta \lambda = \lambda' - \lambda = h/m_0 c (1 - \cos \phi) = 0.02426 (1 - \cos \phi)$$

Thus $\Delta\lambda$ is independent of both X-ray wavelength and the atomic number of the scatterer. On the other hand, the intensity ratio of the coherent to the Compton scattering depends on the atomic number of the scatterer. In practical X-ray spectrometry, we are confronted with scattered X-rays: Coherently scattered X-rays contribute to the background in the X-ray spectra. Since they fall exactly at the same energy as the measured line of a given element, they can't be discriminated in general. Thus background in XRF can largely be attributed to scattering of primary X-rays by the sample. Since heavier elements absorb more and scatter less, the background level in the spectra from heavy elements is almost insignificant. On the other hand, it becomes the limiting factor for measuring light elements at low concentrations.

Again, in practical XRF, this amounts to saying that, if the matrix is heavy, we have less problems with the background. If we are working with light matrices, we should be aware of the high level of background. Compton scattering manifests as broad lines accompanying the K and L lines of the X-ray tube target element. Figure 3.6 shows an example of these considerations.

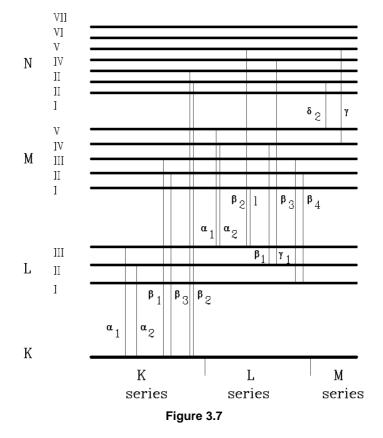
All three spectra have been recorded with a Rh anode X-ray tube. Spectrum a) was measured with a light matrix (Teflon), b) with a medium (Pure Al) and c) with a heavy matrix (Pure Fe). The four lines observed are the Rh K α and K β and the Rh_{Compton} K α and K β lines. We notice that the intensities of all four lines decrease as we go to heavier matrices. On the other hand, the ratio between the coherent and the Compton lines increase as we go to heavier element matrices.

Transmission

Transmission is the counterpart of absorption. The transmission or absorption of X-rays in the matter can be described by an exponential relation. If I_0 is the intensity of X-rays (of energy E or wavelength λ) incident on a sample of thickness t (in cm), then the transmitted X-ray intensity I is given by:

$$I = I_0 \exp - \mu \rho t$$

- μ :mass attenuation coefficient (cm²/g)
- ρ :the density of the sample (g/cm³)


The mass attenuation coefficient here refers to a particular wavelength in a given absorber, and is in fact the sum of two coefficients τ and σ , where τ is the *mass photoelectric absorption coefficient* and σ the *mass scattering coefficient*:

 μ total = τ photo + (σ coherent + σ incoherent)

These coefficients can be found in standard textbooks and general literature. This formulae is quite useful when we need to calculate the thickness of intensity filters, the penetration depth of X-rays in a given sample etc. Attenuation of X-rays by photoelectric absorption and coherent or incoherent scattering is essentially an atomic property. Consequently, the mass coefficients of compounds follow the simple law of weighted average, also called the additivity law. For example, a compound containing the elements *i*, *j*, *k* etc. in the proportions by weight M_i , M_j , M_k etc. has a mass attenuation coefficient $\mu = \Sigma M_i \mu_i / \Sigma M_i$ or, in terms of the weight fractions C_i , C_i , C_k etc. $\mu = \Sigma C_i \mu_i$.

Nomenclature used in XRF

The electrons in an atom do not all follow the same orbit but arrange themselves in well defined shells around the nucleus; these shells are known as K, L, M, N, O, P and Q; the K shell being nearest to the nucleus. Each shell represents an energy level, composed of different sub-levels.

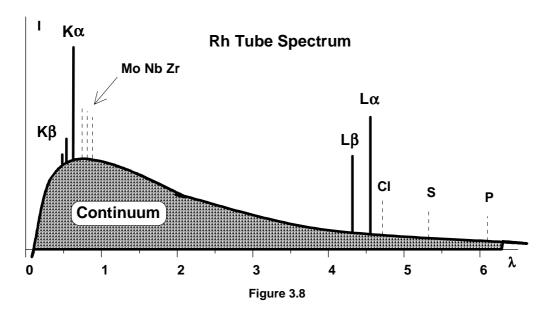
The K shell has the lowest energy and the Q shell the highest, but it is important to note that the largest energy difference between any two shells is between the K and L shells; the smallest difference is between the outermost shells. The energy of a given electronic shell depends on the atomic number and thus, it varies from element to element. Further details of atomic structure can be obtained from any standard text book of Atomic Physics. X-ray spectral lines are grouped in series: K, L, M, N etc. All the lines in a series result from electron transitions from various higher levels to the same shell.

When a K shell vacancy is filled by an electron from the L shell we get the K α line radiation, whereas when an electron from the M shell fills this vacancy, we get the K β line radiation. Similarly, if a vacancy in the L shell is filled by an electron from the M shell we get the L α line radiation, if it is filled by an electron from the N shell, we get the L β line radiation and if it is filled by an electron from the O shell we get the L γ line radiation. Every element has its characteristic K, L and M series. Thus, light elements give rise to only K lines, mid range elements can emit both K and L series while the heavy elements produce K, L and M series. Thus the spectra get increasingly complex when we go towards heavier elements. In practical XRF, we select the principle lines of K and L series to measure an element although there may be other lines present. The selection of an analysis line depends mainly on the type of sample, the elements present in it, the concentration range of the elements and the excitation conditions.

Instrumentation

In X-ray fluorescence we basically distinguish between two types of instruments: the wavelength dispersive (WDX) and the energy dispersive spectrometer (EDX). Both WDX and EDX employ an X-ray source for exciting the sample. They essentially differ in the way the X-ray spectra emitted by the sample are detected. In WDX, the fluorescence spectrum is dispersed into discrete wavelengths using a dispersion device (e.g. a crystal) which are then detected using a gas proportional or scintillation counter. In EDX, one measures the entire fluorescence spectrum directly using a solid state detector such as Si(Li) or HPGe which is then processed using a multichannel analyser to obtain the information on an energy scale. The energy and the wavelength of a photon are related in the following way:

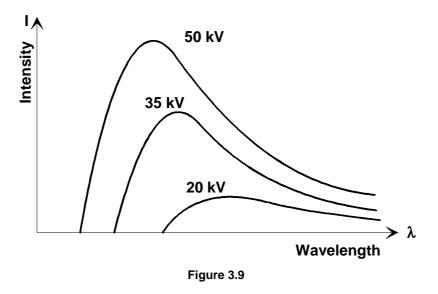
$$E=hv=hc/\lambda=12.4/\lambda$$


The main components of an WDX spectrometer can be seen in Figure 3.10. They are: X-ray tube, primary collimators, crystals, secondary collimators and detectors. Additional components are: Primary beam filters, aperture mask and attenuation filters.

X-ray Tube

The two types of X-ray tubes which have been the subject of considerable discussion in recent years are: End-window and Side-window tubes. Today, all major manufacturers equip their instruments with the Endwindow tube which proves that this tube is the more versatile and the better compromise for the whole element range. Therefore, the differences in performance and construction will not be discussed here.

The tube houses filament and an anode under a high vacuum metal enclosure. The filament is heated by an electric current which then emits electrons by thermionic emission. These electrons are then attracted and accelerated towards an anode (target) when a high voltage difference (10-70kV) between the anode and the cathode is applied. Primary X-rays are produced when these electrons of high velocity collide with the target material. Upon impact, most of the kinetic energy of the electrons is converted into heat requiring the anode to be cooled efficiently. Only a small part (0.2-0.5% depending on the type of target) of the electron energy is usefully converted into X-rays.


This X-ray radiation consists of the *Continuum* or *Bremsstrahlung* or *White radiation*, the characteristic X-ray lines of the target material (K, L, ... series) and characteristic lines from any contaminants. Thus, as shown in Figure 3.8, the primary spectrum from a conventional X-ray tube consists of intense characteristic lines from the anode material (e.g. Rh) on a broad envelop of continuum.

Continuum

The impact of the electrons on the target is non-selective and produces a wide range of energy transitions and consequently a continuum of X-ray emissions. In other words, stepwise deceleration of the electrons causes a continuum of emission lines.

This continuum has a short wavelength limit which depends on the accelerating voltage used and is independent of the target material. However, the intensity of the continuum increases with atomic number of the target. Figure 3.9 shows the intensity of the continuum spectrum at three different voltages for the same target material. We notice that the intensity of the spectrum increases with the voltage and the minimum wavelength limit shifts to lower wavelengths (i.e. higher energies) when we go from 20 to 50 kV.

One can express the integral intensity (I_{int}) of the continuum as a function of the target material (Z, the atomic number), the high voltage (V) and the current (i) as follows:

$$I_{int}$$
 is proportional to (i Z V²)

Thus, for a given target and high voltage, the intensity of the continuum is directly proportional to the emission current.

Characteristic spectra and choice of the X-ray tube target

When the incident electrons have sufficient energy to eject electrons from the K and L shells of the target atoms, then one obtains the characteristic K and L lines of the target material. Unlike the continuum, this phenomena is selective and causes intense sharp lines of the given target element. Figure 3.8 shows these lines superposed on the continuum. The heavier the element of the target, the more intense the characteristic lines emitted. However, in practice the efficiency of a given target is dependent on the operating conditions (kV and mA).

The X-ray tube target is selected based on several factors. One of the most important factors is related to the efficiency of the target lines to excite a wide range of elements in the sample. In order to understand the efficiency, we must invoke the concept of *Absorption Edge* of an element. Every element has an absorption edge for a given series of lines. For example, an element like Mo has a K absorption edge and three L absorption edges (LI, LII, LIII). As discussed before, this is related to the binding energy of the electrons in the K shell or L shell. Therefore, when choosing a suitable target element, one must consider the position of the K and L lines of the target. If these intense target lines are close to the absorption edges of the analyte elements in the sample, they make the dominant contribution to the excitation of the sample; otherwise the continuum makes the dominant contribution. Although X-ray tubes are available with different target elements like Cr, Cu, Mo, Rh, Au and W, it is difficult to find a favourable target for all analytes. Consequently, continuum is frequently relied on for excitation. However, one can optimise the choice of the target element by considering the most common parts of the periodic table. Majority of the spectrometers are equipped with Rh X-ray tubes since, the Rh K lines can excite the mid range elements while the Rh L lines can effectively excite the lighter elements (see Figure 3.8). When an analyte contains more frequently medium to heavy elements, W target tubes are selected occasionally.

Spectral Line Interference

The primary spectrum may not only contain the lines from the target element but also those from impurities in the target, contaminants like Fe, Cr or Cu from various parts inside the tube. Consequently, the background level at these elements may be unusually high. Thus, care must be taken to minimise the contaminant lines from the tube. In addition, the target lines scattered by the sample may not permit the analysis of the same element in the sample. Sometimes, primary beam filters are used to filter out the characteristic lines from the tube if the same element is present in the sample or overlapped by a tube line.

Window thickness

X-ray tubes are usually sealed with a beryllium window since beryllium has the lowest absorption for X-rays. The intensity of the low energy X-rays (also referred to as *soft X-rays*) in the continuum depends strongly on the window thickness. Most standard X-ray tubes are fitted with Be window of 75μ or 50μ . The thinner window is more efficient for the excitation of the light elements. For example, transmission of soft X-rays (useful to excite light elements) improves by at least 20% when the window thickness is reduced from 75μ to 50μ .

Dispersion

A dispersion device is the heart of an WD XRF spectrometer. It contains the following parts: Primary and secondary collimators (flat crystal geometry) or entrance and exit slits (focussing crystal geometry), crystals and detectors. One can classify the XRF spectrometers into two categories depending on the X-rays optics involved.

Sequential Instruments

Traditionally, sequential instruments employ a "Parallel beam geometry" or a "flat crystal geometry" allowing the angles of the crystal and the detector to be selected with a device called *goniometer* (a rotating frame on which the crystal and detector have a Theta-two Theta coupled movement). The geometry of such a spectrometer with the main components is shown in Figure 3.10 and a sketch of the ARL goniometer in Figure 3.12.

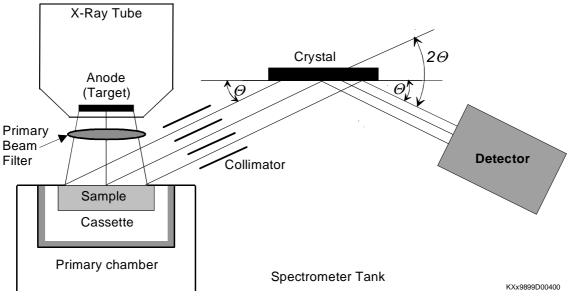
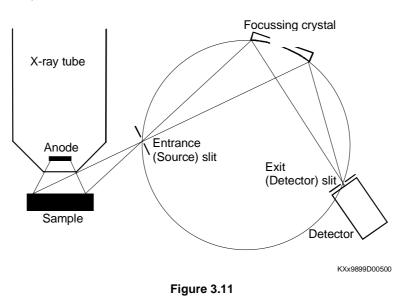



Figure 3.10

Simultaneous Instruments

In Figure 3.11 the simultaneous type (or fixed channel type) of spectrometer is shown where one makes use of a "Focussing beam geometry". Here, instead of flat crystals, we use curved crystals; the radius of curvature being a function of wavelength range of the spectral lines to be measured. Further, collimators are replaced by slits whose width and height are again determined for each wavelength. This type of configuration is obviously used to measure a predetermined element since all the parameters are fixed based on the wavelength of the spectral line to be measured. Thus, a simultaneous instrument may house as many as 30 such fixed channels, each dedicated to measure one line. ARL's 9800 is such an instrument.

Instrument Components

We will now discuss the basic components involved in the wavelength dispersive spectrometer (both sequential and simultaneous types). As mentioned earlier, crystals are the essential part of the spectrometers. In the following discussion, several concepts related to them are presented.

Goniometer

The exact positions of the crystal and detector are read by two optical encoders based on Moiré fringes. This gearless system ensures an accurate and reproducible positioning of crystal and detector as compared to the mechanically coupled (gear) system. Thus, a sequential measurement consists of positioning the crystal at a given Theta and the detector at 2 Theta and counting for certain amount of time. Then the crystal and detector are rotated to a different angle for another line etc.

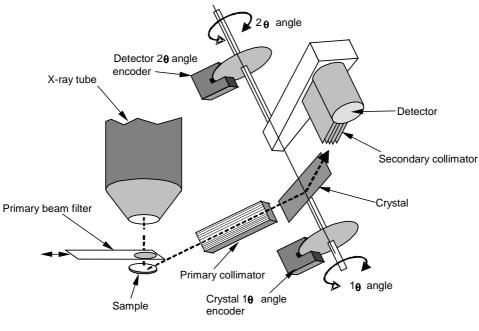
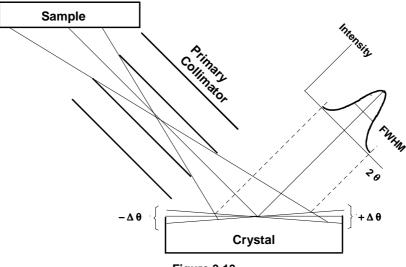


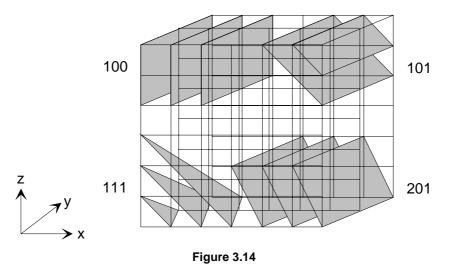
Figure 3.12

Thus a goniometer renders qualitative and semi-quantitative analysis of the sample where one has to scan a whole range of wavelength to identify the elements present in the sample. In a quantitative analysis, where the elements present in the sample are known, one can set the crystal and detector on a peak position of the line and count for a fixed time, then move off the peak to measure background points and subsequent elements. A secondary collimator is placed between the crystal and the detector to guide (collimate) the diffracted beam into the detector and also to limit unwanted radiation getting into the detector.

Collimators

The primary and secondary collimators are usually made of a series of parallel blades. The length and spacing of the blades determine the angular divergence admitted by the collimator. This angular divergence together with the crystal "rocking curve" (the width of the diffraction profile) determine the final resolution of the spectrum. One can improve the resolution by closing the collimators to minimise the divergence. But then, the photon flux across the collimator and hence the intensity decreases.




Figure 3.13

Thus, a compromise between the final resolution (necessary to avoid important spectral overlaps) and the sensitivity (related to the intensity) is made. Generally, the collimators are adopted in accordance with the crystal's intrinsic divergence, which varies from one type of crystal to another. Some of the crystals offer excellent resolution while others have a very wide diffraction profile. For this purpose, ARL's sequential spectrometers offer up to four types of collimators. Fine collimators are used for most of the heavy elements, Medium for the mid range elements and Coarse for the light elements.

Crystals

A crystal may be defined as a solid, composed of atoms arranged in a periodic pattern in three dimensions. In a crystal lattice, the plane in which atoms are in a row is called the crystal plane. The Figure 3.14 shows a set of crystallographic planes in a cubic crystal.

The planes are identified using Miller indices (hkl). For example, in the figure are shown three such planes: (100), (110) and (111). The interplanar spacing (the distance between any two adjacent planes of same type) is denoted as d. In XRF, we generally refer to the 2d values of the crystals since we will be using the 2d values in what follows.

Diffraction

The crystal planes reflect X-rays just like mirrors reflect light. The main difference is that crystal planes reflect X-rays only when certain conditions are met. This selective reflection is known as diffraction.

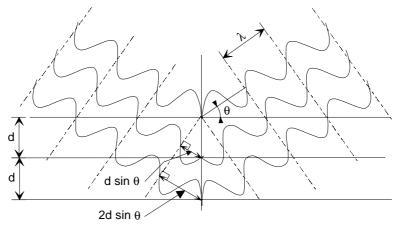


Figure 3.15

Diffraction can be considered as constructive interference, in the sense that when the X-ray photons (considered as waves) are reflected coherently, they undergo a constructive superposition of the waves. Only then, the X-rays are reinforced in their amplitudes while in all other cases, they interfere destructively. The most important condition is the so called "Bragg's Law of Diffraction". Bragg's law says that if a lattice plane having an interplanar spacing of d reflects an X-ray wavelength of λ , this wave differs in path length by a distance of (2d sin Θ) from the wave reflected by the adjacent plane. This phenomenon is shown in the Figure 3.15. When this path length differs by a whole number of wavelengths, the reflected X-rays are reinforced, otherwise they annul each other. We can sum up this with the following Bragg equation:

 $n\lambda = 2d \sin \Theta$ Bragg's law

- where: n: an integer (1,2,3...) called "Order of Diffraction"
 - d: interplanar spacing of the crystal plane used (Angstroms)
 - Θ : Bragg angle or diffraction angle (degrees)
 - λ : wavelength of the spectral line (Angstroms)

Thus, we see from this relation that for a given crystal plane and for a given order of diffraction, each wavelength in the incident XRF spectrum is diffracted at an unique angle. The maximum wavelength a crystal plane can diffract is 2d itself (when sin Θ takes the maximum value of 1). Therefore, one requires crystals or crystal planes with different 2d values in order to cover different wavelength ranges across the periodic table. A number of crystals suitable for diffraction are available today. Some of them are inorganic (like LiF) while others are organic (like PET) in nature.

For further information on diffraction analysis or the integrated XRD system of the ARL 9800, please refer to the brochure "ARL 9800 - Integrated XRD system".

Multilayer Structures

As we go from short wavelengths (lines from heavy elements) to long wavelengths (mid range elements), the 2d spacing of the crystal used also increases in order to be compatible with Bragg's law and hence the angular range. However, as we go to very long wavelengths (the K lines from light elements such as Beryllium to Magnesium), we must use crystals with increasing 2d spacing (>10 Angstroms). Most of the natural crystals do not have such high 2d spacing. Historically, some of these light elements were measured with synthetic crystals like lead stearates and some kind of soap crystals which suffered from several drawbacks (radiation damage, stability under vacuum etc.). Today, new stable structures called "Layered Synthetic Microstructures", (in short LSM) are available. These are multilayers of a light element (like B, C ...) and a heavy element (Mo, Ni, V, ...) alternating with a spacing of 2d deposited on a Si substrate.

The advantage with these man made structures is that one can try to optimise the combination of the light and heavy elements, the thickness of the layers, and the 2d spacing in order to get the best possible device for a given element. The result of these new developments is that we now have a family of multilayers allowing one to measure elements from Beryllium through Magnesium. We use essentially three or four types of these multilayers along with the natural crystals.

Reflectivity and Resolution

In addition to having a convenient 2d spacing, the crystals should have good diffraction efficiency, i.e. the ratio of diffracted photons to the incident photons. Some crystals like LiF have excellent reflectivity while others suffer from a poor diffraction efficiency. We are generally interested in the peak reflectivities and not the integral reflectivities. The variation of reflectivity when the crystal is "rocked" around the diffraction peak by small angles is called the "rocking curve" of the crystal. The height and the width of this curve give us the indications on the total/integral reflectivity, the peak reflectivity and the width of the diffraction profile. These characteristics depend on several factors; the most important being the mosaic structure of the

crystal. If the crystal is nearly perfect (i.e. no defects in the crystals, no surface damage, no doped impurities etc.), then it will have a very narrow rocking curve and rather weak peak reflectivity. This is attributed to a phenomena called "Self-extinction" in the crystals. Self-extinction is essentially due to the fact that the diffracted waves from the inner planes in the crystal are reflected back into the crystal in the absence of any defects (deviation from perfect periodicity). Thus, most of the crystals used in our spectrometers are treated to induce a mosaic structure and reduce the effect of self-extinction. Therefore, the diffraction efficiency can be increased by various treatments such as abrading, quenching, elastic bending, impurity-doping and so on. Of course, it must be done in a controlled way in order not to broaden the diffraction profiles. Otherwise, we may have undesirable effects on the resolution. As a general indication, the multilayers, which are pseudo-crystalline structures suffer from very broad diffraction profiles compared to the natural crystals. Finally, it may be remarked that:

- Some of the crystals have an unusually high reflectivity at particular wavelengths. InSb crystal is one such example. Although PET crystal is used as a general purpose crystal (on a goniometer) to measure Al, Si, P, S and Cl, the InSb crystal has more than two times the reflectivity for SiKα.
- Further, some of the crystals reflect only odd orders of diffraction, i.e. 1st, 3rd, 5th etc. Germanium crystal is an example. It is used for its higher reflectivity to measure P, S and Cl and does not have 2nd order, 6th order ... reflections. This may be an added advantage in cases where we need to suppress higher orders.
- Some crystals may emit their characteristic fluorescence. This may be seen in some cases as a high background on the corresponding elements.

Dispersion Power

Crystals also have an important property called "Dispersion power", i.e. the capacity of a given crystal plane to separate the lines most effectively. The dispersion power depends on (1) the 2d spacing of the crystal plane used (2) the Bragg angle and (3) the order of diffraction. This relation is given as follows:

$$d\Theta / d\lambda = (n/2d\cos\Theta)$$

Thus, we see that:

- The smaller the 2d spacing, the better the dispersion.
- The higher the diffraction angle, the higher the dispersion.
- And higher orders of diffraction have increasing dispersion.

An example of this relation is shown in the Figure 3.16 where the same spectrum has been recorded with three different crystal planes. In this figure three different crystal planes were used: LiF200 (2d = 4.028), LiF220 (2d = 2.848) and LiF420 (2d = 1.802). We notice that the lines are best separated when LiF420 is used. However, the peak intensities drop significantly when we go from LiF200 to LiF220 to LiF420 crystal planes. Thus, one must keep in mind that higher dispersion may sometimes mean lower peak intensities.

The final point is the observation of increasingly poor dispersion when we move towards light elements. Since the 2d spacing increases (inevitably), crystals or multilayers in this range have poorer dispersion.

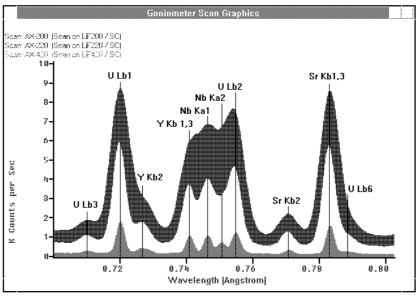


Figure 3.16

Stability

Stability of the crystal is another important factor for a reliable and reproducible measurement. Crystals may undergo changes due to temperature shifts, they may suffer from radiation damage and they may be affected by chemical pollution in the spectrometer. Thus, care must be taken to maintain them at constant temperatures and protect them from being contaminated. Some crystals are more sensitive to temperature changes than others. Essentially, when the temperature changes, the crystal planes, due to thermal expansion, may attain a slightly different 2d spacing. This obviously shifts the Bragg angle for a given wavelength and thus one may not be measuring at the peak position any more.

PET is one of the most sensitive crystals with respect to temperature particularly at higher Bragg angles. ARL's spectrometers are equipped with thermal stabilisation circuits which maintain the spectrometer temperatures within \pm -0.5 degrees. In addition, the crystals are maintained at constant temperatures using a local temperature control system. Thus, the peak shifts due to thermal changes are excluded to a great extent.

Flat crystals vs curved crystals

Most of the discussion so far is valid for both flat crystals as well as curved crystals. We have seen earlier that curved crystals are employed in fixed channel instruments in contrast to flat crystals which are used in sequential instruments.

There is an exception for multilayer crystals used for Na and Mg monochromators for which flat or curved crystal are used. Flat crystal monochromators are used with FPC detectors to optimise sensitivity and curved crystal monochromators are used with sealed detectors in case the instrument should run without a P10 gas supply.

There are different ways in which a crystal can be curved to obtain a perfectly focussing or semi-perfect focussing beam onto the detector. Among the most common geometry, logarithmically curved crystals are used currently in ARL' spectrometer.

Higher orders of diffraction

It may be seen from Bragg's law that higher orders of diffraction from heavy elements may superpose on the first order diffraction of lighter elements. For example, first order of P K α (6.16 Angstrom, second order of

Ca K β (3.09 Angstrom) and third order of Gd L α (2.05 Angstrom) will all be diffracted at nearly the same diffraction angle when the same analysing crystal is used since they all satisfy the Bragg's law at the same Θ angle. Thus, superposition of different orders of diffraction can cause some unwanted overlaps. However, as we will see below, most of the modern spectrometers are equipped with a Pulse Height Discriminator (PHD) which analyses only those pulses with an amplitude above a threshold and fall in a given window. Thus, one can reduce the contribution from higher orders by a proper setting of the PHD parameters.

Resume

We will conclude this chapter by summarising the important points:

- Wavelength dispersive X-ray spectrometers employ crystals and multilayers for dispersing the polychromatic fluorescence spectrum into monochromatic wavelengths.
- Flat crystals are used in conjunction with collimators in sequential spectrometers (single channel) where a scanning mechanism is provided (Goniometer). The crystal and the detector are coupled by a theta-two theta relation. ARL' s goniometer has a gearless mechanism to ensure precise and reproducible positioning of the crystal and detector. The flexibility and the wide scan range available with the goniometer render the sequential instruments versatile and useful for exploratory (qualitative and semi-quantitative) work.
- For Na and Mg, and depending on the detector, multilayer crystals can be used for monochromators using a flat or curved crystal geometry.
- Curved crystals are used in conjunction with slits in the simultaneous (multi-channel) instruments. These channels (or monochromators) can be constructed once the elements (or the lines) are predetermined. The focussing X-ray optics (thus high intensity and excellent resolution) used, the rapidity and the stability of these instruments make them ideal tools for production control and quality control applications.
- Both types, flat crystals or curved crystals, diffract X-rays according to the Bragg's law where the wavelength and theta are related uniquely for a given crystal plane.
- Different crystals are used for different spectral domains depending on their 2d spacing, dispersion power, reflectivity and stability.
- The resolution of a spectrometer is its ability to distinguish two spectral lines of nearly same wavelength or closely spaced lines. In WDX, resolution is a combined effect (convolution) of angular divergence admitted by the collimators or slits, the rocking curve (the width of the diffraction profile) of the crystal, the dispersion power and to a much lesser extent, the detector resolution. Thus, the combination of primary collimator and crystal vary from one spectral region to another. In contrast to the WDX spectrometers, the resolution in EDX spectrometers is predominantly determined by the energy resolution of the detector.

Detection

Detectors used in most of the commercial WDX spectrometers can be classified into two categories:

(1) Gas filled proportional counters for long to intermediate wavelengths (FPC, Multitron and Exatron).

(2) Scintillation counters for short wavelengths.

Gas filled counters

Gas filled detectors are again subdivided into two types: Flow Proportional Counters (FPC) and Sealed Detectors. FPCs have a continuous flow of gas and the pressure inside the detector is regulated. They are generally closed with Aluminium coated thin polypropylene windows of the order of 1-2 μ thick. The purpose of such a thin window is essentially to increase the transmission of long wavelength X-rays.

Sealed detectors, referred to as Exatrons and Multitrons, have 25-200 micron beryllium windows. FPC's are used for light elements (from Beryllium through Copper in general) on a goniometer. Sealed detectors are employed in fixed channels although small sizes FPCs are used in the fixed channels for light elements. The principle of operation is the same in both the types. The gas detector in its simplest form consists of a hollow metal cylinder (acting as cathode) carrying a filament (metal wire of about 50-75 microns diameter acting as anode). A high voltage is applied across the two electrodes. The cylindrical casing is earthet. The Figure 3.17 shows the Multitrons and Exatrons.

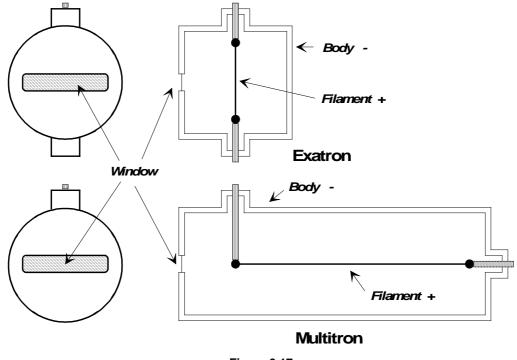
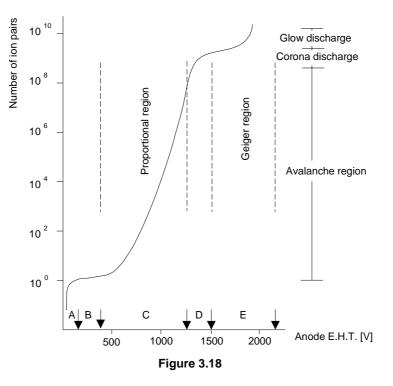


Figure 3.17


Primary Ionization

The detectors are filled with rare gases He, Ne, Ar, Kr and Xe are used for this purpose. They are mixed with a quench gas (methane, for example). An X-ray photon entering the detector ionizes the gas and creates an electron-ion pair. The number of electron-ion pairs depends on the type of gas and the energy of the incident photon. As an example, Ar gas requires an effective ionisation potential of about 26 eV for one electron-ion pair. Thus, if a Cu K α photon (wavelength = 1.542 A, energy = 12.4/1.542 = 8040 eV) entered the detector, each photon (also called an event) will produce 304 electron-ion pairs. If a photon with twice this energy enters the detectors, it will (ideally) produce twice the number of pairs. Thus, for a given detector gas, if all the incident photons produce ionized pairs, then the number of pairs is proportional to the energy of the photon. This is why these detectors are called Proportional counters. Thus, if the electrical charges produced are counted, we would have measured the intensity of a given spectral line.

The number of electron-ion pairs produced during the primary ionisation process is not sufficiently high to be detectable. One needs to amplify the signals considerably before they can be measured with good signal to noise ratio. This is accomplished by a process called "Avalanche" or "Gas Amplification" and is explained in the next section.

Avalanche

Consider an X-ray photon entering the active volume of the detector. It produces primary electron-ion pairs along its path until all its energy is expended. When the detector is under high voltage, the electrons are pulled towards the filament and the ions are attracted towards the body of the detector. As electrons approach the filament, they are subject to stronger electric field closer to the filament which accelerates them further. As shown in the Figure 3.18, when the applied potential is low, the electrons recombine with the positive ions before they reach the anode wire. This is the region of unsaturation. As the applied potential is increased, the recombination is overcome completely and then all the primary electrons reach the anode. Ionization-chambers operate in this region. Since there is no further secondary ionization, the gas gain remains as 1. When the potential is high enough to accelerate the electrons which collide with other gas atoms to initiate secondary ionization, one begins to see a substantial gain in the number of charge carriers. This order of multiplication increases as the electrons approach closer to a few diameters of the anode wire.

In the proportional-counter region, each primary electron initiates only one avalanche and the avalanches are free of any interaction. Thus the final number of electrons after amplification is still proportional to the number of primary electrons which in turn is proportional to the energy of the photon entering the detector. Most of the detectors used in XRF spectrometers function in the region of proportionality. When the potential is increased beyond this region, the proportionality deteriorates as the same electron may initiate multiple avalanches. When the applied potential is so high that avalanche is generalised, the gas ions and atoms are excited. Secondary electrons may be generated at the anode and electrons may be expelled at the cathode. In other words, one finds a general discharge in the entire detector. Geiger-Muller counters operate in this region. Finally, a further increase in the potential triggers a continuous and sustained discharge and the detectors begin to glow. At the end, an arc discharge occurs between the cathode and the anode wire and detector is likely to get destroyed.

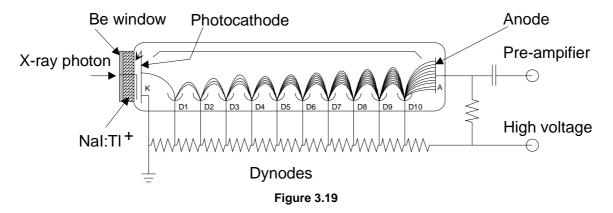
In the proportional region, which is of interest here, one attains a gas gain of the order of 10^5 - 10^6 permitting one to obtain good signal to noise outputs. One of the most common gas fillings is the mixture of 90% Ar + 10% CH4 called P10 gas. The purpose of methane addition is essentially to quench the phenomena of avalanche at one stage. The quench gas molecules also get ionized along with the Ar atoms. When they are dispersed in the detector's active volume, they contribute to the recombination of the electrons and ions when the avalanche proceeds in an uncontrolled manner.

Characteristics

Finally, the following properties of the detectors are relevant in practical XRF.

- Resolution of the detector is expressed as *Resolution* = $(W / V) \times 100$ where W is the peak width (of the energy profile) at half-width and V is the maximum of the pulse amplitude distribution.
- Stability of the detectors depends on the cleanliness of the anode wire. If the gas-fillings are not pure enough or small particles get deposited on the anode wire, they may distort the local electric field (by changing the effective diameter of the anode wire). This may change the gas gain factor causing unstable detection.
- Dead time of the detectors is a more important problem in practical X-ray spectrometry. Dead-time can be defined as the time during which, after a photon has initiated the ionization, the detector can not process the next event. As we have seen above, the incident X-ray photon produces a series of ion-electron pairs which are multiplied in the avalanche process.

The time elapsed between the entry of the photon and the avalanche production may be of the order of 10⁻⁷ seconds. The electrons rapidly move towards the anode while the ions (being heavier) move slowly towards the metal body of the detector. This causes a positive ion sheath around the anode wire which prevents further avalanches to occur until its dissipation. Thus, the detector is said to be dead during this inactive period. In practical terms, this means that the photons entering the detector during the dead time are not counted since the detector has not totally recovered from the previous event. At high counting rates (high photon flux) the loss of counting events can be reasonably high.

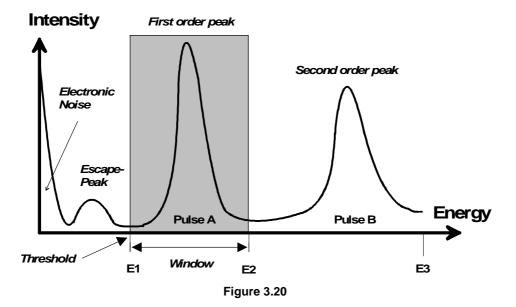

Most modern spectrometers correct this loss mathematically. The dead time can be estimated using different photon counting rates. Since the output signal is proportional to the number of photons, any deviation from linearity indicates the extent of dead time.

• Escape peaks in the detectors are caused by the X-ray photon whose energy is greater than the absorption edge of the counter gas. For example, if the counter contains Ar gas, some of the photons (say with an energy E from a given element) may induce Kalpha transitions in Ar and lose their energy in the primary process. Thus the pulse amplitude distribution contains not only the pulse amplitude from original photons of energy (E) but also additional pulses with an amplitude corresponding to the difference in the energy E - $E(ArK\alpha)$.

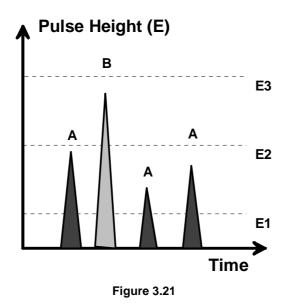
Escape peaks may not represent a serious problem as long as they do not cause overlaps on other lines from the sample. In some cases, the threshold of the pulse height discriminator is fixed such that the escape peaks are not counted at all. This may not be a good practice since the intensity of the escape peak is also contributed by the photons from the same spectral line.

Scintillation Counters

Scintillation counters operate on an entirely different principle compared to the gas filled detectors. They consist of two essential parts: a scintillating material (called phosphor, usually a single crystal doped with an activator) and a photomultiplier. Scintillating crystals like NaI:Tl+ have an interesting property that when the X-ray photons are incident on such a crystal, they emit visible (in the present case, blue) light. Thus, they convert X-ray photons into visible photons. The Figure 3.19 shows the construction of a scintillator counter.


The scintillator crystal is optically coupled to an appropriate photomultiplier tube and the whole assembly is sealed using a beryllium window. Sealing is necessary because the NaI:Tl+ crystal is hygroscopic in nature and should be protected from humidity. When the blue photons from the scintillator crystals are incident on the photocathode of the PM tube, they release photoelectrons.

The PM consists of a number of positive electrodes called dynodes which are arranged at an increasingly positive potential. Thus the photoelectrons get accelerated successively by the dynodes and release more photoelectrons. Thus, the process of multiplication continues until the last dynode. The end result is an internal amplification of the order of 10^5 - 10^6 depending on the number of dynodes and high voltage applied to the PM tube.


Thus, a scintillator is a solid state detector where X-ray photons are converted into light photons and detected by a conventional photomultiplier. The escape peak phenomena and the dead time are also observed in scintillator detectors. Escape peaks may occur when the incident X-ray photon can eject a K or L shell electron from the iodine in the phosphor material. Dead time of the scintillation counters is somewhat longer than that of the gas proportional counters.

Pulse Height Discriminator (PHD)

Both gas detectors and the scintillation counters used in XRF are proportional detectors, i.e. the energy of the incident X-ray photon determines the size of the voltage pulse produced by the detector. A pulse height discriminator makes use of this property in order to select only a narrow range of voltage pulses, thus rejecting all those unwanted pulses. X-ray photons of different orders of diffraction may enter the detector if their Bragg angles coincide. As shown in the Figure 3.20, the height of the pulses from different orders of diffraction is not the same. The pulse height analyser includes adjustable upper and lower electronic thresholds forming a "window". This window only accepts pulses from the detector with amplitudes greater than the lower threshold and smaller than the upper threshold. These pulses can pass through the window into the output amplifier and all others are rejected. Thus, by a proper setting of threshold and window, one can significantly reduce or even eliminate the contribution from higher order diffraction lines. This setting also helps in reducing the background radiation.

As shown in the Figure 3.21, the incoming pulses A, B are from physically overlapping spectral lines which are seen by PHD to have differing amplitudes. To receive pulse B, the window is adjusted to accept the amplitude E2 - E3; for pulse A the window is set to E1 - E2 when pulse B is too high and is rejected.

Final output

Finally, the output from the amplifier or pulse height analyser must be interpreted. One uses a scaler, which gives a strict pulse-by-pulse count as received from the pulse height analyser. However, the preferred method is to integrate the pulses as received in an electronic integrator (a scaler and timer). If N represents the number of counts in an integration time of t seconds, then the count rate is simply N/t counts per second (cps). Thus the output signal from the spectrometer is, for most practical purposes, presented in terms of counts per second. This value of intensity is then converted into concentration using different methods (calibration, empirical coefficients method, Fundamental Parameters method etc.). In a qualitative analysis, the intensity (cps) is directly displayed on a screen as the goniometer scans across different Bragg angles, resulting in a spectrum.

INSTRUMENT PREPARATION

4

4 INSTRUMENT PREPARATION

Switch on Instrument

On the back side of the instrument:

- Switch MAIN breaker on.
- Switch X-RAY GENERATOR breaker on.

