
t>OC·JO""~BFr:'F
~OOOO"'SOOFF
$0000""'$00 \ f"
$0000"'$000'
$0000""$0\'
$0000 (('
$()001"'$

$0010"'$-
0$()1) 1 t (1
t11)012"~0C.
$0~'\1 .{i!''$00 1
•ocg <2CH t
'110016"4.\0017 n.,
$0016 t .12} [(rn~,..,_-

What's Where in the
APPLE

A Complete Guide to the Apple Computer

William F. Luebbert
President, Computer Literacy Institute

Adjunct Professor of Engineering
Dartmouth College, Hanover, New Hampshire

Apple I I e Appendix
by

Phil Daley

MICRO INK
P.O. Box 6502

Chelmsford, Massachusetts 01824

Notice
Apple is a registered trademark of Apple Computer, Inc.
MICRO is a trademark of MICRO INK. .

Every effort has been made to supply complete and accurate information. However, MICRO INK assumes no responsibility for
its use, nor for infringements of patents or other rights of third parties which would result.

Copyright © by MICRO INK
P.O. Box 6502
Chelmsford, Massachusetts 01824

All rights reserved. No part of this book may be stored in a retrieval system, transmitted, or reproduced in any way, including but
not limited to photocopy, photograph, magnetic or other record, without prior agreement and written permission of the publisher.

What's Where in the Apple
A Complete Guide to the Apple Computer ISBN: 0938222-09-0
Printed in the United States of America
Printing 10 9 8 7 6 5 4

Contents
Introduction 5

Chapter 1: There's More In Your Apple II System 7
Than You May Think

Chapter II: The World of System-Specific Programming 9

Chapter Ill: PEEKing Can Be Informative 15

Chapter IV: POKEs Can Make Changes 21

Chapter V: CALLs Can Make Things Happen 26

Chapter VI: Apple Architecture I 41

Chapter VII: Apple Architecture II: 53
Addressing in the Apple II Microprocessor

Chapter VIII: Machine-Language Programs Can Live Happily 63
In a BASIC Environment

Chapter IX: Overview of Apple System 66
Memory Allocation

Chapter X: The Apple System Quick-Access Area 71
Memory Page 0 ($0000-$00FF)

Chapter XI: The Apple System Stack Page

Chapter XII: The Apple Keyboard Input Buffer
Memory Page 2 ($0200-$02FF) and the
GETLN System of Input Associated With It

Chapter XIII: The Monitor and DOS Vector Page

,,,

Chapter XIV: Text and Low-Resolution Graphics Display
Memory Pages 4-7 and 8-11
($400-$7FF and $800-$1 BFF)

Chapter XV: 'User Memory' for BASIC Programmers
Typically Pages 9-149 ($0800-$95FF)
But Highly Variable

Chapter XVI: High-Resolution Graphics Display
Memory Pages 32-63 and 64-95
($2000-$3FFF and $4000-$5FFF)

Chapter XVII: The Disk Operating System
Default Location = Memory Pages 150-191
($9600-$BFFF)

Chapter XVIII: The Specialized Input/Output Memory
(Some of It Behaves Very Strangely and
Some Isn't There At All)
Memory Pages 192-207 ($COOO-$CFFF)

Chapter XIX: Applesoft BASIC Interpreter

Chapter XX: The System Monitor Location
Memory Pages 248-255 ($F800-$FFFF)

Index

Use-Type Guide

Atlas

Gazetteer

Appendix A: The Apple //e --A New Edition
Memory Pages 192-207 and 248-255
($COOO-$CFFF and $F800-$FFFF)
Includes //e Atlas and Gazetter

72

78

85

87

93

111

125

134

145

150

152

156

157

217

257

Author's Acknowledgements

The information in this book has been accumulated over several years from a wide diversity of sources,
including a variety of publications from Apple Computer, Inc., articles from many Apple user group
publications and from many magazines, as well as from personal investigations triggered by one or more of
these sources.

Unfortunately no record was made in the computer database at the time of original entry of the original
source of each datum. Nevertheless the following persons, either through their writings or through per
sonal contact, come to mind as particularly significant sources of information to whom I wish to extend
my special gratitude:

Darrell Aldrich
Rick Auricchio
Bob Bishop
C. Bongers
John Crossley
William Dougherty
Andrew Eliason
Val Golding

Andy Hertzfeld
Donald Hyde
Peter Lechner
Lee Meador
C.K. Mesztenyi
Mark Pump
Lee Reynolds
William Reynolds

Lou Rivas
David Roe
Mike Rowe
Loy Spurlock
Dick Suitor
Don Worth
Steve Wozniak

I know that the moment this book goes to the printer, the names of several others who have been inad
vertently omitted but who fully deserve to be on this list of those deserving special acknowledgement, will
rise up out of my memory to weigh upon my conscience. To such worthy but unrecognized toilers in the
orchard I offer, in advance, my sincere apologies.

William F. Luebbert
Hanover, N.H.
July 1981

Special thanks go to the Kiewit Computation Center, Dartmouth College, Hanover, New Hampshire,
for assistance in producing the Atlas and Gazetteer output.

Publisher's Acknowledgements

A work of this complexity takes the dedicated labor of many individuals to bring it to completion. The
following individuals each made significant contributions, above and beyond the call of duty.

Chief Editor: Marjorie Morse provided overall management of the project through its may iterations, in
addition to performing a superb job of editing and rewriting.
Technical Editors: Ford Cavallari and Phil Daley gave guidance and worked diligently to produce
technically accurate materials.
Layout and Production: Paula Kramer was instrumental in creating an easy-to-read product.
Typesetting: Emmalyn Bentley worked many hours on the detailed technical typesetting which resulted
in the clean look of the book.

Robert M. Tripp
Chelmsford, MA

INTRODUCTION

You can get more out of your Apple - or any
other computer with limited resources - by
familiarizing yourself with its overall hardware
and software environment. This book helps you
get to know your Apple better. It provides you
with information about hardware and software
resources that are imbedded within the Apple at
all times, but are usually hidden froiD. users other
than exceptionally well-informed and experienced
system-level programmers.

What's Where in the Apple also introduces,
explains, and demonstrates techniques for using
this knowledge both in a BASIC language environ
ment and in an assembly-language environment.
Even more importantly, it introduces the
concepts of programming in a Quasi-BASIC or
system-specific BASIC environment. (Quasi
BASIC is BASIC augmented by non-BASIC Apple
assembly-language firmware.) This environment
requires little, if any, user-written machine code,
but makes extensive use of machine code written
and polished by the professional programmers
who put the Apple II system together.

This work is organized in three parts:

1 . Part I, 'the Programmers' Guide, is a com
prehensive guidebooki:o the hardware and
firmware organization and architecture of
the Apple II system. It also discusses con
cepts and programming techniques you
may find useful in exploiting the inner
workings and hidden mechanisms of the
Apple II system.

2. Part II, the Programmers' Atlas, is a de
tailed breakdown of the inner structure and
organization of the Apple II system. Ar
ranged in memory-address sequence, it
contains specific information on each of
over 2000 memory locations and blocks of
memory locations inside the Apple II
system. This information includes hex
adecimal and decimal addresses, memory
location name (if any), and a description of
function(sJ performed at each location or

block of locations. Included are the major
system-specific hardware locations in the
Apple as well as the major subroutines,
parameters, buffers, and code-entry points
in the Apple system monitor, disk
operating system, Applesoft and Integer
BASIC interpreters.

3. Part III, the Programmers' Gazetteer, is a
detailed breakdown of all named memory
locations in the Apple II system, arranged
in alphabetical order by memory location
name. Like the main Atlas, it contains hex
adecimal and decimal memory locations,
memory location name, and the nature and
description of the use of the location(s) by
the Apple II system.

This information and these techniques should
help you become a better-informed and more
creative programmer.

It is amazing how much well-informed and
creative programmers can get from a, micro
computer when they use their knowledge of the
inner workings and hidden mechanisms of the
total system's hardware and software environ
ment. It is disheartening to see how much time
many inadequately-informed programmers waste
because they lack this knowledge.

The information and techniques presented
here should be of special value when you graduate
from simple programs to more ambitious pro
grams involving careful control of man-machine
interaction, analog to digital or digital to analog
conversion, extensive use of computer graphics,
the control of external devices, database manage
ment, sorting, or word-processing. When (and if)
you get into real-time programming, adding your
own specialized interfaces, performing activities
which require the absolute maximum speed or
absolute minimum memory utilization, the in
formation here becomes critical if you don't want
to waste time and effort wheel-spinning.

Some people may take a quick look at the Pro-

6 Introduction

grammers' Atlas database listings in this book and
decide that the Atlas and the system-specific pro
gramming techniques are tools exclusively for
systems programmers and machine-language (or
assembly-language) programmers. Because these
techniques can be extremely useful to such pro
grammers, this belief has just enough superficial
truth in it to be a serious conceptual and practical
error.

Though the Atlas does provide a great deal of
information useful in machine-language program
ming, it still offers at least equal assistance to the
BASIC programmer. BASIC programmers who are
non-machine-language programmers may want to
take full advantage of the capabilities of the com
puter by exercising direct control over the hard
ware and the machine-language firmware which is
normally resident in the hardware.

Often you can exercise this control by using
the information in higher-level language programs
and by changing control parameters in programs
that are executed by the system itself as part of its
normal operations. Other times it may require the
use of machine-language subprograms which are
accessed by PEEKs, POKEs, and CALLs which are
not themselves machine language but are written
in a higher-level language, BASIC. Even then, the
only machine-language programs used may be
those already available in firmware.

PEEKs, POKEs, and CALLs all refer to memory
locations which are identifiable by what they con
tain or what they do. PEEK examines the contents
of a specified memory location and allows you to
use that content in a program. POKE changes the
content of a designated memory location to some
specified value. It can be used to change para
meters of the operating environment or to set up or
change pieces of program or data. A CALL transfers
program control to a particular memory location
back to the CALLing routine in the user's program.

Subroutines and other pieces of code from the
Apple's firmware (i.e., its MONITOR and BASIC
interpreter - Applesoft or Integer BASIC), and
from its quasi-firmware (i.e., the DOS 3.2 or 3.3

disk operating system), can be accessed via
CALLs to provide useful capabilities without
writing any additional code. Some of the more
powerful and deeply imbedded machine-language
routines will require the passing of parameters to
and from them. This can usually be done by
POKEs and PEEKs.

Usually the code you find built into the Apple
system has been carefully written in machine lan
guage, optimized by good programmers, and takes
less space or less computer time than the same
function would require if programmed by the user.

Even in the most awkward cases, where deeply
imbedded firmware requires the pre-setting of
machine-level hardware registers, it is possible to
perform the set-ups without doing any assembly
or machine-language coding by use of the PEEKs,
POKEs, and CALLs to the register SAVE and
RESTORE routines built into the system
monitor. (There is another similar pair of
SAVE/RESTORE routines also built into the Disk
Operating System.)

Some users may find it more esthetically
pleasing to perform the linkage directly by using
machine-language instructions such as LOA
(LoaD Accumulator), LOX (LoaD X-register) or
LOY (LoaD Y -register) to form a tiny machine
language linkage program, load it into memory by
means of POKEs or S.H. Lam's technique for
dynamically entering and exiting the system
monitor from a BASIC program. If this is your
preference, you will find that it is neither
necessary nor desirable to use an assembler for
this process. It is easier to hand-code from the in
formation in the Apple Reference Manual,
perhaps using the disassembler in your Apple II or
Apple II+ (and/ or the mini-assembler in the
Apple II) to check your work.

Incidentally, there could hardly be an easier
and less painful way to back gently into develop
ing expertise for doing machine-language/
assembly-language programming than by starting
out with imbedding just a few machine-language
instructions into a predominately BASIC program.

Chapter I
There's More
In Your Apple ll System
Than You May Think

1.1
The Apple System Environment -
Hardware and Firmware

The Apple IT system environment consists of
the system hardware, plus a great deal of software
provided by the manufacturer, which extends the
system's capabilities. The most important parts of
this software are often called 'firmware.' (Note:
Firmware is software that is a permanent part of
the computer operating environment. It is always
available and may be considered an extension of
the system hardware, available regardless of what
kind of problem the computer is attacking and
what language it is using. Software that is put into
a ROM (Read-Only Memory) and is available
without any special setup procedures is a prime
example of firmware. J

The 'firmest' of the firmware in the Apple IT is
the system monitor. Without the monitor you
could not load other programs into the system,
nor make effective use of the keyboard for input,
or the display screen for text or graphic output;
the system would be functionally inoperable.

However, the monitor is not the only piece of
firmware you'll normally find imbedded in the
Apple every time you try to run a program. To use
the BASIC language you need a BASIC inter
preter, either Integer BASIC Ol" Applesoft BASIC.
To use the disk sub-system you need disk
operating system firmware, usually known as
DOS firmware.

These three major software/firmware
packages each contain a gold-mine of carefully
written routines which can make it possible to
write better, faster-running programs. However,
most of these resources, and many of the
hardware-specific characteristics of the Apple
system remain hidden away and are not readily
available to the typical Apple user. Oftentimes
even finding out about their existence and
capabilities becomes a task worthy of the talents
of Sherlock Holmes. Sometimes only the manu
facturer's 'systems programmers' learn about
some of the features.

Even within a single module of firmware there
can be a great diversity of routines useful to the
average programmer. For example, in addition to
the program-loading, input/ output, and graphics

functions alluded to earlier, the Apple IT system
monitor (old version) contained routines that per
formed the following functions: moved blocks of
memory from place to place, verified that one
block of memory contained the same contents as
another, simulated the existence within the
Apple of a 16-bit microprocessor (the 'Sweet-16'),
single-stepped a machine-language program,
assembled a machine-language program with
mnemonic operations codes and any of several
kinds of machine addressing into binary code
which will run as a program on the computer, dis~
assembled binary code back into mnemonic form,
converted decimal inputs to hexadecimal display
or binary internal formats or vice versa, etc.

Similarly, the Applesoft BASIC interpreter (or
any other higher-level language interpreter) is
usually also a gold-mine of useful software. For
example, it contains software packages for imple
menting all the operations of floating-point
arithmetic. (Floating-point arithmetic is used for
numbers which contain decimal points or scien
tific power-of-ten notation. J

1.2
Making Hardware and Firmware
Resources Accessible · ·

The Programmers' Guide provides a frame
work for understanding both the overall organiza
tion and structure of the Apple system and those
programming techniques which exploit that
knowledge. The Atlas and Gazetteer provide
supplementary detailed reference information
you need in actual programming.

This detailed information is presented in
'Geographical' (Memory Map) order in the Pro
grammers' Atlas (Part IT) with an alphabetic-by
name Programmers' Gazetteer (Part ill) to pro
vide an alternate means of retrieval. An optional
diskette version of the database together with a
retrieval program provide machine-implemented
selective retrieval as well (see page 4).

The information in both the text and on the
diskette can stand alone as sources and tech
niques for making more effective use of the Apple
IT. You can learn a great deal about system
specific programming techniques for the Apple IT
and about its hardware/software architecture
from the text. You can find out how particular
sections of memory are used and about the char
acteristics of software in particular areas of
memory. You can use the Atlas database tables or
printouts from the diskette to identify software
by specific names. And you can search the disk
ette database using the retrieval program on the

8 Chapter I

diskette to find hardware locations, parameters,
or software descriptions which use keywords
you're interested in exploring.

For example, if you're interested in all
memory locations and software in the Apple that
relate to the 'slots' used for plug-in of auxilliary
cards, you could use the diskette to conduct a
keyword search on the word 'slot'. To find out
about hi-res graphics you could search on the
word 'HI-RES'. (In both cases you would be flooded
with more information than you are likely to
want or use, but it would all be information
relative to your request. However, with a little
practice you will learn to narrow your requests ~o
exactly the information you want.) You could, m
principle, achieve the same results more labor
iously (and with a higher human-error rate) by
scanning through the forty-odd pages of Apple
Atlas database printout in Part II of this book.

The Atlas will also help you find information
you may already have available in sources such as
your language-oriented reference manual (e.g.,
the Applesoft Programmers' Reference Manual)
or a systems reference manual (e.g., the Apple
Reference Manual).

You may want to know when you should use
the diskette database and retrieval program and
when you should use the tabular printouts in

Parts II and III of this booklet. The answer is sim
ple; if you already know about where in the Apple
system a particular parameter, subroutine, or
capability should be located, it is probably worth
while to go to the appropriate area of memory in
the tabular printout (Part III) and use the diskette
only if you can't find what you are looking for.
(After all, the information might be somewhere
else in the Apple where you didn't expect it.) If
you already know the standard Apple name for a
parameter or subroutine, it is probably best to
look it up in the alphabetic-by-name tabular
printout (Part III). If you don't find it, try the
diskette - it is often more difficult to determine
standard Apple names for memory locations or
subroutines than to find out information about
what they do.

In some cases the information on the database
diskette may be more brief than that in the
tabular printouts. This was necessary to squeeze
the information into the available space on the
diskette. A larger version of the Programmers'
Atlas database and retrieval program is available
via timeshare from the Apple information library
(APPLELIB * * *) on the Dartmouth College time
share computing system. This system is acces
sible to any qualifed user from anywhere in the
nation via the communications facilities of
TELENET.

Chapter ll
The World of
System-Specific Programming

2.1
BASIC Doesn't Have To Be
A Straightjacket;
Neither Does Assembly Language

Often inadequately-informed programmers
feel they are boxed-in by the characteristics and
limitations of the BASIC language, not realizing
that the versions of BASIC available on the Apple
(and many other microcomputers) are not as
limited as they think. These versions do allow
you to access and exercise significant direct con
trol over the hardware and firmware of your
system.

This work emphatically rejects the viewpoint
that when using BASIC you must give up control
of what is happening in the software and hard
ware of your computer.

This work also emphatically rejects the view
point that BASIC and assembly-language pro
gramming are such totally separate worlds that
the programmer must choose one or the other,
but never mix them in the same problem. It rejects
the viewpoint that you must become an expert
assembly-language programmer before you can
understand and make effective use of the inner
workings and hidden mechanisms of the software
and hardware of your computer.

Instead, this book adopts the viewpoint that
with the Apple (and other microcomputers) you
can readily shift back and forth along a con
tinuum of possibilities from (nearly) system
independent BASIC, to system-specific BASIC, to
BASIC augmented by assembly or machine
language, to assembly language using BASIC
input-output and service routines, to full use of
assembly language.

In fact, What's Where in the Apple suggests
that the best results are obtained by taking a
careful look at the circumstances and at the
nature of the problems being attacked before
deciding where to position yourself on this spec
trum of alternatives. You'll discover new
capabilities you can use in your own program
ming which will challenge your creativity and in
crease your willingness to undertake more dif
ficult and interesting programming tasks.

It is amazing how many capable and well
informed microcomputer users fail to appreciate
the full significance of system- and machine-

dependent features (such as PEEKs, POKEs, and
CALLs) built into their versions of BASIC. Often
they may see interesting, but difficult-to
understand, published programs for the Apple
which are made up almost exclusively of these
commands. These programs are often written by
highly experienced assembly-language program
mers who use techniques not commonly covered
in academic textbooks or computer programming
courses. Many programmers get the false impres
sion that they need esoteric knowledge if they do
more than use an occasional PEEK, POKE or CALL.

2.2
System-Specific Programming:
A Programming Approach for BASIC
and Assembly-Language Programmers

Programmers often mistakenly assume that to
take effective advantage of the inner workings
and hidden mechanisms of system software and
hardware capabilities they must abandon BASIC
and become assembly-language experts. Under
these circumstances it is not surprising that they
don't feel strongly motivated to learn about
machine-language code - information which is
in their computers and potentially available for
their use every time they run a BASIC program.

Assembly-language programming is not every
one's cup of tea. Many excellent programmers
shy away from assembly and machine-language
programming because they do not want to get
bogged down with its limitations.

Well-written assembly-language programs do
often run faster and use less memory than BASIC
programs, but they usually take longer to write
and longer to test and debug than BASIC pro
grams. Human error rates in writing assembly
language are often high. Assembly-language pro
grams are harder to read and understand than
BASIC programs. And, they are even harder to
modify and update without extremely careful
documentation - and most assembly-language
programs are difficult to document well. There is
also a significant investment in time and effort
involved in learning how to control the operation
of an assembler and how to use it effectively.

Often programmers associate these limita
tions not just with full-scale assembly-language
or machine-language programming efforts, but
with all aspects of hardware-dependent and
system-specific programming. As a result many
avoid any programming effort that seems to have
any whiff of involvement with machine language
or the details of their computers' internal
architecture.

10 Chapter II

At one end of this spectrum you adhere so
closely to ANSI BASIC standards that you greatly
improve the chance that programs will be trans
ferrable from one model or manufacturer of com
puter to another. But by completely eschewing
any system-specific programming, you eliminate
the effective power of your system. For example,
all graphics and all sound-producing capabilities
in the Apple are definitely system-dependent.

At the other end of this spectrum, assembly
language programming, you can save memory
and improve the speed of response. It is not un
common for assembly-language programs written
by good programmers to have three. to ten times
the speeds of those of Applesoft BASIC. In occa
sional special cases speed gains of 10,000 times or
more have been reported. However, assembly
language programming can be frustrating. It may
be hard to write, hard to read, hard to maintain,
hard to update and hard to move to other systems.
You can, and usually do, exercise very direct and
intimate control over the machine at a level of
nit-picking detail that sometimes is as infuriating
in its demands upon time, effort and human ac
curacy as it is powerful in releasing the capabili
ties of the machine. Anywhere on this continuum
(except at the end where you deliberately ignore
many of the features of BASIC to promote trans
ferability of programs from one type of computer
system to another) you can exercise any neces
sary degree of direct control over the performance
of the system while operating in a BASIC environ
ment. Although it is well worthwhile to learn to
write programs in assembly language and to use
an assembler, you can take significant advantage
of system-specific and hardware-dependent capa
bilities without ever writing a program in
assembly language or using an assembler.

-2.3
A Step-by-step Approach
for BASIC Programmers
Learning To Take Advantage of
System-Specific Capabilities

Programmers who know little or nothing
about assembly- or machine-language program
ming can, as a first step, learn to take advantage
of assembly/machine-language coding which is
supplied in the firmware and other software of
their Apple system by merely finding out where it
is and what it does. Initially you can start by
using PEEKs and POKEs documented in Apple
manuals to change system hardware states or
monitor parameters. Later, you can add use of
CALLs to access monitor subroutines which can

be used without any knowledge of machine
language.

There are many additional routines in system
firmware which can be used only if you know
how to interface with them by putting appro
priate information into particular hardware
registers and getting results from those registers.
You can perform this procedure indirectly with
out learning assembly or machine language, but it
is often more convenient to look up a few
machine-language instructions in the Apple Pro
grammers' Reference Manual (or a book on 6502
assembly-language programming) and use them
to load or unload the registers. You can do this
without ever dropping out of BASIC by manually
converting the few instructions needed to set-up
or use calling parameters into BASIC PEEKs,
POKEs and/or CALLs.

If you are willing to write an occasional
assembly-language subroutine and imbed it in
BASIC programs (in situations where the limita
tions of BASIC are most galling and the advan
tages of assembly/machine language are highest),
you can improve the running speed or input/ out
put capabilities of your program and more. This
advantage can be achieved even though you write
the majority of every program in BASIC. You can
even write entire programs in assembly or
machine language, but disguise them to the com
puter as BASIC programs, taking advantage of
some of the conveniences of BASIC such as its
very easy-to-use input-output features.

Of course, all these techniques are discussed
at some length and illustrated with examples and
case studies in the Programmers' Guide.

The information and techniques provided are
system-specific. Unless specifically mentioned,
the standard monitor, as opposed to the Autostart
monitor, is assumed. It is also assumed that you
have a full48K of memory when you are using the
disk operating system or high-resolution
graphics. The higher-level language is Applesoft
BASIC, although there are frequent references to
Apple Integer BASIC as well. Most of the con
cepts are also applicable in principle Pascal, but
since there are major differences between Pascal
firmware and the 'standard' Apple environment
for Applesoft, Integer BASIC and/ or assembly
and machine-language programming, you must
be very careful in extrapolating the information
in this guide.

Most of these techniques do not involve any
machine-language or assembly-language pro
gramming. Some of the more advanced tech
niques described involve occasionally writing
very short machine-language links between ex-

isting machine-language firmware in the Apple
and your BASIC programs. These links are then
translated to Applesoft BASIC to make the
machine-language firmware subroutines part of
your BASIC programs.

2.4
When Should You Use
Assembly Languaget

In principle, assembly language, or machine
language, is the most powerful language available
to a given processor. Within the limits of human
programming time, patience, and skill, it allows
the most intricate manipulations of data, the
smallest program size and the fastest execution
time possible. This is why on most micro
computers the system monitor, disk operating
system and BASIC interpreter are written in
assembly language.

While it is true that anything you can do with
the hardware of any given microcomputer can be
done using that computer's machine language,
most programmers today (with the possible ex
ception of systems programmers and a few
machine-language fans) quite properly use
BASIC, Pascal or some other higher-level semi
machine-independent language for most of their
programming. Machine-language programming
can (but does not always) increase speed and/ or
decrease memory requirements quite dramatically.
It is particularly useful when you wish to do bit
manipulation, interrupt processing and other
hardware-related activities. However, it involves
too much onerous detail, is too prone to human
errors, and is too difficult to read and maintain to
make it the language of choice for most program
mers. This is true whether they program maxi
computers, minicomputers or microcomputers.

Those who program large machines with huge
amounts of memory, disk storage space and sup
port software seldom need to expend the time and
effort needed to pay close attention to the nitty
gritty details of the hardware and memory utiliza
tion of their computers. They usually make their
programming as machine-independent as possi
ble. In contrast, microcomputers - especially
personal microcomputers - are often severely
limited in internal memory, external storage and
software support. Microcomputers seldom have
the vast panoply of higher-level software, the
sophisticated operating system and the large
volume of high-speed external storage so useful in
making machine-independent programming con
venient and feasible for tough jobs.

Thus those who program microcomputers

Chapter II 11

often find it necessary to pay careful attention to
the hardware and software environments of their
machines in order to do more with less -albeit
at some cost of generality and transportability of
their programs to other brands and models of
computers.

Knowledge of specific characteristics of a
machine's hardware, monitor, disk operating
system firmware, or BASIC interpreter allows
microcomputer programmers to perform compli
cated tasks easily. This is why the versions of
BASIC supplied with most microcomputers con
tain specific provisions for interfacing with the
hardware/ software environment underlying their
BASIC interpreters- e.g., PEEK and POKE com
mands - while the versions of BASIC available
with maxicomputers often do not include such
provisions.

2.5
When Should You Use
System-Specific Quasi-BASICt

When you begin to develop sophisticated pro
grams which involve heavy use of computer
graphics, sophisticated man-computer interfaces
and real-time interfaces with the outside world,
you often tend to get into programming situations
which stretch the capabilities of a microcomputer
to its practical limits.

For example, implementing graphics usually
involves processes which extend beyond the
system-independent capabilities of most micro
computer languages. There is little practical stan
dardization between the graphics commands used
in the various versions of BASIC which are today
in widespread use on personal microcomputers.
Although there is some effort being expended on
standardization for the future, most microcom
puters have their own extensions to BASIC which
reflect hardware dependence. It takes significant
software, memory, and processing time to raise
computer graphics to system-independent levels.

Usually, as in the case of the Apple, machine
independent BASIC is modified and extended
with pseudo-BASIC extensions which allow some
degree of decoupling from the nitty-gritty details
of hardware implementation, but are anything
but system-independent. Thus, like it or not,
when you try to do advanced or creative program
ming on a microcomputer, you are forced into the
world of system-dependent programming.

The more interesting and sophisticated the
problems you attack become, the more likely you
are to find that the pseudo-BASIC extensions

12 Chapter 11

begin to break down as the solutions to all your
problems. Thus the Applesoft reference manual
has several pages of PEEKs and POKEs -
machine-level interfaces -which describe how
to perform useful functions related to computer
graphics.

Graphics provides understandable and visual
examples of how advanced programming projects
on microcomputers get forced into system
dependent programming. However, many aspects
of man-machine interaction, the control of exter
nal devices, database management, word
processing and other areas of computer program
development share with graphics the tendency to
force you towards system-dependent program
ming. Such programming is often slow and ineffi
Cient. When you get into real-time programming,
then system-dependent programming and the in
formation in a programmers' atlas becomes
critically inportant - whether or not you are
willing to program at an assembly-language or
machine-language level.

An example of such a problem arose when I
was writing a program to provide a controlled
display of optical illusions on the Apple. There is
a well-known optical illusion in which lines of
equal length with arrowheads appear to be of dif
ferent lengths. The illusion appears if one line is
provided with·arrowheadspointing outward and
the other has arrowheads pointing inward.

I was using game paddles to control the angle
and length of the lines and wanted smooth, rapid
animation when I changed the. conditions. The
easiest way to accomplish this was to, move a
copy of the currently ,displayed picture to the
other display page of memory, change it while it
was invisible, swi~~h display pages and do it
agairi. A BASIC. program to copy the pages was
m~cJ;l. too slow ..

I could have written a fast machine-language
program which would do the page copying very
rapidly, but information in the memory atlas
made it unnecessary. The Programmers' Atlas
told me that at memory location -468 !also
known as memory location 65068 or $FE2CJ in
the Apple, ther.e was a monitor subroutine which
w.ould do the job for me. It gave me all the infor
mation I needed to se.t up the computer to use it,
Y QU will learn how to do this and :Jllany other
similar tasks. · ·

' ~i.

These situations often occur when you under
take ambitious. programs involving careful con
ttol , of man-mach~e . interaction, analog-to
digital or digital-to-analog conversion, extensive
use (}f computer grap}?.~cs, th,e control of external

devices, database management, sorting, word
processing, or any of a wide variety of interesting
tasks. The knowledge available in a program
mers' atlas becomes much more important.

When you get into real-time programming, ad
ding your own specialized interfaces, performing
activities where you must get ·the absolute max
imum speed or make the most effective possible
use of limited memory, then systems program
ming information becomes critical. This is true
whether or not you ever intend to do any signifi
cant amount of assembly-language programming.

2.6
Examples of
System-Specific
Quasi-BASIC Programming

When you look at interesting programs des
cribed in magazines which provide programmers
with ideas, information, and software, you often
find programs which purport to be written in
BASIC, but which in fact seem to be written
neither in ANSI ~American National Standard
Institute) BASIC, nor in machine language. Instead,
they are written in some kind of a strange hybrid of
the two made up of PEEKs, POKEs, and CALLs.

The implementations of BASIC and Pascal in
most microcomputers !including the Apple IIJ
provide these and other features to facilitate
system-dependent programming in BASIC or
other higher-level languages. These system- and
hardware-interface command-statements let you
access instructions and data almost anywhere in
the computer: in the monitor, in its operating
system, inside the BASIC interpreter, in the
peripheral interface areas, and in other parts of
the computer hardware. But you must have ade
quate knowledge of how the hardware and firm
ware of the system are organized to make use of
the potential provided.

This work will use several. case study sample
programs to allow you to determine whether you
have the background to make effective use of
these capabilities. Take a look at these programs
now. You should ~e able to analyze them in detail
and explain exactly how similar programs work
by the end of Part I.

' . ~

Often, as in case study sample programs 1 and
2, you can achieve highly significant results inter
acting with system firmware and hardware with
out any assembly or machine-language program
wing at all.

Case Study Sample Program 1

Screen and Printout Status Inquiry Subroutine

60000 PRINT "PRINTING SPEED = "; 256
·PEEK(241)

60001 PRINT "LEFT MARGIN = ";PEEK(32)
60002 PRINT "RIGHT MARGIN = ";PEEK(32) +

PEEK(33)
60003 PRINT "TOP MARGIN = ";PEEK(34) _,
60004 PRINT "BOTTOM MARGIN = ";PEEK(35)
60005 RETURN

Note: The value and convenience of this program
can be increased by saving the current status of
variables at the beginning of the program by
means of POKE statements, resetting screen
parameters by means of TEXT:HOME, then
restoring the parameters by a second set of POKE
statements at the end of the subroutine.

Case Study Sample Program 2

Quick Decimal-to-Hexadecimal Conversion

10 HOME: VTAB 7: PRINT "ENTER
DECIMAL NUMBER:"; : INPUT N : HOME :
VTAB 7 : PRINT " DEC= ";N

20 MSP = INT(N/256): POKE 0, MSP: REM
MSP = Location 0

30 LSP = N • 256 * MSP: POKE 1, LSP : REM
LSP = Location 1

40 POKE 60,0 : POKE 61,0 : REM 0 =
Parameter A 1

50 POKE 62,1 : POKE 63,0 : REM 1 =
Parameter A2

60 CALL - 589 : REM Hex Print Memory from
A 1 to A2 (0 to 1)

70 POKE 1064,160:POKE 1065,200:POKE
1066, 197:POKE 1067,216:POKE
1068, 189:POKE 1068, 189:POKE 1069,160:
REM POKE to output " HEX = "

80 VTAB 11: PRINT "PRESS ANY KEY TO
CONTINUE"; GET R$:GOTO 10

Other times, as in case study sample program
2, you need to write only a few instructions; for
example, to change a hardware mode or load hard
ware registers, and to insert them via POKEs and
invoke them via a CALL.

Case Study Sample Program 3
Fast Move In Applesoft

Roger Wagner
!Published in July/August 1980 issue of

CALL A.P.P.L.E.)

Chapter II 13

10 POKE 768,216:POKE 769,160:POKE
770,0:POKE 771 ,76:POKE 772,44:POKE
773,254

20 POKE 60,BEG • INT(BEG/256)*256:POKE 61,
INT(BEG/256)

30 POKE 62,EN · INT(EN/256)*256:POKE 63, tNT
(EN/265)

40 POKE 66,DEST · INT(DEST/256)*256:POKE
67, INT(DEST/256)

50 CALL'768

Case study sample programs 3 and 4 are
variants on this program applying the same
monitor move subroutine to the specific task of
moving pictures from text or low-resolution
graphics page 1 to text or low-resolution graphics
page 2. This can be a valuable function. There is
no easy way to print directly onto text page 2.
You can get information there only by POKEing
in the fashion we demonstrated earlier or by
moving it from page 1 as this program does.

Neither case study sample program 3 nor 4
uses machine-language. Sample program 4 uses
the monitor 'SAVE' and 'RESTORE' routines to
perform the function performed by machine
language in sample program 1. Sample program 4
simulates keyboard entry of monitor commands
to accomplish this function.

Case Study Sample Program 4

Text or Low-Resolution Graphics Fast Page Move
!'SAVE' and 'RESTORE' Indirect Set Up)

100 GOSUB 500 :REM Copy page 1 to page 2
and display there

110 REM Now use standard print instructions
to print invisibly on text page 1 while text
page 2 is being displayed

200 POKE - 16300,0 :REM Display new
!modified) page 1 ... etc.

500 REM: Subroutine to copy page 1 to page 2,
then display it as page 2

510 CALL -182:POKE 71,0:Call -193 :REM
Set Y-Reg = 0 using 'SAVE' and
'RESTORE'

520 POKE 60,0:POKE 61,4 :REM Set parameter
A1 = 1024 j$0400- start of page 1)

530 POKE 62,255:POKE 63,7 :REM Set
parameter A2 = 2047 j$7FF - end of page 1)

540 POKE 66,0:POKE 67,8 :REM Set parameter
A4 = 2048 j$0800 - destination)

550 CALL - 468 :REM Copy page 1 to page 2
560 GOSUB -16299 :REM Display copy from

page 2

14 Chapter II

570 RETURN
580 REM: This subroutine may be used equally

well for text or low-resolution graphics as
it is. For high-resolution graphics use
memory location 8192 instead of 1024,
16383 instead of 1023 and 16384 instead of
2048.

590 REM: WARNING! Don't try the inverse
move from page 2 to page 1 unless you
have made sure that the scratchpad
memory locations used are properly set to
be consistent with the page 1 values which
will be wiped out.

Chapter III
PEEKing Can Be Informative

NOTE: It is not necessary to know anything
about binary numbers or about the means of
representing information in binary and hex
adecimal form to follow this section, but it may
help you to understand the 'why' of certain asser
tions made in this chapter. Chapters 6 and 7 cover
the entire topic of information representation in
side the Apple from an introduction of basic con
cepts, to details of importance only to the most
sophisticated systems programmers. If you feel
uncomfortable with binary or hexadecimal num
bers mentioned here, please refer to Chapters 6
and 7 - especially Section 6.3 (Bit-Oriented In
formation Representation and Addressing in the
Apple II System) for more background.

3.1
What Does A PEEK Do~

3.1.1 The BASIC Idea

A PEEK lets a programmer 'peek' into mem
ory to determine the current information stored
in a particular memory location. How that infor
mation is interpreted and used depends upon the
context in which the PEEK is used. For example,

LET X = .PEEK(32)
and LET Y% = PEEK(32)

use the PEEK in a numeric context. They treat the
information bits in memory _location 32 as a
binary number and assign its numeric value to
the real variable 'X' and the integer variable 'Y%'
respectively. You can use this numeric value as
part of an arithmetic expression or print it out
directly without assigning it to a memory loca
tion, e.g.

LET Z = 2000 + PEEK(32)
or PRINT PEEK(32)

The number returned by a PEEK is always in
the range 0-255. Why? The PEEK gives you the
contents of one word of memory, which in the
Apple consists of a single 8-bit byte. Eight bits can
represent 28 combinations from 00000000 (0) to
11111111 (255).

You can also use a PEEK in an alphanumeric
context. For example,

LET A$ = CHR$ (PEEK(32))

treats the information in memory location 32 as
the code-bits of an alphanumeric (ASCII) charac
ter. It assigns the character represented by those
hits as the new value of the string variable A$.

You can use the PEEK in a string expression or
print it out directly without assigning its value to
a string variable name, e.g.

LET Z$ = B$ + CHR$ (PEEK(32))
or PRINT CHR$(PEEK(32))

Please note that the ASCII character obtained
from a PEEK can be any code combination from
00000000 to 11111111 and thus need not be a
'printable' alphabetic or numeric character. For
example, it might represent the character
'Control-G' which 'prints' by sounding a beeping
noise.

It is also possible to treat the information as a
hexadecimal number or as part of a machine
language instruction. These treatments will be
deferred until we discuss the use of hexadecimal
information forms and/ or elementary machine
language concepts.

3.1.2 Formal Statement and
Hardware Implementation

To be specific and precise we may say that the
PEEK commands of both Applesoft and Apple In
teger BASIC are built-in functions that use a single
argument - the decimal number address of the
memory location which the programmer wishes to
PEEK from. The value of the function becomes the
contents of the memory location specified.

The context of use determines how the eight
binary bits that make up the contents of that
memory location will be interpreted: as a
number, as an alphanumeric character, or as a
part of a machine-language computer instruction.

For the sophisticated programmer who mixes
BASIC and assembly-language programming at
the hardware-register level it is also significant
that a PEEK also leaves these 8 bits in the hard
ware A-register. We shall see later that the PEEK
is merely a BASIC language function which
allows you to perform the machine-language in
struction 'LoaD Accumulator (LDA).' NOTE: In
machine language you specify memory addresses
in binary /hexadecimal format, while the Apple
versions of BASIC use only decimal numbers.
Thus the PEEK function also performs an implicit
decimal-to-binary conversion needed to achieve
the required functional equivalence.)

3.2
What Can You Learn from PEEKing~

Programmers PEEK to get information helpful
in their programming or use of the computer.

16 Chapter III

3.2.1 Example: Find Current Cursor Position

Suppose that in a computer program you
wanted to determine at exactly what line on the
screen the program was currently printing. This
is determined by the cursor vertical position. You
could look in either the Applesoft Programming
Reference Manual or the Programmers' Atlas and
find that the current cursor vertical position is
maintained by the system monitor in memory lo
cation 37 (decimal). Thus the statement

LET CV = PEEK(37)

in your program assigns the current Cursor Ver
tical position to the variable CV.

3.2.2 Example: Find Peripheral Slot
Currently Active

Let's take a couple of other examples involv
ing PEEKs not documented in the Applesoft Pro
gramming Reference Manual. For example, to
find out which peripheral slot is currently active
(Slot 0 is active if no peripheral device has been
activated), you may PEEK into memory location
2040. Due to the internal design of the computer,
this location does not contain the number in
decimal form, but 192 +(SLOT#).

SLOT= PEEK(2040)- 192

NOTE: This location actually holds a hex
adecimal number which is used in addressing
ROM memory associated with the peripheral
slot. This hexadecimal number is $CS where this
is to be used as the more significant byte of the
two-byte hexadecimal hardware address $CSOO
(decimal49152 + 256•S). Sis the peripheral slot
number. Since C is the hexadecimal symbol for
12, $CO= 12• 16 = 192 and $CS = 192 + S (decimal
with S restricted to existent slot numbers, i.e. 0
> = s < = 7).

3.2.3 Example: Determine Printout Speed-Delay

Occasionally you may find that printout from
the Apple seems unnaturally slow. This can hap
pen if someone or some program has changed the
SPEED variable. (The SPEED variable is used by
the monitor to determine whether a delay should
be inserted in the printout process to slow that
process. This is sometimes done so that printouts
or listings will appear, not near-instantaneously,
but at a readable speed.) The Programmers' Atlas
tells us that the SPEED variable is stored by the
system monitor in two's-complement form
(which measures the amount of delay to insert in
to printout operations) under the name 'SPDBYT'
at memory location 241 (decimal). The two's
complement for an 8-bit word is equivalent to 256
-the original number. Thus

PRINT (256 - PEEK(241))

will print out the value of this variable. If SPEED
< 255 an unnecessary delay is being inserted by
the system monitor during every printout.

3.3
Case Study In Depth-
Screen and Printout Status Inquiry

This case study illustrates a simple use of
PEEKing.

Figure 3.3A

Case Study Sample Program 1

SCREEN&. PRINTOUT STATUS
INQUIRY SUBROUTINE

60000 PRINT "PRINTING SPEED = ";256
- PEEK(241)

60001 PRINT "LEFT MARGIN = ";PEEK(32)
60002 PRINT "RIGHT MARGIN = ";PEEK(32)

+ PEEK(33)
60003 PRINT "TOP MARGIN = ";PEEK(34)
60004 PRINT "BOTIOM MARGIN = "; PEEK(35)
60005 RETURN

NOTE: The value and convenience of this pro
gram can be increased by saving the current
status of variables at the beginning of the pro
gram. You PEEK them, then POKE the result of
that PEEK into a temporary storage location.
Then you reset the screen parameters to standard
values by means of a monitor subroutine. You
can execute TEXT: HOME, then PEEK the stored
screen parameters and POKE those values back as
the current screen parameters.

To analyze a program or subroutine which
uses PEEKs, POKEs and/ or CALLs, a good first
step is to look up in the Programmers' Atlas the
locations which are PEEKed, POKEd and/or
CALLed.

In this case you'll find that the analysis is
trivial. The program simply prints an identifica
tion for a group of monitor parameters, PEEKs at
and prints out their current values.

3.4
Double PEEKing

Sometimes it is necessary to obtain or to
change information which has a greater range of
possibilities than the range 0 to 255 available
with a single PEEK or POKE. For example, there

are 65,536 addressable memory locations in the
Apple. BASIC line numbers may be anywhere in
the range 0-32767 in Integer BASIC and up to
63999 in Applesoft. Integer numbers can have
values from -32768 to + 32767 in either Integer
BASIC or Applesoft. Applesoft will also accept in
teger numbers in an address format in the range 0
to 65535. Thus if you want to PEEK into memory
to find an address, a BASIC line number, or to look
at an integer variable, a single PEEK can't give you
the whole story.

To handle such situations you need to PEEK
or POKE to more than one memory location at a
time and combine the results into a single
decimal number. The 'magic formula' for this
combination is

PEEK(memory location) + PEEK(memory
location + 1) * 256

3.4.1 Example: Finding the Line Number
of a BASIC Error

In its discussion of commands related to er
rors, the Applesoft BASIC Programming
Reference Manual gives an example of how to
find an error, but does not explain the hows and
whys fully. It gives the 'magic formula'

340 X = PEEK(218) + PEEK(219)•256

and states: ''This statement sets X equal to the
line number of the statement where an error oc
curred if an ONERR GOTO statement has been
executed.''

The explanation is simple. Like Apple ad
dresses, Applesoft line numbers have a permissi
ble range from 0 to over 60,000. To allow ade
quate possibilities to give each line number a
unique representation takes 16 bits or two eight
bit bytes or two words of Apple computer
memory.

NOTE: 15 bits allow 215 *** =32,768)
possibilities, not quite enough; 16 bits allow 216

(= 65536) possibilities, enough to represesent all
possible line numbers, all possible Apple ad
dresses, and Apple integer number values and use
the full capability of two Apple words.

The two words must be interpreted as a single
two-byte or 16-bit parameter. When this is done
one of the two bytes, that containing the more
significant bits (the more significant digits) of the
number is called the M.S.B (More Significant
Byte) and the other the L.S.B (Less Significant
Byte). The M.S.B. in the Apple is always assigned
the higher memory location of the pair. In com
puting the decimal value of the total 16-bit
number, each bit in the M.S.B. (since it is shifted

Chapter III 17

left by 8 bits) has a value 28 (= 256) times as great
as the corresponding bit in the L.S.B. To make the
conversion for a two-byte number it is assumed
that each byte can assume values 0-255
(00000000 to 11111111). The largest value that can
be represented is thus 255*256 + 255 = 65535 and
the conversion formula is

Value of number = value of M.S.B. * 256
+ value of L.S.B.

For PEEKing this relationship can be expressed as
follows:

Value = PEEK (Address of L.S.B.) + 256 *
PEEK (Address of M.S.B.)
= PEEK (Address of L.S.B.) + 256 *
PEEK (1 + Address of L.S.B.)

Note that the address of the L.S.B. becomes
the address of the two-byte parameter pair. Thus
218 (decimal) becomes the address of a two-byte
parameter which contains the line number of the
statement where an error occurred if an ONERR
GOTO statement has been executed. Reference
to the Programmers' Atlas confirms this use of
the memory-word pair at addresses 218,219
(decimal).

3.4.2 Example: Finding Line Number
of Current Data Statement

Now let's take several examples not docu
mented in the Applesoft Reference Manual. Sup
pose your program READs a number of DATA
statements. If it aborts and you want to find out
what was the current DATA statement at the
time it aborted, the Programmers' Atlas tells you
that this information is maintained in memory
location 'DATLIN', a two-byte location con
sisting of locations 123 and 124 (decimal).

PRINT PEEK(123)+256•PEEK(124)

prints out the desired line number.

3.4.3 Example: Finding Where You Transfer
When You Press 'RESET'

Suppose you want your Apple to do something
different from what it does when you press the
'RESET' key. The Programmers' Atlas tells you
that memory location 65532,65533 (- 4,- 3) con
tains an address pointer which tells you where
control is transferred on a reset. To see where that is

PRINT PEEK (65532) + 256•PEEK(65533)
or PRINT PEEK (- 4) + 256•PEEK(- 3)

The two sets of addresses are equivalent for
Applesoft. Only the latter may be used in Apple
Integer BASIC.

18 Chapter III

3.5
More About Using Decimal Numbers,
Decimal Numbers Modulo 256
and Hexadecimal Numbers to
Handle Double-Byte Information

While reading this book you will decide that
hexadecimal addresses are easier to use, more
convenient, and more meaningful than decimal
addresses. Until you do, it probably will make
you more comfortable to have many tools and
techniques for handling the byte-oriented
decimal addresses of the kind BASIC uses in
double-PEEKs and double-POKEs.

Surprisingly enough, even if you're not
familiar with hexadecimal numbers, some hex
adecimal concepts and techniques can be a useful
supplement to the computational method we
have seen thus far in setting up the kinds of
decimal addressing necessary in BASIC.

3.5.1 Memory Pages and the
Magic Numbers Decimal 256
or Hexadecimal $100

The Apple's memory is divided into 256 pages
of 256 locations each. Thus the Apple memory
contains 256•256 = 65536 locations with ad
dresses from 0 to 256•256-1 (0 to 65535). Ex
pressing the same information in hexadecimal we
can say that the Apple contains $100 pages of
$100 locations each, or a total of $10000 locations
with addresses from $0 to $100•$100- 1
($0000-$FFFF). Thus all Apple addresses are ex
actly four hexadecimal digits long (if shorter ad
dresses are padded out with leading zeros). The
first two hexadecimal digits are the hexadecimal
page number and the last two digits are the hex
adecimal location within the page.

One memory location can hoJd only a single
byte of information. One byte of memory can be
thought of as space enough to contain eight
binary digits, each with only two possible values,
0 or 1. It can also be thought of as two hex
adecimal digits each with 16 possible values (0,1,
2,3,4,5,6,7,8,9,A,B,C,D,E, or F). Or a byte can be
thought of as a total entity with 256 (or hex
adecimal $100) possible values. The decimal
values are 0 through 255; the hexadecimal by two
hexadecimal digits, $00-$FF.

When you PEEK, POKE, or CALL using ad
dresses or numbers outside the range of 0-255,
one byte will not hold all the information. Two
bytes will hold 256•256 = 65536 possible com
binations. In hexadecimal this is $100•$100 =
$10000 combinations. In any case there are
enough combinations so that a different combina-

tion is available to address or uniquely identify
each location in the Apple's memory.

If not used for addresses, bytes can be used for
numeric data, alphabetic text, or even computer
instructions. Two bytes are needed to hold in
teger numbers in the range 0 to 65535 (or signed
numbers or addresses in the range - 32 7 68 to
+ 32767) so the Apple format for integer numbers
and addresses is the same: a two-byte module.
Whether used for address, for data, or even for
computer instructions, the contents of two bytes
can always be represented by exactly sixteen bits
or four hexadecimal digits.

One of the pair of bytes contains the more
significant part (high-order digits) of a number or
address, the other the less significant part (low
order digits) of a number or address.

3.5.2 A Decimal to Double-Decimal Conversion
Procedure Using Hexadecimal Tables

The conversion of a two-byte-long decimal
number into a pair of single-byte-long decimal
numbers suitable for use in double-PEEKing or
double-POKEing can be done by computation (as
we did it in Section 3.4 or by table look-up).

As indicated in Section 3.4, an address pointer
is stored in memory LSB first, then MSB. The
'MSB' or 'More Significant Byte' identifies the
page of memory on which the address resides. Its
value is the integer number of times that 256 (or
$100) will go into the decimal address. The 'LSB'
or 'Less Significant Byte' contains the location on
the page. It is the remainder left over after integer
division by 256 (or $100), that is the number
'modulo 256' (or 'modulo $100').

Even if you know nothing about hexadecimal
numbers you can do an integer division by $100.
You do it the same way you do a decimal division
by 100. To get the quotient just drop the last two
digits.

Addresses and integer numbers in the Apple
are always four hexadecimal digits, or can be pad
ded with leading zeros, if necessary, to put them
into four-digit format. Then division by $100 in
volves nothing more than keeping the two more
significant hexadecimal digits of a four-digit ad
dress or number.

The remainder (also called the value of the
number modulo $100) is nothing more nor less
than the last two hex digits - the ones that you
drop off in the division process!

Thus, one way to do decimal MSB and LSB
computations is to convert the decimal number

to hexadecimal, divide by $100, getting the hex
adecimal MSB and LSB by inspection, then con
vert the MSB and LSB back to decimal. More
specifically:

1. Convert the number (0-65535 or -32 7 68 to
+32767) to a four-hexadecimal-digit number- a
task quickly and easily done with a conversion
table.

2. Do integer division by $100 getting a quotient
and a remainder. This process can be done by in
spection: the first two hex digits are the quotient;
the last two, the remainder.

3. Return to the table and look up the decimal
equivalents of each of the two two-hex-digit (one
byte) numbers obtained in step 2. The two
decimal number results are the two single-byte
decimal numbers required for double-PEEKing or
double-POKEing. The one derived from the high
order digits or page information is the MSB; it
goes to the higher of the pair of locations which
are PEEKed or POKEd.

This method may seem like the long way
around, but if the conversions can be made easily
enough, it could be convenient and quite easy.

Actually this procedure can be significantly
improved by a carefully planned package of short
cuts: 1. perform only a partial decimal-to
hexadecimal conversion for page information, but
not intra-page information; 2. do integer division
without remainder to get hexadecimal page infor
mation; 3. convert only page information back
from hexadecimal to decimal; and 4. get intra
page information by decimal subtraction. Such a
procedure is outlined in Section 3.5.4.

First, however, it is helpful to see the
unembellished decimal-to-hexadecimal and
hexadecimal-to-decimal table look-up procedures
which are components of the decimal-to-byte
oriented-double·decimal table-look-up procedure.

3.5.3 Table Look-Up Procedures:
Hexadecimal-to-Decimal and
Decimal-to-Hexadecimal

To look up the decimal equivalent of a hex
adecimal number in conversion tables is ab
surdly simple. Just follow the procedure in
figure 3.5A.

1-----------·
I Figure 3. 511
I o:nvertinj Hexadeci.nal to tecima.l by Table Look-Up
I
I !.Given the hexadecimal nurller $WXYZ:
I 'lhe first t"'-0 digits WX specify the merrory page.
I 1be last. t....o digits yz specify the locatia'l within the page.
I
I2.Use Figure 3.5C arrl hex digits WX to look up the start-of-page address.
I lllltiply the address by 256.
I
I 3. Use the table am hex digits n to look up the inside-the-page offset.
I
~4.Add the tltoO together to get the decimal add_res_•_· _______ _

Chapter III 19

The same tables can be used backwards to look
up the hexadecimal equivalent of a decimal num
ber. Just use the procedure specified in figure 3.5B.

I
I
I
I

----------------------1
Figure 3.58 I

Olnverting Decimal to Hexadecimol by Table I.ooi<-f.Jp I
--------1

I 1. Divide the decimal nud:Jer by 256 arrl look up the integer result in the
I table (Figure 3. SC). 'Ihis result is the high byte.

I 2. Mlltiply the integer result times 256 and sl.btract this fran the I starting decimal nmt>er.

I 3. Enter the table (Figure 3.5C) with the decimol nmt>er oooplt.ed in (2) I and look up its hexadecimal equival-. '!he result is the lcot byte.

I
I
I
I
I
I
I
I
I

I 4. Add the t,., hexadecimol rnDt>ers by inspection. (Note• the first is of I
the form $HHOO~ the secx:n3 of the £onn $IL; so their 8ll'ft is of the form!
$HIIIL. I

I
---------·---------------1

I Figure 3. 5C
I Look-up Table for Hexadecimal-Decimal O:::wwersioos
I
,-------~~~.~~srr-~~r~tr~~~~~~e~---------------,

I 01234567891\BCDEF I
1------------------------------------1
I ol o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I
I M I I
I o 1! 16 11 18 19 20 21 22 23 24 25 26 n 28 29 3n 31 I
I s I I
I t 21 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 I
I I I
I s 31 48 49 50 51 52 53 54 55 56 57 sa 59 60 61 62 63 I
I i I I
I g 41 64 65 66 67 68 69 10 11 12 73 74 75 76 77 78 79 I
I n I I
I i 51 eo 81 82 A3 B4 85 86 87 ll8 89 90 91 92 93 94 95 I
I f I I
I i 61 96 97 98 99 100 101 102 103 104 105 106 101 l<E 109 110 111 I
I c I I
I a 71 112 113 114 115 116 111 llfl 119 120 121 122 123 124 125 126 121 I
I n I I
I t 81 128 129 130 131 132 133 134 135 136 137 138 13<1 140 141 142 143 I
I I I
I B 9) 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 I
I y I I
I t II) 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 I
I e I I
I Bl 176 177 178 179 180 181 182 183 194 185 186 187 lBB 189 190 191 I
I I I
I cl 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 201 I
I I I
I Dl 200 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 I
I I I
I E I 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 I
I I I
I Fl 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 I
I I

20 Chapter III

3.6
Hexadecimal Addressing for PEEKs,
POKEs, and CALLs

It is almost impossible to read Apple manuals
or literature without finding information about
where things are in memory specified in hex
adecimal form, because the basic organizational
pattern of $100 pages of $100 bytes makes hex
adecimal form the easy and natural way to ex
press and manipulate and use addresses.

As soon as you start to use hexadecimal ad
dresses you natwally start to think how conven
ient it would be to be able to use hexadecimal as
well as decimal numbers in PEEKs (and later in
POKEs and CALLs as well.)

If you don't yet feel a need for such a hex
adecimal PEEK/POKE/CALL capability don't
worry about hexadecimal numbers now. Just
make a mental note to come back to this area of
the text if you need to learn the techniques later.

3.6.1 Hexadecimal PEEKing

If you try to PEEK (or POKE) using a hex
adecimal address, it won't work! Neither PEEK
($WXYZ) nor PEEK($WX) : PEEK($YZ) will work,
where W,X, Y, and Z are each an individual hex
adecimal digit.

Despair not! You can still solve the problem of
getting the decimal values you need to use in
BASIC programs. Though it may not be quite so
direct as a PEEK with an explicit hexadecimal ad
dress, you can get the information you need by
computing the address conversion as part of your
BASIC program or by doing a hexadecimal-to
decimal conversion when you write the program,
perhaps using the table look-up procedure
documented in figure 3.5A.

3.6.2 The All-Hexadecimal PRINTed
PEEK Capability of the System Monitor

The system monitor allows you to examine
the contents of any memory location using a hex
adecimal argument as input and getting a printed
hexadecimal result. The net effect is that of a
PRINT PEEK with hexadecimal addresses and
hexadecimal outputs. However, the word PEEK is
not used anywhere in the process.

The process is very simple when you are at the
program-building level; i.e., when the prompt ']'
has just been given.

The procedure seems to take a number of
words to describe in figure 3.5B. However, it
takes only a few keystrokes to implement and is
easy and convenient.

--1
Figure 3 .6" I

Usirg the system M::Jnitor to Get Contents of a Menory ~..t:X:ation 1

I ("iexadecimal address Sf)eeification - >-texadeci.ma.l Results) I
1--------------~----------------------1
I (1) 'Ib enter the m::xritor type in 'CALL -144'. I
I (Ilcxl' t type the • or ' arrl be sure the press the return key.) I
I Tile pranpt. • *' will appear • I
I I
I (2) Type in the hexadecimal address of the merrory lcx:ation 1
I "IOU wish to PEEK at. I
I D:> oor precede the hexadecimal nll!lber by a • $ ' • I
I I
I (3) When)'OJ. press the return key its contents will be printed I
I in hexadecimal form. I
I I
I (4) Repeat as many times as you desire for rrore merrory locations. I
I Ycu dcn't have to hit the return key for each location, I
I just when you want to see output • I
I If you want to see a group of consecutive loc.:ltions I
I just specify the first arrl last with a pericxi between, 1
I e.g. for hex 300 to 305 type in '300. 305' l
I I
I (5) When yaJ are finished -peeking, return to the I
I program-tui lding rrcrle an::1 the '1' prcrnpt by entering '3DOG' I
I (Be sure to use the number 0, not the letter O). I
1--l

Getting the printed hexadecimal value of the
contents of a memory location is not quite so con
venient when you want to print the information
from inside a running Applesoft or Integer BASIC
program, but the need usually isn't as great
either.

If you need hexadecimal output from your
BASIC program, just convert the hexadecimal ad
dress to be PEEKed into decimal using one of the
standard procedures we have described, getting a
BASIC-style decimal answer, then use the Quick
Decimal-to-Hexadecimal conversion subroutine
in the Apple firmware to print the value in the
desired hexadecimal format. (Case Study 5.4 ex
plains how to do this.)

As an alternate approach you may use the
monitor inside a running BASIC program to get
the desired information. Use the techniques as
described in figure 3.6A imbedded in a block of
Pseudo-BASIC code. Section 8.3 describes the
Pseudo-BASIC coding techniques which can let
you use the monitor from inside a running BASIC
program.

Chapter IV
POKEs Can Make Changes

4.1
What Can A Poke Dot

4.1.1 The BASIC Idea

A POKE lets the programmer 'poke' a par
ticular value into a particular memory location.

The format of a POKE statement is

POKE < to decimal memory location >.
< decimal value >

In the Apple the value to be POKEd must be
expressed as a decimal number in the range 0 to
255 and the memory address also specified as a
legitimate decimal memory address.

4.1.2 Properties and Hardware Implementation
Concepts

The binary equivalent of the value POKEd is
left in the hardware A-register for the conven
ience of persons doing machine interface pro
gramming. This is not accidental, for the POKE is
the BASIC-language implementation of the
machine-language STA (STore Accumulator) in
struction in the immediate addressing mode. The
only difference is that BASIC .does not use binary
or hexadecimal numbers and hence has the user
present the information to be stored in decimal
form.

The computer does not have to use the infor
mation POKEd into its memory as a decimal
number, even though it is entered as a decimal
number. The POKE stores in computer memory
eight binary bits that have a pattern which is the
binary equivalent of the specified decimal value
in the range 0 (00000000) through 255
(11111111). Depending upon where the informa
tion is POKEd the computer program in use may
treat those bits as anything - even as part of a
machine-language computer instruction.

The most common elementary uses of POKE
ing are to change parameters which are used by
the system to control its operations. These
parameters may be either parameters directly
used by the hardware of the system, or
parameters which are used by the firmware of the
system - the system monitor or BASIC inter
preter. The next two sections will describe
samples of these uses. Later we will go on to
POKEing machine addresses, data values and
machine language instructions.

4.2
What a Single POKE Can Do

4.2.1 POKEing the Hardware
EXAMPLES: Changing Graphics Modes

POKEs can change the contents of memory
locations which are used directly by the machine
to control its hardware operations. For example,
the Apple has four areas of memory, the contents
of which directly map onto the display screen
under different circumstances: 1. Text and Low
Resolution Graphics Page 1 (locations 1024-2046);
2. Text and Low-Resolution Graphics Page 2 (lo
cations 2048-3071); 3. High-Resolution Graphics
Page 1 (locations 8192-16383); and 4. High-Reso
lution Graphics Page 2 (locations 16384-24575).
Appropriate information POKEd into these loca
tions will appear directly upon the screen when
the appropriate page is activated. The Applesoft
Programming Reference Manual identifies the ap
propriate POKEs to activate each of the display
options, for example:

POKE 49232,0 (or POKE -16304,0,0)
switches from text to graphics
POKE 49233,0 (or POKE -16303,0)
switches from graphics to text
POKE 49234,0 (or POKE -16302,0)
causes any graphic display to consist en
tirely of graphics, with no mixture of TEXT
POKE 49235,0 (or POKE -16301 ,0)
causes bottom portion of any graphic
display to be reserved for TEXT from the
bottom four lines of the corresponding TEXT
page
POKE 49236,0 (or POKE -16300,0)
causes page 1 (whether it be TEXT. Low
Resolution Graphics or High-Resolution
Graphics,O) to be displayed
POKE 49237,0 (or POKE -16299,0)
causes page 2 to be displayed
POKE 49238,0 (or POKE -16298,0)
causes the TEXT/Low-Resolution page (as
opposed to a High-Resolution Graphics
page) to be displayed
POKE 49239,0 (or POKE -16297,0)
causes a High-Resolution graphics page (as
opposed to a Low-Resolution or TEXT page)
to be displayed

Each of these location pairs, which may be ad
dressed as part of the Apple's memory, access one
side of a hardware flip-flop. When properly POKEd
each of the four flip-flops mentioned above
changes the hardware operation in the fashion
specified; e.g. it changes the area of memory to be
displayed or the type of display to be created.

22 Chapter N

POKEs can also be used to put information in
to areas of memory which are used for screen dis
play, thus having the effect of printing on a partic
ular spot on the screen if the page onto which the
POKE is made is the currently displayed page.
POKEs, of course, can also print or draw on pages
which are currently not displayed, then the
results POKEd instantaneously into view by
POKEing one of the flip-flops described above.

Such POKEing is also not limited to locations
which are accessable with the current printing
restrictions established by the text window. (The
window establishes left and right, top and bottom
margins within which printouts can be made.)

Depending upon where POKEing is done it
can, of course, set-up without current display or
set-up and concurrently display either 1. Text, 2.
Low-Resolution Graphics, or 3. High-Resolution
Graphics. In our detailed example we will des
cribe the Text option, because it requires the least
prior knowledge of the Apple's hardware and pro
gramming. The graphic modes are closely
analogous.

4.2.2 POKEing the Software
EXAMPLES: Changing Printout Speed;
Changing Normal/Inverse/Flashing Mode;
Changing Printout Window;
Changing Cursor Position

You don't need to restrict POKEing to loca
tions in the computer which have direct hardware
impact upon system operation. System operation
is also dependent upon software imbedded in the
system firmware; e.g. the system monitor, BASIC
interpreter and disk operating system (DOS).
POKEs to key parameter locations used by this
firmware can markedly affect what the total
system does. In many cases these POKEs can
achieve exactly the same results as some of the
.system-dependent commands in Applesoft or
Apple Integer BASIC. In other cases they can per
form functions for which specific commands have
not been created.

Often firmware parameters you would like to
POKE to achieve a given effect are the same para
meters you might also like to inquire about using
a PEEK. For example, if you found by PEEKing
that the printout speed had been artificially
reduced (by lowering the speed variable from its
default value of 255), you could restore it without
use of the SPEED command. To do this would re
quire the same knowledge you required .to PEEK
at the SPEED in the first place; i.e. remembering
(or re-looking-up in the Programmer's Atlas) the
fact that'"'Speed is controlled by 'SPDBYT' which
is located at memory location 241 (decimal). This

location contains the two's complement of the
SPEED; i.e. 256- SPEED. It can be reset to max
imum speed (minimum delay) by POKEing
256-255 = 1 into it; i.e.

POKE 241,1

This particular POKE is functionally equivalent
to the SPEED statement

SPEED = 255

Similarly the Programmers' Atlas tells us that the
memory location named 'INVFLG' (INVerse
video display FLaG) will have value 255 ($FF) for
normal video display, 127 ($7F) f~;>r flashing
display, or 63 ($3F) for inverse (white back
ground) display. Thus

POKE 50, 63 is equivalent to the
Applesoft command INVERSE
POKE 50,127 is equivalent to the
Applesoft command FLASHING
POKE 50,255 is equivalent to the
Applesoft command NORMAL

Where an extension of BASIC is built into
Applesoft or Apple Integer BASIC there is usually
little advantage in using a POKE rather than the
extended-BASIC statement to which it is equi
valent. Although Applesoft BASIC includes many
extensions such as the key-word commands
SPEED, INVERSE, FLASHING, and NORMAL,
there are many important and useful functions
available in the machine through the use of
POKEs for which system-dependent extensions
from ANS BASIC (American National Standard
BASIC) have not been created. The Applesoft Pro
gramming Reference Manual contains several
pages of POKEs, but many more may be found
from a careful perusal of the Programmer's Atlas.

Typical examples of those mentioned in the
Applesoft Programming Reference Manual are the
POKEs used to change the text window (the area
within which printing can occur):

POKE 32, desired left edge of window.
Range:0-39

POKE 33, desired width of window
(characters per line)

POKE 34, desired top margin.
Range 0-23

POKE 35, desired bottom margin.
Range top-24

Each of these parameters is used by the system
monitor and/ or the Applesoft BASIC interpreter
to control where printing currently is and is not
allowed to occur. (NOTE: The results of these
POKEs will not be effective until the next time
the monitor uses these locations.) Incidentally,

there is a 'SETWND' (SET WiNDow) subroutine
in the Apple monitor. Unfortunately the Pro
grammers' Atlas tells us that it is really a reset
window subroutine which sets the window to its
standard (default) condition.

There are many other POKEs not explicitly
documented in the Applesoft Programmers' Ref
erence Manual. One of these:

POKE 37,CV

will tell the monitor that the cursor should be
moved to vertical position CV for the next output
operation (regardless of where it might have been
earlier). However, there is one important word of
warning: if you directly POKE a parameter used
by the firmware (as opposed to calling a firmware
subroutine which changes it in the standard way
the firmware intends that it be changed) you may
find occasional strange or pathological results.
First, the POKE will not become effective until the
firmware next uses the parameter - so there
may be a considerable delay before the effect of
the POKE becomes evident. Next, the subroutine
that changes this parameter may have to change
other related parameters at the same time. If you
don't change these parameters you might get un
expected results. Finally, the firmware may itself
change the parameter to a value that it wants
before it uses the parameter the way you wanted
it used, so your change may have no effect.

4.2.3 POKEing Alphabetic/Numeric Information
EXAMPLE: Changing the Screen Display

In the text mode the Apple can display 24 lines
of characters with up to 40 characters on each
line. Each character on the screen represents the
contents of one memory location from the text
page currently being used as the video display buf
fer and hence being displayed.

An extremely detailed description of the or
ganization of the screen display area used for Text
printout may be found in Chapter 14. Just a few of
the basic ideas involved will be introduced here.

The area of memory which is used for the
primary (default) text page extends from location
1024 to location 2047 (decimal); the secondary
text page extends from location 2048 to location
3071. Normally you use and display only text
page 1. However you can arrange to pass output to
text page 2 (which is not being displayed). Then
POKE - 16299,0 changes the display instantly
from that on page 1 to that written into the
memory locations associated with the previously
invisible page 2. POKE - 16300,0 changes the
display back to show the information stored in
memory associated with text page 1.

Chapter IV 23

Since there are only 24 times 40 = 960 display
locations but 1024 memory locations in a text
page, there are 64locations left over for other pur
poses. See Chapter 14 to find out how they are used.

There is a simple formula for assignment of
memory locations to visible locations on the Ap
ple output screen. A small bit of experimentation
would allow you to derive that formula, but in
itially it is easier to use the diagrams given in
Chapter 14 or the diagram of the text screen on
page 16 of the Apple (System) Reference Manual.

At each memory location the 8 bits in the
computer memory provide the ASCII (American
Standard Code for Information Interchange) bit
combination which represents the printed sym
bol at the corresponding location on the screen.
The table of ASCII Screen Characters in the Apple
Reference Manual gives the decimal number
which you must POKE into the specified location

.. to get the desired printed symbol.

NOTE: For standard Apples the character set
contains 26 upper-case letters, 10 digits and 28
special characters (punctuation, etc.) for a total of
64 characters. The ASCII code is a 7 -bit code
which includes 2/\ 7 (= 128) assigned characters
including lower-case letters and a group on non
printing 'control' characters. The Apple keyboard
cannot produce lower-case ASCII letters.

Normally the firmware of the Apple auto
matically converts lower-case letters received
from the outside world into capital letters, but
you can bypass this by appropriate use of monitor
subroutines documented in the Programmers'
Atlas.

You can generate the 'control' characters from
the Apple keyboard by pressing the 'CTRL' key
and the corresponding letter-key concurrently,
but they do not print on the screen. Instead they
perform other functions: for example CTRL-G,
known in ASCII as 'bell', sounds the attention
beeper in the Apple.

Hardware adapters (e.g. the Don Paymar adap
tor) can be installed in an Apple to give it the cap
abilities for handling the full ASCII character set.

Since there are 7 bits in an ASCII character
and 8 bits in a byte (the amount of information
which can be held in a memory location), there is
an extra bit available. This is normally set to a
one for printing characters in the Apple, so the
Apple codes used for POKEing text characters are
normally those with decimal code values 128-255.
When this bit is zero, the ASCII code is mapped
into either an inverse or flashing character.

Let's POKE some examples:

24 Chapter IV

POKE 1024,163: POKE 1063,163:
POKE 2000,163 : POKE 2039,163

will replace whatever character is on the screen of
the Apple at each of its four comers by a '#' symbol.

FOR I= 1448 TO 1487: POKE 1,170: NEXT I

will draw a horizontal line of asterisks across the
middle of the screen.

FOR I = 1 024 TO 2000 STEP 128 : FOR J = 0
TO 5
POKE I+J,160
NEXT J : NEXT I

will put blanks into the leftmost six columns of
the printout screen.

NOTE: Since 1024 is the top left comer, 2000
is the bottom left comer, and the increment be
tween lines is 128, you might easily be forgiven
for assuming that this program segment would
clear the entire left column. It doesn't- just the
top one-third. Why? The screen is interlaced.
Locations 1024-1063 represent the top (or zero-th)
line; locations 1064-1103 represent the eighth
line of the screen; locations 1104-1143 represent
the sixteenth line of the screen. Then there is a
gap of 8 locations - 1144-1151. The contents of
these locations are not displayed. As indicated in
the Programmers' Atlas they are used as 'scratch
pad memory bytes,' each reserved for use by the
peripheral device associated with a given 'slot'
into which peripheral cards can be plugged in the
Apple hardware. Then at 1152 the cycle repeats;
and again at 1280; and again until the whole
screen is covered with the last line beginning a~
location 2000. However, the only locations POKEd
by the FOR ... FOR ... POKE are in lines 0-7. All loca
tions in the bottom two two-thirds of the screen
were skipped over by the increment of 128. To get
the expected result you would have to replace the
middle line of the program with

POKE I +J,160: POKE I +J+40,160:
POKE I +J +80, 160

(The top limit of I could also be reduced to 1920
for clarity in understanding the program, but it
makes no difference in execution.)

4.3
Sometimes You Should Double-POKE

If you want to POKE an integer number larger
than 255, or a memory address in any area of
memory other than page zero, there is not enough
room for your information in a single byte so you
must double-POKE.

4.3.1 Double-POKEing Without Aids

This process is exactly the other side of the
coin from double-PEEKing. Just take the number
which is too large and decompose it into parts
that are individually in the range 0-255. For
numbers up to 256* 256 - 1 (= 65535), this can be
done with two numbers in the range 0-255 and
hence with two bytes and two POKEs, i.e., a
double-POKE. First let's look at the theory.

Two words or bytes of memory can contain 2 *
8 or 16 bits of information; i.e. 256 different
bit combinations. These can be used to represent
the unsigned decimal numbers 0-65535 or they
can be used to represent signed decimal numbers.
The Apple system uses the twos-complement
method for representing negative numbers. With
this method of representation the 16 bits can
represent the numbers -32768 to +32767. The
conversion process is identical, but it is easier to
follow if you think in terms of the unsigned
numbers. To convert between them merely add
65536 to any negative number to get its unsigned
equivalent which uses exactly the same bit pat
tern. To find what must be POKEd into each byte
of a two-byte pair, you must do an integer division
of the number by 256 in order to get the integer to
be POKEd nto the M.S.B. (the More Significant
Byte of the two-byte pair). The remainder created
in the integer division process is POKEd into the
L.S.B. (the Less Significant Bit of the two-byte
pair). If no remainder is created, the remainder is
zero and zero is POKEd into the L.S.B.

NOTE: An integer division is the kind you
learned to do in elementary school before you
learned about decimal fractions. The result of an
integer division is always an integer (whole)
number often with a second integer number (the
remainder). This is different from the division
done conventionally with pencil and paper after
elementary school and the most common type of
division done on desk calculators and computers.
There is no separate remainder; the remainder is
converted to a decimal fraction tagged onto the
result (the quotient).

The required computations are obvious in
Integer BASIC. Division gives an integer result.
This goes to the M.S.B. The remainder (if any) is
provided by the remainder of modulo function. It
goes to the L.S.B.

Applesoft, however, does conventional divi
sions which often give decimal fraction results.
Fortunately, whenever you try to stuff a number
with a fractional part into a location which will
accept only integers, any fractional part will
automatically be chopped off. This what you

POKE will automatically be correct if you merely
POKE the number/256. Nevertheless, it is good
practice to make the integerization explicit by
POKEing INT!Number/256).

4.3.2 Other Ways of Setting Up a Double-POKE

Several utilities have been written to permit
you to double-POKE by using a statement such as:

&,<dec loc>, <address or number > or
CALL 768, <dec loc> , <address or
number> •

where < address or number > is not limited to
single-byte size 10"255), but may be double-byte
size 1- 32768 to + 32767 or 0 to 65535). 768 is
assumed to be the location of the utility. lit is a fre
quently used location for small user-written pro
grams and utilities used with BASIC. Why? If you
are interested, see Section 13.3.)

Except in exceptional circumstances, consider
such utilities to be examples of bringing in a pile
driver to do a tack-hammer'sjob, but you may
find them useful. BASIC code, which if inserted
early in the main program will thereafter allow
you to use th~,'CALL 768' in the fashion indi
cated above, is shown in figure 4.3A. An illustra
tion to implement the'&' is given in figure 4.3B.

1--1
I Figure 4.31\ I
IApplesoft Utility to Allcw M:ldified C1\I,.L Statement to Per~ a D:luble-POKI! I
1---------------------~---------------1
I 10 RI!M. Put this code near start of your main pro;Jram.The ma.chine-languaqel
I subroutine it loods to menory occupies $31)0-325 (rlecimal ·768- 80S I
I With it you can double-Pa<E at any place in yo.tr· PJXXJr;vD by ~ing t
l , a CALL 768,.<I.Dw POKE adtiress>,<Value to be~ -(-327fR to "!"32768!
I or o to 65535)> . I
I 20 AS - "300•·20 BE DE 20 67 00 20 52 1!7 AS so '35 3C AS 51 ~5 30. 20 BE DE I
I 20 67 DO 20 52 E7 AO 00 AS 50 91 3C CB .AS 51 91 3C 60.!11 0823G" I
I 30 !'OR 1•1 ro Im(A$) •POKE 511+1, 1\SC(MID$(1\$, 1,1))H:!B•!iiJlX'l'•I'(X(I! 72,Q•CALLI
I -144 .. . I
I I

Chapter IV 25

1-- I
I Figure 4.38 I
I Applesoft Utility to Allcw a BA~1C Statement Usin} I
I an ' & ' Token to Perfonn a Double-POKE I 1---------------------- ---------1
110 RIM Put this code near start of your main program. The machine-language I
I subroutine it loads to menory occupies $3D0-325 (decimal 768-805). I
I With it you can double-PCI<E at any place in your program by using a I
I &, <low POKE address>, <Value to be POKFd (-32768 to +32768 or I
I o to 65535)~ I
115 POKE 1013, 76oPOKE 1014,0oPOKE 1015,3• RIM Usually POKE 1013,76 can be I

I -- I 120 A$ s "300o20 BE DE W 67 DO 20 52 1!7 AS 50 AS 3C .AS 51 85 30 20 BE DE 201
I 20~D020~~~00A550~3C~ASU~3C60N082W I
130 !'OR 1•1 ro UlN(A$) •POKE 511+1, I\SC(MID$(A$,1,l))+l2Bo!iiJlX'l'•POKE 72,0oCAIL I
I -144 I
1-------------------- -1

The analysis of these programs is quite in
volved, but well within the skills you should be
able to acquire by the end of this book.

You might even consider the analysis of this
code an appropritate 'final exam' on the tech
niques of this book. If you-accept the challenge of
undertaking the analysis, it is helpful to know the
following facts:

1. The BASIC code hides a machine-language
routine that uses software tools from within the
Applesoft interpreter to seize control of the
analysis of the pseudo-BASIC statements. It then
analyzes them, implements them, and returns
control to the next line of Applesoft code.

2. The machine~language code is converted to
pseudo-BASIC by the Lam technique explained in
Section 8. 3.

3. The machine~language code uses as soft
ware tools the CHKCOM routine at $DEBE, the
FRMNUM routine at $DD6T, the GETADR rou
tine at $E7521 and zero-page. memory location
LINNUM at $0050 ..

4 .. Background knowledge treated in Chapters
6, 7, and 19 is important and the routine uses pro
gramming techniques similar to those described
and partially analyzed in Sections 5.10 and 5.11.

Chapter V
CALLs Can Make Things Happen

5.1
CALL -A 'GOSUB-like' Statement
Providing Direct Program-Control Access
to Hardware Memory

5.1.1 The BASIC Idea

CALL is used in both Applesoft BASIC and
Apple Integer BASIC to provide a subroutine-type
transfer of control to a machine-language
subroutine. A CALL that specifies a particular
hardware memory location performs the same
function for machine-language subroutines that a
GOSUB that specifies a particular BASIC line
number does for subroutines written in BASIC.

CALL, like the GOSUB, normally operates
with automatic return at the end of the sub
routine. After the called subroutine has been ex
ecuted, control is passed. back to the next state
ment after the CALL statement.

5.1.2 Formal Description of the
CALL Statement

The CALL statement has the format

CALL< decimal-number location of
machine-language subprogram>

NOTE: Although this use of CALL is common
in microcomputer BASICs, it is not universal.
Some microcomputer BASICs require that the
location be specified in hexadecimal rather than
decimal form.

Even more confusing to a microcomputer pro
grammer may be the use of CALL in some maxi
computer versions of BASIC such as Dartmouth
·BASIC6, Dartmouth BASIC7, and Dartmouth
SBASIC. These more sophisticated versions of
BASIC translate BASIC statements to machine
language via a compiler before beginning to run
the program. This is in marked contrast to most
microcomputer BASICs, which interpret them
one-at-a-time as they are executed.

In this environment, the CALL statement is
used to allow specially written BASIC sub
routines to be treated as separate programs that
may use the same variable names for entirely dif
ferent variables. The main program and these
subroutines have no intercommunication other
than that set up by the subroutine definition
statements and the CALL statement. Thus a
typical Dartmouth BASIC6 CALL statement
might be

CALL "SOLVEIT":A,B,C,X

with 'SOLVEIT' being the name of a BASIC
.subroutine defined outside the limits of the main
BASIC program and A,B,C, and X being variables
passed to it.

In both the Applesoft and Apple Integer ver
sions of BASIC, as well as in most other micro
computer versions of BASIC, a CALL to a particu
lar memory location is a BASIC language state
ment that generates a machine-language JSR
!Jump to SubRoutine) to the specified location.
(NOTE: BASIC uses only decimal numbers while
machine-language instructions use addresses in
binary /hexadecimal form.) Thus the BASIC
statement uses a decimal address which is
automatically converted to binary/hexadecimal
form in the BASIC interpreter.)

It is up to the programmer to make sure that
any pre-conditioning of hardware registers and/ or
memory locations r.equired for proper operation of
the called subroutine has been done in advance of
issuing the CALL statement.

It is also up to the programmer to make sure
that the subroutine execution ends with a RTS
(Return Transfer from Subroutine) statement.

When yolJ forget to use an RTS, it is the
equivalent of forgetting a RETURN statement in
BASIC, but machine language is not as gentle to
the programmer when errors occur as is the
BASIC interpreter. Instead of detecting a problem
and printing out an error indication, the system
may destroy anything in memory at the time.

Under certain circumstances the matter of
transferring control to and from a machine
language subroutine can get quite complex.
You'll have to learn about the 'stack processing'
in the 6502 and the parameter passing conven
tions adopted by the monitor and Applesoft. This
topic is covered in depth in Chapter 11.

5.1.3 Subroutine Transfer of Control Diagram
(Program Mixing GOSUBs, CALLs and
JSRs)

Meanwhile let's telegraph some of the basic
ideas which link the handling of subroutines in
BASIC with those in machine language by con
sidering a subroutine transfer-of-control diagram
which shows the essential similarities of the
various BASIC and machine-language subroutine
calling procedures.

Figure 5.1.3A shows the flow of control on
transfers of control to subroutines

(1) GOSUB Statements
(From BASIC to BASIC subroutine)

(2) CALL Statements
(From BASIC to machine language
subroutine)

(3) JSR (Jump to Subroutine) instructions
(From machine language to machine
language subroutine)

to return control to the calling program you use

(1) RETURN Statements

5.2

(To return from a BASIC subroutine)
(2) RTS Instructions

(To return from a machine-language
subroutine)

Use of the CALL Statement '
Example: CALLing S-y;stem
Subroutines

When an Apple is operating in Applesoft or
Apple Integer BASIC ihere are at all times sitting
inside the Apple a iaige number of machine
language subroutines used by the monitor and/ or
BASIC interpreter. These subroutines are all
potentially available to ahe user via CALL
statements.

'
The capabilities of these subroutines range

from trivial to extremely !powerful and useful.
There is a particulaily large selection of input/
output capabilities and options.

One of the major contributions of the Pro
grammers' Atlas to the typical programmer is to
make these subroutines readily available for
exploitation.

Some of the subroutines which you may find
in the Programmers' Atlas perform trivial tasks.
Samples include the Applesoft subroutine 'OUT
QST' at memory location 56154 (decimal) which
prints out a question-mark, and System monitor
subroutine 'CR' at memory location 64610
(decimal) which outputs a carriage return.

Some of the subroutines which you may find
in the Programmers' Atlas perform very useful

Chapter V 27

tasks which might be entered more conveniently
from the equivalent Applesoft machine
dependent extensions of BASIC. Examples in
clude subroutine 'TABV' at location 64347
(-1189) and 'HLINE' at location 63513 (- 2023).

Yet other subroutines perform functions
which are useful and required by the system, but
do not seem to be accessible from BASIC via the
Applesoft or Apple Integer BASIC machine
dependent extensions of BASIC. These fall into
two major classes: 1. functions which are
documented as capabilities of the monitor; e.g.
MOVE, and 2. functions which are hidden inside
either the monitor or interpreter because they are
needed in the operation of the system but are not
well documented. Often the subroutines perform
their functions very rapidly and with greater flex
ibility than you could with a BASIC program,
even if you knew how to write a BASIC program
to do the task.

Two useful subroutines are 'CLREOP', at
memory location 64578 (decimal), and
'CHRGOT' at memory location 183 (decimal).
The former clears the Apple screen from the cur
rent cursor position to the end of the page. The
latter is a hidden point in 'CHRGET', a very
powerful input routine which Applesoft calls
when it wants another character. 'CHRGOT' dif
fers from the better-known routine of which it is
a part because it does not change the pointer
which identifies where to get the next character.

Finally, the always-available software'in the
Apple II firmware packages provide a wide variety
of practical and useful services for programmers
who decide that considerations like run-time effi
ciency make it worthwhile to write their own
assembly-language or machine-language coding.
These service routines load and save registers,
convert data from one format to another and per
form almost any function BASIC performs from
within a machine-language program.

In summary, there are an amazing variety of
useful subroutines hidden inside both the system
monitor and the Applesoft interpreter. Many can
be used without the slightest knowledge of
machine language_. Others require only minimal
know ledge of machine language.

Many of the simpler ones do not depend upon
setting up any linkages in advance of CALLing
them. Others require some set-up, but usually no
more than can be accomplished by a few POKEs.
In the case of some of the more sophisticated
machine-language subroutines some (or all) of
those POKEs may most conveniently be synthe
sized from two or three (or more) machine
language instructions.

28 Chapter V

5.3 5.4
Passing Parameters: Communication
Between BASIC and Machine-Language
Routines

Traditionally the term 'parameter' has meant
'A constant or variable term in a mathematical
function that determines the specific form of the
function but not its general nature.' When deal
ing with computers this idea is extended from
functions to the more general cases of computer
programs, procedures, ~nd subroutines.

Subroutines often need information or data
from the calling program in order to determine
specifkal,ly how to execute the general procedure
specified by the subroutines. The process of get
ting that information to the subroutine is called
'passing parameters' to the subroutine.

The process is equally important whether the
subroutines are written in BASIC or in machine
language, but it is one that you normally don't
have to pay much attention to when you are pro
gramming in BASIC only. In BASIC (as im
plemented by interpreters such as Applesoft and
Integer BASIC) all variables are treated as part ofa,
common pool which is equally accessable from
both inside and outside the subroutine. Thus
parameters are automatically passed into pro
grams just by using a variable inside a subroutine
which has previously been given a value outside
the subroutine. Similarly parameters can be pass
ed out of subroutines just by using a varaible out
side the subroutine that was evaluated inside the
subroutine.

When you move from BASIC to a machine
language subroutine, such as those available· in
monitor firmware, that machine-language pro
gram does NOT use BASIC names. Thus there is
no automatic communication through the use of
common names.

If you want information to flow between
BASIC and machine-language programs, creating
the channel of communications is your respon
sibility. You,must take some kind of action to set
up a communications link ~ some method of
telling the machine-language routine what infor
mation from outside itself is relevant inside and
vice versa.

We will take up this communications pro
blem in considerable detail using a number of
case studies. First, however, we'll take up a
simpler problem: passing parameters into a
subroutine - in this case subroutines in monitor
firmware - from the keyboard.

Passing Parameters to Monitor Firmware

5.4.1 Passing Parameters from the Keyboard

The Apple Monitor not only provides service
and utility routines to BASIC and the Disk
Operating System (DOS), but it is designed to per
mit the user with convenient direct access to the
computer via the keyboard.

For example, from the keyboard you can ex
amine the contents of any memory location or
group of locationsi change the contents of any
location or group of locations, move the contents
of any block of memory to another location (i.e.
copy it) etc.

One word of warning: The monitor puts you
as close to the hardware of the machine as you are
likely ever to get. At the hardware level the com
puter is a binary device, so the monitor deals with
memory addresses in BINARY form, or to be more
precise, in the more human-conventional HEX
ADECIMAL abbreviations of binary form. Thus
all addresses and values which you may give to or
get from the monitor will be in hexadecimal
form.

Don't let the fact 'that a 'number' which you
give to or get from the monitor may contain the
letters A-F as well as the digits 0-9 shake you up.
(The counting sequence is 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F, 10, 11, ...).Just accept it and
don't let it bother you. We'll get around to all the
theory of binary /hexadecimal numbers you will
need to work at the machine-level later when you
need the information to understand the inner
workings and hidden mechanisms of the com
puter. It this approach bothers you and you want
to understand more about binary /hexadecimal
numbers now, jump ahead and read Section 7.1 or
as much of Chapters 6 and 7 you feel is necessary
to make you feel comfortable.

Figure 20.4A gives a summary of the monitor
commands accessable from the computer's
keyboard. At the moment we are more interested.
in the form and method of communications used
than in the commands themselves.

The keyboard entry features of the monitor
are designed to accept and decode simple instruc
tions which specify what monitor operation is to
be performed and what data is to be used. Some
require no parameters, e.g.

Command Meaning

I Set Inverse display mode.

Others require one parameter, e.g.

Command Meaning

(adrs) Display the contents of
one memory location, the
address of which is (adrs).

If, as in this case, no explicit instructions are
given what to do with the memory location, the
monitor examines it and prints out the contents
of the memory location specified. However if the
cqmmand had been (adrs)G it would GOTO, i.e.
transfer control to the address specified. If it had
been (adrs)L it would LISt; if it had been (adrs)T it
would TRACE, etc.

Other monitor activites require two
parameters, e.g.

Command Meaning

(adrsl).(adrs2) Display the contents of
each location in the range
starting at (adrsl) and
ending at (adrs2)

The monitor keyboard routine is designed to
put parameters which are .keyed in at the
keyboard into a register and/ or a special memory
location named Al if a single parameter is
entered. If two are entered (adrsl) goes to loca
tions Al and (adrs2) to A2 if two are entered.

In this and other monitor commands a period
between adresses [(adrsl). (adrs2)] specifies that
they act as the start and end of a block of
memory.

After the parameters are in place the monitor
looks for a type-of-action designator. If, as in this
case, no other explicit designation is present to
specify what to do, the monitor transfers control
to a block of monitor code which examines and
prints out the range of memory specified by
parameters Al and A2.

However had the command had a type-of
action designator, e.g. (adrsl).(adrs2)W then it
would transfer control to a block of monitor code
which would WRITE the block of memory loca
tions onto tape. If the command had been
(adrsl).(adrs2)R then the monitor would transfer
control to a different block of monitor code which
would READ enough data from tape to fill that
memory from the address specified by the address
parameter in Al to that specified in A2.

There are also monitor commands which
specify three parameters. For example

Command

(dest)cqstart).
(end)M

Chapter V 29

Meaning

Copies the values in the
range (start).(end) into a
destination starting at
(dest).

As before (start) [also known as (adrsl)] goes to
Al; (end) [also known as (adrs2)] goes to A2.
(dest) [also known as (adrs4)] goes to A4. The
type-of-action designator M causes the monitor to
transfer control to a block of code which MOVEs
the block of memory specified by the ad
dress/parameters in Al and A2 to the location
specified the address/parameter in A4. (Had the
designator been V it would have transferred to a
block of monitor code which would VERIFY
whether or not the block starting at A4 contained
the same information as the block Al to A2.1

5.4.2 Passing Monitor Parameters and
Calling Monitor Routines from Inside a
BASIC Program

In Case Study 5.4 we will use the firmware
routine the monitor uses to implement the MOVE
described above as part of a BASI<:; program. We
can use this monitor routine to move any desired
block of information inside the computer more
quickly and more conveniently than if we tried to
write out all the BASIC code to do the same
operation.

To do so we must learn how to pass parameters
(Al, A2, and A4) and call the monitor firmware
from a running BASIC program.

The procedure is simple in principle:
(1) POKE the correct start, end and destination

into Al, A2, and A4. (If you don't know where Al,
A2, and A4 are in memory look them up in the
Gazeteer section of this book.)

(2)CALL the monitor MOVE routine at its
machine-language address. (This address may also
be found in the Gazeteer section of this book.)

The need for this kind of capability and pro
cedure is not restricted to routines built-into the
system firmware, but is equally applicable to
routines which the user him/herself may write or
obtain from other sources.

30 Chapter V

5.4.3 In-Depth Case Study: Calling a Subroutine
with Parameters in Monitor-Specified
Memory Locations.

1
2
3

REM
REM
REM
REM
REM
REM
REM

*
*
*
*
*

CASE STUDY NO. 5.4
WHAT'S WHERE IN THE APPLE

QUICK DECIMAL TO
HEXADECIMAL CONVERSION

*
*
*
*
*

5
6
7
8
9
10
15

REM
HOME
HOME

: VTAB 7: PRINT "ENTER DECIMAL NUMBER";: INPUT N
: VTAB 7: PRINT " DEC= ";N

20 MSP =
30 LSP =
40 POKE

INT (N I 256): POKE O,MSP: REM MSP •> LOCATION 0
N- 256 * INT (N I 256): POKE 1,LSP: REM LSP =>LOCATION 1
60,0: POKE 61,0: REM 0 => PARAMETER A1

50
60
70
80
90

POKE
CALL
POKE
POKE
VTAB

62,1: POKE 63,0: REM 1 => PARAMETER A2
- 589: REM ROUTINE TO HEX PRINT MEMORY FROM A1 TO A2 (0-1)

1064,160: POKE 1065,200: POKE 1066,197: POKE 1067,216
1068,189: POKE 1069,160: REM POKE TO SCREEN "HEX = "
11: PRINT "PRESS ANY KEY TO CONTINUE";: GET R$: GOTO 10

Analysis: 3. Lines 40 and 50 respectively put the address
0 into parameter A1 and the address 1 into
parameter A2.

The best way to start is to look up the memory
locations involved in the Programmers' Atlas:

1. Locations 0 and 1 seem to be usable for
several different purposes.

2. Locations 60 and 61 are often used together
as a two-byte general-usage 'Parameter A1'
for many monitor subroutines.

3. Locations 62 and 63 are often similarly used
as two-byte general-usage 'Parameter A2'
for many monitor subroutines.

4. Location - 589 contains a subroutine
which outputs a block of memory in hex
format using parameters A1 and A2 to ··
specify the starting and ending addresses of
the block.

5. Locations 1064 through 1069 are located in
the middle of text page 1. Anything POKEd
to them should appear as text on the screen
of the Apple.

Now down to detailed analysis of the program:

1. Lines 10-15 clear the screen, tab part way
down, and ask for and accept as input a
decimal number. They then reclear the
screen and print out ' DEC= ' and the
value of the number accepted.

2. Lines 20 and 30 do a computation we have
seen before. They break the integer value of
the number into two byte-sized pieces and
put the more significant part (MSP) into
location 0 and the less significant part (LSP)
into location 1.

4. Line 60 calls the hexadecimal print
subroutine used by the monitor for printout
of the contents of any desired portion of
memory. Parameter A1 tells it to start at
location 0 (where the MSP of the number is
located? and to print the hexadecimal con
tents of memory locations through that
specified by parameter A2, which turns out
to be only through location 1 (where the
LSP 'of the number is located). Thus, only
two locations are printed: that containing
the MSP and that containing the LSP. These
two locations contain the number which
was to be printed in hexadecimal form.

5. Unfortunately the subroutine at -589 also
prints the starting memory location for the
group of values that it prints out. This is un
necessary and confusing in the context of
this use. The problem is resolved by having
lines 70-80 overprint the location on the
screen where this undesired '0000 -' is
printed with the identification ' HEX= '.
Thus the Apple screen now shows ' DEC = '
and the decimal value and immediately
below it ' HEX= ' with the corresponding
hexadecimal equivalent.

6. Line 90 freezes the output on the screen by
stopping the program until the user presses
some key, then goes back to the beginning
of the program to repeat the process.

Several comments are in order. First, the

choice of memory locations 0-1 was purely ar
bitrary. They weren't being used for anything else
and were easy to remember and POKE.

Second, the monitor subroutine subroutine at
- 589 was not designed to de exactly what was
wanted. It printed unwanted output which had to
be concealed by overprinting with ''HEX= ''.

Finally the 'POKEd output onto the screen lines
70 and 80 might better be replaced by a BASIC
'PRINT "HEX=" ' with appropriate preposition
ing by TAB commands. However, this made a nice
illustration of the direct POKE output onto the
screen, so why not use it?

5.5
A More General View of Passing
Parameters Between BASIC and
Machine-Language

If many of the routines in the monitor need
parameters to tell them exactly what to do, and we
are going to use these machine-language routines
in our BASIC programs, then we must learn how
to pass parameters to them within a running
BASIC program.

There are many, many options for passing
parameters between programs. Sophisticated pro
grammers may or may not recognize such differing
concepts as passing parameters by name or by
value; passing via memory, via registers or via a
stack; passing directly or passing indirectly via a
pointer. Such sophistication is unwarranted here
since the intended audience includes many wh~
know nothing of the machine-language programm
ing techniques which are essential background to a
meaningful discussion of many of the potential
options. Thus we will take a very simple-minded
approach.

5.5.1 What is Passed?

There are two basic ways of passing informa
tion into (or from) a machine-language program.
You can pass the data itself or pass a pointer - an
address which points to the location where the
data may be found.

Whichever way you use the BASIC program
and the machine-language program must be writ
ten to the same interpretation. The machine
language of the microprocessor in the Apple has
both direct and indirect methods of addressing.
This permits either method of specification to be
used with comparative ease. (The relevant theory
is described in Chapter 7. J

Chapter V 31

Internally the larger, more sophisticated and
important data handling routines in the system
firmware tend to specify information by address
pointers.

For example, the monitor routines in Case
Study 5.4 had you pass in addresses which specified
the memory locations of the data to be moved mto
A1, A2, and A4. In this case, of course, the ad
dresses may be thought of as the 'data' subroutine
needs, but it is important to keep your eyes open
for situations where the machine"language pro
grammer's choice is not so clear-cut and obvious.
Be careful! It is possible - and sometimes very
easy - to confuse the address where data is
located and the actual data values in that location.

5.5.2 How It Is Passed

We will consider four basic options:

1. Passing parameters via addressable memory
locations

i.e. BASIC and the machine-language program
agree to use the same memory location for the
same information. The BASIC program puts the
information there before CALLing the machine
language subroutine or the machine-language
subroutine puts the information there before
returning control to BASIC.

2. Passing parameters via hardware registers
(Not Addressable in the Apple's micro

processor)
i.e. the BASIC and machine-language progams

agree to exchange information in special hardware
locations known as 'registers which are not ad
dressable (and hence not directly accessible by
PEEKs and POKEs), but are accessable by means of
machine-language instructions and firmware sub
routines.

3. Passing parameters via the system stack
This is a method we will touch on only lightly

in this book. (We will use the technique in a pro
gram in Section 5 .10) This technique is of special
importance to interrupt processing, recursion and
re-entrant coding.

4. Miscellaneous methods of passing
parameters

Two miscellaneous methods we will touch
upon lightly are (1) communications via the '&'
token in Applesoft and the related '&-vector' (ac
tually a JUMP instruction) in the monitor-vector
page, and (2) communications via the USR(J func
tion, a function which combines a CALL capabili
ty with the ability to pass a single real (floating
point) variable.

We will cover the first two options in depth
with explanations and case studies.

32 Chapter V

5.6
Passing Parameters Via Preagreed
Memory Locations

5.6.1 Overview

An important method of achieving com
munication between a BASIC program and a
machine-language program is preagreement upon
the use of particular memory locations by the
machine-language program. Then BASIC can put
things into them whenever required by POKEing
then they will be available to the machine
language program whenever it is CALLed.For com
munication back from the machine-language pro
gram all BASIC need do is PEEK at the contents of
the locations after control is returned to it.

This was the technique actually used in Case
Study 5.4. The BASIC program and the monitor
agreed upon the locations to be used for parameters
A1, A2, and A4.

If you determine from the Atlas or Gazetteer or
some other source that a particular firmware
routine uses specific memory locations for
parameters that control its operation, you can
just POKE the required values into them before
CALLing.

If you determine that the firmware routine
leaves desired results in particular memory loca
tions, you can just PEEK at those locations to ac
cess the results.

5.6.2 Some Areas Which Contain Many
Standard Common-Agreement Locations

Much of page zero of memory (memory ad
dresses $0000-$00FF or decimal 0-255) is oc
cupied by parameters used by the Apple system
firmware; i.e., the monitor, Applesoft, and In
teger BASIC interpreters and the Disk Operating
System.

There is another important group of locations
associated with hardware input/ output opera
tions and the peripheral 'slots' on memory page
192 (see Chapter 18 for details).

In earlier chapters we have already PEEKed
and POKEd at some of the locations in these two
memory pages. However, there are many, many
more, some of which give you access at the most
intimate level to the inner workings and hidden
mechanisms of the Apple hardware-software
system.

Most of the memory locations in page zero are
permanently assigned to particular functions.
However, many of these functions are of suffi
cient generality that they can be used as a useful

medium of communications as well. These in
clude the following:

1. Monitor general usage subroutine parameters
A1 through A4.

2. The integer number (16-bit) pseudo-registers.
(These include the Applesoft 16-bit pseudo
accumulator AC plus its extension XTND and
its auxilliary AUX.

3. The Applesoft Floating Point Accumulator
(FAC).

4. The 'Sweet-16' pseudo-registers RO through
R15. (Sweet-16 is a 16-bit pseudo-computer
available to Apple users via an interpreter built
into the non-autostart version of the Apple
system monitor. J

5. The general-usage low-resolution graphics
parameters identified in Chapter 14.

6. The general-usage high-resolution graphics
parameters identified in Chapter 16.

7. Some of the key internal information-handling
parameter locations in the Applesoft Inter
preter such as LINNUM, TXTPTR, etc. Care
ful use of such locations (perhaps together
with some of the Applesoft internal infor
mation-handling routines) can make the cur
rent or next line of Applesoft code or Applesoft
variables or strings available not just to
BASIC, but to machine-language routines as
well. (Such techniques can be extremely
powerful. They are, for example, used in the
program of Figure 5 .lOA. J

Since all these locations mentioned are in ad
dressable memory, they are directly accessable by
means of PEEKs and POKEs. BASIC programs can
set up parameters in them by means of POKEs
before a machine-language subroutine is called
and the values of parameters put into them by
machine-language programs can be obtained by
PEEKs in BASIC programs after control is returned
to BASIC. The techniques involved were illus
trated in Case Study 5.4 (Section 5.4.3).

5.6.3 The Simulated Registers
In Addressable Memory

In addition to the built-in hardware registers,
the Apple system has a number of simulated
registers which Applesoft or the system monitor
create in addressable memory. Many of the truly
general-use parameter-passing locations are ac
tually doing double-duty as simulated registers.
That means that they are used not just for com
munications but as locations where significant
processing occurs as well.

Whereas hardware registers have machine
language instructions which can be used to load
from memory and unload or store information in
them back into memory, simulated registers do
not have built-in hardware instructions available
to load or unload them. However, they normally
have firmware routines which can be used for the
same purpose, and these routines can be found in
the Atlas and Gazetteer sections of this text.
Since these simulated registers exist in ad
dressable memory they can also be accessed by
means of PEEKs and POKEs.

The special information-handling routines for
the simulated registers can be particularly
valuable when you are passing data (as opposed to
the addresses of data) and dealing with real
variables (floating point numbers). The format of
real number data is messy enough to convert to
and from to make direct POKEing and/ or PEEK
ing a royal pain. When dealing with pseudo
registers and parameters which must be in the
real-number (floating point) format, use the
register-handling routines (which may be found
in the Atlas and Gazetteer parts of this book) in
preference to direct POKEing. NOTE: When
using real (floating-point) parameters don't
neglect the possible convenience of using the
modified CALL of Section 5.10 or the Applesoft
built-in function USR(P) of Section 5 .11.2.

5.7
Discussion of Passing Parameters
Via Hardware Registers

5. 7.1 Hardware Registers in the Apple

Registers are very special hardware locations
in the central processing unit of the computer
where information can be both processed and
stored.

The Apple has five hardware registers of
special importance to machine-language pro
grams. They are:

1. The A-register or Accumulator
2. The X-register or X index-register
3. The Y-register or Y index-register
4. The P-register or status register, and
5. The S-register or stack pointer

The special properties of these registers will
become obvious in Chapters 6 and 7.

Registers are so much at the heart of machine
language programming that it is natural to want
to communicate with and exchange parameters
between BASIC and machine-language programs
using information in these registers.

Chapter V 33

In some computers these registers are ad
dressable as memory locations. This would per
mit you to access them directly by means of
PEEKs and POKEs. In the Apple's MOS6502 cen
tral processor they are not addressable and you
cannot directly access them in this way. In Sec
tion 5. 7.2 I will discuss several approaches you
can use to access them.

5.7.2 Major Options for Passing Parameters
To and From Hardware Registers

In the Apple we have three major ways for a
BASIC programmer to get information to or from
machine-language code via registers:

1. The Direct Approach
Use the hardware instructions designed- and
built -"- into the Apple to load the registers
from memory or to unload the contents of
registers to memory. Those who suffer from
machine-language phobia will not like this ap
proach, but it is quite simple - even for non
programmers in machine language.

2. The Monitor SA VB/RESTORE Approach
Use monitor subroutines which are designed to
SAVE the contents of key registers to memory
and to RESTORE the registers from memory to
load or unload the registers.

3. The Modified CALL Approach
Use a special machine-language program
which, in effect, modifies the Applesoft CALL
statement so that it accepts modified CALL
statements which include within the CALL
itself the parameters to be loaded to the hard
ware registers.

5.8
The Monitor SA VB/RESTORE Approach

5.8.1 The Concept

We consider the Monitor SA VB/RESTORE ap
proach first because it requires no use of machine
language. It takes advantage of the fact that the
system itself must occasionally save and restore
the status of its registers and that it has firmware
subroutines which allow this to be done in ad
dressable memory.

The steps involved are simple:

1. CALL -182
This calls the monitor SAVE routine at
memory location $FF4A. This routine saves
the current contents of the A-register in
memory location $45 (decimal 69), the
X-register in $46 (decimal 70), theY-register in

34 Chapter V

$47 (decimal 71), the P-register in $48 (decimal
72), and the S-register in $49 (decimal 73).

2. POKE Memory Where Registers Stored
Change those registers which you wish to load
by means of POKE statements. For example, if
you wish to set the A-register to 5, the
X-register to 1, and the Y-register to 0 then
POKE 69,5: POKE 70,1 :POKE 71,0.

3. CALL -193
This caHs the monitor RESTORE routine at
memory location $FF3F. It returns the SAVEd,
but altered, information back to the registers.

5.8.2 In-Depth Case Study:
Analysis of an Animation Technique
Using Fast Copying and Display Change
And the SAVE/RESTORE Method for
Loading Hardware Registers

There are occasions when it is desirable to
animate a display, whether it be text, low
resolution graphics, or high-resolution graphics.
Usually the animation requires a new picture
which has some changes from the previous pic
ture but, for the most part, is essentially the same
as the old picture it replaced on the screen. Often,
if the changes are made incrementally in full view
on the screen, they draw too much attention to
themselves and to the partially-altered state of
the display and the desired visual effect is lost.

Finding a method of solution for this problem
requires some knowledge about how graphics in
general and Apple graphics in particular operate.
You may easily have picked up the necessary
background from reading the Applesoft program
ming manual you received with your Apple com
puter, or you may get a thorough briefing by
jumping ahead and reading the chapter(s) on
graphics which appear later in this text. (You
might find it useful to read in Chapter 19 about
the 'soft switches' and 'toggle switches' used in
conjunction with graphics.)

However, you may wish to accept on faith
that the key to solution of the animation problem
is in the two-display-page capability in the Apple.
This is available for text, low-resolution graphics,
and high-resolution graphics. In each case you
can show one display page and at the same time
be writing (invisibly) on a second page that is not
then visible.

You can solve your problem by writing or
drawing onto the primary display page (page 1),
then

1. Copy the primary display page (page 1) to the
secondary display page (page 2). The copying
has no visible effect upon the picture being

displayed.

2. POKE the page-display switch so that visible
display occurs from page 2. (Page 1 is now in
visible.) You are showing the same picture, but
from a different location inside the computer
than that where the information was originally
put.

3. Modify page 1 at leisure. When the modifica
tion is complete, cycle back through the same
1, 2, 3 process again, making sure that the first
step each time is to POKE the page-display
switch back to page 1 so that you are displaying
from it while the copying occurs.

rfine theory, but does it work in practice? Not
'totally. It takes so long for a BASIC program to
copy a display page that you don't really get to
change the picture often enough to get animation
effects.

However, moving a block of memory is
something the computer must do quite often as
part of its internal housekeeping operations. In
fact, in the discussion of monitor capabilities in
Section 5.4.2, the existence of such a routine was
explicitly mentioned. There must be firmware in
the system monitor to do this task if only we can
find it and find a way of setting up the necessary
parameters before calling it. As a high-usage
machine-language routine it is likely to be well
written and fast, probably much faster and in
volving much less wasted time and overhead than
any BASIC program we could write.

A quick look in the Gazetteer under MOVE
shows that there is indeed such a routine in the
monitor. It uses the monitor general-usage
parameters A1, A2, and A4. Great! We know how
to use those, so we have our problem solved.

Nope! The description says that we also must
set theY-register to zero. We don't want to do any
machine-language programming, at least not yet,
so let's try the SAVE/RESTORE technique to set
up theY-register:

CALL -182: POKE 71,0: CALL -193

1. CALL -181 copies the registers into locations
69 through 73 with the Y-register copied into
location 71.

2. POKE 71,0 puts 0 into location 71, the location
where theY-register was stored.

3. CALL -193 restores the registers to their
original value (except that the contents of 71
which go to the Y-register are now 0 rather
than the original value).

Thus we are ready to complete the re-

quirements for set-up of the subroutine we hoped
to use.

Let's look at a highly documented version of a
program to do the desired task:

1--l
I F'iqure 5 .8A I
I Fast Page ~e for Animation (Using ·s~VE' arrl 'RES1DRE' for Register Set-Up) I
1--l
I Main Proqr;w - Cre<'\te desired displa':.' on display P•Olge 1 I
I I
I 100 0')51JB "iOO : RFM Go to subroutine which switches display to page 1 (not !
I necessary first time thru, tot necessary thereafter), I
I copies p.'\qe 1 to pi\ge 2 while oaqe 1 is beinq displayed, l
I then after rrove is ccmpleted r'l.isPVtys same picture fran I
I P"'le2 I
I I
I Main Prcqr;vn - NoN make desired changes invisibly on paqe 1 while p3.ge 2 I
I is beifY3 displayed I
I I
I 200 01SUB 500 :REM Display mx1ified picture, goirq thrOUCJh same process, I
I first displaying it fran paqe l, rrovirq it to p.ctge 2 ;yrl then I
I displaying it fran p3..ge 2 ...mile page 1 is being rn::rlified I
I Flepeat O:SUB 500 each time a new picture prepa.reCI arrl ready I
I to be displayed I
1 •••.••••••••••••• 1
I 500 REM Animation Subroutine I
I 510 JUC:E -16300,0 :REM Disnlay page 1 I
I 520 Pa<E 60,0 :POKE 61,4 :REM tb..Jble-fQ<E oo.rameter Al=l024 (!';tart of text/ I
I l..Dw-Res Graohics paqe 1.) Change to Al:::d3192 if ~tigh-Res I
I 530 PIJKE 6?.,255 :R)K.E 63,7 :REM Cbuble-Poke parameter 1\2=2047 (Errl of text/ I
I l.DN-Res Graphics page 1). Change to J\2=16383 if liigh-Res I
I 540 PCJ<.E 66,0 :fq(E 67,8 :REM I:Ouble-FO<E paro3!1leter A.4=2048 (Start of text/ I
I l..cM-Res Graphics page 2). Change to M=l63F:\4 if '-iigh-Res I
I 550 CALL -lR2 :POKE 7l ,0 :CALL -193 :REM Save registers: reset sa.ved Y-reg I
I to zero: Restore Registers. Net effect: Set Y-reg to zero J
I Parameter set-up for 'r-oJE' subrcutine rot~ ccmplete I
I 560 ou..L -468 :REM ~ (copy) display peqe 1 to diso1ay page 2 I
I 570 IUCE -16299,0 : RFM Disolay fran page 2 arrl continue digplayirg fran it I
I tilt il next t iJre yo.J enter this subraJtine I
I sao RE1UIN I
1--------------------------------- I

Notice that in this case study we had a mix
ture of parameters which were directly accessible
in memory by means of POKEs and one
paramete!f which was in a register and therefore
was not directly accessible to POKEs {or PEEKs).

Many of the machine-language routines,
especially the, smaller ones, require you to set the
A-, X-, and Y-registers. The metHodology would
be identical except that you would POKE the
desired set-up values into locations 69, 70, and 71
between the CALL -182 and the CALL -193.

If you were sure that all registers you did not
POKE had values which would be disregarded you
could eliminate the CALL -182. However, the
time and memory penalty for having it present
unnecessarily is small and the possible penalties
for leaving it out when it really is needed to avoid
unintentional alteration of the registers can be
very large. Thus, prudence dictates that you be
very sure before you drop its use.

5.9
Direct Loading of Hardware Registers

5. 9.1 The Concept

The direct approach is through the use of
machine-language instructions. Don't panic! It's
simple. If you don't like this approach after
you've tried it, you always have the SAVE/

Chapter V 35

RESTORE approach which doesn't require any
machine language to fall back upon.

The Apple's microprocessor has a number of
very simple and elementary instructions which
will move information into and out of these
registers ~ instructions that can easily be con
verted into POKEs and thus incorporated into a
BASIC program. Among the available instruc
tions are:

LDA- LoaD Accumulator
{from a specified memory location)

LDX - LoaD X-register
{from a specified memory location)

LDY - LoaD Y -register
(from a specified memory location)

ST A - STore Accumulator
{in a specified memory location)

STX - STore X-register
{in a specified memory location)

STY - STore Y -register
{in a specified memory location)

In machine tanguage these instructions con
sist of a single-byte operation code followed by a
one- or two-byte hexadecimal address. You merely
look up the hexadecimal form of the operation
code, use the hex = > decimal conversion table
we have previously used (Chapter 3) to convert it
to decimal and POKE it. If you already know the
decimal address where you wish to get or put the
information, no conversion is needed. Just POKE
(or double-POKE) it directly.

The process is surprisingly simple - even if
you don't know how to program in machine
language. Simple enough that I am willing to put
it here before any discussion of machine-language
programming.

5.9.2 In-Depth Case Study:
Analysis of a Fast Data Copy Program
Using the Direct Method for Calling
A Subroutine Requiring Set-up of
Parameters in Hardware Registers

This program is a fast data copy program
which moves or copies an arbitrary block of infor
mation beginning at BEG and ending at EN to a
new location starting at DEST. The same monitor
routine used in Case Study 5.8.A is used.
However, a distinctly different method of set-up
is used for the hardware register {Y -register in
both cases). In the previous case study the in
direct method was used and the register set-up
was accomplished by the line of code:

550 CALL -182: POKE 71,0: CALL -193

In this case a tiny machine-language program is
written and converted into POKEs to accomplish

36 Chapter V

the same task. The corresponding line of code
which sets up the Y -register is the following:

10 POKE 768,216:POKE 769,160:
POKE 770,0:POKE771,76:POKE 772,44:
POKE 773,254

Now let's analyze this program as if we had
never seen it before and had no idea of its con
tents or method of operation.

1 REM ****************************
REM * *
REM * CASE STUDY NO. 5.9 *
REM * WHAT'S WHERE IN THE APPLE *
REM * A FAST DATA COPY PROGRAM *
UM * *
REM ****************************

2
3
4
5
6
7
8
10
20
30
40
50

REM
POKE
POKE
POKE
POKE
CALL

768,216: POKE 769,160: POKE 770,01 POKE 771,761 POKE 772,44:
60,BEG - INT (BEG I 256) * 256: POKE 61, INT (BEG I 256)
62,EN - INT (EN I 256) • 256: POKE 63, INT (EN I 256)
66,DEST - INT (DEST I 256) • 2561 POKE 67, INT (DEST I 256)
768

POKE 773,254

Analysis:
In a quick overview we note the following:

1. The first line POKEs information into
memory locations 768-773.

2. The next 3 lines each do similar computa
tions of the type we have seen before: break
ing a number down into two bytes - a more
significant part, the quotient of an integer
division by 256, and less significant part,
the remainder of integer division by 256.
First the computation is done on the value
of BEG (the BEGinning of the block to be
moved); next it is done on the value of EN
(the ENd of the block to be moved); and
finally it is done on the value of DEST (the
DESTination of the block to be moved).

3. The results of these computations are
POKEd into memory locations 60, 61-62,
63, and 66, 67. Finally,

4. The last line CALLs (transfers control to)
memory location -768, the first location
into which something was POKEd at the
beginning of the program. Since the last line
transferred control to it we may suspect that
what was POKEd into location 768, and the
locations following it, was a tiny piece of
program.

Now let's begin our normal analysis using the
Programmers' Atlas:

1. At memory location 7 68 in the Atlas, we
find the indication that the block of
memory starting at that location is often

used as a convenient location for user
written programs. The suspicion is rein
forced as a working hypothesis, but not ful
ly confirmed.

2. Locations 60 and 61 are listed together as a
pair of 8-bit bytes: AlL and AlH. The L
denotes the Low (or Least Significant Byte
- LSB) and the H denotes the High (or Most
Significant Byte - MSB) of two bytes nor
mally used together to form the two-byte
(16-bit) parameter Al. The Programmer's
Atlas describes Al as follows: "Monitor
general-usage subroutine parameter A.
Many users include source pointer for
monitor move subroutine." (A 'pointer' is
an address which 'points' to a given location
in memory.)

3. Line 20 uses variable BEG (for BEGinning)
to compute the address of the beginning of
the block of memory to be transferred, and
puts it into the same memory locations as
those used for general-usage parameter Al.

4. Line 30 performs similar computations on
EN (the ENd address of the block of memory
to be moved and puts the results into the
same location used by monitor general
usage subroutine parameter A2.

5. Line 40 does the same again with DEST (the
DESTination address) and puts the results
into monitor general-usage subroutine
parameter A4.

6. Could the MOVE subroutine, which is pre-

sent as part of the monitor any time the
Apple is running, be at the heart of the
'FAST MOVE' capability? Again we have
preliminary suspicions, but lack confirma
tion. However, there is only one more line
to the program. It does not call location
65068 or anything readily associated with
-468, or with the 'MOVE' routine,
wherever that may be. Instead it calls loca
tion 768, the first of such locations into
which we POKEd something. Too bad! You
can't win them all! However, let's not be
too discouraged.

7. A CALL is a subroutine-type transfer of con
trol to a piece of machine language code, so
let's see what happens if we interpret the
POKEs in line 10 which begin with a POKE
to location as machine-language. This in
volves a conversion from decimal format to
machine-language format. Perhaps they will
make sense as a program, even though it
seems unlikely that a program so short
could accomplish block move.

8. The POKEs in line 10 do indeed describe a
machine-language program, beginning at
decimal location 768, i.e. hex location
$300. For those interested in the mechanics
of this program, enter the monitor (call
-151) and disassemble starting at location
$300 (300L).

9. We can analyze this code by using our
single-byte hexadecimal = decimal conver
sion table:

POKE 768,216 = 300: 08
POKE 769,160 301: AO
POKE 770,0 302: 00
POKE 771,76 = 303: 4C
POKE 772,44 = 304: 2C
POKE 773,254 305: FE

Now we could go to the table of machine
language instructions in Chapter 6 or in the Apple
Reference Manual and look up what these hex
adecimal codes become when they are acted upon
as computer instructions.

5.10
Modifying the 'Call' Statement to Include
Parameters to be Passed

5.10.1 Concept

For the Modified CALL approach a short
machine language utility program is written to
allow a modified version of the Applesoft CALL to

Chapter V 37

pass parameters to the hardware registers. The
modified CALL first acts like a standard CALL to
this utility. It transfers control to the utility
program which uses software tools documented in
the Atlas and Gazetter which are in the Applesoft
interpreter to analyze the remainder of the non
standard CALL statement. As this particular utility
analyzes each parameter it temproarily pushes the
parameter to the system stack. Then it pops the in
formation off the stack and uses it to load each
register as required. With the registers loaded it
transfers control to the subroutine to be CALLed.

The machine-lanaguage utility program can be
converted into pseudo-BASIC and imbedded
within the BASic program or kept as a binary file
and BLOADED as a patch to Applesoft.

Notice that the utility uses software tools
available in Applesoft to do most of its work and
that the program knows enough about how Apple
soft stores and handles BASIC commands to skip
around trouble which would normally occur from
putting a non-standard CALL into Applesoft and
letting Applesoft analyze it.

5.10.2 The New Applesoft 'CALL'

The purpose of t his Applesoft Utility program
is to make it easier for Applesoft BASIC program
mers to load registers by creating a new type of
BASIC 'CALL' statement which allows them to
specify the parameters to be loaded to the A-, X-,
andY-registers. Conventional CALL statments are
not affected.

The utility may be entered as a few lines of
Applesoft BASIC code (as shown in Figure 5.10A)
imbedded in your Applesoft program, or treated as
a binary patch to Applesoft, saving the 32 bytes of
its machine-language version as a binary file and
BLOADing the file before using the new feature of
Applesoft.

Once the utility/patch is in place you will be
able to use the following new form of the Applesoft
'CALL' statement:

CALL origin, A-expr, X-expr, Y-expr, location
where

origin = Decimal address of the entry to the
utility program

A-expr = A single byte integer (0 <integer=
< 255) or any variable or expression. The A-register
or accumulator will be loaded with the parameter

X-expr = Same, but the X-register will be load
ed with the parameter

Y-expr = Same, but theY-register will be load
ed with the parameter

location = Decimal address of the machine
language subroutine to be called with the specified
parameters.

38 Chapter V

5.10.3 The Utility Program (or Binary Patch to
Applesoft) which Implements the
New 'CALL'

The machine-language utility program is a
variant of one developed by C.K. Mesztenyi
published in the Spring 1981 Apple Orchard. Its
heart is a machine-language program shown in
heavily-commented assembly-language form in
figure 5.10B.

Even though it creates an extension to the
'CALL' capabilities of Applesoft, you might
wonder why I put an assembly-language/machine
language description of fairly sophisticated
machine-language program at this point in the
book - Before I have introduced much about
machine-language.

There are several parts to the rationale: (1) it is
a useful software tool, (2) you don't need to know
any machine language to put it into your BASIC
programs or use it, (3) it fits neatly into the subject
matter of this chapter, and (4) it is also a means of
demonstrating the value and power of using small
amounts of machine-language as a supplement to
an Applesoft program while hiding it away to look
and act like a part of the BASIC program.

In a sense the presence of ~he assembly
language/ machine-language program here is a
motivator for BASIC programmers to stick with
me through the chapters onarchitecture/machine
language in order to learn how to do better BASIC
programming. After you read Chapters 6, 7, and 8
you will find reading and understanding this pro
gram should be quite easy. After you read Chapter
19 you may be able to understand it at a much
deeper level.

The secret to this program's simplicity and
brevity (only 32 bytes in machine-language form)
is that its author understands how the Applesoft
interpreter works and how to use pieces of it to do
much of his work for him. Using pseudo
instructions almost as a form of self
documentation, he tells the program how to find
the zero-page LINUM location ($0050) of the next
BASIC instruction (so that it can get back to the
BASic program easily) and that uses four firmware
routines: FRMNUM ($DD67), CKHCOM
($DEBE), GETBYTC ($E6F5) and GETADR
($E752). These are routines used by Applesoft
itself to analyze its instructions. This program is
activated when a non-standard version of the
CALL statement beginning with its location in
memory appears right in the Applesoft program,
and uses Applesoft's own software tools for analyz
ing this very special CALL (and to keep Applesoft
from discovering the syntax error). It is an ex
cellent example of the techniques advocated

throughout this book.

Applesoft code which puts the entire machine
language utility into memory at location $300 (768
to decimal-oriented BASIC) is shown in figure
5.10A. Note that the 32 bytes which consitute the
entire machine-language program fit into Pseudo
BASIC line 702. Also note that 3 of the 6 lines in
the program are REMs which can be removed
without affecting the operation of the program.

Incidentally, both the BASIC and machine
language parts of the program are deisgned to per
mit relocation. This means that the BASIC lines
can be put anywhere in the BASIC main program.
It also means that the $300 which specifies where
the machine-language subroutine will be located
may be changed to any value which will put the
machine-language code into locations available for
machine-language use - without any . other
changes being necessary to readjust the program to
its new location in memory.

1-------------------------·---------
1 Figure 5 .lOA I
I A:pplesoft Utility to All<M an Additional CALL Statsnent CapMJle of Passing!
I Arguoonts to Machine-Lar>}uage Subroutines Used in Applesoft Programs I
1----·--------------- I
I 700 REM Line 702 sets A$ to a ncnitOr string that rep<'esents the loading I
I 701 REM address ($300)arrl the program to be loaded (expe$Sed as hex I
I digits after the colon) I
I 702 A$ = "300:20 F5 E6 8A 48 20 F5 E6 8A 48 20'F5 E6 8A 48 20 BE DE 20 671
I 0020Hmffi~ffiAAffi~moo~ I
I 703 REM Line 704 Mls ~tor Camlands for .retunoJ to;Applesoft: Line 705 I
I a::pies A$ into the keyboard input l:>lffer, resets status I
I 704 Ali ~ Ali + ''N D823G" I
I 705 FtlR I•l '10 LI!N(A$):POKE 5ll+I, ASC(MID$(A$,I,l))+l2B:NEXT:POKE 12.0: I
I CALL -144 I
1----------------- I

1-------------
1 Figure S.lOB
I AssE.'!fbly- and Machine-Language Li.stil'X} of Register-Loading
I utility /Applesoft Patch
1------------- ----------
1 Pseucb-InstructiCIO.s Used to Pre-Define Interface with Firmware (toJ:> ML
I (NO ML Created)
ISyntx:>lic ICOnnent
IPseudo-Instr I I
1 ... 1
I LINNlf.1 mu $50 Where to find MSIC line tlUI"''tJer of next ~IC instruction I
I1"1'14NU! mu $0076 ~~here to fin:! subro.1tine to convert fonm.llas to n>riJers I
lrn:Ka:M FDU $IEBE Where to firrl subroutine to check cxnmas I
\~ FX)U $E6F5 Where to firrl subroutine to get expression, eval & put I
I into x-Reg I
I<E~'>'.m mu $E752 ~ere to fin:! subro.ltine to convert rumt>er to 2-byte I
I OOdress form I
I ~ $300 AssE!lt>le =:le to be used at merrory location starting at I
I locn $300 I
I OOJ $300 l>.Jring Assanbly process actually put it a location $300 I
I I
I l'.ssent>l y-Ianguage Syntx:>lic Instructions arrl the Machine Lar>}uage Bytes I
I they generate I
1--------------------- I
lsyntx:>lic !Machine Lar>}uage I COnnents I
I Instructions I I=n I Bytes I I
1 1 1 1 ... 1
tJSR ~ 300 ~ 20 F5 E6 Get first parameter ,evaluate it, CCl'lVert I
I to bytes =>X-Reg I
ITX!\ 303 : 81>. lotNe it fran X-Reg 1ohere GE'l'BY'K: left it I
I to l'.cclmllator I
!PIA 304 : 48 Push it onto stack(makes program relocatbll
I JSR GE'l'BY'K: 305 : 20 F5 E6 Repeat for 2n:l parameter I
ITX!\ 308 , 81>. I
l!>tl'. 309 , 48 I
IJSR GE'l'BY'K: 301'. : 20 F5 E6 Repeat for 3rd parameter I
ITX!\ 3oo , 81>. I
l!>tl'. JOE ' 48 I
I JSR ffiKcr.M 30F : 20 BE DE 4th param: check for ccmna present • I
I Gat re<rly for param I
IJSR ~ 312 : 20 67 DO Evaluate it as a IlUI't'ber l
IJSR <EI'>'.m 315 ' 20 52 m Convert to address bytes I
I PIA 318 : ffi Pull 3rd par am fran stack to I'.-reg I
ITI'.Y 319 : N.l M:Ne 3rd param fran 1'.-Reg toY-Reg I
I PIA 311'. : ffi Pull 200. par am fran stack to 1'.-reg I
ITAX 31B : AA lotNe 2n:l param fran 1'.-Reg to X-Reg I
IPIA 31C : ffi Pull lst param fran stack to 1'.-Reg: I
I All re:Jisters loaded I
IJMP(LINNtM) 310 : 6C 50 00 Jl>lqJ to(line nunt>er of)next BI'.SIC instruct!
1---------------------------------1

The Lam technique used in figure S.lOA for
tricking the monitor into stuffing the machine
language program (figure 5 .lOB) into a BASIC pro
gram in such a fashion that it can be executed as
part of a running BASIC program and then return
control back to the running Applesoft program is
described in detail in Section 8.3 (Tricking the
Apple Monitor ...).

Want a good educational mini-project? By the
end of this book you should be able to figure out
the whole story of what is happening not only in
the process of stuffing, but in the utility program
itself. You will want to decode the Hex instruc
tions using figure 6.5B; look up in the Part II Atlas
the called subroutines and the zero-page locations
used; and check in Section 19.5.3 how the Apple
soft Interpreter represents the CALL instruction.
The task is detailed and onerous, but you will
learn a great deal about putting the ideas in this
book into practice if you decide to undertake it.

5.10.4 Example: Use of the New CALL with
Monitor Subroutine P R N T A X as a
Quick Decimal-Hexadecimal Converter

An example of the use of this utility would be a
simple decimal = hexadecimal converter which
consists of no more than one of the new modified
'CALL' statements.

CALL 768, Vl, V2, 0, 63809

converts both Vl and V2 (which can be expressed
as decimal numbers, variables or even as
arithmetic expressions to be computed) to hex
adecimal and prints the hexadecimal answers on
the computer screen!

Control is initially transferred to 768 ($300),
the location of the utility. It sends Vl to the
A-register; V2 to the X-register and 0 to the
Y-register.

Then it transfers control to 63809 ($F941), the
monitor PRNT AX routine. This routine prints the
contents of the A- and X-registers in hexadecimal.

In an additional suggestion, sure to gladden the
hearts of addicts an & extension is suggested.
Usmg.l'\pplesoft variable names such as

A (for Accumulator)
X (for X-register)
Y (for Y-register)
NAME (for a variable name mnemonic to the

name of the machine-language sub
routine specifying the location of that
routine)

Chapter V 39

the extension would allow the arguments to be
passed in the following form:

&, A, X, Y, NAME

Mesztenyi and his editor Val Golding imbed
this idea in a program which accepts values to be
put into the A- and X-registers, puts them there,
then prints them using the PRTAX monitor
subroutine, then prepeats the process endlessly to
create a simple decimal-to-hexadecimal converter.

1-------------------------------------1
I Figure 5 . 11:1\ I
------- ------------------------1

]LrST I
I

10 REM I

AMPERSAND RIDISTER J.Dru)ER

BY C K MESZTENYI & VAL OOIDING

Passes arguments to A, X, and Y
Registers and Program Colmter,
using the Ampersand

50 001'0 500
100 INPtJr A, X
110 & ,A,X,Y,AX
120 ooro 100
500 POKE 1013,76:POKE 1014,0:POKE

1015,96: mM
I Set up Ampersand Vector
I
1510 AX = 63009: RFM
I Set up variable as CALL
I ~dress for PRNI'AX
I
1520 Y=O
1700 A$ = "6000: 20 F5 E6 8A 48 20
I F5ai8A4820F5E68A482
I 0 BE DE 20 67 DD 20 52 E7 68
I AB 68 M 68 6C 50 00 20 ND8
I 23G"
1710 FOR I = 1 ro Lm(A$): POKE
I 511 + I, ASC (MID$ (A$,!,1)
I) + 128: NEXT : POKE 72,0: CAlL
I -144
1720 ooro lOO:REM
I
lAbove routine by S H Lam stuffs
I all the machine code in menory.
I
ITo relocate it, change the POKE
11015 in Line 500 and the address
lin Line 700
I

40 Chapter V

All that is necessary to create the &. capability in
addition to the CALL capability is to change the
JUMP instruction associated with the '&.' function
in the DOS and Monitor Vector Table in page 3 of
memory (see figure 13.2A) so that it points to the
utility rather than to its default $FF65, normal
reentry to the top of the monitor.

This JUMP is in locations $3F5-$3F7 (decimal
1013-1015). There is no need to change the JUMP
part of the command in $3F5, just change the
destination address. In our case, with our utility at
$300, we would change the address to $300
(decimal 768). To do this all we need do is a
double-POKE using the techniques discussed in
Section 4.3. Since $300 is a page boundary and

hence is divisible by 256, the decimal POKE looks
just like the hexadecimal address - least signifi
cant part first, i.e. POKE 1014,00: POKE 1015,3.

To check that you still understand the double
POKE, try double-POKE conversion of
Mesztenyi's chosen location $6000. If you do not
get the same POKEs as that in his Ampersand
Register Loader program, figure 5.10.B, you need
to review Section 4.3. (Note: The program in
figure 5.1l.A also rePOKEs the JUMP- $4C into
$3F4 - POKE 1013,76. This is unnecessary
unless you have made an unorthodox modifica
tion to your jump table before using the program.)

Chapter VI
Apple Architecture I

6.1
Architecture in Perspective:
Not Just for Assembly-Language
Programmers

This chapter deals primarily with
characteristics of the Apple II at the machine level.
It contains reference material that can help you
understand how the Apple II system is organized
from a combined hardware software systems view
point.

Although most of the topics covered aren't for
the typical beginning BASIC programmer, begin
ners will find these points increasingly valuable as
their BASIC programming becomes more sophisti
cated and system-dependent. Assembly language
or machine language programmers will find they
are familiar with many of the topics.

However, this chapter is not aimed primarily at
assembly or machine-language programmers. It is
not intended to be an assembly or machine-lan
guage programming manual. Instead it is intended
to provide important information about the inner
workings of the Apple II at a level of detail most
helpful to the BASIC programmer (and the
assembly-language programmer who does not have
detailed familiarity with the Apple II system). Its
greatest usefulness should be to those faced with
the following problems:

1. Learning enough about Apple II hardware
and system organization so that you can under
stand what hardware and software are in the
system. .

2. Learning enough about Apple II hardware
and system organization so that you can intelli
gently follow both the later, more-detailed
documentation in this work and other available
documentation.

3. Learning to interface BASIC programs with
the Apple II system hardware and firmware.

4. Learning to interface BASIC programs with
machine-language programs written by others but
not imbedded into the Apple II system.

5. Learning enough about Apple II hardware
and system organization so that you can read and
understand straightforward and well-documented
assembly or machine-language software aids.

6. Learning enough about Apple II hardware
and system· organization so that with the aid of
later sections of this work, and an assembly
language programming manual, you can write
short segments of machine-language code which
can be used in a BASIC environment.

This chapter does not attempt to teach pro
gramming techniques or to illustrate the ideas
presented with an adequate number of actual pro
gramming examples to teach programming. It does
present fundamental background information.

6.2
A Simplified Hardware Block Diagram
and 'Programmers' Model' of the
Apple II System

The Apple II system is built around the MOS
6502, an 8-bit microprocessor with a 16-bit pro
gram counter and addressing capability.

The key to understanding the operation of any
processor is understanding the information
manipulating capabilities, most of which are per
formed in special locations, known as registers.

Registers are memory locations, just like ad
dressable memory locations, except that they have
significant amounts of logic arithmetic, and other
logical circuitry used to manipulate information
and control its flow built into them. Each register
has associated with it certain machine-language
instructions or modes of operation at the machine
language level, wich give it capabilities that
regular addressable memory locations lack.

In some computers, the registers are given
memory addresses and can be referred to by
address number. In the MOS 6502 and the Apple II
system, the registers are not assigned memory
location addresses.

The Programming Model of a microprocessor
identifies its main registers. I find it most useful

42 Chapter VI

when expressed in the context of a simplified
block diagram of the hardware bus system, which
is the highway network that allows information to
move between the registers and between the
registers and memory. (See figure 6.2A) Later addi
tional system components and information paths
will be added to get a more complete diagram.

Figure 6.2A

PROGRAMMING MODEL

A ACCUMULATOR

INDEX REGISTE~ Y

INDEX REGISTER X

g 0

I._ ___ PC_H __ _._ __ P_C_L _ __JI PROGRAM COUNTER

0

Ll .:...Ol__L_ __ ::__ _ __JI STACK POINTER

7 0

ACCESSOR STATUS REGISTER. "P"

CARRY
ZERO
INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
OVERFLOW
NEGATIVE

This model contains five 8-bit hardware
registers (the A-, P-, S-, X- and Y-registers), one
16-bit register (the program counter) and 65536
words of memory:

1. A-Register (often called the accumulator) is
the primary arithmetic and logical register in the
computer. For example, in additions, the addend is
in the A-Register before execution and the result is
there after execution.

2. X-Register (often called an index register)
has special capabilities for acting as an offset
and/ or as a counter. It has special instructions
associated with it that allow it to be incremented,
decremented, or compared in value with memory.

3. Y-Register (often called another index
register) is similar in capabilities and use to the
X-Register.

4. $-Register (often called the stack pointer) is
used with a 'push-down, pop-up stack', which is
used for re-enterant coding, e.g. for saving return
addresses upon entry to subroutines.

5. P-Register (often called the processor status
register), contains seven single-bit flags that iden
tify special conditions of the computer: arithmetic
carry/no-carry, zero/non-zero result, interrupt
disable/normal, decimal/binary mode, break/no-

break condition, overflow/non-overflow condition
and negative/non-negative result.

6. PC-The Program Counter, a 16-bit register
(divided into two eight-bit bytes) tells the com
puter where to get its next instruction.

Machine- and assembly-language program
mers find that their work centers about the con
trol of information flow to and from these
hardware-registers.

Elementary BASIC programmers seldom, if
ever, need to know anything about what is going
on at the register-level of the system. However, if
they do gain an appreciation of what goes on in
the computer at this level they may be able to
write better, faster, and more memory-efficient
programs.

For advanced BASIC programmers who try to
take advantage of system software permanently
imbedded in the Apple II, a knowledge of the
general architecture of the Apple II system at this
level can be very valuable, even if they intend
never to write any programs in assembly
language. For example, many of the more power
ful routines or subroutines imbedded in Apple II
firmware require that information to control their
actions be passed to them by pre-setting values in
the A-Register, X-Register and/or Y-Register.

6.3
Bit-Oriented Information
Representation and Addressing
(Abandon Decimal Numbers
All Ye Who Enter Here!)

6.3.1 Hexadecimal as a Convenient
Human-Oriented Method of Abbreviation
(Not As A Strange Number System)

Since the Apple II is primarily a binary com
puter system, at the machine level it does its ad
dressing with bits rather than with decimal
numbers.

Conversion between binary-bit and decimal
number format is straightforward, but laborious
once you get beyond the 2-, 3-, or 4-bit numbers
you can convert in your head.

Binary addresses in the Apple are typically 16
bits long. However, people have great difficulty
dealing with long strings of 0' s and 1' s. How long
could you remember the following binary address?
1101011101010001. It really is not as hard as it
seems- providing you have a good technique for
reorganizing the information into a better form.

Many microcomputers, such as the Apple II,

deal with information in 8-bit packets called bytes.
Each 8-bit byte can be broken down into two, 4-bit
nybbles. There are 16 possible values for each nyb
ble. A commonly used assignment of symbolic ab
breviations follows:

0000=0 0001=1 0010=2 0011=3 0100=4
0101=5 0110=6 0111=7 1000=8 1001=9
1010=A 1011=B 1100=C 1101=D
1110=E 1111 =F

Using this table, a long binary number can be con
verted into a string of one-quarter as many sym
bols as per the example below: (spaces are inserted
every four bits to make the conversion pattern
more obvious).

Binary Form 0001 1001 1101 0011
Hex abbreviation 1 9 D 3

Obviously the abbreviated form is much
easier for u~ to remember and use than the
long 16-bit form, but the conversion is
trivial and can be easily figured.

This particular abbreviation doesn't
look like a common, everyday decimal
number, but many do. For example,

Binary Form 0001 ,0111 0100 0011
Hex abbreviation 1 7 4 3

Both Integer BASIC and Applesoft BASIC pro
vide the capability for doing integer number
calculations. They use 16-bit integer numbers, not
to represent the numbers 0 through 65536, but
rather the more useful range of - 32 7 68 to
+32767.

You might think these calculations could be
figured by using one bit for the sign and 15 bits for
the magnitude of numbers, just as in everyday
arithmetic. However, there would be several
undesirable by-products that would increase the
complexity of the computer hardware. For one,
you would have two numbers that had identical
values: + 0 and.- 0. This seems like a minor point,
but it can be a problem in the design of electronic
circuitry. Early computers often used the sign-and
magnitude form for numbers, but now, almost all
computers represent negative binary numbers the
way Leibniz recommended when he made the first
analysis of their properties in 1679.

This procedure uses radix-complement
numbers. In the case of binary numbers the radix
(number of symbols used) is 2, so radix
complement numbers are two' s-complement
numbers. In the decimal system where there are
10 symbols used (0 through 9), the radix is 10 and
the equivalent complements are called ten's com
plement numbers.

Chapter VI 43

The complement of a number of a fixed length
is that number, which when added to the number,
adds up to all zeros. Suppose you had 90,000 miles
on the odometer of your car and decided to roll it
backward 1 mile; you would, of course, get 89999
on the odometer. But what if you started out with
0 miles and rolled it backward 1 mile? What would
you get? 99999. The wheels on the odometer have
no other way of representing the number - 1.
99999 is the tens-complement method of represen
ting -1.

With binary numbers you have only two sym
bols, 0 and 1, so you must use the two's comple
ment instead of the 10' s complement. If I run a
five-bit-long binary odometer backwards one mile
from zero, I get 11111 instead of 99999. It is the
binary two's-complement representation of -1 for
5-bit numbers.

Interestingly enough I can convert any binary
number to its negative two's complement form
merely by changing all O's to 1's and all1's toO's
and adding 1 to the result. Thus if I have the 5-bit
long number 00101 (decimal 5), I can get the 5-bit
two's complement by switching the bits to 11010
then adding 1 to get 11011. This is the five-bit-long
two's complement form of decimal -5. I can use
exactly the same process to convert from two's
complement (negative) numbers to their positive
equivalents. Thus if I start the five-bit two's com
plement form of the number -5 (decimal) -
11011, I can convert it to its equivalent positive
number by the same procedure. If I change each bit
getting 00100, then add 1, I get 00101 (decimal 5).

In calculations, using either mechanical
rotating wheels as on an odometer, or on a
mechanical desk calculator, or on a modern digital
computer, the use of the complement form of
numbers lets you pass back and forth through the
number zero with an absolute minimum of com
putational complications. That is why the two's
complement form is almost universally used as
the method of representing negative (integer)
numbers in modern binary computers.

Nevertheless, the use of 16-bit signed integer
numbers for addressing as well as for computation
can lead to some interesting anomalies in their
representation by equivalent decimal numbers.

As you climb up the binary/decimal number
scale from 0000000000000000 (OJ to
0111111111111111 (32767) there are no surprises
or problems. However, when you reach the point
where the sixteenth bit must come into play you
go one further. Suddenly the new combination
1000000000000000 represents -32768. From then
on you count backwards in decimal. The new 1 bit
in the sixteenth bit position indicates that the new

44 Chapter VI

value is negative. What is its value? You can find
out by changing all zeros to ones and adding 1. The
number is -32768. Quite a discontinuity!
Moreover, as you continue to count up the binary
address scale used internally in the Apple (and
most other computers), you now find that you are
counting backwards in decimal. When you finally
reach binary 1111111111111111 the decimal value
is -1.

This characteristic alone makes the use of
decimal addresses a problem for the Apple II user.
(Note: The problem for Applesoft BASIC users is
not as acute as it is for Integer BASIC users. The
Applesoft interpreter will accept unsigned
(positive) integers greater than 32767, thereafter
making no distinction between them and the sign
ed binary integers that create the same bit pattern.
However, Integer BASIC users cannot enter
numbers larger than 32'767, so they must bear the
full brunt of the discontinuity and backward
counting.)

It is important to note that while this looks like
the decimal number 17 43, it does not represent the
same counting number. The symbol combination
17 43 in decimal, the number system using 10 sym
bols, is an abbreviation for

1 thousand, 7 hundreds, four tens (forty)
and 3 units = 1 * 103 + 7 * 102 + 4 * 101 +
3 * lQO.

Our abbreviation system used 16 rather
than 10 symbols. It turns out that
mathematically it has identical
characteristics to a hexadecimal or base-16
number system. The counting value of the
number represented when converted to
decimal numbers is

1 * 163 + 7 * 162 + 4 * 161 + 3 * 1 6 °©4096
+ 1792 +64 + 3 =5955.

To avoid confusion when you are using both
decimal numbers and this hexadecimal method of
abbreviation of binary numbers, you could always
follow the numeric symbol with an explanation,
e.g. 1743 (decimal) or 1743 (Hex). However, Apple
programmers have adopted the general convention
that hexadecimal numbers should be prefixed with
a $ sign and decimal numbers left alone. Thus
17 43 is the decimal number one thousand seven
hundred forty-three, while $1743 is the hex
adecimal number 1743 (which has the same count
ing value as the decimal number 5955).

6.3.2 Hexadecimal Addresses and
Negative Decimal Addresses

Using the hexadecimal method of binary-bit
abbreviation the Apple ll system address range:

Binary 0000
1111

becomes
Hexadecimal 0

F

0000
1111

0
F

0000
1111

0
F

0000
1111

0
F

to

to

Once you begin to use these hexadecimal
abbreviations you may soon find that the 4-digit
hexadecimal addresses are not only shorter than
the 5-digit decimal addresses for the same memory
locations, but they are much more closely related
to the natural break-points in the system architec
ture. Hexadecimal addresses are much easier to
remember and use than decimal adtlresses for the
Apple II system. To your surprise, you will begin
to think of decimal addresses as annoying and
wish that BASIC PEEKs and POKEs would accept
hexadecimal as well as decimal addresses.

Decimal numbers are complicated to use as ad
dresses, for several reasons. We have already men
tioned that most of the interesting and significant
addresses in the Apple II, when expressed in
decimal form, are awkward numbers like 16384.
But when they are expressed in hexadecimal, they
are conveniently rounded numbers like $4000.

You will also note that many of the Apple
manuals specify the use of negative decimal ad
dresses in many of their PEEKs, POKEs, and
CALLs. The idea of a negative address is annoying
to many people, especially when address 0 is at
one end of memory and - 1 at the other. In the
middle, adding 1 to 32767 may give -32768 as a
result. It is interesting and instructive to examine
why this occurs.

6.4
The Stored Prograna,
The Prograna Counter and
The FETCH-EXECUTE Cycle -
The Heart of the
Stored-Prograna Computer

6.4.1 Instructions and Data
Both Stored in Memory as Binary Bits

At the machine-language level, as in BASIC, a
running program requires two things: instructions
and data. At the machine level both are expressed
in binary bits and both can be stored in the com
puter's memory.

Some tasks require many, many instructions to
define what must be done, but require only a small
amount of data; others require huge amounts of
data, but only a few simple instructions. Years ago

computer designers found that it was technically
desirable and cost effective to build computers in
which the instructions and data could be stored
interchangeably in the same memory.