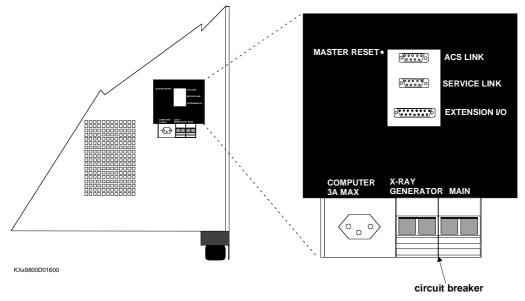


Figure 4.1

On the front of the instrument:

• Turn the red emergency button clockwise on.

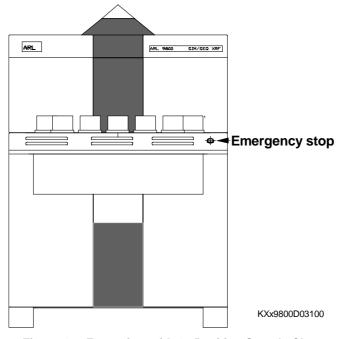


Figure 4.2 Front view with 12 Position Sample Changer

Switch on Instrument with X-Y Sample Changer

On the back side of the instrument (see Figure 4.1):

- Switch MAIN breaker on.
- Switch X-RAY GENERATOR breaker on.

On the front of the instrument:

• Turn the red emergency button clockwise on.

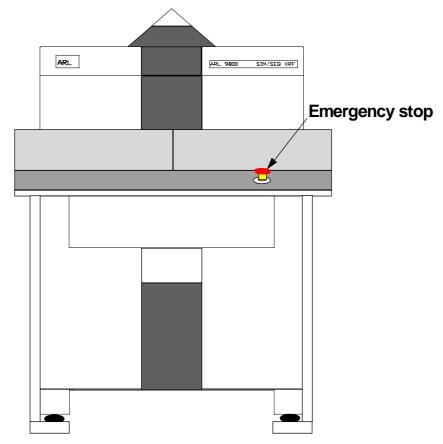


Figure 4.3 Front view with X-Y Sample Changer

Switch on Instrument with Manual Loading or SMS Automation System

On the back side of the instrument (see Figure 4.1):

- Switch MAIN breaker on.
- Switch X-RAY GENERATOR breaker on.

On the front of the instrument:

• Turn the red emergency button clockwise on.

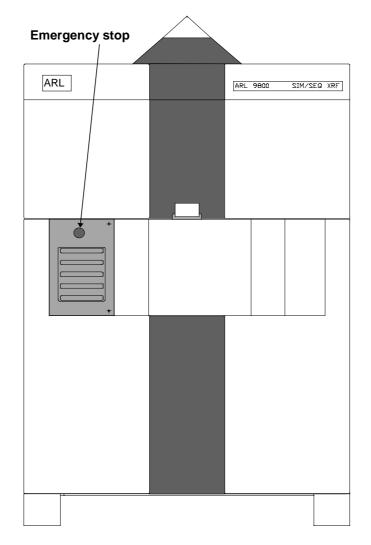
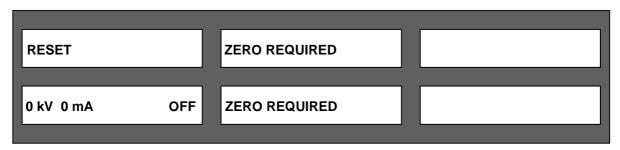


Figure 4.4 Front view with Single Position Loading


Power-up Sequence

The power-up sequence of the ARL 9800 is done to reset all microprocessors and the mechanical parts.

- Make sure that the computer, the computer display (video terminal) and the printer are correctly plugged.
- Switch on the computer.
- Wait for the computer to have the Windows operating system booted.
- Switch on the ARL 9800 with the main breakers.
- As soon as the power has been switched on, the displays of the ARL 9800 will show the following information step by step.

Note: Depending on the configuration, the displayed information may vary.

• Step 1

• Step 2

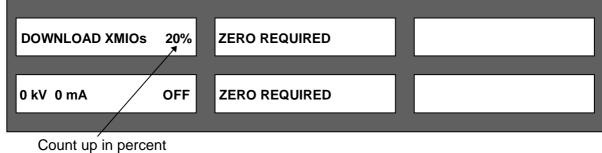


Figure 4.6

• Step 3

START XMIOs 0	1 CODE	ZERO REQUIRED	
0 kV 0 mA	OFF	ZERO REQUIRED	
/			

Code count up

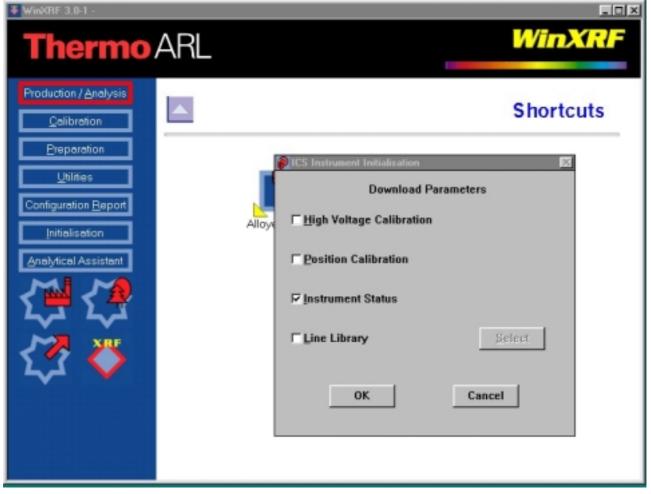
Figure 4.7

• Step 4

СНЕСК ХМІ	ZERO REQUIRED	
0 kV 0 mA OFF	ZERO REQUIRED	

• Step 5

NOT CONFIGURE	D	ZERO REQUIRED	
0 kV 0 mA	OFF	ZERO REQUIRED	


At this moment, the power-up sequence is finished. The instrument needs to be configured.

Instrument Configuration and Initialisation

Instrument Configuration

At the WinXRF start-up the following window will appear.

• Click on **Cancel**.

It is recommended that you inspect the instrument configuration parameters, to make sure they match with the instrument hardware.

- From the main menu, click on **Utilities**,
- Click on **Instrument Configuration**.
- Click on **Instrument**.
- If all parameters match, click on **OK**.

Some information about the hardware configuration of your ARL 9800 can be found in the QA report.

	X-ray Tube Power Supply T	ype
×	Standard (60kV)	
Cassette Reader -	Number of Monochromators	[0-32]:
C 6-Band	Target Anode 2 Identifier:	
	Number of Primary Beam D C None fitted C Four Tube Shield Option C Off C Load/onload	(three)
	- Helium Option	
	CNot Fitted C Fitte	đ
	© None	CTWO
	Cassette Reader C 5-Band C 6-Band Transport Belts C Fitted C Not Fitted (1-255): 12): 12 neters	Standard (60kV) Standard (60kV) Standard (60kV) Cassette Reader 5-Band 5-Band 6-Band Transport Belts 6 Fitted 6 Fitted 7 Not Fitted (1-255): 12 a): Image: Standard (60kV) Number of Monochromators Target Anode 1 Identifier: Target Anode 2 Identifier: Target Anode 2 Identifier: Target Anode 2 Identifier: Target Anode 2 Identifier: 0 Not Fitted 12 30: 13rd 13rd

Figure 4.11

Instrument Type

You must select ARL 9800 / ARL 9800 XP or ARL 9800 Oasis as Instrument type depending on your version.

X-ray Tube Power Supply Type

X-ray tube power supply type for ARL 9800 and ARL 9800 XP:

- ♦ Standard (60 kV)
- High Performance (70 kV)

The ARL 9800 is supplied with a **Standard 60 kV** X-ray tube power supply. An option is available to power the X-ray tube up to 70 kV. In this case select **High Performance 70 kV**.

Sample Loading Mechanism Type

Three sample loading mechanisms are available with the ARL 9800:

Selection for the 12 positions sample changer:

- ♦ Magazine
- Number of Positions: 12

Selection for the X-Y sample changer:

♦ X-Y Manipulator

• Number of Positions: xxx

Selection for the SMS automation system:

- X-Y Manipulator or Manual entry
- Number of Positions: 1

Note:If the X-Y sample changer uses belts, then xxx = 49.If the X-X sample changer has two trays for samples or cassettes, then xxx = 149.

Primary Beam Device (PBD)

The primary beam device is an option. Four primary beam devices are available with the ARL 9800.

Primary beam collimator:

• Number of Positions: 2 only applicable if the ARL 9800 is equipped with the XRD channel.

Primary beam filter:

- Number of Positions: 4
- Only 2 filters possible if equipped with a XRD system

Instrument Initialisation

The initialisation of the ARL 9800 is done to reset all microprocessors and the mechanical parts. In case of problems with the instrument this operation should be done.

- To initialise the instrument click on **Initialisation** and then **Send Instrument Configuration** <**F6**>, or simply press <**F6**>.
- Select High Voltage Calibration, Position Calibration, Instrument Status and Line Library.

🐉 ICS Instrument Initialisation 🛛 🛛
Download Parameters
₽ High Voltage Calibration
Position Calibration
P Instrument Status
Elect
OK Cancel

Figure 4.12

• The **Database Category** of which the **Line Library** should be transmitted, can be selected by clicking on **Select**.

- Click on **OK** to return to the former dialog box.
- Click on **OK** to start the transmission.

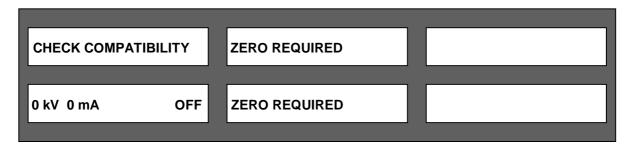
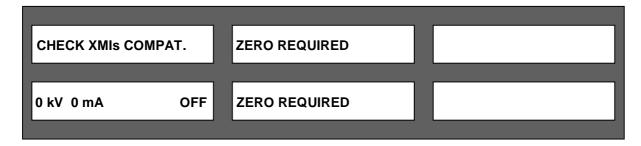
Available	Selected	
ARL Calibration Factory_Calibration New QuantAS UniQuant	Add >>	
	<< Bemove	
	OK Cancel	

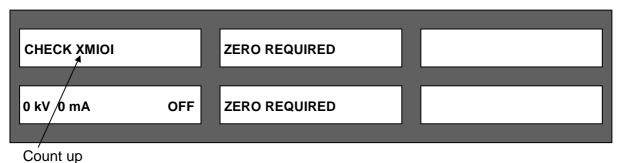
Figure 4.13

Click on the Line Communication monitor item in the task bar and wait for the end of the configuration.

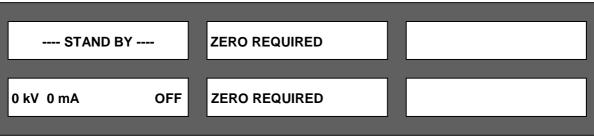
During the initialisation, the following information will be displayed.

• Step 1


Figure 4.15

• Step 2


Figure 4.16

• Step 3

♦ Step 4

At this moment, the basic initialisation sequence is finished. The rest of the initialisation depends on the configuration of the instrument.

Gas Supply

Argon-Methane Gas for FPC (optional)

- Check that the gas bottle tap is open.
- Check that the pressure is set at 0.25 bar on the bottle pressure reducer.

The argon-methane gas flow is set to 20 ml / min. A 50 litre bottle at 200 bars will last approximately ten months. Check regularly the gas level of the bottle. To prevent contamination, don't wait until it gets completely empty before replacing it.

Gas Bottle Replacement

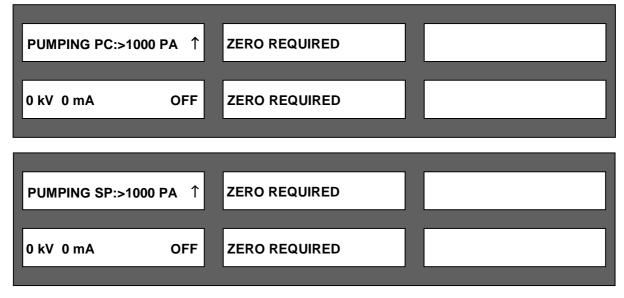
To exchange a gas bottle follow the procedure hereafter:

- Make sure the instrument is in idle state.
- Close the present bottle.
- Remove the manometer from the bottle.
- Secure the new bottle to its position. Remove the top
- Check that the tap is properly closed.
- Unscrew the brass protection.
- Screw on and tighten the manometer on the new bottle.
- Open the tap slowly.
- After approximately 3 minutes the system is again in regulation.

• Check the status to make sure every thing is in order.

Environment Setting

To select the environment, perform the following actions:


- Click on **Initialisation** in the main menu.
- Click on **Set Environment** icon.
- Select the environment by clicking onto the corresponding radio button.
- Click on **OK**.

	- Current Environmen	
• Vacuum C Air C Helium	Vacuum	

Figure 4.19

To change to a Vacuum environment when Air environment is set, click on Vacuum and OK.

The ARL 9800 display will show the following sequence:

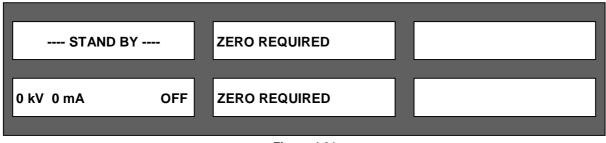
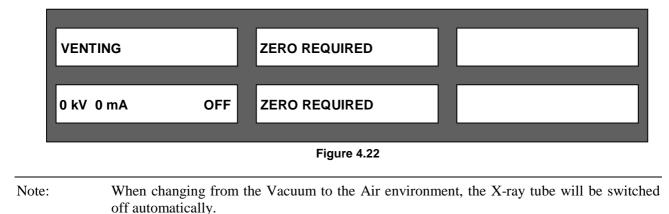
The first display will inform on the vacuum level in both chambers.

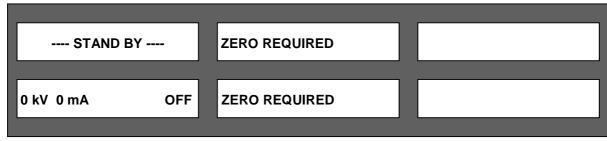
- PC: Primary chamber
- SP: Spectrometer

The arrows on the right provide the following information:

Sign	Description
1	The estimated pressure is increasing
\downarrow	The estimated pressure is decreasing
\rightarrow	The estimated pressure is constant

To confirm that the vacuum environment has been achieved, the ARL 9800 instrument display must show 'STAND BY' in the first display.


Figure 4.21

To change to an Air environment when the Vacuum environment is set, click on Air and OK.

The ARL 9800 display will show the following message:

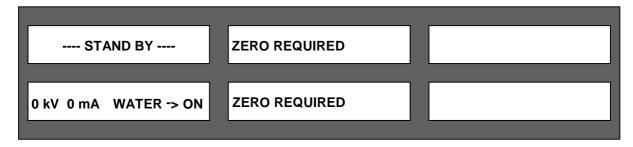
To confirm that the Air environment has been achieved, the ARL 9800 instrument display must show 'STAND BY' in the first display.

Switch the X-ray Tube Power Supply on

To switch the X-ray power supply on, from the main menu click on Initialisation and then Set X-Ray.

• Select **On Slow**, **Operational** or **Standby**.

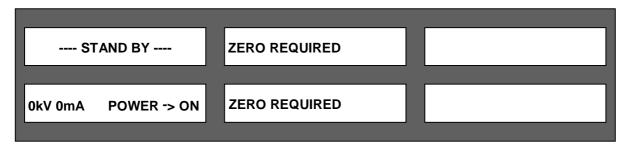
- Select the **kV** and **mA** working condition.
- Click on **OK**.


It is recommended to keep the X-ray tube constantly in operation (24/24 hours) in order to avoid thermal stress on the filament. See Eco mode operation to spare energy when the instrument is not in use for analysis.

O On slow	🖲 On fast	⊂ Off	C No change
X-ray mode			
© Operational	C Standb	у	C Non-autostart
X-ray Voltage: kV	50		Anode target
Current: mA	50		O1 O2
Current: mA	50		

Figure 4.24

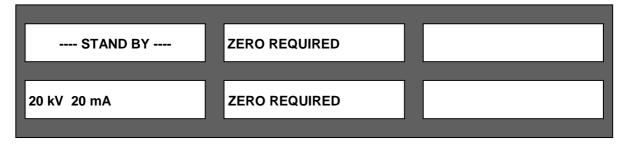
Before the X-ray tube is actually switched on, the ARL 9800 display will show the following messages:


• The water pump will start.

As soon as the correct water flow, temperature and resistivity are reached, the X-ray tube will switch on.

• The X-ray lamp located on the top of the ARL 9800 instrument is switched on.

STAND BY	ZERO REQUIRED	
X- 20 kV X- 20 mA	ZERO REQUIRED	



As soon as the conditions are approaching the desired value, the ARL 9800 instrument will wait for the exact voltage and current values to be attained.

STAND BY	ZERO REQUIRED	
20 kV 20 mA WAIT TOL	ZERO REQUIRED	

As soon as the desired conditions are within the required tolerances the display shows:

Eco Mode Setting

Eco Mode is a mode in which, when the instrument has not been used for a certain length of time, the X-ray power decreases to a pre-defined value. It is also possible to set the firmware in such a way that the power is raised automatically to specific working conditions at a pre-defined hour on specified dates.

The Eco Mode settings can be defined by execution of the menu function **Utilities** followed by selection of the folder **Instrument Configuration** and the icon **Eco Mode Setting**.

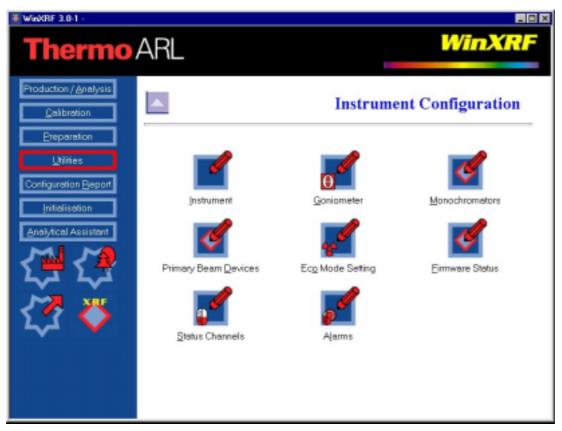


Figure 4.30

This causes the dialog box shown in the next figure to be displayed. This dialog box is divided into two parts, the left half allows definition of the conditions during the Eco mode period, and the right half allows definition of the time and dates when the Eco Mode has to be left and the X-ray power conditions to which the instrument should return.

🖉 Eco Mode: Define parameters	×
ENTER Eco Mode Parameters	EXIT Eco Mode Parameters
Enabled	₩ Enabled
Delay [Minutes]: 68	Time (hh:mm): 6 : 0 Date (dd/mm/yy): 0 / 0 / 0
kV: 48 mA: 28	kV: 50 mA: 50
Duration to reach the conditions [Minutes]: 30	Duration to reach the conditions [Minutes]: 30
	Delay before re-entering Eco Mode [Minutes]: 180
	Do not exit Eco Mode on
	□ Monday □ Thursday □ Tuesday □ Friday
	□ Wednesday
OK Cancel	I⊽ Sunday

Figure 4.31

The parameters that can be defined are explained hereafter.

ENTER Eco Mode Parameters

This allows defining the X-ray power conditions during the Eco Mode and how these conditions should be reached.

Enabled This check box has to be checked to allow the modification of the parameters and to activate the Eco Mode.

Delay (Minutes)

The Eco Mode is started after the instrument has been idle for the time specified here. A delay of 60 minutes is the recommended value.

- **kV** This is the kV value to be reached in Eco Mode (40 kV is recommended).
- **mA** This is the mA value to be reached in Eco Mode (20 mA is recommended).

Duration to reach the conditions (Minutes)

The value entered here defines the time during which the conditions are continuously changed until the final Eco Mode conditions (kV/mA) are reached. A duration of 60 minutes is the recommended value.

EXIT Eco Mode Parameters

This allows defining the dates and hour at which the X-ray power conditions should be raised to a specified setting. Furthermore, the way how these conditions should be reached can also be specified.

Enabled This check box has to be checked to modify the parameters and to cause the settings to be activated.

Time (hh:mm)

This defines the time of the given dates at which the Eco Mode should be left to reach the working conditions specified hereafter.

Date (dd/mm/yy)

This defines the dates at which the Eco Mode should be left to reach the working conditions specified hereafter. 0 means "every", i.e. 00/00/0000 means every day, 03/00/0000 means every 3rd of every month of every year, 00/07/1997 means every day in July 1997, etc.

- **kV** This is the kV value to which the X-ray power setting should return when leaving the Eco Mode.
- **mA** This is the mA value to which the X-ray power setting should return when leaving the Eco Mode.

Duration to reach the conditions (Minutes)

This value defines the time during which the X-ray power is continuously raised until the final working conditions (kV/mA) are reached. A duration of 60 minutes is the recommended value.

Delay before re-entering Eco Mode (Minutes)

This value defines the delay before the instrument should again return to the Eco Mode in case the instrument remained idle over the whole period specified here. A delay of 60 minutes is the recommended value.

Do not exit Eco Mode on

If the date specification should be restricted to certain days of the week on which the Eco Mode should not be left (weekends), then these days can be selected here.

After each modification of one of the parameters described above, the dialog box has to be left by clicking onto the **OK** button to store the new values. The user is then asked, whether he wants to send the new Eco Mode parameters immediately to the ICS (instrument), or only when the instrument is initialised the next time.

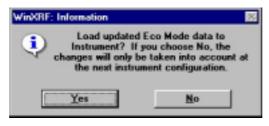


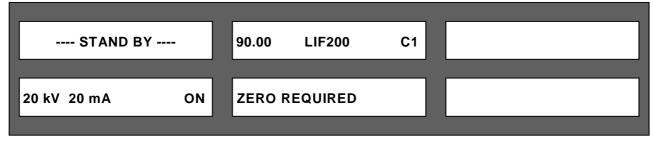
Figure 4.32

Report Eco Mode Parameters

It is possible to obtain a print out of Eco Mode parameters by selecting the **Configuration Report** option of the main menu, followed by the **Utilities** folder, **Instrument Configuration** folder and finally the **Eco Mode Parameters** icon. Selection of the **Print** button in the displayed screen will print the parameters.

- Entry F	arameter	5			Exit Parameters					
Enabled	Delay	kV	mA	Enabled	Time (hh:mm)	Date (dd	mm/y	vl	kV	mΑ
res	60	40	20	Yes	6:0	0/0/0			50	50
lime to r	each cond	itions			- De	o not exit e	co m	ode (on -	
Entry	Ex	it		Re-enter D	elay Mo	n Tue We	d Thr	Fri	Sat	Sun
30	30			180	No	No No	No	No	Yes	Yes

Figure 4.33


Goniometer Initialisation

After a power up the goniometer can be initialised and this is done with the goniometer zero operation. From the main menu click on **Initialisation** and then click on **Zero Goniometer**. Click on **OK** to start the zero operation.

🖉 Zero Goniometer			X
Select Goniometer			
Brevious	Next	XRF Goniometer 1	
1			
	ок	Cancel	

After the initialisation of the goniometer, the corresponding instrument display will show the following:

Note: All hardware and software settings are described in the technical description manual for this optional measuring equipment. We only inform that the change of any of these settings may affect the correct functioning of the goniometer. Our world wide After Sales Service is able to provide adequate training or direct support on site.

X-ray Diffraction (XRD) Initialisation

After a power up the XRD can be initialised and this is done with the goniometer zero operation. From the main menu click on **Initialisation** and then click on **Zero Goniometer**. By clicking on the **Next** button select the **XRD Goniometer**. Click on **OK** to start the zero operation.

🖉 Zero Goniometer	
Select Goniometer Previous Next	XRD Goniometer 1
ОК	Cancel

Figure 4.36

After the initialisation of the XRD, the corresponding instrument display will show the following:

STAND BY	90.00	LIF200	C1		
20 kV 20 mA	PARKE	D			
	_				
Figure 4.37					

Note: All hardware and software settings are described in the technical description manual for this optional measuring equipment. We only inform that the change of any of these settings may affect the correct functioning of the XRD. Our world wide After Sales Service is able to provide adequate training or direct support on site.

Monochromator (Fixed Channels) Initialisation

There is no initialisation to be done for the monochromators.

Note: All hardware and software settings are described in the technical description manual for this optional measuring equipment. We only inform that the change of any of these settings may affect the correct functioning of the monochromators. Our world wide After Sales Service is able to provide adequate training or direct support on site.

Status Reading

Before starting analysis, it is recommended that the user perform a status reading, to check if all the instrumental parameters are within the working tolerances. To read the instrument status click on **Initialisation** followed by **Read Instrument Status** <**F7**>, or simply press <**F7**>.

Thermo	ARL		ee¤ WinXRF
Production / Analysis			Initialisation
Ereparation	Status Beporter	Bead Instrument Status (F7)	Initialise Alarms and Status Logger
	Send Instrument Configuration (F6)	E Ganiometer	Set Environment
< 🔁 🏷	Set 🖉 Ray	Results Iransmission Properties	Clear External Analysers Data

Figure 4.38

Description		Value	Min	Max
X-ray tube voltage	[kV]	25.670	-0.100	0.100
X-ray tube current	[mA]	10.350	-0.100	0.100
Main voltage (230V : L1 phase)	[V]	500.000	200.000	250.000
Primary chamber pressure	[Pa]	499.000	0.000	3.500e4
X-ray primary water input temp	(°C)	225.560	5.000	40.000
X-ray primary water output temp	(°°í	2350.060	5.000	45.000
Spectrometer pressure	[Pa]	7.000	0.000	8.000
X-ray secondary water input temp	î°°i	8.000	5.000	50.000
X-ray secondary water output temp	i°°i	9.000	5.000	53.000
X-ray secondary water resistiv.[k0]	ha*ca]	10.000	350.000	4500.00
Spectrometer tank temperature	[°C]	11.000	20.000	40.000
XGT Uref +2.5 U	`[V]	12.000	2.400	2.600
XGT Uref +5 U	ĉνî	13.000	4.900	5.100
X-ray tube total activity time	(h)	14.000	0.000	3.000e4
Read	Print	Cance		

Note: It is important to keep in mind that the ARL 9800 needs a few hours to stabilise its internal temperature therefore we recommend to wait 4 to 5 hours before starting a calibration if the instrument has just been powered up. Routine analysis can be started as soon as the instrument is pumped down if it is no problem that the measured values might be slightly off in the beginning but are getting better during the stabilisation phase. It is however not advisable to drift correct the instrument until it is perfectly stable because the adverse effect could happen, i.e. the measured values are good in the beginning but are getting worse as the instrument stabilises.

General Specifications

Electrical Data

Instrument Power requirement (including the computer)	ARL 9800 XP 7 kVA	ARL 9800 OASIS 2.5 kVA
Voltage	230 V (1 or 2 phases) -15% +10%	230 V (1 or 2 phases) -15% +10%
Neutral	0 V to ground	0 V to ground
Ground	$< 2 \Omega$	$< 2 \Omega$
Frequency	50 Hz or 60 Hz	50 Hz or 60 Hz
Power failures	< 10 ms for 50 Hz	< 10 ms for 50 Hz
	< 8.3 ms for 60 Hz	< 8.3 ms for 60 Hz
X-ray Power Supply		
Maximum high voltage	60 kV (optional 70 kV)	50 kV

Maximum high voltage	60 kV (optional 70 kV)	50 kV
Maximum current	120 mA	20 mA
Maximum power	3.6 kW	600 W
Stability	+/- 0.0001% per 1% of main variation	+/- 0.0001% per 1% of main variation

Water Supply

Minimum flow	4.5 lt/min	No water supply
Minimum pressure	2.0 bar	
Maximum pressure	4.0 bar	
Minimum temperature	5°C	
Maximum temperature	18°C	
ARL 9800 water heating power	less than 4500 W	

Laboratory Environment

Minimum temperature	18°C	18°C
Maximum temperature	32°C (with cooling water at 12°C)	28°C
Maximum temperature change	±1°C per hour short variation <1 hour (thermal control)	±1°C per hour short variation <1 hour (thermal control)
	0.7°C per hour drift >1 hour	0.7°C per hour drift >1 hour
ARL 9800 air heating power	less than 1500 W	less than 1500 W
Maximum pulsed magnetic fields	1000 A/m (acc. to EN61000-4-9)	1000 A/m (acc. to EN61000-4-9)
Shock	Semi-sinusoidal unitary pulsation of each direction of the 3 orthogonal a	e e 11

Vibration	Sinusoidal vibration a incrementation of 1 or		3 orthogonal axes with an
	5-50 Hz amplitude 50	μm	
	50-500 Hz 0.25g		
Gas Supply			
FPC	90% Ar (48) 10% CH	(35) ⁽³⁵⁾	optional
Acoustic Noise			
Maximum acoustic noise power level	60dB(A)		60dB(A)
Dimensions			
Width	90 cm		90 cm
Length	130 cm		130 cm
Height	160 cm		160 cm
Weight	750 kg		750 kg
Spectrometer Geometry			
X-ray tube incidence angle	90°		90°
Goniometer take-off angle	35°		35°
Distance anode-sample	< 31 mm		< 31 mm
Safety Standards (all ver	sions)		
Safety of machinery		EN 292-1,-2	(1991)
Electrical equipment of industrial ma	achinery	EN 60204-1	(1984)
Low voltage switchgear and controls	gear	EN 60947 (1	.991)
Safety requirement for electrical equ	ipment for laboratory	IEC 1010-1,	
Safety information technology equip	ment	IEC 950	

814.501 (1994)

RöV 1987

Swiss safety standard for X-ray radiation

German safety standard for X-ray radiation

ARL 9800 instrument maintenance

As an example the table below provides information on the maintenance and the service required by the instrument analyzing 300 solid samples per day.

Location	Work to be done	Weekly	Monthly	Yearly	Every 2 years	Every 3 years
Cabinet	All fans		Check		Change	- J
	All dust filters		Check	Change	e nange	
	Inside the cabinet		0	Clean		
Software	Database backup	Perform				
Sample	Sample cassette		Clean			
load/unload	Sample Magazine		Clean			
loud, diffoud	XY Magazine		Clean			
	Shutter assembly		Clean	Revise		
	Load lift		Cicuit	Revise		
	Transfer			Revise		
	Analyse lift			Revise		
	Sample rotation			Check		
Vacuum circuit	Oil pump level		Check/Fill	Change		
	Oil vacuum pump			Revise		
	Oil vacuum pump filter			Change		
	Molecular pump			Add grease		Change
	Spectro vacuum valve			7.000 9.0000	Change	enange
	Prim. Ch. vacuum and venting valves			Change	e nange	
	Both vacuum level	Check		Adjust		
Water circuit	Deionized water level	Check		, lajaot		
Water enoun	Deionized water flow	Check				
	Deionized water temperature	Check				
	Deionized filter cartridge	Chicola		Change		
	Deionized water resistivity		Check	Change		
	Prim. Water flow	Check	Chook			
	Prim. Water temperature	Check				
	Water valves			Change		
	All tap water tubes			Clean		
	Water leakage (Collar tightness)			Check		
X-Ray tube P.S.	X-Ray tube HV connection			Check		
	X-Ray tube P.S. HV connection			Check		
	HV silicone washers			Change		
	Test of the interlock circuit			Check		
P10 Gas circuit	P10 Gas bottle High pressure level	Check				
	P10 Gas bottle Low pressure level	Check				
	P10 Gas Interlock			Check		
	P10 Gas regulation valves			Change		
	P10 Gas overpressure valve				Change	
Prim. Beam Dev.	Prim. Beam Device assembly			Check	Ŭ	
Monos	All energy profiles		Check	Adjust		
	All thresholds and windows		Chook	Check		
	All detectors resolutions			Check		
	Mono filter positionning			Check		
XRD	Energy profile		Check	Adjust		
	Threshold and window		0001	Check		
	Detector resolution			Check		
	Scan check positions		Check	Adjust		
Gonio	Energy profiles		Check	Adjust		
	Thresholds and windows		CHOOK	Check		
	Detectors FPC and SC resolutions			Check		
	Scan check positions		Check	Adjust		1
Stability	Long and short term test		CHOOK	Check		

The frequency of the maintenance tasks can vary depending of the number and the nature of the samples analysed.

The frequency of the maintenance task can vary depending of the cleanliness (dust) of the environment (lab).

The yearly maintenance and service tasks can only be performed by certified and authorized ARL service engineers unless the user is properly trained (see our Maintenance Training Course Program).

5

SAMPLE PREPARATION

5 SAMPLE PREPARATION

Since X-ray spectrometry is essentially a comparative method of analysis, it is vital that all standards and unknown samples are presented to the spectrometer in a reproducible and identical manner. Any method of sample preparation must give specimens which are reproducible and which, for a certain calibration range, have similar physical properties including mass absorption coefficient, density and particle size. In addition, the sample preparation method must be rapid and cheap and must not introduce extra significant systematic errors, for example, the introduction of trace elements from contaminants in a diluent.

The quality of sample preparation in X-ray fluorescence analysis is at least as important as the quality of measurements. An adequately prepared sample must:

- be representative of the material;
- ♦ be homogeneous;
- when possible, be thick enough to meet the requirements of an infinitely thick sample.

Various preparation techniques have been described in the literature. The object of this chapter is to point out the main criteria for quality preparation of metallic samples, powder samples, and liquid samples.

For quantitative analysis, samples must be prepared in the same way like the standard samples used for calibration.

Туре	Sample holder	Prepa	aration	Sample	Purpose	
0.111	Iron Steel Nickel Ferro-Alloy	Cutting	Surface grinding with belt surfacer	Solid sample holder	Surface	
Solid	Cu-alloy Al-alloy Pb-alloy Zn-alloy	Cutting	Surface milling with lathe	Solid sample holder	smoothing	
Powder	Metallic Chemicals Polymer Plant	Grinding	Briquetting	Solid sample holder	Equalizing the density and sur- face smoothness	
Towder	Ceramic Ore Soil Sediment Oxide	Grinding	Fusion	Solid sample holder	Eliminating the mineralogical and the granulometric differences	
Liquid	Oil, water	Spotting on filter			Transforming liquid into solid	
Liquid	Water	Ion exchanging precipitating		Solid sample holder with filter holder	Concentrating and transforming liquid into solid	

Typical methods of sample preparation are listed in the following table.

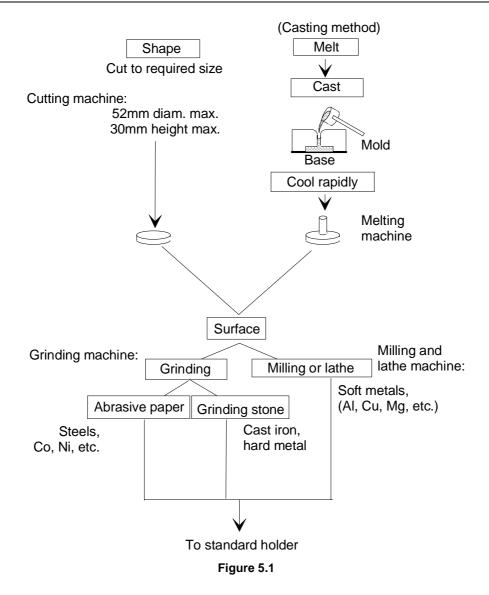
Sample Preparation for Solids

The preparation must be simple, rapid and reproducible. Usually, metallic samples are prepared as solid disc by conventional methods of machining: cutting, milling and polishing; grinding is used in the case of hard alloys and brittle materials such as ceramics.

The best polishing operation requires very fine abrasives to produce the scratch-free surfacing necessary for most analyses, and even a mirror-like surface is often required if the sample is to be analysed for light elements. The surface finish is of prime importance because the polishing striations give rise to the so-called shielding effect, which results in decrease in fluorescence intensities. As expected the decrease in intensity is more important for lighter elements when the primary radiation are perpendicular to the striations and weaker when they are parallel to them. For that reason, modern spectrometers are equipped with spinning sample holders to smooth out the influence of sample orientation, resulting in observed intensities on samples and standards that are reproducible.

However, the shielding effect may still be present; sample rotation will compensate for it only if the magnitude of the effect is the same for standards and production samples; this requires that the striation be of the same size and that the sample composition be similar (same effective wavelength).

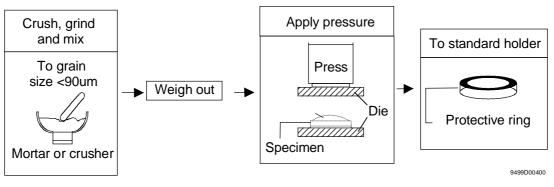
In practice, striation depths of 100 μ m are acceptable for elements with characteristic lines of short wavelengths, but striations deeper than few μ m may impair significantly the accuracy of Si, Al and Mg determinations.


Very fine grits of Al2O3, SiC, B6C (80-120 grits) are commonly used to obtain the desired surface finish for most metals (Fe, Ni, Co bases).

Mechanical polishing may be undesirable for soft, malleable, multiphase alloys because of smearing of the softer components; the intensities of the elements in softer phases increase while those of the harder phases decrease. In such cases, special precautions must be taken even during milling and especially in the final polishing operation (Pb, Cu, Al, Zn, Sn Bases).

Polishing may be source of contamination since currently used abrasives, SiC and Al2O3, contain two elements that are often determined in commercial alloys. Sample surface cleaning may be necessary to remove these contaminations as well as grease stains and handling residuals.

Once the sample prepared, be careful not to touch the sample surface.

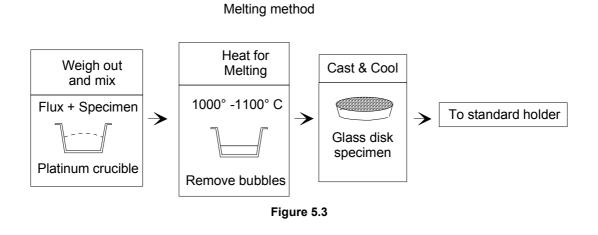

Touching the sample surface will contaminate it with Na, Cl and C among other elements, which might affect the analysis.

Sample Preparation for Powders

Where powders are not affected by particle size limitations the quickest and simplest method of preparation is to press them directly into briquets (or pellets) of constant density, with or without the additional use of a binder. In general, provided that the powder particles are less than about 50 microns in diameter the sample will pelletize at around 10-30 tons. Where the self-bonding properties of the powder are poor, higher pressure may have to be employed or in extreme cases a binder will be added before pelletizing. If it is necessary to add a binder the choice of the binding agent must be made with care. As well as having good self-bonding properties the binder must be free from significant contaminant elements and must have low absorption. It must also be stable under vacuum and irradiation conditions and it must not itself introduce significant interelement interferences. Of the large number of binding agents which have been successfully employed probably the most useful are wax and methyl cellulose.

Briquet method

The analysis of powder is invariably more complex than that of metallic sample since in addition to interelement interferences and macroscale heterogeneity, particle size effects and mineralogical effects are also important. Although inhomogeneity and particle size can often be minimised by grinding below 50 microns and pelletizing at high pressure, often the effects cannot be completely removed because the harder compounds present in a particular matrix are not broken down. These effects produce systematic errors in the analysis of specific type of material e.g. siliceous compounds in slags, <u>sinters</u> and certain minerals.

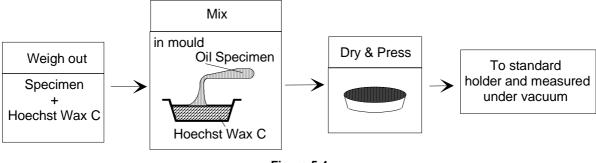

The best way of completely removing both grain size and mineralogical effects is to use the <u>fusion technique</u> based on the method of Dr F. Claisse. The dissolution or decomposition of a portion of the sample by a flux is obtained at high temperature and produces an homogeneous glass. This eliminates particle size and mineralogical effects entirely. The fusion technique also has additional advantages:

- a) Possibility of high or low specimen dilution for the purpose of decreasing matrix effects.
- b) Possibility of adding compounds such as heavy absorbers or internal standards to decrease or compensate for matrix effects.
- c) Possibility of preparing standards of desired composition.

Essentially the fusion procedure consists in heating a mixture of sample and flux at high temperature $(800^{\circ}-1200^{\circ})$ so that the flux melts and dissolves the sample. The overall composition and cooling conditions must be such that the end-product after cooling is a one phase glass.

Heating of the sample-flux mixture is usually done in platinum alloy crucibles but graphite may also be used when conditions permit.