A computer determines whether a particular
byte of information is a part of an instruction or
whether it is part of a data item by examining the
program in the computer. The program counter,
which is set at the start of any computer run at the
first instruction to be performed, tells the com"
puter where to FETCH its first instruction and
thereafter from where to FETCH every subsequent
instruction. Since the program counter contains 16
bits, it can specify the choice of any one of up to
216 or 65,536 memory focations as the location of
an instruction to be FETCHed. Anything that is
FETCHed is treated as an instruction.

When an instruction is EXECUTEd any infor"
mation it uses will be treated as data. This is true
even if the item of information being manipulated
is itself part of the program being executed. (It may
seem odd to BASIC programmers to consider doing
computations on their own program, but it is
perfectly feasible and widely done in machine
language - even though it violates all of the tenets
of 'structured programming'.)

6.4.2 The FETCH"EXECUTE Cycle
and How the Computer Distinguishes
Instructions from Data

The computer will FETCH each instruction,
analyze and EXECUTE it in accordance with the
following rigidly"defined cycle of operation:

1. Using the program counter to determine
where to get it from, the computer
FETCHes the byte of information at the
location designated by the address in the
program counter. The computer auto"
matically changes the program counter to
the address of the next instruction to be per"
formed, and

2. EXECUTES the operation specified by the
instruction.

'FETCH'ing' the information brings the byte
into circuitry where it decodes it as a code that
specifies the next operation to be performed. Not
surprisingly, this byte is called the operation code
part of the computer instruction. The instruction
will also contain information on tinding the data
that is to be used in the operation. Normally this is
done by specifying the address of the memory loca"
tion in which the data to be used may be found.
The MOS 6502 has a number of different modes for

Chapter VI 45

addressing or specifying the address. Probably the
most basic of these is by means of an absolute ad"
dress. Each memory location is permanently
assigned a number expressed in binary digits from
0000000000000000 to 1111111111111111 to
distinguish it from any other memory location. An
absolute address is just this 16"bit, (2"byte)
permanently"assigned absolute memory location
number.

The computer decodes the operation code and
determines that the absolute addressing scheme is
being used. It knows that an absolute address re"
quires two bytes of memory and that this address
will immediately follow the operation code to
create a three"byte"long instruction. It also knows
that the next instruction should be immediately
after the completion of this instruction, so it sets
the program counter to its original value + 3, the

, location of the start (the operation code) of the
next instruction.

The control circuitry of the computer con"
tinues its analysis of what the instruction tells the
computer to do. It uses the results of this analysis
to set up the computer to do whatever the instruc"
tion instructs it to do. This completes the FETCH
phase of computer operation. Then the computer
goes on to EXECUTE the instruction it has set
itself up to do.

Once it has completed executing the instruc"
tion, the computer must FETCH the next instruc"
tion to tell it what to do next. The program
counter tells the computer where the instruction
is located. Then the computer goes to this location
looking for the operation code of the next instruc"
tion, which is decoded to tell it what to do. It also
finds the type - and hence the length of the ad"
dress - included as part of the instruction. The
program counter is automatically incremented by
1,2 or 3 - the relevant number to step beyond the
address to point at the next instruction's operation
code. The cycle continues:

FETCH (Get and decode the instruc"
tion " increment the PC " set
up to do whatever is required
by the instruction)

EXECUTE (Do it.)
FETCH (Get the instruction " incre

ment the PC - set up to do it)
EXECUTE (Do it.)
F E T C H (Get the instruction - incre

ment the PC - set up to do it.)
EXECUTE (Do it.)

46 Chapter VI

6.5
The Repertoire of Hardware
Implemented Instructions Built
into the Apple II System

6.5.1 The Total Repertoire

Figure 6.5A is a list of the hardware
implemented instructions built into the
MOS6502 microprocessor used in the Apple II
system. This list gives the symbolic abbreviation
for each instruction and a brief description. Figure
6.5B is another list that may prove more useful if
you find a byte in memory that you believe is the
operation code of a hardware instruction. You
may wish to find out what the instruction is and
what it does. (Note: The Apple II includes a
disassembler that will do this look-up process for
you very easily.

Figures 6.5Cl through 6.5C5 provide expand
ed descriptions of exactly what each instruction
does, each of the operation codes and addressing
structures associated with it, and even the
number of machine cycles of time required to ex
ecute it.

6.5.2 What Instructions are Most Important
to Semi-BASIC Programmers?

You'll find that this tepertoire of instructions
is valuable and comprehensive. Even experienced
assembly-language or machine language program
mers will normally use only a modest number of
these instructions in their everyday programming
activities. A person using primarily BASIC pro
gramming, but who imbeds an occasional
machine-language subroutine perhaps written

Figure 6.5A

6502 MICROPROCESSOR INSTRUCTIONS
ADC Add Memory to Accumulator with

Carry
AND "AND" Memory with Accumulator
ASL Shift Lett One Bit IMemory or

Accumulator!

BCC Branch on Carry Clear
BCS Branch on Carry Se1
BEO Branch on Result Zero
BIT Test Bits in Memory w1th

Accumulator

BMI Branch on Result Minus
BNE Branch on Result not Zero

BPL Branch on Aesult Plus

BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry Flag
CLO Clear Decimal Mode

CLI Clear Interrupt D•sable B•t
Cl V Clear Overflow Flag
CMP Compare Memory and Accumulator

CPX Compare Memory and Index X
CPY Compare Memory and Index Y
DEC Decrement Memory by One

OEX Decrement Index X by One
DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with

Accumulator

INC Increment Memory by One

INX Increment Index X by One
INY increment Index Y by One

JMP Jump to New Location
JSA Jump to New Location Saving

Return ot.ddress

LOA Load Accumulator w1lh Memory
LOX Load Index X w1th Memory
LOY Load Index Y with Memory

LSA Shift A1ght one 81t (Memory or
Accumulator!

NOP No Operahon

ORA "OR" Mvmory with .a.ccurnulator

PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack

AOL Rotate One Bit Lett (Memory or
Accumulator!

AOA Flotate One Bit Right (Memory or

Accumulator!
RTI Return from Interrupt
RTS Return from Subroutine

SBC Subtract Memory from ot.ccumulator

w•th Borrow
SEC Set Carry Flag
SED Set Oectmat Mode

SEI Set Interrupt D•sable Stilus
STA Store Accumulator in Memory

STX Store Index X in Memory
STY Store Index Y in Memory

TAX Transfer Accumulator to Index X

TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pomter to Index X

TXA Transfer Index X to ot.ccumulator
TXS Transfer ln<k!x X tO Stack Po•nter
TYA Transfer Index Y to ot.ccumulator

by someone else - should be able to read and
understand the meaning of most instructions.

Most of these instructions will be used to
move information into the hardware registers or
the inverse instructions needed to move informa
tion back from the registers into memory.
(Sometimes such operations are needed to
transfer results from the machine-language
routine back to where a BASIC program can use
them.)
Figure 6.58

HEX OPERATION CODES
00 ~ BRK

Ot - ORot. ~ ilnd1rect. X•

02- NOP
03- NOP

~- NOP

06 - ORA - Zero Page

06 - ASL - Zero Page
07- NOP

08- PHP
09 - ORA - lmme<hate
OA - ASL - Accumulator
08- NOP
0C- NOP

00 - ORA - Absolute
OE - ASL - Absolute
OF- NOP

10- BPL
11- ORA- Und.,ectl. Y
12- HOP

13- HOP
14- HOP

15- ORA - Z8f'o Page. X

16 - ASL - z.ro Page. X
17- HOP

tll- CLC
19- ORA - Abso'ute. Y
1A- NOP
18- NOP

1C-NOP

10 - ORA - Absolute. X
1 E - ASL - Absolute, X
1F- NOP
20- JSR
21 - AND - llndirect. XI
22- NOP
23- NOP

24 - BtT - Zero Pege

25 - AND - Zero Page
26 - ROL - Zero Page
27- NOP
28- PLP
29- AND - Immediate

2A - ROL - Accumulator
28- NOP

2C- BIT- Absolute

20 - AND - At».olute
2E - ROL - Absolute

80 - ST A - Absolute
8E -- STX -Absolute
8F- NOP

90- ace
91 - ST A - (lnd~rectl. Y

92- NOP
93- NOP

94 - STY - Zero Page_ X
95- STA- Zero Page, X

96- STX- Zero Page. Y
97- NOP
98- TVA

99- STA- Absolute. Y
9A -- TXS

98- NO'P
9C- NOP

90- STA- Absofllte. X
9E- NOP
9F- NOP

AO - LOY - Immediate
A 1 - LOA - Ond~rect. XI
A2 - LOX - Immediate

A3- NOP
A4 - LOY - Zero Page

AS - LOA - Zero Page

A6 - LOX - Zero Page
A7- NOP
A8- TAY

A9 - LOA - Immediate
AA- TAX
AB -NOP

AC - LOY - Absolule

AD - Absolute
AE -LOX - Absolute
AF- NOP

80- BCS
81 - U)A - Undirectl, Y

82- NOP
83- NOP

2F- NOP

30- 8Ml
31 - AND- •lrldtrecll, Y

32- NOP

33- NOP
3-4- NOP

35 - AND - Zero Page. X

36 - ROL - Zero Page. X
37- NOP

38- SEC

39 - AND - Absolute. Y
3A- NOP

38- NOP

3C- NOP

30 - AND - Absolute. X
lE - ROL - Absolute. X
lF -JooiOP
40- RTI

41 - EOR- Undlfect. XI

42- NOP

43- NOP
«- NOP

45 - EOR - Zero P~e
46 - LSR - Zero Page
47- NOP
48- PHA
49 - EOR - Immediate

4A - LSR - Accumulator
48- NOP

4C - JMP - Abaolute

40 - EOR - Aba<Hute
4E - LSR - Absolute
4F- NOP
50- BVC
51 - EOR UndirecU. V

52- NOP

53- NOP

S4- NOP

S5 - EOR - Zero Page. X
56 - LSR - Zero Page. X
57- NOP

S8- CLI

59 - EOR - Absolute. Y

SA- NOP
58- NOP
5C- NOP

50 - EOR - Absolute. X

84 - LOY - Zero Page. X
85- LOA- Zero Page. X
86- LOX- Zero Page. Y
87- NOP

88- CLV

89 - LOA - Absolute. Y
SA- TSX
88 -- NOP

BC- LOY- Absolute. X

80 -LOA- Absolute. X
BE - LOX - Absolute. Y
SF- NOP

CO - CPY - lmmed•ate
Ct - CMP- !lnd~rect. XI
C2 -· NOP
C3- NOP

C4 - CPY - Zero Page

CS - CMP ·- Zero Page
C6 - DEC - Zero Page
C7- NOP

ca- INY

C9 - CMP - lmmedtale
CA -DEX

CB -NOP

CC - CPY - Absolute

CO - CMP -- Aosolute
CE - DEC - Absolute
CF- NOP

DO- BNE

Ol - CMP- ~lnd~tecU. Y
02- NOP

03- NOP
04- NOP

05 - CMP - Zero Page. X

06 - DEC - Zero Page, X
07- NOP
08- CLD

09 - CMP - Absolute, Y
DA -NOP

5E - LSR - AMolute. X
SF- NOP

60- ATS

61- ADC- •lnd•rect X·
62- NOP
63- NQP

64- NQP

65 - ADC - Zero Page

66 - ROR - Zero Page
67- NOP

68- PLA

69 - AOC - lmmed•ate

6A - FlOA - Accumulator

68- NOP
6C - JMP ~ lnd~rect

60 - ot.OC - Absolute

6E - ROR - Absolute
6F- NOP

70- BVS

71 - AOC - llnd~rectJ. Y

72- NOP

73- NOP
74- NOP

75 - ADC - Zero Page. X
76 - ROR - Zero Page X
77- NOP
78 ~ SEt

79 - ADC - Abaolute. Y
7A- NOP
78- NOP

7C- NOP
70 - ADC - Absolute. X NOP

7E - FlOFl - Absolute. X NOP
7F- NOP

80- NOP
81 - STA - <lnd~rect. XI
82- NOP
83- NOP

84 -STY - Zero Page

85 - ST A - Zero Page
86 - STX - Zero Page
87- NOP
88- DEY

89- NOP
BA- TXA
88- NOP

BC - STY - Abaolute

DB- NOP

DC -NOP

00 - CMP - Absolute X
DE - DEC - ot.bsolute. X
OF- NOP

EO - CPX - tmmedtale
Et - SBC- llnd1rect. X'

E2- NOP
E3- NOP

E4 - GPX - Zero Page

E5 - SBC - Zero Page
E6 - INC - Zero Page
E7- NOP
E8- INX

E9 - SBC - Immediate
EA- NOP

EB- NOP
EC ~ CPX - Absolute

EO - SBC - Absolute
EE - INC - Absolute
EF- NOP
FO- BEQ

Ft - sec ~ Undtrectt. y
F2- NOP

F3- NOP
F4- NOP

FS - SBC - Zero Page. X
F6 - INC - Zero Page. X
F7- NOP
F8- SED

F9 - SBC- Absolute. V

FA- NOP

FB- NOP
FC- NOP

FO - SBC - Absotute. X

FE - INC - Absotute, X

FF- NOP

INSTRUCTION CODES
Figure 6.5C-1

Namt Operation Addreuing
DucripiiDn Modo

ADC
Add memory to A·M·C --A.C Immediate
accumulator w1th carry Zero Page

Zero Page.X
Absolute
Absotute.X
Absolute.Y
(mdirect.X)
(lndJrect).Y

AND
""AND"" memory w1th All. M --A lmmed1ate
accumulator Zero Page

Zero Page.X
Absolute
Absolute.X
Absoldte.Y
(lndiract,Xl
(lnd•rect).Y

ASL
Shift left one bit (See Figure 1) Accumulator
(Memory or Accumulator) Zero Page

Zero Page.X
Absolute
Absolute.X

BCC
Branch on carry clear Branch on C'"O Relative

BCS
Branch on carry set Branch on C"' 1 Relative

BEO
Branch on resull zero Branch on Z= 1 Relative

BIT
Test bits in memory All M. M7 --N. Zero Page
with accumulator Me-V Absolute

BMI
Branch on result minus Branch on N=1 Relative

BNE
Branch on result not zero Branch on Z~O Relat•ve

BPL
Branch on result plus Branch on N=O Relative

BRK
Force Break Forced Implied

Interrupt
PC·2 I PI

BVC
Branch on overflow clear Branch on Y=O Relative

-~ II, ... I<_..._IO __ US' ... '"" Mt ... <~dAVY .. _..,, __ 1•0

Figure 6.5C-2

i NOIII OpullleR Addrenlng I
DacrlpUH Modo

BVS
Branch on overiiOw set Branch on V=1 Relative

CLC
Clear carry flag o-c tmpl1ed

CLD
Clear dec1mal mocle o-o Implied

Cll
o-1 Implied

CLV
Clear overflow flag o-v Implied

CMP
Compare memory and A-M Immediate
accumulator Zero Page

Zero Page, X
Absolute
Absolute.X
Absolute,Y
(lndirect.X)
(lnd~rect).Y

CPX
Compare memory and X- M Immediate
index X Zero Page

Absolute

CPY
Compare memory and Y- M Immediate
index Y Zero Page

Absolute

DEC
Decrement memory M-1-M Zero Page
by one Zero Page.X

Absolute
Absotute.X

DEX
Decrement 1fldex X X-1-X Implied
by one

DEY
Decrement 1ndex Y Y-1-Y Implied
by one

Aurmbly KU
I.Jnuu•a• OP No

Form Codo Byt11

AOC •Oper 69 2
ADC Oper 65 2
ADC Oper,X 75 2
ADC Oper 60 3
AOC Oper,X 70 3
AOC Oper.Y 79 3
ADC (Oper.X) 61 2
ADC (Oper).Y 7t 2

AND- •Oper 29 2
AND Oper 25 2
ANO Oper.X 35 2
AND Oper 20 3
AND Oper.X 30 3
AND Oper.Y 39 3
AND (Oper.X) 21 2
AND (Oper).Y 31 2

ASL A OA 1
ASL Oper 06 2
ASL Oper,X t6 2
ASL Oper DE 3
ASL Oper.X 1E 3

SCC Oper 90 2

BCS Oper 80 2

SEQ Ope:r FO 2

Blla Ope:r 24 2
BITa Oper 2C 3

BMI Oper 30 2

BNE Oper DO 2

BPL oper tO 2

BRK- 00 t

BVC Oper 50 2

Auembtr
HEX I l.Jngu•a• Of' No I C.de Bytis for•

BVS Oper 70 2

CLC tB 1

CLD 08 1

Cll 56 t

CLV 68 t

CMP rOper C9 2
CMP Oper C5 2
CMP Oper,X D5 2
CMP Oper co 3
CMP Oper,X DD 3
CMP Oper.Y 09 3
CMP (Oper.X) Ct 2
CMP iOper).Y Dt 2

CPX rOper EO 2
CPX Oper E4 2
CPX Oper EC 3

CPY rOper co 2
CPY Oper C4 2
CPY Oper cc 3

DEC Oper C6 2
DEC Oper.X 06 2
DEC Oper CE 3
DEC Oper.X DE 3

OEX CA t

DEY 88 t

Chapter VI 4 7

Figure 6.5C-3

Mp•· Stlllll
NZCtOV

,--------

Addrtnlng 1 I .bnmbtr HIX

L li1m1 Opualion L1nguage OP No. "P" Statui Reg

-~--

Oucrlption Mode • Form Code Bytll NZCIDV

..;,;,;--..; i
EDR
"ExcluSive-Or memory A \J M --A lmmed"te I EOR •Oper 49 2 ..;, ---

wtth accumulator Zero Page EOR Oper 45 2
Zero Page.X I EOR Oper.X 55 2
Absolute I EOR Oper 40 3
Absolute. X EOR Oper.X 50 3
AtJso!ute.Y 1 EOR Oper.Y 59 3
Ond1rect.X) EOR (Oper.Xl 41 2

I (lnd1rect) Y EOR !Oper),Y 51 2

INC
vv---- Increment memory M -.1---M Zero Page INC Oper E6 2 ,;..;----

by one Zero Page.X INC Oper.X F6 2
Absolute INC Oper EE 3
Absolute.X INC Qper.X FE 3

INX
Increment index X by one x .. 1 --x tmphed INX EB t v',/----

INY
Increment mdex Y by one v .. 1 ---v Implied INY C8 1 ,;..;----

vN--- JMP
Jump to new location (PC•t) -PCL Absolute JMP Oper 4C 3 ----~-

(PC•2) -PCH lnd1rect JMP (Oper) 6C 3

JSR
Jump to new locatton PC•21. • Absolute JSR Oper 20 3 ------

------ savmg return address (PC• I) -PCL
iPC•2) -PCH

------- LOA
load accumulator M-A lmmed1ate LOA rOper A9 2 N----
wtth memory Zero Page LOA Oper A5 2

------ Zero Page.X LOA Oper.X 65 2
Absolute LOA Oper AO 3
Absolute.X LDA Oper,X BD 3

M7'/---M6 Absolute.Y LOA Oper.Y 69 3
(lndirect.X) LOA (Oper.X) At 2
(lndirect).Y LOA (Oper),Y Bt 2

LOX ------
load index X M-x Immediate LOX #Oper A2 2 N----
with memory Zero Page LOX Oper A6 2

------ Zero Page,Y LOX Oper.Y 66 2
Absolute LOX Oper AE 3
Absolute.Y LOX Oper.Y BE 3

------ LOY
Load index Y M-Y lmmed1ate LOY #Oper AO 2 v'V---~

---1-- with memory Zero Page LOY .Qper A4 2
Zero Page,X LOY Oper,X 64 2
Absolute LOY Oper AC 3
Absolute.X LOY Oper.X BC 3

Figure 6.5C-4

Anembly HEX

.. ,. .. Status Rtg
.... Optrllten Addnulng langullf DP No. ""P""SI>ttllllog.

Doocrtptloo Modo Ftno Codo lylll IZCIDV
NZCIDV LSR

Shift right one bit (See Figure 1) Accumulator LSR A 4A 1 ovv---
--- --- (memory or accumulator) Zero Page LSR Doer <16 2

Zero Page,X LSR Qoer.X 56 2
Absolute LSR Oper 4E 3

·~ --o-- Absolute.X LSR Oper.X 5E 3

NDP
-0---- No operation No Operation lmphed NOP EA t

ORA
---o-- MOR" memory with AVM -A Immediate ORA 110per 09 2 N----

accumulator Zero Page ORA Oper 05 2
Zero Page.X ORA Oper,X 15 2

0----- Absolute ORA Oper 00 3
Absolute.X ORA Oper.X 1D 3
Absolute,Y ORA Oper.Y 19 3

vvv--- (lndirect,X) ORA (Oper,X) Ot 2
(lndirect),Y ORA !Dper).Y 11 2

PHA
Push acCumulator
on stack

Aj Implied PHA <16 1 ------

PHP
Push processor status PI Implied PHP 08 1 ------
on stack

vvv--- PlA
Pull accumulator A I Implied PLA 88 1 vv----
from stack

vvv--- PLP
Pull ptOCessor status PI lmphed Pt.P 28 1 From Stack
from stack

ROI.
vv---- Rotate one bit teft (See Figure 2) Accumutalor RDL A 2A 1 N-1---

(memory or accumulator) Zero Page RDL Oper 28 2
Zero Page,X ROL Oper.X 36 2
Absolute RDL Oper 2E 3
Absolute.X RDL Oper.X 3E 3

Vv'---- ROR
Rotate one bit right (Set Figure 31 Accumulator RDR A 6A 1 vvv---
(memory or accumulator) Zero Page ROR Oper 66 2

Zero Page.X ROR Oper,X 76 2
N---- Absolute AOR Oper 6E 3

Absolute. X ROR Oper.X 7E 3

48 Chapter VI

Figure 6.5C-5

N1m1 Opuallon Addressing language OP !,No "P" Statua Reg [
j ±- I Auembly HEXI

Omrlplfon --+- Mode I Form Code ; B~!!!_~E 1 o_~

~;n tco_m_ ,~:,-u_pt_-+Pi": --- Imp"'~-~- -·-+--"40_.~.-1· -'1-+-'-F..o"c.m.cStccacc.'--1

K~~n "o:"_sub<outme I _P£1 PC-1 -:-_I'C lm~-- _ ~s _____ t--6_0_Jj:-_1-t------1

i Subtract memory from A-M C --A tmmedrate SBC jjQper E9 I

I
I accumulatoc With bo«OW !~,:,m: X m g~:; X !~ I

Absolute.X SBC Oper,X FF09 I 3 Ahsolute Y SBC Oper.Y
1 (lnd1rect.X) SBC (Qper X) E1 j 2

L-------------+------t"l"-lnd:c"""c:--11c.Y-t-_:cSB:.::C___:::iO!Cpe'-'1)"-.Y +-~_2_

..._;,/..,!

---~-

SEC -- I
___2:!~~t~. ~-~--~ ~ ·---~:_d ---t-S_EC ___ t--38"---t-' _1-+-----j

SED
Set decrmal mode 1 --o Implied SED F8 1 --- 1
-SE~-~~---r----"----t='--=--+c=_----+--'-"-+--c---

Set mterrupt drsable
status

1-1

1---=-:--------r---~- --
; STA

Store accumulator A -M
11'1 memory

Implied SEI 78

Zero Page STA Oper 85
Zero Page. X STA Oper.X 95
ADsolute STA Oper 80
Atlsolute.X STA Oper,X 90
Ahsolute Y STA Oper,Y 99
(lndlrect.X) STA (Oper,X) 81

:c-------t----- ~~t.I.::.Y_,__::SccTA_:_-:::iOo::P':..:_<i:.:_Y-+--'9:_:_1-+-'--f-------j
STX
Store mdex X 1n memory Zero Page STX Oper

Zero Page Y STX Oper,Y

1--;;;;;:;-------t----t-A_bs_ol_ut_e -t--STX Oper

STY

86
96
BE

Store mdex Y m memory Zero Page STY Oper 84
Zer.o Page,X STY Oper.X 94
Absolute STY Oper 8C

~-------~-------+~.CC.--~~~-+-~~~--------i

Transfer accumulator
to mdex X

TAY
Transfer accumulator

~~y ansferstackpomter
tndex X

TXA
Transfer mdex X
to accumuJator

TXS
Transfer 111dex X to
stack pointer

TYA
Transfer mdex Y
to accumulator

Figure 6.5C-6

s -x

I X -A

x-s

TAX

Implied TAY

Implied TSX

TXA

Implied TXS

Implied TYA

AA

AB

SA

8A

9A

98

1 I .--.~---
1

-.t,,_ ---

-.N----

-.1-./-----

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

A Accumulator
X. Y Index Reg•sters

M Memory
C Borrow

y

I
I

v
PC

Processor Status Regtster
Stack Potnter

Change
No Change

Add
Logical AND
Subtract

Logtcal Exclustve Or
Transfer From Stac"k

Transfer To Stack
Transfer To

Transfer To
Logtcal OR

Program Counter
PCH Program Counter Hjgh
PCL Program Counter Low

OPER Operand
lmmechate Addressing Mode

FIGURE 1 ASL-SHIFT LEFT ONE BIT OPERATION

FIGURE 2 ROTATE ONE BIT LEFT {MEMORY
OR ACCUMULATOR)

FIGURE 3

NOTE 1: BIT- TEST BITS

Brt 6 and 7 arfl transferred to the status regtster. If the
result of A /1. M 1s zero then Z=1. otherwtae Z=O

Editor's Note: Previous figures in Chapter 6 have
been reprinted from the Apple II Reference
Manual, with permission of Apple Computer, Inc.

6.6
Data Handling Instructions
Equivalent to BASIC PEEKs and POKEs

6.6.1 Load Accumulator Instruction - LDA
The Machine-Language Equivalent
to a 'PEEK'

A particularly important example of machine
language instructions is LDA - LoaD A-register
(accumulator). The A-register or the accumulator
is the register which is most frequently loaded
with data in order to interface with a machine
language routine. LDA is the hardwar~
implemented instruction that moves information
from any memory location into the A-register, the
register used for most manipulative and arithmetic
operations.

6.6.2 Store Accumulator Instruction- STA
The Machine-Language Equivalent
to a 'POKE'

The machine-language equivalent of a POKE is
the inverse command: STA (STore A-register), the
command which moves information from the
A-register back to memory. The POKE command
is little more than a STA Instruction in disguise.

6.6.3 An Example of Data Movement
Using PEEKs and POKEs
and its Machine-Language Equivalent
Using LDA and STA

The Apple II System has a text video display
buffer which occupies memory locations
$0400-$07FF, i.e. memory locations 1024 through
204 7. It also has a secondary text video display
buffer which occupies memory locations
$0800-$0BFF.

If you wanted to move the entire contents of
the primary page to the secondary page, you could
write a simple BASIC program consisting of PEEKs
and POKEs. A simple straight-line-code version of
this program is shown as

I ------------------------------------ I
I Figure 6.6A I
I Straight-Line BASIC Program to t-Pve Da.ta I
I fran'Prinary to Secorrlary Text Page using only PEI'l<S arrl faCES I
I ------------------------------------1
I Line Instruction Ccrrment I
I --------------- ------------------------1
1100 A= PE»<(l024) REM LoaD A with contents of location 1024 ($0400)1
1101 Fa<:E 2048,A REM STore A into location 2048 ($0800) I
1102 A= PEFJ<(l025) REM loaD A with contents of location 1025 ($0401) I
1103 Fa<E 2049 ,A REM STore A into location 2049 ($0801) I
1104 A= PEFJ<(l026) REM LoaD A with contents of location 1026 ($0402)1
1105 Fa<E 2050,A REM STore A into location 2050 ($0802) I
1... I
1... I
1... I
I I
12148 A= PEFJ<(2047) REM LoaD A with contents of location 2047 ($07FF) I
12149 Fa<E 3195,A REM S'Ibre A into location 3195 ($07FF) I
I ------------------------------------I

With just these two instructions (each repeated
1024 times) you could write a computer program
to move (copy) the entire contents of video text
page 1 to video text page 2:

1------------------------------------ ---------------------------1
I I
I Figure 6.6B I
1 Ma.chine-I..an:3uage Program usirg I1ll\ & STA Equivalent to I
I Straight-Line BASIC Program to M::we Data \
I fran Primary to Seoorrlary Text Page using only ?EFXS :m1 f.DKES I
I -------------------------1
I Man M/L SOOrt lorrj I
I IDe Instr Ccnment Ccnment i
I ------------------------------ · · -----------1'
IS{X)() AD 00 04 l..DA. $0400 I..oaD A with Pagel, Location 0-$0400 or dec 1024 I
16001 8D 00 08 STA.. $0800 S'Ibre A into Page 2, Location 0-$0800 or dec 2048 I
16002 AD 01 04 I.IPt $0401 loaD A with Page 1, !.Dcation l-$0401 Qr dec 10~5 1
!6003 80 Ol 08 S'l"A. $0801 STore A into Page 2, I.Dcation 1-$0801 or dec 2049 I
\6004 PJ) 02 04 tlll\ $0402 !.DaD A with Pl+2* - $0402 or decimal 1026 I
]6005 80 02 OB STA $0802 S't'bre A into P2+2 - $0802 or decimal 2050 I
1 • • • * Page x, I..ocation y will be her2afb~!.." I
1 • • • specified as base address Px + pag-e 1-
1 • • • location index y I
I6FFE AD FF 07 Im $07FF lDaD A with Pl+3FF (hex) or Pl+l023 (dec) - lac 1
I $07FF (hex)or 2047 (dec) I
\6FFF 80 FF 08 STA $0BFF S'lbre A into P2+3FF (hex) or P2+1023 (dec) - lDc I
I $0BFF (hex) or 3195 (decimal) I
1 •••••••••.••••.•••••••••••••.••••••••••••••••••••••••••••...••..•••.••.••••• 1
\NCJI'E: Machine larguage instructions are sho.om in the forma.t they actually gal
I into the <X.Jllplter. I
I '!he instn1ct tons are actua 11 y 3 bytes lQO:J with the first beirg the I
I cperation cede, the secorrl beirg the lo.v-order byte of the address, arrl the I
I the last bei.n:J the high-order byte of the address. I
lan paper the <i<'l,lress seens to be bac'kw<l-r"ls, hut this is t1v~ way the ccmputerl
!actually stores the infonnation. I
I ---------------------------------------1

Similar instructions exist for moving informa
tion to and from the X-register (LDX and STX) and
to and from theY-register (LDY and STY), the next
most frequently used registers for passing informa
tion between programs or subroutines. These three
pairs of data movement instructions, plus three se
quence control instructions described in the next
section, may be all that many BASIC-oriented pro
grammers ever need to interface quite freely with a
broad spectrum of registered-oriented machine
language programs.

Techniques for using a user-written machine
language program, even for interface with
machine-language code permanently imbedded in
the Apple system, are not introduced until
Chapter 8. When they are introduced and case
studies are provided, the instructions mentioned
here more than suffice to meet almost all routine
needs for moving information.

6.7
Symbolic Instructions and Programming
Machine-Language in Symbolic
Assembler Format

Although hexadecimal abbreviations are much
easier to use than the binary bits they represent,
writing machine-language instructions in hexa
decimal form is still not very convenient. Not only
do they not have any mnemonic (memory-aiding)
characteristics to help you in remembering what a

Chapter VI 49

particular instruction means, but almost any time
you make a change in a program, perhaps by ad
ding or deleting an instruction, many of the
memory locations and addresses used may change,
thus causing major housekeeping or bookkeeping
changes to get the program back into running
order.

It is very clear that there is a one-to-one corres
pondence between the names of instructions (or
their three-letter short-form abbreviations) and the
binary /hexadecimal codes used inside the com
puter to represent the specific operation.

Thus it should be perfectly feasible to write the
operation codes for instructions in the mnemonic
(memory-aiding) form given in the table of opera
tion codes (Figure 6.5A) and later, do a rote table
look-up to get the hexadecimal form of the opera
tion code to enter into computer memory. This
should make both the writing of instructions and
the later process of reading them much more con
venient.

It should be equally feasible to assign names to
addresses as well. However, the names for ad
dresses need not be permanently assigned. It
would be much more convenient to assign them
temporarily for each problem in such a fashion
that memory addresses become easily remembered
names for the parameters of the specific problem
being solved. These assignments also may be put
into a table so that when writing or reading the
program the programmer can use the convenient
symbolic name rather than a hard-to-remember
numeric address.

Thus the programmer can write his code in a
symbolic form no different from the short-form
symbolic abbreviation of the comments which we
have been using, particularly in Figure 6.6B. Later
he can look up the hexadecimal equivalents of the
symbols used and feed those symbols to the com
puter.

Figure 6. 7 A shows the same instructions writ
ten in symbolic form as a program to be translated
in such a fashion. Note that only the leftmost
column of this figure contains the symbolic in
structions to be translated. The other columns
contain the results of translation and explanatory
remarks or comments.

The three instructions which form a declara
tions section preceding this code tum out to be in
structions for controlling the translation process
ing. How and why they are used will be discussed
in some detail later.

In the early days of computing, translation/
look-up was done by hand. Now the task of
assembling the actual binary /hexadecimal bytes of

50 Chapter VI

information to go into the computer from instruc
tions written in symbolic form is done by com
puter programs. It should come as no surprise that
these programs are usually called 1 symbolic
assemblers' or 1 assemblers'.

I ------------------------------ -------------------
I Figure 6. 7A
I Syrltlolic (Assarbly-Lanjuage) Expression
I of Madline Lanjuage l'rcxjTIIn
I to !bre Text P- 1 to Text P'"}e 2
I (Straight-Line Follll)
I (with Addressin::J Relative to Beginnirg of P.::tge)
1----------- --------'--- --1
I <DEO.ARATICNS (pseudo-instructions) 'ID ASSEMBlER - NO OODE CREATED> I
I I
I Label Syntx>lic Fonn Machine-I:.at'gua.ge Ranarks I
I of Instruction IDcn Ccrle---Generatei 1
1 •••••••••••..••••••••••••••••••..•••••••••••••••••••••••••••••••••••••.••• 1
I I
I Pl EOU 400 <none> Makes name Pl equivalent to add $400 I
IP2 mu 800 <n:J[le> Makes name P2 equivalent to add $800 I
1 ~ 6000 <none> Makes pr~ram origin occur- ,_t $S'\10 \
1 •• 1
I <li.S<miBLY-IANGUI\GE INSTI<OCTI<NS '10 BE 'ffii\NSIAT!!D '10 MI\OUNE-IANGliA.GE> I
I I
1 I.abel Sytmolic Fonn Ma.chine-I.arguage Remarks I
I of Instruction li)Crl Code-Generate:] I
1 ••.••••••• 1

I I.U\ PH·O <6000> AD 00 04 lDAD A-Register fran Pagel ($400) I
I STA P2-tO <6003> 8D 00 08 Store A-Register to Page 2(S800) I
I In\ Pl+l <6006> ruJ 01 04
I STA. 1?2+1 <6009> 8D 01 08
I l..D\ Pl+2 <60CIC':> AD 02 04
I STA P2+ 1 <600F> 80 02 08
I
I
I
I r..m Pl+3FF <77FE> AD FF 07 Last of $400 locations on Page l
I STA. P2+3FF <77FF> 8D FF OB last of $400 l~ations on ?,ly~ ~
I I
I (t«JJ'E: <xxxx> irrlic'ltes ~ere instructi')'l create:l by the asseribler is to I
I go in rrsrory. It is rnt. part of the instruction cOO.e generated by l
I the assart>ler) I
I (OOI'E: The machine-la.n:;JUage cOO.e byt:.es are s~ in the order they go i._n; ,:
I the canp.tter, that, is the lew-order byte first, then high-order. I
I 'Ihus address $0400 is sl'p,.m as 00 04. I
I -------------------------------1

Perhaps the greatest advantage of using a sym
bolic assembler is that it allows you to concentrate
more on the problem to be solved and less on the
details of how the machine functioned in solving
the problems.

When an assembler is used you usually go
through a two-phase process to get a program ready
to run. First you write the program in symbolic
form and use this 'source' version as input to a pro
cessing procedure carried out by the computer us
ing the assembler as a translation program and
generating as output a binary /hexadecimal version
of the program. In phase II this program is loaded
into the computer and used with data input to get
the desired program results.

At an early stage in the development of modern
computing, programmers found that in addition to
using symbolic form for the instructions built into
the system, it was convenient to have other short
form symbolic instructions, not to be translated
into machine language, but to instruct the
assembler whenever the programmer wanted the
translation to be done in a particular way. For ex
ample, the programmer might want to specify that
the variable name 'x' was assigned to a particular
memory location, the variable name 'y' to
another, and so on.

While such assignments may be made just by

whim there is often a reason to want to use a par
ticular location. Sometimes the location may be
used in a special way by the computer hardware.
For example, there are specific memory locations
associated with interfacing the computer to
specific input-output devices and peripherals that
determine whether output is going to be text or
graphics, etc. Of course the programmer may also
want to interface the new assembly-language pro
gram with one previously written that used par
ticular memory locations for specific things which
he or she wants to share with the program now be
ing written.

For example, in the sample problem we were
doing in Figure 6. 7 A, it would be quite reasonable
to specify that a name such as 'PAGEl' or 'Pl' be
used as a synonym for the beginning of text page 1
(a location predetermined by the Apple II system
hardware and monitor as location $0400 (decimal
1024). Similarly, 'PAGE2' or 'P2' mightbe conve
nient to use as a name equivalent to the beginning
of text page 2, $0800 (decimal 2048).

To implement such a requirement a program
mer would have to notify the assembler in advance
not to assign the variable names used, say 'pl' and
'p2', to the first conveniently available location,
but instead to use those names as equivalent to
memory locations $0400 and $0800 respectively.

Most assemblers use the pseudo-operation code
'EQU' (for equivalent or equivalence) to specify
such assignments.

Now that the program uses symbolic address
ing it has considerably more generality. 'START'
'PAGEl' AND 'PAGE2' need not always refer to
their values in figure 6. 7 A ($6000, $0400 and
$0800 respectively)-they can be defined at the
time the program is assembled into machine
language form rather than at the time the program
is written. In fact, if you use an assembler and
loader that produce relocatable code, their final
locations may not be firmly fixed until the pro
gram is run.

If you get confused as to where instructions are
located, and the program counter tells the machine
to FETCH its next instruction from a location that
really doesn't contain an instruction, the results
can be highly unpredictable. When the contents of
the memory byte are FETCHed, the instruction
decoder circuitry will examine its binary bit
pattern and treat that pattern as if the data were an
instruction. It will set the computer up to do the
specified operation and then EXECUTE it.

The results can be catastrophic to the integrity
of the remainder of the program and data in the
machine, because this instruction may send the

computer off on a long wild-goose chase. Again
and again it would FETCH and EXECUTE random
data-bit combinations as instructions until it final
ly comes to an instruction it recognizes as a signal
to halt or an instruction it doesn't recognize,
whereupon the system will 'hang'. By this time
the previous contents of memory may have been
reduced to rubble.

Programmers also often need to specify where
the program is to be put into the computer's
memory after translation. Usually this is done by
specifying the location of the origin (the beginning
of the code). Not surprisingly, the pseudo
operation-code 'ORG' is commonly used for this
specification.

Different assemblers support different pseudo
operations. Almost a11 provide some means of
reserving a block of memory for a table or an array
(the equivalent of a BASIC DIMension statement),
and a means of assigning numeric constants and
character strings.

It is good programming practice to make such
specifications as declarations at the beginning of a
program. This is convenient both for the program
mer who wants to write well-structured and well
documented code, and for the assembler, the pro
gram that does the translation that uses this
information.

Some assemblers require advanced delcaration
of all variables, others do not. Of those that require
advanced declarations, some do it as a matter of
doctrine - as a means of forcing the programmer
toward the use of structured programming tech
niques. Others do it to avoid running into a
specification that a memory location be used for a
particular purpose after it has already been used for
another.

In machine-language programs written in sym
bolic form to be translated by an assembler, the
preliminary declaration pseudo-operations are
usually followed by the actual computer instruc
tions (in symbolic form) as illustrated in figure
6.7A.

Some assemblers will accept not only those in
structions that are built into the hardware of the
computer, but additional instructions. Sometimes
these additional instructions are pre-defined. For
example, they might be instructions for im
plementing floating point arithmetic capabilities
not built into the hardware of the computer. Other
assemblers will allow the programmer to declare
and define his own pseudo-instructions of this
type.

In either case, such pseudo operations are im
plemented by subroutines or short blocks of code

Chapter VI Sl

that are inserted in the computer-generated
machine-language output of the assembler in
much the same way as a single, normal, hardware
implemented instruction might be.

Since a single one of these instructions might
cause two or ten or a hundred machine-level in
structions to be performed, their effect can be that
of a macro-instruction, which does tasks that
would otherwise require many single, individual
hardware instructions.

Such instructions and their operation codes are
called macro-instructions, or macros for short.
Assemblers that have such built-in capabilities are
often called macro-assemblers.

Now let's take another look at our program to
move the contents of Text Page 1 to Text Page 2
written in symbolic form suitable for conversion
to machine-language binary /hexadecimal form by
an assembler. It is shown as figure 6. 7 A. Note
again that only the leftmost column of this figure
contains the symbolic instructions to be
translated. The other columns contain the results
of translation and explanatory remarks or com
ments.

This program has two very desirable properties:
1. It is super-fast - many, many times faster than
the fastest BASIC program you could ever write to
do the same task, and 2. It is simple, straight
forward, and easy to understand.

This program also has a good deal more
generality than either the BASIC or the non
symbolic machine-language version. A change in a
single instruction 'p1 equ $400' or 'p2 equ $800'
can change what block of $400 memory locations
is moved or its destination. A change in the 'org'
statment can be used to relocate the program itself
to a different area of memory.

Although it has these desirable properties, this
program is useless for practical purposes. It takes
two instructions of three bytes length each to
move each of the 1024 bytes of information a total
of 6144 bytes of program. Not only is this a huge
amount of memory, but the amount of labor in
volved in preparing and entering all these instruc
tions would be prohibitive in all but the most
unusual circumstances.

Moreover, while this program is more general
than its predecessors, it is not yet a general
purpose data mover capable of moving an arbitra
rily sized block of information from any desired
location in memory to another. Such programs do
exist, take up only a tiny part of as much m~mory
as this one and are easy to write. In fact, one 1s per
manently imbedded in the Apple II and Apple II+
systems as part of the system monitor. Where?

52 Chapter VI

Look it up in the 'Gazetteer' under the name of
'MOVE'.

Clearly there must be, and of course there are,
other computer machine-language programming
techniques and instructions that can take advan
tage of the high degree of near-repetition (1024
LDA-STA pairs, each of which differs from its
nearest neighbor by single location in each of its
instructions).

To avoid using such horrendous amounts of
memory you must be able to re-use the same in
structions over and over again. This means an
ability to change the sequence of instructions from
what we have used thus far, each one immediately
following its predecessor. BASIC does this with
'GOTO', 'IF ... THEN' and 'FOR ... NEXT'
statements.

Actually, such sequence-changing instructions
are not quite enough in themselves. The instruc
tion should not be exactly the same each time it is
used, or it would do exactly the same thing and ac
complish nothing new.

In addition, for a really useful, general-purpose
program, you should also be able to set the number
of repetitions to any desired value so that you can
move as small or as large a block of memory as you
desire.

Let's dig into the additional features of
machine language that give us these capabilities.

6.8
Instructions Which Change the Normal
Sequence of Operation
(The Key to Repetition and the
Computer's Decision-Making Capability}

There is a very special group of instructions in
the repertoire of the Apple II (or any other modem
computer) which, when executed, may change the

location from the next number in normal sequence
to an entirely different number. Such instructions
are usually called Jump, Transfer or Branch
instructions.

These instructions, known collectively as con
trol or sequence control instructions, let the com
puter repeat sequences of instructions and make
decisions.

The instructions have the same effect at the
computer hardware level that the corresponding
control instructions have in BASIC, except they
refer to hardware locations, not BASIC line
numbers. For example,

JMP xxxx (JuMP to xxxx) has the same
effect as the BASIC GOTO statement;
JSR (Jump to SubRoutine) has the same
effect as the BASIC GOSUB statement; and
GOSUB statement; and
RTS (ReTurn from Subroutine) has the
same effect as the BASIC RETURN
statement.

Hardware sequence-changing instructions, like
BASIC IF statements, may cause a change in
sequence only if a particular condition is met (or
not met). Typical instructions are:

BPL (Branch on result PLus)
BMI (Branch on result Minus)
BNE (Branch if result Not Equal to zero)

If the condition for branching is not met, no
change is made in the program counter's contents
- except for the change automatically made with
every FETCH, setting it to the next instruction.
Thus the program continues on to the next in
struction in normal order. If the condition for the
branch is made, the program counter is advanced
the number of locations specified by the second
byte of the instruction.

Chapter VII
Apple Architecture II: Addressing in
the Apple II Microprocessor

7.1
Addressing Modes of the Microprocessor
in the Apple II System

The hardware-implemented instructions in the
Apple II can identify the location of the data which
they are to use in many different ways. Figure 7.1A
summarizes them and gives an example of each:

Figure 7.1A
Machine·Language Addressing Modes Available
in the Apple II System

Addressing Mode Example Machine Micro·seconds Required
Code to Execute Instruction

Implicit/Implied TYA 98 2
Immediate LDAH$AO A9 AO 2
Absolute LDA $7FA ADFA07 4
Zero Page LDA $80 A4 80 3
Indexed absolute LDA 7FA,X 8DFA07 4 (5 if page boundary

crossed)
Indexed zero pg LDA $80,X 85 80 4
Indirect Indexed LDA(80,X) A1 80 6
Indexed Indirect LDA($80),Y 81 80 5 (6 if page boundary

crossed)
Relative 8CC $3360 90 OF 2 if no branch occurs

3 if branch to same page;
4 if different

Most, but not all, of these addressing modes
were illustrated with the LDA (Load Accumulator)
instruction - a common and quite representative
instruction. No single instruction has all of the ad
dressing modes. Many have only one.

Some readers who may be particularly astute or
who have prior hardware-level experience may be
surprised to notice that an instruction different
from the LDA was used to illustrate hardware
implemented relative addressing. Does that mean
that, in spite of the fact that we have used a form
of relative addressing for the LDA in our previous
examples, this capability is not supported by the
hardware? Yes and no. Relative addressing in the
MOS 6502 microprocessor used in the Apple is
limited to addressing to locations relative to the
instruction being executed. This is not the kind of
relative address we were using in our symbolic
(assembly-language) code - we were using ad
dresses relative to the start of an array or some
table of data, specifically relative to the start of an
array of bytes which determined what was to be
displayed as output on the Apple's screen.

Assemblers usually let you write instructions
in a relative-address form - whether it be relative

to the current instruction (usually symbolized by
'* ') or any other predetermined base address. Then
the assembler makes the conversion (as part of its
translation process) to whatever addressing mode
is convenient for use by the machine. As
we shall see later the indexed form of the hardware
instruction provides the capability that we need to
implement such a concept neatly, conveniently
and efficiently. (The assembler we use may not
use this fact and may just compute an absolute ad
dress unless we specifically tell it to use indexing.)

In the 6502 microprocessor used by the Apple II
true hardware-implemented relative addressing is
limited to sequence-changing instructions.

Some of you may have noticed that for each of
the 7 addressing modes used for LDA in the above
table there is a different hexadecimal representa
tion for the LDA operation code. Were you to look
at all the operations codes in the Apple 11/MOS
6502 microprocessor on a bit-by-bit basis rather
than as hexadecimal characters you might note
that individual bits in the operation codes tend to
specify address mode while others tend to specify
the overall operation to be performed (e.g. LDA,
STA, etc.). This kind of design is common to
most computers and microcomputers.

In some systems it is conventional to docu
ment such a design by means of a short operation
code with separately specified address-mode
modifiers. In the MOS 65021 Apple system the
designers thought it less confusing to use full-byte
operation codes and to treat the different address
mode versions as differently coded versions of the
operation code.

7.2
Simple Addressing Modes of the
Microprocessor in the Apple II System

Simple addressing modes are those which do
not involve using computed addresses.

7.2.1 Implied Addressing (No Address Required)

Some instructions don't require an address to
specify what they must do. Examples:

CLD - CLear Decimal mode
CLI - CLear Interrupt disable bit
CL V - CLear oVerflow flag
DEX- DEcrement X-register

(index register X) by 1

Instructions that use implicit addressing are only a
single byte long, so the Program Counter always
advances by one for such instructions.

54 Chapter VII

7.2.2 Immediate Addressing
(Data Value Included in Instruction)

Many. instructions have an immediate address
option that allows a data value, which
immediately follows the operation code, to be used
as the value on which the instruction operates.
The address, implicit rather than explicit (stated in
numbers), is the location immediately after the
operation code. The MOS 6502 restricts immedi
ate addressed data to a single byte in length and
hence to data values in the range 0-255. Instruc
tions which use immediate addressing are two
bytes long, so the Program Counter always ad
vances by 2 for such instructions.

7.2.3 Absolute Addressing
(16-Bit Address Specifies
Absolute Location of Data)

This is the classic von Neumann method for
specifying how to find the data to be used with a
particular instruction. Each memory location in
the computer is permanently assigned an identifi
cation number- an absolute address. The Apple II
permits direct addressing of 216 or 65536 memory
locations, so addresses for absolute locations must
be 16 bits or two bytes long. The absolute address
of the memory location where the data may be
found immediately follows the operation code, so
absolute-addressed instructions are three bytes
long and the program counter always advances by
three for the next instruction.

7 .2.4 Zero Page Addressing
(8-Bit Absolute Addressing)

The Apple II memory of 65,536 bytes is divided
into 256 pages of 256 bytes each. A single-byte ad
dress can address 28 = 256locations, so a two-byte
address can be thought of as using one byte to
specify the memory page and the second to specify
the memory location within the page. In this ad
dressing mode the page of memory to be used is
always page zero, so the-byte to specify the page is
not needed. Instructions using the zero-page ad
dressing technique are always two bytes long and
the program counter always advances by two for
the next instruction.

7 .2.5 Relative Addressing

Whereas absolute addressing specifies
permanently-assigned and unchanging addresses,
relative addressing specifies them relative to the
instruction in which they appear. Thus if an in-

struction at memory location $0300 specifies a
relative address of $10, the effective address is at
location $310 I =$300+$10). If the same instruc
tion were located at $350, then the effective ad
dress would be $360 I =$350+$10).

Many assemblers allow users to write programs
in a relative-addressed form, whether or not the
computer being used has hardware-implemented
relative addressing.

Usually some convention, such as using'*' for
the current instruction, is adopted so that an in
struction with an address of • + $10 would refer to
the memory location $10 positions beyond the
location of the instruction in which it was being
used. Assemblers usually allow specifying loca
tions relative not only to the current instruction
but to any named address.

Many computers offer hardware-implemented
relative addressing, either for all types -of instruc
tions or just for a particular class of instructions
such as the sequence changing instructions.

Historically there have even been computers
that offered no absolute addressing whatsoever,
only relative addressing.

The MOS6502 used in the Apple II offers
hardware-implemented relative addressing only
for the 'branching' instructions: BCC, BCS, BEQ,
BMI, BNE, BPL, BVC, and BVS. Moreover, it of
fers no other addressing mode for these instruc
tions. We have already covered these instructions
and I am sure that no reminder is needed that the
binary /hex code they generate contains only a plus
or minus displacement of the program counter
from its original value if the condition for
branching is met.

AU instructions that use the relative addressing
mode occupy exactly two bytes of memory and
take two microseconds to execute if the branching
condition is not met, three if it is met to a location
on the same page, and four if it is met to a location
which requires crossing a page boundry.

It is interesting to note that the availability of
relative addressing in an assembler does not
guarantee that there is a corresponding relative
addressing mode in the hardware. Nor does the use
of non-relative addressing by assembler instruc
tions guarantee that the assembler will not use
relative addressing. For example, we used a form of
relative addressing for our LDA and ST A instruc
tions in our ·earlier example of the text-page
moving program even though the 6502/ Apple II
processor does not provide a relative addressing
hardware mode for such instructions. (The actual
machine-code produced used absolute addressing.)

7.3
Overview of Computed Address Concepts

7.3.1 The Key to Understanding
Computed Addresses

There is a significant difference between ad
dressing covered in the previous sections and
those covered in later sections. In each of the
previous cases, the location specified by the in
struction was fixed and known when the program
was written. In the cases covered by this
section, the location specified in the instruction is
variable; the programmer knows how to compute
it, but doesn't necessarily know its current value.

The techniques of computed addressing are
useful and particularly important if you want to
read and understand the code written by systems
programmers and imbedded in the firmware of the
Apple II system.

There are basically three types of computed
addressing. Each will be briefly characterized here,
then the two which are widely used in the Apple II
firmware will be developed more thoroughly.

7 .3.2 Computing Addresses By
Treating Them As Data

Instructions are represented in computer
memory by bit patterns. At the hardware
level in most computers there is no hard
and-fast rule that they can only be accessed
during FETCHing. Computer instructions
can manipulate and perform arithmetic on
these bit patterns just as if they were data.
Thus it is perfectly possible to add or
multiply or do other arithmetic operations
to the address portion (or even the operation
code) of any instruction in any fashion
specified by the programmer. Not only is it
possible but it is done, although it was done
much more frequently twenty years ago
than it is today. This process is out of favor
today because errors are very easy to make
and often catastrophic in impact and almost
anything that a programmer can do in this
fashion can be done more easily by indexing
or indirect addressing.

7.3.3 Computing Addresses By
Hardware Indexing

This method of addressing uses a basic ad
dress (a fixed address such as an absolute or
zero-page address) which is automatically
modified by the hardware of the machine in
to a different address. The modification nor
mally consists of adding to the address
before it is used in execution. Both the

Chapter VII 55

X-register and the Y-register in the Apple II
are equipped to act as index registers.

Indexing is closely akin to subscripting in
BASIC; the subscript of a variable in BASIC
is sometimes described as the array-index.
An array is a block of memory locations
given the same name, the equivalent of the
same base-address at the hardware level.
The size of an array is determined by the
DIMension statement. The location of a par
ticular subscripted variable is determined by
the subscript that tells you how many
elements to skip down within the array. The
name of the array may be considered as the
base-address and the value of the subscript
as the index.

7.3.4 Computing Addresses By
Indirect Indexing Techinques

Indirect addressing bears the same relation
ship to absolute addressing as absolute ad
dressing does to implied addressing.
Whereas implied addressing gives you the
value to use directly without pointing to a
memory location that holds it, absolute ad
dressing points to where the data is by speci
fying the address of the memory location
where it is held. Indirect addressing points
to a memory location too - but not the one
that holds the data. Instead it points to a
memory location that in tum contains an
address which points to the data. Thus in
direct addressing points indirectly (i.e.
through an intermediate address) to the
data.

The advantages of indirect addressing are very
real and very significant in certain programming
situtations, but it is difficult for the person who
has not done much advanced machine-level pro
gramming tq,.see why or how. Indirect addressing
is used most frequently in situtations where the
address you must use is not know at the time the
program is written, but must be calculated by the
program during its operation.

Such situations often occur in the inner work
ings and hidden mechanisms of systems software,
such as the BASIC interpreters and Disk Operating
System. For example, the BASIC interpreter must
frequently refer to the location of variables such as
X, Y, and Z, which the user has defined in the
BASIC program. However at the time the inter
preter was written, the programmer could not
have possibly predicted which variables the user
would use in which order. Instead, the program
mer could only establish a pattern for their assign
ment that could be maintained in a table used to
look up (or compute) the relevant addresses.

56 Chapter VII

Such situations are conveniently handled by
indirect addressing and by indexed indirect
addressing.

7.4
Elementary Indexing

7 .4.1 Indexed Absolute Addressing and
Indexed Zero-Page Addressing

Absolute addresses and zero-page absolute ad
dresses may be automatically modified at the time
of execution by using an indexed form of the ab
solute address. This modification involves ex
ecuting the instruction with an effective address,
which is equal to the sum of the absolute address
and the contents of the index register specified.

For most instructions, neither additional
memory space nor additional execution time oc
curs when one uses indexed· absolute rather than
absolute addressing.

Instructions that use zero-page indexed ad
dressing rather than ordinary zero-page addressing
require no more memory, but one microsecond ad
ditional execution time.

For example consider the instruction

LOA $400, X

If the X-register currently holds the number $5, it
has the identical effect as LDA $405. If the
X-register contains $10, it has the same effect as
LDA $410.

The instruction LDA P1,Z has as its base ad
dress the absolute (symbolic) address 'Pl.' This ad
dr~ss is indexed by whatever number is in the
X-register.

The effect is much the same as the assembly
language addressing technique $P1 +X, where X is
a pre-defined variable. The effect is also quite
similar to using the subscripted variable P1(X) in
BASIC. In both cases P1 can be thought of as the
start of an array (or block of data or table) and X as
a particular position within that array (or block of
data or table).

Since the index registers in the Applell/MOS
6502 microprocessor are only 8 bits (one byte)·
long, the range of address modification by the in
dex register is only 0 to 255.

If we wanted to use indexing to shorten our
data movement program of figure 6. 7 A, it would
be convenient to arrange for the pair of instruc
tions

LOA P1,X
STA P2,X

to be placed in a loop that repeats itself exactly
$400 (1024 decimal) times. The value of the X
register starts at zero and increments by one each
time the loop is traversed until it reaches $3FF (or
start at $3FF and decrement one each time the loop
is traversed). Then we would have a very short pro
gram that does what our very long program did.

Unfortunately the X-register can count only
$100 (decimal256) because it is only a single byte
long. However, by using four LDA/STA pairs
within the loop, e.g.

LOA P1,X
STA P2,X
LOA P1 + $1 OO,X
STA P2 + $100,X
LOA P1 + $200,X
STA P2 + $200,X
LOA P1 + $300,X
STA P2 + $300,X

you can transfer the whole text display screen as
we did in the previous program.

One can also get the same result by putting the
loop traversed 256 times inside another loop
traversed four times. But you must provide some
means of address modification between successive
traverses of the loop.

A particularly convenient means of doing the
required address modification can be implemented
if you use the indirect indexed addressing techni
que rather than the indexed absolute addressng
technique discussed here. That technique will be
discussed and illustrated later.

Let's be satisfied for now with moving only one
memory page, or U of the text display page. We
can set up the proper environment by using some
of the machine-language instructions that
manipulate and test the status of the X register.

Index registers (the X-register and Y-register)
are counters. They can be set to any value within
the range of their 8-bit capacity ($000-$FF or 0-255
(dec)). They can be incremented by 1 or
decremented by 1, and the value can be tested
against the value of the number in any memory
location.

The following examples are basic manipulative
commands for the X-register:

LDX #$FF uses the immediate addressing
mode to put the number $FF into
the X-register.

INX is an implied address instruction
that increases the contents of the
X-register by 1. When it is ex-

ecuted the 'z' bit in the 'P' or
status register is set according to
whether X-register does or does
not contain zero.

DEX is an implied address instruction
that decreases the contents of the ,
X-register by 1.

CPX #$FF uses the immediate addressing
mode to compare the contents of _
memory (in the immediate ad
dressing mode that of the next two
locations as explicitly named in
the instruction) with the contents
of the X-register.

However, the real value of indrect addressing is
not in just hav,ing the address in a fixed location
where you can always find it and access it indirectly,
but in having the capability of having the address
automatically modified as well.

Indeed the designers of the MOS 6502
microprocessor used in the Appl~ IT didn't even
bother to implement simple indirect addressing as
described above. They implemented it only with
built-in modification capability. In fact they pro
vided two different modes that differ in what is
modified (by indexing) and what is not:

Indirect Indexed Addressing Mode
In indirect indexed mode, the zero-page

address is used without modification, but
the address to which it points, the
indirectly-obtained address, is indexed. A
curious, and occasionally annoying, restric
tion in the Apple II/ MOS 6502
microprocessor is that only the Y-register
can be used for indirect indexed addressing.

Indexed Indirect Addressing Mode
In the indexed indirect mode the zero

page address (which points to the indirect
address) is indexed but the indirectly
obtained address to which it points is not. In
the Apple ll/MOS 6502 microprocessor on
ly the X-register can be used for indexed in
direct addressing. This too can occasionally
be annoying, but the combination of the
two restrictions does help you from using
one of these two modes when you think you
are using the other.

You may find it interesting to scan through the
page zero memory locations as documented in the
Programmers' Atlas portion of this book to see
how many of them are allocated to use as pointers
for use by indirectly addressed instructions.

Chapter VII 57

7.4.2 Mini Case Study: Using Elementary
Indexing Techniques for Moving Data

Using these new indexing instructions and a
branching instruction (BNE), we can now rewrite
program 6.7A. Using the old straight-ling tech
nique to move $100 (256 decimal) bytes from text
display page 1 to text display page 2 would require
1536 bytes of memory for the program and two
milliseconds of execution time. Using the index
incrementing method shown in figure 7 .4B only
13 bytes of memory but 3.8 milliseconds of execu
tion time are required. With the improved
decrementing method, only 11 bytes of memory
and 3.3 milliseconds of execution time are
required.

Notice the nature of the trade-off, one which is
quite typical in machine-language programming.
Straight-line coding is the fastest, but wastes
memory. Looping is slower (because of the time
required to execute the looping instructions), but
it can save a great deal of memory.

Each of these new programs will move ar
bitrary bytes of data in a fashion equivalent to one
of the two BASIC programs shown as figure 7 .4A.

1--- --------------------1
I Figure 7.4A I
I BASIC Program UsiiXJ LcxpiiXJ Rather 'lllan Straight-Line I
I Technique to lble 256 Bytes of Text screen Display Page 1 I
I toPage2 I
I ----------------1
I Incranentirr:J Version or DecranentiiXJ Version I
I 98 LET Pl=l024 98 LET Pl=l024 I
I 99 LET P2=2048 99 LET P2=2048 I
I 100 FOR x = 0 to 255 100 FOR x=255 to 0 s~ll
I 110 LET a = PEEK(Pl+x) 110 LET a=PEEK (Pl+x) I
I 120 POKE P2+x,a 120 POKE P2+x,a I
I 130 next X 130 next X I
I 140 <next program statanent> 140 <next program state- I
I ment> • I
I --------------------1

1- I J____ Figure 7.48 J
I Assattlly-~ Progran using looping & Indexi1>;1 Techniques to I
I Molle 256 Bytes fran screen Display Text Page 1 to Text Page 2 I
I (Incraaentirlg Version) I
I (NOl'E: ~ quantity used in the CPX instruction controls b:Jw many I
I bytes are m:wed. Moximun = 256) 1

1 1- --
: ~lie FoJ:m Hex For:m Rata:ti<s :

IPl l!XlU $400 <none> No1no P1 equivalent to address $4001
I P2 l!XlU $800 <none> Name P2 equivalent to address $800 I
I OKl $6000 <none> Set start of progr,.. at $6000 I
I S'D\Rl' LIK t$0 6000:A2 00 !Dad the X-register with zero I
I LOJP Lilli Pl, X 6002:80 00 04 Put contents of mem::>ry location I
I $400+(X) into the A-register. I

($400 first time thrwgh: I
$4PF last time thrwgh l I

STA P2,X 6005:90 00 08 Store oontents of A-register in I
111111Dry location $800t-(X) ($800 I
first time thrwgh: $8FF last) I

INK 6008:1!11 Increase contents of x-reqister 17;{1
1 am set status register to test I
lbr zero value I

CPX t$FF 6009: m FF a::..p.re oontents of x-r~ster I
w:l. th the value $FF. Set z' flag I
in P-reqister I

l!liE LOCP 6008:00 F5 If z-flag<>O ti1en brandl - I
to current location -11 (=$F5 in I
two's c:a:plaoent notation) :

I- <next program stataoent> -I

58 Chapter VII

I ---1
I Figure 7 .4C I
I ---1
l Assembly-I..arguage Program Usil'l3' looping & Indexio:~ Techniques to I
I Jlobve 256 Bytes fran Screen Display Text Pa:fe 1 to Text Page 2 I
I (Decranentirl;J Version) I
1--l
I SymbJlic Form Hex Fonn Ramrks I
I I
I Pl mu $400 <none> Name Pl equivalent to address $4001
]P2 EOU $800 <none> Name P2 equivalent to address $8001
I OIG $6000 <none> Set start of program at $6000 I
J START Lil< #:$FF 6000:A2 FF Load the X-re:Jister with the]
I value $FF (255 decimal) I
!LOOP r..rn. Pl,X 600?:BD 00 04 Put contents of mem:.>ry location I
I $400+(X) into the A-register. I
I ($4FF first time throogh, I
I $400 last time through) I
1 STA P2,X 6005:90 00 08 Store CJntents of A-register in I
I narory location $800+(X) ($8FF I
I first time through; $800 last) I
I DEX. 6008:CA Decrease contents of X-re:Jister by[
I 1 and set status register to test I
I for zero value I
I BNE LCXP 6009oll0 F7 If z-flag<>O then branch back1.e.rd I
I to current location -9 (=$F7 in I
I O...C's canplement notation) 1
I <next program statement> I
1--l

Figure 7.4D

SUBlUJJ.'INE TIIA.T U'3ES INDEX::m3 'ID I.CO< UP AND PRINT OtT!' ASCII IYI.TA FlOo! A. TABLE
'!his sl.broutine uses 110ni tor subroutine cour to print ASCII (text) characters in
table 'mTA. ·

'I'I1e! n1.ll'l'iJer of characters is specified by the intrediate address {data value)
field of the CPX instruction.

A carria:]e return is addOO at the errl of the pdntout, so the next printout will
start a new line.

Syrrtx>lic Fonn f-lex Form REn~arks

mur mu $FDED <rnne> Use starrlard Apple n<ne for rronitor character
output routine fran rrnnitor located at $FDED

ORG $300 <oone> Set Program Counter for program to begin at $300

*** I..OJP INITIALIZA.TICN

STI\RT l.DX #$00 300: A2 00 Initialize irrleX register to zero

*** MAIN PROCRAM I..COP

U:OP I..JY\ DA.TA. X
JSR())UJ'
IN><
CPX f$05

302: eo 13 03 LoaD into A-reg , the Xth byte fran table IY\TA
305: 20 ED FD Jmp to 9Jblhltine a:x.rr to print byte in A-reg
300: EB I~snent X-re;. to next byte in table
309: ED 05 CanPare X-reg. with the n~r of dlars. to be

printed. 5 (.i.rmediate address value '$05')
309: 90 FS Brandl back to I.COP to get ir print aoother

character, unless crnpari8:)l'l nl..lli:er excee:le:l.
Break loc::p ar¥l ~ to next instruction, if done.

*** EliD-OF-SUBOOuriNE WRAP-UP

Lil\ #$80
JSRCOU1'

EXIT RTS

30D: A9 8D lDaD A-reg. with em-of-line carriage return
30F: 20 ED FD Jump to cour to print c/r (ASCII $80)
312: 60 ReTurn fran Subroutine to callirxJ program

0\.TA REX: ClOO[l()XC5
313: Cl
314: DO
315: DO
316: 0:
317: cs

ASCII 'A' + $80 (high bit set for CUJI')
ASCII 'P' + $80
ASCII I P' + $80
ASCII 'L' + $80
ASCII 'E' + $80

Several things should be noted about these
assembly-language programs:

1. Both versions, though slower than straight
line coded versions, are still lightning fast
compared to their BASIC equivalents (3.8
and 3.3 milliseconds respectively).

2. Both use very little memory - only 13
bytes in the incrementing version or 11
bytes in the decrementing - much less
than its BASIC-language equivalent.

3. It is hard to read in its assembly-language
form and much harder yet in the machine
language hexadecimal byte form.

4. As shown above, neither program will do
the job we originally intended it to do!

Consider the decrementing version. It
moves $4FF = > $8FF, $4FE = > $8FE
$401 to $801, but stops before it can do
$400 = > $800. That is, when (X) = 0, it
does not branch to move $400 = > $800.
This 256th move is easily obtained by doing
an LDX #$00 instead of LDX #$FF. Then on
the very first move $400 = > $800 but the
X-register is decremented to $FF before the
branch test. This is a wrap-around operation
-the page does not change.

5. The programs would have to be rewritten to
provide a page-changing capability before
they could move more than 256 bytes of
memory.

6. Within this constraint, by changing
parameters P1, P2, and the value loaded to
the X-register, this program is quite general,
capable of moving any amount of informa
tion from anyplace to anypl!lce.

7. It is easy to miss the existance of this
generality because the program is not easy
to read without careful study.

These programs illustrate, in a microcosm,
many of the advantages and disadvantages of pro
gramming at the assembly-language/machine
language level.

7.4.3 Mini Case Study: Using Indexing to Search
Through and Print Data from a Table

This is an example of a program that should not
be done in machine language unless it is done as
part of a large assembly-language program in an en
vironment where BASIC is not readily available.

This program is an excellent example of how
assembly- or machine-language often makes you
do everything yourself in excruciating detail. The
whole program has the same effect as a single
BASIC statement:

print "APPLE"

Indeed what is shown here is not the complete
assembly-language program to do the job from
scratch. Most of the actual work is done by the
'COUT' (Character OUTput) routine in the
system monitor which this program calls upon to
do the actual printout.

This program uses the indexed addressing
mode to scan through a data table to print text. In
this case the word 'APPLE' is stored in the table
'DATA.

The theory of operation is simple. After the in
itial declarations and initialization of the index
register to zero, the program loops repeatedly, each
time getting successive bytes from the data table.
It finds each successive byte by using the start of
the data table as its base address and the contents
of the X-register as the offset to determine the ef
fective address of the current character. At the end
of the loop the program checks the current offset
against the number of bytes to be printed (which is
stored as the immediate access address field of the
CPX instruction). The program loops back if it has
not reached this end-test value. When a match oc
curs the program breaks out of the loop, loads and
prints a carriage return and then returns control to
the routine that called it.

The table is put into memory by a new type of
pseudo-operation 'HEX.' there is considerable
variability among assemblers in their handling of
such functional requirements. Pseudo-operation
'HEX' enters the string of hexadecimal bytes that
follow the pseudo-op-code. Some assemblers have
in addition, or instead, an ASCII pseudo-operation
(usually abbreviated ASC) that allows one to enter
ASCII tnaracters directly.

Such data can also be entered by the system
monitor without use of an assembler merely by
specifying the memory location, colon, the data,
e.g.

313:Cl DO DO CC C5

7.5
Indirect Addressing

7. 5.1 An Overview of Indirect Addressing
in th,e Apple II

In solving many problems it is convenient to
have an address that is truly a computed value, not
just a base address with some type of offset, but a
calculated value. Indirect addressing provides this
capability.

In the Apple II/MOS 6502 microprocessor in
direct addressing is always accomplished using a
pointer located on the zero-page. Thus the basic
form of indirect addressing is that of an instruction
consisting of an OPERATION CODE followed by a
ZERO-PAGE ADDRESS. The microprocessor ob
tains the effective address by picking up at the
zero-page address the effective address of the
operation. Instead of using the zero-page address

Chapter VII 59

directly, the indirect addressing mode uses the
contents of the zero-page address to point to the
address to be used.

Let's compare this to the classic absolute ad
dressing. In absolute addressing the value in the
program counter is used as the address to pick up
the lower byte of the effective address. One is add
ed to the program counter to pick up the high byte
of the address. In the case of indirect addressing,
the next value after the operation code, as address
ed with the program counter, is used as a pointer
to designate the low byte of the effective address
and one is added to the pointer to pick up the high
byte of the address. The computer then goes on to
use this address as if it were an absolute address.
Thus the zero-page address in the instruction is
really the address of an address used like an ab
solute address.

Why go to this additional complication? When
is its use worthwhile?

Indirect addressing becomes valuable when the
address to be used is not known at the time the
user writes the program. The indirect address is
really an address that would have been coded
directly - and more efficiently - as an absolute
address had its numeric value been known when
the program was written.

For example, to minimize tthe coding of a
subroutine or a general purpos~hset of coding, it is
often desirable to work with a range of addressing
that is not possible to cover in a normal index. Or,
in the case of a subroutine where it is necessary for
the addresses to be variable depending on which
part of the whole program called the address. Let's
look at the latter case more closely.

It should be fairly obvious to the user that a
general purpose subroutine cannot contain the ad
dress of the operations. Therefore if you wish to
load the accumulator in this situation you do not
have an absolute address to use in an LDA instruc
tion to do the job. Instead you will have to com
pute the address from available information and
star~ the result. The most efficient place to store it
is in page zero, because it takes less time to put an
item or retrieve it from there.

What you would really like to do is use the ad
dress you have computed (and is now stored in
page zero) as the absolute address in your LDA in
struction.

You could do this by keeping track of exactly
where in memory the address bytes of that par
ticular instruction were located, treating them as a
data location and putting the computed address in
to them. Of course every time you made even the

I

60 Chapter VII

slightest change in your program this location
might shift, you would store the wrong informa
tion in the wrong place and your program would
blow up!

Indirect addressing will let you achieve .the
same results with a minimum of fuss and bother,
and with a minimum chance of corrupting your
program if a minor change is made in it. Indirect
addressing gives you the capability of addressing
anywhere in memory with a calculated address.

7. 5. 2 Indirect Indexed Addressing,
e.g. LOA ($06), Y

Indirect indexed addressing is an address
technique that provides a great deal of flexibility
for advanced assembly-/machine-language pro
gramming. It is available on only eight instruc
tions: ADC, AND, CMP, EOR, LOA, ORA, SBC &.
STA.

The standard way of designating indirect
indexed addressing is

OPC (ZPL),Y

where OPC designates OPeration Code, e.g. LOA
or STA.
(ZPL) The 'ZPL' designates that this instruction

uses a Zero-Page Location. The one
specified is actually the lower byte of a two
byte address. The (J indicates that the
CONTENTS OF this zero-page address act
as a pointer to point to the base address of
the operand to be used by this instruction.

Y designates that the Y -register is to be used
for indexing. This means the contents of the
Y-register are used as an offset added to the
base address to get the effective address to
be used. ONLY the Y -register, never X, may
be used with this addressing mode.

REMINDER: In Apple/MOS 6502 assembly- or
machine-language programming the symbology (J

means 'the contents of' the specified register or
memory location, the name of which is enclosed
in the parentheses.

Lets look at a typical indexed indirect in
struction and see in some examples exactly what
happens. Let us assume that at the time this in
struction is fetched the following data is in the
locations indicated:

(Y) = $20
($06) = $00;($07) = $08; (06,07 is a pointer

to $0800)
($820) =$CO.

LDA ($06), Y

specifies that the accumulator is to be loaded using
_a base address and offset technique. The pointer to
the base address may be found in memory location
$06, or more specifically the LSB of the pointer
may be found in $06 and the MSB in $07. Since the
pointer $06-$07 contains the value of $0800, the
base address is $0800. The offset is the contents of
theY-register or $20. Thus the effective address is
$800 + $20 = $820 and the operation will result in
the loading to the accumulator of the value which
can be found in $0820, the quantity $CO.

In this addressing mode you have an instruction
with the normal counter offset capability of index
ed instructions. However the address which is in
dexed is not in the instruction itself, it is an
address in a predetermined,fixed zero-page location
and it is capable of pointing anywhere in memory.

Such a stand-alone address can be easily com
puted or modified by an entirely different portion
of the program than that in which the instruction
is located. Such flexibility can become especially
important in system programming, e.g. the
development of general-usage high-resolution
graphics routines, interpreters, etc.

The fixed, predetermined location of the
pointer-address means that when the program is
altered you can avoid the hassle of keeping track of
exactly where in memory the instruction is
located and changing all of the instructions involv
ed in direct modification of an address field, which
is part of an instruction that can move from place
to place.

This method of addressing exacts an execution
time penalty. Operations using this addressing
mode require five central processing unit time
cycles compared to four time cycles for absolute,
absolute indexed or zero-page indexed addressing,
three for plain zero-page addressing or two for
immediate addressing.

Now let's see how we can use this indirect
method of addressing to rewrite our machine
language program as a subroutine for moving text
page 1 to text page 2. In so doing we will remove
the earlier restriction on moving a maximum of
256 bytes so that the rewritten program will
transfer the whole $400 bytes of the complete
screen display.

The theory of operation of this program is as
follows: First we declare where the program is to
be located and where the pointers to the screen
display page 1 and page 2 are to be located. Next
we initialize these pointer locations to contain the
addresses of the start of page 1 and page 2. Then we
enter a loop that moves $100 (a full memory page)
of bytes from page 1 to page 2. Then we modify

both pointers to specify the next memory page.
However before doing anything with these
modified pointers, we check to see if we have
already completed the task. If not we loop back to
move another $100 bytes, but if we have com
pleted we exit the subroutine.

Figure 7.5A

Progrcmt to rrove Text Page 1 to Text Paqe 2 usirg Indirect Indexed Mdressirg

Syrrrolic Fbrm Hex Fonn Rsnarks

ORG $5~ <n:me>

PPl EOU $06 <none>

PP2 EOU $08 <none>

Start projram a~ arbitrary TTEIYOry location $5FFA

Declare PPl (Page 1 irrlirect address J;Ointer) to
occupy zero-page rnenory location $06 (lSB)
& $07 (MSB)
Declare PP2 (Page 2 irrlirect address fX)inter) to
occupy zero-page rrerory location $09 (ISB)
& $09 (MSB)

* INITIALIZE PAGE POINTER 1 (PPl AT $6, 7)
TO HOW BASE ADrnESS Pl ($0400 - ST.f\RT CE' PAGE 1)

INITIALIZE PAGE POIN'I'ER 2 (PP2 AT $8,9)
'TO HOID BASE ADmESS P2 ($0800 - STARr OF PAGE 2)

ENTRY I.1Y\ #$04 SFFA: A.9 04 I.Dad $04 (!-EB of $0400 - start of text page 1
into A-register to start nnvirg it to r-EB of PPl

STA PPl+l SFFC: 85 07 Store $04 as f>SB of PPl (Page Pointer l)
1.lY\ #$08 5FFE: A9 OB Load $08 (MSB of $0800 - start of text ~e 2

into A-register to start IIDVirg it to r.fiB of PP2
STA PP2+ 1 6000: 85 09 Store $08 as r-58 of PP2 (Page Pointer 2)
IDY #$0 6002: A.O 00 I.oad theY-register with zero for use as I.SB

of 1::x:rl:h text page rx>inters (PPl & PP2)
S'IY PPl 6004: 84 06 PPl (6, 7) rt::H1 fully loaded with $0400
ST'l PP2 6006: 84 08 PP2 (8,9) no.v fully loaded with $0800

* FNTER A IJ:0P 'I'iAT RlNS Y-RE3ISTER FRCM 00 'l'O FF, MJVING $100 BY'I'ES
($00-$FF = OOE MfM)RY" PAGE = 1/4 OF TElCT SCREEN DISPlAY PAGE)
FRCM TEXT DISPtAY PAGE l 'l'O TfXT DISPlAY PAGE 2

lOOP I.Jlf\ (PPl},Y 6008: Bl 06 fobve fran Text Page 1 to A-register
STA (PP2}, Y 600A: 91 08 fbJe Page 1 byt.e fran A-register to Page 2
INY 600C: C8 Increase offset by 1
mE LOJP 60CD: 00 F9 Branch badc...ard to u:oP (-7 dec "" $F9) if

Y-register has not COI.Ilted dcwl. to zero

* I~REMENT MSB OF OC1Di PAGE POINTERS BY l 'ID SET UP FOR MJVING NEXT M]H)R'f PAGE

NXT :O.C PP2+1 600F: E6 09
:n.c PPl+l 6011: E6 07

* TEST 'ro SEE IF YOU HAVE REDDiED THE END OF 'I4.E MJVE.
IF NOT, B~ BACK 'ro MJVE AN:f!Y:ER MEMJRY PAGE,
O'IHEEWISE, t:ROP 'IHooo:J! 'ro EXIT AND REruRN 'ro WiEREVER CALLED FRCM

IDI\ PI'R+1 6013, liS 07
""' t$08 6015, C9 08
Ba:: LOOP 6017: 90 EF Branch b:J.ck to lOOP (-17 dec = $EF bytes if

ccnparison test shcMs ..mote rrove rut canpleted.
EXIT RTS 6019: Finished - Return to ...tlerever called fran

There are several things you should notice
about this progr;tm:

1. A complete explanation of how the program
works is built into the text of the program.
This makes the program look longer (and
perhaps more complicated) but this self
documentation makes it much easier to
use.

2. The program is still lightning fast, taking
about .016 seconds to move the contents of
1024 memory locations.

It is slower than the previous programs
because 1. it moves the contents of four
time§ as many locations, 2. the use of in
direct addressing added two microseconds
to each indirectly addressed instruction, a
seemingly trivial amount that begins to add
up when one applies it to several instruc
tions in a loop which is traversed many
times, and 3. some extra set-up and address

Chapter VII 61

modification overhead is also added to the
program.

3. Although it illustrates a way that indirect
addressing can be used and can be useful,
this is not a particularly good program for
the use intended.

We would have achieved the same
results in both a faster (less than .01 second)
and less complicated manner if we had just
modified figure 6.9.4B or 6.9.4c by replacing

LDA P1,X by
STA P2,X

LDA P1,X
STA P2,X
LDA P1 + $1 OO,X
STA P2+$100,X
LDA P1 + $200,X
ST A P2 + $200,X
LDA P1 + $300,X
STA P2 + $300,X

4. However the program using the extra loop
and indirect addressing could be easily
modified to do other jobs which the
absolute-indexed version of the program
even using a modification similar to that
above would not have been suitable for.

For example, to move high-resolution
graphics display page 1 to hi-res graphics
page 2, you would have to insert 32
LDA/STA pairs in order to use simple in
dexing, while if one used the indirect index
ing version of the program you merely
change P1 to $2000, P2 to $4000 and CMP
#$08 to Cmp#$40.

5. GOTCHA! There is one serious (but totally
unnecessary) fault that I suspect most of
you missed in the use of this program for
moving hi-res page 1 to page 2. Part of the
program ($5FFA- $5FFF) is located in hi-res
page 2 and hence would be destroyed by the
move. You must be careful.. ...

For programs up to about $90 (dec 240)
bytes in length, all except the very top of
memory page 3 is normally safe and conven
ient to use- as long as you don't try to put
two programs in the same space at the same
time.

6. It sounds like a great idea to generalize this
program slightly so that one could have a
generalized data movement program, right?
Wrong!

Why go to the trouble of writing your
own machine-language program when a
program to do exactly the same task- only
better - is inside the system monitor firm-

62 Chapter VII

ware waiting to be used every time you run
your computer.

7.5.3 Indexed Indirect Addressing,
e.g. LDA ($80,X)

The indexed indirect addressing mode is the
last of our addressing modes used for
sophisticated assembly/machine-language pro
gramming. It is available for only eight instruc
tions: ADC, AND, CMP, EOR, LDA, ORA, SBC,
and STA.

Indexed indirect addressing is commonly used
in picking up data from a table or list of addresses
in such activities as polling I/0 devices or in per
forming string or multi-string manipulations.

Whereas indirect indexed addressing could use
only the Y-register, indexed indirect addressing
can use only the X-register. This sometimes causes
inconvenience, but keeps you from confusing one
mode for the other.

In this mode the contents of the index register
X is added to the zero-page address. This allows
you to compute and change a specific indirect
pointer. Consider the following situation:

(X)= $04

($80) = $00 ($81) = $02 80,81 is pointer to $0200
($82) = $00 ($83) = $03 82,83 is pointer to $0300
($84) = $00 ($85) = $04 84,85 is pointer to $0400

LOA ($80,X)

takes the base address $80, indexes it by the
contents of the X-register, $04 to get an effective
address of $84. It then uses the pointer at $84 to
obtain the indirect address $0400.

You pay an execution-time penalty for this
form of addressing. It always takes six processor
cycles to fetch a single operand compared to five
processor cycles for indirect index. Also, the pro
cessor will not cross over page boundaries, but will
wrap around to the beginning of the page.

Chapter Vlll
Machine-Language Programs
Can Live Happily in a
BASIC Environment

Machine-language programs can be made available
to a BASIC program in several different ways. Each
section following covers a different technique.

8.1
The Simplistic Approach:
Using a Binary Disk File for the
Machine-Language Program Loaded and
Called by the BASIC Program

Suppose, for example, you had a machine
language program consisting of the following 10
bytes to be inserted in memory starting at memory
address $0300.

FF EE DD CC BB AA 99 88 77 66. 55 44 33
11 00 01 02 03 04

(Don't try to decipher the program,
it is nonsense code)

Working directly from the keyboard (NOT inside a
program) you could follow the procedure shown in
figure 8 .1A to use this machine language code
available:

1---l I Figure B.lA /

1 Prc:x::eiure for Savin:J & CAI.J.,i:rg Machine I..ancjuage Program as Binary Disk File 1
I I
I (Illustrated by Means of Sample Program 'NCNSENSE') I
1---------------------------------------1
I] CAlL -151 (to enter the nonitor) I
I (If your Apple doesn't .have the Autostart RCM, then just press RESEr) I
1 • 300, FF &£ oo a:: BB AA 99 8B 11 66 55 44 3r22 11 oo 01 02 03 04 I
I (Program is ro.~ in menory locations $0300-$0314) I
I • BSI\VE >DiSENSE, A$300,1.20 I
I {Program is now saved on disk as a binary file name::l N:NSENSE) I
I (Note that the starting location arrl length can be specified in either I
I Hex (A$300,L$14) or Decimal (A768,L20) or mixed (A$300,1.20). as here) I
1- - - - --- -- - - -- - --- ---- -- -- ----- -- - -- - -1
I 'lb get this binary disk. file to ~rk W1 th your pt'03Z'am. you rrerel y load 1
I and call the ~am s::rne time before it is needed as follCMS: I
I I
I 50 PRINT OIR$ (4), "BI.O>.D tnlSENSE" I
I (OiR$(4) is the infanous CTRL-0) I
1- -1
I 'Arrf time you wish to exec:ute the program call it: I
I I
I 600 C!\LL 7611 I
I (768 is the decimal equivalent of $300. Yes, it W)Uld be nicer if I
I one o::uld CALL $300, but as we have seen Applesoft MSIC allows l
l CXl.ly decimal mmi:Jers for PEEl<.s, PCJ<Es arrl CALLs.) l
1--l

8.2
POKEing Small Machine-Language
Programs into BASIC

8.2.1 POKEing Each Byte Individually

With this approach you must convert both the

addresses of the memory locations into which you
will put the code and the code itself into decimal
form.

Various utility programs are available to assist
in this task or you can use Hexadecimal
Decimal Conversion Tables such as those repro
duced as figures 7.1B and 7.1C.

This technique was used in the program of
Case Study 5.9, which showed how the inverse
procedure for converting backwards from the
POKEs to the machine-language instructions
could be accomplished.

1---l
I Figure 8.2A I
I Procedure for ~ing Machine Language Instructions One Byte at a Time I
I (Illustrated by Means of Sample Program 'NCNSENSE') I
1------------------------------ I
I (1) Firrl the decima.l equivalent of the hexadecimal startin:~ location I
I for the program. You may perform the conversion rna.rrually, use I
I the canputer or use the table lQ()}c-up procedure desc:ribed in I
I Section 3. 5 ..tlich uses the table Figure 3. 5C I
I I
I For example program 'NCNSENSE' , the startirg location $300=> 768 I
I I
I (2) Find the decimal equivalent of each byte. You have the same I
I choice of metb::rls. I firrl look-up in Table 7 .lB the easiest I
I I
I For example program ~~ENSE' the conversions are as follows: I
I I
I - FF ~ oo ~ w AA ~ 00 n 66 I
I Dec 255 238 221 204 187 110 153 136 119 102 I
I I
I - ~ ~ n n 11 oo m m ro 04 I
I Dec 85 6B 51 34 17 o 1 2 3 4 I
I I
I (3} Then IU<E the first byte into the start-of-program location aril I
I arrl each subsequent byte into the next consecutive location. I
I I
I For sample program 'NCNSFNSE' this is slnwn below: I
I I
I so IU<E 76B,255,POKE 769,23fh!U<E 770,22b!U<E 771,204•roKE 772,187 I
I Sl!U<E 773,170•1U<E 774,153,roKE 775,136,IU<E 776,119,roKE TI7,102 I
I 52 roKE 778,85,IU<E 779,6B,roKE 7B0,5l•IU<E 781,34•1U<E 782,17 I
I 53 IU<E 783,0•1U<E 784,b!U<E 785,2•POKE 786,3' IU<E 787. 4 I
1-- I
I I
I Callirg rem.ins nnchanged, e.g. I
I 600 C!11L 768 I
I I
1--------------------------- -1

Note that even though this process is very easy to
understand it can become tedious and error-prone
if the program to be POKEd is very long.

Incidentally, this procedure is just as applicable
to INTEGER BASIC as it is to Applesoft.

8.2.2 Using Read and Data Statements to
Simplify POKEing

Since a program goes into consecutive memory
locations you can reduce typing and program
overhead by using a FOR loop to specify the con
secutive memory locations and put the program
DATA into the POKEs by means of READ
statements. Figure 8.2B shows how the example of
figure 8.1 appears when this technique is used.

64 Chapter VIII

1----------------------------1
I Figure 8.28 I
I OOKEirr;J Machine IalY:Juage into BASIC I
I Abbreviated Fonn using ~T.I\ & RFAD Statements I
1---------------------------------1
I so -roR !=768 ro 787 I
I 52 READ BYTE: OOKE I, BYTE I 154 NEXT! I
I 56 ~TA 255,238,221,204,187,170,153,136 I
I 58 ~TA 119,102,85,68,51,34,17,o,1,2,3,4 I
1---------------------~-----1

Note how much shorter and easier this technique
is to follow than a separate POKE Instruction for
each location, even with a program as brief as the
sample.

8.3
Tricking the Apple Monitor into Working
Inside a BASIC Program

This technique is often called the Lam tech
nique after its originator. It involves storing a set
of monitor commands in a string variable inside a
BASIC program, then tricking BASIC into think
ing that this string was entered via the keyboard,
executing the monitor commands and returning to
Applesoft. This method of imbedding a machine
language program was used in the Utility Program
I Applesoft Patch of Section 5.10 (figure 5.10A).

Figure 8.3A describes the set-up procedure and
uses the same program 'NONSENSE' that was
used in the two previous examples.

I ------
1 Figure 8, 3A
I
I IDII'll:lR RJUl'IIIE l«lRKKIO INSIDE BASIC
I ---- ·---- I
1(1) Set a stri.D;J variable (Z$) equal to exactly what you """ld have entered I
I directly into the ncnitor in Section 8.1 (Line 50 of program below). I

1(2) 1\dd another nonitor cxmnand, the'ru!lnin;J return to Applesoft' routine
I 'Z$-Z$+" N !l823G"' (Line 52 of pro:Jram belO<l) •
I
I (3) lQ(E this catt>ined stri.D;J into the Keylx>ord Input ~ffer, the aame
I place it """ld go if one had typed it in at the JceYboard (Line 54).
I
114) Set the STA'!Ul re<Jister l<ohich holds the old contents of the program
I counter"""" one transfers into the ncnitor) to zero (Line 56),
I
1(5) en execution do this set up am inmsdiately CALL -144 .to trigger the
I JceYboard acan am execution of the nechine-J.anguage program. (Line
I 360).
I
116) It is ~ent to form the set-up as a subroutine. It is best not

!.:.::.:.::.:.:.~~:.:~;; =:::::.:.:.:.:.:.:.:.:.:.:.:1
I I
I 50 Z$ s "300: FP EE DD cc llll AA 99 88 77 66 55 44 33 22 11 00 01 02 03 04"1
I52ZsZ+"NDB23G I
I 54 !OR I a 1 TO U!N(Z$): lQ(E 511 +I, !\&: (MID$(Z$,I,l)) + 128: NElCI' I

56 FatE 72,0 : Rl!llUIN : R!M Use Rl!ll'URI'I only if to be used as a subroutine I
I I
I Main Piogram CAILiD;J Procedure 1br "mNSI'NSE" 1
I I
I 360 OOSUB 50: CALL -144: R!M CALL -144 should not be inside a subroutine I
I I

To execute the program you perform this set
up then CALL -144. This scans and executes
monitor commands in the keyboard-input buffer
area (Memory Page 2). The Apple thinks. it is in

monitor mode and has just received a command
from the keyboard. It loads the program, then
transfers control to $D823 and makes a 'running
return' to Applesoft ready to decode and execute
the next line of the Applesoft program.

This technique retains the obvious visible
identity of the machine-language program rather
than obscuring it by conversion of the bytes to
decimal form. In terms of memory requirements
this technique is quite efficient, using less than
half the number of bytes of memory that are re
quired for POKEing bytes indi'\l'idually. For
medium length programs the technique using
READ and DATA statements is about equally effi
cient in use of memory.

One final thing. This same exact technique is
equally as applicable to Integer BASIC as it is to
Applesoft. There are only two differences:

.1. Character strings in Integer BASIC are a bit
more primitive than in Applesoft. They
must be DIMensioned before use.

The Statement DIM Z$(100) at the
beginning of line 50 will take care of that
requirement.

2. The running return to Integer BASIC
should be appended directly onto the pro
gram rather than by a separate concatena
tion operation. (This can be done in Apple
soft too, but I thinkthe procedure is more
self-explanatory if the monitor string is
separate.) The running return routine is at
$E88A for Integer BASIC rather than
at $D823, the Applesoft running return
location.

Thus for Integer BASIC delete the ex
plicit concatenation of line 52 and instead
do it implicitly by putting 'NE88AG' the
end of the character string in line 50.

3. Line #54 must be changed to ... ,ASC
(Z$(I)):Next I.

8.4
Imbedding Machine Language in an
Applesoft Program 'Transparently'

8.4.1 When Relocatable Machine-Language Code
is Available

If you have a machine-language program that is
'relocatable', i.e. which will work equally well
even though it is moved from one location in
memory to another, you may imbed it within your
Applesoft program transparently. When binary
code is so imbedded, it automatically goes with
the Applesoft program wherever the Applesoft pro
gram goes, even when it is STOREd to a

diskette or LOADed back from a diskette. This
saves the separate binary file and BLOAD required
of the simplistic technique.

Accomplishing this feat involves reading and
resetting the PRGEND (PRoGram END) pointer
that is located in zero-page memory locations
$00AF and $00BO (decimal 175 and 176). If you
want to know all about this pointer you can find a
complete explanation of Applesoft memory alloca
tion and the function of PRGEND in Chapter 15.

The machine-language program is entered after
the original end of the BASIC program. Then the
pointer is reset so that Applesoft (and the rest of
the Apple) think that the program ends at the end
of the added binary code.

A strange characteristic of Applesoft makes it
necessary for machine-language code to be
relocatable. Each time a line of code is added or
deleted or any other change (such as resequencing)
is made that changes the length of the program, all
of the memory allocations for variables (and the
machine-language program to be added) are pushed
upwards to allow the extra program space needed.

Thus if you allow any changes whatsoever to
the program, the machine language must be
relocatable in the sense that it must work when it
is slipped upward or downward as a result of this
process. (Such changes are almost inevitable. If
nothing else, you must imbed a CALL or CALLS to
the machine-language program. The exact values
are less easily precomputed than the location of
the program.)

The set up process is shown in figure 8 .4A.

1-------------------------- I
I Figure B .4A I
I I
I Prtx:=e::lure for Irt'beddirJ3 Machine lan;Juage in Applesoft 'Transparently' I
1-- --------------------------------1
\L Read an:::l record the Program Pointer, i.e., PRINT PEEK (175)+256*PEFK(l76) I
12. Add 20 to this value. 1
13. Convert to 'iexadecimal • I
14. Enter the nonitor (CALL -151} arrl start entering the machine-language I
I (r09ram at this a&iress. Make sure the pl'03I'am errls with an RrS (ReTurn I
I frail Subroutine). I
\5. Record the total rutber of bytes of program entered, as well as the I
I address of the next available rnenory locaticn. I
\6, Set the Program Pointer (s) to the address of the next available location 1
I beyond the nacnine-languaqe code. I
17. Save the J\R>lesoft program (...ttich r¥JW" exterrls to the errl of the ma.chine- I
~ l<mjtage ccrle) ~~~~~-=~~~~~~~ire:l name. l
~ 'Ib recover an1 use the program one stolld; I
\1. Clear the syt.em of arry residue of the program, e.g., use a FP or a NfW, I
12. UJW the p<"ograrn. I
\3. A.t the p:>int in the 1\pplesoft pt"ogram Were you want to call the ma.Chine-1
I language program, enter the follc:wi.rg line of co:le: I
I I
I 600 X=PEI'X(l75)+256*PE>l<(l76),Y=X-N•CJ\LL y I
I ' I
I (It-the rnnber of bytes of machine code. fbi that Y has been <XJIIp.lted. CALL Y I
I can be useCI as often as desired for subsequent CALT.s.) I
I I

8.4.2 When Relocatable Machine-Language Code
is not Available

A number of utility programs have been
developed to allow you to put the machine-

Chapter VIII 65

language program to be bound to an Applesoft pro
gram, at a fixed location (usually in front of the
BASIC program).

You can accomplish the same thing that these
utilities provide by using the memory-patching
procedure described in Section 15.4 (and 15.8)
The idea is this:

1. Make the first module of the program a
single statement: 1 GOTO 2.

2. The first module will always take the same
amount of space which can be determined
by the procedures described in Chapter 15.
The machine-language program can be writ
ten and/ or assembled to fit immediately
after this module, its size determined and
the space it occupies blocked off as a pro
hibited zone for BASIC.

3. Use the allocation pat,ching technique and
start the second module of program just
beyond the end of the prohibited zone.

Warning: When you do this kind of patching
you are tricking the memory allocation pro
cedures in Applesoft to do things differently from
the way they normally would. Don't try this pro
cedure until you have read and understood the
Applesoft memory allocation concepts presented
in Chapter 15.

Chapter IX
Overview of Apple System Memory
Allocation

9.1
The Easy Way and the Hard Way to Look
at Apple System Memory Organization

Early in this book, before we formally
introduced hexadecimal numbers, we discussed
the organization of Apple memory into 256 pages
of 256 bytes each and the simplifications that were
possible when you use hexadecimal abbreviations.

We suggested you think of memory as $100
pages of $100 bytes each, the$ being an indication
that you were counting with 16 symbols (0,1,2,3,
4,5,6,7,8,9,A,B,C,D,E, and F) rather than with the
normal10 symbols (0,1,2,3,4,5,6,7,8, and 9). We
showed how, even when you used decimal ad
dressing for double-PEEKs and double-POKEs, you
could take advantage of hexadecimal tables to
make the determination of decimal addresses
easier.

You have been gradually familiarized with hex
adecimal numbers from that point in the book to
this. Hopefully hexadecimal numbers no long
shock you.

You have seen the simple logic behind the hex
adecimal system and you have seen the intimate
relationships of the hexadecimal viewpoint to the
architecture and the internal structure of the Apple
system. Do you still consjder hexadecimal
numbers to be useless and undesirable intellectual
baggage to be avoided whenever possible? If so you
can continue to avoid them. I will continue to pre
sent all memory information in both decimal and
hexadecimal form.

However, even if you have absolutely no in
terest in machine language, you will find that it is
much easier to acquire knowledge of the logical
structure and layout of Apple memory if you think
in hexadecimal terms. You will find it much easier
to remember its layout, subdivisions, and even in
dividual key memory locations if you think of hex
adecimal addresses.

As you have read repeatedly, a fully imple
mented Apple II system can contain 65,536 direct
ly addressable memory locations. That's $10000
locations in hexadecimal terms. 65,536 is an odd
sized, hard-to-remember number; $10000 is a nice,
round, easy-to-remember number. The high-

resolution graphics primary display occupies
memory locations 8192 to 16383 - not easy
numbers to remember; in hexadecimal it is much
easier to remember: $2000 to one less than $4000
($3FFF).

In hexadecimal addressing, locations are
counted consecutively from $0000 to $FFFF
($10000-1).

In decimal memory addressing for Integer
BASIC, memory locations are always counted as
locations 0 to 35,735, followed by locations -35736
to -1. Of these 65,536 decimal numbers, the two
that are furthest apart (at the opposite ends of the
address range) are 0 and -1. Adjacent to one another
in the middle of the range are + 32767 and-32768.

For Applesoft BASIC environment this is still
the most common method of addressing, but a
second set of unsigned decimal addresses are also
commonly used.

These differences in simplicity I complexity
and convenience are significant. They are also no
mere isolated coincidences. When the breakdown
of functionswithin the Apple System is considered
in decimal terms, it consistently requires the use
of odd-sized, hard-to-remember addresses. When
the breakdown is described in hexadecimal terms,
it fits exactly to the internal logical structure of
the system and thus tends to follow a straight
forward, easy-to-remember pattern.

Now let's review some key aspects of the
logical simplicity we get from hexadecimal
memory addressing. ·

Architecturally the Apple system memory is
broken down into $100 pages of $100 hexadecimal
digits each. All addresses are two bytes or 4 hexa
decimal digits long (or can be padded into that
form by adding leading zeros).

For any arbitrary hexadecimal address $HHLL,
the two high-order hexadecimal digits, HH, that is
the high-byte or MSB, specify the page of memory,
while the two low-order digits, LL, the low-byte or
LSB, specify the particular location within that
page.

9.2
The First Cut: RAM, ROM and
'SPECIAL I-0'

The bottom 48K of memory in the Apple II
system (K stands for binary Kilo = 1024 so 48K =

49152) is reserved for user-changeable RAM
(Random Access Memory). This memory is sup
plied in modular packages: 16, 32, or 48K, but the
vast majority of Apple computers contain the full
quota of 48K.

RAM memory is volatile; that is, the informa
tion in it evaporates and is lost whenever power is
turned off.

The top 16K (16K = 16384) bytes of Apple II
system memory is reserved for Apple System Firm
ware and also for special functions associated with
the input-output system and expansion slots of the
Apple System. It is subdivided into a 12K ROM
section and a 4K Special I-0 section.

l--1
I Figure 9.2)\ I
I Apple II+ System Merory Mao I
I (l..t:>oo!!st Level of Detail) I
l--1
I RAM Paqes II Special I-0 Pages II IDl Pages I
I K IPge[Pge I Use II K IPge [Pge I Use II K [Pqe IPqeluse I
I l'lexl(oec)l II l(~ex)l(oec)l II l('iex)IDecl I
1-l--l----l-------11-l----l----l---------11---1---1--1-----l
llstl$0010 lzero P'lqe ll49ti$CO 1192 l!>.>ilt-iniOII53~ISDO IWAI!\/~Intorl
I ISOlll lsys stack II ISCl 1193 l~lotU 10111 lSD! 12091,../srntprl
I IS0212 IKeylrl!>.lfrll ISC2 1194 [Slot4210o!ll ISD2 12101!\/srntprl
I l$03[3 IML&DORVecll ISC3 1195 lslotB!Oolll ISD3 12111,../srntprl
l--l-1---1--------11--l----l----l---------11--l---l----------l
l2niiS0414 [Text&J.J:>Resii50tiSC4 1196 lsloU4 Jno~ll54tiSD4 1212111/S!ntnrl
I l$05[5 IText&LoResll ISC5 1197 ISloUS JO'olll l$05 12131!1/Sintorl
I l$0616 IText&LoResll ISC6 ll9R lsloU6 IDIII ISD6 12141!1/srntorl
I l$07[7 IText&LoResll ISC7 1199 lslott7~no~ll ISD7 12151!1/S!ntr:>rl
1--1-l---l-------ll--1----l----l------11--l----l--------l
I3MI$01ll8 [Either IISlsiSCR 1200 [Slot!01ExPII55tlSC'l 12161!1/S!ntorl
I [$09[9 [8)\.S!C DxPII ISC9 1201 [Slot!OoiExpll ISD'J 12171!1/S!ntprl
I IS"' 110 lo.- II ISC!I 1?.02 lslot~xpll ISD!I 12181!1/S!ntprl
I ISB Ill l2rrlTxt&U<GII ISCR 1203 ISlot~n<Expll ISDB 12191!1/S!ntorl
1--1-1---1---------11---1----1--1--------11---l----1--------l
l4thiSOCI12 [8)\.S!C fklrPII52~1SO:: 1204 [Slot101Expl[56ti$0C [2201!1/S!ntorl
I ISODI13 IBI'.SIC OorPII lscn 1205 lslot~xpll ISoo 122?.1,/sintorl
I ISOEI14 IBI'.SIC lbrPII ISCF- 1201; ISlotR:ME:xpll [$OF- 12231!1/S!ntorl
I ISOF[l5 [8)\.S!C D::>rPII ISCP 1207 [SlotJno!F-xpll ISDF 12?.4[)\/Sintorl
1--1-l--1--------ll-------------------------11---1-----1-----------1
I . RJ\SIC D::>rP . !1/s Intpr I
I , RJ\SIC D::>rP . Intr ;...,... I
I . . . 8)\SIC lbrP . . . 'bli tor I
1--1-1-1---------1 1--1----1----------1
l9thi$20I32 la...src DxPI [64th Sf': l252l...,...itor I
Ito Ito Ito lor; I I I SFD l253l...,...itor I
ll6tiS3Fl63 I•HResGphicl I I SFE l254l'lonitor I
I I I !Display u I I I SFF l255l...,...itor I
1--1-1-1-------1 1-------------------1
ll7tiS40l64 18)\.~IC DxPI I
Ito Ito Ito lor I I
l24tlS5Fl95 I•HResG!:>hicl I
I I I !Display t21 I
1-1-1-1-------1 I
I • 8)\S!C D::>rP I
I. nr.,Prors I
I . . . 8)\.•;rc POrs I
1--1-1-1-------1 I
l48t I SOC 118'! I BASIC POrS I I
I l$BDll89 [8)\SIC POrSI I
I ISBEI190 18)\SIC POrSI I
I ISBFI191 la...src POrsl I
1---l

The 12K ROM section normally contains the
system monitor and a BASIC interpreter. This
memory is provided in the form of manufacturer
supplied ROM chips. Whenever the computer is
turned on the software or firmware in these chips
is immediately available for use. It is not volatile;
the information contained in ROM memory is not
lost when power is turned off. However it also can
not be altered by the user during normal system
operations.

The remaining 4K of the top 16 is rather queer.
Some of it is addressable, but never exists and

Chapter IX 67

never will exist. Some of it exists, not in the Apple
main computer, but on peripheral cards that may
be plugged into the Apple's expansion slots. The
internal organization of this area is not simple and
is covered at length in Chapter 17.

(NOTE: Although the top 16K of memory is
normally considered systems space within which
the uninitiated user roams around at his own risk,
you can buy a special RAM card that provides
optional additional RAM memory which can be
switched into this address space. Under some cir
cumstances the user can write information into
this memory as well as read information from it.
But it can also be locked to prohibit unauthorized
or unintentional writing. There are definite con
. straints on the use of this optional additional
memory. What this involves is beyond the scope of
our initial discussion.)

Figure 9.2A presents this broad overview of
memory allocation semi-pictorially, and identifies
exactly which pages are assigned to which category
of use.

9.3
' The Second Cut: Functional Allocation
of Pages

Each page of memory within the Apple has its
own allocated function or functions. Many are just
part of the free space normally available for the
user to use as he sees fit, but many others have
specific functional responsibilities within the plan
of the Apple II system. The remainder of this sec
tion starts at the bottom (Page 0) and works its
way up to the top (Page $FF or decimal 255). As
you go up the memory from page zero towards
page 256 you will find:

Page 0 {$00}: Used for frequently accessed
parameters

Since the parameters most frequently used in run
ning programs are those in the system monitor,
the BASIC interpreter and the Disk Operating
System, this page is dominated by these users.
(Several important hardware instructions run
much faster or only run when memory locations
in page zero are used.)

Page 1 ($01} Used for the System Stack

This is a special area used primarily for subroutine
returns (both machine language and BASIC), inter-

68 Chapter IX

rupts, and parameters used in re-entrant coding.
Only the most careful and experienced program
mers should ever fool with this area.

Page 2 ($02): Keyboard and General-Purpose
Input Buffer

Characters inputted from the keyboard are stored
here. Normally they go no further until an end-of
line carriage-return releases them for further
processing.

Page 3 ($03}: Linkage Vector Page

Except during DOS booting, most of this page is
unused except for the extreme top, which contains
jump commands and linkage vectors to key loca
tions in firmware (e.g. $03DO is the start of the
familiar 3DOG linkage which you use to return
from the system monitor level to BASIC). During
normal operations after disk booting, the other
wise vacant lower sections of this page are a
favorite location for short, user-created machine
language programs.

Page 4-7 ($04-$07}: Text and Lo-Res Graphics
Display Buffer

The 1024 locations on these four pages contain 960
locations which correspond one-to-one with the
960 (40 x 24) possible text character positions on
the Apple's display screen. The space is organized
into eight macro-lines of 128 bytes, each of which
contains 3 text lines (one on the top Y3 of the
screen, one in the same relative position in the
middle Y3, and the last in the same relative posi
tion in the bottom Y3 of the screen). The remain
ing eight bytes are not displayed but are reserved
for use by the Apple's special peripheral slots -
one location for each slot 0 through 7. These loca
tions are the specific locations involved (s = 0 for
slot 0; s = 1 for slot 1; ... 8 = 7 for slot 7): $0478 +
s, $04F8 + s, $0578 + s, $05F8 + s, $0678 + s,
$06F8 + s, $0778 + s, and $07F8 + s.

In text mode, each character is represented in
memory by a single byte (8 bits) of memory. The
character displayed is determined by Apple's own
special adaptation of the ASCII (American Stan
dard Code for Information Interchange). The ac
tual on-screen display is by a 8 high by 7 wide (in
cluding blank margins) array of dots.

In low-resolution graphics mode each 8-bit
byte is treated as two 4-bit nibbles. The 24 = 16
possible values of each nibble becomes 16 different
color combinations, and the output is displayed as
two colored blocks, one over the other. The color
is controlled by a single nibble. Since there are 24
rows of characters this means there are 48 possible
rows (vertical positions) for low resolution color
blocks.

Pages 8-11 (Pages $08-$0B): Lo-Res and
Graphics Secondary Video Display Buffer

This area is seldom used as an alternate text
display area. Layout is the same as the primary
page, but is seldom used because there is no easy
way to bring the text here. (It must be POKEd in or
moved from page 1.)

Pages 8 upward ($08 upward): Default Apple
soft BASIC Program and Data Space or Default
Integer BASIC Data Space

Note: Unless an overt use of LOMEM by the user
alters the situtation, user BASIC programs or data
start at $0800 (unless RAMApplesoft is in use).

Set LOMEM to start at $1200 if Text/La-Res
graphics page 2 is used. Start after the RAM version
of Applesoft if you're using Applesoft without
either an Apple with a language card, an Apple
II+, or an Apple II with an Applesoft card.

Warning: If RAM Applesoft is used it extends
far enough upward in memory to interfere with the
use of Hi-Res Graphics Video Display Page 1. If
Integer BASIC is used data starts here and works
its way upward in memory.

If Applesoft BASIC is used, this space is
normally occupied by Applesoft programs and
data, with program statements on the bottom,
data above the program and linkages to strings and
arrays above that.

Waming: Note that as the program size in
creases, the data is pushed upward. $1FFF is not
the top limit of the program. It can expand upward
until it meets the string data which expands
downward from HIMEM (usually the beginning of
the DOS), but after $1FFF this program-related
material begins to intrude upon the high
resolution graphics display space making it
unusable for graphics purposes.

Pages 32-63 (Pages $20-$3F): High-Resolution
Graphics Primary Video-Display (HGR pg 1}

It is conventional to describe the high resolution
graphics video-display area as a bit-mapped area
280 dots wide by 192 dots high in which each
possible dot position represents one bit in these
pages of memory.

Since there are 280 x 192 = 53760 dot
positions we must somehow map the 53,760 dot
positions into 53760 bits of the 8K (32 pages of
256-bytes of 8 bits each) = 65,536 bits on these
memory pages.

At first the mapping seems absurdly scrambled.
If you are perceptive, you may finally detect an
assignment pattern which is closely related to the

mapping pattern used by text/low-resolution
graphics.

This area, though eight times the size of the
text screen buffer area, is organized in a concep
tually similar fashion. It contains eight text
macro lines each 128 'standardized' characters long
which break into three screen lines (top~, middle
~, bottom ~) plus eight character positions left
over for allocation to peripheral slots.

However, in high-resolution graphics a 'stan
dardized' character position is not represented by a
single ASCII character. Instead it is an array 7 dot
positions wide by 8 dot positions high, i.e. eight
slices each containing 7 dot positions stacked one
over another.

Thus the 40 'standardized' character positions
also represent 7 x 40 = 280 dot positions. Each
'slice' of 7 dot positions is associated with one byte
of memory, one dot/no-dot position per bit, with
the eighth bit (the most significant bit) being a
'color bit'.

Note: On a black-and-white monitor a change
in the color bit causes any dot within that byte of
memory to shift Yz position left or Yz position
right. This creates 560 distinguishable dot
positions across the screen and makes black-and
white plotting possible at a horizontal resolution
of 560 bits - providing you program for it and
don't use Apple's line-drawing software.

On a color monitor, a dot moving across the
560 distinguishable positions will change color in
cycles of four colors: violet, blue, green,
red/ orange. This means that there are only 140
possible bit-mapped green dot positions, so the
maximum, resolution for plotting in green (or any
other color than black-and-white on a black-and
white monitor) is 140 dot positions across the
screen.

On a color monitor if two adjacent colored dots
are turned on simultaneously they will merge into
a single larger, white-ish dot. The plotting tech
nique used by Apple software uses this technique
for plotting the color 'white'. Since there are 280
possible positions for these double-width dots,
Apple's standard plotting technique achieves a 280
dot resolution across the width of the screen.

The individual'slices' which make up a 'stan
dardized' high-resolution character space are
located four memory pages apart. Thus for the
character at the top left comer of the screen, the
topmost slice is represented by the byte at location
$2000, the next slice by the byte at $2400, the next
at $2800, etc.

Since there are eight slices (eight bytes of
memory) stacked one above another per displayed

Chapter IX 69

'standardized' high resolution graphics character,
there are 8 x 24 = 192lines of dots possible on the
high-resolution graphics screen, so the screen
display checks as 192 dots high by 280 dots wide.

It is from this pattern that we derive the initial
ly scrambled order of memory positions for the left
edges of the individual lines of screen display
which starting at the top line, goes as follows:
$2000, $2400, $2800, ... , $3800, $3COO, $2808,
$2480, $2C80, ... $2380, $2780, $2B80, $2F80,
$3380, $3780, $3F80, $2128, $2528, ... , $24A8,
$27A8, $2AA8, $2EA8, $2050, $2450, ... , $24DO,
$28DO, $2CDO, $2FDO.

Pages 64-95 (Pages $40-$5F}: High-Resolution
Graphics Secondary Display Page (HGR pg 2}

The interior l:;tyout is the same as HGR pg 1 but
$2000 higher.

Pages before 150 (before Page $96}: Applesoft
Strings or Integer BASIC Program

Unless an overt setting of HIMEM is used to over
ride it, Applesoft strings work downward from
$BFFF if DOS is not used or from the beginning of
DOS if DOS is used. In a default case (when DOS
is using 3 buffers) $9600 is the beginning of DOS
so strings work downward from here.

Unless an overt setting of HIMEM is used to
override it, Integer BASIC puts its program in this
same area with the end of the program at $95FF
and the beginning of the program pushing
downward as far as necessary.

Pages 150-191 (Pages $96-$BF): Disk Operating
System

When the Disk Operating System is booted on a
48K Apple it occupies locations $9600-$BFFF in
the default case. In an Apple with less memory,
the start of the DOS moves down by the amount of
the reduction of memory. E.g., in a 32K Apple, the
DOS would start at $5600.

Warning: Note the interference with Hi
Resolution graphics page 2.

If DOS Maxfiles are set to a value other than
the default value of 3, buffers added to or deleted
from DOS will alter this boundary point. With
maxfiles = 6, DOS extends downward to $8F57;
with maxfiles = 1, DOS extends downward only
to $9AA6.

DOS buffers normally occupy $9600-$9DOO;
the main body of DOS routine from
$9DOO-$AAC9; the file manager or I/0 section of
the DOS from $AAC9 to $B600; and the RWTS
(Read-Write Track-Sector) routines from
$B600-$COOO.

70 Chapter IX

Pages 192-207 ($CO-$CF): Special Hardware
I-0 Area

This area is reserved for Input/Output and 'slot'
(pheripheral) operations. It divides naturally into
four sub-areas:

$COOO-$C07F Built-In I/0 Locations
$C080-$COFF Peripheral Card II 0 Space
$Cl00-$C7FF Peripheral Card ROM Space
$C800-$CFFF Expansion ROM Space

(Allocated to Currently Active
Peripheral Slot).

Page 192 ($C0xx) is divided into two half pages.
The $COOO-$C07F half-page contains special data
and flag inputs (such as the keyboard, cassette
pushbutton and game-control/joystick). It also
contains strobe functions which activate special
I/ 0 activities and program-controllable 'soft
switches' and 'toggle-switches' which control
such alternatives as video display of text vs.
display of graphics; La-Res vs. Hi-Res graphics,
Primary vs. Secondary video display page being
displayed, all full page graphic display or mixed
text-graphics display.

The $C080-$COFF half-page is divided into
eight 16-byte chunks, each of which is assigned to
one of the eight peripheral slots (0-7) for use as
Input/Output space for that peripheral.

Pages 193-199 ($C1-$C7) are allocated one page
to each peripheral slot (1-7, but not slot 0) for its
exclusive use by its own on-board PROM (Pro
grammable Read Only Memory).

Pages 202-207 ($C8-$CF) is a 2K (8 page) area
reserved for use by memory (usually a ROM) on a

peripheral card. Only that memory on the card
whose slot is currently active has access to the
central machine.

Please note that the peripheral cards also have
assigned to them additional individual bytes of
RAM memory from the 'breakage' at the end of
each line of the video display buffer areas.

Pages 208-255 ($DO-$FF): Used for Monitor and
Interpreter ROM

Note: When the language card is used, ROM may
be replaced by RAM into which firmware may be
read and then protected against accidental writing
to make it a de-facto ROM equivalent after initial
loading.

The topmost part of this, pages 248-255
($F8-$FF), are assigned to the monitor, which may
appear in either of two forms: the (old) monitor
ROM or the (new) autostart monitor ROM. The
major differences between them are that the
autostart version has had the autostart features
added and has had the mini-assembler and single
step trace capabilities removed to make space for
the additions.

In the Apple II+ , the remainder of this area,
pages 208-247 ($DO-$F7), is occupied by the Apple
soft BASIC interpreter.

In the Apple II, the Integer BASIC, rather than
the Applesoft BASIC, is built, and it occupies
smaller area, pages 240-255 ($EO-$FF). The re
maining space, pages 208-239, is available for
other ROMs such as the Integer BASIC 'Program
mer's Aid #1'.

Chapter X
The Apple System Quick-Access
Area (Memory Page 0 ($0000-00FF))

10.1
Zero-Page Addressing
as a Memory Saver and
Means of Speeding Computation

Page zero of memory is a very special place.
The microprocessor in the Apple II has a mode of
addressing, known as zero-page addressing, which
allows locations in page zero to be specified with a
single byte of address rather than the normal two
bytes. This means shorter, faster programs.

Figure 10.2A- Zero Page Usage

Decimal 0 1 2 3 4 5 6
Hex $0 $1 $2 $3 $4 $5 $6

0 $00 AS AS AS AS AS AS s
16 $10 AS AS AS AS AS AS AS
32 $20 M M M M M M MD
48 $30 M M M M M MD MD
64 $40 MD MD MD MD MD MD MD
80 $50 MA MA MA MA MA MAl AI
96 $60 AI AI AI AI AI AI AI

112 $70 DAI AI AI AI AI AI AI
128 $80 AI AI AI AI AI AI AI
144 $90 AI AI AI AI AI AI AI
160 $AO AI AI AI AI AI AI AI
176 $BO DAI AI AI AI AI AI AI
192 $CO AI AI AI AI AI AI AI
208 $DO AI AI AI AI AI AI I
224 $EO A A A A A A
240 $FO A A A A A A A

7
$7

s
AS
MD
MD
MD
AI
DAI
AI
AI
AI
AI
AI
AI
I
A
A

The System Monitor, Applesoft and Integer
BASIC interpreters and the DOS are all program
packages that can benefit from the shorter, faster
programs produced by heavy use of page zero. You
can see the speed advantages of zero-page address
ing by comparing the number of machine cycles (a
measure of time) it takes for any instruction when
zero-page addressing is used, compared to address
ing on any other page. (See tables in Chapters 6
and 7).

10.2
Zero Page Usage

8 9 10 11 12 13 14 15
$8 $9 $A $B $C $D $E $F

s s AS AS AS AS AS AS
AS s s s s s s s
M M MD MD MD MD MD MD
MD MD M M M M MD MD
MD M DI DI DI DI M M
AI AI AI AI AI AI AI AI
DAI DAI AI AI AI AI AI DAI
AI AI AI AI AI AI AI AI
AI AI AI AI AI AI AI AI
AI AI AI AI AI AI AI AI
AI AI AI AI AI AI AI DAI
AI AI AI AI AI AI AI AI
AI AI DAI DAI DAI DAI AI AI
DAI AI AI AI AI AI AI AI
A A A
A

A Used by Applesoft I = Used by Integer BASIC S = Used by Sweet-16 Interpreter
D Used by DOS M = Used by Monitor

For details of how each zero-page location as in-
dicated above is actually used look up the location
in the Apple Atlas database.

Chapter XI
The Apple System Stack Page

11.1
Introduction to the System Stack -
A Last-In First-Out Storage Area

The page of 256 memory locations from $100
to $1FF (decimal 256-511) is called the Apple
System Stack. The Stack is different in character
istics from page zero, but like page zero, it is a very
special area of memory. In fact, the stack page is
sometimes described as a hardware area not totally
under program control because of the influence of
the S-Register.

The stack is used in conjunction with the
S-Register or Stack Pointer to provide positive con
trol of the system in situations where control is
passed from one portion of a program to another.

The Applesoft or Integer BASIC interpreter will
automatically take care of all required stack opera
tions for the BASIC programmers as long as they
follow the established rules for subroutine set-up
and calling. This is true for routine machine
language programming as well. However,
machine-language programmers must use the JSR
(Jump to SubRoutine) where the BASIC program
mer uses a GOSUB and the RTS (ReTurn from
Subroutine) instruction where the BASIC pro
grammer would use a 'RETURN'.

When programming becomes more sophisti
cated, conditions arise that make it valuable for
programmers to understand and exercise their own
control over the operations of the system stack.
But this control is exercised with the caveat that
programming errors involving the system stack are
often among the most difficult to diagnose and
most destructive to program integrity.

11.2
Subroutines,
The Program Counter Store,
Pushing and Popping

If you have a program (either in BASIC or
machine language) where control is passed to a
subroutine, the system must keep track of where

control must be returned after the subroutine is
executed. When the system executes a GOSUB in
BASIC (or its equivalent, a JSR in machine
language), the program counter is set to the start of
the subroutine. Meanwhile, the location of the
next instruction in normal sequence is PUSHed
into a special location which we will tentatively
identify as the program counter store.

The subroutine return address is held there
until you reach the end of the subroutine, marked
in BASIC by a RETURN command or in machine
language by an RTS (ReTurn from Subroutine) in
struction. At that point the return address is POP
ped back into the program counter, and the pro
gram continues in its normal sequence as if it had
never been diverted into the subroutine.

In some early computers the program counter
store was a single pre-defined memory location or
register, but this created problems. When the con
tents of the program counter was PUSHed onto the
program counter store, its old contents could be
destroyed and with it any possibility of returning
control to the original spot in the main program.

To handle two levels of subroutines you need
two levels of program counter store; for three
levels of subroutine, three levels of program
counter store, and so on. With the system stack
used in the Apple II, up to 128 levels may be
handled, a number not likely to be exceeded in
most programs.

The rule for operation would be similar to that
for plates in the push-down stacks used in many
cafeterias: the plate most recently pushed onto the
stack will be the first popped off. Businessmen and
accountants call this procedure a last-in-first-out
(L-I-F-0) procedure.

11.3
Combined Operations of the S-Register
and Stack Page in the Apple II

The current size of the stack is controlled by
the S-Register, an eight-bit register capable of
specifying 28 = 256 locations. The stack is empty
when this register is initialized to the bottommost
location of the stack - position $FF within the
system stack page $01. Thus the active address of
the top of the stack is $01FF and the stack is func
tionally empty.

Pigue 11.3A diagrams the flow of control in a
situation where a main program calls SUBl, which
in tum calls SUB2, which in tum calls SUB3.

1-------------------------------1 I Figure 11.3A I
I Stack Options: Flow Control I
1---------~-----------------------1
I Program I
I Camter label Instruction I
I ----- -- --------- I 1 wcrNP~ I
I ----------- I
I -----------/1/ I
I JSR to SUBl--->1 I
I Pel---------->----------- I I
I ----------- I I
I ---------/7 I I I
I FND MMN PROO I I
I I I
I . I I
I SUBl----------- <-I I
I ----------- I
I -----------/2/ I
I JSR to SUB2 --> I
I PC2-+----------> ----------/6/ I I
I <-----------RTS I I
I I I
I I
I SUB2--------- <---1
I -----------/3/
I JSR to SUB3 -->
I PC3--> ----------- I
I -----------/5/l
I ---------- I
I <-------+----RTS I
I I I
I I SUB3----------- <-1
I I -----------/4/
I <--- RTS
1-------------------------·----

At each of the stages marked with slashes, the
contents of the stack are shown. (NOTE: For loca
tions beyond the current location of the stack
pointer the stack is effectively empty so it is
shown in that fashion, even though a monitor
check of the memory might show a residual value
that has not been zeroed out.) At the start of the
main program (/1/) the stack has not been used.
Its status and that of the S-Register are as shown in
figure 11.3Bl.

Figure 11.381
S-Register & Stack Status

(Main Program)

S-Register: $01 FF ($FF)
Stack Empty

Chapter XI 7 3

When entry is made from the main program to the
first level subroutine, the main program return ad
dress is PUSHed - stored at the top of the stack,
which at this moment is also the bottom of the
stack. Since the program counter is a 16-bit or
2-byte long register, the memory location that you
are to return to (PC1) must be stored as two bytes:
PC1H and PC1L, and the S-Register is
decremented by two to $FD, the new top of the
stack (i.e. next program counter store location).
This situation occurs at location /2/ in figure
11.3A. The S-Register and stack status are shown
in figure 11.3B2.

Figure 11.382
S-Register & Stack Status

(Early in SU81 at /21)

S-Register: $01 FD ($FD)

Stack Status:
$00FE PC1L
$00FF PC1H

Note that the return address occupies two memory
locations: $01FF and $01FE. The S-Register keeps
track of the next available unoccupied location so
it decrements twice to $01FD.

When entry is made to the second-level
subroutine the return address PC2 in the first-level
subroutine is PUSHed into locations $01FD and
$01FC and the stack pointer decrements twice to
$01FB. See figure 11.3B3.

Figure 11.383
S-Register & Stack Status

(Early in SU82 at /31)

S-Register: $01 F8 ($F8)

Stack Status:
$00FC PC2L
$00FD PC2H
$00FE PC1L
$00FF PC1H

When you jump out of the second-level
subroutine (SUB2) to a third level subroutine
(SUB3), the return location PC3 is PUSHed into
location PC3s $01FB and $01FA and the stack
pointer decrements two bytes to $01F9. (See figure
11.3B4.)

7 4 Chapter XI

Figure 11.384
S-Register & Stack Status

(Early in SU83 at /41)

S-Register: $01 F9 ($F9)

Stack Status:
$00FA PC3L
$00F8 PC3H
$00FC PC2L
$00FD PC2H
$00FE PC1L
$00FF PC1H

When you finally hit an RTS (the machine
language equivalent of a BASIC 'RETURN' state
ment), the stack is POPped and return address PC3
is restored to the program counter. The program
can continue the execution of SUB2. Stack and
S-Register conditions at 151 are shown in figure
11.3BS.

Figure 11.385
S·Register & Stack Status

(Late in SU82 at /51)

S-Register: $01F8 ($F8)

Stack Status:
$00FC PC2L
$00FD PC2H
$00FE PC1L
$00FF PC1H

When the RTS at the end of SUB2 is reached,
the top return address in the stack (PC2) is POP
ped, thus returning the control counter setting to a
position late in SUB1 and creating the stack status
shown in figure 11.3B6 at location I 61 in SUB 1:

Figure 11.386
S-Register & Stack Status

(Late in SU81 at /61)

S-Register: $01 FE ($FE)

Stack Status:
$00FE PC1L
$00FF PC1H

When the RTS at the end of SUB 1 is reached, it
POPs the stack again, putting the top address in
the stack PC1 back into the program counter and
returning control to the main program. Thus the
status of the stack at 17 I is once again empty as
shown in figure 11.3B7:

Figure 11.387
S-Register & Stack Status
(Late in Main Prog at /71)

S-Register: $01 FF ($FF)

Stack Status:
Stack Empty

11.4
Use of the Stack by the Programmer

Thus far we have discussed the stack only as a
means of handling control information, but in
structions exist in the hardware repertoire of the
microprocessor used in the Apple which allow
you to push data into the stack and pull it out as
well. These activities may be undertaken under
program control. Properly used, they can allow
you to write programs or subroutines which call
upon themselves.

The most common and straightforward
techniques for communicating with a subroutine
is by exchange of program parameters at pre
agreed on memory locations. These pre-agreed
upon locations may themselves contain the data
to be used or they may contain pointers that point
to the location of data. Another common method
is to place the parameters to be exchanged at the
start of the subprogram. In more general locations
there is a chance the parameters may be altered
by a piece of program that doesn't know they
belong to the particular subroutine.

However, situations arise that require that the
program not work with data of known currency.
Indeed in such situations it may not even be

· necessary to know exactly where the data is
located. You have to know how to get to it and
how to make sure it is associated with the right
subroutine and with the correct relative order of
creation.

Use of the stack for holding and passing
subroutine parameters is common in situations
that occur when you are processing real-time
interrupts or using a subroutine to call itself
recursively.

In recursive programming a subroutine may
call on itself using different parameters for the
second call than for the first.

A different method of cummunicating
parameters between programs. or subprograms is
relevant to these situations. It involves use of the
stack itself rather than a conventional register or
addressed location to pass the information.

This method allows the programmer to make
sure that the data is associated with or is of the
same degree of currency as a particular subroutine
call. Otherwise input parameters or results from
one moment in the time sequence of processor
operations can become confused with those for
another moment in the operations. Of course, in
normal routine programming the kinds of time
sensitivity that this re-entrant coding protects
you from is not often a problem. It tends to
become a problem only when you attempt to
share the performance of two or more different
tasks using the same resources where one use
overrides another. Thus it is a common problem
for systems programmers trying to get a simple
piece of hardware to do many things concur
rently. It is no problem at all to the typical BASIC
programmer.

The stack, with its built-in precedence of
operations, can be used to make absolutely sure
that parameters or results obtained from one call
of that subroutine do not become confused with
those from another call. It can also make sure
that information that gets into a register as a
result of an interrupt processing procedure does
not become confused with the information in
that same register just before or just after the inter
rupt occurred.

Special commands are made available in the
machine language of the microprocessor used by
the Apple System to simplify both re-entrant
coding and the concommitant tasks of putting.
data in and taking data out of the stack. Some of
the more significant commands are:

PHA - PusH Accumulator onto Stack
This instruction transfers the current value of the
accumulator to the next location on the stack,
automatically decremen~ing the stack to point at
the next empty location.

PLA - PulL Accumulator from Stack
This instruction adds 1 to the current value of the
stack pointer, uses it to address the stack and load
the contents of the stack into the accumulator.
Figure 5.10A is an example of a subroutine that
uses these instructions to store calling
parameters on the system stack and later recover
them.

Chapter XI 7 5

There is another matched pair of instructions
for PUSHing and PULLing processor status infor
mation between the P-Register and the stack:

PHP- PusH Processor stack onto stack
This instruction transfers the contents of the pro
cessor status register unchanged to the stack, as
governed by the stack pointer.

PLP- PulL Processor status from stack
This instruction transfers the next value on the
stack to the Processor status register, thereby
changing all of the flags and setting the mode
switches to the values from the stack.

These instructions are particularly valuable as
part of a process of rapid saving or restoration of
system status when an interrupt occurs. Another
pair of stack-affecting commands, BRK (BReak
an interrupt under program control) and RTI
(ReTurn from Interrupt), are even more closely
related to interrupts.

There is a special instruction which affects
the stack pointer only: TXS - Transfer indeX to
Stack pointer. It is particularly useful in setting
up a third method of passing parameters to or
from a subroutine: storing them immediately
after the jump to subroutine instruction.

11.5
Interrupts

11.5.1 Overview

An interrupt causes the computer to stop pro
cessing and embark on an entirely new activity
the appropriate interrupt processing activity.
When the interrupt processing is completed, an
RTI (ReTurn from Interrupt) instruction returns
control to the original part of the program.

Interrupt processing sometimes has to be done
in real-time. For example, in data communica
tions, sometimes a computer has to process each
incoming byte or bit before the next one arrives,
or else it will lose the information forever. In
such cases the time-savings gained with zero page
addressing may be significant.

However, interrupt processing may also occur
in situations where time is not particularly
significant. Then its major advantage is that it
allows you to perform the interrupting operation
at any time or place in a program.

An interrupt is triggered by a special signal,
perhaps an electrical signal from an outside
device, or a peripheral connected to the com
puter. Or, it can be triggered by pressing the

7 6 Chapter XI

'RESET' button or by using the BReaK !BRK) in
struction.

11.5.2 What Happens When an Interrupt Occurs?

When an interrupt occurs the Apple micro-
processor automatically

1. Pushes the Program Status Register
!P-register) onto the system stack for
safekeeping and later re-use when normal
processing is resumed;
2. Pushes the current value of the program
counter onto the stack. There it will be
available for restarting the program at the
point where it was interrupted, and
3. Transfers control to the location
specified by one of the three interrupt vec
tors: $FFFA,$FFFB; $FFFC,$FFFD;
$FFFE,$FFFF.

$FFFE,$FFFF is used for run-of-the-mill IRQ's
!Interrupt ReQuests) including those produced by
executing the machine-language BRK !BReaK) in
struction. $FFFC,$FFFD is used for 'RESETs' and
$FFFA,$FFFB is used for NMI's !Non-Maskable
Interrupts.)

The computer does an indirect jump. It uses
these addresses as a vectored pointer, i.e. it points
to the address where the next instruction can be
found. The jump is called an Indirect Jump because
indirect addressing incorporates this concept.

11.5.3 Programming Concepts and Techniques

The memory locations shown in figure 11.5A
are· relevant to interrupt processing:

Figure 11.5A

Memory Locations Important in Interrupt Processing

Address
OOOO·OOFF
0100·01FF
03FD·03FF
FFFA·FFFB
FFFC·FFFD
FFFE·FFFF

Function or Reason for Importance
Zero page, Used for indirect addressing
System Stack
Monitor Special Locations (See Section 11.6)
Vector for Non·Maskable Interrupts (NMI's)
Vector for 'RESET' (may require CTRL key also)
Vector for Interrupt ReQuests (IRQ's) and

BReaK requests (BRK's)

The specific details of interrupt processing at
the machine-language level deserve explanation
at greater length than is possible here, but a few
ideas should be emphasized:

1. On interrupt, the microprocessor always
stores the program counter location for the
instruction that was interrupted, and the
processor status !P-register).

This is the nummum information
needed to recover and proceed again from
the point of interruption !providing that
none of the other registers is altered during
the interrupt processing). The stack pro
vides a last-in-first-out storage capability.
If an interrupt occurs within the interrupt
processing routine, the system can handle
it too without becoming confused as to
where it should return control when the
second-level interrupt is completed.'

Only after this minitl:mm recovery infor
mation is safely salted away is control
transferred to tbe interrupt routine indirect
ly via the appropriate vector pointer:
$FFFA,$FFFB; $FFFC,$FFFD; or $FFFE,
$FFFF.

2. The RTI-ReTum from Interrupt instruc
tion performs the inverse operation. It
takes three bytes from the top of the stack
and puts them back into the program
status register and program counter. This
gives it the information needed to restore
the system to the same status and location
in the program that it was in before the in
terrupt transferred you off into the inter
rupt processing routine.

3. Between the interrupt and return you are
free to do whatever processing you wish.

4. When you start writing machine
language code for interrupt processing, you
will find yourself continually dealing with
the system stack and with indirect address
ing, usually combined with some form of
indexing.,....- i.e. indexed indirect addressing
or indirect indexed addressing. .

The Zero Page of memory is particular
ly convenient for doing indirect addressing
using vectored pointers. If you use the
Atlas to examine the specific allocations
that are permanently assigned to the zero
page you will see many vectored pointers
used by the system monitor, Applesoft, In
teger BASIC, and the Disk Operating
System in order to implement their inter
nal operations. You may frequently find
yourself using some of these standard firm
ware pointers.

5. In many cases the processing you want
to do while interrupted will involve using
the A,, X- and/or Y-registers. If you plan to
change them it is your responsibility to
restore them to pre-interrupt status before
return from interrupt.

A convenient way to do this is to have
the first few instructions in your code push
them onto the stack using PHA !and register

interchange instructions TXA and TYA
and/or TXS). At the end of interrupt pro
cessing do the inverse using PLA to pull the
information back from the stack into the ac
cumulator (and by using TAX and TAY into
the X- andY-registers, as relevant.)

Taking such precautions, you can
undertake any processing you desire during
the interrupt, yet completely restore the
central processor to its pre-interrupt status
when you are finished, just as if the inter
rupt had never occured.

6. A hardware condition or a machine
language BRK instruction used by Apple
soft for implementing the 1 &' token can
generate an interrupt. It is possible for your
interrupt-processing program to
distinguish between the two and route
your processing different places. At the
beginning of your interrupt processing pro
gram, just PLA to get the pre-interrupt
status register contents into the ac
cumulator; PHA to get it back to the stack
where it belongs; AND #$10 to isolate the
B-flag; and BNE to the code applicable for
the BRK case, falling through for the
hardware-initiated interrupt.

An excellent way to familiarize yourself with
interrupts in the Apple] [system is to analyze the
Apple System monitor code for handling inter
rupts. You can find it in the Apple][Reference
manual. The old monitor (pp155-171) is probably
a bit easier for a beginner to analyze than the
Autostart monitor (pp136-154).

Chapter XI 77

The RESET form of interrupt transfers control
to the location specified in $FFFC,$FFFD. Just
start tracing the monitor's code there. The
Applesoft interpreter initiates 1 &' processing
with a machine-language instruction (BRK); your
analysis must begin with control transferred to
the address in $FFFE,$FFFF.

11.6
Interrupts for the Quasi-BASIC
Programmer

As a programmer who wants to program in
machine language only as an adjunct to BASIC pro
gramming, you probably don't want to get deeply
into interrupt programming, but you might like to
intercept and change what happens when certain
kinds of interrupts occur.

The vectored pointers built into the Apple's
microprocessor architecture in $FFFA through
$FFFF are located in the ROM area of memory.
Since this is Read Only Memory you can't change
them, unless you have a language card or
equivalent and are willing to live with a non
standard, modified monitor.

What is a BASIC programmer to do? Fear not,
Wozniak simplified procedures when he wrote the
Apple monitor. All the important interrupt-related
activities are available to you in one convenient
and well-documented area of memory - the
Monitor Special Locations on page 3 of RAM
memory.

Chapter xn
The Apple Keyboard Input Buffer
Memory .Page Two ($0200-$02FF)
& The Getln System Of Input
Associated With It

12.1
Introduction to the Keyboard
Input Buffer and Getln

12.1.1 Keyboard Input in the Default Case

The default method of entering information
into the Apple is via the keyboard on a line-by
line basis, with new information being entered
below previous inputs and outputs. As it is
entered, each character is echoed back via COOT,
and becomes visible on the display screen at the
current cursor position. This mode of input .con
tinues until the end-of-line 'RETURN' key is
pressed. This signifies that the line of input has
been completed and terminates the current input
operation.

Certain special keys (such as the arrow and
escape keys) are handled differently. These
special keys allow you to edit. They enable you
to: erase or modify the characters that have been
input, recover characters that have previously
been deleted but are still held in a special buffer,
move the cursor to another area of the screen,
read characters from the screen, or perform other'
functions that temporarily preempt control over
the system.

When entry works its way down to the ex-
) .

treme bottom of the display screen, new data is
still entered at the bottom of the screen but all in
formation above it is shifted upward, line by line,
until the oldest information disappears off the top
of the screen. ·

The heart of the system that permits this kind
of operation is the use of memory page two
($0200-$02FF = decimal 512-767) as a 256-byte
input buffer. This buffer is called the keyboard in
put buffer and is given the symbolic name
'KEYIN', under the control of the monitor
'GETLN' subroutine.

KEYIN is used primarily by a monitor
subroutine 'GETLN'. Its main function is, as the
name implies, to GET date in LINE-sized chunks.
When GETLN (and its ancillary routines in the
Apple system monitor) get information from the
keyboard they put it character-by-character into
the KEYIN buffer.

When this method of input is used, the com-

puter does not accept each keystroke as a com
plete entry to be acted upon at entry. Instead, it
accepts the data provisionally, stores it, displays
it, and gives the user an opportunity to examine
it. Then the user can correct the entry before giv
ing it final stamp of approval by pressing
'RETURN'.

12.1.2 Concept of Operation

The sk'eleton of 'GETLN's concept of operation
is quite 'simple:

1. At 'GETLN' the X-register is initialized
as an index, i.e. its value is set to 0.

2. A character is read from the keyboard
int~ the single-byte hardware keyboard data
input location $COOO.

3. The index (X-register) value is not chang
ed when the initial (zero-th) character is
entered. But as each additional character is
received, the number in the X-register is in
creased by 1. Thus it becomes a counter of
the number of characters received in the
current line of input (less one).

4. At 'ADDINP' the character read from the
keyboard is stored into page 2 at location
$0200, indexed by the contents of the
X-register. When X is 0, the character goes
to $200; when X is 1, the character goes to
$201, etc. Thus the individual characters of
the input line are stored sequentially in
$200, $201, $202, $203, etc.

5. A 'RETURN' ends this process. The
ASCll code for 'RETURN' ($8D or decimal
141) is entered into the buffer and becomes
a flag to signify the end of the line and of the
character string that represents it in the buf
fer. Putting this character into the buffer
also jacks the value of the X-register up to a
full count of the characters in the line (less
the 'RETURN', which is considered as an
end-of-line flag).

6. The information is used and the process
starts over with X being reinitialized to
zero.

7. The size of the KEYIN buffer (one
memory page = 256 memory locations)
restricts the length of text-line-oriented in
puts to 255 characters. This is seldom much
of· a practical restriction. Other considera
tions make it a useful rule of thumb to keep
a single input terminated by a 'RETURN'
down to six full40-character screen-lines of
text.

This standard system of handling input is used

for all normal inputs to the scrolling screen
display, whether the inputs are made at the
monitor level, in Applesoft BASIC, in Integer
BASIC or in machine- or assembly-language pro
gramming.

In practice, a number of embellishments (see
section 12.2) are added to the skeleton process
described above.

12.1.3 Variations on the Theme of Keyboard Input

Though the system just described is the default
case, it is perfectly possible to get information into
the Apple, even from the keyboard, without going
through this process.

The information that goes into the KEYIN buf
fer is thoroughly analyzed and tested by GETLN
and associated subroutines. Various alternative
courses of action, most of them associated with
error detection and/ or editing the input, may be
triggered by commas or other delimiters, or by
special key combinations such as CTRL-X, or ESC
followed by some other key.

These services are usually valuable, but the ad
vanced programmer may want to bypass them in
special cases.

One way to bypass this method of input is to
use the Applesoft BASIC 'GET' statement. It GETs
characters one at a time without using either
GETLN or KEYIN.

The popularity of the plethora of 'input
almost-anything' routines is a sure indication that
even when you are doing line-oriented input some
of the GETLN-associated services can get in the
way.

You can use routines written by others, or you
can do your own programming.

The full services provided by the monitor and
the GETLN/KEYIN pattern of operation may be
considered as one end of a spectrum of
possibilities. The other end of the spectrum goes
directly to the hardware of the computer with ab
solutely no monitor firmware or other software
support. In the middle of the spectrum you can use
some of the features and services of the
GETLN/KEYIN family, bypassing only those that
get in the way.

At the direct-contact-with-the-hardware end of
the spectrum you may use a machine-language
routine, or PEEK directly at the single-byte hard
ware keyboard input register (address $COOO =

decimal 49152 or -16384). This technique can be
particularly useful in situations where you wish to
check for user-input without interrupting ongoing
processing.

Chapter XII 79

Warning: If you get input this way don't forget
to strobe the keyboard at $COlO = decimal49168
or - 16368. Strobing is accomplished by any
memory access to that location and hence can be
accomplished by a PEEK, a POKE, or a machine
language instruction that refers to the location.
Strobing $COlO changes the sign bit of the byte in
$COOO, thus giving you the opportunity to test
whether you have already read the byte currently
in that location.

12.2.1 Suivey of Services Provided by GETLN

GETLN offers many useful services routinely
to the Apple II programmer. Its main
characteristics are:

1. When called, GETLN first prints a prompt
ing character. This character identifies the
system (software) that is awaiting input
and notifies the user that the system is in
deed asking for data. The major prompts
used by the Apple II include:

'*' indicates that the system monitor is
awaiting user input

' >'indicates that the Integer BASIC inter
preter is awaiting your command input

']' indicates that the Applesoft BASIC in
terpreter is awaiting your command in
put

' ! 'indicates that the mini-assembler built
into the system monitor (but not into
the autostart version of the system
monitor) is awaiting your command
input, and

'?' indicates that a running program is
awaiting data input needed to continue
its current problem-solution

2. As you type in characters, they are printed
on the screen and the cursor moves accor
dingly. The characters will even scroll up
ward if you reach the end of the screen
without issuing a carriage return. Finally,
when you press the RETURN key the en
tire line is sent off to the system that
requested it, and the system reacts accor
dingly. It might issue another prompt in
dicating that further input may be re
quired.

3. After the prompt is printed, GETLN drops
into a nested set of subroutines that in
clude NXTCHAR, RDCHAR, RDKEY, and
either KEYIN or ESCl. Each of these
routines has its own information analysis
and processing responsibilities.

80 Chapter XII

4. Initially the system drops down as far as
the RDKEY subroutine, which changes the
character at the current input-output loca
tion on the display screen to a blinking
condition.

5. RDKEY calls upon its subordinate KEYIN
to continuously scan the hardware
keyboard data input location $COOO,
testing for the presence of a one bit in its
highest-order position. This is the hard
ware's method of making a positive indica
tion that a key has been depressed and that
its coded value is available in $COOO.

6. When KEYIN detects a one bit in the
highest-order position it feeds the new
character into a processing cycle and issues
a keyboard strobe. This strobe changes the
high-order bit to a zero to indicate that that
particular character input is being process
ed and is not a new character to be entered
into the processing cycle.

7. KEYIN also performs two ancillary actions.
It restores to an unblinking condition the
character modified by the RDKEY routine
to create a blinking cursor. It also counts
up the random number field during the
time that it is repeatedly testing for the
presence of a new keystroke. It thereby
increments a number that can later be used
by other parts of the program or by user
programs as a pseudo-random number.

8. When KEYIN is finished it bounces control
back up the hierarchy past RDKEY to
RDCHAR with the newly accepted
character in theA-Register.RDCHARtests it
to see if the character was an ESCAPE
character. If so, it passes processing to the
escape processor ESCl. If not, it bounces
control back upward to NXTCHAR.

9. ESC1 actually gets control after an
ESCAPE is detected. Depending upon what
that character is, ESC1 calls the ap
propriate scroll window service routine.
The RTS at the end of the scroll window
service routine returns control to
RDCHAR at its normal entry point.