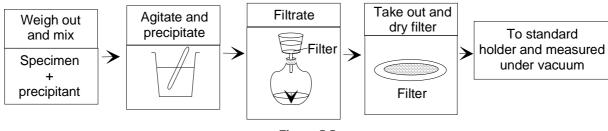
The most frequently used fluxes are borates, namely lithium tetraborate and lithium metaborate or sodium tetraborate. Lithium tetraborate is widely used as it can answer to most cases. In certain cases, mixtures of these fluxes are more effective.


Once the sample prepared, **be careful not to touch the sample surface**.

Touching the sample surface will contaminate it with Na, Cl and C among other elements, which might affect the analysis.

Sample Preparation for Liquids

In order to measure liquids with the X-ray fluorescence technique, it is necessary that the instrument is equipped with a Helium flush system, because liquids can normally not be measured under vacuum for evident reasons. As the ARL 9800 instrument is not equipped with such a Helium system, it is not possible to measure liquids directly. However, certain sample preparation methods for liquids exist that allow liquids or their residues to be measured under vacuum. Three such methods are described in the following sections.


Wax Method for Oil

Filter Method

Precipitation Method

Figure 5.5

Absorption Method

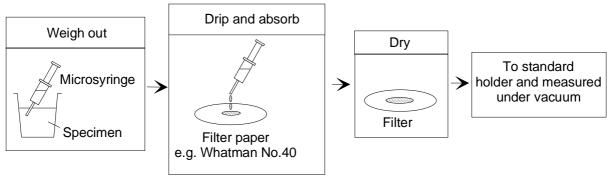


Figure 5.6

6

ANALYTICAL ASSISTANT

6 ANALYTICAL ASSISTANT

Introduction

This chapter describes the functions provided by the Analytical Assistant. This Analytical Assistant is started automatically by WinXRF and is either present on the task bar, or as a periodic chart on the screen.

The way the Analytical Assistant is started is given by the option **Run Minimised** in the **System Options** menu (see figure below), i.e. if this option is not selected, then the Analytical Assistant displays the periodic chart on the screen.

Note:	Elements for which a monochromator is present are shown <u>underlined</u> . This only applies to
	the ARL 9800 series.

Run Minimise	d															
7 Bestore Move						-	A	RI								He
5178				C		ľ	A	1 1			В	С	Ν	0	F	Ne
. Migimize I Magimize											<u>A</u> I	Si	Ē	<u>s</u>	CI	Ar
¢⊡lose	Al	+F4	¥	<u>C</u> 2	Mn	Ee	Co	Ni	Cu	Zn	Ga	Ge	As.	Se	Br	Kı
Rb Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cđ	in	Sn	Sh	Te	i.	Xe
Ce Ba	La	Hť	Тa	w	Re	0s	lr	Pt	Au	Hg	π	Pb	Bi	p_0	M	Rn
Fr Ra	Ac	6		n N	id P	m S	im E	50	ala	ЪГ	y F	to E	ъT	in Y	งโเ	
				33			λ		==			==		==	lo L	=
Actions																_
Elem	ent <u>I</u> r	form	ation			Ana	lytica	l Prog	jram				<u>S</u>	an		
Energy Profile																
Message																
Please se	lect a	in act	tion													

Figure 6.1

Following features are available:

Element Information

This function gives useful information about the selected element in terms of analytical parameters (lines, crystals, detectors, PBF, etc.) that are best suited with respect to the configuration of the instrument.

Scan This function allows a quick scan to be performed over the selected element with the most suitable lines and analytical parameters with respect to the configuration of the instrument.

Energy Profile

This function allows an energy profile to be performed over the selected element using the most suitable lines and analytical parameters with respect to the configuration of the instrument.

Analytical Program

This function represents the heart of the Analytical Assistant. Basically it allows creation of an analytical program with the most suitable element lines and analytical parameters in respect of sensitivity, choice of elements and possible line overlaps. It provides a list of potential problems and an indication on how these can be solved.

All element lines which are missing in the Line Library are automatically created with the required parameters. Furthermore, a template calibration sample is created that can be used to build the matrix data.

In case of ambiguities or problems for the selection of element lines, additional functions are provided to quickly check the set-up of lines with a typical sample in terms of scans, to check line overlaps and the sensitivities, and energy profiles to check higher order overlaps.

The Analytical Assistant is a program that is based on a so called **Knowledge Table** that contains the analytical parameters and potential overlaps for each possible element line.

Whenever a function of the Analytical Assistant is used, it acts as a "Wizard", meaning that only appropriate parameters are selected to perform the action. Furthermore, whenever the proposed parameters can be changed, then the selection of possible alternatives depends on the configuration of the instrument.

It should be noticed that in order to obtain full details about the functions provided by the Analytical Assistant, the chapters listed in the following table should also be consulted in the *WinXRF Configuration Manual*.

Chapter in Configuration Manual	Explanations about
Analytical Assistant	Knowledge Table and Selection Criteria
Goniometer Set-up	Scans, Line Library, Energy Profiles, Goniometer functions
Monochromator Set-up	Line Library, Energy Profiles
Special Elements and Required Samples	Manual Inputs, Virtual Elements, Calibration Samples, Setting-up Samples (Drift Correction), Samples for Line Overlap and Background Corrections
Analytical Programs	Internal Standards, Pseudo Elements
Instrument Calibration	Offline Analysis (Line overlap Correction)

Description of the Functions

The main screen consists of three sections:

Periodic Chart

	Whenever an action is selected, the elements that can be analysed with the XRF technique and the actual instrument configuration will be highlighted for selection.
Actions	The buttons shown in this group box are contextual, i.e. new buttons will be available depending on the selected action.
Messages	Dynamic information is given in this box for guidance.

Element Information

This function gives useful information about the selected element in terms of analytical parameters (lines, crystals, detectors, PBF, etc.) that are best suited with respect to the configuration of the instrument.

When this function is selected, the periodic chart is highlighted, allowing the required element to be selected. Only the elements that can be analysed with the XRF technique and the actual instrument configuration are highlighted for selection.

The Actions group box only contains the Exit button which allows you to leave this function.

6	Anal	ytical	Assist	ant													l	- 🗆 🛛
	н								A	RI								He
	Lì	Be				C		ľ	F	I IL			в	С	Ν	0	F	Ne
	Na	Mg											AL	<u>Si</u>	Р	<u>s</u>	CI	Ar
	к	Ca	Sc	Ti	¥	<u>Cr</u>	Mn	<u>Fe</u>	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Те	I.	Xe
	Cs	Ba	La	Hf	Ta	w	Re	0s	Ir	Pt	Au	Hg	п	Pb	Bi	P ₀	At	Rn
	Fr	Ra	Ac		e F	Y N	Id P	m S	im E		alı	ъГо	y F	to E	a T	m Y	ษโเ	
				1	ЪЕ	2	==		==	<u>м</u> С	==	3k (X E	s F	in N	tal N	lo L	394
Г	Actio	ns-						<u> </u>										-
																Exi	it	
	Message																	
	Sele	ct an	elem	ent to	get i	nform	ation	on, c	or pre	ss (E	XIT] ti	o retu	rn to	the pr	reviou	is me	nu	

Figure 6.2

After an element has been selected, a screen similar to the one shown in the next figure will be displayed.

Depending on the selected element up to five different lines (i.e. Ka, Kb, La, Lb or Ma) are available for further investigations. The line selection buttons are arranged in such a way that the sensitivity of the

corresponding lines for the selected element decreases from left to right. By default, the information of the most sensitive line is displayed.

	mation: Fe [2 Kb La ta			Element: Fe [2] Instrumental Val	-		×
Ka Absorpti	on Edge:	1.7435		Choice	1st	2nd	3rd
La Absorpti	on Edge:	17.5250		Line	Ka1.2	Ka1	
Density:		7.870		Wavelength	1.9373	1.9360	
Atomic Wei	ght:	55.847		Energy	6.4005	6.4048	
Typical Oxi	de Form:	Fe ₂ 03		Goniometer	1	2	
Overlapping	lines			Crystal	LiF200	LiF220	
Choice	y cines			Detector	FPC/SC	FPC/SC	
@ 1st	C 2nd	C 3rd		2 Theta Angle	57.5179	85.6544	
	0	der		Collimator	0.25/0.15	0.25/0.15	
	Overlap On		'		0.6		
1st	2nd	3rd		kΨ	50	50	
DyLa1	ThLa2	RuKa1	4	mA	12	12	
EuLB1 TbLa1	PbLB3 AcLa1	RuKa2 RhKacom		inter i	12	16	
PmLB2	KrKa1	CmLB1					
EuLB4	ThLa1	AmLB1	_	Print			
MnKB1.3	PbLB1	CILB2					
DyLa2	KrKa2	MoKB1.3		Selected C	hoice		I
SmLB3	BiLB1	AmLB3		411.01			E⊻it
PrLG1	BiLB2	ThLG1	-	All Choic	es		

Figure 6.3

The information displayed is divided into three parts:

Element Data

This area contains the **Ka** and **La Absorption Edge** values in Angstroms, the **Density** of the element in g/cm³, the **Atomic Weight** and its **Typical Oxide Form**.

Instrumental Values

This area shows up to three sets of instrumental and analytical parameters for the selected element in the order of decreasing sensitivity.

- If more than one detector is given for a choice, it means that in principle, both detectors could be used, because the wavelength of the element line corresponds to the range where the sensitivity of the two detectors is almost equal. Only the energetic resolution of the detectors may be different and could therefore be the deciding factor for the choice of the detector to be used. This, of course, can be checked with energy profiles with both detectors.
- If more than one collimator is given for a choice, it means that in principle, both collimators could be used, but in case of any doubts, this should be checked by scans with a typical sample.
- Note: If an element can only be measured with a monochromator (ARL 9800 series), then the information is restricted to the physical data relevant for that element (Line, Wavelength and Energy) and the proposed tube conditions (kV and mA).

Overlapping Lines

The list box in this area shows up to 20 potential overlaps for up to three **Overlap** (reflection) **Orders** of the selected **Choice**. These overlaps are given with decreasing importance.

The information displayed on this screen can be printed either for the **Selected Choice**, or for **All Choices**. This screen can be left by pushing the **Exit** button, and the next element can be chosen using the periodic chart.

Scan

This function allows you to perform a short scan over the selected element line with the analytical parameters (lines, crystals, detectors, PBF, etc.) that are best suited with respect to the configuration of the instrument. When this function is selected, the periodic chart is highlighted, allowing the desired element to be selected. Only the elements that can be analysed with the XRF technique and the actual goniometer configuration are available for selection. Thus, if the instrument is equipped with monochromators for ultra light elements requiring special crystals, then such elements are, of course, not available for selection (this only applies to the ARL 9800 series).

The **Actions** group box contains no buttons, and therefore, this function can only be left with the **Exit** button of the subsequent dialog box (see Figure 6.5).

🔁 Analytical Assi	stant													- 🗆 X
н		The			۸	DI								He
Li Be		۲he			А	n	-		в	С	N	0	F	Ne
Na Mg									AI	<u>Si</u>	Р	<u>s</u>	CI	Ar
K <u>Ca</u> Se	: Ti	Y Cr	Mn	Ee	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb Sr Y	Zr	Nb Mc	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Т	Xe
Cs Ba La	н	Ta W	Re	0s	Ir	Pt	Au	Hg	п	Рb	Bi	P ₀	At	Rn
Fr Ra Ad		e Pr	Nd	m S	im E		alı	ър	y F	to E	a T	m	ъl	
	Т	h Pa	UN	4p F	20 A	л (m E	3k (X E	58 F	==	==	lo L	
Actions				<u> </u>										
Message														
Select the ele	ment y	ou want t	o run a	a scar	n on									

Figure 6.4

After an element has been selected, a screen similar to the one shown in the next figure will be displayed.

Select Choice				
	@1st	C 2nd	C 3rd	Bun
Line	Ka1,2	Ka1		Abort
Wavelength	2.1031	2.1018		
Goniometer	1	2		Medify
Crystal	LiF200	LIF220		Exit
Detector	FPC	FPC		
Start Angle	61.97	94.12		
2 Theta Angle	62.97	95.12		
End Angle	63.97	96.12		
Collimator	0.25	0.25		
ev.	50	50		
mA	12	12		

By default, the parameters of the most sensitive line are displayed, and up to three choices are available to perform the scan.

Depending on the selected element up to five different lines (i.e. Ka, Kb, La, Lb or Ma) are available for selection. The line selection buttons are arranged in such a way that the sensitivity of the corresponding lines for the selected element decreases from left to right.

Select Choice This area shows up to three sets of instrumental and analytical parameters for the selected element line in the order of decreasing sensitivity. The required element line is simply selected by its corresponding radio button.

The following buttons are available for further actions:

Run	Allows you to perform the scan.
Abort	Allows you to abort the scan after it has been started.
Modify	Allows you to select alternative parameters for the execution of the scan (see next section).
Exit	Allows you to leave the Scan function.

Selection of Alternative Scan Parameters

The **Modify** function allows you to change the parameters proposed by the Analytical Assistant. This may be necessary if, for instance, one wants to choose different parameters (i.e. range, increment, counting time, analytical conditions, etc.), or a different collimator/detector (if available) to perform the scan.

Channel Type CXRF Goniometer 1 CXRF Goniometer 2 CXRF Goniometer 3	Counting time: 2.88 kV: 58 mA: 12 Primary Beam Device
Scan Type	
⊂ Incremental ⊙ Fast Digital	Elliptical Mask
Crystal: LiF200	-Target Anode
Detector: SC Collimator: 0.25	C1 C2 Sample Rotation CYes @No
2 Theta Angles	PHD
Start: 61.9731 End: 63.9731 Increment: 0.05	Counting Threshold: 0.00 PHD Threshold mV: 400 PHD Window mV: 1000

Figure 6.6

As can be seen in the figure above, only the detectors and collimators that are suitable for the selected element line can be chosen. However, concerning the other parameters, no restrictions exist.

On leaving the **Modify Scan Parameters** dialog box with **OK**, all modifications will be shown in the former dialog box (see Figure 6.5).

If the **Exit** button is pushed, this function is left without retaining the modifications.

Run a Scan

Once the parameters have been selected either with the radio buttons (Figure 6.5) or through the **Modify** function (Section *Selection of Alternative Scan* Parameters) the scan can be executed with the **Run** button. Upon selecting this function, the following dialog box is displayed.

🔒 Scan Details				×
Scan Results Filename:	1MnKa1_2			
Description:			Cassette [./+]:	·
Sample Identifier				
Sample Name :	Iron 450	Sample Source:		
Sample Humber:	1	Operator :		
Charge No :		Running No :		
	ОК	Cancel		

Figure 6.7

The following details can be specified in this dialog box:

Scan Results Filename

This field shows the proposed scan filename which can however be changed if necessary.

- **Description** This field is optional and allows you to enter a description of the analysed sample or any other information about the scan to be performed.
- **Cassette** (./+) The cassette or position number where the sample is located has to be specified here.

Sample Identifier

At least one of the globally defined sample identification fields has to be specified in order to commence the scan; if no input is given an appropriate error message will appear.

The scan can then be executed by selecting the **OK** button, causing the former dialog box (see Figure 6.5) to be displayed as long as the scan takes to be completed. Once completed, the initial periodic chart screen is displayed again (see Figure 6.1).

The recorded scan can then be displayed with the standard scan graphics function, as is explained in the *WinXRF Operator Manual*.

If the **Cancel** button is pushed, the **Scan** function is left immediately.

Scan Graphics

During the scanning process it is possible to observe the ongoing acquisition of the data points.

- In the main menu click on **Production / Analysis** and then click on **Qualitative Scans**.
- Click on View Scans.

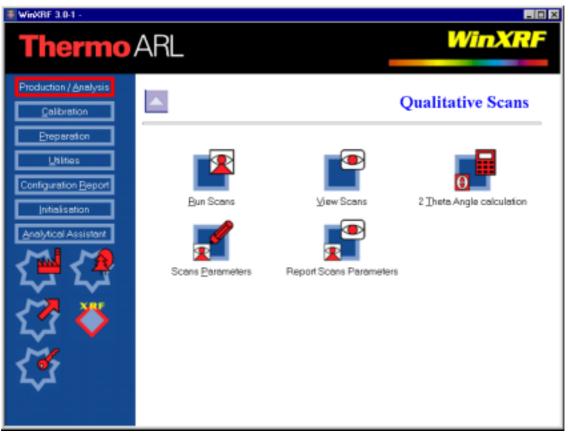


Figure 6.8

- If one wants to display the ongoing graphic acquisition while the scan is performed, click on **XRF** Goniometer 1.
- If one wants to display a stored result file, click on **Saved Results Set** and select the desired scan file in the list box.
- Click on **OK**.

Database Category:	User	-
Scan Data Source © Saved Results Set C XRF Goniometer 1 C XRF Goniometer 2 © XRF Goniometer 3 C XRD Goniometer 1 C XRD Goniometer 2	Current Active Scanning	Results Set:
ОК	Г	Cancel

Figure 6.9

The scan is now displayed graphically (see figures in Section Overlap Investigation).

• By clicking on **Options** the scan graphic scales can be modified, for example to logarithmic scale.

- To identify a peak double-click onto the top of the peak you want to identify. This causes the system to display a list box that contains the possible element lines of the marked interval.
- Select a line and click on Add.

The system now shows where the selected line and its corresponding family lines (lines of the same spectral series) appear in the spectrum. If there is a match between the displayed lines and peaks one can be quite sure that the identification is correct.

- This can be confirmed by clicking on **Finish**, causing the family lines to disappear and the identified peak to be labelled. The other peaks of the spectrum can be identified in the same way.
- The scan graphic can be printed with a report by clicking on **Print**.

Energy Profile

This function allows you to perform an energy profile over the selected element line with the analytical parameters (lines, crystals, detectors, PBF, etc.) that are best suited with respect to the configuration of the instrument.

When this function is selected, the periodic chart is highlighted, allowing the desired element to be selected. Only the elements that can be analysed with the XRF technique and the actual instrument configuration are available for selection. If for an element a monochromator is also present, then the energy profile with the monochromator has to be done using the standard function (this only applies to the ARL 9800 series).

The **Actions** group box contains no buttons, and therefore, this function can only be left with the **Exit** button of the subsequent dialog box (see Figure 6.11).

Anal	ytical a	Assist	ant													l	- 🗆 X
Н								٨	DI								He
ы	Be				E	4	U	А				в	С	Ν	0	F	Ne
Na	Mg											AI	<u>Si</u>	Р	<u>s</u>	CI	Ar
κ	Ca	Sc	Ti	¥	<u>Cr</u>	Mn	Ee	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Те		Xe
Cs	Ba	La	Hf	Ta	w	Re	0s	lr	Pt	Au	Hg	п	Рb	Bi	P ₀	At	Rn
Fr	Ra	Ac		e F	r N		m s	an E	ul e	alt	ъГо	NV F	to E	e l T	m l v	ซ โเ	
		_			33	==									==	==	=
Actio	ns-						<u> </u>										
Mes	sage																_
Sele	ct the	elen	nent y	ou wa	ant to	run a	in en	ergy (profile	: on							
	H Na K Rb Cs Fr Actio	H Na Mg K <u>Ca</u> Rb Sr Cs Ba Fr Ra Actions	H Be Na Mg K <u>Ca</u> Sc Rb Sr Y Cs Ba La Fr Ra Ac Actions	Li Be Na Mg K <u>Ca</u> Sc Ti Rb Sr Y Zr Cs Ba La Hf Fr Ra Ac (1 Actions	H Be Na Mg K Ca Sc Ti Y Rb Sr Y Zr Nb Cs Ba La Hf Ta Fr Ra Ac Ce F Th F Actions	H Be Na Mg K Ca Sc Ti Y Cr Rb Sr Y Zr Nb Mo Cs Ba La Hf Ta W Fr Ra Ac Ce Pr N Th Pa C Actions	H Be Na Mg K Ca Sc Ti Y Cr Mn Rb Sr Y Zr Nb Mo Tc Cs Ba La Hf Ta W Re Fr Ra Ac Ce Pr Nd P Th Pa U N Actions	H Be Na Mg K Ca Sc Ti Y Cr Mn Ee Rb Sr Y Zr Nb Mo Tc Ru Cs Ba La Hf Ta W Re Os Fr Ra Ac Ce Pr Nd Pm S Th Pa U Np F Actions	H Be Na Mg K Ca Sc Ti Y Cr Mn Ee Co Rb Sr Y Zr Nb Mo Tc Ru Rh Cs Ba La Hf Ta W Re Os Ir Fr Ra Ac Ce Pr Nd Pm Sm E Th Pa U Np Pu A Actions	H Be Na Mg K Ca Sc Ti Y Cr Mn Ee Co Ni Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Cs Ba La Hf Ta W Re Os Ir Pt Fr Ra Ac Ce Pr Nd Pm Sm Eu C Th Pa U Np Pu Am C Actions	H Be Na Mg K Ca Sc Ti Y Cr Mn Ee Co Ni Cu Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cs Ba La Hf Ta W Re Os Ir Pt Au Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd T Th Pa U Np Pu Am Cm E Actions	H Be Na Mg K Ga Sc Ti Y Gr Mn Ee Co Ni Cu Zn Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb D Th Pa U Np Pu Am Cm Bk (Actions	H Be Na Mg K Ga Sc Ti Y Gr Mn Ee Co Ni Cu Zn Ga Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy H Th Pa U Np Pu Am Cm Bk Cf E Actions	H Be Na Mg K Ga Sc Ti Y Gr Mn Ee Co Ni Cu Zn Ga Ge Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho E Th Pa U Np Pu Am Cm Bk Cf Es F Actions	H Li Be Na Mg K Ga Sc Ti Y Gr Mn Ee Co Ni Cu Zn Ga Ge As Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Cs Ba La HI Ta W Re Os Ir Pt Au Hg TI Pb Bi Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er T Th Pa U Np Pu Am Cm Bk Cf Es Fm N Actions	H B C N O Al Si P S K Ca Sc Ti Y Cr Mn Ee Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La HI Ta W Re Os Ir Pt Au Hg TI Pb Bi Po Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Y Th Pa U Np Pu Am Cm Bk Cf Es Fm Md N Actions	H Li Be Na Mg K Ca Sc Ti Y Cr Mn Ec Co Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Cs Ba La HI Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb L Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L Actions

Figure 6.10

After an element has been selected, a screen similar to the one shown in the next figure will be displayed.

Select Choice				
	@1st	C 2nd	C 3rd	Bun
ine	Ka1,2	Ka1		∆bort
Wavelength	2.2910	2.2897		Modify
Goniometer	1	2		Mouny
Crystal	LiF200	LiF220		Exit
Detector	FPC	FPC		
2 Theta Angle	69.35	107.02		
PHD Low	300	300		
PHD High	1600	1600		
Collimator	0.25	0.25		
ev.	50	50		
nA	12	12		

Figure 6.11

By default, the parameters of the most sensitive line are displayed, and up to three choices are available to perform the energy profile for an element with the goniometer. If an element that can only be measured with a monochromator was selected, then the standard parameters for monochromators are selected (this only applies to the ARL 9800 series).

Depending on the selected element up to five different lines (i.e. Ka, Kb, La, Lb or Ma) are available for selection. The line selection buttons are arranged in such a way that the sensitivity of the corresponding lines for the selected element decreases from left to right.

Select Choice This area shows up to three sets of instrumental and analytical parameters for the selected element line in the order of decreasing sensitivity. The required element line is simply selected by its corresponding radio button.

The following buttons are available for further actions:

Run	Allows you to perform the energy profile.
Abort	Allows you to abort the energy profile after it has been started.
Modify	Allows you to select alternative parameters for the execution of the energy profile (see next section).
Exit	Allows you to leave the Energy Profile function.

Selection of Alternative Energy Profile Parameters

The **Modify** function allows you to change the parameters proposed by the Analytical Assistant. This may be necessary if, for instance, one wants to choose different **PHD** parameters or **Analytical Conditions**, or a different collimator/detector (if available) to perform the energy profile.

Name: 1C Channel Type	rKa1_2	Analytical Cond Counting time	
• XRF Goniometer	r1	kV:	50
C XRF Goniometer	r 2	mA:	12
C XRF Goniometer	r 3	-Primary Bear	n Device
C Monochromator			1
PHD			
Law - mV:	3.00	Intensity Filte	er Mode
High - mV:	1600		v
Steps:	50		
Window:	1	- Target Anode	
Integration Time:	30	01	02
Crystal:	LiF200	Automatic Gain	Control (AGC)
Detector:	FPC SC	@ On	CON
Collimator:	0.25	- OK	Cancel

Figure 6.12

As can be seen in the figure above, only the detectors and collimators that are suitable for the selected element line can be chosen. However, concerning the other parameters, no restrictions exist.

On leaving the **Modify Energy Profile Parameters** dialog box with **OK**, all modifications will be shown in the former dialog box (see Figure 6.11).

If the **Cancel** button is pushed, this function is left without retaining the modifications.

Run an Energy Profile

Once the parameters have been selected either with the radio buttons (Figure 6.11) or through the **Modify** function (Section *Selection of Alternative Energy Profile Parameters*) the energy profile can be executed with the **Run** button. Upon selecting this function, the following dialog box is displayed.

😝 Energy Profile Details	×
Energy Profile Results Filename:	
1CrKa1_2	
Description:	OK
Cassette [./+]:	Cancel

Figure 6.13

The following details can be specified in this dialog box:

Energy Profile Results Filename

This field shows the proposed energy profile filename which can however be changed if necessary.

Description This field is optional and allows you to enter a description of the analysed sample or any other information about the energy profile to be performed.

Cassette (./+) The cassette or position number where the sample is located has to be specified here.

The energy profile can then be executed by selecting the **OK** button, causing the former dialog box (see Figure 6.11) to be displayed as long as the energy profile takes to be completed. Once completed, the initial periodic chart screen is displayed again (see Figure 6.1).

The recorded energy profile can then be displayed with the standard energy profile graphics function.

If the **Cancel** button is pushed, the **Energy Profile** function is left immediately.

Display Energy Profiles

Recorded energy profiles can be examined by displaying them graphically on the screen. The following steps have to be executed to select the energy profile to display. Select **Calibration** from the main menu, then the **Energy Profile** folder followed by the **Energy Profile Graphics** icon.

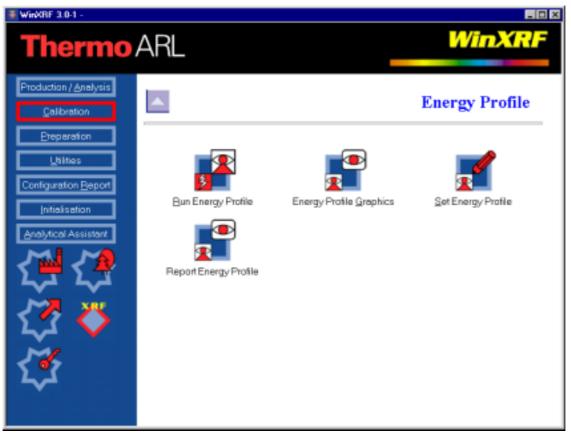


Figure 6.14

The dialog box shown below is then displayed, allowing to select the energy profile from the list box.

	×
User	-
	ОК
~	Cancel
	dile Graphics se Category: User file: 1 2 E NAL

Figure 6.15

After confirmation by clicking onto the **OK** button, the selected energy profile is displayed (see figures in Section *Overlap Investigation*).

Analytical Program

This function represents the heart of the Analytical Assistant. Basically it allows easy creation of an analytical program with the most suitable element lines and analytical parameters in respect of sensitivity, choice of elements and possible line overlaps. It provides a list of potential problems and an indication on how these can be solved. Furthermore, it creates a template calibration sample to build the matrix data that will be used to perform the actual calibration work.

In case of ambiguities or problems with the selection of element lines, additional functions are provided to quickly check the set-up of lines with a typical sample with the aid of scans, to check line overlaps and sensitivities, and energy profiles to check higher order line overlaps.

Select Elements

The elements to be included in the Analytical Program can be selected by pushing the **Analytical Program** button which causes the periodic chart to become highlighted. Only the elements that can be analysed with the XRF technique and the actual instrument configuration are available for selection.

The elements are selected by pushing the corresponding buttons, and the selected elements will be shown in blue. These buttons have a toggle function, i.e. a second push on a selected element button deselects this element, and therefore, will be shown in black again.

Hint: In order to follow the explanations given below for various analytical problems, it is recommended that you select the same set-up in terms of elements and matrix details as is shown in the following figures. To start the example, please select the following elements:

Al, Si, P, S, Ti, V, Cr, Mn, Fe, Ni, Mo, W

H H	ytical (Assist						<u></u>	DI								He
R	Ве			li	e	11		А	n.			в	С	Ν	0	F	Ne
Na	Mg											AL	Si	P	<u>s</u>	CI	Ar
к	Ca	Sc	Ті	¥	<u>Cr</u>	Mn	Ee	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Te	Т	Xe
Cs	Ba	La	Hf	Ta	w	Re	0s	lr	Pt	Au	Hg	п	Pb	Bi	P ₀	At	Rn
Fr	Ra	Ac)e F Th P					iu () m ()	id T m E	b D 3k (<u></u>			m Y id N		.u .w
ACIIO	115														<u>C</u> onti E⊻		
	ct the			to me e pre				ne [CC	DNTIN	IUE] B	utton	. Oth	erwise	e hit t	he [E	хп	

Figure 6.16

The Actions group box contains two buttons:

Continue	By pushing this button, the next step in the process of creating the Analytical Program is called. Please note, even if no elements have been selected, this button is still available but the next actions will be restricted to Elements to Measure and Exit .
Exit	By pushing this button, the creation of the Analytical Program is cancelled and the initial screen is displayed again (Figure 6.1).
Note:	Elements that can only be measured with monochromators will not be included in the following evaluation process, and thus the investigation of potential overlaps has to be done with the Element Info function. Elements for which monochromators exist but can also be measured with the goniometer, the evaluation will be done with the corresponding goniometer lines. This only applies to the ARL 9800 series.

After having selected the elements, the **Continue** button has to be pushed which causes the table shown in the next figure to be displayed.

Analyte	Overlapping Element	Order of Overlap	Correction necessary	Possible Solutions
Al P	Ti	3	Check (Scan)	Adjust PHD
Р	Cr	3	Check (Scan)	Adjust PHD
	Mo	1	Yes	
	w	1	Yes	
S	Mo	1	Yes	
S V	Ti	1	Yes	
	w	2	Check (Scan)	Adjust PHD
Cr	V	1	Yes	
Mn	Cr	1	Yes	
	Mo	3	Check (Scan)	Adjust PHD
	w	2	Check (Scan)	Adjust PHD
Fe	Mn	1	Yes	
	Mo	3	Check [Scan]	Adjust PHD
Ni	W	1	Yes	
w	Ni	1	Yes	
	Print			Continue

This table consists of the following items:

Analyte This column shows the analyte elements that are affected by overlapping elements. At this stage, all elements are shown in blue, meaning that the concentration level is **Minor** (see Section *Matrix Details*).

Overlapping Element

This column shows the elements that are overlapping an analyte element. At this stage, all elements are shown in blue, meaning that the concentration level is **Minor** (see Section *Matrix Details*).

Order of Overlap

This column shows the overlap (reflection) order of the overlapping element. A first order overlap normally needs to be corrected by an overlap correction, and for higher orders an adjustment of the PHD settings with the help of an energy profile on a typical sample is in many cases sufficient.

Correction necessary

This column indicates whether an overlap correction is necessary or not.

Possible Solutions

This column suggests how the overlap problem could be solved or at least minimised.

The table shown at this stage may contain a lot of potential problems and the user may think that the calibration process will require a lot of effort to work perfectly. But we should not forget that additional parameters and values need to be specified that may in some cases even increase the potential problems but in most cases the contrary is true.

It is therefore recommended to simply **Print** this table and then leave it by pushing the **Continue** button. The screen as shown in Figure 6.18 is then displayed, but now containing numerous additional buttons in the **Actions** group box that are described briefly after the figure and in subsequent sections.

🔒 Anal	ytical (Assist	ant													ļ	- 🗆
н																	He
u	Нe			li	e	'n	10	A	κι	_		B	С	N	0	F	Ne
Na	Mg											Al	Si	5	8	Ci	Ar
К	<u>C.a.</u>	SS	Ti	¥	<u>12</u>	Mn	En	Co	Ni	Cu	Zn	Ga	Ge	As.	Se	Br	Kı
Rb	Sr	Y	Zr	Nb	Мо	Te	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sh	Te	t	$\times e$
Ce	Ba	tt:	Нί	Тa	w	Re	0s	Ir	Pt	Au	Hg	π	Pb	Bi	\wp_0	М	Rn
Fr	Ra	#Ar)e (7 1	id P	m S	im E	50 G	a T	ъ	iy F	to E	5 T	m Y	ъ เ	
	Th Po U Np Pu Am Cm Bk Cf Es Fm Md No Lw										398						
Actions																	
Elements to Measure Matrix Details Scan/Energy Profile																	
	Line Details Create Program Exit																
Mes	-																
Anal	ytical	Prog	ram :	Plea	se se	lect a	in act	ion									

Figure 6.18

Elements to Measure

Allows you to select or change the matrix elements.

Matrix Details

Allows you to specify details about the matrix to be calibrated.

Scan/Energy Profile

Allows you to perform scans and energy profiles on selected element lines of the matrix.

Line Details Allows you to display and change the proposed analytical parameters.

Create Program

Allows you to create the Analytical Program and the template calibration sample.

Exit When this button is pressed, the **Analytical Program** function is left. If no program was created, a warning message will be given (see Figure 6.36).

Matrix Details

The next step in creating the Analytical Program consists of specifying details about the matrix to be calibrated, and therefore, the button **Matrix Details** has to be pressed.

The screen as shown below is then displayed, where the ARL logo has been replaced by the **Matrix Details** group box. With the help of the three radio buttons the concentration levels can be specified for each element in order to refine the solving procedures for potential overlap problems.

0	_	ytical (Detai	ls —												
	Н		0	Majo	or [> 1	0 %j												He
	Li .	Ве	0	Mine	or (0.5	i - 10	NQ .			<u>M</u> ore			В	С	Ν	0	F	Ne
	Na	Mg	6	Trac	es (<	0.5 %	9		_				AL	Si	Р	S	CI	Ar
	ĸ	<u>Ca</u>	Sc	Ті	¥	<u>Cr</u>	Mn	Ee	Co	Ni	<u>Cu</u>	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Te	Т	Xe
	Cs	Ba	La	Hf	Ta	w	Re	0s	lr	Pt	Au	Hg	п	Рb	Bi	Po	At	Rn
	Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw Actions																	
	Actio	ns —												[OK	;	
Г	Mes	sage																
	Sele men		cond	entra	tions	and t	the re	lated	elem	ents.	Pres	s [OK] to re	eturn t	to the	previ	ious	

Figure 6.19

Hint:	For our example, the followin	g selections should be made:	
	Major:	Fe	
	Minor:	Ti, Cr, Ni, W	
	Trace:	Al, Si, P, S, V, Mn, Mo	

The concentration levels are specified in the following way:

- Select the level.
- Click on the desired elements. Please note that a second click will deselect the element!
- Repeat the procedure for the other levels.

Note:	The indicated percentage levels should not be taken too seriously. Designating elements as							
	Majors will have a strong influence on the choice of instrumental parameters so as to							
	reduce the sensitivity of the element line. The selection of these instrumental parameters is							
	done in such a way that the detection system will not be saturated.							

It should be noticed that the **More...** button becomes activated as soon as any one element has been specified as a **Major** element. This function is explained in the following section.

More Matrix Details

The details specified in this dialog box will only influence the selection of instrumental parameters to reduce the sensitivity of the elements specified as **Majors**.

Following details can be specified in the **Sample Type** and **Dilution** group boxes (see Figure 6.20):

Solid (No dilution)

This option is selected by default. It should be selected if the matrix to be calibrated consists of solid samples (i.e. metallic), pressed powder samples that are prepared without a binder,

or undiluted liquid samples (e.g. oil). The **Dilution** group box remains greyed when this option is selected.

Pressed Powder

This option should only be selected if the sample preparation method for pressed powders requires a binder, and in such a case, the dilution ratio has to be specified. Conversely for undiluted pressed powers the option **Solid** (**No dilution**) should be chosen.

- **Fused Bead** This option should be selected if the matrix consists of fused samples, and the dilution ratio has to be specified.
- Liquid This option should only be selected if the matrix consists of diluted liquid samples, and in such a case, the dilution ratio has to be specified. Conversely, if the matrix is for instance oil, the option Solid (No dilution) should be chosen.

Sample Weight, g

The weight of the sample is specified here.

Diluent, g The weight of the dilution material, e.g. flux, binder, etc., is specified here. As an indication, the dilution ratio is calculated in the box underneath.

Hint: For our example, the option **Solid** (**No dilution**) should be selected.

😝 Sample Prep	aration	×
Sample Ty	pe	
C Solid (N	lo Dilution)	
C Presse	d	
Fused E	Bead	
CLiquid		
Dilution		
.6	Sample Weight [g]	
6.6	Diluent Weight [g]	
	Ratio: 11.00	
ОК	Cancel	

Figure 6.20

After confirmation of the **Matrix Details**, the table of **Overlapping Elements** is displayed again with new recommendations to solve the overlap problems (in our example, the overlap corrections necessary decreased from 9 to 5!). Also, the elements are now shown in the colour of their corresponding concentration level. It is, of course, suggested that to this table is **Printed** again, so that it can serve as a guide for solving the overlap problems.

W 1 Yes S Ti 2 Check (Scan) Adjust PHD Fe 3 Check (Scan) Adjust PHD	Analyte	Overlapping Element	Order of Overlap	Correction necessary	Possible Solutions
Si W 1 Yes P Cr 3 Check [Scan] Adjust PHD Mn 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate W 1 Yes S Ti 2 Check [Scan] Adjust PHD Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 Yes Mn Cr 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Fe Mn 1 No Ni W 1 Yes	AI	Ti	3	Check (Scan)	Adjust PHD
Mn 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate W 1 Yes S Ti 2 Check [Scan] Adjust PHD Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 Yes Mn Cr 1 No Mn 3 Check [Scan] Adjust PHD Fe Mn 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes	Si	w	1	Yes	
Mn 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate W 1 Yes S Ti 2 Check [Scan] Adjust PHD Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes	Р	Cr	3	Check (Scan)	Adjust PHD
Mo 1 Check [Scan] Select finer collimate W 1 Yes S Ti 2 Check [Scan] Adjust PHD Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 Yes Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes		Mn	3		
W 1 Yes S Ti 2 Check [Scan] Adjust PHD Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes		Mo	1	Check (Scan)	Select finer collimator
S Ti 2 Check [Scan] Adjust PHD Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes		w	1		
Fe 3 Check [Scan] Adjust PHD Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes	\$		2	Check (Scan)	Adjust PHD
Mo 1 Check [Scan] Select finer collimate V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes		Fe	3		
V Ti 1 Yes W 2 Check [Scan] Adjust PHD Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes		Mo	1	Check (Scan)	Select finer collimator
Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes	V	Ti	1		
Cr V 1 No Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes		w	2	Check (Scan)	Adjust PHD
Mn Cr 1 Yes Mo 3 Check [Scan] Adjust PHD Fe Mn 1 No Ni W 1 Yes	Cr	V	1		
Fe Mn 1 No Ni W 1 Yes		Cr	1	Yes	
Fe Mn 1 No Ni W 1 Yes		Mo	3	Check (Scan)	Adjust PHD
Ni W 1 Yes	Fe	Mn	1		
W Ni 1 Yes	Ni	W	1	Yes	
	w	Ni	1	Yes	
Print Cont					Continue

Depending on the combination of selected elements and available instrumental parameters (i.e. crystals, collimators), it may not be possible to select the instrumental parameters that accomplish the criteria imposed by the knowledge table. The following two situations may occur:

• **Saturation** of the detection system. In such a case, the warning message shown below is issued.

• No suitable instrumental parameters imposed by **Constraints** can be selected. In such a case, the warning message shown below is issued.

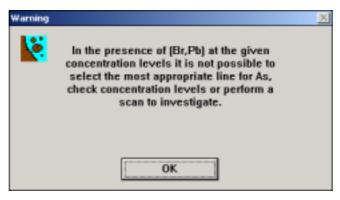


Figure 6.23

Scan/Energy Profile

In order to investigate the overlap problems it is recommended to perform scans and energy profiles according to the indications given by the Overlap Table. The easiest procedure consists of selecting a scan for all the elements that are listed in the **Analyte** column and an energy profile only for the analytes which are overlapped by a higher order line (see Figure 6.21).