10. ESC1 recognizes eleven escape codes,
eight of which are pure cursor moves,
which simply move the cursor without
altering the screen or input line, and three
of which are screen clear codes, which
simply blank part or all of the screen.
Thus ESC-A, ESC-B, ESC-C and ESC-D
merely move the cursor right, left,
downward or upward respectively for one

posltlon. ESC-E, ESC-F, and ESC-@ (or
ESC-SHIFT-P) clear the screen from the
current cursor position to the end of line,
end of page and clear the screen respec
tively (the latter putting the cursor at the
'home' position in the top left corner of
the screen). Each of these codes has a
scope of effect that lasts for just one
character past the escape. The Autostart
ROM only has four very valuable addi
tional escape modes, which remain in
force as long as one of their keys is
depressed, no matter how often. These
codes are ESC-K, ESC-J, ESC-M and ESC-I
which move the cursor right, left, down,
and up respectively. They are arranged in
a directional keypad on the keyboard so
that their directions of movement will be
obvious and natural.

11. With these functions performed, control
passes back up from RDCHAR to NX
TCHAR, the routine responsible for mov
ing input from the accumulator into the
input buffer and the top point in the
character input loop. NXTCHAR does
some checking itself for special condi
tions and some additional service process
ing.

12. For routine characters, NXTCHAR does
little but move the character from the ac
cumulator to a spot in the input buffer
designated by the buffer pointer, which is
the hardware X-Register. However, it
does this only after checking the value of
the character in the A-Register. If that
value is $EO or higher, the character is a
lower-case character and NXTCHAR con
verts it to upper-case.

13. If the character tested by NXTCHAR is
the retype key (the right arrow), it causes
the X-Register to increment indicating an
additional item moved into the buffer.
However, what is moved is not the value
of the key that was pressed, but the value
of the character on the video screen (and
hence in the screen output buffer), over
which the cursor was moved in perform
ing this activity. If the character is a
backspace (the left arrow) the X-Register
is decremented. The character code is not
physically removed from either the input
buffer or the screen display, it is just hid
den and therefore unavailable.

12.2.2 The Routines

The GETLN family of routines are, for the
most part, one long routine with many alternate

entry points that are given different names. Entry
at any particular routine means that you will
automatically drop through and execute routines
further down the list and receive the services
associated with them.

Notice that GETLN itself is the second routine
name in this list. It is preceded by GETLNZ,
which performs a carriage return before dropping
into the GETLN procedure.

Also notice that near the end of the list we get
into the ESCAPE processing portions of the family,
which are activated only when the 'ESC' key has
been pressed to initiate special editing procedures.

1. Routine Name: GETLNZ
Start Locn : $FD67(decimal 64871 or -665)

Register Conditioning at Entry:
A-Register Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Don't care
CH : Don't care
CV : Line where input is to occur

Conditions on Return:
A-Register Contains ASCll code for

'RETURN' ($8D)
X-Register Contains number of charac

ters read before 'RETURN'
Y-Register

CH
cv
BASL,H

Contains contents of
WNDWDTH
Contains 0
Contains current line number
Contains memory address for
CV, WNDWTH

Window line is blank to the right of the end of
the echoed input

Results:
CR is written, scroll takes place if appropriate.
Prompt character is written through COUT
Keyboard is read character by character. Each

character is placed at $0200,X and X: is in
cremented by 1.

Each character is "echoed" to the screen at
cursor position and then cursor is advanced.

On reading a 'RETURN', control is returned to
calling program

Description:
Output a carriage return and execute GETLN

2. Routine Name: GETLN
Start Locn : $FD6A(decimal 64874 or -662)

Register Conditioning at Entry:
A-Register Don't care
X-Register Don't care
Y -Register Don't care

Chapter XII 81

Monitor Parameter Conditioning:
BASL,H Line address at which input to

begin (in scroll window)
CV Line where input is to occur

(compatible with BASL,H)
CH Where on line prompt is to be

placed
Conditions on Return:

Same as for GETLNZ
Results:

Same as for GETLNZ except for initial CR.
Description:
Print the prompt character and initialize X-reg for
indexed storage of the input characters into the in
put area. Execute NXTCHR.

3. Routine Name: NXTCHAR
Start Locn : $FD75 (decimal 64885 or -651)

Register Conditioning at Entry:
A-Register Don't Care
X-Register : 0 for data to start at $200
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Compatible with CV, pointing

in window
CH Where echoing _of keyboard

input is to start
CV Compatible with BASL,H;

pointing in window
Conditions on Return:

Sames as for GETLNZ
Results:

Same as for GETLN

Description: Top point in character input loop.
Call RDCHAR to get character into A-reg. On
return A-reg tested for presence of CTRL-U (Right
Arrow). If found, A-reg loaded from ((BASL),Y), a
location in low-res screen refresh memory,
assuming Y-reg holds same value as CH.

If A-Reg value > = $EO, convert lower case let
ter to upper case by AND with $DF, and store from
A-reg to KEYIN buffer.

If character is 'RETURN', call monitor routine
CLREOL to clear to end of line with blanks. Then
conditional branch transfers control to COUT so
RTS xit of COUT will return control to the calling
program w/ X-reg, indicating input character
count ± 1.

If character is not 'RETURN', transfer control
to NOTCR for display on output device, and/ or for
interpretation with regards to control character af
fecting input line.

3a. Routine Name: CAPTST
(A portion of NXTCHAR which you may wish to

82 Chapter XII

deactivate)
Start Location: $FD7E (decimal 64894 or -642)
Registers and Parameter Conditioning at Entry:

As for NXTCHAR
Description: This is the notorious capitalizer

for Apple keyboard input. It tests to see if contents
of A-Reg > $DF and if so ANDs it against $DF to
make the character upper case. Can be replaced by
NOPs to defeat this action.
Note: If you treat this as a subroutine in its own
right and enter at this point without making
change you get same effect as NXTCHR except
ability to get input by scanning cross screen with
right arrow key has been bypassed.

4. Routine Name: NOTCR
Start Locn : $FD3D(decimal 64829 or -707)

Register Conditioning at Entry:
A-Register Character to be outputted via

COUT
X-Register IN,X points to character of

interest
Y-Register Don't care

Monitor Parameter Conditioning:
BASL,H Don't care
CH : Don't care
CV : Don't care

Description: IN,X points to character of in
terest. Save current setting of INVFLG on stack
and set INVFLG to $FF so character echoed to
screen will be white on black. Send character in
A-reg to COUT. On return from COUT restore
INVFLG from stack. If character pointed to by
IN,X is backspace go to BCKSPC. If character
pointed to by IN,X is CTRL-X, goto CANCEL.
Otherwise test X-Reg to see if.KEYIN buffer full or
almost full. If value of X-Reg > 247 call BELL to
signal user KEYIN is almost full. Whether or not
bell is sounded go to NOTCRl.

5. Routine Name: NOTCRl
Start Locn $FD5F (decimal 64863 or -673)

Not recommended for use as a
separate subroutine

Description: Increment X-reg. If this results in
overflow to 0, then go to CANCEL; otherwise go
back to NXTCHR.

6. Routine Name: CANCEL
Start Locn : $FD62 (decimal 64866 or -670)

Register Conditioning at Entry:
A-Register Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Don't care
CH Don't care
CV Line where input was to occur

Description: Print back-slash through COUT
to indicate cancellation of line being inputted.
Start new line and throw away inputted data by
going to GETLNZ for reinitialization w I o using
data.

7. Routine Name: BACKSPC
Start Locn : $FD71 (decimal 64866 or -655)

Register Conditioning at Entry:
As for NEXTCHR

Monitor Parameter Conditioning:
As for NEXTCHR with X-Reg pointing to

deleted character

Description: On entry backspace character has
already been printed through COUT and cursor
moved back. If X-Reg is zero goto GETLNZ, other
wise decrement X-Reg and go to NEXTCHR

8. Routine Name: RDCHAR
Start Locn : $FD35 (decimal 64821 or -715)

Register Conditioning at Entry:
A-Register Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Line where input is to occur; in

window; compatible with CV
CV Line where input is to occur;

in window; compatible
w/BASL,H

CH Horizontal posn in scroll win
dow where cursor will be in
dicated

Conditions on Return:
A-Register: Contains value of key pressed
X-Register: No change
Y-Register: Contains contents of CH
BASL,H CV CH: Changed only if Escape Key

function utilized

Results:
Screen character at cursor position (BASL),(CH)
will be set to blinking until a key is pressed.
If the ESCape key is detected, appropriate
escape routine will be called.
Cursor right arrow (control-U) will be returned
to the calling program, not the contents of the
screen at the cursor.
Cursor left arrow (control-H) will be returned
to the calling program.
Cancel line input (control-X) generates no
special action; service is not defined.
'RETURN' generates no special action because
rest of KEYIN is not called.
Characters read from the keyboard will not be
stored in memory page 2.
After the character is read, the blink will be
turned off at the cursor position, but the key

just read will not be echoed to the screen, nor
will the cursor be advanced.

Description: Call RDKEY to get next character
placed into A-Reg. If on return escape key has been
pressed, go to escape function relevant to monitor
in use. For Autostart monitor, go to ESC and
thence through ESCNEW to ESCl. For old
monitor, go to ESC and thence to ESCl. After any
request escape funtions performed control returns
to REDCHAR as if there had been no interruption.

9. Routine Name: RDKEY
Start Locn : $FDOC (decimal 64780 or

-756)

Register Conditioning at Entry:
A-Register Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Line where input is to occur;in

window; compatible with CV
CV Line where input is to occur;

in window; compatible w I
BASL,H

CH Horizontal position where cur-
sor will be shown by blinking

Conditions on Return:
A-Register Contains character read from

X-Register
Y-Register
cv

BASL,H

CH

Results:

keyboard
Not changed
Contains contents of CH
Is used to calculate the new
line
Reflects the recalculated
address
Not changed

The character on the screen at the cursor posi
tion is set to blinking.

KEYIN routine is given control via (KSWL) for
physical reading of the keyboard.

Return (RTS) in KEYIN returns to the caller of
RDKEY, not toRDKEY.

Description: Gets next input character into
A-Reg by doing indirect jump via KSWL,H, which
normally points at KEYIN. (SPecifically at location
specified by BASL,H and CH). Change that
character in memory to blinking to indicate cur
rent cursor position. Return is to caller of RDKEY
not to RDKEY itself.

10. Routine Name: KEYIN
Start Locn : $FD1B (decimal 64795 or -741)

Register Conditioning at Entry:
A-Register : value to be stored in screen

area at (BASL),Y to remove
blink after key press.

Chapter XII 83

(Normally last

X-Register
Y-Register

previous character entered.)
Don't care
used to store A-reg into screen
area to remove blink at
(BASL).Y.

Monitor Parameter Conditioning:
BASL,H Used as described with A and

Y registers above
CH Don't care
CV Line where input is to occur

Conditions on Return:
A-Register: Contains input from keyboard

register
Other Registers & Monitor Parameters:

Unchanged

Results:
Input from keyboard register appears in

A-Register.
Description: Gets next input key from

keyboard hardware. Reads keyboard input buffer
over and over again until presence of $80 bit shows
that a character has been read. In this case,
keyboard input buffer refers to memory page 2 buf
fer (screen display) rather than $COOO. The sign
flag is set or not set by checking the status of sign
at $COOO, which tells whether a key has been
pressed. If sign is positive, loop back to KEYIN: if
negative, pick up value at $COOO and strobe $COlO
to reset sign of $COOO back to positive. Ancillary
actions: Count up random number field (ignoring
overflow). Restore blinking cursor value modified
by RDKEY by storing A-reg at (BASL),Y before
$COOO read into A-Reg.

11. Routine Name: ESC
Start Locn : $FD2F (decimal 64815 or -721)

Register Conditioning at Entry:
A-Register Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Don't care
CH : Don't care
CV : Line where input is to occur

Description: Enter from RDCHAR when ESC
keypress detected. Calls RDKEY to get entry after
ESC to A-Reg then calls ESC1 (old monitor) or
ESCNEW (Autostart monitor) to perform re
quested function and return RDCHAR.

12. Routine Name: ESCNEW (Autostart Monitor
Only)
Start Locn : $FBA5(decimal 64421 or

-1115)

84 Chapter XII

Register Conditioning at Entry:
A-Register Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Don't care
CH Don't care
CV Line where input is to occur
Description: Supports cur!lor movement

without data transfer ESC I,J,K or M. If next key
pressed is one of them, do ESC A,B,C or D, which
is relevant by calling ESCl. On return to
ESCNEW, call RDKEY again and repeat process. If
key is not I,J,K or M, then JMP rather: than JSR to
ESC1 so return is to caller of ESCNEW rather than
ESCNEW.

13. Routine Name: ESC1
Start Locn : $FC2C (decimal 64556 or

-980)

Register Conditioning at Entry:
A-Register· Don't care
X-Register : Don't care
Y-Register : Don't care

Monitor Parameter Conditioning:
BASL,H Don't care
CH Don't care
CV Line where input is to occur
Description: Supports cursor movement

without data transfer ESC A,B,C or D (and in
autostart monitor with aid of ESCNEW also ESC
I,J,K or M). Also ESC E (clear to end of line) ESC F
(clear to end of window) and ESC @ (home). When
called, contents of A-reg (and the condition that
carry is 'set') indicate action to be taken. If one of
the above ESC characters, conditional branch to
appropriate scroll window service routine to take
appropriate action. Otherwise ignore and RTS.

12.2.3 Replacement ofKEYIN

One useful means ' of modifying the input

system, yet keeping the GETLN services, is to write
and use a replacement for KEYIN, then substitute
its calling location for that of KEYIN at KSWL,H
so that it will be excuted whenever KEYIN would
be under normal circumstances.

Preferences to input from an external device in
a particular slot may already have altered the ad
dress of KSWL,H, and you probably want to return
to the condition the system was in. Therefore it is
a good idea to save the current contents of
KSWL,H before replacing them by your KEYIN
replacement and restore them after it has been us
ed. If you use DOS while the replacement is in use,
expect confusion. DOS uses KSWL,H for its own
purposes and periodically restores them to appear
the way it thinks they should be, regardless of
their current contents.

If you write a replacement for KEYIN it sould
meet the following requirements:

1. A-Register:
Store the A-Reg at (BASL),Y, then load from
whatever source is to be used.

2. X-Register:
Must be same on exit as on entrance.

3. Y-Regis'ter:
Must be same on exit as on entry (unless
you are protected against escape key pro
cessing, in which case not required). Note
use of Y-Reg with A-Reg above.

4. CH, CV and BASL,H:
Used for echoing keyboard replacement
routiiie input, so either leave them alone if
echoing is not required, or manipulate them
in an appropriate manner to reflect your
echoing requirements.

12.2.4 Automatic Capitalization in GETLN

Keyboard input of lower case letters is
automatically converted to capitals by CAPTST as
described in 12.2.2 3A . It may be defeated in a
variety of ways.

Chapter XIll
The Monitor and DOS Vector Page

Page 3 is the last page in the first K of Apple
memory, an area devoted to system support ac
tivities. Its main function, which takes up only
3/16ths of the available space, is to provide con
venient interfaces to system firmware in the
Monitor and DOS. The remainder of its space is
available for user programming.

13.1
The Monitor Special Locations
in Memory Page 3

The top $10 (decimall6) memory locations are
used by the monitor as special locations for the
newer Autostart version of the monitor, and five
less for the older non-autostart version. Figure
13.1A shows the allocation of locations used with
the old monitori figure 13.1B shows those for the
new Autostart version.

1---l
I Figure 13.11\ I
I I
I Menory Page 3 - ~iter Special I.o:=ations Use::l with (~-Autostart) ~it.or I
I IDS not Activated I
I --------------------------1
I flex Decimal! Use I 1------------- -1
I $3FS 1013 I Jiolds a ~ Jl.t'IP' instructicn to the subroutine at $FF65 I
I $3F6 1014 I that handles '.&' o:::nraands. 'Ihis default is often reset I
: $3F7 1015 I by sophisticated users • I
I $3F8 1016 I 'iolds a 'J\1-W' instructioo to the subroutine that handles I
I $3F9 1017 I 'tsER' (CTRL-Y) cx:1111'a00s. Default is set for $FF65 (1'01) I
I $3FA 1018 I This is normal re-entry to top ot tronitor. I
I ------------- ----------1
I $3FB 1019 I Holds a 'J\W' instruction to the subroutine that harrlles I
I $3Ft: 1020 I Non-Masl<able Interrupts (~I's) .Default set to $FF65 (1'01) I I $3FO 1021 -~~s ~~~ re-entry to top of llDI"'itor. I
I $3FE 1022 I 'iolds the address of the subroutine that harrlles Interrupti
~~~--~~sts(IRQ's) .Salre def:ult(FF65) to I'OI(top of troni:."") ·1 

1-------------------------------1 
I Figure 13.18 I 
I Metory Page 3-M::xl.itor Special l££ations Used with Autoatart M:xlitor I 
I IDS not Activated I 
I I 
I flex Decimal! Use I 
I ---------------1 
I $3FO l(X)8 I Holds the address of subro.Jtine that harrlles machine-Ian- I I $3Fl 1009 I 'BRK' requests.Oefauli:$FF58(Salre as pressing 'RESEr key) ·I 
I $3F2 1010 I Soft tntry Vector. Points to $9IBF. I 
I $3F3 lOll I I 
1------ I 
I $3F4 1012 I ~r-up Byte. Value: $38. I 
I -------- I 
I $3FS 1013 I Holds a 'Jlto!P' instruction to the subroutine at $FF65 thatl 
I $3F6 1014 I han::Ues '&' comarrls. 'lllis default is often reset I 
I $3F7 1015 I by sophisticated users. I 
1-----------------------------1 
I $3F8 1016 I fields a 'Jl.W' instructicn to the subroutine that harrlles I 
I $3F9 1017 I 'tsER' (CTRL-Y) cx:1111'a00s. Default is set fur $FF65 (M:N).I 
I $3FA 1018 I n-tis is ocmnal re-entry to top of rronitor. I 
I ---------------------1 
I $3FB 1019 I Holds a 'JtloW' instruction to the subroutine that harrlles I 
I $3Ft: 1020 I Non-+!askable Interrupts(NMI' s) .Default set to $FF65 (1'01) .I 
I $3FD 1021 I 'Ibis is normal re-entry to top of rronitor. I 
I -------- I 
I $3FE 1022 I liolds the address of the subroutine that harrl.les Interrupt I 
I $3FF 1023 I ReQlests (IRQ's) .Salre default($FF65)to 1'01-top of tronitor.l 
I ---------- I 

13.2 
The DOS Vector Table in Memory Page 3 
($3D0-$3FF) (Includes Monitor Special 
Locations) 

When the DOS is active, as it is in most Apple 
systems most of the time, the Monitor Special 
Locations block on memory page 3 is expanded to 
include jumps and subroutines that are important 
to interface user programs with DOS. Figure 13.2A 
is a detailed guide to the use of this expanded block 
of memory locations. 

I -------1 Figure 13 • 2A 
I Merory Page 3 - IX>S & !oOtitor Vector Table ($3D0-$3FF) 
I (IX>S Activated) I 1---------------------------------1 
I flex Oecimall Use .1 
I -----------------------1 
I $300 976 I Tiolds a JuMP to OOS Wannstart Routine at $9DBF. Re-enters I 
I $301 977 I IX>S witrout discarding current BASIC program and witb:Jut I 
I $302 978 I resettirg MroCFIUS or other ros Enviraroental Variables. I 
I --------------- I 
I $303 979 I !iolds a JttW to the IDS Coldstart Routine at $9DBF. I 
I $304 980 I Re-initializes tx6 as if it were re-bootei, clearirg the I 
I $305 981 I current BASIC file and resetting 'UMI'M. I 
I I 
I $306 982 I Holds a Jl.W to the rx::g file nanager subroutine at $AAFD I 
I $307 983 I to allow a user-written asSE!!Tbly-language program to call I 
I $300 984 I it. I 
I --------------------1 
I $309 985 ~olds a ~ to the lX>S Read/Write/Track/Sector (!WI'S) I 
I $30\. 986 routine at $8785 to allow user-written asseni:lly-language I 
I $300 987 r:rograms to call it. I 
I I 
I SJOC 988 I A. short subroutine that locates the i.np.lt. parameter list I 
I thrcugh I for the file manager to allow a user-written program to I 
I $3E2 994 I set up ~ parameters before calling JWI'S. I 
I I 
I $3E3 995 I A. short subroutine that locates the i.np..Jt parameter list I 
I thralgh I for IWI'S to allow a user-written program to set up I 
I $3E9 1001 I i~t parameters before calling !WI'S. I 
I I 
I $3EA. 1002 Holds a J~ to the t:.s subroutine at $AA51 that I 
I $31m 1003 rec:x:xmect.s the IXS intercepts to the keyl:x)ard am. screen I 
I $38: 1004 I data streams. I 
1-------- I 
I $3EF 1007 I Holds a JdotP to the routine at $FF59 that harrlles machine- I 
I $3FO 1008 I language ~BRK' requests. Overall effect is the same I 
~~~- I as pressi~ the 'RESEr' (or 'CTRL''RESEI'') key. I 
I $3F2 1010 I Soft tntry Vector. Points to $9DBF. I
I $3F3 lOll I I
1--------------------------- I
1- $3F4 1012 I Power-up Byte. Value• $38. I
I I
I $3F5 1013 I Tiolds a 'J\1-fP' instruction to the subroo.tine at $FF65 that\
I $3F6 1014 I harrlles '&' o:mna.rrls. nus default is often reset I
I $3F7 1015 I by sophisticated users. I
I I
I $JF8 1016 I Holds a 'Jtt-W' instructicn to the subroutine that harrlles I
I $3F9 1017 I 'tsER' (CTRL-Y) crntllands. Default is set for $FF65 (001) I
I $3FA. 1018 I 'Ibis is oormal re-entry to top of m:::ln.itor. I
1-------------------------- -----1
I $3FB 1019 I f..lolds a 'JuMP' instruction to the subroutine that harrlles I
I $3FC 1020 I l'hl-+1askable Interrupts {r"'U's). ~fault is set to $FF65. I
I $3FD 1021 I (r-tJI'.t) 'nlis is rxmna~ re-entry to top of rronitor. I
1------------------------- I
I $1FE 1022 I f..J.olris the address of the subroutine that harrlles Interrupt I
I SJFF 1023 I ReQuests(IRQ's) .same default($FF65) to MJN-top of rronitor I
1---l

13.3
Page 3 Space Available to Users
($300-$3CF) and How It Is Typically
Used for Machine-Language Programming

The remainder of memory page 3, $CO
(decimal 192) bytes, is not a trivial amount of
memory. It is not needed for general support of
Apple system hardware or firmware, but it is too
large to be ignored and wasted. Yet it constitutes

86 Chapter XIII

only about 2% of the RAM memory space in a 48K
Apple and it is located in the first K of memory
with other memory that supports the Apple firm
ware. It is isolated from the large block of memory
space set aside for BASIC programs by the 2nd K of
memory: the text and low-res graphics area,
another area set aside for system and firmware
support.

Unfortunately this separation makes it imprac
tical for the Apple system to make this relatively
small and isolated block of memory space a part of
the general-usage space allocated by the Applesoft
or Integer BASIC interpreters. Thus it cannot be
used as freely as one might like as part of BASIC
programs.

However, $CO (decimall92) bytes is a conven
ient-sized block for small blocks of machine
language utility code that is often needed in con-

junction with BASIC programs. This space is quite
frequently used as a home for machine-language
code used in a BASIC environment.

For example, it might be used to hold a printer
driver program used to supplement or modify the
standard printer driver built into a printer interface
card. Or it might be used to contain a keyboard
filter program used for some special modification
of keyboard input procedures. It could hold a
special &-interpreter to enable the & key to be
used for a special purpose.

Memory space used in this area does not reduce
the amount of space available to BASIC programs
and their variables, and does not require changes to
either HIMEM or LOMEM, the limits of BASIC
program memory allocation.

Chapter XIV
Test and Low-Resolution Graphics
Display Memory Pages 4-7 and 8-11
($400-$7FF and $800-$0BFFJ

14.1
Text Output to the Screen- Introductory
Frame of Reference

In the text mode the Apple can display 24
characters of lines with up to 40 characters on each
line. The lines are numbered from 0 (top of page)
to 23(bottom of page). The positions within a line
vary from 0 (left edge) to 39 (right edge).

Each character on the screen represents the
contents of one memory location. The area of
memory used for the primary (default) text page
extends $400 bytes (1024 decimal) from location
$0400 (1024 decimal) to location $07FF (2047
decimal). A secondary text display page of the
same size is also available. The secondary text
page extends from location $0800 (2048 decimal)
to the location $0BFF (3071 decimal).

In most BASIC programs, you use and display
text only from the memory locations associated
with text page 1. All normal BASIC and monitor
commands which generate printed screen output
print that output to text page 1.

However, you can arrange to pass output to
text page 2 by various indirect means, such as
moving information there from text page 1 or
POKEing <lata there directly. This may be done if
page 2 is displayed or not. If data is put into page 2
while it is being displayed, it appears character-by
character as it is added, just like normal BASIC
output. If data is put into page 2 while it is not
being displayed, there is no visible change in the
display screen while the data is being put into the
display memory. However, if you give the com
mand POKE -16299,0, the display changes
instantly from that of the data in the text display
buffer of page 1 to that of the data written into the
memory locations associated with the previously
invisible page 2. Thus a whole page of text may be
placed onto the screen in the blink of an eye, pro
viding that you are willing to do the appropriate
set-up work in advance. POKE - 16300,0 may be
used to change the display instantly back to text
page 1. '

The hardware and the monitor software of the
Apple II are organized so that the text page 1 buf
fer [memory locations $0400 11024 decimal) to
$07FF 12047 decimal)] normally operate as a
'scrolling' display area. This means that routinely

each new character of text enters at the bottom
line of the screen. When you reach the end of
entry of that line of information, tlie carriage
return entered at the end of the line causes all
lines on the screen to shift upward by one line to
provide space for the entry of a new line at the
bottom of the screen. The cursor, which shows
where on the display the next character will be
entered, moves to the left of the now-blank bot
tom line.

The area of the screen where scrolling takes
place during input may be limited to only a por
tion of the total display. This may be done by
establishing 'window' boundaries - left, right,
top and bottom limits for the scrolling area and
normal input and output associated with it.
These boundaries may be set up by POKEing
operations.

In addition to normal entries at the bottom of
the screen (or the bottom of the window) the
Apple also makes provision for moving the cur
rent output or input to any desired random loca
tion within the scrolling area through use of ver
tical and horizontal tabbing functions.

In Applesoft BASIC, the system-specific com
mands VT AB and HT AB can be used to move the
current printing location to any desired spot on the
page within the current scrolling limits. For exam
ple, VTAB 5: HTAB 7: PRINT"+" will position
the c\lrrent printing position to line 5 (one quarter
of the way down the screen from the top) and to
horizontal printing position 7 (one fifth of the
way across the screen from the left edge), then at
that location print the symbol ' + '.

Output may be inserted into any screen location,
regardless of whether that screen location is in
side or outside the scrolling window, by directly
storing the information. This is most frequently
done by means of POKE operations.

To use this method of entry you must first
learn something about how the characters are
stored in the computer memory and what loca
tions in memory correspond to what locations on
the screen.

14.2
Representation of Text-Characters Inside
the Apple- The ASCII Code

Each text-character on the display-screen,
when the Apple II is in text mode, is determined by
the contents of one memory location. The text
character to be displayed is determined by the

88 Chapter XIV

ASCII (American Standard Code for Information
Interchange) symbol associated with the bits in
that memory location.

Actually the Apple II does not use the full
United States national standard ASCII characters,
but instead, a modified subset and superset of
ASCII. This set is built around 64 characters: 26
upper-case letters, 10 digits and 28 special
characters (punctuation, etc.). These characters
would require only six bits to represent (26 = 64).
However, the Apple also uses a block of 32 con
trol characters. These characters can be entered
from the keyboard by depressing the special con
trol or CTRL key at the same time you depress
the key of the relevant alphabetic character. The
use of these control characters varies widely. For
example, CTRL-G will ring a bell or sound a
beeper. A CTRL-D in a PRINT statement will
route the output associated with it, not to the
screen, but to disk storage. If the Apple II is in its
monitor mode a CTRL-B will cause the system to
enter BASIC. BASIC;, a CTRL-C, will allow re
entry to a BASIC program which has previously
been interrupted without loss of data values, in
termediate results and/ or variable names which
were current at the time the system exited
BASIC;.

The U.S. national standard ASCII is a seven
bit code with provision for all these characters
plus provision for a lower-case alphabet and some
extra less frequently used special punctuation
characters.

The Apple II as supplied by its manufacturer
does not support the use of lower-case letters.
The Apple II has neither provision for entering
them from the keyboard nor of displaying them
on the screen. Thus the 7-bit ASCII code sup
ported by the Apple provides only a subset of the
national standard ASCII characters.

The lack of lower-case characters and the
related incompatibility with United States na
tional standards is considered by many to be a
significant weakness or fault in the Apple II
system. Many users find the lack of a lower-case
capability intolerable, especially if they are in
terested in applications which involve text and
word processing. Thus many secondary vendors
now provide means for modifying the Apple II to
get the missing characters.

Since the Apple II stores information in 8-bit
bytes it has an extra bit available to support up to
28 = 256 code characters. There is no U.S. na
tional standard which specifies how extra code
combinations such as these should be used. Apple
uses them to support FLASHING and INVERSE
VIDEO display versions of its standard

alphanumeric characters.

Thus the Apple II character set and code
shown in figure 14.2A is a modified subset of
ASCII lacking lower-case letters at the same time
that it is a superset containing FLASHING as well
as INVERSE-VIDEO versions of the standard
characters.

1---l
I Figure 14.21\(l)-A..~II Subset/Superset usei by ll.oole]((oo lower case) I
I --1
I I Inverse I Flashirq I I Normal I I
I I I I (Control) I I (tn.«Cl I
IDee looo 016 03?. 0481064 ORO 0'!6 11?.1 l2il 144 1160 176 19?. ?.081224 2401
I .,exl$00 $10 $20 $30IS40 $50 $60 $701 $80 S90 l$~0 $00 SCO OOIEO SFOI
l--l-------l----------l--------1-------------l------l
lmsoi@P oi@P oi@PI o•PI ol
I 01 $1 I A o 1 I " o 1 I ~ o I 1 l A o I ! l I
I0?.$2IB R ?.IB R 21 R R I'' 2 R Rl'' ?.1
I 03 $3 I c s 3 I c s 3 I c s I 3 c s I 3 I
I04S4ID T 4ID T 41 D TIS 4 D Tl$ 41
IOSS5IE u SIE u 51 E u I% s E ul% 51
I06$6IF v 6IF v 61 F vI& 6 F vi& 61
I 07 $7 I G w 7 I G 'i 7 I G w I ' 7 G w I ' 7 I
108$81"1 X Rl'i X Rl 'i X I(R 9 XI(Bl
lfl9S9IIY 9IIY 9IIYI)9IYI(91
I 10 SA I J z , I J z , I J z I * ,J z I • ' I
lllsBIK [+ ;IK [+ :IK [I+ K [I+ ;I
I 12 SC I L \ < I L \ < I L \ I , L \ I , < I
I13$DIM l- =IM l- =IM 11- = M 11- =I
I 14 $E I '{ .) I N • > I " I .) " • I .) I
I 15 SF I o - I I o - I I o - I I o - I I I
1---l

1--l
I Figure 14.211.(2) I
I Keys and Their Associated ASCII Codes I
l---~------------1
I Key ll\loneiCTRL ls·UPI'IBoth II Key 11\loneiCTRL I9'~IPI'IBoth I
l-----l---l-----l-----l-,---ll-----l-----l-----1-----l-----l
I II .~>. $Cl $81 $Cl S81 I
I I I B $C2 S8'l SC2 $82 I
I I I c SC3 S'H $C3 S83 I
I II o $C4 $84 $C4 S84 I
I 0 $00 SBO SBO $80 I I E $C5 $85 SC5 $85 I
I 1 ! SBl $Bl $Al SAl I I F $C6 S86 $C6 $86 I
I 2 " $82 $82 $A2 SA2 I I G $C7 $87 $C7 $87 I
I 3 # SB3 $83 $A3 $1\3 II '1 $C8 $88 $C8 S88 I
I 4 S SB4 $84 $M SM I I I $1::9 S89 SC9 $89 I
I 5 % $85 $85 $A5 SA5 I I J $C!\. $81'. $CA $8A I
I 6 IK $B6 SB6 $A6 $!\.6 I I K $CB $88 $CB $88 I
I 7 ' SB7 $87 $~>.7 $.1\7 II L sec soc sec soc I
I 8 ($88 $88 $1'.8 $1'.8 II M $CO $80 $CO $80 I
I 9} $89 $89 $!\.9 $A9 II N. SCE $BE $CE $BE I
I : * $81'. $81'. $AA $!\.1\ II 0 $CF $8F SCF $8F I
I : + SBB .$BB $1'.8 $1'.8 II p @ $00 $90 $00 $90 I
I • < SAC SAC $BC $BC I I Q SOl $91 $01 $91 I
I-= SI'.D $1'.0 SBD SBD II R $02 $92 SD2 $92 I
I • > $1\E SI'.E $BE $BE II s $03 $93 $03 $93 I
I I SI\F $1\F $BF SI'.F II 'I' SD4 $94 $D4 $94 I
I -> $88 S88 $88 $88 II u $05 $95 sos $95 I
I <- $95 $95 $95 $95 II v $06 $96 $06 $96 I
I II w So7 S97 so7 $97 I
I sp>ce $1'.0 $1'.0 $1'.0 $1'.0 II x SOB $98 $08 $98 I
lreturn$80 $80 $80 $80 II Y $09 $99 $09 $99 I
lescape$9B $9B S9B $98 II z SDI'. $9!\. $01'. $91'. I

1------ --1

14.3
How Screen Locations of Text-Characters
Map Into Memory Locations
and Vice-Versa

A complete page of text requires 24 x 40 = 960
characters or 960 bytes of memory. Since the
Apple hardware memory-pages hold 256 bytes
each, it requires slightly less than four memory
pages to hold a full screen of characters. Four

memory-pages are assigned to one text/low resolu
tion screen page. (The few extra locations not
needed for screen-display are allocated as scratch
pad memory space for use by peripheral 1-0
devices, which may be plugged into the eight
'slots' inside the Apple.)

The Apple system has two text/low
resolution-graphics pages. Page 1 occupies
memory locations $0400-$07FF (1024-2047
decimal); Page 2 occupies $0800-$0BFF (2048-3071
decimal). The BASIC interpreter always routes its
output to text page 1. Page 2 is not available unless
you start your program with LOMEM: 3072 (or
higher). Otherwise Applesoft will allocate the
text/low-res page 2 as program storage space. Even
if LOMEM is changed, it displays text-page 1
unless it has been overtly instructed to display
informationfrom page 2.

· Each text-page may be divided into eight text
sub-pages organized as 'macro-lines'. (See figure
14.3A for the orgainzation of a single macro-line.

-----------------------------1
Figure 14. 3A - -.,ry Layout of a Single Text/ I

l.Dw-Resolution 'Macro-Line' I
I ----------------------1
I <-First 40 charctrs-> <-Secorrl 40 charctrs-> <-ntird 40 charctrs-> <-8-> I
I {'!lop 1/3 screen) {Middle 1/3 screen) {Bot tan 1/3 screen) • slot • I
I bytes I
I --------------------1

Note that the display output from a single macro
line will appear partially on the top 1h of the
screen, partialy on the middle 1h of the screen, and
partially on the bottom 1h of the screen as shown
in figure 14.3B.) Each of these eight macro-lines
occupies 128 bytes of memory (half a memory
page). 120 of those bytes are used to represent 120
displayable text-characters. The remaining eight
are not displayable on the display-screen.

Each of these non-displayable bytes is assigned
to a different one of the eight peripheral 'slots' in
the Apple II to serve as a byte of 'scratch pad
memory' for the I-0 peripheral which may be plug
ged into that slot. Since there are eight sub-pages,
each slot gets 8 bytes scattered, one byte each, at
eight locations in what is otherwise a screen
display memory area.

The eight macro-lines, taken together as a
group, may be thought of as a logical display eight
characters (or lines) high by 120 characters (or
print-columns) wide. You cannot view this logical
display directly on a TV screen - it is too long and
thin. To view it on a TV screen we break the
120-character macro-lines down into three
40-character lines. (See figures 14.3C and 14.3D)
This gives us 3 times 8, or 24, lines of 40
characters each - a convenient layout for a TV
display-screen. The three lines whose 40-byte

Chapter XIV 89

1---------------------------------------1
IL I Figure 14.3B ----- Screen Display I
I i I Layout of I.a.v-Resolution 'Macro-Line' I
In I (Example shown: Macro-Line 0) I
le 1----------~---------------------------1
1001<----MLOO First 40 characters -------->1
I 011 •••••••.••••••••••••••••••••••.•••••..•• I
1021 •.•••.••••.••••••••••••••••.••.••..•••••• 1
I 03 I .. I
1041 .••.•••••.•••••••••••••..••.••..•••••••• I
1051 •••••••••••••••••••••••••.•••••.•••••••• 1
1061 ••••••••••••••••••.••••••••••••••.••..•• I
I o71 ...•....................••.............. I
1081<----MLOOSecond 40 characters --~----->1
1091 ..•.•.••••••••••••••••••.••••••••••..••. I
110 I•....... I
1111•..............................
121•...•.••••••.••.....••..•.••...•....
13 I ••••••••••••.•••••••.••.•••••••••••••••••
141 ••••••••••••••••••••••.••••••••••••.••••
151 ..•....•....•.•...... ·- •..•...•.•••.••..•
161<----MLOO Third 40 characters -------->
171 ••.•••••••••••••••.•••••••.••.•••••••••.
181 •••••.•••••••••••••••••.•••...•.••••••••
191 •••••••••••••••••• ·-· ••••••••••••••••••••
20 I•........................•.....
211 ••
221 •••••••••••••••••••••••••••••••••.••••••
231 ••

1--l
I Figure 14.3C-Internal Structure of the Text/ I
I I.ow-Resoultion Graphics Oisnlay Area I
I - Eight Macro-Lines of 120 Characters Each (ML00-MID7)+8 bytes- I
I - Each Macro-Line contains 3 Text-Display Lines (DUX>-DL23) - I
I ---------------------------------------1
I MIOOI<lst 40 chars ""'0lJ)()><2nd 40 chars =DIDB><3rd 40 chars =DL16><8 bytes> I
I Ml.Dll<lst 40 chars -=DL01><2nd 40 chars =DUJ9><3rd 40 chars =DL17><8 bytes> I
I Mt.02I<lst 40 chars =DW2><200 40 chars =DlJ.0><3rd 40 chars =DLlA><S bytes> I
I MI.D3I<lst 40 chars =OIJ)3><2n:1 40 chars =DL11><3rd 40 chars =DL19><8' bytes> I
I MI.04I<lst 40 chars =DIJ)4><2n:1 40 chars =DL12><3rd 40 chars :::o()L20><8 bytes> I
I MLOSI <1st 40 chars =-DtD5><2nd 40 chars =DL13><3rd 40 chars =DL21><8 bytes> I
I MLDGI <1st 40 chars =DI.D6><2rrl 40 chars =DL14><3rd 40 chars =01.22><8 bytes> I
I MI.D7I<lst 40 chars =DIJ)7><2rrl 40 chars =DL15><3nl 40 chars =DL23><8- bytes> I
I ------------------------------------1

representations are together in memory in a single
text sub-page do not create display-lines which are
adjacent to one another on the display screen.

Instead, the three 40-character packets in a
text/low-resolution graphics macro-line display at
locations on the screen that are eight lines apart;
one in the top third of the screen, one in the
middle third, and one in the bottom third of the
screen. (See figure 14.3D.)

The conversion to 40-character-wide display
format is accomplished by a 'wrap-around' pro
cess. However, instead of a single macro-line
wrapping around itself twice (first at the 40th
character and a second time at the 80th character)
to form 3 adjacent lines, the whole 8 macro-line
logical display wraps around as a single entity.

At the wrap-around point at the 40th character,
macro-lines 0 through 7 wrap as a unit to lines 8

90 Chapter XIV

through 15. (Line 0 wraps around to line 8; line 1
wraps around to line 9; and so on through line 7
wrapping around to line 15.)

At the wrap-around point at the 80th character,
lines 0 through 7 (which have already wrapped
once as a unit to lines 8 through 15) wrap around
again as a unit to lines 16 through 23. (Line 0/8
wraps to line 16; line 1/9 to line 17; and so on
through line 7/15 which wraps around to line 23.)
(See figure 14.3E)

1---l
IL I Figure 14.3D ----- Screen Disolay I
I i I Layout of IJ:::M-Resolution 1 Macro-Line 1 I
In I (Example . shown: Macro-Line 0) I
le 1--1
IOOI<--MI.OO First 40 characters -------->1
I 011 •.••••••••••••••••.•••.••.•.••.•••.•..•. I
I 021 •••••••••••••••••..•.••.•••••••••.•. • · • · I
I 03 I · · I
1041 •••••••••.•.•••.••••••.••••.•.••••••.••• 1
lOS I ...•.................................... I
1061 .•••••.•.•••••.•.•••..•••.•••.•• ·.·····.I
I 071 ••••••••••••••.•.•.•..•...•••••. • • . • • • • • I
1081<----MLOOSecond 40 characters -------->1
1091 •..•.•••.•••••..••.•...•.•.•.•••••••...• 1
110 I · . · . · · · · · I
1111 .•.•••.•.••..••..•••..•••.•.•..••• • • • · • • I
1121 •••••.••••••••••••..••.•.•• •• • • • • • • • • · • .1
1131 ••••••.••••••••.••..••••••.•••••••••• • • • I
1141 ••••••.•..••••••••.••.•• • • • • · • • • • · • • • • • • I
1151 .••••••••.•..•••••.•..•.•••••••• · ·.·····I
1161<----MLOO Third 40 characters -------->1
1171 •..•••••••.•••••••••••.••••••.••••••• ··.I
1181 •••••.••••••••••••.•••.• • •••• • • . • • • • • • • · I
1191 •• 1
1201 •••••••••••••••.••••.••••••••••••••••••. 1
1211 .•••.••••.••••.••••••••••••••••••••••••• I
1221 •••••••••••••.•••••••••••••••••••••••••• I
1231 •••••...•••••.•••••••••••.••••••••.••••• I
1---l

1 -- I ---1
\o L I Fiqure l4.3E I
1 i i I Screen Disolay Wrap-ArClUt'lli of Macro-Lines I
Is n I DL = Display Line: A. physical location on 'IV scr~n , I
lp e I li1L = Macro-Line: A loqical entity of 128 consecut1.ve me"'''ry locatl.onsl
1--l--l
\OIJ)Q\<--- First 40 characters of MLOO------------------ ->I
\DLOll<--- First 40 characters of ML.Dl------------------ ->I
\DIJJ'J'\<--- First 40 charncters of MI.I'l2------------------ ->I
IDI.1J3\<--- First 40 characters of "'ll.J)3------------------ ->1
IDL041<--- First 40 characters of MLD4------------------ ->1
lm..DSI<--- First 41') characters of MI.D5------------------ ->I
ji)J...l)6\<--- First 40 chilracters of Ml1>6------------------ ->I
\OL07l<--- First 40 characters of ML07------------------ ->I
lol..ffi I<- - - Seconri 40 characters of MUYl- - - - - - - - - - - - - - - - - ... > l
!OIJ)9\<--- Secotrl 40 chrlracters of Ml.J)l------------------ >I
IDl.J.OI <- - - Secorrl 40 chrlracters of MIJJ2- - - - - - - - - - - - - - - - - - >I
IDLlll<--- Secorrl 40 ch"-t'ilcters of Ml.J)3------------------ >I
IDLP]<--- Second 40 characters of MIJ)4------------------ >I
IDIJ.1!<--- c:;ecorrl 40 characters of MI.J)')------------------ >I
I DL141 <- - - Seconrl 40 clmracters of Ml...06- - - - - - - - - - - - - - - - - - >I
IDLl'il<--- s~ 41') characters of ML07------------------ >I
IDIJ.61 <- - - 'I"n.ird. 40 characters of Ml.flO- - - - - - - - - - - - - - - - - - ->I
\01..171<--- Third 40 characters of MI:.Dl------------------ ->I
IDLlBI <- - - Third 40 char"\cters of MI.l)2- - - - - - - - - - - - - - - - - - ->I
IOL19\<--- 'n"lirr! 40 characters of ML03------------------ ->1
1 DL20 I<- - - Third 40 characters of "11..04- - - - - - - - - - - - - - - - - - ->I
IDL2ll<--- Third 40 characters of MIJ)5------------------ ->I
IDL22!<--- Third 40 char.'lcters of MIJ)6------------------ ->I
I DL23I <- - - Third 40 ch"\racters of Ml..D7- - - - - - - - - - - - - - - - - - ->I
l-l---1

14.4
Controlling What Appears Where on the
Display-Screen

You may make a particular character display at
a particular location on the screen by putting the
correct combination of bits into the particular byte
of memory which represents that part of the
screen. This can be done by using conventional
BASIC output routines or by bypassing those
routines and injecting the desired output directly
into the desired memory location.

If information goes into the area currently
switched-on to display, the symbols appear as soon
as the bits are placed in memory. If the informa
tion goes into the text page not currently selected
for display, it (and the entire remainder of the
page) will remain invisible until that display-page
is switched on to replace the current page.

The ability to put information into display
page memory at any time or at any rate while that
page is switched off and thus invisible. But to
make it appear instantly when a single switch is
thrown, can be the basis of some interesting and
valuable visual effects. With graphics, it can be the
basis of animation.

Since the Apple monitor and interpreter soft
ware do not support printing onto text page 2, you
can get information to the page 2 display area by
either of two methods:

1 . Use conventional output techniques such as
BASIC Print statements to feed the display
information to text page 1 (whether or not
text page 1 is currently being used to display
information), then move the information to
text page 2; or

2. POKE or use the Apple system monitor to
put the desired display bits directly into the
location in page 2.

Once the information to be displayed is in
the desired screen buffer area the ap
propriate soft-switches may be set to switch
on and thus make visible the contents of
any of the four display buffer pages:

a. Text/Low-Resolution Graphics Page 1
b. Text/Low-Resolution Graphics Page 2
c. High-Resolution Graphics Page 1
d. High-Resolution Graphics Page 2

This switching is automatically accomplished if
you access the appropriate soft-switch or soft
switches in a way which causes that location in
memory to be addressed. When programming in
BASIC, a POKE to the relevant soft-switch location
(expressed as a decimal address) will do the job
quite conveniently.

14.5
The Low-Resolution Graphics Mode

In the low-resolution graphics mode the Apple
II uses the same 1024 byte screen buffer areas
($0400-$07FF or $0800-$0BFF) as in the text mode.
Each of these buffers can store either low
resolution pictorial information or text, but not
both at the same time.

The Apple II does, however, provide a means of
splitting the screen so that the top 5/6ths of the
screen (lines 0-19) are displayed as low-resolution
graphics and the bottom ll6th of the screen (lines
20-23) are displayed as text.

The mixed-mode (5/6ths low-resolution
graphics and 1/6th text) can be implemented by
making sure the following combination of soft
switch states are activated:

$COSO (-16304) -Display graphics on at least
part (and perhaps all) of the screen.

$C053 (-16301)- Mix text (bottom 4 lines on
ly) and graphics display
(rather than an all-graphics
display).

$C057 (-16297) - Display graphics in La-Res
mode (rather than Hi-Res
mode).

This 5/6ths and 1/6th split is fixed and im
mutable. It cannot be moved up or down the
screen. The same split is available for mixed
display of text and hi-resolution graphics even
though the two displays use widely-separated areas
of display-memory.

In the low-resolution graphics mode each of the
960 character positions is displayed not as an
ASCII character, but as two colored blocks stacked
one on top of the other. Thus the screen display
becomes 48 (24 x 2) blocks high by 40 blocks
wide. If you use the graphics-text split mentioned
above, the graphics portion is 40 blocks high by 40
blocks wide and there is space for 4 lines of text as
well.

Each block can be any of sixteen colors. On a
black-and-white television set the colors appear as
slightly different gray-tones made up of distinct
patterns of gray and white dots.

Since each byte in the text/low-resolution
graphics display buffer represents two blocks on
the screen stacked one above the other, each 8-bit
byte is divided into two 4-bit parts called nibbles.
Each nibble can be represented by a single hex
adecimal digit. Since there are 24 or 16 bit com-

Chapter XIV 91

binations, each bit combination in a particular
nybble represents a different color. The colors are
as follows:

I ------1
I Figure 14.5A - I.t::M Resolution Graphics Colors I
I ----------1
I Color Bit Hexadecimal Decimal I
I oo 'IV Pattern Representation Representation I
I ----------1
!Black 0000 0 0 I
I Magenta 0001 1 1 I
I tm-k Blue 0010 2 2 I
I Purple oon 3 3 I
I tm-k Green 0100 4 4 I
IGrayl 0101 5 5 I
I MErlitn Blue ono 6 6 I
I Light Blue 0111 7 7 I
1- 1000 8 8 I
I orange 1001 9 9 I
I Gray 2 1010 A 10 I
I Pink lOll B 11 I
I Light Green noo c 12 I
I Yellow 1101 D 13 I
I Aquamarine lllO E 14 I
I llrl.te llll F 15 I
I I

1------------~-----------------------1
I Figure 14. SB - lt::M Resolution Graphics Colors I
I ----------------------------1
I Decimal flex Bit Color Distinguishable fran (in B&W) I
I O:rle Code Code Color identified by hex oode I
I ------------------------------1
lo o 0000 Black 123456789ABCDEF I
ll 1 0001 Magenta 0 3 567 91\BCDEF I
I 2 2 0010 Dark Blue 0 3 5 6 7 9 1\ B C D E F I
I 3 3 OOll Purple o 1 2 4 7 8 B o E F I
I ,4 4 0100 tm-k Green 0 3 5 6 7 9 1\ B C D E F I
I 5 5 0100 Gray 1 0 1 2 4 7 8 B E F I
I 6 6 OllO Medium Blue 0 1 2 4 7 8 B D E F I
I 7 7 0111 Light Blue o 1 2 3 4 5 6 8 9 A c F I
18 8 1000 - 0 3 567 9ABCDEF I
19 9 1001 Orar>:Je 012 4 78 B DEF I
I 10 1\ 1010 Gray 2 0 1 2 4 7 8 B D E F I
I 11 B lOll Pink 0 1 2 3 4 5 6 8 9 A c F I
I 12 C 1100 Light Green 0 1 2 4 5 8 B D E F I
I 13 D 1101 Yellow o 1 2 3 4 5 6 8 9 A c F I
I 14 E lllO Aquamarine 0 1 2 3 4 5 6 8 9 1\ c F I
I 15 F 11ll llrl.te 0 1 2 3 4 5 6 7 8 9 A B C D E I
I -----1

The actual color displayed by your television set
may vary from these standard values because you
set the color and hue controls. They can also be ad
justed by the COLOR TRIM control at the right
rear of the Apple II main circuit board.

The value in the low-order (rightmost) nibble
of the byte determines the color of the upper block
of the display-pair; the one in the high-order (left
most) nibble determines the color of the lower
block. Thus a byte containing the binary bit pat
tern 11001000 (hexadecimal C8 -usually written
$C8) would cause display of a brown block over a
light green block.

When colors are displayed on a black-and-white
TV set or monitor, they appear as black-and-white
bit patterns rather like the conventional zip-tone
black-and-white methods of coding and represen
ting colors in printed books. Each pattern of
shading represents a different color. Figure 14.5B
shows which zip-tones are visually distinguishable
from one another on a black-and-white display.

Follow these steps to put this information into
decimal form for POKEing into memory: 1. get the
decimal values of the colors from Figure 14.5B; 2.

92 Chapter XIV

add 16 times the decimal value for the block to be
displayed on the bottom to the decimal value of
the block to be displayed on the top to get the
value to POKE into memory.

To obtain the colors from a decimal number
obtained by PEEKing at the memory location, per
form an integer division of the decimal number by
16. The color of the upper block is determined by
the quotienti the color of the lower block by there
mainder. For example, if the result of PEEKing is
the number 208 (hexadecimal 08) then the quo
tient of 208/16 is 13, the remainder is 8, and the
colors are brown and yellow.

Since the same block of memory is used for the
text screen and for Low-Resolution graphics,
interesting things happen if you put text into that
block of memory and display it as Low-Resolution
graphics or vice versa.

Each text character will become two blocks of
hues determined by the ASCII code for the
character. Because of the consistency of the high-

order byte used in most text the display will often
tend to show long horizontal gray, pink, green, or
yellow bars separated by randomly colored blocks.

Conversely each block-pair will become an Ap
ple text character from Table 14.2A. With a
reasonably normal selection of colors many of
these characters will be inverse or flashing
characters and the screen will be a dazzling,
flashing mess.

You can play interesting tricks on the com
puter by entering data in one mode and using it in
another. Often in text mode certain characters are
considered illegal, i.e. a comma in an input text
string or a particular token representing an illegal
command in BASIC. If you can grab such a string
and treat it as Low-Resolution graphics data, you
can bypass the checking which results in rejection
of the data as illegal. With these tricks you can
make errors that Apple tried to protect you against,
but which smart programmers can sometimes use
to their advantage.

Chapter XV
'User Memory' for
BASIC Programmers
Typically Pages 9-149 ($0800-$95FF}
But Highly Variable

15.1
Overview of 'User Memory' Space
Available to BASIC Programmers

15.1.1 The Default Case

In the default case (wb.ere a user has a 48K
Apple and is using ROM Applesoft) the RAM
memory available is about $8DFC (decimal
36,348) bytes of memory.

Specifically, it consists of all of RAM between
LOMEM (which is automatically set for new pro
grams just beyond the end of Text Page 1 at $803)
and HIMEM (which is automatically set to the
beginning of DOS, normally $95FF).

15.1.2 Rationale for the Default Case

The memory available to BASIC programmers
begins at memory page 8 because all lower pages
are assigned to system firmware support uses.

As we have seen the bottom 1K of Apple
memory, memory pages 0-3 ($0000-$03FF) is
allocated to system functions such as systems
worksheet, stack, input (keyboard buffer), and
monitor special locations. One page is allocated
to each of these functions, leaving some unused
space on page 3 of this block available to the user.
The second K of memory, pages 4-7 ($0400-
$07FF), is allocated to system use as the primary
text/low-res display output buffer (the scrolling
output buffer associated with the keyboard input
buffer). A few scattered memory locations in this
area are also available for use by the peripheral ex
pansion slots. Thus there is no usable space
available below $0800.

The third K of memory, pages 8-11 ($0800-
$11FF), is sometimes used as a secondary
text/low-res display output buffer. Thus you
might think that the automatically set LOMEM
should be beyond this graphics page also, at about
memory location $1200 or $1201.

However, the secondary text/low-resolution
capability is used by only a small proportion of
Apple programs. Thus both Apple BASIC inter
preters, while allowing the user to set LOMEM at
$1200, automatically set LOMEM at $803. This
procedure makes an additional K of freely usable
'User Memory' available for BASIC programming.

The idea that LOMEM is automatically set to
$803 is not a hard-and-fast rule. If you are using
the older version of Applesoft (rather than the
now more commonly used firmware, ROM,
Applesoft Card, language-card RAM, or FP BASIC
versions of Applesoft), the Applesoft interpreter
itself will occupy memory pages 8-47 (memory
locations $0800-$3000) and user memory will not
begin until page 48 (memory location $3001).

At the HIMEM end, if you have an Apple that
is not using DOS, user memory extends all the
way to the top of RAM memory. This makes
available an additional $2AOO (10752) bytes of
memory. (The actual amount used will change
somewhat if the default MAXFILES = 3 condition
of the DOS is altered.)

If you have a 32K instead of a 48K Apple, you
lose 16K = decimal 64 pages = $4000 =

decimal 16384 bytes of memory . .If you have a
16K Apple, you lose yet another 16K = $4000 =
16384 bytes of space.

In summary, the most common default condi
tion, User Memory for Applesoft or Integer
BASIC, runs from pages 8 through 149 (memory
locations $0801-$95FF).

15.2
Variations in User Memory Availability
In Different Hardware/Software
Environments

Variations will occur from the default case as
a result of common variations in the hardware/
software environment.

If MAXFILES is used to change the amount of
buffer memory space reserved by DOS, approx
imately $200 bytes of memory will be lost for
each additional DOS buffer required above the
default (MAXFILES = 3). However, if MAXFILES
is reduced below the default value of 3, an equal
amount of extra memory will become available
for each buffer released. Thus if you can get by
with MAXFILES = 1, you can get approximately
$400 (about decimallOOO) extra bytes of memory
for your Applesoft programs and data, but you
will be severely limited in your flexibility in per
forming disk operating system activities.

If you choose to totally disable the disk
operating system, or if you have removed it from
its normal location into language card RAM, then
you get a huge bonus of available memory.
HIMEM, the top boundary of user-available
memory, can be moved upwards to $BFFF. This

94 Chapter XV

adds $2AOO (decimal10752) bytes to the memory
available to you.

However, if you use the version of Applesoft
that occupies user RAM memory space, you re
ceive a comparable penalty. RAM Applesoft oc
cupies locations $800-$2FFF (decimal 2048 to
$12287). Thus its use decreases the memory
available for users by $2800 (decimal 10240)
bytes.

If you have an Apple that has less than the full
normal complement of 48K of RAM (exclusive of
language card or equivalents), then HIMEM will
move downward by the amount of memory miss
ing. For example, if you have a 32K Apple, the
amount of available memory would be reduced by
16K (decimal 16384) bytes.

15.3
Memory Allocation: Theory

15.3.1 Some Terminology, Fundamentals, and
A Pictorial Overview

When Applesoft is set up to begin entry of a
new program, the lowest memory address avail
able for user program and data is called LOMEM;
the highest available is called HIMEM. The as yet
unused space between is called ''user free space.''
This is the space into which user programs and
program data (constants, variables, arrays, char
acter strings, etc.) are automatically put by the
Applesoft interpreter during the set-up and run
ning of Applesoft programs.

When you create a BASIC program using the
Applesoft interpreter, the interpreter automatic
ally allocates space out of the free space area to
meet four major needs:

1. Space for your BASIC program:
The Applesoft interpreter puts a tokenized
(specially abbreviated) copy of your source
(BASIC) program immediately above LOMEM.

2. Space for Simple Variables:
The Applesoft interpreter assigns space above
the program to simple variables; i.e., variables
that are not part of an array. There are three
types of these: real number variables, integer
number variables, and string pointers. String
pointers are associated with string variables,
but they do not contain the alphanumeric text
of the string variable. They merely point to the
location of the start of the string of characters
and specify its length.

3. Space for Arrays:
The Applesoft interpreter assigns space above
that assigned to simple variables to arrays. As
with simple variables, there are three types of
arrays: real number arrays, integer number ar
rays, and string pointer arrays. As was the case
for string variables, the actual alphanumeric
characters of string arrays do not appear in the
string pointer arrays, only pointers that specify
where the alphanumeric characters are located.

4. Space for Character Strings:
The actual alphanumeric characters associated
with string variables and string arrays, as well
as quoted charcter strings, are put into
memory in the order of receipt working down
ward from HIM EM.

Notice that with this scheme of allocation, as
a program increases in size, it eats away at the
originally available free space from both the
original LOMEM upward and HIMEM downward,
leaving an ever-decreasing residue of the original
free space somewhere in the middle.

A pictorial overview of this situation is pro
vided in the Applesoft II BASIC Programming
Reference' Manual, provided with your Apple
Computer. The diagram of Applesoft program
memory map located on page 127 shows the allo
cation pattern. On page 137 the same source also
provides a diagram of how individual variables
and arrays are stored.

15.3.2 HIMEM and the Top End of User
Available Free Space

If the disk operating system is not in use,
HIMEM is set to the highest location in RAM
memory space. For a 48K Apple, this is address
$BFFF (unsigned decimal4915 1 or signed decimal
-16383). For a 32K Apple, this is address $7FFF
(decimal32767). (Warning: If you have a language
card or other RAM that overlays ROM and special
110 memory space $COOO through $FFFF, that
space is not directly available to your Applesoft
programs.)

If DOS is in use, it is located at the top of RAM
memory and HIMEM is automatically reduced to
the first unused location below DOS.

DOS occupies the space downward from the
top of RAM memory ($BFFF for a 48K Apple) to
the bottom of its last buffer. In the default case,
three buffers are provided (MAXFILES = 3) and
DOS occupies $2900 (decimal 10496) bytes of
memory. Thus it extends downward to $9600
(unsigned decimal address 38400, signed decimal
address - 27136). HIMEM is automatically set to

this value by system software without human
intervention.

With a 32K Apple in the same situation, the
DOS would extend down to $5600 (decimal ad
dress 22016) and HIMEM is automatically set at
that point.

Many commonly used Applesoft utilities also
hide at the top of memory and push HIMEM
down further. These include the Applesoft RE
NUMBER program on the DOS 3.3 System
Master Diskette, the Applesoft Programmers'
Assistant (APA) in the Applesoft Tool Kit, and the
CALL -A.P.P.L.E. Program Line Editor (PLE). In
most cases these utilities automatically set
HIMEM at their bottom limit, usually without
specifically notifying the user of its new value.

You may reduce the value of HIMEM even fur
ther by use of a HIMEM: command. (An alternate
way of doing this is to POKE the desired new
HIMEM value to memory locations $73,$74 (dec
imal115,116)). You might, for instance, want to
hide your own special machine-language utility
program or a high-resolution graphics shape table
above the area accessible to Applesoft. Obviously
if you reduce HIMEM too much you risk the
dreaded OUT OF MEMORY error condition.

At any time you wish, either during the
preparation or the running of a BASIC program,
you can inquire about the current value of
HIMEM by examining memory locations $73,
$74. A convenient means of doing this is the
PRINT statement:

PRINT PEEK(115) + 256*PEEK(116)

There is no special error checking of the
numeric values associated with the HIMEM:
command. The computer will not give an error
indication if a value of HIMEM is specified that is
outside the range of available RAM memory -
the only memory the contents of which can be
successfully changed. (It will, however, give an
''ILLEGAL QUANTITY ERROR'' if the value
specified is outside the range - 65535 to
+ 65535). Thus you can get yourself into big
trouble if you are not careful!

The trouble is of a particularly insidious kind.
Often a simple program will seem to work, even
if you specify a HIMEM well up into ROM
memory space and then start using character
strings which obviously cannot be successfully
put into the ROM memory immediately below
HIMEM. The Applesoft interpreter is able to
bypass some of the obvious traps you set for it
when you tell it to allocate memory in an im
possible address area, but it is not able to get
around them all. Thus many programs do not give

Chapter XV 95

a hard failure, but instead will not execute
reliably unless there is directly accessible RAM
memory at all locations specified in the Applesoft
program up to and including HIMEM.

Incidentally, an invalidly set value of HIMEM
is a ticking time bomb, because it remains set,
ready to do in your program(s) long after you may
think it is gone. HIMEM: is not automatically
reset by CLEAR, RUN, NEW, DEL, changing, or
adding a program line. It is not even reset (under
most circumstances) when you press 'RESET'! It
is reset when you change language (INT or FP
commands) or when you do a RESET CTRL-B
RETURN (non-autostart ROM).

.15.3.3 LOMEM and the Bottom End of User
Available Memory Space

LOMEM is the address of the lowest memory
location available to a BASIC program. Unless
you thoroughly understand how Applesoft
handles the allocation of memory to programs
and variables, it is very easy to misinterpret this
statement.

When Applesoft is ready for entry of a new
program, LOMEM, the bottommost memory
location available for allocation to the user pro
gram and program data is automatically set to
$803 if you are using ROM Applesoft.

You can, of course, decide to hide additional
memory from Applesoft' s memory allocation
algorithms by using a LOMEM: command to set
LOMEM deliberately to an even higher value.

Once you have these options firmly in mind
you may think you have a handle on where
LOMEM is. You do, but only for a while. If you
put in your program, type run, and then query the
system about the location of LOMEM, it won't be
where you expected it! Instead it will be at a
higher location, on occasions with large programs
as much as 1000 locations higher, or even more!

How come? Applesoft moves it. Why? Look at
figure 9.3A. TheApplesoft interpreter moves your
Applesoft Program in under LOMEM and pushes
LOMEM upward by the amount of memory taken
up by the program.

Each time you put a new statement in an
Applesoft program it pushes up the location of all
program statements after it. Strange as it may
seem, every time you do this you push up the
location of LOMEM, and with it the space for
variables and arrays!

LOMEM may be examined at any time by
studying the contents of locations $69,$6A

96 Chapter XV

(decimal105,106). This is conveniently done by
the following PRINT statement:

PRINT PEEK(105) + 256* PEEK(106)

LOMEM may be set or reset by means of a
LOMEM: statement. (An alternate method is by
POKEing a new value to locations $69,$6A
(decimal 105,106.) There is limited error check
ing at the time that LOMEM: is entered so the
computer will accept values in the range - 65535
to + 65535. However, if LOMEM is set lower
than the highest memory location occupied by
the current operating system (plus any current
stored program), or if it is set to a value higher
than HIMEM, the system will produce an OUT
OF MEMORY error as soon you attempt to run
the program.

LOMEM is altered by any change in program
length. It is reset to default values for the Apple
soft interpreter you are using (ROM or RAM) by
anything which deletes the current program.
Thus it is reset by a NEW and by RESET CTRL-B.

LOMEM is not changed by commands that
RESET (or its equivalent if you don't have an
autostart ROM. Either RESET CTRL-C RETURN
or RESET 3DOG RETURN).

Once set, unless it is first reset by one of the
above commands, LOMEM: can be set to a new
value only if the new value is higher in memory
than the old. An attempt to set LOMEM: lower
than the value still in effect would clobber the
end of the program that had pushed LOMEM up
ward. Applesoft refuses to allow that to happen
with the LOMEM: command. A lower value can
be POKEd in.

It is perfectly possible and legitimate to
change LOMEM during the execution of a pro
gram. However, it must be done with great care
and sensitivity to current program functions and
memory allocations, for the change may cause
certain stacks or portions of a program to dis
appear or the linkages to them to become con
fused so that the program may no longer function
properly.

15.3.4 Finding Out the Current Allocation
Of User Memory in Your Applesoft
BASIC Program

Before any BASIC program or data are entered
(and/ or the BASIC programmer initiates action to
alter the normal allocation of memory) we have a
particularly simple situation. The pointers that
tell us the starting or ending addresses of all the
major areas of our program all point to either
LOMEM or HIMEM. Thereafter they begin to

separate by amounts depending upon the nature
and the size of the program which has been
entered.

You can examine the allocation boundaries
easily with the PRINT statements indicated
below. These PRINT statements may be entered
as immediate-execution statements when the
program is not running or they can be given line
numbers and imbedded in the running program.
(In the latter case the space they themselves take
will alter the results slightly.)

1--l
I Figure 15.3A I
I Memory Allocations in Your current Applesoft BASIC Program I
1--l
!The start-of-program address ($67 ,$68): I
I PRINT PEEl<(103)+256*PEEl<(l04) I
I I
I The end-of-program address ($AF, $BO) : I
I PRINT PEEK(l75)+256*PEEl<(l76) I
I I
!The LOMEM/start-of-simple variables address ($69,$6A): I
I PRINT PEEl<(105)+256*PEEl<(106) I
I I
I The end-of-simple variables/start of arrays address($6B,$6C) I
I PRINT PEEl<(107)+256*PEEK(108) I
I I
!The end-of-arrays/bottcm-of-free-space address ($6D,$6E) I I
I PRINT PEEl<(l09)+256*PEEl<(llO) I
I I
!The tap-of-free space/next location fur strirgs address I
I ($6F,70) I
I PRINT PEEl<(lll)+256*PEEl<(ll2) I
I I
IHIMEM ($73,$74): I
I PRINT PEEl<(ll5)+256*PEEK(ll6) I
1--l

If you are familiar with machine language,
you will probably prefer to get the hexadecimal
form of these addresses. This is easily done by
entering the Apple Monitor (CALL -151).

Type in the higher of the hexadecimal address
pair (but don't include the$); press the spacebar;
type in the lower address of the pair; press
'RETURN'. The monitor will print the two loca
tions and the data in each; e.g.,

] CALL - 151 < ret >
* 6E 6D <ret>

006E- OA
006D- 01

The required memory allocation boundary ad
dress is four hex digits obtained by taking the
two-digit contents of the higher pointer address
followed by the two-digit contents of the lower
pointer address; e.g., $0A01. Thus the location of
the bottom of free space is $0A01 in the example.

15.4
How.Memory Is Allocated for Program
Code (BASIC Statement Structure)

15.4.1 Method of Allocation

The area between the start-of-program address
(specified in $67,$68) and the end-of-program ad
dress (specified in $AF,BO) is occupied by BASIC
statements. Each Applesoft BASIC line consists of
the following modules in the order indicated:

---1
I Figure 15.4A I
I Iaya.tt of BI\SIC Statements in Program Mellory Area I
I -----------------------1
I 1. Next line address pointer (2 bytes) I
I 2. BI\SIC line number (2 bytes) I
I 3. BI\SIC token (1 byte) I
I 4. Statement data or parameters I
I - zero or rrore ASCII characters (0 or rrore bytes) I
I 5. Delimiter(s) I
I 5L. End-of-line delimiter I
I - ASCII 'rrul' or Hex '()()' (1 byte) I
I I
I A. ccmp:>und statement consisting of a single line I
I number. rut multiple statements separated by I
I colons will also have one or rrore of the I
I folla.ring BEFORE the end-of-line delimiter I
I I
I 5s. End-of-statement delimiter I
I - I'I."CCI ':' or Hex '3A.' (One byte) I
I After each end-of-statement delim~ter the I
I <Xl11JDllild statement will restart wrrnour a next I
I line address or BASIC line number, i.e. it will I
I restart with the token for the statement I
I folla.ring the delimiter I
I I
I 5P. End-of-program delimiter I
I - ASCII 'nul' nul' or Hex 'oo 00' (bNo bytes) I
I I
I '!he end-of-program delimiter follo.~S an I
I end-of-line delimiter. Every program tenninates I
I with three 'nuls' i.e. 'oo 00 00'. I
I --------------------------1

Applesoft programs are tokenized. Associated
with each of these tokens is a subroutine that im
plements the activity described by that token.

The BASIC statement (and hence its token and
subroutine) may neither need nor accept any addi
tional information in the form of parameters or it
may accept a considerable number of them. Some
times the same BASIC statement-type has both op
tions; e.g., 'PRINT' or 'PRINT A, B, C, D, ... , Z'.
Regardless of the type of BASIC statement or its
parameter-list options, the end of the parameter
list is marked by an end-of-statement or end-of
statement/ end-of-line marker.

Parameters are expressed as a series of ASCII
characters. These represent whatever type of para
meters are relevant whether they be variables,
operators, functions, numeric literals, string lit
erals, or some complex combination of all of these.

Whatever these parameters are, they must con
form to some predefined rules of BASIC grammar
that make it possible for the subroutine to deter-

Chapter XV 97

mine the proper meaning. Failure to conform to
these rules leads to the dreaded 'SYNTAX ERROR'
when the subroutine is not able to decipher what
action BASIC was supposed to take.

With this minimal background let's now ex
amine some sample programs and see what we can
learn from specific examples about how memory is
allocated for program code in BASIC programs.

15.4.2 Sample Program and Analysis of
How it Appears in 'User Memory'

You can examine how memory is allocated to
it by the procedure of Figure 15.4B:

I -----------------------1
I Figure 15.4B I
1 Meth::rl for Analysis of 'lbkeni.zed BASIC Statanents in 'User Mstcry' I
I I
I (1) Enter program aro list it I
I For ~le, ;<>U might enter aro list the foll<Min;J program: I
I 10 LEI' A=5 I
1 20 LEI' B=3 I
I 30 lET C=A+B I
I 40 PRINT "C=" ,c I
I so EtiD I
I (2) Enter systan tronitor (CALL -151) I
1
1

(3) Get start--of-fl'a10cy address fran $67,68
1
1

(4) Get eni--of-progr'"" address fran $AF, $80
I (5) 1 1blp nerory fran start-of-program address to eM-of-program address ! l (6) Analyze informa.tion fran d1..111p usin::J allocatioo pattern \

t [See STATEMENT dump below! 1

: The entries on the screen to steps (2) to (5) with the sample program :
I appear on the screen as fell~: 1

I]CALL· '-151 I

:-~ \
I 0068- 08 I
\ 0067- 01 <Start--of-prog. address = 0801> \

I~AF I
I I
I 0080- 08 I
: OOAF- 32 <End--of-prog. address + 1 = $0832 \

\ D.lmp IIIEITOcy fran $0801 to $0831> \

1 oem- OA 08 OA oo M 41 oo I

: <UJ8.- 35 00 13 08 14 00 AA 42 :
OBlQ- 00 33 00 lE 08 lE 00 AA

: 0818- 43 00 41 C8 42 00 2A" 08 :
I 082Q- 28 00 BA 22 43 30 22 38 I
I 0828- 43 oo 30 08 32 oo 80 oo I
I 0830- oo oo I
I ------------------------------1

This dump may be analyzed as follows: (Note
that ASCII characters can be represented in form
shown in dump or with value $80 larger.)

STATEMENT: 10 LET A=5
0801,0802: Pointer to next line of BASIC

program
'OA 08' Next line starts at $080A.

0803,0804: BASIC line number of statement
'00 OA' Line number 10
($0A= 10)

0805: BASIC Token
'AA' Token for 'LET'

0806-0808: Parameters:

0809:

'41' ASCII character 'A'
'DO' Operator tag ' = '
'35' ASCII character '5'
End-of-line delimiter '00'

98 Chapter XV

STATEMENT: 20 LET B =3
080A,080B: Pointer to next line of BASIC

program
'13 08' Next line starts at $0813

080C,080D: BASIC line number of statement
'14 00' Line number 20 {$14=20)

080E: BASIC Token
'AA' Token for 'LET'

080F-0811: Parameters:
'42' ASCII character 'B'
'DO' Operator tag '='
'33' ASCII character '3'

0812: End-of-line delimiter '00'

STATEMENT: 30 LET C =A+ B
0813,0814: Pointer to next line of BASIC

program
'1E 08' Next line starts at $081E

0815,0816: BASIC line number of statement
'00 AA' Line number 30
($AA=30)

0817: BASIC Token
'AA' Token for 'LET'

0818-081C: Parameters:

081D:

'43' ASCII character 'C'
'DO' Operator tag ' = '
'41' ASCII character 'A'
'C8' Operator tag '+'
'42' ASCII character 'B'
End-of-line delimiter '00'

STATEMENT: 40 PRINT"C=";C
081E,081F: Pointer to next line of BASIC

program
'2A 08' Next statement starts at
$082A

0820,0821: BASIC line number of statement
'28 00' Line number 40 ($28 = 40)

0822: BASIC Token
'BA' Token for 'PRINT'

0823-0828: Parameters:
'22' ASCII Character ' " '
'43' ASCII Character 'C'
'3D' ASCII Character ' = '
'22' ASCII Character ' " '
'3B' ASCII Character';'
'43' ASCII Character 'C'

0829: End-of-line delimiter '00'

STATEMENT: 50 END
082A,082B: Pointer to next line of BASIC

program
'30 08' Next statement starts at
$0830

082C,082D: BASIC Line number
'32 00' Line number = 50
($32=50)

082E: BASIC Token
'80' Token for 'END'

082F: End of Line Indicator '00'

PROGRAM TERMINATION:
0830-0831: Pointer to next line of BASIC

program
'00 00' End-of-program indicator

15.4.3 Modified Sample Program and its Analysis

To see what difference it would make had the
same program been written as a single compound
statement:

10 LET A=5:LET B=3:LETC=A+B
:PRINT "C = ";C:END

we could undertake the same method of analysis
with the modified program:

jCALL -151
*68 67

0068- 08
0067- 01 <Start-of-program address

$0801>

*BOAF

OOBO- 08
OOAF- 22 <End-of-program address + 1

= $0822>

*801.821

0801- 20 08 OA 00 AA 41 DO
0808- 35 3A AA 42 DO 33 3A AA
0810- 43 DO 41 C8 42 3A BA 22
0818- 43 3D 22 3B 43 3A 80 00
0820- 00 00

The detailed analysis of this version of the
program follows:

STATEMENT: 10 LET A=5: LET B=3: LET
C=A+B: PRINT "C=";C:END

0801,0802: Pointer to next line of BASIC
program
'20 08' Next line starts at $0820

0803,0804: BASIC line number of statement
'00 OA' Line number 10
($0A= 10)

0805: BASIC Token
'AA' Token for 'LET'

0806-0808: Parameters:
'41' ASCII character 'A'
'DO' Operator tag '='
'35' ASCII character '5'

0809: End-of-statement delimiter ':'
'3A' ASCII character ':'

080A: BASIC Token
'AA' Token for 'LET'

080B-080D: Parameters:

080E:

'42' ASCII character 'B'
'DO' Operator tag '='
'33' ASCII character '3'
End-of-statement delimiter ':'
'3A' ASCII character ':'

080F: BASIC Token
'AA' Token for 'LET'

0810-0814: Parameters:
'43' ASCII character 'C'
'DO' Operator tag '='
'41' ASCII character 'A'
'C8' Operator tag '+'
'42' ASCII character 'B'

0815: End-of-statement delimiter ':'

0816: BASIC Token
'BA' Token for 'PRINT'

0817-081C: Parameters:
'22' ASCII Character ' " '
'43' ASCII Character 'C'
'3D' ASCII Character ' = '
'22' ASCII Character ' " '
'3B' ASCII Character';'
'43' ASCII Character 'C'

081D: End-of-statement delimiter':'
'3A' ASCII Character ':'

081E: BASIC Token
'80' Token for 'END'

081F: End-of line delimiter '<nul>'
'00' ASCII Character '<nul>'

PROGRAM TERMINATION:
0820-0821: Pointer to next line of BASIC

program
'00 00' End-of-program indicator

15.4.4 Yet Another Sample Program for Analysis

Consider the following sample program:

00 REM SAMPLE PROGRAM 3
10 PRINT "HELLO, WHAT'S YOUR NAME";:

INPUT NAME$
20 PRINT "GLAD TO MEET YOU,";NAME$
30 READ X1 ,X2
40 DATA 5,3
50 PRINT X1 + X2
60 END

As before we could get the beginning-of-program
address ($0801) and the end-of-program address
($0887), do a hexadecimal dump using the
monitor, and do an analysis from it.

Chapter XV 99

Notice what we can see without in-depth
analysis:

1. The comment portion of any REM statement is
imbedded in the body of the program as ASCII
characters, one byte per character of REM
comment.

2. Variable names, such as NAME$, X1 and X2
are imbedded in their entirety in the body of
the program as ASCII characters, also at the
rate of one byte per character.

3. The string literals are also imbedded in the
body of the program as ASCII characters, also
at the rate of one byte per character of literal.

4. The numeric literals are imbedded in the body
of the program as ASCII characters, also at the
rate of one byte per character.

It seems unnecessary for this text to present
the analysis of this third sample program in the
same level of detail as that used before. Readers,
however, are encouraged to undertake its analysis
if you have not previously analyzed any program
on your own.

15.4.5 Lessons to be Learned from Analysis
of the Three Sample Programs

You should now be able to take any BASIC
program and, if you are willing to undertake all of
the detailed step-by-step analysis described in the
previous sections, figure out exactly where and
how every BASIC statement is represented in
memory. This project is not something you will
want to do often, but undertaking it these few
times should have made several points obvious.
For example:

1. You can save memory by leaving out REM
statements.
This is unfortunate because REM statements
are valuable tools to help make programs more
readable and more understandable. Fortunately
there are various compacting utilities available
in sources, such as Apple's 'Applesoft Tool Kit,'
that enable you to have a fully documented
master or developmental version of a program,
then automatically delete REMs to save space
and time in the version you use for everyday
operations.

2. You can save memory by using shorter variable
names.
This is also unfortunate because self
explanatory variable names can be very helpful
in reading and understanding a program. If you
keep separate development and running
versions of a program, it may be convenient to

100 Chapter XV

use an editor, such as the CALL A.P.P.L.E.
Program Global Editor, to replace the full names
in the master copy of the program by only their
first two letters in a run copy.

3. Strings are not necessarily located at the top of
user memory.
Although we often tend to think of string data
as being allocated from the top of user memory
downward, a major proportion of the character
strings in most programs are not treated as
string variables allocated in that fashion, but as
string literals imbedded in the body of the
program. This may be very significant if you are
developing large high-resolution graphics
programs and choose not to take the special
protective measures for avoiding memory
allocation conflicts recommended in the
chapter on high-resolution graphics.

4. You can waste a great deal of machine time by
unnecessary use of numeric literals.
Numeric literals, e.g. 5 or 3.14159, become part
of the body of a BASIC program. Every time the
instruction containing the literal is executed,
the computer must go through the process of
number conversion to binary form. If the same
number had been represented by a variable
name that had once been set to that value, only
one conversion would have been needed no
matter how many times the statement is
executed. You should be able to add several
additional items to this list.

15.4.6 Using Memory Allocation Information
to Create Self-Modifying BASIC Programs

Self-modification is an extremely powerful.
programming tool. It is also dangerous, potentially
addictive, and .the source of much self-indulgence
in programming.

Self-modifying programs are the antithesis of
structured programming. Whereas structured pro
gramming deliberately restricts the number and
nature of programming structures that a program
mer uses to make programs easier to follow and
more modular in structure, self-modification
allows limitless freedom and even permits you to
change control structures on-the-fly while a pro
gram is being executed.

Self-modifying programs are often almost
totally incomprehensible except to someone who
knows the system hardware and firmware inti
mately. Often it is important to know exactly
how the BASIC interpreter y.rorks and to be will
ing to sit down and analyze the self-modifying por
tions of the program step-by-step with great care.

Self-modifying programs are frequently in
teresting intellectual puzzles, but writing pro
grams that are intellectual puzzles is seldom a
sign of good programming. Like tobasco sauce or
jalapeno peppers, self-modification must be used
with care and moderation. It is not recommended
as an every-day programming style.

So much for the disclaimers needed to put this
technique into proper context. On the other side
of the coin, there are occasions where self
modification leads to programs that are easier to
use and/ or understand.

Suppose, for example, that your analysis of a
problem indicates that it involves 500 cases and
the most straightforward way to solve it involves
a 500-way branch. A 500-way branch is difficult
to do simply in Applesoft BASIC.

The multi-way branch 'ON ... GOTO ... 'will
not accept that many options, and even if it did, it
would create a difficult-to-understand mess in
your program. It would like to have an ability to
write GO TO A (or GOTO A%), where A or A% is
a variable representing a line number that can be
computed. However, Applesoft will not accept
GOTOs in this form.

There are times when it would be useful to
have a utility that modifies Applesoft to give it
such a capability. Self-modification provides the
power to trick Applesoft into providing this
capability. Such a utility written in self
modifying Quasi-BASIC, with no hidden machine
language code, provides such a capability.

----------------------------·--:
Figure 15.4C

Self-fob:iifyirg Awlesoft BASIC utility to Provide Capability to Perform I
G:Jro <variable line nurriJer> I ----------------------------------·-----------------------... _ .. ____ ,.. __________ :

i!SOT05
: 2 FOR I=l TO 4:POKE 2134+1,48:NEXT 1: AS=STRSIAl:

FOR I=LENIASl fO I STEP -I:
: POKE 2138-LENIASl+I,ASCimSIAS,I,lll:NEXT I:SOTO IHfl
: 3 RE" WHENEVER SOTO 2 IS CALLED, 'SOTO 18188' IN LIME 2 MILL BE "ODIFIED

TO BECO"E SOTO <VALUE OF VARIABLE A>; CONTROL MILL BE TRAIISFERED TO
LINE A. FIRST LOOP IS NEEDED ONLY FOR SECOND AND SUBSEQUENT USES.
ITS PURPOSE IS TO RESTORE THE "ODIFIED SOTO TO ORI6IMAL 'SOTO tell

: 5 RE" BEGIN "AIN PROSRAft HERE

: Itt A=I888:SOT02: REft COftPUTE VALUE OF A BY ANY DESIRED ftEANS.
SOTO 2 HAS THE EFFECT OF 'SOTO A'. A= !til, SO SOTO 1818:

: IHt PRINT 'THIS IS LIME !Itt. ARRIVE HERE BY 60TO 2 MHEM A=lttt'
: 12ft A=2ttf:80T02: RE" CO"PUTE A NEM VALUE Of A=2Ht. BOTO 2 WILL BOTO 2111 :

2118 PRINT 'THIS IS LINE 211t. ARRIVE HERE BY 60T02 MHEM A=2ftf'

--------------------------------------·------------------------------------:
The self modification in this program occurs

in line 2. In that line a dummy statement GOTO

00000 is created and modified to take on the value
of variable A. The part of the program to be self
modified is put at the beginning of the program so
that changes in the program will not affect its
location in memory. Knowledge of the location of
the '00000' in the 'GOTO 00000' is essential in
order to modify it to 'GOTO 01000' when
A= 1000, 'GOTO 02000' when A=2000, etc.

15.5
How 'User Memory' is Allocated
for Simple Variables
(Variables other than Arrays)

The pointer located in 105,106 ($69,$6AJ in
dicates the start of that portion of user memory
allocated to simple variables. The pointer located
in 107,108 (6B,$6CJ indicates the end of the por
tion of user memory allocated to simple vari
ables. This section deals with that area of
memory. More specifically it deals with how that
section of memory is allocated by the Applesoft
BASIC interpreter.

We will pay particular attention to how you
can determine where each variable in your BASIC
program is located in the computer's memory.
We will also provide a utility program you can use
to get such information easily.

15.5.1 Information Layout
for Individual Variables

Each simple variable, regardless of whether it
is associated with a real number (figure 15.5AJ, an
integer (figure 15.5BJ, or a character string (figure
15.5CJ, takes exactly seven bytes of space: two
bytes for the variable and seven bytes for the data.

If you assign single-character names, those
names are padded with a null character to become
a two-character name in the table entries. If you
assign names longer than two characters only two
characters are retained in the table. Thus Apple
soft BASIC is unable to distinguish between two
supposedly different variables that share the same
first two letters; e.g., variable 'YEAR1' is in
distinguishable from variable 'YEAR2'.

The computer can distinguish between the
variables AX (type real), AX% (type integer) and
AX$ (type string). It does not accomplish this by
storing the type indicator explicitly, but by con
trol of the high-order bit of the alphabetic name
characters in the variable tables. The rule is
simple:

If a variable is of type real, both ASCTI char
acters of the variable name in the table of vari-

Chapter XV 101

abies will be positive ASCTI. That is, both will
have their high bits off (values less than $80).

If the variable is of type integer, both ASCTI
characters will be in negative ASCII (high bits
on). That is, both ASCII characters will have
values equal to or greater than $80.

If a variable is a string variable, the first
ASCTI character will be positive ASCII - it
will have its high bit off; but the second will
be negative ASCTI- it will have its high bit on.
The first character will have value less than
$80, the second equal to or greater than $80.

I
Figure lS.SA I

MIMlR'i IAYOUr: INDIVIOO!\L I
'lYPE RI!I\Ii SIMPLB Vl\RIABlES I

I
I

!Bytel :Byte2 :Byte3 :Byte4 :ByteS :~e6 :Byte? II
1--t--1--l--1--1--1--1 I
\Vbl Name \Vbl Name !Real No !Real No !Real No \Real No !Real No I I
I cHar 1 I Char 2 \Exponent !MantissaliMantissa2\Mantissa3!Mantissa41 I
l--t--1--1--l--l--1--l I
I <-variable Name-> I < ariable Va1 >I I
I +AS:II I +A&:II I I

Variable Name s A Variable Value = 12.34 I
1--t--1--l--l--l--1--l I
I 6S I o I 132 I 69 I 112 I 163 I 21s I I
1--t--1--1--l--1--1--1 I
I +AS:II I +AS:II I I I ---------------------------------------1

1------------------------------·-------1 Fiqure lS. SB
I MIMlR'i IAYOUr: lNDIVIOO!IL
I 'lYPE INl'I'XlER SIMPil!: VARIABlES
I
I I
ll~el :Byte2 :~e3 :Byte4 :ByteS :Byte6 :Byte? II
I l--l--1--1----l---1----l--l I
I I Vbl Name \Vbl Name I Integer I Integer I o I o I o I I
I I Char 1 I Char 2 !Hi-value tro-va1ue I I I I I
I 1--1--1--1--l--1--1--1 I
I I <-variable Name-> I < Variable Va1ue >I I
I I -A&:II I -A&:II I I
I Variable Nane = A% Variable Va1ue = 1234 I
I 1--t--l--l--l--1--1--l I
11193\128\4 !210 I o I o I o II
I 1--t--1--l--1--1--1--1 I
I I -ASCh I -A&:II I I
I I

1--1 Figure lS.SC
I MIMlR'i IAYOUr: INDIVIOO!\L
I STRING POnm!R SIMFLE Vl\RIABlES

:-------------------------------------
11 Byte! :Byte2 :Byte3 :Byte4 :~es :~e6 :Byte? II
I l--1--1--l--l--l--1--l I
I IVbl Nane IVbl Name I Stri.n;J !start ro-lstart IIi-! o I o I I
I !Char Nol !Char No2 I Ienqth I Mdress I Mdress I I I I
I 1--l--1--1--1--1--1--1 I
I I <-variable Name-> I <--stri.n;J Paranet.ers--> I <--JI'wo Zeros-> I I
I I
I Variable Name = A$ Variable Value s '''IBIS IS A STRING" I
I 1--t--1--1--l--1--1--1 I
II6S \128\16\30 I 9 I o I o II
I l--l--l--l--1--l---1--1 I
I I +AS:II I --AS::II I I
I I

15.5.2 Analyzing Variable Allocation Information
Using the System Monitor

Space is assigned to variables in the order that
they are first mentioned in the program. Thus, if
only one variable has been used, you will have
only a single 7 -byte entry; if two have been men
tioned you will have two entries; if N have been
mentioned you have a table of N entries.

The different types of simple variables are not

102 Chapter XV

segregated. They appear in the order in which
they were named, regardless of type.

You can investigate the allocation of variables
without the aid of any software tools other than
those in the monitor. The procedure is as follows:

1---------------------------------
1 Figure 15. 50 I
lusirg M::nitor to Fim Applesoft Variables!
I I
I 1. Enter the rroni.tor - CALL -151 I
I 2. Firrl the start of simple variables. I
I (Use p>inter in $69,$6A) I
I 3. Firrl the em of simple variables • I
I (Use p>inter in $6B,$6C). I
I 4. 0unp menory between these limits I
I 5. Use the layout patterns imicated in I
I Figure 15.5A-c to make the analysis I
I I
I For example: I
I I
I 10 LET A?5 I
I 20 lEI' B=3 I
I 30 lEI' C=A+B
I 40 PRINT "C=":C
I 50 LET D$="'U:IAT'S ALL, R>IKSl" :PRINT 0$

60 lEI' E%=100
70 END

]HJN

C=8
'!HAT'S ALL R>IKSl

]CALL -151
*6A 69

006A-08
0069-SF

*6C 6B

006C-08
0068-82

<Variables start at $085F>

<Variables end at $0882 - 1>

085F .0881 <= Dump Simple Variables
085F- 41
0860- 00 83 20 00 00 00 42 00
0868- 82 40 00 00 00 43 ()() 84
087Q- 00 00 00 00 44 80 11 33
0878- 08 00 00 C5 80 01 07 00
0880- 00 00 20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
!Dl'E: As before a dump with alpharu.Jrooric I
fonnattirg can be helpful, for it 'NOUld I
highlight the p>aitions of the variable I
names: A at $085F:B at $0867:C at $0860 I
D at $0874 arrl E at $087B I
-------------------------·-----1

The dump can be analyzed byte-by-byte as
follows:

I -1
I Figure 15.5E I
I Byte-by-Byte Analysis of M:Jnitor Printout of Variable Data I
I -1
I 005F- 41 Positive ASCII "A' <= Real Variable A I
I 0060- 00 Positive ASCII "nul' I
I 0061- 83 Exponent• $83 <= Value of A = 5 I
I 0062- 20 Mantissa 1 = $20 I
I 0063- 00 Mantissa 2 "' $00 I
I 0064- 00 Mantissa 3 = $00 I
I 0065- oo Mantissa 4 = soo I
1-- - I
I 0066- 42 Positive ASCII "s• <= Real Variable B I
I 0067- 00 Positive ASCII "nul' I
I 0068- 82 Exponent= $82 <=Value of B = 3 I
I I
I 0069- 40 Mantissa 1 = $40 I
I 006A- 00 Mantissa 2 = $00 I
I 0068- 00 Mantissa 3 = $00 I
I 006C- 00 Mantissa 4 = $00 I
1-- I
I 006D- 43 Positive ASCII "c• <= Real Variable C I
I 006E- 00 Positive ASCII "nul' I
I 006F- 84 Exponent= $84 <= Value of C = 8 I
I 007Q- 00 Mantissa 1 = $00 I
I 0071- 00 Mantissa 2 = $00 I
I 0072- 00 Mantissa 3 = $00 I
I 0073- 00 Mantissa 4 = $00 I
1-- I
I 0074- 44 Positive ASCII "o• <= Name of Strin:J Variable o I
I 0075- 80 Negative ASCII "nul' I
I 0076- 11 I.en:.Jth of Strin:J = $11 (decimal 17 l I
I 0077- 33 lBB of Strin:J 1\dd <= Strin:J starts at $0833 I
I 0078- 08 MSB of Strin:j 1\dd I
I 0079- oo Zeros for Strin:J Vbl I
I 007A- 00 Zeros for Strin:J Vbl I
1-- I
I 0078- CS Negative ASCII "E' <= Integer Variable E I
I 007C- 80 Negative ASCII "nul' I
I 007D- 01 Hi-Byte of Integer <= Integer Value $107 = dec 2631
I 007E- 07 ID-Byt.e of Integer· I
I 007F- 00 Zeros for Integer Vbl I
I 0080- 00 Zerois for Integer Vbl I
I 0081- oo Zeros for Integer Vbl I
I I

The information we wanted about where each
variable was located in memory and where to find
its value was definitely there, but it was difficult
to work the information around into a form that
was usable!

15.5.3 Locating Applesoft Variables
Using a Utility Written·
in Applesoft

Once you know that variables are located in
7 -byte long modules and that the type of variable
is determined by the combination of +ASCII and
-ASCII used in storing its name (first two
characters only), then it is easy to write a utility
to do the busy work of section 15.5.2 for you.

It is convenient to have this utility in two
forms:

1. A fully-documented self-demonstrating ver
sion (figure 15.5F), and

2. A stripped-down version which takes
minimum space in memory .

Figure 15.5F
2 RI'M __..,..TIQO ENITI~

4 mtT ' HOII! ' PRINt' "1'118(13): "I:IMJ>ISTRATIQO"'' PRINt' ' PRINt' TAB(11
) : "R>R lWCl'ICAL !BE" ' PRNI' " 1I!U!TI! ALL LINE#' S L

ESS 1HAN 60000, ": PRINT " APPrND 'l'Its SUBR:lfmNE ro YOlll PRt:J3RAM":
PRilfr " JlliD CAlL 60000 AT Elm Cli YCUt 1'Rf:GWot"'
5 PRNI' ' PRINt' "PRFSS N<'i KEl(10 <Xlln'INUE ••• " ' GET I\II!MER$
6 ll$ • "ll$"•Ail$ = "AA$"•A • 1•M = 2•A\ = 3•M\ = 4•1!$ = Jl$,B • A•C$ = B

$' <JJSUB 60000
8 PRlln" "END OF ~TICN": END
60000 RIM -===-=6UBR:X1ri 10 :r.ocATB SIMPLE ~
60002 TEKT : JICME :':I1!:K$ = "0123456789AIDEF"
60004 S'n.svAR = 1'1!1!1< (105) + 1'1!1!1< (106) * 256• RI'M l.OCAT!! S'l'AR'l'-OP-SI
MI'U!-VARIAI!U!

60006 -60008 PRIM'l' " SUBRXJI'INE 'ID FIND SIMPU!: VNUABU!'S": PRINT : PRINI' " L
CCATICNS EXPRl!SSED AS CI!'PSE:l'S FRJI!" : PRitlr II VE

C'II:JR $69,$6>. (105,106)"
60010 PRINT z PRINr "CURRI!HT vs='roR VM1E = ":STASVAR.:: CD3UB 60128
60012 PRINt' ' PRINT TAB(7): "N<Y <liANG£ IN YOtR PROGWI''' PRINr " WIL
L CHANCE 'l'fiB VM.I.E aF' '!HIS ~"
60014 Fn6II1\R • 1'1!1!1< (107) + 1'1!1!1< (100) * 256• RI'M l.OCAT!! FINISI-<F-5
~

60016 CPPSel' "" 0: REM SR'r '1'0 ZBlll FUR V1\RIABLE S&lUOI
60018 PRINt' ' PRINt' "1'118(5): "10 GET !JOX'!Mi\L 111\LlE CF V!I:'IUR"' PRINT T
AB(6):"PRINI' 1'1!1!1<(105)+256*1'1!1!1<(106)"
60020 PRINT z PRINT 'me{ S) : "'ID GET HEK VAUE FR:M !oDill'IDR": PRINT TA.
B(7):''CALL -151 <CR> 6A 69 <CR>": cnstJB 60136
60022 PRilfl' "'l'J\BLB BEl.(]rf 9tCMS Itfl'ERN.IU. I.AYOUl' CP": PRINT "EAC':I T'lPB OF

INPOR4ATICN": PRINT "WI'lHIN FJI£H 'l'YPI!: OF SIMPtE VARI
ABU:'' PRINT

60024 PRIN'r "~TS ARE AS E'OllCMS:"
60026 PRINT ":r.ocATICN Dfl'RER RFAL STRING": PRINT II VA.
RIA1I:.E VARIABLE POitfi.'ER"
60028 PRDll' .. ___ , -- : --: __ ..

60030 PRIRl' "Cli'PSE'l'tO: <- 1ST OJAR C1F NNoE -->"
60032 PRIRT "CPFSBI'+l: <---taJIL OR 2ND mAR OF NNe->"
60034 PRml' "CPPS!:l't-2: VALlE-til: BKPONJ!Nr:IJ!NGI'I"
60036 PRINt' "OPFSI!T+3• VALIJ!-ID• M1\N'I'l. •AilllRI'SS-ID"
6CX)38 PRIMr "CPPSI!:N4: 0 : MIIJN'I'2 :AXDESS-+11"
60040 PRINT "CPPSBtS: 0 : ~T3 : 0"
60042 PRim' "CPFSET+6: 0 : l9JNT4 : 0"
60043 PRINt' ' PRINT TAB(14):"roR I!Xl\MPLE,", PRINt'" AllllRl'SS CF Ilfl'I!Xli!R

VARIABLI! ll!l'n\ 111\LlE"• PRINT TAB(19):"IS"• PRIIll' TAB(
6):"V!I:'IUR (105,106) + OPFSET + 2"• <JJSUB 60136

60044 PRINT "MIS SUBR:XJl'INE tE!S 'IHE m~ VBlS"
60046 PRINT " 'lEX$ • '0123456789AB:DF'"
60048 PRINT " ZZ$ <~ RI!SPCBSE>"
6000 PRINT " S'l'MVAR <STARI' IMPlE VAIAU!S>"
60052 PRIN .. PINSVNl <FINIS SIPlE ARIABU!S> II
60054 PRINT " CFPSET <OFFSEI' FR:M STASVAR>"
60058 PRINT ' P!UNT "PU!'ASE VOI!Xnll"LLCTSI", OOSUB 60132
60060 RIM *****E)Mm & PRIRl' our VARIABlJI! I.reA.TIOO' INI.'OIMl\TICN****
60062 HOII!

60064 -60066 B4 E'l'IMIHB 'lt'E OF NEK SIMl£-VAAlAB'LB
60068 PRINT "CURRI!NI' CPSET = 0 AT ":STASAR:: GSUB 608: PRINI'
60070 P!UNT "VBL CPPSET 1lliRIABU!! TRAILING"
60072 PRINT .._ !JOX'(HE><) 'M'E ZER:lS"
60074 PRINt' .. _-(-)
60076 IF PB!K (S'IMVAR + CPPSBT) < 128 AND PEEl((S'D\SVAR + CPFSET + 1
) > 128 18!N 6CXS6: RR4 r:o&.B-<HAR1CT8 S'l'RDI3 VMI

AIII:E ElCIT
60078 IF PE11< (STASVAR + CPPSB'I') < 128 AND P£BK {STASVAR + OFFSET + 1
) • 128 AND PEI!K (S'mSVAR + CPPSEl' + 4) < > 0 'm!N

6CXS6: RIM Sllf31.£ QIM1CT!:R S'l'RD«J VA1tiAmB P.XIT
600E!O IP PEPK (STMVAR + CPPSBT) < 128 AND PEI!JC: (STASVM. + CPFSET + 1
) ·, 128 'DUll 60104• - -.:. 1lliRIABU!! E>CIT
60082 0010 60094' - nrt'IG!R 1lliRIABU!! E>CIT

60004 -60086 PRDr1'" STRING:L!N. I.reATICif'':" 00": RPM *****STR
1113 rotNT!RS******
60088 OC6UB 60116: PRINT "$": "1'118(5), OC6UB 60118, PRINT " "·
1'1!1!1< (S'n.svAR + aPPSET + 2):" .. , 1'1!1!1< (S'n.svAR + 0

FPSer + 3) + PBIIC (S'IMVAR + CPPSET + 4) • 256: PRINT : ooro 60144

60090 P!UNT 1'1!1!1< (I):" "" Nl!l<r ' PRINT ' 0010 60144

60092 -60094 PRnrr" IN'l"'!GRR:VALUE":" 000": RI!M *****I
NTI!IBR VMIABtE *****
600J6 OC6UB 60116• PRINt'"%": TAB(5), <JJSUB 60118• PRINT " ":

60098 P!UNT 1'1!1!1< (S'n.svAR + CPPSET + 3) + 1'1!1!1< (S'l'ASIIl\R + CPPSET + 4)
• 256: PRilft : ooro 60144

60100 PRINT 1'1!1!1< (I):" "" Nl!l<r' P!UNT : 0010 60144
60102 RJ!M
60104 PRD.ft.. NBN:..:PJCP Ml M2 M3 M4": RIM *****IU!'AL V
ARIABU!S *****
60106 <JJSUB 60116• PRINT "1'118(5), OOSUB 60118• PRINT " ":
60108 FOR I • S'lMVAR + CPPSBr + 2 '10 S'l'MVA1t + OP'PSET + 6
60110 IF 1'1!1!1< (I) < 100 tiii'N P!UNT " ":' IF 1'1!1!1< (I) < 10 tiii'N FRIN

~1;: PRINT PEII((I):" ":: N!XT : PRIIIl' : PRINT : oom' 60144
60114 R1M **S/R '10 PR.Ilfl' VARlABlB No¥£***
60116 P!UNT ClfR$ (1'1!1!1< (S'n.svAR + OPFSET)): aiR$ (1'1!1!1< (S'I'ASVAR + CF

!'SET+ 1)), -
60118 IF (XI'!'SBl' < 10 'lfii!N PRINT "0":
60120 IP Cl"P'SSn' < 100 'NFN PRINT "0":
60122 PRINT <HSET:"($":' <JJSUB 60126• PRINt' ")":' RlmRI
60124 RJitl *** S/R fUR t:II!:>:>HI!K CXIWERStaq*** . .
60126 PRINT MIDII (HI!X$,1 + CPPSET I 16,1): MID$ (I{JOC$,1 + CPPSET- 16
* IM'I' (OPPSET 116),1), R1mR1
60128 RIM *** S/R '10 PRIM'I' S'lMVAR IN ~IX ***
60130 1'(1(1!! 1007,<JPPSET:CPPSET- INT. (S'n.svAR I 256): P!UNT "($"" oosu
8 60124:CPPSI!:'l' • STASVAR - 256 * CPPSB'I': QlSUB 60124: '

PRINT ")",OPPSET • 1'1!1!1< (1007): R1mR1
60132 RIM *** S/R '10 tP.IT POR tsBR RI!SPOMS[***
60134 PR1IfT' : IH11!HD!: : PRINT "HIT Nl'fl(£'{ '10 a::NI'INUB • •• ":: liJIMU.. : G
E'l" ZZ$: PRINT : Rlm.IIJ
60136 RIM *** S/R FOR Gl!:rl'I1!kJ C1R BY'PASSDG MJRB INI'OR4.f\TIOO ***
60138 PRINT : DfiERSB : PRINT " tP YOU WN!JT MlRE ~TIOO' T'lPB '?' "
' PRINT " NJY C71111!R KE!1' GB'l'S 1lliRIABU!! i:DCATIC>IS" : ' l«llM\L

1 <E'l' ZZ$: PRllll" : IP ZZ$ < > "?" 'IK!N POP : 0010 60060
60140 KCM:' R1mR1
60142 RIMs. UJOP JR> - 00 1P1CK fOR NEI(T ~ -
60144 CPPSI'l' • QPPSET + 7: IP ~ + CPP'SI!:l" > PINSVNl 1HPN RB'1UQI

60146 IP 1'1!1!1< (37) > 19 tiii'N <JJSUB 60134• KCME ' 0010 60068• - IM'I'
ERIU'P AT Bl'l"lttl at' PNE: S'l'Nft' PRI!9t IW3B
60148 0010 60076

Chapter XV 103

The latter form of the program is less than half
the size of the former. It can be obtained by strip
ping out self-documenting and self-demonstrating
features, using only the first two characters of the
variable names and removing all REMs.

The output produced by running version 1 of
this utility is shown in figure 15.5Gl. Version
2 eliminates the explanations and gives only the
variable information (figure 15.5G2). Notice
that locations are given in terms of OFFSET from
the current value of the start-of-simple-variables.

Figure 15. 5G1 DEMJNSTRATICN

FOR PRACTICAL USE
DEIE'I'E ALL LINE# I s LESS '!HAN 60000,

APmiD 'IHIS SUBBJUI'INE 'ro YOUR PROGRAM
AND CALL 60000 A.T END OF YOm. PROGRAM

PRESS "flN'l KEY" 'ro CONTINUE •••
SUBBJUI'INE 'ro FIND SIMPlE VARIABLES

u:x:ATIOOs EXPRESSID AS OFFSETS FRCM
~R $69,$67\ (105, 106)

cmRENl' VEX::'IDR VALlE = 6316($1BIIC)

"flN'l OIANGE IN YOm. PROGRAM
WilL OIANGE 'lliE VALlE OF 'UIIS ~R

'ID GET DEX::IMAL VA.LUE OF ~R
PRINT PEEK(105)+256*PEEK(106)

'ro GET !UX VALlE FRCM r.aiT'IDR
CALL -151 <CR> 67\ 69 <CR>

IF YOU WANT MJRE INFOR-17\TION" 'lYPE I ? I

"flN'l O'IHER KE'l GETS VA.RIABLE IJXA.TICNS

Figure 15.5G2
<llU9n' Cft'SET = 0 AT 6316($18AC)

\TIL <FPSF:l' VARIABLE TRAILING
lW£ DEX:(HElC) 'lYPE ZERJS - -(-) --------

STRING:LF.N. ~TI~ 00
AN$ 000($00) 1 38399

S~:LF.N. ~TI~ 00
A$ 007($07) 2 2334

S~:LF.N. ~TI~ 00
All$ 014($0E) 3 2343

REI'.L:EXP Ml M2 M3 M4
A 021($15) 129 0 0 0 0

REI'.L:EXP M1 M2 M3 M4
1\A 028($1C) 130 0 0 0 0

IN'l'EDER: VALlE ()()()

A% 035($23) 3

IN'l'EDER: VALlE ()()()

All.% 042($2A) 4

STRING: LI!N. ~TI~ ()()

B$ 049($31) 2 2334

REI'.L:EXP Ml M2 M3 M4
B 056($38) 129 0 0 0 0

STRING:LI!N. ~TI~ ()()

C$ 063($3F) 2 2334

104 Chapter XV

STRING: LEN. UX:ATION 00
HE$ 070($46) 16 2492

REI\L: EXP Ml M2 M3 M4
ST 077($40) 141 69 96 0 0

REAL:EXP M1 M2 M3 M4
OF 084($54) 135 40 0 0 0

RF.AL: EXP Ml M2 M3 M4
Fl 091 ($58) 141 72 112 0 0

STRING:LEN. ux:ATION 00
ZZ$ 098($62) 1 38398

END OF DEM::JNSTRATION

The location of variables will change as you
add to or delete lines from your program. (Unless
specific instructions are given to the contrary, the
simple variable table location moves around so
that it is always immediately after the end of the
program.) However, the OFFSET for a given vari
able from the vector specified in $69,$6A
(105,106) will remain constant. (This is true, of
course, only if you do not create new variables
earlier in the modified program.)

The name and location of each variable are the
most important items indicated.

If the variable is a string pointer, the length of
string and location of the start of the string in
memory is provided. (The string itself is not in
the 7-bytes, only its length and a pointer to its
start.) If the variable is of type integer, the value
is given (as of the time of utility execution). If the
variable is of type real, the five bytes of the
floating-point form of its value are given (as of the
time of utility execution).

15.5.4 Controlling the Locations
Assigned to Variables

For Applesoft and machine-language programs
to agree on memory locations that are to be
shared in order to communicate with one another,
it is convenient to be able to predict where certain
variables will occur even without doing a detailed
analysis.

A very easy way to do this is to mention these
variables at the very beginning of the program in a
fashion analagous to the way most programmers
handle DIM statements to create arrays. The first
variable mentioned in a program is allocated the
first seven bytes in the variable table; the second,
second seven bytes; the third, the third seven
bytes, etc.

If the variables are real or integer the actual
value of the variable can be found at OFFSET+ 2.
If the variables are string-pointers then OFF
SET+ 2 specifies the length of the string and OFF
SET+ 3,4 points to its physical location in
memory.

15.6
How User Memory is Allocated
for Arrays

The pointer located in 107,108 ($6B,$6C) in
dicates the start of the array area of user memory;
the pointer located in 109,110 ($6D,$6E) in
dicates its end.

The method of allocation of space for REAL ar
rays is shown in figure 15.6A; that for INTEGER
arrays is shown in figure 15.6B; and that for
STRING POINTER arrays is shown in figure
15.6C.

There is a high degree of compatibility be
tween the methods of representation of array and
simple variables. For example, the method of
distinguishing the type of variable is identical,
depending upon the high bit of the two ASCII
character form of the variable name.

All simple variables took seven bytes (two
bytes for name + five bytes for data/pointer).
There is no such simple rule for array variables.
Because arrays may have different numbers of
elements, array variables do not have a fixed size.
The size depends on the number of dimensions
and the size of each dimension.

Since the length of arrays is variable, there is
no great advantage in padding out the length of in
teger and string pointer data elements with zeros
to make them the same size as real variable
elements. In arrays each element takes only the
amount of space actually needed for data
representation.

Because of the different lengths for different
arrays, each array includes a pointer to specify
where the next array is to be found. This is a
single-byte offset pointer rather than a two-byte,
complete-address pointer. The offset stored in
this byte is the difference in position between the
start of the array in which the offset appears and
the start of the next array.

An array specification requires one byte to
specify the number of dimensions and then a two
byte size for each of the dimensions. The size of
the last dimension in the DIM statement is
always stored first. The numeric value of the size
is one larger than the value in the DIM statement
because each dimension of a BASIC array always
contains a zero element. Thus an array with
DIM(2,3) does not contain just 2 x 3 = 6 elements;
it contains 3 x 4 = 12 elements.

These elements are not allocated to memory
in the traditional order for mathematical arrays
and matrices. Instead, elements are assigned with

the rightmost index changing slowly. Thus for a
two-dimensional array elements are not assigned
to memory in fashion that goes across each row
from left to right, taking rows from top to bot
tom. Instead, BASIC uses the curiously non
mathematical procedure of storing elements in
order from top to bottom of each column, taking
the columns in order from left to right.
I ---------------------------1
I Figure 15.6!1. I
I layaJt of Type Real ltrray in Menory I
I -----------------------------1
I 9fte # Description I
1..... I
I 1 1st Char of Name (+ASCII) I
I 2 2nd Char of Name (+IIS:II) I
1..... I
I 3 <FFSET pointer to next array - lON byte I
I 4 <FFSET pointer to next array - high byte I
1..... I
I 5 Nunt>er of dimensions (K) I
I..... I
I 6 Size+l of Kth dimension -high byte I
I 7 Size+l of Kth dimension - lON byte I

I
I

j • 21<:+4 Size+ 1 of lst dimension - high byte I
I 2K+5 Size+l of 1st dimension - lON byte I
1..... I
I 2K+6 ltrrey Elements starti~>:J with 0 element, I
I e.g. !1.(0,0) for 2-D array. ltrrays are I
I stored with right-i!OSt index ascendi!>:J slONest, I
I e.g. for DIM A(l,l) the order of storage would be I
I A(O,o) ,!1.(1,0) ,!1.(0,1) ,A(l,ll I
I I
I Each element is stored in 5-byte fonn I
I as per simple type-real variables I
I I
I If the arrey is dimensioned I
I DIM (Kl,K2,K3 •••) then the number of elements I
I is (Kl+l)*(K2+ll*(K3+ll* ••• and I
I <FFSE'I=6+2K+5*(Kl+l)*(K2+l)*(K3+1)... I
1---1

In real arrays, five bytes are used per data ele
ment: an exponent byte and four mantissa bytes.
In integer arrays, two bytes are used per data ele
ment. This means that if array variables can be
defined and stored as integers rather than as type
real numbers that three bytes can be saved per
data element.
1--------- ----------------1
I Figure 15.6B I
I layalt in Menory of Type Integer ltrray I
I -----------------------1
I 9(te # Description I
1..... I
I 1 1st Char of Nama (-1\S:II) I
I 2 2nd Char of Name (-IIS:II) I
1..... I
I 3 <FFSET pointer to next array - lON byte I
I 4 <FFSET pointer to next array -high byte I
1..... I
I 5 Number of dimensions (K) I
1..... I
I 6 Size+l of Kth dimension - high byte I
I 7 Size+l of Kth dimension - lON byte I

2K+4
2K+5
2K+6

Size+ 1 of 1st dimension - high byte
Size+l of lst dimension - lON byte
ltrrey Elements starti~>:J with 0 element,
e.g. !1.%(0,0) for 2-D array. !l.rreys are
stored with right-rrost index ascendi~>:J slONest,
e.g. for DIM !1.%(1,1) the order of storage would be
!\.%(0,0) ,!\.%(1,0) ,!1.%(0,1) ,!I.%(1,1)

Each element is stored in 2-byte fonn
with the high-byte stored first

If the array is dimensioned
DIM (Kl,K2,K3 ...) then the number of elements
is (Kl+l)*(K2+l)*(K3+1)* ... and
<FFSE'I=6+2K+2*(Kl+l)*(K2+l)*(K3+1) ...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-I

Chapter XV 105

For string pointers, three bytes are needed per
data element: one byte for the length of the string
and a two-byte address pointing to its start. As
with simple variables, the string itself is not part
of the data element. It is in the special string
storage area allocated downward from HIMEM.

I ·---------------------------------------1
I Figure 15 .6C I
I layaJt in Menory of Stril>:J Pointer ltrray I
1--------- -------------------1
I 9(te # Description I
1..... I
I 1 lst Char of Name (-IIS:II) I
I 2 2nd Char of Name (+1\S:II l I
1..... I
I 3 <FFSET pointer to next array - !ON byte I
I 4 <FFSET pointer to next array - high byte I
1..... I
I 5 Nurti:ler of dimensions (K) I
1..... I
I 6 ,Size+l of Kth dimension - high byte I
I 7 Size 11 of Kth dimension - lON byte I

I
I

I 2K+4 Size+l of 1st dimension - high byte I
I 2K+5 Size+l of 1st dimension - lON byte I
1..... I
I 2K+6 ltrray Elements startil>:J with 0 element, I
I e.g. 1\$(0,0) for 2-D array. ltrrays are I
I stored with right-nnst index ascendi!>:J slONest, I
I e.g. for DIM 1\$(1,1) the order of storage would be I
I l\$(O,O).A$(l,O).l\$(0,1).!\.$(1,1) I
I I
I Each element is stored in 3-byte fonn, the sane as I
I simple stri~>:J pointer variables w/o the final 'oo• I
I i.e. lel>:Jth of stri~>:J, then address low-byte first I
I I
I If the array is dimensioned I
I DIM (Kl, K2, K3 ..•) then the number of elements I
I is (Kl+ll*(K2+l)*(K3+1)* ... and I
I CFFSE'I=6+2K+3*(Kl+l)*(K2+1)*(K3+1)... I
1------· ---------------------------------1

These patterns of allocation look much more
difficult than they really are. This is well
illustrated by analysis of a nonsense program that
uses all three types of arrays:

------------------------------1
Figure 15.60 I

Program to illustrate Allocation of MemJry to Arrays I
-------------------------1

10 DIM A%(2,3):DIM A$(3):DIM A(2,2) I
20 K=O I
30 FDR I=O 10 2 I
40 FtlR J=O 10 3 I
50 K=K+l I
60 A%(I,J)=K I
70 PRINT "A%(";I;" ,";J;")=";A%(I,J);" "; I
80 NEKT J: PRINT I

I 90 NEXT I I
1100 A$(0)="ZERCYlli":PRINT A$(0) I
1110 A$(l)="FIRST":PRINT A$(1) I
1120 A$(2)="SB:OND":PRINT A$(2) I
1130 A$(3)="'IHIRD":PRINT A$(3) I
1140 K=O I
1150 FDR I=O 10 2 I
1160 FtlR J = 0 10 2 I
1170 K=K+l I
llBO PRINT "A(";I;". ";J;")=";A(I,J);" I
1190 NEKT J:PRINT I
1200 NEXT I I
1210 END I
I ------------------------1

106 Chapter XV

You can check the start and end of array space
using the monitor:

I CALL -151
* 6C 6B
006C- 09
006B- 70 <Array storage starts at $0970 > *

6E 6D
006E- 09
006D- DA <End of Array storage + 1 at $09DA
*0970.09DA <Dump area of memory

including arrays

The memory dump may be interpreted as
follows:

$0970,71 =>-ASCII 'A' -ASCII 'nul': Name

$0972

$0973,74
$0975,76
$0977,78

of array = A%
= > $21 Offset to next array: Next

array starts at $0991
= > 2-dimensional array
= > 2nd dimension + 1 = 4
= > 1st dimension + 1 = 3:

DIM(2,3)
$0979,7A = > A%(0,0) = 1
$097B,7C = > A%(1,0) =5
$097D,7E = > A%(2,0) =9
$097F,80 = > A%(0,1) = 2
$0981,82 = > A%(1,1) = 6
$0983,84 = > A%(2,1) =$Adec10
$0985,86 = > A%(0,2) = 3
$0987,88 = > A%(1,2) = 7
$0989,8A = > A%(2,2)=$B=decll
$098B,8C = > A%(0,3) =4
$098D,8E = > A%(1,3) = 8
$098F,90 = > A%(2,3) = $C = dec12
- - - - - - - End of A% Array - - - - - - -
$0991,92 = > +ASCII 'A'; -ASCII 'nul':

Name of array = A$
$0993 = > $13 Offset to next array: Next

array starts at $09A4
$0994,95 = > !-dimensional array
$0996,97 = > Dimension + 1 = 4: DIM A$(4)
$0998-9A = > A$(0) string length 6 at $0894
$099B-9D = > A$(1) string length 5 at $08AE
$099E-AO = > A$(2) string length 6 at $08C7
$09Al-A3 = > A$(3) string length 5 at $08El
- - - - - - - End of A$ Array - - - - - - -
$09A4,A5 = > +ASCII 'A'; +ASCII 'nul':

Name of array = A
$09A6 = > $36 Offset to next array: Next

array starts at $09DA
$09A7,A8 = > 2-dimensional array
$09A9,AA = > 2nd dimension + 1 = 3
$09AB,AC= > 1st dimension + 1 = 3: DIM

A(2,2)
$09AD-Bl = > A(O,O) = 1 (5-byte floating point

representation)
$09B2-B6 = > A(l,O) =4 (
$09B7-BB = > A(2,0) = 7 (
$09BC-CO = > A(O,l) = 2 (

II

II

II

$09C 1-C5 = > A(1, 1) = 5 (
$09C6-CA= > A(2,1) = 8 (
$09CB-CF = > A(0,2) = 3 (
$09DO-D4 = > A(1,2) = 6 (

II

II

II

II

)
)
)
)

$09D5-D9 = > A(2,2) = 9 (II)

- - - - - - - End of A Array (Real) - - - - - - -
$09DA - End-of-Arrays

15.7
How Memory is Allocated for Strings

The method that Applesoft uses for allocating
memory to strings is widely misunderstood. Even
an experienced Apple user is likely to know little
more than the fact that strings are allocated from
HIMEM downward. This statement is true, but
superficial.

Almost all of the information you need to
know about memory allocation for strings has
already been covered. All we need here is to put
this information together with a good example
and a discussion of some implications that we did
not discuss earlier.

Let's look at a sample program that uses the
string T$ in several different contexts.

10 T$ = "Tl. LITERAL": PRINT T$:T$ =
"T2.LITERAL": PRINT T$: FOR I = 3 TO 6:
READ T$: PRINT T$: NEXT: STOP: DATA T3.
FROM. KEYBOARD: DATA T4. FROM.
KEYBOARD: DATA T5.FROM.KEYBOARD:
DATA T6.FROM.KEYBOARD: END

The first thing we note is that the string area
contains four strings:

T6.FROM.KEYBOARD
T5 .FROM.KEYBOARD
T4.FROM.KEYBOARD
T3.FROM.KEYBOARD

It does not contain the strings:

T2.LITERAL
Tl.LITERAL

Where are those strings? They are literals, so they
are embedded in the body of the program .

Notice that every time a string was input to
the program from the keyboard, a copy of that
string was stored in the string area - in spite of
the fact that in every case the string was destined
to be assigned to the same variable T$.

The first keyboard input, T3.FROM.KEY
BOARD, was $10, or decimal16 characters long.
The next location available for string assignment
started out at HIMEM, which in this case hap
pened to be at $73EF because the CALL
A.P.P.L.E. Program Global Editor which I used to
get the alphanumeric-formatted dump occupied
memory down to that location. The string was
pushed in tail-end-first and began to push the

next location available for strings downward.
Finally, when all $10 characters of the string were
in place, the process stopped and we were left
with the beginning of the string at $73EO and we
were ready to put the next string into memory
working downwards from that spot.

The string pointer for the variable was set to
this point, the beginning of the string and it,
together with the length of the string was recorded
at the appropriate location in the table of variable
values. Notice that the string is in memory in the
correct order so that it can be read directly from
an alphanumeric memory dump or by character
by-character decoding as you work your way up
ward in memory.

The second input, T4.FROM.KEYBOARD,
was also $10 characters long. It fills in memory
tail-first down to its start at $7300. When
T5.FROM KEYBOARD was received, it filled
down to $73CO; when T6.FROM.KEYBOARD
was received, it filled in down to $73BO.

Let's look at the program dump/simple
variables area to see what references we can find
to these strings and their locations.

The program contains none. It refers to
variables by the ASCII characters of its name. Go
ing to the simple variable table we notice that T$
is the first variable in the table (because it was the
first variable mentioned in the program.)

Thus the information about it is at zero offset
from the start-of-simple-variables pointer value;
i.e., $0850. The first two bytes specify its name,
the next two specify the length of the string, and
the next two specify location of the start of the
string. Clearly there is no room to hold multiple
lengths and starting locations, so only the most
recently used string location can be mentioned. It
is: 10 BO 73. Length = $10 = decimal 16. Start
of-string location $73BO.

There are several interesting implications
here. As long as we continue to input new values
ofT$ we will continue to assign new memory lo
cations to the strings that are entered in response
to the INPUT commands, using up more and
more memory for each new string as it is input.

If the FOR-NEXT loop in this program were
changed so that the program continued asking for
more and more new values ofT$, the new values
would continue taking up more and more mem
ory. If nothing else happened the next-location
for-strings would work its way downward and
eventually reach the top of the program variables
and the computer would run out of memory!

Our tiny program with only one string

Chapter XV 107

variable is filling up the computer's memory with
strings, yet it can only make contact with one of
them! Useless garbage is filling up most of what
once was our 'user free space.'

Usually before you get into trouble the com
puter is able to sense the problem and auto
matically undertake a process of garbage collec
tion. This process determines which strings are
unattached to a variable name and gets rid of
them, compacting those strings that remain back
toward HIMEM and thus making more space
available.

In a large program with many variables the
garbage collection process may be very slow. If
you don't happen to recognize what is going on, it
can be very disconcerting indeed to have the nor
mal operation of a program suddenly stop and the
computer apparently doing nothing for as long as
a minute or more! Such a minute can seem to be
an eternity and you become totally convinced
that your program has bombed.

There are also occasions when the computer
runs out of memory in a way that does not trigger
automatic garbage collection in time to avoid the
dreaded 'OUT OF MEMORY' error. To avoid this
and the possibility of a long wait at an inconven
ient time, Applesoft gives you the capability to
force garbage collection at a time of your choice.

You can keep track of the amount of free space
you have between the top of variables/ arrays and
the bottom of the string area by means of the
function FRE(). For example, PRINT FRE(O) will
print the amount of free space currently available.
X= FRE(O) will assign the amount available to

the variable X so that it can be used and/ or tested
by your program.

A nice thing about FRE() is that it forces gar
bage collection before it reports. It does this so
that it can give you the true amount of space
available for your use, not an amount artificially
reduced by unattached strings.

If you have a program that you have reason to
suspect might need garbage collection, why not
use a FRE() just after a long printout and have the
garbage collection go on while the user is reading
the screen and before he gives a go-ahead signal?

15.8
What You Can Do If You Don't Have
Enough Applesoft 'User Memory'

15.8.1 Memory Conservation

The best way to keep from running out of

108 Chapter XV

memory is to conserve it rather than squeeze
more into your computer than will fit.

The real key to memory conservation is not in
programming tricks, but in careful analysis and
planning of your programs. Careful planning and
structuring can eliminate the need for un
necessary functions. Careful modularization and
set-up of subroutines can allow you to use the
same code over and over again without degrading
the readability of your programs.

But don't overemphasize memory conserva
tion at the expense of other desirable features
unless it is absolutely necessary.

15.8.2 Making Unavailable Memory Available

It is often possible, if you are willing to live
with a non-standard programming environment,
to make special changes in the system that will
free additional memory. However, it is a good
idea to hold such techniques in reserve for use
when really needed, rather than to operate
routinely in a non-standard environment.

A very common technique, if you have a
language card or equivalent RAM for the top 16K
of Apple memory, is to move the DOS from its
standard location to a high memory position.
Another common technique is to strip unneeded
modules out of the DOS so that the space can be
used for your own machine"language programs.

15.8.3 Overlaying, Chaining, and Re-using
the Same Memory

Sometimes programs just get too big to fit into
memory all at once. Other times the programs
themselves are not too big but you would like to
use them with huge data files inside the computer
that, together with the program, would exceed
available memory capacity.

When you need a method to sqm;eze 'a pro
gram into your computer, which won't fit all at
once, an obvious solution is to find some way to
make the program work without all of the pro
gram in it at one time.

One way to do this is to split your program in
to independent modules that can share the same
environment of variables and strings. Also pro
vide some means for changing from module to
module, and have only one of the modules in the
computer at a time. The process is very simple
conceptually.

Suppose you have a program that is too large
to run on your computer but can be broken down
into three modules '1','2' and '3', each of which
will fit into the available memory together with
all the variables and strings needed by the entire

program. For the moment let's assume that
module '1' is the largest.

If we set up and run '1' it will occupy an area
of memory frorn the start-of-program pointer to
the end-of-program pointer. Variables, arrays, free
space, and strings will occupy the remaining area
to HIMEM. What we want to do now is to change
the program in the area from the start-of-program
pointer to the end-of-program pointer to Module
B, without changing the rest of the environment,
then transfer control to it. Later we may want to
go eack to Module A or go on to Module C, still
maintaining the same basic environment but
with changes created during the running of
module '2'.

LOADING '2' as an Applesoft program will
not solve the problem because it will destroy the
rest of the environment.

However, if we had previously LOADED '2'
and then BSAVED only the program itself, i.e.,
that portion of memory from the start-of-program
pointer to the end-of-program pointer, we could
BLOAD the '2' into this area of memory without
changing the environment. All we would have to
do is to transfer to the correct location in '2' and
make sure that the various pointers associated
with the program didn't get mixed up in the pro
cess. The same procedure could be used to go on
to '3' or to go back to '1'

There are a number of v~iations on this basic
process. If B or C happen to be larger than '1' you
will have to find out the end of the largest
module, then set the start-of-simple-variables
painter to that point before running module '1' so
that the variables will not be allocated into space,
which will later be destroyed by having a larger
module BLOADed on top of it.

With programs that run sequentially from '1'
to '2' to '3', the process is very simple and no
special utility is needed. However, for those who
don't want to fiddle around with pointers, Apple
has provided a CHAIN utility and appropriate
directions for its use in the DOS 3.2.1 system
master.

Suppose you have a two-part program stored
on two files: 'PART.ONE' and 'PART.TWO'. If
you wish to chain from 'PART.ONE' to 'PART.
TWO', all you need to do is insert the following
two lines to be executed in 'PART.ONE':

PRINT CHR$(4);"BLOAD CHAIN",A520
CALL 520"PART.TWO"

(NOTE: There must be no space or other
character between the 520 and the quotation
mark.)

You can chain back to 'PART.ONE' in the
same way:

PRINT CHR$(4);"BLOAD CHAIN",A520
CALL 520"PART.ONE"

(NOTE: Don't depend upon the previous BLOAD
to have set up the CHAIN. You cannot omit the
BLOAD. The area you loaded to was in memory
page 2, the character input buffer.)

In practical programs that use the overlay pro
cess, the problem of control is often handled by
having a module '0' (command processor) that re
mains resident regardless of which module is in
use. For example, '0' might be a menu-driven
system to choose which of several graphics ac
tivities you wish to perform while '1','2', and '3'
each contain one or more of these options.

If you select an option in a different module,
then the part of the comma:nd processor associated
with overlay control will undertake the loading of
the correct module as well as transferring control
to the correct position in it.

You can still use a CHAINing process here,
but now you will have to include a copy of '0'
with each of the modules and you will find
yourself copying X on top of itself each time you
make a change. If '0' is large this can involve a
significant waste of both disk space and transfer
time. 1

However, it is not difficult to write a utility
that makes overlaying only a part of a program
quite straightforward and tends to eliminate
human errors in setting up pointers and transfer
points. Here is such a utility adapted from one
originally written by Dave Lingwood.

I -----1
I Figure 15.81\ I
I overlay utility Subroutines 1
I I
I 1 I
I •..• I
I I ••• lbiu1e ·o·. the nodule not to be 011er1ayed, goes here; I
I v... I

988 I
9119 RFM 'IHE 0\IERIAY lJriLI'IY SUiliUJl'INE CCCUPIES 990-998. I

990-992 Cl'IOCSES lli!SIREO K:>IJUlE AND WIB'JHER TO BUli\D OR SSAVE I
'IOU MI'.Y Wist TO 011\NCE 'IHESE LINES CR COOE I

993-995 Bl.f:WlS lli!SIREO I«XXJlE I
996-998 SSAVES lli!SIREO K)IJUlE I

'l'JE S'l'ARl'{)F-Ml!JUIE SUBRXJ!'INE IS LINE 999. I
990 INPUI' "K:>OO!Et";K:INPUI' J"l.O!\I),SAVE CR NO ClllllQ; (S/L/N)?";A$• I

A$=ll!Fl'(A$,1): IF A$="L" 'IHI!N 993 I
991 IF A$="5" 'IHI!N 996 I
992 Rl!lnRf: RFM DEFAULT RESroNSE = NO atANGE I
993 OOSUB 999: PRINT OIR$(4);"BUJ!\lli«XXJlE ";K;",A",A:Rl'M ill'\]) 'IHE I«XXJlE I
994 E=PEI!K(-21920)+256*PEm<(-21919)+A+l:RFM END-<F-P!O:l = III!XliN + Lm +1 I

I 995 Pa(E 175,E-256*INT(E/256);Pa(E 176, INT(E/256);REn.RN I
I 996 OOSUB 999: I;=PEEK(l75)+256*PEI!K(l76) + 1 -A • I
I RFM Lm = END-<F-PI.JGH - STARl'-OF-PRXl I
I 997 1'RlNT OIR$(4);"BSAVE K)IJUlE ";K;",A";A;",L";L: RFM SAVE 'l'JF. K)IJUlE I
I 998 PRINT "KlllUlE ";K;" SAVED (";L;" BYTI'S)"• PRINT "END-<F-PIDGR!\M AT"; I
I A+L RFM IDl'IF'i' lBER CR l'CTION I I
I 999 A = PEm<(l21)+256*PEI!K(l22);RJm.RN; I
I RFM SUBRXJl'INE TO ltx:ATE III!Xli!tiiNG C1F K:>IJUlE WIIOI IT III!XliNS, I.E. I
I I'1SE1PI I
I 1000 I
I ·... I
I 1 ••• Module '1' '2' or '3' (Modules to be =erlayed) I
I v... I
I 64000 I
I -1

Chapter XV 109

This utility depends upon having or being able
to PEEK information about the location of the
beginning of each module (from $79,7 A =
decimal 121, 122) and the length of the module
(from the BLOAD/BSAVE length information in
the DOS at $AA60,61 = decimal -21920,
- 21919). It also depends upon the ability to
PEEK the end"of-program pointer ($AF,$BO
175,176) and to reset it by PQKEing.

Now lets examine how the utility located in
lines 990-999 works. There are two subroutines
in this package: One to do the overlaying, the
other to mark the start point of a module to be
overlayed.

'
The short subroutine in the package takes but

a single line:'

999 A= PEEK(121) + 256*PEEK(122):
RETURN

It is put at the beginning of each program
module. The memory locations PEEKed ($79,$7 A
(= decimal121, 122) are a zero-page pointer to the
memory location of the next line number; i.e., to
the next line of BASIC in the program after the
single-line subroutine itself.

Thus this single line subroutine sets the
variable A to the 'real' start of the overlay
module, considering the single line subroutine as
its pseudo-start.

The larger subroutine (lines 990-998) uses this
information to determine where to BLOAD or
BSA VE the modules which are to do the overlaying.

The large subroutine starts out by finding out
what you want to do. Lines 990-992 determine
which overlay module should be processed and
whether you want that processing to be the
saving or loading of that module.

If you want to BLOAD, control is transferred
to the block of statements in 993-995. If you want
to BSAVE, a module control is passed to the block
of statements in 996-998. These are the lines of
code that do the real work.

If you are going to BLOAD, line 993 first calls
the small subroutine to find the start of the
module to be BLOADED, then issues a command
with the correct file name 'MODULE' ;K and the
correct starting address 'A' obtained from the
small subroutine. It then PEEKs into the DOS to
find the length of the module which it loaded and
adds the starting address - 1 to compute the end

, of-program address. Then it corrects the end-of-
program pointer to reflect this corrected address
and returns control to the location in module '0'
from which it was called.

llO Chapter XV

If you are going to BSAVE, line 996 calls the
small subroutine to find the start of the module,
then PEEKs the end-of-program pointer and com
putes the length of the module to be saved from
the difference of the two. It then executes a BSAVE
with the computed A (start) and L (length) values;
prints out a report on what it has done and returns
control to its point of call. (Usually you will want
to stop once you have done this, but the
subroutine format gives you the opton of continu
ing if you desire to do so. J

How do you set up a program to use this utility
and system of overlaying?

In practice it is convenient to keep a program
file of the entire program - Module 10',
subroutines, and Modules 1 11 , 121 and 13' as one
long source program file.

When you are ready to set up the running ver
sion of the progam load up this whole file; delete
the undesired modules, e.g. 12' and 13' when you
want to set up 1 1'; then issue a GO SUB 990 to ac
tivate the utility and respond to the questions ask
ed by saying that you want to SAVE module. 1 1'.
The utility will set up and execute the saving of
module 1 1'.

Repeat the process for modules 12' and 13'.

If you are going to set up overlayed programs,
very often the housekeeping is simplified if you set
up some conventions such as that module 1 1' uses
BASIC line numbers 1001-1999; module 12',
numbers 2001-2999, and module 13', numbers
3001-3999.

Then the process becomes totally mechanical:
1. Load the whole program,

DEL 2000-4000,
GOSUB 990,
Respond module 1 1' and 1 S'.
The module 1 1' set-up will occur.

2. Load the whole program again,
DEL 1000-1999 and 3000-4000,
GOSUB 990,
Respond module 121 and 1S'
The module 12' set-up will occur.

3. Load the whole program again,
DEL 1000, 2999
GOSUB 990,
Respond module 13' and 1S'
The module 13' set-up will occur.

If you receive a report that the second or third
module is larger than the first,

4. Take the larger end of program value,
Add a little extra to allow for minor pro
gram changes, say 100 bytes.

Then at the very beginning of module 10'
set LOMEM: to this value.
Restart the process at the beginning.

You may be surprised at this use of LOMEM:
Remember a LOMEM: statement does not reset
the start-of-program vector and hence the start-of
program location; it resets the start-of-simple
variables vector and hence the start-of-simple
variables location. The LOMEM: statement is
functionally equivalent to, but easier and briefer
than double-POKEing the numeric value specified
into the start-of-simple-variables pointer ($69, $6A
or decimal 105, 106).

You may find it reassuring to verify that this
action has not moved the start-of-program pointer
($67, $68 or decimal 103,104) upward from its
previous value (usually the default value $0801 or
decimal 2817). Nothing is more reassuring than
experimental verification of such assertions that
may seem counter-intuitive.

With LOMEM reset, the program modules all
begin at the same place as they did before, but the
location for the program variables is overtly rais
ed high enough so that there is adequate room for
any of the overlays to fit in its entirety below the
variables. Now no interference can occur if this is
part of the set-up.

An EXEC file can easily be constructed to per
form the whole process automatically, if desired.
However I am not sure it is worth the bother.

Thus far we have talked about the utility and
its set-up. Now let's discuss using the overlay
system.

When running an overlayed program you may
call the large subroutine of the overlay whenever
you want to change overlays. You call the package
in the same way and follow the same procedures
(with prompting for human control of overlay
changes), responding 1L' (for LOAD) rather than 1S'
(for SAVE).

Later, when your program is stable and well
debugged, you can bypass this level of direct
human control. Just set up parameters K and A and
do a GOSUB 993 rather than a GOSUB 990. The
overlay will now occur automatically without any
inquiry or human intervention.

Applesoft references functions by their RAM
location, not by line number. Even if a function
has the same line number in different modules (if
there is any difference in the programs before the
function(sJ are defined) they will appear in dif
ferent RAM memory locations. A somewhat dif
ferent but comparable problem occurs with the
ONERR GOTOs.

Chapter XVI
High-Resolution Graphics Display
Memory Pages 32-63 & 64-95
($2000-$3FFF & $4000-$5FFFJ

16.1
Introduction

The Apple has a second type of graphic display,
called high-resolution, or Hi-Res graphics. Like
low-resolution (La-Res) graphics, two display-page
buffer areas identified as Page 1 and Page 2 are
assigned to this type of graphics. However,
because the high-resolution graphics can display a
great deal more fine-grained detail than can low
resolution, these display buffers must be a great
deal larger - 8,192 bytes each rather than the
1,024 bytes, which sufficed for low-resolution
graphics.

There are many similarities in organization
and operation between low-resoluton and high
resolution graphics, but there are complications
that make it harder to keep track of ·what is going
on and to use it effectively.

Apple Computer Co. describes this capability
as follows:

''When your Apple is in the high-resolution
mode, it can display 53,760 dots in a matrix
280 dots wide and 192 dots high. The screen
can display black, white, violet, green, red,
and blue dots, althbugh there are some
limitations concerning the color of in
dividual dots ... (emphasis added by author).

"Each dot on the screen represents one bit
from the picture buffer. Seven of the eight
bits in each byte are displayed on the screen,
with the remaining bit used to select the'
colors of the dots in that byte. Forty bytes
are displayed on each line of the screen. The
least significant bit (first bit) of the first byte
in the line is displayed on the left edge of the
screen, followed by the second bit, then the
third, etc. The most significant (eighth) bit
is not displayed. Then follows the first bit of
the next byte, and so on. A total of 280 dots
are displayed on each of the 1,92 lines of the
screen.

On a black-and-white monitor or TV set,
the dots whose corresponding bits are ''on''
(or equal to 1) appear white; the dots whose
corresponding bits are "off" (or equal to OJ
appear black. On a color monitor or TV, it is
not so simple. If a bit is "off" its correspon
ding bit will always be black. If a bit is "on"

its color will depend upon the position of
that dot on the screen. If the dot is in the
leftmost column on the screen (called 'col
umn 0', or in any even-numbered column,
then it will appear violet. If the dot is in the
rightmost column [column 279] or any
other odd-numbered column, then it will
appear green. If two dots are placed side-by
side, then will both appear white.

If the undisplayed bit of a byte is turned on
then the colors blue and red are substituted
for violet and green respectively. Thus,
there are six colors available in the high
resolution graphics mode, subject to the
following limitations:

1) Dots in even columns must be black,
violet or blue

2) Dots in odd columns must be black,
green, or red

3) Each byte must be either a violet/green
byte or a blue/red byte. It is not possible to
mix green and blue, green and red, violet
and blue, or violet and red in the same byte.

4) Two colored dots side by side always
appear white, even if they are in different
bytes." '

This is the standard Apple interpretation of the
Apple II system graphics. Its color/position
/resolution characteristics are shown symbolically
in figure 16.1A. All their software documentation
uses this view. Its great advantage is that it makes
the Apple II graphics look like bit-mapped
graphics. Its greatest disadvantage is that it creates
a great deal of confusion about high-resolution
color and the fineness of resolution which can be
achieved with an Apple.

1---t
I Figure 16.1>. -- l\pp1e]['Standard' Interpretation of I
I -----~igh ~~ution Graphics------~
I IL Mt tL Ml
!BIT Is st ts st
irosNIB Bt !B Bi
I I o I 1 I 2 I 3 I 4 I 5 I 6 I 7 t t o I 1 I 2 I 3 I 4 I 5 I 6 I 1 I
I I<- base byte --->I I<-- base byte + 39 ->I
I I t t I
IO:li.R IV/BIG/OIV/BI G/otv /BIG/OIV/BI 0/11 ...•• tV/BI G/OIV/BIG/OIV/BIG/OIV/BI 0/11
I I ..!lite I ..!lite I ..nite I 1---1 .••.. t..nite l..nite l..nite I 1---1
I I t t I
tx- I I I I I I I I 1 ••••• 1 I I I I I I I I
IPOSNI o I 1 I 2 I 3 I 4 I 5 I 6 IL/Rt I273I274I275I276I277I27BI279IL/RI
I --------------------------------1

When I discuss bit-mapped graphics, I mean
that one bit somewhere in computer memory
represents one distinguishable on-off dot position
on the video display screen. A high-resolution
display page of 8192 bytes contains 8 x 8192 =

65536 bits of memory. Deducting the eighth bit

112 Chapter XVI

of each byte, which is described as a color-control
bit rather than a plotting bit, there are 53,7 60 bits
available in display-page storage, one for each of
the 280 by 192 display-points on the video screen.
Turn that bit on, a dot appears at a particular loca
tion on the display-screeni turn it off, the dot
disappears.

Unfortunately the dots are not all the same
color, but that is no particular problem with a
black-and-white TV set. Also, if you turn on the
bit in an adjacent position in the same line, strange
things happen - two adjacent dots can coalesce
into a single white dot, even on a color TV. Never
theless the concept remains fairly straightforward
in spite of these complications.

16.2
Introduction to Use
of High-Resolution Graphics

16.2.1 The Simple Way- Using the Applesoft
~BASIC Commands

The simplest and most convenient way to ac
cess high-resolution graphics is to use the graphics
commands built into the Applesoft interpreter:

HGR To initialize in high-resolution graphics
(page 1 - high resolution with 4 lines for text at
bottom)

HGR2 Same as HGR except page 2
HCOLOR = (numeric value or expression)

Sets high-resolution graphics color to that
specified by the value of HCOLOR, which must
be in the range 0 to 7 inclusive. Table 16.2A
below gives the 'standard' color associated with
each HCOLOR value and the HCOLOR values
that are distinguishable from it on a black-and
white TV or monitor:

Figure 16.2A
H COLOR Distinguishable

ON TV shade on Bf'N TV

0 black1
1 green
2 blue
3 white1
4 black2
5 orange
6 violet
7 white2

1 ,2,3, 5,6,7
0, 3,4, 7

,0, 3,4, 7
0,1,2, 4,5,6,

1 ,2,3, 5,6, 7
0, 3,4, 7
0, 3,4, 7
0,1,2, 4,5,6,

Colors 0-3 have the MSB or color bit in each plot
byte in the off conditioni colors 4-7 have it in the
on condition.

White1 (HCOLOR = 3) is created by a
coalescence of green (HCOLOR = 1 J and blue
(HCOLOR=2). White2 (HCOLOR=7J is created
by a coalescence of orange (HCOLOR = 5 J and
violet (HCOLOR = 6).

On a color TV or color monitor, since not all col
ors can appear at all bit-mapped positions, a
single high-resolution dot will appear colored
green or orange (depending upon MSB) if plotted
at an odd x-coordinate. It will appear blue or
violet if plotted at an even x-coordinate. If it is
double-plotted at x and x + 1 the colors will
coalesce to white.

Other than this, the two versions of white (and
their corresponding two versions of black) are
pretty much interchangeable until one gets into
the fancy tricks of super high-resolution des
cribed in section 16.4.

HPLOT < value1 >, < value2 >

This version of HPLOT is used for point plot
ting. It plots a high-resolution dot at
x-coordinate <value1 > and y-coordinate
<value2> using the current value of HCOLOR.
If HCOLOR has not been assigned a value, the
color is indeterminate and may even be the
background color so that no plot seems to occur.

HPLOT < value1 >, < value2 > TO
< value3 >, < value4 >

variants:
HPLOT < value1 >, < value2 > TO

< value3 >, < value4 > TO
<valueS >, < value6 > TO ...

HPLOT TO < value3 >, < va1ue4 >

These versions of HPLOT are used for line
plotting.

The first version plots from x-coordinate
<value1>, y-coordinate <value2> to
x-coordinate < value3 >, y-coordinate
< value4 > . The color is determined by the cur
rent HCOLOR. If no value has been assigned to
HCOLOR, the color is indeterminate and may
even he the background color so that no plotting
appears to occur.

The first variant indicates that additional coor
dinate pairs preceded by the keyword 'TO' may
be added at will, subject of course to the normal
screen limits. and instruction length limits.

The second variant indicates that if the first
coordinate pair is omitted, plotting will occur
from the current cursor position. In this case the
color of the line is determined by the color of

that last plotted point, even if the value of
HCOLOR has subsequently been changed.

Warning: All versions of HPLOT mu.st be
preceded by HGR or HGR2, or equivalent
machine-language initialization. Otherwise
your whole program may be clobbered.

X-coordinates must be in the range 0
<=value< =279; Y-coordinate values must
be in the range 0< =value<= 191. If these
rules are not followed an illegal quantity error
message will be generated upon execution of
the command.

Applesoft high-resolution graphics also has
built in a group of high-resolution graphics com
mands that are quite different in concept and use
than those thus far described. These include the
following:

DRAW
XDRAW
ROT
SCALE
SHLOAD

These commands deal not with the plotting of
individual points and lines, but with the
manipulation of entire pictures (known as shapes)
which are created and may be stored in memory as
graphical data structures, then drawn with a single
command. When they are drawn these special
commands give one the option of specifying where
they are to be drawn and whether they are to be
changed in scale (drawn larger or smaller) or
rotated from their original orientation. Discussion
of these powerful, but not always easy to control,
commands is deferred to section 16.5.

Note that if the system is in the mixed high
resolution graphics plus four lines of text, the plot
ting that occurs with y values in the range 160
through 191 will not be visible. It is also possible
to plot on a different high-resolution screen-page
than that which is being displayed. This will also
result in invisible plotting. In either case, a single
poke, which changes the area of memory being
displayed, may cause this previously plotted, but
invisible information to be displayed. This sort of
thing is often done quite deliberately, for example
to create animation effects without distracting the
viewer's eyes. Changes are made in individual
lines until the whole picture is drawn.

16.2.2 Information Useful in Pseudo-BASIC and
Machine-Language Programming

The Apple IT system has, in addition to the
standard allocation of high-resolution memory

Chapter XVI 113

pages, a built-in (software) allocation of many
locations to the processing of high-resolution
graphics information. In particular the Applesoft
interpreter contains a number of high-resolution
graphics-related subroutines. These do for high
resolution graphics the high-resolution analogs of
the low-resolution graphics routines built into the
monitor software.

These routines make heavy use of two groups
of page zero memory locations, sometimes
described respectively as containing external cur
sor data, and internal cursor data. The internal
cursor data is derived from the external cursor data
using selected monitor subroutines that are called
automatically at appropriate times.

The external cursor data is not quite the same
information specified by an Applesoft BASIC pro
grammer to determine how the point is to be plot
ted, but it is easily derived from the Applesoft
commands.

$00E0-$00E1 The x-coordinate of the point!
(This requires 2 bytes, since the value can be
greater than 255)

$00E2 The y-coordinate of the point
(This requires only 1 byte, since the value can be
no greater than 189)

$00E4 The color masking byte.
(This is derived from HCOLOR and is a byte
chosen from the color table ($F6F6-$F6FD) using
HCOLOR as the look-up argument. The color
masking table is documented in figure 16.2B:)

Figure 16.28
Color Masking Table

$F6F6: $00 = 00000000 (hcolor=O) (black!)
$F6F7: $2A = 00101010 (hcolor=l) (green)
$F6F8: $55 = 01010101 (hcolor = 2) (blue)
$F6F9: $7F = 01111111 (hcolor=3) (white!)
$F6FA: $80 = 10000000 (hcolor=4) (black2)
$F6FB: $AA = 10101010 (hcolor= 5) (orange-red)
$F6FC: $D5 = 11010101 (hcolor = 6) (violet)
$F6FD: $FF = 11111111 (hcolor=7) (white2)

Note MSB = 0 for hcolor = 1 to 3
MSB = 1 for hcolor = 4 to 7

Also note that one color in each group has (ignoring the MSB)
only odd bits on and plots only for odd x-coordinates. The other
has only even bits on and thus plots only for even x-coordinates.
Both whites have all bits on. They plot one color within their
group for odd x-coordinates and the other for even
x -coordinates.

$00E6 The page indicator
(This indicates the page plotting will occur on, and
is totally independent of the page which is current
ly being displayed. $20 indicates screen page 1 is to
be plotted upon; $40 indicates screen page 2.)

114 Chapter XVI

Before actual plotting occurs this information
must be processed further to find the exact
memory byte and bit(s) that need to be changed to
effect the desired plotting action.

Memory location $DOES, which is physically a
part of the above external cursor grouping, differs
from the others in that it is usually not provided by
the user, but is computed by a monitor subroutine,
and thus might better be considered as a part of the
internal cursor data:

$DOES Horizontal Byte Index

Way down at the end of the chain of graphical
processing actions implemented by various
subroutines, the final act of plotting is imple
mented by the following set of machine-language
instructions:

LOA $1C
EOR ($26),Y
AND $30
EOR ($26),Y
STA ($26),Y

with the Y-register always set to the value of
$DOES before execution of these instructions.

These internal cursor locations have the
following uses:

$001C On-the-fly color byte or 'running color
mask' (The color masking byte shifted for odd ad
dresses and none black and white, otherwise the
unmodified color mask byte.)

$0026-$0027 On-the-fly base address
(The address of the left end of the screen display
line upon which the desired point appears. These
locations are documented in depth in section 16.3)

$DOES Horizontal byte index
(The address offset from the base address in which
the bit to be plotted may be found. Since there are
seven plotting bits (plus one color bit) per plot
byte, this is computed by an integer division of the
horizontal screen coordinate (which is located in
$00E0-$00E$) by 7.)

$0030 On-the-fly bit mask
(Specification of which of the seven bits in the
selected byte corresponds to the point to be plot
ted. Computed from the remainder in the integer
division which computed the byte index.)

The main subroutines in the monitor that do
the processing of high resolution graphics are the
following: (Note: The names are those used by the
monitor. The commented code for each
subroutine may be looked up in the monitor
listing published as part of the Apple II Reference
Manual furnished with each Apple II computer.

INITIALIZATION:

HGR ($F3E2) - High-resolution GRaphics
Displays page 1 in mixed mode ($COS3, $COS4).
Sets page indicator ($00E6) to page 1 ($20). Sets on
the-fly color byte to zero (black1) and clears page 1
to black (all zeros).

HGR2 ($F3D8)- High-resolution GRaphics
page 2
Displays page 2 in all graphics mode ($COS2,
$COSS). Sets page indicator ($00E6) to page 2 ($40).
Sets on-the-fly color byte to zero (black1) and
clears page2 to black (all zeros)

COLOR:

HCOLOR ($F6FO) - High-resolution COLOR
With x-register containing the color index (0 to 7),
this subroutine looks up the appropriate color
mask from the table described by figure 16.2A and
stores it in $E4.

BKGND ($F3F4) - BacKGrouND
With color mask from table 16.2 for relevant
hcolor in accumulator, this subroutine puts this
color into color mask byte parameter $1C and
writes it to every location in the current memory
page specified by $E6.

CURSOR POSITIONING

HPOSN ($F411)- Horizontal POSitioN
With the x-register containing the low-order bits of
the horizontal screen coordinate, the y-register
containing the high-order, and the a-register con
taining the vertical screen coordinate, this routine
stores the registers in external cursor locations
$EO, $E1 and $E2. Then using external cursor page
indicator $E6, it computes and sets the internal
cursor parameters $26, $27, $30 and $ES to the
same position and the internal cursor color mask
$1 C to correspond to the external cursor color
mask $E4.

INTX ($F46S)- step INTernal cursor
X -coordinate
At entry, y-register is preset with current horizon
tal byte index. This routine then modifies the in
ternal cursor ($1C, $ES, $30 andY-register) to in
crement or decrement screen x-coordinate by 1. If
theN-flag is positive (bit = 0), increment; if the
N-flag is negative (bit = 1), decrement. Wrap
around occurs if you increment or decrement
beyond end of visible screen.

INCRX ($F48A)- INCRement cursor
X-coordinate

DECRX ($F467) - DECRement cursor
X-coordinate
Perform the actual incrementing or decrementing
for INTX.

INTY ($F403)- INTernal cursorY-coordinate
Modifies the internal cursor base address (in

$0026-$0027) to increment or decrement screen
y-coordinate by 1. If theN-flag is positive (bit = 0),
decrement; if the N-flag is negative (bit = 1), in
crement. If increment or decrement moves you off
the top or bottom of the screen, wrap-around
occurs to other edge.

INCRY ($F504) -INCRement Y-coordinate
DECRY ($F405)- DECRement Y-coordinate

Perform the actual incrementing or decrementing
for INTY.

IPOSN ($FSCB)- Internal POSitioN
Sets the external cursor coordinates in $EO-$E2 to
values which correspond to the current internal
cursor position.

PLOTTING SUBROUTINES

HPLOT ($F457) - High-resolution PLOT
With x- and y-coordinate positions in the x-, y-,
and a-registers as per PHOSN, this subroutine
plots a point by calling HPOSN and the PLOT.

PLOT ($F45A) - PLOT a point
Plot a point using the internal cursor data. This
subroutine performs the five instructions specified
earlier as the final step in point-plotting. Note that
the Y -register as well as the internal cursor
memory locations must be preset.

HLINE ($F53A) -High-resolution LINE
Preset with x-coordinate in the a- and x-registers
and with y-coordinate in the y-register. This
routine then draws a line from the internal cursor
position to the location specified by the registers.
On exit, it leaves the external cursor data cor
responding to the input and the internal cursor
data corresponding to the last point on the line.
(Note: If internal and external cursor data were not
the same when subroutine was called, an off-set
occurs. If this results in plotting an off-screen
point, wrap-around occurs.)

16.3
Similarities and Differences in
Organization and Memory-Mapping
Between High-Resolution Graphics and
Text/Low-Resolution Graphics

We may envision that a high-resolution
graphics display-page is divided into sub-pages or
macro-lines that cover exactly the same screen
display areas as the correspondingly numbered
text/low-resolution graphics macro-lines, with
each macro-line capable of holding the same
number of high-resolution graphcis text characters
in exactly the same positions as a text macro-line.

Chapter XVI 115

Thus figure 16.3A is essentially identical to the
corresponding low-resolution diagram, figure
14.3C, except that the unqualified notation DL has
been replaced by the more explicit notation COL,
for Character Display Line. The mention in the
heading that a new term GDL for Graphic Display
Line to represent a 'slice' taken out of the COL.

I --1
I Figure 16. 3A. ---- Internal Structure of the T-Hgh-Resolution I
I Graphics Display Area 1
I Eight MacrcrLines of 120 Characters Each (MIOO - MI..07) + B bytes I
I Each Macro-Line contains 3 Character-Display Lines (CDI.fX) - CDL23) I
1 Each Character Display Line (COL) is made up of a 'slices I
I Each 'slice' is a one-dot-high Graphic Display line {GDWOO - GDL191) 1

1---l
IMLOO I <1st 40 chars=<:Dt00><2rrl 40 chars==CDIJ)8> <3rd 40 chars=CDL16><8byt.es> I
IMLOll<lst 40 chars==CDI.Dl><2rrl 46 chars=C:DID9><3rd 40 chars=C:DL17><8byt.es>l
IMI..O'll<lst 40 char~I.D2><2nd 40 chars=CDL10><3rd 40 chars==CDLlB><Bbytes>l
IMI.03I<lst 40 chars=CDLD3><2rrl 40 chars=CDL11><3rd 40 chars~DL19><8bytes>l
IML04I<lst 40 chars~DI.J)4><200 40 chars=CDIJ.2><3rd 40 chars=CDL20><8byt.es>l
IMLDSI <1st 40 chars=CDIJ)5><2rrl 40 chars=CDIJ.3><3rd 40 chars~L21><8bytes> I
IMLOGI <1st 40 char~L06><2rrl 40 chars::::C:DU4><3rd 40 chars=CDL22><Bbytes> I
IMI.D7I<lst 40- chars=CDIJ)7><2nd 40 chars=CDL15><3rd 40 chars=OJL23><8bytes>l
I ---1

In the high-resolution graphics environment,
instead of a character being represented by a single
8-bit ASCII code character, the visible character is
created by a 7 x 8 matrix of off-on dots made up of
seven dots in each of eight macro-line slices (see
figure 16.3B).

1---l
I I
I Figure 16.3B- Character 'A' in 'l'q)-L.eft Corner of 9i-Res Graphics 'kreen I
I (Character 0 of Macro-line 0) I
1---l
I --------1-l-1-1---l--1--1-1 I