However, it is important to select appropriate samples that reveal the consequence of the potential overlaps. These samples should thus contain the overlapping elements in amounts that are typical for the matrix. It could therefore be necessary to repeat the investigation for analytes with more than one overlapping element.

can	Epro	Eler	nLine	Sample Name :	Sample Number:	Cass Prt	File
×	×	AI	Ka1,2	Iron	450	1	1ALKA1_2
		Si	Ka1,2				1SiKa1_2
×	×	P	Ka1,2	A	286	2	1PKA1_2
×		s	Ka1,2	A	286	2	1SKA1_2
		Ti	Ka1,2				1TiKa1_2
×	×	v	Ka1,2	Iron	450	1	1VKA1_2
×		Cr	Ka1,2	Iron	450	1	1CRKA1_2
×××		Mn	Ka1,2	A	286	2	1MNKA1_2
κ.		Fe	Ka1	Iron	450	1	1FEKA1
κ.		Ni	Ka1,2	Iron	450	1	1NIKA1_2
		Mo	Ka1,2				1MoKa1_2
ĸ		w	La1	Iron	450	1	1WLA1
₽	Е			Iron	450	1	1VLa1

Figure 6.24

The selection is done by specifying the inputs for one line using the entry boxes at the bottom of the dialog box. Pressing the **Update** button copies the values into the highlighted line. Additional lines can be set up by simply performing a double-click on the corresponding line, or by pressing the **Update** button again after highlighting the line.

Please note that it is not necessary to specify the sample identities (although it is strongly recommended), but if the cassette number is not specified, then an appropriate error message is given.

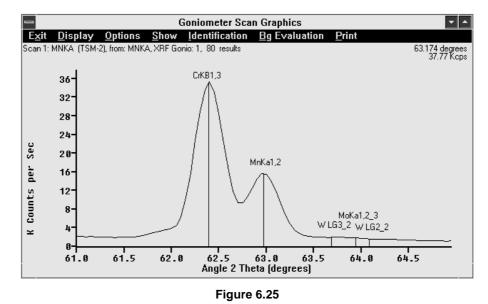
The scans and energy profiles are started by pressing the **Run** button. The analytical and instrumental parameters used are as selected by the Analytical Assistant (see Section *Line Details*). While the instrument is occupied with this work, the dialog box is deactivated. The operation can however be **aborted** with the corresponding button. The scans and energy profiles are executed from top to bottom, and at the end, the system returns to the screen shown in Figure 6.18.

If the **Cancel** button is pressed, the dialog box is left immediately.

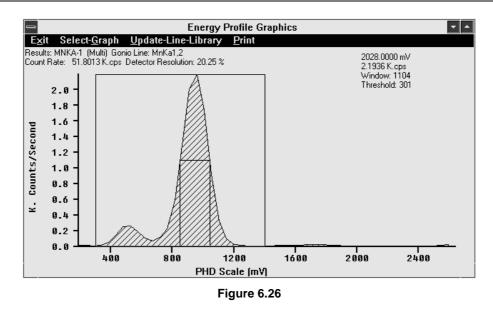
Overlap Investigation

After the scans are performed, the overlap effects have to be investigated. This is done with the **View Scan** function which is found in the **Qualitative Scans** folder in the **Production / Analysis** option of the main menu. Please refer to the *WinXRF Operator Manual* for more details about this feature.

The energy profiles can be investigated with the **Energy Profile Graphics** icon which is part of **Energy Profiles** folder in the **Calibration** option of the main menu.

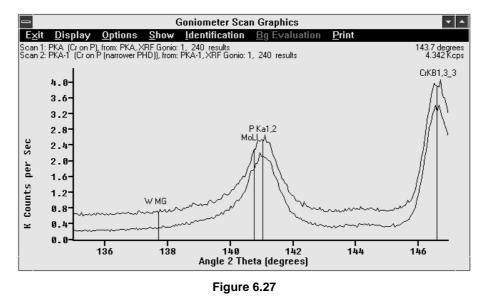

Before explaining how to overcome overlap problems, please consider the following guide lines:

- Third order overlaps can normally be ignored if the overlapping element is not a major.
- Second order overlaps only need attention if the affected analyte is a trace. In many cases, the overlap effect can be reduced or even eliminated by selecting a narrower PHD window and/or a finer collimator.
- The intervals for overlapping lines have been chosen large enough to also consider 'overlapping lines' which may only be a problem in very rare cases, because it is always better to be aware of a situation which is not critical than the opposite.

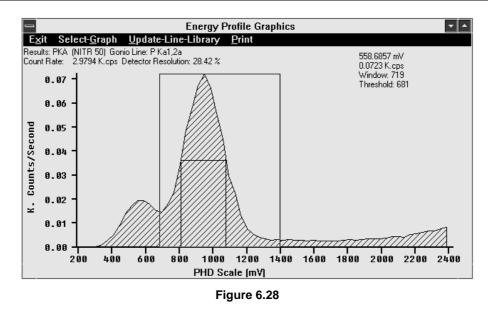

In order to understand how the various situations that may occur are to be judged, some of the most common situations based on our example are explained hereafter (see Figure 6.21). However, a lot of slightly different situations might occur which will require a good sense of judgement, as the whole is really a game between elemental composition of the matrix, relative concentrations among the elements and concentration ranges.

Analyte Mn (trace) is overlapped by Cr (1st order), Mo (3rd order) and W (2nd order)

The scan graphics in the figure below shows such a situation. It is obvious that the Cr overlap is too big to be ignored, and therefore, an overlap correction is necessary. On the other hand, the separation between Mn and W, respectively Mo, is quite good. Moreover, these two elements are interfering with higher order lines, it is therefore advisable to check the situation with an energy profile.

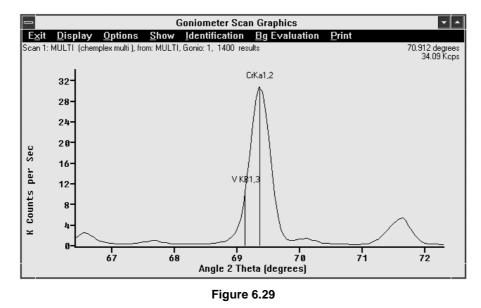


The energy profile made with a typical sample shows that the higher order peaks are very weak. It is therefore not necessary to consider an overlap correction. However, the threshold value could be lowered slightly to include the escape peak of Mn.

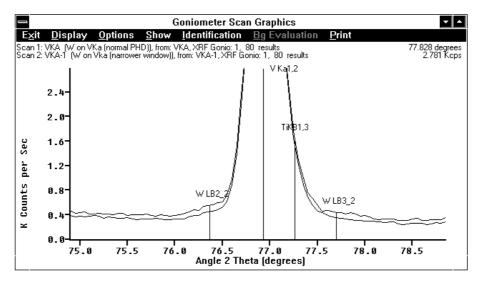


Analyte P (trace) is overlapped by Mo (1st order), W (1st order) and Cr (3rd order)

The scan graphics in the figure below shows such a situation. The overlapping line of Mo belongs to a trace element and potentially could be ignored, but because the separation between the overlapping line (MoLl) and the analyte is so bad, an overlap correction is necessary in most cases, especially if the highest possible accuracy for the measurement of **P** is required. On the other hand, the two overlaps **W** MG and **CrKB**, third order, can be ignored.



By performing an energy profile on a typical sample, a peak in front of the P peak can be noticed. Although this peak looks like an escape peak it is not such a peak. It is probably due to crystal fluorescence generated by Fe or Cr. Setting the threshold as shown in the next figure causes the background to be lowered drastically, as can be seen by the comparative scans shown in Figure 6.27).


Analyte Cr (minor) is overlapped by V line (1st order)

The scan graphics in the figure below shows such a situation. Because the overlapping line belongs to a trace element, and the analyte is a minor element, an overlap correction is probably not necessary.

Analyte V (trace) is overlapped by Ti (1st order) and W (2nd order)

The comparison of the two scans shows the effect of the narrower PHD window on the overlapping **W LG2** and **W LG3** lines whereas the analyte line is only affected by the discrimination of the escape peak (Figure 6.31). It is essential to make an overlap correction for Ti at minor concentration levels interfering with V at trace levels.

Figure 6.30

The energy profile clearly shows the first order peak (V) at around 870mV and the second order peak (W) at twice the energy (1740mV). Due to the excellent energy resolution of the detector, the separation between the two peaks is very good and therefore the overlap effect can be eliminated by selecting a slightly narrower window. Also, in cases where there is a good separation between the escape and the main peaks it is a good practice to discriminate the escape peak. Please note that the default parameters to record the energy profile have been increased for clarity.

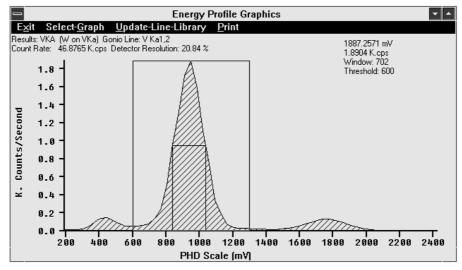


Figure 6.31

Line Details

The table displayed, when this function is selected, shows the analytical and instrumental parameters that are proposed by the Analytical Assistant.

EI	Line	Genie	Crystal	Detector	Collimator	PBF	Time	Threshold	Window
AI .	Ka1,2	1	PET	FPC	0.6		24.00	400	1000
Si	Ka1,2	1	INSB	FPC	0.6		24.00	400	1000
P	Ka1,2	1	Ge111	FPC	0.6		24.00	400	1000
s	Ka1,2	1	Ge111	FPC	0.6		24.00	400	1000
Ti	Ka1,2	1	LiF200	FPC	0.25		12.00	400	1000
v	Ka1,2	1	LiF200	FPC	0.25		24.00	400	1000
Cr	Ka1,2	1	LiF200	FPC	0.25		12.00	400	1000
Мn	Ka1,2	1	LiF200	FPC	0.25		24.00	400	1000
Fe	Ka1	2	LiF220	SC	0.15		6.00	400	1000
Ni	Ka1,2	1	LiF200	SC	0.25		12.00	400	1000
Мо	Ka1,2	1	LiF200	SC	0.25		16.00	400	1000
w	La1	1	LiF200	SC	0.25		12.00	400	1000
	Ka1,2	- 1 -	PET	FPC	• 0.6 •		- 24.00	400	1000

Figure 6.32

After the overlap investigations have been completed, it may be necessary to adjust the PHD settings and to choose different instrumental parameters, like a finer collimator.

Changes in this table are performed in the following way:

- Highlight the line where parameters need to be changed.
- Enter new values in the corresponding entry boxes, or select new item from the combo boxes.
- Click onto any other line to make the changes.
- Repeat for any other lines.

Note: If, for a line that is prone to saturation and thus appropriate parameters were chosen by the system to lower the sensitivity, a more sensitive detection device (i.e. collimator, crystal, detector) is chosen, then the following warning message is given.



Figure 6.33

The table can be **Printed** with the corresponding function, and if the dialog box is left with **OK**, the changes are made permanent, or lost if the dialog box is left with **Cancel**.

The effect of these changes could be investigated by performing new scans over the lines with changed parameters. If the improvement is not satisfactory, then an overlap correction has to be made.

Note: If the **Matrix Details** or the **Elements to Measure** function is selected again, all parameters are selected according to the criteria selection schema. This means that all **Line Details** changes will be cancelled.

Create Program

The final step is the creation of the Analytical Program and the template calibration sample. When this function is selected, the dialog box shown below is displayed.

🔂 Analytical Program C	reation		×
Manual Inputs Available LOI ▲ C Ka1,2i ▲ B Ka1,2i ▲ M_In_4 ▲ M_In_5 ▲ M_In_6 ▲ M_In_7 ▲ M_In_8 ▲ M_In_10 ▲ M_In_11 ▼	Selected	Compound Name © Element Accuracy	Steel Steel Alloyed Alloyed - Analyte Form C Oxide cal Accuracy: 4 the Accuracy: 4 A
Monochromator El Genie Si P S Ca V	Mono X X X X X X Monochromator Cou	<u>U</u> pdate	OK

Figure 6.34

The following parameters can or have to be specified:

Manual Inputs

The Manual Inputs to be included in the Analytical Program can be selected with the **Add>>** button, or removed again with the **<<Delete** button.

Program Name

The name of the Analytical Program has to be specified here.

- Matrix The name of the matrix has to be specified in this box.
- **Sub-Matrix** The name of the sub-matrix has to be specified in this box.

Elliptical Mask

This option is not available for the ARL 9800 instrument.

Compound Name - Analyte Form

This option allows you to specify in which form the analysed elements should be reported. Two possibilities exist: ElementThe analytes are reported by their Chemical Symbol.OxideThe analytes are reported in their Typical Oxide Form.

Monochromator Elements (this only applies to the ARL 9800 series)

Selected elements which can also be analysed with an installed monochromator are proposed to be analysed with these monochromators. However, the user has the possibility to instead choose either the goniometer or both. Furthermore, the **Monochromator Counting Time** can be specified.

Creation of the missing lines in the line library, the Analytical Program and the template calibration sample is achieved by confirming the above entries with the **OK** button, causing the system to issue the message shown in the figure below. On the other hand, the dialog box can be left without any creation with the **Cancel** button.

Figure 6.35

Exit

When this button is pressed, the **Analytical Program** function is left. If no program was created, the following warning message is given.

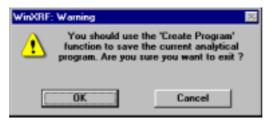


Figure 6.36

7

INSTRUMENT CALIBRATION

7 INSTRUMENT CALIBRATION

Introduction

An analytical program has to be created when the instrument has not yet been calibrated, or when an extension to the existing calibrations is needed to support other analytical applications. The X-ray analyser is a comparative measuring system. To display the concentrations of unknown samples, the system must have been calibrated previously. To do so, a set of certified standard samples is necessary. These samples are measured and the intensities of each element is stored in a calibration result file. The relationship between the concentrations and the instrumental response for each element and sample is then calculated by the computer system and stored, as a polynomial, in the corresponding analytical program. The instrument is now ready to measure unknown samples, matching with the matrix of the calibration standards. In X-ray fluorescence analysis some physical and instrumental errors will appear:

- Physical errors are matrix effects due to absorption and enhancement. To correct these errors the computer system will use mathematical models.
- Instrumental errors are mainly line overlaps due to insufficient resolution, and instrumental response drift through the time. Line overlaps can be corrected mathematically whereas to correct the instrumental drift, the system response has to be re-adjusted periodically by measuring appropriate reference samples, known as **Setting-up Samples**.

With the help of the **Analytical Assistant** all essential parameters and tables that are necessary in the calibration process have been prepared. Therefore, the basic calibration set-up simply consists of completing the data and, if necessary, modifying the default parameters, as explained briefly hereafter.

Line Library:

All element lines that did not exist with the required parameters in the Line Library have been created automatically. These lines can be recognised by their capital suffix A, B, etc., for instance, AlKa1,2A or FeKa1B. In principle there is no need to modify any of the parameters in the line library.

B	evious		Nex	at	XRF Goni	iometer 1
igKa1	?Not use	ed	SC	0.15	PIE	
hgKa1,2	LiF200	SC	0.15	PK	1026	Add New Line
1203	PET	FPC	0.15	PK	1126	
1Ka1,2	PET	FPC	0.15	PK	1056	
isKa1	?Not use	ed	SC	0.15	5 PI	Amend Line
isKa1,2	LiF200	SC	0.15	PK	1837	
isKb1,3	LiF200	SC	0.15	PK	1834	
huLa1	LiF200	SC	0.15	PK	1839	Delete Line
iuLa1a	?Not use	ed	SC	0.15	; Pł	
8 Ka1,2	AX28	FPC	2.60	PK	1109	
laKa1	?Not use	ed .	SC	0.15	F Pł	Save Changes
aKa1,2	L1F200	SC	0.15	PK	1023	
aKa1b	LiF420	SC	0.15	PK	1114	
aKb1.3	LiF200	SC	0.15	PK	1822 💌	Cancel Changes

Figure 7.1

Calibration Samples:

The template calibration sample has the following signature: **00MASTER**. In order to build the calibration sample set, this template sample can be copied as many times as needed and the concentrations can then be input (see Section *Complete the list of Calibration Standard Samples*).

Add Matgix Add Sample Add Element Delete Matrix Delete Elemeg	Matrices	Samples	•		Elements	
BBS A02/1 FeKa_n BBS A03/1 HinKa_n BBS A04/1 BBS A05/1 BBS A05/1 BBS A05/1 BBS A05/1 BBS A05/1 BBS A06/1 BBS A06/1 BBS A06/1 BBS BBS BBS <td>STEEL ALLOVED 🖃</td> <td>00MAST</td> <td>ER</td> <td>-</td> <td></td> <td></td>	STEEL ALLOVED 🖃	00MAST	ER	-		
Bas 403/1 Hoxa n Bas 404/1 Hoxa n, 2 Bas 405/1 Hoxa n, 2 Bas 405/1 Hoxa n, 2 Bas 405/1 F Bas 406 Sample Add Element Delete Sample Delete Element		BAS	401/1			
Add Matgix Add Matgix Add Sample Add Element Delete Matrix Delete Sample Delete Elemeg		BAS	402/1	- 10		- 18
Add Matgix Add Sample Add Element Dejete Sample Delete Matrix		BAS	483/1	_		
Add Matgix Add Sample Add Element Delete Sample Delete Element		BAS	484/1			
Add Matgix Add Sample Add Element Delete Matrix Delete Element Delete Element		BAS	405/1			
Dejete Sample Delete Elemeg	2	BAS	406/1	-	P Ka_n	-
	Delete Matrix					
Алена запре Адена сленен			Amend Sample		Amend Eler	nent
Copy Matrix Copy Sample Cgncentrations	Copy Matrix	1	Copy Sample]	Cgncentrat	ions

Figure 7.2

Analytical Program:

In our example, the Analytical Program that was created is shown in the following figure.

🖉 Define Analytical Program	Amend Elements		2.
HiKa1,2a P Ka1,2 S Ka1,2 S Ka1,2 Rem V Ka1,2 Real Alka1,2 Haka1,2 Haka1,2 High	Offset: 0.	Analytical Counting kV: mAc Primary E	
Channel Type	Internal Standar		Filter Mede
 ⑦ Peak ○ Overlap Line ○ Backgrd, High ○ Backgrd, Low 		r Target	C1 C2
C In Virtual Only	C Defined as IS	Collimator	
C Internal Std	E Batio with IS		0.60 -
Unit IF Percent IF ppm	<u>Calculation</u>	Dgift Correctio	n <u>A</u> dd Cancel

Figure 7.3

Also here, there is in principle no need to modify any of the proposed parameters, but it is certainly necessary to complete the set-up of the Analytical Program.

Note: The Analytical Assistant does not take care of **Setting-up Samples** that are necessary to compensate the instrumental drift so that the calibration can be used over a long time.

What remains to be done

The next steps of the calibration process are described hereafter, namely:

- Complete the list of Calibration Standard Samples
- Define Setting-up Samples
- Include the Setting-up Samples in the Analytical Program
- Set-up Analytical Tasks
- Drift Correction Initialisation
- Measurement of the Calibration Samples
- Calculation of the Calibration Curves
- Drift Correction Update

Complete the list of Calibration Standard Samples

- Select **Preparation** in the main menu.
- Then select Analysis followed by Calibration Samples.

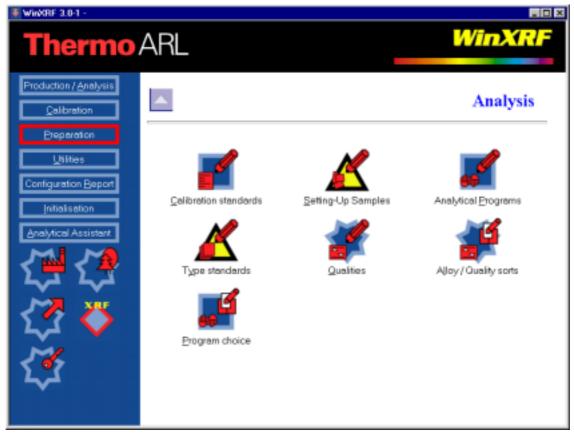


Figure 7.4

To add other calibration samples the following should be done:

• Click on Copy Sample.

Matrices	Sample	8		Elements
STEEL ALLOYED 🔺	BBHAS	TER		AlKa n 🔺
	BAS	401/1		CrKa_n
	BAS	482/1		FeKa n
	BAS	483/1		HnKa n
	BAS	484/1		HoKa1,2
	BAS	405/1		NiKa n
F	BAS	486/1	• • • • • • • • • • • • • • • • • • •	P Kan 💌
Delete Matrix		Delete Sample		Delete Element
		Amend Sample		Amend Element
Copy Matrix		Copy <u>S</u> ample		Concentrations
		Exit	1	

- In the **Destination Sample** area specify the **Name** and the **Number** of the new sample in the corresponding boxes,
- and then click on **Confirm**.

Copy Calibration Sample:			X
- Source Sample Matrix: Sub-group: Name: Number (or *):	STEEL ALLOYED Bas 401/1	Destination Sample Matrix: Sub-group: Name: Number (or *):	STEEL ALLOVED BAS_TEST 401/1
	Copying S	ample Details	
С	onfirm	Cance	1

Figure 7.6

Repeat this operation until all samples are added in the matrix.

The chemical percentage for each element and sample can be entered by returning to the **Select Calibration Samples** dialog box (see Figure 7.5), selecting the sample to be updated in the list box, and clicking on **Concentrations**.

• Select the element to be updated in the list box.

- Enter the **Chemical Percentage** in the corresponding box.
- Type **Enter** or click on **Update** to store the value.
- Do the same for the remaining elements.
- Return to the screen above by clicking on **Exit**.

Sample Matrix: Sub-group:	STEEL ALLOYED	Analytical Program: Measured on: un-dated at 00	:00:00
Name: Number:	BAS 401/1	Measured Intensity (Kcps): Corrected Intensity (Kcps):	0.0000 0.0000
lements: A A B	gKa1,2 Ka1,2 sKa1,2 Ka1,2 Ka1,2 sKa1,2	Chemical Percentage: Sample Weight for MVR when selected as Analyte: Certified CYes ©No	0.0000
C	-Ka1,2 JKa1,2 =Ka1,2	Intensity Ratios C Yes © No	

Figure 7.7

Go on with the same method for all samples and elements.

The Calibration Sample Matrix is ready.

Define Setting-up Samples

- Select **Preparation** in the main menu.
- Then select Analysis followed by Setting-up Samples.

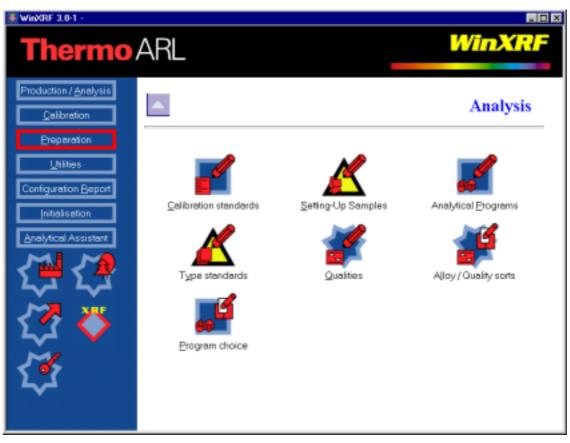


Figure 7.8

• Click on Add.

Select Setting-up Sample	
Samples	Elements
Sample Name Sample Number <u>SETTING-UP RE12</u> SETTING-UP S3 SETTING-UP S4	CrKa1,2 CuKa1,2a FeKb1,3 MnKa1,2 NiKa1,2a P Ka1,2 S Ka1,2 ▼
	Add <u>E</u> lement Deleje Element
Add Amend	Amend Element
Delete Copy	E _X it

Figure 7.9

Specify in the corresponding boxes:

- ♦ the Sample Name
- the Sample Number
- and the Cassette Number.

In the Hours between Drift Correction box enter the delay in hours and, if necessary, the value for the Global SIGMA Factor can be changed.

Add Setting-up Sample	×
Sample Name: Sample Number: Full Update Irrespective of Sigm: Cassette (,/+): Hours between Drift Corrections: Global SIGMA Factor: Validity Period (Minutes):	2
ОК	Cancel

Figure 7.10

- Click on **OK**.
- Click on **Add Element** (see Figure 7.9).
- Click on **Goniometer 1** button.
- Highlight the element to be selected and then click on Add.

Name:	ple SETTING-UP	Number:	RE12	
Defined Chann				
Channel Type		Monochromat	or	
XRF Goniome		A1_Ka		-
XRF Gonione		Si_Ka		
XRD Gonione Monochronat		P_Ka S_Ka		
Manual Inpu		Ca Ka		
line in the second		V Ka		×1
				_
		1.2		
ame Channel	Type HVPS Th		nw	_
ame Channel 1Ka_n 10	Type HVPS Th Norm 2004	reshold Windo	rw 90	_
		reshold Windo		-
		reshold Windo		
		reshold Windo		_
		reshold Windo		-
		reshold Windo		_

Figure 7.11

Sample		Analytical Condition Counting Time: kV:	s 20.00 50
Name:	SETTING-UP	mA:	50
Number: Channel Type:	RE12 XRF Gonio 1	Primary Beam De	vice
Channel Name:	CrKa1,2	None	-
12 Approx. Concentration Actual Intensity (Kcps): Absolute SIGMA (3 Sign SIGMA Factor (1-99):	5.6570	Anode Target	de
Initial Drift Correction Nominal Intensity (Kcp	s): 5.6570	Collimator 0.15	s CNo
Date and Time: 12/0	03/01 at 14:25:18	ок	Cancel

Specify the **Counting Time** in seconds, and the **kV** and **mA** values.

Figure 7.12

As a later help during the selection of the setting-up sample enter an **Approximate Concentration** in the corresponding box.

• Click on **OK**.

Repeat the same procedure for all other elements and click on **Exit** to return to the screen. Additional samples can then be defined in the same way. The Setting-up Sample is ready.

Include the Setting-up Samples in the Analytical Program

- Select **Preparation** in the main menu (see Figure 7.8).
- Then select **Analytical Programs**.
- In the following dialog box click on **Element Details**.

Create / Amend Analytical Pro	AMEND Program	×
CHARGE CONTROL DEMODISP EXAMPLE	Program <u>H</u> eader	Response Curves
HIALLOY INTENSIT IRON	Element Details	Alphas
IRONMN IRONSI LOALLOY NRS	Pseudo Elements	Base Curves
STEEL TUTORIAL XRD	Print Orders	Line Corrections
Create	Copy	Egit

Figure 7.13

• Highlight the first element and click on **Drift Correction**.

🌽 Define Analytical Pr	ogram: Amend Elements	:		×
MnKa1,2 HoKa1,2 NiKa1,2a P Ka1,2 S Ka1,2 S Ka1,2 U Ka1,2 AlKa1,2 NaKa1,2 V Ka1,2 NaKa1,2 V Ka1,2 NaKa1,2 V Ka1,2 V Ka1,2	Compound Name: Local Accuracy: Remote Accuracy: Real 2 Theta: Low Offset: High Offset: Desired BSD 8/2:	Si 3 109.030 0.000 0.000	F Global Co Analytical Conditio Counting Time: kV: mA: -Primary Beam Di None	28.00 50 50
	Desired RSD (%):		-Intensity Filter M	ada
Channel Type	Internal Sta	ndard	- Intensity Filter M	000
Peak			*	<u> </u>
C Overlap Line			-Target	
C Backgrd, Hig	h		01	0.2
C Backgrd, Low	, 1	-		
C In Virtual Only	y □ Defined a	s IS	Collimator	
C Internal Std	E Batio with	IS	0.60	-
Unit				
	Calcula	tion	Drift Correction	∆dd
Cippm	Delet	ie 🗌	OK	Cancel

Figure 7.14

• Select the **Top** and **Bottom Standard** from the corresponding list boxes.

/ Deline	Analytical Program: Se	t Top and Bo	ttom Standards	×
	Program: TUTORIA	L	Element CrKa1,2	
	Description:	Tutorial an	lytical Program	
		Top Sta	ndard	
	Not Used SETTING-UP SETTING-UP	RE12 S4	0.000 2.400 2	
		Bottom S	itandard	
	Not Used		×	
	SETTING-UP SETTING-UP	RE12 54	0.000 2.400 F	
	ОК		Cancel	

Figure 7.15

- Click on **OK**.
- Repeat the same procedure for all the remaining elements.

Drift Correction Initialisation

Prepare the Drift Correction Initialisation Task

- Click on **Preparation**, in the main menu.
- Click on **Tasks** and then on **Standardisation/Drift Correction Initialisation**.

Thermo	ARL		B®⊠ WinXRF
Production / Analysis			Tasks
Ereparation Litities Configuration <u>Report</u> Initialisation	Concentration Analysis	Control Semple Analysis	Standardisation / Drift correction (nitialisation
	Standardisation / Drift correction update	Type Standard Initialisation	Type Standard Updata
	[intensity measurements	Calibration	

Figure 7.16

• Click on **Create**.

Figure 7.17

• In the **Task Name** box enter the desired task name.

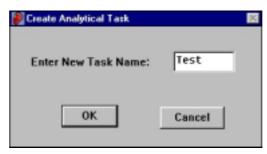


Figure 7.18

- Click on **OK**.
- In the **Description** box enter the desired task description.
- To display Sigma and Relative Sigma select the corresponding options.
- As for the **Initialisation Type** select **Day Zero**.
- Then click on **Select Programs / Samples**.

Define Analytical Task: Standardisation Initialisation	x
Task Name: TUTORIAL Description: Tutori	al Drift Correc. Init.
Samples/Programs	₽ Print Sigma
Select Samples/Programs	Print Relative Sigma Manual Run Selection
Print Element Headings	Selective Standardisation
Above Once CAbove Always C Left	Initialisation Type
C Above Once and Above Average	© Day Zero
Print <u>W</u> raparound	C New Setting-up Samples
C Grouped C Split	Display Settings
Beneat Count: 5	Result Options
Repeat Count: 5	OK Cancel

Figure 7.19

- In the list box Available Analytical Programs double-click on the desired program, it will automatically be transferred to the Selected box. If the desired program is not listed, then select the appropriate Database Category.
- In the list box Available Setting-up Samples box double-click on the samples to be measured, they will automatically be transferred to the Selected box.
- Click on **OK**.

Analytical Pro	grams	User		-		×
Ava 	ilable: (15)	(RONSI .OALLOY MRS STEEL UTORIAL GRD	× Sel	ected: (1)	TUTORIAL	×
Setting-up Sar	nples					
	Available:	(3)		Selected:	(3)	
	SETTING-UP	RE12	* =	SETTING-UP	RE12	-
	SETTING-UP	\$3	•	SETTING-UP	\$3	
	SETTING-UP	54	•	SETTING-UP	54	
All			×	1		×
	Group		ок	1 -	Cancel	1

Figure 7.20

In next dialog boxes:

- Click on **OK**
- ♦ and Exit.

Measure the Setting-up Samples

Put the setting-up samples into the cassettes and place the cassettes onto the previously specified positions on the magazine.

- Click on **Calibration** in the main menu.
- Then click on Standardisation/Drift Correction Initialisation.

Thermo	ARL		WinXRF
Production / Analysis			Calibration
Ereparation Litities Configuration Report Initialisation	Calibration Sample Tools	Energy Protile	Standardisation / Dritt Correction Initialisation
	Qalibration Standards Measurement	MVR	Type Standard Initialisation
	Offline Analysis	Alpha Fectors	Report Alpha Factors

Figure 7.21

• Click on Change Task.

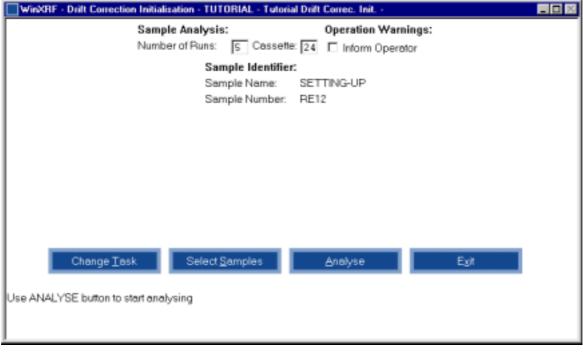


Figure 7.22

• Select the appropriate task and then click on **OK**.

WinXRF - Select Analytical Task -	-	
	Select Task:	*
	STEEL TUTORIAL	
		- 88
		- 83
		122
		- 83
		- 12
		- 83
		- 83
		- 88
		100
		- 83
OK	Cancel	
		<u></u>

Figure 7.23

• The analysis is invoked by clicking on **Analyse** (see Figure 7.22) which causes the warning message shown in the next figure to be displayed.

WinXRF:	Warning	25
1	Calibration curv	es may be invalidated
	OK	Cancel

Figure 7.24

The setting-up samples will now be measured.

The intensities of the first sample will be displayed in the window shown next.

After the measurement is finished:

• Click on **Continue** and measure the next sample in the same way.

	_	lements		TTING-UP	Date: 12 Sample I	203/01 D 2: RE12		4:25:22	
		-	Average		Cassette		Runs. c	,	
				_	_	_	_	_	
	Avg	sa	548	M 5	图 4	🖬 3	1日 2	M 1	
CrKa1,2	5.6570	0.0207	0.3666	5.6410	5.6610	5.6410	5.6510	5.6910	
CuKal,2a	0.1400	0.0012	0.8748	0.1400	0.1410	0.1410	0.1400	0.1380	
FeKb1,3	139.0420	0.1236	0.0889	139.0400	139.0900	139.0400	138.8500	139.1900	
MnKal,2	0.7302	0.0045	0.6155	0.7310	0.7360	0.7320	0.7240	0.7280	
NiKal,2a	0.4792	0.0033	0.6826	0.4790	0.4780	0.4750	0.4840	0.4800	
P Ka1,2	0.0190	0.0007	3.7216	0.0180	0.0190	0.0190	0.0190	0.0200	
S Kal,2	0.0720	0.0007	0.9821	0.0730	0.0720	0.0720	0.0710	0.0720	
SiKa1,2	0.0988	0.0026	2.6199	0.0980	0.0990	0.0980	0.0960	0.1030	
V Kal,2	0.2948	0.0024	0.8099	0.2980	0.2920	0.2930	0.2950	0.2960	
	Pri	int	1.00	Store		Iransmit		Continue	

Figure 7.25

The day zero intensities are automatically stored in the setting-up sample file.

Prepare the Calibration Task

- Click on **Preparation** in the main menu.
- Click on **Tasks** and then click on **Calibration**.

Thermo	ARL		WinXRF
Production / Analysis Qalibration			Tasks
Eneperation Utilities Configuration Beport	Concentration Analysis	Control Semple Analysis	Standardisetion / Drift
	Standardisation / Dritt correction ypdate	Type Stendard Initialisation	Correction initialisation
	Intensity measurements		
~			

Figure 7.26

• Click on **Create** to create a new task.

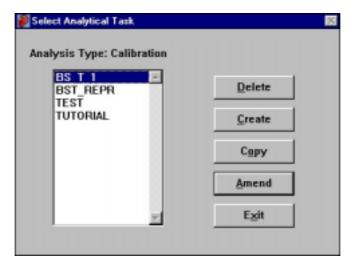


Figure 7.27

- In the **Task Name** box enter the new task name.
- Click on **OK**.

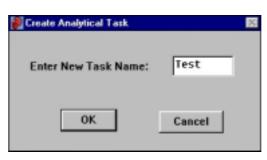


Figure 7.28

- In the **Description** box write the desired remark.
- Select the options to display the **Sigma** and **Relative Sigma**.
- Specify the number of runs in the **Repeat Count** box (suggested **3**).

The option Manual Run Selection should not be selected.

• Click on **Select Program** to select the desired program.

Define Analytical Task: Calibration	×
Task Name: TUTORIAL Description:	Tutorial Calibration Task
Analytical Program	IF Print Sigma IF Print Relative Sigma IF Manual Run Selection
Print Element Headings Above Once Above Always C Left Above Once and Above Average	
Print <u>W</u> raparound ← Grouped ← Split	Display Settings Select Samples
Repeat Count: 3	Besult Options OK Cancel

Figure 7.29

• Click on **OK**.

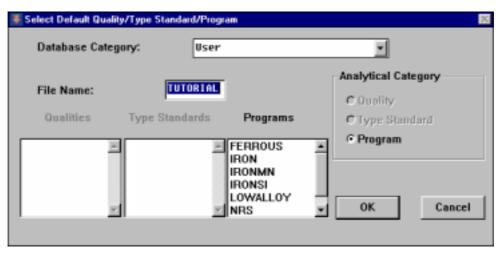


Figure 7.30

- Click on **Select Samples** (see Figure 7.29).
- In the list box Available Calibration Samples double-click on the first sample to be selected. It will be transferred to the Selected box.
- In the **Cassette Number** box specify the cassette number.

	Program: Matrix: on Samples	TUTORIAL STEEL	Sub-group:		ALLOYED	
	ailable:	(14)				
	lected:	401/1 402/1 403/1 404/1 405/1 405/1 406/1	* * * *	•	<u>All</u>	
BA BA BA BA BA	15 15 15 15 15	401/1 402/1 403/1 405/1 405/1 405/1	236 237 238 239 240 241	•	Group	
Ca	ossette Numi		236	Car	ncel	

Figure 7.31

Repeat the same procedure until all samples and their cassette number have been selected.

- Click on **OK**.
- Exit to the main menu.

Prepare a Batch File

In the main menu:

- Click on **Production / Analysis** in the main.
- Click on the icon **Set Batches**.

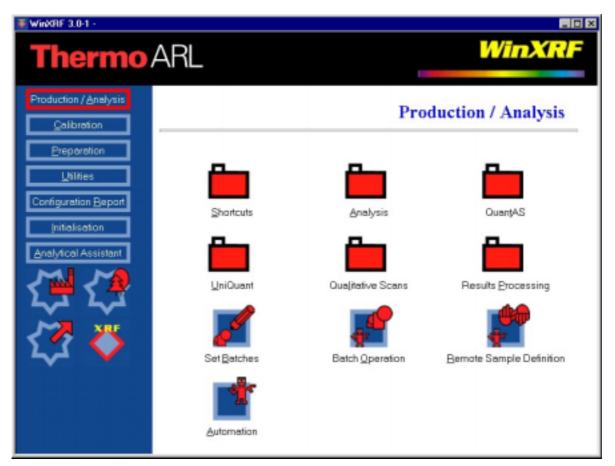


Figure 7.32

7-20

- Click on **Create**.
- Enter the name of the batch file to create in the entry box.
- Click on **OK**.

Alter Batch File	X
Select Batch:	Delete
BST-A KJ OXIDE-RE	Create
STEEL_TE TUTORIAL	Серу
	Amend
	Copy Active <u>Steps</u>
y.	E⊻it

Figure 7.33

• Click on Analysis.

Alter ICS Operations Batch File			×
Batch File Step List:			
Cassette: 5 Energy Pro Delay for: 00:23:00	TUTORIAL.PRG Sample id: ofile: TUTORIAL -> TUTO ORIAL -> TUTORIAL, Samp	RIAL	×
X			<u>v</u> <u>P</u>
Insert Steps		Step List Manipulatio	n
Analysis	Calibration		
Scan	Position	Group	Сору
Energy Profile	Gonio High Voltage		
Batch	Mono High Voltage	Delete	Move
Delay	UniQuant	Abort Batch on Fatal	Alarm
Set Environment	ASQ		
Terminal Mode Script	ASQ Recalibration	ок	Cancel

Figure 7.34

- As for **Category** select **Calibration**.
- Select the Analytical Task.
- Click on **OK** and return to the main menu.

🗿 Batch List Operations: Start/Queue Analysis	Operation	X
Category Concentration Analysis Intensity Measurement Type Standard Initialisation Type Standard Update Drift Correction Initialisation Drift Correction Update Calibration Control Sample	TEST OT	BS T 1 BST REPR TEST TUTORIAL
- Sample Identifier - Manual Inputs		
ОК	Bad Sample	Cancel

Figure 7.35

Measure the Calibration Samples

- Place the samples onto the corresponding magazine positions.
- In the main menu click on **Production / Analysis** and then click on **Batch Operation** (see Figure 7.32).
- Select the appropriate batch.
- As for **Repeat Count** type **1**.
- Click on **OK**.

The calibration samples will now be measured in the background and the intensities stored automatically in the calibration standards file. This is indicated by the presence of the **ICS Operations Manager** at the bottom of the screen.

Calculation of the Calibration Curves

- Select **Calibration** in the main menu (see Figure 7.21).
- Click on **MVR** and then click on **File**.
- Click on Analytical Program.

	Transfer Direct C			
	nession mine u	Computer Results	Fie Edd	Egit
		al Program	Analytic	
		/delete state	Bestore	
		de -	Enres)	
			_	

Figure 7.36

- Select the corresponding program in the list box.
- Click on Edit and then click on Elements/Samples.