Slice o I I I I • I I I I Byte $2000 (8192) •Bit value=$8(8) I
--------1--1-1--1--1--l--1-1 I
slice 1 I I I • I I • I I I Byte $2400 (9216hBit value=$10(16) I
--------1-l--1--1--1--1--1--1 I
slice 2 I I • I I I I • I I Byte nsm (10240J,Bit value=$22(34) I
--------1-1--l--1-1-1--1---1 I
~~~::-~-: _ _:_:_: ___ : _ _: _ _:_:_:_: Byte S2COO (11264) •Bit value:$22(34) \ 

Slice 4 I I • I • I • I • I • I I Byte $3000 (l2288hBit value=$3E(52) I 
------·-1--1-l--1---1-1---1--1 I 
>lice s I I • I I I I • I I Byte $3400 (13312hBit value=$22(34) I 
--------1-l-l-l-l---1--1--l I 
slice 6 I I • I I I I • I I Byte $3800 (14336) •Bit value=$22(34) I 

I --------1-1--1-1-l--1--l--1 I 
I Slice 7 I I I I I I I I Byte $3CO'l (l5360hBit ""lue=$0(0) I 
I --------1-1-1--1--l--1--1-1 I 
I bit values of riots I 
I 64 32 16 8 4 2 1 I 
I $40 $20 $10 $8 S4 $2 $1 I 
1----------------------------------------------------------l 

Each of the seven on-off dot positions is con
trolled by a single memory bit, all from the same 
byte of memory. The eighth bit in that byte is not 
displayed, but is used as a color selection bit. (We 
will also later describe it as the LIR, or Left/Right 
bit, when dealing with black-and-white pictures.) 

Thus each of the eight slices requires its own 
byte of memory. Control of a 7 x 8 character 
block matrix requres eight bytes instead of the 
single byte used by the ASCII code when in the 
Text mode. 

The method of bit assignment is totally 
straightforward, as may be seen in figures )6.3B 
and 16.3C. The individual bit values may be com
puted from the positions where bits are desired to 
be on and the values associated with the bit values 
as shown on the bottom of the figures. 



116 Chapter XVI 

l----------------------------------------------------------1 
I I 
!Figure 16.3C -- Character 'B' in Position One Space to the Right of the 1 
I '1\::p-Left Corner of Hi-Res Graphics Screen I 
I ( Olaracter 1 of Macro-line 0) I 
l-----------------------------------~---------------------------1 
I --------l--1--1--l--1--1---1--1 I 
I slice o I I • I • I • I • I I I Byte $2001 (8193) :Bit va1ue=$3C(60) I 
I --------1---1--1--l--1--1--1--1 I 
I slice 1 I I • I I I I • I I Byte $2401 (9217) :Bit va1ue=$22(34) I 
I --------1--1--1--l--1--1--1---1 I 
I Slice 2 I I • I I I I • I I Byte $2801 (10241) :Bit va1ue=$22(34) I 
I --------1---1--l--1--1--1---1--1 I 
I Slice 3 I I* I * I * I *I I I Byte $2C01 (11265):Bit va1ue=$3C(60)1 
I --------1--l--1---l---l--l--1--l I 
I Slice 4 I I • I I I I • I I Byte $3001 (12289) :Bit va1ue=$22(34) I 
I --------1---1--1--l--1--1--1---1 I 
I Slice 5 I I • I I I I • I I Byte $3401 (13313) :Bit va1ue=$22(34) I 
I --------1---l--1--1--l--l---l--l I 
I slice 6 I I • I • I • I • I I I Byte $3801 (14337) :Bit va1ue=$3C(60) I 
I --------1--1--1--l---1---1---1--1 I 
I slice 7 I I I I I I I I Byte $3C01 (15361) :Bit va1ue=$OO(oo) I 
I --------1--l--l--1--l---l--1---l I 
I bit values of dots I 
I 64 32 16 a 4 2 1 I 
I $40 $20 $10 $8 $4 $2 $1 I 
1-----------------------------C--------------------------I 

Figuring out what memory locations to use for 
a particular screen location is considerably less 
straightforward. There are several viable 
approaches: 

1. You may figure it out from studying figure 
16.3A and the description which follows of the 
high~resolution version of the wrap-around process 
previously described. 

2. You can figure it out from the high
resolution graphics addressing plan that creates 
this wrap-around process. It is described in figure 
16.3D. , 
l-----------------------------------------------------1 
I Figure 16.30 - Addressing Plan for qigh-Resolution Graphics I 
1-----------------------------------------1 
I I I I I 
I SEUI:T I SEJB:T I <;EJB:T I SEUI:T Wl!Ol OF 120 I 
I WUO! I wurn OF B I lfliOl OF B I TE>cr'-Oli'.RACTER POSITIOl'IS I 
I qr-RES PG I SLICES OF IMACOO-LINESI OR 740 IXY!' I'O'>ITIOOS I 
I 001 OR 010 I Ml\COO-LitqEI I !>I OlfJSl'N MACRO-LI"lE SLICE I 
I I I I I I I I I I I I I I I I I 
l----------------------------------------------1 
I I I I I 
I I I I I 
I ---------------------------------1 
I 15 14 13 12 11 10 9 a 1 6 5 4 3 2 1 o I 
1<-M.S.B, OF i'\DDRESS---->1<-----L.S.B. OF i'\DDRE'lS--.:.---->1 
I I 
l------------------------------------------'--------1 

3. You can look it up in a table. Figure 16.3E is 
a table applicable to page 1 of high-resolution 
graphics, and figure 16.3F is a corresponding table 
for page 2 of high-resolution graphics. 

4. However, for most routine activities, the 
simplest and most effective method is to let the 
computer do the work for you. The system 
monitor and the Applesoft interpreter contain 
subroutines that will do the appropriate calcula
tions~(or table look-ups) and allow you to specify 
only the screen-position coordinates. 

The Apple Atlas will help you find this soft
ware in cases where it is not convenient to use the 
Applesoft BASIC commands directly. The 
available software ranges from subroutines that 
perform essentially the same functions as the 
Applesoft BASIC commands to ones that perform 
only the byte-addressing for you. 

It is important to note that the use of 8. bytes 
per character for this type of character representa
tion (as opposed to the 1 byte per character with 
ASCII code and text/low resolution means of 
representation) shows clearly why the high
resolution memory buffers must be eight times the 
size of the text/low resolution buffers $2000 (8192 
decimal) bytes instead of $400 (1096 decimal) 
bytes. However the number of characters that can 
be. represented in a character position is not 
limited to the ASCII set, but is limited primarily 
by the ability of the human eye to recognize dif
ferences in the 2/\56 (many thousands of billions) 
possible bit combinations. You can create Cyrillic, 
Hebraic, Arabic, Chinese, or any arbitrary type of 
character :representations using this technique. 

Each of the eight slices that make up the 
horizontal divisions of a character becomes a 
separately-controllable unit for high-resolution 
graphics display purposes. Since there are eight 
macro-lines and eight slices per macro-line, there 
are 8 x 8 = 64 high-resolution graphics macro
line slices in a high-resolution graphics display 
buffer. 

As with the text area three display-lines of 40 
character-widths each macro-line (and each slice 
of each macro-line) contain three blocks of 40 
characters. Since_ each character position (or 
character position slice) is seven dots wide, the 

' · total graphics screen must be 7 x 40 = 280 dots 
wide. 

As with text/low-resolution graphics, these 
120 displayable character positions are combined 
with eight non-displayable scratchpad positions, 
which are made available to the peripheral slots as 
dedicated memory space for their individual uses. 

The wrap-around process is identical at the 
whole-character or macro-line level, whether the 
characters are created by low-resolution or high
resolution techniques. Therefore the slices wrap
around to create three graphic display lines 
(GDL's) per macro-Fne slice or three packets of 
eight GDLs per macro-line. Since there are eight 
macro-lines per screen display 3*8•8• = 192 
graphic display lines (GDL's) cover the total 
display screen of 64 slices for the whole screen. 
The same macro-line slices appear physically one
third of a screen apart - one in the top ~ of the 
screen, one in the middle ~, and one in the bot
tom Y3 - so they appear 64 graphic display lines 
apart. 

A careful examination of the detailed map of 
correspondences between screen locations (figure 
16.3E, page 1, and figure 16.3F, page 2) clearly 
shows the macro-line arid~ screen repetition pat
terns we have discussed. 



Chapter XVI 117 

Note that within a macro-line- each slice is 
separated from .the adjacent one by exactly $400 
(1024 decimal) locations. This means that we 
could consider that the high-resolution graphics 
area was actually organized into a graphics macro
line concept based on a logical display eight units 
high - in this case eight slices by 1024 dot-display 

positions- and that this super macro-line is fold
ed twice. The detailed analysis at this level is left 
to the reader. 

The inverse mapping from memory location to 
text line is included in the detailed memory map 
in the Atlas. 

--------------------------------------------------------------------------------------------1 . 
Figure 16. 3El (First lialf - 'i i-Res Page 1 ) I 

I 
Mapping between Screen Display Line Position & 'iigh-Resolution Graphics Screen Buffer Addresses! 

<----mP 1/3 OF ~REEN-----> <----MIDDlE 1/3 OF ~REEN-> <--OO'I"OCM 1/3 OF s:~--> I 
I I 

GDL 'iex Addrs Decimal 1\ddrs 1 I GDL 'iex Mdrs Oecimal Addrs I GDL 'iex Addrs Decimal Mdrs I 
• • • • • • • • • • • • . • • • • • • • • • • • • • .• • • , • • • • • • • • • • • . • macro-line 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • I 
000 $2000-$2027 (8192-8231) 064 $2028-$204F (8232-8271) 128 $2050-$2077 (8272-8311) I 
001 $2400-$2427 (9216~9255) 065 $2428-$244F (9256-9295) 129 $2450-$2477 (9296-9335) I 
002 $2800-$2827 (10240-10279) 066 $2828-$284F (10280-10319) 130 $2850-$2877 (10320-10359) I 
003 $2C00-$2C27 (11264-11303) 067 $2C28-$2C4F (11304-11343) 131 $2C50-$2C77 (11344-11383) I 
004 $3000-$3027 (12288-12327) 068 $302B-$304F (12328-12367) 132 $3050-$3077 (12368-12407) I 
005 $3400-$3427 (13312-13351) 069 $3428-$344F (13352-13391} 133 $3450-$3477 (13392-13431) I 
006 $3800-$3827 (14336-14375) 070 $3828-$384F (14376-14415) 134 $3850-$3877 (14416-14455) I 
007 $3C00-$3C27 (15360-15399) 071 $3C2R-$3C4F (15400-15439) 135 $3C50-$3C77 (15440-15479) I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . na.cro-line 1 . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . I 
008 $2080-$20A7 (8320-8359) 072 $20AB-$20CF (8360-8399) 136 $20D0-$20F7 (8400-8439) I 
oo9 $2480-$24A7 (9344-9383) o73 -s24AB-$24CF (9384-9423) 137 $24D0-$24F7 (9424-9463) 1 
o1o s2aao-s2RA7 < 10368-10407) o74 $2BAB-$20CF < 104olr10447) 138 $28D0-$2BF7 < 10441rl0487) 1 
011 $2CB0-$2CA7 (11392-11431) 075 $2CA8-$20CF (11432-11471) 139 $2CD0-$2CF7 (11472-11511) I 
012 $3080-$30A7 (12416-12455) 076 $30AB-$30CF (12456-12495) 140 $30D0-$30F7 (12496-12535) 
013 $3480-$34A7 (13440-13479) 077 $34AB-$34CF (13480-13519) 141 $34D0-$34F7 (13520-13559) 
014 $3880-$38A7 (14464-14503) 078 $38A8i$3aCF (14504-14543) 142 $38D0-$38F7 (14544-14583) 
015 $3C80-$3CA7 (15488-15527)"' 079 $3CAB-$3CCF ( 15528-15567) 143 $3CD0-$3CF7 (1556a-15607) 
••••••••••••••••••••••••••••••••••..•••••• • Itl2lcro-line 2 • •••••••••••••••••••••••••••••••• ·~· •••• 
016 $2100-$2127 (8448-8487) 080 $2128-$214F (8488-8527) 144 $2150-$2177 (8528i8567) 
017 $2500-$2527 (9472-9511) 081 $2528-$254F (9512-9551) 145 $2550-$25g7 (9552-9591) 
018 $2900-$2927 (10496-10535) 082 $292B-$294F (10536-10575) 146 $2950-$2977 (10576-10615) 
019 S2000-$2D27 (11520-11559) 083 $2D28-$2D4F (11560-11599) 147 $20501$2077 (11600-11639) 
020 $3100-$3127 (12544-12583) 084 $3128-$314F (12584-12623) 148 $3150-$3177 ( 12624':"12663) 
021 $3500-$3527 (13568-13607) 085 $3528-$354F (13608-13647) 149 $3550-$3577 (13648il3687) 
022 $3900-$3927 (14592-14631) 086 $392B-$394F (14632-14671) 150 $3950-$3977 (14672-14711) 
023 $3000-$3D27 (15616-15655) 087 $3D28-$3D4F (15656-15695) 151 $3D50i$3D77 (15696-15735) 
. . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . • . . rnctcro-line 3 •..... · . • . • •..•...••.•••••• ": ••••••••••.. J 
024 $2180-$21A7 (8576-8615) 088 $21AB-$21CF (8616-8655) 152 $21D0-$21F7 ( 8656-8695) I 
025 $2580-$25A7 (9600-9639) 089 $25AB-$25CF (9640-9679) 153 $25D0-$25F7 (9680-9719) I 
026 $2980-$29A7 (10624-10663) 090 $29A8-$29CF ( 10664-10703) 154 $29D0-$29F7 (10704-10743) I 
027 $2D80-$2DA7 (11648-11687) 091 $2DAB-$2DCF (11688-11727) 155 $2DD0-$2DF7 (11728-11767) I 
028 $3180-$31A7 (12672-12711) 092 $31AB-$31CF (12712-12751) 156 $3100-$31F7 < 12752-12791 > I 
029 $3580-$35A7 (13696-13735) 093 $35AB-$35CF (13736-13775) 157 $35D0-$35F7 (13776-13815) I 
030 $3980-$39A7 (14720-14759) 094 $39AB-$39CF (14760-14799) 158 $39D0-$39F7 (14800~4839) I 
031 $3080-$3~7 (15744-15793) 095 $3DA8-$3DCF (15784-15823) 159 $3DD0-$3DF7 (15824-15863) I 

1------------------------------------------------- I 

1------------------------------------------------------------------ -1 
I Figure 16.3E2 (Second 'ialf - qi-Res Page 1) I 
I Mapping between Screen Display Line Position & <Ugh-Resolution Graphics Screen Buffer Addresses I 
I . 
I <---mP 1/3 OF S:REEN-----> <----MIDDlE 1/3 rP S:REEN--> <--OO'l"IXM 1/3 rP SCREEN--> I 
I . . I 
I GDL >lex Add'rs Decimal Mdrs IGDL qex Addrs Decimal Addrs IGDL Hex Addrs Decimal Addrs I 
I •.•••••••.••.•.•••••.•...•••••..••..••.•••. rna.cro-line 4 . ......••.....•.•.......•. · " • • • • • · · • • · · I 
1 032 s22oo-s2221 (8704-8743) o96 $2228-$224F <~n44-87B3) 160 $2250-$2277 (8784~3) I 
I 033 $2600-$2627 (9728-9767) 097 $262B-$264F (9768-9Bf:l7) 161 $2650-$2677 (9808-9847) I 
1 o34 $2A00-$2A27 < 10752-10791 > o98 $2A28-$2A4F < 10792-10831 > 162 S2~5o-s2~77 (1083rloa71 > I 
I 035 $2E00-$2E27 (11776-11815) 099 $2E28-$2E4F (11816-11855) 163 $2E50-$2E77 (11856~11895) I 
I 036 $3200-$3227 (12800-12839) 100 $3228-$324F (12840-12879) 164 $3250-$3277 (12880-12919) I 
I 037 $3600-$3627 (13824-13863) 101 $362B-$364F (13864-13903) 165 $3650-$3677 (13904-13943) I 
I 038 $3A00-$3~27 (14B48-14qa7) 102 $3A28-$3A4F (14888-14927) 166 $3A50-$3A77 (14928-14967) I 
I 039 $3E00-$3E27 (15872-15911) 103 $3E28-$3E4F (15912-15951) 167 $3E50-$3E77 (15952-15991) I 



118 Chapter XVI 

.......................................... . rna.cro-line 5 ..................................•.... 
040 $2280-$22A7 (8832-8871) 104 $22J\8-$22CF (8872-a911) 169 $2200-$22F7 (8912-8951) 
041 $2680-$26,&.7 (9856-9895) 105 $26~8-$26CF (9896-9935). 169 $26D0-$26F7 (9936-gq75) 
042 $2A80-$2AA7 (10880-10919) 106 $2AA8-$2ACF (10920-10959) 170 $2ADO-$?.M'7 (10960-1()9q9) 
043 $2EB0-$2~7 (11904-11943) 107 $2EAB-$2ECF (11944-11983) 171 $2ED0-$2EF7 (11984-12023) 
044 $3280-$32A7 (12928-12967) 108 $32J\8-$32CF (12968-13007) 172 $3200-$32F7 (13008-13047) 
045 $3680-$36,11.7 ( 13952-13991) 109 $36J\8-$36CF ( 13992-14031) 173 S36D0-$36F7 ( 14032-14071) 
046 $3A80-$3AA7 (14976-15015) 110 $3AAB-$3ACF (15016-15055) 174 $3AD0-$3AF7 (15056-15095) 
047 $3EB0-$3~7 (16000-16039) 111 $3EAB-$3ECF (16040-16079) 175 $3ED0-$3EF7 (16080-16119) 
.......................................... . nacro-llr. 6 ••••••••••••••••••••••••••••••••• •••••• 
048 $2300-$2327 (8960-8999) 112 $2328-$234F (9000"'9039) 176 $2350"'$2377 (90t0"'9079) 
049 $2700-$2727 (9984-10023) 113 $2728-$274F (10024-10063) 177 $275CJ$2777 (10064-11103) 
050 $2800-$2827 (11008-11047) 114 $2828-$362F (1104Br11087) 178 $2BS0r$2877 (11oeer11127) 
051 $2F00-$2F27 (12032-12071) 115 $2F2B-$2F4F (12072:12111) 179 $2F5Qr$2177 (12112-12151) 
052 $3300-$3327 (13056-13095) 116 $332B-$334F (13096-13135) 180 $335Qr$3377 (13136-13175) 
053 $3700-$3727 (14080-14119) 117 $3728-$374F (14120-14159) 181 $3750-$3777 (14160r14199) 
054 $3800-$3827 (15104-15143) 118 $3828~$362F (15144-15183) 182 $385Qr$3B77 (15184-15223) 
055 $3F00-$3F27 (16128-16167) 119 $3F28-$3F4F (1616eil6207) 183 $3F50i$3F77 (1620Srl6247) 

I .......................................... . llB.cro-l~ 7 • ••••.••••••••••••••••••••••••••••••••• 
I 056 $2380-$23,11.7 (9088-9127) 120 $23AB-$23CF (9128-9167) 184 $2300-$23F7 (9169-91207) 
I 057 $2780-$27A7 (10112-10151) 121 $27AB-$2~ (10152-10191) 185 $27D0-$47F7 (10192-18423) 
I 058 $2880-$2~7 (11136-11175) 122 $2~8-$2BCF (11176-11215) 186 $2BD0-$2BF7 (11216-11255) 
I 059 $2F80-$2FA7 (12160-12199) 123 $2FAB-$2FCF (12200-12239) 187 $2FD0-$2FF7 (12240-12279) 
I 060 $3380-$33,11.7 (13184-13223) 124 $33A8-$33CF (13224-13263) 188 $33DO-S33F7 (13264-13303) 
I 061 $3780-$37,11.7 (142oe-14247) 125 $37A8-$37CF (14248-14287) 189 $37DO-S37F7 (14288-14327) 
I 062 $3880-$3~7 (15232-15271) 126 $3BA8-$3BCF (15272-15311) 190 $3BD0-$3BF7 (15312-15351) 
I 063 $3F80-$3~7 (16256-16295) 127 $3FA8-$3FCF (16296-16335) 191 $3FD0-$3FF7 (16336-16375) 

1===--======---=--==================--=======::;;:::::====--=====1 
I Figure 16.3Fl (First lialf - 'ii-Res Page '2) I 
iMapping between Screen Display Line Position & qigh-Resolution Graphics Screen Buffer Addresses 
I 
I <---'IDP 1/3 OF OCREEN----> <--MIOOLE 1/3 OF OCREEN--> <---OOTI'CM 1/3 OF OCREEN--> 
I 
I GDL 'iex Addrs Decimal Mdrs GDL 'iex Addrs Decimal Addrs GDL qex Addrs Decimal Addrs 
I ..••...................................... . na.cro-line 0 ••••••••••••••••••••••••••••••••••••• 
I 000 $4000-$4027 (16384-16423) 064 $4028-$404F (16424-16463) 128 $4050-$4077 (16464-16503) 

001 $4400-$4427 (17408-17447) 065 $4428-$444F (17448-17487) 129 $4450~$4477 (17488-17527) 
002 $4800-$4827 (18432-18471) 066 $4B28-$484F (18472-18511) 130 $4850-$4877 (18512-18551) 
003 $4C00-$4C27 (19456-19495) 067 $4C28-$4C4F (19496-19535) 131 $4C50-$4C77 (19536-19575) 
004 $5000-$5027 (20480-20519) 068 s5028-$504F (20520-20559) 132 S505o-s5o77 (20560-20599) 
005 $5400-$5427 (21504-21543) 069 $5428-$544F (21544-21583) 133 $5450-$5477 (21584-21623) 
006 $5800-$5827 (22528-22567) 070 $5828-$584F (22568-22607) 134 $5850-$5877 (22608-22647) 
007 $5C00-$5C27 (23552-2359i) 071 $5C2B-$5C4F (23592-23631) 135 $5C50-$5C77 (23632-23671) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ItB.cro-line 1 ....................................•.. 
008 
009 
010 
011 
012 
013 
014 
015 

$4080-S40A7 (16512-16551) 
$448b-S44A7 (17536-17575) 
$4880-$48A7 (18560-18599) 
$4CB0-$4CA7 (19584-19623) 
$5080-$50A7 (20608-20647) 
$5480-$54}1.7 (21632-21671) 
$5880-$58A7 (22656-22695) 
$5CB0-$5CA7 (23680-23719) 

072 
073 
074 
075 
076 
077 
078 
079 

$40A8-$40CF (16552-16591) 
$44AS-$44CF (17576-17615) 
$4BAB-$48CF (18600-18639) 
$4CA8-$4CCF (19624-19663) 
$50A8~$50CF (20648-20687) 
$54A8-$54CF (2~672-21711) 
$58A8-$5ACF (22696-22735) 
$5CAB-$50CF (23720-23759) 

...•......••.•............................ . rra.cro-line 2 . ...... . 

136 
137 
138 
139 
140 
141 
142 
143 

$4(D0-$40F7 (16592-16631) 
$44D0-$44F7 (17616-17655) 
$4800-$48F7 ( 1864()18679) 
$4CD0-$4CF7 (19664-19703) 
$5CD0-$50F7 ( 20688""20727) 
$54D0-$54F7 (21712:21751) 
$58D0-$58F7 (22736-22775) 
$5CD0-$5CF7 (2376o-23799) . ............................ . 

016 $4100-$4127 (16640-16679) 080 $4128-$414F (16690-16719) 144 $4150i$4177 (16~16759) 
017 $4500-$4527 (17664-17703) 081 $4528-$454F (17704-17743) 145 $4550-$4577 (17744-17783) 
018 $4900-$4927 (18688-18727) 082 $4928-$494F (18728-18767) 146 $4950-$4977 (1876Sr18907) 
019 $4000-$4027 (19712-19751) 083 $4D28-$4D4F (19752-19791) 147 $4D50i$4D77 (19792-19831) 
020 $5100-$5127 (20736-20775) 084 $5128-$514F (20776-20815) 148 $5150-$5177 (20816-20855) 
021 $5500-$5527 (21760-21799) 085 $5528-$554F (21800-21839) 149 $555or$5577 (21840i21879) 
022 $5900-$5927 (22784-22823) 086 $5928-$594F (22824-22863) 150 $59So-$5977 (22864-22903) 
023 $5000-$5027 ( 23808-2384 7) 087 $5028-$5D4F ( 23848-23887) 151 $505Qr$5077 ( 2388fr23927) 
• . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rrB.cro-line 3 . . . . . • . . . • . . . . . . . ......•...•......•.. 
024 $4180-$41A7 ( 16769-16807) 088 $41A8-S41CF ( 16808-16847) 152 $4100-$41F7 ( 16848-16887) 
025 $4580-$45,&.7 (17792-17831) 089 $45A8-$45CF (17832-17871) 153 $45D0-$45F7 (17872-17911) 
026 $4980-$49,&.7 ( 18816-18855) 090 $49A8-$49CF ( 18856-18895) 154 $49D0-$49F7 ( 18896-18935) 
027 $4IBJ-$4Jlll.7 (19840-19879) 091 $4DAB-$41X!F (19880-19919) 155 $4000-$4DF7 (19920-19959) 
028 $5180-$51,&.7 (20864-20903) 092 $51A8-$51CF (20904-20943) 156 $51D0-$51F7 (20944-20983) 
029 $55B0-$55A7 (21888-21927) 093 $55AB-$55CF (21928-21967) 157 $5500-$55F7 (21968-22007) 

I 030 $5980-$59,&.7 (22912-22951) 094 $59A8-$59CF (22952-22991) 158 $5900-$59F7 (22992-23031) I 
I 031 $5D80-$5DA7 (23936-23975) 095 $5DAB-$5DCF (23976-24015) 159 $5DD0-$5DF7 (24016-24055) I 
l--------------------------------------------1 



Chapter XVI 119 

------------------------1 
Figure 16.3F2 (Second lialf -Iii-Res Page 2) I 

. I 
Mapping between Screen Display Line Position & liigh-Resolution Graphics Screen Buffer Addresses I 

I 
<---'IDP 1/3 (p S:::REI!N---> <--MIDDlE 1/3 OF SCREEN'---> <---~ 1/3 (p s:::REEN--> I 

I 
<DL "lex Addrs Decimal Addrs GDL liex Adrlrs Decimal Addrs GDL 1ex Addrs Decimal Addrs I 
•••••••••••••••••••••••••••••••••••••••••• • ITB.cro-line 4 • •••••••••••••••••••••••••••••••••••• 
032 
033 
034 
035 
036 
037 
038 
039 

$4200-$4227 (16896-16935) 
$4600-$4627 (17920-17959) 
$4M0-$41\27 (18944-1!3983) 
$4EXX>-$4E27 ( 19968-20007) 
$5200-$5227 (20992-21031) 
$5600-$5627 (22016-22055) 
$5A00-$51\27 (23040-23079) 
$5E00-$5E27 (24064-24103) 

096 
097 
098 
099 
100 
101 
102 
103 

$4228-$424F (16936-16975) 
$4628-$464F ( 17960-17999) 
$4A28-$41\4F ( 18984-19023 ) 
$4E28-$4E4F ( 20000-2004 7) 
$5228-$524F (21032-21071) 
$5628-$564F (22056-22095) 
$51\28-$51\4F (230A0-23119) 
$5E28-$5E4F (24104-24143) 

160 
161 
162 
163 
164 
165 
166 
167 

$4250-$4277 (16976-17015) 
$4650-$4677 (18000-18039) 
$4A50-$4A77 (19024-19063) 
$4E50-$4E77 (20048-20087) 
$5250-$5277 (21072-21111) 
$5650-$5677 (22096-22135) 
$51\50-$51\77 (23120-23159) 
$5E50-$5E77 (24144-24183) 

•••••••••••••••••••••...••.•.••••..••.••.. • 11B.cro--line 5 • •••••••.•••••••••••••.•••••••.•••••• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

040 
041 
042 
043 
044 
045 
046 
047 

$4280-$42A7 ( 17024-17063) 
$4680-$46A7 (18048-18087) 
$4A80-$4AI\7 (19072-19111) 
$4E80-$4EI\7 (20096-20135) 
$5280-$521\7 (21120-21159) 
$56B0-$56A7 (22144-22183) 
$SA80-$5AI\7 (23168-23207) 
$5E80-$5EI\7 (24192-24231) 

104 
105 
106 
107 
108 
109 
110 
111 

$421\8-$4~ (17064-17103) 168 
$46A8-$46CF (18088-18127) ' 169 
$41\AS-S4ACF (19112~9151) 170 
$4~$4ECF (20136 20175) 171 
$52ABI$5~ (21160-21199} 172 
$56A8-$56CF (22184-22223) 173 
$5AA8-$5ACF (23208-23247) 174 
$5EA8-$5ECF (24232-24271) 175 

$42D0-$42F1 (17104-17143) I 
$46D0-$46F1 (18128-18167) I 
$4AD0-$4AF1 (19152-19191) I 
$4ED0-$4EF7 (20176-20215) I 
$5200-$52F7 (21200-21239) I 
$56D0-$56F1 (22224-22263) I 
$5AD0-$5AF7 (23248-23287) I 
$5ED0-$5EF7 (24272-24311) I 

......••........•...•...•................. . rre.crcr line 6. . . . . . . . . • • • . • • • • • • • • • • • • • • • • • • . • • • • • . • I 
048 $4300-$4327 (17152-17191) 112 $4328-$434F (17192-17231) 176 $43SOi$4377 (17232-17271) 
049 $4700-$4727 (18176-18215) 113 $4728-$474F (18216-18255) 177 $4750i$4777 (18256-18295) 
050 $4800-$4827 (19200-19239) 114 $4828-$562F (19240-22063) 178 ~$4877 (192B0r19319) 
051 $4F00-$4F27 (20224-20263) 115 $4F28-$4F4F (20264-20303) 179 $4FS0r$4P77 (20304-20343) 
052 $5300-$5327 (21248-21287) 116 $5328-$534F (21288-21327) 180 $5350i$5377 (2132Si2136~ 
053 $5700-$5727 (22272-22311) 117 $5728-$574F (22312-22351) 181 $5750-$5777 (2235T22391) 

I 054 $5800-$5827 (23296-23335) 118 $5828-$562F (23336-22063) 182 $SBSOi$5B77 (23376-23415) 
I 055 $5F00-$5F27 (24320-24359) 119 $5F28-$5F4F (24360-24399) 183 $5F5Gr$5F77 (2~24439) 
I .....•.................................... . rna.cro-line 7 . .........••.••.••.........•.•.....•• 
I 056 $4380-$43A7 (17280-17319) 120 $43~-$43CF (17320-17359) 184 $43D0-$43F7 (17360-17399) 
I 057 $4780-$47A7 (18304-18343) 121 $471\8-S47CF (18344-18383) 185 $47D0-$67F7 (18384-26615) 
I 058 $4B80-$4BA.7 (19328-19367) 122 $4BA.8-$40CF (19368-19407) 186 $4B00-$4BF7 (19408-19447) 
I 059 $4F80-$4P.7 (20352-20391) 123 $4FI\8-$4~F (20392-20431:} 187 $4FD0-$4FF7 (20432-20471) 
I 060 $53B0-$53A7 (21376-21415) 124 $531\8-$53CF (21416-21455) 188 $53D0-$53F7 (21456-21495) 
I 061 $5780-$57A7 (22400-22439) 125 $571\8-$57CF (22440-22479) 189 $57D0-$57F7 (22480-22519) 
I 062 $SB80-$5BA.7 (23424-23463) 126 $5BA.8-$5BCF (23464-23503) 190 $5BD0-$5BF7 (23504-23543) 
I 063 $5F80-$5FI\7 (24448-24487) 127 $5FA8-$5FCF (24488-24527) 191 $5FD0-$5FF7 (24528-24567) 
1---------------------------------------------------

I 
I 
I 
I 
I 

16.4 
Getting 560-Position Horizontal 
Resolution from the Apple 

Unfortunately the 192 x 280 bit-mapped view
point, which is the standard Apple viewpoint of 
the capabilities of their machine, can be 
misleading and cause you to either overestimate or 
understimate the capabilities of their machine. 
The Apple II system is actually capable of plotting 
not at just 280, but at S60 different points along 
each line. 

If you have difficulty believing that the Apple II 
can plot at a resolution of S60 points, the following 
demonstration suggested by Bob Bishop (pre
viously with Apple Computer Inc.) will make it 
uncontestable. This demonstration uses the 
system monitor to set bits in the correct locations 
and avoids the complexities of relating decimal ad
dresses (required by BASIC POKE statements) to 
screen bit locations. First clear the display area of 
memory using the monitor move command and 
set the appropriate soft switches for high
resolution graphics with four lines of text at the 
bottom: 

(Warning: Very early models of the Apple, 
which had only four colors (including black and 
white as colors) do not operate in the fashion 
described in this section, but can be made to do so 
with a very minor hardware modification which 
has been extensively documented in the literature 
as a means of expanding from four. to six colors.) 

*2000:0 
*2001 <2000.3FFEM 
*COSO COS3 COS? 

(See the standard Apple documentation on the 
use of monitor c:ommands from the keyboard if 
these typed-in monitor commands confuse you.) 



120 Chapter XVI 

Next, use monitor commands to turn on 
various bit-combinations in memory location 
$2000, which plots at the top left comer of the 
screen. (The low-order bit, value 1, displays in the 
leftmost of the 280 bit-mapped positions. The next 
bit, value 2, displays in the next of the 280 bit
mapped positions, etc.) The monitor command 

*2000:1 
*2000:2 
*2000:4 

turns on the first bit-mapped position. 
turns on the second. 

turns on the third, and so on. By following this 
pattern through the entire line of text, from 
$2000-$2027, you will get the 280 dot-positions 
that Apple standard documentation tells you you 
can get. 

However, what about the color bit? Does it af
fect position as well as color? You can demonstrate 
this point by using a black-and-white monitor, or 
turning down the color controls on a color TV. The 
color bit is the most significant bit in the byte so 
its value is $80 (127 decimal). Let's try the same 
sequence of movements changing the sign bit from 
off to on at each bit position: · 

*2000:1 
*2000:81 
*2000:2 
*2000:82 
*2000:4 
*2000:84 

Note that for each of these monitor commands 
the dot shifted a tiny bit to the right. By following 
this pattern through the entire line of text, from 
$2000-$2027, you get 560 discretely andrJ 
distinguishably different dot positions. 

You can now conceive of the sign-bit as being a 
left/right bit for halves of the previous 280 bit
mapped locations. Now, the symbolic representa
tion of the 280 position standard Apple bit
mapping pattern shown in figure 16.1A becomes 
the 560 position pattern shown in figure 16.4A. 

1----------------------------· 
!Figure 16.4.>. - A 560-step interpretation of l\pple J[ I 
I black and .mite fligh-Resolution Graphics I 
I -----------------1 
I IL MI ..... IL Ml 
181'1' Is st ..... Is sl 
IFOSNI8 81 ..... 18 81 
I I o I 1 I 2 I 3 I 4 I s I 6 I 1 1 ..... 1 o I 1 I 2 I 3 I 4 I s I 6 I 1 I 
I I<- base byte -->I ...•• I<- base byte + 39 -> 1 
I I 1 ..... 1 I 
IX- IO'OIO'OIO'OIO'OIO'OIO'OIO'OI f ..... IS'SIS'SIS'~IS'SIS'SIS'SIS'SI I 
IFOSNIO'OIO'OIO'OIO'OIO'Oil 'lll' 11 1 ..... 14'414'415 '5 I 5 '5 I 51515' SIS '51 I 
I IO' 112 '314'516'718'910' 112' 3IL/RI ••.•• 16'718'910' 112' 314' SI6'718'9IL/RI 
I --------------------------1 

Next, turn up the color controls if you are using 
a color display. If you cycle through the same 
monitor commands, the 560 line positions cycle 
through a color pattern: 

(Line Position) 
;0 ;1 ;2 ;3 ;4 ;5 ;6 ;7 ;8 ; ... 

(Color) 
/Violet/Blue/ Green/ Orange/Violet/Blue/ Green 

/Orange/Violet/ ... 

(Intra-Cycle Count) 
;0 ;1 ;2 ;3 ;0 ;1 ;2 ;3 ;0 ; ... 
(Count of Completed Cycles) 
;0 ;1 ;2 

There are 140 violet points, 140 blue points, 
140 green points, and 140 orange points in our 560 
point line. Our color resolution in any of these 
colors can only be 140 positions across the screen! 
Thus, figure 16.1A, which shows the standard 
Apple pattern, can be reorganized for color as well 
as for black-and-white, this time into the pattern 
shown in figure 16.4B. 

The simplicity and clarity of this viewpoint 
gives us a very easy-to-understand, albeit '·not too 
efficient or fast-plotting, method of writing a 
BASIC subroutine to permit 560-position resolu
tion plotting as shown in figure 16.4B. 

1----------------------------------1 
I Figure 16.48 - A Sill\>lified 140-step interpretation of I 
I Apple J [ 'ligh Resolution Color Graphics I 
I -~------------------------------1 
I 1 IL MI ..... IL HI 
l8t'l' Is st ..... Is sl 
IPOSNI8 81 ..... 18 81 
I I o I 1 I 2 I 3 I 4 Is I 6 I 7 1 ..... 1 o I 1 I 2 I 3 I 4 Is I 6 I 1 I 
I I<- base byte -->I ..... I<- base byte + 39 -->I 
I I 1 ..... 1 I 
loornfv/B/G/olv/B/G/OIV/8/G/olv/81 0/11 •.... lv/B/G/OIV/8/G/OIV/8/G/olv/BI 0/11 
I I 1 ... ,.1 I 
tx- I I I I IL/RI ..... I I I I IL/RI 
IFOSNI o I 1 I 2 I 3 IL/RI ..... 136+1 137 I 13!l I 139 IL/RI 
I ----1 

Since graphics programs often get quite large 
and complicated for Applesoft graphics program
mers, these amounts of space, even if you choose 
the best one for your particular situation, are often 
uncomfortably small. 

Regardless of the situation, it can always be 
eased somewhat by careful planning and memory 
conservation. Don't forget 'dynamic 
conservation,' which occurs when a program is 
run, as well as 'static conservation,' when the pro
gram is written. Be sure to include garbage collec
tion whenever needed to assure that space 
allocated for strings (which are no longer needed) 
is recovered. Otherwise you may be surprised from 
time to time by a totally unsuspected 'OUT OF 
MEMORY ERROR.' 

You can also expand the area available for 
allocation. Obviously availability of a language 
card or equivalent and appropriate software to 
allow all of DOS to be moved out of the Applesoft 
allocation area and into ROM address space is a 
considerable boon. 



Don't forget there are other ways, which re
quire no new hardware, to expand the memory 
space available. Perhaps parts of the program can 
be performed by machine-language subroutines 
hidden away in areas not otherwise available to 
Applesoft je.g., memory page 3 in the normally 
unused section $0300-$03CF, or in unused por
tions of DOS). 

The 'Memory Allocation Patching' technique 
described in the next section can also recoup 
significant amounts of memory that might other
wise be wasted. It makes available program space 
that would be wasted because it is not contiguous 
to the remainder of the program. 

A true escape from the absolute limits of the 
Applesoft allocation scheme is 'chaining,' because 
it allows you to use the same space over and over 
again for different segments of program. But you 
pay for the benefits of chaining with programming 
restrictions, an increase in planning and develop
ment time, and significant delays in program 
execution. 

Obviously it is up to the program designer to 
estimate how much memory he is going to need 
and then make a choice of which technique or 
combinantion of techniques are most conven
iently and effectively able to meet the require
ment. Don't forget that programs ALWAYS take 
more space than originally planned and that your 
strategy should include plenty of opportunities for 
future expansion. 

16.5 
Procedure for Overcoming Memory 
Allocation Conflicts During Development 
of Applesoft High-Resolution Graphics 
Programs 

16.5.1 Preamble 

The Applesoft Interpreter only knows how to 
allocate memory to programs if that spa(1e is in a 
single, uninterrupted block. However, the high
resolution graphics pages are in the middle of the 
available block of memory. Instead of using 
HIMEM or Start-of-Program to force the inter
preter to stay on only one side of the prohibited 
area, you can break your program into two 
modules, one goes below the prohibited area and 
the other will go above it. Then patch your pro
gram to fool the interpreter into believing that it 
has one big program with internal linkages. 

This process places much less severe restric
tions on your actions during further development 
or expansion of your program than do more drastic 
techniques such as CHAINing. However, you do 

Chapter XVI 121 

not want to use this technique prematurely if there 
is no real need to do so. Although you can add onto 
the program, you must be very careful about inter
nal modifications that might alter the validity of 
the module split. 

In this section a procedure is presented that 
provides full protection and/ or warnings to keep 
you out of memory allocation trouble. It starts 
with simple protective measures appropriate to 
moderate-size programs, switches you into the 
low-module 'memory allocation patching' pro
cedure when it becomes necessary, and describes 
that procedure in step-by-step detail. At the end, 
when a program becomes so huge that it cannot fit 
into· memory at one tie, it suggests the escape of 
chaining. 

The procedure described below is nowhere near 
as long or complicated as it may seem on first 
glance. The length of the description is to make 
absolutely sure that you understand not just how 
to follow the procedure mechanically, but also 
how and why the procedure works. This will per
mit you to adapt the procedure and its concepts to 
other situations and environments. 

16.5.2 The Procedure Step-By-Step 

If you are developing a new program, start at 
#1. If you are planning a very large program where 
availability of sufficient memory space is likely to 
become a problem, be conscious of memory con
servation techniques from the very beginning of 
program development. Don't forget the possibility 
of having two versions of your program: one with 
maximum readability and documentation and the 
other compacted by a utility program that 
squeezes out all unnecessary REMarks, line 
numbers, etc. 

If you have an existing program that seems to 
be in trouble because of memory allocation con
flicts between Applesoft and high-res graphics 
when it is working with default values of start-of
program and HIMEM, start at #8. 

1. Evaluate your problem requirements and 
choose either the HIMEM or start-of-program 
changing strategy for protection against allocation 
conflicts. jfigures 16.5A, B or C may be helpful.) 

2. Write your program and use it normally until 
you run into an 'OUT OF MEMORY' condition. 
Save your program. 

3. If program is protected against allocation 
conflict by a HIMEM change, go to step 4H; if it is 
protected by a start-of-program change, go to step 
4L. 

4H. !Protected by HIMEM Change). Set 



122 Chapter XVI 

HIMEM back to its original value (typici:tlly , 
$9600). You are no longer protected against alloca
tion conflicts. Reload the program. Check the end
of-program address [PRINT PEEK (175) + 256 
*PEEK (176)]. If the program already extends into a 
graphics page, which you will be using for 
graphics, go to step 6. Otherwise go to step 5. 

4L. [Protected by Start-of-Program Change]. 
Set start-of-program back to its original value 
(typically $0800). Reload the program. You are no 
longer protected against allocation conflicts. 

5. The Applesoft interpreter is now operating in 
its default mode, allocating program and variables 
from the bottom upwards and strings from 
HIMEM downwards. You will no longer be OUT 
OF MEMORY. However, any code you write from 
now on is potentially subject to destruction by 
high-res drawing activities once the program grows 
large enough for conflict to occur again. 

6. Continue developing your program and 
adding additional code as needed. Always save 
your program each time you make a change before 
running it. 

7. If, as you continue to add to your program, 
you run into obvious conflicts, you will know the 
program has grown enough so that even with the 
extra space now provided it has grown into the con
flict area. (Strong indications of conflict are strange 
characters on the screen, or destruction of part of 
your program. Unexplained computational mal
functions can also be signs of conflict). Go to 8. 

If you do not run into obvious conflicts by the 
time you finish your program development, you 
may still have run into undetected conflicts. 
Check the end-of-arrays/beginning-of-free-space 
address [PRINT PEEK (109) + 256 *PEEK (110)]. If 
it i& in the conflict area you will have to go to 9 to 
assure reliable operation of your program. If this 
test does not detect any hidden conflicts, relax! No 
further action is required - you need not do any 
memory allocation patching. 

8. Verify that a true conflict exists by checking 
whether the end-of-arrays/bottom of free space 
[PRINT PEEK (109) + 256 * PEEK(llO)] crosses 
the boundary into a high-res graphics area being 
used. 

If conflict is verified, continue at 9. 

If there is no allocation conflict, you have some 
other kind of bug. Clear it up, then start this pro
cedure over at the beginning, if still appropriate, 

9. Check the end-of-program address [PRINT 
PEEK (175) + 256 * PEEK (176)]. 

If the program is long enough to cross the boun-

dary into the zone of conflict, or is within eight 
bytes of doing so, go to lOL. If it is not that long, go 
to lOS. 

lOS. (Arrive here if program does not need to be 
split before storing it as first module of program). 

Add the statement GOTO * * * to your program 
I* • • is the line number you will use as the first 
line in the second module of the program. The 
eight bytes specified above are used to make sure 
there is space for the GOTO •• • statement.) 

Recheck the end-of-program address to verify 
that the program is still too short to cross over into 
the conflict area. If the recheck indicates a cross 
over, go to lOL. 

Save the program to disk as the first module of 
final program. 

You must have at least one statement in the 
second module of your program, even if it is just a 
REM or END statement. This will force the 
variables and arrays to be located above the 
graphics area and provide a starting point for 
further program development in the second 
module. Create a ne~ program with at least one 
statement (having line number • • • I and save it as 
the second module of the program. 

Go to 11. 

lOL. (Arrive here if the program is too long to 
be used as the first module of the ultimate pro
gram. I You are now faced with the problem of 
figuring out where to cutioff the program so that it 
won't cross into the graphics area. A straightfor
ward way of doing this is to chop statements off at 
the end one at a time, checking the end-of-program 
address [PRINT PEEK (175) + 256 • PEEK (176)] 
until you are at least eight bytes below the boun
dary. Add to the program GOTO * • •, where * • • is 
the line number to be used for the first line of the 
second module. Recheck to verify that the pro
gram is still short enough and save as the first 
module of the program. 

Reload the original (too long) version of the 
program. Delete the code saved in the first 
module. Save it as the second module (or at least 
that part of the second module that has thus far 
been completed. Go to 1!. 

11. If further program development causes you 
to run out of space after memory allocation patch
ing procedure is performed, you may want to come 
back and recover the small amout of unallocated 
space between this module end and the bottom of 
the graphics space. Such refinement should be part 
of a sophisticated overall memory conservation 
program. 



Program development in module 2 can proceed 
without special warnings, but any changes in 
module 1 should trigger a review and revalidation 
of the whole memory allocation status. Be 
especially careful that your program has not grown 
into the conflict area and that the GOTO * * * ad
dress setting described in 13 is correct. 

12. You're ready to patch the memory alloca
tion addresses to link the first and second modules 
together around the graphics area( s ). 

A. Load the first module of the program. 
B. Either: (1) CALL -151 to enter the monitor 
and make the investigations and changes in
dicated using hexadecimal addresses or (2) 
Make the investigations with PRINT PEEKs 
and changes with POKEs using the decimal 
form of the addresses. · 
C. Verify that the end-of-program address 
($AF, $BO or 175,176) is below any high-res 
area used by the program. If not, go back and 
follow the previously prescribed pro~edure 
properly. 
D. Examine the beginning-of-program address 
for module 1 ($67,68 or 103,104). It should 
contain $0801 (decimal 2049), the starting 
address for tlie first module. Change it to 
$4001 (decimal 16385) or $6001 (decimal 
24577), depending upon which high-res pages 
you wish to patch around. 
E. Load the second module of the program. 
F. Verify that the end-of-program address 
($AF,$BO or 175,176) does point to an ~ddress 
above the high-res page Write its value down! 
If not, go back and follow the previously 
prescribed procedure properly. Both modules 
are now verified as being in memory in their 
correct positions. 
G. Change the beginning-of-program address 
($67,$68 or 103,104) back to $0801 (decimal 
2049). The beginning and ending pointers now 
contain both modules of the program and 
there is a big hole in the middle where the 
high-res graphics pages are located. 

13. Now you must modify the GOTO *** in
struction you put at the end of module 1. The end 
of this instruction is located at the position in 
memory you wrote down in instruction 12F. 

The instruction is represented by eight bytes of 
memory organized as follows: 

I 1 I The first two bytes contain the address of 
the following line 
/21 The next two bytes contain the line 
number. 
I 3/ The next byte contains the GOTO token. 
I 4/ The next two bytes contain the GOTO 
line number. 
IS/ The last byte contains all zeros ($00). As 

Chapter XVI 123 

the very last statement of the program it dif
fers from other statements by having an extra 
two bytes of zeros. 

You must modify the first of these items, the 
address of the following line. Its value should be 
one greater than the original end-of-program value 
you wrote down, and its location should be seven 
less than that address in memory. Change it to 
point to the correct new position of that line: 
$4001 (decimal 16385) if the second module is 
located immediately over the primary high-res 
page, or $6001 (decimal 24577) if the second 
module is located immediately above the secon
dary high-res page. 

15. You may continue developing and expand
ing your pro~m subject to the warnings express
ed in 11. If it grows so huge that you run out of 
memory you will have to resort to memory conser
vation techniques for short-term relief, or take the 
big plunge into chaining the program into parts 
that do not occupy memory at the same time. 

16. Miscellaneous Comments: Your program 
size will be 32 or 64 sectors larger than the sum of 
the two modules, with the extra sectors repre
senting the amount of high-res graphic space saved 
in the middle of the program. 

If there is a particular high-res picture you want 
saved in that area, you can BLOAD it in before 
saving the program. However, remember that to 
use it you will have to initialize graphics without 
use of the automatic initialization features of the 
HGR or HGR2 commands; their use can destroy 
the picture before it could be shown. 
: .................... ..: ..................................................... _______ ..._.. ..... ~------------·------·-·----·----·----------; h 

: Figure 1l•.5A I 
I llnory Spaco Anillblt to Appltsolt l'rograMtr Usinq HIIII-RES PRIIIAR'I PII&E lillY I 
: --·----------------------------------------------------------------·----: 
I 1. Dtflulll Mtitbtr HillEl! nor Stut-ol-l'rogna cb1n9fd 

ttiH-SIFFF = t!BH ldtciaal 61441 bytes lor prova• ' milllln 
S4tH-t96fi = t56H ldtciul 221161 bytn lor cbaucttr otrillfl 

I 2. HillE" chanqtd to t!FfF Ito protact prognal 
· tiBH-tiFFF = t!BH ldaciul 61441 lor tvtrytbinql proiraa, varia•ln • otringo 

I 3, Start-oi-ProgrH chantiHI to S4lfi Ito protact prntnal 
t4tH-t96H = t561t ldtciul 221161 lor overytbioqo progna, vuillllts • strints 

I 4. Start-oi-Provao cbanqod and DOS disabltd or aovtd to llnquaqt cu• 
1 t4tH-tBFFF = tBifi ldtciaal 327681 lor ovtrythinq: provu, variallltt ' strinqo 
I s. "••orr All ocali on Pat chi IICJ 
1 ttiH-tiFFF patchtd to t4tH-t96H • t7Efi ldaciaal 3225111 bytn 
I 6. llnory Allocotion Patcbinq tllllllintd with DOS RIIDYil 
I $11181-SIFFF patcbtd to t41fi-tBFFF • t9111 ldaciul 389121 bytos 
: ............................................................................ - .... --------------·-------·----------·--... ----------: 
: ----------------------·------·--·-------------------------------------------: 

Fiqurt 16.9 
l llnory S,act Avoihbh to AppltiDit PrntrHtr usinq HI-RES SEtOIIDARY PII6E DII.Y 
: ------------·--------------------------·-·-·--·-----·--------------·----------------·---: 
I 1. Dthulto lltithtr Stut-of..Prograo nor HillE" cbanqtd 
1 dBN-t3FFF ;, t38H ldtciaal 143361 bytn lor progru ' varilbln; 
l t61fi-t96H • t~l ldaciul 138241 bytn lor cbuactor otrint• 
l 2. HI&HIIEJI chanttd to t3FFf Ito protact prGtrHI 

UUI-t3FFF = $3811 ldociul 143361 lor tvtrythint• prqraa, variallln ' •trings 
I 3. Start-oi..Pr01ra• cbaogtd to t6ttl Ito protact prDI)raal . 

t6lfl-t96tl = $3611 ldaciul 138241 lor tvorytMnv: provru, variallln l strings 
1 4, Start-ol-l'rovu chaolfd an4 DOS dimltd or IDVtd to lantllilt ctrd 

t6tlf-tii'Ff = tBHI ldaciaal 327681 for tvtrythinq 
I 5. hlory Allocation Patching 
I tlllt-t3FfF patchtd to t6111-t9* • t7Efi fdaciul 3225111 bytn 
I 6. ""ory AlloCation Patchint c...,iotd with 108 a-val 
I tllfi-t3FFF patchiHI to t6lfl-tiFFf • $9811 IHI:iul 389121 bytts 
:--·---·--·--·--··--------------------... --------·---------------: 



124 Chapter XVI 

:---------------------------------------------------------------------------------------: 
Figuro lb.5C 

lleoory Spoct Avaihble to AppltSoft ProgriMtr U.ing BOTH Hl&IHI£9 PASES 
:----------------------------------------------------------------------------------------: 
: 1. Default: lltithtr Hl"E" nor Shrt-of-Progru 'h•ngtd 

stBII-t21ff • $1811 ldttiool 61441 for prograo and Ylriablts 

$61tl-$9btl • $3&11 ldttioil 138241 for strings 
: 2. HI"U Ch•nged to SIFFF Ito protut progroo1 

$1Bit-$21ft • SIBil ldttiul 61441 for everything: prograo, voriables l strings 
: 3. Start-oi-Progru Chingtd to fblll Ito protrd progroo1 

$bltl-$9bll • $3&11 lde[ilil 138241 for everything: prograo, nriables • strings 
: 4. Start-of-Prograo Chinged nd DOS di11bltd or oovtd to hnguogr [ird 

$blti-SBFFF • $bllf lde[ilal 2457&1 for tvtrything 
: 5. lle10ry Allo,ation Pat,hing 

tiBit-SIFFF pat,hed to $6ttl-t9bll = t5Eif ldttiuJ 241&41 bytrs 
: b. "e10ry Alloution Pot,hlng [Qibined Mith DOS,. .. .,, 

$181t-SIFFF pat,htd to $6tti-$1BFF = t781t ldotiul 317211 bytes 
I _ ................................................ - .............................. .,. .......... - ................ .,. .. .,..,..,..,. .. .,..,. ........ .,. .......... _ .................. : 

16.6 
Imbedding in Applesoft User 
Memory Space 

The procedure described in 16.5.2 for 
allocating around the high-res graphics space can 
be applied to any arbitrary block of memory space 
within the region allocated by the Applesoft inter
preter. 

The non-Applesoft material will normally be 
BLOADed into place. The exact linkage into the 
Applesoft program depends upon the material and 
your program requirements, but usually can be ac
complished using the BASIC PEEK, POKE, and 
CALL techniques described in earlier chapters. 



Chapter XVII 
The Disk Operating System 
Default Location = Memory Pages 
150-191 ($9600-$BFFFJ 

17.1 
Introduction 

The Apple disk drive is an electromechanical 
device capable of 

1. writing information onto magnetic diskettes, 

2. ja) permitting the physical removal of~disk
ettes; jbJ permitting the storage on an arbitrarily 
large number of diskettes for an arbitrary period 
of time; jcJ permitting the return of any pre
viously recorded diskette to the disk drive, and 

3. reading the information back from the diskette 
for a specific use. ; 

The diskette provides permanent storage; the 
information doesn't disappear when the com
puter is turned off. 

The diskette alsp provides storage in large 
amounts. Each standard Apple diskette can hold 
about 140,000 characters of information; about 

( 

120,000 are available for holding user programs 
and data. You may find it convenient to think of 
that as about 40 pages of text. 

( 

The user sees this information as arranged in a 
file, a named collection of data on the diskette. It 
can contain text, programs, or data. 

For example, if you have DOS active, have an 
Applesoft program in your computer and, type in 
'SAVE FISHBAIT', you copy the program onto the 
disk in the currently active disk drive and create a 
file of type Applesoft named 'FISHBAIT'. jlf you 
already had a file with that name you would 
replace the older version. J 

' 
The DOS is a large and complicated package of 

software/firmware that facilitates the use of 
diskettes and disk drives. With the DOS you don't 
have to worry about how long the program is or 
which locations on the disk are occupied, which 
are available for storing a program, or exactly 
which ones actually to use when you store it. 

DOS enables you to use such ··simple com
mands as LOAD FISHBAIT to retrieve the pro
gram FISHBAIT no matter where it was stored. It 
allows you to write text or numeric data to a disk 
file with little or no more trouble than printing it 
out on a printer. 

The availability of such a combined hardware/ 

software disk system makes a fundamental differ
ence in the capabilities of a microcomputer like 
the Apple. Without them the Apple is a high 
quality toy. With them it is a real, practical tool 
for general-purpose computation, data process
ing, and word processing. 

Disks were not available on the early Apple 
ll's. The first bug-plaguep version of DOS was not 
even released until the latter half of 1978. One 
reason is obvious. With the semiconductor mem
ory technology available at the time the Apple 
was released, the available memory sizes were 
only 4K-l6K and the disk operating system re
quires about 10K of memory. No matter how val
uable a disk might be, that didn't leave much in 
the way of resources to do anything with a disk. 
Once larger capacity memory chips were avail
able at reasonable prices and more Apples were 
expanded to 48K, that imbalance disappeared. 

Yet a majQr legacy of earlier days remains in 
the DOS. The short-cuts and idiosyncrasies that 
were accepted in order to get around the early 
technology I cost problems have made the Apple 
DOS like no other. Not only is the method of is
suance of commands jusing PRINT statements 
with the CTRL-D) quite different from the in
d~stry norm, but there are annoying limitations 
je.g., the special procedures needed for dealing 
with TEXT files). 

Nevertheless, DOS has proven to be usable 
and practical. It allows the user to store and 
retrieve large amounts of data and programs quite 
conveniently by name, successfully insulating 
him from the details of how and where the infor
mation is physically recorded on the diskettes. 

17.2 
How Information Is Organized 
On Apple II Disks 

17 .2.1 Introduction 

The disk drive works in many respects like a 
hybrid combination of record player and tape 
recorder/playback unit. Inside the black paper 
protective carrier of an Apple diskette is a 5 J,4 '' 
diameter disk of oxide-coated plastic jusually 
mylar) with a large hole in the middle, somewhat 
reminiscent of a 45RPM phonograph record. 

The information is recorded on it circularly 
like on a 45RPM record too, except that instead of 
the information being recorded in one long cir
cular spiral, it is recorded in 35 separate discrete 
circular tracks. 



126 Chapter XVII 

Like the pick-up of a record player, the pick-up 
(called the read head) can be moved inward or out
ward to playback (read) information in the outer 
tracks, the inner tracks, or anywhere between. 

Physically, of course, the read heads are much 
more like those of a cassette tape player than they 
are like a phonograph pickup because the method 
of recording and playback is magnetic. 

To read or write information, the disk drive 
physically moves the read head inward or out
ward on the disk, then waits for the rotation of 
the disk to bring the desired recording location to 
where it can be read electronically. 

Because physical motion, no matter how fast, 
is slow compared to the electronic speeds of opera
tion inside the computer, disk operations are 
quite slow compared to internal computer opera
tions. Storage and retrieval information from a 
disk is just not competitive in speed or flexibility 
to storage of the same amount of information in 
the computer's internal electronic memory. (It 
doesn't have to be. It provides long-term storage 
like a book; the internal memory provides fast, 
short-term storage like a scratchpad.) 

The retrieval process is fastest if you arrange 
to have the information you need coming under 
the read head just at the moment you ask for it. 
You can seldom achieve this kind of optimization 
without a great deal of work or just blind luck. If 
you are going to try to do so, you have to keep 
track of where everything is, how fast things are 
moving, and how long every relevant operation in 
the computer takes to perform. Except in very 
special and demanding cases, forget it! 

We will soon be describing positions on a disk 
in terms of track and sector. If you arrange it so 
the information you need in a hurry is on the 
same track as the read head, then the only 
electromechanical time delay is that for the rota
tion of the diskette to bring the desired sector of 
information under the read head. You have 
eliminated the most time-consuming portion of 
the electromechanical process of seeking out the 
information, and you can speed up operations 
considerably. 

The worst of all possible situations occurs 
when the read head Starts out at the outermost 
track and must move all the way across the disk 
to the innermost track before it can begin its 
rotary search for the correct sector. If you are in
terested in rapid disk operations, you must avoid 
these situations. 

17.2.2 Tracks 

Apple diskettes have 35 tracks. Each consists 

of a circular recording path at a fixed distance 
from the center of the disk. Thus, each is like a 
very thin, flat ring, concentric with all the others. 
They are numbered from 0 (the outermost track) 
to 34 (the innermost track.) 

To read (or write) information on a particular 
track, a read head (pickup) is physically moved 
inward towards the center of the disk, or outward 
towards its rim in discrete steps using a stepper
motor. 

On occasion you may hear about phases or 
half-track positions, usually in conjunction with 
somebody's copy-protection scheme. When the 
disk read heads move in or out, it takes two steps 
of the stepper-motor to move from one track to 
the next. Thus, if you are willing to write a 
special program to perform this function, you can 
stop them at 70 different phase positions or 
phases, which include the 35 track positions and 
35 positions halfway between tracks. Many copy 
protection schemes involve writing special items 
of information at such half-track positions. 

17 .2.3 Sectors 

Each track is subdivided into sectors. The sec
tor is the smallest unit of information that can be 
written to, or read from, a diskette at one time. 
Each sector contains one memory page (256 bytes) 
of usable information. 

Each track contains the same number of sec
tors, so the physical length inches or centimeters 
of a sector on the outermost track is longer than 
that of a sector on the innermost track. However, 
sectors on the outermost track and the innermost 
track take the same amount of time to pass by the 
read head. 

The actual format and method of encoding 
used in recording involves more pulses and bits 
than the 8 x 256 bits that eventually get to the 
memory page. The method of encoding used in 
earlier versions of the DOS (through version 3.2.1) 
permitted 13 sectors to be recorded on each track. 
An improved method of encoding introduced with 
DOS version 3.3 allows 16 sectors to be recorded 
on each track. 

There is a small hole in the protective covering 
of your diskette through which you can see a hole 
in the plastic diskette itself. This hole, called an 
index hole, is used in many microcomputers to 
physically and electrically mark the first sector on 
each track. The Apple does not use this hole. In
stead the sectors are coded as self-identifying to 
software in the DOS. This method of locating 
specific sectors using software is called software
sectoring or, more commonly, soft-sectoring. 



17 .2.4 Standard Overhead of Pre-Recorded 
Information on Apple Diskettes 
(Copy of DOS, VTOC, Directory) 

Before we get down to details regarding the 
amount of space this makes available to us on a 
diskette, we must note that certain sectors on a 
diskette are reserved for specific uses: 

1. All sectors on Tracks 0, 1, and 2 are reserved 
for a copy of the DOS. The presence of the DOS in
sures that you will be able to boot or re-boot the 
DOS with that particular diskette. 

2. Sector 0 of Track 17 (the track which is 
equidistant from the innermost and outermost 
tracks) is reserved for the VTOC (Volume Table Of 
Contents). 

3. The remainder of Track 17 is reserved for the 
disk directory. 

We can now summarize the basic organization 
of, and available space on, Apple diskettes as 
shown in figure 17 .2A. 

1----------------------------------------------------------------------J 
I Figure l7.2A I 
I Diskette Organization ShcMi~ Starrlard CNerhead Assigrrnents I 
1--------------------------------------------------------------------l 
I Se::1DR => oo 01 02 03 04 05 06 o7 08 09 10 11 12 l3 14 15 I 
1------------------------------------------------------------------J 
\Track 00 I <-:--------------------CCIS IMAGE---------------------------------> I 
\Track Ol I <--------------------000 IMAGE--------------------------------> I 
I Track 02 I < ---------------------IXlS IMAGE-------.,.-----------------------> I 
\Track 03 I I 
I I I 
I . I I 
\Track 16 I \ 
\Track 17 \Vf(C<------------------cATI\l..DG-----------------------------------> I 
\Track 1A I I 
I I I 
I . I I 
\Track 34 I I 
1-----------------------------------------------------------------------l 

17.2.5 Summary of Diskette Track/Sector/Byte 
Capacity 

We can now compute and summarize both the 
basic and effective capacity of Apple II diskettes as 

1shown in figure 17. 2B. -------------I 
I Figure 17.2B I 
I Diskette Track/Sector/Byte Capacity I 
I -------------------------<I 
I DOS 3.3 Earlier! 
I Tracks 35 35 I 
I Sectors per track 16 13 I 
I per diskette 560 455 I 
I Bytes per sector 256 256 I 
I per track 4096 < 3328 I 
I per diskette 143360 116480 I 
I I 
I After exclusion of overhead for copy I 
I of [X)3, Volurre Table of Contents, and I 
I diskette directory, the follCMing I 
I amounts of space remain for users: I 
I I 
I User-Available Sectors 496 403 I 
I User Bytes 126976 103168 I 
1--- ---------------1 

Chapter XVII 127 

17.3 
Diskette Organizational Concepts 

This section discusses methods for organizing 
the disk to let users access information by file 
name rather than by track/sector. 

17.3.1 The Volume Table of Contents 

The Volume Table Of Contents (VTOC) is the 
kingpin of the diskette. If it is destroyed and can
not be reconstructed, you are in trouble. Sub
ordinate to it, and equally important in finding 
your files on diskette, is the catalog. The VTOC 
and catalog must always be present. The copy of 
the DOS in Tracks 0, 1, and 2 is a convenience, but 
it is perfectly feasible to remove it and recoup the 
space for other uses. 

As mentioned earlier, the VTOC and the 
catalog are placed on Track 17, midway between 
the inner- and outermost tracks on the disk. A lit
tle theoretical background is needed to explain 
why this is a smart place to put them. 

To find a particular file of information you re
quest, DOS starts at the VTOC. VTOC tells the 
computer where to find the first active catalog en
try. The computer starts searching there for the 
name of the file you have specified. If it does not 
find it in the first sector of the catalog it searches, 
it chains its way to the second, then to the third, 
and so on, through all the entries in the catalog 
looking for the particular file you have specified by 
name. When it finds the name of the file you have 
specified in the catalog, DOS uses the catalog to 
look up the track and sector where the file begins. 

We have learned that if the disk drive is to read 
a particular track and sector it must first move the 
read head inwards or outwards to the correct track 
(if it is not already on the correct track), then wait 
for the rotation of the diskette to bring the desired 
sector under the read head. Track-to-track move
ment using the stepper motor is relatively quite 
slow. 

By putting the VTOC and the catalog on the 
same track we eliminate track-to-track movement 
until we have found the location of our data. This 
saves time. By having the VTOC and catalog (and 
hence the starting location for read head move
ment) at track 17 midway between the innermost 
and outermost tracks, the Apple disk subsystem 
minimizes the average amount of track-to-track 
movement needed to find the data. 

Figure 17 .3A shows the information included 
in the VTOC and the byte location of each element 
of information within it. Figure 17.3B shows the 
same information in lines of eight bytes, the way 



128 Chapter XVII 

the information would appear on a conventional 
hexadecimal dump. 

I I 
I Figure 11. 3A I 
I Intern01 Structure and layout of the Volm>e Table Of Contents I 
I I 
I B'tl'E IESCRIPI'IOO IXlS I 
I $00 Not USEd I 
I $01 Track nuniJer of first catalog sector $B30C I 
I $02 Sector nuniJer of first catalog sector $B3BD\ 
I $03 Release # of IXlS USEd to INIT the diskette 1I'1IX appears on $BDBE I 
I $04-$05 Not USEd I 
l$06 Diskette volm>e nuniJer (l-254) $B3Cl\ 
l$07-$26 Not USEd I 
\$21 Maxi.mun nuniJer of track/sector pairs that will fit in one file $B3E2\ 
I track/sector list sector (122 [$7A] for standard 256 byte sectors) I 
\$28-$2F Not USEd I 
\$30 last track >llere sectors were allocated-traCk to allocate next $E3ES\ 
\$31 Direction of traCk allocation (+l or -1) $E3FI:\ 
\$32-$33 11ot USEd I 
\$34 NUIIJer of tracks per diskette (35 [$23] - standard diskettes) $E3EF\ 
l$35 NU1IJer of sectors per traCk (16 [$10]for IXlS 3.3 or later: $E3FO\ 
I (13 for IXlS 3.2.1 or earlier) I 
\$36-$37 Nl.llber of bytes per sector (ID-<!I) (256 [$100] for standard $B3Fl\ 
I $38-$3B Bit nap of free sectors in track 0 ( $0) $B3F3\ 
I $3C-$3F Bit nap of free sectors in track 1 ( $1) $B3F7\ 
I $40-$43 Bit map of free sectors in track 2 ( $2) I 
I $44-4 7 Bit map of free sectors in track 3 ( $3) $B3FB I 

I ·::: ::: I 
\$8::-.$81' Bit map of free sectors in traCk 33 ($21) $B47B\ 
I$CO-$C3 Bit nap of free sectors in track 34 ($34) $B47B\ 
I $::4-$CF Bit naps for additiooal tracks for non-standard diskettes with =re I 
I than 35 traCks (expansion capability) I 
I I 
ll!Dm:OOS Colunn indicates 1I'1IX Sector ruffer locn w/OOS at $9600 (48K Jli:ple) I 
I I 

Notice in figure 17 .3B how much of the space 
in the VTOC is blank and available for future ex
pansion. Also note how many parameters, which 
remain fixed in the Apple disk drives as currently 
sold, are set up for possible change in the software 
of the VTOC. 
I I 
I Figure 17 .3B I 
I Vo1une of Table of Contents layout: Hexadecimal ~Format I 
I -1 
I $0 $1 $2 $3 $4 $5 $6 $7 I 
I ----1 
l$001 <-TRK/SE:: LINK-;-> lXlS VER ~L t I 
l$081 I 
l$101 I 

· l$181 . I 
l$201 #T/S IE'sl 
l$281 I 
I $30 I IJr = +- 'IKS/L'SK SE::/TRK <-sl!X:'IOR SIZE-> I 
I $381 <- FRI!:E SC'lR mT MIIP, TRACK o -> <- FRI!:E SC'lR BIT MI\P, TRACK 1 -> I 
l$401<- 2 -><- 3 ->\ 
l$481<- 4 -><- 2 ->I 
l$501<- 6 -><- 7 ->1 
l$sal <- a -><- 9 -> 1 
l$601<- $A (10)-><- $B (11)->1 
l$681 <- $C (12)-><- $D (13)-> I 
l$701 <- $E (14)-><- $F (15)-> I 
l$781<- $10 (16)-><- $11 (17)->1 
l$801 <- $12 (18)-><- $13 (19)-> I ~ 
1 ... 1<- ... ...-><- ...... ->·\ 
1 ... 1<- ...... -><- ...... ->1 
l$1!81<- $20 (32)-><- $21 (33)->1 
I $CO I <- $22 ( 34) -> <- F!11'!RE EXPANSICN -> I 
I $C8I <- F!1l'!RE EXPANSICN -> <- F!1l'!RE EXPANSICN -> I 
1 ... 1<- -><- ->1 
1 ... 1<- -><- ->I 
I $FBI<- F!1l'!RE EXPANSICN -><- F!11'!RE EXPANSICN ->I 
I I 

17.3.2 Bit Maps of Free Sectors in Each Track 
of the Diskette 

A very obvious and important characteristic of 
the VTOC that' we have not yet discussed is the ex
istance of a Bit Map of Free Sectors for each track. 
Each track's Bit Map is a 4-byte long string of ones 
and zeros. A free sector is designated by a bit on (1) 

, at the appropriate location in the map. If the sec~or 
is in use, the bit is off (OJ. . 

The pattern of mapping is as follows, using 
hexadecimal identification for sectors: 

Byte 

Base Address + 0: 
Base Address + 1: 

Sector On-Off Bit Positions 

FEDCBA98 
76543210 

In Case 1, if all secto:rs are free in these two bytes 
the bit pattern will be 

Base Address + 0: 
Base Address + 1 : 

1 1 1 1 1 1 1 1 or ($FF) 
1 1 1 1 1 1 1 1 or ($FF) 

In Case 2, if all are being used it will be 

Base Address, + 0: 
Base Address + 1 : 

0 0 0 0 0 0 0 0 or ($00) 
0 0 0 0 0 0 0 0 or ($00) 

In Case 3, if only sectors 5 through A are free the 
pattern will be 

Base Address + 0: 
Base Address + 1 : 

0 0 0 0 0 1 1 1 or ($07) 
1 1 1 0 0 0 0 0 or ($EO) 

Notice that two bytes provide all the bits 
needed for DOS 3.3, 16-sector diskettes and more 
than enough for earlier 13-sector diskettes.1 The 
four by~es of space provided in the VTOC provides 
expansion space for up to 32 sectors per track. The 
bits in the extra bytes - Base Address + 2 and 
Base Address + 3 - are set to 0 and ignored. Thus 
the complete 4-byte hexadecimal representation of 
the three cases 1 above becomes 

Bal)e Address + 0 
Base Address + 1 
Base Address + 2 
Base Address + 3 

$FF 
$FF 
$00 
$00 

$00 
$00 
$00 
$00 

17.3.3 The Diskette Catalog (Directory) 

$07 
$EO 
$00 
$00 

The DOS organization to find a named file 
starts at the VTOC. Byte 1 of the VTOC points to 
the track of the first catalog sector; byte 2 points to 
its sector. In standard diskettes, the track number 
is 17 ($11) and the sector number is 15 ($OF). 

.Since a single sector does not contain enough 
space for a large catalog, each catalog sector uses 
its bytes 1 and 2 to point to succeeding catalog 
sector(s). 

The organization of a catalog sector is shown 
in figure 17 .3C. 
I I 
I Figure 17.3C I 
I Structure and Layout of the Di-tte Catalog (Directory) I 
I I 
I B'tl'E IESCRIPI'IOO OOS\ 
I I 
I $00 Not used I 
l$01 Track nunt>r of next catalog sector (17 or $11 for standard) $B40CI 
\$02 Sector nuniJer of nert catalog sector $B4BDI 
I $03-$0A Not used I 
\$08-$20 First Pile: Catalog Description of File I 
\$2E-.$SO Second File: Catalog Description of File I 
I $51-$73 Third Pile: Catalog Description of File I 
I $74-$96 Fwrth File: Catalog Description of File I 
I $97-.$89 Fifth File: Catalog Description of File I 
\$BA-$IX: Sirth File: catalog Deacription of File I 
I $1D-$FF Seventh File: catalog Description I 
I I 
I Nm'B: oos eolunn indicates location in catalog/Directory sector ruffer with\ 
I IXlS startin:J at $9600 ( 48K Jli:ple) • 'lbe catalog deacription of the current I 
I file will follow with the offsets indicated for the first file. I 
I I 



1------------------------------1 
I Fi~~e 1 :~:_~:~ Di~_::: Ca~:~_:~::':~------------1 
!catalog Printout: I 
I DISK VOUME 176 I 
I A 002 SIGI'I.ON I 
I A 002 SAMPLE.l\PPLESCFI' I 
I *A 002 IJXKED.APPLESCFT I 
I B 020 SAMPLE. BllWl'l I 
I I 002 SAMPLE. INmlER I 
I *I 002 I.OCKED.INmlER I 
I T 069 S!\MFIE. TElcr' I 
I *T 072 I.OCKED.TI!XT I 
!. .........•.•••••........•.•••••.•••••••.............•.•........ ! 
I Directory Dllnp: I 
1 Slot:6 Drive:l 1 
I Track: $11 (17) Sector: $F (15) I 
I 00 OOll~OOOOOOOOOOOOOOOOU I 
I oc ~mm~~a~~a~~~ 1 

ill ~~~~~~~~~~~~ I 
~ ~~~~~~~~moou~ I 
30 02 D3 Cl CD DO CC CS ~ Cl DO DO CC Sl\MPLE.APPL I 
3C CS D3 ~ C6 D4 AO AO ~ AO AO AO AO ESOFl' I 
~ ~~~~~~~mooM~m I 
54 CC ~ C3 CB CS C4 ~ Cl DO DO CC CS I.CCKED.APPI.E I 
ro OO~C6D4~~~~~~~~ ~ I 
~ ~~~~~~mooB~D4m s I 
78 Cl CD DO CC CS ~ C2 ~ CE Cl D2 D9 AMPLE.BINARY' 
84 AO~AO~AOAOAOAO~AOAOAO 
~ ~~m~~Moo~~mmcr • 
9C CD DO CC CS ~ ~ a D4 CS C7 CS D2 MPLE. INmlER 
AB ~AOAO~AOAOAOAOAOAOAOAO 
84 ~~~~moon~mcc~~ r.cc 
CO CB CS C4 AE ~ a D4 CS C7 CS D2 ~ KED.INmlER 
CC ~~AOAO~AOAOAOAOAO~AO 
oo ~M~mooill~oomcrCDDO ~ 
~ CC~AED4~00D4~~~~~ ~TI!XT 

FO ~~~AOAO~~AOAOAO~AO 
FC ~~4500 E I 

----------------------------1 

17 .3.4 Catalog File Descriptions 

There are catalog descriptions of seven files in a 
fully occupied catalog sector. This is where DOS 
learns what is important to it about any particular 
user file on the diskette. Figure 17 .3~ shows the 
internal structure of any particular catalog file 
description. 

Notice that even at this level, DOS has not yet 
found the track(s) and sector(s) on which apar
ticular ]/lamed file is located, but the end is in 
sight. It finds out such basic information about the 
stored file as its name, its file type, its length, and 
whether or not it is locked, plus the track and sec
tor of a track/ sector list. This track/ sector list is 
what actually contains the physical track/sector 
locations of the file itself. 

I Figurel7.3E l· 
I Structure ani Laytut of a Catalog File Des::!ription I 
I ------1 
I B'ITE IJE9::RIPI'I<N 0031 
I I 
1 Start+$00 Track of 1st track./ sector list sector $B4C6I 
I If this byte contains $00, the entry is assuned never to have 1 
I been used arrl. hence available for use. (NOI'E:. 'Dlis means that I 
I track 0 is never available for user files.) - I 
I If this byte contains $FF this is a deleted file and the I 
I original ·track nud:>er is copied to byte Start+$20 I 
I Start+$01 Sector of 1st ·track/ sectbr list' sector $B4C7I 
I Start+$02 File type and flags $B4CBI 
I 'l'iPES: $00 - Text file I 
I $01 - IntecJ<1.r BASIC fi1e I 
I $02 - Applesoft BASIC fil& I 
I $04 - Binary file I 
I $08 - s type (special) file I 
I $10 - Relocatable object m:xlule file I 
I $20 - A type file · I 
I $40 - B type file I 
I l'UG: $BO - IreKED file. (Add $80 to file type to lock file.) I 
lstart+$03 through start+20 $B4C9I 
I File name (Maxlllun letr:jth = $1D. or 30 Characters) I 
lstart+$21 thralgh start+22 · $B4E71 
I ~h of file in sectors (lii/ID format) I 
I (OOI'E: Catalog CCIII1BOO displays only low byte) I 
I I 
!tom: lXlS oolurm irrli.cates locatioo. in catalog/directory sector buffer I 
laes=ing IXll starts at $9600 (48K Apple). I 
I ---1 

Chapter XVH 129 

17.3.5 The Track/Sector List 

We are finally to the point where DOS finds the 
track(s) and sector(s) at which a program or data 
file is physically stored. The file description points 
to the track/ sector list that contains the informa
tion in the format shown in figure 17.3F. 

1--------- --------------------------1 
I Figure 17.3F I 
I Structure and layout of a Track/Sector List I 
I --------------1 
I B'ITE DE9::RIPI'I<N I 
I $00 Not Used I 
I $01 0 if no rrore track/sector lists are needed. I 
I Track rnmi:>er of next track/sector list if rrore list(s) neederl. I 
I $02 1Not used if no rrore track/sector lists are needed I I $03-$04 (~ rnmt>er of next track/sector list if trore list(s) needed. I 
I $05-'$06 Sector offset in file (usually zero) of first sector described by\ 
I this liSt. (Needed for randan file if 1st sector not allocated.) I 
I $07-$0B Not used I 
I $0C-$0D TraCk and sector of lst data sector (unless charl'jed by offset) I 
I, $0E-$0F Track and sector of 2nd data sector (or zeros = ignore or end) I 
I $10-$11 Track and sector of 3rd data sector (or zeros = ignore or end) I 

1<:: ::· ... ... ::: ::: ::: l 
I $FC-$FD TraCk and sector of 12lst data sector (or zeros = ignore or end) I 
I $FE-$FF TraCk and sector of 1~2nd data sector (or zeros = ignore or end) I 
1 -------1 

Notice that a single track/sector list has space 
in it for up to 122 track/ sector pairs, each of which 
identifies a single sector of the file which is to be 
retrieved. Thus, only a single track/ sector list is 
needed for files up to 122 sectors in length. 
Howev,er provision is made for chaining to addi
tional track/ sector lists for very long files. 

All files (except perhaps a random TEXT file) 
are considered to be continuous streams of data, 
even though they must be broken up into 256-byte 
chunks to fit into diskette sectors. The use of the 
track/ sector list allows an arbitrary number of 
these chunks to be strung together without ever 
bothering the programmer with such problems as: 

1. keeping track of the boundaries between them, 

2. keeping track of how many of them are needed, 

3. keeping track of where they are, and 

4. keeping track of the order in which they should 
be used. 

Notice that with the use of the track/ sector list 
chunks of information which contain adjacent in
formation content need not be placed in physically 
adjacent sectors on the diskette. You don't need a 
single continuous chunk of disk space as large as 
the file you are trying to save. You need only as 
much space as the file will occupy, even if it is 
scattered here and there in one or two-sector 
chunks. 

This is no mere theoretical advantage. Re
peated saving and deleting of files can fragment the 
available space into a large number of small 
chunks. But this kind of information organization 
permits DOS to a system of memory allocation 
which uses the bit maps of free sectors (section 



130 Chapter XVII 

17 .3.2) to find any sectors which are free, no mat
ter where they are. Then the track/ sector list 
allows every last isolated chunk to be used to 
fulfill the storage requirements of files, whether 
they be large or small. 

It is worthwile to mention, however, that a 
file which is chopped up into many isolated 
pieces on different tracks will require significant 
head movement to seek out all its required sec
tors of information and thus will retrieve infor
mation more slowly than a file which is in con
tiguous locations. This reinforces our earlier rule
of-thumb that if you want faster-than-average 
retrieval of a particular file make it the first (or 
one of the first) files saved on a newly initialized 
diskette. 

If a file is a sequential file the first appearance 
of a $00 track/ sector signals the end of the file. 
However, random files can have areas within their 
logical structure which have never been used and 
which therefore have never had sectors allocated 
in their track/sector list. In such cases a $00 in
dicates a vacant area to be ignored, not the end of 
the file. 

17.3.6 Text Files 

A text file is nothing more than an arbitrary 
string of characters interspersed with occasional 
carriage returns to specify the end of a line. 

A file of the TEXT data type consists of one or 
more records made up of ASCII characters sepa
rated from one another by ASCII Carriage Returns 
(Hex Code $8D and terminated with an ASCII Nul 
character (Hex Code $00). See figure 17 .3H. 

Figure 17.3H- Text File Structure 

RECORD1 Cr 

RECORD2 Cr 

RECORDn Cr Nul 

A record is a line of text 
of arbitrary length made up of 
Apple ASCII characters. 

Cr is Hex $8D Nul is Hex $00 
Nul may not appear in a record 

In sequential files, DOS detects the end of a 
text file either by finding a Nul character or by 

finding no more file sectors assigned in the file's 
track-sector list. 

Random-access files set up a file structure but 
may fail to put anything in it; whatever garbage 
bits may exist in those locations might include 
Hex $00 combinations. Therefore DOS must de
pend on the structure assigned at the time of crea
tion of the random file to find the end of a file, or 
the lack of any more sectors in the track-sector 
list. NOTE: The structure set up when a random 
access file is defined establishes fixed maximum 
lengths for each record. 

17 .3. 7 Binary Files 

Binary files save machine-language programs, 
binary data (which might be automatically 
gathered from sensors and generated by analog-to
digital converts), etc. Such material may be of ar
bitrary length and may include in its body any 
possible binary combination of bits. 

A text file depends upon information in the 
form of carriage returns [binary 1000110 1] and 
nulls [binary 00000000] inside the body of the file 
to specify its division into records and its end. 
Since the~e bit combinations can appear in the 
body of the binary program or data· that a binary 
file must save, a binary file must obviously have 
some different concept of organization. Form 
follows function, so we must look at how a binary 
file is used to see how it must be organized. 

If we are to get binary information from inside 
a computer and store it on a file we must know 
two things: where to get the information and how 
much to get. An easy way to specify this is with a 
starting point and a length. Thus, a typical DOS 
command for saving a block of information from 
inside the computer as a binary file is 

BSA VE FISHBAIT, A$300, L$BO. 

(The B in front of SAVE indicates Binary. The A 
(for Address or 'At') indicates the starting point 
and the L (for 'Length') indicates length. The 
numbers may be in hexadecimal form with a dollar 
sign as shown or in decimal form without a dollar 
sign.) 

Since DOS needs to know the actual length of 
the file to manipulate it properly, it can pick up 
the length at this time and store it as part of a 
header or prefix to the file- then it won't have to 
specify the end of the file by using a special com
bination of bits within the record end-of-file. 

When we have a binary file stored on a diskette 
and we want to put that information back into a 
computer, the same things must be specified 
where it is to go and how much to put into the 



machine. A command to put the same information 
back into the machine might be 

BLOAD FISHBAIT, A$300, L$BO. 

This is a perfectly legitimate DOS command. 
However, most of the time you will want to put 
back the same amount of information that you 
originally saved. We have stored that information 
in the file's prefix, so we can drop the L$BO. And 
most of the time we will want to put the informa
tion right back into the same location and context 
with other information in the computer, as before. 

So why not store the BSAVE 'A' inf~rmation 
(the $300 that went to the DOS at the time we 
stored the program) as another prefix to the binary 
data in the file? Then the user of DDS won't have 
to keep separate track of, and enter, this informa.:.' 
tion. This reduces normal loading to 

BLOAD FISHBAIT 

using information stored in the prefix of the type 
Binary file to specify the load location and length 
unless explicitly overridden by the programmer. 

Incidentally, it is worth mentioning that DOS 
does keep a record of the most recently BSA VEd or 
BLOADed start and length values: 

Start At ('A' value) is stored in $AA72,73 
[PRINT PEEK(- 21902) + 256"'PEEK (- 21901)] 
Length ('L' value) is stored in $M60,61 
[PRINT PEEK( -21920) +256"'PEEK( -21919)]~ 

The concepts we have described lead to the 
design of binary files shown in figure 17 .3I: 

Figure 17.31- File Ogranization of Binary Files 

Low Byte High Byte Low Byte High Byte Arbitrary number of bytes 
'A' 'A' 'L' 'L' of binary information 

Address Address Parameter Parl\meter (Length agrees with 'L' 

17.3.8 Basic Program Files (Applesoftand Integer) 

The concept of organization of BASIC:: program 
files is the same as that for binary files, but with a 
slight simplification. 

Since these files are always used by one or the 
other of the BASIC interpreters, the interpreter 
always knows the start-of-program and en~-of pro
gram locations so the user never needs to mention 
them; SAVE FISHBAIT suffices automatically. Go
ing back from the diskette to the computer, the 
BASIC interpreter always knows where to start a 
program. In fact, due to a change in LOMEM:, it 
may be necessary to load the program in a different 

Chapter XVII 131 

location from which it was stored. Thus it is 
neither nec~ssary nor desirable to save tQ.e 'Start 
At' or 'A' address. 

DOS, of course, still will find it convenient to 
have the length of the file stored and available with 
the program, for its internal processing and to tell 
the BASIC interpreter where the end of tlae pro
gram will be. 

\ 

Figure 17.3J- BASIC Program File Organization 
(Applesoft of Integer) 

Low Byte High Byte Arbitrary number of Bytes 
of binary information 

(Length agrees with 'L' 
'L' 

Parameter 
'L' 

Parameter 

NOTE: Distinction between Integer & Applesoft files 
is not made explicitly in the file. It is saved 
on the disk in the directory of the file. 

17.3.9 Recap of the DOS Method of Finding 
Information on the Diskette 

1. Start at VTOC. It describes the way the 
diskette is structured, not just for standard Apple 
diskettes, but for many possible variants as well. 
This is not just a static structure; it changes as files 
are added or deleted by updating a bit map for each 
sector of the disk showing which sectors are oc
cupied and which are not. 

2. Bytes 1 and 2 of VTOC point to the 
CATALOG. 

3. The catalog may occupy several sectors. 
Therefore bytes 1 and 2 of each catalog sector point 
to the next sector in the catalog (if any). 

4. Individual entries in the catalog identify the 
name of each file, its type (text, binary, Applesoft, 
etc.), its length (in sectors) and whether or not it is 
locked. 

5. Each entry in the catalog also contains a 
pointer in its bytes 0 and 1 to a track/ sector list. 

6. The track/sector list contains an ordered list 
of up to 122 track/ sector pairs. The first points to 
the first sector which contains recorded informa
tion (program or data) from the specified file. The 
next specifies the sector for the next chunk of in
formation, and so on. 

7. If a file is more than 122 sectors long, its 
track/ sector list overflows one sector, but a 
pointer on the first t/ s list points to a new sector 
containing a continuation of the list. (This hap
pens as many times as necessary.) 

8. DOS now knows where to start picking up a 



132 Chapter XVII 

file, but it doesn't know where the file ends unless 
it ends at the end of a sector (or unless it is a ran
dom access file that has an explicit description of 
its structure.) 

9. The file itself specifies its own end except in 
the special cases above. If the file is a TEXT file the 
ASCII character 'Nul' ($00) specifies the end of 
file. BINARY and BASIC files (both Applesoft and 
Integer) specify their length explicitly by a two
byte length field in the header or preamble of their 
files. 

A schematic diagram of this process is shown 
in figure 17.3G: 

1-------------------------------------------------l 
I Figure 17.3G I 
1 Recapitulation of [X)S' s Met.hoj of I.ocatirg File Information I 
1---------------------------------------------l 
IV"IOC LEVELI---I I 
I (Track 17 I U I 
I I I I 
I IV"IOCI I 
I 1--1 I 
I (SectorO l I 
I I 
!CATALOG LEVEL 1-~-~- -I I 
!(Track 17) ~U I I U I l"lt I I 
I etc. I FIIE15 I I FILI'l3 I I HELI.D I I 
I (if many files) I FIIE16 I I FILE9 I I FILE2 I <-File description I 
I I FIIE17 I I FIIElO I I FIIE3 I oontains pointed# I 
I I etc. I I etc. I I etc. I ~ I 
I 1---1 1----1 1--1 I 
I (Sectcr D) (Sector E) (Sector F) I 
I I 
I nw:K/SEJC'roR LIST LEVEL ~ I 
I etc. 1-~ 1----1 I 
I (if very lcn:J file) U i 'iu I I 

I IFS123 I tFSl~ I I IFS124 I 2 I I 
I I>'S125 I IFS3 I I 
I letc~l letc. , I I 
I 1----1 I --1 I 
I I 
iFIIE 01\.TA LEVEL I -1 1---1 1--- -1 1-- --1 I 
I I Secorrl I I I I 'lhird I J,t#First I I 
I I sector I I I I sector I~ ~I Sector I I 
I lof Filel I I I mn"f lof Filel I 

l lFIIE2 l [ ____ [ l--Ll ~~~=-: I 
I Errl marked by p:>inter at beginnin;J of first secto!- for BINMrl arrl BA.SIC I 
I files. By $00 at "END for TEXT. I 
I -----------------------1 

17.3.10 Deleting and Resurrecting Files 

Figure 17.3G can be very useful in understand
ing aspects of the operation of the DOS that other
wise would be opaque. One of these aspects is the 
'black magic' resurrection of deleted files. 

If you were looking very closely, you may have 
noted in the description of the catalog that when a 
file is deleted its catalog entry remains physically 
in the catalog, but is marked in a special way to 
show that it has been deleted. It is also true that its 
track-sector list is used to re-mark the bit maps of 
space used and available. The re-marking indicates 
that the sectors identified in the track/ sector list 
as previously used for the deleted file are now once 
again available for assignment. The actual data 
bits in the file sectors used to store the data are 
NOT overtly erased. That would be an un
necessary waste of time and effort. 

The pointer chain shown in figure 17 .3G that 
shows the path DOS follows to find the data, is 

broken. The sectors are 'un-linked' from the 
system that makes them exist as parts of working 
files. The file is dead. The sectors previously iden
tified as being used as part of the file are now iden
tified as part of the pool of unused sectors in the 
VTOC. (To be more precise, in VTOC's bit map of 
used and available sectors in each track.) 

The individual bit patterns in the sectors at the 
file data level may still be there if they have not yet 
been allocated to some new use. If you are lucky 
you may even be able to find the un-linked 
track/ sector list. To do this kind of work it is very 
valuable to have a Disk ZAP program. This is a 
program that makes it convenient for you to ex
amine the contents of individual sectors on the 
diskette and change them. 

With your knowledge and with a ZAP program 
(or even without it) you can resurrect a dead file if 
it is important enough to warrant the considerable 
amount of effort involved. Basically all you have to 
do is re-establish the broken linkages. If you really 
want to learn the DOS well, try creating a file 
named Lazarus with a distinctive, easily-recog
nized pattern of information in it. Delete it. Then 
find out how much you really know! 

17.3.11 Disk Space Allocation to Files 
and Simple Rules of Thumb 
for Improving Disk Response 

Given a freshly initialized diskette, the first 
sectors to be allocated to user files will be on 
track 18. This is immediately adjacent to the 
catalog track (17) so there is minimum head 
travel and hence minimum delay in seeking out 
the information. 

After the space in track 18 is used, the system 
allocates space in track 19, track 20, and so on up 
to track 34. Then it goes back adjacent to the 
catalog track at track 16 and works its way 
backwards 16,15,14, etc., until it runs out space. 
(Last track is 4 if DOS is present; 1 if DOS has been 
removed.) 

While it is true that track 16, a particularly 
favorable track, is allocated after track 34, a par
ticularly unfavorable track, it is obvious that the 
average distance from the catalog track for sectors 
allocated quite early in the allocation history of a 
diskette is less than the average distance of those 
allocated later. · 

However, there is more of an advantage here 
for the files that are early onto the diskette. They 
are less likely to be fragmented into several pieces 
that require several head movements and hence 
additional mechanical movement delay time. 



Before we describe how this happens let's talk 
about the dynamics of disk utilization. Many 
diskettes, particularly those used for program 
development, have an active history. You write 
several files, or the same file in several different 
versions, during the time you are developing a pro
gram. Some are deleted. This leaves gaps in the 
allocated areas. 

Later, when the allocation process gets back to 
a deleted area, it may have small file that slips 
nicely into the available gap, perhaps creating a 
new smaller gap. Or the file may be too large to fit 
into the gap. DOS can cope with this, but it has to 
split the file into two or more pieces. These pieces 
are logically linked together by the track/ sector 
list, but they may not be on the same track. Con
ceivably they can be on tracks far removed from ·. 
one another. 

The more deleting and saving you do, the more 
the fragmenting process continues. The to-and-fro 
motion of the read head becomes increasingly 
frenetic. Disk operations get slower and slower. 
Consequently, my program ran faster when I put it 
on a brand new disk! 

Some good rules of thumb: 

1. To get faster disk response with a minimum 
of technical effort put a file that you particularly 
want to speed up as the first file on a brand new 
disk. 

Chapter XVII 133 

2. Put the files whose disk response time is 
least important onto the disk last. 

3. If you have been doing a lot of program 
development work on a particular disk, it is a good 
idea to periodically copy the files off of it onto 
another disk and reinitialize the disk. You may 
wish to think of this technically as a form of gar
bage collection. 

17.4 
How Diskette User Space is Allocated to 
User Files (PRograms, Text and Data) 

If you are even slightly conscientious about 
wanting to save wasted time. a simple rule-of
thumb will allow you to insure better than average 
seek-find times: 

Given a freshly initialized disk. the first files to 
be sto,red tend to be allocated on track 18, then 19 
and so on up to 34, then back down to 15, 14 and 
eventually down to to DOS. This is not necessarily 
a smooth fill-in process. Some files will be too big 
to fit the available space remaining on a given 
track and there will be gaps. There will also be 
later fill-ins of gaps. The process can get messy. 
However you can be reasonably sure that the first 
few files to be stored will be stored in locations 
which are particularly favorable in terms of 
average access time 



Chapterxvm 
The Specialized 
Input-Output Memory 
(Some of It Behaves Very Strangely 
and Some Isn't There At All} 
Memory Pages :192-207 
( $COOO-$CFFFJ 

18.1 
Introduction to the 16 Pages of 
Specialized Input-Output Addresses 

The 16 pages of memory that have addresses of 
the form $Cxxx !where xxx can be any three hex
adecimal digits) are reserved for functions 
associated with either built-in hardware 1-0 
activities or with 1-0 activities associated with the 
Apple slots. 

They are not the only pages that deal with 
input-output activities. In Chapter 12 we dealt 
with the Input Buffer Page !Page $02xx); in 
Chapter 14 we dealt with the text and low-resolu
tion graphics video display pages l$04xx-$07xx and 
$08xx-$11xx); and in Chapter 16 we dealt with the 
high-resolution Graphics video display pages 
l$2xxx-$3xxx and $4xxx-$5xxx). 

The $Cxxx locations are different. Some of the 
locations do not exi&t as separate entities tram 
others. Indeed many of the locations on this page 
are inactive or unimplemented phantoms. 

Some of the locations just don't act like 
ordinary memory locations. They don't hold the 
right amount of information or change their yalues 
when accessed or change their values spon
taneously as a result of external occurances. 

This area is unique among memory areas in its 
degree of specialization. Parts of it may be im
plemented with RAM memory, other parts with 
ROM, and yet other parts will be implemented 
with logical elements such as flip flops~ These 
elements are quite different from either the RAM 
or ROM memory elements used in conventional 
memory locations. 

Even in those areas where implementation is 
by conventional ROM chips, the presence or
absence of the chips depends on auxilliary equip
ment !cards plugged into the Apple slots). 

Certain blocks of memory in this address range 
are allocated to specific slots and the memory im
plemented for these addresses will be located on 
peripheral cards plugged into those slots. Hence, 
this mem~ry will remain inactive until the 

specific slot with which they are associated is 
activated. 

Other blocks in a different part of this region 
may exist in multiple versions that share the same 
addresses but contain. different information and 
perform different functions. These also are located 
physically off the main computer on peripheral 
cards. 

Bits in some memory locations can be given 
new values in ways quite different from the bits in 
conventional memory locations. For example, 
they can be set by external conditions such as the 
position of a game paddle, by the striking of a key 
on the keyboard, or by access to different memory 
location. 

This contrasts sharply with the situation for 
locations we have covered in earlier chapters. 
They have been conventional RAM locations 
assigned speCial additional duties by the hardware 
and by the firmware of the Apple system. 

18.2 
The Strange Page: Built-in I-0 Locations 
($COOO = >$C07F) and Slot (Peripheral .. ~ 
Card) I;;Q Space ($C080=>$COFF) 

This page is strange because special hardware 
intercepts these special addresses, partially 
decodes them, and handles them in special ways. 

We will go through this area vary carefully, 
first identifying the anomalies you can expect to 
observe. In section 18.3 we go on to discuss the 
specific capabilities associated with each address 
lor group of addresses). 

Even readers with little if any, specific ex
perience with hardware analyses may find section 
18.3.2 helpful in understanding the underlying 
order below the apparent chaos of different 
characteristics in this area. Those who are adept in 
understanding hardware analyses may want to 
skim the remainder of 18.2 

18.2.1 The First Half I$COOO =>$C07F) of the 
Strange Page in Context with the Rest of 
the Apple 1-0 System 

This area contains the interfaces for keyboard 
input, the game controller inputs, the pushbutton 
inputs, and the cassette input. It contains the cor
responding direct output capabilities: the speaker, 
cassette and annunciator outputs. 

All the input-output capabilities associated 
with features standard to all Apple IT systems fun-



nel through these few memory locations associ
ated with this half-page (128 addresses): $C000= > 
$C07F (decimal 49152 = >49279 or -16384 = > 
- 16257). 

Input-output capabilities that use ancillary 
hardware plugged into the Apple slots, (e.g. disk
ettes, printers, and communications terminals) 
find their route for getting information into or out 
of the Apple via areas of the $Cxxx address space 
other than this very special half-page. 

18.2.2 Anomalous Characteristics of Locations in 
the First Half of the Strange Page 
($COOO =.>C07F) 

These addressable locations are unlike any 
other group of memory locations in the Apple. 

The key to the strange behavior of addresses in 
this area is that they are not really associated with 
conventional memory hardware and addressing 
techniques. There are three major areas of 
anomalies: one in the amount of data that can be 
stored in an addressable location; the second in 
possible non-unique addressing of data; and the 
third in what happens when you do access the 
locations. These are the key anomalies: 

1. Not all of addressable locations contain a full 
byte (8 bits) of information; many can store only a 
single bit of information. 

2. Not all of them are uniquely distinguishable 
from one another; as many as sixteen different ad
dresses can all be used interchangeably to access 
some physical location within this address zone. 

3. Some can be written to but not read from; 
some can be written to by PEEKing as well as by 
POKEing; while others should be written to only 
by PEEKing, not by POKEing. (Comparable 
anomalous behavior required for machine
language access as well.) 

All in all, this is a very confusing area until you 
know something about what underlies this strange 
behavior. 

18.2.3 Bit Versus Byte Anomaly 
in the Strange Page 

First let's consider the bit-versus-byte data 
anomaly. 

In the $COOO =>$C07F area, addresses do not 
point to a conventional 8-bit memory cell. Most 
addresses point to specialized circuitry, such as 
flip-flops capable of storing only a single bit of in
formation. Whenever only a single off-on state (a 
single bit) is associated with a given address, the 

Chapter XVIII 135 

circuitry is arranged so that it appears to be located 
in the MSB (Most Significant Bit) or sign bit posi
tion of the byte that would normally be expected 
in specified memory location. The remaining bits 
become inconsistent garbage. 

Other addresses point to a byte of storage 
which appears to suffer from schizophrenia. Its 
MSB bit leads a semi-independent existence, a 
quite different life from that of its remaining seven 
bits, which may have a consistent and useful 
meaning in terms of the input-output system. 
(Discussion of these anomalous bytes is deferred to 
section 18.2.4) 

Flip-flops are easily arranged to control other 
circuits internal to the computer, or they can bear
ranged as outputs to control circuits outside the 
computer. The single bit they are able to store is 
quite adequate for many input or output activites 
(e.g. for a pushbutton input, a speaker toggle out
put, or a soft switch to control some aspect of a 
video display). 

Single bit inputs or outputs are always in the 
MSB (Most Significant Bit or sign bit) position 
where it is most easily manipulated and tested by 
either machine-language or BASIC commands. 

In BASIC, if the PEEK of a particular address is 
greater then 127, the MSB or flag bit is on ('1' ); if it 
is 127 or less the bit is off ('0'). 

In machine language an equivalent test can be 
made by testing the sign (N) bit of the status 
register for the '0' or '1' condition. (This should be 
done after referring to the address to be tested with 
the BIT command.) 

18.2.4 Full-byte Input Locations in the First Half 
of the Strange Page Work Differently from 
Conventional Full-byte Memory Locations 

In the $COOO = > $COFF area, even locations 
that can store a full 8-bit byte behave differently 
from normal memory locations. The bits in bytes 
of conventional memory can be set only by ad
dressing them and writing information to that ad
dress. The bits in this area of memory can be set by 
conditions from the outside world, e.g. $COOO's 
bits can be changed by a key press on the Apple 
keyboard. $C064 through $C067's bits can be 
changed by changing the position of game con
troller paddles 0 through 3 respectively. 

The contents of these locations also can be af
fected by accesses to other memory locations 
than themselves, specifically to strobe locations 
associated with their input functions. 

Moreover, the method of setting the contents 
of the MSB is separated from, though related to, 



136 Chapter xvm 

the method of setting the other seven bits. For ex
ample, for the keyboard data input byte ($COOOJ 
the MSB can be reset by accessing the Clear 
Keyboard Strobe ($COlO). For the game controller 
inputs [$C065, $C066 and $C067L the MSB's can 
similarly be reset (and their timing loops restarted) 
by accessing the game controller strobe at $C070. 

In effect the MSB and the other seven bits of 
these full-byte inputs constitute two separate, but 
closely related inputs. 

18.2.5 The Incompletely Decoded Address 
Anomaly in the First Half of the 
Strange Page 

Next let's consider the addressing anomalies in 
the $COOO = > $C07F address range. As we shall 
later see addresses in this range are directed to 
special 1-0 selector circuitry that partially decodes 
them. In this range only addresses in the $COSO=> 
$COSF sub-range go on to a second level of 
decoding, which decodes them completely. 

This means that part of the address decoded is 
used in determining the location where the com
puter puts or takes information. The part of the ad
dress that is not decoded has no effect whatsoever. 

Thus addresses in a partially decoded address
ing area, which differ only in bits not decoded, are 
totally indistinguishable. 

Addresses $COOx, $COlx, $C02x, $C03x, 
$C04x, and $C07x all have the last four bits (the 
last hexadecimal digit) undecoded. For example, in 
the case of the keyboard data input address $COOO, 
the last hexadecimal digit of the address is not 
decoded. Thus $COOP decodes to the same byte of 
information as $COOO. So does $C00x where xis 
any hexadecimal digit. They are totally inter
changeable. 

18.2.6 Data-Change on Read-Access Anomalies in 
the First Half of the Strange Page 

Let's consider data-change-on-access 
anomalies in the $COOO = > $C07F address range. 

Whenever you access a conventional RAM 
memory cell you destroy the information in it. 
Under normal circumstances you don't even know 
this is happening. The circuits associated with the 
memory immediately write back the original in
formation and return the cell to its original state or 
its desired new state. However, the circuitry of a 
flip-flop is notrdesigned to operate in this fashion. 

Soft-switches and toggles in the $COOO = > 
$C07F address space are flip-flops with different 
methods of addressing inputs. Strobes may be con-

sidered as output-generating or controlling flip
flops. 

A soft switch flip-flop has a pair of addresses 
from which it can be accessed. If you access one of 
them, the bit in at the address accessed goes on 
(i.e., becomes a '1' while the bit at the other ad
dress becomes a '0'). Whatever was there before is 
destroyed in the process and no means is provided 
to determine what it was. 

A toggle flip-flop differs from a soft-switch in 
that it has but a single address. If you access it you 
change its state. That is, if it was in an 'off' or '0' 
state, it switches to an 'on' or '1' state. Converse
ly, if it was in an 'on' or '1' state and you access it, 
it switches to the 'off' or '0' state. 

When you read or PEEK a particular address 
you access it once. When you write or POKE, you 
access it twice. The two accesses happen almost 
on top of one another. For example, if you POKE 
the utility strobe you get two pulses 1 microsecond 
long separated by a 11 40th microsecond. 

It seems natural to POKE rather then PEEK 
when you want to change a value. It is, except in 
anomalous situations such as here. 

However, since we get two pulses instead of 
one when we POKE or otherwise write, and since 
we usually desire only a single pulse, we must face 
up to awkward questions about the wisdom of 
POKEing flip-flops (toggles, soft switches or 
strobes): 

1. Will two pulses have the same desired effect 
as one? 

2. Does the second of the two accesses follow 
so close behind the first that it always seems to be 
a single double-duration pulse? If so, does a double
duration pulse provide an acceptable solution to 
the problem? 

(The circuits in the Apple are fast enough so 
that a typical separation of about 24 nanoseconds 
between pulses is adequate to achieve functional 
separation into separate pulses under routine con
ditions. Thus the second question is moot. POKE
ing can still cause problems sometimes.) 

3. Depending upon the circuits driven and the 
recovery time between pulses, can you be sure the 
two accesses associated with a write or POKE are 
far enough apart that they always can be treated as 
two separate accesses? If the separation is occa
sionally insufficient to retain the dinstinction, 
erratic operation could ensue if you used POKEs 
for deliberate double-pulsing. 

(For reliable and consistent operation you don't 
want to have to depend upon a close call. If you 



want two pulses you would have more margin of 
safety using two PEEKs than a single POKE.) 

Net result: The natural or intuitive solution of 
using machine-language write operations or 
POKEs to change the state of flip-flops is 
sometimes acceptable, but not always. 

A simple, safe rule of thumb is 'Never write or 
POKE to a flip-flop or a strobe; a PEEK or any 
machine-language access to the location will do 
the job.' This rule is easy to remember and follow, 
but somewhat more stringent than necessary. 

More complicated rules that allow additional 
freedom in the use of write operations and POKEs 
are 

1. Never write (POKE in BASIC) to a Toggle. 

2. You can safely write to soft-switch (There, 
two pulses are as good as one.) 

3. You can safely write to the Keyboard and 
Game controller strobes (a double pulse 
will be generated but it will have no adverse 
effect). 

4. Don't write to the Utility Strobe unless you 
have positive proof that the double pulse 

18.3 
The Strange Page In Depth 
1S.3.1 Tabular Summary/Overview 

The $COxx page of memory contains two 

Chapter XVIII 137 

won't cause trouble in the particular appli
cation you have chosen. 

Properly implemented, these rules are as safe as 
the simpler, more stringent one presented first. 

1S.2.7 The Second Half ($COSO => $COFF) of 
the Strange Page 

The 12S locations in the second half of the 
strange page are quite conventional. They are, 
however, assigned to very specialized use as eight 
blocks of 16 memory locations. Each block of 16 
locations is assigned to input-output uses in con
junction with one of the eight Apple slots. 

Each block consists of addresses of the form 
$C0Sx, where S = S + the slot number with 
which the block is associated. X can have 16 
values (0 through F) giving 16 bytes in the block. 
Thus $COSO = > $COSF are assigned to slot #0; 
$C090 = > $C09F are assigned to slot # 1; ... and so 
on, through $COFO=>$COFF being assigned to slot 
#7. Figure 1S.3A portrays the assignment 
schematically and figure 1S.B expands its base 
address/indexing implications. 

remarkably dissimilar half pages. Figure 1S.3A 
presents a graphical summary of the addressing 
pattern for the first half-page $C000= > $C07F. 

11111111111111111111111111111111111111111111111111111111111111111111111,1111111111111111111111111111111111111111111111111 

I Figure 18. 31'. I 
I Menory "ialf-Page $COOO=>$C07F: Addresses of Apple ]( System Built-in I-o Functions I 
,----------------------------------------------------------------------------------------------------------------------, 
I ISO l$1 IS2 IS3 IS4 ISS IS6 l$7 l$8 l$9 lSI'. ISB I$C lSD I$E ISF I 
,----------------------------------------------------------------------------------------------------------------------, 
I $COOO I <-------------Keyboard Data Input-----------------------------> I 
I $COlO I< -clear Keyboard Strobe ------------------- ->I 
I $C020 I <------------cassette Output Toqgle-------------------------------> I 
I $C030 I <-----------Speaker Toggle-----------------------------------------> I 
I $C040 I <-------------utility Strobe-----------------------------------> I 
I$C050 !graph !text locmix lmix lpg 1 lpg 2 llo-reslhi-resl anO I anl I an2 I an3 I 
I$C06o lcin II*> 1 II*> 2 lpb 3 lgc o lgc 1 lgc 2 lgc 3 1<--..;_-repeat $C060-SC067-----------~-->I 
I $C070 I <-------------<>arne Ccntroller Strobe--------------------------------> I 
,----------------------------------------------------------------------------------------------------------------------, 
I l'.bbreviations used: graph => set graphics !rode text => set teJCt !rode I 
I ocmix => set all text or all graphics mix => set for mix of text and graphics I 
I pg 1 => display page 1 (primary pg) pg 2 => display page 2 (secondary pg) I 
I lo-res=> display lCI'ol resolution graphics hi -res=> display high resolution graphics I 
I an * => use annunciator outplt * pb * => use FAJShbutton inFUt * I 
I gc * => use game oontroller inFUt * cm => cassette input I 
,----------------------------------------------------------------------------------------------------------------------, 
I lbtice that 24 different Input-output-related functions share 128 menory addresses. Six of the 24 occupy I 
I 16 addresss each: '!Welve of the 24 occupy 2 addresss each: and Eight of the 24 occupy a single address each. I 
I This strange behaviour is due to the i~lete address decoding an::.mal y. I 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 



138 Chapter XVIII 

Figure 18.3B presents the corresponding 
breakdown for the second half-page 
$C080 = > $COFF. 

1---------------------------------------------------! 
1 Figure lA. 3~ I 
t Me!tory 1--talf-Page $C080-$0JFF: t-o Srece for APPle 'Slots' 
! -------------------------------------------------------1 
1 ~~nun M ~ M ~ ~" M n ~ m n Wl 
! ....... ! ............................................................... ! 
I $COo/) 1 <---- tnput-Clutoot (Perioher-'11 C"lrd) Smce for Slot tO -->I 
I $COOO I <--- Inoot-0utput {Perioheral Card) Sr:e.ce for Slot ~H --->I 
1 $COAO 1 <--- Input-out.p.Jt (Peripheral Card.) Space for Slot t'2 ---->I 
I $COBO ! <---- Input-0uto...tt (Peripheral CarO) Sp:ice for Slot #3 ----->! 
I $COCO ! <-- Inout-0utp..tt (Peripheral Carr1) SPice for Slot t4-----> 1 
1 $COOO ! <-- Input~tput (Perit;lheral Curr1) Spa.ce for Slot #S ----->I 
! SCOEO ! <---- InDUt-IJutput (Perioheral Carri) Space for Slot #6 ----->I 
! $COFO ! <---- Innut--0utp.lt ( Peripher::ll Carri.) Space for Slnt •7 ----->I 
! I I l I I I I l I I I I I I l l I I l I I I I I I I 1 1 I 1 1 I I I I I 1 I I I I I I I I I I I I 1 II I I I I I I II I I I 1 1 I I I I I ! 

18.3.2 Hardware Perspective of the Strange Page 

Whenever the strange page is addressed, a 
74LS138 located at position H12 on the Apple 
mother board detects that fact and enables 
another 74LS138, known as the 1/0 Selector. 
This chip is located at position F13 on the Apple 
mother board. 

The 1/0 Selector ignores the second half-page 
($C080 = > $COFF) of the strange page and par
tially decodes the first half-page ($COOO = > 
$C07F) in eight areas of 16 bytes each: 

$COOx, $C01x, ... , $C07x 

The 1/0 Selector has eight output lines numbered 
0 through 7. Each output line of the 74LS138 
becomes active when the 16-byte range having 
the same digit in its third hexadecimal digit posi
tion is being referenced. For example, an address 
of the form $C05x will cause 1/0 Selector output 
line 5 to become active. 

Thus the 74LS138 1/0 Selector distinguishes 
between the addresses in figure 18.3A (the first 
half-page) and figure 18.3B (the second half-page). 
It ignores any address in figure 18.3B, but it par
tially processes any address in figure 18.3A. 

The 1/0 Selector does a partial decoding of ad
dresses in figure 18.3A. This partial decoding 
breaks the overall block of 128 addresses in figure 
18.3A into eight modules, each of which is a 
horizontal row of 16 addresses and activates a dif
ferent output line for each row. 

The '0' line from the 1/0 Selector is activated 
when an address in the $COOO Keyboard Data In
put row of figure 18.3A is specified. When ac
tivated, this line opens a gate that allows data to 
flow from the keyboard connector into the RAM 
data multiplexer. See section 18.3.3 for additional 
interpretation of what this means functionally. 
No additional decoding occurs so it is impossible 
to distinguish between addresses on this row of 
figure 18.3A. 

The '1' line from the 1/0 Selector is activated 
when an address in the $COlO Clear Keyboard 
Strobe row of figure 18.3A is specified. When ac
tivated, this resets the 74LS74 flip-flop at BlO, 
which is the keyboard (input) flag (MSB or flag bit 
of the keyboard input byte). See section 18.3.3 for 
additional interpretation of what this means 
functionally. No additional decoding ever occurs 
so it is impossible to distinguish between ad
dresses on this row of figure 18.3A. 

The '2' line from the I/0 Selector is activated 
when an address in the $C020 Cassette Output 
Toggle row .of figure 18.3A is specified. When ac
tivated, it toggles a flip-flop, which is one half of 
the 74LS74 at Apple mother board location K13. 
The outpl.it of this flip-flop is connected via a 
resistor network to the tip of the cassette output 
jack. See section 18.3.4 for additional interpreta
tion. No further decoding occurs so no distinction 
is ever made between the addresses on this row of 
figure 18. 3A. 

The '3' line from the I/0 Selector is activated 
when an address in the $C030 Speaker Toggle row 
of figure 18.3A is specified. When activated, it 
toggles a flip-flop, which is the other half of the 
74LS74 at Apple mother board location K13. The 
output of this flip-flop is connected through a 
capacitor and Darlington amplifier circuit to the 
Apple's speaker connection at the right edge of 
the mother board under the keyboard. See section 
18.3.4 for additional interpretation. No further 
decoding occurs so no distinction is made be
tween the addresses on this row of figure 18.3a. 

The '4' line from the I/0 Selector is activated 
when an address in the $C040 Utility Strobe row 
of figure 18.3A is specified. It is directly con
nected to pin 5 of the Game I/0 connection. See 
section 18.3.5 for additional interpretive informa
tion. No further decoding occurs so no distinction 
is made between the addresses on this row of 
figure 18.3A. 

The '5' line from the 1/0 Selector is activated 
when an address in the $COSO row of figure 18.3A 
is specified. It is used to enable the 74LS259 in
tegrated circuit at Apple mother board location 
F14. This IC contains the soft switches for the 
video display and the Game I/0 connector an
nunciator outputs. Further decoding occurs using 
the last hexadecimal digit of the address. Bits (ad
dress lines) 3, 2, and 1 of this hex digit specify 
which soft-switch to access and address line 0 to 
specify the setting of the selected switch. See sec
tions 18.3.5 and 18.3.6 for functional interpreta
tions of what this means. 

The '6' line from the II 0 Selector is activated 
when an address in the $C060 row of figure 18.3A 



is specified. It is used to enable a 7 4LS251 eight
bit multiplexer at Apple mother board location 
H14. This multiplexer, when enabled, connects 
one of its eight input lines to the MSB (Most 
Significant Bit) of the three-state system bus. Bits 
2, 1, and 0 of the last hex digit of the address con
trol the eight input lines the multiplexer uses. Bit 
3 is unused so that the block of eight addresses 
that has this bit in the '1' condition is in
distinguishable from the block of eight that has 
this bit in '0' condition. 

Four of the multiplexer's inputs come from a 
553 quad timer at location H13. The inputs to 
this timer are the game controller (paddle) pins on 
the Game II 0 connector. How these are used to 
detect and react to the paddle position is covered 
in detail in section 18.3.7. 

Three of the remaining inputs come from the 
single-bit (pushbutton) inputs on the Game I/0 
connector. The final multiplexer input comes 
from a 741 operational amplifier at Apple mother 
board location K13. The input to this operational 
amplifier comes from the cassette input jack. 

The '7' line from the I/0 Selector is activated 
whenever an address from the $C070 Game Con
troller Strobe row of figure 18.3A is specified. No 
further decoding occurs so the computer is unable 
to distinguish between different addresses in this 
row. This line is used to reset all four timers in 
the 553 quad timer at location H13, which are 
used in conjunction with the game controllers/ 
paddles. 

18.3.3 Keyboard Data Input ($C00x) and the 
Clear-Keyboard Strobe ($C01x) 

The primary data input of the Apple II System 
is the keyboard input. It uses $COOO as the ad
dress of a one-byte hardware interface register. 

It is not strictly true that address $COOO is the 
address of the keyboard input register. The last 
hexadecimal digit of the address is not decoded. If 
any address $COlx in the range $COOO through 
$COOF is specified, the results will be identical. 

The seven low-order bits of the byte in $COOO 
represent the character ASCII code of the key that 
was most recently depressed, while the eighth bit 
is treated as a 'flag' bit. 

Whenever a key on the keyboard is pressed, 
this 'flag' bit (in the position of $COOO) is set 'on.' 
In addition, bits representing the ASCII code for 
the letter, number, or special symbol represented 
by the key are sent to the seven low-order bit 
positions of $C00x. 

Chapter XVIII 139 

Thus a PEEK of $COOx (any PEEK using loca
tions in the range PEEK(49152) to PEEK(49167) ) 
has a value > 127 after a key is depressed. 

The flag bit stays in that condition until the 
Clear Keyboard Strobe ($COlO) is accessed. (Note: 
As with $COOO, the last hex digit of $C01x is not 
decoded so any address from $COlO= > $COIF 
has identical effect. 

Keyboard clear strobing is usually accom
plished by doing a PEEK( -16368). However, the 
strobing action occurs any time $COlO (decimal 
- 16368) is memory-accessed in any way. For ex
ample, the machine-language instruction LOA 
COlO would also strobe the keyboard. 

When strobing occurs the 8th bit is reset, but 
the seven data bits are not erased or altered in any 
way. Use of the strobe when you access the data 
in $COOO makes it possible to tell whether 
another keystroke has occurred since the last 
time you processed the keyboard input. The 
'standard' Apple convention is that no new input 
will be accepted from the keyboard until the MSB 
is reset by strobing. 

Thus, once your program has begun process
ing the information received from one keypress, 
it should activate the clear keyboard strobe to 
release the keyboard and allow the keyboard to 
accept the next character. If you plan to go back 
for a second look you may defer strobing the key
board at the cost of slowing down the input (and 
possibly even losing a character typed if the per
son at the keyboard continues to enter informa
tion while the keyboard is not ready to accept 
information). 

The Apple II system monitor takes care of 
this, and many other housekeeping activities 
associated with routine BASIC inputs, by using the 
RDCHAR routine or the even higher-level GET
CHAR routine. 

However, there are times when it is useful for 
you to use the direct hardware inputs without the 
intermediary of systems software. When the stan
dard input routines access $COOO, if a keystroke 
has not yet arrived, they remain in a wait loop re
accessing $COOO over and over again until an in
put occurs. This means that no further com
puting can go on until input arrives. 

However, there may be times when it is 
desirable to continue computing. Perhaps you 
may even want to continue creating and display
ing new output while waiting for input. You may 
also find direct keyboard hardware input using 
$COOO and $COlO convenient if you are writing 
interactive games or developing programs for 
laboratory data reduction. 



140 Chapter XVIII 

18.3.4 The Cassette Output Toggle ($C02x) and 
The Speaker Output Toggle ($C03x) 

The cassette output toggle and speaker output 
toggle are single-bit outputs from toggle flip-flops. 
These single-bit outputs become a sequential 
(serial) string of bits as the output is toggled from 
one condition to the other as a function of time. 

In one case, the output goes to the cassette 
tape recorder, in the other to the Apple's built-in 
speaker. 

Audio tones in the speaker or on a cassette 
tape recording are obtained by toggling the output 
from '0' to '1' and back at an audible rate; e.g., 
3000 times per second for a 3000-cycle audio tone. 

The cassette output can also be used for digital 
storage of programs and/ or data using special 
built-in software and commands provided in the 
Apple system monitor and BASIC interpreter 
firmware. 

The addresses for these two outputs are used 
without decoding the last hexadecimal digit, so 
the least significant hex digit of the address is 
ignored. 

Since these outputs are implemented as tog
gles there is no practical way of determining their 
current setting; their bit value changes with every 
memory access; e.g., every time their address is 
PEEKed or accessed by a machine-language in
struction. User programs should never write to 
(e.g., POKE) these toggles. 

18.3.5 Utility Strobe ($C040x) 

If a program accesses the Utility Strobe 
($C04x), the mere act of usage (even the act of 
PEEKing) will trigger actions that may be used as 
an Apple system output. (The last hexadecimal 
digit of the address is not decoded so any address 
in the range $C040 = > $C04F is completely in
distinguishable from any other.) 

If one of the Utility Strobe's addresses is used, 
pin 5 on the Game I/ 0 connector will drop from 
+ 5 volts to 0 volts for a period of .98 microsecond, 
then rise back to + 5 volts again. 

(Note: You should not do a BASIC POKE or 
otherwise write to the utility strobe unless you 
want two outputs about 25 nanoseconds apart. A 
write operation involves two memory accesses; 
the first to read the contents of the location and 
the second to overwrite it.) 

18.3.6 Video Screen Display Mode-Selection 
Soft-Switches ($COSO=> $C057) 

We have seen these soft-switches several 

times before because of their usefulness i~ display 
control. The two adjacent addresses not separated 
by a dotted line represent the two sides of a flip
flop; one is always on (has value '1') at the same 
time the other is off (has value '0'). To turn one 
side on you just access the memory location: 
PEEK it, POKE it (with any value), or use that ad
dress in any machine-language instruction. Since 
an access to the memory location forces the flip
flop into that position, there is no direct way to 
determine the status of the switch other than 
observing its effect on the display screen. 

1-----------------------------------------------------------1 1 Figure 18.3C · 1 
1 Vhieo Screen Disolay Mode-Selection Soft-Switches 1 
1-----------------------------------------------------------1 
1 'iex Deci.!Ml Effect 1 
1 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
1 $C050 49232 or -16304 DiSplay Graprl.cs M:lde 1 
1 $C051 49233 or -16303 DiSplay Text M:lde 1 
1 ........................................................... 1 
1 $C052 49234 or -16302 Display ~11 Text or ~1 Graphics 1 
1 $C053 49235 or -16301 Display MIXED Text & Graphics 1 
1 ........................................................... 1 
1 $C054 49236 or -16300 Display Primary Paqe (Paqe 1) 1 
1 $C055 49237 or -16299 Display Secondary Page (Page 2) 1 
1 ........................................................... 1 
1 $C056 49238 or -16298 Display ID-RES (If graphics on) I 
1 $C057 49239 or -16297 Display 91-RES (If graphics on) 1 
1--------------------------------------------------------l 

18.3. 7 Annunciator Output Soft-Switches 
($C058 = > $COSF) 

The Apple has four relatively little-known 
one-bit outputs called annunciators that appear as 
extra pins on the game paddle connector. Each is 
associated with a soft-switch. An annunciator 
output can be used as a low-power, low-voltage 
control input to some other electronic device. 
Thus annunciator outputs can be used to control 
relays, triacs, etc., and through them almost any 
kind of external device. 

In the figure 18.30 each annunciator soft
switch appears as a pair of addresses not separated 
by a dotted line. If you access the first address in 
the pair you turn the output of its corresponding 
annunciator off; that is, the voltage on its pin of 
the Game 1/0 connector is approximately 0 volts. 
If you access the second address in the pair you 
turn it on (the voltage on its pin of the Game I/0 
is approximately 5 volts). 

1-------------------------------------------------------------1 
1 Figure l8.3D 1 
1 Annunciator Outputs 1 

1----------------------------------------------------1 
!Annunciator State 9ex Address Decimal Addresses I 
1 ............................................................. 1 
1 0 off $C058 49240 or -16296 I 
1 on $C059 49241 or -16295 I 
1 ............................................................. 1 
1 1 off $COS~ 49242 or -16294 1 
1 on $COSB 49243 or ~16293 I 
! ............................................................. ! 
1 2 off $C05C 49244 or -16292 I 
1 on $C05D 49245 or -16291 1 
1 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
1 3 off $C05E/' 49246 or -16290 1 
1 on $C05F 49247 or -16289 I 
! ............................................................. ! 



As previously indicated, accessing a soft
switch may be done by a PEEK, a POKE (of any 
value), or by using a machine-language instruc
tion that uses the relevant memory address. Since 
accessing forces the soft-switch to the position 
accessed there is no easily programmable way of 
determining the status of an annunciator output 
other than by observing its external effect; e.g., 
bringing the output back in by connecting it to a 
flag input. 

18.3.8 Cassette and Pushbutton/Flag Inputs 
($C060 = > $C063 or $C068 = > $C06B) 

The cassette input ($C060) and the pushbut
ton inputs ($C061-$C063) are single-bit flag in
puts. The high-order bit of the last hexadecimal 
digit in the address is not decoded so $C068 is 
indistinguishable from $C060, $C069 from 
$C061, etc. 

These inputs have only two conditions: off 
and on. They are considered to be flags because 
they appear in the highest order (or sign) bit posi
tion of the location specified by their address. 
This bit location is so easy to test it is often used 
as a quick and easy method of flagging and testing 
for special conditions of data or programs. 

The off condition is represented by a 0 in the 
highest order bit position, and the on condition 
by a 1. The condition is easily tested in either 
BASIC or machine language. Since the highest 
order bit position has binary value 2 1\7 ( = 128), a 
PEEK of the location that shows a value > 127 in
dicates the flag is in the on condition, while one 
that shows a value < = 127 indicates the flag is in 
the off condition. For testing with hardware in
structions just load the location into one of the 
microprocessor's hardware registers, thereby set
ting the 'N' (or negative sign) bit of the status 
register. (If the flag bit is on, the bit in the highest 
order position will cause the 'N' bit to go on when 
the register is loaded as an indicator that its sign 
is negative if the byte is treated as a signed binary 
number.) Thus a sign test using a BMI (Branch 
Minus) will cause a branch if the flag is on. A sign 
test using a BPL (Branch PLus) will branch if it is 
off. 

18.3.9 Analog/Game Controller Inputs 
($C064 = > $C067 or $C06C = > $C06F) 
And the Analog Clear/Game Controller 
Strobe ($C070) 

Four analog inputs also appear on the Game 
1/0 connector. They can be connected to 150K 
Ohm variable resistors or potentiometers to pro
vide rotary paddle or joystick input to the Apple. 
For each input this is accomplished using + 5 volt 

Chapter XVIII 141 

supply and a 100 Ohm current-limiting resistor to 
charge a small (0.022 microfarad) capacitor and 
let the charge leak off through the variable 
resistance. The less the resistance the more elec
trical charge leaks off and the less time is required 
to discharge the capacitor. A timing counter 
keeps track of the time to discharge and measures 
the setting of the variable resistor and hence the 
paddle or joystick position. Either the BASIC 
PDL( ) function or a machine-language program 
can access the timing counter and thus read the 
potentiometer setting. 

Before a program can start to read the setting 
of a potentiometer, it must first reset the timing 
circuits. The Analog Clear/Game Controller 
Strobe ($C070 or decimal 49264 or decimal 
-16272) does this. When accessed it sets the 
MSB (sign or 'flag' bit) of the analog inputs and 
countdown begins. Within approximately three 
milliseconds the threshold should be reached and 
the MSB dropped. Discharge time will be meas
ured by counts the counter has performed before 
this happens. Notice that readings that might be 
taken before the MSB goes back off will not ac
curately represent the potentiometer setting. 

If no potentiometer is connected to the Game 
1/0 connector at the analog input specified, then 
the values in the game controller location may 
never drop to zero. Potentiometer values 150K in 
maximum will also not leak enough charge at the 
high end of their resistance range to be usable ex
cept at the low end of their variable resistance 
ranges. 

You can take advantage of the other side of 
this coin to use other than the Apple standard 
150K variable resistors. If you want to use a 
smaller resistor, which lets more charge leak off 
the capacitor, just use additional capacitance so 
that more charge is stored and more charge must 
be leaked to drop the capacitor voltage to the 
counter turn-off threshold. Adjust so that the 
time to discharge the combined capacitors to the 
threshold level is the same (trial and error is 
satisfactory). 

If a program accesses the Game Controller 
Strobe ($C07x), the mere act of usage (even by a 
PEEK) will trigger actions that may be used as an 
Apple System Strobe output. If the Game Con
troller Strobe's address is used (for example, by a 
PEEK), all of the flag inputs of the Game Con
trollers will be turned off and their timing loops 
restarted. 

Note that the last hexadecimal digit of a 
$C07x address is not decoded. Thus any address 
in the range $C070 = > $C07F will be totally in
distinguishable from any other. Also note that a 



142 Chapter XVIII 

double pulse initiated by a POKE lor any other 
write-type access) will have no noticeable or 
adverse effect on the strobing action. 

18.3.10 'Slot' or Peripheral Card 1/0 Space 
I $C080-$COFF) 

The top half of the strange $COxx page of 
memory is more conventional in organization 
and implementation than the bottom half, but it 
too is dedicated to highly specialized functions. 
Its functions are tied to support of activities that 
involve use of the eight slots located along the 
back of the Apple's main board with allocations 
of blocks of memory to individual slots, as shown 
in figure 18.3B. Full coverage of this area will be 
deferred to section 18.4.3 where it can be 
presented in the overall context of memory sup
port for slots and peripheral cards, the topic of 
section 18.4. 

18.4 
Slot/Peripheral Card I/0 Locations 
($C100-$CFFF) 

Inside the cover, along the rear of the Apple 
II's main circuit card, there is a row of eight 
printed-circuit connector board sockets or slots, 
numbered 0 through 7. Slot 0 is the leftmost slot 
!closest to the power supply), while slot 7 is the 
rightmost !closest to the video and cassette 
connectors). 

These slots are provided to allow the user to 
plug in additional circuit boards. Originally these 
slots were intended to allow the user to plug in 
controllers or interface units to connect the Apple 
II to optional peripheral devices. 

For example, Apple sells a communications 
card to interface to communications lines, a high
speed serial card to interface with serial printers 
and other serial-by-bit devices, and a parallel
printer card to provide parallel interface to com
puter line printers. 

Slots are actually general-purpose bus inter
faces; they are not narrowly restricted into what 
they can interface. For example, you can buy a 
Z-80 microprocessor that will allow the Apple to 
run programs in Z-80 machine language or to use 
software from Z-80-based microcomputer 
systems, which use the CPM operating system. 
Or you can buy a high-speed arithmetic processor 
to increase the brute computational capability of 
the Apple. 

Slot 0 !the leftmost as you sit at the Apple II 
keyboard) is a special slot reserved for RAM, 

ROM, or interface expansion. It is the slot into 
which you plug such things as the Applesoft 
Card, the Integer BASIC Card, or the Language 
System Card. All other slots are identical and are 
provided with special control lines that provide 
for highly flexible interfacing. 

18.4.1 Overview of Memory Assigned to Each 
Peripheral Slot 

One particularly interesting characteristic of 
the Apple II system is its use of a standardized 
scheme for interfacing not just the hardware, but 
the software/ firmware associated with periph
erals interfaced via hardware, which plugs into 
these slots. Two-hundred-eighty 1280) addresses 
are allocated for the exclusive use of each of these 
peripheral interfaces. The locations assigned for 
use by one slot have different addresses and are 
totally independent of the locations assigned to 
any other slot. 

In addition, the peripheral slots as a group are 
allocated another 2K of expansion address space. 
Any one slot can take over and exercise control 
over this entire block of addresses, assigning part 
or all of it to RAM or ROM memory, which may 
be located on the plug-in card in that slot. The 
overall memory allocation plan for providing sup
port to slots is summarized in figure 18.4A. 

Figure 18 .4A 
OVerview of Marory Allocation for 'Slots' 

!------------------------------------------

1 1. Peripheral Slot scratchpad RAM 

l 

8 scattered (rnn-displayable) exclusive-use locations 
in Text/IJ::M-Resolution Graphics Page l area 

l 2. Peripheral Card I -o Space 
16 <XXlti<j\DUS exclusive-use locations in area $COOQ-$COFF 

! 
l 3. Peripheral Card K:M Page 

256-byte excluse-use page in area $ClQO-$CFFF 
l 
! 4. Share:l-Exclusive-Use Expansion FCM 

8 256-byte pages ( 21<) of shared-exclusive-use space 
( $C800-$CFFF) 

!----------------------------------------------------

18.4.2 Peripheral Slot Scratchpad RAM 

Each of the eight peripheral slots has eight 
locations assigned to it, one in each of the Page 1 
text/low-resolution graphics macro-lines. A 
macro-line is a half-page 1128 bytes). One
hundred-twenty 1120) bytes are required for the 
three display lines that make up a macro-line, 
leaving eight bytes to be assigned. One is assigned 
to each of the eight slots: the first to slot 0, the 
second to slot 1, and so on through the eighth to 



slot 7. Figure 18.4B identifies the locations 
assigned to each slot. 

1---------------------------------------------------------------l 
I Figure 18. 4B I 
I I 
I I-0 SCRATCHPAD RAM l\DOOESSES (TElcr"/LO-RES GRAPHICS PAGE 1) I 
l---------------------------------------------------------------1 
I Base I Slot Number I 
IAddressl l 2 3 4 5 6 7 I 
l------l-----l------1------l------l------l------l-------l 
I $0478 I $0479 $047A $047B $047C $0470 $047E $047F I 
I $04F8 I $04F9 $04FA $04FB $04FC $04FD $04FE $04FF I 
I $0578 I $0579 $057A $057B $057C $0570 $057E $057F I 
I $05F8 I $05F9 $05FA $05FB $05FC $05~'0 $05FE $05FF I 
I $0678 I $0679 $067A $067B $067C $0670 $067E $067F I 
I $06F8 I $06F9 $06FA $06FB $06FC $06FD $06FE $06FF I 
I $0778 I $0779 $077A $077B $077C $0770 $077E $077F I 
I $07F8 I $07F9 $07FA $07FB $07FC $07FD $07FE $07FF I 
l-----------------------------------------------------------1 

!Note: Similar areas are available in Page 2 of 
text/low-resolution graphics and in both Pages 1 
and 2 of high-resolution graphics. However, since 
only Page 1 of the text/low-resolution graphics 
area jthe area of the scrolling buffer) is used in 
almost any program, only that area is permanently 
allocated for scratchpad. 

When the other screen buffer areas are used, 
the comparable locations in their structure 
become additionally available for such allocation 
and use in extension of this basic plan. They may, 
of course, be used instead in any other way prefer
red by the programmer. 

18.4.3 Peripheral Card I/0 Space 

Each of the eight peripheral slots also has a 
block of 16 contiguous addresses assigned to it in 
the special I/0 area, $COSO= > $COFF, to do 
with as it will. Figure 18.3C showed this alloca
tion pictorially. 

The slot 0 address for any of the 16 words may 
be used as a base address to be indexed by the 
amount $SO, where S is the slot number, to point 
to the corresponding word in the S-th slot. This 
relationship is shown in figure 18.4C. 

The Apple convention for making Peripheral 
Card PROM programs slot-independent puts the 
slot number in the form $CS in memory location 
$07F8. In machine language this can be AND'ed 
with $OF to get the slot number in the form $OS, 
then shifted four bits to the left to get the form 
$SO needed for this indexing. 

In BASIC, similar indexing can be done by ad
ding the base address and modified slot number. 

- However, decimal rather than hexadecimal ad
dresses must be used. In BASIC you can get the 
slot number S by doing a 

LET S = PEEK(2040) - 192 

Chapter xvm 143 

Since slot numbers are less than decimal 10, 
decimal and hexadecimal slot numbers are iden
tical. The decimal equivalent of the $SO needed 
for indexing is 16•S. 

-----------------------1 
Figure 18.4C I 

I/O IDeation Base Address/ Indexin:J Pattern I 
! fur card/ Slot Portability I 
I fur card/Slot Portability I 
!----------------------------------------1 
I Base Slot I 
!Address! 0 1 2 3 4 5 6 7 I 
! ..................•...................•.....••.......•........... 1 
! $COOO I $COOO $C090 $COAO $COBO $COCO $CODO $COEO $COFO I 

$COBO ! $COOO $C090 $COAO $COBO $COCO $CODO $COED $COFO I 
$C0Bl ! $COB1 $C091 $COAl $C08l $COCl $COOl $C0El $C0Fl I 

I $COB2 I $COB2 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2 ! 
$COB3 I $COB3 $C093 $COA3 $COB3 $COC3 $C003 $COE3 $COF3 ! 
$C084 ! $C084 $C094 SCOI\4 $COB4 $COC4 $COD4 $COE4 $COF4 ! 
$COBS ! $COBS $C095 $COA5 $COBS $COC5 $COD5 $COE5 $COF5 ! 
$C086 ! $C086 $C096 $COA6 $COB6 $COC6 $COD6 $COE6 $COF6 ! 
$COB7 ! $COB7 $C097 $COA 7 $COB7 $COC7 $COD7 $COE7 $COF7 I 
$COBB I $COBB $C098 $COA8 $COBB $COC8 $CODB $COE8 $COF8 I 
$C089 ! $C089 $C099 $COA9 $COB9 $COC9 $C009 $COE9 $COF9 I 
$C08A ! $C08A $C09A $COAA $COBA $COCA $CODA. $COEA $COFA I 
$COBB ! $COBB $C09B $COAB $COBB $COCB $CODB $COEB $COFB I 
$C08C ! $C08C $C09C $COAC $COOC $COCC $CODC $COEC $COFC I 
$C08D I $CDBO $C090 $COAD $COBD $COCD $COOO $COED $COFD ! 

I $COBE I $CDBE $C09E $COAE $COBE $COCE $CODE $COEE $COFE ! 
! $COBF I $COBF $C09F $COAF $COBF $COCOF $CODOF $COEF SCOFF I 
1-----------------------------------1 

Associated with this block of addresses are 
special control features, which make these loca
tions particularly convenient for intercom
munication with the central machine. 

Each peripheral card can determine if it is 
selected for operation, and when, by testing the 
condition of a special control line, the DEVICE 
SELECT !negated), located at pin 41 on its 
peripheral connector. Whenever the voltage on 
this pin drops to 0 volts, the address that the 
microprocessor is calling for is located some
where in the 16-byte block of addresses belonging 
to that particular peripheral. The peripheral card 
can then look at the bottom four address lines to 
determine which of the addresses in this special 
16-address block is being called for. 

18.4.4 Peripheral Card ROM Page 

Each peripheral slot also has reserved for its 
exclusive use one 256-byte page of memory. This 
page is normally used for ROM or PROM, which 
contains the driving and interfacing routines 
needed by the peripheral card. 

The allocation of this space, which is ad
dressable within the main system addressing 
scheme, permits the individual peripheral cards 
to contain their own driving software usable by 
the main system. This means that it is possible, 



144 Chapter XVIII . 
in many cases, for the system to avoid loading 
special interface programs to use individual inter
face cards. Those programs can be on the card 
itself, but accessible from the main system. 

The page of memory reserved for each periph
eral card has the page number $Cs !memory ad
dresses $CsOO-$CsFF), where sis the slot number 
1-7 !see figure 18.4D). 

----------------------------------! 
Figure 18.40 I 

Slot/ Peripheral Card PRCM Page Assignments ! 
----,-----------------------------1 

! Slot NU!Ii:ler Page Mem:>ry Addresses 
I .•........................................... I 
I 1 $Cl $ClQO-$ClFF I 

2 $C2 $C2QO-$C2FF I 
3 $C3 $C3QO-$C3FF I 
4 $C4 $C4QO-$C4FF I 
5 $C5 $C500-$C5FF I 
6 $C6 $C6QO-$C6FF I 
7 $C7 $C7QO-$C7FF I 

----------------------------1 

The space that would have been used to pro
vide a page of memory for slot zero was used up 
giving each of the slots its 16-bytes of Peripheral 
Card I/0 space. This means that most Apple in
terface cards will not work in Slot 0. 

When the central microprocessor references 
an address within the peripheral card ROM page 
assigned to a particular slot, a special signal, the 
I/0 SELECT !negated) connected to Pin 1 on the 
slot's plugpin connector drops from + 5 volts to 0 
volts. The peripheral card can then use this signal 
to enable their ROMs and use the lower eight ad
dress lines to determine which of the 2/\ 8 I = 256) 
locations in the page the central machine is 
accessing. 

Apple strongly recommends the use of soft
ware conventions that make the programming of 
peripheral card PROMs slot-independent. The 
conventions include such practices as saving the 
values of all 6502 hardware registers on entry to a 
PROM subroutine, using a short standard pro
gram to determine the slot number and storing it 
in the form $CS in location $07F8, and use of the 

Base Address/Indexing technique described 
above. Detailed documentation is provided with 
Apple's blank general-purpose expansion card. If 
you do not use Apple cards the key information 
needed may be found in "I/0 Programming Sug
gestions'' found on page 81 of the Apple II Refer
ence Manual you received with your computer. 

18.4.5 Shared-Exclusive-Use Expansion ROM 

The address space from $C800-$CFFF, con
stituting eight pages or 2K of memory space, is 
held in common for use by the peripheral slots. 
Any or all of the peripheral cards can contain up 
to 2K of ROM lor RAM), which makes use of this 
address space, but only one can share it with the 
central computer at any one time. 

The peripheral card is expected to contain a 
flip-flop, which is to be turned on by the DEVICE 
SELECT !negated) signal previously mentioned 
!the one which activates the 256-byte page of ex
clusively addressed ROM for that slot). This 
warning occurs when the central machine selects 
the individual peripheral card. In effect, it notifies 
the peripheral that it is responsible for responding 
to any requests for information from within the 
shared !common) address range $C800-$CFFF. 
Full activation occurs only when the central 
machine calls for an address within that range. 
The I/0 STROBE !negated) associated with pin 
20 on each peripheral connector notifies the 
peripheral cards that the central machine is ac
cessing this common area, but only one will have 
been pre-selected to provide the information, and 
hence only one will respond. 

A peripheral card's 256-byte ROM can regain 
sole access to this address space whenever re
quired, by referring to location $CFFF, a special 
location that all peripheral cards should recognize 
as a signal to tum off their flip-flops to disable the 
expansion ROM. Such a call should be part of 
every peripheral's initialization routine to make 
sure that other peripheral slots do not accidentally 
have their flip-flops still active and hence might 
accidentally also respond to the central 
machine's request directed to the selected slot. !It 
will, of course also tum off its own flip-flop, but 
the next access by the central machine will tum 
the flip-flop back on for the the selected slot and 
the selected slot only.) 



Chapter XIX 
Applesoft BASIC Interpreter 

19.1 
The Applesoft Dialect of BASIC 

19.1.1 Features of the Applesoft Dialect 

The Applesoft interpreter allows the user to 
specify problem-solving procedures using the 
Applesoft dialect of BASIC. This dialect is a rich, 
extended precision floating-point dialect of 
BASIC. Applesoft includes the ability to perform 
significant floating-point arithmetic and string 
operations not available in the other major Apple 
BASIC dialect, Integer BASIC. 

The Applesoft interpreter supports all the 
functions of minimal BASIC plus many BASIC 
extensions. It was originally written for Apple 
Computer Inc., by Microsoft. As first written in 
1976, it was mostly a transfer to the Apple hard
ware/firmware environment of Microsoft's MITS 
BASIC. Programs written in that version of the 
BASIC language, which do not depend too heavily 
upon system-specific programming techniques, 
are easily transposed into Applesoft. 

Specifically, Applesoft supports the use of 
both Integer and floating-point arithmetic for 
numbers, numeric variables, and for multi
dimensional numeric arrays. Matrix operations 
are not explicitly supported. Applesoft also sup
ports the use of strings of characters, string 
variables and string arrays. A variety of useful 
string manipulative operations and functions are 
also imbedded in Applesoft. These include con
catenation, splitting strings apart and finding 
substrings, converting characters to their ASCII 
c-ode numeric equivalents and vice versa, etc. 
Finally, the Applesoft interpreter also supports a 
variety of system-specific extensions to the 
BASIC language. These include special input, 
output, display-control, and low- and high
resolution graphics commands, as well as useful 
error-handling capabilities. 

This chapter does not attempt to duplicate the 
Applesoft BASIC Programming Reference 
Manual. Instead, its emphasis is on how Ap
plesoft fits into the overall hardware/ software en
vironment of the Apple system. In the process of 
covering this, it attempts to cover enough of the 
inner workings to enable a sophisticated user to 
understand and use them to his advantage. 

19.1.2 Variations in the Applesoft Interpreter 
For Different Hardware/Software 
Environments 

In an Apple II Plus, Applesoft BASIC is the 
language of the BUILT-IN ROMs. In the Apple II 
(non plus), it is not. 

In an Apple II Plus the Applesoft interpreter is 
located in five large ROM chips on the main cir
cuit board of the Apple (ROMs DO, D8, EO, E8, 
and FO). This version of the interpreter is known 
as ROM Applesoft or, less frequently, as 'firm
ware Applesoft.' Architecturally it occupies ad
dressable memory locations $DOOO-$F7FF. 

In an Apple II, Integer BASIC is the language of 
the BUILT-IN ROMs. Of course, that does not 
mean you can't use Applesoft if you don't have an 
Apple II Plus. Applesoft adapter cards are avail
able to provide built-in (ROM) Applesoft. In this 
case, the ROMs are located on the Applesoft card. 
Architecturally the card is arranged to provide for 
automatic bank switching between this set of 
ROMs and those on the Apple's main circuit 
board. Thus both sets of ROMs, the built-in set 
for Integer BASIC and the Applesoft set on the 
adapter card, are able to use addressable memory 
space in the region $DOOO-$F7FF. 

Alternatively, you can use a language card, 
such as that used by Apple Pascal, or a similar 
16K RAM card. If you have such a card (or a 32K, 
64K, or 128K card with similar characteristics) 
you can automatically load the firmware version 
of the Applesoft interpreter into it from a DOS 3.3 
System Master or from a BASICS diskette during 
a system boot. Once this is done the language 
card RAM is automatically write-protected (under 
software control). The Applesoft interpreter then 
becomes almost indistinguishable from the ROM 
version built into an Apple II Plus or the language 
card. In this situation, even though the inter
preter is located in special write-protected 
memory, the memory now functions as a Read 
Only Memory (ROM). 

Because it is protected against writing (like a 
ROM) and is located in the ROM area of memory, 
the version of the Applesoft interpreter made 
available to the Apple system in this way is also 
called ROM Applesoft. 

If you have an Apple II (as oppposed to an 
Apple II Plus) with neither an Applesoft card nor a 
language card (or equivalent) you can still use 
Applesoft. However, you will not be able to locate 
it in the ROM area of memory ($DOOO up). In
stead you will have to use another, older version 
of Applesoft that can be automatically loaded into 
normal RAM memory space locations $800 



146 Chapter XIX 

through $3000. This version of the Applesoft in
terpreter is called RAM Applesoft because it 
resides electronically in RAM and also resides in 
RAM address space rather than in the ROM ad
dress space. 

In older Apple publications it is sometimes 
called Cassette Applesoft because it was loaded 
into the Apple from cassette tape before Apple 
computers had diskettes available to them. (It 
still can be, but this is not recommended.) 

The internal structure of the RAM version is 
older and slightly different in detail from the 
more modern ROM version and is not docu
mented in detail here. Some of the routines may 
be found by using a downwards offset of $C800 
(unsigned decimal 51200; signed decimal 
-14336) bytes from the ROM versions which are 
documented. 

For most routine programming activities, 
RAM Applesoft is functionally almost the same as 
ROM Applesoft, but it does use up approximately 
lOK of RAM space that would otherwise be avail
able for user programs and data. 

Unfortunately, the lOK area, which thus 
becomes unavailable, includes high-resolution 
graphics Page 1 and text/low-resolution graphics 
Page 2. As a result, RAM Applesoft has some 
severe limitations compared to ROM Applesoft 
for users interested in doing animation and other 
types of graphics programming which require 
availability of both high-resolution or low
resolution graphics pages. 

19.2 
The Functioning of the Interpreter 

19.2.1 Overview 

The Applesoft interpreter simulates and pro
vides a program-development and operating en
vironment of a computer that accepts and ex
ecutes BASIC programs written in the Applesoft 
dialect of BASIC. 

Unlike a compiler (or an assembler) the inter
preter does not translate the entire program into 
machine language at one time, then as a separate 
activity, execute the machine code. Instead the 
interpreter compacts the program into a tokenized 
form and stores that compacted form of the in
structions as well as space for appropriate simple 
variables, arrays, character strings, and constants 
as if it were loading a program. 

When told to 'RUN' the program, the com-

puter translates each instruction on-the-fly by 
means of firmware just before execution. 

If these functions were performed by hardware 
instead of firmware, you would have a computer 
that would accept instructions in BASIC, store 
them in compacted form, and execute them 
directly. This same organization permits the sim
ulated Applesoft BASIC computer to accept in
structions written without line numbers (which 
specify the order they are to be stored in memory) 
as instructions to be executed immediately in a 
'desk calculator' mode. 

19.2.2 The BASIC Cycle of Functional Operation 
For the Applesoft Interpreter 

Figure 19.2A shows a simplified version of the 
basic cycle of functional operation of the Apple
soft interpreter. 

·---·-------------- I 
Fiqure 19.21'. I 

I Functional Operating Cycle of !>.pplesoft Interpreter I 
I I 
1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 
I ICI'E: For simplicity one BASIC instruction per line assunerl I 
I Many options, particularly ones associated with utility! 
I cmrnarrls arrl errors, also ignored fur simplicity I 
1------------ I 
I I 
I l. Initialization: I 
I (Initial set-uP) I 
I I 
I 2. 11coept Instructions: I 
I A. Request input by displaying an l\ppl.eaoft pr:anpt •] • I 

B. l\ccept irplt fran key1:loard - or fran caaaette or disk I 
C. Cbnpact instructions into 'tdtenized' fonn I 

3. Test First Character of Input: 
If first character of the input is a runeric digit, then 
go to line 4, otherwise go to line 5 

4. (Deferred Made - First character is a digit) 
1'.. Store 'tokenized' instruction in position detennined by 

line runtJer, ·pushing dcwn' atrf instructions, variables 
etc ..ttich JruSt be !IDITed to make this possible 

B. Go to step 2. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5. (IlmBiiate Mode - First character is not a digit) I 
I 1'.. Elrecute the inputted instruction line I 
I !Cl'E: This may cause desk-calculator type of ooeratation I 
I !Cl'E: If IU{ instruction encnmtered go to step 6. I 
I B. Go to step 2. I 
I I 
I 6. Rln the program using FEroi-EKB::IJI'E Cycle of Operation I 
I A. FEIOi 'RE NEXT INSTROCTIOO: I 
I I 
I Initial Entry: Start at the BASIC line-nr specified with I 
I the lUI or if none specified at the l011o1est in the program! 
I Non-Initial Entries: Use the next MSIC line-nr. I 
I I 
I Either type of entry: If there is a next line-nr then I 
I go to step 68. If not, go to step 2. I 
I I 
I B. EKB::IJl'E 'RE I~CH: I 
I l'Alen instruction execution canpleted go to step 61'. I 
I ----------------------- I 

19.2.3 Functional Utilization of Memory Space 
By Applesoft Programs 

When the Functional Cycle described in the 
previous section is being used to enter a User's 
Applesoft program, it has to store the tokenized 
version of that program away in available user 
memory. It also has to make provision for space 



to locate the constants, variables, arrays, and 
character strings needed for the program to ex
ecute properly. Chapter 16 treated the allocation 
of space in user memory in careful detail, so it is 
only necessary to indicate the functional 
building-blocks the interpreter must set aside. 

Figure 19.2B provides such a functional 
breakout. Remember that, when Applesoft is 
ready to begin entry of a new program: 

1. The lowest memory address available in user 
memory is called LOMEM. 

2. The highest available is called HIMEM. 

3. The as yet unused space between is called user 
free space. This is the space into which user 
programs and program data (constants, vari
ables, arrays, character strings, etc.) are auto
matically put by the Applesoft interpreter. 

4. LOMEM does not remain fixed while a BASIC 
program is being entered. It is the bottom of 
space available for variables and is pushed up
ward by the growing program. 

5. When you create a BASIC program using the 
Applesoft interpreter, the interpreter auto
matically allocates space out of the free space 
area to meet the four major needs indicated in 
figure 19.2B. 

1----------------------------------------------------------l 
I l'igure 19.28 I 
I Functional Utilization of Mem'>ry Space by A.pplesoft Programs I 
I (Blocks Maintainerl <;eparately by the APPle90ft Interpreter) I 
1----------------------------------------------------------l 
I \. Space for your BA.~IC proqran" I 
I The Apoleaoft interpreter ~ts a 'tokenize:i~ (specially I 
I abbreviate1) eopy of your oource (BA.~IC) proqram at the I 
I begimirJJ of the oriqinally available free apace. 'nle I 
I detailed organization of this space was covere:i in Chapter I 
I 15. t.bte that as statements are addErl each statement added I 
I pushes lJ7rot!M arrl the S'P\ce allocated for simple variables I 
I ~ arrays up..m.rd oot of its way. I 
I I 
I 2. <;p..ce for Simple Variables: I 
I 'nle Acplesoft interpreter assiqns space atx:M! the program to I 
1 simple variables, i.e. variables ....nich are rPt part of an 1 
I array. There are three types of these: R.M 1 mnber I 
I wt.riables, Integer nmher variables arrl Strin:J ~inters. I 
I strlng minters are as90Ciated with string variables, but I 
\ they do not contain t"le alohanuneric text of the strin:} \ 
! variable. They merely "COint to t"le location of the start of I 
I the strinq of characters aOO SPeCify its l~th. The exact I 
I organization of this space was covered in Chapter 15. I 
I I 
I 3. Sf:)!ce for Arrays : I 
I I 
I ,_P. Apolesoft interpreter assiqns space atx:we that assigned I 
I to simple variabl~ to arrays. As with simple variables I 
I there are tltree types of arrays: Real ni..JltJer arrays, Integer I 
I nurrt:ler arrays arrl Strirg pointer arrays • .a.s was sthe case \ 
I for strinq variables the actual alpharnneric characters of I 
1 strin:} arrays do I'V)t appear in the strirg pointer arrays, I 
I only '!X)inters' ~ich specify Where the alphanumeric I 
I characters are located. 'n1e exact organization of this I 
I space was COifered in Chapter 15. I 
I I 
I 4. Gplce for Character <;trin:JB: I 
I 'nle actual alphanurreric characters associated with strirq I 
I variiDtes arrl strirg arrays as well as 'quotOO' character I 
I strirgs used as parts of a program statement are put into I 
I merrory in the order of receipt. As dem::>strated in Chapter I 
I 15 these strirgs are often inb!dded in the hJdy of the I 
I program, but if entered during the execution of a program I 
I they are alloci'lted at the top of free sp!!.ce arrl \I«X'K I 
I IXJooiiiMARD fran JUM!M. 'nle current string am m.Jltiple l 
I superseded o:~pies of strin:}s assigned to the same strin:} I 
I variable ne.y be in this space at the same time arrl gradually I 
I eat i'N<'iY at the free gpace. '!he user may clean out the I 
I no-lco:jer-nee'led 'qarbage' by usinq the FRE() functionat a I 
I time cowenient to him or let the ccrnp.rt.er do it I 
I autcmatically ...men space is exhausted. I 
1--------------------------------- I 

Chapter XIX 14 7 

Notice that with the scheme of allocation 
shown in figure 19. 2B, as a program increases in 
size, it eats away at the available free space from 
both the original LOMEM upward and HIMEM 
downward, leaving an ever-decreasing residue of 
the original free space somewhere in the middle. 

19.3 
Structure of the Applesoft Interpreter 

19.3.1 The Interpreter as Simulator of a 
Computer Whose Machine-Language is 
BASIC 

If you feel more comfortable with hardware 
than with software and like the idea of analyzing 
systems from a hardware-oriented viewpoint, you 
will find that the Applesoft interpreter is, in ef
fect, a simulator that makes the Apple simulate a 
computer operating in BASIC. The Functional 
Operating Cycle of the Applesoft interpreter doc
umented in figure 19.2A is, in effect, the FETCH
EXECUTE cycle of this simulated computer. 

If we look at the interpreter as implementing a 
simulated machine, certain questions about key 
parts of the control unit of the simulated machine 
immediately come to mind: Where does the sim
ulated program counter keep track of where to 
FETCH the next line of BASIC? Where is the 
BASIC statement/ instruction register that pro
vides linkage between the instruction and the 
decoder? (The decoder analyzes the BASIC 
statement/instructions to determine what action 
is to be EXECUTEd.) Answer: They don't exist as 
specific locations, like hardware registers, to 
which all program-control information is moved. 
They are phantoms which, as soon as you locate 
them, fade away and appear somewhere else. 

In effect, the program counter and decoding 
circuitry move to the spot where they are needed 
in the program being executed rather than vice 
versa. 

You have already had a chance, in chapter 15, 
to look at the inner structure of several different 
BASIC programs in the tokenized form they use 
in computer memory. Each statement is one in
struction for the simulated BASIC computer. 

As we have seen, each statement consists of 
the following components: 

1 . A POINTER to the next line of the program. 

2. The LINE NUMBER of the statement itself. 

3. A BASIC TOKEN that specifies the kind of 
OPERATION to be performed. 



148 Chapter XIX 

4. Zero or more PARAMETERS that specify what 
information is to be used in performing that 
operation. 

5. A delimiter specifying that the END of the 
statement (or end of a line of statements) has 
been reached. 

The pointer and the line number perform the 
functions of a hardware instruction counter that 
moves around in memory with the point in the 
program currently being executed. Two of these 
four bytes keep track of where you are in the pro
gram (in BASIC), and the other two keep track of 
where (in hardware memory) the simulator must 
go to FETCH the next statement/instruction. 

The remainder of the tokenized statement 
acts as a floating instruction register. Machine
language instructions normally consist of two 
parts: 

1. An OPERATION CODE that tells what is to be 
done, and 

2. Zero or more addresses or parameters that 
specify what information is to be used in per
forming the operation. 

The internal structure of the tokenized state
ment follows this same pattern: 

1. The TOKEN takes the place of the OPERA
TION CODE; it tells what is to be done. 

2. The PARAMETER LIST takes the place of the 
machine-language address parameters; it tells 
what information is to be used and where to 
find it. 

The structure of BASIC is more free in form 
that that of machine language. In machine lan
guage, the hardware has built-in knowledge of 
how many parameters/ addresses are to be used 
for each operation code. With free-form state
ments such as the LET or PRINT, there is no way 
to tell in advance how long the statement is going 
to be until the user terminates it with a colon or 
with a carriage return at the end of the line of 
typing. Thus it makes sense to use an end-of-para
meters delimiter to specify the length of the state
ment. In the early days of the modern computer 
this technique was actually used in the hardware 
of some computers, called variable-word-length 
computers. At one time this technique was 
popular with business data processing computers. 
It was built into the hardware of computers such 
as the IBM 705. 

Various other locations in memory, especially 
zero page, act like other registers for the simu
lated machine, keeping track of information 
while it is needed, flagging special conditions 

(like the hardware status register), etc. 

Instead of using decoding circuits in the con
trol unit to analyze what is to be done, the 
simulator uses tables with software-implemented 
look-up for analysis of the statements, and to 
choose subroutines that will actually execute the 
required operations. 

19.3.2 Program Structure of the Interpreter 

I find it convenient to visualize the program 
structure of the Applesoft interpreter in terms of 
the eight program structure units described 
below. While this division and breakdown makes 
sense to me, it is not perfect. For other view
points, I recommend reading C.K. Mesztenyi, 
"Applesoft Internal Structure," Washington Ap
ple Pi, Vol. 3, Number 10 (Nov 81); Call 
-A.P.P.L.E., Vol. 5, Number 1 (Jan 82); John 
Crossley, "Applesoft Internals," Apple Orchard, 
Vol. 1, Number 1 (Mar/ Apr 80); and Val Golding, 
"Applesoft from Bottom to Top," Call 
-A.P.P.L.E. 

1. The BASIC Program 
The User Memory area from Start-of-Program 
(often $0801)to LOMEM. (Refer back to 
Chapter 16 for specific information and details 
as to how this area is organized and used.) 

2. The BASIC Variables and Arrays 
The User Memory area from LOMEM to the 
End of Array space. (Also refer to Chapter 16 
for specific information and details on how this 
area is organized and used.) 

3. The Statement and Program Building Software 
This consists of a diffuse group of program 
packages that perforrn functions associated 
with the input and set-up of BASIC programs. I 
put in this category such functions as In
itialization of the interpreter (its zero-page 
locations and pointer locations), the actual in
put of BASIC programs (the input request soft
ware starts at $D43C), and the tokenization 
and laying down of the program and data. (The 
tokenization subroutine is located at $D559-
$D619 with entry at $D559.) 

4. The Applesoft Interpreter Control 
This control is diffuse but involves activities 
associated with the FETCH-EXECUTE cycle 
for BASIC. It centers around the CHRGET I 
CHRGOT routine. This routine resides in 
ROM at $FlOB-$Fl26, but is copied into Page 
Zero locations starting at $B1 for actual use. 
The execution phase of this interpreter control 
is associated with an execution loop entered at 
$D805. Page Zero memory location TXTPTR 



($B8, $B9), imbedded in CHRGET/CHRGOT, 
is the closest approximation to a classic Pro
gram Counter for BASIC programs existing in
side the Applesoft Interpreter. 

5. The Keyword Token Table ($DODO-$D25F) 
This is the table the interpreter control 
(CHRGET and its execution loop) uses to 
figure out what operation is required in each 
BASIC statement. 

6. The Statement Type Entry Table and its an
cillaries, the Operator Tag and Entry Table, 
and Function Entry Table 
These are used by the interpreter control after 
the keyword token table. They bring the pro
cess closer to performing useful action by 
relating a particular operation, specified by a 

1--------------------------1 1--------------------------1 
I Figure 19.3A/l/ I I Figure 19.3A./2/ I 
!Table of Entry Points for I I Table of Entry Points I 
I BASIC Statement I I for BASIC Statement I 
I Implementation Subroutines I I Implementation Subroutines I 
I (lst $20 tokens/keywords) I I (2rrl $20 tokens/keywords) I 
1--------------------------1 1--------------------------1 
!Hex Subroutine I !Hex Subroutine I 
I 'lbken Keyword Entry Pt I I 'lbken Keyword Entry Pt I 
1 .•••• 1 ••••.•.• 1 •••.....•.• 1 1 ...•. 1 •.•.•... 1 ...•.•.•... 1 
I <--Table Start $DOOO-----> I I $1\0 COI.DR= $F24F I 
I $80 END $0070 1 I $Al roP $D96B I 
I $81 FOR $D766 I I $A2 Vl'AB $F256 I 
I $82 NE){T $0CF9 I I $A3 HIMEM: $F286 I 
I $83 IY\'m $0995 I I $M l.CM'l4: $F2A6 I 
I $84 INPUl' $DBB2 I I $A5 CNERR $F2CB I 
I $85 DEL $F331 I I $A6 RESUME $F318 I 
I $86 DIM $1FD9 I I $A 7 RFrnLL $F30C I 
I $87 READ $DBE2 I I $A8 S'IORE $F39F I 
I $88 ~ $F390 I I $A9 SPEED= $F262 I 
I $89 TEXT $F399 I I $AA I.El' $DM6 I 
I $8A PRt $FlE5 I I $AB GOTO $D93E I 
I $8B IN# $FlOE I I $AC !UN $0912 I 
I $8C CAIL $FlD5 I l $AD IF $D9C9 I 
I $8D PI.OI' $F225 I I $AE RES'roRE $0849 I 
I $8E HLIN $F232 I I $AF & $03F5 I 
I $8F VLrN $F241 I I $BO OOSUB $0921 I 
I $90 HGR2 $F300 I I $Bl RETURN $D96B 
I $91 HGR $F3E2 I I $B2 REM $D90C 
I $92 HCOI.DR= $F6E9 I I $B3 S'roP $006E 
I $93 HPI.OI' $F6FE I I $B4 CN $D9Er: 
I $94 ~ $F769 I I $B5 ~T $E784 
I $95 XOOAW $F76F I I $B6 LQ1>J) $0069 
I $96 H'm.B $F7E7 I I $B7 SAVE $00BO 
I $97 HCME $FC58 I I $B8 IEF $E313 
I $98 ROT= $F721 I I $B9 POKE $E77B 
I $99 ~ $F727 I I $BA PRINT $DADS 
I $9A g:jJ:.Ol'J) $F775 I I $BB CONT $0096 
I $9B TRACE $F26D I I $0C LIST $06A5 
I $9C NJI'RACE $F26F I I $BD CLEAR $066A 
I $9D NORMAL $F273 I I $BE GET $DBAO 
I $9E INVERSE $F277 I I $BF NEW $0649 
I $9F FlASi $F280 I I <----Table Errl $007F-----> 
I • Errl of first $20 entries • I 1--------------------------1 
I •• Contirrue witll next $20 •• I 
1--------------------------1 

Chapter XIX 149 

particular keyword, to specific subroutines 
that will implement that operation using the 
parameters supplied. 

7. The Execution Subroutines 
These acutally perform (in most cases with 
considerable help from the system monitor) 
whatever it is that the BASIC statement was 
supposed to do. ADDing, PRINTing, etc. 

8. Miscellaneous 
a. Flags and temporaries used in analyzing and 

executing the program. 
b. Scattered, locally used data interspersed in 

the program. 
c. A table of ASCII error messages for use 

whenever errors are detected. 

1---------------------11-----------------------1 
I Figure 19.3B II Figure 19.3C I 
I FUnction Entry Table II Table of Operator Tags I 
1----------------------11 & Entry Points I 
!Hex Flmction 11--------------------------1 
l'lbken Keyword Entry PointiiHex Keyword Hex Entry I 
I ••••• 1 ........ 1 ........... ll'lbken or apr Tag Point I 
<----starts at $0080 ----> 11 • · • · . I •••• • •• I •••• I ••••••• I 

$D2 93N $EB90 tl <- Table Starts at $OOB2-> I 
$D3 !NT $Er:23 II $C8 + $79 $E7Cl I 
$04 ABS $EBAF ,, $C9 $79 $E7AA I 
$D5 l.BR $000A II $CA * $7B $E982 I 
$06 FRE $E2DE II $CB I $7B $FA69 I 
$D7 SCRN( $0412 II $CC $7D $EE97 I 
$00 PDL $~ II $CD AND $50 $DF55 I 
$09 ros $E2FF II $CE OR $46 $DF4F I 
$Do\ 5JR $EE8D II $CF > $7F $EEDO I 
$DB RND $EFAE II $00 $7F $DE98 I 
$OC r.oo $E941 II $Dl < $64 $DF65 I 
$00 EKP $EF09 II<-- Table Ends at $00CF-> I 
$DE COS $EFFA 11---------------------1 
$DF SIN $EFF1 I 
$EO TAN $F03A I 

I $El ATN $F09E I 
I $E2 PEEK $E764 I 
I $E3 UN $B606 I 
I $E4 STR$ $E3C5 I 
I $E5 VAL $E707 I 
I $E6 ASC $BGE5 I 
I $E7 O!R$ $B646 I 
I $E8 lEFT$ $B65A I 
I $E9 RIGIT$ $~6 I 
I $FA MID$ $B691 I 
I <----Table em $00Bl-----> I 
1--------------------------1 



Chapter XX 
The System Monitor Location
Memory Pages 248-255 
( $F800-$FFFFJ 

20.1 
Overview 

The system monitor, an important item of soft
ware/firmware in the Apple II, is used whether 
you are programming in Applesoft, Integer BASIC, 
machine language, PASCAL, FORTRAN, LOGO, 
or almost any other language. Without it you 
could not get information into or out of the Apple. 
The keyboard, text display, graphics display, and 
the disk drives would all be inactive and unusable. 

Actually, as we stepped our way up the Apple's 
memory, most of the features that we described 
were a description of functions implemented 
through the Apple monitor firmware, rather than a 
discription of features built into the Apple hard
ware. Indeed, changes in the Apple system 
monitor are likely to be more noticeable to the 
Apple system user than changes in hardware. 

As with the hardware of the computer, the 
monitor speaks binary. It is the firmware of the 
monitor that makes it possible for you to enter 
hexadecimal digits, decimal numbers or alphabetic 
characters into the keyboard. It is the firmware of 
the monitor that echos back your keystrokes, con
trols the display of information on the screen, 
scrolls the screen, beeps the bell, and creates the 
convenient interactive man-computer com
munication that is so characteristic of the Apple. 
Without the monitor, the Apple would need a con
sole full of lights and switches. 

Some of the functions performed by the 
monitor in the Apple are performed by hardware in 
some personal computers. However, in the early 
years of computer development, engineers learned 
that it is neither feasible nor desirable to build the 
majority of the functions performed by the 
monitor into the system hardware. More than any 
other software used in the computer, the monitor 
demonstrates the complete inseparability of hard
ware and software design at the machine level in a 
modem computer. 

In another sense, the monitor firmware is vir
tually indistinguishable from hardware. It is 
physically present in every Apple II or II+ because 
it is permanently imbedded in the F8 ROM of each 

system as delivered. Moreover, it is unchangeable 
by the user (unless he has the right kind of 
memory expansion card and wants to play special 
tricks). 

20.2 
The Two Varieties of Apple Monitors 

There are two major versions of the Apple 
System monitor: 

a. The Autostart Monitor, used in Apple 
II + systems and 
b. The (old) Apple System Monitor, used in 
Apple II systems which are not II+ systems. 

The presence of the system monitor is more 
noticeable in the Apple II than in the Apple II+ . 
The Autos tart version of the monitor in the II+ is 
shy and self-effacing; you almost never see it 
unless you specifically ask to do so. You seldom 
have to do so, unless you wish to examine or use 
the detailed inner war kings and hidden 
mechanisms of the system. Another way to see it 
is to get the system so thoroughly bollixed up that 
the system has to drop out of BASIC into the 
machine-language level. 

In contrast, the original Apple II monitor 
brazenly showed its '*' prompt every time you 
turned your system on. To get out of the grip of the 
monitor you have to take overt action, e.g. enter a 
CTRL-B to get into the BASIC language. 

The major differences between the II and II + 
are as follows: 

a. AUTOSTART/RESET: When the system 
power is turned on, or the 'Reset' button is 
pushed, the Apple II+ (Autos tart) monitor 
will initiate a cold- or warm-start and bring 
the Apple II+ up in BASIC. On startup it 
may automatically start running the 'Hello' 
program. When you tum an Apple II (old 
monitor) system on, the system comes up 
in the monitor mode, ready only to accept a 
monitor command. 

b. EDITING: The Apple II+ (Autostart) 
monitor provides the easy-use ESC-I -J -K 
and -M keyboard-control capabilities for 
moving the cursor up-, left- right- and 
downward by arbitrarily large amounts. The 
Apple II (old) monitor does not have these 
capabilities, only the much less convenient 
EXC-A -B -C and -D capabilities for moving 
only a single step (capabilities which re
main available in the II+ ) . 



20.3 

c. STOP OUTPUT/RESTART: The 
Apple+ (Autostart) monitor provides the 
CTRL-S 'stop-list' capability for suspending 
output of most BASIC programs and 
listings. Output can later be restarted by 
pressing any key. The Apple II (old) monitor 
does not provide such capabilities. 

d. SINGLE-STEP and TRACE: The Apple 
II+ 's Autostart monitor does not support 
the important machine-language debugging 
aids of SINGLE-STEP and TRACE, whereas 
the Apple II's old monitor does. 

e. MINI-ASSEMBLER, FLOATING-POINT 
ARITHMETIC PACKAGE and SWEET-16 
INTERPRETER: These important machine
language development tools are not 
available on the Apple II+' s monitor ROM. 
They were squeezed out by the code needed 
to implement the extra features described 
earlier. However, many machine-language 
tools such as the Disassembler remain. 

Communicating With the System Monitor 

You communicate with the monitor by means 
of monitor commands entered from the keyboard, 
by monitor commands imbedded in programs, or 
by setting monitor parameters and running 
monitor subroutines directly without use of 
monitor commands. We have repeatedly used all 
three of these methods for communicating with 
the monitor in earlier chapters. 

For example, starting in Chapter 3 we have 
used monitor commands entered from the 
keyboard whenever we wanted to get information 
about the contents of a memory location in 
binary/hexidecimal form. Starting in Chapter 5, 
we have also used monitor commands inside 
BASIC programs. We have been using monitor 
subroutines directly ever since we learned to use 
the CALL statement in Chapter 5. However, it 
seems worthwhile to summarize how you com
municate with the monitor, especially when you 
do so directly from the keyboard. 

First, how do you know if you are in direct 
communication with the monitor? You look at the 
prompt on the computer screen. If it is an asterisk 
(' * '), then you are in direct contact with the 
monitor. 

Chapter XX 1 51 

Next, how do you get into direct contact 
with the monitor if you are not already there? If 
you are using an Apple II (which uses the old 
monitor), just press the 'RESET' key (or 
CTRL-'RESET' if your Apple is set up to protect 
against accidental resets). If you have an Apple II+ 
or a system which uses the Autostart version of 
the monitor, just CALL -151. 

How do you type commands into the monitor? 
The monitor recognizes 22 different command 
characters, which in appropriate context specify 
WHAT action is to be taken. In many cases a com
mand is not complete or grammatically correct 
unless additional information in the form of ADD
RESSES or OAT A VALUES is also supplied. 

Addresses and data values are always specified 
in bit-oriented form. Since it is difficult to keep 
track of bits, the monitor uses hexadecimal ab
breviations to accept (and printout when relevant) 
addresses and data values. 

Today we have a widely accepted convention 
which says that hexadecimal numbers are written 
with '$' prefix to provide quick and easy visual 
distinction from decimal numbers. Unfortunately 
this convention is NOT used in the Apple 
monitor. Why not? The Apple monitor was one of 
the earliest parts of the Apple system to be 
developed and it was developed before this conven
tion had been as widely adopted as it has today. 
The'$' convention should NOT be used with the 
Apple monitor. '$' has its own unique meaning 
within the monitor as a command to the mini
assembler (which is built into the non-autostart 
version of the monitor) to execute a monitor com
mand from the mini-assembler. 

ANY number typed into the monitor as an 
address or data value is ALWAYS treated as a hex
adecimal number without any special designation 
preceding or following it. 

20.4 
Summary of Monitor Commands Directly 
Available to the Programmer 

The 'Apple II Reference Manual' supplied to 
you when you purchased your Apple has detailed 
information about each of the monitor commands. 
The summary of monitor commands following in 
Figure 20.4A is adapted from a table in that key 
reference source and should give you an idea of the 
most important commands and variants on 
commands. 



152 Chapter XX 

1----------------------------------------------------------l 
!------------::~~=-~~~~=-~~::-~:_~:_~:_~~:_ _________ : 
I I 
I EXI\MINI'<G 6502 'i~ RffiiSTERS I 
I I 
I CTRL-E Displays the ccntents of the 6502' s registers I 
I I 
I EXI\MINING MEMJRY: I 
I {Mrs} Displays the hex value of the data in { adrs} I 
I {crlrs}. {adrs} Displays the hex values of the data in all lo::ns I 
I fran [<rlrsll to [adrs2l I 
I 'RF:n.RN' Displays the hex values of the contents of up tol 
I eight lccations following the last opened locn I 

I 
01!\NGING '!'IE C<NrENrS OF MEMJRY: I 

{adrs}: {val} {val} Stores the values specified in consecutive I 
!'I'Em)ry locations starting with { adrs} I 

: !vall [val} ... Stroes the values specified in consecutive orderl 
starting with the next changeable lccation / 

MJITING AND <XMPI\RING '!'IE CCNI'I'NTS OF MEMJRY: I 
I 

{destl<{start} .{errl}M tot:wes (copies) the values in the rarge I 

I 
I 
I 
I 
I 

{start} .{end} into the range starting at {dest} I 
{dest}<{start}.{end}V Verifies {Conpares) that values of loc:ns in the I 

range [start}.{end} have the same values as I 
trose in thecanpa.rison rarge beginning at {dest} ~ 

SAVING AND !LN)ING INFDI>M!\TICN VIA CASSE:l'I'E TI'J'E I 

I [start}.[end}W 
I 
I [start}.[errl}R 
I 
I 
I 
I RIJ!NING PROGRAMS 
I [<rlrs}G 
I 
I CTRL-Y 
I 

I 
Writes the values of info in the range I 
[start}. [end} onto tape preceded by lOsec leader} 
Reads values fran tape, storing then in rnerrory I 
lccations beginning at {start} arrl stopping at I 
{end}. Prints "ERR" if mismatch occurs I 

Q:)tQ {adrs}, t.e.,transfer control to the 
rm.chine-language prcqram beginning at { adrs} 
Jump to subroutine whose locn specified in $3F8 

I 

i DISJ\SSEMBLIOO/LISTING P..:JGRI\MS 

I 
I 
I 
I 
I 
I 
I I 

I [adrs}L 
I 
I 

Disasserrble arrl Displace as symt:olic machine- I 
language the next 20 instructions starting with I 
[a:lrs} as the first byte of the first instruct "nl 

I I 
I 
I 
I 
I 
I 
I 
I 
I 

ASSEMBLING MAOUNE-I.ANGUA.GE PROGR.Z\l<fi (MiniAssent>ler not available in II+)** 

F666G 
$ 
$FF69G 
[<rlrsls 

I [<rlrs}T 
I 
I 
I DIVERT INP!Jr OR OUI'P!Jr 
I 
I [slot} CTRL-P 
I 
I [slot} C'mL-K 
I 
I 
I OlANGI! DISPlAY ~ 
I I 
I N 
I 
I I'Nl'ER OR REENTER 8'\SIC 
I 
I CTRL-B 
I CTRL-C 
I 
I lii':XADI'crMAL !\Rl'l'IMETIC 
I 

I 
Invoke the Mini -Assembler I 
Execute a rton.i tor CCJ11Mrrl fran Mini -~sSE!!l'tller I 
Exit the MiniAsseni:Jler I 
Disassemble, display arrl execute the instructicrJ.\ 
at {Mrs l and display contents of 6502" s I 
internal registers. Each 's" arnther instruction\ 
Trace or step infinitely. Stop cnly ~en a BRK I 
instruction is eno')untered or "RESmo" key p..1Shed I 

I 
I 
I 

Divert outp..1t to the device ...nose interface card I 
is in slot# {slot} . Slot 0 = display screen I 
Divert input to the device \llh::)Se interface card I 
is in slot# {slot}. Slot 0 = keyh)ard 

Set Inverse Display M:rle 
Set Normal Display Mode 

Enter language b.Jilt-into specific Apple's RI:Jo! 
\·lann-start r~ntry w/o total re-initialization 

I {vall}+{val2} Pdd two hex values arrl. print hex result 
I [vall}-[val2} Subtract secon:l hex value fran first an:l 
I trint answer 
1------------------ -----------

** Unless RAM card is loaded with Integer BASIC. 

INDEX 'ro P~' GUIDE 
(Part I of What' s Where in the 1\pple) 

A-Register (Accumulator) #6.2 
~-Register, Instructions Which use #6.5 
A-Register Load Instruction and PEEK #6.6.1 
A-Register Store Instruction and POKE #6.6.2 
Absolute Addressing #7.2.3 
Al:solute Addressing, Indexed #7.4.1 
Accumulator: See A-Register 
Mdress Allocation Plan, OVerall for Apple Systan #9.2 
Mdresses, Ccmputed #7. 3 
Addresses, Ccmputed by Hardware Indexing #7. 3. 3 
1\ddresses, Canputed by Indirect Indexing #7. 3.4 
Mdresses, Canputed by Treating as Information #7. 3. 2 
Addresses, Conversion Tables for (Hex=> Dec #7.1 
Addresses, Deci.mctl less corwenient than Hexadecimal #9.2 
Addresses, Incanpletely Decoded (In Strange Page) #18.2.5 
Addressing, Al:solute #7. 2. 3 
Addressing, Al:solute, Indexed #7. 4. l 
Addressing, Indirect #7. 5 
Addressing, Indirect, Indexed #7. 5. 2 
1\ddressing, Indexed Indirect #7.5.3 
Addressing, Immediate #7.5.2 
Addressing, Implied #7. 2 .1 
Addressing M:Jdes #7. 2 
Mdressing, Negative Decimal #6.3.2 
1\ddressing, Relative #7. 2. 5 
1\ddressing, Unsigned Decimal #6. 3. 2 
1\ddressing, Zero Page #7. 2. 4 
Addressing, Zero Page Indexed #7 .4.1 
Ampersand Jump Instruction (Monitor Special Location) #13.1 
Ampersand Register Loader #5.7.2 
Analog Game Controller Clear/Strobe #18.3.7 
Analog Game CCntroller Inputs #18. 3. 7 
Annunciator Output Soft SWitches #18.3.5 
Arx:malies in Strange Page ($CO) of Menory 
#18. 2 .2, 18. 2.3, 18.2 .5,18.2 .6 
APPIELIB*** #l . 2 
Applesoft BASIC, Analysis of Tbkenized Program Code #15.4.2 
1\f.Pl-esoft BASIC Arrays, Internal Structure #15.6 
Applesoft BASIC End-of-Program Address #15.3.4 
Applesoft BASIC, End of Simple Variables Address #15.3.4 
Applesoft BASIC Function (Entry Table) #19.3 
Applesoft BASIC Interpreter, Fetch-Execute Cycle #19.2.2 
Applesoft BASIC Interpreter (OVerview) #19.1 
Applesoft BASIC Interpreter Structure U 9. 3 
Applesoft BASIC Interpreter Variations #19.1.2 
Applesoft BASIC, Locating Individual Variables #15.5.3 
Applesoft BASIC, ILMEM Address #15.3.4 
Applesoft BASIC, Menory Allocation 'lheory tl5.3 
Applesoft BASIC, Menory Conservation #15.8 
Applesoft R~IC, Memory Space Utilization #19.2.3 
Applesoft BASIC, Operator Tags #19.3 
Applesoft BASIC, Program File (Diskette) #17.3.8 
Applesoft BASIC, Program Code Structure #15.4 
Applesoft BASIC, Start-of-Arrays A.ddress #15.3.4 
Applesoft BASIC, Start-of-Program Address #15.3.4 
Appiesoft BASIC, Statement Tbkens #19.3 
Applesoft BASIC, String Pointer Arrays #15.6 
Applesoft BASIC Strings, Memory Allocation for #15.7 
Applesoft BASIC, User Memory OVerveiew #15.1 
Applesoft BASIC, User Menory Variations #15.2 
Applesoft BASIC Variables #15.5.3 
1\rchitecture (of MJS6502 and Apple Ccmputer) #6.1 
Arrays, Applesoft BASIC #15.6 
1\.q:::II Ccrle #14. 2 
Assanblers, Functions performed by #6. 7 
Assembly Ianguae, Symbolic outgr'NOth of Machine language 
#6. 7 
Assembly Language (vis a vis BASIC) #2.2 
Assembly Language (..nen to use l #2 .4 
1\.tlas (Progranners') Untro 
BASIC: See Applesoft BASIC or Integer BASIC 
BASIC Program (Diskette File) #17.3.8 
Binary File (Diskette) #17.3.7 
Binary Numbers #6.3 
Binary numbers, conversion to decimal, theory #6.3.1 
Binary numbers, Hexadecimal abbreviations for #6.3.1 
Binary numbers, negative (one's canplement) #6.3.2 
Binary numbers, negative (sign-and-magnitude) #6.3.2 
Binary numbers, negative (two's complement) #6.3.2Bit Map of 
Free Sectors in Diskette #l 7. 3. 2 
BI1l'\D ( IXS Ccmmnd) #l 7. 3. 7 
Branch Instructions (Machine Language) #6.8,6.5,7.25 
BSAVE (IXS Ccmmnd} #17.3.7 
Buffer, Keyboard Input #12 .1 
Built-In I-o Locations #18.2 
CALL #5.1 
CALL, 1\pplesoft Utility for TT'Odified CALL in=rporating 
para~reters in CALL #5. 7 



CALL, Case study of Parameter Set-up using hardware 
registers #5o5,5o6 
CALL, Formal Description of #5 ol. 2 
CALL, Modified Version of # 
CALL, Parameter Set-up using hardware registers #5o4 
CALL, Passing Parameters for set up of #5o3 
CALL, Use of #5o 2 
Capacity of Diskette #l7o2o4 
Capitalization Routine (CAPST) #l2o2o2 
Cassette Input Memory Locations(s) #l8o3o6 
Cassette Output Toggle #l8o3o2 
Catalog (Diskette) #l7o3o3 
Catalog File Descriptions (Diskette) #l7o3o4 
Chaining #l5o8o3 
Changing Contents of Memory (Monitor) #20o4 
Control-Y Jump Instruction (Monitor Special Location) #l3ol 
Color Distinguishability (f'!i-Res) #l6o2 
Color Distinguishability (Lo-Res) #l4o5 
Color Mask (Hi-Res) #l6o2 
Colors (Lo-Res) #l4o5 
Computed Addresses #7o3 
Contents of Decimal Memory Location - See PEEK 
Contents of Hexadecimal Memory Location #3 o6 or 20o4 
Catversion, Binary/Y.exadec:i.mal to Decirral and Vice versa, 
theory, #6 o3o 2 by table #3 o 5, 7 ol 
Conversion, Binary to Hexadecimal and vice versa #6.3.1 
Ccnversion, Decimal to Double-Decimal Addressing #3 o 5 
Ccnversion, Decimal to liexadecimal, Qlick Program #5o4 
Ccnversion Table (f'!ex~>Dec) #7ol 
Cursor POsition #3o2ol 
Dartrrouth CollegeT:imeshare Systan #l. 2 
Information Handling Instructions #6o6 
Decimal Addresses, Less convenient than f'!exadecimal #9ol 
Decimal Addresses, Negative, Explanation of #6o3o2 
Decimal Addresses, Conversion to Double-Decimal PEEK-PCI<E 
fonn #3 o5 
Decimal to Hexadecimal Conversion #3o5,5o4 
Decoding, Incanplete (of Addresses) #18 0 2 0 5 
Directory (Diskette) # l7o3o3 
Disk Drives, Capabilities of #l7ol 
Disk O,.,rating Systan ( llOS) , Introduction to #l 7 ol 
Disk Response, Improvement of #l7o3oll 
Diskette Capacity #l7o2o4 
Diskette Catalog (Directory) #l7o3o3 
Diskette Free Sector Bit Map #l7o3o2 
Diskette, Method of Firrling Information on #l 7 o3o9 
Diskettes, Organization of Information on #l 7 o 2,17 o 3 
Diskettes, Information Overhead Recorded on #l 7 o 2 o 3 
Diskette Space Allocation to Files #l7o3oll 
Diskette Text Files #l 7 o 3 o 6 
Diskette TraCks #l7o2o2 
Diskette TraCk/Sector List #l7o3o5 
Diskette Volume Table of Contents (VTOC) #l7o3o 
Display Area, Text & Lo-Res Graphics #l4o3 
Display Area, liigh-Res Graphics #l6o 
Display Screen Soft-SWitches #l8o3o4 
Display Screen SWitch Settings #l4o4 
IJOS, Introduction to #1 7 ol 
IJOS, Method of Firrling Information on Diskette #17 o 3 o 9 
llOS Vector Table (in Memory Page 3) #l3o2 
Double-Byte Decimal Addressing #3 o 5 
Double-PEEK #3 o4 
Double-PCI<E #4 0 3 
Double-PCI<E Utility using • & ' #4 o 3 
Double-PCI<E Utility using 'CALL' #4o3 
Fill. ting in Systan Monitor #20 o 2 
End-of-Arrays Address (Applesoft BASIC #l5o3o4) 
End-of-Program Address (Applesoft BASIC) #l5o3o4 
End-of-Simple-Variables Address (Applesoft BASIC) #l5o3o4 
Execute (Part of Fetch-Execute Cycle) #6o4o2 
Fetch-Execute Cycle #6.4o2 
File, Applesoft BAsiC Program (Diskette) #l7o3o8 
File, Binary (Diskette) U7.3o7 
File Descriptions (Diskette Catalog or Directory) #17. 3 o4 
File, Integer BASIC Program (Diskette) #l 7 o 3 o 8 
File, Text (Diskette) U7o3o6 
Files, Diskette Space Allocation to #l7o3oll 
Fi.nnware #l ol 
FLASH (PCI<E Equivalent of) #4o2.2 
Free Sectors, Bit Map of on Diskette #17.3o2 
Free Space in Memory (Applesoft BASIC) #l5o3 
Free Space, Bottom Address of (Applesoft BASIC) #l5o3o4 
Free Space, Top Address of (Applesoft BASIC) #l5.3o4 
Functions, Applesoft BASIC Entry Table #18.3 
Game Controller Input Memory Locations(s) #l8o3o7 
Game Controller Strobe Memory Location(s) #l8o3o7 
GETLN (Family of Input Routines) #l2ol,#l2o2 
Glossary ( Programrers' ) #Intra 
Graphics, f'!igh Resolution #l6ol 
Graphics, High Resolution Addressing Plan #l6o3 
Graphics, f'!igh Resolution Alphanumerics (Bit Mapped) #l6o3 
Graphics, f'!igh Resolution (Apple Official 280 point 
Interpretation) #l6ol 

Graphics, 
Graphics, 
Graphics, 
Graphics, 
#16o2 

!ligh Resolution (140 point interpretation) #l6o 
High Resolution (560 point interpretation) #l6o4 
High Resolution Bit Mapping #l6ol,l6o3 
fiigh Resolution, Colors & Color Masking Table 

Graphics, f'!igh Resolution Comarrls #16o2 
Graphics, High Resolution Macro-Lines #l6o3 
Graphics, f'!igh Resolution, Memory 1\llocation Conflicts #l6o5 
Graphics, f'!igh Resolution Subroutines #l6o2 
Graphics, High Resoultion, Use of #l6o2 
Graphics, Low Resolution #l4o5 
Graphics, Low Resolution Colors #l4o5 
Graphics, Low Resolution Color Distinguishability #l4o5 
Graphics, Low Resolution/Text Macro-Lines #l4o3 
Graphics, Mode-Changing PCI<Es #4 o 2 
Graphics, Mode-Changing SWitches #l8o3o4 
Graphics, Sllnilarities of Hi-Res & Lo-Res #l6o3 
Guirle ( Programrers' ) #Intra 
f'!ardware-Implemented Instructions (In MJS 6502 and Apple) 
ll6o5 
f'!exadecimal Addressing #6o3o2 
Hexadecimal Arittmetic (Using Monitor) #20o3 
f'!exadecimal as a Method of Abbreviation for Binary #6.3ol 
llexadecimal to Decimal conversion #3 o 5 
High Resolution Graphics: See Graphics, High Resolution 
f'!IMEM #l5o3o2 
Irrr<ediate Addressing #7 o 2 o 2 
Implied Addressing #7o2ol 
Indexed Absolute Addressing #7 o4ol 
Irrlexed Indirect Addressing #7o5o3 
Irrlexed Zero-Page Addressing #7o4ol 
Irrlexing, Elementary #7 o 4 
Irrlexing, Use for M:Jving Information #7. 4 o 2 
Irrlexing~, Use for Table Searches #7 o 4 o 3 

Indirect Indexed Addresses, #7o5o2 
Input Buffer #l2ol 
Input Subroutines, GETI.N Family #12o2 
Input Subroutines, KEVIN & KEVIN Replacement #l2o2,l2o2o3 
Input-output Built-In Locations #18.2 
Input-output Space, for Slots #l8o2,l8o4o3 
Input-output Special Addresses #l8ol 
Input-Instructions (f'!ardware Integer Arras (Applesoft BASIC) 
U5o6 
Integer Variables (Applesoft BASIC) #l5o5 
Implemented in MJS6502 & Apple II) #6o5 
Instructions, Information Handling #6o6 
Instructions, Sequence Changing #6o8 
Instructions, SyntJOlic #6 o 7 
Interrupts # ll o 5 
Interrupt, rrachine-language BRK instruction subroutine 
address #13 ol 
Interrupt, Non-Maskable (~I) Jump Instruction (Monitor 
Special Location) #13 ol 
Interrupt Request (IRQ) subroutine address (Monitor Special 
Location) U3ol 
INVERSE, PCI<E Equivalent of Instruction #4o2.2 
Jump Instructions (Machine language) #6o8,6o~ 
Keyboard Input #l2ol 
Keyboard Input Buffer #12 ol 
Keyboard Input Memory Location(s) ##l8o3o2 
Keyboard Input Clear/Strobe #l8o3o2 
KEYIN Subroutine #l2o2 
KEVIN (Replacanent .for) #l2o2o3 
Load Accumulator Instruction #6o6ol 
lLMEM #l5o3o3,l9o2o3 
Low Resolution Graphics: See Graphics, Low Resolution 
Machine li\nguage into BASIC Program fran Binary Disk File 
#8.1 
Machine Language Programs PCI<ED into BASIC #8o2ol,8o2o2 
Magic Numbers 256 arrl $100 #3o5 
Mad:tine language Program in a BASIC Envirorment - ct£ 
Madline language Prograrrrnin:J : See Chaps 6& 7 
Machine Language, Transparent IniDedment in BASIC #8 o 4 
Macro-Line (in Text/J:.a.r-Res Graphics Screen Display) #l4o3 
Macro-Line (in Hi-Res Graphics Screen Display) #16. 
Marory 1\llocation (Applesoft BASIC) #15.3 
Marory Allocation Conflicts in Hi-Res Graphics U6.5 
Marory Allocation, CUrrent (Applesoft BASIC Program) #15o3o4 
Memory 1\llocation (Functional 1\llocation of Pages in Apple 
Systan) #9o3 
Memory Allocation (Overview for Apple Systan) #9.2 
Memory 1\llocation, RAM Memory #9 0 2 
Memory Allocation, RCM Memory #9. 2 
Memory Allocation, Special I-0 Memory t9o2 
Memory Conservation (Applesoft BASIC) #l5o8 
Memory Page Size #3o5, #9ol 
Memory to Display Screen Mapping (Text),U4.3 
Memory to Display Screen Mapping (Lo-Res Graphics) #l4o 
Memory to Display Screen Mapping (Hi-Res Graphics) #16o 
Mini-1\ssanbler capability in Systan Monitor #20o2,20o4 
Modes (Addressing) #7 o2 
Monitor, Autostart #20o2 



M:nitor, Cama.nds #20.4 
Monitor, Cmmunicatio:J with #20.3 
M:ni tor, OVerview #20 .1 
M:>nitor, Use inside a BASIC program #13.3 
Monitor, Use of to Analyze Variables #15.5.2 
M:nitor, Varieties t20.2 
M:nitor, Special Locations in ME!tDry Page 3 #13 .l 
M:m.ng InfoDM.tion (Using Elementary Indexing) #7 .4.2 
Mollio:J InfoDM.tion (Using Indirect Indexed Addressing) #7 .5 
Mollio:J Information ( Usio:J Ill!'. & STA Instructions in a 
Straight-Line Program) #6.6 
Movio:J Information (Using IDoping & Indexio:J) #7. 4 
Movio:J InfoDM.tion (Using ~s & POKEs) #6.6 
Mollio:J Information (Usio:J Symbolic Instructions in a 
Straight-Line Program) # 
Movio:J Information (Usio:J Monitor Cama.nd) #20.4 
Negative Decimal Addressing #6.3.2 
NOR-1AL, POKE Equivalent of Cama.nd # 
Operator Tags (llpplesoft BASIC) #14.3 
overlayio:J #15.8.3 
P-Register (Processor Status Register) #6. 2 
PC (Program Cnmter) #6. 2 
PC and Fetch-Execute Cycle #6.4.2 
PEEK #3.1 
PEEK and ~-Register #6.6.1 
PEEK Dooble #3 .4 
PEEKs that Chafl:Je Memory content #18.2.6 
Peripheral Card I -o Space #18. 4. 3 
Peripheral card 104 Page #18.4.4 
Peripheral card Scratchpad ~ #18.4.2 
Peripheral Card Shared-Exclusive Use Expansion-ROM Space 
#18.4.5 
Peripheral card (Slot) ME!tDry Reservations #18. 3 ,18. 4 
Peripheral Slots, OVerview of Memory Reserved for Each 
#18.4.1 
Peripheral Slot Scratchpad ~ #18.4.2 
POKE #4.1,4.2 
POKE and ~-Register #6.6.2 
POKE Dooble #4. 
POKEio:J Hardware #4.2.1 
POKEifl:J Machine Lan:juage into BI\8IC #8. 2 
POKEing Software #4.2.2 
POPpio:J the Stack #11.2,11.3 
Printout SPEED Delay #3.2.3 
Printout Status Inquiry Subroutine #3. 3 
Program Code (llpplesoft BASIC) #15.4 
Program Cnmter Store & the Stack #11. 2 
Prograrrmers • ~tlas ( ]X"ecis) #Intra 
Prograrrmers' Gazateer (precis) #Intra 
Prograrrmers' Guide (precis) #Intra 
Prograrrmers' Model (of MOS6502 or ~pple) #6.2 
Pseudo-BASIC #2. 5 
Pseudo-Instruct ions for ~semblers #6. 7 
Pushbutton/Flag Input ME!tDry Locations #18. 3. 6 
Pushing and Poppio:J the Stack #1 l. 2, 11. 3 
Quasi -BASIC #2. 5 
Quasi-~SIC (Case Study Examples) #2.6 
~ llpplesoft (~Version of Applesoft) #19.1.2 
RI\M ME!tDry (overall hllocation Pattern) #9. 2 
RI\M ME!tDry, Scratchpad Space for Slots #l8.4.2Real ~ays 
(Applesoft BASIC Data Type) #15.6 
Real Variables (Applesoft BASIC Data Type) #15.5 
Registers, Examination via Monitor #20.4 
Registers, Load & Restore Routine in Monitor, Use of t5. 6 
Relative ~essio:J #7.2.5 
RESET (Transfer Point) #3.4.3 
Return fran Subroutine, Stack Dnplications of #11.2 
104 Applesoft ( ~ Version of Applesoft) #19. l. 2 
R:M ME!tDry (OVerall hllocation Pattern) #9.2 
104 Memory, Peripheral Card Shared Exclusive Use Space #18.4 
Runnio:J Programs via Monitor #20.4 
S-Register #6 . 2 
S-Register, Instructions which Use it #6.5 
S-Register: hlso see Stack (Chap 11) 
Scratchpad RI\M for Slots #18.4.2 
Screen & Printout Status Inquiry Subroutine #3. 3 
Screen Display POKEing #4.2.3 
Screen Display Soft Switches #18.3.4 
Screen to Memry Mappio:J (Text) #14.3 
Scrolling #14.4 
Sectors (Diskette) #17. 2. 3 
Self-Modifying Program (Applesoft BASIC) #15.4.6 
Sequence-Changio:J Instructions #6. 8 
Simulator, Applesoft BASIC Interpreter as a #19.3.1 
Sifl:Jle-Step Capability in System M:>nitor #20.2 
Slot Currently ~ctive #3.2.2 
Slot I-<> Memory Space #18.2,18.3.8,18.4 
Slot I-0 on the Strao:Je Page #18.2.6,18.3.8 
Slot Scratchpad RI\M #18.4.1,18.4.2 
Slots, overview of ME!tDry ~signed to Each #18.4.1 
Speaker Tbggle (Memory Incation) tl8.3.2 
Soft Switches, ~ciator OUtput #18.3.5 
Soft Switches (General) #18.2.6 

Soft Switches, Screen Display #18.3.4 
Special I -o ME!tDry ~!location #9. 2 
SPEED, POKE Equivalent of Cama.nd #4.2.2 
Stack (System Stack) #11.1 
Stack, Pushing & Popping #11.2,11.3 
Stack, Use by Prograrrmer #11.4 
Start-of-~rrays ~ddress (Applesoft BASIC) #15.3.4 
Start-of-Program Address (llpplesoft BASIC) #15.3.4 
Start-of-Simple-Variables ~ress (Applesoft BASIC) #15.3.4 
Stq>-List Capability in System M:>nitor #20.2 
Store Accumulator Instruction #6.6.2 
Stored Program Concept #6 .4 
Strange Page of Memry ($CO) #18.2,18.3 
Strao:Je Page ~analous Characteristics #18.2.2 
String Pointer ~ays (Applesoft BASIC) #15.6 
Strio:J Pointer Varaiables (~pplesoft B~IC) #15.5 
Strings, Memry hllocation for by Applesoft B~IC #15.7 
Strobe, Game Controller (Memory Location) #18.3 
Strobe, Keyboard (Memory location) #18.3.2 
Strobe, utility (Memory Location) #18.3 
Subroutine Transfer of Control Diagram #5.1.3 
Stbroutines, !-!i-Res Graphics #16.2.2 
Subroutines, Input #12.2 
Subroutines, Stack Dnplications of 11.2,5.1.3 
SWeet-16 Interpreter in System M:>nitor #20.2 
SNitch settings, Screen Display #14.4 
Symbolic ~ssembler Pseudo-Instructions #6. 7 
Symbolic Instructions #6. 7 
System M:nitor (OVerview) #20.1 
System Monitor (Cama.nds) #20.4 
System Monitor, Camnmicatio:J with #20. 3 
System Monitor, Varieties of #20.2 
System-Specific Programming #2.1,2.2,2.3 
System Stack #11. l 
TEliNET #l • 2 
Text Display Macro-Lines #14.3 
Text Display, Relationship to ID-Res Grapahics #14.5 
Text Files (Diskette) #17.3.6 
Text OUtput Display Pages 14.3 
Text Output to Screen Display #14.1 
1bggle, Cassette OUtput #18.3.2 
1bggle, Speaker OUtput #18.3.2 
1bggle Flip-Flq>s (General) #18.2.6 
Tokens (~pplesoft BASIC) #19.3 
Tokens (Applesoft BASIC) in Program Conteit H5.4.l 
Tokenized Applesoft BASIC, Analysis of Sample Program in 
#15.4.2 
Tracks (Diskette) #17.2.2 
Track/Sector List (Diskette) #17.3.5 
Transparent Machine-Lan:juage in B~IC #8.4 
'II.D' s Canplement negative binary numbers #6. 3 
Unavailable Memory, Making it ~vailable #15.8.2 
User Memory (Applesoft 8~IC) #15.1 
User Memory, Variation with Envirorment #15.2 
Variables, Analysis of (Usio:J System Monitor) #15.5.2 
Variables, l\pplesoft BASIC #15.5 
Variables, controlling Location of Memory ~sigrment by 
l\pplesoft BASIC #15.5.4 
Variables, Ending Address of (~lesoft BASIC) #15.3.4 
Variables, Locatio:J Specific (llpplesoft BASIC) #15.5.3 
Variables, Starting Address of (~plesoft ~IC) #15.3.4 
Variables, Type Integer (Applesoft ~~IC) #15.5 
Variables, Type Real (llpplesoft BASIC) #15.5 
Video Screen Display: See Screen Display or Graphics Display 
or Display 
Utility Strobe (Memory Location) #18.3.3 
Volurre Table of Contents, V'I1X: (Diskette) #l 7. 3 
WindON Parameters, POKEs for #4.2.2 
Wrap-Mound (Macro-Lines in Text Screen Display) #14.3 
X-Register (indeX register) #6.2 
X-Register, Instructions which use it #6.5 
Y-Register (an index register) #6.2 
Y-Register, Instructions Which use it #6.5 
Zero-Page Addressing #7.2.4 
Zero-Page Addressing, Indexed #7.4.1 





Use-Type Guide 

/SE/ 

1st letter- type information 
2nd letter- usage/length information 

Type Codes: 
S -Subroutine 
P - Parameter 
H- Hardware 
B -Buffer 

Usage/Length Codes: 
E- Entry 
B- Block 
n - n-Byte Long 
L -Label 
F -Flag 

Some Common Combinations: 
Pl: 1-Byte Parameter 
Pn: n-Byte Parameter 
PB: Parameter Block 
HL: Hardware Location 
HB: Hardware Block 
FF: Hardware Flag 
SE: Subroutine Entry Point 
SB: Subroutine Block 
SL: Subroutine Label 
BB: Buffer Block 

What's Where Atlas Updates 
The following subroutines have been relocated in the new (autostartJ ROMS 

Subroutine 
HGR2 
HGR 
HCLR 
BKGND 
HPOSN 
HPLOT 
HLIN 

Old Monitor Applesoft 
F3D4 
F3D3 
F3EE 
F3F2 
F40D 
F453 
F530 

New Autostart Applesoft 
F3D8 
F3E2 
F3F2 
F3F4 
F411 
F457 
F53A 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\- DESCRIPTION 

soooo-sFFFF co--1> \HB\ ADORES$ RANGE OF APPLE II <SOOOO-SFFFF SIGNED DECIMAL EQUIV IS o-32767 FOLLOWED BY 
-32768--1) 
RAM ADDRESS RANGE OF APPLE II <NOT INCLUDING RAM IN LANGUAGE CARD If PRESENT> 
HARDWARE PAGE ZERO 

\PS\'SWEET-16' REGISTERS RO THRU R15 OF 'SWEET-16' (16-BIT INTERPRETER IN MONITOR) 
APPLESOFT SOFT REENTRY COG IS EQUIVALENT TO CTRL-C) 

soooo·saFH co--16385> \HB\ 
soooo·sooFF co-255> \HB\ 
soooo·so01F cb-31> C<RO-R15>J 
soooo·sooo2 co-2> \SE\ 
soooo·sooo1 co-1> CROL-ROHJ \P2\ 
SOOOO (0) [LOCOJ \P1\ 
S0001.S0002 <1-2) [LOC1J \P2\ 
sooo2·sooo3 < 2-3 > cc R 1 > J \P2' 
S0003- S0005\SE\ 
sooo4·sooo5 <4-5> C<R2>J \P2\ 
S0006.S0007 (6-7) [(R3>J \P2\ 
sooos·sooo9 <8-9> C<R4>J \P2\ 
SOOOA.S0016 (10-22> ((A/S RESVD>J 
soooA·soooc c1o·12> \SI\ 
soooA·sooo~ c1o·11> C<R5>J \P2\ 
soooc·soooD <12-13> C<R6>J \P2\ 
SOOOD (13> [CHARACJ 
soooD·soo16 <13-22> \PB\ 
soooE·soooF < 14-15 > c <R n J \P2 \ 
SOOOE (14) CENOCHRJ 
soo1o·soo11 <16-17> C<RB>J \P2\ 

'SWEET-16' REGISTER RJ (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
MONITOR MEMORY LOCATION 'LOCO'. PRESET TO S4C (JMP) - (JUMP ADDRESS IN S001-S002) 
MONITOR MEMORY LOCATION 'LOC1'- POINTER PRESET TO ADDRESS OF APPLESOFT SOFT ENTRY 
'SWEET-16' REGISTER R1 <IN 16-SIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
APPLESOfT JUMP COMMAND TO Sf128 CHARD ENTRY?) 
'SWEET-16' REGISTER R2 (IN 16-BIT PSEUDOMACHINE 
'SWEET-16' REGISTER R3 (IN 16-BIT PSEUDOMACHINE 
'SWEET-16' REGISTER R4 (IN 16-BIT PSEUDOMACHINE 
\PB\APPLESOfT RESERVED BLOCK IN PAGE ZERO 

IN APPLE SYSTEM MONITOR) 
IN APPLE SYSTEM MONITOR) 
IN APPLE SYSTEM ~ON1TOR) 

APPLESOFT LOCN FOR USR FUNCTION'S JUMP INSTRUCTION 
'SWEET-16 1 REGISTER R5 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
'SWEET-16 1 REGISTER R6 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
APPLESOFT - USED BY STRLT2 STRING UTILITY 
GENERAL PURPOSE COUNTERS/FLAGS FOR APPLESOFT 
'SWEET-16' REGISTER R7 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
APPLESOFT - USED BY STRLT2 STRING UTILITY 
'SWEET-16 1 REGISTER R8 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 

S0011 (17) [VALTYP] 
S0012.S0013 <18.19) 
soo14·soo15 <20·21> 
S0014 (20) [SUBFLG] 

APPLESOFT FLAG FOR LAST FAC (fLOATING ACCUMULATOR) OPERATION: $00 • NUMBER; SFf•STRING 
[(R9)] \P2\ 1 SWEET•16' REGISTER R9 <IN 16-BIT PSEUDOMACiiiNE IN APPLE SYSTEM MONITOR) 
[(R10>J \P2\ 1 SWEET-16' REGISTER R10 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 

S0016.S0017 (22.23) [(R11>l \P2\ 
S0016 (22> [CCOMPRTYP)] \P1\ 

APPLESOFT SUBSCRIPT FLAG: SOO• SUBSCRIPTS ALLOWED:S80= SU3SCRIPTS NOT ALLOWED 
'SWEET-16' REGISTER R11 (IN 16-BIT PSEUOOMACiilNE IN APPLE SYSTEM MONITOR) 
APPLESOFT-- PARAMETER TO CONTROL TYPE OF COMPARISON MADE 3Y FLOATING POINT COMPARISON 
ROUTINE AT SDF6A (1:> :2:= :3:>= :4:< :5:<> :6:<:) 

S0018.S0019 (24-25) [(R12>J \P2\ 'SWEET-16 1 REGISTER R12 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
S001A.S001~ <26-27) [(R13)] \P2\ 'SWEET-16' REGISTER R13 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTE~ MONITOR) 
S001A.S001B <26-27> [SHAPEL-SHAPEHJ \P2\HI·RES POINTER TO SHAPE LIST (ON-THE-fLY SHAPE POINTERJ 
S001C.S0010 (28.29) [(R14)] \P2\ 'SWEET-16' REGISTER R14 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
S001C (28) [HCOLOR1] \P1\ HI-RES RUNNING COLOR MASK (ON-THE-FLY COLOR BYTE) 
$0010 (29) [COUNTHJ \P1\ HI-RES GRAPHICS HIGH-ORDER BYTE Of STEP COUNT FOR LINE 
S001E.S001F <30-31> [R15L-R15HJ \P2\'SWEET•16' REGISTER R15 (USED AS PROGRAM COUNTER IN 16-9IT PSEUDOMACHINE IN APPLE 

SYSTEM MONITOR> {REG·R15} 
S0020.S0l55 (32.85) [(MONITOR RESVO)] \PB\APPLE II SYSTEM MONITOR RESERVED LOCATIONS (S0050.S0055 USED ONLY BY 

MULTIPLY-DIVIDE ROUTINES AND THUS AVAILABLE IN MANY SITUATIONS) 
S0020.S004F <32.79) [(AUTOSTART 
S0020 <32) [WNOLFT] \P1 \ 

RESVD>l \PB\AUTOSTART MONITOR RESERVED LOCATIONS 

S0021 (33) [WN OW OTHJ \P 1\ 
$0022 <34) [WNDTOP] \P1 \ 

S0023 (35) [WNDBTM] \P1 \ 
S0024 (36) [CHJ \P1\ 
S0025 (37) [CVJ \P1\ 
S0026-S0027 <38. 39) \P2 \ 
S0026.S0027 <38-39) [GBASL.GBASH] 
S0026-S0027 <38.39) [HBASL.HBASH] 

LEFT COLUMN Of SCROLL WINDOW: RANGE 0-39 OR so·s21. USED lNLY IN VTABZ. 
WIDTH Of THE SCROLL WINDOW: RANGE:1 TO 40-(WNDLFf) OR S1 TO $28 - (WNDLfT) 
TOP LINE Of SCROLL WINDOW: RANGE 0-22<S16) FOR FULL TEXT SCREEN 20-22($14-$16) fOR 
MIXED SCREEN 
BOTTOM LINE OF SCROLL WINDOW: RANGE (WNOTOP)+1 TO 24($18). 
CURSOR HORIZONTAL DISPLACEMENT FROM WNDLfT: RANGE 0 TO (WNDWOTH)-1 
CURSOR VERTICAL POSITION RELATIVE TO TOP Of SCREEN: RANGE 0-23 ($0-517) 
PAGE ZERO LOCATIONS USED BY DOS 
\P2\MEMORY ADDRESS Of LEFT END POINT Of DESIRED LINE fOR LO-RES PLOT <SET BY GBASCALC) 
\P2\HI•RES GRAPHICS ON-THE-FLY BAS£ ADDRESS (LEFT END POINT OF DESIRED LINE fOR 
HI-~ES PLOT) _________ ,.. _____________________________________________ .,. ___________ .,._.,.. _____ .. ______ ~-- ...... ---------~-------·------~-------~ .... --.... 

SOOOO - SOl26 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN) (NAME) \USE-TYPE\ - DESCRIPTION ---------------------------------------·------------------·------------------... -........ --.. ---·--·-------------..,..·-.---·--··--~ 
S0026-S0027 
S0028-S0029 
$002A-$002F 
S002A.$0029 
S002A-S0023 

soozc·soD2D 
soo2c·soo2D 
S002CS002D 
S002C <44) 
S002C (44) 
$002D (45) 

$00 2 D ( 4 5) 
S002E (46) 
S002E (46> 

S002E (46) 

S002 E < 46) 
S002 F ( 47> 
$002F (47> 
$002F (47) 

$002F ( 4 7> 
$0030 (48) 

$0030 (48) 
$0031 (49) 

$0032 (50> 
$0033 (51> 

$0034 (52) 

USED AS SCRATCH BY DOS o a· 39> 
(40-41) (BASL-BASHJ \P2\MEMORY ADDRESS fOR LEfT END CHARACTER POS'N Of CURRENT TEXT LINE 
< 4 r 47 > 
<4z-43) 
( 4 z- 4.3) 

\PB\ PAGE ZERO LOCATIONS USED BY DOS 
\P2\ USED AS SCRATCH BY DOS 
[BAS2L-BAS2HJ \P2\USED DURING SCROLLING AS DESTINATION LINE POINTER AS EACH LINE IS MOVED TO 

POSIT ION ABOVE CURRENT 
(44-45) [RTNL-RTNHJ \P2\MONITOR RETURN POINTER <POINTS TO SAVE AREA USED BY INSTRUCTION TRACE ROUTINE) 
(44-45] (LMNEM-RMNEMJ \P2\ADDRESS POINTER USED BY DISASSEMBLER fOR INDEX TO MNE~ONICS TABLE 
(44-45) CTEMPJ \P2\ DOS RWTS <READ-WRITE TRACK-SECTOR TEMPORARY STORAGE fOR ADDRESS INFORMATION 

(COUNT- CSUM] \P1\ DOS RWTS <READ-WRITE TRACK-SECTOR) PARAMETER <RETURNS CHECJCSUfO 
(H2J \P1\ RIGHT END POINT Of A HORIZONTAL LINE BEING DRAWN BY HLINE: RANGE 0-39 ($0-$27J 
CV2J \P1\ BOTTOM PT OF LO,-RES VERT LINE DRAWN BY VLINE. RANGE: 0-19(.$21) FOR MIXED SCRi 

[SECT] \P1 \ 
c c H K s urn \ P 1 \ 
( F 0 RM AT] \ P 1 \ 

[MASK] \P1 \ 

(TRACK- TRKN] 
(LAST INJ \P1 \ 
( L E NG T H J \ P 1 \ 
(SI GNJ \P1 \ 

(VOLUME] \P1 \ 
[COLOR] \P1\ 

(HMASKJ \P1\ 
(MODE] \P1 \ 

[INVfLGJ \P1\ 
(PROMPT] \P1 \ 

(YSAV] \P1 \ 

\P1\ 

0-23<-S17> FOR fULL SCR 
DOS RWTS <READ-WRITE TRACK-SECTOR) PARAMETER FOR CURRENT DISK SECTOR 
LOCN WHERE CHECKSUM IS ACCUMULATED DURING CASSETTE TAPE READ 
USED BY MINIASSEMBLER & DISASSEMBLER TO SPECIFY FORMAT OF INSTRUCTION FOR DISPLAY 
PURPOSES 
LOW-RES COL~R GRAPHICS MASK. SOf OR SFO TO SELECT HIGH OR LOW NIBBLE TO SPECifY WHICH 
OF 2 PLOT LINES REP BY GBASL-H POINTER 
DOS RWTS (READ-WRITE TRACK-SECTOR) TRACK NUMBER 
USED IN CASSETTE INPUT BY RDBIT AS WORK AREA TO DETERMINE WHETHER INPUT HAS CHANGED 
USED BY DISASSEMBLER TO INDICATE LENGTH OF THE INSTRUCTION. ALSO BY TRACE 
S01 BIT SET AFTER CAll TO MULPM OR DIVPM (SIGNED 16 BIT MULT OR DIV) TO SPECifY 
WHETHER COMPlEMENT NEEDED (NOTE MULPM & DIVPM IN OLD MONITOR ONLY - NOT IN AUTOSTART) 
DOS RWTS <READ-WRITE TRACK-SECTOR) DISK VOLUME NUMBER 
LOW-RES COLOR GRAPHICS COLOR CODE (FOR PLOTIHLIN/VLIN FUNCTIONS) - CONTAINS SELECTED 
COLOR VALUES FOR TWO LOW-RES GRAPHICS 'liNES' ONE IN EACH NIBBL,E OF BYTE 
HI-RES GRAPHICS ON-THE-FLY BIT MASK 
USED BY MONITOR COMMAND PROCESSING TO INDICATE DISPOSITION Of HEX INFO IN THE INPUT 
LINE 
VIDEO FORMAT CONTROL: 255<SFf):NORMALi127(S7f)=fLASHINGi63CS3f)=INVERSE 
PROMPT CHARACTER WRITTEN TO SCREEN WHENEVER A LINE Of INPUT IS CALLED FOR BY GETLN 
ROUTINE 
USED BY MONITOR COMMAND PROCESSOR TO SAVE CONTENTS OF Y-REGISTER DURING PROCESSOR 
{Y-REGISTER SAVE LOCN FOR MONITOR} 

$0035-$0039 (53-57> \PB\ 
S0035 (53> [YSAV1J \P1\ 

PAGE ZERO LOCATIONS USED BY DOS FOR INTERFACE (ORIVENO CSW & KSW) 
USEO TO SAVE CONTENTS Of Y-REGISTER ACROSS A CALL TO SCREE~ OUTPUT ROUTINES. 
{Y·REGISTER SAVE LOCN FOR COUTU 

$0035 (53) (l] \P1\ MINIASSEMBER MEMORY LOCATION 'L' 
$0035 (53) (ORIVENOJ \P1\ DOS DISK DRIVE NO 
$0036-$0039 (54-571 ((1/0 HOOK TBLS)J \PB\MO~ITOR OUTPUT & INPUT HOOKS (VECTORS TO DOS OUTPUT & INPUT ROUTINES) 
$0036.$0037 (54-55) (CSwL-CSWHJ \P2\MONITOR OUTPUT REG & OUTPUT HOOK TO DOS: I.E. ADDRESS Of ROUTINE WliiCH IS TO 

RECEIVE ANO DISPOSE OF OUTPUT CHARACTERS. RESET 0 CTRL-P & PRNO SET THIS LOCN TO 
SFDFO (MONITOR OUTPUT TO SCREEN)i S CTRL-P & PRIIS SET THIS LOCN TO SCSOO (SLOTS ROM) 

S0038.S0039 (56-57} (KSWL-KSWHJ \P2\DOS INPUT HOOKi I.E. ADDRESS OF THE USER INPUT ROUTINE. CONTROLLED BY CURRIN PORT 
IN~ & KEYI~ RESET - 0 CTRL-K & IN~O SET THIS LOCN TO SfOIB (MONITOR KEYBOARD INPUT 
ROUTINE); S CTRL-K &IN#S SET THIS LOCN TO SCSOO<SLOT S ROM) {MONITOR INPUT REG} 

S003A-$003B (58-59) (PCL-PCH] \P2\SAVE AND CONTROL AREA FOR PROGRAM COUNTER. USED IN BREAK PROCESSING AND 
MINIASSEMBLER. SET BY MONITOR CMOS L G S &T {PC SAVED HERE BY MONITOR} 

S003C-S0043 (60-67> (XQT/XQTNZJ \PB\8 BYTE WORK AREA FOR INSTRUCTION STEP/TRACE. NEXT INSTRUCTION SOMETIMES MOVED HER£ 
$003C-$003D (60.61> (A1L-A1HJ \P2\MONITOR GENERAL USAGE SUBROUTINE PARAMETER A1. MANY USES INCLUDE SOURCE POINTER 

DURING MONITOR MOVE 

-----.-------------------------------------------~-------------------------------------~--~------------------------------------
$0026 - S003C Prof. Luebbert's "What's Where in the Appt.e" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\- DESCRIPTION 

S003C-S003D (60-61) [DEVCTBL] \P2\DOS RWTS DEVICE IN READ-WRITE TRACK-SECTOR PARAMETER POINTING TO DEVICE TABLE. 1 

PRESET TO 'PTRSDEST' = POINTER TO vcSTINATION DEVICE IN DEVICE TABLE. NOT A SYNONYM 
FOR BUF PTR 

(DEVCTBLJ DOS RWTS (READ-WRITE TRACK-SECTOR> DEVICE TABLE - SYNONYM FOR BUFPTR soo3c-s003D <60-61> 
S003E-s003F <62-63> 
S003E.S003F (62-63) 

[BUFPTR] \P2\DOS RWTS (READ-WRITE TRACK-SECTOR) PARAMETER '8UfPTR' <POINTS TO DATA BUFfER IN RWJS) 
[A2L-A2H] \P2\MONITOR GENERAL USAGE SUBROUTINE PARAMETER A2. USED IN CALLING LIST OF MANY MONITOR 

SUBROUTINES SUCH AS MOVE & CASSETTE ROUTINES 
S0040-S0048 (64-72) PAGE ZERO LOCATIONS USED BY DOS 
S0040-S0041 (64.65> [A3L-A3HJ \P1\MONITOR GENERAL USAGE SUBROUTINE PARAMETER A3. USED IN CALLING LIST Of MOST MONITOR 

S0040-S0041 (64-65> 
$0041 (65) [TRKCNTJ 
S0042-S0043 ( 66- 67> 

soo43-s0043 <67-67> 
$0044-$0045 (68-69> 
S0044-S0045 C68- 69) 

SUBROUTINES 
[FCBFOP ZPGWRK V NPEJ DOS - USED AS 
\P1\ DOS DISK SYSTEM fORMATTER 
[A4L-A4H] \P2\MONITOR GENERAL USAGE 

SUBROUTINES 

GENERAL POINTER BY 1ST LEVEL (COMMAND DECODE) ROUTINES IN DOS 
SPECIAL TRACK COUNTER 
SUBROUTINE PARAMETER A4. USED IN CALL.ING LIST Of SOME MONITOR 

[ZPGBM3 ZPGFCBJ DOS - USED AS GENERAL PURPOSE POINTER BY 
[A5L-A5HJ \P2\MONI TOR GENERAL USAGE SUBROUT.INE PARAMETER 
[CNUM] DOS - POINTS TO AVAILABLE BUfFER IN OPEN. ALSO 

SECOND-LEVEl DOS ROUTINES 
A5. USED MOSTLY BY SINGLE-CYLCLE & TRACE 
USED AS ARITHMETIC REGISTER BY DOS FIRST & 

SECOND LEVEL ROUTINES 
S0044 (68) [FMJ] \P1\ MINIASSEMBLER MEMORY LOCATION 'FMT' 
S 00 4 5 ( 6 9) [A C C J \ P 1 \ 
$0046 (70) [XREGJ \P1 \ 
$0046 (70) [MONTIME] \P1\ 
$0046 (70) [EXCNTJ \P1\ 

USER A-REG SAVED HERE ON BRK TO MONITOR & DURING TRACE 
USER X-REG SAVED HERE ON BRK TO MONITOR & DURING TRACE 
DOS RWTS (READ-WRITE TRACK-SECTOR) PARAMETER 'MONTIME' 
DOS DISK SYSTEM FORMATTER GENERAL COUNTER 

$0047 (71) [YREGJ \P1\ USER Y-REG SAVED HERE ON BRK TO MONITOR & DURING TRACE {Y-REG SAVED HERE ON BRK} 
S004 7 ( 71> [YC NTJ \P1 \ 
$0048-50049 <72-73) (IOBPL-HJ 
S 00 4 8 ( 72) [ S T AT US J \ P 1 \ 

DOS DISK SYSTEM FORMATTER NYBBlE COUNTER (AlSO COUNTER FOR DISK-DRIVE MOTOR-ON Tl~E?l 
\P2\DOS READ-WRITE-TRACK-SECTOR (RWTS) 'IOBPL-H' (INPUT-OUTPUT CONTROL BLOCK POINTER) 
USER STATUS REGISTER <P-REGISTER> SAVED HERE ON BRK TO MONITOR & DURING TRACE. WARNING: 
INITIAUZE BEFORE G FUNCTION TO AVOID DECIMAL MODE If DOS HAS BEEN USED 

S0049 (73) [SPNTJ \P1\ USER STACK POINTER CS-REGISTER) SAVED HERE BY MONITOR 'SAVE' ROUTINE ON BRK & DURING 
TRACE 

S004A-SOODF <74-223> \PB\ PAGE ZERO LOCATIONS USED BY INTEGER BASIC (GAP AT S004E.S0054) 
PAGE ZERO LOCATIONS USED BY DOS S004A-S004D <74-77> 

S004A-S0043 ( 74-75} [LOMEML-LOMEMH] \P2\POINTER TO LOMEM (CONTAINS 'START OF BASIC VARIABLES• FOR INTEGER BASIC- START 
OF PROGRAM FOR APPLESOFT BASIC) 

S004A (74> [AJ \P1\ DOS DISK SYSTEM FORMATTER DUMMY LOCATION FOR TIMING PURPOSES AND SCRATCH. DOS WILL 
REPAIR IN INIT COMMAND; USER MUST REPAIR If RWTS .FORMATTER CALLED DIRECTLY 

S004B (75> [FILLCNT - SCTRJ \P1\DOS DISK SYSTEM FORMATTER GENERAL COUNTER & SECTOR NUMBER 
S004C-S004D (76-77) [HIMEML-HIMEMH] \P2\ADDRESS POINTER TO HIMEM (INTEGER BASIC - END OF BASIC PROGRAMHAPPLESOfT -

START OF STRING DATA) 
S004E.S004F (78-79) [RNDL-RNOH] \P2\16 BIT NO. RANDOMIZED WITH EACH KEY ENTRY DONE BY MONITOR KEVIN ROUTINE (AND BY 

MANY OTHER ROUTINES SUCH AS SER.IAL & COMM CARD WHICH ARE USED TO REPLACE KEYIN). 
RANDOMIZATION ACCOMPLISHED BY CONTINUOUSLY INCREMENTING WHILE AWAITIN~ KEYBOARD 
INPUT. HIGH ORDER BYTE S4F 

(80-248) APPLESOFT- PAGE ZERO LOCATIONS USED (GAPS AT SOOD7 SOOE3 & SOOEB-S00£F) 
(8()97) [(A/S POINTERS)] \PB\GENERAL PURPOSE POINTERS FOR APPLESOFT {PB} 
(80-87) [NOUNSTKL] \P8\INTEGER BASIC MEMORY LOCATION 'NOUNSTKL' 
(80-85> \P6\ ~ONITOR/INTEGER BASIC MULTIPLY-DIVIDE WORKAREA 
(80-83> (ACJ \P4\ 32-BIJ EXTENDED ACCUMULATOR USED IN MONITOR 16-BIT MULT & OIVIDE 

sooso-soOF8 
sooso-s 0061 
soo5o-soo57 
soo5o-soo5s 
soo5o-soo53 
soo5o·soos1 (80-81> [LINNUMJ \P2\APPLESOFT GENERAL PURPOSE 16 BIT NUMBER LOCATION (USES INCLUED LOCATION fOR LINE 

NUMBER) 
S0050-S0051 (80-81.) [ACL-ACH] \P2\0LD MONITOR (NOT AUTOSTART>. USED BY 16 BIT MULT & OIVIOE ROUT.INES AS 

PSEUDO- AC CUMUL ATO R 
----~·----·--- ..... ----------------------------~-~~-·------..,..---------~--------------·---.---·~---··----------·--~~·---·------
S003C - S0050 Prof. Luebbert's "What's Where in the Apple" NU~ERI C ATLAS 



HEX LOCN (DEC LOCN) (NAME) \USE-TYPE\ -DESCRIPTION ----------------------------------------------·--------------------------------------------------------·---------------·-----
CDXL-DXHJ \P2\HI-RES GRAPHICS DELTA-X fOR HLIN SHAPE 
\P1\ HI-RES GRAPHICS SHAPE TEMP. 

sooso-soos1 <80-81> 
$0051 (81) CSHAPEX] 
soos2·soos3 <8r83> (XTNDL-XTNDHJ \P2\0LD MONITOR (NOT AUTOSTART) - USED IN 16-BIT MULT & DIVIDE AS ACCUMULATOR 

EXTENSION <TO 32 BITS> 
$0052 (82) CTEMPPTJ \P1\ APPLESOfT TEMPORARY POINT- LAST USED TEMPORARY STRING DESCRIPTOR (SEE DSCTMP) 
$0052 (82> [DYJ \P1\ HI-RES GRAPHICS DELTA-Y FOR HLIN SHAPE 
$0053 C83) CLASTPTJ \P1\ APPLESOfT LAST USED TEMPORARY STRING POINTER 
$0053 (83) (QDRNTJ \P1\ HI-RES GRAPHICS QDRNT: 2 LSB'S ARE ROTATION QUADRANT fOR ORA~ 

$0054-$0055 (84-85) (AUXL'-AUXHJ \P2\0LD MONITOR (NOT AUTOSTART)- USED FOR 16-BIT MULT & DIVIDE AS AUX.ILLIARY REGISTER 
$0054-$0055 (84-85) [EL-EH] \P2\HI-RES GRAPHICS ERROR FOR HLIN 
$0055 <85> APPLESOFT - START Of STRING SCRATCH AREA (LENGTH UNKNOWN - AT LEAST 3 BYTES> 
$0058 <88> CSYNSTKHJ INTEGER BASIC MEMORY LOCATION 'SYNSTKH' 
S005E-S005F (94-95) [INDEX] \P2\APPLESOfT TEMPORARY (STACK) POINTER fOR MOVING STRINGS 
$0060-$0061 (96-97) \P2\ APPLESOFT PARAMETER STORAGE SPACE fOR flOATING POINT COMPARE ROUTINES 
$0062-$0066 (98-102> \PS\ RESULT OF LAST MULTIPLY/DIVIDE <APPLESOFT> 
S0067-S006A C103-1C6) \PB\ PAGE ZERO LOCATIONS USED BY DOS 
$0067-$0068 (103-104) [TEXTTABJ \P2\APPLESOFT TEXT TABLE POINTER (POINTS TO TO BEGINNING Of PROGRAM TEXT. DEFAULT 

VALUE $0801 
S0069-S006A C105-1C6> CVARTAB:J \P2\APPLESOFT VARIABLE TABLE POINTER- POINTS TO TO START Of SIMPLE VARIABLE SPACE (AT 

END OF APPLESOFT PROGRAM TEXT) 
S006B-S006C (107-108> [ARYTABJ \P2\APPLESOFT ARRAY TABLE POINTER <POINTS TO BEGINNING OF ARRAY SPACE) 
S006D-S006E (109-110> [STRENDJ \P2\APPLESOFT STORAGE END POINTER (POINTS TO TOP Of ARRAY STORAGE I.E. TO END OF NUMERIC 

STORAGE IN USE) 
S006f-S0070 <111-112) \PB\ PAGE ZERO LOCATIONS USED BY DOS 
S006F-S0070 (111-112> [FRETOP] \P2\APPLESOFT POINTER TO END OF STRING STORAGE OR TOP OF USER-AVAILABLE fREE SPACE. 

DEFAULTS TO HIMEM- USUALLY SBFfF FOR 48K APPLE) 
$0071-$0072 (113-114) CFRESPCJ \P2\APPLESOFT TEMPORARY POINTER FOR STRING-STORAGE ROUTINES 
S0073-S0074 (115-116) [MEMSIZEJ \P2\APPLESOFT HIMEM (HIGHEST LOC IN MEM AVAIL + 1>. INIT TO HIGHEST RAM - SBFFF FOR 48K 

APPLE IF DOS NOT ACTIVE BEGINNING OF DOS IF DOS ACTIVE 
$0075-$0076 (117-118) (CURLIN] \P2\APPLESOfT- LINE #OF LINE CURRENTLY BEING EXECUTED NOTE: HI BYTE Of CURLIN TESTED 

BY DOS FOR DIRECT-DEFERRED MODE USAGE - BYTE SET TO SFF IN DIRECT. IF CONTENTS OF 
SAAB6<>0 AND If PROMPT=']' OR IF THIS LOCN CONTAINS SFF DOS ASSUMES DIRECT MODE AND 
WILL NOT DO OPEN OR OTHER DIRECT MODE COMMANDS 

$0077-$0078 (119-120) [OLDLIN] \P2\APPLESOFT- LAST LINE EXECUTED- LINE# AT WHICH EXECUTION INTERRUPED BY CTRL-C 

$0078-$0097 
SOO 79· SOO 7 A 
soo7a-soo7C 
soo7D-soo7E 
S007F-S008J 

sooso·soo9F 
$0081-$0082 
soo8rsoo84 
soo8s-soo9c 
soo8s-soo86 
soo8A ·soo8E 
$0090 (144) 
S0093-S0097 
$0094-$0095 
S0096-S0097 

< 1 20-1 sn 
( 1 21-122) 
( 1 23-124) 
<125-126) 
( 1 27-1 28) 

(128-159) 
( 1 29-130> 
(131-132> 
(133-156) 
( 1 33-1 34) 
( 138-142) 

<147-151> 
( 148-149) 
c 1 so-, su 

STOP ETC. 
(~OUNSTKH] INTEGER BASI~ MEMORY LOCATION 'NOUNSTKH' (NOUN STACK HI BYTE) 
(COLD TEXT PTR)J \P2\APPLESOFT OLD TEXT PTR. PTS TO LOC IN MEM fOR NEXT STMT TO BE EXE 
(DATLIN] \P2\APPLESOFT CURRENT LINE # FROM WHICH DATA IS BEING READ 
(DATPTR] \P2\POINTS TO ASS LOC IN HEM fROM WHICH DATA IS BEING READ BY APPLESOFT 
((INP SOURCE PTR)] \P2\APPLESOFT- PTR TO CURRENT SOURCE Of INPUT. $201 DURING INPUT STATEMENT If 

STANDARD BUFFER IN USE 
[SYNSTKL] INTEGER BASIC MEMORY lOCATION 'SYNSTKL' (SYNTAX STACK LOCATION) 
((LAST VBL NAME)] \P2\APPLESOfT -HOLDS LAST-USED VARIABLE 1 S NAME 
[VARPNTJ \P2\APPLESOFT POINTER TO THE LAST-USED VARIABLE'S VALUE (USED BY PTRGET) 
\PB\ APPLESOfT GE~ERAL USAGE 
(FORPNTJ \P2\APPLESOFT GENERAL POINTER. SEE COPY SUBROUTINE fOR EXAMPLE 
[TEMP3] \P5\APPLESOFT REGISTER TEMP3 FOR FLOATING POINT MATH PACKAGE (PACKED 5-BYTE fORMAT) 

INITIALIZED TO S4C (JMP) 
(TEMP1] \P5\APPLESOFT REGISTER TEMP1 FOR flOATING POINT MATH PACKAGE (PACKED 5-SYTE FORMAT) 
[HIGHDSJ \P2\USED BY BLOCK TRANSFER UTILITY (BLTU) AS HIGH DESTINATIO~ 
[HlGHTRJ \P2\APPLESOfT - USED BY BLOCK TRANSfER UTILITY (BLTU) AS HIGH END Of BLOCK TO BE 

T RA"4SF ERRED 

--------------------------------------------------------------------------------·--~~-------~-----------~---~----~·.-· 
sooso - $0096 Prof. luebbert•s "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN> [NAMEJ \USE-TYPE\ - DESCRIPTION 
-------...-...----~---------------------------------------------------------------------- ... -------------~-------------
S0098.S009C (152-156) [TEMP2] \P5\APPLESOFT FLOATING POINT MATH PACKAGE REGISTER TEMP2 (PACKED 5-BYTE FORMAT) 
S009B.S009C (155-156) [LOWTRJ \P2\APPLESOFT GENERAL PURPOSE REGISTER USED BY GETARYPT.FNDLN-BLTU (E.G. LOW END OF BLOCK 

TO BE TRANSFERRED IN BLJU) 
S009D.S00A3 (157-163) CFAC] \P6\APPLESOFT MAIN FLOATING-POINT ACCUMULATOR (USES 6•BYTE UNPACKED MATH PACKAGE fORMAT 

DESCRIBED BELOW) 
S009D.S009F (157-159) [OSCTMPJ 
S009D (157) [FACEXPJ \P1\ 
S009E.SOOA1 <158-161) \P4\ 

\P3\-PPLESJFT TEMPORARY STRING DESCRIPTOR (SEE VALTYP & TEMPPT) 
EXPONENT BYTE OF FAC. SIGNED NUMBER IN EXCESS S80 FORM (SIGNED VALUE HAS S80 ADDED> 
FOUR BYTE MANTISSA OF FAC. BINARY POINT ASSUMED TO RIGHT Of MSB. NAMES Of BYTES IN MATH 
PACKAGE HO-MOH.MO-LO RESPECTIVELY. 

S009E <158) 
S009F <159) 
SOOAO-SOOBF 
SOOAO-SOOA1 
SOOAO (1~0> 

SOOA 1 ( 161> 
SOOA2 <162> 

[FACHOJ \P1 \ HIGH ORDER BYTE Of MANTISSA OF fAC 
[FACMOHJ \P1\ MIDDLE ORDER HIGH BYTE OF MANTISSA OF FAC 
<160-191) CNOUNSTKCJ INTEGER BASI£ MEMORY LOCATION 'NOUNSTKC' (NOUN STACK COUNTER> 
(160-161) [FACMO.FACLOJ \P2\POINTER TO STRI~G DESCRIPTOR USED IN STRING UTILITIES 
[FACMOJ \P1\ MIDDLE ORDER BYTE Of MANTISSA Of FAC 
[FACLOJ \P1\ LOW ORDER BYTE Of MANTISSA OF FAC 
[(FACSIGN)J \P1\ SINGLE BYTE SIGN OF FAC. WHILE IN MATH PKG SIGN IS KEPT IN SGN WHERE ONLY BIT 7 IS 

S I GN I F I C ANT 
SOOA4 C1H) GENERAL USE IN FLOATING POINT MATH ROUTINES 
S00A5-S00AA (165-170) [ARGJ \PB\APPLESOFT SECONDARY FLOATING POINT ACCUMULATOR (USES 6-BYTE UNPACKED MATH PACKAGE 

FORMAT DESCRIBED BELOW) 
SODAS ( 1 ~5) [A RG EXPJ \P 1\ EXPONENT PART OF ARG. SINGLE BYTE SIGNED NUMBER IN EXCESS S80 FORM (SIGNED VALUE HAS 

$80 ADDEO TO IT) 
SOOA6-SOOA9 <166-169> \P4\ FOUR BYTE MANTISSA PART OF ARG. BINARY POINT ASSUMED TO RIGHT Of MSB. NAMES Of BYTES IN 

MATH PACKAGE HO-MOH.MO.LO RESPECITVELY. 
SOOA8-SOOC7 
SOOAA (170> 
SOOAa·soOAC 
SOOAc·soOAE 
SOOAD.SOOAE 
sooAF·sooao 
SOOAF.SOOBO 
S00B1-sOJC8 
SOOB1 <177) 

SOOB7 (183) 
sooB8·sooa~ 
sooa8·soos9 
SOOC8 <200> 
SOOC8 <200) 
sooc9·sooco 

SOOC9 <201 > 
SOOC9 < 201> 
soocA·sooco 
soocA·soocs 
soocc·sooco 

(168-199) [TXTNDXSTKJ INTEGER BASIC MEMORY LOCATION 'TXTNDXSTK' <TEXT INDEX STACK> 
\P1\ 
(171-172) 
<172-174) 

[STRNG1J 
\ PB\ 
CSTRNG2J (1 73-174) 

(175-176) 
(175-176) [PRGENDJ 
(177-200) [CHRGETJ 
[CHRGETJ \SE\ 

SIGN BYTE OF ARG (UNPACKED FORMAT). BYTE NAMED SGN 
\P2\APPLESOFT POINTER TO A STRING USED IN 'MOVINS' STRING UTILITY 
APPLESOFT GE~ERAL USAGE FLAGS/POINTERS 

\P2\APPLESOFT POINTER TO A STRING USED IN STRLT2 STRING UTILITY 
PAGE ZERO LOCATIONS USED BY DOS 

\P2\APPLESOFT POINTER TO END Of PROGRAM. NOT CHANGED BY LOMEM: 
\SB\,PPLESOFT CHRGET ROUTINE. CALLED WHEN WANTS ANOTHER CHARACTER {X- Y·REGS NOT ALTERED} 
APPLESOFT CHRGET S/R CALL - GETS NEXT SEQUENTIAL CHR OR TOKEN - lOADS A-REG fROM LOCN 
SPECIFIED BY TXTPTR(S00B8-S00B9 & INCREMENTS TXTPTR. CARRY IS RESET TO ZERO If 
CHARACTER IS A DIGIT OTHERWISE IT IS SET; ZERO FLAT SET If CHAR =0 (END OF LINE SIGN) 
OR S3A <END Jf STATEMENT SIGN ':'> OTHERWISE RESET {X- Y-REGS NOT ALTERED} 

[CHRGOTJ \SE\ APPLESOFT CHRGOT S/R CALL. CHRGET INCREMENTS T~TPTR. CHRGOT DOES NOT 
(184-185) ((LAST CHAR PTR)J \P2\APPLESOFT PTR TO LAST CHAR OBTAINED THRU CHRGET ROUTINE 
(184-185) (TXTPTRJ \P2\TXTPTR- POINTS AT NEXT CHAR OR TOKEN FROM PROG (C/A DEC 78) 
[OUTVALJ INTEGER BASIC MEMORY LOCATION 'OUTVAL' (OUTPUT VALUE TEMPORARY) 
CTXTNDXJ INTEGER BASIC MEMORY LOCATION 'TXTNDX 1 <TEXT INDEX VALUE) 
(201.205) [RND] \P5\APPLESOFT FLOATING POINT RANDOM NUMBER <5-BYTE FLOATING POINT PACKED FORMAT C9=EXP 

[LEADBLJ 
[YTEMPJ 
< 2 02 ·2os > 
<2 02-203) 
< 2 04-2 cs > 

\ PB\ 
[PPL •ppH) 
[PVL •pvHJ 

CA·CO=MANT ISSA) 
INTEGER BASIC MEMORY LOCATION 'LEADBL' (LEADING BLANKS INDEX) 
INTEGER BASIC MEMORY LOCATION 'YTEMP' <TEMPORARY STORAGE FOR Y~REGIST£R) 
PAGE ZERO LOCATIONS USED BY DOS 
\P2\INTEGER BASIC PROGRAM POINTER CSTART-Of•PROGRAM EQUAL TO HIMEM If NO PROGRAM> 
\P2\INTEGER BASIC CURRE~T VARIABLE POINTER (END OF CURRENT VARIABLE EQUAL TO LOMEM If 
NO ACTIVE CURRENT VARIABLE l 

SOOCE.SOOCF (206-207) (ACL-ACHJ \P2\INTEGER BASIC MAIN ACCUMULATOR 
S00CE.S00CF (206-207> c·vALGETL-VALGETH•J \P2\INTEGER BASIC PRIMARY EVALUATOR TEMPORARY LOCAJION 
_________ .,.. ____ ----------------------------- ---~-------------------------------------·--... ~----~·-------· ---·---------· ----- ... 
S0098 - SOOCE Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAMEJ \USE-TYPE\- DESCRIPTION ----------------------------------------------- ---------------------------~---~--- --.-....·-------· ... ··-·--~-.,.·--·----·----~- .... 

sooc E·sooCF 
sooDo·soODF 
sooDo·soJD1 
SOODO C208> 
SOOD1-sOOFO 
soOD2-sOOD3 
sooD2-sOOD3 
SOOD4 C212) 
SOO D 5 C 21 3) 
soo D6 ( 21 4) 
SOOD6 <214) 
SOOD7 <215) 
SOOD8 C216) 
SOOD8 ( 216) 
SOOD8 <216) 
S00D9 ( 217> 

soo D9 ( 217> 
SOODA-$0009 
sooDrsoODB 
sooDc-sooDo 
sooDc-sOODD 
SOOD E ·s 00 D F 
SOODE C222> 

SOODF <223> 
SOOEO-SOOE1 
SOOEO.SOOE1 
SOOE2 <226) 
S0032-SOOE3 
SOOE 2·s00E3 
SOOE4-SOOE5 
SOOE4-SOOE5 
SOOE4 C228> 
SOO E4 C 228> 
sooE5-sOOE7 
SOOE5 <229> 
SOOE6-SOOE7 
SOOE 6- SOOE7 
S OOE 6 C 230> 

C206-207> c-vALL-VALH-J \P2\INTEGER BASIC 16-BIT TEMPORARY VALUE FOR MATHEMATICAL OPERATIONS 
C208-223) \PB\ ONERR POINTERS/SCRATCH 
<208-209> (SRCHL-SRCHH] \P2\INTEGER BASIC MEMORY LOCATION 1 SRCHL' (POINTER TO SEARCH VARIABLE TABLE) 
(ERRFLGJ \P1\ ERROR FLAG. ON IF BIT 7 SET (PEEK<216)>127). POKE 0 TO CLEAR. 
(209-240) [TOKNDXSTKJ INTEGER BASIC MEMORY LOCATION 'TOKNDXSTK' <'TOKEN INDEX STACK?J 
(210-2111 \P2\ If ONERR GOTO OCCURS CONTAINS ADDRESS Of LINE # Of STMT WHERE ERROR OCCURED 
C210-211> [SRCH2L-SRCH2Hl \P2\INTEGER BASIC MEMORY LOCATION 'SRCH2L' (SECOND VARIABLE SEARCH POINTER) 
(IFSKIPJ \P1\ INTEGER BASIC MEMORY LOCATION 'IFSKIP' (If\THEN FAIL FLAG) 
(CRFLAGJ \P1\ INTEGER BASIC MEMORY LOCAHON 'CRFLAG' (CARRIAGE RETURN FLAG) 
[VERBNOWJ \P1\ INTEGER BASIC MEMORY LOCATION 'VERBNOW' (VERB CURRENTLY IN USE) 
\P1\ APPLESOFT MYSTERY PARAMETER. If SET TO S80 MAKES ALL COMMANDS = RUN 
[PRINOWJ \P1\ INTEGER BASIC MEMORY LOCATION 'PRINOW' (PRINT IT NOW FLAG) 

[ERRFLG] \P1\ 
[X SAVE] \P1 \ 
(RUNMODEJ \P1\ 

PAGE ZERO LOCATION USED BY DOS <INFO FROM DCT RELATED TO MOTOR-ON TIME-REQUIREMENT?} 
APPLESOFT ERROR FLAG: S80 If ONERR ACTIVE. SET TO 0 TO DISABLE 'ONERR GOTO' 
INTEGER BASIC MEMORY LOCATION 'XSAVE' (TEMPORARY STORAGE FOR CONTENTS Of X-REGISTER) 
USED BY DOS TO TEST FOR DIRECT-DEFERRED MODE USAGE. IF SAAB6 CONTAINS 0 AND BIT 7 OF 
THIS LOCATION IS CLEAR DOS ~SSUMES DIRECT MODE AND WILL NOT DO OPEN OR OTHER OIRECT 
MODE COMMANDS 

[RUNMODEJ \P1\ INTEGER BASIC MEMORY LOCATION 'RUNMODE' USED AS RU~ MODE FLAG BYTE 
<218-219) [AUXL-AUXHJ \P2\INTEGER BASIC MEMORY LOCATIONS 'AUXL.AUXH' <AULILIARY COUNTER) 
<218-219) [ERRLIN] \P2\APPLESOFT LINE tl WHERE ERROR OCCURED 
<220'-221> [ERRPO SJ \P2\APPLESOFT TEXPTR SAVE FOR HNDLERR SUBROUTINE 
<220-221> [PRL-PRH] \P2\1NTEGER BASIC MEMORY LOCATIONS 'PRL-PRH' (CURRENT LINE \fALUE) 
(222'-223> [PNL-PNH] \P2\lNTEGER BASIC MEMORY LOCATIONS 1 PNL.PNH 1 (CURRENT NOUN POINTER) 
[ERRNUMJ \P1\ APPLESOFT - WHEN ERROR OCCURS- TYPE-OF-ERROR CODE APPEARS HERE - SEE MANUAL fOR CODE 

NUMBER MEANINGS 
[ERRSTKJ \P1\ APPLESOFT STACK POINTER VALUE BEFORE ERROR OCCURED 
(224-225> [PXL.PXH) \P2\INTEGER BASIC MEMORY LOCATIONS 'PXL.PXH' (CURRENT VERB POINTER') 
<224-225> \P2\ HIGH-RES GRAPHICS X-COORDINATE 
\P1\ HIGH-RES GRAPHICS Y-COORDINATE 
(50-227> [P1L-P1HJ \P2\INTEGER BASIC MEMORY LOCATIONS 'P1L.P1H' (AUXILIARY POINTER ONE) 
<226-227> [DELL-DELH) \P2\1NTEGER BASIC MEMORY LOCATIONS 'DELL.DELH' (DELETE LINE POINTER) 
<228-229) (LNAL-LNAH] \P2\INTEGER BASIC MEMORY lOCATIONS 'LNAL-LNAH' (LINE NUMBER ADDRESSHN£XT LINE NUMBER) 
(228-229) [P2L-P2H] \P2\INTEGER BASIC MEMORY LOCATIONS 'P2L-P2H' {AUXILIARY POINTER TWO) 
\P1\ HI-RES GRAPHICS COLOR BYTE 
[FLAG] INTEGER BASIC MEMORY LOCATION 'FLAG' <GENERAL FLAG BYTE> 
(229-231> \PB\ GENERAL USAGE FOR HI-RES GRAPHICS 
\P1\ HI-RES GRAPHICS HORIZONTAL BYTE INDEX FOR CURRENT POSITION(?) 
<230-231> [NXTL-NXTH] \P2\INTEGER BASH MEMORY LOCATIONS 'NXTL-NXTH' (NEXT POINTER) 
(230-231) (P3L-P3H] \P2\INTEGER BASIC MEMORY LOCATIONS 'P3L-P3H' (AUXILIARY POINTfR THREE) 
[HPAGJ \P1\ HI-RES PAGE TO PLOT ON REGARDLESS OF WHICH PAGE BEING DISPLAYED - S20 FOR PG1; $40 FOR 

PG2 
SOOE7 <231> [SCALE] \P1 \ 
SOOE8-$00E9 <232-233> \P2\ 
SOOEA (234) \P1\ 
SOOFO-sOOF3 <240-243> \PB\ 
$00 F 0 ( 24 0) [ F 1 R S T J \ P 1 \ 

HI-RES GRAPHICS SCALE FACTOR 
HI-RES GRAPHICS POINTER TO BEGINNING OF SHAPE TABLE 
COLLISION COUNTER FOR HI-RES GRAPHICS 
GENERAL USE FLAGS 
APPLESOFT - USED BY UTILITY PLOTFNS FOR DESTINATION OF FIRST NUMBER OF LO-RES PLOT 
COORDINATES 

$00 F 1 ( 241> [ S PD BY T] \P 1\ 

SOOF1 (241> (TOKNDXJ \P1\ 

USED FOR SPEED CONTROL OF OUTPUT & DISPLAY. SPEED 0-255 ($00-SfF) CONTROLS INSERTED 
DELAY) 
INTEGER BASIC MEMORY LOCATION 'TOKNDX' (TOKEN INDEX VALUE) 

------------------------------------------------------------------~---------------------------------·-------------------------
SOOCE - SOOF1 Prof. Luebbert's "What's Where in the Apple" NUMERIC A TUS 



HEX LOCN (DEC LOCN) [NAMEJ \USE-TYPE\ - DESCRIPTION 

-------------- ------------------·------------------------------------------------------- --------------~------- --------~~-----
sooF z·soof3 
SOOF3 < 243> 
SOOF3 <243> 
SOOF4-SOOF8 
SOOF4-SODF7 
SOOF4-SOOF5 

(242-243) (CONL-CONHJ \P2\INTEGER BASIC MEMORY LOCATIONS 'CONL-CONH' <CONTINUE POINTER) 
(ORMASKJ \P1\ MASK FOR OUTPUT CONTROL: NORMAL/FLASHING/INVERSE 
(SIGNJ \P1\ MONITOR & FLOATING POINT ROUTINES MEMORY LOC 'SIGN' 
(244-248) \PB\ ONERR POINTERS 
(244-247) (FP1J \P4\MONITOR & FLOATING POINT ROUTINES FLOATING POINT ACCUMULATOR 2 (CONTAINS X2 & M2> 
(244-245) (AUTOINCL-AUTOINCHJ \P2\INTEGER BASIC MEMORY LOCATIONS 'AUTOINCL-AUTOINCH' (CURRENT AUTO LINE 

NUMBER VALUE) 
SOOF4 (244) (X2] \P1\ MONITOR & OLD (NON-APPLESOfT) FLOATING POINT ROUTINES FLOATING POINT ACCUMULATOR 2 

MEMORY LOC 'X2' (EXPONENT) 
SOOF5-$00F7 (245--247) (M2J \P3\ MONITOR & OLD (NON-APPLESOFJ) FLOATING POINT ACCUMULATOR 2 MEMORY LOC 1 M2' (MANTISSA-

SOOF6-SDOF7 
SOOF7 < 24 7 > 
SOO f 8- SOD FE 

3 BYTES) 
(246-247) [AUTOLNL-AUTOLNH] \P2\INTEGER BASIC MEMORY LOCATIONS 'AUTOLNL-AUTOLNH' 
(S16PAGJ \P\ SWEET-16 MEMORY LOCAJI0llj 'S16PAG' 
(248-254) (FP1J \P6\0LD (NON-APPLESOfT) FLOATING POINT ROUTINES flO.ATING POINT ACCUMULATOR fP1 (CONTAINS X1 

M1 AND E (EXTENSION)) 
SOOF8 (248) [AUTCMCDEJ \P1\ 
$00F8 (248) (X1J 

INTEGER BASIC MEMORY LOCATION 'AUTOMODE' <THE AUTOMODE FLAG) 
OLD (NON-APPLESOfT) FLOATING POINT ROUTINES fLOATING POINT ACCUMULATOR FP1 MEMORY t.OC 
'X1' (EXPONENT> 

SOOF8 <248> 
SOOF9-SOOFB 
SOOF9 <249) 
SOOF9 (249) 
SOOFA C250) 
SODFB <251) 
SOOF CSDGFE 

SOO FC ( 252) 
SOD F D ( 25 3 > 
SOOFE-SDOFF 
so1 oo- so1 F F 
s01 oo-soHF 

S0100-S0110 
so2oo-sozFF 
S0200 ( 512> 
$0300-S03FF 
S0300-S03E7 

(REMSTKJ \P1\ 
(249-251> (M1J 
[CHAR) \P1\ 

APPLESOFT STACK POINTER SAVED BEFORE EACH STATEMENT 
\P3\ flOATING POINT ROUTINES FLOATING POINT ACCUMULATOR FP1 MEMORY LOC 'M1' (MANTISSA.) 

INTEGER BASIC MEMORY LOCATION 'CHAR' (CURRENT CHARACTER) 
.INTEGER BASIC MEMORY LOCATION 'COUNT' 
INTEGER BASIC MEMORY LOCATION 'LEADZR' (LEADING ZEROS INDEX) 
INTEGER BASIC MEMORY LOCATION 'FORNDX' CFOR-NEXT LOOP INDEX) 

[ C OU N T] \ P 1 \ 
[LEA02RJ \P1\ 
[FORNDX] \P1\ 
< 2 52-2 54) ( EJ \P3\ MONITOR & FLOATING POINT ROUTINES MEMORY LOC 'E' (3 BYTE MANTISSA EXTENTION Of FP 

ACCUMULATOR 1) 
[GOSUBNOX] \P1\ INTEGER BASIC MEMORY LOCATION 'GOSUBNDX' <GOSUB INDEX> 
(SYNSTKDXJ \P1\ INTEGER BASIC MEMORY LOCATION 'SYNSTKDX' (SYNTAX STACK INDEX VALUE) 
(254-255) (SYNPAGL-SYNPAGHJ INTEGER BASIC SYNTAX PAGE POINTER. If SOOff NOT ZERO THHl ERROR CONDITION EXISTS 
(256-511) \HB\ APPLE SYSTEM STACK. MANY USES INCLUDING SUBROUTINE RETURN STACK 
(256-511) THIS PAGE IS THE STACK USED BY DOS 3.2 TO GET THE SLOTNUMBER IN WHICH THE BOOT DISK IS 

LOCATED 
(2 56-272> 
(512-767) 
(IN] 

CFOUT) \PB\FOUT BUFFER 
(BUf INBUFFJ \HB\KEYIN (CHARACTER INPUT) 

<768-1023> \HB\ 
( 7 68-999) \ HS\ 

MONITOR & MINIASSEMBLER MEMORY 
MEMORY PAGE 3 !MONITOR VECTOR 
BLOCK OFTEN AVAILABLE AS FREE 
USES 

BUFFER CMONJTOR-INTEGER BASJC-APPLESOfT BASIC) 
LOCATION 'IN' 
MEMORY PAGE - BUT MONITOR VECTORS ONLY IN S03F0-SOEfF) 
SPACE FOR USER PROGRAMS. NOTE CONSTRAINTS & COMPETING 

S0300-$03FF (768-1023) \HB\ FIRST STAGE Of DOS 3.2 BOOT USES TH.IS AREA FOR PART 1 Of THE NIBBLE BUFFER. THEN LATER 
DOS 3.2 BOOT USES IT FOR CODE. AREA CLOBBERED BY EITHER MASTER OR SLAVE DISKETTE SOOT. 

S0300-S03AF <768-943) \SB\ 
S0301 (769) \S E\ 

READS DATA fROM TRACK o; SECTORS 0-9 INTO MEMORY AT $8600-SBFff C48K MACHINE} SLAVE 
DISKETTE OR S3600-S3fFF FOR A MASTER DISKETTE 
EXAMPLE: DECWRITER PRINTER OUTPUT FOR SERIAL COMMUNICATIONS 
DOS 3.2 BOOT PROCESS JUMPS HERE AFTER ROM BOOT IS fiNISHED. 
ENTRY TO PART 2 OR STAGE 2 OF DOS 3.2 BOOT. READS IN RWTS & 

CARD ( BLOAD.ED fROM DI SIO 
TRANSFER <ENTRY) POINT FOR 
1 TS SUBPROGRAMS 

S0320-S0321 
$0322 (802) 
$0323 (803) 
$1)324 <804) 
$0325 (805) 

< 8 oo-8 en CXDL-XOHJ \P2\HI-RES GRAPHICS- PRIOR X-COORD SAVE AfTER HLIN OR HPLOT 
(YQJ \P1\ 
(BXSAV] 
[HCOLORJ \P1\ 
[HNDX] \P1\ 

HI-RES GRAPHICS YO - MOST RECENT Y-COORDINATE 
HI-RES GRAPHICS 'BXSAV' 
HI-RES GRAPHICS COLOR fOR HPLOT- HPOSN 
HI-RES ON-THE-fLY BYTE INDEX FROM BASE ADDRESS TO CURRENT PLOT BYTE (fUNCTION OF 
CURRENT X-COORD) 

-------------------------------------------~--------------..------~----------------------~----------------------------------------
SODF2 - $0325 Prof. Luebbert's "What's Where in the Appte" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ -DESCRIPTION 
--------------------------------------------------------------------------------,...-----------~------------------------------,.------

$0326 (806) [HPAGJ \P1\ HI-ORDER BYT£ Of START ADDR Of CURRENT HI-RES DISPLAY MEM PG (POKE 32 FOR HI-RES PG1 -
64 FOR PG2) 

$0326 (806) 
$0327 (807> 
$0328-$0329 
S032A <81 O> 
$0399 (921) 

S03CC (972> 
S03DO-S03EO 

[HPAGJ \P1\ HI-RES GRAPHICS MEM PAGE FOR PLOTTING GRAPHICS $20 FOR PG1 -s40 FOR PG2 
[SCALE) \P1\ ON-THE-FLY SCALE FACTOR FOR DRAW- SHAPE- MOVE 
(8 08-809) ( SHAPX L- SHAPXH] \P2\S TART-Of-SHAPE- TABLE PO INTER 
[COLLSNJ \P1\ COLLISION COUNT FROM DRAW.DRAW1 

(976-992) \SB\ 

S03DO (976) [<3DOG>J \SE\ 

S03D3 (979) \SE\ 

$03 D6 
$03D9 
$03DC 
S03E3 
$03 EA 

(982> \S E\ 
(985> \SE\ 
<988> \SE\ 
(995> [995] \SE\ 
< 1 0 0 2 > ( 10 02 J \ S E \ 

DOS 3.2 OFFSET IN THE 1ST NIBBLE BUFFER USED IN RECONSTRUCTING THE REAL DATA 
DOS 3.2 OFFSET IN THE FIRST NIBBLE BUFFER USED IN RECONSTRUCTING THE REAL DATA 
BLOCK OF COMMANDS ETC. COPIED FROM S9E50-S9E80 ON DOS 3.2 300T TO CONTROL TRANSFERS TO 
SOFT ENTRY• HARD ENTRY• I-0 PKG- RWTS AND TO GET END Of SYSTEM BUFFER- lOB ADDREss· 
AND TO UPDATE 1-0 HOOKs• AND DO JUMP TRANSFERS TO AUTO BRK ENTRY- CTRL-Y ENTRY- NIU 
ENTRY AND PROVIDE IRQ ADDRESS 
DOS 3.2 SOFT-ENTRY POINT; I.E. RE-ENTRY POINT (3D0G} FOR RE-INITIALIZATION SAVING All 
VARIABLES & DATA OF CURRENT BASIC PROGRAM (JMP S9DBF) 
DOS 3.113.2 HARD ENTRY POINT; I.E. RE~INITIALIZATION DESTR3YS All INfORMATION RELATING 
TO CURRENT BASIC PROGRAM (JMP S9D84) 
DOS 3.1-3.2 ENTRY POINT FOR z•o PACKAGE (JMP SAAFD) 
DOS 3.1-3.2 ENTRY POINT fOR RWTS (JMP SB785) 
DOS 3.1-3.2 ENTRY POINT TO LOAD v-A WITH ADDRESS AT END OF SYS BUFFER 
DOS 3.1-3.2 ENTRY POINT TO LOAD Y-A WITH ADDRESS OF IOBLK 
DOS 3.2 ENTRY POINT FOR ROUTINE THAT UPDATES I/0 HOOK TABLES IN S0036-S0039. (JMP 
$A851 - SAVES ADDRESSES Of CHARACTER INPUT & OUTPUT ROUTINES CURRENTLY IN USE AND 
RECONNECTS DOS I/0) 

S03EA (1002> ((LOAD DOS 3.2 REGS)] \SE\RECONNECT DOS 3.2 VIA APPLE MONITOR REGS. PREVIOUS CONTENTS Of MONITOR I/0 REGS 
($0036-$0039) TO DOS 3.2 INPUT & OUTPUT REGS {DOS 3.2 REGS ALTERED) 

S03FO-S03F1 {1008-1009) [BRKVJ \P2\AUTOSTART ROM BREAK VECTOR- DEFAULT VALUE SFA59 
$03Fz-S03F3 (1010-1011) [SOFTEV] \P2\AUTOSTART ROM RESET VECTOR USED FOR SOFT ENTRY TO LANGUAGE IN USE- DEFAULT VALUE 

$E003 FOR APPLESOFT 
$03F4 (1012) [PWREDUP] \P1\ AUTOSTART ROM POWER UP MASK. SET BY SETPWRC TO EXCLUSIVE 'OR' Of S03F3 & SOOA5 
S03F5-S03F7 <1013 .• 1015) [AMPERV] APPLESOFT- HOLDS JMP (JUMP) INSTRUCTION TO SIR WHICH HANDLES & COMMANDS. DEfAULT 

$4C S58 SFF (JUMP TO SfF58> 
HOLDS JMP (JUMP) INSTRUCTION TO S/R WHICH HANDLES 'USER' COMMANDS (E.G. CTRL-Y> 
IN MONITOR MODE KEYBOARD ENTRY OF CTL-Y Will CAUSE JSR HERE 
HOLDS JMP (JUMP> INSTRUCTION TO SIR WHICH HANDLES NON-MAS<ABLE INTERRUPTS 
N'H'S VECTORED TO THIS LOCATION 

$03F8-S03FA (1016-1018) 
$03F8 <1016) [USRADRJ 
S03FB-S03FD (1019-1021> 
$03 F B ( 101 9) [ NM I] 
S03FE-S03FF (1022-1023> 
S0400-S07FF <1024-2047> 

[IRQADR-IRQLOCJ \P2\IRQ'S VECTORED BY POINTER HERE TO SUBROUTINE TO HANDlE INTERRUPT REQUESTS 
\HB\ SCREEN BUfFER (MEMORY PAGES 4·7)(l0W-RES GRAPHICS & TEXT PAGE 1); CONSISTS OF 8 

SUBPAGES: EACH CONTAINING 3 TEXT LINES Of 40 <S27> CHARACTERS EACH f~LLOWED BY 8 
BYTES WHICH ARE USED AS INPUT-OUTPUT PARAMETERS - ONE BYTE fOR EACH SLOT <0-7>. ltNES 
ARE INTERLACED DOWN PAGE: I.E. FIRST SUBPAGE CONTAINS LINES 1-9-2 7 & FIRST BLOCK OF 
1-0 BYTES; SECOND SUBPAGE CONTAINS LINES 2-10-18 & SECOND BLOCK OF 1-0 BYTES; THIRD 
SUBPAGE COI'HAINS LINES 3·11-19 & THIRD BLOCK Of 1-<l BYTES ETC. 

$0400-$0477 (1024-1143) ((MACROLINE:J)J \HB\TEXT VIDEO SCREEN DISPLAY PAGE 1- MACROLINE ORSUBPAGE CONSISTING Of LINES 0 
- 8 & 16 
VIDEO SCREEN BUFFER L~•RES LINES 0 AND 1 
VIDEO SCREEN BUFFER TEXT LINE 0 

\BB\VIDEO SCREEN BUffER lJ-RES LINES 16 AND 17 
VIDEO SCREEN BUffER TEXT LINE 8 

S0400-S0427[(LQ-RESLNS0/1 )J \BB\ 
S0400-S0427[(TEXTLNO>J \BB\ 
S0428-S044 F ((lo-RE SLNS1 6/17>] 
S0428-S044F [ < T EX TLN8>] \BB\ 
S0450-S04 77[ ( l 0- RESLNS32/33) J 
S0450-S0477[CTEXTLN16)) \BB\ 
S0478+S C1144+S) \P1\ 

\BB\VIDEO SCREEN BUFFER ll-RES LINES 32 AND 33 
VIDEO SCREEN BUFfER TEXT LINE 16 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT liS 

-------------------------------------------~---------------------------------------~--------------------------~------
$0326 - $0478 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATlAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION ________ ,...,. ___________________________________________________________________________ .,. _________________________________ _ 

S 04 7 8 + S ( 11 4 4 + S) [ 8 RATE ] \ P 1 \ 
S0478+S (1144+S) [DVOTRK] \P1\ 

EXAMPLE: SERIAL INTERFACE BAUD QUANTUM RATE. S1= 19200 BAJD;$40=300 BAUD 
EXAMPLE:'DRVOTRAK'= DISK DRIVE 0 CURRENT TRACK (VALUE= 2*TRACKII>; DOS 3.2 PARAMETER 
FOR DISK IN SlOT liS 

$0478 (1144) [CURTRK] \P1\ DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) PARAMETER CURRENT TRACK (LAST TRACK 'SEEK'-ED) 
S0478-S047F (1144-1151> SCRATCHPAD BYTES FOR 1/0 PERIPHERALS -ONE BYTE FOR EACH PERIPHERAL 'SLOT' 0 THRU 7 
$0479 (1145> \P1\ SCRATCHPAO MEMORY BYTE FOR PERIPHERH IN SLOT 111 
S047A (1146) \P1 \ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 112 
S047B (1147) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 113 
S047C (1148> \P1 \ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 114 
$047D <1149) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 115 
S041E (1150) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 116 
S047F (1151> \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 117 
S0480-S04A7[(LO-RESLNS2/3)] \88\ VIDEO SCREEN BUFFER L:>•RES LINES 2 AND 3 
S0480-S04AH<TEXTLN1> J \8B\ VIDEO SCREEN BUFFER TEXT LINE 1 
S0480-S04F7 <1152-1271> [CMACROLINE1)] \HB\TEXT PAGE 1- MACROLINE OR SUBPAGE CONSISTING OF 3 TEXT LINES Of 40 BYTES 

<CHARACTERS) EACH PLUS A BLOCK OF 8 I-0 PERIPHERAL BYTES. SUBSEQUENT 

S04A8-S04CFC<LO-RESLNS18/19) J 
S04A8-$04CFC <TEX TLN9) J \BB\ 
S04D0-S04 F7[ ( L 0- RE SLN S3 4/35) J 
S04DO-S04FH<TEXTLN17)] \BB\ 
S 04 F 8 + S ( 1 2 7 2 + S ) \ P 1 \ 

MACROLINES WILL BE OMITTED FROM DATABASE 
\BB\VIDEO SCREEN BUFFER,LO-RES LINES 18 AND 19 

VIDE 0 SC R EE N BUFFER TE X T LINE 9 
\BB\VIDEO SCREEN BUFFER L:>-RES LINES 34 AND 35 

VIDE 0 SCREEN BUFFER TEXT LINE 1 7 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT liS 

$04F8+S C1272+S) [DRV1TRK] \P1\ EXAMPLE: 'DRV1TRK' =DISK DRIVE 1 CURRENT TRACK (VALUE= 2*TRACK#); DOS 3.2 PARAMETER 
FOR DISK I~ SLOT #S 

S04F8+S (1272+5) (STBIT5J \P1\ EXAMPLE: APPLE SERIAL INTERFACE IN SLOT liS: CONTAIN NUMBER OF STOP BITS (INCLUDING 1 
PARITY BIT> 

$04F8 (1272) \P1\ SCRATCHPAD MEMORY BYTE USED BY DOS 3.2 (SHARED BY ALL PERIPHERAL CARDS) 
S04F8-S04FF (127z-1279) \HB\ TEXT PAGE 1 - BLOCK OF 8 1-0 PERIPHERAL BYTES ONE FOR EACH SLOT <0-7> 
S04F9 (1273> \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 111 
$04FA <1274) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 112 
S04FB (1275) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 113 
S04FB <1275) [SEEKCNTJ \P1\ DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) SEEK COUNTER PARAMETER 
S04FC (1276) \P1\ SCRATCHPAD MEMORY BYTE FOR PE~PHERAL IN SLOT #4 
$04FD (1277> \P1 \ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 115 
$04FE (1278) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #6 
S04FF (1279) \P1 \ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 117 
S0500-S0527[(LO-RESLNS4/5)J \BB\ VIDEO SCREEN BUFFER LO-RES LINES 4 AND 5 
S0500-S052H<TEXTLN2)J \BB\ VIDEO SCREEN BUFFER TEXT LINE 2 
$0500-$0577 <1280-1399> [(TEXTMACROLINE2>J \HB\TEXTVIDEO DISPLAY- SUBPAGE 2. CONSISTS Of TEXT LINES 2· 10 & 18 

S0528-S054F[(LQ-RESLNS20/21> J 
S0528-S054f[(TEXTLN10>J \BB\ 
S0550-S05 77[ (Lo-RE SLNS3 6/37) J 
S0550-S0577[(TEXTLN18)] \QB\ 
S0578+S (1400+S) \P1\ 

S0578+S (1400+S) \P1\ 
S0578+S (1400+5) [STATUS] \P1\ 
$0578 (1400) \P1 \ 
S0578-S057F (1400-1407> \HB\ 
$0579 (1401> \P1\ 

FOLLOWED BY AN 8-BYTE BLOCK FOR I-0 PERIPHERALS 
\B8\VIDEO SCREEN BUFFER L:>-RES LINES 20 AND 21 

VIDEO SCREEN SUFFER TEXT LINE 10 
\BB\VIDEO SCREEN BUFFER Ll-RES liNES 36 AND 37 

VIDEO SCREEN BUFFER TEXT LINE 18 
EXAMPLE APPLE PARALLEL PRINTER INTERFACE IN SLOT liS: CARRIAGE WIDTH. E.G. POKE 
1400+S-80 FOR 80 COLUMN PRINT WIDTH 
SCRATCHPAD MEMORY BYTE fOR PERIPHERAL IN SLOTMS 
EXAMPLE: APPLE SERIAL INTERFACE IN SLOT liS: PARITY CHECKSUM OPTIONS (SEE MANUAL) 
SCRATCHPAD MEMORY BYTE USED BY DOS 3.2 (SHARED BY ALL PERIPHERAL CARDS) 
BLOCK OF SCRATCH PAD BYTES FOR PERIPHERALS IN SLOTS 0-7 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #1 ---:----------- ---------------------------------------------------------- __________ _,.....,. __ -----~------ ------------------------

S04 78 - $05 79 Prof. Luebbert's "What's Where in the Apple" NUMERIC A JLAS 



HEX LOCN CDEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION 

--------·-----------~---------------------------------~--------------~-------...--- .... 'fllioo--..----· .... -·----------·--.,..-----·-··---· 
S057A (1402) \P1 \ 
S057B (1403) \P1 \ 
S057C <1404) \P1\ 
S057D C1405) \P1\ 
S057E (1406) \P1 \ 

SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #2 
SCRATCHPAD MEMORY BYTE fOR PERl PHERAl IN SLOT Jl3 
SCRATCHPAD MEMORY BYTE FOR PE~PHERAl IN SLOT tl4 
SCRATCHPAD MEMORY BYTE fOR PERIPHERAL IN SLOT #5 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAl IN SLOT tl6 

S057F (1407) \P1\ 
S0580-S05A7[CLO-RESLNS6/7)] \BB\ 
S0580-S05A7(<TEXTLN3)] \BB\ 

SCRATCHPAD MEMORY BYTE fOR PERIPHERAl IN SLOT #7 
VIDEO SCREEN BUFFER LO-RES LINES 6 AND 7 
VIDEO SCREEN BUFFER TEXT LINE 3 

$05 A8-S05 C F( Cl 0- RESLNS2 2/23)] 
S05A8-S05CF(CTEXTLN11lJ \BB\ 
S05D O-S05F7 ( C L 0- RE SLN S3 8/39> J 
S05DO-S05F7((TEXTLN19>J \BB\ 
S05F8+S C1528+S) \P1\ 

SOSF8+S C1528+S) \P1\ 
S05F8+S (1528+S) (SlOTJ \P1\ 
S05F8 (1528) ((BOOT DISK ti)J 
S05F8 C1528> \P1 \ 
S05F9 <1529) \P1\ 
S05FA (1530) \P1\ 
S05FB <1531> \P1\ 
S05FC (1532> \P1 \ 
$05 FD ( 1533> \ P1 \ 
$05 FE ( 15 3 4) \ P 1 \ 
S05FF <1535) \P1\ 

\BB\VIDEO SCREEN BUFFER lO-RES LINES 22 AND 23 
VIDEO SCREEN BUFfER TEXT LINE 11 

\BB\VIDEO SCREEN BUFfER LO~RES liNES 38 AND 39 
VIDEO SCREEN BUFFER TEXT LINE 19 
EXAMPLE: APPLE PARALLEL PRINTER INTERFACE IN SLOT tiS - CHARACTER COUNTER. E.G. POKE 
1528+S""0 TO RESET COUNT TO ZERO 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #S 
DOS READ-WRITE-TRACK-SECTOR CRWTS> 'SLOT• = HOLDS SlOT NUMBER USED 

\P1\ CONTAINS SLOT # Of DISK CONTROlLER CARD FROM WH.ICH ANY ACTIVE DOS 3.2 WAS BOOTU 
SCRATCHPAO MEMORY BYTE USED BY DOS 3.2 <SHARED BY AlL PERIPHERAl CARDS) 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #1 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT t12 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #3 
SCRATCHPAD ME~RY BYTE fOR PERIPHERAL IN SLOT tl4 
SCRATCHPAD MEM RY BYTE FOR PERIPHERAL IN SlOT .t15 
SCRATCHPAO ME ORY BYTE FOR PERIPHERAL IN SLOT #6 
SCRATCHPAD ME ORY BYTE FOR PERIPHERAL IN SLOT #7 

\BB\ VIDEO SCREEN BUFfER LJ-RES LINES 8 AND 9 
VIDEO SCREEN BUFFER TEXT LINE 4 

$06 00-$062 7 ( C L 0- RE SLN S8/9) J 
S0600-S0627((TEXTLN4)] \BB\ 
$06 2 8-$064 f( C L 0- RE SLN S21t/25)] 
S0628-S064F(CTEXTLN12)] \BB\ 
S0678+S (1656+S) \P1\ 

$ 06 7 8 + s ( 1 6 56+ s) \ p 1\ 
S0678+S (1656+S> (BYTEJ 
$0678 (1656) \P1\ 
$ 06 7 9 ( 1 6 5 7 ) \ p 1 \ 
$ 06 7 A ( 1 6 58 ) \ P1 \ 
S067B (1!159) \P1 \ 
S067C C166J) \P1\ 
$06 7 D ( 16 61 ) \ P1 \ 
$ 06 7 E ( 1 6 6 2 ) \ P1 \ 
$ 06 7 F ( 16 6 3 ) \ P 1 \ 
S0680-S06A7[(LO-RESLNS10/11>J 
S0680-S06A7 [ ( T EX TLN5) J \BB\ 
S06=0-S0677[CLD-RESLNS40/41> J 
S06=0-$0677[CTEXTLN20>J \BB\ 
$Q6A8-$06CF[(LO-RESLNS26/27) J 
$06A8-S06CF[CTEXTLN13)] \BB\ 
$06 0 0-$06 F 7 [ ( L 0- RESLNS4 2/43) J 
S06D0-$06f7[(TEX TLN21 )J \BB\ 
$06F8+S C1784+S) (PWDTHJ \P1\ 
S06F8+S < 1784+5) \P1 \ 

\88\VIDEO SCREEN BUFFER LO,-RES LINES 24 AND 25 
VIDEO SCREEN BUFFER TEXT LINE 12 
EXAMPLE: APPLE PARALLEL PRINTER INTERFACE CARD IN SLOT #S - CHARACTER COUNTER. E.G. 
POKE 1656+s-o TO RESET CHARACTER COUNT TO ZERO 
SCRATCHPAD MEMORY BYTE fOR PERIPHERAL IN SLOT tiS 
EXAMPLE: APPLE SERIAL INTERFACE IN SLOT tiS INPUT OUTPUT BUffER 
SCRATCHPAO MEMORY BYTE USED BY DOS 3.2 (SHARED BY ALL PERIPHERAL CARDS) 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #1 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 112 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT t13 
SCRATCHPAD MEMORY BYTE fOR PERIPHERAL IN SLOT #4 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAl IN SLOT #5 
SCRATCHPAD MEMORY BYTE fOR PERIPHERAL IN SLOT #6 
SCRATCHPAD .MEMORY BYTE fOR PERIPHERAL IN SLOT #7 

\BB\VIDEO SCREEN BUFFER L:>-RES LINES 10 AND 11 
VIDEO SCREEN BUffER TEXT LINE 5 

\BB\VIDEO SCREEN BUFFER LO-RES liNES 40 AND 41 
VIDEO SCREEN BUFFER TEXT LINE 20 

\BB\VIDEO SCREEN BUFFER L:>-RES LINES 26 AND 27 
VIDEO SCREEN BUFFER TEXT LINE 13 

\BB\VIDEO SCREEN BUFFER LO-RES LINES 42 AND 43 
VIDEO SCREEN BUFfER TEXT LINE 21 
EXAMPLE:APPLE SERIAL INTERFACE CARD IN SLOT tiS - PRINTER WIDTH ('PWDTH') 
EXAMPLE:APPLE PARALLEL PRINTER INTERFACE CARD IN SLOT #S - COMMAND PREFIX. E.G. POKE 
1784+S-137 TO USE CTRL-L <ASCII 137) AS COMMAND PREfiX ----------------------------------------------------------------------------------~-~ ------------------ ~-- ---~ ---------

S057A - $0H8 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION -·-------------------------------·----------------------· ·--------~-·~-------------~~-· ... ----.-·-------~'!11'~----- .. ---- -·· .. --· 
S06F8+S (1784+S> \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT /IS 
S06F8 <1784) \P1\ SCRATCHPAD MEMORY BYTE USED BY DOS (SHARED BY All PERIPHERAL CARDS) 
S06F9 (1785) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #1 
S06FA (1786) \P1 \ SCRATCliPAD MEMORY BYTE FOR PERIPHERAL lN SLOT #2 
S06FB <1787> \P1 \ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL lN SLOT #3 
S06FC (1788) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT /14 
S06FD (1789) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT /15 
S06FE (1790) \P1 \ SCRATCHPAD MEMORY BHE FOR PERIPHERAL IN SLOT #6 
S06FF (1791) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT 117 
$0700-S0727[CLO-RESLNS12/13)J \BB\VIDEO SCREEN BUFFER LO-RES LINES 12 AND 13 
S0700-S072H<TEXTLN6)] \BB\VIDEO SCREEN BUFFER TEXT LINE 6 
S0728-S074H<LD-RESLNS28/29>J \BB\VIDEO SCREEN BUFFER LO-RES LINES 28 AND 29 
S0728-S074f[(TEXTLN14>J \88\VIDEO SCREEN BUFFER TEXT LINE 14 
S0750-S0777[(LO-RESLNS44/45)J \BB\VIDEO SCREEN BUFFER LO'"'RES LINES 44 AND 45 
S0750-S0777[CTEXTLN22)] \BB\VIDEO SCREEN BUffER TEXT LINE 22 
S0778+S (1912+S> \P1\ EXAMPLE: APPLE COMMUNICATIONS INTERFACE CARD IN SLOT #S - VIDEO E'CHO <SEE AClC MANUAL PAGE 

17>. E.G. POKE 1912+s-o FOR NO VIDEO ECHO 
S0778+S (1912+S) \P1\ EXAMPLE: APPLE PARALLEL PRINTER INTERFACE CARD IN SLOT /IS - VlDEO & LINEFEED STATUS (HIGH 

BIT CONTROLS VIDEO; LOW BIT CONTROLS L.F.>. E.G. POKE 1912+S-1 FOR NO-VIDEO Lf-£NABLE. POKE 
1912+S-128 FOR VIDEO-ENABLE NO-lf. <CENTRONICS VERSION OF APPI DOES NOT HAVE lf OPTIONS 
ACTIVATED) 

S0778+S (1912+S> \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #S 
S0778+S (1912+S) [NBlTS] \P1\EXAMPLE: APPLE S£RIAL INTERFACE IN SLOT /IS NUMBER OF DATA BITS PLUS 1 FOR START BIT 
$0778 (1912) \P1\ SCRATCHPAD MEMORY BYTE USED BY DOS 3.2 (SHARED BY All PERIPHERAL CARDS) 
$0779 (1913) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #1 
S077A (1914) \P1 \ SCRATCHPAO MEMORY BYTE FOR PERIPHERAL .IN SLOT #2 
S077B (1915) \P1 \ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #.3 
S077C (1916) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #4 
S077D (1917) \P1\ SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #5 
S077E C1918) \P1 \ SCRATCHPAO MEMORY BYTE FOR PERIPHERAL IN SLOT /16 
S077F (1919) \P1 \ SCRATCHPAO MEMORY BYTE FOR PERIPHERAL IN SLOT #7 
S078D-S07A7{(LQ-RESLNSU/15)] \BB\VIDEO SCREEN SUffER ll'-RES LINES 14 AND 15 
S0780-S07AH<TEXTLN7>J \BB\VIOEO SCREEN BUFFER TEXT LINE 7 
S07A8-S07CH(LC>-RESLNS30J31>J \BB\VIOEO SCREEN BUFfER LO.,.RES LINES 30 AND 31 
S07A8-S07CH<TEXTLN1S>J \BB\VIDEO SCREEN BUFFER TEXT LINE 15 
S07DO-S07FH<L<>-RESLNS46/47>J \BB\VIDEO SCREEN BUfFER LO~RES LINES 46 AND 47 
S07D0-S07F7[(TEXTLN23>J \BB\VIOEO SCREEN BUff~R TEXT LINE 23 
S07F8+S (2040+S) \P1\ INTERRUPT RETURN MEMORY BYTE fOR PERIPHERAL IN SLOT #S (LOAD WITH SOOCS) 
S07F8+S (2040+S) {flAGS) \P1\EXAMPLE: APPLE SERIAL INTERfACE IN SLOT /IS OPERATION MODE 
S07F8+S (2040+S> {STATJ \P1\APPLE COMMUNICATIONS INTERFACE CARD IN SLOT tiS - STATUS CSEE ACJC MANUAL PG 17J. E.G. POKE 

S07F8 <2040) [(SLOT #)) 

S07F8 
S07f9 
S07FA 
S07FB 
S07F C 
S07FO 
S07FE 
S07FF 

<2040) 
( 2041> 
(2042) 
<2043) 
<2044) 
<2045) 
(2046) 
( 204 7) 

\P1\ 
\ P1 \ 
\P1 \ 
\P1\ 
\ P1 \ 
\ P1 \ 
\P1 \ 
\ P1 \ 

2040+S-17 
CONTA.INS SLOT NUMBER (IN THE FORMAT $CS) Of THE PERIPHERAL CARD CURRENTLY ACTIVE- PRINT 
PEEKC2040J-192 YIELDS SLOT # IN DECIMAL fORMAT 
SCRATCHPAO MEMORY BYTE USED BY DOS 3.2 (SHARED BY All PERIPHERAL CAROSJ 
SCRATC'HPAO MEMORY BYTE FOR PERIP.HERAL IN SLOT #1 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT /12 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #3 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT #4 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL IN SLOT /IS 
SCRATCHPAD MEMORY BYTE FOR PERIPHERAL .IN SLOT #6 
SCRATCHPAD MEMORY BYTE fOR PERIPHERAL IN SLOT 117 

----·-·-.,-------------------.~--·-·-·-~-....~--·--.,.~-·-·~-----.,.---·-.·-~------··-~·- ... ----.,. .... ..-----~-.,..._.,.. .... ---~---------
$06F8 - S07ff Prof. Luebbert's "What's Where 'in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN> [NAME] \USE-TYPE\- DESCRIPTION 
---------~----------------------------..,..-------------------------·-·--------·--------~-------··---··--~·---~·-·~--...-

sosoo- s cooo < 2 04 8--1638 4> 
so8oo·s 3003 < 2 04 8-122 91 > 

sosoo·soa FF 
sosoo·sosFF 
sosoo·so9FF 
$0800-LOMEIII 

<2048-3071> [CLO-RES 
< 2 04 a- 3071) \SB\ 
<2048-2559> \HB\ 

S0800 <2048) 
S0801.S084C <2049-2124) 

S081F <2079) \SE\ 

S0839 <2105> \SE\ 

\SB\ 

S08AO <2208) \SB\ 
socoo-s1FFF oo7r8191l \HB\ 
SOCOO (3072) \HB\ 
SOC3C C31 32 > \ S£\ 

SOCF2 <3314) \ SE \ 

SOC F 2 <331 4 > \ SE \ 

S1067 <4199) \SE\ 

RANGE OF POSSIBLE SETTINGS FOR HIMEM (DEPENDING UPON ME~ SIZE- DOS 3.2 ETC.) 
APPLESOFT - AREA OCCUPIED BY RAM VERSION (A$ OPPOSED TO ROM OR LANGUAGE PACK 
VERSION) -MOST LOCATIONS IN ATLAS ARE GIVEN AT ROM LOCATIONS. USE OFFSET TO 
TRANSFER TO RAM LOCATIONS 

PAGE 2>J \HB\SECONDARY SCREEN SuFFER (TEXT & LOW-RES GRAPHICS PAGE 2) 
NORMAb LOCATION FOR HI-RES SUBROUTINES <INTEGER BASICl 
• tdBBLE• BUffER AREA FOR PART 2 OF DOS 3.2 BOOT. CLOBBERED BY ANY DOS 3.2 .BOOT • 
PROGRAM STORAGE FOR ROM VERSION OF APPLESOFT 
DEFAULT INTEGER BASIC LOMEM 
DOS 3.3 - PHASE 2 OF BOOT FROM SECTOR ZERO ON TRACK ZERO - FIRST RAM BOOTSTRAP 
LOADER (BOOT1>. THIS ROUTINE LOADS THE SECOND RAM LOADER; BOOT 2 INCLUDING RWTS; 
INTO MEMORY AND JUMPS TO IT. USES S081f fOR SLOTM;SQ8FE fOR BOOT2 MEM PG;SQ8FE fOR 
BOOT2 LENGTH 
DOS 3.3 - PHASE 2 OF BOOT - HRST RAM BOOTSTRAP LOADER. GETS SECToR TO READ. If 
ZERO GOTO S0839. TRAt4SLATfS THEORETICAL SECTOR NUMBER INTO PHYSICAL SECTOR NUMBER 
BY INDEXING INTO SKEWING TABLE AT S084D. DECREMENTS S08Ff (THEORETICAL SECTOR 1>. 
SETS UP PARAMETERS FOR ROM SIR SC65C NO JUMPS TO IT. CIT RETURNS TO S0801 WHEN 
SECTOR READ 
DOS 3.3 - PHASE 2 OF BOOT - fIRST RAM BOOTSTRAP LOADER CBOOTU. ADJUSTS PAGE NUMBER 
AT S08FE TO LOCATE ENTRY POINT OF BOOTZ. INITIALIZES MO~ITOR (TEXT MODE - STD 
WINDOW ETC.). GOTO BOOTZ <S3700 fOR A MASTER DISKaB700 IN ITS FINAL RELOCATED 
LOCN) 
DURING DOS 3.2 BOOT AREA STARTING HERE HOLDS THE DISK ->NIBBLE TRANSLATE TABLE 
OFTEN FREE SPACE UNL~SS RAM\DISK APPLESOfT IN USE) 
DEFAULT LOCATION FOR START Of SHAPE TABLE AS SET BY HI-RES SHAPE LOAD SIR 
DOS 3.2\APPLESOFT TRANSFER POINT TO RAM APPLESOFT (DISK AS OPPOSED TO ROM OR 
LANGUAGE PACK VERSION) USED BY DOS 3.2 FOR SOFT ENTRY 
APPLESOFT - SET (OR RESET) POINTERS & LINKAGES fOR RAM APPLESOFT STORED AT 
S0800-S3003 (2048-12291) 
APPLESOFT - TO CNVRT AIS PROG fROM FIRMWARE (ROM OR LANGUAGE CARD) TO RAM (AIS 
STORED IN S0800-S3003>: LOAO PROG- CALL 3314-LIST-SAVE 
DOS 3.2\APPLESOFT TRANSFER POINT USED BY DOS 3.2 IMTO RAM (DISK AS OPPOSED TO ROM 
OR LANGUAGE PACK> VERSION OF APPLESOfT WHEN PROCESSING ERRORS 

S1B00-S3FFF (6912-16383) \SB\ THIS REGION OF MEMORY IS CLOBBERED BY A SLAVE DISKETTE SOOT 
S1BOO.S3FFF (6912-16383) \SB\ TEMP lOCATION Of RAWDOS 3.2 DURING DOS 3.2 SOOT 
S1BOO.S1CFF (6912-7423> [SBJ TEMPORARY LOCATION OF DOS 3.2 RELOCATION COOE DURING DOS 3.2 BOOT {SB} 
S1DBf (7615) \SE\ ROUTINE TO RECONNECT DOS 3.2 If PAGE 3 MONITOR LINKAGES OVERWRITTEN (16K APPLE ONLY> 
S2000-S3FFF (8192-16383) [(HI-RES PUJ \HB\Hl-RES GRAPHICS PAGE 1 
S2000-S2027 (8192-8231) ((HIRES P1LOOO>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE MOOO 
S2028-S204F <8232-8271> [<HIRES P1L064)J \HB\H.I•RES GRAPHICS: PAGE 1- LINE M064 
S2050.S2077 <8272.8311> [(HIRES P1L128>J \HB\Hl-RES GRAPHICS: PAGE 1- LINE #128 
S2080-S20A7 <8320-8359> [(HIRES P1L008)J \HS\HI-RES GRAPHICS: PAGE 1- LINE MOOS 
S20A8.S20CF (8360-8399) [(HIRES P1L072)J \HB\Hl-RES GRAPHICS: PAGE 1- LINE 11072 
S20oo·s20E7 (8400-8423> [(HIRES P1L136)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1136 
S2100.S2127 (8448-8487> [(HIRES P1L016)J \HB\HI-RES GRAPHICS: PAGE 1- LINE 11016 
S2128-S214F (848Bi8527) [(HIRES P1L80>J \HB\HI-RES GRAPHICS: PAGE 1 -LINE 180 
S2150-S217f <8528-8575> [(HIRES P1L144)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE M144 
S2180-S21A7 <8576-8615) [(HIRES P1L024)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE 1024 
S21A8-S21CF <8616-8655) [(HIRES P1L088)J \HB\HI-RES GRAPHICS: PAGE 1- LINE 1088 
S21DO.S21F7 (8656-8695> [(HIRES P1L152)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11152 
S2200.S2227 <8704-8743> [(HIRES P1L032)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1032 
-----------------..-------------------------,------------'P-----~--·~-..-----..--..----·--~~~-------~-----·~·-..·~·--·---- .... --...... -
S0800 - S2200 Prof. Luebbert's "What's Where in the Apple" NUIIERIC A JUS 



HEX LOCN (DEC LOCN) [NAMEJ \USE-TYPE\ - DESCRIPTION 

--·------·------------------------------------------·------------·--------~--------~-·~------------·--~----------------
S2228-S224F (8744-8783) [(HIRES P1LJ96)] \HB\HI-RES GRAPHICS: PAGE 1 - li~E 1096 
s225o·s2277 <8 784-8823> [(HIRES P1L160)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #160 
S2280-S22A7 (8832-8871> [(HIRES P1l040>l \HS\HI-RES GRAPHICS: PAGE 1 - LINE 1040 
S22A8-S22CF (8872-8911) {(HIRES P1L104)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #104 
S22DO-s22F7 <8912-8951> [(HIRES P1l168>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #168 
S23oo-s2327 <8 96 o- 8999> [(HIRES P1l048)J \HB\HI-RES GRAPHICS: PAGE 1 - liNE 1048 
S2328-S234F (9000-9039) [(HIRES P1l112)J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #112 
S2350-S237F (904(J9087) [(HIRES P1L176)J \HB\HI-RES GRAPHICS: PAGE 1- LINE 1176 
S2380.S23A7 (9088.9127> [(HIRES P1L056JJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #056 
S23A8-S23CF (9128-9167> [(HIRES P1L120>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #120 
S2300-S23F7 (9168-9207> {(HIRES P1L184>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1184 
$2400-$2427 (921 6-9255) [(HIRES P1L001)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #001 
S2428-S244F (9256-9295) [(HIRES P1LJ65)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #065 
S24 5o-s24 77 < 9 29 6-933 5 > [(HIRES P1L129)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #129 
S2480.S24A7 (9344-9383> [(HIRES P1L009)J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #009 
S24A8.S24CF (9384-9423> ((HIRES P1L073)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #073 
S24Do-s24E7 <9424-944 7> [(HIRES P1L137)) \HB\HI-RES GRAPHICS: PAGE 1 -LINE #137 
s25oo-s2527 <9472-9511> [(HIRES P1L017)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #017 
S2528-S254F (9512-9551) [(HIRES P1L081)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #081 
s255o·s25 7F (9552.9599> [(HIRES P1L145JJ \HB\HI-RES GRAPHICS: PAGE 1 - liNE #145 
S258o-s25A7 <9600-9639> [(HIRES P1L025)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #025 
S25A8.S25CF < 9 64 o- 96 7 9 > [(HIRES P1L089)J \HB\HI-RES GRAPHICS: PAGE 1- LINE #089 
S25Do-s25F7 (968(-9719) [(HIRES P1L153>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #153 
S2600.S2627 (9728-9767) [(HIRES P1L033>J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #033 
S2628.S264F (9768-9807) [<HIRES P1L097)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #097 
S2650-S2677 (9808.9847> [<HIRES P1L161>J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #161 
S2680.S26A7 (9856-9895) [(HIRES P1L041)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #041 
S26A8.S26CF (9896-9935) [(HIRES P1L105)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1105 
S26DO.S26F7 (9936.9975) [(HIRES P1L169)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #169 
S2700.S2727 (9984-10023) [(HIRES P1L049)J \HB\HI-RES GR-PHICS: PAGE 1 - LINE #049 
S2728-S274F (10024-10063) [(HIRES P1L113)J \HB\Hl-RES GRAPHICS: PAGE 1 -LINE #113 
S2750.S277F (10064-10111) [(HIRES P1L177>J \HB\HI-RES GRAPHICS: PAGE 1 -LINE 11177 
S2780-S27A7 (1011z-10151) [(HIRES P1L057)J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #057 
S27A8-S27CF (10152-10191) [(HIRES P1L121JJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #121 
S27DO.S47F7 (1019z-18423) [(HIRES P1L185)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #185 
S2800-S2827 (10240-10279) [(HIRES P1L002)J \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #002 
S2828.S284F (10280.10319) [(HIRES P1L06~)J \HB\Hl-RES GRAPHICS: PAGE 1 -LINE #066 
S2850.S2877 (10320-10359> [(HIRES P1L130)J \HB\HI-RES GRAPHICS: PAGE 1- LINE #130 
S2880.S28A7 (10368-10407) [(HIRES P1L010)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #010 
S28A8.S28CF (10408-10447) [(HIRES P1L074)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #074 
S28DO-S28E7 (10448-10471) [(HIRES P1L138)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #138 
S2900.S2927 (10496-10535) [(HIRES P1L018)J \HB\H.I-RES GRAPHICS: PAGE 1 -LINE 1#018 
S2928.S294F (1 0536-10575) [(HIRES P1L082>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #082 
S2950.S297F (10576-10623) [(HIRES P1L146)J \ H B \ H I- R E S GR A PH I C S : P AGE 1 - LI NE # 1 4 6 
S2980-S29A7 (10624-10663) [(HIRES P1L02~)J \HB\HI-RES GRAPHICS: PAGE 1 -LINE 1#026 
S29A8-S29CF (10664-10703) [(HIRES P1L090>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #090 
S29D o· S2U 7 ( 1 07 04-10 74 3) [(HIRES P1L154)J \HB\HI-RES GRAPHICS: PAGE 1 -LINE 1#154 ~ 

S2AOO.S2A27 (10752-10791) [(HIRES P1L034>J \HB\Hl-RES GRAPHICS: PAGE 1 - LI~E 1#034 
S2A28-$2A4F (10792-10831) [(HIRES P1L098)J \HB\HI-RES GRAPHICS: PAGE 1 -LINE #098 
S2A50-S2A77 (10832-10871> [(HIRES P1L162>J \HB\HI-RES GRAPHICS: PAGE 1 -LINE #162 
S2A80.S2AA7 <10880-10919) [(HIRES P1L042)J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #042 -------------------------------------------------..---------· ______ ,_ ____ ..,..;~-----.,.-----.-.---~-----------------------------.. -
$2228 - S2A80 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN> CNAMEJ \USE-TYPE\ - DESCRIPTION 
----------------------~---------------------.,---.... ---------... -~---------·-----------·----._....-----·-·-----·---. .... ---~~-·-------... 
S2AA8-S2ACF C1092o-10959> 
S2AD0-S2AF 7 C 1 0960-10999} 
S2BOO.S2B27 C 11008-1104 7> 
S2B28-S362F (11048-13871) 
S2B 5o· S2B 7F < 11088-1113 5) 
S2B80-S2BA7 (11136-11175) 
S2BA8-S2BCF ( 111 76-1121 5) 
S2BD0-S2BF7 (11216-11255} 
s2coo-s2c21 <11264-11303> 
S2C28-S2C4F <11304-11343) 
s2c5o-s2c77 <11344-11383> 
S2C80-S2CA7 (11392-11431> 
S2CA8-S2CCF (11432-11471) 
S2CDO-S2CE7 C1147z-11495} 
s2ooo·s2o21 <11520-11559> 
S2D28-S2D4 F C 115 60-11 599) 
S2o5o·szo7F <11600-11647> 
S2o8o-s2DA7 <11648-11687> 
S2DA8-S2DCF ( 11688-1172 7) 
S2ooo-s2DF7 <11728-11767> 
S2EOO-S2E27 <11776-11815) 
S2E28-S2E4F <11816-~18551 

S2E50-S2E77 (11856-11895) 
S2E80-S2EA7 C11904-11943l 
S2EA8-S2ECF (11944-11983) 
S2E oo-s2E F7 c 119 84-1202 3> 
S2F00-S2F27 (12032-12071> 
S2F28-S2f4F (12072-1.2111> 
S2F50-S2F7F (12112-12159) 
S2F80-S2FA7 <12160-12199) 
S2FA8-S2FCF (12200-12239) 
S2Fo0-S2ff7 <12240-12279> 
$3000-LOMEM\SB \ 
$3000-$3027 (12288-12327) 
$3003 (12291) 
S3028-S304F C 1 2328-1236 7> 
$3050-$3077 ( 123 68-1240 7) 

S3080-S30A7 (12416-12455) 
S30A8-S30CF (12456-12495> 
s3ooo-s30E7 <12496-12519> 
$3100-$3127 (12544-12583) 
S3128-S314F (12584-12623> 
S3150-S317F (12624-12671) 
S3180-S31A7 <12672-12711) 
S31A8-S31CF (12712-12751) 
S31DO-S31F7 (12752-12791) 
S3200-S3227 ( 12800-12 839) 