🧔 MVR -	TUTORIAL (STEEL ALLOYED)	
Egit File	Edit Computer Results Rivt Options	
	Elements/Samples	
	Concentrations/Intensities	
	Calouration Method	
	Set Tradituciones Elus Elementa	
	Correction Eactors	

- In the list box Available Elements double-click on the element to be selected. It will appear in the Selected Elements box.
- In the list box Available Samples click on the first sample.
- Click on **Group**.
- Scroll the last sample to be selected into the visible portion of the list box **Available Samples** using the down arrow key and double-click on it. All samples between the two selected are then transferred to the **Selected Samples** box.
- Click on **Analyte** and then on **OK**.

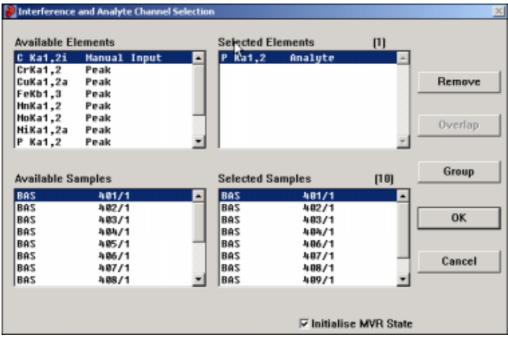


Figure 7.38

• Click on **Compute** and then on **New Base Curve**.

ORIAL (STEEL ALLOYE Compute Results First	
<u>61</u>	
New Base Curve	
Merriéghas	

Figure 7.39

• To inspect the numerical result in terms of differences between the certified and the calculated concentrations as well as the standard error of estimate, click on **Results** and then on **Numeric & Store**.

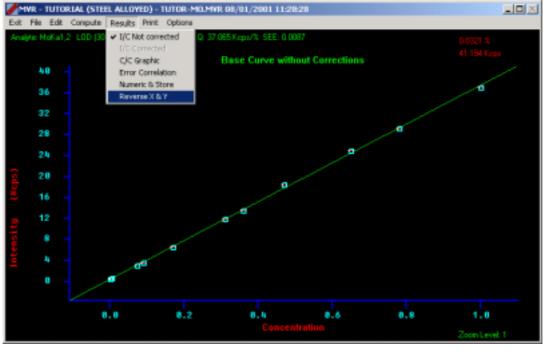


Figure 7.40

If the result is acceptable click on **OK** when you will be prompted with a message **Save Coefficients in XXXXX program?**. To store the **Base Curve Coefficients** in the analytical program click on **OK**. If you do not want to overwrite existing coefficients click **Cancel**.

🗿 Display and !	Save Numerical Re	sults - TUTO	RIALPRG - TUTO	R-P.MKR 08/0	01/2001 11:	28:28	X
Analyte: Program:	P Ka1,2 TUTORIAL		Model: Matrix:	None STEEL A	None STEEL ALLOYED		
Sample Name	Sample Number	Weight	t K.cps	-Concen Nominal	tration- Calc'd	–Differe Absolute	nce- %
RE BAS BAS BAS BAS BAS	12 418/1 489/1 488/1 487/1 486/1	1.00 1.00 1.00 1.00 1.00	1.4849 0.8397 0.8115 0.9709	0.00100 0.07200 0.02500 0.03700 0.03000 0.03000	0.03223	-0.00298 -0.00160 0.00723 -0.00643 0.00999 0.00773	-297.94 -2.23 28.91 -17.39 33.31 85.98
A0: A1:	Coefficients -0.01744 0.05915 Minimum: Maximum:	A2: A3: Unused I Unused I		Sample Interferi BEC: Q:	d Error: s: ing Channe 0.017	sis: 441 % 4879 Kcj ppi	
					×	Sort by fiel S?SAsce Name Concent Intensity Difference	nding ration
Print Cal	libration Standar	rds Details	ОК	Pri	nt C	ancel	

Figure 7.41

After having applied the same procedure to all the remaining elements, it is now possible to determine the concentrations of these elements in unknown samples.

Drift Correction Update (Recalibration)

At regular intervals, the Setting-up Samples have to be measured again to correct the instrumental drift. As this is almost the same procedure as the **Drift Correction Initialisation**, the reader is asked to refer to the corresponding section in this manual or to consult the *WinXRF Operator* and *WinXRF Configuration Manuals*.

8

ROUTINE ANALYSIS

8 ROUTINE ANALYSIS

Concentration Analysis

The concentration analysis is the most frequent task used in process control. It is only possible if a calibration matching with the matrix to be analysed has previously been performed.

Prepare the Concentration Analysis

- Click on **Preparation** in the main menu and then click on **Tasks**.
- Click on Concentration Analysis.

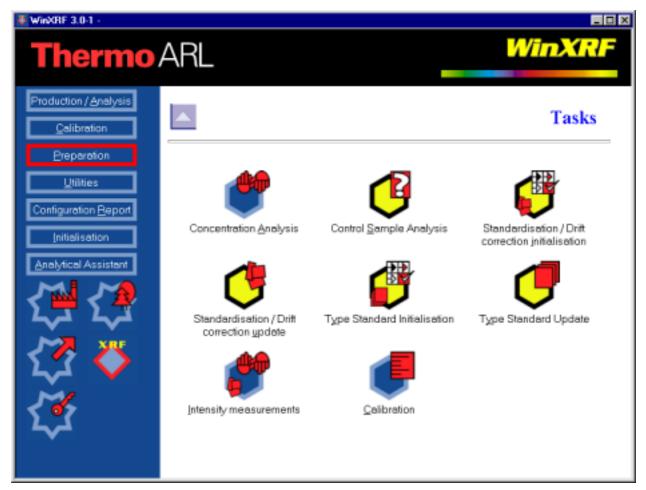


Figure 8.1

• Click on **Create**.

Select Analytical Task	×
Analysis Type: Concentration In Un	knowns
TUTORIAL	Delete
	Create
	Сору
	Amend
2	Exit

Figure 8.2

• In the **New Task Name** box enter the desired task name.

🗿 Create Analytical Task	×
Enter New Task Name:	Test
ОК	Cancel

Figure 8.3

- Click on **OK**.
- In **Description** box type the desired description.

The various task options can be selected by clicking onto the corresponding button (a cross will appear in the button when activated). These are:

- It is possible to **Predefine** a **Sample List**.
- It is possible to **Display** the **Sigma**.
- It is possible to **Display** the **Relative Sigma**.
- It is possible to use Automatic Sample Number Incrementation.
- It is possible to **Modify** the **Results**.
- It is possible to activate the **Manual Run Selection**.

To amend the sample naming structure, click on **Sample Naming Details**.

The number of measurements for each sample can be specified in the box facing Repeat Count.

To define the program that should appear when the task is selected, click on **Default Program**.

Define Analytical Task: Concentration In Unknown Samples	×
Task Name: TUTORIAL Description: Tutori	al Conc. Analysis Task
Analytical Category Default Program	Predefined Sample List Print Sigma Print Relative Sigma Auto-Inc Sample Number Results Modifiable Decide
Print Element Headings Above Once C Above Always C Left Above Once and Above Average	♥ Quality Check ♥ Quality Sort ■ Manual Run Selection ■ Auto Display SPC Charts
Print Quality Check Options	
C All Elements © Out of Quality Only	Display Settings
Print Wraparound	Sample Naming Details
C Grouped C Split	Define <u>S</u> amples
Repeat Count: 2	Result Options OK Cancel

Figure 8.4

• In the list box **Programs** highlight the desired program. If the program is not listed, then select the appropriate **Database Category**.

🖗 Select Default Quai	lity/Type Standard/Pro	igram		×
Database Cate	gory: Use	r		
File Name: Qualities	TUTORIA Type Standards	Programs	Analytical Category © Quality © Type Standard	
0727 01276A OCHARGE OCHARGE1 OCHARGE2 OCHARGE3		ALLALLOY ALLOYS CHARGE CONTROL DEMODISP EXAMPLE	C Program	

Figure 8.5

• Click on **OK** to confirm and return to the main menu.

Perform Concentration Analyses

- On the main menu bar click on **Production / Analysis**,
- then click on **Analysis** and **Concentration Analysis**.
- Please note that the concentration analysis can also be invoked by simply pressing $\langle F2 \rangle$.

Thermo	ARL		e∞ WinXRF
Production / Agelysis			Analysis
Ereparation Litities Configuration Beport Initialisation	Concentration Analysis (F2)	Control Samples Analysis	Standardisation / Drift Correction Update (F3)
	Type Standard Update (F4)	[ntensity measurements	Linettended Analysis [F5]

Figure 8.6

• Click on Change Task.

WinXRF - Concentration Analysis - DISPLAY - Tutorial Conc.	Analyzi: Task -								
Analytical Program: TUTORIAL									
Sample Analysis:									
Number of Runs	2 Cassette: +								
Sample Identifier:									
Sample Name : Steel	Charge No : 1224								
Sample No : 1	Sample Type : TL								
Operator : NRS									
Manual Inputs:									
Carbon 0.00000									
Change Task Analyse Sample	e Details OK								
Select Program Metaverage Ber	calculate Abort Egit								
Use ANALYSE button to start analysing									

Figure 8.7

• Select the previously prepared task from the displayed list box and click on **OK**.

WinXRF - Select Analytical Task -		
	Select Task:	*
	TUTORIAL	
		100
		- 12
		- 10
		- 12
		- 12
		- 12
		- 10
OK	Cancel	- 12
		1

Figure 8.8

The **Cassette** number and the **Number of Runs** can then be specified. The analysis can now be started immediately by clicking on **Analyse**, or after the sample identity has been specified, by clicking on **Sample Details OK** (see Figure 8.7).

The sample will now be analysed, and the results for the specified elements will appear in the result window, and/or will be printed out.

W	nXRF -	Conce	entratio	in Analys	is - CHA	RGE - 1	l'utoria	I Conc.	Analys	sis Task	-				_ 🗆 🖂
				Tis	ogram: me: 16 urce B ssette	:37:50 F	5 S		Type		L Ch	te: 29/0 arge No erator N	121		
-	с	Cr	Cu	Fe	Hn	No	Ni	Р	s	Si	v				
E 1	2.01	2.14	0.21	83.41	1.12	0.41	0.01	0.45	0.13	1.19	0.31				
E 2	2.02	2.15	50.21	83.49	1.13	0.42	0.01	0.45	0.13	1.20	0.31				
Avg	>2.01	2.14	0.21	83.45	>1.12	<0.41	0.01	>0.45	0.13	<1.20	0.31				
L															
-															
	M	odity			<u>P</u> rin	t			<u>S</u> tore		E	Transr	nit	Continue	
	Quali	ly Che	ck		Quality	Sort	Ш	Charg	e Corr	ection	L	Send to S	SPC		
Use	CONT	INUE 1	lo anal	yse next	sample	,									

Figure 8.9

Intensity Measurement

The measurement of intensities is mainly used to check the reliability and the short and long term reproducibility of the instrument.

The result issued in intensity measurement mode is not subject to drift correction, it is a raw intensity representative of the instrumental response.

Prepare the Intensity Measurement Task

- Click on **Preparation** in the main menu and then click on **Tasks** (see Figure 8.1).
- Click on Intensity Measurements.
- Click on Create.

Select Analytical Task Analysis Type: Intensity Measu	rement
TUTORIAL	Delete
	Create
	Сору
	Amend
2	Exit

Figure 8.10

• In the Enter New Task Name box type the new task name.



Figure 8.11

- Click on **OK**.
- In **Description** box type the desired description.

The various task options can be selected by clicking onto the corresponding button (a cross will appear in the button when activated). These are:

- It is possible to **Predefine** a **Sample List**.
- It is possible to **Display** the **Sigma**.
- It is possible to **Display** the **Relative Sigma**.

- It is possible to use Automatic Sample Number Incrementation.
- It is possible to **Modify** the **Results**.
- It is possible to activate the Manual Run Selection.

To amend the sample naming structure:

• Click on Sample Naming Details.

The number of measurements for each sample can be specified in the box facing Repeat Count.

To define the program that should appear when the task is selected:

• Click on **Default Program**.

Define Analytical Task: Intensity Measurement	×
Task Name: TUTORIAL Description: Tutori	al Int. Heasurement Task
Select Analytical Program Default Program Print Element Headings © Above Once © Above Always © Left	Predefined Sample List Print Sigma Print Relative Sigma Auto-Inc Sample Number Results Modifiable Manual Run Selection
C Above Once and Above Average	Display Settings
Print Wraparound	Sample Naming Details
C Grouped @ Split	Define Samples
Repeat Count: 1	Result Options OK Cancel

Figure 8.12

• In the list box **Programs** highlight the desired program. If the program is not listed, then select the appropriate **Database Category**.

Database Cate	ty/Type Standard/Pr gory: Us		
File Name: Qualities	TUTORIA Type Standards		Analytical Category C Ovality C Type Standard Program
		KJ KLINKER PURE_FE TEST Y TUTORIAL	▼ OK Cancel

Figure 8.13

• Click on **OK** to confirm and return to the main menu.

Perform Intensity Measurements

- Click on **Production / Analysis** in the main menu and then click on **Analysis** (see Figure 8.6).
- Click on **Intensity Measurements**.
- Click on Change Task and select the previously prepared task from the displayed list box.

WinXRF - Select Analytical Task -		
	Select Task:	(A)
	TUTORIAL	
ОК	Cancel	
		<u>×</u>

Figure 8.14

• Click on **OK**.

The **Cassette** number and the **Number of Runs** can then be specified.

• The analysis can now be started immediately by clicking on **Analyse**, or after the sample identity has been specified, by clicking on **Sample Details OK**.

WinXRF - Intensity Measurement - TUTORIAL - Tutorial Int. Measurement Task -	
Analytical Program:	
Sample Analysis:	
Number of Runs: 1 Cassette: +	
Sample Identifier:	
Sample Name: IRON Sample Number:	
Sample ID 3 : Sample ID 4 :	
Sample ID 5 :	
Change Task Analyse Sample Details OK	
Select Program	
Enter an analytical program name or use SELECT button	

Figure 8.15

The sample will now be analysed, and the results for the specified elements will appear in the result window, and/or will be printed out.

WinXR	F - Intens	ity Measurement - TUTORIAL - 1	lutorial Int. Measurement	Task -	
		Program: TUTORIAL	Elements: 13	Date: 02.08.01	
		Time: 13:40:12	Proben-Name: NBS	Proben-Nummer: 1414	
		Charge: 12	Runs: 1	Runs in Average: 1	
		Cassette: .			
	Avg	丽 1			
Fe	0.0037	0.0037			
Cr	1.4550	1.4550			
Mn	2.2901	2.2901			
Мо	0.5000	0.5000			
P	5.8930	5.8930			
s	1.9950	1.9950			
Si	9.3810	9.3810			
v	1.9869	1.9869			
Carbon	0.0000	0.0000			
Sum	0.0000	0.0000			
Cu	1.9205	1.9205			
Ni	0.0037	0.0037			
A	1.4850	1.4850			
	Modity	Brint	Store	Iransmit	Continue
Qu	ality Che	ck Quality Sort	Charge Correction	Send to SPC	
Use CO!	VTINUE t	o analyse next sample			

Figure 8.16

ALARMS

A ALARMS

Alarms are used to indicate events to the ACS. Each node of the ICS holds an alarms table where a corresponding alarm is set every time an event occurs. The nodes of the ICS having a master function on other nodes, ask continuously for the contents of the alarms table of their slave nodes, and adds them to their own table. The ICS is therefore, always ready to indicate any problem to the ACS.

Each alarm number is a reference to an alarms list (see following tables) where it is possible to find its significance. Each node of the ICS has a reserved range of alarm numbers.

Each alarm has 1 among 4 severity levels. The alarms range reserved for a node is divided into 4 sub-ranges, each sub-range corresponding to an alarm severity level.

The 4 severity levels have the following significance:

FATAL	(F) :	It is impossible for the instrument to perform the requested operation.
WARNING	(W) :	Something in the instrument is not in order, but it is still possible to carry on
		with the requested operation.
INFORMATION	(I) :	A normal event has occurred.
DIAGNOSTIC	(D) :	An abnormal event has occurred, but the instrument has recovered from that abnormal event.

No severity level is applicable to the alarm 0 (Instrument busy). This alarm is used to synchronise the ACS with the ICS during certain operations.

The reserved ranges for each ICS node are summarised in the following table.

ICS node		Alarm numbers range									
	Fata	1	Wa	arn	ing	Information			Diagnostic		
XQI	256 to	767	768	to	1279	1280	to	1537	1538	to	2047
XSM	2048 to	2559	2560	to	3327	3328	to	3583	3584	to	4095
				+	65535						
XGT	4096 to	4607	4608	to	5375	5376	to	5631	5632	to	6143
XCM	6144 to	6399	6400	to	6655	6656	to	6911	6912	to	7167
XSP	7168 to	7423	7424	to	7679	7680	to	7935	7936	to	8191
XPS	8192 to	8703	8704	to	9471	9472	to	9727	9728	to	10239
XHI	10240 to	10495	10496	to	10751	10752	to	11007	11008	to	11263
reserved	11264 to	12287				-					
XST	12288 to	12543	12544	to	12799	12800	to	13055	13056	to	13311
reserved	13312 to	14335									
Gonio1: XGI	14336 to	14847	14848	to	15615	15616	to	15871	15872	to	16383
Gonio1: XGDI	16384 to	16895	16896	to	17663	17664	to	17919	17920	to	18431
Gonio1: XDI	18432 to	18687	18688	to	18943	18944	to	19199	19200	to	19455
Gonio2: XGI	19456 to	19967	19968	to	20735	20736	to	20991	20992	to	21503
Gonio2: XGDI	21504 to	22015	22016	to	22783	22784	to	23039	23040	to	23551
Gonio2: XDI	23552 to	23807	23808	to	24063	24064	to	24319	24320	to	24575
Gonio3: XGI	24576 to	25087	25088	to	25855	25856	to	26111	26112	to	26623
Gonio3: XGDI	26624 to	27135	27136	to	27903	27904	to	28159	28160	to	28671
Gonio3: XDI	28672 to	28927	28928	to	29183	29184	to	29439	29440	to	29695

ICS node	Alarm numbers range								
	Fatal	Warning	Information	Diagnostic					
XRD1: XDD	29696 to 29823	29952 to 30079	30208 to 30335	30464 to 30591					
XRD1: XDDD	29824 to 29887	30080 to 30143	30336 to 30399	30592 to 30655					
XRD1: XDI	29888 to 29951	30144 to 30207	30400 to 30463	30656 to 30719					
XRD2: XDD	30720 to 30847	30976 to 31103	31232 to 31359	31488 to 31615					
XRD2: XDDD	30848 to 30911	31104 to 31167	31360 to 31423	31616 to 31679					
XRD2: XDI	30912 to 30975	31168 to 31231	31424 to 31487	31680 to 31743					
reserved	31744 to 32767								
XMI01	32768 to 33023	33024 to 33279	33280 to 33535	33536 to 33791					
XMI02	33792 to 34047	34048 to 34303	34304 to 34559	34560 to 34815					
XMI03	34816 to 35071	35072 to 35327	35328 to 35583	35584 to 35839					
XMI04	35840 to 36095	36096 to 36351	36352 to 36607	36608 to 36863					
XMI05	36864 to 37119	37120 to 37375	37376 to 37631	37632 to 37887					
XMI06	37888 to 38143	38144 to 38399	38400 to 38655	38656 to 38911					
XMI07	38912 to 39167	39168 to 39423	39424 to 39679	39680 to 39935					
XMI08	39936 to 40191	40192 to 40447	40448 to 40703	40704 to 40959					
XMI09	40960 to 41215	41216 to 41471	41472 to 41727	41728 to 41983					
XMI10	41984 to 42239	42240 to 42495	42496 to 42751	42752 to 43007					
XMI11	43008 to 43263	43264 to 43519	43520 to 43775	43776 to 44031					
XMI12	44032 to 44287	44288 to 44543	44544 to 44799	44800 to 45055					
XMI13	45056 to 45311	45312 to 45567	45568 to 45823	45824 to 46079					
XMI14	46080 to 46335	46336 to 46591	46592 to 46847	46848 to 47103					
XMI15	47104 to 47359	47360 to 47615	47616 to 47871	47872 to 48127					
XMI16	48128 to 48383	48384 to 48639	48640 to 48895	48896 to 49151					
XMI17	49152 to 49407	49408 to 49663	49664 to 49919	49920 to 50175					
XMI18	50176 to 50431	50432 to 50687	50688 to 50943	50944 to 51199					
XMI19	51200 to 51455	51456 to 51711	51712 to 51967	51968 to 52223					
XMI20	52224 to 52479	52480 to 52735	52736 to 52991	52992 to 53247					
XMI21	53248 to 53503	53504 to 53759	53760 to 54015	54016 to 54271					
XMI22	54272 to 54527	54528 to 54783	54784 to 55039	55040 to 55295					
XMI23	55296 to 55551	55552 to 55807	55808 to 56063	56064 to 56319					
XMI24	56320 to 56575	56576 to 56831	56832 to 57087	57088 to 57343					
XMI25	57344 to 57599	57600 to 57855	57856 to 58111	58112 to 58367					
XMI26	58368 to 58623	58624 to 58879	58880 to 59135	59136 to 59391					
XMI27	59392 to 59647	59648 to 59903	59904 to 60159	60160 to 60415					
XMI28	60416 to 60671	60672 to 60927	60928 to 61183	61184 to 61439					
XMI29	61440 to 61695	61696 to 61951	61952 to 62207	62208 to 62463					
XMI30	62464 to 62719	62720 to 62975	62976 to 63231	63232 to 63487					
XMI31	63488 to 63743	63744 to 63999	64000 to 64255	64256 to 64511					
XMI32	64512 to 64767	64768 to 65023	65024 to 65279	65280 to 65534					

B

STATUS CHANNELS

B STATUS CHANNELS

"Status channels" are used to monitor and retrieve different status of the instrument. Each node of the ICS is allocated a range of status channels numbers.

The following list shows the allocated status channel numbers allocated to the different nodes of the ICS.

Node	Status chan	nel	s range	Node	Status char	nnel	s range
XQI	1	-	511	all XMI's*	15872	-	16383
XSM	512	-	1023	XMI01	16384	-	16895
XGT98	1024	-	1535	XMI02	16896	-	17407
XCM	1536	-	2047	XMI03	17408	-	17919
XPS	2048	-	2559	XMI04	17920	-	18431
XHI	2560	-	3071	XMI05	18432	-	18943
XST	3072	-	3583	XMI06	18944	-	19455
XSP	3584	-	4095	XMI07	19456	-	19967
				XMI08	19968	-	20479
XGI1	8192	-	8703	XMI09	20480	-	20991
XGDI1	8704	-	9215	XMI10	20992	-	21503
XDI1	9216	-	9727	XMI11	21504	-	22015
XGI2	10240	-	10751	XMI12	22016	-	22527
XGDI2	10752	-	11263	XMI13	22528	-	23039
XDI2	11264	-	11775	XMI14	23040	-	23551
XGI3	12288	-	12799	XMI15	23552	-	24063
XGDI3	12800	-	13311	XMI16	24064	-	24575
XDI3	13312	-	13823	XMI17	24576	-	25087
XDD1	14336	-	14463	XMI18	25088	-	25599
XDDD1	14464	-	14591	XMI19	25600	-	26111
XDI4	14592	-	14619	XMI20	26112	-	26623
XDD2	14848	-	14975	XMI21	26624	-	27135
XDDD2	14976	-	15103	XMI22	27136	-	27647
XDI5	15104	-	15231	XMI23	27648	-	28159
				XMI24	28160	-	28671
				XMI25	28672	-	29183
				XMI26	29184	-	29695
				XMI27	29696	-	30207
				XMI28	30208	-	30719
				XMI29	30720	-	31231
				XMI30	31232	-	31743
				XMI31	31744	-	32255
				XMI32	32256	-	32767

*Available for the "Set status" command (ST) only.

The following table describes all the valid status channels defined in the ICS. This list may change according to the evolution of the different firmware of each node.

Status number	Node	Status channel name
1	XQI	Primary chamber pressure [Pa]
Paramet	-	
	pressure []	Pa]
	n pressure [
sampling	period [s]	
		imum pressure [Pa]
2	XQI	Spectrometer tank pressure [Pa]
Paramet	ers:	
minimum	pressure []	Pa]
maximum	n pressure [Pa]
sampling	period [s]	
	mping pres	
	• •	pressure [Pa]
desired re	gulation pr	ressure [Pa]
3	XQI	Electronic rack temperature [⁰ C]
Paramet		
minimum	temperatu	re [⁰ C]
maximum	n temperatu	$\operatorname{Ire}\left[^{0}\mathrm{C}\right]$
sampling	period [s]	
4	XQI	Mains voltage (L1 phase) [V]
Paramet	ers:	
minimum	voltage [V	7]
maximum	n voltage [V	/]
sampling	period [s]	
5	XQI	XQI +5Volts [V]
Paramet	ers:	
	voltage [V	
maximum	n voltage [V	/]
sampling	period [s]	
6	XQI	XQI +12Volts [V]
Paramet	ers:	
minimum	voltage [V	7]
maximum	n voltage [V	/]
sampling	period [s]	
7	XQI	XQI -12Volts [V]
Paramet	ers:	
minimum	voltage [V	7]
maximum	voltage [V	/]
sampling	period [s]	
8	XQI	XQI -5Volts [V]
Paramet		· · · ·
	voltage [V	רז
	voltage [V	
sampling		-
1 0	<u> </u>	

9 XQI	XQI +5Volts reference [V]
Parameters:	
minimum voltage	
maximum voltage	
sampling period [
10 XQI	XQI +2.5Volts reference [V]
Parameters: minimum voltage	
maximum voltage	
sampling period [
13 XQI	Working time of instrument [h]
Parameters:	1
minimum [] (igno	
maximum workin	
sampling period [
14 XQI	Working time under vacuum [h]
Parameters:	
minimum [] (igno	
maximum workin	
sampling period [8]
16 XQI	Working time under air [h]
Parameters:	
minimum [] (igno	red)
maximum workin	g time [h]
sampling period [S]
17 XQI	Working time of vacuum pump P2 [h]
Parameters:	
minimum [] (igno	red)
maximum workin	g time [h]
sampling period [s]
18 XQI	Number of samples loaded under vacuum []
Parameters:	
minimum [] (igno	red)
maximum number	
sampling period [
20 XQI	Number of samples loaded under air []
Parameters:	
minimum [] (igno	red)
maximum number	
sampling period [
21 XQI	Number of environment changes to vacuum []
	Transet of cut nonment changes to vacuum []
Parameters:	red)
Parameters: minimum [] (igno	
Parameters: minimum [] (igno maximum number	
Parameters: minimum [] (igno maximum number sampling period [s]
Parameters:minimum [] (ignomaximum numbersampling period []23XQI	
Parameters:minimum [] (ignomaximum numbersampling period []23XQIParameters:	s] Number of environment changes to air []
Parameters:minimum [] (ignomaximum numbersampling period []23XQIParameters:minimum [] (igno	r [] s] Number of environment changes to air [] red)
Parameters:minimum [] (ignomaximum numbersampling period []23XQIParameters:	red)

24 XQI Number of instrument power-up's []					
Parameters:					
minimum [] (ignored)					
maximum number []					
sampling period [s]					
25 XQI Pumping time of last loaded sample [s]					
Parameters:					
minimum [s]					
maximum [s]					
sampling period [s]					
minimum desired pumping time [s]					
maximum desired pumping time [s]					
26 XQI Working time of molecular vacuum pump P1 [h]					
Parameters:					
minimum [] (ignored)					
maximum working time [h]					
sampling period [s]					
512 XSM Digital voltmeter channel [V]					
Parameters:					
minimum voltage [V]					
maximum voltage [V]					
sampling period [s]					
DVM slope []					
DVM offset [V]					
DVM gain []					
513 XSM Molecular vacuum pump P1 speed [rpm]					
Parameters:					
minimum speed [rpm]					
maximum speed [rpm]					
sampling period [s]					
1024 XGT98 Spectrometer tank temperature [⁰ C]					
Parameters:					
minimum temperature [⁰ C]					
maximum temperature $\begin{bmatrix} 0 \\ C \end{bmatrix}$					
sampling period [s]					
minimum temperature error [⁰ C]					
maximum temperature error [⁰ C]					
1025 XGT98 FPC gas pressure [Pa]					
Parameters:					
minimum pressure [Pa]					
maximum pressure [Pa]					
sampling period [s]					
minimum pressure error [Pa]					
maximum pressure error [Pa]					
1026 XGT98 FPC gas flow [µl/min]					
Parameters:					
minimum flow [µl/min]					
maximum flow [µl/min]					
sampling period [s]					
minimum flow error [µl/min]					
maximum flow error [µl/min]					

1029	XGT98	XGT98 +5Volts [V]
Paramet		
	n voltage [V	7]
	n voltage [V	
	period [s]	.]
1030	XGT98	XGT98 +12Volts [V]
Paramet		
	n voltage [V	71
	n voltage [V	
	period [s]	
1031	XGT98	XGT98 -12Volts [V]
Paramet		71
	n voltage [V	
	n voltage [V	/]
	period [s]	
1032	XGT98	XGT98 +12Volts power [V]
Paramet		
	n voltage [V	
	n voltage [V	/]
<u> </u>	period [s]	
1033	XGT98	XGT98 +5Volts reference [V]
Paramet		
	n voltage [V	
	n voltage [V	/]
sampling	period [s]	
1034	XGT98	XGT98 +2.5Volts reference [V]
Paramet	ers:	
minimum	n voltage [V	7]
maximun	n voltage [V	/]
sampling	period [s]	
1035	XGT98	XGT98 +24Volts [V]
Paramet	ers:	
minimum	n voltage [V	7]
maximun	n voltage [V	/]
	period [s]	
1536	XCM	XCM +5Volts [V]
Paramet	ers:	
minimum	n voltage [V	7
	n voltage [\	
sampling	period [s]	
1537		XCM +12Volts [V]
Paramet		
	n voltage [V	ין
	n voltage [V	
	period [s]	L C C C C C C C C C C C C C C C C C C C
1538	XCM	XCM -12Volts [V]
Paramet		
	n voltage [V	7]
	n voltage [V	
	period [s]	. 1
Sumpring	Period [3]	

Parameters: initium voltage [V] maximum voltage [V] maximum voltage [V] sampling period [s] initium voltage [V] sampling period [s] isampling period [s] IS40 XCM XCM +24Volts [V] Parameters: minimum voltage [V] maximum voltage [V] maximum voltage [V] Parameters: minimum claive tolerance [%] maximum constant tolerance [KV] maximum constant tolerance [KV] sampling period [s] 2049 Z049 XPS X-ray milliamps [mA] Parameters: minimum constant tolerance [mA] maximum claive tolerance [mA] maximum claive tolerance [mA] sampling period [s] 2050 XPS Z050 XPS X-ray cooling primary water input temperature [⁶ C] Parameters: minimum temperature [⁶ C] maximum temperature [⁶ C] Parameters: minimum temp					
minimum voltage [V] maximum voltage [V] Parameters: minimum voltage [V] maximum voltage [V] Parameters: minimum voltage [V] maximum roltage to tolerance [%] minimum constant tolerance [%] maximum relative tolerance [%] maxim	1539 XCM XCM +5Volts reference [V]				
maximum voltage [V] sampling period [s] 1540 XCM XCM +2.5Voits reference [V] Parameters: minimum voltage [V] maximum voltage					
sampling period [s]					
1540 XCM XCM +2.SVolts reference [V] Parameters: minimum voltage [V] maximum voltage [V] maximum voltage [V] Parameters: minimum voltage [V] maximum voltage [V] maximum voltage [V] Parameters: minimum voltage [V] maximum voltage [V] maximum voltage [V] sampling period [s] 2048 ZVS X-ray kilovolts [kV] Parameters: minimum constant tolerance [%] maximum voltative tolerance [%] maximum relative tolerance [KV] maximum constant tolerance [KV] maximum relative tolerance [%] minimum constant tolerance [KV] maximum relative tolerance [%] minimum constant tolerance [KV] maximum relative tolerance [%] maximum relative tolerance [%] maximum relative tolerance [%] minimum constant tolerance [%] maximum remerature [%] maximum remerature [%] maximum remerature [%] maximum temperature [%] maximum temperature [%] maximum temperatur					
Parameters: ininium voltage [V] maximum voltage [V] sampling period [s] IS41 XCM XCM +24Volts [V] Parameters: maximum voltage [V] sampling period [s] 2048 XPS Z048 XPS X-ray kilovolts [kV] Parameters: minimum relative tolerance [%] maximum voltage [V] maximum constant tolerance [KV] maximum constant tolerance [KV] maximum constant tolerance [KV] sampling period [s] 2049 Z049 XPS X-ray milliamps [mA] Parameters: minimum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] maximum temperature [%C] maximum temperature [%C] Parameters: minimum temperature [%C] maximum temperature [%C] maximum temperature [%C] Parameters: minimum temperature [%C] maximum temperature [%C] maximum temperature [%C] Parameters: minimum temperature [%C] maximum temperature [%C]					
minimum voltage [V] maximum voltage [V] maximum voltage [V] Parameters: minimum voltage [V] maximum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [KV] maximum constant tolerance [KV] maximum constant tolerance [%] maximum temperature [°C] Parameters: minimum temperature [°C] Parameters: m					
maximum voltāge [V] sampling period [s] Parameters: minimum voltāge [V] sampling period [s] 2048 XPS X-ray kilovolts [kV] Parameters: minimum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [KV] maximum constant tolerance [kV] sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [%] maximum relative tolerance [%] maximum constant tolerance [%] maximum relative tolerance [%] maximum rengerature [%] Parameters: minimum temperature [%] Parameters: Parameters: Parameters: Parame					
sampling period [s] IS41 XCM XCM +24Volts [V] Parameters: minimum voltage [V] sampling period [s] 2048 XPS X-ray kilovolts [kV] Parameters: minimum relative tolerance [%6] maximum constant tolerance [KV] maximum constant tolerance [KV] sampling period [s] 2049 XPS 2049 XPS X-ray milliamps [mA] Parameters: minimum constant tolerance [%6] maximum relative tolerance [%6] minimum relative tolerance [%6] maximum constant tolerance [%6] minimum relative tolerance [%6] maximum constant tolerance [%6] minimum relative tolerance [%6] maximum constant tolerance [%6] maximum constant tolerance [%6] maximum constant tolerance [%6] maximum relative tolerance [%6] maximum relative tolerance [%6] maximum relative tolerance [%6] sampling period [s] 2050 XPS 2050 XPS X-ray cooling primary water input temperature [%C] Parameters: minimum temperature [%C] maximum remperature [%C] 2051 XPS X-ray cooling secondary water output temperature [%C] Parameters: minimum temperature	• • •				
1541 XCM XCM +24Volts [V] Parameters: minimum voltage [V] sampling period [s] 2048 XPS 2048 XPS X-ray kilovolts [kV] Parameters: minimum voltative tolerance [%] minimum voltative tolerance [%] minimum constant tolerance [kV] maximum constant tolerance [kV] maximum constant tolerance [kV] maximum constant tolerance [kV] maximum constant tolerance [%] minimum constant tolerance [%] minimum constant tolerance [%] minimum constant tolerance [%] maximum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [[®] C] Parameters: minimum temperature [[®] C] maximum temperature [[®] C] Parameters: minimum temperature [[®] C] X-ray cooling secondary water output temperature [[®] C] Parameters: minimum temperature [[®] C] X-ray cooling secondary water output temperature [[®] C] Parameters: minimum temperature [[®] C]					
Parameters: minimum voltage [V] sampling period [s] 2048 XPS Xray kilovolts [kV] Parameters: minimum relative tolerance [%] maximum constant tolerance [kV] sampling period [s] 2049 XPS Xray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] 2051 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] <td< td=""><td></td></td<>					
minimum voltage [V] maximum voltage [V] maximum voltage [V] maximum voltage [V] 2048 XPS X-ray kilovolts [kV] Parameters: minimum constant tolerance [%] maximum constant tolerance [%] 2049 XPS X-ray milliamps [mA] Parameters: minimum constant tolerance [%] minimum constant tolerance [%] maximum relative tolerance [%] minimum constant tolerance [%] minimum temperature [%] minimum temperature [%] maximum					
maximum voltage $[V]$ sampling period [s] 2048 XPS X-ray kilovolts [kV] Parameters: minimum constant tolerance [%] maximum relative tolerance [%] maximum constant tolerance [kV] sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum constant tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximu					
sampling period [s] 2048 XPS Array kilovolts [kV] Parameters: minimum relative tolerance [%] maximum constant tolerance [kV] sampling period [s] 2049 XPS Array miliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [%] maximum relative tolerance [%] maximum relative tolerance [%] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] 2051 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water ou					
2048 XPS X-ray kilovolts [kV] Parameters: minimum relative tolerance [%] minimum relative tolerance [%] minimum constant tolerance [kV] maximum constant tolerance [kV] sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum relative tolerance [%] minimum relative tolerance [%] maximum relative tolerance [%] minimum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: <td< td=""><td></td></td<>					
Parameters: minimum relative tolerance [%] maximum relative tolerance [%] minimum constant tolerance [kV] sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] minimum relative tolerance [%] minimum relative tolerance [%] maximum relative tolerance [%] minimum relative tolerance [%] maximum relative tolerance [M] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature					
minimum relative tolerance [%] maximum clative tolerance [%] minimum constant tolerance [kV] sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [0 C] Parameters: minimum temperature [0 C] maximum temperature [0 C] Parameters: minimum temperature [0 C] maximum temperature [0 C] Parameters: minimum temperature [0 C] maximum temperature [0 C] Parameters: minimum temperature [0 C] maximum temperature [0 C] Parameters: minimum temperature [0 C] Parameters: minimum temperature [0 C] Parameters: minimum temperature [0 C] maximum temperature [0 C] Parameters: minimum temperature [0 C] maximum temperature [0 C] parameters: minimum temperat					
maximum relative tolerance [%] minimum constant tolerance [kV] maximum constant tolerance [kV] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [%] maximum constant tolerance [mA] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] parameters: minimum temperature [°C] maximum temperature [°C]					
minimum constant tolerance [kV] maximum constant tolerance [kV] sampling period [s] 2049 XPS Aray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2051 XPS Z-Ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] parameters: minimum tempera					
maximum constant tolerance [kV] sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [^0C] Parameters: minimum temperature [^0C] maximum temperature [^0C] 2051 XPS X-ray cooling primary water output temperature [^0C] Parameters: minimum temperature [^0C] 2051 XPS X-ray cooling primary water output temperature [^0C] Parameters: minimum temperature [^0C] Parameters: minimum temperature [^0C] Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters: Parameters:					
sampling period [s] 2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] ZO50 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] ZO51 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] sampling period [s] ZO52 XPS X-ray cooling secondary water input temperature [°C] Parameters: maximum temperature [°C] maximum temperature [°C] Parameters: maximum temperature [°C] sampling period [s] ZO52 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: maximum temperature [°C] sampling period [s] ZO53 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] ZO53					
2049 XPS X-ray milliamps [mA] Parameters: minimum relative tolerance [%] maximum relative tolerance [%] maximum relative tolerance [%] maximum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters:					
Parameters: minimum relative tolerance [%] maximum relative tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling					
minimum relative tolerance [%] maximum relative tolerance [%] minimum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C]	2049 XPS X-ray milliamps [mA]				
maximum relative tolerance [%] minimum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Support S 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C]	arameters:				
minimum constant tolerance [mA] maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C]					
maximum constant tolerance [mA] sampling period [s] 2050 XPS X-ray cooling primary water input temperature [^{0}C] Parameters: maximum temperature [^{0}C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [^{0}C] Parameters: minimum temperature [^{0}C] maximum temperature [^{0}C] maximum temperature [^{0}C] maximum temperature [^{0}C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [^{0}C] Parameters: minimum temperature [^{0}C] maximum temperature [^{0}C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [^{0}C] Parameters: minimum temperature [^{0}C] maximum temperature [^{0}C] sampling period [s] minimum temperature [^{0}C] sampling period [s] minimum temperature [^{0}C]					
sampling period [s] 2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] sampling period [s] minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C] maximum temperature [°C] </td <td></td>					
2050 XPS X-ray cooling primary water input temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2051 XPS 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] Tray cooling secondary water output temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] <td></td>					
Parameters: Image: Stand S					
minimum temperature [°C] maximum temperature [°C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C]					
maximum temperature [^{0}C] sampling period [s] 2051 XPS X-ray cooling primary water output temperature [^{0}C] Parameters: minimum temperature [^{0}C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [^{0}C] Parameters: minimum temperature [^{0}C] Parameters: minimum temperature [^{0}C] Parameters: minimum temperature [^{0}C] maximum temperature [^{0}C] Sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [^{0}C] Parameters: minimum temperature [^{0}C] Parameters: minimum temperature [^{0}C] Parameters: minimum temperature [^{0}C] maximum temperature [^{0}C] maximum temperature [^{0}C] maximum temperature [^{0}C] sampling period [s] minimum temperature [^{0}C] sampling period [s] minimum temperature error [^{0}C]					
sampling period [s] 2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C]					
2051 XPS X-ray cooling primary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] Parameters: minimum temperature [°C] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] minimum temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] maximum temperature [°C] minimum temperature [°C]	maximum temperature [⁰ C]				
Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] maximum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C]					
minimum temperature [°C] maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C]	2051 XPS X-ray cooling primary water output temperature [⁰ C]				
maximum temperature [°C] sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature error [°C]					
sampling period [s] 2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] ampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s]	minimum temperature [⁰ C]				
2052 XPS X-ray cooling secondary water input temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] sampling period [s] X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] maximum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s] minimum temperature [°C] sampling period [s]	maximum temperature [⁰ C]				
Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] 2053 XPS XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature [°C]	sampling period [s]				
minimum temperature [^{0}C] maximum temperature [^{0}C] sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [^{0}C] Parameters: minimum temperature [^{0}C] maximum temperature [^{0}C] sampling period [s] minimum temperature [^{0}C]	2052 XPS X-ray cooling secondary water input temperature [⁰C]				
maximum temperature $[^{0}C]$ sampling period [s] 2053 XPS XPS X-ray cooling secondary water output temperature $[^{0}C]$ Parameters: minimum temperature $[^{0}C]$ maximum temperature $[^{0}C]$ sampling period [s] minimum temperature error $[^{0}C]$					
sampling period [s] 2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature error [°C]	minimum temperature [⁰ C]				
2053 XPS X-ray cooling secondary water output temperature [°C] Parameters: minimum temperature [°C] maximum temperature [°C] sampling period [s] minimum temperature error [°C] minimum temperature error [°C]	maximum temperature [⁰ C]				
Parameters: minimum temperature [⁰ C] maximum temperature [⁰ C] sampling period [s] minimum temperature error [⁰ C]	sampling period [s]				
Parameters: minimum temperature [⁰ C] maximum temperature [⁰ C] sampling period [s] minimum temperature error [⁰ C]	2053 XPS X-ray cooling secondary water output temperature [⁰ C]				
maximum temperature [⁰ C] sampling period [s] minimum temperature error [⁰ C]	arameters:				
maximum temperature [⁰ C] sampling period [s] minimum temperature error [⁰ C]	minimum temperature [⁰ C]				
sampling period [s] minimum temperature error [⁰ C]	maximum temperature [⁰ C]				
minimum temperature error [⁰ C]					
maximum temperature error $[{}^{0}C]$					
	naximum temperature error $[^{0}C]$				

2054	XPS	X-ray cooling secondary water resistivity. [kΩ.cm]		
Paramete				
	resistivity	[kO cm]		
	resistivity			
sampling				
		X7 (1 0°1) (1 1 1		
2055	XPS	X-ray tube filament current [A]		
Paramete				
	current [A			
	current [A	.]		
sampling				
2056	XPS	XPS +15Volts [V]		
Paramete				
minimum	voltage [V]		
maximum	voltage [V	7]		
sampling	period [s]			
2057	XPS	XPS -15Volts [V]		
Paramete	ers:			
minimum	voltage [V]		
maximum	voltage [V			
sampling				
2058	XPS	XPS +24Volts [V]		
Paramete				
	voltage [V	1		
	voltage [V			
sampling]		
2061	XPS	XPS +5Volts [V]		
Paramete				
	voltage [V	1		
	voltage [V			
sampling]		
2063	XPS	V non activity time [hann]		
·		X-ray activity time [hour]		
Paramete		7		
	activity [h			
	activity [h	louij		
sampling		X7 () (D		
2064	XPS	X-ray tube arcs count []		
Paramete				
	arcs count			
maximum arcs count []				
sampling period [s]				
fatal arc rate count []				
fatal arc rate period [s]				
warning arc rate count []				
-	warning arc rate period [s] 60 to 70 kV delay [s]			
2067	XPSLP	Laboratory ambient temperature [⁰ C]		
Parameters:				
minimum temperature [⁰ C]				
	temperatu	re [^v C]		
sampling	period [s]			

2068 X	XPSLP	X-ray generator output temperature [⁰ C]			
Parameters					
minimum temperature $[^{0}C]$					
	maximum temperature $[^{0}C]$				
sampling pe					
	XPSLP	X-ray tube leakage current [mA]			
Parameters					
minimum cu		Δ]			
maximum c					
sampling pe					
	XPSLP	XPSLP board temperature [⁰ C]			
Parameters					
minimum te					
maximum te	emperatu	$r = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$			
sampling pe					
	XPSLP	XPS +12Volts [V]			
Parameters					
minimum vo		1			
maximum ve					
sampling pe		1			
<u> </u>	XPSLP	XPS -12Volts [V]			
Parameters					
minimum vo		1			
maximum v	• •				
sampling pe]			
		VDC 12 5V/214 million (VI)			
	XPSLP	XPS +2.5Volts reference [V]			
Parameters		1			
minimum vo maximum v					
sampling pe]			
· · · ·					
2560	XHI	XHI +5Volts [V]			
Parameters		1			
minimum vo	-				
maximum v sampling pe]			
2561	XHI	XHI +12Volts [V]			
Parameters		1			
minimum vo					
maximum v sampling pe]			
2562	XHI	XHI -12Volts [V]			
Parameters		1			
minimum voltage [V] maximum voltage [V]					
sampling period [s]					
2563		VHI +5Volta vafavanaa [V]			
	XHI	XHI +5Volts reference [V]			
Parameters: minimum voltage [V]					
maximum v sampling pe		J			
sampning pe	1100 [8]				

2564	XHI	XHI +2.5Volts reference [V]		
Parameter				
minimum v	oltage [V]		
maximum				
sampling p				
2565	XHI	XHI +24Volts [V]		
Parameter				
minimum v]		
maximum				
sampling p		1		
2566	XHI	XHI -5Volts [V]		
Parameter				
minimum v		1		
maximum		-		
sampling p]		
3072	XST	XST +5Volts [V]		
Parameter				
minimum v		1		
maximum	• •			
sampling p]		
3073	XST	VST +12Volto [V]		
Parameter		XST +12Volts [V]		
minimum v		1		
		-		
maximum]		
sampling p				
3074	XST	XST -12Volts [V]		
Parameter		1		
minimum v				
maximum	• -			
sampling p				
3075	XST	XST +5Volts reference [V]		
Parameter				
minimum v	• -	-		
maximum				
sampling p				
3076	XST	XST +2.5Volts reference [V]		
Parameter				
minimum v				
	maximum voltage [V]			
sampling p				
3077	XST	XST +24Volts [V]		
Parameter				
minimum voltage [V]				
	maximum voltage [V]			
sampling p				
3078	XST	XST -5Volts [V]		
Parameter				
minimum v		-		
maximum		7]		
sampling p	eriod [s]			

3079	XST	Absolute filtered sample rotation error [⁰]			
Paramete					
minimum	0				
	maximum error [⁰]				
sampling					
3584	XSP	XSP +5Volts [V]			
Paramete	ers:				
minimum	voltage [V]			
maximum	voltage [V				
sampling	period [s]				
3585	XSP	Mains voltage (L1 phase) [V]			
Paramete	ers:				
minimum	voltage [V]			
maximum	voltage [V	7]			
sampling	period [s]				
3586	XSP	Mains voltage (L2 phase) [V]			
Paramete	ers:				
minimum	voltage [V]			
maximum	voltage [V	7]			
sampling	period [s]				
3587	XSP	XSP -5Volts [V]			
Paramete	ers:				
minimum	voltage [V]			
maximum	voltage [V	7]			
sampling	sampling period [s]				
3588	XSP	XSP +24Volts [V]			
Paramete	ers:				
minimum	voltage [V]			
maximum	voltage [V	7]			
sampling	sampling period [s]				
3589	XSP	Molecular pump P1 voltage [V]			
Paramete					
minimum voltage [V]					
maximum voltage [V]					
sampling period [s]					
3590	XSP	Molecular pump P1 current [A]			
Parameters:					
	minimum current [A]				
	current [A	.]			
sampling	sampling period [s]				

3591	XSP	Molecular pump P1 temperature [⁰ C]
Paramete		
minimum	temperatu	$re [^{0}C]$
maximum	temperatu	re [°C]
sampling	period [s]	
8192	XGI1	Gonio 1: detector high-voltage [V]
10240	XGI2	Gonio 2: detector high-voltage [V]
12288	XGI3	Gonio 3: detector high-voltage [V]
14336	XDD1	XRD-system 1: detector high-voltage [V]
14848	XDD2	XRD-system 2: detector high-voltage [V]
Paramete	ers:	
minimum	absolute v	oltage [V]
maximum	absolute v	voltage [V]
sampling		
		lerance [V]
		lerance [V]
8193	XGI1	Gonio 1: crystals temperature [⁰ C]
10241	XGI2	Gonio 2: crystals temperature [⁰ C]
12289	XGI3	Gonio 3: crystals temperature [⁰ C]
14337	XDD1	XRD-system 1: crystal temperature [⁰ C]
14849	XDD2	XRD-system 2: crystal temperature [⁰ C]
Paramete		
	temperatur	
	temperatu	$re [^{0}C]$
sampling	period [s]	
8194	XGI1	Gonio 1: XGI +5Volts measure [V]
10242	XGI2	Gonio 2: XGI +5Volts measure [V]
12290	XGI3	Gonio 3: XGI +5Volts measure [V]
14338	XDD1	XRD-system 1: XDD +5Volts measure [V]
14850	XDD2	XRD-system 2: XDD +5Volts measure [V]
Paramete	ers:	
minimum	voltage [V	7]
maximum	voltage [V	7]
sampling	period [s]	
8195	XGI1	Gonio 1: XGI +12Volts measure [V]
10243	XGI2	Gonio 2: XGI +12Volts measure [V]
12291	XGI3	Gonio 3: XGI +12Volts measure [V]
14339	XDD1	XRD-system 1: XDD +12Volts measure [V]
14851	XDD2	XRD-system 2: XDD +12Volts measure [V]
Paramete	ers:	
minimum	voltage [V	r]
maximum	voltage [V	7]
sampling	period [s]	

8196	XGI1	Gonio 1: XGI -12Volts measure [V]
10244	XGI2	Gonio 2: XGI -12Volts measure [V]
12292	XGI2	Gonio 3: XGI -12Volts measure [V]
14340	XDD1	XRD-system 1: XDD -12Volts measure [V]
14852	XDD1 XDD2	XRD-system 2: XDD -12Volts measure [V]
Paramete		
	voltage [V]
	voltage [V	
sampling	period [s]	
8197	XGI1	Gonio 1: XGI +12Volts power [V]
10245	XGI2	Gonio 2: XGI +12Volts power [V]
12293	XGI3	Gonio 3: XGI +12Volts power [V]
14341	XDD1	XRD-system 1: XDD +12Volts power [V]
14853	XDD2	XRD-system 2: XDD +12Volts power [V]
Paramete		
	voltage [V	
	voltage [V	7]
sampling		
8198	XGI1	Gonio 1: XGI +5Volts reference [V]
10246	XGI2	Gonio 2: XGI +5Volts reference [V]
12294	XGI3	Gonio 3: XGI +5Volts reference [V]
14342	XDD1	XRD-system 1: XDD +5Volts reference [V]
14854	XDD2	XRD-system 2: XDD +5Volts reference [V]
Paramete		1
	voltage [V voltage [V	
sampling	• -	
8199	XGI1	Gonio 1: XGI -5Volts reference [V]
10247	XGI1 XGI2	Gonio 2: XGI -5Volts reference [V]
12295	XGI2 XGI3	Gonio 2: XGI -5Volts reference [V]
14343	XDD1	XRD-system 1: XDD -5Volts reference [V]
14855	XDD1 XDD2	XRD-system 1: XDD -5Volts reference [V] XRD-system 2: XDD -5Volts reference [V]
Paramete		
	voltage [V	1
	voltage V	
sampling	period [s]	
8200	XGI1	Gonio 1: XGI +24Volts power [V]
10248	XGI2	Gonio 2: XGI +24Volts power [V]
12296	XGI3	Gonio 3: XGI +24Volts power [V]
14344	XDD1	XRD-system 1: XDD +24Volts power [V]
14856	XDD2	XRD-system 2: XDD +24Volts power [V]
Paramete	ers:	
	voltage [V	
maximum	voltage [V	7]
sampling		

0000	VOI1	Conto 1. Astal ENEDCY DROEH E and the D
8206 10254	XGI1	Gonio 1: total ENERGY PROFILE process time [h]
	XGI2	Gonio 2: total ENERGY PROFILE process time [h]
12302	XGI3	Gonio 3: total ENERGY PROFILE process time [h]
14350 14862	XDD1 XDD2	XRD-system 1: total ENERGY PROFILE process time [h] XRD-system 2: total ENERGY PROFILE process time [h]
		ARD-system 2: total ENERGY PROFILE process time [n]
Paramete	ers: [h] (ignore	۲ ۲ .
maximum		
sampling		
8207	XGI1	Gonio 1: total FAST SCAN process time [h]
10255	XGI2	Gonio 2: total FAST SCAN process time [h]
10233	XGI2 XGI3	Gonio 2: total FAST SCAN process time [h]
14351	XDD1	XRD-system 1: total FAST SCAN process time [h]
14863	XDD1 XDD2	XRD-system 1: total FAST SCAN process time [h] XRD-system 2: total FAST SCAN process time [h]
Paramete		ARD-system 2. total FAST SCAN process time [n]
	[h] (ignore	(\mathbf{b})
maximum		
sampling		
8208	XGI1	Gonio 1: total INCREMENTAL SCAN process time [h]
10256	XGI2	Gonio 2: total INCREMENTAL SCAN process time [h]
10200	XGI2 XGI3	Gonio 2: total INCREMENTAL SCAN process time [h]
14352	XDD1	XRD-system 1: total INCREMENTAL SCAN process time [h]
14864	XDD1 XDD2	XRD system 1: total INCREMENTAL SCAN process time [h] XRD-system 2: total INCREMENTAL SCAN process time [h]
Paramete		ARD-system 2. total intercentent intercess time [ii]
	[h] (ignore	(b:
maximum		
sampling		
8209	XGI1	Gonio 1: total QUANTITATIVE ANALYSIS process time [h]
10257	XGI2	Gonio 2: total QUANTITATIVE ANALYSIS process time [h]
12305	XGI3	Gonio 3: total QUANTITATIVE ANALYSIS process time [h]
14353	XDD1	XRD-system 1: total QUANTITATIVE ANALYSIS process time [h]
14865	XDD2	XRD-system 2: total QUANTITATIVE ANALYSIS process time [h]
Paramete		
	[h] (ignore	ed)
maximum		
sampling	period [s]	
8210	XGI1	Gonio 1: total number of crystal changes []
10258	XGI2	Gonio 2: total number of crystal changes []
12306	XGI3	Gonio 3: total number of crystal changes []
Paramete	ers:	
minimum	[] (ignored	
maximum	h changes []	
sampling	period [s]	
8211	XGI1	Gonio 1: total number of collimator changes []
	XGI1 XGI2	Gonio 1: total number of collimator changes [] Gonio 2: total number of collimator changes []
8211		
8211 10259	XGI2 XGI3	Gonio 2: total number of collimator changes []
8211 10259 12307 Paramete	XGI2 XGI3	Gonio 2: total number of collimator changes [] Gonio 3: total number of collimator changes []
8211 10259 12307 Paramete minimum	XGI2 XGI3 ers:	Gonio 2: total number of collimator changes [] Gonio 3: total number of collimator changes []
8211 10259 12307 Paramete minimum	XGI2 XGI3 ers: [] (ignored or changes []	Gonio 2: total number of collimator changes [] Gonio 3: total number of collimator changes []
8211 10259 12307 Paramete minimum maximum	XGI2 XGI3 ers: [] (ignored or changes []	Gonio 2: total number of collimator changes [] Gonio 3: total number of collimator changes []

D		
Paramete		
	-	A] (ignored)
sampling	current [n	IA]
9216	XDI1	Gonio 1: signal software amplification gain []
11264	XDI2	Gonio 2: signal software amplification gain []
13312	XDI3	Gonio 3: signal software amplification gain []
14592	XDI4	XRD-system 1: signal software amplification gain []
15104	XDI5	XRD-system 2: signal software amplification gain []
Paramete		
minimum	• •	
maximum		
sampling		
9217	XDI1	Gonio 1: XDI +5Volts [V]
11265	XDI2	Gonio 2: XDI +5Volts [V]
13313	XDI3	Gonio 3: XDI +5Volts [V]
14593	XDI4	XRD-system 1: XDI +5Volts [V]
15105	XDI5	XRD-system 2: XDI +5Volts [V]
Paramete	ers:	
minimum	voltage [V]
maximum	voltage [V	7]
sampling	period [s]	
9218	XDI1	Gonio 1: XDI +12Volts [V]
11266	XDI2	Gonio 2: XDI +12Volts [V]
13314	XDI3	Gonio 3: XDI +12Volts [V]
14594	XDI4	XRD-system 1: XDI +12Volts [V]
15106	XDI5	XRD-system 2: XDI +12Volts [V]
Paramete	ers:	
minimum	voltage [V]
maximum	voltage [V	
sampling	period [s]	
9219	XDI1	Gonio 1: XDI -12Volts [V]
	XDI2	Gonio 2: XDI -12Volts [V]
13315	XDI3	Gonio 3: XDI -12Volts [V]
14595	XDI4	XRD-system 1: XDI -12Volts [V]
15107	XDI5	XRD-system 2: XDI -12Volts [V]
Paramete		v L I
	voltage [V	1
	voltage [V	-
sampling		
r o	ι ·· [-]	

9220	XDI1	Gonio 1: XDI +5Volts reference [V]
11268	XDI2	Gonio 2: XDI +5Volts reference [V]
13316	XDI3	Gonio 3: XDI +5Volts reference [V]
14596	XDI4	XRD-system 1: XDI +5Volts reference [V]
15108	XDI5	XRD-system 2: XDI +5Volts reference [V]
Paramet		
	n voltage [V	1
	n voltage [V	
sampling	period [s]	
9221	XDI1	Gonio 1: XDI +2.5Volts reference [V]
11269	XDI2	Gonio 2: XDI +2.5Volts reference [V]
13317	XDI3	Gonio 3: XDI +2.5Volts reference [V]
14597	XDI4	XRD-system 1: XDI +2.5Volts reference [V]
15109	XDI5	XRD-system 2: XDI +2.5Volts reference [V]
Paramet	ers:	
minimun	n voltage [V]
	n voltage [V	7]
sampling	period [s]	
9222	XDI1	Gonio 1: XDI -5Volts [V]
11270	XDI2	Gonio 2: XDI -5Volts [V]
13318	XDI3	Gonio 3: XDI -5Volts [V]
14598	XDI4	XRD-system 1: XDI -5Volts [V]
15110	XDI5	XRD-system 2: XDI -5Volts [V]
Paramet		_
	n voltage [V	
	n voltage [V	
<u>,</u>	period [s]	
9223	XDI1	Gonio 1: signal detection threshold [mV]
11271	XDI2	Gonio 2: signal detection threshold [mV]
13319	XDI3	Gonio 3: signal detection threshold [mV]
14599	XDI4	XRD-system 1: signal detection threshold [mV]
15111 December 1	XDI5	XRD-system 2: signal detection threshold [mV]
Paramet	ers: h threshold	[mV]
	n threshold	
	period [s]	
<u>9224</u>	XDI1	Gonio 1: signal hardware amplification gain []
11272	XDI1 XDI2	Gonio 2: signal hardware amplification gain []
minimum		
maximun		
sampling		
13320 14600 15112 Paramet	XDI3 XDI4 XDI5 ters:	Gonio 3: signal hardware amplification gain [] XRD-system 1: signal hardware amplification gain [] XRD-system 2: signal hardware amplification gain []

15872 XMIxx All mono's: XMI +5Volts [V] (for the "Set status" command ST only) 16384 XMI01 Mono 01: XMI +5Volts [V] 16896 XMI02 Mono 02: XMI +5Volts [V] 17408 XMI03 Mono 03: XMI +5Volts [V] 17408 XMI03 Mono 03: XMI +5Volts [V] 17920 XMI04 Mono 04: XMI +5Volts [V] 18432 XMI05 Mono 05: XMI +5Volts [V] 18432 XMI06 Mono 06: XMI +5Volts [V] 1844 XMI06 Mono 06: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 13: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 15: XMI +5Volts [V] 23552 XMI15 Mono 16: XMI +5Volts [V] 24064 XMI16 Mono 16: X
16896 XMI02 Mono 02: XMI +5Volts [V] 17408 XMI03 Mono 03: XMI +5Volts [V] 17920 XMI04 Mono 04: XMI +5Volts [V] 18432 XMI05 Mono 05: XMI +5Volts [V] 18944 XMI06 Mono 06: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20492 XMI10 Mono 10: XMI +5Volts [V] 20992 XMI10 Mono 11: XMI +5Volts [V] 2016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 15: XMI +5Volts [V] 23552 XMI15 Mono 16: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24064 XMI18 Mono 18: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 20: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
17408 XMI03 Mono 03: XMI +5Volts [V] 17920 XMI04 Mono 04: XMI +5Volts [V] 18432 XMI05 Mono 05: XMI +5Volts [V] 18432 XMI06 Mono 06: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 20992 XMI10 Mono 11: XMI +5Volts [V] 2016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 16: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24064 XMI18 Mono 18: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
17920 XMI04 Mono 04: XMI +5Volts [V] 18432 XMI05 Mono 05: XMI +5Volts [V] 18944 XMI06 Mono 06: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 20992 XMI11 Mono 11: XMI +5Volts [V] 21504 XMI11 Mono 12: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 16: XMI +5Volts [V] 24664 XMI16 Mono 17: XMI +5Volts [V] 24064 XMI16 Mono 18: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25088 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
18432 XMI05 Mono 05: XMI +5Volts [V] 18944 XMI06 Mono 06: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 20992 XMI11 Mono 11: XMI +5Volts [V] 21504 XMI11 Mono 12: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24064 XMI16 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25000 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
18944 XMI06 Mono 06: XMI +5Volts [V] 19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24064 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25000 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
19456 XMI07 Mono 07: XMI +5Volts [V] 19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 20992 XMI11 Mono 11: XMI +5Volts [V] 21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22016 XMI14 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
19968 XMI08 Mono 08: XMI +5Volts [V] 20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 16: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
20480 XMI09 Mono 09: XMI +5Volts [V] 20992 XMI10 Mono 10: XMI +5Volts [V] 21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24064 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25088 XMI18 Mono 19: XMI +5Volts [V] 25600 XMI19 Mono 20: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
20992 XMI10 Mono 10: XMI +5Volts [V] 21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25000 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
21504 XMI11 Mono 11: XMI +5Volts [V] 22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25000 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
22016 XMI12 Mono 12: XMI +5Volts [V] 22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25000 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
22528 XMI13 Mono 13: XMI +5Volts [V] 23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
23040 XMI14 Mono 14: XMI +5Volts [V] 23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
23552 XMI15 Mono 15: XMI +5Volts [V] 24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
24064 XMI16 Mono 16: XMI +5Volts [V] 24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
24576 XMI17 Mono 17: XMI +5Volts [V] 25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
25088 XMI18 Mono 18: XMI +5Volts [V] 25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
25600 XMI19 Mono 19: XMI +5Volts [V] 26112 XMI20 Mono 20: XMI +5Volts [V]
26112 XMI20 Mono 20: XMI +5Volts [V]
26624 XMI21 Mono 21: XMI +5Volts [V]
27136 XMI22 Mono 22: XMI +5Volts [V]
27648 XMI23 Mono 23: XMI +5Volts [V]
28160 XMI24 Mono 24: XMI +5Volts [V]
28672 XMI25 Mono 25: XMI +5Volts [V]
29184 XMI26 Mono 26: XMI +5Volts [V]
29696 XMI27 Mono 27: XMI +5Volts [V]
30208 XMI28 Mono 28: XMI +5Volts [V]
30720 XMI29 Mono 29: XMI +5Volts [V]
31232 XMI30 Mono 30: XMI +5Volts [V]
31744 XMI31 Mono 31: XMI +5Volts [V]
32256 XMI32 Mono 32: XMI +5Volts [V]
Parameters:
minimum voltage [V]
maximum voltage [V]
sampling period [s]

· · · · · ·		
15873	XMIxx	All mono's: XMI +24Volts [V] (for the "Set status" command ST only)
16385	XMI01	Mono 01: XMI +24Volts [V]
16897	XMI02	Mono 02: XMI +24Volts [V]
17409	XMI03	Mono 03: XMI +24Volts [V]
17921	XMI04	Mono 04: XMI +24Volts [V]
18433	XMI05	Mono 05: XMI +24Volts [V]
18945	XMI06	Mono 06: XMI +24Volts [V]
19457	XMI07	Mono 07: XMI +24Volts [V]
19969	XMI08	Mono 08: XMI +24Volts [V]
20481	XMI09	Mono 09: XMI +24Volts [V]
20993	XMI10	Mono 10: XMI +24Volts [V]
21505	XMI11	Mono 11: XMI +24Volts [V]
22017	XMI12	Mono 12: XMI +24Volts [V]
22529	XMI13	Mono 13: XMI +24Volts [V]
23041	XMI14	Mono 14: XMI +24Volts [V]
23553	XMI15	Mono 15: XMI +24Volts [V]
24065	XMI16	Mono 16: XMI +24Volts [V]
24577	XMI17	Mono 17: XMI +24Volts [V]
25089	XMI18	Mono 18: XMI +24Volts [V]
25601	XMI19	Mono 19: XMI +24Volts [V]
26113	XMI20	Mono 20: XMI +24Volts [V]
26625	XMI21	Mono 21: XMI +24Volts [V]
27137	XMI22	Mono 22: XMI +24Volts [V]
27649	XMI23	Mono 23: XMI +24Volts [V]
28161	XMI24	Mono 24: XMI +24Volts [V]
28673	XMI25	Mono 25: XMI +24Volts [V]
29185	XMI26	Mono 26: XMI +24Volts [V]
29697	XMI27	Mono 27: XMI +24Volts [V]
30209	XMI28	Mono 28: XMI +24Volts [V]
30721	XMI29	Mono 29: XMI +24Volts [V]
31233	XMI30	Mono 30: XMI +24Volts [V]
31745	XMI31	Mono 31: XMI +24Volts [V]
32257	XMI32	Mono 32: XMI +24Volts [V]
Paramete	ers:	
	voltage [V	-
	voltage [V	7]
sampling	period [s]	

15874	XMIxx	All mono's: XMI +1.25Volts reference [V] (for the "Set status" cmd ST only)
16386	XMI01	Mono 01: XMI +1.25Volts reference [V]
16898	XMI02	Mono 02: XMI +1.25Volts reference [V]
17410	XMI03	Mono 03: XMI +1.25Volts reference [V]
17922	XMI04	Mono 04: XMI +1.25Volts reference [V]
18434	XMI05	Mono 05: XMI +1.25Volts reference [V]
18946	XMI06	Mono 06: XMI +1.25Volts reference [V]
19458	XMI07	Mono 07: XMI +1.25Volts reference [V]
19970	XMI08	Mono 08: XMI +1.25Volts reference [V]
20482	XMI09	Mono 09: XMI +1.25Volts reference [V]
20994	XMI10	Mono 10: XMI +1.25Volts reference [V]
21506	XMI11	Mono 11: XMI +1.25Volts reference [V]
22018	XMI12	Mono 12: XMI +1.25Volts reference [V]
22530	XMI13	Mono 13: XMI +1.25Volts reference [V]
23042	XMI14	Mono 14: XMI +1.25Volts reference [V]
23554	XMI15	Mono 15: XMI +1.25Volts reference [V]
24066	XMI16	Mono 16: XMI +1.25Volts reference [V]
24578	XMI17	Mono 17: XMI +1.25Volts reference [V]
25090	XMI18	Mono 18: XMI +1.25Volts reference [V]
25602	XMI19	Mono 19: XMI +1.25Volts reference [V]
26114	XMI20	Mono 20: XMI +1.25Volts reference [V]
26626	XMI21	Mono 21: XMI +1.25Volts reference [V]
27138	XMI22	Mono 22: XMI +1.25Volts reference [V]
27650	XMI23	Mono 23: XMI +1.25Volts reference [V]
28162	XMI24	Mono 24: XMI +1.25Volts reference [V]
28674	XMI25	Mono 25: XMI +1.25Volts reference [V]
29186	XMI26	Mono 26: XMI +1.25Volts reference [V]
29698	XMI27	Mono 27: XMI +1.25Volts reference [V]
30210	XMI28	Mono 28: XMI +1.25Volts reference [V]
30722	XMI29	Mono 29: XMI +1.25Volts reference [V]
31234	XMI30	Mono 30: XMI +1.25Volts reference [V]
31746	XMI31	Mono 31: XMI +1.25Volts reference [V]
32258	XMI32	Mono 32: XMI +1.25Volts reference [V]
Paramete	ers:	
minimum	voltage [V	·]
maximum	voltage [\	7]
sampling	period [s]	

		
15875	XMIxx	All mono's: XMI +2.5Volts reference [V] (for the "Set status" command ST
		only)
16387	XMI01	Mono 01: XMI +2.5Volts reference [V]
16899	XMI02	Mono 02: XMI +2.5Volts reference [V]
17411	XMI03	Mono 03: XMI +2.5Volts reference [V]
17923	XMI04	Mono 04: XMI +2.5Volts reference [V]
18435	XMI05	Mono 05: XMI +2.5Volts reference [V]
18947	XMI06	Mono 06: XMI +2.5Volts reference [V]
19459	XMI07	Mono 07: XMI +2.5Volts reference [V]
19971	XMI08	Mono 08: XMI +2.5Volts reference [V]
20483	XMI09	Mono 09: XMI +2.5Volts reference [V]
20995	XMI10	Mono 10: XMI +2.5Volts reference [V]
21507	XMI11	Mono 11: XMI +2.5Volts reference [V]
22019	XMI12	Mono 12: XMI +2.5Volts reference [V]
22531	XMI13	Mono 13: XMI +2.5Volts reference [V]
23043	XMI14	Mono 14: XMI +2.5Volts reference [V]
23555	XMI15	Mono 15: XMI +2.5Volts reference [V]
24067	XMI16	Mono 16: XMI +2.5Volts reference [V]
24579	XMI17	Mono 17: XMI +2.5Volts reference [V]
25091	XMI18	Mono 18: XMI +2.5Volts reference [V]
25603	XMI19	Mono 19: XMI +2.5Volts reference [V]
26115	XMI20	Mono 20: XMI +2.5Volts reference [V]
26627	XMI21	Mono 21: XMI +2.5Volts reference [V]
27139	XMI22	Mono 22: XMI +2.5Volts reference [V]
27651	XMI23	Mono 23: XMI +2.5Volts reference [V]
28163	XMI24	Mono 24: XMI +2.5Volts reference [V]
28675	XMI25	Mono 25: XMI +2.5Volts reference [V]
29187	XMI26	Mono 26: XMI +2.5Volts reference [V]
29699	XMI27	Mono 27: XMI +2.5Volts reference [V]
30211	XMI28	Mono 28: XMI +2.5Volts reference [V]
30723	XMI29	Mono 29: XMI +2.5Volts reference [V]
31235	XMI30	Mono 30: XMI +2.5Volts reference [V]
31747	XMI31	Mono 31: XMI +2.5Volts reference [V]
32259	XMI32	Mono 32: XMI +2.5Volts reference [V]
Paramete		
	voltage [V	
	voltage [V	/]
sampling	period [s]	

15876 XMIxx All mono's: XMI -5Volts V 16388 XMI01 Mono 01: XMI -5Volts V 17912 XMI02 Mono 02: XMI -5Volts V 17924 XMI04 Mono 02: XMI -5Volts V 17924 XMI05 Mono 05: XMI -5Volts V 18436 XMI05 Mono 06: XMI -5Volts V 19940 XMI07 Mono 06: XMI -5Volts V 19944 XMI09 Mono 08: XMI -5Volts V 20484 XMI09 Mono 08: XMI -5Volts V 20484 XMI09 Mono 08: XMI -5Volts V 20484 XMI109 Mono 08: XMI -5Volts V 20484 XMI109 Mono 08: XMI -5Volts V 20484 XMI109 Mono 10: XMI -5Volts V 21508 XMI11 Mono 11: XMI -5Volts V 22532 XMI13 Mono 13: XMI -5Volts V 23556 XMI14 Mono 15: XMI -5Volts V 2468 XMI10 Mono 17: XMI -5Volts V 25092 XMI18 Mono 18: XMI -5Volts V 26104 XMI19 Mono 21: XMI -5Volts V 26116 XM120 Mono 23: XMI -5Volts V			
16900 XMI02 Mono 02: XMI -SVolts [V] 17412 XMI03 Mono 03: XMI -SVolts [V] 17924 XMI04 Mono 04: XMI -SVolts [V] 18436 XMI05 Mono 05: XMI -SVolts [V] 18436 XMI06 Mono 05: XMI -SVolts [V] 18446 XMI07 Mono 06: XMI -SVolts [V] 19972 XMI08 Mono 07: XMI -SVolts [V] 20484 XMI09 Mono 08: XMI -SVolts [V] 20484 XMI09 Mono 09: XMI -SVolts [V] 20484 XMI109 Mono 09: XMI -SVolts [V] 20484 XMI109 Mono 09: XMI -SVolts [V] 2020 XMI11 Mono 11: XMI -SVolts [V] 21508 XMI11 Mono 13: XMI -SVolts [V] 23044 XMI14 Mono 15: XMI -SVolts [V] 23556 XMI15 Mono 16: XMI -SVolts [V] 23564 XMI116 Mono 17: XMI -SVolts [V] 24608 XMI17 Mono 17: XMI -SVolts [V] 25092 XMI18 Mono 19: XMI -SVolts [V] 25604 XMI19 Mono 20: XMI -SVolts [V]	15876	XMIxx	All mono's: XMI -5Volts [V] (for the "Set status" command ST only)
17412 XMI03 Mono 03: XMI -SVolts [V] 17924 XMI04 Mono 04: XMI -SVolts [V] 18436 XMI05 Mono 05: XMI -SVolts [V] 18948 XMI06 Mono 06: XMI -SVolts [V] 19460 XMI07 Mono 07: XMI -SVolts [V] 19972 XMI08 Mono 09: XMI -SVolts [V] 20484 XMI09 Mono 09: XMI -SVolts [V] 20996 XMI10 Mono 10: XMI -SVolts [V] 201508 XMI11 Mono 11: XMI -SVolts [V] 20202 XMI11 Mono 11: XMI -SVolts [V] 21508 XMI11 Mono 13: XMI -SVolts [V] 22532 XMI13 Mono 13: XMI -SVolts [V] 23556 XMI15 Mono 15: XMI -SVolts [V] 24068 XMI16 Mono 16: XMI -SVolts [V] 24068 XMI11 Mono 16: XMI -SVolts [V] 24580 XMI17 Mono 17: XMI -SVolts [V] 24502 XMI18 Mono 18: XMI -SVolts [V] 26116 XMI20 Mono 20: XMI -SVolts [V] 26116 XMI20 Mono 23: XMI -SVolts [V] 26116 XMI21 Mono 23: XMI -SVolts [V]			
17924 XMI04 Mono 04: XMI -5Volts [V] 18436 XMI05 Mono 05: XMI -5Volts [V] 18948 XMI06 Mono 06: XMI -5Volts [V] 19460 XMI07 Mono 07: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20996 XMI11 Mono 11: XMI -5Volts [V] 21508 XMI11 Mono 11: XMI -5Volts [V] 22020 XMI11 Mono 11: XMI -5Volts [V] 22034 XMI14 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 16: XMI -5Volts [V] 23044 XMI114 Mono 16: XMI -5Volts [V] 24068 XMI117 Mono 16: XMI -5Volts [V] 24068 XMI117 Mono 17: XMI -5Volts [V] 25092 XMI18 Mono 18: XMI -5Volts [V] 26116 XM120 Mono 20: XMI -5Volts [V] 26116 XM120 Mono 21: XMI -5Volts [V] 26116 XM122 Mono 23: XMI -5Volts [V] 27140 XM122 Mono 23: XMI -5Volts [V]	16900	XMI02	
18436 XMI05 Mono 05: XMI -5Volts [V] 18948 XMI06 Mono 06: XMI -5Volts [V] 19440 XMI07 Mono 07: XMI -5Volts [V] 19972 XMI08 Mono 07: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20996 XMI10 Mono 10: XMI -5Volts [V] 20996 XMI11 Mono 11: XMI -5Volts [V] 2020 XMI12 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23556 XMI15 Mono 15: XMI -5Volts [V] 23556 XMI17 Mono 16: XMI -5Volts [V] 24068 XMI17 Mono 17: XMI -5Volts [V] 25004 XMI18 Mono 18: XMI -5Volts [V] 25004 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 21: XMI -5Volts [V] 27140 XMI22 Mono 23: XMI -5Volts [V]	17412		Mono 03: XMI -5Volts [V]
18948 XMI06 Mono 06: XMI -5Volts [V] 19460 XMI07 Mono 07: XMI -5Volts [V] 19972 XMI08 Mono 08: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20996 XMI11 Mono 10: XMI -5Volts [V] 21508 XMI11 Mono 11: XMI -5Volts [V] 22020 XMI12 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 15: XMI -5Volts [V] 23044 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI17 Mono 17: XMI -5Volts [V] 24068 XMI17 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 19: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 23: XMI -5Volts [V] 27140 XMI22 Mono 23: XMI -5Volts [V] 28676 XMI23 Mono 26: XMI -5Volts [V]	17924	XMI04	Mono 04: XMI -5Volts [V]
19460 XMI07 Mono 07: XMI -5Volts [V] 19972 XMI08 Mono 08: XMI -5Volts [V] 20484 XMI09 Mono 09: XMI -5Volts [V] 20996 XMI10 Mono 10: XMI -5Volts [V] 20906 XMI11 Mono 10: XMI -5Volts [V] 21508 XMI11 Mono 11: XMI -5Volts [V] 22020 XMI12 Mono 12: XMI -5Volts [V] 22532 XMI13 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23044 XMI16 Mono 15: XMI -5Volts [V] 23044 XMI16 Mono 16: XMI -5Volts [V] 24580 XMI17 Mono 18: XMI -5Volts [V] 24580 XMI17 Mono 18: XMI -5Volts [V] 25092 XMI18 Mono 19: XMI -5Volts [V] 25604 XMI19 Mono 20: XMI -5Volts [V] 26116 XMI20 Mono 21: XMI -5Volts [V] 26116 XMI12 Mono 22: XMI -5Volts [V] 27140 XMI22 Mono 22: XMI -5Volts [V] 28676 XMI25 Mono 23: XMI -5Volts [V] 29188 XMI26 Mono 28: XMI -5Volts [V]	18436	XMI05	Mono 05: XMI -5Volts [V]
19972 XM108 Mono 08: XMI -5Volts [V] 20484 XM109 Mono 09: XMI -5Volts [V] 20996 XM110 Mono 10: XMI -5Volts [V] 21508 XM111 Mono 11: XMI -5Volts [V] 22020 XMI12 Mono 12: XMI -5Volts [V] 22020 XMI11 Mono 12: XMI -5Volts [V] 23044 XM114 Mono 13: XMI -5Volts [V] 23555 XMI15 Mono 16: XMI -5Volts [V] 23556 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI17 Mono 17: XMI -5Volts [V] 24068 XMI17 Mono 18: XMI -5Volts [V] 25002 XMI18 Mono 19: XMI -5Volts [V] 2604 XMI19 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI22 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 29700 XMI25 Mono 26: XMI -5Volts [V] 29700 XMI25 Mono 28: XMI -5Volts [V]	18948	XMI06	Mono 06: XMI -5Volts [V]
20484 XMI09 Mono 09: XMI -5Volts [V] 20996 XMI10 Mono 10: XMI -5Volts [V] 21508 XMI11 Mono 11: XMI -5Volts [V] 20200 XMI12 Mono 12: XMI -5Volts [V] 22020 XMI11 Mono 13: XMI -5Volts [V] 22020 XMI13 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23044 XMI15 Mono 16: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI17 Mono 17: XMI -5Volts [V] 24580 XMI17 Mono 17: XMI -5Volts [V] 24502 XMI18 Mono 18: XMI -5Volts [V] 25092 XMI18 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26128 XMI21 Mono 21: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 26: XMI -5Volts [V] 29700 XMI25 Mono 27: XMI -5Volts [V] 30212 XMI26 Mono 28: XMI -5Volts [V]	19460	XMI07	Mono 07: XMI -5Volts [V]
20996 XMI10 Mono 10: XMI -5Volts [V] 21508 XMI11 Mono 11: XMI -5Volts [V] 22020 XMI12 Mono 12: XMI -5Volts [V] 22020 XMI11 Mono 13: XMI -5Volts [V] 22532 XMI13 Mono 14: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23556 XMI15 Mono 16: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24088 XMI17 Mono 16: XMI -5Volts [V] 24580 XMI17 Mono 18: XMI -5Volts [V] 25092 XMI18 Mono 19: XMI -5Volts [V] 25604 XMI19 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 22: XMI -5Volts [V] 27140 XMI22 Mono 23: XMI -5Volts [V] 28676 XMI23 Mono 24: XMI -5Volts [V] 28676 XMI24 Mono 25: XMI -5Volts [V] 29700 XMI27 Mono 28: XMI -5Volts [V] 30212 XMI28 Mono 29: XMI -5Volts [V]	19972	XMI08	Mono 08: XMI -5Volts [V]
21508 XMI11 Mono 11: XMI -5Volts [V] 22020 XMI12 Mono 12: XMI -5Volts [V] 22532 XMI13 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23044 XMI15 Mono 15: XMI -5Volts [V] 23044 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24580 XMI17 Mono 17: XMI -5Volts [V] 25092 XMI18 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 18: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28676 XMI24 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 26: XMI -5Volts [V] 30212 XMI28 Mono 26: XMI -5Volts [V] 30724 XMI29 Mono 30: XMI -5Volts [V] 31236 XMI30 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V]	20484	XMI09	Mono 09: XMI -5Volts [V]
22020 XMI12 Mono 12: XMI -5Volts [V] 22532 XMI13 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23556 XMI15 Mono 15: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24058 XMI17 Mono 16: XMI -5Volts [V] 24580 XMI17 Mono 17: XMI -5Volts [V] 2502 XMI18 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28676 XMI24 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 28: XMI -5Volts [V] 30212 XMI28 Mono 29: XMI -5Volts [V] 31748 XMI30 Mono 31: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V]	20996	XMI10	Mono 10: XMI -5Volts [V]
22532 XMI13 Mono 13: XMI -5Volts [V] 23044 XMI14 Mono 14: XMI -5Volts [V] 23556 XMI15 Mono 15: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24068 XMI17 Mono 17: XMI -5Volts [V] 24580 XMI17 Mono 17: XMI -5Volts [V] 25092 XMI18 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 27652 XMI23 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 25: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 30212 XMI28 Mono 29: XMI -5Volts [V] 30724 XMI29 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V]	21508	XMI11	Mono 11: XMI -5Volts [V]
23044 XMI14 Mono 14: XMI -5Volts V 23556 XMI15 Mono 15: XMI -5Volts V 24068 XMI16 Mono 16: XMI -5Volts V 24068 XMI17 Mono 16: XMI -5Volts V 24580 XMI17 Mono 17: XMI -5Volts V 25092 XMI18 Mono 18: XMI -5Volts V 25604 XMI19 Mono 19: XMI -5Volts V 26116 XMI20 Mono 20: XMI -5Volts V 26628 XMI21 Mono 21: XMI -5Volts V 27652 XMI23 Mono 23: XMI -5Volts V 27652 XMI24 Mono 24: XMI -5Volts V 28676 XMI25 Mono 26: XMI -5Volts V 29188 XMI26 Mono 27: XMI -5Volts V 30212 XMI28 Mono 28: XMI -5Volts V 30724 XMI29 Mono 30: XMI -5Volts V 31236 XMI30 Mono 31: XMI -5Volts V 31240 XMI31 Mono 32: XMI -5Volts	22020	XMI12	Mono 12: XMI -5Volts [V]
23556 XMI15 Mono 15: XMI -5Volts [V] 24068 XMI16 Mono 16: XMI -5Volts [V] 24580 XMI17 Mono 17: XMI -5Volts [V] 25092 XMI18 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 20: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 288676 XMI25 Mono 26: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V]	22532	XMI13	Mono 13: XMI -5Volts [V]
24068 XMI16 Mono 16: XMI -5Volts [V] 24580 XMI17 Mono 17: XMI -5Volts [V] 25092 XMI18 Mono 18: XMI -5Volts [V] 25044 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI22 Mono 22: XMI -5Volts [V] 27140 XMI22 Mono 23: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 28164 XMI25 Mono 26: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30212 XMI29 Mono 30: XMI -5Volts [V] 31236 XMI30 Mono 31: XMI -5Volts [V] 31248 XMI31 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V]	23044	XMI14	Mono 14: XMI -5Volts [V]
24580 XMI17 Mono 17: XMI -5Volts [V] 25092 XMI18 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 26628 XMI22 Mono 22: XMI -5Volts [V] 27140 XMI22 Mono 23: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28664 XMI24 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 26: XMI -5Volts [V] 28676 XMI25 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 26: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 30: XMI -5Volts [V] 31236 XMI30 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] maximum voltage [V] maximum voltage [V]	23556	XMI15	Mono 15: XMI -5Volts [V]
25092 XMI18 Mono 18: XMI -5Volts [V] 25604 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 27140 XMI22 Mono 22: XMI -5Volts [V] 27140 XMI22 Mono 23: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 26: XMI -5Volts [V] 28676 XMI25 Mono 26: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 30: XMI -5Volts [V] 31236 XMI30 Mono 31: XMI -5Volts [V] 31748 XMI31 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V] maximum voltage [V]	24068	XMI16	Mono 16: XMI -5Volts [V]
25604 XMI19 Mono 19: XMI -5Volts [V] 26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 27140 XMI22 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 28164 XMI25 Mono 25: XMI -5Volts [V] 28676 XMI25 Mono 26: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31248 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V] maximum voltage [V]	24580	XMI17	Mono 17: XMI -5Volts [V]
26116 XMI20 Mono 20: XMI -5Volts [V] 26628 XMI21 Mono 21: XMI -5Volts [V] 27140 XMI22 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 28164 XMI25 Mono 25: XMI -5Volts [V] 28164 XMI26 Mono 26: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31236 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V] maximum voltage [V]	25092	XMI18	Mono 18: XMI -5Volts [V]
26628 XMI21 Mono 21: XMI -5Volts [V] 27140 XMI22 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 25: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 29700 XMI27 Mono 28: XMI -5Volts [V] 30212 XMI28 Mono 29: XMI -5Volts [V] 30724 XMI29 Mono 30: XMI -5Volts [V] 31236 XMI30 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	25604	XMI19	Mono 19: XMI -5Volts [V]
27140 XMI22 Mono 22: XMI -5Volts [V] 27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 25: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	26116	XMI20	Mono 20: XMI -5Volts [V]
27652 XMI23 Mono 23: XMI -5Volts [V] 28164 XMI24 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 25: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 29700 XMI27 Mono 28: XMI -5Volts [V] 30212 XMI28 Mono 29: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	26628	XMI21	Mono 21: XMI -5Volts [V]
28164 XMI24 Mono 24: XMI -5Volts [V] 28676 XMI25 Mono 25: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31248 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V] maximum voltage [V] Mono 32: XMI -5Volts [V]	27140	XMI22	Mono 22: XMI -5Volts [V]
28676 XMI25 Mono 25: XMI -5Volts [V] 29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	27652	XMI23	Mono 23: XMI -5Volts [V]
29188 XMI26 Mono 26: XMI -5Volts [V] 29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	28164	XMI24	Mono 24: XMI -5Volts [V]
29700 XMI27 Mono 27: XMI -5Volts [V] 30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	28676	XMI25	Mono 25: XMI -5Volts [V]
30212 XMI28 Mono 28: XMI -5Volts [V] 30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	29188	XMI26	Mono 26: XMI -5Volts [V]
30724 XMI29 Mono 29: XMI -5Volts [V] 31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	29700	XMI27	Mono 27: XMI -5Volts [V]
31236 XMI30 Mono 30: XMI -5Volts [V] 31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	30212	XMI28	Mono 28: XMI -5Volts [V]
31748 XMI31 Mono 31: XMI -5Volts [V] 32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V] maximum voltage [V]	30724	XMI29	Mono 29: XMI -5Volts [V]
32260 XMI32 Mono 32: XMI -5Volts [V] Parameters: minimum voltage [V]	31236	XMI30	Mono 30: XMI -5Volts [V]
Parameters: minimum voltage [V] maximum voltage [V]	31748	XMI31	Mono 31: XMI -5Volts [V]
minimum voltage [V] maximum voltage [V]	32260	XMI32	Mono 32: XMI -5Volts [V]
maximum voltage [V]	Paramete	ers:	
•	minimum	voltage [V]
sampling period [s]		• •	7]
	sampling	period [s]	