S3228-S324F (12840-12879) 
$3250-$3277 (12880-12919) 
S3280-S32A7 (12928-12967> 
$32 A8- $32 C F ( 1 29 68-13 00 7) 

CCHIRES 
((HIRES 
COU RES 
CCHIRES 
(CHI RES 
((HIRES 
((HIRES 
((HIRES 
CCHI RES 
CC HIRES 
((HIRES 
((HIRES 
((HIRES 
[(HIRES 
((HIRES 
[(HIRES 
C CHI RES 
((HIRES 
CCHIRES 
[(HIRES 
((HIRES 
[(HIRES 
[(HIRES 
[(HIRES 
[(HIRES 
[(HIRES 
[(HIRES 
[(HIRES 
(CHI RES 
CC HIRES 
COH RES 
((HI RES 

[(HIRES 

((HIRES 
((HIRES 
((HIRES 
((HIRES 
((HIRES 
((HIRES 
((HIRES 
((HIRES 
[(HIRES 
((HIRES 
((HIRES 
((HIRES 
[(HIRES 
((HI RES 
((HIRES 
((HIRES 

P1L106>l \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1106 
P1L170>l \HS\HI-RES GRAPHICS; PAGE 1 -LINE #170 
P1L050l] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #050 
P1L114>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #114 
P1L178)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #178 
P1L058)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #058 
P1L122)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #122 
P1L186)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #186 
P1L003)] \HB\HJ-RES GRAPHICS: PAGE 1 - LINE #003 
P1L067)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #067 
P1L131>] \HB\lii-RES GRAPHICS: PAGE 1- LINE #131 
P1L011)J \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #011 
P1L075ll \HB\HI-RES GRAPHICS: PAGE 1 - LINE #075 
P1L139)] \HB\HI-RES GRAPHICS: PAGE 1- LINE #139 
P1L019)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #019 
P1L083}] \HB\H.I-RES GRAPHICS: PAGE 1 - LINE #083 
P1L147)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #147 
P1L027)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #027 
P1l091)] \HB\Hl-RES GRAPHICS: PAGE 1 -LINE #091 
P1L155J] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #155 
P1L035l] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #035 
P1L099>J \HS\HJ-RES GRAPHICS: PAGE 1 - LINE #099 
P1L163Jl \HB\HI-RES GRAPHICS: PAGE 1 - LINE #163 
P1L043)J \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #043 
P1L107JJ \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #107 
P1L171)] \HS\HJ-RES GRAPHICS: PAGE 1 -LINE #171 
P1L051>J \HB\HI-RES GRAPHICS: PAGE 1 -LINE #051 
PH115)] \HB\Hl-RES GRAPHICS: PAGE 1 -LINE #11.5 
P1L179)J \HB\HI-RES GRAPHICS: PAGE 1 -LINE #179 
P1L059)] \HB\HJ-RES GRAPHICS: PAGE 1 - LINE #059 
P1L123)] \HB\HI-RES GRAPHICS: PAGE 1- LINE #123 
P1L187}] \HB\HJ-RES GRAPHICS: PAGE 1 - LINE #187 

APPLESOFT - PROGRAM STORAGE FOR RAM VERSION 
P1L004)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11004 

APPLESOfT - DISKETTE APPLESOFT FP SETS LOMEM TO 
P1L068JJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #068 
P1L132)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #132 
P1l012)J \HB\H.I-RES GRAPH.lCS: PAG£ 1- LINE #012 
P1L076}J \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #076 
P1L140}] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #140 
P1L020)] \HB\HI-RES GqAPHICS: PAGE 1 - LINE #020 
P1L084J] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #084 
P1l148)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #148 
P1L028>J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #028 
P1L092)] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #092 
P1L156JJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #156 
P1L036)] \HS\Hl-RES GRAPHICS: PAGE 1 - LINE #036 
P1L100)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #100 
P1L164)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #164 
P1L044)] \HB\HI-RES GRAPHICS: PAGE 1 - LlNE #044 
P1L108l] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #108 

THIS VALUE 

,, 
------------- ~ --------------~- ---------------------------------~----· ~----------~--~.,..---·~----·---------------·---
S2AA8 - S32A8 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN> [NAME] \USE-TYPE\ -DESCRIPTION ----------------------- -------------------- ---·-- ----------..... ~------------------------ ____ ,_ _______ ------- ----~----------------
S32D0-S32F7 < 13008-1304 7> [(HIRES P1L172)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #172 
$3300-$3327 ( 1 30 56-13 09 5} ((HIRES P1L045)J \HB\HI-RES G~APHICS: PAGE 1 - LINE #045 
S3328.S334F (13096-13135) [(HIRES P1L116)J \HB\HI-RES GR A PH I C S ; P A G E 1 - L1 NE #116 
S3350-S337F (13136-13183> [(HIRES P1L180>J \HB\H I-RES GRAPHICS: PAGE 1 -LINE #180 
S3380-S33A7 ( 1 31 84-1322 3) ((HIRES P1L060)J \H B\ HI-RES GRAPHICS: PAGE 1 - Ll NE #060 
S33A8-S33CF ( 1 32 2 4-1 3 2 6 3) [(HIRES P1L124)] \HB\HI-RES GRAPHICS; PAGE 1 - LINE #124 
S33DO.S33F7 ( 1 32 64-1330 3) [(HIRES P1L188)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #188 
$3400-$3427 (13312-133511 [(HIRES P1L005 >J \HB\HI-RES GRAPHICS: PAGE 1 - Ll NE 11005 
$34 2 8-$344 F (1335z-13391) ((HIRES P1L069l] \HB\H.I-RES GR A PH I C S : PAGE 1 - Ll NE 11069 
$3450-$3477 C1339z-13431> [(HIRES P1L133)] \HB\H I-RES GRAPHICS: PAGE 1 - LINE #133 
S3480-S34A7 (13440-13479) [(HIRES P1L013)J \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #013 
S34A8-$34CF ( 1 34 8 0-13 51 9) [ ( HIRES P1 L 0 77)] \HB\HI-RES GRAPHICS: PAGE 1 - Ll NE #077 
S34DO.S34E7 (13520--13543) ((HIRES P1L141)] \HB\Hl-RES GR A PH I C S : PAGE 1 - LI NE II 1 4 1 
$3500-$3527 ( 1 3 5 68-13 6 0 7) [(HIRES P1L021 >J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #021 
S3528.S.354F ( 1 3608-1364 7) [(HIRES P1L085>J \HB\ HI-RES GRAPHICS: PAGE 1 - LINE #085 
S3550.S357F (13648-13695) ((HIRES P1L149)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #149 
S3580.S35A7 ( 1 36 96 -13 7 3 5) [(HIRES P1L029)] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #029 
S35A8.S35CF ( 1 37 36-13 77 5) [(HIRES P1L093)] \HB\Hl-RES GRAPHICS: PAGE 1 -LINE #093 
s35Do-s35F7 <13776-13815> ((HIRES P1L157l] \HB\HI-RES GRAPHICS : PAGE 1 - LINE #1 57 
$3600-$3627 <13824-13863) [(HIRES P1L037)J \HB\Hl-RES GRAPHICS: PAGE 1 - Ll NE #037 
S3628 ·s 364 F (13864-13903) [(HIRES P1L101)] \HB\HI-RES GR A PH I C S : P AGE 1 - Ll NE II 1 0 1 
$3650-$3677 (13904-13943) [(HIRES P1L165)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #165 
s36 so· s36A 7 (1395z-13991) ((HIRES P1L045)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1104 5 
S36A8-S36CF <1399r1403n [(HIRES P1L109}] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #109 
S36DO-S36F7 (14032-14071) ((HIRES P1L173)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #173 
$3700 (14080) DOS 3.3 - START OF BOOTZ AREA fOR A MASTER DISK 
$3700-$3727 (14080'-14119) [(HIRES P1L053>J \HB\Hl-RES GRAPHICS: PAGE 1 - Ll NE #053 
S3728-S374f (14120-14159) [(HIRES P1L117)) \HB\HI-RES GRAPHICS: PAGE 1 - LINE #117 
s37 so-s37 1 F <14160-14207> [(HI RES P1L 181)] \HB\ H.I-RES GRAPHICS: PAGE 1 - L1 NE #181 
S3780-S37A7 C142C8-14247> [(HIRES P1L061)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #061 
S37A8-S37CF ( 1 4248-14 2 8 7) [(HIRES P1L125>J \HB\HI-RES GRAPHICS: PAGE 1 - Ll NE #12 5 
S37Do-s37f7 < 1 42 88-14.32 7> [(HIRES P1L189l) \HB\HI-RES GRAPHICS: PAGE 1 - LINE #189 
$3800-$3827 (14336-14375} [ C HI RES P1 L 0 06}] \HB\H I-RES GRAPHICS: PAGE 1 - LINE #006 
S3828-S384F (14376-14415) [(HI RES P1L070}] \HB\Hl-RES GRAPHICS: PAGE 1 - ll NE #070 
S3850-S3877 (14416-14455> [(HIRES P1L134)] \HB\HI-RES GRAPHICS : PAGE 1 - L1 NE #134 
S3880-S38A7 (14464-14503) [(HIRES P1L014)) \HB\H I-RES GRAPHICS: PAGE 1 - LINE #014 
$ 38A8- S38C F ( 1 45 04-14 54 3} ((HIRES P1L078)] \HB\HI-RES GRAPHICS: PAGE 1 - liNE #078 
S38DO-s38E7 <145-44-14567> [(HIRES P1L142)] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #142 
$3900-$3927 (14592-14631) [(HIRES P1L022J \HB\HI-RES GRAPHICS: PAGE 1 -LINE M022 
S3928-S394F ( 1 46 3z-14 6 71) [(HIRES P1LOM>J \HB\HI-RES GRAPHICS: PAGE 1 - Ll NE #086 
S3950-S397f (1467z-14719) [(HJRES P1L150)] \HB\HI-RES GRAPHICS: PAGE 1 - ll NE #150 
S3980-S39A7 (14720-14 759) [(HIRES P1L030)) \HB\HI-RES GRAPHICS! PAGE 1 - liNE #030 
S39A8.$39CF ( 1 47 60-14 799) [(HI RES P1 L094 )] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #094 
S39DO-S39f7 (14800-14839) ((HIRES P1L158>J \HS\Hl-RES GRAPHICS: PAGE 1 - LINE #158 
S3A00-S3A27 ( 1 4848-14 88 7) [(HIRES P1L038lJ \HB\HI-RES GRAPHICS: PAGE 1 - Ll NE #038 
S3A28-S3A4F (1 4888-1492 7) ((HIRES P11..102)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #102 
S3A50-S3A 77 (14928-14967) [ < HI RES P 1 L 1 66) J \HB\H-1-RES GRAPHICS: PAGE 1- LINE #166 
S3A80-$3AA7 (14976-15015) [(HIRES P1L046)) \HB\HI-~ES GRAPH.ICS: PAGE 1- LINE #046 
S3AA g• $3AC F (15016-15055) [(HIRES P1L110>J \HB\H 1-R,ES GR A PH I C S : P AGE 1 - LINE 11110 
S3AD0-S3AF 7 ( 1 5056-15 095) [(HIRES P1L174)) \HB\HI-RES GRAPHICS: PAGE 1 - LINE #174 
$3800-$3827 <15104-15143} [(HIRES P1L054)] \HB\ HI-RES GRAPHICS: PAGE 1 - LINE #054 
-------------~------------------------------------------,..-----~---------~-------------~----·--------~ ... --------------------
S32 DO - $3800 Prof. Luebbert's ''What's Where in the Appte" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION --------------------··-·-·------------· .... --------.---·---------------------~---------·---·-- .. ----~-·--------·.,.-- .. ----------
S3B28-S362F <15144-13871) 
S3B50-S3B7F (15184-15231> 
S3880-S3BA7 (15232-15271) 
S3BA8-S38CF ( 1 527z-15311> 
S3BD0-S38F7 (15312-15351) 
S3coo-s3C27 < 153 60-15399> 
S3C28-S3C4F (15400-15439) 
s3c5o-s3c77 <15440-15479> 
S3C80-S3CA7 (15488-15527> 
S3CA8-S3CCF (15528-15567> 
S3CDO-S3CE7 (15568-15591) 
s3ooo-s3o27 <15616-15655> 
S3D00MS3E93 (15616-16027> 
S3D00 <15616) (RWTS] \SE\ 

((HIRES P1L118)] \HB\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L182)] \HS\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L062)] \HB\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L126>J \HB\HI-RES GRAPHICS: PAGE 1 
((HI RES P1L190 )] \HS\H I-RES GRAPHICS: PAGE 1 
((HIRES P1L007)J \.MB\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L071 )] \HS\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L135)] \HB\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L015)] \HB\HI-RES GRAPHICS: PAGE 1 
((HIRES P1L079)] \HS\Hl-RES GRAPHICS: PAGE 1 
((HIRES P1l143)] \HS\Hl-RES GRAPHICS: PAGE 1 
((HIRES P1L023)] \HS\HI-RES GRAPHICS: PAGE 1 
(RWTS] \SB\OOS 3.113.2 RWTS SUBROUTINE 

- LINE 
- liNE 
- LINE 
- LINE 
- Ll NE 
- LINE 
- LINE 
- Ll NE 
- LINE 
- LINE 
- LINE 
- LINE 

#118 
#182 
1062 
#126 
#190 
#007 
#071 
#135 
#015 
1079 
#143 
#023 

S3D1E (15646) (STlLLON] \SL\ 

S3D23 <15651> (NOTSUREl \SL\ 

DOS 3.113.2 READ\WRIJE A TRACK & SECTOR. UPON ENTRY A- & Y-REGS POINT AT 1/0 
CONTROl BlOCK <lOB> 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL STARTS CODE WHICH SENSES If 
MOTOR STILL ON 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL - AT THIS POINT PROGRAM NOT 
SURE WHETHER MOTOR IS RUNNING (STABLE lONG ENOUGH) 

S3D28-S3D4F (15656-15695) ((HIRES P1L087)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #087 
S3D2D (15661) CSAMESLOTJ \SL\ DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR L-ABEl- STARTS CODE TO DET£RMINE If 

$3044 (15684> [PTRMOV] \SL\ 
SAME SlOT BEING USED 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTER:.fOR LABEL - STARTS CODE TO MOVE OUT ALL 
POINTERS FROM lOB (IN-OUT-BLOCK) TO ZERO PAGE 

S3D50-S3D7F (15696-15743) ((HIRES P1l151 )] \HS\tU-RES GRAPHICS: PAGE 1 -LINE #151 
S3D5E (15710) {OK) \Sl\ DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR lABEL- STARTS CODE THAT IT IS OKAY 

S3D67 (15719) (DRVSEL] \SL\ 
S3D7D <15741> CMOTOf] \SL\ 

S3D7F ( 15 743) CC ON WAlT] \SL \ 

TO CONTINUE 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) INTERIOR LABEL 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR INTERIOR LABEL - STARTSCODE TO DELAY UNT.IL 
MOTOR UP TO SPEED 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEL - STARTS CONSTANT WAIT DELAY 
LOOP RETURN POINT 

S3D80-S3DA7 (15744-15783) ((HIRES P1L031)] \HB\HI-RES GRAPHICS: PAGE 1- LINE #031 
S3D8A <15754) CTRYTRK] \SL\ DOS 3.2 RWTS (REAO-WRITE TRACK-SECTOR I·NTERIOR lABEL - UY DISK TRACK AS PART OF 

S3D9B < 15771> (T RYTRK2] \SL \ 
S3DA0 (15776) lTRYADR] \SL\ 
S3DA8-S3DCF ( 15784-15823) ((HI RES 
S3DA8 (15784) [TRYADR2J \SL\ 
S3DC1 <15809) (GOCALl \SL\ 
S3DC7 (15815) (RDRIGHTJ \SL\ 

LOCATING CORRECT SECTOR FOR READ 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEL 'TRYTRK2' 
DOS 3.2 RWTS (READ-WRITE TRACK SECTOR) INTERIOR LABEL 'TRYADR' 

P1L095)] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #095 
DOS 3.2 RWTS (READ-WRITE TRACK SECTOR) INTERIOR LABEL 'J.RYADR2 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEl - GO CALCULATE CORRECT TRACK 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL WHICH STARTS CODE TO 
DETERMINE IF ONE IS READING CORRECT TRACK SECTOR AND VOLUME 

S3DD0-S3DF7 (15824-15863) ((HIRES P1L159)J \HB\Hl-RES GRAP~lCS: PAGE 1 -LINE #159 
S3DDE <15838} (DRVERR] \Sl\ DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) INTERIOR LABEL - STARTS CODE fOR CLEANUP 

S3DE1 <15841> CJMPT01l \SL\ 
S3DE2 (15842) (JMPTOERRl \SL\ 

S3DF0 (15856) [RTTRK] \SL \ 

WHEN DRIVE ERROR DETECTED 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEl 'JMPT01' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LABEl 'JHPlOERR' (JUMP TO ERROR 
HANDING ROUTINE HNDLERR) 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEl WHICH ASSUMES RIGHT TRACK 
SELECTED AND BEGINS CHECK OF CORRECT VOLUME NUMBER ON DISKETTE 

S3EOO-S3E27 <15872-15911) ((HIRES P1L039l] \HB\HI-RES GRAPHICS: PAGE 1 -LINE 1039 

---------~---~------·---------------------~---------·--------~---------~----·---·--~-------.-~----~---------·~·--~---
$3828 - S3EOO Prof. Luebbert's "What's Where in the Apple" NUHERI C A JLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION 

S3E06 (15878) CCORRECTVOL] \SL\ 

S3E15 (15893> (JJTCER] \SL\ 
S3E17 (15895) [CORRECTSECTJ \SL\ 

S3E27 (15911> (AllDONE) \SL\ 
S3E28.S3E4f (15912.15951) [(HIRES 
S3E29 (15913) [HNDLERR) \SL\ 

S3E32 (15922> (WRIT) \SL\ 

S3E3B (15931) [MYSEEK) \SE\ 

S3E4C <15948) [SEEK] \SE\ 

S3E50-S3E77 <1595r15991> [(HIRES 
S3E67 (15975> [ESDFOJ \SL\ 
S3E75 (15989> CISDRVOJ \DL\ 
S3E78 <159n> (GOSEEK] \DL\ 
S3E7B <15995) [XTOY] \DL\ 
S3E80-S3EA7 (16000-16039) [(HIRES 
S3E82 <16002) [SETTRK) \SM\ 

S3E8F <16015> (SETTRK2] \SM\ 

DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR> INTERIOR LABEL WHICH ASSUMES CORRECT VOLUME 
HAS BEEN DETECTED AND CHECKS FOR SECTOR SELECTION 
DOS 3.2 RWTS (READ-WRITE TRACK-S.ECTOR> INTERIOR LABEL 'JJTOER 1 

DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LABEL AT START Of CODE WH.ICH ASSUME 
SECTOR CORRECTLY CHOSEN AND JUMPS TO APPROPRIATE SUBROUTINE TO READ OR WRITE 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LABEL 'ALLDONE' 

P1l103)) \HB\Hl-RES GRAPHICS: PAGE 1- LINE 11103 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT START OF ERROR HANDLIN~ 
MODULE 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT START Of CODE TO WRITE 
~IBBLES TO DISK IF NOT WRITE PROTECTED 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT START OF ROUTINE WHICH 
SEEKS TRACK 'N' IN SLOT JIX/S10. (If DRIVENO IS - THEN DIUVE O;IF DRIVENO IS+ THeN 
DRIVE 1 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT SOFT ENTRY POINT OF SEEK 
SUBR OUT IN E 

P1L167)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE 11167 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEL 'WASDO' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL 'ISDRVO' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL 'GOSEEK' 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR> INTERIOR LABEL 'XTOY' 

P1L047)] \HB\HI-RES GRAPHICS: PAGE 1 -liNE 11047 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL - CODE SETS THE 
SLOT-DEPENDENT TRACK LOCATION 
DOS 3.2 RWTS <READ-WRITE INTERIOR LABEL 1 SETTRK2' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL ':>NDRVO' 
\SB\DOS 3.2 DISK FORMATTER PACKAGE 
\SB\DOS 3.2 DISK FORMATTER MODULE TO Fill TRACK WITH SYNC 
DOS 3.2 DISK FORMATTER ENTRY POINT - TURN MOTOR ON & FILL TRACK WITH SYNC 

S3E9B (16027> (ONDRVOJ \DL\ 
S3E9C-S3FD4 <16028-16340) [DSKFORM) 
S3E9C-S3ED9 (16028-16089) [DSKFORMJ 
S3E9C <1S028> CDSKFOR-MJ \SE\ 
S3EA8-S3ECF (16040-16079) [(HIRES 
S3EAB (16043> (DSKF2) \SL\ 

P1L111>] \HB\Hl-RES GRAPHICS: PAGE 1 -LINE 11111 
DOS 3.2 DISK FORMATTER LABEL AT POINT WHERE MOTOR IS RUNNING AND ON TRACK 0. BEGINS 
CODE WHICH FORMATS THIS TRACK 

S3EAE (16046) CTRKFRM] \SL\ 
S3EC4 (16068) [WRTRKJ \SL\ 

S3ECA (16074) (CONSYNC] \SL\ 
S3ED0-S3EF7 (16080-16119) ((HIRES 
S3ED6 (16086) [NXTPRT) \SL\ 
S3EDA-$3F72 (16090-16242> \SB\ 

S3EDE (16094> [RGTIM] \SL\ 
S3EE0 (1S096> [FRMWSYNC) \SL\ 
S3EE2 (16098> [WRIT2J \SL\ 
S 3EE 6 ( 161 0 2 ) [ W R I T SF ] \ S L \ 
S 3E E 7 <161 0 3) C W R I T3 J \ SL \ 
S3F00-S3F27 <16128-16167) [(HIRES 
S3F28-S3F4F <16168-16207> [(HIRES 
S3F40 (16192) (FAKESCTJ \SL\ 

S3F46 <16198> [INTOITJ \SL\ 
S3F50-S3F7F (16208-16255) [(HIRES 

DOS 3.2 DISK FORMATTER LABEl AT POINT WHERE TRACK FORMATTING BEGINS 
D 0 S 3. 2 D IS K F 0 R MATT E R - L A BE L A T P 0 I NT W HE R E WRITE 0 F F 0 R MATT I N G I N F 0 ON T 0 T R A C K 
BEGINS -- A HIGHLY TIMING-SENSITIVE AREA OF CODE 
DOS 3.2 DISK FORMATTER- LABEL AT POINT WHERE CONSTRUCTION OF SYNC BEGINS 

P1L175)] \HB\HI-RES GRAPHICS: PAGE 1- LINE 11175 
DOS 3.2 DISK FORMATTER- LABEL AT POINT WHERE CHECK IS MADE TO SEE If TRACK DONE 
DOS 3.2 DISK FORMATTER BLOCK OF CODE TO DO SECTOR-BY-SECTORFORMATTING ON TRACK 
ALREADY FILLED WITH SElf-SYNC 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'RGTIM' 
DOS 3.2 DISK FORMATTER INTERIOR LABEl 'FRMWSYNC' 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WRIT2' 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WRITSf' 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WRIT3' 

P1L055)) \HB\HI-RES GRAPHICS: PAGE 1- LINE 11055 
P1L119)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #119 

DOS 3.2 DISK FORMATTER INTERIOR LABEL 'FAKESCT' AT BEGINNING OF CODE TO WRITE FAKE 
SECTOR 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'INJOIT' 

P1L183)] \HB\HI-RES GRAPHICS: PAGE 1 -LINE 11183 

---------------------------------·------------------------------------------------------------------.------------~----------
S3E06 - S3F50 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCH) (NA~EJ \USE-TYPE\ - DESCRIPTION 
-------------·-------.----------.... --------------------.. --..-------~- .. ----·--------~-----.--~------~----------~-- ... -------· 

DOS 3.2 DISX FORMATTER INTERIOR LABEL "NXTTRY' 
P1L063)J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #063 

DOS 3.2 DISK FORMATTER INTERIOR LABEL "CHGIT" 
\SB\DOS 3.2 DISK FORMATTER CHECK TRACK fORMATTING ROUTINE 

S3f50 (16208> (NXTTRYJ \SL\ 
$3f80-S3FA7 (16256-16295) ((HIRES 
S3FC6 C1B26> (CHGIT] \SL\ 
S3F7rS3FD4 C1624r16340) [TRKDON] 
SEF73 C-4237> t:TRKDONJ \SE\ DOS 3.2 DISK FORMATTER INT.ERIOR LABEL AT POINT WHERE TRACK FORMATTING lS DONE AN.O 

CHECKING OF THAT FORMATTING BEGINS 
S3F80 (16256> (WLOOPJ \SL\ 
S3F94 (16276> (NOGOODJ \SL\ 

DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of 26 MICROSECOND WAIT LOOP 
DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of CLEAN UP If NOGOOD CONDITION 
DETECTED 

S 3 F 9 E ( 1 6 2 8 6 ) (I T S GO 0 D] \ S L \ DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of CONTINUATION If GOOD 
CONDITION DETECTED 

S3FA8-S3FCF <16296-16335> [(HIRES P1L127)J \HB\HI-RES GRAPHICS: PAGE 1- LINE #127 
S3FB3 C163J7) [DRIVERRJ \SL\ DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of CLEANUP IF DRIVE ERROR IS 

DE TE CTEO 
S3FB8 (16312> [DONEDSK] \SL\ DOS 3.2 DISK FORMATTER INTERIOR LABEL AT POINT WHERE DISK IS COMPLETED AND NO 

ERRORS HAVE BEEN DETECTED 
S3FBB <1~315) (WBYTEJ \SL\ DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of TIGHT TIMING ROUTINE 
S3FCA <16330) {W~IBLAJ \SL\ DOS 3.2 DISK FORMATTER INTERIOR LABEL "WNIBLA' 
$3FCB (16331> (WINBLB2] \SL\ DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WINBLB2' 
SEFCD (-4147> (WINBLCJ \SL\ DOS 3.2 DISK FORMAT INTERIOR LABEL 'WINBLC' 
SEFCE C-4146) (WRNIBLJ \SL\ DOS 3.2 DISK FORMAT INTERIOR LABEL 'WRNIBL' 
$3Fo0-$3FF7 (16336-16375) ((HIRES P1L191>J \HB\HI-RES GRAPHICS: PAGE 1- LINE #191 
$4000-$5FFF (16384-24575) [(HI-RES PAGE 2)] \HB\Hl-RES GRAPHICS PAGE 2 
S4000-$452J (16384-17696) \PB\ NORMAL LOCATION FOR MANY HI RES TEXT SETS 
$4000-$4027 (16384-16423> ((HIRES P2LOOO>J \HB\Hl-RES GRAPHICS: PAGE 2- LINE 
S4028-$404F (16424-16463) [(HIRES P2L064)] \HB\HI-RES GRAPH.ICS: PAGE 2- LINE 
$4050-$4077 (16464-16503) ((HIRES P2L128)J \HB\HI-RES GRAPHICS: PAGE 2- LINE 
S4080-$40A7 (16512-16551) ((HIRES P2L008>J \HB\HI-RES GRAPHICS: PAGE 2- LINE 
$40A8-S40CF (16552-16591> ((HIRES P2L072)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
S4000-$40E7 (16592-16615) [(HIRES P2L136)] \HB\Hl-RES GRAPHICS: PAGE 2- LINE 
$4100-$4127 (16640-16679) [(HIRES P2L016)] \HB\H.I-RES GRAPHICS: PAGE 2- LINE 
$4128-$414F (16680-16719) ((HIRES P2L080)] \HB\HI-RES GRAPHICS.: PAGE 2- LINE 
$4150-$417F (16720-16767) ((HIRES P2l144)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
$4180-$41A7 (16768-16807> [(HIRES P2L024}] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
S41A8-$41CF (16808-16847> [(HIRES P2L088)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
S4100-S41F7 (16848-16887) ((HIRES P2L152)] \HB\HI-RES GRAPHICS.: PAGE 2- LINE 
$4200-$4227 (16896-16935) [(HIRES P2l032)] \HB\HI-RES GRAPHICS: PAGE 2 -LINE 
S4228-$424F (16936-16975) ((HIRES P2L096)) \HB\Hl-RES GRAPHICS: PAGE 2 -LINE 
$4250-$4277 (16976-17015) [(HIRES P2L160}] \HB\J-11-RES GRAPHICS: PAGE 2- LINE 
S4280-S42A7 (17024-17063) ((HIRES P2L040)] \HB\Hl-RES GRAPHICS: PAGE 2 -LINE 
S42A8-$42CF (17064-17103) [(HIRES P2L104)] \HB\HI-RES GRAPHICS: PAGE 2 -LINE 
$4200-$42F7 (17104-17143) ((HIRES P2L168)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
$4300.$4327 (1715r17191) [(HIRES P2L048)] \JiB\J-11-RES GRAPHICS: PAGE 2- LINE 
S4328-$434F (17192-17231) [(HIRES P2l112l] \HB\HI-RES GRAPHICS: PAGE 2 -LINE 
S4350-S437F <17232-17279) ((HIRES P2L176)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
$4380-S43A7 <17280-17319) ((HIRES P2L056)] \HB\H-1-RES GRAPHICS: PAGE 2- LINE 
S43A8-$43CF <17320-17359) [(HIRES P2L120>J \HB\HI-RES GRAPHICS: PAGE 2- LlNE 
$43o0-$43F7 (17360--17399) ((HIRES P2l184)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 
$4400-$4427 <17408-17447> [(HIRES P2L001>J \HB\HI-RES GRAPHICS: PAGE 2 -LINE 
S4428-$444F (17448-17487) [(HIRES P2L065)J \HB\HI-RES GRAPHICS: PAGE 2- LINE 
$4450-$4477 <17488-17527) [(HIRES P2L129>J \HB\HI-RES GRAPHICS: PAGE 2- LINE . 

- E.G. 
#000 
#064 
#128 
11008 
11072 
11136 
#016 
#080 
11144 
#024 
#088 
#152 
#032 
#096 
#160 
#040 
#104 
#168 
#048 
#112 
#176 
#056 
#120 
#184 
#001 
1106 5 
#129 

KAPOR•S 

-----------------------------------------------------------------------------------------------------------------------~---
$3F50 - $4450 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION ------------------------------------------------------------------------... ...-------·-------------.-------------------------------------
S4480*S44A7 ( 1 75 36-17 575) ((HI RES P2L009)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #009 
S44A8-S44CF <17576-17615) [(HIRES P2L073)J \HB\HI-RES GRAPHICS: PAGE 2 - ll NE #073 

S44D0-S44E7 (17616-17639) [(HIRES P2l137>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #137 
$4500-$4527 <17664-17703> [(HIRES P2L017>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #017 
S4528-s454F (1 7704-17743) [(HIRES P2L081>J \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11081 

S4550-S457F (17744"-17791> ((HIRES P2L145)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #145 
S4580-S45A7 C1779z-17831> ((HIRES P2L025)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #025 
S45A8-S45CF (17832-17871) [(HI RES P2LO 89 )J \HB\ HI-RES GRAPHICS: PAGE 2 - liNE #089 

S45DO-s45F 7 < 1 78 n-17 911 > [ (HIRES P2 L 1 53> J \HB\H I-RES GRAPHICS: PAGE 2 - LINE #153 
$4600-$4627 c 1 79 20-1195 9> [(HIRES P2L033)] \HB\ HI-RES GRAPHICS: PAGE 2 - LINE 11033 
S4628-S464F ( 1 79 60-17 999) [(HI RES P2L97>J \HB\Hl-RES GRAPHICS: PAGE 2 - LINE 1197 
S46 so·s 46 77 (18000-18039) ((HI RES P2l161)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #161 
S4680-S46A7 (18048-18087) [(HIRES P2L041 >J \HB\HI-RES GRAPHICS.: PAGE 2 - LINE #041 

S46A8-S46CF <18088-18127> ((HIRES P2L105>J \HB\Hl-RES GRAPH.ICS: PAGE 2 - LINE #10S 
S46D0-S46F7 (18128-18167> [(HIRES P2L169)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #169 
$4700-$4727 (181 76-18215) [(HIRES P2L049>J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #049 
S4728-S474F <18216-18255) [(HIRES P2L113)] \HB\HI-RES GRAPHICS: PAGE 2- LINE #113 
S4750-S477F (18256-18303> [(HIRES P2L177)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #177 
S4780-S47A7 (18304-18343) [(HIRES P2L057>J \HB\H I-RES GRAPHICS: PAGE 2 - LINE #057 
S47A8-S47CF <18344-18383) [(HIRES P2L121>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #121 
S47DO-s47F7 <18384-18423> [(HIRES P2L185)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #185 
$4800-$4827 (18432-18471) [(HIRES P2L002)] \HB\HJ-RES GRAPHICS: PAGE 2 - LINE #002 
S4828-S484F c 1 84 1 r 18 s1 1 > [ C H I RES P 2 L 0 66 ) J \HB\HJ-RES GRAPHICS: PAGE 2 - LINE #066 
$4850-$4~77 (18512-18551) [(HIRES P2L130)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #130 
S4880-$48A7 <18560-18599) [(HIRES P2L010)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11010 
S48A8-$48CF (18600-18639) [(HIRES P2L074)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11074 
S48D0-$48E7 (18640-18663) [(HIRES P2L1.38)] \HB\HI-RES GRAPHICS: PAGE 2 -LINE #138 
$4900-$4927 (18688-18727> ((HIRES P2L018)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #018 
$4928-S494F <18728-18767> [(HIRES P2L082)J \HBHU-RES GRAPHICS: PAGE 2 - LINE 11082 
S4950-S497F (18768-18815> ((HIRES P2L146)J \HB\ HI-RES GRAPHICS: PAGE 2- LINE #146 
S4980-S4H7 < 18816-1885 5> ((HIRES P2L026)J \HB\HI-RES GRAPHICS: PAGE 2 -LINE #026 
S49A8-S49CF (18856-18895) ((HIRES P2L090)J \HB\ HI-RES GRAPHICS: PAGE 2 - LINE #090 
$49D0-S4H7 <18896-18935> [(HIRES P2l154)] \HB\HI-RES GRAPHICS: PAGE 2- LINE #154 
S4A00-S4A27 ( 18944-18983) [(HIRES P2L034)] \HB\Hl-RES GRAPHICS: PAGE 2 - liNE #034 
$4A28-S4A4F (18984-19023) [( HJ RES P2L098 )] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11098 
$4A50-$4A77 (19024-19063) ((HIRES P2L162)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #162 
S4A80-S4AA7 C1907z-19111> ((HI RES P2L042)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #042 
$4AA8-S4ACF (19112-191511 ((HIRES P2L106)] \HB\H I-RES GRAPHICS: PAGE 2 - LINE 11106 
$4AD0-S4AF7 (19152-19191) [ ( H I RES P 2l1 70)] \HB\Hl-RES GRAPHICS: PAGE 2 - LINE 11170 
$4600-$4827 <19200-19239) (CHI RES P2L050)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11050 
S4B28-S562F ( 1 92 40-22 06 3) [(HI RES P2l114 )J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #114 
$4850-S4B7F ( 1 92 80-19 3 2 7> ((HIRES P2L178)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11178 
S4B80-S4BA7 ( 19.3 28-19.36]) ((HIRES P2L058)] \HB\Hl-RES GRAPHICS: PAGE 2 -LINE 11058 
$4BA8-S4BCF ( 1 9368-19 40 7) [(HIRES P2l122)J \HB\ HI-RES GRAPHICS: PAGE 2- LINE #122 
S4BD0-$4BF7 C 194 08-1944 7) [(HIRES P2l186)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11186 
s4coo-s4c27 ( 194 56-19495) ((HI RES P2L0 03) J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #003 
S4C28-S4C4F (1 94 96-19 53 5) [(HIRES P2L067)] \HB\H I-RES GRAPHICS: PAGE 2 - LINE #067 
S4C50-S4C77 <19536-19575> [(HIRES P2L131)] \HB\ HI-RES GRAPHICS: PAGE 2- LINE #131 
S4C80-S4CA7 (19584-19623) [(HIRES P2L011 )] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #011 
S4CA8-S4CCF (19624-19663) [(HIRES P2L075}] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #075 
$4C.D0-S4CE7 (19664-1968 7> ((HIRES P2L139)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #139 
----------,---------------------------------------------~--·----------.,..-----•:•------------~-~-----------------------------,.,.------
$4480 - S4CDO Prof. Luebbert's "What's Where in the Apple" NUMERIC A H.AS 



HEX LOCN (DEC LOCN> [NAME] \USE-TYPE\ - DESCRIPTION 
-------------·------·---------------,------------,------·-·----------------·--.--------------·"!"'----------------------~--------

$4000-$4027 (1971z-19751) [(HIRES P2L019)] \HB\H.l-RES GRAPHICS: PAGE 2 -LINE 11019 
$4D28-$4D4f (19752-19791> [(HIRES P2L083)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1083 
$4D50-$4D7F <19792-19839) [UURES P2L147>] \HB\H.I-RES GRAPHICS: PAGE 2- LINE /1147 
$4D80-$4DA7 (19840-19879) [(HIRES P2L027)] \HB\Hl-RES GRAPHICS: PAGE 2 - LINE 11027 
$4DA8-$4DCF <19880-19919) [(HIRES P2L091)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 11091 
$4DD0-$4DF7 (19920-19959) [(HIRES P2L155)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11155 
$4E00-S4E27 <19968-20007) [(HIRES P2L035l] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11035 
$4E28-$4E4F <20008-20047> [(HIRES P2L099)] \HB\HI-RES GRAPHICS: PAGE 2 -liNE #099 
$4E50-$4E77 <20048-20087> [(HIRES P2L163)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11163 
$4E80-$4EA7 (20096-20135) [(HIRES P2L043)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11043 
$4EA8-$4ECF <20136-201751 [(HIRES P2L107>] \HB\HI-RES GRAPHICS: PAGE 2 -LINE #107 
$4ED0-$4EF7 <20176-20215> [(HIRES P2L171 )] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #171 
$4F00-$4F27 (20224-20263) [(HIRES P2L0.51)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11051 
$4F28-$4F4F <20264-20303) [(HIRES P2L115l] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11115 
$4F50-$4F7F <20304-20351> [(HIRES P2L179)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11179 
$4F80-$4FA7 <20352-20391) [(HIRES P2L059l] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11059 
$4FA8-$4FCF <20392-20431) [(HIRES P2L123)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11123 
$4FD0-$4FF7 (20432-20471) [(HIRES P2L187l] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11187 
$5000-$5027 <20480-20519) [(HIRES P2L004>J \HB\Hl-RES GRAPHICS: PAGE 2- LINE #004 
$5028-S504F <20520-20559) [(HIRES P2L068)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11068 
$5050-$5077 (20560-20599) [(HIRES P2L132)] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11132 
S5080-$50A7 (20608-20647) [(HIRES P2L012>] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11012 
$50A8-S50CF <20648-20687) [{HIRES P2L076)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #076 
S50DO-S50E7 <20688-20711) [(HIRES P2L140>J \HB\HI-RES GRAPHICS: PAGE 2- LINE /1140 
$5100-$5127 <20736-207751 [(HIRES P2L020)) \HB\HI-RES GRAPHICS: PAGE 2 - LINE /1020 
S5128-S514F (20776-20815} [(HIRES P2l084}) \HB\HI-RES GRAPHICS: PAGE 2- LINE /1084 
S5150-$517F <20816-20863) [(HIRES P2l148)) \HB\Hl-RES GRAPHICS: PAGE 2- LINE 11148 
S5180-S51A7 <20864-20903} [(HIRES P2L028)] \HB\Hl-RES GRAPHICS: PAGE 2 - liNE /1028 
S51A8-S51CF <20904-20943) [(HIRES P2L092)] \HB\HI-RES GRAPHICS: PAGE 2- LINE #092 
S51DO-S51F7 <20944-20983> [(HIRES P2L156}] \HB\HI-RES GRAPHICS: PAGE 2- LINE #156 
$5200-$5227 (2099r2103D [(HIRES P2L03!d] \HB\Hl-RES GRAPHICS: PAGE 2 - LINE #036 
$5228-S524F C2103z-21071> [(HIRES P2L100)) \HB\HI-RES GRAPHICS: PAGE 2- LINE /1100 
$5250-$5277 <21072-21111) [(HIRES P2L164)] \HB\HI-RES GRAPHICS: PAGE 2- LINE #164 
$5280-S52A7 <21120-21159> [(HIRES P2L044)] \HB\Hl-RES GRAPHICS: PAGE 2- LINE #044 
S52A8-S52CF (21160-21199) [<lURES P2L108>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #108 
S52D0-$52F7 (21200-21239) [(HIRES P2l172l] \HB\HI-RES GRAPHICS: PAGE 2- LINE #172 
$5300-$5327 <21248-21287) [(HIRES P2l045:>] \HB\H.I-RES GRAPHICS: PAGE 2 - LINE #045 
$5328-$534F <21288-21327> [(HIRES P2L116.>) \HB\HI-RES GRAPHICS: PAGE 2- LINE #116 
S5350-$537F <21328-21375) [(HIRES P2l180)) \HB\HI-RES GRAPHICS: PAGE 2- LINE #180 
$5380-$53A7 C21376-21415J [(HIRES P2L060)) \HB\HI-RES GRAPH.ICS: PAGE 2 - LINE /1060 
S.53A8-S53CF <21416-21455) [(HIRES P2L124)] \HB\HI-RES GRAPHICS: PAGE 2 -LINE #124 
S53DO-S53F7 <21456-21495) [(HIRES P2L188)) \HB\HI-RES GRAPHICS: PAGE 2- LINE 11188 
$5400-$5427 (21504-21543} [(HIRES P2L005>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #005 
$5428-$544F <21544-21583) [(HIRES P2L069}) \HS\Hl-RES GRAPHICS.: PAGE 2- LINE /1069 
$5450-$5477 (21584-21623> [(HIRES P2L133)] \HB\Hl-RES GRAPHICS: PAGE 2 -LINE 11133 
$5480-S54A7 <2163z-21671> [(HIRES P2L013>J \HB\HI-RES GRAPHICS: PAGE 2- L.INE #013 
$54A8-$54CF <21672-21711) [(HIRES P2L077ll \HS\Hl-RES GRAPHICS: PAGE 2- LINE #077 
S54D0-S54E7 <2171£21735) [(HIRES P2L141>] \HB\HI-RES GRAPHICS: PAGE 2 -LINE #141 
S5500-S5527 C2176o-21799) [(HIRES P2L021>J \HB\HI-RES GRAPHICS: PAGE 2 -LINE 11021 
$5528-$554F (21800-21839) [(HIRES P2L085)] \HB\Hl-RES GRAPHICS: PAGE 2- LINE /1085 
$5550-S557F (21840-21887) [(HIRES P2l149)] \HB\.HI-RES GRAPHICS: PAGE 2- LINE #149 -------------------------------.------------------------------- ... ---~------------ ... -...---.,.. .... ----~--... ----- .. --------------
$4000 - $5550 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION 
~·-·---------------------------.-...------------------·----------------------------------..-----.------·---- .... ----------... ------
sssso·ss5A7 
S55A8-S55CF 
sssoo-s55F7 
ss6oo·ssooo 
ss6oo·ss627 
S5628-S564F 
S5650-S5677 
ss6so-s56A7 
S56A8.S56CF 
S56D0-S56F7 
s57oo-s5727 
S5728.S574F 
S5750-S577F 
S5780-S57A7 
$57 As·s 57C F 
S57DO.S57F7 
ss8oo·ssB27 
S5828.S584f 
sssso·sssn 
S5880.S58A7 
S58A8.S58CF 
S58DO.S58E7 
S5900.S5927 
S5928.S594F 
S5950.S597F 
S5980.S59A7 
S59A8.S59CF 
S59DO.S59F7 
S5AOO.S5A27 
S5A28.S'iA4F 
ssA5o·ssA77 
S5A80-S5AA7 
S5AA8-S5ACF 
S5ADO.S5AF7 
s5eoo-s5e27 
s5e28-s562F 
s5e5o-s5e7F 
s5e8o-s5eA7 
S58A8.S5BCF 
sseDo-s5BF7 
s5coo-s5c27 
s5c28-s5c4F 
s5c5o·ssc77 
s5c8o·sscA7 
S5CA8.S5CCF 
s5cDo-s5cE7 
S5Doo·s5D27 
S5D28.S5D4F 
S5D5o-s5D7F 
S5D80-S5DA7 
S5DA8.S5DCF 

(21888-21927> [(HIRES 
(21928-21967> [(~IRES 

<21968-22007) [(HIRES 
(22016-·32768> \SB\ 
<22016-22055) [(HIRES 
<22056-22095) [(HIRES 
(22096-22135> [(HIRES 
<22144-22183) [(HIRES 
<22184-22223> [(HIRES 
<22224-22263) [(HIRES 
(22272-22311> [(HIRES 
(22312-22351> [(HIRES 
(22352-22399) [(HIRES 
<22400-22439) [(HIRES 
<22440-22479) [(HIRES 
( 2 24 80-22 519) [(HI RES 
(22528-22567> [(HIRES 
(22568-22607) [(HIRES 
<22608-22647> [(HIRES 
(22656-22695) [(HIRES 
( 2 26 96-22 73 5> [(HI RES 
<22736-22759) [(HIRES 
<22784-22823) [(HIRES 
<22824-22863> [(HIRES 
<22864-22911> [(HIRES 
<22912-22951> [(HIRES 
<22952-22991) [(HIRES 
<2299z-23031> [(HIRES 
<23040-23079> [(HIRES 
(23080-23119) [(HIRES 
<23120-23159> [(HIRES 
(23168-23207> [(HIRES 
( 2 3 2 C8- 2 3 2 4 7 > [ ( HI RES 
<23248-23287) [(HIRES 
( 2 32 96-2 3 3 35) [ ( H I R E S 
<23336-22063> [(HIRES 
<23376-23423> [(HIRES 
(23424-23463) [(HIRES 
<23464-23503> [(HIRES 
<23504.23543> [(HIRES 
<2355z-23591> [(HIRES 
(23592-23631) [(HIRES 
<2363z-23671> [(HIRES 
<23680-23719) [(HIRES 
<23720-23759) [(HIRES 
(23760-23783) [(HIRES 
<23808-23847> [(HIRES 
( 2 38 48-2 388 7> -[(HIRES 
(23888-23935) [(HIRES 
<23936-23975> [(HIRES 
<23976-24015} [(HIRES 

P2L029)J "\HB\HI-RES GRAPHICS: PAGE 2 - LIN£ #029 
P2L093>J \HB\HI·RES GRAPHICS: PAGE 2 - LINE #093 
P2L157>J \HB\HI-RES GRAPHICS: PAGE 2 -LINE 1157 

DOS <32K APPLE ONLY) - DISK OPERATING SYSTEM 
P2L037>J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #037 
P2L.101)J \HB\HI-RES GRAPHICS: PAGE 2- LINE #101 
P2L165)J \HB\HI·RES GRAPHICS: PAGE 2 - LINE #165 
P2L045)J \HB\HI•RES GRAPHICS: PAGE 2 - LINE #045 
P2L109)J \HB\HI·RES GRAPHICS: PAGE 2- LINE #109 
P2L173)J \HB\HJ-RES GRAPHICS: PAGE 2- LINE #173 
P2L053)J \HB\HI·RES GRAPHICS: PAGE 2 - LINE #053 
P2l117)J \HB\HI·RES GRAPHICS: PAGE 2 - LINE #117 
P2l181)] \HB\HI-RES GRAPHICS: PAGE 2- LINE #181 
P2L061)] \HB\HI-RES GRAPHICS: PAGE 2- LINE #061 
P2l125)J \HB\Hl·RES GRAPHICS: PAGE 2 -LINE #125 
P2L189)J \HB\HI·RES GRAPHICS: PAGE 2- LINE #189 
P2L006)J \HB\HI·RES GRAPHICS: PAGE 2- LINE #006 
P2l070)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #070 
P2L134)] \HB\Hl•RES GRAPHICS: PAGE 2 - liNE #134 
P2L014)] \HB\HI•RES GRAPHICS: PAGE 2 - liNE #014 
P2l078)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #078 
P2L142)J \HB\HI·RES GRAPHICS: PAGE 2 -LINE #142 
P2L022J \HB\HI-RES GRAPHICS: PAGE 2 - liNE #022 
P2l086)] \HB\Hl-RES GRAPHICS: PAGE 2 - LINE #086 
P2L150)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #150 
P2L030)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #030 
P2L094)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #094 
P2L158)] \HB\HI·RES GRAPHICS: PAGE 2- LINE #158 
P2L038)] \HB\Hl•RES GRAPHICS: PAGE 2 - LINE #038 
P2L102>J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #102 
P2L166)] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #166 
P2L045)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #046 
P2L110)] \HB\HI·RES GRAPHICS: PAGE 2- LINE #110 
P2L174)] \HB\HI·RES GRAPH.ICS: PAGE 2- LINE #1174 
P2L054l] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #054 
P2l118)] \HB\HI•RES GRAPHICS: PAGE 2- liNE #118 
P2L182>l \HB\HI-RES GRAPHICS: PAGE 2 -LINE #182 
P2l062)J \HB\HI·RES GRAPHICS: PAGE 2 - liNE #062 
P2L126)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #126 
P2L190)] \HB\HI•RES GRAPHICS: PAGE 2 - LINE #1190 
P2l007)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #007 
P2l071)] \HB\HJ-RES GRAPHICS: PAGE 2- liNE #071 
P2L135)] \HB\HI·RES GRAPHICS: PAGE 2 -liNE #13.5 
P2L015)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE #015 
P2L079)] \HB\HI·RES GRAPHICS: PAGE 2 - LINE 11079 
P2L143)] \HB\HJ·RES GRAPHICS: PAGE 2 -liNE #143 
P2L023)] \HB\HI•RES GRAPHICS: PAGE 2 - liNE #023 
P2l087>J \HB\HI·RES GRAPHICS: PAGE 2 - LINE #087 
P2L151>J \HB\HI-RES GRAP~ICS: PAGE 2- LINE #151 
P2L031 )] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #031 
P2l095)] \HB\HI•RES GRAPHICS: PAGE 2 - LINE #095 -----------~-------------------------------- .,. ________ --·------- ---~-..-~--------- -~.....--·----·-·------ ·--------------....~ .,.. ........ _..,.. 

$5580 - S5DA8 Prof. Lu~bbert•s "What•s Where in the Apple" NUMERIC A JUS 



HEX LOCN <DEC LOCN> [NAME] \USE-TYPE\ - DESCRIPTION 
-------------------------------:-----------·-----·--------,..---------------------------~-------·.,..-----------------......-----.....-.-

S5DD0-S5Df7 (24016-24055) [(HIRES P2L159)J \HB\HI-RES GRAPHICS: PAGE 2- LINE #159 
S5EOO-S5E27 (24064-24103) [(HIRES P2L039)J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #039 
S5E28-S5E4F (24104-24143) [(HIRES P2L103)J \HB\Hl-RES GRAPHICS: PAGE 2- LINE 1103 
S5E50-S5E77 <24144-24183) [(HIRES P2L167>J \HB\Hl-RES GRAPHICS: PAGE 2 - LINE #167 
S5E80-S5EA7 <24192-24231) [(HIRES P2L047JJ \HB\HI-RES GRAPHICS: PAGE 2- LINE #047 
S5EA8-S5ECF C2423z-24271) [(HIRES P2L111lJ \HB\HI-RES GRAPHICS: PAGE 2 -LINE #111 
S5ED0-S5Ef7 C2427z-24311) [(HIRES P2L175>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #175 
S5F00-S5F27 (24320-24359) [(HIRES P2L055)] \HB\Hl-RES GRAP.HICS: PAGE 2 - LINE #055 
S5f28-S5F4f <24360-24399) ((HIRES P2L119J) \HB\Hl-RES GRAPHICS: PAGE 2- LINE #119 
S5F50-S5F7f <24400 .• 24447> [(HIRES P2l183>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #183 
S5F80-S5FA7 (24448-24487) [(HIRES P2L063>J \HB\Hl-RES GRAPHICS: PAGE 2 - LINE #063 
S5FA8-S5FCF (24488-24527) [(HIRES P2L127>J \HB\HI-RES GRAPHICS: PAGE 2- LINE #127 
S5FDO-S5FF7 (24528-24567) [(HIRES P2L191J) \HB\HI-RES GRAPHICS: PAGE 2- liNE #191 
$6884 <26756) [(COMMAND TBU] \PB\ DOS 3.2 COMMAND TABLE <32K APPLE ONLY!> 
$6974 <26996) [(DOS 3 .. 2 ERR MSGS)] \PB\DOS 3 • .2 ERROR MESSAGES (32J< APPLE ONLY!> 
S6996-S6A53 (27030-27219) \PB\ DOS 3 .. 2 COUT AND OTHER HOOKS C32K APPLE ONLY! -SEE SA996-SAA53 FOR MORE 

S6A60 (27232> \P2\ 
S6A72 (27250) \P2\ 
S8F57-S91B9 C-28841"--28231) \PB\ 

$91 B9-S940C C-28231--27636> \PB\ 

S940D-S95FF <-27635--27137> \PS\ 

S95FF C-27137> 
S9600-S9C f 8 <-27136--25 352> \HB\ 

$9600-$9853 (- 271.36--26541) \H.B\ 

$9600-$9700 <-27136--26880> \HB\ 

$ 96 0 0 ( - 2 7 13 6 ) 

$9701-$9800 C-26879--26624) \PB\ 

$9801-$9853 <-26623--26541> 
S9CF8-$9CFF <-25352--25345> 
S982D <-26579) 
S984B-$984C <-26549--26548) 

S984 D-S984E c- 26 54 r-26546> 

S984F-$9850 C-26545--26544> 

$9851-$9852 (-26543--26542) 

$9853 <-26541) 
$9853-$9952 <-26541--26286) 
S9953-S9A52 C-26285--26030> 

\PB\ 
\HB\ 

DESCRIPTION BASED ON 48K APPLE) 
LENGTH OF MOST RECENTLY BLOADED PROGRAM OR DATA (32K APPLE ONLY) 
STARTING ADDRESS Of MOST RECENTLY BLOAOEI> PROGRAM OR OATA C32K APPLE ONLY) 

SPACE NORMALLY AVAILABLE FOR USER USE. HOWEVER IF DOS MAXFJLES >~6 THIS AREA 
BECOMES OOS FILE BUfFER 16 
SPACE NORMALLY AVAILABLE fOR USER USE. HOWEVER If OOS MAXFILES >•5 THIS AREA 
BECOMES DOS fiLE 9UFfER #5 
SPACE NORMALLY AVAILABLE fOR USER USE. HOWEVER IF DOS MAXFJLES >•4 THIS AREA 
BECOMES DOS FILE BUFfER #4 
DEFAULT CMAXFILES • 3} END OF USER RAM WHEN DOS ACTIVE CHIMEM•49151l 
3 DOS FILE BUffERS (DEFAULT CASE) - APPLICABLE TO ALL VERSIONS 
<3.1-3.2-3.2.1-3.3) 48K 
DOS FILE SUFFER #3. NOTE: THIS IS DEfAULT FIRST BUFfER USED BY DOS. IF MAXFILES>3 
ADDITIONAL BUffERS WILL BE PLACED BELOW $9600 AND HIG~EST NUMBER BUFfER WILL 3E 
USED DEFAULT FIRST 
DOS fiLE BUFFER #3 -SECTION 1: DATA SUFFER. RECEIVES CONTENTS OF CURRENT DAU 
SE.CTOR 
HIMEM VALUE (+1) SET HERE WHEN USING DOS 3.1·3.2-3.2.1·3.3 OR 3.2 IN DEfAULT CASE 
(MAXFILES=3> 
DOS FILE SUFFER #3 - SECTION 2: TRACK & SECTOR BUFFER. RECEIVES THE CURRENT 
TRACK+SECTOR LIST (TSU SECTOR 
DOS FILE BUFFER #3 - filE NAME & MISC DATA 
7-BYTE VACANT AREA NOT USED BY DOS 3.23.2 
DOS FILE BUFFER #3 - START Of NAME Of fiLE 
DOS FILE BUFFER 113 - ADDRESS Of START Of MISC INFO SECTION (SECTION 3> C DEUUl.T 
CONTENTS = $9800) 
DOS fiLE BUFFER #3 - ADDRESS Of START Of TRACK & SECTOR SECTION (SECTION 2J 
(OEFAUL T CONTENTS = S9700> 
DOS FILE BUFFER #3 -ADDRESS Of START Of DATA SECTION (SECTION 1) (DEfAULT 
CONTENTS = S9600) 
OOS FILE BUFFER #3 - ADDRESS Of START Of NAME BUFFER FOR NEXT fiLE ($0000 • NO 
MORE FILES) 
START Of DOS <=HIMEM+1) fOR MAXflLES=2 
DOS fiLE SUFfER #2 - SECTION 1: DATA BUffER 
DOS fiLE BUFFER #2 - SECTION 2: TRACK & SECTOR BUFFER _____________ , _______________________________ .,.. __________________________ ~-------------·-------------·-------~~---------~·~---

$5DD0 - S9953 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN COEC LOCN) [NAME] \USE-TYPE\ - DESCR.lPTION 
---------..-----------------------~~--------------------------------------------------~~--~----- .. ------------~------------------
S9A53 C-26029) 
S9A80 C-2 5984) 
S9A9E-S9A9F <- 25 954--25 953> 

S9AA0-S9AA1 <-25952--25951> 

S9AA2-S9AA3 C-25950--25949) 
S9AA4 ·s9AA5 C-25948--25 94 7) 
$9AA6 C-2 5946) 
S9AA6-S98A5 <-25 946--25 691) 
S9BA6-S9CA5 <-25690--25435> 
S 9C A 6 ( -2 54 3 4 > 
S9C03 C-25389) 
S9CF1-S9Cf2 C-25359--25358) 
s9c F3-s9c f4 <-25 35 r·-25 356> 
s9c F 5·s9c F6 <-25 35.5--2 5354 > 
S9CF7-$9CF8 <-25353--25352> 
S9C F9-S9Cf F C-25 3.51--25 34 5) 
s9ooo-safff c-25344--16385> \SB\ 
$9000-$9083 C-25344--25213} \SB\ 
s9ooo-s9o01 <-25344--25343> \P2\ 
$9002-$9003 C-25342--25341) \P2\ 
$9004-$9005 C-2534Ci-25339) \P2\ 
$9006-$9007 C-25338--25337) \P2\ 
s9oos-s9o09 <-25336--253351 \P2\ 

S900A-S9DOB C-25.334--25333> \P2\ 

S900A-S9DOB C-25334--25333) \P2\ 
s9ooc-s9oOD <-25332--25331> \P2\ 
S9DOE-S9DOF C-25330--25329) \P2\ 

s9ooE-s9oOF <-25330--25329> \P2\ 
S9D10-S9D1C C-25328--25316) \SB\ 

$9010-$9011 C-25328--25327> \P2\ 
s9o1 z-s9D 13 c -25326--25 325> \P2\ 
$9014-$9015 <-25324--25323> \P2\ 
$9016-$9017 <-25322--25321) \P2\ 
S9D18-S9D19 C-25320-~25319) \P2\ 
S901A-S9013 C-25318--,25317> \P2\ 
S901C-S9010 C-25316--25315) \P2\ 
S9o1E-S9055 <-25314--25259> \SB\ 

s9o1E-s9o1f <-25314--25313> \P2\ 
$9020-$9021 C-25312--25311) \P2\ 
$9022-$9023 <-2531Ci-25309) \P2\ 
S9D24-S9025 C-25308--25307) \P2\ 
$9026-$9027 <-25306--25305) \P2\ 
$9028-$9029 C-25304--·25303) \P2\ 

DOS FILE BUFFER #2 - SECTION 3: START OF MISCELLANEOUS INFO SUfFER 
DOS FILE BUfFER #2 -NAME 
DOS FILE BUFFER #2 - ADDRESS Of START Of SECTION 3- MISCELLANEOUS INFO BUFFER 
CS9A 53) 
DOS FILE BUFFER #2 - ~DDRESS Of START Of SECTION 2- TRACK AND SECTOR BUFFER 
($99 53) 
DOS fiLE BUFFER #2 - ADDRESS Of START Of SECTION 1- DATA BUFFER ($9853) 
DOS fiLE BUFfER #2 - ADDRESS Of START OF NAME BUFfER Of NEXT FILE DOWN CS982DJ 
START OF DOS <=HIMEM+1> WHEN MAXF ILES=1 
DOS FILE BUFFER #1 - SECTION 1· DATA BUFFER 
DOS FILE BUFFER #1 - SECTION 2- & SECTOR BUFFER 
DOS FilE BUffER #1- SECT.ION 3- START OF MISC INFO BUfi'ER ($53 BYTES> 
DOS FILE BUFFER #1 - NAME 
DOS fiLE BUFfER #1- ADDRESS Of SECTION 3- Of MISC INFO BUFFER CS9CA6} 
DOS FilE BUFFER #1 - ADORES$ OF START Of SECTION 2- TRACK & SEC TOR BUFFER CS9BA6) 
DOS fiLE BUFFER #1- ADDRESS Of START Of SECTION 1- DATA BUFFER CS9AA6) 
DOS FILE BUffER #1 - ADDRESS Of START OF NA~E SUffER OF NEXT FILE DOWN CS9A80) 
DOS 3.2 UNUSED 
DOS 3.213.3 <NOT INCLUDING ANY BUFFERS) 
DOS 3.2/3.3 ADDRESS TABLE (LIST Of TWO-BYTE ADDRESS CONSTANTS USED BY DOS} 
ADDRESS OF DOS 3.213.3 fiLE BUFFER #1 AT ITS fiLE NAME fiELD CS9CD3J 
ADDRESS OF DOS 3.213.3 INPUT CHARACTER (KEYBOARD INTERCEPT> ROUTINE ($9E81) 
ADDRESS Of DOS 3.213.3 OUTPUT CHARACTER (VIDEO INTERCEPT) ROUTINE ($9EBO) 
ADDRESS Of DOS 3.213.3 FILE NAME FOR BUffER #1 (PRIMARY fiLE NAME) CSAA75) 
ADDRESS OF DOS 3.213.3 FILE NAME fOR BUFFER #2 <SECONDARY OR 'RENAME' FILE NAME) 
CSAA93) 
ADDRESS POINTS TO PARAMETER SECTION fOR FIRST LEVEl Of DOS 3.21~3 - SEE NEXT 
ITEM FOR fiRST ENTRY IN SECTION 
ADDRESS Of DOS 3.2/3.3 LENGTH Of LOAD ($AA60> 
ADDRESS Of DOS 3.213.3 lOAD ADDRESS - I.E. BEGINNING Of DOS CS9000> 
DOS 3.213.3 ADDRESS POINTS TO PARAMETER SECTION fOR filE MANAGER- I.E. SECOND 
(1/0 ROUTINE) LEVEL Of DOS 
ADDRESS Of DOS 3.213.3 END OF SYSTEM BUffERS (SB5BBJ 
DOS VIDEO <CSWU INTERCEPT'S STATE HANDLER ADDRESS TABLE; I.E. TABLE Of ADDRESSES 
USED IN STATE MACHINE THAT ROUTES OUTPUT CHARACTERS. :JSED FROM S9ECO TO S9EOO. 
SAA52 IS USED TO CHOOSE W~CH ONE 
ADDRESS OF DOS 3.213.3 STATE MACHINE CONDITION #0 CODE ($9EEB-1) 
ADDRESS OF DOS 3.213.3 STATE MACHINE CONDITION #1COOE ($9F12-1l 
ADDRESS OF DOS 3.2/3.3 STATE MACHINE CONDITION #2 CODE (S9f23-1> 
ADDRESS Of DOS 3.2/3.3 STATE MACHINE CONDITION #3 CODE (S9F2F-1J 
ADDRESS OF DOS 3.213.3 STATE MACHINE CONDITION #4 CODE ($9F52-1l 
ADDRESS OF DOS 3.213.3 STATE MACHINE CONDITION #5 CODE ($9F61-1l 
ADDRESS Of DOS 3.213.3 STATE MACHINE CONDITION #6 CODE (S9F71-1} 
DOS 3.213.3 COMMAND DECODER TABLE Of SUBROUTINE ADDRESSES <EXPRESSED IN VALUE-1 
F 0 RM T 0 S I MP li f Y C A lll N G ) 
DOS 3.213.313.3 ADDRESS-1 Of CODE FOR 'INIT' COMMAND (SA54F-t) 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 'LOAD' COMMAND <SA413-1) 
DOS 3.213.3 AODRESS-1 OF CODE FOR 'SAVE' COMMAND (SA397-1) 
DOS 3.213.3 ADORESS-1 Of CODE FOR 'RUN' COMMAND CSA401-1) 
DOS 3.213.3 AODRESS-1 Of CODE fOR 'CHAIN' COMMAND (SA4F0-1> 
DOS 3.213.3 ADORESS-1 OF CODE FOR 'DELETE' COMMAND (SA263-1> 

-----·-·-..,.-----------------------·-----------------------~-----------------------------·-------------------------~-----------
S9A53 - $9028 Prof. Luebbert's "What's Where jn the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCNl (NAME] \USE-TYPE\ - DESCRIPTION 
----------~----------------------------------~-~-------~-----------_,_ ____ ..,._ ....... ------------.-.----------------------------------
S9D2A-$9D2B C-25 30z--25 301) \P2\ 
$90 2 C- $9D 20 (- 25 300--25 299) \P 2\ 
$902E-S9D2F C-25298--25297) \P2\ 
$9D30-$9D31 C-25296--25295) \P2\ 
$9032-$9033 C-25294--25293) \P2\ 
s9o34-s9D35 <-2529r-25291> \P2\ 
S9D36-S9D37 (-25290--.25289) \P2\ 
$9038-$9D39 (-25 288--25 28 7) \P2\ 
S903A-$9D39 (- 25 286--.25 285) \P2\ 
S903C-S9D30 (- 25 284--25 283> \P2\ 
$9D3E-$9D3F <-2528z--25281> \P2\ 
S9D40-S9D41 <-2528C--25279) \P2\ 
S9D42-$9D43 C-25278--25277> \P2\ 
S9044-S9D45 <-25276--25275) \P2\ 
$9D46-S904 7 C-25274--25 2731 \P2\ 
s9o48-s9o49 <- 25 21 z--25 211> \P2\ 
S9D4A-S9D4B <-25270-_,25269) \P2\ 
$9D4C-S9D40 <-25268--25267) \P2\ 
S9D4E-S9Q4F (-25266--25265) \P2\ 
$9050-$,9051 <-25264--25263) \P2\ 
S9D52-S9D53 <-25262--25261> \P2\ 
$9D54-S9055 (-25260--25259) \P2\ 
$9056-$9083 C-25258--25213) \SB\ 

S9D56-S9D61 C-25258--25247> \SB\ 
S9056-S9D57 <-25258--25257) \P2\ 
S9D58-S9059 <-25256--25255) \P2\ 
S9D5A-$9D5B <-25254--25253) \P2\ 
S9D5C$9D5D C-25252-..,25251) \P2\ 
S905E-$9D5F <-25250--25249) \P2\ 
S9D60-S9D61 C-25 248--2524 7> \P2\ 

$9062-$9069 (-25 246--25 23 7> \S B\ 

S9062-S9D63 C-25246--25245> \P2\ 
S9D64-S9D65 <-25244--25243) \P2\ 
S9D66-S9067 <-25242--25241> \P2\ 
S9D68-S9D69 C-25240--252391 \P2\ 

S9D6A-S9D6B C-25238--25237> \P2\ 
S9D6C-S9D6D C-25236--25235> 
S906C-S9077 C-25236--25225) \PB\ 

S906C-9D60\P2\ 
S9D6E-S9D6F C-25234--25233) \P2\ 
s9D7o-s9D71 c- 25 23r-25 231> \P2\ 
S9D 72 -s9D 73 c :-25 230--2 5 229> \P 2\ 

DOS 3.213.3 ADDRESS-1 OF CODE FOR 1 LOCK 1 COMMAND CSA271-1) 
DOS 3.213.3 ADDRESS-1 Of CODE FOR •uNLOCK• COMMAND CSA275-1) 
DOS 3.213.3 ADDRESS-1 OF CODE FOR 1 CLOSE' COMMAND <SA2EA-1J 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 1 READ 1 COMMAND CSA51B-1l 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 1 EXEC' COMMAND CSA5C6-1) 
DOS 3.2/3.3 ADDRESS-1 Of CODE fOR •wRITE• COMMAND (SA510-1J 
DOS 3.213.3 ADDRESS-1 OF CODE FOR 'POSITION" COMMAND CSASDD-11 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 'OPEN' COMMAND CSA2A3-1l 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 'APPEND' COMMAND CSA298-1l 
DOS 3.213.3 ADDRESS-1 Of CODE fOR "RENAME' COMMAND (SA281-1l 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 'CATALOG' COMMAND CSA56E-1) 
DOS 3.213.3 ADDRESS-1 OF CODE FOR 'MON' COMMAND CSA233-1> 
DOS 3.213.3 ADDRESS-1 OF CODE FOR 'NOMON' COMMAND CSA23D-1l 
DOS 3.213.3 ADDRESS-1 Of CODE FOR 1 PRN 1 COMMAND CSA229-1l 
DOS 3.213.3 ADDRESS-1 OF CODE FOR 'INN' COMMAND CSA22E-1l 
DOS 3.213.3 ADDRESS-1 OF CODE fOR 'MAXFILES' COMMAND CSA251-1) 
DOS 3.213.3 ADDRESS-1 Of CODE fOR 1 fP' COMMAND CSA57A-1) 
DOS 3.213.3 ADDRES$-1 Of CODE FOR 'INT' COMMAND CSA59E-1) 
DOS 3.213.3 ADDRESS-1 Of CODE fOR 'BSAVE' COMMAND CSA331-1> 
DOS 3.213.3 ADDRESS-1 OF CODE fOR 'BLOAD' COMMAND CSA35D-1) 
DOS 3.213.3 ADDRESS-1 OF CODE fOR 'BRUN' COMMAND (SA38E-1) 
DOS 3.213.3 ADDRESS-1 Of CODE fOR 'VERIFY' COMMAND CSA27D-1) 
fOUR TABLES OF VECTORS USED BY DOS 3.213.3 TO INTERFACE WITH THE VARIOUS 
SUPPORTED LANGUAGES. DOS USES THESE ADDRESSES TO JUMP INTO THE LANGUAGE WHEN 
RUNNING <OR CHAINING IN THE CASE Of INTEGER BASIC> A NEW PROGRAM OR WHEN 
PROCESSING ERRORS 
TABLE Of VECTORS USED BY DOS 3.213.3 TO INTERFACE W.IThl CURRENT LANGUAGE 
DOS 3.213.3 CURRENT LANGUAGE ENTRY-VECTOR TO 'CHAIN' 
DOS 3.213.3 CURRENT LANGUAGE ENTRY-VECTOR TO 'RUN' 
DOS 3.213.3 CURRENT LANGUAGE ENTRY-VECTOR TO 'ERROR' 
DOS 3.213.3 CURRENT LANGUAGE ENTRY-VECTOR TO 'HARD ENTRY' 
DOS 3.213.3 CURRENT LANGUAGE ENTRY-VECTOR TO 'SOFT ENTRY' 
DOS 3.213.3 CURRENT LANGUAGE ENTRY-VECTOR TO 'RECOMPUTE LINKS' fOR APPROPRIATE 
LOCATION Of APPLESOFT BASIC (APPLESOFT ONLY> 
IMAGE OF THE ENTRY POINT VECTOR FOR INTEGER 3AS1Ci I.E. TABLE OF VECTORS USED BY 
DOS 3.213.3 TO INTERFACE WITH INTEGER BASIC. MOVED INTO $9056-$9059 WHEN INTEGER 
BASIC IS CURRENT LANGUAGE 
DOS 3,.213.3 ENTRY-VECTOR TO 
DOS 3.213.3 ENTRY-VECTOR TO 
DOS 3.213.3 ENTRY-VECTOR TO 
DOS .3.213.3 ENTRY-VECTOR TO 

C SEOOO > 

INTEGER 
INTEGER 
INTEGER 
INTEGER 

BASIC 
BASIC 
BASIC 
BASIC 

'CHAIN' <SE 8 3 9 > 
'RUN' CSA4E5) 
'ERROR' CSE3£3) 
- 'CONTROL-8 1 OR 'COLD' OR 'HARD' ENTRY 

DOS 3 .. 213.3 ENTRY-VECTOR TO INTEGER BASIC 'SOfT ENTRr• CS£003> 
NOT USE 0 
DOS 3.213.3- IMAGE Of THE ENTRY POINT VEC~OR fOR APPLESOfT CROM VERSION) I.E. 
TABLE Of INTERFACE VECTORS MOVED INTO S9D56-S9D61 WHEN ROM"APPLESOFT IS CURRENJ 
LANGUAGE 
DOS 3.213.3 ENTRY-VECTOR TO 
DOS 3.2 13.3 ENTRY-VECTOR TO 
DOS 3.213,.3 ENTRY-VECTOR TO 
DOS 3,.2/3,.3 ENTRY-VECTOR TO 
'HARD' ENTRY CSEOOO> 

APPLE SOFT 
APPLE SOFT 
APPLE SOFT 
APPLE SOFT 

(ROM 
<ROM 
(ROM 
(ROM 

VERSION) 
VERSION> 
VERSION) 
VERSION> 

'CHAIN' <REALLY RUN) UA4fC) 
'RUN 1 UA4FCl 
'ERROR' U0865) 
- 'CONTROL-S' OR 'COLD' OR 

----------------------------~-----~------,_----~·-..,.----------·-----~-~-------------- .... --~---- .. ---.--.. ---·--~·-----~----
S 9D 2 A - S 9 D 7 2 Prof. Lu~bb~rt•s "What's Wh~r~ in the Appt~" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME) \USE-TYPE\- DESCRIPTION 

-------------------~-----------·------------~-----------------------------------------------·----------------------~---

S9D73-SA7DF <-25229--22561> \SB\ 
S9D74-S9D75 <-25228--25227> \P2\ 
S9D76-S9D77 C-25226--25225> \P2\ 
S9D78-S9D83 C-25224--25213> \PB\ 

S9D84-SA883 <-2521 z--22397) 
S9D84-S9DBE C-25212--25154> \SB\ 
S9D84 C-25212> \SE\ 

S9D78-S9D79 C-25224--25223> \P2\ 
S9D7A-S9D7B <-25222--25221> \P2\ 
S9D7c-s9D7D <-25220--25219> \P2\ 
S9D7E.S9D7F C-25218--25217> \P2\ 
S9D80-S9D81 C-25216--25215> \P2\ 
S9D8z-S9D83 (- 25214--25 213) \P2\ 
S9D84 (-25212> \SE\ 
S9DB9 C-25159> \SE\ 

$9DBF-S9DE9\SB \ 

S9DBF <-25153> \ SE\ 

$ 9D D 1 ( -2 51 3 5) 
S9DEA (-25110) \SE\ 

S 9D E A-S 9E 5 :J \ S B \ 

S9E4D <-25311> \SE\ 
S9E50-S9E80 <-25008--24960) \SB\ 

$9ES1-S9E7F <-25007--24961) 
S 9E 7 E <- 2 4 9 6 2 ) \ S E \ 
S9E81-S9EB9 <-24959--24903> \SE\ 

S9EBA-S9EBC C-2490z--24900> 
S9EBD-S9EEA ( -24 899--24 854) \SB\ 

S9EBD-S9EDJ <-24 899--24 880> 

S9EBD C-24899) \SE\ 

S 9E D 1 - $ 9E E A 

SYSTEM SECTION OF DOS 3.1 (48K APPLE) 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOFT (ROM VERSION) 'SOFT ENTRY' ($D43C) 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOfT (ROM VERSION) •RECOMPUTE LINKS' <SD4F2) 
DOS 3.213.3 APPLESOFT (RAM OR DISK VERSION> INTERFACE VECTORS (MOVED INTO 
S9D56-S9D61 WHEN RAM OR DISK APPLESOFT IS CURRENT LANGUAGE) 
DOS 3.213.3 (48K) SYSTEM CODE SECTION 
DOS 3.213.3 COLDSTART ENTRY ROUTINE 
LOCATION TO WHICH DOS 3.213.3 JUMPS (ON A CTRL-B OR 3D3G> fOR CODE TO IMPlEMENT A 
HARD ENTRY TO RAM (DISK AS OPPOSED TO ROM OR LANGUAGE PACK) VERSION OF APPLESOFT 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOfT (RAM OR DISK) 'CHAIN' CSAS06) 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOFT CRAM OR DISK) 'RUN• UA506) 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOFT (RAM OR DISK) 'ERROR' CS1067> 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOFT (RAM OR DISK) 'HARD ENTRY' ($9D84) 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOfT CRAM OR DISK) 'SOFT ENTRY• <SOC3C) 
DOS 3.213.3 ENTRY-VECTOR TO APPLESOFT CRAM OR DISK) 'RECOMPUTE LINKS' CSOCF2) 
DOS 3.213.3 HARD ENTRY POINT. BOOTSTRAP ROUTINE AT SB700 AND S03D3G BOTH JUMP HERE 
INITIALIZE OR RE-INITIALIZE DOS 3.213.3 If PAGE 3 LIN<AGES DESTROYED. OBSOLETE 
( D OS 3. 1 0 NL Y ? > 
DOS 3.213.3 WARMSTART ENTRY ROUTINE. GETS REMEMBERED BASIC TYPE AND SETS ROM CARD 
AS NECESSARY CALLING SA5B2 
DOS 3.213.3 (48K) SOFT ENTRY POINT. S03DOG AND RESET wiTH AUTOSTART ROM BOTH JUMP 
HERE. <RECONNECTS DOS 3.2 IF PAGE 3 MONITOR LINKAGES OVERWRITTEN) 
DOS 3.213.3 PARAMETER TO REMEMBER WHETHER ENTRY IS COLDSTART OR WARMSTART 
DOS 3.213.3 C48K) BLOCK OF CODE WHICH !NITS DOS BUFfERS ANO SETS VECTORS fOR RAM 
APPLESOFT. RESTORES S03DO-S03ff FROM S9E51-S9E80. CALLED BY KEVIN IF APPLESOFT 
MUST COME FROM DISK 
DOS 3.213.3 FIRST ENTRY PROCESSING ROUTINE CALLED BY KEYBOARD INTERCEPT HANDLER 
WHEN FIRST KEYBOARD INPUT REQUEST MADE BY BASIC AFTER A DOS COLOSTART 
ROUTINE WHICH HANDLES DOS 3.1 INPUT HOOK 
BLOCK Of COMMANDS ETC. COPIED INTO S03DO-S03EO ON DOS 3.213.3 BOOT TO CONTROL 
TRANSFERS TO SOFT ENTRY- HARD ENTRY- I-0 PKG- RWTS AND TO GET END Of SYSTEM 
BUFFER- lOB ADDRESS- AND TO UPDATE I-0 HOOKS- AND 00 JUMP TRANSfERS TO AUTO BRK 
ENTRY- CTRL•Y ENTRY- NMI ENTRY AND PROVIDE IRQ ADDRESS 
DOS 3.3 IMAGE OF 3-PAGE JUMP VECTOR WHICH ROUTINE AT S9DEA COPIES TO $3DO-S3FF 
ROUTINE WHICH HANDLES DOS 3.1 OUTPUT HOOK 
DOS 3.213.3 (48K) KEYBOARD INTERCEPT (INPUT CHARACTER) ROUTINE. CALLS S9ED1 AND 
MAY CALL S9E9E-$A626 AND-OR S9DEA. DOS COMES HERE FOR EVERY BASIC INPUT 
STATEMENT OR EVERY LINE TYPED TO THE BASIC PROMPT <E.G. ] OR >) OR EllERY TIME 
PROGRAM USES JSR SFD18 OR SfDOC 
DOS 3.213.3 JUMP TO THE TRUE KSWL HANDLER ROUTINE 
DOS 3.213.3 (48K> DOS COMMAND DECODER-.- PART 3. OUTPUT STATE MACHINE AND DEl/HE 
SELECTION CODE 
DOS 3.213.3 DOS VIDEO INTERCEPT ROUTINE. CALlS S9ED1 TO S.AVE REGISTERS AT ENTRY 
TO DOS. GETS VIDEO INTERCEPT STATE AND USING HAS INDEX TO STATE HANDLER TABLE 
CS9D10) GOES TO PROPER HANDLER ROUTINE & PASSES IT THE CHARACTER TO BE PRINTED 
DOS 3.213,.3 OUTPUT ROUTINE. If DOS ACTIVE OUTPUT HOOK POINTS HERE & EllERY CHAR TO 
BE OUTPUTT£D PUT INTO ACCUMULATOR fOR DISPOSAL BY CALLING THIS ROUTINE. IT PUSHES 
ADDRESS FROM STATE MACHINE TABLE ONTO STACK AND THEN RTS'S TO JUMP TO THAT 
ADDRESS+1 
DOS 3.213.3 COMMON INTERCEPT SAV£ REGISTERS ROUTINE. SAVES A-x-y AND S-REGISTERS 
AT SAA59-SAASC. WHILE IN DOS RESTOR TRUE I/0 HANDLERS TO $0036-$0039 ---------------------------------------------------------------------------------- -------------~--------------------------

S 9D 73 - S 9 E D 1 Prof. Lvebbert•s "What•s Where In the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME) \USE-TYPE\ - DESCRIPTION 
---------.----------------------------------------------~----..--------- ... ,.,_ ___ ,.. _______ . .,..,.... _______________________________ . __ 
S9ED1 C-24879) \SE\ 
$ 9E E 3-$ 9F 11 (- 24 8 53--2 4 81 5) \ S B \ 
S9EEB ( -24853) \ SE \ 

S9F12-S9F22 <-24814--24798) \SB\ 
$9F12 <-24814) \SE\ 

S9F23-S9F2E <-24797--24786) \SB\ 
S9F23 C-24797) \SE\ 

S9F2F C-24785) \SB\ 
$ 9F 2 F ( -2 4 7 8 5) \ S E \ 

$9F52-S9F60 (-24750--24736) \SB\ 
S9F52 (-24750> \SE\ 

$9F61 (-24735> \SB\ 
$9F61 (-24735) \SE\ 

$9F71-S9F77 (-24719--24713) \SB\ 

$9F71 <-24719) \SE\ 

S9F78-S9F82 (-24712--24702) 

$9F83-S9F94 <-24701--24684) 

$9F95-$9FB0 <-24683--24656) 

$9FB3-S9FC4 (-2465r-24636> 

$9FBA <-24646) 

S9FC5-S9FC7 
S9FC8-S9FCC <-24632--24628> 

$9FCD-$A179 (-2462r-24199) \SB\ 
S9FC D ( -24627> 

SA095 <-24427> 
SAOD1 (-24367> 
SAOE8 <-24344) 

ENTRY POINT TO ABOVE ROUTINE WHICH RESTORES KEYBOARD AND PRINT HOOKS 
DOS 3.213.3 STATE 0 OUTPUT HANDLER 
DOS 3.213.3 STATE MACHINE ENTRY DOS#O ($AA52=0>. DEfAULT VALUE ON DOS ENTRY <SET 
AT $9DDAl AND ALSO USED AT fRONT Of LINE OUTPUTTED FROM A PROGRAM. CHECKS FOR A 
VA R I E TY 0 f SPEC I AL CASES 
DOS 3.213.3 STATE 1 OUTPUT HANDLER. FUNCTION: COLLECT DOS COMMAND 
DOS 3.213.3 (48K) STATE MACHINE ENTRY DOS#1 <SAA52=1>. USED WHEN OUTPUTTING 
CTRL-D LINE (DOS COMMAND) FROM PROGRAM SO DOS MUST COLLECT THE LINE fOR DECODING 
DOS 3.213.3 STATE 2 OUTPUT HANDLER. FUNCTION: NON-DOS COMMAND TO BE IGNORED 
DOS 3.213.3 (480 STATE MACHINE ENTRY DOS#2 CSAA52=2>. USED FOR OUTPUTTING NORIIIAl 
LINE FROM PROGRAM SO DOS MUST ROUTE TO OUTPUT DEVICE 
DOS 3.213.3 C48K> STATE 3 OUTPUT HANDLER. FUNCTION: INPUT STATEMENT HANDLER 
DOS 3.213.3 C48K) STATE MACHINE ENTRY DOS#3 CSAA52:3). COME HERE TO OUTPUT A 
CHARACTER BEING ECHOED FROM THE INPUT ROUTINE (KEYBOARD OR EXEC FILE) 
DOS 3.213.3 C48K> STATE 4 OUTPUT HANDLER. FUNCTION: WRITE DATA TO A FILE 
DOS 3.2/3.3 <48K) STATE MACHINE ENTRY DOS#4 CSAA52•4>. STATES DOS#4 & DOS#5 WORK 
TOGETHER TO OUTPUT TO THE DISK UNTIL A LINE COMES ALONG WITH A CTRL-D ON THE 
FRONT. DOS#4 - WRITE IS ACTIVE- MIDDLE OF LINE 
DOS 3.213.3 (48K) STATE 5 OUTPUT HANDLER. fUNCTION: START OF WRITE DATA LINE 
DOS 3.213.3 (48K) STATE MACHINE ENTRY DOS#5 (SAA52=5>. SEE S9F52 FOR EXPLANATION. 
DOS#5 - WRITE IS ACTIVE- FRONT OF LINE 
DOS 3.213.3 C48K) STATE 6 OUTPUT HANDLER. FUNCTION: SKIP PROMPT CHARACTER. SETS 
STATE TO 0 AND EXITS VIA S9F9D <ECHO If MON I) 
DOS 3.213.3 (48K) STATE MACHINE ENTRY DOSII6 ($AA52=6>. CONDITION WHEN ECHOING 
INPUT FROM 'READ' FILE. DOS IGNORES CHARACTERS FOR DOS COMMAND PURPOSES. USED BY 
THE EXEC COMMAND 
DOS 3.213.3 (48K) FINISHES RUN COMMAND INTERRUPTED BY APPLESOFT RAM LOAD. RESETS 
'RUN INTERRUPTED' FLAG; CALLS SA851 TO REPLACE DOS CSWLIKSWL INTERCEPTS AND GOES 
TO SA4DC TO COMPLETE THE RUN COMMAND 
DOS 3.213.3 (48K) COMMAND SCANNER EXIT TO BASIC ROUTINE. If 1ST CHAR OF COMMAND 
LINE IS CONTROL-D GO TO ECHO EXIT (S9F75); OTHERWISE SET THINGS UP SO BASIC WON'T 
SEE THE DOS COMMAND (BY PASSING A ZERO-LENGTH LINE I.E. ONLY A CARRIAGE RETUR~) 
AND fALL THRU TO ECHO EXIT 
DOS 3.213.3 (48K) ROUTINE TO ECHO CHARACTER ON SCREEN (CONDITIONALLY) AND EXIT 
DOS. ($9F95 ECHO ONLY IF MON C SET; OTHERWISE GOTO $9FBE., $9F99 ECHO ONLY IF MON 
0 SET; OTHERWISE GO TO S9FB3. S9F9D ECHO ONLY If MON I SET; OTHERWISE GOTO S9F63. 
$9FA4 ALWAYS ECHO CHARACTER.,) CALLS $9FBA EXIT DOS S9FC5 
DOS 3.213.3 (48K) EXIT ROUTINE AND REGISTER RESTORE. CALLS $A851 TO PUT BACK DOS 
KSWL/CSWL INTERCEPTS. RESTORES S-REGISTER FROM ENTRY TO DOS. 
DOS 3.2/3.3 C48K) DOS REGISTER RESTORE SUBROUTINE. RESTORES REGISTERS FROM FIRST 
ENTRY TO DOS AND RETURNS TO CALLER 
DOS 3.213.3 (48K> JUMP TO THE TRUE CSWL ROUTINE 
DOS 3.213.3 (48K> SKIP A LINE ON THE SCREEN BY LOADING A CARRIAGE RETURN INTO THE 
A REGISTER AND CALLING $9FCS TO PRINT IT 
DOS 3.213.3 (480 DOS COMMAND PARSE ROUTINE 
START OF SECTION Of CODE THAT ATTEMPTS TO MATCH TO A COMMAND AND GET All INFO 
NEEDED & All OPERATIONAL INFO GIVEN. CHECKS SYNTAX AND RANGES BEFORE EXECUTION 
DOS 3.213.3 (48Kl SUBROUTINE TO BLANK BOTH FILENAME BJffERS 
DOS 3.213.3 {48K) SETS DEFAULTS FOR THE KEYWORD OPERANDS CV=O-L=O-B=O> 
DOS 3.213.3 <48K> GET THE LINE OFFSET INDEX AND FLUSH TO THE NEXT NON-BLANK 
SKIPPING ANY COMMAS FOUND. IF NOT YET TO END OF LINE GOTO $A10C. CHECK TO SEE IF 
ANY KEYWORDS WERE GIVEN WHICH WERE NOT ALLOWED BY THIS COMMAND ________________ , ________ ; ____________ , _____________ ~-------~---~--------------- ..... ----------------------------------.. ---------------

S9ED1 - SAOE8 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION -------------- --------------------------------------------- -------·-- ------;--------------.,..·------------------------ ... ----- ------
SA1 OC <-24308) 

SA164 <-24220) 

SA180-SA192 <-24192--24174) 

SA193-$A1A3 <-24173--24157) 

SA1A4-SA1AD <-24156--24147) 
SA1AE-$A1Bg <-24146--24136) 
SA184 <-24140) 
SA189 C-24135> \SE\ 
SA1BE <-24130> \SE\ 
SA1DC <-24100> \SE\ 
SA1EE <-24082> \SE\ 
SA1 FC (-24068) \ SE \ 
SA200 C-24064) \SE\ 
SA200 ( -24064) \ SE \ 
SA208 <-24056) \SE\ 
SA20C (-24052) \ SE\ 
SA223 <-24029) \SE\ 
SA229-SA60D (- 24 02 3--2302 7) \SB\ 
SA229 <-24a23> \ SE \ 
SA22E C-24018) \SE\ 
SA2 33 C-24013) \ SE \ 
SA236 C-24010> \SE\ 
SA23D C-24003) \SE\ 
SA251 C-2 3983> \ SE \ 
SA263 C-23965> \SE\ 
SA271 C-23951> \SE\ 
SA275 <-23947> \SE\ 
SA278 C-23944) \SE\ 
SA27D C-23939> \Sf\ 
SA281 (-23935> \SE\ 
SA298 C-23912> \SE\ 
SA2A3 C-23901> \SE\ 
SA2EA C-23830> \SE\ 
SA2EC <-23828> \SE\ 
SA327 <-23769) \SE\ 
SA330 (-23760) \SE\ 
S A3 31 C -2 3 7 59) \ S E \ 
S A3 5 D ( -2 3 71 5 ) \ S E \ 
SA38E C-23666) \SE\ 
SA397 C-23657> \SE\ 
SA3A5 C-23643) \SE\ 
SA413 C-23533) \SE\ 
SA476 (-23434) \SE\ 
SA48D <-23411> \SE\ 

DOS 3.213.3 C48K) LOOKUP THE KEYWORD FOUND ON THE COMMAND LINE IN THE TABLE OF 
VALID KEYWORDS CSA941). SAVE VALUE OF KEYWORD IN KEYWORD VALUES TABLE STARTING AT 
SAA66. GO PARSE NEXT KEYWORD. GOTO SAOE8 
DOS 3.213.3 (48K) INDICATE c-I OR 0 KEYWORDS WERE PARSED. UPDATE MONN VALUE IN 
KEYWORD VALUE TABLE APPROPRIATELY. GOT PARSE THE NEXT KEYWORD. GOTO SAOE8 
DOS 3.213.3 C48K) DO COMMAND. RESET. VIDEO INTERCEPT STATE TO ZERO:CLEAR fiLE 
MANAGER PARAMETER LIST. USING COMMAND INDEX GET ADDRESS Of THE COMMAND HANDLING 
ROUTINE FROM THE COMMAND HANDLER ROUTINE TABLE AT S9D1E AND GO TO IT. COMMAND 
HANDLER WILL EXIT TO CALLER Of THIS ROUTINE 
DOS 3.213.3 C48K) GET NEXT CHARACTER ON COMMAND LINE AND CHECK T:> SEE IF IT IS A 
C/R OR A COMMA 
DOS 3.213.3 C48K) FLUSHES COMMAND LINE CHARACTERS UNTIL A NON-.BLANK IS fOUND 
DOS 3.2/3.3 C48K> CLEAR FILE MANAGER PARAMETER LIST AT $85B8 TO ZEROS 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'PRII' COMMAND 
DOS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLEMENT 1 IN#' COMMAND 
DOS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLEMENT 'MON' COMMAND 
DOS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLEMENT 'MAXFILES' COMMAND 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'DELETE' COMMAND 
DOS 3.1 (480 ENTRY POINT FOR CODE TO IMPLEMENT 'LOCK' COMMAND 
ODS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLE-M~NT 'BSAVE' COMMAND 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'UNLOCK' COMMAND 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'VERIFY' COMMAND 
DOS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLEMENT 'RENAME' COMMAND 
DOS 3.1 <480 ENTRY POINT FOR CODE TO IMPLEMENT 'APPE'JO' COMMAND 
DOS 3.213.3 C48K) - BLOCK OF CODE TO HANDLE INDIVIDUAL DOS COMMANDS 
DOS 3.213.3 (48Kl ENTRY POINT OF CODE TO IMPLEMENT 'PRII 1 COMMAND 
DOS 3.213.3 (48Kl ENTRY POINT Of CODE TO IMPLEMENT 'IN#' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'MON' COMMAND 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'OPEN' COMMAND 
DOS 3.2/3.3 C48K) ENTRY POINT Of CODE TO IMPL'EMENT'NO'ION' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT Of CODE TO IMPLEMENT 'MAXFilES' COMMAND 
DOS 3 .. 213.3 (48K) ENTRY POINT Of CODE TO IMPLEMENT 'DELETE' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'LOCK' COMMAND 
ODS 3.213.3 C48K) ENTRY POINT OF CODE TO IMPLEMENT 'UNLOCK• COMMAND 
DOS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLEMENT 'CLOSE' COMMAND 
DOS 3.213.3 C48K) ENTRY POINT OF CODE TO H'IPLEMENT 'VERIFY' COMMAND 
DOS 3.213.3 C48K) ENTRY POINT Of CODE TO IMPLEMENT 'RENAME' COMMAND 
DOS .3.213.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'APPEND' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT Of CODE TO IMPLEMENT 'OPEN' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'CLOSE' COMMAND 
DOS 3.1 C48K) ENTRY POINT FOR CODE TO IMPLEMENT 'BLOAD' COMMAND 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'BRUN 1 COMMAND 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 1 SAVE' COMMAND 
DOS 3.213.3 C48K> ENTRY POINT OF CODE TO IMPLEMENT 'BSAVE' COMMAND 
DOS 3.213.3 C48K) ENTRY POINT Of CODE TO IMPLEMENT 'BLOAD' COMMAND 
DOS 3.213,.3 <48K) ENTRY POINT OF CODE TO IMPLEMENT 1 BRUN' COMMAND 
DOS 3.213.3 C48Kl ENTRY POINT OF CODE TO IMPLEMENT 'SAVE' COMMAND 
DOS 3.1 (480 ENTRY POINT FOR CODE TO IMPLEMENT 'LOAD' COMMAND 
DOS 3.213.3 C48K> ENTRY POINT Of CODE TO IMPLEMENT 'LOAD' COMMAND 
DOS 3.1 {48K> ENTRY POINT FOR CODE TO IMPLEMENT 'RUN' COMMAND 
DOS 3.1 C48K> ENTRY POINT FOR CODE TO IMPLEMENT 1 Ct!AIN 1 COMMAND 

------~--------------------------··-----------------------------------------------------:-------------------------------------
SA10C - SA48D Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\- DESCRIPTION 
---------------- ------------------------------.-.--------------- ~ ------------------------ ---~-------------------------------------
SA4AS <-23387> \ SE \ 
SA480 C-23376) \SE\ 
$A4 D 1 <-23343) \ SE \ 
$A4E4 C-23324) \ SE \ 
$A4ES C-23323) \ SE\ 

$A4FO <-23312> \ SE \ 
$A4FC <-23300) \ SE \ 

$A501 <-23295) \ SE \ 
$A506 (-23290) \ SE \ 

$A50D <-23283) \ SE \ 
$AS10 <-23280> \ SE \ 
$A518 (-23269) \SE\ 
$AS 31 (-23247) \ SE \ 
SA54F (-23217) \ SE \ 
$A54F (-23217> \ SE \ 
SA566 <-23194) \SE\ 
SA56E (-23186) \ SE \ 
SA57A <-23174) \ SE \ 
SA59E <-23138> \ SE \ 
$A5C6 <-23398> \ SE \ 
$A5DD <-23375) \ SE \ 
$A60E (-23026) 
SA626 <-23002) 
SA644 ( -22972) 

$A679 <-22919) 
$A69D <-22883) 
$A6AB ( -22!!69) 
SA6C4 (-22844) 
SA6C8 C-22840) 
$ A6 C C ( -2 2 8 3 6 ) 
$A6DO <-22832) 
$A6D2 (-22830) 
$A6DS <-22827> 
$A702 <-22782> 

$A743 <-22717> 

$A764 <-22684) 
SA7C4 <-22588) 
$A7D4 <-22572> 
SA7 eo· s A863 <- 22 56 o-- 22 429 > 
$A851 <-22447) 

DOS 3.1 (481<) ENTRY POINT FOR CODE TO IMPLEMENT 1 WRIJE' COMMAND 
DOS 3.1 (481<) ENTRY POINT FOR CODE TO IMPLEMENT 'READ' COMMAND 
DOS 3.213.3 (481<) ENTRY POINT OF CODE TO IMPLEMENT 'RUN 1 COMMAND 
DOS 3.1 (481() ENTRY POINT FOR CODE TO IMPLEMENT 'INIT' COMMAND 
DOS 3.2/3.3 (48K) ENTRY POINT TO WHICH DOS TRANSFERS TO RUN A NEW INTEGER BASIC 
PROGRAM 
DOS 3.2/3.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 1 CHAIN' COMMAND 
DOS 3.213.3\APPLESOFT TRANSFER POINT USED BY DOS 3.2 JO JUMP INTO EITHER CHAIN OR 
RUN OF AN APPLESOFT (ROM) PROGRAM 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'NOMON 1 COMMAND 
DOS 3.213.3\APPLESOFT TRANSFER POINT USED BY DOS 3.2 TO JUMP INTO EITHER CHAIN OR 
RUN Of AN APPLESOFT CRAM OR DISK VERSION) PROGRAM 
DOS 3.1 (48K) ENTRY POINT FOR CODE TO IMPLEMENT 'FP' COMMAND 
DOS 3.213.3 (48K} ENTRY POINT OF CODE TO IMPLEMENT 'WRITE' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'READ' COMMAND 
DOS 3.1 {48K> ENTRY POINT fOR CODE TO IMPLEMENT 'INT' COMMAND 
DOS 3.2/3.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'INIT' COMMAND 
DOS 3.1 C48KJ ENTRY POINT FOR CODE TO IMPLEMENT 'EXEC' COMMAND 
DOS 3.1 (48K> ENTRY POINT FOR CODE TO IMPLEMENT 'POSITION' COMMAND 
DOS 3.213.3 C48K> ENTRY POINT OF CODE TO IMPLEMENT 'CATALOG' COMMAND 
DOS 3.213.3 (48K) ENTRY POINT OF CODE TO IMPLEMENT 'FP' COMMAND 
DOS 3.213.3 <48K) ENTRY POINT Of CODE TO IMPLEMENT 'INT' COMMAND 
DOS 3.213.3 C48K> ENTRY POINT Of CODE TO IMPLEMENT 'EXEC' COMMAND 
DOS 3.213.3 (48K> ENTRY POINT Of CODE TO IMPLEMENT 'POSITION' COMMAND 
DOS 3.213.3 - CODE WHICH STARTS THE READ PROCESS 
DOS 3.2/3.3- CODE WHICH STARTS THE WRITE PROCESS 
DOS 3.213.3- CODE WHICH STORES DATA COMING FROM TEXT filE INTO KEYBOARD BUfFER. 
USED BY EXEC COMMAND 
DOS 3.213.3 - CODE TO CLOSE FILES ANI> EXIT DOS 
DOS 3.213.3 - CODE TO SET UP ADDRESS OF NAME SECTION OF NEXT FILE 
DOS 3.213.3 - CODE TO CLOSE THE BUFFER LAST USED 
DOS 3.213.3 - PRINTS 'SYNTAX ERROR' 
DOS 3.213.3- PRINT 'NO BUFFERS AVAILABLE' 
DOS 3.213.3- PRINTS 'PROGRAM TOO LARGE' 
DOS 3.213.3 - PRINTS 'FILE TYPE MISMATCH' 
DOS 3.213.3- START Of ERROR PROCESSING ROUTINE. ENTER WITH ERROR NUMBER IN A-REG 
DOS 3.213.3- PRINTS OTHER ERROR MESSAGES BY MESSAGE ~UMBER CONTAINED IN SAA5C 
DOS 3.213.3- ANOTHER PART OF ROUTINE THAT PRINTS APPROPRIATE DOS ERROR MESSAGES 
('?) 
DOS 3.213.3- MOVES NAME FROM THE NAME BUFFER TO THE NAME SECTION Of THE FILE 
BUFFER 
DOS 3.213.3- ATTEMPTS TO FIND A FILE BUFFER ALREADY IN USE BY THE NAME GIVEN 
OOS 3.213.3- C~ECKS fiLE TYPE 
DOS 3.213.3 - SETS UP filE BUFFERS AND ADDRESSES (USED BY HAXFILES) 

((DOS 3.1 COMMAND TBL>J \PB\I>OS 3.1 COMMAND TABLE (DOS 3.1 - 48K APPLE ONLY!J 
DOS 3.213.3 - RESTORES DOS HOOKS (SAVE ADDRESSES Of CHARACTER INPUT AND OUTPUT 
ROUTINES CURRENTLY IN USE AND RECONNECT DOS) 

SA884-$AAFC <-22396--21764> DOS 3.2/3.3 (48K> PARAMETER AREA fOR SYSTEM SECTION 
SA884-SA908 C-22396--22264) ((DOS 3.213.3 COMMAND TBUJ \PB\DOS 3.2 (48K) COMMAND NAME TABLE Of OOS COMMAND DECODER 

<TABLE-DRIVEN COMMAND PARSER>. CONTAINS NAMES Of DOS 
COMMANDS WITH LAST BYTE Of EACH NAME HAVING HIGH (7TH) BIT 
SET; OTHER BYTES HAVE IT CLEAR. THIS PERMHS CLOSE PACKING 
FOR SEQUENTIAL SEARCH. EOT IS SOO BYTE 

------------------·--------------------------------------------------------------~~-----.. ..-- .... --------~------------~---
SA4AS - $A884 Prof. Luebbert's "Whdt's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN> (NAME] \USE-TYPE\ - DESCRIPTION --------------·------------·-------------------------------------------------------,__.. ___ . _______________ ,. _______________ _ 
SA909-SA970 <-22263--22160> \PB\ 

SA941 <-22207> 

SA94B-SA954 (-22197--22188> 

SA955-SA970 ( -22 18 7--22160) 
SA971.SAA3E ( -22159--21954) \PB\ 

DOS 3.213.3 C48K) PARAMETER VAliDITY TABLE OF DOS COMMAND DECODER. USED TO CHECK 
VALIDITY OF VARIOUS PARAMETERS AGAINST USABILITY WITH VARIOUS COMMANDS. USES 
2-BYTE MASKS. ONE BYTE USED TO DETERMINED WHAT TYPE<S> OF EXTRA DATA ARE NEEDED 
BY A COMMAND; THE OTHER FOR WHAT FILE TYPE TO CREATE )R lOOK FOR 
DOS 3.213.3 -TABLE CONTAINING THE LETTERS v·D-s-L·R·B·A·c. THESE ARE USED AS 
SINGLE-CHARACTER KEYWORDS WHICH MAY APPEAR ON DOS COM~ANOS. USED WHEN CHECKING 
FOR THIS OPTIONAL DATA 
DOS 3.213.3 -TABLE OF BYTES FOR. TABLE CONTAINS OPERAND MASKS ASSOCIATED WITH 
EACH OPERAND. IF HIGH ORDER BIT IS CLEAR IT INDlCATES A NUMERIC ASSOCIATED WITH 
IT DETERMINING WHAT TYPE OF OPTIONAL DATA TO LOOK fOR. TABLE CONTAINS OPERAND 
MASKS ASSOCIATED WITH EACH OPERAND. IF HIGH )RDER BIT IS CLEAR IT INDICATES A 
NUMERIC ASSOCIATED WITH IT 
DOS 3.213.3 -TABLE Of MINIMUM AND MAXIMUM RANGES fOR v·D·s-L·R·B-A 
DOS 3.2 13.3 C48K) ERROR MESSAGE TABLE <TEXT OF MESSAGES) NOTE: SAA3f-$AA4f IS 
INDEX TABLE FOR SELECTION Of SPECIFIC MESSAGE FROM THIS BLOCK 

SAA3F-SAA4F <- 2195 3·-21937> 
SA8CD-SA98D (- 22 32 3·-22144) 
SA971-SAA3E <-22159--2,1 954> 
S A 9 9 6 - SA 9 9 7 ( - 2 2 12 2·- 2 2 1 2 1> 
SA998-SA999 <-2212C--22119) 
SA9A3-SA9A4 (·22109--22108) 
SA9B5-SA9B6 <-22091--22090> 
SAAOB ( -22005) 

\PB\ DOS 3.2/3.3 C48K) INDEX TA3LE FOR ERROR MESSAGES AT $A971 

SAA3F-SB2CE <-21953--19762> 

SAA42.SAAC8 C-21950--21816) 
SAA4F.SAA50 <-21937--21936) 
SAA51 C-21935) \P1 \ 
SAA52 (·21934) \P1\ 
SAA53'"UA54 (· 21933--21932> 

[(DOS 3.1 ERROR MSGS)J \PB\DOS 3.1 ERROR MSG TABLE (DOS 3.1- 48K APPLE ONLY!> 
[(DOS 3.2/3.3 ERROR MSGS)] \PB\DOS 3.213.3 ERROR MESSAGES (DOS 3.213.3 - 48K APPLE ONLY!) 
[COUTJ \P2\DOS 3.1 INTERNAL HOOK ENTRY ADDRESS TO OUTPUT A CHARACTER 
[CIN] \P2\DOS 3.1 INTERNAL HOOK ENTRY ADDRESS TO INPUT A CHARACTER 
\P2\ LENGTH OF MOST RECENTLY BLOADED FILE (DOS 3.1 ONLY- 480 
\P2\ STARTING ENTRY ADDRESS OF 9LOADED FILE <DOS 3.1 ONLY - 48K) 

\S B\ 

\PB\ 
\P2\ 

\P2\ 

START Of LIST OF POINTERS TO SECTIONS Of DOS 3.1 IIO PACKAGES 
DOS 3.1 I/0 PACKAGE C48K APPLO CSEE SAAFD FOR CORRESPONDING PKG DOS 
3. 2- 3. 2 • 1 - 3. 3 ) 
DOS 3.213.3 (48K) BLOCK OF IMPORTANT VARIABLES (PARAMETERS) 
DOS 3.213.3 C48K) CURRENT FILE BUFFER POINTER 
DOS 3.213.3 STATE-MACHINE INPUT-STATE CONTROL PARAMETER 
DOS 3.213.3 C48K) STATE-MACHINE OUTPUT-STATE-CONTROL PARAMETER (0-7) 
DOS 3.213.3 (48K) OUTPUT HOOK- I.E. ADDRESS OF CHARACTER OUTPUT ROUTINE WHICH 
WAS IN CONTROL WHEN DOS WAS RECONNECTED (DEFAULT SFD.FO) 

SAA55.SAA56 (·21931-·21930) \P2\ DOS 3.213.3 (48K) INPUT HOOK- I.E. ADDRESS OF CHARACTER INPUT ROUTINE WHICH WAS 
IN CONTROL WHEN DOS WAS RECONNECTED (DEFAULT SFD1B) 

SAA57 (·21929) \P1\ 

SAA59 (·21927> \P1\ 
SAA5A (·21926) \P1 \ 
SAA5B <-21925> \P1 \ 
SAA5C <-21924) \P1 \ 
SAA5C <-21924) \P1\ 

SAA5D <-21923) \P1\ 
SAA5E <-2H22> \P1\ 
SAA5F <-21921> \P1\ 
SAA60.$AA61 (·21920--21919) \P2\ 
SAA60-SAA61 ( -21 920--21919) \P2\ 
SAA62 <-21918> \P1\ 
SAA63 <-21917) \P1\ 
SAA64 <·21916> \P1\ 
SAA65 <-21915) \P1\ 

SA909 - SAA65 

DOS 3.2/3.3 C48K) CURRENT NUMBER OF DOS BUFFERS. DEFAULT=3; CHANGED BY SETTING 
MAXF ILES 
DOS 3.213.3 C48K) TEMPORARY DOS STORAGE FOR S-~EGISTER 
DOS 3.213 .. 3 C48K) TEMPORARY DOS STORAGE FOR x-aEGISTER 
DOS 3.213.3 (48K) TEMPORARY DOS STORAGE fOR Y-REGISTER 
DOS 3.213.3 C48K) TEMPORARY DOS STORAGE FOR A-·REGISTER 
DOS 3.213.3 (48K) UPON ENCOUNTERING A DOS ERROR CONTAINS DOS ERROR CODE USED AS 
INDEX INTO TABLE AT SAA3F OUTPUT OF WHICH IS USED AS INDEX TO ERROR TEXT TABlE AT 
SA 971 
DOS 3.213 .. 3 
DOS 3.213.3 
DOS 3.2/3. 3 
DOS 3.213.3 
DOS 3.213.3 
DOS 3.213. 3 
DOS 3.213.3 
DOS 3.213 .. 3 
DOS 3 .. 213.3 

(48K) LINE BUFFER INDEX (DISPLACEMENT) 
C48K) MON·NOMON STATUS PARAMETERS MASK 
(48K) COMMAND NUMBER 
C48K) BlOCK lENGTH (FOUND LS FROM A 'BLOAO') 
(48K) • CONTAINS LENGTH OF LOADED BASIC PROGRAM 
C48K) STORES COMMAND NUMBER 
C48K) TEMP 1A 
( 48K) TEMP 2A 

C48K) COMMANO INPUT OPTIONS 

Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN) [NAME] \USE-TYPE\- DESCRIPTION 

SAA66-SAA74 (-21914--21900> 
SAA66-SAA67 (-21914--21913) \P2\ 
SAA68-SAA69 (·21 91 r-21911) \P2\ 
SAA6A-$AA6B (-2191 C-21909) \P2\ 
SAA6C-SAA6D (-21 908--21907> \P2\ 
SAA6E-$AA6F (-21906--21905) \P2\ 
SAA70-SAA71 (-21904--21903) \P2\ 
SAA72-$AA73 C-21902--21901) \P2\ 
SAA7z-SAA73 C-21902-·21901> \P2\ 

SAA74 C-21900) \P1\ 
SAA 75-$AA92 <-21899--21 870> \PB\ 

SAA93-$AAB::l C-21869-·21840) \PB\ 
SAAB1 (-21839) \P1\ 
SAA92 <-21838> \P1\ 
$AAB3 C-21837> \P1\ 
SAAB4-SAAB5 (-21 836--21 835> \P2\ 
SAAB6 C-21834> \P1\ 

SAAB7 (-21833) \ P1 \ 
SAAB8-SAACO C-2183r-21824) \P B\ 
SAAC1-SAAC2 <-21823-·218.22} \P 2\ 

$AACrSAAC4 (-21821--21 820> \P2\ 

SAAC5-SAAC6 (- 21 81 9-- 21 81 8) \P2\ 
$AAC7-SAAC8 ( - 21 81 7-- 2 1 81 6) \P2\ 
SAAC9-$AAFC (-21815-·21764) \SB\ 

SAAC9-SAACA (-21815--21814) \P2\ 
SAACB-SAACC c-2181.r-21s12> \P 2\ 
SAACD-SAACE <-21811--21810> \P 2\ 
SAACF-SAADO (-21809--21808) \P2\ 
SAAD1-SAAD2 <-218or-21806> \P2\ 
SAAD3-$AAD4 <- 21 805--·21 804> \P 2\ 
$AAD5-SAAD6 (-21803--21802> \P2\ 
SAAD7-SAAD8 (-21801--21800> \P2\ 
SAAD9-$AADA (-21 799--21 798) \P 2\ 
SAADB-SAADC <-21797--.21796> \P2\ 
SAADD-SAADE <-21795--21794) \P2\ 
SAADF-$AAEJ <-21 793--21 792> \P2\ 
SAAE1.$AAE2 <-21 791--21 790) \P2\ 
SAAE rSAAE4 (-21 789--21 788> \P2\ 

$AAE5-SAAFO ( - 21 7 8 7-- 2 1 77 6 ) \PB\ 

$AAE5-$AAE6 (-21787-·21786) \P 2\ 

DOS 3.213.3 (48K) KEYWORD VALUES PARSED FROM COMMAND AND/OR DEFAULTED 
DOS 3.213.3 <48K> COMMAND COR DEFAULT> VOLUME 
DOS 3.213 • .3 C48Kl COMMAND <OR DEFAULT) DRIVE 
DOS 3.213 • .3 C48K> COMMAND COR DEFAULT) SLOT 
DOS 3.213.3 (48K) COMMAND L-VALUE (LENGTH) 
DOS 3.213.3 (48K> COMMAND R-VALUE <RECORD NUMBER) 
DOS 3.213.3 (48KJ COMMAND B-VALUE (BYTE NUMBER) 
DOS 3.213.3 C48K) COMMAND A-VALUE <ADDRESS) 
CONTAINS START ADDRESS OF MOST RECENTLY BLOAD•ED PROGRAM OR DATA (DOS 3.213.3 -
48K APPLE) 
DOS 3.213 • .3 (48K) DOS •c• 'I' & 1 0 1 BITS 
DOS 3.213 • .3 C48K) START OF LAST FILE NAME USED IN A DOS COMMAND. THIS IS NORMALLY 
FILE NAME OF BUFFER 113. If RUN COMMAND USED WHHOUT fiLE NAME HilS HELD IS SET 
TO BLANKS. AT BOOT THIS AREA CO~TAINS THE NAME Of THE GREETING PROGRAM 
DOS 3.21.3.3 C48K> START Of FILE NAME - BUFFER 112 
DOS 3.213.3 (48K) DEFAULT NUMBER OF FILE BUFFERS (3) 
DOS 3.213.3 (48K) COMMAND CHARACTER (CJRL-D) 
DOS 3.213.3 (48K) EXEC FILE STATE (DIRECT• DEFERRED ETC.) 
DOS 3.213.3 (48K) EXEC FILE BUfFER POINTER 
DOS 3.2/3.3 C48K) APPLESOFT-INTEGER BASIC SWITCH CSOO=INTEGER BASIC:S40=ROM 
APPLESOFT:S80=RAM APPLESOFTJ 
DOS 3.213 • .3 (48K) APPLESOFT - BEGIN RUN SWITCH ($00=NO:S40 OR S80=YES) 
TEXT WORD 'APPLESOFT' (NAM£ OF DOS 3.213.3 FP FILE USED TO GET DISK APPLESOFT> 
DOS 3.213.3 (48K) ADDRESS POINTER TO 108 (RWTS BUffER> NOTE: THIS IS LOADED INTO 
Y & A-REGS WHEN S03E3 IS BRANCHED TO 
DOS .3 .. 2/3.;3 (48K) ADDRESS POINTER TO VTOC BUFFER (BUfFER FOR TRACK/SECTOR LIST
USED BY RWTS 
DOS 3.213.3 (48K) ADI>RESS POINTER TO SYS BUFFER (BUFFER FOR DATA- USE!> BY RWJS) 
I>OS 3.213.3 C48K) ADDRESS POINTER TO TOP Of RAM+1 
DOS 3.213.3 (48K) 1/0 PACKAGE COMMANDS FUNCTIONAL-CODE LOOK-UP TABLE. THIS TABLE 
IS USED AT SAB14 TO $AB1E TO JUMP TO CORRECT 1-0 ROUTINE. S85BB IS USED TO C~OOSE 
WHICH 1-0 ROUTINE WILL BE CALLED 
DOS 3.213.3 {48K) I-0 PKG ADDRESS FOR 'GOOD RETURN' ($B37F-1> 
DOS 3.213.3 (48K) I-0 PKG ADDRESS FOR 'OPEN FILE' ($AB22·1) 
DOS 3.213.3 (48K) 1-0 PKG ADDRESS fOR 'CLOSE fiLE' CSAC06-1> 
DOS 3.213.3 C48K) 1-0 PKG ADDRESS FOR 'READ FROM FILE' ($$AC58-t:i 
DOS 3,.2/3.3 (48K) I-0 PKG ADDRESS FOR 'WRITE TO FILE' ($AC70-1) 
DOS 3.213.3 (48K) 1-0 PKG ADDRESS FOR 'DELETE FILE' ($AD28-1) 
DOS 3.213.3 C48K) 1-0 PKG ADDRESS FOR 'PRINT CATALOG' CSAD98-1) 
DOS 3.213.3 C48K) I-0 PKG ADDRESS FOR 'LOCK A FILE' CSACEF-1> 
DOS 3.213.3 (48K) 1-0 PKG ADDRESS FOR 'UNLOCK A FILE' CSACF6-1> 
DOS 3.213.3 {48K) I-0 PKG ADDRESS FOR 'RENAME FILE' (SAC3A-1J 
DOS 3.213.3 C48K> 1-0 PKG ADDRESS FOR 'POSITION FILE' (SAD12·1} 
DOS 3.213.3 (48K> 1-0 PKG ADDRESS fOR 'FORMAT DISK <INIT)' CSAESE-1> 
DOS 3.213.3 C48K) I-0 PKG AI>DRESS fOR 'VERJfY fiLE' CSAI>18) 
DOS 3.213.3 C48K) 1-0 PKG ADI>RESS FOR GOOD RETURN ($837F-1> [DUMMY ENTRY IN 
TABLE?] 
DOS 3.213.3 (48K> 1-0 PKG READ COMMAND ENTRY-VECTOR TABLE. THIS TABLE USED AT 
SAC58 TO $AC69 TO JUMP TO CORRECT READ ROUTINE. THE VALUE OF S85BC IS USED TO GET 
THE CORRECT ENTRY AND A JUMP IS MADE TO THERE 
DOS 3.213.3 C48K) I-0 PKG READ COMMAND ENTRY-VECTOR FOR 'GOOD RETURN' CSB37f-1) 

------------------------------------,-----------------------------------------------------,-------------------...-----------------
SAA66 - SAAE5 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



I 

HEX LOCN <DEC LOCN) [NAftlEJ \USE-TYPE\- DESCRIPTION 

SAAE7-$AAE8 C-21785--21784) \P2\ 
$AAE9-$AAEA <-21783--21782) \P 2\ 

SAAEB-SAAEC C-21781--21780> \P2\ 

SAAED-SAAEE <-21779--21 778) \P2\ 

SAAEF-SAAFO c-21 nr-21776> \P2\ 

$AAF1-$AAFC (- 21 775--21 764) \PB\ 

SAAF1-$AAF2 (-21775--21 774) \P 2\ 
SAAFrSAAF4 (- 21 773--21712> \P 2\ 

SAAF5-SAAF6 C-21771--21770> \P2\ 

SAAF7-$AAF8 C-21769--21768) \P 2\ 

$AAF9-$AAFA <-21767--21766) \P 2\ 

$AAFB-$AAFC <-21765--21764) \P 2\ 

$AAFD-$B5FF c-2176r-18945> \S B\ 

$AAFD-$B39S <-21763--19562> \SB\ 

$AAFD <-21763> \SE\ 

SAB22 <-21726) \SE\ 
SAB28 (-21720) 

SABDC (-21540) 

SAC 0 6 (-21 4 9 8 ) \ SE \ 

SAC3A <-21446) \ SE \ 

$AC58 <-21416) \ SE \ 
SAC70 <-21392) \ SE \ 
SAC87 <-21369) \ SE \ 
SAC8A <-21366) \Sf\ 
SAC93 <-21357> \ SE \ 
SACBB <-21317) \ SE \ 
SAC96 <-21354) \ SE \ 
SACBE (-21314) \Sf\ 
SACC7 C-21305) \ SE \ 

DOS 3.213.3 (48K) I-0 PKG READ COMMAND ENTRY-VECTOR FOR 'READ NEXT BYTE' UAC8A-1> 
DOS 3.2/3.3 C48K) I-0 PKG READ COMMAND ENTRY-VECTOR FOR 'READ NEXT BLOCK' 
($AC96-1) 
DOS 3.213.3 (48K) I-0 PKG READ COMMAND ENTRY-VECTOR FOR 'READ SPECIFIC BYTE' 
($AC93-1> 
DOS 3.213.3 C48K) I-0 PKG READ COMMAND ENTRY-VECTOR FOR 'READ SPECifiC BLOCK' 
($ AC 93-1) 
DOS 3.2/3.3 C48K) I-0 PKG READ COMMAND ENTRY-VECTOR FOR 'GOOD RETURN' 
(DUMMY??) ($B37F·1) 
DOS 3.213.3 C48K) I-0 PKG WRITE COMMAND ENTRY-VECTOR TABLE. THIS TABLE IS USED AT 
SAC70 TO $AC86 TO JUMP TO THE CORRECT WRITE ROUTINE. THE VALUE OF SB5BC IS USED 
TO SPECIFY WHICH ROUTINE WILL BE JUMPED TO 
DOS 3.213.3 C48K> l-0 PKG WRITE COMMAND ENTRY-VECTOR .FOR 'GOOD RETURN' ($B37f-,1) 
DOS 3,.2/3.3 C48K) I-0 PKG WRITE COMMAND ENTRY-NECTOR fOR 'WRITE NEXT B'ITE' 
C$ACBE-1) 
DOS 3.2/3.3 C48K) I-0 PKG WRITE COMMAND ENTRY-VECTOR FOR 'WRITE NEXT BLOCK' 
( $ AC C A- 1) 
DOS 3.213.3 (48K) I-0 PKG WRITE COMMAND ENTRY-VECTOR FOR 'WRITE SPECIFIC BYTE' 
( $ AC BB-1) 
DOS 3.213.3 (48K> I-0 PKG WRITE COMMAND ENTRY-VECTOR FOR 'WRITE SPECIFIC BLOCK' 
C SAC C 7-1> 
DOS 3.213.3 C48K) I-0 PKG WRITE COMMAND ENTRY-VECTOR FOR 'GOOD RETURN' ($BE7f-1) 
[ D UM MY EN T R Y I N TABLE ? ) 
DOS 3.213.3 C48K) FILE MANAGER 1-0 PACKAGE <INCLUDING PARAMETER & SYSTEM BUFFER 
AREAS). CONTAINS CODE TO PERFORM fUNCTIONS LIKE OPEN- CLOSE- RENAME- DELETE
WRITE BYTES TO A FILE- READ BYTES FROM A fiLE ETC. NOTE: REFERENCED FROM PAGE 3 
BY BRANCH fROM $0306 
ODS 3.213.3 C48K> fiLE MANAGER <I-0 PACKAGE> CODE (LESS PARAMETER & SYSTEM BUFfER 
AREAS) 
DOS 3.213.3 FILE MANAGER CI-0 PACKAGE> ENTRY POINT. REFERENCED FROM PAGE 3 BY A 
BRANCH FROM $03D6 
DOS 3.2/3.3 C48K) 1-0 PKG ROUTINE TO OPEN fiLE 
DOS 3.213.3 C48K). READS VTOC & DIRECTORY ATTEMPTING TO fiND AN ENTRY WITH SAME 
NAME AS THAT GIVEN. IF NOT fOUND CHECKS TABLE OF MASKS TO SEE IF IT IS ALLOWED TO 
CREATE A FILE. IF IT IS AlLOWED IT DOES so; If NOT EXITS WITH 'FILE NOT FOUND' OR 
'LANGUAGE NOT AVAILABlE' 
DOS 3.213.3 C48K) - CLEARS MISCELLANEOUS INFO HARDWARE BUFfER;SETS VOLUME NUMBER 
DRIVE NUMBER AND SLOT NUMBER 
DOS 3.2/3.3 (48K) I-0 PKG ROUTINE TO CLOSE FILE (UPDATES VTOC- TRACK BIT MAP AND 
SECTOR COUNT OF DIRECTORY ENTRY AS NEEDED) 
DOS 3.213.3 C48K) I-0 PKG ROUTINE TO RENAME FILE (fiNDS DIRECTORY ENTRY- STORES 
NEW NAME IN ENTRY- THEN WRITES THAT blRECTORY SECTOR BACK TO OJSK) 
DOS 3.2/3.3 (48K) I-0 PKG ROUTINE TO READ FROM FILE 
DOS 3.213.3 C48K) I-0 PKG ROUTINE TO WRJTE TO FilE 
DOS 3.213.3 C48K) I-0 PKG ROUTINE TO READ SPECIFIC BYTE 
DOS 3.213.3 C48Kl I-0 PKG ROUTINE TO READ NEXT BYTE 
DOS 3.213.3 (48K) I-0 PKG ROUTINE TO READ SPECIFIC BLOCK 
DOS 3.213.3 C48K) I-0 PKG ROUTINE TO WRITE SPECIFIC BYTE 
DOS 3.213.3 (48K) I-0 PKG ROUTINE TO READ NEXT BLOCK 
DOS 3.213.3 (48K) 1-0 PKG ROUTINE TO WRITE NEXT BYTE 
DOS 3.213.3 C48K> I-0 PKG ROUTINE TO WRITE SPECIFIC BLOCK 

---------------------------------~,---------------------.,_ _______________________________ ,_ _____________ ,_ _____________________ _ 
SAAE7 - SACC7 Prof. Luebbert's "What's Where in the Appt.e" NUMERIC ATLAS 



HEX LOCN (DEC LOCN> [NAME] \USE-TYPE\ - DESCRIPTION 
-----------------~-----------------·---------------·--------------------------·---------.-----~-------·~------------~---

SACCA C-21302) \SE\ 
$ACEF <-21265> \SE\ 
SAC F 6 <-21258) \ SE \ 
$AD12 C-21230> \SE\ 
$AD18 (-21224) \SE\ 
SAD2B <-21205) \ SE \ 
$A054 C-21164) 
SAD98 <-21096> \SE\ 
SAE39 C-20935 > 

SAE42 <-20926) 

$AE6A <-20886> 

SAE7E C-20866) 

$ AE 8 E (-2 0 8 50 ) , \ S E \ 
SAF1D C-20707> 
SAF 34 C-20684) 
$AF 4B ( -20661) 

SAF5E C-20642) 

SAFOC (-20516> 
$AFE4 <-20508> 

$AFF7 <-2::1489) 
SAFfB <-20485) 
SB011 <-20463> 

$8037 <-20425> 
$8052 <-20!98) 
SBOAO <-20320> 
SBOA1 <~20319> 

$B086 (-20298) 
SB134 <-20172) 
$815B <-20133> 
$8194 (-20076) 
S81A2 <-20062) 
$8185 <~20043) 

SB1 C9-$B213 <-20023--19941> 

SB1C9 <-20023> 

SB21 c·s822F <-19940--19921> 

DOS 3.213.3 C48K) I-0 PKG ROUTINE TO WRITE NEXT BLOCK 
DOS 3.2/3.3 (480 .I-0 PKG ROUTINE TO LOCK A fiLE 
DOS 3.213.3 (48K) I-0 PKG ROUTINE TO UNLOCK A fiLE 
DOS 3.213.3 C48K) l-0 PKG ROUTINE TO POSITION FILE 
DOS 3.213.3 C48K) I-0 PKG ROUTINE TO VERIFY FILE 
DOS 3.213 •. 3 (48K) I-0 PKG ROUTINE TO DELETE FILE 
DOS 3.2/3.3 (48Kl PART Of DELETE ROUTINE WHICH FREES SECTORS USED BY DELETED FILE 
DOS 3.213.3 (48K) I-0 PKG ROUTINE TO PRINT CATALOG 
DOS 3.213.3 C48K) PART Of CATALOG ROUTINE RESPONSIBLE FOR PAUSING DURING A 
CATALOG LISTING. TO DISABLE THIS INSTRUCTION SIMPLY PATCH OVER IT WITH 3 NOP•s 
DOS 3.213.3 (48Kl PART OF CATALOG ROUTINE WHICH PRINJS THE NUMBER IN $0044 AS 3 
DIGIT ASCil 
DOS 3.213.3 C48K) MOVES MISCELLANEOUS INFO fROM THE fiLE BUFFER TO THE I-0 PKG 
BUFFER 
DOS 3.213.3 C48K) MO~ES MISCELLANEOUS INFO FROM THE fiLE BUFFER TO THE 1-0 PKG 
BUFFER 
DOS 3.213.3 C48K) I-0 PKG ROUTINE.TO FORMAT A DISK (INIT) 
DOS 3.213.3 (48K) WRITES DATA SECTION Of FILE BUFFER TO DISK 
DOS 3.213.3 (48K) WRITES TRACK/SECTOR .LIST SECTION OF FilE BUFFER TO DISK 
DOS 3.213.3 (48K) SETS HARDWARE POINTER TO THE TRACK AND SECTOR liST SECTION Of 
THE FILE BUfFER BEING USED 
DOS 3.213.3 (48K} CHECKS POSITION IN FILE. If OUT OF CURRENT SECTOR READS/WRITES 
NEXT SECTOR- UPDATES VTOC BUFFER- UPDATES TRACK/SECTOR LIST SECTION Of FILE 
BUFFER IF IN WRITE MODE 
DOS 3.213.3 (48K) READS FROM DISK INTO DATA SECTION OF FILE BUFFER 
DOS 3.213.3 C48K> SETS HARDWARE PO.INTERS TO DATA SECTION Of FILE BUFFER BEING 
US ED 
DOS 3.2/3.3 C48K) READS VTOC TO ITS BUFFER CSB3BB-SB4BA> 
DOS 3.213.3 (48K> WRITES VOTC FROM ITS BUffER CSB3B8-SB48A) 
DOS 3.213.3 (48K) READS A DIRfCTORY SECTOR INTO ITS BUFfER (SB4BB-SB5BAl. 
INITIALLY READS SECTOR A. SUCCESSIVE ENTRIES INTO THIS SUBROUTIM READ SUCCESSI\IE 
SECTORS FROM DISK. WHEN All SECTORS READ AND SUBROUTINE CALLED AGAIN IT MAY EXIT 
WITH CARRY SET 
DOS 3.213.3 (48K> WRITES CURRENT DIRECTORY SECTOR fROM BUFFER TO DISK 
DOS 3.213.3 (48K> SETS UP lOB FOR DIRECTORY SECTORS; GOES TO RWTS 
DOS 3.213.3 (48K) NO ERROR EXIT TO SB052 
DOS 3.213.3 C48K> START OF ERROR-HANDING ROUTINE FOR SBOS2 
DOS 3.213.3 (48K) CHECKS POSITION IN FILE; READS/WRITES NEXT SECTOR AS NEEDED 
DOS 3.213.3 (48K) INITIALIZES DATA SECTION Of FILE BUffER TO All ZEROES 
DOS 3.213.3 (48K) SETS NEXT POSITION IN FILE 
DOS 3.213.3 (48K) INCREMENTS POSITION IN FILE 
DOS 3.213.3 SETS NEXT RAM ADDRESS 
DOS 3.213.3 CALCULATES HOW MUCH RAM IS LEFT 
DOS 3.3 - LOCATE OR ALLOCATE A DIRECTORr ENTRY IN THE CATALOG; RUO THE VTOC 
SECTOR (SAFF7); SET S0042-S0043 TO POINT TO fiLE NAME BEING LOOKED fOR; SET PAGE 
NUMBER TO 1 (LOCATE FILE). 
DOS 3.213.3 READS VTOC (VOLUME TABLE OF CONTENTS) AND SUCCESSIVE ENTRIES 
ATTEMPTING TO FIND SPECIFIED FILE NAME 
DOS 3.3 - COPY FILE NAME TO DIRECTORY ENTRY. ADVANCE INDEX TO FILE NAME FIELD IN 
DIRECTORY ENTRY; COPY 30 BYTE FILENAME TO DIRECTORY ENTRY; RELOAD DIRECTORY INDEX 
AND RETURN TO C~LLER 

----·--------------------~-----:.----.--------:--~--~--~-------~---.,..-----. ...----....-~---~------------·-~---- ... --... -·--·--..... ....-· 
SAC C A - S 8 21C Prof. Luebbert's "What's Where in the Apple" NUMERIC A'TLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-·TYPE\ - DESCRIPTION -------------- --------------------------------------·------ --------------------------.--------------------------------__ .,. __ _ 
SB21 E <-19938> 
SB224 C-19932> 
SB230 C-19920> 

SB23A-SB243 (-1991 o·-19901) 

SB244.S82C2 C-1990C--19774> 
S82C3-SB2DC (-1977.J-19748> 
SB2C3 <-19773> 
S82DD.S82FF (-19747--19713) 

SB2DD (-19747> 
SB300-SB35E (-19712--19618) 
SB35F-SB37D <-1961 r-19587> 
SB3 5 F ( -1 9 61 7> 
SB363 <-19613) 
SB367 <-19609> 
SB36B (-19605) 
SB36F (-19601) 
SB373 <-19597> 
S 83 7 B ( -1 9 58 9) 
SB37F*SB396 (-19585--19562) 
S837F C-19585) \SE\ 

SB385 (-19579) 
SB386 C-19578> 

SB397-SB6FF <-19561--18689) 

SB397*SB3A3 (-19561--19549) 
SB397 (-19561) \P2\ 

S 83 9 B { -1 9 5 57 ) 
SB39C C-19556) 
S839D (-19555) 
SB39E ( -19554 > 
s B3A 0 ( -1 9 55 2) 

SB3A4*SB3A6 (-19548--19546) 
S83A7.SB3AE <-19545--19538) 

SB3A7 <-19545> 
SB3AF*SB39A (-19537--19526) 

S83BB*SB4BA C-19525--19270) 

S83BC (-19524) 
S838E <-19522> 
$B3C1 C-19519) 

DOS 3.213.3 PUTS NAME OF FiLE INTO DIRECTORY 
DOS 3.213.3 SETS NEXT SECTOR; UPDATES VTOC BUFfER 
DOS 1.3 ADVANCE INDEX TO NEXT DIRECTORY ENTRY IN SECTOR; ADD 35 <LENGTH OF ENTRY) 
TO INDEX; TEST FOR END OF SECTOR AND RETURN TO CALLER 
DOS 3.3 SWITCH TO SECOND PASS IN DIRECTORY SCAN. IF 0~ PASS ONE- SWI THC TO PASS 2 
AND GOTO SB1D8: IF ON PASS TWO EXIT fiLE MANAGER W1TH 'D1SK FULL' ERROR 
DOS 3.3 ALLOCATE A DISK SECTOR 
DOS 3.3 RELEASE PRE-ALLOCATED SECTORS IN CURRENT TRAC< AND CHECKPOINT THE VTOC. 
DOS 3.213.3 UPDATES VTOC 
DOS 3.3 C48K> - FREE ONE OR MORE SECTORS BY SHIFTING ro!ASK IN FILE MANAGER'S 
ALLOACJION AREA BACK INTO VTOC BIT MAP 
DOS 3.213.3 CALCULATES TRACK BIT MAP FOR VTOC 
DOS 3.3 C48K) -CALCULATE FILE POSITION 
DOS 3.3 <4810 - ERROR EXISTS 
DOS 3.3 (48K) - RC=1 "LANGUAGE NOT AVAILABLE" 
DOS 3.3 (4810 - RC=2 "RANGE ERROR" <BAD OPCODE) 
DOS 3.3 (48K>- RC=3 "RANGE ERROR" (BAD SUBCODE) 
DOS 3.3 (48K> - RC=4 "WRITE PROTECTED" 
DOS 3.3 (48K) - RC=5 "END OF DATA" 
DOS 3.3 C48K) - RC=6 "FILE NOT FOUND" 
DOS 3.3 (48K) - RC=A "FILE LOCKED" 
E X IT F IL E MA N A G E R 
DOS 3.213.3 (48K) FILE MANAGER <I-0) PKG GOOD RETURN (RETURN CODE :O; CLEAR CARRY 
FLAG AND GO TO SB386> 
DOS 3.3 (48K> - EXIT SETTING CARRY FLAG TO INDICATE ERROR 
DOS 3.3 (48K) - SAVE RETURN CODE IN PARAMLIST; CLEAR MONITOR STATUS R.EGISTER; 
SAVE FILE MANAGER WORKAREA TO FILE BUFFER (SAE7E); RESTORE PROCESSOR STATUS AND 
STACK REGISTER; EXIT TO ORIG CALLER OF fiLE MANAGER 
DOS 3.213.3 (48K) FILE MANAGER <I-0 PACKAGE) DATA AREA (PARAMETERS & SYSTEM 
au FF E R) 
DOS 3.3 fiLE MANAGER <I-0 PACKAGE) SCRATCH SPACE 
DOS 3.213.3 C48K) CONTAINS TRACK AND SECTOR ADDRESS OF MOST RECENTLY READ 
DIRECTORY (CATALOG) SECTOR 
DOS 3.3 fiLE MANAGER S-REGISTER SAVE AREA 
DOS 3.3 fiLE MANAGER f>IRECTORY INDEX 
DOS 3.3 FILE MANAGER CATALOG LINE COUNTER- DIRECTOR LOOKUP FLAG - ETC 
DOS 3.3 C48K) LOCK/UNLOCK MASK- ALLOCATION FLAG ETC. 
DOS 3.3 C48K) FOUR BYTE MASK USED BY INIT TO fREE AN ENTIRE TRACK IN THE VTOC BIT 
MAP 
DOS 3.3 C48K> DECIMAL CONVERSION TABLE (1-1o-,100) 
DOS 3.3 (48K) FILE TYPE NAME TABLE USED BY CATALOG. fiLE TYPES .ARE 
T•z·A-B-s·R·A-B CORRESPONDING TO HEX VALUES Of S00-$02S04*S08-S10-S20 AND $40 
RESPECTIVELY 
DOS 3.2 (48K) CONTAINS 4 FILETYPE CHARACTERS r· 1· A- AND B 
DOS 3.213.3 (48K) CONTAINS CHARACTER STRING 'DISK VOLUME' fOR CATALOG COMMAND (IN 
REVERSE ORDER) 
DOS 3.213.3 (48K) VTOC SECTOR BUFFER PART OF SYSTEM BUFfER - CONTAINS THE MASTER 
TRACK/SECTOR BIT MAP SECTOR OR VOLUME TABLE Of CONTENTS 
TRACK-SECTOR OF FJRST DIRECTOR SECTOR 
DOS RELEASE NUMBER (1-2 OR 3 fOR 3.1-3.2 OR 3.3> 
VOLUME NUMBER OF DISKETTE 

---------------------------------.-----------------------.---------------------------- ----------------------~-~--~~------------------
S 82 1 E - S B 3 C 1 Prof. Luebbert's "What's Where in tne Apple" NUMERIC ATLAS 



tiEX LOCN <DEC LOCN) [NAMEJ \USE-TYPE\- DESCRIPTION 

-------------------------------------------~-----------------------------------·------....--·--·--·-----·--..---------·-·-,..-· ....... -
$B3E2 (-19486) 
SB3EB C-19477) 
SB3EC (-19476) 
$B3EF C-19473) \P1\ 
SBEFO (-16656) \P1\ 
$BEF1 (-16655) \P2\ 
SB3f3-SB47B (-19469--19333) 
$B3F3 (-19469) 
$B3F4 (-19468) 
SB3f5 (-19467> 
SB3F6 <-19466) 
SB47A C-19334> 
$B47B (-19333> 
SB3Ef-SB642 (-19473--18878) \HB\ 
SB4BB-$85BA (-19269--19014) 

SB4BC (-19268) 
SB4C6 <-19258) 
$B4C7 <-19257) 
SB4C8 <-19256) 
SB4C9 <-19255) 
$84E7 (-19225) 
$85BB-SB5DD (-19013--18992) 
$B5BB (-19313> 

SB5BB (-19013) \P\ 

$ B5 B C ( -1 9 J 1 2) 

$858D-$B5C4 (-19011--19004) 

$B5C5 <-19003) 
SB5C7 <-19001> 
SB5C9 C-18999) 
$B5CB (-18997> 
SB5CD C-18995> 
SB5D1-$85FD (-18991--18947) 
SB5D1 <-18991) 
SB5D3 (-18989) 
$B5D5 <-18987> 

$B5D6 (-18986) 
$85D8 (-18984) 
$B5D9 (-18983> 
SB5DA <-18982) 
SB5DC <-18980) 
SB5DE (-18978) 
SB5EO <-18976> 
SB5E2 <-18974) 
SB5E4 C-18972> 

NUMBER Of ENTRIES IN EACH TRACK-SECTOR liST SECTOR 
T R AC K T 0 A LL 0 C A T E N EX T 
DIRECTION Of TRACK ALLOCATION (+1 OR -1> 
NUMBER Of TRACKS ON A DISK 
NUMBER Of SECTORS ON A DISK 
SECTOR SIZE IN BYTES 
ARRAY Of 34 TRACK BIT MAPS 
TRACK 0 BIT MAP 
TRACK 1 BIT MAP 
TRACK 2 BIT MAP 
TRACK 3 BIT MAP 
TRACK 33 BIT MAP 
TRACK 34 BIT MAP 
DOS 3.1 C48K> SYSTEM BUFFER <FOR CATALOG ETC.HSEE $B4BB fOR DOS 3.2-3.2.1-3.3) 
DOS 3.213.3 DIRECTORY SECTOR BUffER PART Of SYSTEM BUffER. CONTAINS LAST ACCESSED 
DIRECTORY SECTORY SECTOR (ACCESS BY A CATALOG COMMAND OR ANY OTHER DOS COMMAND 
REQUIRING A DIRECTORY SECTORY SEARCH) 
TRACK-SECTOR OF NEXT DIRECTORY SECTOR 
FIRST DIRECTORY ENTRY AND TRACK OF TRACK-SECTOR LIST 
SECTOR Of TRACK-SECTOR LIST 
FilE TYPE AND LOCK BIT 
FILENAME FIELD <30 BYTES) 
SIZE OF FILE IN SECTORS <INCLUDING TRACK-SECTOR LIST(S)) 
DOS 3.213.3 <48K) FILE MANAGER PARAMETER LIST 
1ST BYTE BEYOND SYSTEM BUfFER. PAGE 3 ROUTINE AT $030C LOADS Y-REG & A-REG TO 
POINT HERE 
DOS 3.213.3 (48K) I-0 PKG 'OPCODE' PARAMETER USED TO CHOOSE WHICH I-0 PKG 
'OPCODE' ROUTINE Will BE CALLED 
DOS 3.213.3 C48K) I-0 PKG 'SUBCODE' PARAMETER USED TO CHOOSE WHICH READ OR WRITE 
OPT.ION IS TO BE USED 
DOS 3.213.3 C48K) EIGHT BYTES Of PARAMETERS. PARAMETERS VARY ACCORDING TO 
'OPCODE' PARAMETER IN $B5BB 
DOS 3.213.3 FILE MANAAGER PARAMETER LIST RETURN CODE 
DOS 3.213.3 ADDRESS OF FILE MANAGER WORK AREA BUFFER 
DOS 3.213.3 ADDRESS Of TRACK/SECTOR LIST SECTOR BUFFER 
DOS 3.2/3.3 C48K) ADDRESS Of DATA SECTOR BUFFER 
DOS 3.2/3.3 (48Kl ADDRESS Of NEXT DOS BUFFER ON CHAIN (NOT USEDJ 
DOS 3.213.3 FILE MANAGER WORK AREA 
fiRST TRACK-SECTOR LIST SECTOR'S TRACK & SECTOR 
CURRENT TRACK-SECTOR LIST SECTOR'S TRACK & SECTOR 
HAGE: 80=r·s LIST NEEDS CHECKPOINT:40=DATA SECTOR NEEDS CHECKPOINT:20=VTOC 
SECTOR NEEDS CHECKPOINT;02 LAST OPERATION WAS WRITE 
CURRENT DATA SECTOR'S TRACK-SECTOR 
DIRECTORY SECTOR INDEX FOR FILE ENTRY 
INDEX INTO DIRECTORY SECTOR TO DIRECTORY ENTRY FOR FILE 
NUMBER OF SECTORS DESCRIBED BY ON TRACK-SECTOR LIST 
RELATIVE SECTOR NUMBER Of FIRST SECTOR IN LIST 
RELATIVE SECTOR NUMBER +1 Of LAST SECTOR IN LIST 
RELATIVE SECTOR NUMBER OF LAST SECTOR READ 
SECTOR LENGTH IN BYTES 
fiLE POSITION (3 BYTES); SECTOR OfFSET:BYTE OffSET INTO THAT SECTOR ---------------------------------------------------------- ___ """' ________ ------~- __________ _,..,.. __ ,_ ______ ------ ---~-----------------

$B3E2 - SB5E4 Prof. Luebbert's "What's Where in the Apple .. NUMERIC ATLAS 



HEX LOCN CDEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION 

SB5E8 C-18968) 
SB5 EA C-18966) 
SB5EC C-18964) 
SB5EE C-18962> 
SB5FO C-18960> 

SB5F6 C-18954> 
SB5F7 C-18953> 
SB5F8 C-18952> 
SB5F9 <-18951) 
SB5FA C-18950) 
SB5FE-SB5FF (-18946--18945) 
SB600-SB6 FF ( -18 944--18 689) 
$8600 <-18944) 

'B65D C-18351> 
SB65E <-18850) 
$8686 (-18810) 
$8692 ( -18798) 
SB6fE C-18690> 
SB6FF <-18689) 
SB700 <-18688) 

SB700-SB749 C-18688--18615> 

SB74A-SB78C C-18614--18548) 

SB74A C-18614) 

$B78D-SB792 < -"18 54 7--18542) 
SB79rSB7B4 <-18541--18508) \SB\ 

SB793 (-18541) 

SB793 (-18541) 

SB7B5-SB7C1 <-18507--18495> 
SB7B5 <-18507> 

SB7C2-SB7D5 C-18494--18475> 
SB7C2 (-18494) 
SB7D6-SB7DE C-18474--18466) 

SB7DB C-18469) 
S87DF-SB7E7 <-18465--18457> 

RECORD LENGTH FROM 'OPEN' 
RECORD NUMBER 
BYTE OfFSET INTO RECORD. 
NUMBER OF SECTORS IN FILE 
SECTOR ALlOCATION AREA (6 3YTES). NEXT SECTOR TO ALLOCATE (SHIFT COUNT)iTRACK 
BEING ALlOCATED:FOUR BYTE BIT MAP Of TRACK BEING AllOCATED- ROTATED TO NEXT 
SECTOR TO ALlOCATE 
FILE TYPE 
SLOT NUMBER •16 
DRIVE NUMBER 
VOlUME NUMBER CIN COMPLEMENT FORM) 
TRACK NUMBER 
DOS 3.213.3 NOT USED 
DOS 3.213.3 BOOT SECTOR BUFFER; I.E. BOOT 2 RWTS (READ-WRITE TRACK,-SECTOR) IMAGE 
DOS 3.3 (48K) START Of PHASE 2 (BOOT 1) IMAGE WHICH CAN BE WRITTEN TO INIT'ED 
DISKS ON TRACK 0 SECTOR 0 
DOS 3.3 C48K) PATCH AREA STARTS HERE WITH APPEND PATCH 
DOS 3.3 (48K> ANOTHER APPEND PATCH STARTS HERE 
DOS 3.3 C48K) VERIFY PATCH 
DOS 3.3 (48K) ANOTHER APPEND PATCH STARTS HERE 
DOS 3.3 C48K) PAGE ADDRESS Of fiRST PAGE IN PHASE 3 (BOOT 2> 
DOS 3.3 (48K) NUMBER Of SECTORS (PAGES) IN PHASE 3 (BOOT 2) 
DOS 3.2 BOOTSTRAP LOADER FOR PHASE 3 (BOOT 2> OF DOS 900T (PHASE 1 IN DISK 
CONTROLLER ROM; PHASE 2 IN PAGE 3 [$300-S3ff)). READS DRIVE1 CURRENT SlOT SB1 
SECTORS AND TRACK 0 SECTOR A INTO RAM START1NG AT S1B00 
DOS 3.3 BOOTSTRAP LOADER FOR PHASE 3 (BOOT 2) Of DOS 3001 (PHASE 2 IN 
$0800-$08ff). SETS RWTS PARAMETER LIST TO READ DOS FROM DISKi CALLS READ-WRITE 
GROUPP OF PAGES CSB793) & CREATES NEW STACK. ALSO CAlLS $FE93 CSETVID) AND $FE89 
(SETKBD) AND EXITS TO COLDSTART AT $9D84 
DOS 3.3 C48K) - WRITES DOS ONTO TRACKS 0-2. SETS RWTS PARAMETER LIST TO READ DOS 
FROM DISK: CAlLS READ/WRITE GROUP Of PAGES ($B793); EXITS TO CAlLER 
DOS 3.2 C48K>- WRITES SOA SECTORS STARTING FROM SB600- THEN $18 SECTORS STARTING 
AT $1800 BEGINNING AT TRACK 0 SECTOR 0 
DOS 3.3 (48K> UNUSED 
DOS 3.3 C48K) READ/WRITE A GROUP OF PAGES. CAlLS RWTS THROUGH EXTERNAL ENTRY 
POINT SB785 & EXITS TO CALLER 
DOS 3.2-3.2.1-3.3 ROUTINE TO STORE A BlOCK Of CONSECUTIVE SECTORS. LOADS COMMAND 
BYTE UB7FO:NUMBER Of SECTORS IN SB7E1; DOS 3.2 INCREMENTS- SET UP IOBlK TO 1ST 
SECTOR; DOS 3.3 DECREMENTS- SET UP IOBlK TO lAST SECTOR 
DOS 3.2 <48K} - INCREMENTS OR DECREMENTS TRACK/SECTOR AS NEEDED AND DATA ADDRESS 
FOR SB700 & SB793 ROUTINES 
DOS 3.3 (48K) DISABlE INTERRUPTS AND CALl RWTS 
DOS 3.2 (48K) START Of RWTS-IN-ENVIRONMENT ROUTINE. DISABlES INTERRUPTS; CALlS 
RWTS {LOCATED AT SBDOO}i RE-ENABLES INTERRUPS AND PASSES BACK RETURN CODE fROM 
RWTS IN FORM OF CARRY FLAG 
DOS 3.3 (48K) SET RWTS PARAMETERS fOR WRITING DOS 
DOS 3.2 (48K) SETS ADDRESS Of DATA BUFFER AND SETS EX~ECTED VOlU~E NUMBER 
DOS 3.3 (.48K) ZERO CURRENT BUFFER (256 BYTES POINTED TO BY $0042-50043) AND EX IT 
TO CALLER 
DOS 3.2 C48K> STORES ZEROES IN ONE PAGE STARTING AT ADDRESS IN S0042-S0043 
DOS 3.3 C48K) DOS PHASE 3 <BOOT 2> BOOT LOADER PARAMETER LIST --------... ----------------------------------------------------------------------------·-·---·------.,.----~--~--------~----

S85E8 - SB7DF Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN> [.NAME] \USE-TYPE\ - DESCRIPTION 
-----·---·---------.-----------:----------------------------------~-·---------·--~~-..-----i-~·------·-----------·--·.-----

SB7DF C-18465) 
SB7EO <-18464) 
SB7E1 C-18463) 
SB7E2 (-18462) 
SB7E3 C-18461) 
SB7E4-SB7E5 C-18460--18459> 
SB7E6-SB7E7 C-18458--18457) 
SB7E8-$B7F8 C-18456--18440) 

SB7E8 C-18456) 
S87E9 <-18455) 
$B7EA C-18454) 
SB7EB C-18453) 
SB7EC (-18452) 
S87E D (-184 51) 
SB7EE.SB7EF (-18450--18449) 
SB7F0-SBfF1 <-18448--16399) 
SB7F2 <-18446) 
$B7F3 (-18445) 
SB7f4 C-18444) 
SB7F5 C-18443) 

SB7F6 C-18442) 
SB7F7 C-18441) 
SB7F8 (-18440) 
SB7F 9·9 7F A 
SB7FB-SB7FE <-18437--18434) 

SB7fB C-18437) 
SB7FC C-18436) 
SB7FD-SB7FE C-18435--18434) 
SB7FF C-18433) 
SB8oo·sa869 <-1843r-18327> 

DOS 3.3 (4810 UNUSED 
DOS 3.3 (4810 NUMBER Of PAGES IN 2ND DOS LOAD (PIUS£ 3) 
DOS 3.3 NUMBER OF SECTORS TO READ/WRITE 
DOS 3.3 NUMBER OF PPAGES IN 1ST DOS lOAD (PHASE 2> 
DOS 3.3 INIT DOS PAGE COUNTER 
DOS 3.3 POINTER Tl RWTS PARAMETER LIST 
DOS 3.3 POINTER TO 1ST STAGE BOOT LOCATION 
DOS 3.213.3 (48K) RWTS PARAMETER liST OR SYSTEM 108. THIS .JOB SET UP ACCORDING TO 
LAST DOS OPERATION THAT OCCURED 
DOS 3.213.3 C48K) - TABLE TrPE. MUST BE S01 
DOS 3.213.3 (48K) - SLOT NUMBER * 16 
DOS 3.213.3 (48K} - DRIVE NUMBER (S01 OR S02) 
DOS 3.213.3 C48K) - VOLUME NUMBER (NOTE: 0 MATCHES ANY VOLU~E.) 
DOS 3.213.3 (48K) - TRACK NUMBER (S00-S22> 
DOS 3.2/3.3 (48K)- SECTOR NUMBER (DOS 3.2 so-sc;DOS 3.3 SO-SF) 
DOS 3.213.3- POINTER TO OCT <DEVICE CHARACTERISTICS TABLE) 
DOS 3.213.3 - POINfER TO USER DATA BUFfER FOR READ/WRITE 
DOS 3.213.3 - UNUSED 
DOS 3.213.3 - BYTE COUNTER fOR PARTIAL SECTOR; USE SOO FOR FULL 256 BYTES 
DOS 3.2/3.3- COMMAND CODE: O=SEEK; 1=READ; 2•WRJTE; 4=f0RMAT. 
DOS 3.213.3- ERROR CODE (VALID IF CARRY SET>: S10•WRITE PROTECT;S20•VOLUME 
MISMATCH; S40=DRIVE ERROR; S08=1NIT ERROR. 
DOS 3.213.3 - VOLUME NUMBER FOUND 
DOS 3.213.3- SLOT NUMBER FOUND 
DOS 3.213.3 - DRIVE NUMBER fOU.ND 
DOS 3.3 (48K) UNUSED 
DOS 3.213.3 <48K)- DEVICE CHARACTERISTICS TABLE (OCT) ASSOCIATED WITH SYSTEM 
lOB. NOTE: lOB CONTAINS DETAILED DEVICE CHARACTERISTICS TABLE AS DOCUMENTED fOR 
RWTS IN WOZPACK 
DOS 3.213.3 C48K) - DEVICE TYPE <SHOULD BE SOD> 
DOS 3.3 (48K) - PHASES PER TRACK (SHOULD BE S01> 
DOS 3.3 <4810 - MOTOR ON TIME COUNT (SHOULD BE SEF & SJ)8) 
DOS 3.3 ( 48K) - UNUSED. 

[PRENIBL-PRENIB16J \SB\DOS 3.1-3.2·3.3 RWTS (READ-WRITE TRACK-SECTOR) PRENlBl MODULE. 
CONVERTS A PAGE OF 256 OF REAL BYTES TO A SECTOR Of 410 (S19A) RIGHT 
JUSTIFIED 5 BIT NIBBLES (EXCEPT DOS 3.3 CONVERTS TO 342 6 BIT 
NIBBLES Of THE fORM OOXXXXXX). POINTER TO PAGE TO CONVERT AT 
S003E-S003F; DATA STORED AT PRIMARY XXX) SECONDARY BUFfERS; ON EXIT 
X-~EG XXX) Y-REG CONTAIN SFF & CARRY SET. 

SB82A-SB8B7 (-1839C--18249) [WRIJE16 COOS 3.3)] \SB\DOS 3 • .3 'WRITE'. WRITES PRENIBBILIZ£0 DATA fROM PRIMARY & SECONDARY 
BUfFERS TO DISK; CALLS WRITE-A-BYTE s-R; WRITES 5 BYTES AUTSYNC-
STARTING DATA MARKS CSOS-SAA-SAD)- 342 BYTES DATA- ONE BYTE 
CHECKSUM- AND CLOSING DATA MARKS CSD£-SAA-SEBl. USES WRITE 
TRANSLATE TABLE <SBA29). ON ENTRY X-REG CONTAINS SLOT1•16. ON EXIT 
X-REG UNCHANGED;Y-REG SOQ; CARRY CLEAR. USES S0026- S0027- 1678 

SB86A-SB8FC <-18326--18180> [WRITE] \SB\OOS 3.1-3.z-3.2.1 CSEE S382A FOR DOS 3.3 'WRH£ 1 ) RWTS (READ-WRITE 
TRACK-SECTOR) WRITE MODULE. WRITES A BUffER OF 410 (S19A) 5-BlT RIGHT~JUSTIFIEO 
NIBBLES ONTO THE DISK SURfACE AS A SECTOR CONVERT1NG THEM TO A 8-BIT 1 DISK 

SB888-SB8C1 C-182.it8--182.39> 
BYTE' FORMAT FIRST 
DOS 3.3 WRITE-A-BYTE SIR. THIS IS T.IMING-CRITCAL CODE USED TO WRITE BYTES AT 32 
CYCLE INTERVALS. EX1TScTO CALLER 

-:----------~------------------------..------------·--·-----------~--·-- ... ------ .... -~-.... ---·-··~-·----·-·-...--·-·- ... -------
SB7DF - SB8B8 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATUS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\- DESCRIPTION 

-------------------------------------------------------------------------------:--~----------:-------,----------------------
SB8C2.SB8DB (-18238--18213) [POSTNB16J \SB\DOS 3.3 POSTNIBBLf ROUTINE. CONVERTS 342 6-BIT NIBBLES OF FORM OOXXXXXX TO 

256 8-BIT BYTES. NIBLES STORED AT PRIMARY <SBBOO-SBBFF) AND SECONDARY 
<SBC00.SBC55) BUFFERS. POINTER TO DATA PARGE STORED AT 'BUFPTR' 
(S003E.S003F). ON ENTRY X-REG= SLOT•16: CSW (S0036-S0037) POINTS TO USER 
DATA; S0026= BYTE COUNT IN SECONDARY BUFFER. ON EXlT CARRY SET 'BUFPTR' 
Y-REG CONTAINS BYTE COUNT IN SECONDARY SUfFER 

SB8C2 <-18238> [POSTNIBL <DOS 3.3)] \SB\DOS 3.3 'POSTNIBL' 
SB8DCSB943 <-18212--18109) [READ16J \SB\DOS 3.3 'READ' IN RWTS <READ-WRITE TRACK-SECTOR). READS A SECTOR OFF THE DISK 

INTO SEtONDARY BUFFER (SBCOO-SBC55) HIGH TO LOW THEN INTO PRIMARY 
( S 88 0 0- $B B FF ) L 0 W T 0 H I G H E N R 0 U TE T 0 0 V E R AlL P R 0 C E S S 0 f F 0 R M I NG S 1 5 3 
RIGHT-JUSTIFIED 6-BIT NIBBLES 

SB8FD-SB964 <-18179--18(76) [READ] \SB\DOS 3.1-3.z-3.2.1 (SEE SB8DC FOR DOS 3 .. 3 'READ') RWTS (READ-WRlTE TRACK-SECTOR 
READ MODULE. READS A SECTOR OFF THE DISK FORMING 410 CS19A) 5-BIT 
RIGHT-JUSTIFIED NIBBLES 

SB944.SB~9F <-18108--18017> [READADR-RDADR16 (DOS 3.3>] \SB\DOS 3.3 READADR. FUNCTION SAME AS READADR-RDAOR16 (DOS 3.2) 
$B944 C-18108) (,.RDADRHJ 
SB965.SB~C:::l (-18075--17984) (READADR 

DOS 3.3 SYNONYM FOR READADR 
(DOS 3.2)] \SB\DOS 3.1·3.z-3.2.1 (SEE $6944 FOR DOS 3.3 'READADR <DOS 3.2>'> RWTS 

(READ-WRITE TRACK SECTOR> READ ADDRESS MODULE .. REA.DS ADDRESSES ON 
THE SECTORS OF CURRENT TRACK UNHL IT FINDS A SECTOR. THEN IT 
RETURNS PUTTING CHECKSUM INTO S002C:SECTOR INTO S002D:TRACK INTO 
S002E: AND VOLUME INTO S002F. CARRY IS SET ON ERROR 

SB9A0-SB9FC (-18016--17924) (SEEKABS (DOS 3.3)] \SB\DOS 3.3- MOVES DISK AREM TO DESIRED TRACK. CALLS ARM MOVE DELAY 
SUBROUTINE (SB9FD). ON ENTRY S0478 CONTAINS CURRENT TRACK; X-REG 

SB9C1-BA1D[POSTNIBL COOS 3.2)] \SB\ 

CONTAINS SLOT•16; A-REG DESIRED TRACK. ON EXIT X-REG UNCHANGED: 
A-REG Y-REG CLOBBERED: S0478 &S002A: FINAL TRACK:S27 PRIOR TRACK 
<IF SEEK NEEDED). USES S0026:S0027:S002A:S002B. EXITS TO CALLER 
DOS 3.1-3.r3.2.1 (SEE SB8C2 FOR DOS 3.3) RWTS (READ-oiRITE TRACK SECTOR) POSTNIBL 
<DOS 3.2> MODULE. CONVERTS A BUFFER Of 410 (S'19A) LEH-JUSTIFIED 5-BIT NIBBLES TO 
256 ($100) REAL BYTES. S003E-SOlc3F POINTS TO BUFfER T:> PUT THEM INTO 

SB9AO C-18016) [SEEKABS (DOS 3,.2)) \SB\DOS 3.2 'SEEKABS' 
SB9EC C-17940) DOS 3.2 CODE TO IMPLEMENT INITIALIZATION WITH VOLUNME NUMBER TO BE .INITIALIZED IN 

SB9FD.SBA1J (-17923--17904) \SB\ 

SBAOO C-17920) [MS\IAIT] \SB\ 
SBA11 <-17903> \ SB\ 
SBA1E.SBA8F C-17890--17777> (SEEKA8S] 

SBA29 C-17879> 

$ BA 11 • B A2 8\ S B \ 

SBA29.SBA68 (-17879--17816) 

SBA69 C-17815> 
SBA96-SBA F F ( -17 770--17 66 5) 

S002 .F 
DOS 3.3 ARM MOVE DELAY SUBROUllNE. DELAYS SPECIFIED NUMBER OF 100 MICROSEC 
INTERVALS. ON ENTRY A-REG CONTAINS NUMBER OF INTERVALS; 'MONTIME' ($0046) SHOULD 
CONTAIN MOTOR-ON TIME CSEF-$08) FROM DCT:S0478 CONTA.IN CURRE:'H TRACK; ON EX.IT 
A-REG CURRENT X-REG CONTAIN SQO; Y-REG UNCHANGED CARRY SET. EXIT TO CALLER 
DOS 3.3 RWTS OPERATION TIMER ROUTINE 
DOS 3.3 RWTS OPE RAT ION TIMER TABLE1 
\SB\DOS 3.1-3.z-3.2,.1 (SEE SB9AO FOR DOS 3.3> RWTS (READ-WRITE TRACK SECTOR> 
SEEKABS MODULE. M:>VES HEAD TO TRACK SPECIFIED BY A-REG. $0478 IS CURRENT. 
RW TS DOES PHASE OFF FOR ALL FOUR BEFORE CALL 
DOS 3.3 C48K> ROUTINE TO ENCODE NIBBLES( 6 DATA BITS PER N.IBBLE INSTEAD OF 5 AS 
IN DOS 3.1-3.2) 
DOS 3.3 ARM MOVE DELAY TABLE. CONTAINS VALUES OF 100 MJCROSEC I~TERVALUS USED 
DURING PHASE-ON AND PHASE-Off Of STEPPER MOTOR 
DOS 3.3 WRITE TRANSLATE TABLE. CONTAINS 6-BIT NIBBLES USED TO CONVERT 8-BIT 
BYTES. VALUES RANGE fROM S96 TO Sff AND CODES WITfi MORE THAN ONE PAIR Of ADJACENT 
ZEROS OR NO ADJACENT ONES ARE EXCLUDED 
DO S 3. 3 - UN US E D 
DOS 3.3 READ TRANSLATE TABLE. CONTAINS 8 BIT BYTES USED TO CONVERT 6-BIT NlBB'...iES. 
VALUES RANGE FROM $96 TO SFF. CODES WITH MORE THAN ONE PAIR Of ADJACENT ZEROS OR 
WITH NO ADJACENT ONES ARE EXCLUDED. 

-------------------------------------- ------------------------------ -----~--- --------------- .,.. ___________ ------------ ---·--~- "!""'----
SB8C2 - SBA96 Prof. Luebbert's "What's Where in the Appte" NUMERIC A TUS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION 

----------------------------------------------------------------------·-----------·----------·---------------·---··~··---

SBCC4-SBCDE (-17212--17186> \SB\ 

S8CDF-$BCFF (-17185--17153) 
SBDoo-sBD18 <-17152--17128> 

S8D19-SB033 <-17127--17101) 
SSEAE C-16722) 
SBFA2 C-16478) 

DOS 3.3 WRITE DOUBLE BYTE SUBROUTINE. THIS IS TIMING CRITICAL CODE THAT ENCO~ES 
ADDRESS INFO INTO EVEN AND ODD BITS AND WRITES IT AT 32 CYCLE INTERVALS. EXIT TO 
CAlLER 
OOS 3.2 UNUSED 
DOS 3.3 MAIN ENTRY TO RWTS (READ-WRITE TRACK-SECTOR). UPON ENTRY STORE Y-REG AND 
A-REG AT $0048 AND S0049 AS POINTERS TO lOB. INITIALIZE NUMBER OF RfCALS AT 1 AND 
SEEKS AT 4. IF SLOT N HAS NOT CHANGED BRANCH JO 'SAMESLOT' <SBD34) 
DOS 3.3 - UPDATE SLOT NUMBER IN lOB AND WAlT fOR OLD DRIVE TO TURN Off 
DOS 3.2 START Of CODE TO INITIALIZE A SINGLE TRACK 
DOS 3.2 - TESTS TO SEE IF ALL S22 TRACKS HAVE BEEN INITIALIZED YET; If SO EXITS 
RWTS AT SBFB8 

SBA78 (-17797> (<TIMER DOS 3.2.1)] \SB\DOS 3.2.1 RWTS OPERATION TIMER ROUTINE 
SBA7F (-17793> [<TIMER DOS 3.1-3.2)] \SB\DOS 3.1-3.2 RWTS OPERATION TIMER ROUTINE 
SBA8C <-17780> [(TABLE1 DOS 3.2.1>] \SB\DOS 3.2.1 RWTS OPERATION TIMER ROUTINE TABLE1 
SBA90-SBA93 C-17776--17765) \SB\ DOS 3.1-3.2 RWTS (READ-WRITE TRACK-SECTOR} TABLE Of PHASE-ON Tl~ES TO WAIT 

SBA96-SBAFF C-1777c--17665) 
SBA9CSBAA7 (-17764--17753) \SB\ 

SBAA8-S8AFF (-1775r-17665) \SB\ 

S8Boo·sac99 <-17664--17255> \Be\ 

SBaoo·saBFF <-17664--17409> 
sBcoo-sac55 <-17408--17323> 
SBC56-$BCC3 (-17322--17213) 

$8C9A-BC89\PB\ 

S8CD0-8CDC 

(LOCATED AT SBA8C IN DOS 3.2.1 & AT SBA11 IN DOS 3.3> 
DOS 3.3 NIBBLE ENCODE/DECODE TABLE 
DOS 3.1-3.2 RWTS (READ-WRITE TRACK-SECTOR) TABLE Of PHASE-Off TIMES TO WAIT 
(LOCATED AT SBA98 IN DOS 3.2.1 & AT SBA1D IN DOS 3,.3) 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) TABLE Of NIBBLES IN POSITION Of 
CORRESPONDING DISK BYTE OfFSET FROM SBAOO USED FOR CONVERSION DISK BYTES->NtBBLES 
BUFFER TO HOLD 410 5-BYTE NIBBLES CREATED fROM A PAGE Of 256 BYTES BY PRENIBL 
ROUTINE IN DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) 
DOS 3.3 RWTS PRIMARY BUFFER 
DOS 3.3 RWTS SECONDARY SUfFER 
DOS 3.3 WRITE ADDRESS FIELD DURING INITIALIZATION. CALLS WRITE DOUBLE BYE 
SUBROUTINE. WRITES #OF BYTES CONTAINED lN Y-REG; STARTING ADORES$ MARKS 
CS05/SAA/S96)i ADDRESS INFO <VOL/TRACK/SECTOR/CHECKSUM};CLOSING ADDRESS MARKS 
(SDE-SAA-SEB>. ON ENTRY X-REG CONTAINS SLOT•16:Y-REGCONTAINS NUMBER Of AUTOSYNC 
TO WRITE; S3E: S.AAiS3 F :SEC TORN i$41: VOL#iS44:TRACK#. ON EXIT: A- REG ! ; X-REG 
UNCHANGEOiY-REG S~O;CARRY SET. EXIT TO CALLER 
CONVERSION TABLE TO CONVERT 5-BIT NIBBLES TO 8-BIT 'DISK BYTES' USED BY DOS 3.2 
RWTS (READ-WRITE TRACK-SECTOR) PACKAGE WRITE SUBROUTINE 
DOS 3.2 (480 - 13 BYTES CONTAINING PERMUTATIONS OF 5 MOO 13 USED IN NYBBlE 
CONVERSION- NO SUCH TABLE IN DOS 3.3 
DOS 3.2 C48K>- MAINLINE READ-WRITE TRACK-SECTOR 
DOS 3.2 (48K) - ROUTINE WHICH READS IN DIRECTORY 

(RWTSl CODE 
Off DISK 

SBDoo-sBFFF <-17152--16385> 
saDDO <-17152> \SE\ 
SBD34-$BD53 (-17100--17069) (SAMESLOTJ \SB\ENTER READ MOD£ AND READ WITH DELAYS TO SEE 

RESULTS OF TEST AND TURN 0~ MOTOR ANYHOW 
IF DISK IS SPINNING. SAVE 

$8D44 ( -17384) 

$8054-$8073 <-17068--17C37> \SB\ 

$8D74-$8D8F (-17036--17009> \SB\ 

$8090-SBDAA (-17008--16982) \SB\ 
SBD90-SBDAA (-17008--16982) \S8\ 

ADDRESS OF DEVICE CHARACTER.ISTICS TABLE (OCT) AND BUFFER ARE MOVED fROIIl THE 108 
INTO LOCNS $003C-$003D & S003E-S003F 
DOS 3.3 - MOVE POINTER IN lOB TO ZERO PAGE. {SET DEVCTBL ($003C-S003D) AND SUFPTR 
($003CS003F) AND $0047 WITH $0008 FROM OCT}. CHECK IF DRIVE# HAS CHANGED. If 
NOT BRANCH TO SBD74 
DOS 3.3 - SELECT APPROPRIATE DRIVE AND SAVE DRIVE BEING USED AS HIGH BIT OF 
'ORIVENO' <S0035). 1=DRIVE liO=ORIVE 2. If DRIVE WAS ON BRANCH TO SBD90. If NOT 
CALL 'MSWAIT' AT SBAOO 
DOS 3.3 - GET DESTINATION TRACK AND GO TO II USING 4 MYSEEK'(SBE5A) 
DOS 3.3- GET DESTINATION TRACK AND GO TO IT VIA 'MYSEEK'(SBE5A). CHECK TEST 
RESULT AGAIN AND If DRIVE ON BRANCH TO 'TRYTRK' ($80A8) 

-------------------·----------------------·---:-----------~---------- ...... ------------------.--------------~-----------------~---

$BCC4 - $8090 Prof. Luebbert's "What's Where in the Apple" NUMERIC A 1LAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION -------------- -------------------------------·------------------- ------------------~-- ~----- -----------------------------
SBDAB.SBDB3 (-16981--16965) [TRYTRK] 

saDac·saDEC <-16964--16916> CRDRIGHTJ 

SBDED-SBE03 <-16915--16893> [RDRIGHTJ 

SBE04 ·saEOA ( -1689 2·-16886> [D RVERR] 

SBEOB.SBEOC <-16885--16884) 
SBEOD.SBFOF ( -16883--1662 5) [F ORMDSK] 
SBE10-SBE25 (-16880--16859) [RTTRKJ 

SBE26-SBE45 (-16858--16827> [CRCTVOLJ 

SBE46-SBE47 <-16826--16825> [ALLDONE] 
SBE48-SBE50 (-16824--16816) [H NDl ERR] 

SBE51-SBE59 <-16815--16807> [WRIT J 

SBE SA- SBE 8D (-16806--16755) [MYSEEKJ 

SBE8E-SBE94 <-16754--16748) [X TOY] 
SBE95-SBEAE <-16 74 r-16 722> [SHTRK] 
SBEAF.SBFOC <-16721--16628) [DSKFOR'I] 
SBFOD-SBF61 ( - 16 6 27-- 1 6 54 3 ) \SB\ 
SBF62-SBF87 (- 16 54 z-- 16 505) \SB\ 
SBF88-SBFA7 <-16504--16473) \S B\ 

SBFA8-BFB7 

SBFB8-SBFC7 (-16456--16441> [I LEA VJ 
SBFC8-SBFFF (-16440--16385) 
SBFC8-SBFD8 <-16440--16424) 
SBFD9-$BFD9 (-16423--16421) 
SBF DCSBF E5 <-16420--16411) 
SBFE6-SBFEC (-16410--16404) 

SBF ED-SBFF F <-16403--16.385> 

S8FFF <-16385> \ H\ 

\SB\DOS 3.3- GET COMMAND CODE. IF NUll EXIT VIA 'ALLDONE' ($8E46) TURNING OFF 
DRIVE & RETURNING TO CALLER. If COMMAND CODE=4 BRANCH TO '.FORMDSK' (SBEOD>; 
OTHERWISE MOVE LOW BIT INTO CARRY <SET=READ:CLEAR=WRITE) AND SAVE VALUE ON 
STATUS REG. IF WRITE OPN DATA IS PRENIBBILIZED VIA 'PRENIB16' ($8800) 
\SB\DOS 3.3- INITIALIZE MAX RETRIES AT 48. READ ADDRESS FIELD IliA 'RDADR16' 
UB944),. IF GOOD READ BRANCH TO 'RDRIGHT' ($8DED>. If BAD TRY AGAIN 
DECREMENTING RETRIES. IF NONE LEFT PREPARE TO RECALIBRATE. DECREMENT RECAL 
COUNT. IF NO MORE THEN 'DRVERR' (SBE04>. OTHERWISE RESET RESEEKS AT 4 AND 
RECALI3RATE ARM. TRY AGAIN 
\SE\DOS 3.3- VERIFY TRACK. IF CORRECT BRANCH TO 'RTTRK' ($BE10) OTHERWISE GOTO 
'SETTRK' ($8E95) AND DECREMENT RESEEK COUNT. If ZERO RECAL OTHERwiSE RESEEK TRACK 

\SE\DOS 3.3- CLEAN UP STACK & STATUS REG; LOAD A-REG wiTH $40 <DRIVE ERROR) AND 
GOTO 'HNDLERR' <SBE48) 
DOS 3.3- BRANCH TO 'ALLDONE' UBE46) 
DOS 3.3 - JUMP TO 'DSKFORM' ($8EAF> 
DOS 3.3 -CHECK VOL# FOUND VS VOL# WANTED. If NO VOL SPECIFIED NO ERROR OTHERWISE 
If MISMATCH LOAD A-REG WITH S20 (VOLUME MJSMATCH ERROR) AND EXIT lilA 'HNDLERR' 
($BE48> 
DOS 3 .. 3- CHECK TO SEE IF SECTOR CORRECT. USE 'ILEAV' TABLE ($Bf88) FOR SOFTWARE 
SECTOR INTERLEAVING •. IF WRONG SECTOR TRY AGAIN AT 'TRYADR (SBDC1>,. If WRITE 
BRANCH TO 'WRIT' ($BE5H. OTHERWISE GOTO 'READ16' ($88DC). IF GOOD READ CALL 
'POSTN316' ($B8C2) AND RETURN TO CALLER WITH NO ERROR 
DOS 3.3 - SKIP OVER SET CARRY INSTRUCTION IN 'HNDLERR' 
DOS 3.3 - SET CARRY; STORE A-REG IN lOB AS RETURN CODE .. TURN Off MOTOR. RETUR\t TO 
CALLER 
DOS 3.3 - WRITE A SECTOR USING 'WRITE16' C$B82A); If :iOOD WRITE EXIT VIA 
'ALLDONE' ($8E46) OTHERWISE LOAD A-REG WITH $10 (WRITE PROTECT ERROR) AND EXIT 
VIA 'HNDLERR' ($BE48) 
DOS 3.3 - HOUSEKEEPING BEFORE 'SEEKABS'. DETERMINES NUMBER OF PHASES PER TRACK & 
STORES TRACK INFO IN APPROPRIATE SLOT-DEPENDENT LOCN 
DOS 3.3 - X-REG/16 =>Y-REG. USED TO PUT SLOT INTO Y-REG 
DOS 3.3 - SET TRACK # 
\SB\DOS 3.3 - !NIT COMMAND HANDLER 
DOS 3.3 - TRACK WRITE ROUTINE 
DOS 3.3- VERIFY TRACK ROUTINE 
DOS 3.3- SECTOR 'lAP ROUTINE -MARKS SECTOR INITIALIZATION MAP AS EACH SECTOR 
VERIFIED 
DOS 3.3 - SECTOR INITIALIZATION MAP. CONTAINS $30 PRIOR TO INITIALIZATION OF 
TRACK. VALUE CHANGED TO Sff AS EACH SECTOR COMPLETED 
DOS 3.3 - SECTOR TRANSLATE TABLE. SECTOR INTERLEAVING DONE WITH SOFTWARE 
DOS 3.3 PATCH AREA 
DOS 3.3 PATCH TO ZERO LANGUAGE CARD DURING BOOT 
DOS 3.3 - UNUSED 
DOS 3 .. 3 PATCH CALLED FROM SA032 TO SET ADDITIONAL DEfAULTS 
DOS 3.3 PATCH CALLED FROM ERROR HANDLER AT SA6D5. CALLS SA75B TO RESET STATE 0 
AND SET WARMSTART FLAG. MARK RUN NOT INTERRUPTED. RETURN TO CAllER 
DOS 3.3 PATCH CALLED fROM DISK FULL ERROR EXIT ($B377). CALLS SAE7E TO SAVE FILE 
MANAGER WORK AREA; RESTORES STACK; CLOSES All OPEN fiLESi SAVES STACK AGAIN; 
EXITS THRU SB385 ("DISK FUll ERROR") 
HIGHEST RAM MEMORY ADDRESS (fUll 48K APPLE) - NOTEJ WITH LANGUAGE CARD SPECIAL 
RAM EXISTS HIGHER 

--------·-~----------------------~---------.------------------------ _____ .,..._ ________________ ,... _________________ ..,. _______________ _ 
SBDAB - SBFFF Prof. Luebbert's ••what•s Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION 
---------~----------------:-----.,.---------... --------------------------------...-..... ---~~---------------------- ... ------------
SBFFF (-16385} 
scooo-scFFF c-16384--12289> \HB\ 
scooo·scooF <-16384--16369> CMJ \H1\ 

SCOOO-(KBD • IOADRJ \H1\ 

SC010-SC01 F C-16368--16 353) \H1\ 

SC010 C-16368> (KBDSTBJ \H1\ 

DEFAULT INTEGER BASIC HIMEM (W/0 DOS 3.2- 48K MACHINE) 
ENTRY ADDRESSES DEDICATED TO I/0 fUNCTIONS 
EQUIVALENT ADDRESSES - All FOR KEYBOARD INPUT BYTE. WHEN KEY PRESSED ASCII VALUE 
GOES THERE AND HIGH BIT SET 
MONITOR I/0 - PEEK TO READ KEYBOARD. If VAL>127 KEY HAS BEEN PRESSED SINCE LAST 
STROBED AT SC010. 
EQUIVALENT ADDRESSES - ALL CLEAR KEYBOAR~ STROBE I.E. SET FLAG (HIGH} BET Of 
SCOOO TO 0 (VAL<128) AND REACTIVATE KEYBOARD 
KEYBOARD STROBE- REACTIVATES KEYBOARD SO THAT VALUE Of PRESSED KEY GOES TO SCOOO. 
SETS HIGH BITTO ZER0 •• -4 

SC020.SC02F <-16352--16337) [TAPEOUT~ \H1\CASSETTE OUTPUT TOGGLE FLIP FLOP. READ ONLY DO NOT WRITE TO THESE ADDRESSES 
WHICH ARE DECODED AS SAME SINGLE BIT LOCN 

SC020 (-16352> [TAPEOUTJ \H1\ PEEK TO TOGGLE CASSETTE OUTPUT (CREATE A 'CLICK' ON RECORDING) 
SC030-SC03F C-16336--16321> [SPKRJ \H1 \SPEAKER TOGGLE FLIP FLOP •. READ ONLY - 00 NOT WRITE TO THES ADDRESSES WHICH ARE 

SC030 (-16336) (SPKR] \H1\ 
SC040-$C04F C-16320--16305) \H1\ 

SC040-St04F (-16320--16305) \H1\ 

SC050 
sea 51 
SC052 
SC053 
SC054 
scoss 
SC056 
SCOS7 
$C0 58 

<-16304) 
C-16303> 
(-16302> 
(-16301) 
C-16300> 
(-16299> 
<-16298) 
(-16297> 
(-16296) 

CTXTCLRJ \H1\ 
(TXTSETJ \H1\ 
(MIXCLR] \H1\ 
[MIXSETJ \H1\ 
{LOWSC RJ \H1 \ 
[HISCRJ \H1\ 
[LQ-RES] \H1 \ 
[HI-RES] \H1\ 
[SETANOJ \FF\ 

SC059 C-16295) [CLRANOJ \FF\ 

SCOSA C-16294) [SfTAN1] 
$ C 0 5 B ( -1 6 2 9 3 ) [ C L RAN 1 ] 
SCOSC <-16292> CSETAN2J 
SCOSD <-16291> [CLRAN2J 
SC05E C-16290> [SETAN3J 
SC05F C-16289) [CLRAN3J 

\FF\ 
\FF\ 
\ff\ 
\FF\ 
\FF\ 
\FF\ 

SC060 C-16288> (TAPEINJ 
SC060/8 C-16288> CTAPEIN] \H1\ 
SC061 (-16287> \H1 \ 
$C062 <-16286> \H1\ 
SC063 C-16285) \H1\ 
SC064 C-16284> [PADDLOJ \H1\ 

SC065 (-16283) [PADDL1] \H1\ 

SC066 <-16282> (PADDL2] \H1\ 

SC067 C-16281} [PADDL3J \H1\ 

DECODED AS SAME SINGLE BIT LOCN 
PEEK TO TOGGLE SPEAKER (PRODUCES A 'CLICK') 
UTILITY STROBE. IF READ PIN 5 ON GAME I/0 CONNECTOR DROPS fROM 5 V TO 0 V FOR 1 
MICROS£ CON D 
ANY ONE Of THESE 16 LOCAT10NS HAS SAME EFFECT If POKED. IT OUTPUTS STROBE TO GAME 
I I 0 C ON N E C TOR 
POKE TO 0 TO SET FROM TEXT TO GRAPHICS MODE W/0 CLEARING SCREEN 
POKE TO 0 TO SET FROM GRAPHICS TO TEXT MODE W/0 RESETl.ING SCROLLING WINDOW 
POKE TO 0 TO RESET FROM MIXED GRAPHICS (W/4 LINES TEXT) TO FULL-SCREEN GRAPHICS 
POKE=O TO SET TEXT/GRAPHICS MIX <BOTTOM 4 LINES TEXT) 
POKE TO 0 TO DISPLAY PAGE 1 (DOES NOT CLEAR SCREEN> 
POKE TO 0 TO DISPLAY PAGE 2 <DOES NOT CLEAR SCREEN) 
POKE Tl 0 TO SET FROM HI-RES TO SAME PAGE M OF LO-RES OR TEXT 
POKE TO 0 TO SET TO HI-RES GRAPHICS FROM LO-RES OR TEXT <SAME PAGE) 
VALUE<>O WHEN GAME ANO IS SET. POKE 0 TO CLEAR GAME I/0 OUTPUT ANO (3.511 AT PIN 
15) 
VALUE <>0 WHEN GAME ANO IS RESET (CLEARED). POKE 0 TO SET GAME I/0 OUTPUT ANO 
C0.3V AT PIN 15> 
POKE 0 TO CLEAR GAME I/0 OUTPUT AN1 C3.5V AT PIN 14> 
POKE 0 TO SET GAME I/0 OUTPUT AN1 C0.3V AT PIN 14) 
POKE 0 TO CLEAR GAME I/0 OUTPUT AN2 <3.5V AT PIN 13) 
POKE 0 TO SET GAME I/0 OUTPUT AN2 <0.3V AT PIN 13) 
POKE 0 TO CLEAR GAKE I/0 OUTPUT AN3 <3.5V AT PIN 12) 
POKE 0 TO SET GAME I/0 OUTPUT AN3 0.311 AT PIN 12) 
MONITOR MEMORY LOCATION 'TAPEIN' 
STATE OF 'CASSETE DATA IN' APPEARS IN BIT 7 
PEEK TO READ PDL<O> PUS.H BUTTON SWITCH. IF >127 SWITCH ON 
PEEK TO READ PDL(1) PUSH BUTTON SWITCH. IF >127 SWITCH ON 
PEEK TO READ PDL(2) PUSH BUTTON SWITCH. IF >127 SWITCH ON 
MONITOR MEMORY LOCATION PADDLOi HARDWARE INDISTINGUISHABLE 
TIMER OUTPUT fOR PADDLE 0 APPEARS IN BIT 7 (NEGATIVE UNTIL 
MONITOR MEMORY LOCATION PAD Dl1; HARDWARE INDISTINGUISHABLE 
TIMER OUTPUT FOR PADDLE 1 APPEARS IN BIT 7 (NEGATIVE UNTIL 
MONITOR MEMORY LOCATION PADDL2i HARDWARE INDISTINGUISHABLE 
TIMER OUTPUT FOR PADDLE 2 APPEARS IN BIT 7 (NEGATIVE UNTIL 
MONITOR MEMORY LOCATION PADDL3i HARDWARE INDISTINGUISHABLE 
TIMER OUTPUT FOR PADDLE 3 APPEARS IN BIT 7 <NEGATIVE UNTIL 

FROM SC06Ci STATE Of 
TIMER EX PIRES) 
FROM SC06D; STATE OF 
UMER EXPIRES) 
FROM SC06E; STATE lf 
U ME R E X P 1R E S ) 
FROM SC06Fi STATE Of 
TIMER EXPIRES} 

------------------------------------------:--------------------~-------..-------·--..----~--------·------------------
SBF FF - SC067 Prof. Luebbert•s "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ -DESCRIPTION -----------------·-----------------------------------------------------------------·-·-----------------·-·---------·----
SC06C <-16276> [PADDLOJ \H1\ 

SC06D <-16275) (PADDL1] \H1\ 

SC06E C-162 74) (PADDL2] \H1\ 

SC06F (-16273> (PADDL3] \H1\ 

sco7o-sco7F <-1627r-16257> 

sco7o-sco7F (-16272--16257> 

scoso·sco8F <-16256--16241) 

SCOSO <-16256> \ H1 \ 

scoso-scos1 (-16256--16255> 

SCOS1 <-16255> \ H1 \ 

$C081 (-16255) [PHASONJ \P1\ 
SC082 <-16254) \ H1\ 

$C082 <-16254) [ PH SO f F] \ P1 \ 
SC083 C-16253> \ H1 \ 

SC084 (-16252> \H1\ 

SC085 C-16251> \ H1\ 

SC086 <-16250> \ H 1 \ 

SCOS7 C-16249> \ H1 \ 

$C08S (-1624S) \H1\ 

MONITOR MEMORY LOCATION PADDLOi HARDWARE INDISTINGUISHABLE FROM $C064i STATE Of 
TIMER OUTPUT FOR PADDLE 0 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES> 
MONITOR MEMORY LOCATION PADDL1i HARDWARE INDISTINGUISHABLE FROM SC065i STATE Of 
TIMER OUTPUT FOR PADDLE 1 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES) 
MONITOR MEMORY LOCATION PADDL2i HARDWARE INDISTINGUISHABLE FROM $C066i STATE Of 
TIMER OUTPUT FOR PADDLE 2 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES) 
MONITOR MEMORY LOCATION PADDL3i HARDWARE INDISTINGUISHABLE FROM $C067i STATE Of 
TIMER OUTPUT FOR PADDLE 3 APPEARS IN BIT 7 (NEGATl VE IJNTIL TIMER EXPIRES) 

[PTRIGJ \H1\GAME CONTROlLER STROBE. WHEN READ CAUSES FALG INPUTS Of GAME CONTROLLERS TO fiO 
OFF & TIMING lOOPS RESTARTED 

[PTRIGJ \H1\ALL 16 ADDRESSES DECODE TO SINGLE SWITCH WHICH TRIGGERS PADDLE TIMERS DURING 
PH I-2 

[(DEV SELECT O>J 16 MEMORY LOCNS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT 110. WHEN 
ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED. SINCE SLOT #0 IS COMMON AREA 
USED IN COMMON FOR PARAMETERS OF INTEREST TO ALL SLOTS 
SELECT 2ND BANK OFSDOOO-SDFff R'M IN LANGUAGE CARD. WRITE PROTECT RAM ($C084 
DECODES TO SAME ADDRESS & EffECT) 

[PHSOFf-PHSON] \P4\DOS 3.2 READ\WRITE TRACK\SECTOR PACKAGE PARAMETER STAT£MACHINE CONTROLS 
TABLE: LO LO=READiHI LO=SENSE WRITE PROTECTiLO HI=WRlTEiHl Hl=WRIJE LOAD 
READ-DESELECT 2ND BANK Of $D000-SDfff RAM IN LANG. CARD (ENA9LE ROM). TWO 
SUCCESSIVE READS WRITE-ENABLES RAM 
DOS 3.2 READ\WRITE TRACK-SECTOR (RWJS} PACKAGE PARAM.ETER 'PHASON' 
READ-DESELECT 2ND BANK Of SDOOO-SOFff RAM IN LANGUAGE CARD (ENABLE ROM). WRITE 
PROTECT RAM 
DOS 3.2 READ\WRIJE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'PHSOFF' 
SELECT 2ND BANK OF $0000-SDFff RAM IN LANG. CARD. TWO SUCCESSIVE READS TO THIS 
ADDR WRITE-ENABLES RAM 
SELECT 2ND BANK OfSDOOO-SOfff RAM IN LANGUAGE CARD. WRITE PROTECT RAM CSCOSO 
DECODES TO SAME ADDRESS & EFFECT> 
READ-DESELECT 2ND BANK Of $D000-SDffF RAM IN LANG. CARD (ENA3LE ROM>. TWO 
SUCCESSIVE READS WRITE-ENABLES RAM 
READ-DESELECT 2ND BANK Of $D000-$Dfff RAM IN LANGUAGE CARD (ENABLE ROM). WRITE 
PROTECT RAM 
SELECT 2ND BANK Of SD000-$DFFf RAM IN LANG. CARD. TWO SUCCESSIVE READS TO THIS 
ADDR WRITE-ENABLES RAM 
SELECT 1ST BANK OF$D000-$Dfff RAM IN LANGUAGE CARD. WRITE PROTECT RAM 

$C088 C-1624S) [MOTOROFFJ \P1\ 
$COS9 <-16247) \H1\ 

DOS 3.2 READ\WRITE TRACK-SECTOR CRWTS) PACKAGE PARAMETER 'MOTOROFF' 
READ-DESELECT 1ST BANK OF $0000-SOfff RAM IN LANG. CARD (ENABlE ROM). TWO 
SUCCESSIVE READS WRITE-ENABLES RAM 

$COS9 C-16247> [MOTORON) \P1\ 
SC08A C-16246) \H1\ 

$C08A (-16246) [DRVOEN) \P1\ 
SC08B (-16245) \H1\ 

DOS 3.2 READ\WRITE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'MOTORON' 
READ-DESELECT 1ST BANK Of $0000-SDFFF RAM IN LANGUAGE CARD <ENABLE ROM>. WRITE 
PROTECT RAM 
DOS 3 .. 2 READ\WRITE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'DRVOEN' (DRIVE 0 ENABLE) 
SELECT 1ST BANK OF $D000-SDFFF RAM IN LANGUAGE CARD. TWO SUCCESSIVE READS TO THIS 
ADD WRITE-ENABLES RAM 

SC08B (-16245) [DRV1ENJ \P1\ DOS 3.2 READ\WRITE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'DRV1EN' (DRIVE 1 ENABLE) 
SC08C-$COSD (-16244--16243) (Q6L\Q6HJ \P2\DOS 3.2 READ-WRITE TRACK\SECTOR PACKAGE PARAMETER •Q6l-Q6H 1 (Q6 LOW CAUSES 

SC08C C-16244) \J-i1 \ 
SCOSD C-16243> \H1\ 

DOS 3.2 TO READ A BYTE> 
SELECT 1ST BANK O.F$D000-$Dfff RAM IN LANGUAGE CARD. WRITE PROTECT RAM 
READ-DESELECT 1ST BANK OF SDOOO-SDFFf RAM IN LANG. CARD (ENABLE ROMl. TWO 
SUCCESSIVE READS WRITE-ENABLES RAM -------------------------------------------------------------------- -----~-------- ---~----------------------·-·- --·--------

SC06C - $C08D Prof. Luebbert's "What's Where in the Appte" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION 
---------------------------------:·-------·------------~----- ... ---..----------------------~ ..... -~---· ... -----~-------------...-----.--
SC08E.SC08F <-1624z--16241) [Q7L\Q7H] \P2\DOS 3.2 READ-WRIH TRACK\SECTOR PACKAGE PARAMETER 'Q7L-Q7H' (Q7 LOW SfTS DOS 

SC08E <-16242> \H1\ 

SC08F <-16241) \H1\ 

sco9o-sc09F <-16240--16225> [(DEV 

SCOAO.SCOAF <-16224--16209) ((DEV 

scoBo-scoBF (-16208--16193) 

scoco-scocF <-1619r-16177> 

scoDo-scooF <-16176--16161> 

SCOEO-SCOEF (-16160--161'·5> 

scoEo·coE? 

SCOE8 <-16152> 
SCOE9 (-16151> 

SCOEA (-16150) 
SCOEB <-16149> 
S C 0 E C- ~ W EF < - 16 14 a- -1 6 1 4 5) 

[(DEV 

(( DEV 

[(OEV 

((DEV 

3. 2 FOR READ MODE) 
READ-DESELECT 1ST BANK Of SDOOO-SDfff RAM IN LANGUAGE CARD <ENABLE ROM). WRilE 
PROTECT RAM 
SELECT 1ST BANK Of SDOOO-SDFFF RAM IN LANGUAGE CARD. T~O SUCCESSIVE READS TO THIS 
ADD WRITE-ENABLES RAM 

SELECT 1)] 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT #1. WHEN 
ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

SELECT 2>] 16 MEMORY LUCATIONS AllOCATED TO USE Of PERIPHERAL DEVICE IN SLOT #2. WHEN 
ADDRESS PIN 41 TELLS DEVICE IT IS SELECTED 

SELECT 3)) 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT #3. WHEN 
ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

SELECT 4)] 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL CEVICE IN SLOT 14. WHEN 
ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

SELECT 5>] 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT #5. WHEN 
ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

SELECT 6>] 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT N6. WHEN 
ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 
EXAMPLE:DISK CONTROllER IN SlOT 6- ADDRESSES USED TO PULSE THE HEAD STEPPING 
MOTOR. (SEE PGS 145-146 IN DOS MANUAL FOR INFO ABOUT 4 CONTROL LINES TO STEPPING 
MOTOR) THESE ADDRESSES APPEAR IN 4 PAIRS WITH ODD ADDRESSES APPLYING VOLTAGE TO A 
LINE AND EVEN TURNING IT Off AGAIN. IF REFERENCED IN DESCENDING ORDER HEAD STEPS 
TO A LOWER TRACK AND VICE-VERSA 
EXAMPLE: DISK CONTROLLER IN SLOT 6 - ENTRY ADDRESS TO POWER DOWN DISK 
EXAMPLE: DISK. NOTE: BASIC PROGRAMS CAN POKE TO T~JS ADDRESS TO START THE ~OJOR 
BEFORE ISSUING A DOS COMMAND AND GAIN A SLIGHT DECREASE IN ACCF.SS TIME CONTROLLER 
IN SLOT 6 - ENTRY ADDRESS TO POWER UP DISK. NOTE: BASIC PROGRAMS CAN POKE TO THIS 
ADDRESS TO START THE MOTOR BEFORE ISSUING A DOS COMMAND AND GAIN A SLIGHT 
DECREASE IN ACCESS TIME 
EXAMPLE: DISK CONTROLLER IN SLOT 6- SELECT DISK DRIVE #1 
EXAMPLE: DISK CONTROLLER IN SLOT 6- SElECT DISK DRIVE #2 
EXAMPLE: DISK CONTROllER IN SLOT 6- 4 BYTES TO DETERMINE WHETHER DISK CONTROLLER 
IS TO READ- WRITE OR RETURN THE STATUS Of THE WRITE PROTECT MICROSWITCH. ALSO 
USED FOR PASSING READ/WRITE DATA IN GROUPS Of 4-BIT NIBBLES 

SCOFO-SCOFF (-16144--16129) [(DEV SELECT 7)J 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT #7. WHEN 

scsoo·scsFF 

SCSOO\SE\ 

sc1oo·sc1FF <-16128--15873> 

SC100 <-16128) \SE\ 
SC100 <-16128> \SE\ 

sc2oo·sc2FF <-15872--15617> 

SC200 <-15872> \SE\ 
sc3oo·sc3FF <-15616--15361> 

$C300 <-15616) \SE\ 

SC08E - SC300 

ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 
256 BYTE PAGE Of MEMORY (USUALLY ROM> ALLOCATED TO PERIPHERAL DEVICE IN SlOT #S. 
PIN 1 DROPS WHEN ADDRESS SELECTED 
EXAMPLE: CALL -16384+256*5 TO TRANSMIT ASCII CHAR IN ACCUMULATOR OUT VIA APPLE 
SERIAL INTERFACE IN SLOT S 
256 BYTE PAGE OF MEMORY (USUALlY ROM) ALLOCATED TO PERIPHERAL DEVICE #1. PIN 1 
DROPS WHEN ADDRESS SELECTED 
STANDARD CHARACTER I/0 SUBROUTINE ENTRY POINT FOR SLOT #1 
EXAMPLE: JSR SC100 OR CALL -16128 IS EQUIVALENT TO PR#1 FOR INITIALIZING APPLE 
SERIAL INTERFACE IN SLOT #1 
256 BYTE PAGE Of MEMORY (USUAllY ROM) ALLOCATED TO PERIPHERAL DEVICE #2. PIN 
DROPS WHEN ADDRESS SELECTED 
STANDARD CHARACTER I/0 SUBROUTINE ENTRY POINT FOR SLOT #2 
256 BYTE PAGE OF MEMORY (USUALlY ROM) AlLOCATED TO PERIPHERAL DEVICE #3. PIN 
DROPS WHEN ADDRESS SELECTED 
STANDARD CHARACTER I/0 SUBROUTINE ENTRY POINT FOR SlOT #3 

Prof. Luebbert's "What's Where in the Apple" NUMERl C A JLAS 



HEX LOCN CDE.C LOCN) [NAME] \USE-TYPE\ - DESCRIPTION ------___ ,_ ---- -------------------------------- ~---------- ------·-------- ~- -------------~------·------·----~~-- --------- ..--~----

sc40o·sc4 F F c -15 360--15105> 

SC400 C-15360> \SE\ 
sc5oo·sc5FF <-15104--14849> 

SC500 <-15104> \SE\ 
SC600-SC6F F ( -14 848--14 593> 

SC600-SC6FF C-14848--14593> 

SC600.$C65B C-14 848--14 75 7> 

SC600 <-1484 8> \ SE \ 
sc65c·sc6FA <-14756--14598> 

SC683 <-14717> 

SC6A6 C-14682> 

saoo·sc7FF c-14 59r-14337> 

SC700 (-14592) \SE\ 
sc8oo·scFFF c-14336--122891 

sc8oo·scFFF <-14336--12289> 
SC93D <-14019> \SE\ 
SC941 <-14015> \SE\ 
SCFFF (-12289> [CLRROMJ \H1\ 

soooo·soFFF c-12288--8193> \HB\ 

sDooo·so7FF c-12 28a--1 0241> \HB\ 
soooo-sD3FF c-12 288--11 265> \HB\ 
SOOOO C-12288> [SETHRLJ \SE\ 
SOOOE <-12274) (HCLRJ \SE\ 
SDO 10 ( -12 27 2) ( BK GND OJ 
SD012 C-12270> (BKGND] \P1\ 
SD1FC C-11780> (HF IND J '.SE\ 
SD2F9 C-11527> (BPOSNJ \SE\ 
SD30E C-11506) (BPLOJ] \SE\ 
SD314 <-11500) ( BLIN1J \SE\ 
S0331 C-11471) (BGND] \SE\ 
S0337 C-11465) [8DRAW1] \SE\ 

256 BYTE PAGE Of MEMORY (USUALLY ROMJ ALLOCATED TO PERIPHERAL DEVICE #4. PIN 1 
DROPS WHEN ADDRESS SELECTED 
STANDARD CHARACTER IIO SUBROUTINE ENTRY POINT FOR SLOT #4 
256 BYTE PAGE Of MEMORY (USUAllY ROM) AllOCATED TO PERIPHERAl DEVICE #5. PIN 
DROPS WHEN ADDRESS SELECTED 
STANDARD CHARACTER 110 SUBROUTINE ENTRY POINT FOR SlOT #5 
256 BYTE PAGE OF MEMORY <USUALlY ROM} ALLOCATED TO PERIPHERAL DEVICE #6. PIN 
DROPS WHEN ADDRESS SELECTED 
256 BYTE PAGE OF MEMORY USED BY DOS 3.213.3 If DISK CONTROLLING IN STANDARD SLOT 
116 (MEMORY PHYSICAlLY ON CONTROlLER BOARD> .. PART Of TH.IS INFO IS TRANSFERED TO 
PAGE 3 ($300} ON BOOTING . 
DOS 3.213.3- THIS CODE FROM DISK II CONTROLLER ROM 1S FIRST CODE EXECUTED WHEN A 
DISK .IS TO BE BOOTED. DYNAMICALLY BUILDS A TRANSLATE TABLE FOR CONVERTING DISK 
CODES TO 6 BIT HEX AT $0356-$03FF AND DOES INITIAL HOUSEKEEPING AND SETS UP TO 
READ SECTOR ZERO TRACK ZERO TO $0800 THEN FALLS THRU TO GENERAL SECTOR READ SR AT 
SC65C 