15877XMIxxAll mono's: detector high-voltage [V]16389XMI01Mono 01: detector high-voltage [V]16901XMI02Mono 02: detector high-voltage [V]17413XMI03Mono 03: detector high-voltage [V]17413XMI04Mono 04: detector high-voltage [V]17925XMI04Mono 04: detector high-voltage [V]18437XMI05Mono 05: detector high-voltage [V]18437XMI06Mono 06: detector high-voltage [V]18949XMI06Mono 06: detector high-voltage [V]19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22533XMI12Mono 12: detector high-voltage [V]23045XMI14Mono 13: detector high-voltage [V]23045XMI14Mono 16: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 18: detector high-voltage [V]24581XMI17Mono 18: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
16901XMI02Mono 02: detector high-voltage [V]17413XMI03Mono 03: detector high-voltage [V]17925XMI04Mono 04: detector high-voltage [V]18437XMI05Mono 05: detector high-voltage [V]18437XMI06Mono 06: detector high-voltage [V]18949XMI06Mono 07: detector high-voltage [V]19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]23045XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24059XMI17Mono 17: detector high-voltage [V]24059XMI18Mono 18: detector high-voltage [V]
17413XMI03Mono 03: detector high-voltage [V]17925XMI04Mono 04: detector high-voltage [V]18437XMI05Mono 05: detector high-voltage [V]18437XMI06Mono 06: detector high-voltage [V]18949XMI06Mono 06: detector high-voltage [V]19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]23045XMI14Mono 13: detector high-voltage [V]23045XMI14Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24053XMI17Mono 16: detector high-voltage [V]24063XMI18Mono 18: detector high-voltage [V]
17925XMI04Mono 04: detector high-voltage [V]18437XMI05Mono 05: detector high-voltage [V]18949XMI06Mono 06: detector high-voltage [V]19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]20997XMI10Mono 11: detector high-voltage [V]21509XMI11Mono 12: detector high-voltage [V]22021XMI12Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]2481XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
18437XMI05Mono 05: detector high-voltage [V]18949XMI06Mono 06: detector high-voltage [V]19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]23045XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24081XMI17Mono 17: detector high-voltage [V]24593XMI18Mono 18: detector high-voltage [V]
18949XMI06Mono 06: detector high-voltage [V]19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 18: detector high-voltage [V]
19461XMI07Mono 07: detector high-voltage [V]19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
19973XMI08Mono 08: detector high-voltage [V]20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
20485XMI09Mono 09: detector high-voltage [V]20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
20997XMI10Mono 10: detector high-voltage [V]21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
21509XMI11Mono 11: detector high-voltage [V]22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
22021XMI12Mono 12: detector high-voltage [V]22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
22533XMI13Mono 13: detector high-voltage [V]23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
23045XMI14Mono 14: detector high-voltage [V]23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
23557XMI15Mono 15: detector high-voltage [V]24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
24069XMI16Mono 16: detector high-voltage [V]24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
24581XMI17Mono 17: detector high-voltage [V]25093XMI18Mono 18: detector high-voltage [V]
25093 XMI18 Mono 18: detector high-voltage [V]
0 011
25605 XMI19 Mono 19: detector high-voltage [V]
26117 XMI20 Mono 20: detector high-voltage [V]
26629 XMI21 Mono 21: detector high-voltage [V]
27141 XMI22 Mono 22: detector high-voltage [V]
27653 XMI23 Mono 23: detector high-voltage [V]
28165 XMI24 Mono 24: detector high-voltage [V]
28677 XMI25 Mono 25: detector high-voltage [V]
29189 XMI26 Mono 26: detector high-voltage [V]
29701 XMI27 Mono 27: detector high-voltage [V]
30213 XMI28 Mono 28: detector high-voltage [V]
30725 XMI29 Mono 29: detector high-voltage [V]
31237 XMI30 Mono 30: detector high-voltage [V]
31749 XMI31 Mono 31: detector high-voltage [V]
32261 XMI32 Mono 32: detector high-voltage [V]
Parameters:
minimum absolute voltage [V]
maximum absolute voltage [V]
sampling period [s]
minimum relative voltage [V]
maximum relative voltage [V]

15878	XMIxx	All mono's: crystal temperature [°C] (for the "Set status" command ST only)
16390	XMI01	Mono 01: crystal temperature [°C]
16902	XMI02	Mono 02: crystal temperature [°C]
17414	XMI03	Mono 03: crystal temperature [°C]
17926	XMI04	Mono 04: crystal temperature [°C]
18438	XMI05	Mono 05: crystal temperature [°C]
18950	XMI06	Mono 06: crystal temperature [°C]
19462	XMI07	Mono 07: crystal temperature [°C]
19974	XMI08	Mono 08: crystal temperature [°C]
20486	XMI09	Mono 09: crystal temperature [°C]
20998	XMI10	Mono 10: crystal temperature [°C]
21510	XMI11	Mono 11: crystal temperature [°C]
22022	XMI12	Mono 12: crystal temperature [°C]
22534	XMI13	Mono 13: crystal temperature [°C]
23046	XMI14	Mono 14: crystal temperature [°C]
23558	XMI15	Mono 15: crystal temperature [°C]
24070	XMI16	Mono 16: crystal temperature [°C]
24582	XMI17	Mono 17: crystal temperature [°C]
25094	XMI18	Mono 18: crystal temperature [°C]
25606	XMI19	Mono 19: crystal temperature [°C]
26118	XMI20	Mono 20: crystal temperature [°C]
26630	XMI21	Mono 21: crystal temperature [°C]
27142	XMI22	Mono 22: crystal temperature [°C]
27654	XMI23	Mono 23: crystal temperature [°C]
28166	XMI24	Mono 24: crystal temperature [°C]
28678	XMI25	Mono 25: crystal temperature [°C]
29190	XMI26	Mono 26: crystal temperature [°C]
29702	XMI27	Mono 27: crystal temperature [°C]
30214	XMI28	Mono 28: crystal temperature [°C]
30726	XMI29	Mono 29: crystal temperature [°C]
31238	XMI30	Mono 30: crystal temperature [°C]
31750	XMI31	Mono 31: crystal temperature [°C]
32262	XMI32	Mono 32: crystal temperature [°C]
Parameters: minimum temperature [⁰ C] maximum temperature [⁰ C] sampling period [s]		

15879 XMI	x All mono's: board temperature [°C] (for the "Set status" command ST only)
16391 XMI(1 Mono 01: board temperature [°C]
16903 XMI(2 Mono 02: board temperature [°C]
17415 XMI	3 Mono 03: board temperature [°C]
17927 XMI	4 Mono 04: board temperature [°C]
18439 XMI	5 Mono 05: board temperature [°C]
18951 XMI	6 Mono 06: board temperature [°C]
19463 XMI	7 Mono 07: board temperature [°C]
19975 XMI	8 Mono 08: board temperature [°C]
20487 XMI	9 Mono 09: board temperature [°C]
20999 XMI	0 Mono 10: board temperature [°C]
21511 XMI	1 Mono 11: board temperature [°C]
22023 XMI	2 Mono 12: board temperature [°C]
22535 XMI	3 Mono 13: board temperature [°C]
23047 XMI	4 Mono 14: board temperature [°C]
23559 XMI	5 Mono 15: board temperature [°C]
24071 XMI	6 Mono 16: board temperature [°C]
24583 XMI	7 Mono 17: board temperature [°C]
25095 XMI	8 Mono 18: board temperature [°C]
25607 XMI	9 Mono 19: board temperature [°C]
26119 XMI2	0 Mono 20: board temperature [°C]
26631 XMI2	1 Mono 21: board temperature [°C]
27143 XMI2	2 Mono 22: board temperature [°C]
27655 XMI2	3 Mono 23: board temperature [°C]
28167 XMI2	4 Mono 24: board temperature [°C]
28679 XMI2	5 Mono 25: board temperature [°C]
29191 XMI2	
29703 XMI2	
30215 XMI2	8 Mono 28: board temperature [°C]
30727 XMI2	
31239 XMI3	
31751 XMI3	
32263 XMI3	2 Mono 32: board temperature [°C]
Parameters:	
minimum temper	
maximum temper	
sampling period	s

15880 XMIxx All mono's: AGC gain [] (for the "Set status" command ST only) 16392 XM101 Mono 01: AGC gain [] 16904 XM102 Mono 02: AGC gain [] 17416 XM103 Mono 03: AGC gain [] 17928 XM104 Mono 04: AGC gain [] 18440 XM105 Mono 05: AGC gain [] 18952 XM106 Mono 06: AGC gain [] 19464 XM107 Mono 07: AGC gain [] 19464 XM107 Mono 08: AGC gain [] 20488 XM109 Mono 09: AGC gain [] 20488 XM110 Mono 01: AGC gain [] 21000 XM1110 Mono 11: AGC gain [] 22342 XM111 Mono 11: AGC gain [] 22348 XM114 Mono 13: AGC gain [] 23048 XM114 Mono 13: AGC gain [] 23048 XM114 Mono 14: AGC gain [] 24702 XM116 Mono 16: AGC gain [] 24702 XM118 Mono 17: AGC gain [] 24702 XM114 Mono 17: AGC gain [] 25096 XM118 Mono 16: AGC gain [] 26030 XM112			
16904 XMI02 Mono 02: AGC gain [] 17416 XMI03 Mono 03: AGC gain [] 17928 XMI04 Mono 04: AGC gain [] 18440 XMI05 Mono 05: AGC gain [] 18952 XMI06 Mono 07: AGC gain [] 19976 XMI08 Mono 08: AGC gain [] 20488 XMI09 Mono 08: AGC gain [] 20488 XMI01 Mono 01: AGC gain [] 21000 XMI11 Mono 11: AGC gain [] 22048 XMI12 Mono 12: AGC gain [] 21000 XMI11 Mono 12: AGC gain [] 22048 XMI14 Mono 14: AGC gain [] 23048 XMI14 Mono 15: AGC gain [] 23048 XMI15 Mono 16: AGC gain [] 23560 XMI15 Mono 16: AGC gain [] 2472 XMI16 Mono 18: AGC gain [] 25066 XMI18 Mono 19: AGC gain [] 25608 XMI19 Mono 19: AGC gain [] 26120 XM120 Mono 20: AGC gain [] 26120 XM120 Mono 21: AGC gain [] 26132 XM121 Mono 22: AGC gain [] <td></td> <td></td> <td></td>			
17416 XM103 Mono 03: AGC gain [] 17928 XM104 Mono 04: AGC gain [] 18440 XM105 Mono 05: AGC gain [] 18952 XM106 Mono 07: AGC gain [] 19464 XM107 Mono 07: AGC gain [] 19976 XM108 Mono 08: AGC gain [] 20488 XM109 Mono 09: AGC gain [] 20400 XM110 Mono 10: AGC gain [] 21010 XM110 Mono 12: AGC gain [] 22024 XM112 Mono 13: AGC gain [] 22024 XM113 Mono 14: AGC gain [] 23560 XM113 Mono 15: AGC gain [] 24072 XM116 Mono 16: AGC gain [] 24472 XM114 Mono 17: AGC gain [] 24584 XM117 Mono 18: AGC gain [] 24596 XM118 Mono 18: AGC gain [] 26120 XM120 Mono 21: AGC gain [] 26632 XM119 Mono 21: AGC gain [] 26120 XM124 Mono 22: AGC gain [] 27144 XM122 Mono 23: AGC gain [] 27144 XM124 Mono 26: AGC gain [] <td></td> <td></td> <td></td>			
17928 XMI04 Mono 04: AGC gain [] 18440 XMI05 Mono 05: AGC gain [] 18952 XMI06 Mono 06: AGC gain [] 19464 XMI07 Mono 07: AGC gain [] 19464 XMI08 Mono 08: AGC gain [] 20488 XMI09 Mono 09: AGC gain [] 20488 XMI09 Mono 09: AGC gain [] 20488 XMI10 Mono 10: AGC gain [] 21512 XMI11 Mono 11: AGC gain [] 22024 XMI12 Mono 12: AGC gain [] 22036 XMI13 Mono 14: AGC gain [] 22048 XMI14 Mono 14: AGC gain [] 23048 XMI14 Mono 15: AGC gain [] 24072 XMI16 Mono 17: AGC gain [] 24772 XMI16 Mono 18: AGC gain [] 24904 XMI19 Mono 19: AGC gain [] 25096 XMI18 Mono 21: AGC gain [] 26020 XM120 Mono 22: AGC gain [] 26120 XM120 Mono 23: AGC gain [] 27144 XM122 Mono 23: AGC gain [] 27656 XM123 Mono 23: AGC gain [] <td></td> <td></td> <td></td>			
18440 XMI05 Mono 05: AGC gain [] 18952 XMI06 Mono 06: AGC gain [] 19464 XMI07 Mono 07: AGC gain [] 19976 XMI08 Mono 08: AGC gain [] 20488 XMI09 Mono 08: AGC gain [] 20488 XMI09 Mono 08: AGC gain [] 21000 XMI10 Mono 01: AGC gain [] 21100 XMI11 Mono 11: AGC gain [] 22024 XMI12 Mono 12: AGC gain [] 23048 XMI14 Mono 13: AGC gain [] 23048 XMI15 Mono 16: AGC gain [] 23048 XMI15 Mono 16: AGC gain [] 23048 XMI17 Mono 17: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24072 XMI18 Mono 17: AGC gain [] 25008 XMI18 Mono 18: AGC gain [] 25008 XMI12 Mono 20: AGC gain [] 26120 XMI20 Mono 21: AGC gain [] 26632 XMI21 Mono 22: AGC gain [] 27144 XMI22 Mono 23: AGC gain [] 27656 XMI23 Mono 24: AGC gain [] <td></td> <td></td> <td></td>			
18952 XMI06 Mono 06: AGC gain [] 19464 XMI07 Mono 07: AGC gain [] 19976 XMI08 Mono 08: AGC gain [] 20488 XMI09 Mono 09: AGC gain [] 20488 XMI09 Mono 09: AGC gain [] 21000 XMI10 Mono 11: AGC gain [] 21512 XMI11 Mono 11: AGC gain [] 22024 XMI12 Mono 13: AGC gain [] 23048 XMI14 Mono 13: AGC gain [] 23048 XMI15 Mono 16: AGC gain [] 2472 XMI16 Mono 16: AGC gain [] 24854 XMI17 Mono 17: AGC gain [] 24602 XMI18 Mono 18: AGC gain [] 25608 XMI18 Mono 19: AGC gain [] 26632 XMI11 Mono 21: AGC gain [] 26632 XMI21 Mono 22: AGC gain [] 27664 XMI22 Mono 23: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28660 XMI24 Mono 24: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 39: AGC gain [] <td>17928</td> <td>XMI04</td> <td></td>	17928	XMI04	
19464 XMI07 Mono 07: AGC gain 19976 XMI08 Mono 08: AGC gain 20488 XMI09 Mono 09: AGC gain 21000 XMI10 Mono 10: AGC gain 21512 XMI11 Mono 11: AGC gain 22024 XMI12 Mono 12: AGC gain 22024 XMI12 Mono 13: AGC gain 22036 XMI13 Mono 14: AGC gain 23048 XMI14 Mono 16: AGC gain 23050 XMI15 Mono 16: AGC gain 24754 XM116 Mono 18: AGC gain 24754 XMI17 Mono 19: AGC gain 25096 XMI18 Mono 19: AGC gain 25096 XMI120 Mono 20: AGC gain 26120 XMI20 Mono 21: AGC gain 26632 XMI21 Mono 22: AGC gain 27656 XMI23 Mono 23: AGC gain 28168 XMI24 Mono 23: AGC gain 28168 XMI25 Mono 26: AGC gain 29192 XMI26 Mono 27: AGC gain 30216 XMI28 Mono 28: AGC gain </td <td>18440</td> <td>XMI05</td> <td></td>	18440	XMI05	
19976 XMI08 Mono 08: AGC gain [] 20488 XMI09 Mono 09: AGC gain [] 21000 XMI10 Mono 10: AGC gain [] 21100 XMI11 Mono 11: AGC gain [] 21512 XMI11 Mono 12: AGC gain [] 22024 XMI12 Mono 12: AGC gain [] 22036 XMI13 Mono 13: AGC gain [] 23048 XMI14 Mono 16: AGC gain [] 23560 XMI15 Mono 16: AGC gain [] 24072 XMI16 Mono 17: AGC gain [] 24584 XMI17 Mono 18: AGC gain [] 24620 XMI18 Mono 19: AGC gain [] 25096 XMI18 Mono 19: AGC gain [] 26120 XMI120 Mono 20: AGC gain [] 26120 XMI120 Mono 20: AGC gain [] 26632 XMI21 Mono 20: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 27656 XMI24 Mono 26: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29704 XMI26 Mono 26: AGC gain [] 30216 XMI27 Mono 27: AGC gain [] <	18952	XMI06	
20488 XMI09 Mono 09: AGC gain [] 21000 XMI10 Mono 10: AGC gain [] 21121 XMI11 Mono 11: AGC gain [] 22024 XMI12 Mono 12: AGC gain [] 22034 XMI13 Mono 13: AGC gain [] 22034 XMI14 Mono 14: AGC gain [] 23048 XMI14 Mono 16: AGC gain [] 23047 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 17: AGC gain [] 24072 XMI18 Mono 18: AGC gain [] 24073 XMI18 Mono 19: AGC gain [] 25096 XMI18 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI12 Mono 21: AGC gain [] 26632 XMI20 Mono 21: AGC gain [] 27656 XMI23 Mono 22: AGC gain [] 27656 XMI24 Mono 23: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29704 XMI26 Mono 28: AGC gain [] 29704 XMI26 Mono 28: AGC gain []		XMI07	
21000 XMI10 Mono 10: AGC gain [] 21512 XMI11 Mono 11: AGC gain [] 22024 XMI12 Mono 12: AGC gain [] 22024 XMI13 Mono 12: AGC gain [] 23048 XMI14 Mono 13: AGC gain [] 23048 XMI14 Mono 14: AGC gain [] 23048 XMI14 Mono 15: AGC gain [] 23047 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 17: AGC gain [] 24072 XMI17 Mono 18: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 25096 XMI120 Mono 20: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27656 XMI23 Mono 22: AGC gain [] 27656 XMI24 Mono 23: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29704 XMI27 Mono 26: AGC gain [] 30216 XMI28 Mono 26: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] </td <td>19976</td> <td>XMI08</td> <td>Mono 08: AGC gain []</td>	19976	XMI08	Mono 08: AGC gain []
21512 XMI11 Mono 11: AGC gain [] 22024 XMI12 Mono 12: AGC gain [] 22536 XMI13 Mono 13: AGC gain [] 23048 XMI14 Mono 13: AGC gain [] 23048 XMI14 Mono 14: AGC gain [] 23048 XMI14 Mono 14: AGC gain [] 23048 XMI15 Mono 15: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 17: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 25096 XMI19 Mono 19: AGC gain [] 25608 XMI10 Mono 19: AGC gain [] 26632 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 30: AGC gain [] 30728 XMI29 Mono 30: AGC gain [] <td>20488</td> <td>XMI09</td> <td></td>	20488	XMI09	
22024 XMI12 Mono 12: AGC gain 22536 XMI13 Mono 13: AGC gain 23048 XMI14 Mono 14: AGC gain 23048 XMI14 Mono 14: AGC gain 23560 XMI15 Mono 15: AGC gain 24072 XMI16 Mono 16: AGC gain 24472 XMI16 Mono 16: AGC gain 24584 XMI17 Mono 16: AGC gain 24584 XMI17 Mono 17: AGC gain 25096 XMI18 Mono 18: AGC gain 25096 XMI18 Mono 19: AGC gain 26120 XMI20 Mono 20: AGC gain 26632 XMI21 Mono 21: AGC gain 26632 XMI21 Mono 22: AGC gain 27656 XMI23 Mono 23: AGC gain 27656 XMI24 Mono 24: AGC gain 28168 XM125 Mono 25: AGC gain 29192 XMI26 Mono 27: AGC gain 30216 XMI28 Mono 28: AGC gain 30216 XMI29 Mono 29: AGC gain 31240 XMI30 Mono 31: AGC gain <td>21000</td> <td>XMI10</td> <td>Mono 10: AGC gain []</td>	21000	XMI10	Mono 10: AGC gain []
22536 XMI13 Mono 13: AGC gain [] 23048 XMI14 Mono 14: AGC gain [] 23560 XMI15 Mono 15: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24584 XMI17 Mono 17: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 25096 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 26632 XMI21 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 27656 XMI24 Mono 24: AGC gain [] 28168 XM125 Mono 25: AGC gain [] 28168 XM125 Mono 26: AGC gain [] 29192 XMI26 Mono 27: AGC gain [] 30216 XM128 Mono 28: AGC gain [] 30728 XM129 Mono 29: AGC gain [] 31740 XM130 Mono 31: AGC gain [] 31240 XM131 Mono 31: AGC gain [] 312264 XM132 Mono 32: AGC gain [] </td <td>21512</td> <td>XMI11</td> <td>Mono 11: AGC gain []</td>	21512	XMI11	Mono 11: AGC gain []
23048 XMI14 Mono 14: AGC gain [] 23560 XMI15 Mono 15: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24072 XMI16 Mono 17: AGC gain [] 24584 XMI17 Mono 17: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 2508 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 26632 XMI21 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29192 XMI26 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31740 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] <td>22024</td> <td>XMI12</td> <td>Mono 12: AGC gain []</td>	22024	XMI12	Mono 12: AGC gain []
23560 XMI15 Mono 15: AGC gain [] 24072 XMI16 Mono 16: AGC gain [] 24584 XMI17 Mono 17: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 25096 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 30216 XMI28 Mono 27: AGC gain [] 30728 XMI29 Mono 28: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	22536	XMI13	Mono 13: AGC gain []
24072 XMI16 Mono 16: AGC gain [] 24584 XMI17 Mono 17: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 25098 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 2632 XMI21 Mono 21: AGC gain [] 2632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 30216 XMI28 Mono 27: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31752 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	23048	XMI14	Mono 14: AGC gain []
24584 XMI17 Mono 17: AGC gain [] 25096 XMI18 Mono 18: AGC gain [] 25608 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27044 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28168 XMI25 Mono 26: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 30: AGC gain [] 31240 XMI30 Mono 31: AGC gain [] 312264 XMI32 Mono 32: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	23560	XMI15	Mono 15: AGC gain []
25096 XMI18 Mono 18: AGC gain [] 25608 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27144 XMI22 Mono 23: AGC gain [] 27656 XMI23 Mono 24: AGC gain [] 28168 XMI24 Mono 26: AGC gain [] 28168 XMI25 Mono 26: AGC gain [] 29192 XMI26 Mono 27: AGC gain [] 29704 XMI27 Mono 28: AGC gain [] 30216 XMI28 Mono 29: AGC gain [] 30728 XMI29 Mono 30: AGC gain [] 31240 XMI30 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	24072	XMI16	Mono 16: AGC gain []
25608 XMI19 Mono 19: AGC gain [] 26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28168 XMI25 Mono 25: AGC gain [] 28680 XMI25 Mono 26: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 29: AGC gain [] 30728 XMI29 Mono 30: AGC gain [] 31752 XMI30 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	24584	XMI17	Mono 17: AGC gain []
26120 XMI20 Mono 20: AGC gain [] 26632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain []	25096	XMI18	Mono 18: AGC gain []
26632 XMI21 Mono 21: AGC gain [] 27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 312264 XMI32 Mono 32: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	25608	XMI19	Mono 19: AGC gain []
27144 XMI22 Mono 22: AGC gain [] 27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain [] []	26120	XMI20	Mono 20: AGC gain []
27656 XMI23 Mono 23: AGC gain [] 28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] maximum AGC gain [] maximum AGC gain []	26632	XMI21	Mono 21: AGC gain []
28168 XMI24 Mono 24: AGC gain [] 28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	27144	XMI22	Mono 22: AGC gain []
28680 XMI25 Mono 25: AGC gain [] 29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain [] []	27656	XMI23	Mono 23: AGC gain []
29192 XMI26 Mono 26: AGC gain [] 29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	28168	XMI24	Mono 24: AGC gain []
29704 XMI27 Mono 27: AGC gain [] 30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain []	28680	XMI25	Mono 25: AGC gain []
30216 XMI28 Mono 28: AGC gain [] 30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	29192	XMI26	Mono 26: AGC gain []
30728 XMI29 Mono 29: AGC gain [] 31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	29704	XMI27	Mono 27: AGC gain []
31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	30216	XMI28	Mono 28: AGC gain []
31240 XMI30 Mono 30: AGC gain [] 31752 XMI31 Mono 31: AGC gain [] 32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	30728	XMI29	Mono 29: AGC gain []
32264 XMI32 Mono 32: AGC gain [] Parameters: minimum AGC gain [] maximum AGC gain []	31240	XMI30	
Parameters: minimum AGC gain [] maximum AGC gain []	31752	XMI31	Mono 31: AGC gain []
minimum AGC gain [] maximum AGC gain []	32264	XMI32	Mono 32: AGC gain []
maximum AGC gain []	Paramete	ers:	
	minimum	AGC gain	[]
sampling period [s]	maximum	AGC gain	[]
	sampling	period [s]	

С

FIRMWARE STATUS

C FIRMWARE STATUS

"Firmware status" are used to retrieve from the ICS or define to the ICS, different calibration values, teaching parameters and other data. Each node of the ICS is allocated a range of "Firmware status" numbers.

The following list shows the allocated firmware status numbers allocated to the different nodes of the ICS.

Node	Firmware st	atu	s range	Node	Firmware st	atu	s range
XQI	1	-	511	all XMI's*	15872	-	16383
XSM	512	-	1023	XMI01	16384	-	16895
XGT98	1024	-	1535	XMI02	16896	-	17407
XCM	1536	-	2047	XMI03	17408	-	17919
XPS	2048	-	2559	XMI04	17920	-	18431
XHI	2560	-	3071	XMI05	18432	-	18943
XST	3072	-	3583	XMI06	18944	-	19455
XSP	3584	-	4095	XMI07	19456	-	19967
				XMI08	19968	-	20479
XGI1	8192	-	8703	XMI09	20480	-	20991
XGDI1	8704	-	9215	XMI10	20992	-	21503
XDI1	9216	-	9727	XMI11	21504	-	22015
XGI2	10240	-	10751	XMI12	22016	-	22527
XGDI2	10752	-	11263	XMI13	22528	-	23039
XDI2	11264	-	11775	XMI14	23040	-	23551
XGI3	12288	-	12799	XMI15	23552	-	24063
XGDI3	12800	-	13311	XMI16	24064	-	24575
XDI3	13312	-	13823	XMI17	24576	-	25087
XDD1	14336	-	14463	XMI18	25088	-	25599
XDDD1	14464	-	14591	XMI19	25600	-	26111
XDI4	14592	-	14619	XMI20	26112	-	26623
XDD2	14848	-	14975	XMI21	26624	-	27135
XDDD2	14976	-	15103	XMI22	27136	-	27647
XDI5	15104	-	15231	XMI23	27648	-	28159
				XMI24	28160	-	28671
				XMI25	28672	-	29183
				XMI26	29184	-	29695
				XMI27	29696	-	30207
				XMI28	30208	-	30719
				XMI29	30720	-	31231
				XMI30	31232	-	31743
				XMI31	31744	-	32255
				XMI32	32256	-	32767

The following table describes all the valid firmware status defined in the ICS. This list may change according to the evolution of the different firmware of each node.

Status number	Node		Firmware status name
	VOI	DC yaayym gayga aalibyaa	tion
1 Dead and	XQI	PC vacuum gauge calibrat	Sent after initialisation : NO
Read onl	y:NO		Sent after initialisation : NO
Paramet	ers:		Туре:
Multiplic	ative coeff	icient	FLOAT
Delta T c	oefficient		FLOAT
2	XQI	SP vacuum gauge calibrat	ion
Read onl	y:NO		Sent after initialisation : NO
Paramet	ers:		Туре:
	ative coeff	icient	FLOAT
	oefficient		FLOAT
3	XQI	Basic firmwares versions	
Read onl			Sent after initialisation : NO
Paramet	ers.		Туре:
XQI			STRING
XSM			STRING
XGT98			STRING
XCM			STRING
XPS			STRING
XHI			STRING
XST			STRING
XSP			STRING
XMIO (c	ontained in	XQI)	STRING
4	XQI	Goniometers firmwares ve	ersions
Read onl	y:YES		Sent after initialisation : NO
Paramet	ers:		Туре:
XGI1			STRING
XGDI1			STRING
XDI1			STRING
XGI2			STRING
XGDI2			STRING
XDI2			STRING
XGI3			STRING
XGDI3			STRING
XDI3			STRING

5	XQI	XRD-systems firmwares versions
Read only		Sent after initialisation : NO
Keau oni	y.1L5	Sent after initialisation . NO
Paramete	ers.	Туре:
XDD1	.1.5.	STRING
XDD1 XDDD1		STRING
XDDD1 XDI4		STRING
XDD4 XDD2		STRING
XDD2 XDDD2		STRING
XDDD2 XDI5		STRING
6	XQI	Monochromators 1 to 16 firmwares versions
Read only		Sent after initialisation : NO
ixtau oni	y • 115	Sent after initialisation . NO
Paramete	ers:	Туре:
XMIR01		STRING
XMIR02		STRING
XMIR03		STRING
XMIR04		STRING
XMIR01 XMIR05		STRING
XMIR06		STRING
XMIR07		STRING
XMIR08		STRING
XMIR09		STRING
XMIR09 XMIR10		STRING
XMIR10 XMIR11		STRING
XMIR11 XMIR12		STRING
XMIR12 XMIR13		STRING
XMIR13 XMIR14		STRING
XMIR14 XMIR15		STRING
XMIR15 XMIR16		STRING
7	XQI	Monochromators 17 to 32 firmwares versions
, Read only		Sent after initialisation : NO
iteau oni	y•125	
Paramete	ers:	Туре:
XMIR17		STRING
XMIR18		STRING
XMIR19		STRING
XMIR20		STRING
XMIR21		STRING
XMIR22		STRING
XMIR23		STRING
XMIR24		STRING
XMIR25		STRING
XMIR26		STRING
XMIR27		STRING
XMIR28		STRING
XMIR29		STRING
XMIR30		STRING
XMIR31		STRING
XMIR32		STRING
111111111111111111111111111111111111111		511010

8 XQI	General instrument activ	vity	
Read only : NO	General mstrument activ	Sent after initialisation : NO	
		Sent arter initialisation . NO	
Parameters:		Туре:	
X-ray tube ON tim	ne [h]	FLOAT	
X-ray tube sparks		WORD	
Molecular pump C		FLOAT	
Primary pump ON		FLOAT	
Samples loaded un		LONG	
9 XQI	Instrument displays	Long	
	Instrument displays	Sent after initialisation : NO	
Read only : YES		Sent after mitiansation : NO	
Parameters:		Type	
Cluster 1 (XQI/XS	SM)	Type: STRING	
Cluster 2 (XSN)	(vi)	STRING	
Cluster 3 (Goniom	patar 1)	STRING	
Cluster 4 (Gonion	<i>*</i>	STRING	
Cluster 5 (Gonion		STRING	
Cluster 6 (XRD-sy	<i>*</i>	STRING	
Cluster 7 (XRD-sy		STRING	
		STRING	
10 XQI	XQI option switches 1	Sand offer in the line time of YES	
Read only : NO		Sent after initialisation : YES	
D 4		α.	
Parameters:	(0, 1, 255)	Type: WORD	
Return global alar			
Return diagnostic		WORD	
Return information		WORD	
Stop sample rotati		WORD	
	romator counting time	WORD	
Not used		WORD	
Not used	1	WORD	
Ignore "NS - PA"		WORD	
11 XQI	XQI option switches 2		
Read only : NO		Sent after initialisation : YES	
n .			
Parameters:		Туре:	
Not used		WORD	
Allow unexpected	cassette	WORD	
Not used		WORD	
Keep ACS analysi	s order	WORD	
Not used		WORD	
12 XQI	Sample rotation period		
Read only : NO		Sent after initialisation : YES	
Parameters:		Туре:	
Desired value (ma	x 50) [s/turn]	WORD	

13 XQ	I HV- vacuum analysis mod	e
Read only : NO	I IIV - vacuum analysis mou	Sent after initialisation : NO
		Sent arter mitiansation . NO
Parameters:		Туре:
State (A5A5H =	defined)	STRING
Mode bit pattern		WORD
<u>^</u>	it for good pressure before start	
	tch OFF mono HV before chamb	er venting
	it for mono HV interlock to be clo	•
Bit 3-15: Res		
	rking pressure [Pa]	
	or mono's working pressure [s]	
14 XQ		arm occurrences
Read only : YE		Sent after initialisation : NO
	5	
Parameters:		Туре:
Report 1 (alarm.	date and time)	STRING
Report 2 (alarm	<i>,</i>	STRING
report 2 (ululing	"	STREVG
Report 20 (alarn	h, date and time)	STRING
15 XQ	· · · ·	
Read only : NO		Sent after initialisation : NO
Parameters:		Туре:
State (A5A5H =	defined)	STRING
	lter fatal error into warning	WORD
Reserved 2	ner ratar error mito warning	WORD
"		WORD
Reserved 16		WORD
17 XQ	I Regulated temperatures for	
Read only : NO	5 1	Sent after initialisation : NO
Parameters:		Туре:
State (A5A5H =	defined)	STRING
· · · · · · · · · · · · · · · · · · ·	hk temperature [⁰ C]	FLOAT
· ·	Int temperature $[^{0}C]$	FLOAT
	temperature $[^{0}C]$	FLOAT
	stals temperature $[^{0}C]$	FLOAT
	ystals temperature $[^{0}C]$	FLOAT
18 XQ		
Read only : NO		Sent after initialisation : NO
		Some arter initialisation - 110
Parameters:		Туре:
State (A5A5H =	defined)	STRING
	$1 \text{ k temperature } [^{0}\text{C}]$	FLOAT
	Int temperature $\begin{bmatrix} 0\\ C \end{bmatrix}$	FLOAT
	temperature $\begin{bmatrix} 0\\ C \end{bmatrix}$	FLOAT
	stals temperature [⁰ C]	FLOAT
	ystals temperature $[^{0}C]$	FLOAT
ARD-systems C	ysiais temperature [C]	TLUAI

21 XQI	Automatic PBC selection	scan on XRD-system 1
21 <u>XQI</u> 22 XQI	Automatic PBC selection	
Read only : NO		Sent after initialisation : NO
· ·		
Parameters:		Туре:
Automatic PBC sel	ection	INTEGER
(0: disable, <>0: er	· · · · · · · · · · · · · · · · · · ·	
Low 20 boundary f		FLOAT
High 20 boundary		FLOAT
Low 20 boundary f		FLOAT
High 20 boundary		FLOAT
Low 20 boundary f		FLOAT
High 20 boundary		FLOAT
Low 20 boundary f		FLOAT
High 20 boundary	for PBC4 [⁰]	FLOAT
Transition 20 range	e for PBC1 [⁰]	FLOAT
Transition coefficie		FLOAT
Transition 20 range		FLOAT
Transition coefficie		FLOAT
Transition 20 range		FLOAT
Transition coefficie		FLOAT
Transition 20 range		FLOAT
Transition coefficie	ent for PBC4 []	FLOAT
23 XQI	XGN network baudrate s	election
Read only : NO		Sent after initialisation : YES
Parameters:		' ynot
		Туре:
Desired XGN baud	rate (default 9600) [baud]	WORD
Desired XGN baud511XQI	rate (default 9600) [baud] Terminal mode command	WORD
Desired XGN baud		WORD
Desired XGN baud511XQIRead only : NO		WORD Sent after initialisation : NO
Desired XGN baud511XQIRead only : NOParameters:		WORD Sent after initialisation : NO Type:
Desired XGN baud511XQIRead only : NOParameters: Command string	Terminal mode command	WORD Sent after initialisation : NO Type: STRING
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPS		WORD Sent after initialisation : NO Type: STRING bration
Desired XGN baud511XQIRead only : NOParameters: Command string	Terminal mode command	WORD Sent after initialisation : NO Type: STRING
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NO	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters:	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type:
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading slope	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading slope mA reading offset	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading slope mA reading slopemA reading slope	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading offset kV reading slope mA reading slope2049XPSLPRead only : NO	Terminal mode command	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT FLOAT Sent after initialisation : NO
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading offset kV reading slope mA reading slope2049XPSLPRead only : NO	Terminal mode command kV/mA measurement cali	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT FLOAT Sent after initialisation : NO Type:
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading slope mA reading slope2049XPSLPRead only : NOParameters: State (A5A5H = determined and the state of	Terminal mode command kV/mA measurement cali Low power temperature of	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT Sent after initialisation : NO Offset Sent after initialisation : NO Type: SENT after initialisation : NO
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading slope mA reading slope2049XPSLPRead only : NOParameters: State (A5A5H = de Laboratory temperation	Terminal mode command kV/mA measurement cali kV/mA measurement cali Low power temperature of fined) ature offset [⁰]	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT Sent after initialisation : NO Type: STRING FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading slope mA reading slope2049XPSLPRead only : NOParameters: slope2049XPSLPRead only : NOParameters: State (A5A5H = de Laboratory tempera X-ray power supply	Terminal mode command kV/mA measurement cali kV/mA measurement cali Low power temperature of fined) ature offset [⁰] y temperature offset [⁰]	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT Sent after initialisation : NO Type: STRING FLOAT FLOAT FLOAT
Desired XGN baud511XQIRead only : NOParameters: Command string2048XPSRead only : NOParameters: kV reading offset kV reading offset kV reading slope mA reading offset mA reading slope2049XPSLPRead only : NOParameters: State (A5A5H = de Laboratory tempera X-ray power supply Secondary water in	Terminal mode command kV/mA measurement cali kV/mA measurement cali Low power temperature of fined) ature offset [⁰]	WORD Sent after initialisation : NO Type: STRING bration Sent after initialisation : NO Type: FLOAT FLOAT FLOAT FLOAT Sent after initialisation : NO Type: STRING FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT

2560	XHI	XHI load position teaching	
2561	XHI	XHI tray 0 teaching	
2562	XHI	XHI tray 100 teaching	
2563	XHI	XHI belt 1 teaching	
2564	XHI	XHI belt 2 teaching	
2565	XHI	XHI waiting position 1 tea	ching
2566	XHI	XHI waiting position 2 tea	
2567	XHI	XHI basket 1 teaching	9
2568	XHI	XHI basket 2 teaching	
2569	XHI	XHI basket 3 teaching	
Read onl		The subless of some sing	Sent after initialisation : NO
Iteau oni	J •110		Sent arter mitiansation (100
Paramet	ers.		Туре:
	A5H = def	ined)	STRING
Offset X	uen 401		LONG
Offset Y			LONG
Offset Z			LONG
Slope X			LONG
Slope Y			LONG
Arm slope	e V		LONG
2570	XHI	XHI X-axis parameters	Long
2570	XHI	XHI X-axis parameters	
2572	XHI	XHI Z1-axis parameters	
2572 2573	XHI		
		XHI Z2-axis parameters	Sent after initialisation : NO
Read onl	y:NO		Sent after initialisation : NO
Paramet	0.40.		Type
	A5H = def	inad	Type: STRING
Max stati		illed)	LONG
Kp			LONG
Kp Kd			LONG
Ku Ki			INTEGER
Cruise sp	eed		WORD
Accelerat			WORD
Max zero			LONG
Zero spee			WORD
Max rang			LONG
2574	XHI	VIII sucker position tasch	
		XHI sucker position teach	Sent after initialisation : NO
Read onl	y ; INU		sent after infuansation : NO
Paramete	erc.		Туре:
	A5H = def	ined)	STRING
Offset X	1.511 – uci	ince,	LONG
Offset Y			LONG
Offset Z			LONG
Slope X			LONG
Slope Y			LONG
Arm slope	eΥ		LONG
run siob			

3072	XHI	Shutter axis parameters		
3073	XHI	Transfer axis parameters		
3074	XHI	Load lift axis parameter	<u>s</u>	
3075	XHI	Analysis axis parameters	S	
3076	XHI	Sample rotation axis par	ameters	
Read onl	y:NO		Sent after initialisation : NO	
Paramet			Туре:	
State (A5	A5H = def	ined)	STRING	
Max stati	c error		LONG	
Кр			LONG	
Kd			LONG	
Ki			INTEGER	
Cruise sp	eed		WORD	
Accelerat	tion		WORD	
Max zero	error		LONG	
Zero spec	ed		WORD	
Max rang	ge		LONG	
3077	XHI	Load lift teaching		
Read onl	Read only : NO Sent after initialisation : NO			
Paramet	Parameters: Type:			
State (A5	A5H = def	ined)	STRING	
Loading	position he	ight [step]	LONG	
•	L .	tor position [step]	LONG	
3078	XHI	Analysis lift teaching		
Read onl	v:NO	8	Sent after initialisation : NO	
	v			
Parameters: Type:			Туре:	
	A5H = def	ined)	STRING	
· · · · · · · · · · · · · · · · · · ·	position he	· · · · · · · · · · · · · · · · · · ·	LONG	
3079	XHI	Transfer teaching		
Read onl		unster teaching	Sent after initialisation : NO	
Paramet	ers:		Туре:	
	A5H = def	ined)	STRING	
· · · · · · · · · · · · · · · · · · ·		r position [step]	LONG	
0		er position [step]	LONG	
1 11101 9 515	side oump	Position [prop]	Long	

16384 XM101 High-voltage measurement calibration on mono01 16896 XM102 High-voltage measurement calibration on mono03 17408 XM103 High-voltage measurement calibration on mono04 18432 XM104 High-voltage measurement calibration on mono04 18432 XM106 High-voltage measurement calibration on mono04 19456 XM107 High-voltage measurement calibration on mono07 19456 XM108 High-voltage measurement calibration on mono07 19480 XM109 High-voltage measurement calibration on mono08 20480 XM109 High-voltage measurement calibration on mono10 21504 XM111 High-voltage measurement calibration on mono11 22016 XM112 High-voltage measurement calibration on mono12 23521 XM113 High-voltage measurement calibration on mono13 23404 XM114 High-voltage measurement calibration on mono14 23525 XM115 High-voltage measurement calibration on mono15 24064 XM116 High-voltage measurement calibration on mono16 24576 XM117 High-voltage measurement calibration on mono19 26112 XM120 High-	-	1	
17408 XMI03 High-voltage measurement calibration on mono03 17920 XMI04 High-voltage measurement calibration on mono04 18432 XMI05 High-voltage measurement calibration on mono05 18944 XMI06 High-voltage measurement calibration on mono06 19945 XMI07 High-voltage measurement calibration on mono07 19968 XMI08 High-voltage measurement calibration on mono09 20480 XMI09 High-voltage measurement calibration on mono09 20992 XMI10 High-voltage measurement calibration on mono10 21504 XMI11 High-voltage measurement calibration on mono11 22016 XMI12 High-voltage measurement calibration on mono12 22528 XMI13 High-voltage measurement calibration on mono15 23040 XMI14 High-voltage measurement calibration on mono16 24576 XMI15 High-voltage measurement calibration on mono17 25600 XMI18 High-voltage measurement calibration on mono18 25600 XMI13 High-voltage measurement calibration on mono20 26624 XMI21 High-voltage measurement calibration on mono21 27136 XMI22 High-		XMI01	High-voltage measurement calibration on mono01
17920 XMI04 High-voltage measurement calibration on mono04 18432 XMI05 High-voltage measurement calibration on mono05 18944 XMI06 High-voltage measurement calibration on mono06 19456 XMI07 High-voltage measurement calibration on mono07 19968 XMI08 High-voltage measurement calibration on mono08 20480 XMI09 High-voltage measurement calibration on mono09 20992 XMI10 High-voltage measurement calibration on mono10 21504 XMI11 High-voltage measurement calibration on mono11 22016 XMI12 High-voltage measurement calibration on mono12 22528 XMI13 High-voltage measurement calibration on mono14 23552 XMI14 High-voltage measurement calibration on mono15 24064 XMI16 High-voltage measurement calibration on mono16 24576 XMI18 High-voltage measurement calibration on mono17 25088 XMI18 High-voltage measurement calibration on mono20 26124 XMI20 High-voltage measurement calibration on mono21 27136 XMI12 High-voltage measurement calibration on mono21 26748 XMI21 High-		XMI02	
18432 XM105 High-voltage measurement calibration on mono05 18944 XM106 High-voltage measurement calibration on mono06 19456 XM107 High-voltage measurement calibration on mono07 19968 XM108 High-voltage measurement calibration on mono08 20480 XM109 High-voltage measurement calibration on mono09 20992 XM110 High-voltage measurement calibration on mono10 21504 XM111 High-voltage measurement calibration on mono11 22016 XM112 High-voltage measurement calibration on mono13 23040 XM114 High-voltage measurement calibration on mono14 23552 XM115 High-voltage measurement calibration on mono15 24064 XM116 High-voltage measurement calibration on mono16 24576 XM117 High-voltage measurement calibration on mono17 25088 XM118 High-voltage measurement calibration on mono18 25600 XM119 High-voltage measurement calibration on mono21 26112 XM120 High-voltage measurement calibration on mono21 27136 XM121 High-voltage measurement calibration on mono21 27648 XM121 High-	17408	XMI03	High-voltage measurement calibration on mono03
18944 XM106 High-voltage measurement calibration on mono06 19456 XM107 High-voltage measurement calibration on mono07 19968 XM108 High-voltage measurement calibration on mono08 20480 XM109 High-voltage measurement calibration on mono08 20992 XM110 High-voltage measurement calibration on mono10 21504 XM111 High-voltage measurement calibration on mono11 22016 XM112 High-voltage measurement calibration on mono12 22528 XM113 High-voltage measurement calibration on mono13 23040 XM114 High-voltage measurement calibration on mono14 23552 XM115 High-voltage measurement calibration on mono15 24064 XM116 High-voltage measurement calibration on mono16 24576 XM117 High-voltage measurement calibration on mono18 25608 XM118 High-voltage measurement calibration on mono20 26624 XM12 High-voltage measurement calibration on mono21 27136 XM122 High-voltage measurement calibration on mono22 27648 XM123 High-voltage measurement calibration on mono24 28672 XM124 High-v	17920	XMI04	High-voltage measurement calibration on mono04
19456XMI07High-voltage measurement calibration on mono0719968XMI08High-voltage measurement calibration on mono0820480XMI09High-voltage measurement calibration on mono0920992XMI10High-voltage measurement calibration on mono1021504XMI11High-voltage measurement calibration on mono1122016XMI12High-voltage measurement calibration on mono1122016XMI13High-voltage measurement calibration on mono1323040XMI14High-voltage measurement calibration on mono1423552XMI15High-voltage measurement calibration on mono1524064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1624576XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2127136XMI12High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono3232266<	18432	XMI05	High-voltage measurement calibration on mono05
19968XM108High-voltage measurement calibration on mono0820480XM109High-voltage measurement calibration on mono0920992XM110High-voltage measurement calibration on mono1021504XM111High-voltage measurement calibration on mono1122016XM112High-voltage measurement calibration on mono1222528XM113High-voltage measurement calibration on mono1323040XM114High-voltage measurement calibration on mono1423552XM115High-voltage measurement calibration on mono1624576XM117High-voltage measurement calibration on mono1624576XM117High-voltage measurement calibration on mono1725088XM118High-voltage measurement calibration on mono1926112XM120High-voltage measurement calibration on mono2026624XM121High-voltage measurement calibration on mono2127136XM122High-voltage measurement calibration on mono2328160XM124High-voltage measurement calibration on mono2428672XM125High-voltage measurement calibration on mono2529184XM126High-voltage measurement calibration on mono2730208XM128High-voltage measurement calibration on mono31312256XM132High-voltage measurement calibration on mono31312256XM132High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters: Type: FLOAT	18944	XMI06	High-voltage measurement calibration on mono06
20480XM109High-voltage measurement calibration on mono0920992XM110High-voltage measurement calibration on mono1021504XM111High-voltage measurement calibration on mono112016XM112High-voltage measurement calibration on mono1222528XM113High-voltage measurement calibration on mono1323040XM114High-voltage measurement calibration on mono1423552XM115High-voltage measurement calibration on mono1524064XM116High-voltage measurement calibration on mono1624576XM117High-voltage measurement calibration on mono1725088XM118High-voltage measurement calibration on mono1926112XM120High-voltage measurement calibration on mono2026624XM112High-voltage measurement calibration on mono2127136XM122High-voltage measurement calibration on mono2127648XM123High-voltage measurement calibration on mono2328160XM124High-voltage measurement calibration on mono2428672XM125High-voltage measurement calibration on mono2629696XM127High-voltage measurement calibration on mono2730208XM128High-voltage measurement calibration on mono3131232XM130High-voltage measurement calibration on mono3231232XM130High-voltage measurement calibration on mono3031744XM131High-voltage measurement calibration on mono323256XM132High-voltage measurement calibration on mono323256 <td>19456</td> <td>XMI07</td> <td>High-voltage measurement calibration on mono07</td>	19456	XMI07	High-voltage measurement calibration on mono07
20992XMI10High-voltage measurement calibration on mono1021504XMI11High-voltage measurement calibration on mono1122016XMI12High-voltage measurement calibration on mono1222528XMI13High-voltage measurement calibration on mono1323040XMI14High-voltage measurement calibration on mono1423552XMI15High-voltage measurement calibration on mono1624064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1825088XMI18High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI12High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328600XMI12High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830720XMI28High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono3232266XMI32High-voltage measurement calibration on mono3232256<	19968	XMI08	High-voltage measurement calibration on mono08
21504XMI11High-voltage measurement calibration on monol122016XMI12High-voltage measurement calibration on monol222528XMI13High-voltage measurement calibration on monol323040XMI14High-voltage measurement calibration on monol423552XMI15High-voltage measurement calibration on monol524064XMI16High-voltage measurement calibration on monol624576XMI17High-voltage measurement calibration on monol725088XMI18High-voltage measurement calibration on monol825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI23High-voltage measurement calibration on mono2428672XMI24High-voltage measurement calibration on mono2529184XMI25High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2629696XMI24High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3232256XMI32High-voltage measurement calibration on mono3232266XMI32High-voltage measurement calibration on mono323228XMI30High-voltage measurement calibration on mono3231744 </td <td>20480</td> <td>XMI09</td> <td>High-voltage measurement calibration on mono09</td>	20480	XMI09	High-voltage measurement calibration on mono09
22016XMI12High-voltage measurement calibration on mono1222528XMI13High-voltage measurement calibration on mono1323040XMI14High-voltage measurement calibration on mono1423552XMI15High-voltage measurement calibration on mono1524064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1725088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2629696XMI28High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:OffsetFLOAT	20992	XMI10	High-voltage measurement calibration on mono10
22528XMI13High-voltage measurement calibration on mono1323040XMI14High-voltage measurement calibration on mono1423552XMI15High-voltage measurement calibration on mono1524064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1725088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI23High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono3131232XMI30High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOSent sent setsType:OffsetFLOAT	21504	XMI11	High-voltage measurement calibration on mono11
23040XMI14High-voltage measurement calibration on mono1423552XMI15High-voltage measurement calibration on mono1524064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1725088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI23High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type:OffsetFLOAT		XMI12	High-voltage measurement calibration on mono12
23552XMI15High-voltage measurement calibration on mono1524064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1725088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2328672XMI25High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOSent after initialisation : NO	22528	XMI13	High-voltage measurement calibration on mono13
24064XMI16High-voltage measurement calibration on mono1624576XMI17High-voltage measurement calibration on mono1725088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830720XMI28High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3232256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOSent after initialisation : NO	23040	XMI14	High-voltage measurement calibration on mono14
24576XMI17High-voltage measurement calibration on mono1725088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2227648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830720XMI28High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NO	23552	XMI15	High-voltage measurement calibration on mono15
25088XMI18High-voltage measurement calibration on mono1825600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2227648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830720XMI28High-voltage measurement calibration on mono3031232XMI30High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type:OffsetFLOAT	24064	XMI16	High-voltage measurement calibration on mono16
25600XMI19High-voltage measurement calibration on mono1926112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2227648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830208XMI28High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:OffsetType: FLOAT	24576	XMI17	High-voltage measurement calibration on mono17
26112XMI20High-voltage measurement calibration on mono2026624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2227648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2830208XMI28High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:OffsetType:OffsetFLOAT	25088	XMI18	High-voltage measurement calibration on mono18
26624XMI21High-voltage measurement calibration on mono2127136XMI22High-voltage measurement calibration on mono2227648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type: FLOAT	25600	XMI19	High-voltage measurement calibration on mono19
27136XMI22High-voltage measurement calibration on mono2227648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono3031744XMI30High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:OffsetType: FLOAT	26112	XMI20	High-voltage measurement calibration on mono20
27648XMI23High-voltage measurement calibration on mono2328160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOType:OffsetFLOAT	26624	XMI21	High-voltage measurement calibration on mono21
28160XMI24High-voltage measurement calibration on mono2428672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOType:OffsetFLOAT	27136	XMI22	High-voltage measurement calibration on mono22
28672XMI25High-voltage measurement calibration on mono2529184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters: Type: FLOAT	27648	XMI23	
29184XMI26High-voltage measurement calibration on mono2629696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type: FLOAT	28160	XMI24	
29696XMI27High-voltage measurement calibration on mono2730208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type: FLOAT	28672	XMI25	
30208XMI28High-voltage measurement calibration on mono2830720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type: FLOAT			
30720XMI29High-voltage measurement calibration on mono2931232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOSent after initialisation : NOParameters:Type: FLOAT	29696	XMI27	High-voltage measurement calibration on mono27
31232XMI30High-voltage measurement calibration on mono3031744XMI31High-voltage measurement calibration on mono3132256XMI32High-voltage measurement calibration on mono32Read only : NOParameters:Type:OffsetFLOAT	30208	XMI28	
31744 XMI31 High-voltage measurement calibration on mono31 32256 XMI32 High-voltage measurement calibration on mono32 Read only : NO Sent after initialisation : NO Parameters: Type: Offset FLOAT	30720	XMI29	
32256 XMI32 High-voltage measurement calibration on mono32 Read only : NO Sent after initialisation : NO Parameters: Type: Offset FLOAT	31232	XMI30	High-voltage measurement calibration on mono30
Read only : NO Sent after initialisation : NO Parameters: Type: Offset FLOAT	31744	XMI31	High-voltage measurement calibration on mono31
Parameters:Type:OffsetFLOAT			High-voltage measurement calibration on mono32
Offset FLOAT	Read onl	y:NO	Sent after initialisation : NO
Offset FLOAT			
		ers:	
Slope FLOAT	Slope		FLOAT

16385	XMI01	Crystal temperature calibration on mono01		
16897	XMI02	Crystal temperature calibration on mono02		
17409	XMI03	Crystal temperature calibration on mono03		
17921	XMI04	Crystal temperature calibration on mono04		
18433	XMI05	Crystal temperature calibration on mono05		
18945	XMI06	Crystal temperature calibration on mono06		
19457	XMI07	Crystal temperature calibration on mono07		
19969	XMI08	Crystal temperature calibration on mono08		
20481	XMI09	Crystal temperature calibration on mono09		
20993	XMI10	Crystal temperature calibration on mono10		
21505	XMI11	Crystal temperature calibration on mono11		
22017	XMI12	Crystal temperature calibration on mono12		
22529	XMI13	Crystal temperature calibration on mono13		
23041	XMI14	Crystal temperature calibration on mono14		
23553	XMI15	Crystal temperature calibration on mono15		
24065	XMI16	Crystal temperature calibration on mono16		
24577	XMI17	Crystal temperature calibration on mono17		
25089	XMI18	Crystal temperature calibration on mono18		
25601	XMI19	Crystal temperature calibration on mono19		
26113	XMI20	Crystal temperature calibration on mono20		
26625	XMI21	Crystal temperature calibration on mono21		
27137	XMI22	Crystal temperature calibration on mono22		
27649	XMI23	Crystal temperature calibration on mono23		
28161	XMI24	Crystal temperature calibration on mono24		
28673	XMI25	Crystal temperature calibration on mono25		
29185	XMI26	Crystal temperature calibration on mono26		
29697	XMI27	Crystal temperature calibration on mono27		
30209	XMI28	Crystal temperature calibration on mono28		
30721	XMI29	Crystal temperature calibration on mono29		
31233	XMI30	Crystal temperature calibration on mono30		
31745	XMI31	Crystal temperature calibration on mono31		
32257	XMI32	Crystal temperature calibration on mono32		
Read only : NO Sent after initialisation : NO				
Parameters:		Туре:		
Regulation enabled		WORD		
	egulation te	•		
Offset		FLOAT		
Slope		FLOAT		

16386XMI01Board temperature calibration on mono0116898XMI02Board temperature calibration on mono0217410XMI03Board temperature calibration on mono0317922XMI04Board temperature calibration on mono0418434XMI05Board temperature calibration on mono0518946XMI06Board temperature calibration on mono0619458XMI07Board temperature calibration on mono0719970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
17410XMI03Board temperature calibration on mono0317922XMI04Board temperature calibration on mono0418434XMI05Board temperature calibration on mono0518946XMI06Board temperature calibration on mono0619458XMI07Board temperature calibration on mono0719970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
17922XMI04Board temperature calibration on mono0418434XMI05Board temperature calibration on mono0518946XMI06Board temperature calibration on mono0619458XMI07Board temperature calibration on mono0719970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
18434XMI05Board temperature calibration on mono0518946XMI06Board temperature calibration on mono0619458XMI07Board temperature calibration on mono0719970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
18946XMI06Board temperature calibration on mono0619458XMI07Board temperature calibration on mono0719970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
19458XMI07Board temperature calibration on mono0719970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
19970XMI08Board temperature calibration on mono0820482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
20482XMI09Board temperature calibration on mono0920994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
20994XMI10Board temperature calibration on mono1021506XMI11Board temperature calibration on mono1122018XMI12Board temperature calibration on mono12
21506XMI11Board temperature calibration on monol122018XMI12Board temperature calibration on monol2
22018 XMI12 Board temperature calibration on mono12
22530 XMI13 Board temperature calibration on mono13
23042 XMI14 Board temperature calibration on mono14
23554 XMI15 Board temperature calibration on mono15
24066 XMI16 Board temperature calibration on mono16
24578 XMI17 Board temperature calibration on mono17
25090 XMI18 Board temperature calibration on mono18
25602 XMI19 Board temperature calibration on mono19
26114 XMI20 Board temperature calibration on mono20
26626 XMI21 Board temperature calibration on mono21
27138 XMI22 Board temperature calibration on mono22
27650 XMI23 Board temperature calibration on mono23
28162 XMI24 Board temperature calibration on mono24
28674 XMI25 Board temperature calibration on mono25
29186 XMI26 Board temperature calibration on mono26
29698 XMI27 Board temperature calibration on mono27
30210 XMI28 Board temperature calibration on mono28
30722 XMI29 Board temperature calibration on mono29
31234 XMI30 Board temperature calibration on mono30
31746 XMI31 Board temperature calibration on mono31
32258 XMI32 Board temperature calibration on mono32
Read only : NOSent after initialisation : NO
Parameters: Type:
Offset FLOAT
Slope FLOAT

16387	XMI01	XMI options on mono01				
16899	XMI02	XMI options on mono02				
17411	XMI03	XMI options on mono03				
17923	XMI04	XMI options on mono04				
18435	XMI05	XMI options on mono05				
18947	XMI06	XMI options on mono06				
19459	XMI07	XMI options on mono07				
19971	XMI08	XMI options on mono08				
20483	XMI09	XMI options on mono09				
20995	XMI10	XMI options on mono10				
21507	XMI11	XMI options on mono11				
22019	XMI12	XMI options on mono12				
22531	XMI13	XMI options on mono13				
23043	XMI14	XMI options on mono14				
23555	XMI15	XMI options on mono15				
24067	XMI16	XMI options on mono16				
24579	XMI17	XMI options on mono17				
25091	XMI18	XMI options on mono18				
25603	XMI19	XMI options on mono19				
26115	XMI20	XMI options on mono20				
26627	XMI21	XMI options on mono21				
27139	XMI22	XMI options on mono22				
27651	XMI23	XMI options on mono23				
28163	XMI24	XMI options on mono24				
28675	XMI25	XMI options on mono25				
29187	XMI26	XMI options on mono26				
29699	XMI27	XMI options on mono27				
30211	XMI28	XMI options on mono28				
30723	XMI29	XMI options on mono29				
31235	XMI30	XMI options on mono30				
31747	XMI31	XMI options on mono31				
32259	XMI32	XMI options on mono32				
Read only	y:NO		Sent after initialisation : NO			
Paramete			Type:			
-		C overflow	WORD			
Keep HV ON on value overflow			WORD			
Intensity filter type (if configured)			WORD			
		rimary slit econdary slit				
Intensity filter sensor (if configured)			WORD			
-		nabled				
1: disabled						
Reserved 5			WORD			
"						
Reserved 16			WORD			

D

FREE LIME

D FREE LIME

FREE LIME CALIBRATION PROCEDURE

- 1. It is preferable to do the free lime calibration (by XRD channel) at the customer site after successful installation for various reasons: There are no commercial free lime standards available (because free lime is not stable in air). The samples for free lime calibration have to be obtained from the chemist or analyst responsible on site. The nominal values of free lime concentrations are obtained by wet chemical method. All the cement plants have this facility and this work should be undertaken during installation and subsequent calibration together with the plant chemist.
- 2. The plant or chief chemist responsible for the analytical laboratory should be contacted sufficiently in advance (before installation) to collect free lime samples, as it may be difficult to collect clinker samples with varying free lime concentrations during the week of installation. Normally the free lime is not expected to vary during a short term if the kiln conditions are met. At least 5 clinker samples in granular form (not finely ground powders) of about 100g each should be collected. The samples must have sufficiently varying free lime concentrations, say between 0.5 5% in order to achieve a representative calibration. If you do not manage to get such variations, you can try for a smaller range say 0.5-3%. It depends on the kiln conditions.
- 3. Part of each clinker sample should be used by the chemist for his/her wet chemical analysis (titration in ethylene glycol) and request for reasonably accurate analysis. Remember the problems of reproducibility and subjective variations from one chemist to another.
- 4. Grind sample #1 (preferably the one with highest free lime concentration) for say 10s to start with. At this stage, any grinding agents (like Herzog tablets or any other product for better grindability and homogeneity) should be added depending on the customer's usual procedures. If such binding agents are usually used then try to use the same tablets or agents for grinding in a proportion say 15g sample + 2 tablets of 200mg.
- 5. Take about 5-7g of the ground sample to press a pellet at 20tons, 20s.
- 6. Take the pellet immediately to the instrument (TCA) and do a scan using XRD.SCP (Run scan as usual). Locate the free lime (CaO) peak around 2.405Å on a 2 Theta scale. The peak is usually around 130deg. Note the exact peak position for later use (to feed into the analytical program for calibration and analysis).
- 7. Go back to grinding machine and grind the remaining clinker powder for an additional 10s (making the total grinding time as 20s so far).
- 8. Take 5-7g and press a pellet again at 20tons, 20s.
- 9. Do the same scan as in step 6 and compare with the previous scan after 10s grinding time. Notice if there is any increase in the peak intensity, background, line width etc. If the overall peak intensity has improved, then there is a good reason to continue further grinding.
- 10. Go back to the grinding machine, grind for additional 20s (total of 40s so far), take part of the sample, press it and do a scan. If the peak intensity now starts dropping and the peak broadens (line width increases), then stop here and use the optimum grinding time found for all the other samples.
- 11. Grind all the other clinker granules to the same particle size (same optimum grinding time found above), press them under the same conditions and you are now ready for calibration.
- 12. Although the above conditions for grinding and pelletization have been recommended for free lime as a separate measurement, it is important to take into account the grinding effects on the corresponding

XRF results as well. In general, one checks for the CaK α , SiK α , AlK α intensities measured by XRF at the same time in addition to the intensity of free CaO peak measured by XRD. It is necessary, in many cases, to grind longer than 40s (up to 3 minutes sometimes) to get reproducible and reliable results in XRF due to high amounts of silica. Free lime peak is slightly effected when the grinding time exceeds more than 2-3 minutes but nothing serious happens. Its intensity can be still used for calibration.

In conclusion, the grinding conditions for clinker analysis which includes free lime in addition to the usual XRF analysis must be optimised as a function of standard grinding time used for XRF.

13. Calibration of free lime is done exactly the same way as you would normally do for an XRF channel i.e. go to the preparation menu, create an analytical program, add CaO line from XRD line library and any other lines from XRF library if necessary. Introduce the correct 2 Theta angle noted above for the CaO (XRD) in the analytical program (Elements section). The X-ray tube conditions are the same as you would use the XRF part (say 30kV/80mA). Do not forget to put PBC as 1 for all the XRD lines. Use 100s counting time for free lime. While you are in the program screen with all the elements to be measured, notice that the XRD lines can be measured in three different modes:

Peak	Peak Search	Peak Integration
------	-------------	------------------

Peak ----- Measures the peak intensity (no background subtraction, no corrections if any peak shifts occur). In most cases, direct peak intensity measured this way is good enough for calibrations.

Peak Search---- It might happen in a few cases that the free lime peak position is slightly different from sample to sample. Normally the free lime peak does not shift as long as the samples come from the same kiln and clinkerisation conditions. However, there are cases where samples from different kilns are measured without specific identification. The matrix effects may be slightly different from sample to sample causing small peak shifts. In this case, you can activate the Peak Search instead of Peak and the system will first locate the peak maximum automatically and then count on the peak.

Peak Integration------ Some of the customers who are used to a conventional XRD instrument may ask you if we could integrate over the peak rather than measure on the peak. Peak integration is very useful and necessary if the backgrounds, peak shapes and peak positions keep changing all the time and one does not want to correct the analytical program for every sample. This function is available in a conventional XRD software and we have included it in our soft also in case the need arises. However, we have not seen any real need for this function at least in the case of free lime.

To conclude, both **Peak Search** and **Peak Integration** functions are to be used only when there is a need (uncontrollable peak shifts, background fluctuations and different kiln conditions and products) and Peak intensity measurement is sufficient in most cases.

- 14. For calibration purposes, introduce all the samples and their free lime concentrations as you would normally do for an XRF calibration. Create the task and do the calibration.
- 15. The calibration results (particularly the standard error of estimate) show how the wet chemical values correlate with the XRD intensities. If you find couple of samples out of the acceptable error margins, then either the wet chemical analysis is wrong (or has a bigger error) or the sample preparation has not produced a homogeneous representative sample. The wet chemical analysis should be repeated for verification, or another clinker sample should be used to substitute or the sample preparation should be repeated. Usually, a standard error of estimate (SEE) of less than 0.2% is easily achieved.

FREE LIME RECALIBRATION

Please find below the preparation and analytical method to be used for the drift correction/re-calibration procedure for the free lime XRD channel in Total Cement Analyser. This special procedure has to be adopted for the recalibration of free lime channel because free lime is not stable and we can not keep a clinker sample with free lime long enough to be used as an SUS sample. Instead, NiO is used to simulate the free lime peak in the proximity and since NiO is a stable phase, the following procedure assures a reliable method.

A. High point

- Mix 20 g of raw meal with 2 g of green NiO along with 5 Herzog grinding pills
- (Green NiO is a product of Alpha/Johnson Matthey #89773)
- Grind the mixture for 10s in a Herzog grinding machine
- Press the powder into a pellet at 40 tons, 60 s

B. Low point

- The same as above without NiO

C. Analytical Program

So you now have 2 Theta real for NiO and 2 Theta real for CaO.

- Introduce 2 Theta real for CaO in the analytical program used for the calibration and analysis of free lime in clinkers.
- Modify the 2 Theta real of CaO in the XRD line library by introducing the 2 Theta real of NiO.

Thus when recalibration of free lime has to be done, the high point and low point samples described above are measured at the NiO 2 Theta real and used for the drift correction. On the other hand, when the analysis of free lime has to be done (in the production control), the CaO 2 Theta real entered in the analytical program is used.

INDEX

Α

Adapter Samples, 2-7 Analysis reliability stability of the crystal, 3-16 Analytical Assistant, 6-1 Analytical Program, 6-14 Create, 6-27 Auger effect principle, 3-2 Automation, 2-32 Avalanche gas detector phenomenon of, 3-19

В

Batches, 7-20 Bragg law of diffraction, 3-14

С

Calibration Samples, 7-3 Task, 7-16 Cassette, 2-5 Centring Rings, 2-6 Coherent scattering, 3-3 Collimator, 2-22 Collimator, 3-10 Compton scattering primary X-rays, 3-3 Concentration Analysis, 8-1 Configuration Instrument, 4-6 Consumable Parts, 2-13 Continuum intensity, 3-8 of emission lines, 3-8 of X-rays, 3-8 Counter scintillation principle, 3-21

collimators, 3-10 Dispersion power crystals, 3-15 Display Energy Profiles

Dispersion device

Crystal, 2-22

curved method, 3-17 diffraction, 3-13

function, 3-13 multilayers

stability, 3-16

Curved Crystal, 2-19

of detector, 3-20

dead time, 3-20 FPC, 3-18

types, 3-18

resolution, 3-20 stability, 3-20

Bragg's law, 3-14

Diffraction System, 2-23

efficiency, 3-15

principle, 3-14

avalanche, phenomenon of, 3-19

type of gas fillings, 3-20

D

Dead time

Detector

gas

Diffraction

gas filled

dispersion power, 3-15

description, 3-14

reflectivity features, 3-15

Thermal Regulation, 2-41

Energy Profiles, 6-13 Goniometer Status, 2-10 Instrument, 2-8 Spectrometer Status, 2-8 X-ray Tube Status, 2-9 XRD Status, 2-11

Drift Correction Initialisation, 7-10 Update, 7-24

Ε

Eco Mode, 2-43 Setting, 4-15 Electronic Devices, 2-48 Element Information, 6-3 Energy dispersive spectrometer EDX, 3-7 Energy Profile, 6-10, 6-21 Display ~, 6-13 Environment, 2-33 Laboratory, 4-21 Setting, 4-11 Escape peaks of detector, 3-21 Exatron sealed detectors, 3-18

F

Flat Crystal, 2-20 Fluorescence Yield, 3-2

G

Gas detectors principle, 3-19 Regulation, 2-35 Supply, 4-10, 4-22

Goniometer, 3-10 Description, 2-21 function, 3-11 Initialisation, 4-18 Status Display, 2-10 Zero, 4-18

I

Initialisation Drift Correction, 7-10 Goniometer, 4-18 Instrument, 4-8 XRD, 4-19

Instrument Configuration, 4-6 Display, 2-8 Initialisation, 4-8 Thermostatisation, 2-38, 2-40 Instrumental errors, 7-1 Intensity Measurement, 8-6

L

Line Details, 6-26 Line Interference, 3-9

Μ

Matrix Details, 6-17 Matrix effects, 7-1 Monochromator, 2-18 Curved Crystal, 2-19 Flat Crystal, 2-20 Multitron sealed detectors, 3-18

0

Orders of diffraction, 3-17 Overlap Investigation, 6-21 Overlaps, 7-1

Ρ

Physical errors, 7-1 Primary Beam Device, 2-24 Primary Beam Filter Line Interference, 3-9 Primary collimator function, 3-12 Primary X-rays

coherent scattering, 3-3 Compton scattering, 3-3

Pulse height discriminator principle, 3-22

R

Recalibration, 7-24 Reproducible measurement stability of the crystal, 3-16 Resolution

of the detector, 3-20

S

Sample Adapters, 2-7

Changer 12 Positions, 2-26 for Automation, 2-30 X-Y, 2-27 Excitation, 2-41 Holders, 2-5 Loading Process, 2-56 Loading System, 2-55 Preparation, 5-1 Sample Preparation Liquids, 5-6 Powders, 5-4 Solids, 5-2 Scan, 6-5, 6-21 Graphics, 6-8 Secondary collimator function, 3-12 Sequential instruments principle, 3-10 Setting-up Samples, 7-6 Simultaneous spectrometer principle, 3-11 Spectrometer Environment, 2-33 Inside, 2-15 Status Display, 2-8 Stability of the detector, 3-20

Status Reading, 4-19

Т

Thermal Regulation, 2-37 Crystal, 2-41

W

Wavelength dispersive spectrometer WDX, 3-7

Х

X-ray Power Supply, 2-42, 2-43

X-ray Tube, 2-41 Principle, 3-7 Status Display, 2-9 Target, 3-9 window, 3-9

XRD, 2-23 Initialisation, 4-19 Status Display, 2-11

Ζ

Zero Goniometer, 4-18 Thermo Electron Corporation 81 Wyman Street P.O.Box 9046 Waltham, Massachussets 02454-9046 United States

www.thermo.com

Thermo Electron SA CH-1024 Ecublens is ISO 9001 certified