STANDARD CHARACTER IIO SUBROUTINE ENTRY POINT FOR SLOT 116 
DOS 3.3 GENERAL SECTOR READ ROUTINE. USES SECTOR# AT $3D ON THE TRACK INDICATED 
BY $0041. READS TO ADDRESS SPECifiED AT S0026-S0027. If D51AAIAO FOUND ON SECTOR 
ADDRESS HEADER & SECTOR DATA WANTED GOTO SC6A6 
DOS 3.3 SIR TO HANDLE SECTOR ADDRESS BLOCK. READS 3 DOUBLE BYTES AND COMBINE TO 
FORM VOLUME- TRACK & SECTOR. STORE TRACK AT $0040. If DESIRED SECTOR fOUND GOTO 
SC65D TO GET SECTOR DATAi OTHERWISE RETURN TO SC65t 
DOS 3.3 SECTOR DATA HANDLING BLOCK. READS 85 BYTES OF SECONDARY DATA TO 
S0300-S0355 AND READS 256 BYTES Of PRIMARY DATA TO ADDRESS SPECifiED BY 
$0026-S0027 & 'NIBBLIZE'. INCREMENT $0027 & $003D AND CHECK AGAINST S0800 TO SEE 
IF ADDITIONAL SECTORS TO BE READ 
256 BYTE PAGE OF MEMORY (USUALLY ROM) AlLOCATED TO PER1PHERAL DEVICE 117. PIN 1 
DROPS WHEN ADDRESS SELECTED 
STANDARD CHARACTER I/0 SUBROUT.INE ENTRY POINT fOR SLOT 117 
EXPANSION ROM MEMORY SPACE. RESERVED FOR 2K ROMS ON PERIPHERAL CARDS. ROM IS 
ACTIVE (ADRESSABLE) ONLY WHEN SLOT IS ACTIVE 
PIN 20 ON ALL PERIPH CONCTRS GOES LOW DURING PHIO ON READ OR WRITE TO THIS GP 
SERIAL INTERFACE BATCH INPUT ROUTINE. A1&A2 SPECIFY MEMORY RANG£ 
SERIAL INTERFACE BATCH OUTPUT ROUTINE - A1 & A2 SPECIFY MEMORY RANGE 
SPECIAL LOCATION RECOGNIZED BY PE'RIPHERAL CARDS AS SIGNAL TO TURN OFF FLIP FLOPS 
WHICH DISABLE EXPANSION ROM 
LANGUAGE CARD CONTAINS TWO SWITCHABLE BANKS Of RAM MEMORY WHICH SHARE THIS 
ADDRESS SPACE 
ROM SOCKET DO 
PROGRAMMERS AID #1 Oil-RES GRAPHICS ROM> 
HI-RES GRAPHICS INIT SIR CALL (ROM VERSION) 
HI-RES GRAPHICS CLEAR SIR CALL 
HI-RES GRAPHICS 'BKGNDO (HCOLOR1 SET FOR BLACK BKGND) 
HI-RES GRAPHICS MEMORY LOCATION 'BKGNO' (ROM) 
HI-RES GRAPHICS FINO SIR CALL: PARAM=SHAPE-ROT-SCALE 
HI-RES GRAPHICS POSN SIR CAll PARAM= xo-yo-cOLR 
HI~RES GRAPHICS PL'OT SIR CALL PAitAM= xo-yo-COLR 
HI-RES GRAPHICS LINE SIR CAll PARAM= xo-vO-COLR 
HI-RES GRAPHICS BKGNO SIR CALL PARAM= COLR 
HI-RES GRAPHICS LINE SIR CALL: PARAM=xo-yo-cOLR 

---------P.~ __ ,_ _______________ ..,_. _________ ~-------:-------------------------------·-----------------·-~------------.,---------
SC400 - $D337 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN) [NAME] \USE-TYPE\- DESCRIPTION 

SD33A (-11462) [SO RAW] \S E\ 
$0393 {-11373) [ BL TU] \SE\ 

$03E3 C-11293) [REASON] \ SE\ 

$0389 (-11335) [SHLOAOJ \SE\ 
$0410 <-11248) [<OUT OF MEM PRT)J 
$0412 (-11246) [ERROR] \S E\ 

$043C (-11204) \ SE \ 

$D48C C-11076) 
$04 F 2 < -11 0 2 2) \ SE \ 

$ 04 F 2 ( -11 0 22 ) \ SE\ 

$D52 c <-10964) [IN LIN] \S E\ 

$D52E (-10962) [INLIN+2J \SE\ 

$D535 (-10955) 
$0539 (-10951) [ GOBUf SJ \SE\ 

SD5 53 (-10925) [INCHRJ \S E\ 

$0566 (-10906) [RUN] \S E\ 
$D61A (-10726) [FNDLINJ \SE\ 

$D648 C-10677> [SCRTCHJ \SE\ 
SD66C (-10644) [CLEARCJ \SE\ 
SD683 C-10621) [STKINIJ \SE\ 
$ 06 9 7 < -1 0 6 0 1> [ S T X T P TJ \ S E \ 
$0600 C-10531> \SE\ 
$D6E7 <-10521) \SE\ 
SD717 C-10473> \SE\ 
SD702 C-10286} [NEWSTTJ \SE\ 

SD800-~i>FFF C-10240~-8193} \H8\ 
SD849 (-10167> (RESTOR] \SE\ 
SD858 C-10152> (ISCNTCJ \SE\ 
SD865 <-10139} \SE\ 
$0898 <-10088) [COI'iTJ \SE\ 
SD8BO <-10364> (SAVE] \SE\ 
S D8 C 9 < -1 0 0 3 9) ( l 0 AD] \ SE \ 
SD8FO C-10000> [VARTIOJ \SE\ 
SD901 C-9983> (PROGIO] \SE\ 
SD93E C-9922> (GOTOJ \SE\ 

$0979 <-9863} [(RET W/0 GOSU8)] 

HI-RES GRAPHICS DRAWl S/R CALL: PARAM= xo·yo-COLR-SHAPE-ROT-SCALE 
APPLESOFT BlOCK TRANSFER UTiliTY. MAKES ROOM BY MOVING EVERYTHING fORWARD. 
Y-REGCMSSJ&A-REG(LSB) AND HIGHDS=OEST Of HIGH AOR;LOWTR=LOWEST AODR TO BE 
MOVED:HIGHTR=HIGHEST ADOR TO BE MOVE0+1 
CHECKS FOR ENOUGH ROOM IN MEMORY; CHECKS THAT AODR Y-REG(MSB}&A-REGClSB) lESS 
THAN fRETOP. MAY CAUSE GARBAGE COLLECTION. CAUSE OMERR lf JliO ROOM 
HI-RES GRAPHICS SHLOAD S/R CALL 
APPLESOFT - PRINT "OUT Of MEMORY" THEN HAlT AT APPLESOfT (]) LEVEL 
APPLESOFT ERROR PROCESSING - CHECKS ERRfLG AND JUMPS TO HNDLERR If ONERR IS 
ACTIVE OTHERWISE PRINTS ERROR MSG BASED ON CODE IN X-REG 
APPLESOFT LOCATIO~ TO WHICH DOS 3.2 JUMPS TO MAKE A SOFT ENTRY TO ROM COR 
LANGUAGE PACK) APPLESOFT 
INTEGER BASIC PA#1 APPEND PROGRAM ENTRY 
APPLESOFT - SET COR RESET) POINTERS & LINKAGES fOR FIRMWARE APPLESOFT (ROM) (OR 
LANGUAGE PACK LOCATED IN TOP 16K OF 64K MEMORY> 
APPLESOfT - TO CONVERT FROM RAM APPlESOFT STORED AT $0800-$3003 TO FIRMWARE 
APPLESOfT IN ROM OR TOP 16K RAM- -CALL -11022-LIST-SAVE 
APPLESOfT- INPUT l.INE Of TEXT fROM CURRENT INPUT DEVICE INTO INPUT BUFFER (BUF> 
& fAll INTO GDBUfS. NO PROMPT! 
APPlESOFT - INPUT LINE OF TEXT FROM CURRENT INPUT OEVICE INTO INPUT BUfFER (8Uf) 
& FALL INTO GOBUFS. CHAR IN X-REG USED AS PROMPT 
INTEGER BASIC PA#1 TAPE VERIFY PROG ENTRY 
APPLESOFT -PUT ZERO AT END OF INPUT BUffER (BUF> AND MASK Off MOST SIGNIFICANT 
BIT ON All BYTES. ON ENTRY X-REG=END OF INPUT LINE {A- X- Y-REGS AlTERED} 
APPLESOfT - GET ONE CHAR FROM CURRENT INPUT DEVICE IN A-REG & MASK OF MSB. USES 
MAIN APPLE INPUT ROUTINES & SUPPORTS HANDSHAKING 
APPLESOfT -RUN THE PROGRAM IN MEMORY. THIS ROUTINE DOES NOT RETURN 
APPLESOfT - SEARCHES PROGRAM FOR LINE WHOSE NUMBER IS IN LINNUM. ON EX.IT IF CARRY 
SET LOWTR POINTS TO LINK FIELD OF DESIRED LINE; IF NOT .LOWTR TO NEXT HIGHER LINE 
APPLESOFT INITIALIZATION - THE 'NEW' COMMAND. ClEARS PROGRAM VARIABlES & STACK 
APPLESOfT INITIALIZATION - THE 'CLEAR' COMMAND. ClEARS VARIABLES & STACK 
APPLESOFT STACK INITIAliZATION- CLEARS THE STACK 
APPLESOFT INITIALIZATION - SET TXTPTR TO BEGINNING Of PROGRAM 
INTEGER BASIC PA#1 RENUMBER PROG ENTRY (WHOLE PROG) 
INTEGER BASIC PA/11 RENUMBER PROG ENTRY (PART PROG) 
INTEGER BASIC PA#1 MUSIC PROG ENTRY 
APPLESOFT -EXECUTE A NEW STATEMENT. ON ENTRY TXTPTR POINTS TO THE':' PRECEDING 
THE STMT OR ZERO AT ENO OF PREVIOUS LIN. USE NEWSTT TO RESTART THE PROGRAM WITH 
CONT. THIS ROUTINE DOES NOT RETURN 
ROM SOCKET D8 
APPLESOFT RESTORE FUNCTION - SET DATA POINiER CDATPTR) TO BEGINNING Of THE PROGRAM 
APPLESOFT - CHECK KEYBOARD FOR CONTROL-( ($83). EXECUTES BREAK ROUTINE If THESE IS 
APPLESOFT - POINT TO WHICH DOS 3.2 JUMPS INTO ROM APPLESOFT WHEN PROCESSING ERRORS 
APPLESOFT - MOVES OLDTXT & OLOLIN INTO TXTPTR & CURLIN 
APPLESOFT CASSETTE - SAVE THE PROGRAM IN MEMORY TO CASSETTE TAP£ 
APPLESOFT CASSETTE - LOAD A PROGRAM FROM CASSETTE TAPE 
APPLESOFT CASSETTE - SET UP A1 & A2 TO SAVE 3 BYTES (S0050-S0052> FOR LENGTH 
APPLESOFT CASSETTE - SET UP A1 & A2 TO SAVE PROGRAM TEXT ON CASSETTE 
APPLESOfT - USES LINGET & FNOLIN TO UPDATE TXTPTR. GOTO ASSUKES 6502 REGS HAVE 
BEEN SET UP BY CHRGET THAT fETCHED 1ST DIGIT 
APPLESOFT -PRINT "RETURN WITHOUT GOSUa" THEN HALT AT APFlESOfT ()) lEVEl 

------------------------------------------------------------------~------------------...--·-----~-------·-----------·-..,._ __ _ 
SD33A - $0979 Prof. Luebbert's "What's Where in the Apple" NUMERIC A Tl.AS 



HEX LOCN <DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION ------------------------------------------------------------·--------------------------------------------------------
SD97C <-9860) [(UNDEF'D STMT PRT>J 
SD995 ( -9835) [DATA] \S E\ 
SD9A3 (-9821) [DATANJ \SE\ 
SD9A6 (-9818) [R EMN] \S E\ 
SD998 (-9832) (ADDONJ \ SE \ 
S DA 0 C ( -9 71 6 ) (L INGETJ \S E \ 

SDA46 (-9658) [LET] \SE\ 

S DA 6 5 ( -9 6 2 7 ) \S E\ 

SbAFB <-9477> [CROO] \SE\ 
SDA87 <-9545) [COPY] \S E\ 

SDB3A (-94 14) [STROUT] \S E\ 

SDB3D (-9411) [S TRPRT J \SE\ 
SDB5C <-9380> [OUTDO] \SE\ 
SDB57 (-9385> [OUTSPC] \S E \ 
SDB5A (-9382) [Ol:TQSTJ \S E \ 
SDDOB <-8949) ((NEXT w/ 0 FOR PRT)] 

SDD6 7 <-885 7> [f RMNUM] \S E \ 

SDD6A (-8854> (CHKNUM] \S E \ 
SDD6C (-8852> [ C HK ST R] \S E \ 
SDD6D C-8851) [C HK VAL] \S E\ 

SDD76 <-8842) \S E\ 
SDD7B <-8837> [FRPIEVLJ \S E \ 

SDD7B <-8837) [F RMEVLJ \S E\ 

SDE10 <-8688> \S E \ 

SDE47 (-8633) \S E \ 

SDE81 <-8575> [STRTXTJ \S E\ 
SDE98 <-8552> ((1\0TFAC)] \SE\ 
SDEB2 <-8526> (PARCHK] \S E\ 

SDEB8 <-8520> (CHKCLS] \S E\ 
SDEBB (-851 7> (CHKCPN] \SE\ 
SDEBE (-8514) (CHKCOM] \S E \ 
SDECO <-8512> (SYNCHR] \S E \ 

SDEC9 <-8503> \S E\ 
SDEE9 <-8471) ( ( IN T= > f P ) ] \ S E \ 

S[)f4F (-83S9> (( FAC/ARG OR)] \ SE \ 

APPLESOFT - PRINT "UNDEF'D STATEMENT" THEN HALT AT APPLESOFT (]) LEVEL 
APPLESOFT- MOVE TXTPTR TO END OF STATEMENT; LOOKS FOR':' OR EOL<O>. 
APPLESOFT- CALCULATE OFFSET IN Y-REG FROM TXTPTR TO NEXT':' OR EOL(Q) 
APPLESOFT- CALCULATE OFFSET IN Y-REG FROM TXTPTR TO NEXT COL(Q) 
APPLESOFT- ADD Y-REG TO TXTPTR 
READ 16BIT INTEGER LINE II FROM TXTPTR INTO LINNUM. SEE APPLE ORCHARD V1#1P13 fOR 
DETAILS 
APPLESOFT LET- USES CHRGET TO GET ADDRESS OF '=':EVALUATES FORMULA & STORES IT. 
ON ENTRY TXTPTR POINTS TO FIRST CHAR Of VARIABLE NAME 
APPLESOFT- PACK EXTENSION BYTE IN FAC AND CONVERT FAC (WHERE IFACJ<2.15) TO 
2-BYTE INT,EGER. STORE INTEGER IN FORPNT (S0085-.S0086> 0-REG=>D 
APPLESOFT- PRINT A CARRIAGE RETURN 
APPLESOFT- FREE STRING POINTED TO BY Y-REG CMSB) & A-REG (LSBl & MOVE IT TO MEM 
LOC POINTED TO BY FORPNT 
APPLESOFT -PRINT STRING POINTED TO BY Y-REG (MSB) & A-REG (LS8). STRING MUST END 
WITH A ZERO OR QUOTE 
APPLESOFT - PRINT A STRING WHOSE DESCRIPTOR IS POINTED TO SY FACMO-FACLO 
APPLESOFT - PRINT THE CHARACTER IN A-REG. INVERSE-FlASH-NORMAL OPTJONS IN EFFECT 
APPLESOFT - PRINT A SPACE 
APPLESOFT - PRINT A QUESTION MARK 

\SE\APPLESOFT - PRINT ERROR MESSAGE "NEXT WITHOUT FORfl THEN HALT AT APPLESOFT (J) 

LEVEL 
APPLESOFT- EVALUATE EXPRESSION POINTED TOBY TXTPTR CSQOB8-SOOB9) (POINTS TO 1ST 
CHAR OF FORMULA). PUT RESULT INTO FAC & MAKE SURE IT lS A NUMBER 
APPLESOfT -MAKE SURE FAC IS NUMERIC (SEE CHKVAL) 
APPLESOFT - MAKE SURE FAC JS STRING CSEE CHKVAL) 
A~?LESOFT - IF C SET CHECK FOR STRINGS;C CLEAR CHECK FOR NUMRIC VBL. TYPE MISMATCH 
I:RROR OCCURS IF C AND FAC DON'T AGREE 
APPLESOFT - PRINT "TYPE MISMATCH" THEN HALT AT APPLESOFT (]) LEVEL 
APPLESOFT - EVAL FORMULA AT TXTPTR USING CHRGET & LEAVE RESULT IN fAC. ON ENTRY 
TXTPTR POINTS TO 1ST CHAR OF FORMULA 
APPLESOFT - EVAL FORMULA AT TXTPTR USING CHRGET. IF FORMULA IS STRING LITE~AL 
FR'IIEVL GOBBLES OPENING QUOTE AND EXECUTES STRUT & ST2TXT 
APPLESOFT - PACK EXTENSION BYTE Of FAC INTO FAC & PUSH fAC ONTO STACK (6 SYTESJ~ 
MODIFIES INDEX 
APPLESOFT- PULL ARG AND PUT EXCLUSIVE OR OF SIGNS OF FAC & ARG INTO (XORFPSGN) 
$00AB. MUST BE EXECUTED BY JMP INSTRUCTION 
APPLESOFT- SET Y-REG CMSB) & X-REGCLSB> TO TXTPTR +CARRY BIT AND FALL INTO STiiliT 
APPLESOFT -LET FAC = NOT<FAC>; I.E. RETURNS FAC=1 If FAC=O OR fAC=O Jf fAC<>O 
APPLESOFT PARENTHESIS CHECK- CHECK FOR 1 ('iEVALUATE FORMULAiCHECK FOR')'. USES 
CHKOPN & FRMEVL THEN FALLS INTO CHKCLS 
APPLESOFT CLOSE PARENTHESIS CHECK- CHECKS TXTPTR FOR '>'. USES SYNCHR. 
APPLESOFT OPEN PARENTHES~S CHECK - CHECKS TXTPTR FOR '<'. USES SYNCHR. 
APPLESOFT COMMA CHECK- CHECKS TXTPTR FOR COMMA. USES SVNCHR. 
APPLESOFT SYNTAX CHARACTER CHECK - CHECKS TO VERIFY TXTPTR POINTS TO SAME 
CHARACTER AS THAT IN A-REG. NORMAL EXIT THRU CHGET TO GET NEX CHAR FROM INPUT 
BUFFER OTHEWISE SYNTAX ERROR. TXTPTR NOT MODIFIED. {Y-REG RESET TO ZERO} 
SNERR SIR. PRINTS "SYNTAX ERROR" AN.D .HALTS PROG 
APPLESOFT - PULL INTEGER C%) VARIABLE POINTED TO BY FACMO-fACLO CSOOA0-$00A1) INTO 
A-REG & Y-REG AND CONVERT TO FP IN FAC. RESETS VALTYP {RESETS Y-REG TO 0} 
APPLESOFT -LET FAC = FAC 'OR' ARGi I.E. FAC=1 IF EITHER FAC OR ARG OR BOTH <>J; 
FAC=O O~LY If BOTH FAC & ARG = 0 

------------------------------------------------------------------------ --------~------~ ~---------------~-----~----------------
S D9 7 C - $ D F 4 F Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NH1E] \USE-TYPE\- DESCRIPTION 

---------------------------------------------------------------~---------·--·---------------------------·------------·· 

SDF55 <-8363) (( FAC/ARG AND)] \SE\APPLESOFT - LET FAC = FAC 'AND' ARG; I.E. FAC=1 ONLY If BlTH FAC & ARG <>O; lf EITHER 
FAC OR ARG OR BOTH =0 THEN FAC=O 

SOF6A (-8342) ((FAC/ARG COMPARE)] \SE\APPLESOFT- COMPARERS FAC WITH 
CONDITION MET FAC SET TO ONE; ELSE FAC RESET 

SOFE3 (-8221> [PTRGETJ \SE\APPLESOFT- READ VAR NAME FRlM CHRGET AND 
VARIABLE OR ARRAY). DOES MUCH HOUSEKEEPING 

ARG. TYPE OF COMPARISON CONTROLLED BY S0016., IF 
TO ZERO 
FIND IT IN MEMORY (OR CREATE APPROPRIAT£ SIMPlE 

SE000-SE7FF (-8192--6145) \HB\ ROM SOCKET EO (APPLE II (NOT II+)= INTEGER BASIC> 
SEOOO <-8192) (BASIC] INTEGER BASIC- 'HARD' OR 'COLO' OR 'CONTROL-S' ENTRY POINT (COMPLETE 

SEOOO <-8192> (BASIC] 

SE003 <-8189) (BASIC2J \SE\ 

SE006 
SE02A 
$E04B 
$E05D 
$E06D 
SE07D 

( -8166) 
(-8150) 
<-811]) 
<-8099) 
(-8083) 
( -806]) 

c·sETPRMPT-J \SE\ 
[- N X TB Y T E -] \ S E \ 
\ S E \ 
\S E\ 
c· UN PAC K - J \ S E \ 
(ISLETC (CHARCHEK)J 

REINITIALIZATION. START WITH A TOTALLY FRESH SLATE) 
APPLESOFT - 'HARD' OR 'COLD' OR 'CONTROL-S' ENTRY POINT (COMPLETE REINlTIAliZATION. 
START WITH A TOTALLY FRESH SLATE.> 
INTEGER BASIC- 'SOFT' OR 'WARM' OR 'CONTROL-C' OR 'ENTRY2' ENTRY POINT <REENTRY 
WITHOUT REINITIALIZATION Of SYMBOL-TABLE- VARIABLES OR DATA) 
INTEGER BASIC ENTRY POINT TO SET UP '>' PROMPT 
INTEGER BASIC ENTRY POINT TO GET NEXT BYTE 16-BIT POINTER 
INTEGER BASIC 'LIST' ROUTINE CLIST ALL THE PROGRAM) 
INTEGER BASIC ENTRY POINT TO LIST x-y CllST A RANGE Of THE PROGRAM 
INTEGER BASIC ENTRY POINT TO UNPACK TOKENED CODE TO MNEMONICS 

\SE\APPLESOfT - CHECKS A-REG FOR ASCII LETTER OTHERWISE CLEAR IT TO ZERO ('A' TO 
'Z'>. SET C <CARRY fLAG) TO 1 If A IS A LETTER OTHERWISE ClEAR IT TO ZERO <A- X
Y-REGS NOT ALTERED} 

SEOFE-$E104 <-7938--7932) [(-32K)J \P5\APPLESOFT FIVE-BYTE FLOATING POINT CONSTANT -32768 (-2-16.) 
SE105 <-7931> [<EVAL EXPR =>INT>J \SE\APPLESOFT- EVALUATE EXPRESSION POINTED TO BY TXTPTR ($0088-SOOB~) AND CONVERT 

RESULT (WHICH MUST BE NON-NEGATIVE) TOA TWO-BYTE INTEGER IN FACMO-FACLO 
C SOOAO-SOOA 1 > 

SE108 (-7928) [(AYPOSINT +FP=>INT>J \SE\APPLESOFT- SAME AS AYlNT ($E10C> EXCEPT FAC MUST BE POSITIVE 
SE10C <-7924) [AYINT (FF=>INT)] \SE\APPLESOH- IF FAC SUITABLE FOR CONVERS.ION TO INTEGER (fAC<32767 & FAC>-32768) THEN 

SE130 
SE1 71 
SE196 
SE199 
SE222 
SE27 A 
SE28A 
$E2B3 
$E2F2 

(-7888) 
<-7823) 
( -7786) 
<-7783) 
(-7646) 
<-7558) 
( -7542) 
(-7501> 
<-7438) 

PERFORM QINT {RESET Y-REG=O} 
CDIMSTR-] \SE\ INTEGER BASIC ENTRY POINT TO DIMENSION A STRING FOR MEMORY 
r·INPUTSTR-J \SE\ INTEGER 3ASIC ENTRY POINT TO 'INPUT A STRING' ROUTINE 
((BAD SUBSCRPRT)] \SE\APPLESOFT - PRINT "BAD SUBSCRIPT" AND HALT AT APPLESOFT LEVEl CJ> 
[(ILLEGAL QTY PRT>] \SE\APPLESOFT- PRINT "ILLEGAL QUANTITY" AND HALT AT APPlESOfT LEVEL(]) 
(-MULT-J \Sf\ INTEGER 3ASIC ENTRY POINT TO MULTIPLY ROUTINE 
[-MOD-] \SE\ INTEGER BASIC ENTRY POINT TO MODULO FUNCTION 
(- SC I'N-] \SE\ INTEGER BASIC ENTRY POINT TO SCREEN x- y• COLOR VALUE FUNCTION 
[-MAINLINE-] \SE\ INTEGER BASIC ENTRY POINT TO MAIN LINE Of COMPILE/EXECUTE CODE 
[GIVAYF (INT=>fP)J \SE\APPLESOFT- FLOAT THE SIGNED INTEGER W/LSB IN A-REG MSB IN Y-REG INTO FAC. RESETS 

VALTYP. {RESETS Y-REG=O} 
SE301 <-7423) (SNGFt.TJ \SE\ APPLESOFT - FLOAT THE UNSIGNED INTEGER IN Y-REG INTO FAC. RESETS V4LTYP. {RESET 

Y-REG=O} 
SE306 
SE30B 
SE30E 
SE36B 
SE36 F 
$E3CO 
$£3 C E 
SE3D5 

(-7418) 
(-7413> 
(-7410) 
<-7317> 
<-7313) 
<-7232) 
(-7218) 
(-7211) 

(ERRDIRJ \Sf\ 
((ILLDIRPRT)J \SE\ 
\S E\ 
[MEMFUL] \SE\ 
c· DELE re· J \Sf \ 
CERRORMESS••J \SE\ 
CGETCMD-J \SE\ 
(STRINIJ \SE\ 

$E3DD (-72J3) [STRSPA] \SE\ 
SE3EO <-7200) [-ERRORMESS-J \SE\ 

APPlESOFT - CAUSES IllEGAl DIRECT ERROR If PROGRAM NOT RUNNING {X-REG ALTERED} 
PRINT "ILLEGAL DIRECT" THEN HALT AT APPLESOfT ()J LEVEL 
APPLESOFT - PRINT "UNDEFINED FUNCTION" THEN HALT AT APPLESOFT (]) LEVEL 
INTEGER BASIC MEMORY FUll ERROR 
INTEGER BASIC ENTRY POINT TO DELETE LINES OF TEXT x-v 
INTEGER BASIC ENTRY POINT - INPUT ERROR MESSAGE 
INTEGER BASIC ENTRY POINT TO GET A COMMANO fROM THE KEYBOARD 
APPLESOFT - GET SPACE FOR CREATION OF A STRING & CREATE DISCRIPTOR FOR IT IN 
DSCTMP. ON ENTRY A-REG = LEN Of STRING. 
APPLESOFT - JSR TO GETSPA. STORE THE POINTER & LENGTH IN DSCTMP. 
INTEGER BASIC ENTRY POINT TO PRINT ERROR MESSAGE AND GOTO MAINLI~E 

----------------------------------------------------------------------------------··:.--------------- ---·· --------------·-
SDF55 - SE3EO Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAMEJ \USE-TYPE\ -DESCRIPTION 

SE3E3 <-71H> \S E\ 
SE3E7 C-7193> (S TRLI TJ \S E\ 
SE3ED C-7187> (STRLT2] \SE \ 

SE42A C-7126) (PUT NEW] \S E\ 

SE430 <-7120> (( TOOCOMP LEX)] \ SE\ 
SE452 <-7086> (GETSPA] \S E \ 

SE484 C-7036) (GARBAG] \S E\ 

SE51B <-6885) [-HEX/DEC-] \SE\ 

SE597 C-6761) [CATJ \SE\ 

SE5AD (-6739> c-NEw-J \SE\ 

SE5B7 (-6 729 > r·cLR-J \SE\ 
SE5D4 <-6700) [MCVINSJ \S E\ 

SE5E2 <-6686) [MOVSTRJ \S E\ 

SE5fD C-6659) [fRESTRJ \SE\ 
SE604 ( -6652) CfRETMPJ \SE\ 

SE635 C-66::13) [FRETMS] \S E\ 

SE6EC C-6420> r· BRANCH-] \SE \ 
SE6F5 <-6411} [GTBYTC] \S E\ 
SE6F8 <-64::l8> [GETBYTJ \SE\ 

SE6F8 (-6408> [G ETBYT J \SE\ 

SE6FB C-6405) (CONINTJ \S E \ 

SE6FF <-64::11) (-GETVERB-J \SE\ 
SE715 (-6379) [-GET16BIT-J \SE\ 
SE736 C-6346} [-NOT-] \ SE \ 
SE746 C-6330> [GETNUMJ \SE\ 

SE74A C-6326) r-ABs-J \se\ 
SE74C C-6324> [COMBYTEJ \SE\ 

SE7 52 (-6318) [GETAORJ \SE\ 

SE75C C-6308) r· SGN-J \ SE \ 
SE782 <-6270> r-suBTRACTION•J \SE\ 
SE785 C-6267> r·AODITION-J \SE\ 
SE7AO <-6240> (FAODH] \SE\ 

INTEGER BASIC ENTRY POINT TO ~HlCH DOS 3.2 CHAINS WHEN PROCESSING ERRORS 
APPLESOFT - STORE A QUOTE IN ENOCHR AND CHARAC SO THAT STQLT2 WILL STOP ON IT 
APPLESOFT - BUILD DESCRIPTOR fOR STRING LITERAl WHOSE 1ST CHAR POINTED TO BY Y-REG 
(MSB) & X-REG (lSB>. PUT INTO TEMPORARY & POINTER TO IT IN fACMO.fACLO. 
APPLESOFT - STRING FUNCTION RETURNING WITH RESULT INDSCJMP. MOVE OSCTMP TO TEMP 
DESCRIPTOR & PUT POINTER TO DESCRIPTOR IN FACMO-FACLO & flAG RESULT ~S STRING 
APPLESOFT - PRINT "FORMULA TOO COMPLEX" THEN HALT AT APPLESOfl (]) LEVEL 
APPLESOFJ - GET SPACE fOR CHARACTER STRING. MOVES FRESPC & FRETOP DOWN. A-REG = # 
OF CHARS. POINTER TO SPC IN Y-REG{MSB) & X-REG(LSB) 
APPLESOFT GARBAGE COLLECTOR - MOVES All CURRENTLY USED STRINGS UP IN MEMORY AS FAR 
AS POSSIBLE 
INTEGER BASIC- DECIMAL LPRINT CLINE NUMBER PRINTl S/R; CONVERTS 2-BYTE (16-BIT) 
BINARY/HEX TO UNSIGNED DECIMAL C0-65535) 
APPLESOFT - CONCATENATE TWO STRINGS. FACMO CMS6} & fACLO (LSB) POINT TO FIRST 
STRING'S DESCRIPTOR & TXTPTR POINTS TO '+' 
INTEGER BASIC ENTRY POINT TO CLEAR OUT OLD PROGRAM AND RESET POINTERS FOR A NEW 
PROGRAM 
INTEGER BASIC ENTRY POINT TO ClEAR OUT VARIABLE WORK SPACE 
APPLESOFT- MOVE STRING WHOSE DESCRIPTOR IS POINTED TO BY STRNG1 TO MEM LOC POINTED 
TO BY fORPNT 
APPLESOFT - MOVE STRING POINTED TO BY Y-REG {MSB) & X-REG (LSB) WITH LENGH IN A-REG 
TO MEMORY POINTED TO BY FRESPA 
APPLESOFT - MAKE SURE THAT LAST fAC RESULT WAS A STRING & fAll INTO FREFAC 
APPLESOfT - FREE A TEMPORARY STRING. ON ENTRY POINTER TO DESCRIPTOR IS IN Y-REG 
CMSB) & X-REG (LSB) 
APPLESOFT - fREE TEMPORARY DESCRIPTOR W/0 FREEING UP THE STRING. Y-REG (MSB) & 
X-REG<LSB) POINT TO DESCRIPTOR TO BE fREED. ON EXIT Z SET IF ANYTHING FREED 
INTEGER BASIC ENTRY POINT TO BRANCH <GET LO/HI THEN JSR) 
APPLESOFT - JSR TO CHRGET TO GOBBLE A CHARACTER AND FALL INTO GETBYT 
GETBYT SIR. EVALS EXPRESSION (fORMULA) POINTED TO BY TXTPTR ($00B8.SOOB9) & CONVTS 
TO 1-BYT VAL IN X-REG & fACLO(S00A1). A-REG GETS EXPRESSION TERMINAL SIGN {RESETS 
Y-REG=O} 
APPLESOFT - EVAL fORMULA AT TXTPTR. LEAVE RESULT IN fAC AND FALL INTO CONINT. AT 
ENTRY TXTPTR POINTS TO fiRST CHAR IN fORMULA FOR FIRST NUMBER PLOUNS PUTS fiRST 
NUMBER IN fiRST AND SECOND NUMBER IN H2 AND V2 
APPLESOFT FP- CONVERT FAC INTO SINGLE BYTE IN X-REG & FACLO.NORMAL EXIT THRU 
CHRGET. If fAC<O OR fAC>255 ILLEGAL QUANT ERROR 
INTEGER BASIC ENTRY TO GET NEXT VERB TO USE 
INTEGER BASIC ENTRY TO GET A 16-BIT VALUE 
INTEGER BASIC ENTRY TO 'NOT' {NOT A VALUE FUNCTION) 
APPLESOFT fP- READ 2-BYTE NUM INTO liNNUM fROM TXTPTR. CHECK FOR COMMA. GET SINGLE 
BYTE NUMB IN X-REG. 
INTEGER BASIC ENTRY TO GET ABSOLUTE VALUE OF A NUMBER 
APPLESOFT - CHECK FOR COMMA & GET A BYTE IN X-REG. USES CHKCOM& BETBYT. ON ENTRY 
TXTPTR POINTS TO COMMA 
APPLESOfT FP - CONVERT FAC ~65535 TO 65535) INTO 2-BYTE INTEGER £0-655351 IN 
LINNUM. 'WRAPAROUND' OCCURS If VALUE IN fAC TOO BIG {A- Y-REGS ALTERED} 
INTEGER BASIC ENTRY POINT TO GET SIGN OF A NUMBER 
INTEGER BASIC ENTRY POINT TO SUBTRACTION fUNCTION 
INTEGER BASIC ENTRY POINT TO ADDITION FUNCTION 
APPLESOFJ FP- ADD 1/2 TO FAC (1/2 IN SEE64) ---------------------------____ ..,...._ ___________ --------~ -- ~·-------- .,..------.~·-----------,......-- .., ______ --------------------------

SE.3E3 - SE7AO Prof. Luebbert•s "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION 

$E7A4 C-6236) [-TAB-) \SE\INTEGER BASIC ENTRY POINT TO HORIZONTAL TAB FUNCTION 
$E7A7 (-6233) [FSUB (fPSUB)] \SE\APPLESOFT- MOVE FP NUMBER IN MEMORY POINT.ED TO BY Y-REG &A-REG INTO ARG AND FALL INTO 

FSUB CFPSUB)T 
$E7AA <-6230) [FSUBTJ \SE\APPLESOFT- FP SUBTRACT FAC fROM ARG. ON ENTRY A-REG & 6502 ZERO flAG REFLECT FACEXP. RESULT 

TO F AC 
$E7BE (-6210) [fADD (FPAOD)] \SE\APPLESOFT fP- MOVE THE FP NUMBER IN MEMORY POINTED TO BY Y-REG & A-REG INTO ARG AND 

FALL INTO fAODT {FPAOO}. MODIFIES INDEX & XORFPSGN 
$E7C1 C-6207> c·coMMA'-J \SE\INTEGER BASIC ENTRY POINT TO COMMA FUNCTION 
$E7C1 (-6237> [FADDTJ \SE\APPLESOFT FP- ADD FAC AND ARG. ON ENTRY A-REG AND ZERO FLAG REFLECT FACEXP. RESULT TO FAC 
SE800-$EFFF <-6144--4097> \HB\ ROM SOCKET E8 (INTEGER BASIC> 
$E7E2 C-6174> [-AUTO'-] \SE\ INTEGER BASIC ENTRY TO AUTO LINE NUMBERING fUNCTION 
$E828 (-6104) (-If/THEN-) \SE\ INTEGER BASIC ENTRY TO IF/THEN ROUTINE 
$E836 (-6090) \SE\ INTEGER BASIC 'RUN'- LOCATION INTO WHICH DOS CHAINS TO RUN AN INTEGER BASIC PRJGRAM 
$E83C <-6084) c·Gosua-J \SE\ INTEGER BASIC ENTRY TO GOSUB HANDLER 
$E84E (-6066) [(RESET>J \SE\ RESET FACEXP($009D) AND SOOA2 (FACSIGN.) & A-REG TO ZERO {A-REG=>o;x- Y-REG NOT 

ALTERED} 
$E85B (-6053) r·GOTO-J \SE\ INTEGER BASIC ENTRY TO 'GOTO' HANDLER 
$E875 (-6027> c·GETNEXT-J \SE\ INTEGER BASIC ENTRY TO 'GETNEXT 1 (FETCH NEXT STATEMENT FROM TEXT SOURCE> 
$E8A5 (-5979) [-RETURN-] \SE\ INTEGER BASIC ENTRY TO ROUTINE FOR RETURN FROM GOSUB 
$E8C3 (-5949) c·srOPPED AT-] \SE\ INTEGER BASIC ENTRY TO ROUTINE TO PRINT 'SlOPED AT LINE II' 
$E8D5 (-5931) [(OVERFLOioiPRT>J \SE\ PRINT "OVERflOW" THEN HALT AT THE APPLESOFT ())LEVEL 
$E8D6 (-5930) (-NEXT-) \SE\ INTEGER BASIC ENTRY TO ROUTINE TO HANDLE 'NEXT' LOOP END 
$E91r$E917 C-5869--5865) [(ONE)] \P5\APPLESOfT FP CONSTANT ONE =1. 
$E92D-$E931 (-584r-5839) (( SQR(., 5)) J \P5\APPLESOFT FP CONSTANT SQR(.,5) = .707 .. . 
$E932-$E936 <-5838--5834) [(SQRC2>>J \P5\APPL£SOFT fP CONSTANT SQR(2J = 1.,414 ... . 
$E937-$E943 (-5833--5813) ((MINUS.ONE.HALF>J \P5\APPLESOFT fP CONSTANT MINUS ONE HALF (-1/2) 
$E93A <-5830) (-FoR-) \SE\ INTEGER BASIC ENTRY TO ROUTINE TO HANDLE 'FOR' LOOP INITlAlllATION 
$E93C-$E940 <-5828--5824) [(LNC2>>J \P5\APPLESOfT fP CONSTANT (LN(2) = .30103 ••• 
$E950 (-5808> [-TO/FOR-] \SE \ INTEGER BASIC ENTRY POINT TO ROUTINE TO HANDLE LOOP COUNTER Jl TO II STEP II 
$E97f (-5761) [FMULT (FPMULT)J \SE\ APPLESOFT FP- MOVE THE fP NUMBER IN MEMORY POINTED TO BY Y-REG & A -REG INTO ARG 

$E982 C-5758) [fMULTTJ \SE\ 

$E9E3 C-5661) (CONUPKJ \SE\ 

$E9E7 <-5657> \SE\ 

AND FALL INTO fMULTT CFPMUlT). ALTERS INDEX XORFPSGN 
APPLESOfT fP- MULTIPLY fAC AND ARG. ON ENTRY A~EG & ZERO flAG REflECT FACEXP. 
RESULT TO FAC. XORFPSGN MUST BE COMPUTED BEfORE CALL 
HPLESOFT FP - LOAD ARG fROM MEMORY POINTED TO BY Y-REG & A-REG. ON EXIT A & Z 
REFLECT FACEXP. MODIFIES INDEX & XORFPSGN. {RESET Y-REG=O} 
APPLESOFT FP - SAME AS $E9E3 EXCEPT USE MEMORY lOCATlON POINTED TO BY INDEX 
< S005CS005f) 

$EA10-$EA87 <-5616--5497> r·vERBADL-l \PB\INTEGER BASIC VERB DISPATCH TABLE LOW BYTE 
SEA39 C-5575> [MUL10J \SE\ APPLESOFT fP- MULTIPLY fAC 3Y 10. WORKS fOR BOTH POSITIVE & NEGATIVE NUMBERS 
$EA55 <-5547> (0 IV10J \SE\ APPLESOFT fP- DIVIDE FAC BY 10. RETURNS POSITIVE NUMBERS ONlY 
$EA66 (-5530> (FDIV (FPDIV>J \SE\ APPLESOFT FP- MOVE THE FP NUMBER IN MEMORY POINTED TO 3Y R-REG & A-REG INTO ARG 

AND FALL INTO FDIVT. ALTERS INDEX & XORFPSGN 
$EA69 <-5527> (FDIVT CFPDIV2>J \SE\ APPLESOFT FP- DIVIDE ARG BY fAC. ON ENTRY A-REG AND Z REFLECT fACEXP. RESULT IN 

$EA88 C-5496) CVERBADRH-J \PB\ 
$EAE1 (-5407> [(DIVZEROPRT>] \SE\ 
$EAF9 (-53g3) [MOVFM <FPLOAD)J \SE\ 

$EAFD (-5379) \SE\ 

$EBOO-$EB99 <-53 76--522 3) \PB\ 

fAC. XORFPSGN SHOULD BE COMPUTED BEfORE CALL 
INTEGER BASIC VERB DISPATCH TABLE HI BYTE 
APPLESOFT- PRINT "DIVISION BY ZERO" THEN liALT AT APPLESOfT ()) LEVEL 
APPLESOFT fP MOVE MEMORY POINTED TO BY Y-REG & A-REG INTO FAC. ON EXIT A-REG & ZERO 
FLAG REFLECT FACEXP. RESET EXTENSION BYTE=O {RESET Y-REG=Q} 
APPLESOFT FP - PULL MEMORY POINTED TO BY INDEX (S005E-S005f.) INTO fAC & RESET 
EXTENSION BYTE = 0 {RESET Y-REG=O} 
INTEGER BASIC ERROR TABLE OF CANNED ERROR MESSAGES -----------------------------------------------------------·--·----------------------------------------------------·----

$E7A4 - $E300 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION ________ ,... ______________________________________________________________ ,_, _________ ,.. ____ . ______ ~---·-------------·---~----

SEB1E <-5346> [MOV2Fl \SE\ 

SEB21 <-5343) (MOV1FJ \SE\ 

SEB23 <-5341> [MOVMLJ \SE\ 

SEB27 C-5337) \S E\ 

SEB2B (•5333) [MOVMF CFPSTR)J \SE\ 

SEB36 C-5322> \SE\ 
SEB53 (-5293> [MOVFA <TR2=>1 )] \SE\ 
SEB63 (-5277> [MOVAF CTR1=>2)J \SE\ 

SEB66 <-5274 > \S E\ 
SEB82 <-5246) CS IGNJ \S E\ 

SEB90 C-5232) [SGN CFPSGN)] \SE\ 

SEB93 
SEBAA 
SEBAF 
SEBB2 

C-5229> 
<-5206) 
(-52 J 1 ) 
<-5B8 > 

[F LOATJ \ SE \ 
c· INPUT-] \SE\ 
[ABS (FPABS)] \SE\ 
[FCOMP] \ SE\ 

SEBF2 C-5134) (QINT] \SE\ 

APPLESOFT FP- PACK fAC AND MOVE IT INTO TEMP2 ($0098.S009C). USES MOVMF. ON EXIT 
A-REG & Z FLAG REFLECT FACEXP {RESET Y-REG=O} 
APPLESOFT fP - PACK fAC AND MOVE IT INTO TEMP1 (S0093-S0097>. USES 
A-REG & Z flAG REFLECT FACEXP. MOOIFJES INDEX CS005E-S005f) {RESET 
APPLESOFT FP - PACK FAC AND MOVE IT INTO ZERO PAGE AREA POINTED TO 
MOVMF. ON EXIT A-REG & Z FLAG REFLECT FACEXP 

MOIIMf. ON EXI 1 
Y-REG=O} 
BY X-REG. USES 

APPLESOFT fP - PAC FAC AND STORE IT INTO MEMORY POINTED TO BY FORPNT U0085-S0086>. 
MODIFlES INDEX CS005E-S005F) {RESET Y-REG=O} 

APPLESOFT FP- PACK FAC AND MOVE IT INTO MEMORY POINTED TO BY Y-REG (MSB) & X-REG 
CLSBl. ON EXIT A-REG & ZERO FLAG REFLECT FACEXP. MODIFIES INDEX (S005E-S005f) 
INTEGER BASIC CONTINUE RUN ROUTINE CW/0 DELETING VARIABLES> 
APPLESOFT FP - MOVE ARG INTO FAC. ON EXIT A-REG • FACEXP AND ZERO FLAG IS SET 
APPLESOFT fP - PACK EXTENSION BYTE INTO FAC & MOVE FAC INTO ARG. ON EXIT A-REG = 
FACEXP AND ZERO FLAG IS SET. RESET EXTENSION BYTE = 0 {RESET X-REG=O> 
APPLESOFT FP - SAME AS SEB63 BUT EXTENSION BYTE NOT ALTERED 
APPLESOFT FP - SETS A-REG ACCORDING TO VALUE OF FAC. ON EXIT A-REG•1 IF FAC 
+:A-REG=O IF FAC=O:A-REG=SFF If fA~- {X- Y-REGS NOT ALTERED) 
APPLESOFT FP - CALLS SIGN AND fLOATS THE RESULT IN THE FAC. FAC=+l If FAC WAS +;•O 
If FAC WAS 0;=-1 IF FAC WAS-
APLESOFT FP - FLOAT THE SIGNED INTEGER IN A-REG INTO FAC 
INTEGER BASIC ENTRY TO INPUT ROUTINE 
APPLESOFT fP - TAKES ABS OLUTE VALUE Of NUMBER IN FAC & LEAVES RESULT IN FAC 
APPLESOFT FP - COMPARE FAC AND PACKED NUMBE~ IN MEMORY POINTED TO 3Y Y-~EG & A-REG. 
ON EXIT A=1 U MEM<FAC:A=O IF MEJIII•FAC:A=Sff If MEM>FAC 
APPLESOFT QUICK GREATEST INTEGER FUNCTION. LEAVE INT<FAOIN FAC MANTISSA (HO-MO-LO 
SIGNED>. ASUMES FAC<2-23 {RESET Y-REG=O} 

SECOO-SEDFF (-5120--4609> c·sYNTABL-J \P8\INTEGER BASIC SYNTAX TABLE 
SEC23 (-5085) CINT CFPINT)] \SE\ APPLESOFT FP- COMPUTES GREATES INT CFPINT>EGER VALUE OF FAC. MODIFIES CHARAC 

SEC40 C-5056) [( INITFAC MANT>] \SE\ 

SEC4A C-5046) CFINJ \SE\ 

SED 14- SSE D 1 8 ( (ON E. BI l Ll ON) J 
SED19 C-4839) (I NPRTJ \ SE\ 
SED24 (-4828> [L INPRT J \SE\ 
SED2E <-4818) (PRNTFAC] \SE\ 
SED34 C-4812> CFOUTJ \SE\ 

\P5\ 

SEE03 ( •4605) c- PRNTS TR-J \S E\ 
SEE22 C-4574) c·uN·J \SE\ 
SEE34 C-4556) c-GETVAL-J \SE\ 

SEE3F C-4545) r·PLOT-J \SE\ 

(SOOOD>. USES QINT CFPINT). RESULT TO FAC. MODIFIES CHARAC CSOOOD> 
A P P l E S 0 FT F P - I N I TI A LI Z E D MA N TI S SA 0 F fA C C E XC E P T E X TEN S I 0 N B YT E> T 0 V AL U E I N 
A-REGISTER 
APPLESOFT - INPUT FP NUMB INTO FAC FROM CHRGET. ASSUMES 6502 REGS HAVE BEEN SET UP 
BY CHRGET THAT FETCHED 1ST DIGIT 
APPLESOFT 5-BYTE flOATING POINT CONSTANT 1000000000 C1E9> 
APPLESOFT - PRINT 'IN' & CURRENT LINE M FROM CURLIN. USES LPRINT 
APPLESOFT- PRINTS 2-BYTE UNSIGNED NUMBER IN X-REG (MSB) & A-REG (LSB> 
APPLESOFT - PRINTS & DESTROYS CURRENT VALUE Of fAC. USES fOUT & STROUT 
CREATES A STRING IN FBUffR EQUIVALENT IN VALUE TO FAC. ON EXlTY•REG &A-REG POINT TO 
THE STRING. FAC SCRAMBLED 
INTEGER BASIC ENTRY TO FUNCTION WHICH PRINTS A STRING 
INTEGER BASIC ENTRY TO FUNCTION TO OBTAIN LENGTH OF A STRING 
INTEGER BASIC ENTRY TO ROUTINE TO GET A VALUE WHICH WILL FIT INTO A SINGLE BYTE 
(VAL<=255) 
INTEGER BASIC ENTRY TO ROUTINE TO DO A LO-RES PLOT (.I.E. PLOT A COLOREll .SQUARE ON 
LO-RES SCREEN> 

SEE4E C-4530) c·coLOR-] \SE\ INTEGER BASIC ENTRY TO ROUTINE TO SET COLOR VALUE FOR L.O-RES 
SEE54 (-4524) c-MAN-J \SE\ INTEGER BASIC ENTRY TO MANUAL LINE NUMBER FUNCT.ION 
SEE57 (-4521> c·vTAB-] \SE\ INTEGER BASIC ENTRY TO VERTICAL TAB fUNCT.lON 
SEE64-SEE68 C-4508--4504) [(ONE.HALF)J \P5\APPLESOFT 5-BYTE fP CONSTANT ONE HALF <112> 
SEE68 C-4504) (Rt-.GERR] \P1\ INTEGER BASIC RANGE ERROR 
SEE8D C-44!17) [SQR (FPSQR)] \SE\ APPLESOFT fP- TAKE SQUARE ROOT OF FAC. RESULT TO FAC. MODifiES CHARAC INDEX AND 

MANY OTHER FP LOCNS 

SEB1E - SEE8D Prof. Luebbert's "What's Where in the Apple" NUIIIERI C ATLAS 



HEX LOCN <DEC LOCN) (NAME] \USE-TYPE\- DESCRIPTION 

-----------------------------------------------------------------~----·--------------·------------~------·--------~-----

SEE97 <-4457) [FPWRT (FPEXP)J \SE\ APPLESOFT FP EXPONENTAT!ON <ARG TO FAC POWER) ON ENTRY A-REG & ZERO FlAG SHOULD 
REFLECT VALUE Of FACEXP. RESULT TO fAC. MODIFIES ~ANY fP LOCNS 

SEEAO (-4448) r-CAll-J \SE\ INTEGER BASIC ENTRY POINT TO CAll A SUB/ROT FUNCTION 
SEEBO (-4432> r-HLIN-J \SE\ INTEGER BASIC ENTRY POINT TO DRAW A LO-RES HORIZONTAl LINE 
SEEC6 <-4410> c-vuN-J \SE\ INTEGER BASIC ENTRY POINT TO DRAW A LO-RES VERTICAL LINE 
SEEDO <-4400> [NEGOPJ \SE\ APPLESOfT fP- LET FAC • -FAC (X- Y-REGS NOT ALTERED} 
SEED3 <-4397) (-PRINT-] \SE\ INTEGER BASIC ENTRY POINT TO PRINT ERROR MESSAGE/BEll 
$EED~-$EEDF <-4389--4385) [(LOG<E>2>J \P5\APPLESOfT FP CONSTANT LOG<E>2 
$EEF6 (-4362> [-PEEK-] \SE\ INTEGER BASIC ENTRY TO ROUTINE TO 'PEEK' AT THE CONTENTS Of A ~EMORY LOCAIION 
SEFOO (-4352> [-GETVAL255-J \SE\ INTEGER BASIC ENTRY TO ROUTINE TO GET A ONE-BYTE VALUE 
SEF09 <-4343) [EXPJ \SE\ APPLESOFT FP- RAISE E TO THE FAC POWER. RESULT TO FAC. MODifiES INDEX CHARAC 

SEF 10 
SEF 1E 
SEF 4E 
SEF AE 

(-4336) 
(-4322) 
(-4274) 
(-4178) 

[-DIVIDE-] \SE\ 
CDIMVARB-] \SE\ 
[-RNo·-J \SE\ 
[RND] \SE\ 

$ EF E A ( -411 8) [COS J \ S E \ 

SEFEC <-4116) [-RuN-J \SE\ 
SEfF2 (-4110) [-RUt. #N-J \SE\ 
SEFF1 <-4111> CSINJ \SE\ 

$F000-$F7FF <-4096--2049) \~B\ 

SFOOO (-4096) c·scRATCH-J \SE\ 
SF03A <-4038) (TAN] \SE\ 

COMPRTYP XORFPSGN AND MANY OTHER FP LOCNS 
INTEGER BASIC ENTRY TO DIVIDE FUNCTION 
INTEGER BASIC ENTRY TO ROUTINE TO DIMENSION A VARIABLE 
INTEGER BASIC ENTRY TO RANDOM NUMBER GENERATOR 
APPLESOFT FP - FORM A 'RANDOM' NUMBER IN fAC USING ORIGINAl VALUE IN FAC AS 
PARAMETER 'KEY' OR 'SEED'. MODifiES MANY fP LOCNS 
APPLESOFT FP - COMPUTE THE COSINE OF THE NUMBER IN FAC. RESULT TO FAC. MODifiES 
INDEX CHARAC COMPRTYP XORFPSGN AND MANY OTHER FP lOCNS 
APPLE INTEGER BASIC RUN ROUTINE (RUN FROM BEGINNING> 
INTEGER BASIC ENTRY TO ROUTINE TO RUN FROM LINE #N 
APPLESOFT FP - COMPUTE THE SINE OF THE NUMBER IN FAC. RESULT TO fAC. MODifiES INDEX 
CHARAC COMPTRTYP XORfPSGN & MANY OTHER FP LOCNS 
ROM SOCKET FO <1K INTEGER BASIC 1 K MONITOR IN APPLE II (NOT lit)} 
INTEGER BASIC ENTRY TO SCRATCH EVERYTHING ROUTINE 
~PPLESOFT FP - COMPUTE THE TANGENT Of THE NUMBER IN FAC. RESULT TO FAC. MODIFIES 
CHARAC INDEX XORFPSGN AND MANY OTHER fP LOCNS 

$F04D (-4019) CHIMEM-] \SE\ INTEGER BASIC ENTRY TO THE HIMEM FUNCTION 
SF063-$FQ67 <-3997--3993) [(PI/2}] \P5\APPLESOfT 5-BYTE FLOATING POINT CONSTANT PI/2 = 1.508 •• 
$F06B-$F36F (-3989--3985) [(TWO PI)] \P5\APPLESOFT 5-BYTE flOATING POINT CONSTANT 2•PI = 6.2832 ••• 
Sf070-$F075 <-3984--3979) [(ONE-QUARTER)] \P5\APPLESOFT5-BYTE flOATING POINT CONSTANT 1/4 (0.25> 
SF078 <-3976) INTEGER BASIC 'LOAD' CCASSHTE TAPE> 
$F09E (-3938) [ATNJ \SE\ APPLESOFT FP COMPUTE THE ARCTANGENT Of NUMBER IN FAC. RESULT TO fAC. MODIFIES INDEX 

SFOC9 
$FODF 
$ F11 E 
$ F11 E 
SF1 2C 
$F140 
$F 1 61 
$F167 
$F171 
$f176 
SF17D 
$F1 EC 

(-3895) 
(-3873) 
<-3810) 
(-3810) 
<-3796) 
<-3776) 
<-3743) 
(-3 73 7) 

<-3727> 
<-3722} 
<-3715) 
(-3604) 

CLOMEM-J \SE\ 
r·LoAD- J 
c· SE THOR-] \ SE \ 
[ACADRJ 
r-sETBuF-J \SE\ 
CSAVE-J \SE\ 
(-PRTERR-J \SE\ 
c- POp- J \ Sf \ 
C TRAce·-] \SE\ 
CNOTRACCJ \SE\ 
c· TRACE I T-J \S E\ 
(PLOTFNS] \SE\ 

SF279 <-3463> c-sTEP-J \SE\ 
$F2EO (-3360) c- NODSP-J \SE\ 
$f2E9 (-3351) (HANDLE RR] \SE \ 

XORFPSGN AND MANY OTHER fP LOCNS 
INTEGER BASIC ENTRY TO LOMEM ROUTINE 
INTEGER BASIC ENTRY TO LOAD SUBROUTINE (LOAD A PROGRAM FROM CASSETTE TAPE) 
INTEGER BASIC ENTRY TO SET UP HEADER FOR SAVE/LOAD PARAMETERS 
~I-RES GRAPHICS 2-BYTE TAPE READ SETUP 
INTEGER BASIC ENTRY TO ROUTINE TO SET UP PROGRAM SAVE/lOAD PARAMEURS 
INTEGER BASIC ENTRY TO ROUTINE TO SAVE A PROGRAM TO CASSETTE TAPE 
INTEGER BASIC ENTRY TO ROUTINE TO PRINT AN ERROR MESSAGE 
INTEGER BASIC ENTRY TO ROUTINE TO POP THE RETURN STACK fOR GOSUB 
INTEGER BASIC ENTRY TO ROUTINE TO SET TRACE MODE FOR EXECUTION 
INTEGER BASIC :NTRY TO ROUTINE TO TURN Off TRACE MODE 
INTEGER BASIC ~NTRY TO ROUTINE TO EXECUTE T~E TRACE FUNCTION 
APPLESOFT - GET 2 LO-RES PLOTTING COOROS SEPARATED BY COMMA FM TXTPTR. PUT fiRST # 
IN FIRST AND SECOND # IN H2 & V2 
INTEGER BASIC ENTRY TO ROUTINE TO HANDlE STEP fUNCTION FOR fOR/NEXT LOOP 
INTEGER BASIC E~TRY TO ROUTINE .TO TURN Off DISPLAY FUNCTION 
APPLESOFT ERROR PROC - SAVE CURL.IN IN ERRLINiTXTPTR IN ERRPGSiX-REG IN ERRNUMi 
REMSTK IN ERRSTK 

--------------------------------------------------------------------------------·-·----------------~---,-----------------
$EE97 - SF2E9 Prof. Luebbert•s "What's Where in the Apple" NUMERIC ATlAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ -DESCRIPTION 

SF304 (-3324) c-osP-J \SE\ 
SF30A <-3318) c-cor.-J \ SE \ 
SF317 <-3335> (RESUME] \SE\ 

SF31D <-3299) [-Asc-J \SE\ 

Sf33B <-3269) CPDL-J \ SE \ 
SF351 <-324 7) [-ROKEY-J \SE\ 

SF371 (-3215) C EXP-J \ SE \ 
SF3C9 <-3127> [-PRIIS-J \S E \ 
SF3D4 <-3116) [H GR 2J \S E\ 

SF3DE (-3106) [HGRJ \SE\ 

SF3EE ( -3090) (HCLR] \SE\ 
SF3F2 <-3086> [B KGNDJ \ SE \ 
SF400 <-3059) [H POSNJ \ SE \ 

SF41 A (-3046) (-IN/IS- J \SE \ 
SF425-SF65D C-3035--2467) 
SF453 <-2989) [H PL OTJ \ SE \ 

$F425 C-3035) (ADD] \SE\ 

SF437 <-3017> [ABSWAPJ \SE\ 

SF4 51 <-2991) (FLOAT) \SE\ 

SF463 <-2973) [NORM) \S E\ 
SF4A4 <-2908> [F COMPL J \SE\ 
SF468 C-2968) (F SUB] \S E\ 

SF46E <-2962) (f ADO] \ S E\ 

SF47D <-2947> (R TA RJ \S E\ 

SF48C <-2932> (f MULJ \S E\ 

SF4B2 <-2894) [F MULJ \S E\ 

SF500-SF666 C-2816--2458> 
SFSOO <-2816) (R fLJ 
SFSOC <-2804> [REL2J 
SF516 <-2794) [R EL 3] 
SF519 <-2791} (ERR 3) 
SF51B <-2789> [F INDOP J 
SF51D <-2737> [FNOOP2J 
SF530 C-2768) [HLII\i] \SE\ 

SF538 <-2760> [FAKEMON3J 
SF53D <-2755> [F AKEMONJ 
SF544 <-2748> [f AK EMO N2 J 

INTEGER BASIC ENTRY TO ROUTINE TO DISPLAY A VAR.IABLE SET 
INTEGER BASIC ENTRY TO ROUTINE TO CONTINUE EXECUT.ION 
APPLESOFT ERROR PROC - RESTORE CURLIN FROM ERRLIN & TXTPTR FROM ERRPOS. TRANSFER 
ERRSTK INTO 6502 STACK POINTER 
INTEGER BASIC ENTRY TO ROUTINE TO PERFORM THE ASC (ASCII) fUNCTION 
INTEGER BASIC ENTRY TO ROUTINE TO READ A PADDLE 
INTEGER BASIC ENTRY TO ROUTINE TO READ AN INPUT FOR BASIC fROM KEYBOARD 
INTEGER 3ASIC ENTRY TO ROUTINE TO EXPONENTIATE (RAISE TO A POWER) 
INTEGER BASIC ENTRY TO ROUTINE TO SET OUTPUT PORT 
APPLESOFT HI-RES- INITIALIZE & CLEAR PAGE 2 H.I->RES REGARDLESS Of SCREEN BEING 
DISPLAYED 
APPLESOFT HI-RES- INITIALIZE & CLEAR PAGE 1 HI-·RES REGARDLESS OF SCREEN BEING 
0 I SPLAY ED 
APPLESOFT HI-RES - CLEAR HI-RES SCREEN TO BLACK 
APPLESOFT HI-RES - CLEAR HI-RES SCREEN TO LAST PLOTTED COLOR 
APPLESOFT HI-RES - POSN HI-RES CURSOR WIO PLOTTING. HPAG DETERMINES WHICH PAGEi 
HORIZ = Y-REGCMSBJ&X-REGCLSB>iVERT= A-REG 
INTf.GER BASIC ENTRY TO ROUTINE TO SET INPUT PORT 
APPLE II FLOATING POINT PACKAGE (NOT USED IN APPLESOFT> 
APPLESOFT HI-RES - CALL HPOSN THEN PLOT DOT THERE. NO DOT MAY BE PLOTTED IS 
PLOTTING NON-WHITE AT COMPLEMENTARY COLOR X COORD 
ADD 3-BYTE M1 TO 3-BYTE M2 AND LEAVE RESULT IN M1 (N01 FP ADO BUT USED IN FP PKG) 
{A- X-REGS ALTERED} 
TAKE ABSOLUTE VALUE Of FP1i THEN SWAP fP1 WITH FP2 (fP1:SOOF8i$FP2=S00F4> {A
X-REGS AL TEREO} 
CONVERT INTEGER (HIGH B'fTE IN M1iLOW BYTE IN M1 +1 iM1 +2 CLEARED> TO NORMALIZED FL 
POINT EQUIV IN FP1 {A-REG ALTERED} 
NORMALIZE fLOATING POINT NUMBER IN FP1 {A-REG ALTERED} 
VALUE OF FLOATING POINT NUMBER IN FP1 IS NEGATED THEN N:>RMALIZED {A- X-REGS ALTERED} 
FLOATING POINT SUBTRACTION MINUEND IN FP1iSUBTRAHENO IN FP2iNORMALIZED DIFFERENCE 
TO FP1 {A- X-REGS ALTERED} 
fLOATING POINT NUMBER IN fP1 ADDED TO THAT IN FP2. NORMALIZED RESULT LEfT IN fP1 
(A- X-REGS ALTERED} 
DENORMALIZE fP1 BY SHIFTING M1<&E> RIGHT 1 BIT POSN & INCREMENTING X1 {A- X-REGS 
ALTERED} 
fLOATING POINT MULTIPLY SIR: MUTIPLICAND IN FP1; MULTIPLIER IN FP2i SIGNED 
NORMALIZED PROOUC T IN fP1 {A- X- Y- REGS ALTERED} 
FL PT DIVIDE SIR: NORM DIVIDEND IN FP2iNORM DIVIDER IN fP1;SIGNEO NORM FP QUOTIENT 
TO fP1 {A- X- Y-REGS ALTERED} 
APPLE II MINIASSEMBLER SOfTWARE PACKAGE 
MINIASSEMBLER MEMORY LOCATION 'REL' 
MINIASSEMBLER MEMORY LOCATION 'REL2 1 

MINIASSEMBLER MEMORY LOCATION 'REL3' 
MINIASSEMBlER MEMORY LOCATION 'ERR3' 
MINIASSEMBLER MEMORY LOCATION 'f!NOOP' 
MINIASSEMBLER MEMORY LOCATION 'FNDOP2' 
APPLESOfT HI-RES HORIZ liNE DRAWING fROM LAST POINT PLOTTED TOX-COORD = 
X-REG< M SB) &A-REG C l SB) ;y-c OORO =Y-REG 
MINIASSEMBER MEMORY LOCA110N 1 FAKEMON3' 
MINIASSEMBLER MEMORY LOCATION 'FAKEMON' 
MINIASSEMBLER MEMORY LOCATION 'FAKEMON2' 

--------:---------------------:-------·------------------------------~----------.-..------------------- .. -----------------
SF304 - SF544 Prof. Luebbert's ••what's Where in the Apple,. NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME) \USE-TYPE\ - DESCRIPTION 
-------------·--------------------------------~-------------------------------------------------------~----------------~---------

SF55C <-2724) [TRYNEXTJ 
$F578 (-2696) (N RELJ 
$F57C <-2692) [NEXTOPJ 
$F586 <-2632) (ERR] 
SF588 (-2630) [ERR 2] 
$F592 (-2670) [RES ETZJ 
$F595 (-2667> [NXTLINEJ 
$ FS B 1 <-2639> [ERR 4] 
$F5B9 (-.2631) [SPACE] 
$ F5BD <-262 7) (N XT MN] 
$F5 CO <-2624) [NXTMJ 
$F5CB <-2613) (HFINDJ \ SE \ 

$ F 5 C B ( -2 61 3) (NXTM2J 
SF5D9 <-2599) (F ORM1] 
$F5DB (-2597) (F ORM2J 
$FSF8 (-2568) (F ORM3J 
$F5F9 <-2567> (F ORM4] 
$F5FA (-2566) (F ORM5J 
SF601 <-2559) (DRAW] \S E\ 

SF608 <-2552) (F ORM6J 
$F60D C-254 7) (FOR M7] 
SF622 C-2526) (F ORM8] 
$F6 31 (-2511> (F ORM9J 
$F634 (-2508) (G ETNSP J 
$F640 ( -2496) (FIX] \SE\ 

SF65D <-2467> (XDRAWJ \SE\ 

SF666 <-2458> (M INASM J 

SF689-SF7FA <-242r-2054) \SB\ 
$F689 ("'2423> \S E\ 
SF6B9 <-2375) (H FNS] \S E\ 

SF6EC <-2324> (SETHCOLJ \SE\ 
$F775 <-2187> (S HLOAD J \SE\ 

$F7D9 ( -208 7) [GETARYPTJ \SE\ 

SF800-SFFFF (-2048--1) \HB\ 

SF800-SFFFF <-2048--1) \58\ 
SF800-$FF F F <-2048--1) \HB\ 
SF800 <-2048) (PLOTJ \SE\ 

$F80C <-2036) [R TMASK] 
SF80E (-2034) (PLOT1J \SE\ 
SF819 (-2023) \S E\ 
SF819 <-2023> [H Ll NE] \ SE \ 

MINIASSEMBLER MEMORY LOCATION 1 TRYNEXT 1 

MINI ASSEMBLER MEMORY LOCATION 'NREL' 
MINIASSEMBLER MEMORY LOCATION 'NEXTOP' 
MINIASSEMBLER MEMORY LOCATION 'ERR' 
MINIASSEMBLER MEMORY LOCATION 'ERR2' 
MINIASSEMBLER MEMORY LOCATION 'RESETZ' 
M.INIASSEMBER MEMORY lOCATION 'NXTLINE' 
MINIASSEMBLER MEMORY LOCATION 'ERR4' 
MINIASSEMBLER MEMORY LOCATION 'SPACE' 
MINIASSEMBLER MEMORY LOCATION 1 NXTMN' 
MINIASSEMBLER MEMORY LOCATION 'NXTM' 
APPLESOfT HI-RES HFIND. CONVERT HI-RES CURSOR POSN TO X-Y COORDS. ON EXIT 
SOOEO=HORIZ LSB;SOOE1=HORIZ MSS;SQOE2=VERT 
MINIASSEMBLER MEMORY LOCATION 'NXTM2 1 

MINlASSEMBLER MEMORY LOCATION 'FORM1' 
MINIASSEMBLER MEMORY LOCATION 'FORM2' 
MINIASSEMBLER MEMORY LOCATION 'FORM3' 
MINIASSEMBLER MEMORY LOCATION 'FORM4' 
HINIASSEMBLER MEMORY LOCATION 'FORMS' 
APPLESOH HI-RES - DRAW SHAPE POINTED TO BY Y-REGOISB)&X-REG(LSB> BY INVERTING 
EXISTING COLOR OF DOTS THE SHAPE DRAWS OVER. A-REG=ROTATION FACTOR 
MlNIASSEMBLER MEMORY LOCATION 'FOR~6' 
MINIASSEMBLER MEMORY LOCATION 1 FORM7' 
MINIASSEMBLER MEMORY LOCATION 'FORMS' 
MINIASSEMBLER MEMORY LOCATION 'FORM9' 
MINIASSEMBLER MEMORY LOCATION 'GETNSP' 
FROIHLOATING POINT NUMBER .IN FP1 EXTRACT !NYEGER. PUT HIGH-ORDER BYTE .IN 
M1 ;LOW-ORDER IN M1+1 {A- X-REGS ALTERED} 
APPLESOFT HI-RES - DRAW SHAPE POINTED TO BY Y-REGOISB>&X-REGCLSB) BY INVERTING 
EXISTING COLOR OF DOTS SHAPE DRAWS OVER. A-REG= ROT FACTOR 
TURN ON MINIASSEMBLER (KEYBOARD INPUT WILL BE INTERPRETED AS A SEMBLY-LANGUAGE 
INSTRUCTION) 
'SWEET-16' 16-BIT PSEUDO-MACHINE INTERPRETER 
SWEET-16 INTERPRETER ENTRY 
APPLESOFT - GET HI-RES PLOTTING COORDINATE FRO~ TXTPTR SETS UP 6502 REGISTERS fOR 
HPOSN: A-REG=VERT COORD;X-REG LSB Of HORIZ;Y-REG MSB Of HORIZ {A- X- Y-REGS ALTERED} 
APPLESOFT HI-RES - SET COLOR TO CONTENTS Of X-REG (MUST BE LESS THAN 8l 
APPLESOFT HI-RES. LOADS SHAPE TABLE INTO MEMORY FROM TAPE ABOVE MEMSIZ (HIHEM) AND 
SETS POINTER AT SOOE8 
APPLESOFT - READ VAR NAME FROM CHRGET & FIND IT IN MEMORY.ON EXIT VAL Of VARIN 
VARPNT AND Y-REG<MSB>&A-REGCLSB) 
ROM SOCKET F8 (MONITOR) NOTE: WHEN LANGUAGE CARD RAM DESELECTED MONITOR ON CARO 
ACTIVE 
APPLE II SYSTEM fiiONll OR (MAIN BODY> 
APPLE LANGUAGE CARD ADDITIONAL ROMI~AH 
LO-RES PLOT POINT AT X-COOkD=O-REGJ Y-COORD=<A-REG) LEAVING GBASL-H AND MASK SET 
<SEE CALL-APPLE DEC 78> {A-REG ALTERED} 
MONITOR MEMORY LOCATION 'RTMASK' 
LO-RES PLOT A POINT X-COORD=<Y-REGJ Y-COORO PER GBASL-H & MASK {A-REG ALTERED} 
HLINE SIR CSEE CALL-APPLE NOV/DEC 78 PG4) 
LO-RES SIR TO DRAW HORIZONTAL LINE AT Y-COORD = (A-REG> WUH X-COOROS fROM <A-QEG) 
THRU (H2)(S002c> {A- Y-REGS AlTERED} 

-----------------------------~-------------------------------------------------.--~---------------·-- ... ---------.---
SF55C - SF819 Prot. Luebbert's "What's Where in the Apple" NUMERIC A Tl.AS 



HEX LOCN CDEC LOCN> [NAME] \USE-TYPE\ - DESCRIPTION 

SF81C C-2020> [H Ll NE 1] \S E \ 

SF826 C-2010> [V LI 1\EZ] \SE\ 

SF828 ( -2008) [VLINE] \ SE \ 

SF831 C-1999) [RTS1J 
SF832 C-1998) [CLRSCRJ \S E\ 
SF832 ( -1998) [C LRSCRJ \SE\ 

SF836 C-1994) [CLRTOP] \S E\ 

SF838 (-1992> [CLRSC2J \S E \ 

SF83C (-1988) [CLRSC3] \S E\ 

SF847 C-1977> [GBASCALC] \SE\ 

SF856 < -1962 > [GBCALCJ 
SF85F C-1953) [NXTCOL] \S E\ 
SF864 C-1948) (SETCOL] \SE\ 

SF871 (-1935) (S C R N] \S E\ 

SF 8 7 9 ( -1 9 2 7 > [S CRN2] 
SF87F C-1921> [R TM SK Z] 
SF882 C-1918) (INSDS1] 
SF88E C-19J6) (I NSOS2J 
SF89B C-1893) [lEVEN] 
SF8A5 C-1883) [ERR] 
SF8A9 C-1879) (GET FMT) 
SF8BE C-1858> (MNNDX1] 
SF8C2 <-1854) [MNNDX2] 
SF8C9 <-1847> (MNNDX3] 
SF8DO C-1840) (INS TDS PJ 
SF8D4 (-1836) (PRNTOP] 
SF8DB C -1829) (PRNTBLJ 
SF8F5 C-18::13) (P RMN1] 
SF8F5 (-1803) (NXTCOLJ 
SF8F9 (-1799) (P RMN2] 
SF910 <-1776) (PRADR1] 
SF914 <-1772) (P RA DR2] 
SF926 C-1754) (PRADR3J 
SF92A C-1750) (PRADR4J 
SF930 <-1744) (P RADR5] 
SF938 (-1736) [R ELADR] 
SF940 C-1728> (PRNTYX] \S E\ 
SF941 C-1727> (PRNTAX] \S E\ 
SF944 C-1724) (P RNTX] \ SE \ 
SF948 <-1720) (PRBLNK] \SE\ 
SF94C C-1716) (P RBL2] \ SE \ 

SF81C - SF94C 

LO-RES SIR. DRAW HORZ LINE AT Y-COORD ESTAB BY GBASL-H & MASK. X-CORDS FROM CY-R£G) 
THRU ($002C> {A- Y-REGS ALTERED} 
LO-RES PLOT VERTICAL LINE AT X-COORD= CY-REG> AND Y-COORD FROM (A-REG>+1,+CARRY 
THRU CS002D) {A-REG ALTERED} 
LO-RES PLOT VERT LINE AT X-COORD= (Y-REG) AND Y-COORO FROM (A-REG) THRU CS002D> 
{A-REG ALTERED} 
MONITOR MEMORY LOCATION 'RTS1' 
MONITOR SIR TO CLEAR SCREEN- GRAPHICS MODE FULl SCREEN) {A- Y-REGS ALTERED} 
CLEAR LO-RES GRAPHICS SCREEN1 TO BLACK (INVERSE i IN TEXT MODE) MIXED GRAPHICS AREA 
ONLY {A- Y-REGS ALTERED} 
CLEAR TOP 20 LINES PAGEl TO INVERSE i IN TEXT; BLACK IN LO-RES GRAPHICS (40 LO-RES 
GRAPHIC 'LINES') {A- Y-REGS ALTERED) 
CLEAR LINES 0 THRU CV-REG) 40 COlUMNS WIDE TO BLACK IN LO-RES GRAPHICS OR INVERSE i 
IN TEXT PAGE 1 {A- Y-REGS ALTERED} 
CLEAR LO-RES GRAPHICS PARTIAL TOP LEFT: X-COORD 0 THRU <Y-REG)i Y-COORD 0 THRU 
( S002D > {A- Y-REGS AlTERED} 
COMPUTE GRAPHICS BASE MEMORY ADDRESS FOR LINE IN A-REG (NOTE: 2 LO-RES GRAPHICS 
LINES PER TEXT LINE SO (A)= LINE/2)i SET GBASL-H {A-REG ALTERED} 
MONITOR "'EMORY LOCATION 'GBCALC' 
MONITOR LO-RES SIR. CHANGE COLOR TO CCOLOR)+3 {A-REG ALTERED} 
SET LO-RES COLOR TO COLOR CODE SPECIFIED BY A-REG FOR FUTURE PLOTTING {A-REG 
ALTERED} 
GET (LOAD TO A-REG) LO-RES GRAPHICS COLOR OF POINT Y-COORD = CA-REG)i X-COORD : 
(X-REG) {A-REG AlTERED} 
MONITOR MEMORY LOCATION 'SCRN2' 
\tONITOR MEMORY LOCATION 'RTMSKZ' 
MONITOR MEMORY LOCATION 'INSDS1' 
MONITOR SIR -DISASSEMBLER ENTRY 
MONITOR MEMORY LOCATION 'lEVEN' 
MONITOR ME110RY LOCATION 'ERR' 
MONITOR MEMORY LOCATION GETFMT 
M 0 N I T 0 R M EM 0 R Y L 0 C A Tl 0 N 1 M N NO X 1 ' 
M 0 N I T 0 R M EM 0 R Y L 0 C AT I 0 N 1 M N NO X 2 1 

MONITOR MEMORY LOCATION 'MNNDX3 1 

MONITOR & MINIASSEMBLER MEMORY LOCATION 'INSTDSP' CINSHUCTION DISPLAY) 
MONITOR MEMORY LOCATION 1 PRNTOP' (PRINT OPERATION CODE) 
MONITOR MEMORY LOCATION 'PRNTBL' 
MONITOR MEMORY LOCATION 1 PRMN1' (PRINT MNEMONIC) 
AUTOSTART MONITOR MEMORY LOCATION 'NXTCOL' 
MONITOR MEMORY LOCATION 'PRMN2' 
MONITOR MEMORY LOCATION 'PRADR1' (PRINT ADDRESS) 
MONITOR MEMORY LOCATION 1 PRADR2' 
MONITOR MEMORY LOCATION 1 PRADR3 1 

MONITOR MEMORY LOCATION 'PRADR4' 
MONITOR MEMORY LOCATION •PRAOR5' 
MONITOR MEMORY LOCATION 'RELADR' (RELATIVE ADDRESS} 
MONITOR SIR- PRINT CONTENTS OF Y AND X AS 4 HEX DIGITS {A- X-REGS ALTERED} 
MONITOR SIR-PRINT CONTENTS OF A-REG & X-REG AS HEX DIGITS {A- X-REGS ALTERED} 
PRINT CONTENTS OF X-REG AS HEX DIGITS {A- ~-REGS ALTERED} 
PRINT THREE BLANKS THROUGH COUT {A- X-REGS ALTERED} 
MONITOR SIR- PRINT 3LANKS: X REG CONTAINS NUMBER TO PRINT. CL03BERS Ac-x {A- X-REGS 
ALTERED} 

Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN> [NAME] \USE-TYPE\ - DESCRIPTION ------------------------------------------------------------------------------ ______ _,_ __ ----------------------------------
SF94C (-1716) [PRBL3J \SE\PRINT A-REG FOLLOWED BY CX-REG)-1 BLANKS {A- X-REGS ALTERED} 
Sf953 C-1739) [PCADJ] MINIASSEMBLER MEMORY LOCATION 1 PCADJ 1 (PROGRAM COUNTER ADJUST: 0~1 BYTE; 1a2 BYTESi 2a3 BYTES) 
SF954 C-1708) [PCADJ2J MONITOR & MINIASSEMBLER MEMORY LOCATION 1 PCADJ2 1 

SF956 C-1706) (PCADJ3J MONITOR MEMORY LOCATION 1 PCADJ3' 
$F:J5C C-1700) (PCADJ4] MONITOR MEMORY LOCATION 'PCADJ4' 
SF961 C-1695) [RTS2J MONITOR MEMORY LOCATION 'RTS2' 
SF962 C-1694) [FMT1J MONITOR MEMORY LOCATION 'FMT1 1 

$F9A6 C-1626) [FMT2J MONITOR MEMORY LOCATION 'FMT2' 
SF984 C-1612) (CHAR1J MONITOR & MINIASSEMBER MEMORY LOCATION 'CHAR1' 
SF9BA (-1606) [CHAR2] MONITOR & MINIASSEMBLER MEMORY LOCATION 'CHAR2' 
$f9CO (-1600) (Mt;Efo1LJ MONITOR & MINIASSEMBLER MEMORY LOCATION 'MNEML' 
SFAOO C-1536) [MNEMR] MONITOR & MINIASSEMBER MEMORY LOCATION 'MNEMR 1 

SFA40~SFA85 (-14 72--1403) SINGLE-STEP SIMULATOR SUBROUTINE (NOT IN AUTOSTART ROM) 
SFA40 C-1472) [IRQ] \SE\ AUTOSTART ROM MONITOR SIR- IRQ HANDLER 
SFA43 <-1469) (STEP] MONITOR SIR- PERFORM A SINGLE STEP (NOT AVAILABLE WITH AUTOSTART ROM). EXECUTES ONE 

SFA4E (-1458) 
$FA59 (-1447> 
SFA62 C-1438) 
SFA6F (-1425) 
$FA78 (-1416) 
$FA7A (-1414) 
SFA81 <-1407) 
SFA86 <-1432) 
SFA92 (-1390) 
SFA9B (-1381) 

[XQINITJ 
[OLDBRK J 
CR ES ETJ 
[lNITANJ 
[X Q1 J 
[X Q2 J 
[NEWI"ONJ 
[I RQJ \ SE \ 
[BREAK] \ SE\ 

SFA9C C-1380) [XBRKJ 
$FAA5~$FA06 (-1371--1322) 

SFAA5 
SFAA6 
SFAA9 
$FAA9 
SFAAD 
$FA A F 
SFAB9 
SFAB9 
Sf A C4 
SFA C5 
$FAC7 
SF ACO 
$FA 01 
$FAD7 

(-1371> 
(-1370) 
<-1367> 
<-1367> 
<-1363) 
<-1361) 
(-1351) 
(-1351> 
(-1340> 
<-1339) 
<-1337> 
(-1331) 
(-1327> 
(-1321) 

(XRTIJ 
[P WRUPJ 
[SETPG3J 
[X RTS] 
[PCINC2J 
[PCINC3J 
[X JSR] 
[S LOCPJ 
[X J MP] 
[XJMPATJ 
[N XTBYT] 
[NEWPCLJ 
[RTNJMPJ 
[REGDSPJ \S E\ 

SFADA ( -131 8) [R GO SP1 J \S E\ 

SFAE4 C-1308) [RDSP1J 
$FAFD-$FB18 (-1283--1256) 

SFAFD (-1283) [BRANCH] 

INSTRUCTION AT (PCL~H) WITH REGISTER RESTORE BEfOREi REGISTER SAVE AfTERi UPDATE Of 
PCL.Hi DISPLAY OF INSTRUCTION & DISPLAY OF RESULT REGISTERS 
MONiTOR MEMORY LOCATION 1 XQ IN IT 1 

AUTOSTART MONITOR MEMORY LOC~TION 

AUTOSTART MONITOR MEMORY LOCATION 
AUTOSTART MONITOR MEMORY LOCATION 
MONITOR MEMORY LOCATION 'XQ1' 
MONITOR MEMORY LOCATION 'XQ2' 

'OLDBRK' 
'RESET' 
' IN IT AN 1 

AUTOSTART MONITOR MEMORY LOCATION 'NEWMON' 
MONITOR SIR- IRQ HANDLER. NOTE: MOVED TO $FA40 IN AUTOSTART ROM 
MONITOR SIR -BREAK HANDLER 
AUTOSTART MONITOR MEMORY LOCATION 'FIXSEV' 
MONITOR MEMORY LOCATION 'XBRK' 
BLOCK OF CODE ASSOCIATED WITH SINGLE-STEP SIMULATOR IN NORMAL MONITOR REMOVED FROM 
AUTOSTART ROM 
MONITOR MEMORY LOCATION 'XRTI' 
AUTOSTART MONITOR MEMORY LOCATIOt~ 1 PWRUP' 
AUTOSTART MONITOR MEMORY LOCATION 'SETPG3' 
MONITOR MEMORY LOCATION 'XRTS' 
MONITOR MEMORY LOCATION 'PCINC2' 
MONITOR MEMORY LOCATION 'PCINC3' 
MONITOR MEMORY LOCATION 'XJSR' 
AUTOSTART MONITOR MEMORY LOCATION 'SLOOP' 
MONITOR MEMORY LOCATION 'XJMP' 
MONITOR MEMORY LOCATION 1 XJMPAT' 
AUTOSTART MONITOR MEMORY LOCATION 'NXTBYT' 
MONITOR MEMORY LOCATION 'NEWPCL' 
MONITOR MEMORY LOCATION 'RTNJMP' 
DISPLAY SAVED REGISTER CONTENTS FROM MEMORY LOCNS 
CARRIAGE RETURN (SEE 'SAVE' ROUTINE AT Sff4A) {A
DISPLAY SAVED REGISTER CONTENTS fROM MEMORY LOCNS 
CARRIAGE RETURN (SEE 'SAVE' ROUTINE AT SFF4A) {A
MONITOR MEMORY LOCATION 'RDSP1' 

$0045-$0049 WITH PRECEDING 
X-REGS ALTERED} 
$ 0 04 5- S 0 0 4 9 W l UIO U T P R E C EO I N 6 
X-REGS ALTERED} 

BLOCK OF CODE ASSOCIATED WITH SINGLE-STEP SIMULATOR IN NORMAL MONITOR REMOVED FROM 
AUTOSTART ROM 
MONITOR MEMORY LOCATION 'BRANCH' 

---------------------------------------------------------------------------------------------------------·------- ---- --~-·-
SF94C - SFo\FD Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN <DEC LOCN) (NAME] \USE-TYPE\ - DESCRIPTION ----------------------------- ------------ ~------------- __ ... ______ ------------------ ____ ...,... --------------------------------------
SfAFD (-1283) (Pio.RCONJ 
SFB05 <-1275) (D ISKID] 
SFB09 <-1271) (T ITLEJ 
SFBOB <-1269) [NBRNCH] 
SFB11 <-1263) (INITBLJ 
SFB11 (-1263> 
SFB19 (-1255) [R TBLJ 
SFB1E <-1250> [P READ] \ SE \ 

SFB25 (-1243) [P READ2] 
SFB2E <-1234) (RTS2D] 
SFB2F <-1233) (I NI TJ \ S E\ 
SFB39 (-1223> (SETTXTJ \S E \ 
$FB40 <-1216) [S ETGR] \ SE \ 

SFB43 <-1213) \S E\ 
SFB46 <-121 O> \S E \ 

SFB4B (-1205> (S ETWND] \SE\ 
SFB5B (-1189) (T ABVJ \S E\ 

SFB60-SFB80 (- 11 84--11 52> [M UL PM] 

SFB60 (-1184) (MULPM] \SE\ 

SFB60 (-1184) [APPLEIIJ \SE\ 

SFB63 <-1181> [MULJ \SE\ 

SF865 (-1179) (MUL2] 
SFB65 (-1179) (STilLE] 
SFB60 (-1171> (MUU.J 
SFB6F (-1169) (SETPWRCJ \SE\ 
SFB76 C-1162) (MUL4J 
$f878 (-1160) (MUL5J 
SFB78 (-1160) (VIDWAITJ 
SFB81.SFBC0 <-1151--1088) 
SFB81 (-1151) (0 IVPM] 

SFB84 <-1148) [DIV] \SE\ 
SFB86 <-1146) (O IV 2J 
SFB88 (-1144) 
SFBAO <-1120> (D IV 3J 
SFBA4 <-1116) (M01 J 

SFBAF (-1105> [M02 J 

AUTOSTART MONITOR MEMORY LOCATION 'PWRCON' 
AUTOSTART MONITOR MEMORY LOCATION 'OISKID' 
AUTOSTART MONITOR MEMORY LOCATION 'TITlE' 
MONITOR MEMORY LOCATION 'NBRNCH' 
MONITOR MEMORY LOCATION 'INJTBL' 
AUTOSTART MONITOR MEMORY LOCATION 'XLTBL' 
MONITOR MEMORY LOCATION 'RTBL' 
MONITOR SIR TO READ PADDLE. X-REG CONTAINS PADDlE NUMBER C0-3) OF PADDLE TO BE 
READ. PADDLE VALUE TOY-REG {A- Y-REGS ALTERED} 
MONITOR MEMORY LOCATION 'PREAD2' 
MONITOR MEMORY LOCATION 'RTS20' 
~ONITOR SIR- SCREEN INITIALIZATION (RESET TEXT MODE) 
MONITOR SIR- SET SCREEN TO TEXT MODE. CLOBBERS ACCUMULATOR {A-REG ALTERED} 
MONITOR SIR- SET GRAPHIC MODE CGR>. THIS INCLUDES SETTING TO MIXED MODE;CLEARING 
GRAPHICS PART Of SCREEN; AND RESETTING WNDTOP-WNDLFT-WNDWDTH-WNDBT~ & TABV {A-REG 
ALTERED} 
MONITOR SIR -ALL OF SETGR EXCEPT SETTING COLOR GRAPHICS DISPLAY MODE 
MONITOR SIR -ALL OF SETGR EXCEPT SETTING COLOR GRAPHICS DISPLAY MODE & CLEARING 
GRAPHICS PART OF SCREEN; I.E. WINDOW & TAB SETTING ONLY 
MONITOR SIR- SET NORMAL LOW-RESOLUTION GRAPHICS WINDOW 
PLACE CURSOR AT LINE (A-REG) COLUMN CCH> SETTING CV AND BASL-H FROM A-REG {A-REG 
ALTERED} 

\SB\MONITOR 16-BIT MULTIPLY S/R (NOT IN AUTOSTART ROM). MULTIPLIER I~ AUXL-AUXH 
($0054-$0055); MULTIPLICAND IN ACL-ACH ($0050-S0051);XTNDL-XTNDH ($0052-$0053) 
CLEARED TO ZEROS: RESULT GOES TO EXTENDED AC C$0050-S0053). ALSO SEE 'SIGN' AT 
S002f. {A- X-REGSY-REG ALTERED} 
MONITOR - SIGNED 16-BlT MULTIPLY LEAVING SIGN IN LSB Of 'SIGN' {A- X- Y-REGS 
ALTERED} 
CLEAR SCREEN AND POKE 'APPLE II' INTO fiRST LINE Of TEXT SUffER (AUTOSTART ROM 
ONLY) {A- Y-REGS ALTERED} 
MONITOR- UNSIGNED 16-SIT MULTIPLY SIR (NOT AVAILABLE WITH AUTOSTART ROM>. SAME AS 
MULPM CSFB60) EXCEPT UNSIGNED. SEE 'SIGN' AT S002F {A- X- Y-REGS ALTERED} 
MONITJR MEMORY LOCATION 'MUL2' 
AUTOSTART MONITOR MEMORY LOCATION 'STITLE' 
MONITOR MEMORY LOCAT.ION 'MUL3' 
SET POWER CONDITION (AUTOSTART ROM ONLY> 
MONITOR MEMORY LOCATION 'MUL4' 
MONITOR MEMORY LOCATION 'MUL5' 
AU TO START MONITOR MEMORY LOCATION 'VI DWAI T' 
MONITOR 16-BlT DIVIDE ROUTINE (NOT IN AUTOSTART ROM) 
MONITOR SIGNED DIVISION- DIVIDES NUMBER IN EXTENDED AC ($0050.$00531 BY NUMBER IN 
AUXL-AUXH ($0054-$0055) LEAVING QUOTIENT IN ACL-ACH CS0050-S0051) AND REMAINDER IN 
$0053. BE CAREfUL OF SIGNS SCALING & OVERFLOW. IF CXTNDL-XTNDH 
($0052-$0053l)>(AUXL-AUXH ($0054-$0055)) OVERFLOW WILL RESULT 
MONITOR SIR- UNSIGNED DIVIDE ROUTINE- SAME AS SFB81 (DIVPMl EXCEPT NO SIGNS USED. 
MONITOR MEMORY LOCATION 'DIV2' 
AU TOST ART MONITOR MEMORY LOUT ION 'KBDWAI T' 
MONITOR MEMORY LOCATION 'OIV3 1 

MONITOR 16-BIT MULITIPLYIDIVIDE SIGN-PROCESSOR. SETS ABSOLUTE. VALUES Of ACL-H 
"1EMORY LOCATION 'M01' AUXL•H LEAVING RESULTING SIGN IN LSB OF SIGN C$002f) 
MONITOR MEMORY LOCATION 1 MD2' 

----------------------------------~:---------------------------------------------·-----_.,....,.... ____________________________________ _ 
SFAFO - SFBAF Prof. Luebbert's "What's Where in the Appte" NUMERIC ATLAS 



HEX LOCN (DEC lOCN) (NAME] \USE-TYPE\ - DESCRIPTION 
-----------------------------------------------------------------------____ ...,.. -------------~-------------------~-----------~---
$ FBB4 C-1100> [M D3 J 
SFBCO C-1088) (M DRTS] 
$ FB C 1 ( -1 08 7) (BAS CALC] \SE\ 

SFBDO (-1072> [8SCLC2J 
$fBD9 C-1063) (B Ell1] 
SfBDD <-1059) 
$FB E4 (-1052) [BEl L2J \ SE \ 
SFBEF (-1041) [R TS2BJ 
$FBFO <-1040) CS TOADV] \S E\ 

$FBF4 (-1036) [A DVANC EJ \SE\ 

$fBF6 <-1 034) \S E\ 

SFBFC (-1028> [RTS3] 
SfBFD (-1027> [V IDOUTJ \SE\ 

$FC10 <-1008) (B S] \S E\ 

$FC1A (-998) [UP- CURSUP] \SE\ 
SFC22 <-990> [ VT AS] \ SE \ 

$FC 24 (-988) CVTABZ] \S E\ 
$FC2B (-981) [RTS4] 
$FC2C (-980) [ESC1J \SE\ 

$FC42 <-958) [CLREOP] \SE\ 
$ F C 4 6 ( -9 54) [CLEOP1] 
$FC58 <-936) (HOME J \ SE \ 
$FC5A <-934) \ SE \ 

$FC62 (-926) [CR] \SE\ 

$ FC 6 6 < -9 2 2 > [LFJ \SE\ 

$FC70 C-912> [SCROLL] \ SE \ 
$FC76 (-906) [ SC RL1J 
$ F C 8 C ( -8 8 4) CSCRL2J 
SFC95 <-875> [ SC RL3J 
$FC9C (-868) [CLREOLJ \ SE \ 
SFC9E <-866) [CLEOLZJ 
SFCAO <-864) (CLEOL2J 
SFCA8 (-856> (WAIT] \SE\ 

MONITOR MEMORY LOCATION 'MD.3' 
MONITOR MEMORY LOCATION 'MORTS' 
MONITOR SIR- CALCULATE TEXT BASE ADDRESS. SET BASL-H TO LEfT END OF SCREEN LINE 
(NOT WINDOW LINE) IN A-REG {A-REG ALTERED} 
MONITOR MEMORY LOCATION 'BSCLC2' 
MONITOR MEMORY LOCATION 'BELL1' 
SOUNDS BELL IN APPLE REGARDLESS OF OUTPUT DEVICE IN USE {A- Y-REGS ALTERED} 
MONITOR SIR- SOUND BELL <BEEPER) 
MONITOR MEMORY LOCATION 'RTS28 1 

MONITOR -·LOAD Y FROM CHi STORE A-REG TO SCREEN AT (BASl.)-y; AND GOTO ADVANCE 
($FBf4) {A- Y-REG ALTERED} 
MONITOR SIR- MOVE CURSOR RIGHTi l.E. INCREMENT (CH); CO\tPARE (CH) WITH (WNDWDTH) GO 
TO CR If CH NOT LESS ELSE RETURN (RTS) {A-REG ALTERED} 
COMPARE (CH) WITH (WNDWDTH) GO TO CR If CH NOT LESS ELSE RETURN (RTS) (A-REG 
AlTERED} 
MONITOR MEMORY LOCATION 'RTS3' 
MONITOR SIR- OUTPUT A-REGISTER AS ASCII ON TEXT SCREEN OR PROCESS CONTROL 
CHARACTER. If (A)<$80 GOTO STOADVi =S87 SOUND BELli =S88 GOTO BSi =S8A GOTO Lfi 
=$8D GOTO CRi >$9F GOTO STOADVi OTHERWISE IGNORE ENTRY SCREEN RTS 1 
MONITOR SIR TO MOVE CURSOR LEFT {BACKSPACE); IF AT START Of LINE MOVE UP TO RIGHT 
END OF LINE ABOVE If POSSIBLE {A-REG ALTERED} 
MONITOR SIR TO MOVE CURSOR UPWARD (If POSSIBLE) {A-REG 'LTEREO} 
PERFORM A VERTICAL TAB TO ROW SPECIFIED IN A-REG ($0-$17>. SET BASL•H FROM CV (AND 
WNDLfT) {A-REG ALTERED} 
SET BASL-H FROM (A-REG> AND WNDLFT WITHOUT REGARD TO CV {A-REG ALTERED} 
MONITOR MEMORY LOCATION 'RTS4' 
ROUTINE (IF A=i GO TO HOMEi =A GO TO ADVANCE; =B GO TO BS (BACKSPACE)i •C GO TO LF 
<LINEFEEO)i =D GO TO UP (INVERSE LINEFEED); =E GOTO CLREOli =F GOTO CLREOPi 
=ANYTHING ELSE RTS ~ IGNORE ENTRY) CALLED BY 'RDCHAR' IF ESCAPE KEY IS INPUTTED. 
CALLS APPROPRIATE SCROLL WINDOW SERVICE ROUTINE <IF A=i GO TO HOME; =A GO TO 
ADVANCE; =B GO TO BS (BACKSPACE); =C GO TO lf <LINEfEED)i =D GO TO UP (INVERSE 
LINEFEED)i =E GOTO CLREOLi =F GOTO CLREOPi =ANYTHING ELSE RTS & IGNORE ENTRY) {USES 
A-REG} 
MONITOR SIR TO CLEAR FROM CURSOR TO END Of PAGE. {A- Y-REGS ALTERED} 
MONITOR MEMORY LOCATION 'CLEOP1' 
CLEAR SCROLL WINDOW TO BLANKS. SET CURSOR TO TOP LEFT CORNER {A- Y-REGS ALTERED} 
SET CV (CURSOR VERTICAL POSN) FROM A-REG. CLEAR WINDOW TO END Of WINDOW; SET CH=O 
{A- Y-REGS ALTERED} 
MONITOR SIR TO PERfORM A CARRIAGE RETURNi I.E. LOAD ZERO TO A-REG & CH {A-REG 
ALTERED} 
MONITOR SIR TO TO PERFORM A LINE FEEDi I.E. INCREMENT cv; COMPARE CV TO WNDBTM If 
CV<WNDBTM GOTO VTABZ TO SET BASL-H AND RETURN ELSE DECREMENT CV AND 00 SCROLL 
{A-REG ALTERED} 
MONITOR SIR TO SCROLL UP 1 LINE. {A- \'-REGS ALTERED} 
MONITOR MEMORY LOCATION 'SCRL1' 
MONITOR MEMORY LOCATION 'SCRL2' 
~ONITOR- CLEAR LINE (BASL.H) {WHOLE LINE} THEN SET NEW BASL-H fROM CV & WNDLFT 
MONITOR SIR TO CLEAR TO END Of LINE {A- Y-REGS ALTERED} 
MONITOR MEMORY LOCATION 'CLEOLZ' 
MONITOR MEMORY LOCATION 'CLEOL2' 
CALL FOR WAIT LOOP. WAIT ESTIMATED AT 2.5A.2+13.5A+13 WAIT CYCLES Of 1.02 
MICROSECONDS WHERE A IS CONTENTS Of A-REG WHEN SIR CALLED -----------------------------------------------------------------------------------------------.---..... --------------

SFBB4 - $FCA8 Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME) \USE-TYPE\ - DESCRIPTION 
-----··----~--- ~ ------------------------------------------------------------______ ,__.. _______ .,. __ -----------------------
$.fCA9 <-855) [WAIT 2) 
SFCAA ( -854) [ WA IT3) 
SFCB4 <-844) (NXTA4) 
SFC BA ( -838) [NXTA1J 
SFCC8 C-824) ( RT S4B) 
SFCC9 <-823> [HE AD R) 
SFCD6 C-810> [ WRBI TJ 
SFCDB <-805> [ZEROLY) 
SFCE2 C-798) [ ONEDL Y) 
SFCES (-795) [WRTAPEJ 
SFCEC C-788) [RDBYTE] 

SFCEE <-786> [RD BYT2J 
SFCFA <-774> [ RD 2B ITJ 

SFCFD <-771> [RDBITJ 

SFDOC <-756> [RDKEY) 

MONITOR MEMORY LOCATION 'WAIT2' 
MONITOR MEMORY LOCATION 'WAIT3' 

\SE\MONITOR SIR TO INCREMENT A4 <16 BITS) THEN DO NXTA1 {A-REG ALTERED} 
\SE\MONITOR S/R TO INCREMENT A1 C16 BITS). SET CARRY If RESULT >=A2 .. (A-REG ALTERED} 

MONITOR MEMORY LOCATION 'RTS4B' 
MONITOR- WRITES SYNCHRONIZATION MONOTONE WHICH IS FIRST PART OF EllERY CASSETTE TAPE RECORD 
MONITOR- WRITES A BIT TO CASSETTE TAPE (CALLED BY WRBYTE AND HEADR) 
MONITOR MEMORY LOCATION 'ZERDLY' 
MONITOR MEMORY LOCATION 'ONEDLY' 
MONITOR MEMORY LOCATION 'WRTAPE' 
MONITOR- READS BITS FROM CASSETTE TAPE UNTIL BYTE ACCUMULATED (CALL~O BY MONITOR READ MEMORY 
LOCATION 'RDBYTE' SHAPE TABLE LOAD) 
MONITOR MEMORY LOCATION 'RDBYT2' 
MONITOR TWO-EDGE TAPE SENSEi I.E. LOOPS DECREMENTING Y-REG UNTIL HARDWARE HAS INDICATED TWO 
TRANSITIONS OF TAPE INPUT REGISTER. CONTENTS Of Y-REG ON RETURN CO~PARED WIT~ CONftNTS ON 
ENTRY MEASURE TIME REQUIRED FOR TRANS.ITlONS. CALLS RDBIT 
MONITOR- LOOPS DECREMENTING Y-REG UNTIL CASSETTE TAPE INPUT REGISTER CHANGES (EITHER 0=>1 OR 
1=>0>. BIT VALUE RETURNED IS DETERMINED FROM RESIDUAL COUNT OF Y-REG. CALLED BY RD2BIT AND READ 

\SE\SAME AS RDCHAR EXCEPT BYPASSES ESCAPE KEY MONITOR SUPPORT; PICKS UP AND SAVE THE CHARACTER IN 
THE SCREEN AREA AT BASL -H CH <LEAVING Y-REG CONTAINING CONTENTS Of CH) IT THEN CHANGES THAT 
CHARACTER TO BLINKING TO INDICATE CURRENT CURSOR POSNi ASKS FOR NEXT INPUT CHAR TO BE PLACED 
IN A-REG BY DOING AN INDIRECT JUMP VIA KSWL-H WHICH IS NORMALLY POINTING AT KEVIN. RETURN IS 
THEREFORE TO THE CALLER OF RDKEY - NOT TO RDKEY ROUTINE ITSELF. SET-UP: A- X- Y-REGS NOT 
SIGNIFICANT; CV AND BASL-H SHOULD BE COMPATABLE POINTING IN THE SCROLL WINDOWi CH INDICATES 
HORIZONTAL POSITION WHERE CURSOR WILL BLINK. RESULTS: A-REG CONTAINS THE INPUT CHARACTER 
(WHICH MAY BE ANY CHARACTER INCLUDING ANY CONTROL KEY OR ESCAPE KEI)iX-REG IS UNCHANGEDi Y-REG 
CONTAINS CO~TENTS OF CHi CV CH BASL-H REMAIN UNCHANGED {A- X- Y-REGS ALTERED} 

SFD1B (-741) [KEVIN) \SE\GETS NEXT KEY INPUT FROM KEYBOARD HARDWARE. REQUIRES LOOP TO TEST THAT KEY HAS INDEED BEEN 
READi BY PRESENCE Of S80 BIT. ALSO REQUIRES KEYBOARD STROBE TO BE HIT BEfORE NEXT KEYBOARD 
INPUT. AUXILLIARY ACTIONS TAKEN BY KEVIN INCLUDE RESTORING TO THE SCREEN AREA THE CHARACTER 

SFD 21 (.,..735) [KEY !f\2 J 
SFD2F <-721) res c J 
SFD 35 (-715) [ RD CHAR) 

SFD3D (-707> [NOTCRJ 
SFDSF <-673> [NOTCR1J 
SFD62 (-670> [CANCEL] 
Sf D 6 7 ( -66 5 > [GETLNZ] 

SFCA9 - SFD67 

MODIFIED BY RDKEY TO REMOVE BLINK INSERTED BY RDKEY AND COUNTING UP THE RANDOM NUMBER FIELD-
IGNORING OVERFLOW. SET-UP: X-REG NOT SIGNIFICANT & NOT AFFECTEDi A-REG INPUT TO THIS ROUUNE 
STORED AT (BASL)-y WHEN A KEY IS PRESSED BEFORE THE A-REG IS FILLED FROM THE KEYBOARD 
REGISTER; Y-REG USED FOR STORING A-REG IN SCREEN AREA TO (BASL)-y; CH AND CV NOT 
REFEENCEO:BASL-H ARE USED AS I.NDICATED IN RDKEY. RESULT: A-REG CONTAINS INPUT fROM KEYBOARD 
REGISTER; IT IS ONLY ITEM CHANGED (A-REG ALTERED} 
MONITOR MEMORY LOCATION KEYIN2 
MONITOR MEMORY LOCATION 'ESC' 

\SE\CALLS ROKEY TO GET NEXT CHAR PLACED INTO A-REG. If ESCAPE KEY PRESSED CALLS 'ESC1' fOR ESCAPE 
KEY PROCESSING; AFTER ESCAPE KEY AND KEY FOLLOWING HAVE BEEN READ & PROCESSEI> CONTROL RETURNS 
TO RDCHAR ROUTINE AS IF IT WERE JUST BEING ENTERED {A- X- Y-~EGS ALTERED} 
MONITOR MEMORY LOCATION 'NOTCR' 
MONITOR MEMORY LOCATION 'NOTCR1' 

\SE\MONITOR S/R TO PERfORM A LINE CANCEL (\) 
\SE\OUTPUT A C/R (THROUGH COUT). GO TO GETLN TO WRITE PROMPT & GET A LINE Of DATA (USUALLY FROM 

KEYBOARD); ON SET-UP A- X- Y-REGS CHAND BASL-H NOT SIGNIFICANT. CV SHOULD POINT TO A LINE lN 
SCROLL WINDOW; ON OUTPUT KEYED IN INFO IS IN $200 THRU $200-~ WHERE $200-x CONTAINS A 
CARRIAGE RETURNiA-REG CONTAINS CARRIAGE RETURN:X-REG CONTAINS NUMBER Of CHARACTERS READ 
EXCLUDING TERMINATING CARRIAGE RETURNiY-REG CONTAINS CONTENTS Of WNDWDTH; CH CONTAJNS ZERO;Cv 
CONTAINS LINE POINTER <CURRENT VALUE);BASL -H CONTAINS MEMORY ADDRESS CORRESPONDING TO CV AND 
WNOLFT; SCREEN LINE IS BLANKS TO THE RIGHT OF THE END OF ECHOED INPUT (A- X- Y-REGS AL TfRED} 

Prof. Luebbert's "What's Where in the Apple" NUMERIC ATlAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION ---------------------------____ _,_ ----------------------· ------------------------- ~---· --------------~-----··-~--· --~p···-·· 
$FD6A (-662) [GEH .. NJ \SE\PROMPT & GET LINE Of TEXT~ ON CALLING .A- X- Y-REGS NOT SIGNifiCANT. C\1 AND BASL-H SHOULO BE 

COMPATIBLE POINTING IN THE SCROLL WINDOW. CH INDICATES WHERE ON LINE THE PROMPT CHARACTER IS 
TO BE PLACED TO BE fOLLOWED BY ECHOED KEY90ARD INPUT; OUTPUT AS fOR GETLNZ {X-REG GETS #CHARS 
READ. DATA TO 5200-$200-x (MAX S2ff) $200-x & Y-REG GET C/R (USES NXTCHARJ} {A- X- Y-REGS 
ALTERED} 

SFD6F (-657> \ SE \ MONITOR SIR r:> GET LINE Of TEXT fM KEYBD (SAME AS GETLN EXCEPT NO PR:>MPT!> {A- X- Y-REGS ALTERED} 
~ONITOR MEMORY LOCATION 'BCKSPC' Sf071 (-655) [BCKSPCJ 

$FD75 (-651> [NXTCHARJ \SE\TOP POINT IN CHAR INPUT LOOP. SAME EFFECT AS GETLN EXCEPT BYPASS PRINT Of PROMPT CHARACTER; 
ON SET-UP X-REG SHOULD BE SET TO ZERO TO BEGIN STORING Of INPUT AT $200; A- Y-REGS NOT 

$FD7E ( -6 4 2) 
$ F D 8 0 C -6 4 0 ) 
$FD84 ( -636) 
$FD8E <-626) 
$FD92 C-622) 
$FD96 ( -61 8) 
$ F D 9 9 C -61 5) 
$FOA3 <-605) 

SFD AD (-595) 
$FDB3 (-589> 

SfDB6 (-586) 
$FD C 5 ( -5 71 ) 
$FDC6 C-570) 
$ FD D 1 (-559) 
$FDDA (-550) 
SFD E3 (-541) 
SFD E5 <-539) 
SFDED C-531> 
$FDF0 (-528) 
$FOF6 (-522> 
SFEOO (-512) 
SFE04 (-508) 
SFEOB <-501) 
SFE17 (-489) 
$FE 1 8 ( -4 8 8) 
$FE1D (-483) 
$FE20 C-480> 
SFE22 (-478> 
$FE2C ( -4 68) 
$FE 3 6 ( -4 58 ) 
$FE58 (-424) 
$FE 5E (-418) 
$FE63 ( -413) 
SFE78 <-392) 
SFE 7f (-385) 
SfE80 <-384) 
$fE84 (-380) 

SIGNifiCANT:CV AND BASL-H SHOULD BE COMPATIBLE POINTING IN THE SCROLL WINDOW; CH INDICAtES 
WHERE ECHOING Of KEYBOARD INPUT IS TO START & SHOULD BE LESS THAN WNDWDTH; RESULTS SAME AS 
fOR GETLNZ {A- X- Y-REGS AL TEREO} 

[CAPTSTJ MONITOR MEMORY LOCATION 'CAPTST' 
(INSTDSPJ MONITOR SIR TO DISASSEMBLE INSTRUCTION AT PCHIPCL {A- X- Y-REGS ALTERED} 
(ADDINPJ MONITOR MEMORY LOCATION 'ADDINP' 
(CROUT] \SE\MONITOR SIR TO PRINT A CARRIAGE RETURN THROUGH COUT {A- Y-REGS ALTERED} 
(PRA1] \SE\PRINT CARRIAGE RET; THEN HEX Of A1H-A1L; THEN MINUS SIGN {A- X- Y-REGS ALTERED} 
(PRYX2J \SE\MON ITOR SIR TO PRINT CAR RET THEN HEX Of Y-REG & X-REG THEN A DASH {A-REG AL IE REO} 
\SE\ PRINT HEX OF Y-REG & X-REG THEN MINUS SIGN {A-REG ALTERED} 
(XAM8] \SE\MONITOR SIR TO EXAMINE 8 MEM LOCNS. PRINTS HEX Of MEMORY fROM XXXX TO XXX7 WHERE XXXX IS 

CONTENTS Of A1L-A1H; Y-REG MUST =0 ON ENTRY {A-REG ALTERED } 
(MOD8CHKJ ti,ONITOR MEMORY LOCATION 'MOD8CHK' 
[XAMJ \SE\ti,ONITOR SIR TO EXAMINE CONTENTS OF MEMORY FROM (A1L-A1H) TOCA2L-A2H). Y-REG=O BEFOR~ CALL {A-.flEG 

ALTER EO} 
[DATACUT] MONITOR MEMORY LOCATION 'OATAOUT' 
[RTS4CJ MONITOR MEMORY LOCATION 'RTS4C' 
[XAMPf",J MONITOR MEMORY LOCATION 'XAMPM' 
[ADD] MONITOR MEMORY LOCATION 1 ADD' 
(PREYTE] \SE\MONITOR SIR TO PRINT CONTENTS Of A-REG AS 2 HEX DIGITS {A->REG ALJERED} 
(PRHEX] \SE\MON.ITOR SIR TO PRINT RIGHT NIBBLE Of A-REG AS A SINGLE HEX DIGIT {A-REG ALTERED} 
(PRHEXZJ MONITOR MEMORY LOCATION 'PRHEXZ' 
[COUTJ \SE\PRINT BYTE Ui A-REG TO OUTPUT DEVICE SPECIFIED BY 'CSWL' (NORMAllY 'COUT1'> {A-REG AlTERED} 
[COUT1J \SE\WRITE BYTE IN A-REG TO SCREEN AT CURSOR POSN CC\1)-(CH) USING 'INVFLG' & SUPPORTING CURSOR MOVE 
(COUTZ] \SE\WRITE BYTE FROM A-REG TO SCREE\1 AT CCV)-(CH) WITH CURSOR MOVE BUT NOT 'INVFLG' {NONE ALTERED} 
[BL1] MONITOR & MINIASSEMBLER MEMORY lOCATION 'BL1' 
(BLANK] JYONITOR MEMORY LOCATION 'BLANK' 
(STORJ f#,ONITOR MEMORY LOCATION 'STOR' 
( RT S5J MONITOR MEMORY LOCATION 'RTS5' 
[SETMOOEJ JYONITOR MEMORY LOCATION 'SETMODE' 
(SETMDZ] MONITOR MEMORY LOCATION 'SETMDZ 1 

(LT] JI!ONITOR MEMORY LOCATION 'LT' 
(LT2] MONITOR MEMORY LOCATION 'LT2' 
[MOVEJ \SE\MONITOR SIR TO PERFORM A MEMORY MOVE (A1-A2 TO A4HY-REG MUST =0 AT CALL> {A-REG ALTERED} 
[VFYJ \SE\I'I,ONITOR SIR TO PERFORM A MEMORY VERIFY (A1-A2 TO A4) 
(VfYOKJ JI!ONITOR MEMORY LOCATION 'VFYOK' 
[LISTJ \SE\CALL TO DISASSEMBLE 20 INSTRUCTIONS 
[LlST2J MONITOR MEMORY LOCATION 'LIST2' 
(A1PCLP] JYONITOR & MINIASSEM6LER MEMORY LOCATION 'A1PCLP' 
(A1PCRTSJ MONITOR MEMORY LOCATION 'A1PCRTS' 
(SETH.VJ \SE\MONITOR SIR TO SET VIDEO OUTPUT TO INVERSE 
[SETNORM] \SE\MONITOR SIR TO SET VIDEO OUTPUT TO NORMAL (NOT INVERSE> 

-------------------------------------.,-------------------------,-·---------------------------.-----------------·--... ------------------- .... --
SfD6A - Sf£84 Prot. Luebbert's "What's Where in the Apple" NUMERIC ATlAS 



HEX LOCN (DEC LOCN) [NAME) \USE-TYPE\ - DESCRIPTION 

SFE86 C-378) 
SFE89 (-375> 
SFE8B (-373} 
SFE8D (-371> 
SFE93 (-365) 
SFE95 C-363) 
SFE97 <-361} 
SFE9B C-357> 
SFEA7 <-345} 
SFEA9 <-343) 
SFEBO <-336) 
SFEB3 <-333) 
SFEB6 <-330} 
SFEB9 <-327) 
SFEBF <-321) 
SFEC2 <-318) 
SFEC4 <-316} 
SFECA C-310} 
SFECD <-307> 

SFED4 (-300} 
$FEED <-275) 
SFEEF <-273) 
SFEF6 (-266) 
SFE FD ( -2 59) 

SFF02 <-254) 
SFFOA <-246) 
SFF16 <-234) 
SFF2D <-211> 
SFF3A <-198) 

SFF3F <-193) 

SFF44 <-188) 
SFF4A <-182) 

SFF4C C-180) 
SFF58 C-168) 
SFF 59 C-16 7) 

SFF65 C-155) 
SFF69 C-151) 
SFF70 C-144) 
SFF73 <-141> 
SFF7A C-134) 
SFF7C C-132) 
SFF8A (-118) 
SFF90 <-112) 
SFF98 C-104) 

[SETIFLGJ MONITOR MEMORY LOCATI:>N 'SETIFLG' 
[SETKBD) MONITOR MEMORY LOCATION 'SETKBD' 
[INPORTJ MONITOR MEMORY LOCATION 'INPORT' 
[INPRTJ MONITOR MEMORY LOCATION 'INPRT' 
[SETVID] "ONITOR MEMORY LOCATION'SETVID' 
[OUTPORTJ MONITOR MEMORY LOCATION 'OUTPORT' 
[OUTPRTJ IIONITOR MEMORY LOCATION 'OUTPRT' 
[IOPRTJ IIONlTOR MEMORY LOCATION 'IOPRT' 
[IOPRT1J MONITOR MEMORY LOCAT.ION 'IOPRT1' 
[IOPRT2J IIONITOR MEMORY LOCATION 'IOPRT2' 
[XBASICJ \SE\MONITOR SIR TO JUMP TO BASIC 
(BASCONTJ \SE\MONITOR SIR TO CONTINUE BASIC 
[GO) \SE\ MONITOR MEMORY LOCt\TION 'GO' 
\SE\ RESTORE REGISTERS (CALL RESTORE) THEN JMP (PCU TO CONTINUE EXECUTIO~ {A- X- Y- P-REGS ALTERED} 
(REGZJ \SE\MONITOR SIR TO DISPLAY REGISTERS 
(TRACE) \SE\CALL TO PERFORM MONITOR TRACE 
(STEPZ) MONITOR MEMORY LOCATION 'STEPZ' 
(USR] MONITOR MEMORY LOCATION 'USR' 
(WRITE] \SE\MONITOR SIR TO WRITE DATA FROM MEMORY TO CASSETTE TAPE- FIRST MEMORY LOCATION PO.INTED TO 3Y 

A1L-H ($003CS003D)i LAST BY A2L-H ($003E*S003f). CASSETTE TAPE GETS 10 SECONDS OF TONE 
HEADER THEN THE DESIGNATED DATA 3ITS AND ONE CHECKSUM BYTE 

(WR1] MONITOR MEMORY LOCATION 4 WR1' 
(WRBYTEJ MONITOR- USES WRBIT TO WRITE 10 BITS TO CASSETTE TAPE 
(WRBYT2J MONITOR MEMORY LOCATION 'WRBYT2' 
[CRMONJ MONITOR MEMORY LOCATION 'CRMON' 
[READ] \SE\READS DATA FROM CASSETTE TAPE PUTTING FIRST DATA READ INTO LOCATION POINTED TO BY A1L-H 

($003CS003D) AND CONTINUING TO READ UNTIL DATA GOES TO LOCATION POINTED TO BY A2L-H 
($003E-S003F>. ALSO COMPUTES A RUNNING EXCLUSIVE OR CHECKSUM IN 'CHECKSUM' ($002E> 

[READX1] HI-RES GRAPHICS- READ WITHOUT HEADER 
(RD2] MONITOR MEMORY LOCATION 'RD2' 
(RD3J MONITOR MEMORY LOCATION 'RD3' 
[PRERR) \SE\MONITOR SIR TO PRINT "ERR" AND SOUND BELL. {A- Y-REGS(?) ALTERED} 
(BEll] \SE\MONITOR SIR TO SOUND BELL IN CURRENT OUTPUT DEVICE (WHETHER IT IS APPLE OR EXTERNAL PRINTER) 

{A--REG ALTERED} 
(RESTORE J \SE\R ES TORE 6502 REGISTERS: ( $004 5> =>A-Regi ($0046>~> X-Reg; ( S0047>=>Y-Reg; ( S0048) =>P-Reg; 

{A- X-,~- P-REGS ALTERED} 
( RE STR1 J MONITOR MEMORY LOCA TI:>N 1 RESTR 1 1 

[SAVE] \SE\MONITOR SIR TO SAVE 6502 REGISTERS: (A-REG>=>$0045; <X-REG>=>$0046: O-REG>=>S0047i 
<P-RE G) =>S0048i ( S-REG ):> $0049 {NONE} 

(SAV1J MONITOR MEMORV LOCATION 'SAV1' 
(IORTSJ JSR HERE TO FIND OUT WHERE ONE IS. SETS OVERFLOW flAG 
[RESET] \SE\CALL HERE HAS SAME EFFECT AS PUS+iiNG RESET BUTTON 
(MONJ \SE\MONITOR SIR- NORMAL ENTRV TO 'TOP' Of MONITOR WHEN RUNNING (BEEPS!) 
[MONZ] \SE\MONITOR SIR TO RESET AND ENTER MONITOR (NO BEEP) 
\SE\ MONITOR SIR TO SCAN INPUT BUFFER 
(NXTITMJ MONITOR MEMORY LOCATION 'NXTITM' 
[CHRSRCHJ MONITOR MEMORY LOCATION 'CHRSRCH' 
(ZMOOEJ MONITOR & MINIASSEMBLER MEMORY LOCATION 'ZMOOE' 
(DIG] MONITOR MEMORY LOCATION 'DIG' 
[NXTBITJ MONITOR MEMORV LOCATION 'NXTBIT' 
[NXTBASJ MONITOR MEMORY LOCATION 'NXTBAS' ----------------------------- ... -----------------------------------------------------------~---------------------------.,------~-----

SFE86 - SFF98 Prof. Luebbert's "What's Whtre in the Apple" NUME.RIC ATLAS 



HEX LOCN <DEC LOCN> [NAME] \USE-TYPE\ - DESCRIPTION ---------------------------------------. ..--------------------------------... -:----·-------------,_,_ _____________ ..., _________________ ~--
$FFA2 C-94) [NXT8S2J 
$FFA7 C-89> (GETNUfol] 
$FFAD C-83) [NXTCHR] 

[T OS UB] 
(ZMODEJ 

MONITOR MEMORY LOCATION 'NXTBS2' 
MONITOR & MINIASSE"18LER MEMORY LOCATION 'GETNUM' 
MONITOR- TOP POINT IN GETLN CHARACTER INPUT LOOP:RDCHAR CALLED TO GET CHAR INTO A-REG; ON 
RETURN A-REG TESTED fOR PRESENCE Of CTRL-U (RIGHT ARROW); IF SO A-REG LOADED fROM SC/REEN MEMORY 
ASSUMING Y-REG CONTAINS SAME VALUE AS CH; IF A-REG VAL >$OF LOWER-CASE LETTER CONVERTED TO UPPER 
CASE; If CHAR IS A CIR IT IS PRINTED THROUGH COUT AND RTS EXlT Of COUT WILL GIVE CONTROL BACK TO 
CALLING PROGRAM W/ X-REG INDICATING INPUT CHAR COUNT +1; THAT .IS INPUT IS IN LOCNS S200 THRU 
S200-x WHERE $200-x CONTAINS A C/R; ON SET-UP A- X- Y-REGS NOT SIGNIFICANT: CV & BASL-H SHOULD 
BE COMPATIBLE (POINTING IN THE SCROlL WINDOW)iCH INDICATES HORIZ POSN IN SCROLl WINDOW WHERE 
CURSOR WILL BE INDICATED BY BLINKING. ON RETURN CALLER A-REG WILL CONTAIN KEY VAlUE:Y-REG WILL 
CONTAIN CONTENTS OF CH:X-REG WILL CONTAIN SAME VALUE AS INPUT; CV CH & 8A~l-H W!Ll HAVE CHANGE 
ONLY If AN ESCAPE KEY SEQUENCE HAS BEEN PERFORMED 
MONITOR & MINIASSEMBER MEMORY LOCATION 'TOSUB' 
MONITOR MEMORY LOCATION 'ZMODE' 

SFFBE (-66) 
$FFC7 <-57> 
$FFCC (-52} 
$FFE3-$FFE9 

( C HR TBLJ 
(- 29--23> 

MONITOR & MINIASSEMBLER MEMORY LOCATION 'CHRTBL' (TABLE USED TO DECODE MONITOR KEYBOlRD INPUT) 
(SU8TBLJ \PB\TABLE Of SUBROUTINE ADDRESSES -1 {INDEX PC WITH TBL ITEM FOR SIR ENTRY): (ADDRESS 

MSB =$FE; LSB =TABLE ENTRY +1) 
$FFE3 C-29) (SUBTBL] 
$FFE4 C-28> \P1\ 
$FFE5 C-27> \P1\ 
$FF E6 C-26) \P1\ 
$ FF E 7 ( -2 5) \ P 1\ 
$FFE8 C-24> \P1\ 
$FFE9 C-23) \P1\ 
$FFEA (-22) \P1\ 
$fFEB C-21> \P1\ 
$FFEC (-20> \P1\ 
SFFED (-19) \P1\ 
SFFEE <-18> \P1\ 
SfFEF C-17> \P1\ 
SFFFO (-16) \P1\ 
$FFF1 <-15} \P1\ 
$FFF2 (-14) \P1\ 
$FFF3 (-13) \P1\ 
$FFF5 (-11> \P1\ 
$ FF F 6 ( -1 0) \ P 1 \ 
$FFF7 (-9) \P1 \ 
SFFFB (-8> \P1\ 
$FFFA-$FFF3 (-6--5) 
$FFFC-$FfFD (-4--3) 
SFFFE-$FFFF <-2--1) 

\ P2 \ 
\P2 \ 
\P2 \ 

'SUBTBL' L.S.B. ADDRESS-1 OF 8ASCONT SUBROUTINE 
'SUBTBL' L.S.B. ADDRESS-1 OF USR SUBROUTINE CM.S.B.=SFE> 
'SUBTBL' L.S.B. ADDRESS-1 Of REGZ SUBROUTINE (M.S.B.=SFEJ 
'SUBTBL' L.S.B. ADDRESS-1 Of TRACE SUBROUTINE CM.S.B.=SFE) 
'SUBTBL' L.S.B. ADDRESS-1 OF VFY SUBROUTINE CM.S.B.=SFE> 
'SUBTBL' L.S.B. ADDRESS-1 Of INPRT SUBROUTINE CM.S,.B.=SfE) 
'SUBTBL' L.S.B. ADDRESS-1 Of STEPZ SUBROUTINE (M.S.B.=SFE) 
'SUBTBL' L.S.a. ADDRESS-1 Of OUTPRT SUBROUTINE <M.S.B.=SFEJ 
'SUBTBL' L.S.B. ADDRESS-1 OF X8ASIC SUBROUTINE CM.S.B.=SFE) 
'SUBTBL' L.S.B. ADDRESS-1 OF SETMODE SUBROUTINE <M.S.B.=SfEJ 
'SUBTBL' L.S.B. ADDRESS-1 OF SETMODE SUBROUTINE (M.S.B.=SFE) 
1 SUBTBL' L.S.B. ADDRESS-1 OF MOVE SUBROUTINE CM.S.B.=SFE) 
'SUBTBL' L.S.B. ADDRESS-1 Of LT SUBROUTINE CM.S.B.=$fE) 
'SUBTBL' L.S.B. ADDRESS-1 Of SETNORM SUB.ROUTINE CM.S .. B.=SFf) 
1 SUBTBL' L.S.B. ADDRESS-1 OF SETINV SUBROUTINE CM.S~B.•SFE) 
'SUBTBl' L.S.B. ADDRESS-1 OF LIST SUBROUTINE CM.S.B.=SFE> 
1 SUBTBL' l.S.B. ADDRESS-1 OF WRITE SUBROUTINE <M.S.B.=SfE) 
'SUBTBL' L.S.B. ADDRESS-1 Of READ SUBROUTINE CMftS.B.=SFEJ 
'SUBTBL' L.S.B. ADDRESS-1 OF SETMODE SUBROUUNE CM.S.B.=SfE) 
'SUBTBL' L.S.B. ADDRESS-1 Of SETMODE SUBROUTINE (M.SoB.=SfE) 
'SUBTBL' L.S.B. ADDRESS-1 OF CRMDN SURROUTINE CM.S.B.=SfE> 
fULL (16-BlT) ADDRESS Of NMI (NON-MASKARLE INTERRUPT> VECTOR 
fULL (16-811) ADDRESS OF RESET VECTOR 
fUll (16-BITJ ADDRESS OF IRQ CINTERUPT REQUEST) VECTOR --------------------· -------------------------____ .._. ________ -----~-----·-------------~---------~----------------------

-----~------------------------------------------------------------------------------------------------------------------
SfF A. 2 - Sf FF F Prof. Luebbert's "What's Where in the Apple" NUMERIC ATLAS 



.. .. 

Ill 
.q: 

.~ 
'tJ 
c::: 

w
 

Q
) 

Q
, 

Q
, 

.q: 

w
 

Q
) 

Q
) 

(I) "' 

.. 
c:: 
() 

·-- ca 
.. e () 

.... c::: 
·-

w
 

(,) 

·- .... ·- (,) Q
) 

N
 

Q
, 

(I) 

~
 

......;;;: 

II 
Q

) 

- Q
, 

Q
, 

.q: 

CD 
... () 

LL. 
.. .. 



HAM£ <OEC LOCN) [HEX LOCN) \USE-TYPE\- DESCRIPTION 

-------··----..-----------------------------------------------------------------------------------------------~-

(-32K) 
1002 

(-7938--7932) [SEOf e-sE 1 04) \PS \APPLE SOfT fIVE-BYTE flOATING POINT CONSTANT -32768 <-2-16) 
(1002) [S03EA) \SE\ DOS 3.2 ENTRY POINT fOR ROUTINE THAT UPDATES 1/0 HOOK TABLES IN S0036-S0039. (JMP 

INPUT & OUTPUT ROUTINES CURRENTLY IN USE AND 

<3DOG> CH6l [S03D0] \SE\ 

995 
A 

(995) [S03E3] \SE\ 
(74) [S004A] \P1\ 

SA851 - SAVES ADDRESSES Of CHARACTER 
RECONNECTS DOS 1/0) 
DOS 3.2 SOfT-ENTRY POINT; I.E. RE-ENTRY POINT (3D0G) fOR RE-INITIALilATION SAVING ALL 
VARIABLES & DATA Of CURRENT BASIC PROGRAM (JMP S9DBF) 
DOS 3.1-3.2 ENTRY POINT TO LOAD y•A WITH ADDRESS Of lOBLK 
!>OS DISK SYSTEM FORMATTER DUMMY LOCATION FOR TIMING PURPOSES AND SCRATCH. DOS W.ILL 
REPAIR IN INIT COMMAND; USER MUST REPAIR If RWTS FORMATTER CALLED DIRECTLY 

(A/S POINTERS) (80-97> [$0050-S0061) \PB\GENERAL PURP:>sE POINTERS fOR APPLESOFT {PB} 
<A/S RESVD> <10.22) (S000A-S0016] \PB\APPLESOFT RESERVED BLOCK IN PAGE ZERO 
A1L-A1H (60-61) (S003C-S0031>J \P2\~0NITOR GENERAL USAGE SUBROUTINE PARAMETER A1. MANY USES INCLUDE SOURCE POINTER 

A1PCLP 
A1PCRTS 
A2L-A2H 

C-392) [SFE78] 
C-385) (SFE7F] 
<62-63) U003e-soo3FJ 

DURING MONITOR MOVE 
~ONITOR & MINIASSEMBLER MEMORY LOCATION 'A1PCLP' 
MONITOR MEMORY LOCATION 'A1PCRTS' 

\P2\MONI TOR GENERAL USAGE SUBROUTINE PARAMETER A2. USED IN CALliNG LIST Of MANY MONl TOR 
SUBROUTINES SUCH AS MOVE & CASSETTE ROUTINES 

A3L•A3H (64-65> U0040-S0041] \P1\MONITOR GENERAL USAGE SUBROUTINE PARAMETER A3. USED IN CALLING LIST Of MOST MONITOR 
SUBROUTINES 

A4L-A4H (66-67> [$004z-S0043] \P2\MONITOR GENERAL USAGE SUBROUTINE PARAMETER A4. USED IN CALLING LIST Of SOME 
MONITOR SUBROUTINES 

A5L-A5H (68.69) [S0044-S0045] \P2\MONI TOR GENERAL USAGE SUBROUTINE PARAMETER AS. USED MOSTLY BY S INGLE-CYLCLE & TRACE 
ABS (fPA3S) <-5201> (SEBAF] \SE\ APPLESOFT FP - TAKES ABS OLUTE VALUE Of NUMBER IN fAC & .'EAVES RESULT IN fAC 
ABSWAP <-3017> [Sf437J \SE \ TAKE ABSOLUTE VALUE OF FP1; THEN SWAP FP1 WITH FP2 (fP1:SOOf8:SFP2=S00f4) {A- X-REGS 

-Ass- (-6326> [SE74A] \SE\ 
AC <80.83> c sooso-soo 53J \P4' 
ACADR (-3810> {SF11E] 
ACC <69> ($0045] \P1\ 
ACL.ACH <80-81) [S005(JS0051J 

ALTERED} 
INTEGER BASIC ENTRY TO GET ABSOLUTE VALUE Of A NUMBER 
32-BIT EXTENDED ACCUMULATOR USED IN MONITOR 16-BIT MULT & DIVIDE 
HI-RES GRAPHICS 2-BYTE TAPE READ SETUP 
USER A-REG SAVED HERE ON BRK TO MONITOR & DURING TRACE 

\P2\0LD MONITOR (NOT AUTOSTARTJ. USED BY 16 BIT MULl & DIVIDE ROUTINES AS 
PSEUDO-ACCUMULATOR 

ACL.ACH C206-207J CSOCCE-SOOCF] \P2\INTEGER BASIC MAIN ACCUMULATOR 
ADD (-3035) UF425J \SE\ Al>l> 3-BYTE M1 TO 3-BYTE M2 AND LEAVE RESULT IN M1 (NOT fP ADD BUT USEO IN fP PKG) 

ADD C-559) (Sf I>D1J 
AI>I>INP C-636) {$FD84J 

{A- X-REGS ALTERED} 
~ONITOR MEMORY LOCATION 'AI>I>' 
MONITOR MEMORY LOCATION 'ADDINP' 

-ADDITION• (-6267) [SE785] 
AOI>ON C-9832> [$0998] \SE\ 

\SE\ INTEGER BASIC ENTRY POINT TO ADDITION fUNCTION 
APPLESOFT - ADD Y-REG TO TXTPTR 

ADVANCE C-1036) {SFBF4J \SE\ MONITOR SIR- MOVE CURSOR RIGHT; I.E. INCREMENT (CH>; COMPARE CCHJ WITH (WNDWDTHJ GO 
TO CR If CH NOT LESS ELSE RETURN (RTSJ {A-REG ALTERED} 

ALL DONE 
ALL DONE 
Al'lPE RV 

APPLE II 

C 15911) [$3 E2 7J \SL \ !>OS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL 'ALLI>ONE' 
C-16826--16825) [SBE46-SBE47] DOS 3.3 - SKIP OVER SET CARRY INSTRUCTION IN 'HNDLERR' 

<1013-1015) CS03F5-S03F7J APPLESOFT - HOLDS JMP (JUMP) INSTRUCTION TO SIR WHICH HANDLES & COMMANDS. DEFAULT 

C-1184) (SfB6QJ \SE\ 
S4C S58 Sff (JUMP TO SfF58> 
CLEAR SCREEN ANI> POKE 4 APPLE II' INTO fiRST LINE Of TEXT BUFfER (AUTOSTART ROM 
ONLY) {A- Y-REGS ALTERED} 

ARG (165.170) [S00A5-S00AA] \PB\ ~PPLESOFT SECONDARY FLOATING POINT ACCUMULATOR (USES 6-3YTE UNPACKED MATH PACKAGE 

AIUiEXP C165) [SOOA5J \P1\ 
FORMAT DESCRIBED BELOW) 
EXPONENT PART OF ARG. SINGLE BYTE SIGNED NUMBER IN EXCESS $80 FORM (SIGNED VALUE 
HAS S80 ADDED TO IT> 

ARYTAB <107.108> [S006B-S006C] \P2\APPLESOFT ARRAY TABLE POINTER (POINTS TO BEGINNING OF ARRAY SPACE> 

----------------------------------------------------------·-·-----~--·-------------~--..--------------------·-~------·-------
C-32K) - ARYTAB Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME <DEC LOCN) [HEX LOCNJ \USE-TYPE\- DESCRIPTION --------·------------------------------------------··--·- .... --...-----------------...... -----------------··----.,.---.,_...~_. ... 
• AS c· 
ATN 

<-3299} [Sf31DJ \SE\ 
C-3938> (SF09EJ \Sf\ 

INTEGER BASIC ENTRY TO ROUTINE TO PERFORM THE ASC (ASCII) FUNCTION 
APPlESOFT fP COMPUTE THE ARCTANGENT Of NUMBER IN fAC. RESULT TO fAC. MOOlf IES INDEX 
XORFPSGN AND MANY OTHER fP LOCNS 

AUTOINCL -AUTO INCH (244-24.5) UOOF4-S00F5l \P2\INTEGER BASIC MEMORY lOCATIONS '~UTOINCL-AUTOINCH' <CURRENT AUTO LINE 
NUMBER VAlUE> 

AUTOLNL -AUTOLNH <24 6-24 7> [$00f6-S00f7l \P2 \INTEGER BASIC MEMORY LOCATIONS • AUTOLNL -AUTOUH' 
AUTOMODE (248) (S00F8l \P1\ INTEGER BASIC MEMORY LOCATION 'AUTOMOOE' (THE AUTOMODE flAG) 
CAUTOSTART RESVD) (32-79) [S0020-S004Fl \PB\AUTOSTART MONITOR RESERVED LOCATIONS 
-AuTo· <-6174) (SE7E2J \SE\ INTEGER BASIC ENTRY TO AUTO LINE NUMBERING fUNCTION 
AUXL-AUXH (84-85) (S0054-S0055J \P2\ OLD MON.ITOR (NOT AUTOSTART> - USEO FOR 16-BH MULT & DIVIDE AS AUXIU..lARY 

REGISTER 
AUXL.AUXH (218-219> [$00DA-$00DB] \P2\INTEGER BASIC MEMORY LOCATIONS 'AUXL.AUXH' UUllllAIH COUNTER> 
AYINT CfP=>INT) <-7924) [$E10C] \SE\ APPLESOfT- IF FAC SUITABLE fOR CONVERSION TO INTEGER CfAC<32767 & fAC>-32768) 

THEN PERfORM QINT {RESET Y-REG=O} 
(AYPOSINT +FP=>INT> <-7928) [SE108] \SE\APPLESOFT - SAME AS AYINT <SE10C> EXCEPT FAC MUST BE POSITIVE 
<BAD SUBSCRPRT> C-7786) [$E196) \Sf\ APPLESOFT- PRINT "BAD SUBSCRIPT" AND HALT AT APPLESOfT LEVEL(]) 
BAS2L-BAS2H (42-431 [$002A-S002Bl \P2\USED DURING SCROLLING AS DESTINATION LINE POINTER AS EACH LINE IS MOVED TO 

BAS CALC 

BASCONT 
BASIC 

BASIC 

BASIC 2 

<-1087) [$FBC1J \SE\ 

(-333) [SFEB3J \SE\ 
C-8192) (SEOOOJ 

<-8192) (SEOOOJ 

C-8189) [SE003l \SE\ 

BASL-BASH (40-41} (S0028-S0029J 
BCKSPC (-655> ($FD71J 
BDRAW <-11462) (SD33A] \SE\ 
BDRAW1 C-11465) [$D337l \SE\ 
BELL C-198} UFF3Al \SE\ 

BELL1 C-1063) [$FB09J 
BELL2 C-1052) [$FBE4J \SE\ 
BGND (-11471> [$D331J \SE\ 
BKGND C-12270) [$0012] \P1 \ 
BKGND <-3086) [SF3f 2] \SE\ 
BKGNDO (-12272> ($0010] 
BL1 <-512} [SfEOOJ 
BLANK (-508) [$fE04] 
BLIN1 <-11500} [SD314J \SE\ 
BLTU (-11373> [$0393] \SE\ 

POSITION ABOVE CURRENT 
MONITOR SIR- CALCULATE TEXT BASE ADDRESS. SET BASL-H TO LEFT END OF SCREEN llNE 
(NOT WINDOW LINE) IN A-REG <A-REG ALTERED} 
MONITOR SIR TO CONTINUE BASIC 
APPLESOfT- 'HARD' OR 'COLD' OR 'CONTROL-S' ENTRY POlNT (COMPLETE 
REINITIALIZATIO~. START WITH A TOTALLY FRESH SLATE.) 
INTEGER BASIC- 'HARD' OR 'COLD' OR •coNTROL-s• ENTIU POINT (COMPLETE 
REINITIALIZATION. START WITH A TOTALLY FRESH SLAT£) 
INTEGER BASIC - 'SOfT• OR •wARM' OR 'CONTROL-C' OR 'ENTRY2' ENTRY POINT 
(REENTRY WITHOUT RE.INITIALIZAUON OF SYMSOL-,J'ABLE- VARIABLES OR DATA) 

\P2\ MEMORY ADDRESS FOR LEFT END CHARACTER POS'N OF CURRENT TEXT LINE 
MONITOR MEMORY LOCAT.ION 'BCKSPC' 
HI-RES GRAPHICS DRAW1 SIR CALL: PARAM= xo•yo·coLR-SHAPE-ROT-SCALE 
HI-RES GRAPHICS LINE SIR CALL: PARAM=xo·yo·coLR 
MONITOR SIR TO SOUND BELL IN CURRENT OUTPUT DEVICE (WHETHER IT .IS APPLE OR 
EXTERNAL PRINTER) {A--REG ALTERED} 
MONITOR MEMORY LOCATION °BELL1' 
MONITOR SIR- SOUND BELL (BEEPER) 
HI-RES GRAPHICS BKGND SIR CALL PARAM= COLR 
HI-RES GRAPHICS MEMORY LOCATION 'BKGND' (ROM) 
APPLESOfT HI-RES - CLEAR HI-RES SCREEN TO LAST PLOTTED COLOR 
HI-RES GRAPHICS 'BKGNOO (HCOLOR1 SET FOR BLACK BKGNO) 
MONITOR & MINIASSEMBLER MEMORY LOCATION 'BL1' 
MONITOR MEMORY LOCATION 'BLANK' 
HI-RES GRAPHICS LINE SIR CALL PARAM= xo·yo·coLR 
APPLESOFT BLOCK TRANSFER UTILITY. MAKES ROOM BY MOVING EVERYTHING FORWARD. 
Y·REGCMS8)&A-REGCLSB) AND HIGHDS=DEST Of HIGH ADR#LOWTR=lOWEST ADDR TO BE 
MOVEO;HIGHTR=HlGHEST AOOR TO BE MOVE0+1 

(BOOT DISK #) <1528> [$05F8] \P1\ CONTAINS SLOT # Of DISK CONTROLLER CARD FROM WHICH ANY ACTIVE OOS 3.2 WAS BOOTED 
HI-RES GRAPHICS PLOT SIR CALL PARAM= xo·vo·coLR BPLOT (·11506) [$D30EJ \SE\ 

BPOSN (-11527> [$()2f9J \SE\ 
BRANCH (-1283) [SfAfD] 
- Ci1 AN C H - (- 6 42 0) [ $ E 6 E C] \ S E \ 
BRATE C1144+S) [$0478+S] \P1\ 

HI-RES GRAPHICS POSN SIR CALL PARAM= xo-yo-COLR 
MONITOR MEMORY LOCATION 'BRANCH' 
INTEGER BASIC ENTRY POINT TO BRANCH <GET L~/Hl THEN JSR) 
EXAMPLE: SERIAL INTERFACE BAUD QUANTUM RATE. S1= 19200 BAUD;$40=300 BAUD 

---------·--------------·------------------.... ------------------------------------------------------------------------------~--
ASC - BRATE Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZ ET lEER 



NAME CDEC LOCN) [HEX LOCN] \USE-TYPE\ -DESCRIPTION 
-----'!'"'---------------------------------------------------------------------·--------------------------~----------------

BREAK 
BR4CV 
BS 

(-1390> [SFA92] \SE\ 
(1008-1009) [$03f0-$03F1] \P2\ 

<-1008) [SFC10J \SE\ 

BSCLC2 <-1072> [$FBD0] 
BUF INBUFF <51 z-767) [S0200-S02FFJ 
BUFPTR <6z-63) [$003E-S003FJ \P2\ 

BXSAV <803> [$0323] 
BYTE <1656+S) [$0678+5] 
-cALL- <-4448> [SEEAO] \SE\ 
CANCEL (-670) [$FD62] \SE\ 
CAPTST (-642) [SFD7EJ 
CAT < -6 7 6 1 > [S E 5 <;? J \ SE \ 

<36) [$0024] \P1 \ 
<249) [$00F9] \P1\ 
(-1612) [$F9B4] 
(.;.1606) [$F9BAJ 

<13> [SOOODJ 

CH 
CHAR 
CHAR1 
CHAR2 
CHARAC 
CHG IT 
CHK CL S 
CHKCOM 
CHKNUM 
CHKOPN 
CHK S TR 
CHKSUM 
CHK VAL 

CHRGET 

C HRGET 

CHRGOT 
CHRSRC H 
CHRTBL 

<16326) [$3FC6J \SL\ 
<-8520) [SDEB8J \SE\ 
(-8514) [SDEBE J \SE \ 
<-8854) [$0D6AJ \SE\ 
(-8517> [SDEBBJ \SE\ 
<-8852> [$DD6CJ \SE\ 
<46) [$002E] \P1\ 
<-8851> [$DD6DJ \SE\ 

< 1 7 7) [ $0 08 1 J \S E\ 

<177-200) UOOB1-sOOC8] \59\ 

(183> [$00B7J \SE\ 
(-134) [SFF 7A] 

<-52) [SffCCJ 

MONITOR SIR - BREAK HANDLER 
AUTOSTART ROM BREAK VECTOR - DEFAULT VALUE SFA59 
MONITOR SIR TO MOVE CURSOR LEFT <BACKSPACE); IF AT START OF LINE MOVE UP TO 
RIGHT END OF LINE ABOVE IF POSSIBLE {A-REG ALTERED} 
MONITOR MEMORY LOCATION 'BSCLC2' 

\HB\KEYIN (CHARACTER INPUT) BUffER CMONITOR-lNTEGER BASIC-APPLESOFT BASIC) 
DOS RWTS (READ-WRITE TRACK-SECTOR> PARAMETER 'BUFPTR' (POINTS TO DATA BUFFER IN 
RW T S) 
HI-RES GRAPHICS 'BXSAV' 
EXAMPLE: APPLE SERIAL INTERFACE IN SLOT liS INPUT OUTPUT BUFFER 
INTEGER BASIC ENTRY POINT TO CALL A SUB/ROT FUNCTlO~ 

MONITOR SIR TO PERfORM A LINE CANCEL (\) 
MONITOR MEMORY LOCATION 'CAPTST' 
APPLESOFT - CONCATENATE TWO STRINGS. FACMO (MSB) & FACLO (LSBJ POINT TO FIRST 
STRING'S DESCRIPTOR & TXTPTR POINTS TO '+' 
CURSOR HORIZONTAL DISPLACEMENT FROM WNDLFT: RANGE 0 TO (WNDWDJH)-1 
INTEGER BASIC MEMORY LOCATION 'CHAR' (CURRENT CHARACTER) 
MONITOR & MINIASSEMBER MEMORY LOCATION 'CHAR1' 
MONITOR & MINIASSEMBLER MEMORY LOCATION 'CHAR2' 
APPLESOFT - USED BY STRLT2 STRING UTILITY 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'CHGIT' 
APPLESOFT CLOSE PARENTHESIS CHECK- CHECKS TXTPTR FOR ')'. USES SYNCHR. 
APPLESOFT COMMA CHECK - CHECKS TXTPTR FOR COMMA. USES SYNCHR. 
APPLESOFT - MAKE SURE FAC IS NUMERIC (SEE CHKVALJ 
APPLESOFT OPEN PARENTHESIS CHECK- CHECKS TXTPTR FOR •c•. USES SYNCHR. 
APPLESOfT - MAKE SURE FAC IS STRING <SEE CHKVAU 
LOCN WHERE CHECKSUM IS ACCUMULATED DURING CASSETIE TAPE READ 
APPLESOfT- IF C SET CHECK fOR STRINGSiC CLEAR CHECK FOR NUMRIC VBL. TYPE 
MISMATCH ERROR OCCURS If C AND FAC DON'T AGREE 
APPLESOFT CHRGET SIR CALL - GETS NEXT SEQUENTIAL CHR OR TOKEN - LOADS A-REG 
FROM LOCN SPECIFIED BY TXTPTRCS0088-SOOB9 & INCREMENTS TXTPTR. CARRY IS RESET 
TO ZERO IF CHARACTER IS A DIGIT OTHERWISE IT IS ser; ZERO FLAT SET If CHAR =0 
<EN.D OF LINE SIGN) OR S3A <END Of STATEMENT S.IGN •:•) OTttERWISE RESET {X-
V-REGS NOT ALTERED) 
APPLESOFT CHRGET ROUTINE. CALLED WHEN WANTS ANOTHER CHARACTER {X- Y~REGS NOT 
ALTERED} 
APPLESOfT CHRGOT SIR CALL. CHRGET INCREMENTS TICTPTR. CHR60T DOES NOT 
MONITOR MEMORY LOCATION 'CHRSRCH 1 

MONITOR & MINIASSEMBLER MEMORY LOCATION 1 CHRTBL' (TABLE USED TO DECODE MONITO.R 
KEYBOARD INPUT) 

ClN (-22120--22119) [$A998-SA999] \P2\DOS 3.1 INTERNAL HOOK ENTRY ADDRESS TO INPUT A CHARACTER 
ClEARC (-10644) UD66C] \SE\ 
CLEOL2 <-864) [$FCAOJ 
ClEOLZ <-866) [$fC9 EJ 
CLE OP1 ( -954) [$fC4 6] 
CLRANO <-16295) UC 059] \ff\ 

CLRAN1 
CLRAN2 
CLRAN3 
CLREOL 

<-16293) ($C05B] \f.f\ 
(-16291> UC05DJ \Ff\ 
<-16289) UCOSFJ \FF\ 
(-868) [SfC9CJ \SE\ 

APPLESOfT INITIALIZATION- THE 'CLEAR' COMMAND. CLEARS VARIABLES & STACK 
MONITOR MEMORY LOCATlON 'CLEOL2' 
MONITOR MEMORY LOCATION 1 CLEOLZ 1 

MONITOR MEMORY L~CATION 'CLEOP1' 
VALUE <>0 WHEN GAM£ ANO IS RESET (CLEARED). POKE 0 TO SET GAME 110 OUTPUT ANO 
<0.3V AT PIN 15) 
POKE 0 TO SET GAME 110 OUTPUT AN1 C0.3V AT PIN 14) 
POKE 0 TO SET GAM£ I/0 OUTPUT AN2 <0.3V AT PIN 13) 
POKE 0 TO SET GAME 1/0 OUTPUT AN3 0.3V AT PIN 12) 
MONITOR SIR TO CLEAR TO END Of LINE (A- Y-REGS ALTERED} _________ ,_ .. ________________________ ..,.._·------------------..----.....----.-,------------------~-·-----------------------------·-

BREAK - CLREOL Prof. Luebbert's uwhat•s Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCN] \USE-TYPE\ - DESCRIPTION ----------·---- --~--------------.... ------~---------------·--------------.--.---------------·-----~--------------·---------
CLREOP 
CLRROM 

CLRSC2 

CLRSC3 

CLRSCR 

CLR SC R 
CLRTOP 

-cL R
CNUM 

COLLSN 
COLOR 

··coLoR
COII!BYTE 

<-958) (SFC42] \SE\ 
<-12289) [SCFfF] \H1\ 

C-1992> ($F838J \SE\ 

<-1988) (Sf83Cl \SE\ 

<-1998) (SF832] \SE\ 

<-1998) (SF832J \SE\ 
<-1994) (SF836J \SE\ 

(-6729> UE5B7J \SE\ 
(68.69) (S0044-S0045J 

C810) ($032A] \P1\ 
(48> ($0030] \P1\ 

(-4530> ($EE4EJ \SE\ 
<-6324> [SE74CJ \Sf\ 

(COMMAND TBL) <26756) [$6884] 
-coMMA• (-6207> {$E7C1J \SE\ 
CCOMPRTYP) C22l ($0016] \P1\ 

CONI NT <-6405> (.SE6FB] \SE\ 

MONITOR S/R TO CLEAR FROM CURSOR TO END OF PAGE. {A- Y-REGS ALTERED} 
SPECIAL LOCATION RECOGNIZED BY PERIPHERAL CARDS AS SIGNAL TO TURN Off FliP FLOPS WHICH 
DISABLE EXPANSION ROM 
CLEAR L"INES 0 THRU (Y-REG) 40 COLUMNS WIDE TO BLACK IN lO-RES GRAPHICS OR INVERSE i IN 
TEXT PAGE 1 {A- Y-REGS ALTERED} 
CLEAR LO-RES GRAPHICS PARTIAL TOP L£FT: X-COORD 0 THRU (Y-REG); \'-COORD 0 THRU <S0020) 
{A- Y-REGS ALTERED} 
CLEAR L()•RES GRAPHICS SCREEN1 TO BLACK (INVERSE a IN TEXT )IJ_OD£) MIXED GRAPHICS AREA 
ONLY {A- Y-REGS ALTERED} 
MONITOR S/R TO CLEAR SCREEN - GRAPHICS MODE FULL SCReEN) {A- Y-REGS ALTERED} 
CLEAR TOP 20 LINES PAGE1 TO INVERSE a IN TEXT: BLACK IN Lo-RES GRAPHICS (40 LO-RES 
GRAPHIC 1 LINES'l {A- Y-REGS ALTERED} 
INTEGER BASIC ENTRY POINT TO CLEAR OUT VARIABLE WORK SPAC£ 
DOS - POINTS TO AVAILABLE BUFFER IN OPEN. ALSO USED AS ARITHMETIC REGISTER BY DOS 
FIRST & SECOND LEVEL ROUTINES 
COLLiSION COUNT FROM DRAW-DRAW1 
LOW-RES COLOR GRAPHICS .COLOR CODE (fOR PLOT/HllN/VliN ftiNCTlONS) - CONTAINS Sfl.ECUO 
COLOR VALUES fOR TWO LOW-RES GRAPHICS 'LINES' ONE IN EACH NIBBLE Of BYTE 
INTEGER BASIC ENTRY TO ROUTINE TO SET COLOR VALUE FOR LO-RES 
APPLESOFT - CHECK FOR COMMA & GET A BYTE IN X-REG. USES CH(COM& BETBYT. ON ENTRY 
TXTPTR POINTS TO COMMA 

\PB\DOS 3.2 COMMAND TABLE <32K APPLE ONLY!) 
INTEGER BASIC ENTRY POINT TO COMMA FUNCTION 
APPLESOFT- PARAMETER TO CONTROL.TfPE Of COMPARISON MADE Bf FLOATING POINT COMPARISON 
ROUTINE AT SDF6A C1:> ;z:= ;3:>= ;4:< ;5:<> ;6:<=) 1 

APPLESOFT F.P - CONVERT FAC INTO SINGLE BYTE IN X-REG & FACLO.NOR"AL EXIT THRU CHRGET. 
IF FAC<O OR FAC>255 ILLEGAL QUANT ERROR 

CONL.CONH C24r243> CSOOF2-SOOF3] \P2\INTEGER BASIC MEMORY LOCATJO:NS 'CONL-CONH' CCONUNUE POINTER) 
CONSYNC (16074) U3£CAJ \SL\ DOS 3.2 OlSK FORMATTER - LABEL AT POINT WHERE CONSTRUCTIO,II O.F SYNC BEGINS 
CONT <-10088) [$D898J \SE\ APPLESOFT - MOVES OLDTXT & OLDLIN INTO TXTPTR & CURLIN 
CONUPK (-5661) (SE9E3] \SE\ APPLESOFT FP -LOAD ARG fROM MEMORY POINTED TO BY Y-REG & A-REG. ON EXIT A & Z 

REFLECT FAC£XP. MODIFIES INDEX & XORFPSGN. {RESET Y-REG=Ol 
CON WAIT (15743) U3D7Fl \SL\ DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEL - STARTS CONSTANT WAIT DELAY 

LOOP RETURN POINT 
-coN
e OPY 

<-3318> (Sf30AJ \SE\ 
(-9545) (SOAB7] \SE\ 

INTEGER BASIC ENTRY TO ROUTINE TO CONTINUE EXECUTION 
APPLESOFT - FREE STRING POINTED TO BY Y-REG (MSB) & A-REG CLSB) & MOVE IT TO MEM LOC 
POINTED TO BY FORPNT 

CORRECT SECT <15895) (S3E17J \Sl\DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT START OF CODE WHICH ASSUME 
SECTOR CORRECTLY CHOSEN ANO JUMPS TO APPROPRIATE SUBROUTINE TO READ OR WRITE 

COUECTVOL < 1587 8) · [S 3E06l \ SL \ DOS 3.2 RWT S <READ-WRITE TRACK-SECTOR> INTERIOR LABEL WHICH ASSUMES CORRECT VOLUME 

cos 

COUNT 
COUNT 
COUNTH 
COUT 
COUT 

COUT1 

( ~4 11 8 ) [$ EF EA] \ SE \ 
HAS BEEN DETECTED AND CHECKS FOR SECTOR SELECTION 
APPLESOFT FP- COMPUTE THE COSINE OF THE NUMBER IN FAC. RESULT TO FAC. MODIFIES INDEX 
CHARAC COMPRTYP XORFPSGN ANO MANY OTHER FP LOCNS 

- CSUM C44l £S002CJ \P1\ DOS RWTS (READ-WRITE TRACK-SECTOR) PARAMETER (RETURNS CHECKSUM) 
(249) [S00F9J \P1\ INTEGER BASIC MEMORY LOCATION 'COUNT' 

<29) (S001DJ \P1\ HI-RES GRAPHICS HIGH-ORDER BYTE Of STEP COUNT FOR LINE 
<-22122--22121> (SA996-SA997] \P2\DOS 3.1 INTERNAL HOOK ENTRY ADDRESS JO OUTPUT A CHARACTER 
<-B1> (SFOED] \SE\ PRINT BYTE IN A-REG TO OUTPUT DEVICE SPECIFIED BY 'CSWL' (NORMALLY 'COUT1') (A-REG 

<-5Z8> (SFDFOJ \SE\ 
ALTERE 0} 
WRITE BYTE IN A-REG TO SCREEN AT CURSOR POSN CCV)-I(CH) USING 'INVfLG' & SUPPORTING 
CURSOR MOVE 

----------...-·--~-------------------------------·-·----- .... --.------------·-~--.. -.. -----·.,--·----·-----.... ..---
CLREOP - COUT1 Prof. Luebbert's "What's Where in the Apple" ALPHABETICAl GAZETJEER 



NAME (DEC LOCN> [HEX LOCNJ \USE-TYPE\ - l>ESCR.IPTION 
----------------------------------------------------~-----------------------------~-----·_.,.. _______ ...,. __________ _,. __ _ 
COUTZ (•522> [SfDf6J \SE\ WRITE BYTE fROM A-REG TO SCREEN AT <Cv>-CCH) WITH CURSOR ~OVE BUT NOT 'lNVfLG' (NONE 

ALTERED} 
CR C-926> [SfC62l \SE\ MONITOR SIR TO PERFORM A CARRIAGE RETURN; I.E. LOAD ZERO TO A-REG & CH (A-REG ALTERED} 
CRCTVOL C-16858--16827) [SBE26-SBE45J OOS 3.3 -CHECK TO SEE If SECTOR CORRECT. USE 'ILEAV• TABLE C$8fB8> FOR 

C RD 0 (-94 77) [ SOAfB J \SE\ 
CRFLAG <213> [$0CD5J \P1\ 
CRMON C-266) [SfEf6) 
CROUT C-626> [$FD8EJ \SE\ 
CSWL-CSWH (54-55> [SOC36-S0037J 

SOFTWARE SECTOR INTERLEAVING. If WRONG SECTOR TRY AGAIN AT 'TRYADR ($BOCU .. If 
WRITE BRANCH TO 'WRIT' CSBE51>. OTHERWISE GOTO 1 REA016 4 CSB8DC>. If GOOD READ 
CALL 'POSTNB16' CSB8C2) AND RETURN TO CALLER WITH NO ERROR 
APPLESOFT - PRINT A CARRIAGE RETURN 
INTEGER BASIC MEMORY LOCATION 'CRFLAG' (CARRIAGE RETURN flAG) 
lltONITOR lltEMORY LOCATION 'CRMON' 
MONITOR SIR TO PRINT A CARRIAGE RETURN THROUGH COUT {A- Y•REGS AlTERED} 

\P2\MONITOR OUTPUT REG & OUTPUT HOOK TO DOS; I.E. ADDRESS Of ROUTlNE WHICH 
RECEIVE AND DISPOSE OF OUTPUT CHARACTERS. RESET 0 CTRL-P & PRMO SET THIS 
SFDFO (MONITOR OUTPUT TO SCREEN); S CTRL-P & PRIS SET THlS LOCN TO SCSOO 
ROM) 

IS TO 
LOCN TO 
C SLOT S 

CURLIN (117-118) (S0075-S0076J \P2\APPLESOFT- LINE M Of LINE CURRENTLY BEING EXECUTED NOTE: HI BYTE Of CURliN TESTED 
BY DOS FOR DIRECT-DEFERRED MODE USAGE -BYTE SET TO Sff IN DIRECT. If CONTENTS Of 

CURTRK ( 11 4 4 ) [ $ 04 7 8 J \ p 1 \ 

SAAB6<>0 AND If PROMPT='J' OR If THIS LOCN CONTAINS Sff DOS ASSUMES DIRECT MODE 
AND WILL NOT DO OPEN OR OTHER DIRECT MODE COMMANDS 
DOS 3.2 RWTS (READ-WRITE' TRACK-SECTOR) PARAMETER CURRENT TRAC.K CLAST TRACK 
'SEEK'-ED) 

CV (37) [$0025) \P1\ CURSOR VERTI£AL POSITION RELATIVE TO TOP Of SCREEN: RANGE 0-23 CSO.S17) 
DATA (-9835) [SD995J \SE\ APPLESOFT - MOVE TXTPTR TO END OF STATEMENT; LOOKS FOR 1 :• OR EOL<O>. 
DATAN C-9821> [SD9A3) \SE\ APPLESOFT- CALCULATE OffSET IN Y·REG FROM TXTPTR TO NEXT ':'OR EOL(0) 
DATAOUT (•586> [$FDB6) MONITOR MEMORY LOCATION 'DATAOUT' 
DATLIN (123.124) [S007B-S007CJ \P2\APPLESOFT CURRENT LINE M FROM WHICH DATA IS BEING READ 

~:~~gE. C1::;jg~ ~=~~~~;$~,~~~) \P2~=~~:~: ~~S;~\~~~/~o~~~ ~~o:E~~~~\~:~~ ~: ~~!~GX~~AD BY APPLESOFT 
DELL-DELH <226-227> (SOOE2.SOOE3J \P2\INTEGER BASIC MEMORY LOCATIONS 'DELL.DELH' (DELETE LiN£ POINHR) 
CDEV SELECT 0) C-16256-·16241) UC080-SC08FJ 16 MEMORY LOCNS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT MO. WHEN 

(DEV SELECT 1) 

CDEV SELECT 2> 

(DEV SELECT 3> 

CDEV SELECT 4) 

(DEV SELECT 5> 

<DEll SELECT 6> 

(DEV SELECT 7> 

ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED. SINCE SLOT MO IS COMMON 
AREA USED IN COMMON FOR PARAMETERS OF INTEREST TJ ALl SLOTS 

(-16240--16225> [SCQ90-SC09F J 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SlOT Ml. 
WHEN ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

C-16224--16209> [SCOAO-SCOAF) 16 MEMORY LOCATIONS AlLOCATED TO USE OF PERIPHERAL DEVICE IN SLOT #2. 
WHEN ADDRESS PIN 41 TELLS DEVICE IT IS SELECTED 

<-16208---16193) [SCOBO-SCOBFJ 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHE.RAL DEVICE IN SLOT M3. 
WHEN ADDRESSED PIN 41 TElLS DEVICE IT IS SELECTED 

C-1619z--16177> [SCOco·scOCFJ 16 MEMORY LOCATIONS ALLOCATED TO USE Of PERIPHERAL DEVICE IN SLOT #4. 
WHEN ADDRESSED PIN 41 TElLS DEVICE IT IS SELECTED 

C-16176--16161) [SCODO-SCODFJ 16 MEMORY LOCATIONS AllOCATED TO USE Of PERIPHERAL DEVICE IN SLOT MS. 
WHEN ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

C-16160--16145) [SCOEO.SCOEFJ 16 MEMORY LOCATIONS ALLOCATED TO USE OF PERIPHERAL DEVICE IN SLOT M6. 
WHEN ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

C-16144--16129) [SCOFO-SCOFFJ 16 MEMORY LOCATIONS ALLOtATED TO USE OF PERIPHERAL DEVU~ IN SLOT M7. 
WHEN ADDRESSED PIN 41 TELLS DEVICE IT IS SELECTED 

DEVCTBL (60.61) (S003C-S003DJ \P2\ DOS RWTS DEVICE IN READ-WRITE TRACK-SECTOR PARAMETER POINTING TO DEVICE 
TABLE. PRESET TO 'PTRSOEST' = POINTER TO DESTINATION DEVICE IN DEVICE 

DEVCTBL (60-61l (S003C-$003D) 
DIG (-118> [ Sff8A] 

TABLE. NOT A SYNONYM FOR BUfPTR 
DOS RWTS (READ-WRITE TRACK-SECTOR} DEVICE TABLE - SYNONYM FOR BUFPTR 
MONITOR MEMORY LOCATION 'DIG' 

--------------------------------... ------..-·-~-'!"'"----------------------------·-----------.-- ... --------------------------~-·~-
COUTZ - DIG Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME <DEC LOCN) (HEX LOCNJ \USE-TYPE\ - DESCR.IPTION 

--·------·-----·---·---------------------------------.,..----------...-----------------·-----------·-----------------~....-... -
- D I M S T R - ( - 7 88 8 ) U E 1 30 J \ S E \ 
-DIMVARB- C-4322> (.$Ef1E) \SE\ 
DISKID <-1275) ($FB05J 
DIV <-1148) CSFB84] \SE\ 

DIV10 (-5547} (SEA55J \SE\ 
D IV 2 { -11 4 6) [ .$ F B 86 ] 
DIV3 (-1120> ($FBAOJ 
-oiVIDC <-4336> ($Ef10] \Sf\ 
DIVPM (-1151) [$FB81J 

CDIVZEROPRT) (-5407> [$EAE1] \SE\ 
DONEDSK (16312) ($3FB8J \Sl\ 

INTEGER BASIC ENTRY POINT TO DIMENSION A STRING FOR MEMORY 
INTEGER BASIC ENTRY TO ROUTINE TO DIMENSION A VARIABLE 
AUTOSTART MONITOR MEMORY LOCATION •oiSKID' 
MONITOR SIR- UNSIGNED DIVIDE ROUTINE - SAME AS .$FB81 CDIVPM) EXCEPT NO SIGNS 
USED. 
APPLESOFT FP - DIVIDE fAC BY 10. RETURNS POSITIVE NUMBERS ONLY 
MONITOR MEMORY LOCATION 'DIV2' 
MONITOR MEMORY LOCATION 'DIV3' 
INTEGER BASIC ENTRY TO D.IliiDE FUNCliON 
MONITOR SIGNED DIVISION - Dl VIDES NUMB.ER IN EXTENDED AC U0050-S0053) BY 
NUMBER IN AUXl-AUXH ($0054.$0055) LEAVING QUOTIENT IN ACL-ACH C$0050-$0051) 
AND REMAINDER IN .$0053. BE CAREfUL Of SIGNS SCALING & 01/ERfLOW. IF 
CX TNOL-XTNOH ( SOOSr $0053)) > CAUXL • AUXH ( . .$Q054-S0055)) OVERfLOW WIll RESUL.J 
APPLESOFT - PRINT "DIVISION BY ZERO" THEN HALT AT APPLESOfT CJl LEVEL 
DOS 3.2 DISK FORMATTER INTERIOR LABEL AT POINT WHERE DISK IS COMPLETED AND 
NO ERRORS HAVE BEEN DETECTED 

coos 
(DOS 
(DOS 
( oos 

3.1 COMMAND TBL) C-22560--22429) [$A7EO-SA863] \PB\DOS 3.1 COMMAND TABLE (DOS 3.1 - 48K APPLE ONLY!) 
3.1 ERROR MSGS) C-22323--22144) [$A8CD-$A980] \PB\DOS 3 .. 1 ERROR MSG TABLE (DOS 3.1- 48K APPLE ONLY!) 
3.2 ERR MSGS) <26996) [$6974] \PB\ DOS 3.2 ERROR MESSAGES C32K APPLE ONLY!> 
3.213.3 COMMA._D TBU [USA884-SA908J \PB\ DOS 3.2 C48Kl COMMAND NAME TABLE OF DOS COMMAND D.ECODER (TABLE-DRIVEN 

COMMAND PARSER>. CONTAINS NAMES OF DOS COMMANDS WITH LAST BYTE OF 

(DOS 3.213.3 ERROR MSGS) [)$A971-$AA3EJ \PB\ 
DRAW C-2559) ($F601J \SE\ 

DRIVENO 
DRIVERR 

ORVOEN 

D RV 1 EN 

DRV 1 TRK 

D RV ERR 

DRV ERR 

D RV S EL 
D SC TMP 
DSK F 2 

DSK FORM 

DSKFORM 
DSKFORM 
DSK FORM 
-os p-

DVOT RK 

C53) [$0035] \P1\ 
(16307> [$3FB3J \SL\ 

C-16246) (SC08A] \P1\ 

C-16245) CSC08BJ \P1\ 

C1272+S> ($04F8+S] \P1\ 

(15838) ($3DDEJ \SL\ 

(-16892--16886) [$BE04-SBEOAJ \SE\ 

<15719) ($3D67J \SL\ 
<157-159> csoo9o-s009FJ \P3\ 

(160431 (.$3EABJ \Sl\ 

(16028) ($3E9CJ \SE\ 

(16028-16089) [$3E9C-S3ED9] \SB\ 
<16028-16340) [S3E9CS3FD4J \SB\ 
C-16721--16628> (SBEAF-SBFOCJ \SB\ 

(-3324> [SF304] \SE\ 
(1144+S> ($0478+SJ \P1\ 

EACH 'lAME HAVING HIGH C7TH) BH SET; OTHER BYTES HAVE IT CLEAR. TIUS 
PERMITS CLOSE PACKING FOR SEQUENTIAL SEARCH. EOT IS SOO BYTE 
OOS 3.213.3 ERROR MESSAGES COOS 3.213.3 - 48K APPLE ONLY!) 
APPLESOFT HI-RES - DRAW SHAPE POINTED TO BY Y-REGCMSB)&X-REG(LSB) BY 
INVERT l NG EXISTING COLOR Of DOTS THE SHAPE DRAWS OVER. A-REG=ROTAT ION 
fACTOR 
DOS DISK OR.IVE NO 
DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of CLEANUP lf 
DRIVE ERROR IS DETECTED 
DOS 3.2 READ\WRITE TRACK-SECTOR (RWTSl PACKAGE PARAMETER 'DRVOEN' 
(DRIVE 0 ENABLE) 
DOS 3.2 READ\WRITE TRACK-SECTOR {RWTS) PACKAGE PARAMETER 'DRV1EN' 
<DRIVE 1 ENABLE> 
EXAMPLE: 'DRV1TRK' = DISK DRIVE 1 CURRENT TRACK <VALUE= 2•TRACK#); 
DOS 3.2 PARAMETER FOR DISK IN SLOT #S 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) INTERIOR LABEL- STARTS CODE 
FOR CLEANUP WHEN DRIVE ERROR DETECTED 
OOS 3.3 -CLEAN UP STACK & STATUS REG; LOAD A-REG WITH $40 (DRIVE 
ERROR) AND GOTO 'HNDLERR' ($BE48> 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LABEL 
APPLESOFT TEMPORARY STRING DESCRIPTOR (SEE VALTYP & TEMPPT} 
DOS 3.2 DISK fORMATTER LABEL AT POINT WHERE MOTOR IS RUNNING AND ON 
TRACK 0. BEGINS CODE WHICH FORMATS THIS HACK 
DOS 3.2 DISK FORMATTER ENTRY POINT- TURN MOTOR ON & FILL TRACK WITH 
SYNC 
DOS 3.2 DISK FORMATTER MODULE TO fill TRACK WITH SYNC 
DOS 3.2 DISK FORMATTER PACKAGE 
DOS 3.3 - INIT COMMAND HANDLER 
INTEGER BASIC ENTRY TO ROUTINE TO DISPLAY A VARIABLE SET 
EXAMPLE:'DRVOTRAK'= DISK DRIVE 0 CURRENT TRACK (VALUE = 2•TRACK#)i 
DOS 3.2 PARAMETER FOR DISK IN SLOT #S 

DIMSTR- DVOTRK Prof. Luebbert's "What's Where in the Apple" ALPHABETICAl GAZETTEER 



NAME (DEC LOCN) (HEX LOCN] \USE-TYPE\ -DESCRIPTION 

DXL-DXH (80-81) ($0050-$0051] \P2\ 
DY (82) [$0052] \P1\ 
E <25z-254> UOOFC-SOOFEJ \P3\ 

EL-EH <84-85) ($0054-$0055] \P2\ 
ENDCHR <14) [SOOOEJ 
ERR (-2682) ($FS86] 
ERR C-1883) ($F8A5J 
ERR2 (-2680> [$F588J 
ERR3 (-.2791> ($F519J 
ERR4 <-2639) [ $F 581 J 
ERRDIR <-7418) ($E306J \SE\ 

ERRFLG <208) ($00DOJ \P1\ 
ERRFLG <216) ($00D8J \P1\ 

ERRLIN <218-219} ($00DA-S00DB] \P2\ 
ERRNUM <222> ($00DE] \P1\ 

ERROR {-11246) [$D412] \SE\ 

-ERRORMESS*- C-7232} ($E3C0] \SE\ 
-ERRORMESS- <-7200> [SE3EOJ \SE\ 
ERRPos <220·22n csooDc-sooooJ \P2\ 
ERRSTK <223) ($00DfJ \P1\ 
ESC C-721) [$f02f) 
ESC 1 C-980) ($ fC 2CJ \ SE \ 

ESDFO <15975) ($3E67J \SL\ 
(EVAL EXPR =>INT> (-7931> (SE105J \SE\ 

EXCNT <70} ( $0046] \P 1\ 
EXP <-4343) ($Ef09J \SE\ 

-ExP- <-3215> CH371J \SE\ 
fAC <157-163) (S009D-$00A3] \P6\ 

<FAC/ARG AND} <-8363) ($DF55] \SE\ 

( FACIA R G C 0 M P A RE ) (-8342> ($0F6AJ \SE\ 

(fAC/ARG OR) (-8369) ($DF4F] \SE\ 

f AC EXP (157> ($0C9DJ \P1\ 

HI-RES GRAPHICS DELTA-X fOR HLIN SHAPE 
HI-RES GRAP~ICS OELTA-Y fOR HLIN SHAPE 
MONITOR & FlOATING POINT ROUTINES MEMORY LOC 'E' <3 BYTE MANTISSA 
EXTENTION Of FP ACCUMULATOR 1) 
HI-RES GRAPHICS ERROR FOR HLIN 
APPLESOFT - USED BY STRLT2 STRING UTILITY 
MINIASSEMBLER MEMORY LOCATION 'ERR' 
MONITOR MEMORY LOCATION 'ERR' 
MINIASSEMBLER MEMORY LOCATION 'ERR2' 
MINIASSEMBLER MEMORY LOCATION 'ERR3' 
MINIASSEMBLER MEMORY LOCATION 'ERR4' 
APPLESOfT - CAUSES ILLEGAL DIRECT ERROR IF PROGRAM NOT RUNNING {X-~EG 
ALTERED} 
ERROR FLAG. ON If BIT 7 SET (PEEK£216}>1271. POKE 0 TO CLEAR. 
APPLESOfT ERROR flAG: $80 If ONERR ACTIVE. SET TO 0 TO DISABLE 'ONERR 
GOTO' 
APPLESOFT LINE# WHERE ERROR OCCURED 
APPLESOFT - WHEN ERROR OCCURS- TYPE-Of-ERROR CODE APPEARS HERE - SEE 
MANUAL fOR CODE NUMBER MEANINGS 
APPLESOFT ERROR PROCESSING - CHECKS ERRflG AND JUMPS TO HNDLERR IF 
ONERR IS ACTIVE OT~ERWISE PRINTS ERROR MS!i BASED ON CODE IN X-REG 
INTEGER BASIC ENTRY POINT - INPUT ERROR MESSAGE 
INTEGER BASIC ENTRY POINT TO PRINT ERROR ~ESSAGE AND GOTO MAINLINE 
APPLESOFT TEXPTR SAVE FOR HNDLERR SUBROUTINE 
APPLESOfT STACK POINTER VALUE BEFORE ERRO~ OCCURED 
MONITOR MEMORY LOCATION 'ESC' 
ROUTINE (If A=@ GO TO HOME; =A GO TO ADVA~CEi =B GO TO BS 
(BACKSPACE>; =C GO TO lf (liNEfEED); =0 GO TO UP (INVERSE LINEFEED); 
=E GOTO CLREOl; =f GOTO CLREOP; =ANYTHING ELSE RTS & IGNORE ENTRY) 
CALLED BY 'RDCHAR' If ESCAPE KEY IS INPUTTED. CALLS APPROPRIATE 
SCROLL WINDOW SERVICE ROUTINE (If A=@ GO TO HOME; =A GO TO ADVANCE; 
=B GO TO BS (BACKSPACE); =C GO TO Lf <LINEFEEO); =D GO TO UP (INVERSE 
LINEFEED); =E GOTO CLREOL; =F GOTO CLREOP; =ANYTHING ELSE RTS & 
IGNORE ENTRYl {USES A-REG} 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR INTERIOR LABEL 'WASDO' 
APPLESOFT - EVALUATE EXPRESSION POINTED TJ BY TXTPTR <SOOB8-SOOB9) 
AND CONVERT RESULT (WHICH MUST BE NON-NEGATIVE) TOA TWO-BYTE INTEGER 
IN FACMO-FACLO (S00A0-SOOA1) 
DOS OISK SYSTEM fORMATTER GENERAL COUNTER 
APPLESOFT FP -RAISE E TO THE FAC POWER. RESULT TO fAC. MODIFIES 
INDEX CHARAC COMPRTYP XORfPSGN AND MANY OTHER fP LOCNS 
INTEGER BASIC ENTRY TO ROUTINE TO EXPONENTIATE (RAISE TO A POWER) 
APPLESOFT MAIN flOATING-POINT ACCUMULATOR (USES 6-BYTE UNPACKED MATH 
PACKAGE fORMAT DESCRIBED BELOW) 
APPLESOfT - LET fAC = fAC 'AND' ARG; I.E. FAC=1 ONLY If BOTH FAC & 
ARG <>0: If EITHER fAC OR ARG OR BOTH :O THEN fAC=O 
APPLESOFT - COMPARERS fAC WITH ARG. TYPE OF COMPARISON CONTROLLED BY 
S0016. IF CONDITION MET fAC SET TO ONE; ELSE FAC RESET TO ZERO 
APPLESOfT - LET fAC = FAC 'OR' ARG; I. E. FAC:1 If EITHER FAC OR ARG 
OR BOTH <>O; fAC=O ONLY IF BOTH fAC & ARG = 0 
EXPONENT BYTE Of FAC. S.lGNED NUMBER IN EXCESS S80 FORM (SIGNED VALUE 
H A S $8 0 A 0 D E D ) 

---------------------------------------------- .. ~----,_ __ .,. _______ , ____ -.. ____ .,. ________ "!"" _____________________________ ----------~---

0 XL 0 X H - f A C E X P Prot. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN> [HEX LOCN] \USE-TYPE\ -DESCRIPTION 
---------------------------------------------------------------~---------------------------~-----·-----------------..---

f AC H 0 ( 1 58 ) [$ 00 9EJ \ P 1 \ 
FACLO (161> [$00A1J \P1\ 
FACMO (160) [$00AOJ \P1\ 
FACMOH (159) [$009FJ \P1\ 
FACMO-FACLO (160-161) [$00A0-S00A1] 
(FACSIGN) (162) [$00A2J \P1\ 

FADD (fPADD) (-6210) UE7BEJ \SE\ 

FADD <-2962> [$f46EJ \SE\ 

F ADDH 
FADDT 

F AK EMON 
F AK EMON2 
fAKEMON3 
fAKES C T 

<-6240> [SE7AOJ \SE\ 
<-62071 [$E7C1J \SE\ 

<-2755) UF53D] 
(-2 74 8) [$F 544] 
< - 2 7 6 0 ) [ $ F 5 38 J 

(16192) [$3F40J \SL\ 

HIGH ORDER BYTE OF MANTISSA OF FAC 
LOW ORDER BYTE OF MANTISSA OF FAC 
MIDDLE ORDER BYTE Of MANTISSA OF FAC 
MIDDLE ORDER HIGH BYTE Of MANTISSA Of FAC 
\P2\POINTER TO STRING DESCRIPTOR USED IN STRING UTILITIES 
SINGLE BYTE SIGN OF FAC. WHILE IN MATH PKG SIGN IS KEPT IN SGN WHERE ONLY BIT 7 
IS SIGNifiCANT 
APPLESOFT fP - MOVE THE FP NUMBER IN MEMORY POINTED TO BY Y-REG & A-REG INTO ARG 
AND FALL INTO FADDT (FPADD). MODIFIES INDEX & XORfPSGN 
FLOATING POINT NUMBER IN FP1 ADDED TO THAT IN FP2. NORMALIZED RESULT LEFT IN FP1 
{A- X-REGS AlTERED} 
APPLESOFT FP- ADD 1/2 TO fAC (1/2 IN SEE64) 
APPLESOFT FP - ADD FAC AND ARG. ON ENTRY A-REG AND ZERO fLAG REFLECT fACEXP. 
RESULT TO fAC 
MINIASSEMBLER MEMORY LOCATION 'FAKEMON' 
MINIASSEMBLER MEMORY LOCATION 'FAKEMON2' 
MINIASSEMBER MEMORY LOCATION 'FAKEMON3' 
DOS 3.2 DISK fORMATTER INTERIOR LABEL 'fAKESCT 1 AT BEGINNING Of CODE TO WRITE 
FAKE SECTOR 

FCBFOP ZPGWRK V NPE (64-65} 
FCOMP (-5198} [$EBB2J \SE\ 

[$0040-$0041] DOS - USED AS GENERAL POINTER BY 1ST LEVEl (COMMAND DECODE) ROUTINES IN DOS 
APPLESOFT FP - COMPARE FAC AND PACKED NUMBER IN MEMORY POINTED TO BY Y-REG & 
A-REG. ON EXIT A=1 IF MEM<FAC:A=O IF MEM=FACiA=$Ff If MEM>FAC 

FCOMPL <-2908) [$f4A4] \SE\ 

FDIV <FPDIV) <-5530> [$EA66J \SE\ 

FDIVT (FPDIV2) <-5527> [$EA69J \SE\ 

fiLLCNT - SCTR <75> [$004BJ \P1 \ 
FIN <-5046) ($fC4A] \SE\ 

F INDOP 
FIRST 

FIX 

FLAG 
flAGS 
FLOAT 
fLOAT 

FMT 
fMT 1 
FMT2 
fMUL 

FMUL 

<-2789) [$f51BJ 
(240) [$00FOJ \P1 \ 

<-2496) [$F640] \SE\ 

(228) [ $00£4] 
<2040+5) [S07F8+S] \P1\ 
<-5229> [$EB93J \SE\ 
<-2991) UF451 J \SE\ 

(68) [$0044] \P1\ 
(-1694) [$F962J 
<-1626> [$F9A6] 
(-29321 [SF48CJ \SE\ 

<-2894) [$F4B2 J \SE\ 

FMULT (FPMULT) (-57 61) [SE 97fJ \SE\ 

FMUL TT (-5758) [SE982J \SE\ 

VAlUE Of FLOATING POINT NUMBER IN FP1 IS NEGATED THEN NORMALIZED {A- X-REGS 
ALTERED} 
APPLESOFT FP- MOVE THE FP NUMBER IN MEMORY POINTED TO BY R-REG & A-REG INTO 
ARG AND FAll INTO FDIVT. ALTERS INDEX & XORfPSGN 
APPlESOFT FP- DIVIDE ARG BY FAC. ON ENTRY A-REG AND Z REfLECT FACEXP. RESULT 
IN FAC. XORFPSGN SHOULD BE COMPUTED BEfORE CALL 
DOS DISK SYSTEM fORMATTER GENERAL COUNTER & SECTOR NUMBER 
APPLESOFT - INPUT FP NUMB INTO FAC FROM CHRGET. ASSUMES 6502 REGS HAVE BEEN SET 
UP BY CHRGET THAT FETCHED 1ST DIGIT 
MINIASSEMBLER MEMORY lOCATION 'fiNDOP 1 

APPLESOFT- USED BY UTILITY PLOTFNS fOR DESTINAT.ION Of F.IRST NUMBER OF LO-RES 
PLOT COORDINATES 
fROMFLOATING POINT NUMBER IN FP1 EXTRACT INTEGER. PJT HIGH-ORDER BYTE IN 
M1;LOW-ORDER IN M1+1 {A- X-REGS ALTERED} 
INTEGER BASIC MEMORY LOCAUON 'FLAG' (GENERAL FLAG !UTE> 
EXAMPLE: APPLE SERIAL INTERfACE IN SLOT #S OPERATIO~ MODE 
APLESOFT FP - FLOAT THE SIGNED INTEGER IN A-ftEG INTO FAC 
CONVERT INTEGER <HIGH BYTE IN M1:LOW BYTE IN M1+1:M1+2 CLEARED) TO NORMALIZED 
FL POINT EQUIV IN FP1 {A-REG ALTERED} 
MINIASSEMBLER MEMORY LOCATION 'FMT' 
MONITOR MEMORY LOCATION 'FMT1 1 

MONITOR MEMORY LOCATlON 'FMT 2' 
flOATING POINT MULTIPLY SIR: MUTIPLICAND IN FP1; MULTIPLIER IN FP2; SIGNED 
NORMALIZED PRODUCT IN FP1 {A- X- Y-REGS ALTERED} 
fl PT DIVIDE SIR: NORM DIVIDEND IN fP2;NORM DllllbER IN fP1;S.IGNED NORM FP 
QUOTIENT TO FP1 {A- X- Y-REGS AlTERED} 
APPLESOFT FP - MOVE THE FP NUMBER IN MEMORY POINTED TO BY Y-REG & A -REG INTO 
ARG AND FALL INTO fMULTT (fPMULTl. ALTERS INDEX XORFPSGN 
APPLESOFT FP - MULTIPLY fAC AND ARG. ON ENTRY A-REG & ZERO fLAG REfLECT FACEXP. 
RESULT TO FAC. XORFPSGN MUST BE COMPUTED BEfORE CALL 

----------------------------------------------------------------------~---------------·---------------------------·~---· 
FACHO - FMUL TT Prof. Luebbert's "What's Where in the Apple" AlPHABETICAL GAZETJEER 



NAME (DEC LOCN) [HEX lOCNl \USE-TYPE\- DESCRIPTION 

------·.-~---------------------~-----------.-------------------------~------------·--~---------------------------------
FNDL IN 

FNDOP2 
FORM1 
FORM2 
FORM3 
FORM4 
FORMS 
FORM6 
FORM7 
FORMS 
FORM9 
FORMAT 

FORMDSK 
FORNDX 
FORPNT 
-FoR• 
FOUT 
FOUT 

<-10726) UD61Al \SE\ 

(-Z787) {SF51DJ 
<-2599) UF5D9J 
<-2597) UFSDB] 
<-2568 > UFSF 81 
<-2567) [Sf5F9] 
<-2566) UFSF A] 
<-2552> UF608l 
<-254 7) [Sf60D] 
<-2526> UF622l 
<-2511l UF631] 
(46) [S002El \P1\ 

(-16883--16625) [SBEOD-SBFOF] 
( 251> [ SOOFB l \P1\ 
<133-134> csoo8s-so086l \P2\ 

<-5830) [SE93A] \SE\ 
<256.272) [S0100-S0110l \PB\ 
<-4812> CSED34l \SE\ 

FP1 <244.247> UOOF4.SOOF7] \P4\ 

FP1 <248.254) [SOOF8.SOOFEJ \P6\ 

fPWRT (fPEXP) (-4457> [SEE97l \SE\ 

FRESPC (113.114) [S0071-S0072l \P2\ 
FRE STR (-6659) [ SE 5 F D l \ S E \ 
FRETMP <-6652) [SE604] \SE\ 

FRETMS (-6603) [SE635l \SE\ 

F RE TOP (111.112) [S006F-S0070l \P2\ 

FRM EVL <-8837> [SDD7Bl \SE\ 

F RM EVL <-8837> [$DD 7B l \SE \ 

FRMNUM <-8857) [SDD67l \SE\ 

FRMWSYNC (16096) [S3EE0l \SL\ 
FSUB (FPSU3) <-6233 > [SE7A 7] \S E\ 

FSUB <-2968) [SF468J \SE\ 

FSUBT <-6230) [SE7AAJ \SE\ 

GARBAG <-7036) [SE484] \SE \ 

APPLESOFT- SEARCHES PROGRAM FOR LINE WHOSE NUMBER IS IN LINNUM. ON EXIT If 
CARRY SET lOWTR POINTS TO liNK fiElD OF DESIRED LINE; IF NOT lOWTR TO NEXT 
HIGHER liNE 
MINIASSEMBLER MEMORY LOCATION 'FNDOP2 1 

MINIASSEMBLER MEMORY LOCATION 'FORM1' 
MINIASSEMBLER MEMORY LOCATION 'FORM2' 
MINIASSEMBLER MEMORY LOCATION 1 FORM3 1 

MINIASSEMBLER MEMORY LOCATION 1 fORM4' 
MINIASSEMBLER MEMORY LOCATION 'FORMS' 
MINIASSEMBLER MEMORY LOCATION 1 FORM6' 
MINIASSEMBLER MEMORY LOCATION 1 FORM7 1 

Ml NIA.SSEMBLER MEMORY lOCATION 1 FORMS' 
MI NIASSEMBLER MEMORY LOCATION 1 FORM9 1 

USED BY MINIASSEMBLER & DISASSEMBLER TO SPECIFY FORIIilAT OF INS TRUCHON FOR 
DI SPL AV PURPOSES 
DOS 3.3 - JUMP TO 'DSKFORM 1 CSBEAF) 
INTEGER BASIC MEMORY LOCATION 'FORNOX' (fOR-NEXT LOOP INDEX) 
APPLESOFT GENERAL POINTER. SEE COPY SUBROUTINE FOR EXAMPLE 
INTEGER BASIC ENTRY TO ROUTINE TO HANDLE 'FOR' LOOP INITIALIZATION 
FOUT BUFFER 
CREATES A STRING IN FBUFFR EQUIVAlENT IN VALUE TO FAC. ON EXITY-REG &A-REG 
POINT TO THE STRING. FAC SCRAMBLED 
MONITOR & FLOATING POINT ROUTINES fLOATING POINT ACCUMUlATOR 2 (CONTAINS X2 & 
M2) 
OLD CNON-APPLESOFT) FLOATING POINT ROUTINES FLOATING POINT ACCUMULATOR FP1 
(CONTAINS X1 M1 AND E <EXTENSION)) 
APPLESOFT FP EXPONENTATION (ARG TO FAC POWER) ON ENTRY A-REG & ZERO FLAG SHOUlD 
REFLECT VALUE OF FACEXP. RESULT TO FAC. MODIFIES MANY FP lOCNS 
APPLESOFT TEMPORARY POINTER FOR STRING-STORAGE ROUTINES 
APPLESOFT - MAKE SURE THAT LAST FAC RESULT WAS A STilNG & fAll INTO fREfAC 
APPLESOFT - FREE A TEMPORARY STRING. ON ENTRY POINTER TO DESCRIPTOR IS IN Y-REG 
<MSB) & X-REG (LSB) 
APPLESOFT- FREE TEMPORARY DESCR.IPTOR W/0 FREEING UP THE STRING. Y-REG (.MSB) & 
X-REG(LSB) POINT TO DESCRIPTOR TO BE fREED. ON fXIT Z SET If ANYTHING fREED 
APPLESOFT POINTER TO END OF STRING STORAGE OR TOP OF USER-AVAlLABLE FREE SPACE. 

DEFAULTS TO HIMEM- USUALLY SBFFF FOR 48K APPLE> 
APPLESOFT - EVAL FORMULA AT TXTPTR USING CHRGET & LEAVE RESULT IN fAC. ON ENTRY 
TXTPTR POINTS TO 1ST CHAR Of FORMULA 
APPLESOFT - EVAL FORMULA AT TXTPTR USING CHRGET. If FORMULA IS STRING LITERAL 
FRMEVL GOBBLES OPENING QUOTE AND EXECUTES STRUT & ST2TXT 
APPLESOFT - EVALUATE EXPRESSION PO.INTED TOBr TXTPTR <S00S8.S0089) (PO.INTS TO 
1ST CHAR OF FORMULA). PUT R~SULT INTO FAC & MAKE SUif lT IS A NUMBER 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'FRMWSYNC• 
APPLESOFT - MOVE fP NUMBER IN MEMORY POINTED TO BY Y-REG &A-REG INTO ARG AND 
FALL INTO FSUB (fPSUB)T 
FLOATING POINT SUBTRACTION MINUEND IN FP1;SUBTRAHEND IN FP2;NORMALIZED 
D IF FE R E N C E T 0 F P 1 {A- X -R E G S A L TE R E D} 
APPLESOFT- FP SUBTRACT FAC FROM ARG. ON ENTRY A-REG & 6502 ZERO fLAG REfLECT 
FACEXP. RESULT TO FAC 
APPlESOFT GARBAGE COLLECTOR -MOVES All CURRENTLY USED STRINGS UP IN MEMORY AS 
FA R A S P OS S I.B L E 

-------------------------------~.,.--·~·-------------------------·-------.-.-----------·-~-~-·.--------.~----·---~~---..--- .... --.. .,...~---
FNDLIN - GARBAG Prof. Luebbert's "What's Where in the Apple" AlPHABETICAl GAZETfEER 



NAME <DEC LOCN) [HEX LOCNJ \USE-TYPE\- DESCRIPTION 

---------.-------------------------------·----------------~~-----------~---------------------·-----·~~···· ... --..-.~-.• 
GBASCALC <-1977) [SF847J \SE\ 

GBASL-GBASH <38-39) U0026-S0027J 

GBCALC 
GDBUFS 

<·1962> [SF856J 
<-10951) UD539J \SE\ 

-GET16BIT. <-6379) [SE715J \SE\ 
GETADR (-6318) [SE752J \SE\ 

GETARYPT 

GETBYT 

GETBYT 

-GETCMD• 
GETFMT 
GETLN 

GETLNZ 

C-2087> UF709J \SE\ 

(-6408> [SE6f8J \SE\ 

( - 64 0 8) [ SE 6 F 8 J \ S E \ 

<-7218> UE3CEJ \SE\ 
<-1879) [SF8A9J 

C-662> [ SF06AJ \SE\ 

<-665) [SFD67J \SE\ 

-GET NEX r· (- 60 27> [ SE 87 5J \Sf\ 
GETNSP (-2508) [SF634J 
GETNUM <-6330> (SE746J \SE\ 

GETNUM 
GET SPA 

(-89) (SffA7J 
<-7086> [SE452J \SE\ 

-GETVAL255- <-4352) [SEFOOJ \SE\ 
-GETVAL• (-4556) ($EE3itJ \Sf\ 

-GETVERB- (-6401) [$£6fFJ \SE\ 
GIVAYF CINT=>FP} C-7438) [$E2f2] 

G 0 < - 33 0 > [ S FE B6 J \ S E \ 
GOCAL <15809) [S3DC1J \SL\ 
GOSEEK <15992> [S3E78J \DL\ 
GOSUBNDX <252) [SOOFCJ \P1\ 
-GosuB- <·-6084> UE83CJ \SE\ 

COMPUTE GRAPHICS BASE MEMORY ADDRESS FOR liNE IN A-REG (NOTE: 2 LD-RES GRAPHICS 
LINES PE~ TEXT LINE SO (A)• LINE/2); SET GBASL•H {A•REG ALTERED} 
\P2\MEMORY ADDRESS Of LEFT ENO POI.NT Of DESIRED liNE FO.R lO-RES PLOT (SET BY 
GBASCALC) 
MONITOR MEMORY LOCATION 1 GBCALC' 
APPLESOFT - PUT ZERO AT END Of INPUT BUFFER (BUf) AND MASK Off MOST SIGNIFICANT BIT 
ON All BYTES. ON ENTRY X-REG• END Of INPUT LINE <A- X- Y·REGS Al JEREl)} 
INTEGER BASIC ENTRY TO GET A 16-BIT VALUE 
~PPLESOfT FP - CONVERT FAC (•65535 TO 65535) INTO 2-BYTE INTEGER <0-65535) IN 
LINNUM. 'WRAPAROUND' OCCURS 1 f VALUE IN fAC TO.O BIG {A- Y-REGS ALTERED} 
APPLESOFT - READ VAR NAME FROM CHRGET & fiND IT IN MEMORY.ON EXIT VAL OF VAR IN 
VARPNT AND Y-REGCMSB>&A-REG(LSB) 
APPLESOfT - EVAL FORMUlA AT TXTPTR. LEAVE RESULT IN fAC AND fALL INTO CONINT. AT 
ENTRY TXTPTR POINTS TO FIRST CHAR IN FORMULA FOR fiRST NUMBER PLOTFNS PUTS FIRST 
NUMBER IN FIRST AND SECOND NUMBER IN H2 AND V2 
GETBYT SIR. EVALS EXPRESSION (fORMULA) POINTED TO BY TXfPTR CSOOB8-SOOB9) & CONVTS 
TO 1-BYT VAL IN X-REG & FAClO<SOOA1 > .. A-REG GfTS EXPRES$'10N TERMINAL SIGN {RESET.S 
Y•REG=Q} 
INTEGER BASIC ENTRY POINT TO GET A COMMAND FROM THE KEYBOARD 
MONITOR .MEMORY LOCATION GUFMT 
PROMPT & GET LINE OF TEXT. ON CALLING A- X- Y-REGS NOT SIGNIFICANT. CV AND BASL-H 
SHOULD BE COMPATIBLE POINTING IN THE SCROLL WINDOW. CH INDICATES WHERE ON liNE THE 
PROMPT CHARACTER IS TO BE PLACED TO BE fOLLOWED BY ECHOED JCEYBOARO INPUT; OUTPUT AS 
FOR GETLNZ {X-REG GETS #CHARS READ. DATA TO $200-$200-x (MAX S2ff') S200-x & Y-~EG 
GET CiR (USES NXTCHARl} {A- X- Y-REGS ALTERED} 
OUTPUT A C/R (THROUGH COUT>. GO TO GETLN TO WRIJE PROMPT & GET A LINE Of DATA 
(USUALLY fROM KEYBOARD); ON SET-UP A- X- Y-REGS CH AND BASI,. -H NOT SlGNIF.ICANT. C.V 
SHOULD POINT TO A LIN£ IN SCROll WINDOW; ON OUTPUT KEYED IN INFO IS IN S200 THRU 
S200-x WHERE S200-x CONTAINS A CARRIAGE RETURN;A-REG CONTAINS CARRIAGE RETURN;X-~EG 
CONTAINS NUMBER Of CHARACTERS READ EXCLUDING TERMINATING CARRIAGE RETURN;Y-REG 
CONTAINS CONTENTS OF WNOWOTH; CH CONTAINS ZERO;cv tONJAINS LIN£ POINTER (CURRENT 
VALUE);BASL-H CONTAINS MEMORY ADDRESS CORRESPONDING TO CV AND WNDLFT; SCREEN LINE 
IS BLANKS TO THE RIGHT Of THE END Of ECHOfl) INPUT {A- X• Y-REGS AUERED} 
INTEGER BASIC ENTRY TO 'GETNEXT' (fETCH NEXT STATEMENT FROM TEXT SOURCE) 
MINIASSEMBLER MEMORY LOCATION 'GETNSP' 
APPLESOFT FP - READ 2-BYTE NUM INTO LINNUM FROM TXTPTR. CHECK FOR COMMA. GET SINGlE 
BYTE NUMB IN X-REG. 
MONITOR & MINIASSEMBLER MEMORY LOCATION 'GETNUM' 
APPLESOFT - GET SPACE FOR CHARACTER STRING. MOVES FRESPC & FRETOP DOWN. A-REG • # 
OF CHARS.;, PO.INTER TO SPC IN Y-REGCMSB) & X-REG(LSB> 
INTEGER BASIC ENTRY TO ROUTINE TO GET A ONE-BYTE VALUE 
INTEGER BASIC ENTRY TO ROUTINE TO GET A VALUE ~HICH WILl fiT INTO A SINGLE BYTE 
(VAL<=255> 
INTEGER BASIC ENTRY TO GET NEXT VERB TO USE 

\SE\APPLESOFT - FLOAT THE SIGNED INTEGER W/ LSB IN A-REG MSB IN Y-REG INTO fAC. 
RESETS VALTYP. {RESETS Y-REG=O) 
MONITOR MEMORY LOCATION 'GO' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL- GO CALCULATE CORRECT TRACK 
DOS 3.2 RWTS (READ-WRIT£ TRACK-SECTOR} INTERIOR LABEL 'GOSEEK' 
INTEGER BASIC MEMORY LOCATION 'GOSUBNDX' (GOSUB INDEX) 
INTEGER BASIC ENTRY TO GOSUB HANDLER -··---··-----------------------------------·.----------------------------------------~~----------·-....------------.. ,.-.. _ 

GBASCALC - GOSUB Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETJEER 



NAME (DEC LOCN) [HEX LOCNJ \USE-TYPE\ -DESCRIPTION 

--------------------------------------------~-------------------------·-----·-------..----~-----------------------·- ..... -·------
GOTO <-9922> [ $D93E] \SE\ APPLESOFT - USES LINGET & FNDLIN TO UPDATE TXTPTR. GOTO ASSUMES 6502 REGS HAVE 

BEEN SET UP BY CHRGET THAT FETCHED 1ST DIGIT 
:'"GOTO- <-6053) [$E85BJ \SE\ 
GTBYTC <-6411) [$E6F5J \SE\ 
H2 (44) [$00 2C] \P1 \ 
HANDLERR <-3351> [$F2E9] \SE\ 

INTEGER BASIC ENTRY TO 'GOTO' HANDLER 
APPLESOFT - JSR TO CHRGET TO GOBBLE A CHARACTER AND 
RIGHT END POINT OF A HORIZONTAL LINE BEING DRAWN BY 
APPlESOFT ERROR PROC - SAVE CURLIN IN ERRLIN:TXTPTR 
REMSTK Ul ERRSTK 

FALL INTO GETBYT 
J-tt.INE: RANGE 0-39 C$0-$271 
IN E RRPOS; X- REG IN ERRNUM; 

HBASL.HBASH <38-39) [$0026-$0027] \P2\HI-RES GRAPHICS ON-THE-FLY BASE ADDRESS (lEFT END PO.INT OF DESIRED LINE FOR 
HI-RES PlOT) 
HI-RES GRAPHICS ClEAR S/R CALL 
APPLESOFT HI-RES - CLEAR HI-RES SCREEN TO BLACK 
HI-RES GRAPHICS COLOR FOR HPLOT- HPOSN 
HI-RES RUNNING COLOR MASK (ON-THE-FLY COLOR BYTE) 

HCLR 
HCL R 
HCOLOR 
HCOLOR1 
HEADR 

(-12274) ($D00E] \SE\ 
(-3090) ($F3EE) \SE\ 

(804) [$0324] \P1\ 
<28} ($001C) \P1\ 

C-823) [$FCC9] MONITOR -WRITES SYNCHRONIZATION MONOTONE WHICH IS FIRST PART Of EVERY CASSETTE 
TAPE REC ORO 

-HEX/DEC- (-6885) [$E51BJ \SE\ INTEGER BASIC- DECIMAL LPRINT CLINE NUMBER PRINT> S/Ri CONVERTS 2-BYTE (16-BlT) 
BINARY/HEX TO UNSIGNED DECIMAl (0-65535) 
HI-RES GRAPHICS FIND SIR CALL: PARAM=SHAPE-ROT-SCALE HFI NO 

HFIND 
(-11780) [SD1FC] \SE\ 
<-2613) [$F5CBJ \SE\ APPLESOFT HI-RES HFIND. CONVERT HI-RES CURSOR POSN TO X-Y COORDS. ON EXIT 

SOOEO=HORIZ LSB:SOOEl=HORIZ MSBi$00E2=VERT 
HFNS C-2375> [$F6B9] \SE\ APPLESOFT - GET HI-RES PLOTTING COORDINATE FROM TXTPTR SETS UP 6502 REGISTERS FOR 

HPOSN: A-REG=VERT COORo;X-REG LSB Of HORIZ:Y-REG MSB OF HORIZ {A- X- Y-REGS 
ALTERED} 

HGR C-3136) ($f3DE] \SE\ APPLESOFT HI-RES - INITIALIZE & CLEAR PAGE 1 HI-RES REGARDLESS Of SCREEN BEING 
0 IS PlAYED 

HGR2 (-3116) [$F3D4] \SE\ APPLESOFT HI-RES -INITIALIZE & CLEAR PAGE 2 HI-RES REGARDLESS OF SCREEN BEIN3 
DISPLAYED 

(HI-RES P1> <819r16383} [$2000-$3Fff) \HB\HJ-RES GRAPHICS PAGE 1 
(HI-RES PAGE 2) (16384-24575) {$4000-S5FFF] \HB\HI-RES GRAPHICS PAGE 2 
HI-RES <-16297) [$C057J \H1\ POKE TO 0 TO SET TO HI-RES GRAPHICS FROM LO-RES OR TEXT CSAME PAGE} 
HIGHDS (148-149} [$0094-$0095] \P2\ USED BY BLOCK TRANSFER UTILITY <BLTU) AS HIGH DESTINATION 
HIGHTR <150-151> [$0096-$0097] \P2\ APPLESOFT- USED BY BLOCK TRANSFER UTILITY (BLTU) AS HIGH END OF Bt.OCK TO BE 

TRANSFERRED 
HIMEML-HIMEMH (76-77> [$004C-$004DJ \P2\ADDRESS POINTER TO HIMEM <INTEGER BASIC - END OF 3ASIC PROGRAM)(APPLESOFJ -

START Of STRING DATA) 
-HIMEM- <-4019) {$F04D) \SE\ INTEGER BASIC ENTRY TO THE HIMEM FUNCTIO~ 
(HIRES P1LOOO> <8192-8231> ($2000-$2027) \HB\H.I-RES GRAPHICS: PAGE 1- LINE #000 
UHRES P1L001) <9216-9255) [$2400-$24271 \HB\Hl-RES GRAPH.ICS: PAGE 1- LINE 11001 
(HIRES P1L002) <10240-10279) CS2800-S2827J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11002 
(HIRES P1L303> <11264-11303> ($2C03-$2C27J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11003 
(HIRES P1L004) <12288-12327> [$3000-$3027] \HB\Hl-RES GRAPHICS: PAGE 1- LINE 11004 
(HIRES P1L005> (13312-13351) [$3400-$3427] \HB\HI-RES GRAPHICS: PAGE 1 - liNE 11005 
<HIRES P1L006) (14336-14375) [$3800-$3827] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11006 
(HIRES P1L007> ( 15360-1 5399) [$3C00-$3C27.J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11007 
(HIRES P1L008> < 8320'-8359> [$2080-S20A7.J \HB\HI-RES GRAPliiCS: PAGE 1 - LINE 11008 
(HIRES P1L009) (9344-9383) [$2480.S24A7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11009 
(HIRES P1L010) (10368-10407> [$2880-$28A7] \HB\HI-RES GRAPHICS: PAGE 1- LINE 11010 
(HIRES P1L011> (11392-11431> [$2C80-$2CA7J \HB\HI-RES GRAPHICS: PAGE 1- LINE 11011 
(HIRES P1L012> (12416-12455) CS3080-S30A7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11012 
(HIRES P1L013) (13440-13479) U3480-$34A7J \HB\HI-RES GRAPHICS: PAGE 1- LINE 11013 
(HIRES P1L014) (14464-1450.3> [S3880-$38A7) \HB\HI-RES GRAPJ-IICS: PAGE 1- LINE 11014 
---------·-·--------------------------------------..,..------------·--------------------~-------------------~~--------·-------
GOTO- (HIRES P1L014) Prof. Luebbert's ••what's Where in the Appl.e" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNJ \USE-TYPE\ - DESCRIPTION 
-----------~~-------~--------..-.--------------------·--~---·------------------------.-----..----·--..--·-·-------------- ... 
(HIRES P1L315) 
(HI RES P1L016) 
(HIRES P1L017) 
(HI RES P1L:J18) 
(HIRES P1L019) 
(HIRES P1L020) 
(HI RES P1 L021> 
(HIRES P1LD22 
(HIRES P1LD23) 
(HIRES P1L024) 
(HIRES P1L025) 
Ull RES P1 L026) 
(HIRES P1L027> 
<HIRES P1L028) 
(HI RES P1L:J29) 
(HIRES P1L030} 
(HIRES P1L031) 
(HIRES P1L032) 
(HIRES P1L333) 
(HIRES P1L034) 
(HIRES P1L035l 
(HIRES P1L036) 
(HIRES P1L037l 
(HIRES P1L0.58) 
<HIRES P1L039) 
(HIRES P1L040) 
(HIRES P1L041> 
<HIRES P1 L 0 4 2) 
(HIRES P1LD43) 
(HIRES P1 L044) 
(HI RES P1L04 5) 
(HIRES P1L045) 
CHI RES P1L046) 
(HIRES P1L047) 
<HIRES P1LJ48} 
(HIRES P1LD49) 
CHI RES P1 L050 > 
CHI RES P1LD51) 
(HIRES P1L053) 
(HIRES P1 L 0 54) 
CHI RES P1L055) 
CJ.URES P1L::I56) 
CHI RES P1L057) 
<HIRES P1L058) 
(HIRES P1L059) 
<HIRES P1L060} 
(HI RES P1L0.61) 
CHI RES P1L062> 
(HIRES P1L063) 
CHI RES P1 L064Y 
(HIRES P1L::I65) 

(15488-15527} [S3C80-S3CA7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #015 
(8448-8487> [$2100-S2127J \.HB\HI-RES GRAPHICS: PAGE 1- LINE #016 
C947z-9511> CS2500-S2527J \.HB\HI-RES GRAPHICS: PAGE 1 -LINE #017 
(10496-10535) ($2900-$2927] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #018 
(11520-11559) [S2DJ0-S2027] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #019 
<12544-12583) [$3100-S3127l \HB\HI-'RES GRAPHICS: PAGE 1- LINE #020· 
<13568-13607) [S35::10-S3527J \HB\HI•RES GRAPHICS: PAGE 1 - LINE #021 

(14592-14631} [S3900-S3927J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #022 
(15616-15655) [$3D00-S.5D27J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #023 
<8576-8615> [S2180-S21A7J \HB\HI-RES GRAPHICS: PAGE 1- LINE fl024 
(9600-9639) [S2580-S25A7] \HB\HI-RES GRAPHICS: PAGE 1 -LINE #025 
<10624-10663> [$2980-S29A7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #026 
(11648-116871 [S2080-S20A7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #027 
(12672-12711> (S3180-S31A7J \HB\HI•RES GRAPHICS: PAGE 1 -LINE #028 
(13696-13735) [S3580-S35A7] \HB\Hl-RES GRAPHICS: PAGE 1 - liNE 11029 
(14720-14759) (S3980-S39A7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #0.30 
<15744-15783) [S3080-S30A7] \HB\HI-RES GRAPHICS: PAGE 1 -liNE #031 
(8704-8743) (S2200-S2227J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #032 
<9728-9767) ($2600-$2627] \HB\HI-RES GRAPHICS: PAGE 1 - liNE #033 
(10752-10791) (S2A00-S2A27J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #034 
(11776-11815} (S2EOJ-S2E27l \HB\HI-RES GRAPHICS: PAGE 1- LINE #035 
<12800-12839} ($3200.$3227] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #036 
(13824-13863) CS3600-S3627) \HB\HI~RES GRAPHICS: PAGE 1 - liNE #037 
(14848-148871 (S3AOO.S3A~7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #038 
(15872-15911) ($3E::I0-S3E27J \HB\HI-RES GRAPHICS: PAGE 1- LINE #039 
<8832-8871) (S2280.S22A7l \HB\H.I-RES GRAPHICS: PAGE 1 - liNE #040 
(9856-9895) (S2680-S26A7l \HB\HI-RES GRAPHICS: PAGE 1- LINE #041 
(10880-10919) ($2A80-S2AA7J \HB\HI-RES GRAPHICS; PAGE 1 - LINE #042 
(11904-11943) U2E8:rS2EA7l \HB\HI-RES GRAPHICS: PAGE 1 - liNE .#043 
<12928-12967) (S3280-S32A7J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #044 
<13056-13095> (S330J-S3327] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #045 
<13952-13991) (S3680-S36A7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #045 
(14976-15015> [~3A80-S3AA7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #046 
<16000-16039) (S3E8)-S3£A7J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #047 
(8960.8999) ($2300-$2327] \HB\HJ-RES GRAPHICS; PAGE 1 - LINE #048 
(9984-10023> ($2700-$2727] \HB\HI-RES GRAPHICS: PAGE 1 - liNE #049 
(11008-11047) [S2800.S2827] \HB\HI-RES GRAPHICS: PAGE 1 - liNE #050 
(12032-12071> CS2FOO-S2F27l \HB\HI-RES GRAPHICS: PAGE 1 - LINE #051 
<14080-14119) ($3700-$3727] \HB\HI-RES GRAPHICS: PAGE 1 - liNE 1053 
(15104-15143) (S3800-S3827l \HB\HI-RES GRAPHICS: PAGE 1 - LINE #054 
<16128-16167) ($3FOO.S3F27l \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11055 
(9088-9127> (S2380.S23A7] \HB\HI-RES GRAPHICS: PAGE 1 -liNE #056 
(10112-10151) ($2780-S27A7J \HB\HI-RES GRAPHICS: PAGE 1 - liNE #057 
(11136-11175} [S2B80-S28A7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #058 
(12160-12199) [S2F80-S2FA7l \HB\HI-RES GRAPHICS: PAGE 1 - LINE #059 
<13184-13223> [$3380-S33A7l \HB\HI-RES GRAPHICS: PAGE 1 -LINE #060 
(14208-14247) U3780.S37A7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #061 
<15232-15271> [S3880-S38A7l \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #062 
(16256-16295) (S3f80-S3fA7J \H8\HI•RES GRAPHICS: PAGE 1 - LINE #063 
<823z-8271} (S2028-S204FJ \HB\HI•RES GRAPHICS: PAGE 1 - LINE #064 
(9256-9295> (S2428-S244f] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #065 

-------~-P--·--------.---------·~---~-.-------------~---------- ... --------------..---·-----..--·---... --.....-... ---..-------·-... _._· 
<HIRES P1L015) - (HIRES P1L065) Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZUJEER 



NA"E (DEC LOCN) (HEX LOCN] \USE-TYPE\- DESCRIPTION 

-----·---~-----------------·~--~-------~----~-----------------------------------------------~----·-------~.-·----------
(HIRES P1L066) 
(HIRES P1L067> 
(HIRES P1L068)' 
(HIRES P1L069) 
(,HIRES P1LJ70) 
(HIRES P1 L071> 
(HIRES P1L072) 
(HIRES P1L07 3) 
(HIRES P1L074) 
(HIRES P1L075) 
(HIRES P1L076) 
(HIRES P1LJ77) 
<HIRES P1L078) 
(HIRES P1L079) 
(HIRES P1LJ81) 
(1tl RES P1L082) 
(HIRES P1L083) 
(HIRES P1L084) 
CHI RES P1L085) 
(HIRES P1L086) 
(HIRES P1L087) 
(HIRES P1L088) 
(HIRES P1L089) 
CHI RES P1L090) 
<HIRES P1L091) 
CHI RES P1L092) 
(HIRES P1L093) 
(HIRES P1L094) 
(HIRES P1L095) 
(HI RES P1L096) 
CHI RES P1L097> 
CHI'~ES P1L098) 
CHIRES P1LJ99) 
(HIRES P1L 1 00) 
(HIRES P1L101) 
(HIRES P1L102> 
<HIRES P1L103> 
(HIRES P1L104) 
(HIRES P1L105) 
(HIRES P1L106) 
(HIRES P1L 1 07> 
(HIRES P1L108) 
(HI RES P1L 1 09) 
(HIRES P1L110) 
(HIRES P1L111> 
(HIRES P1L112> 
(HIRES P1L113) 
(HIRES P1L114) 
(HIRES P1L115) 
(HIRES P1L116) 
(HIRES P1L117) 

(10280-10319) (S2828.S284F] \HB\HI•RES GRAPHICS: PAGE 1 - LINE 1066 
<11304-11343) (S2C28-S2C4F] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #067 
<12328-12367) (S3028-S304Fl \HB\HI-RES GRAPHICS: PAGE 1 - LINE #068 
(13352-13391) {S3428-S344FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #069 
<14376-14415) (S3828.S384FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #070 
<15400-15439) (S3C28.S3C4FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #071 
(8360-8399) CS20A8-S20CFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #072 
(9384-9423> CS24A8-S24CFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #073 
<10408-10447) U28U-S28CFJ \HB\Hl-RES GRAPHICS: PAGE 1 -LINE #074 
<11432-11471> (S2CA8.S2CCFJ \HB\HI-RES GRAPHICS: PAGE 1 - liNE #075 
(12456-12495) [S30A8-S30CFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #076 
(13480-13519> [S34A8-S34Cf] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #077 
(14504-14543) CS38A8-S38Cf] \HB\HI-RES GRAPHICS: PAGE 1 - liNE #078 
(15528-15567) [S3CA8.S3CCFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #079 
C951z-9551> [S2528.S254f] \HB\HI-RES GRAPHICS: PAGE 1- LINE #081 
(10536-10575) [S2928-S294FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #082 
(11560-11599) [S2D28-S2D4FJ \HB\HI~RES GRAPHICS: PAGE 1 - LINE #083 
<12584-12623) [S3128.S314FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11084 
(13608-13647) [S3528-S354FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11085 
(14632-14671) [S3928-S394FJ \HB\HI-RES GRAPHICS: PAGE 1 - liNE 11086 
(15656-15695> (S3028.S304F] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #087 
(8616.8655) [$21A8-S21CFJ \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #088 
(9640-9679) CS25A8-S25CFJ \HB\HI-RES GRAPHICS: PAGE 1 - liNE #089 
(10664-10703) [S29A8.S29CFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #090 
(11688-11727> U2D'8-S2DCFJ \HB\HI-RES GRAPHICS: PAGE 1- LINE #091 
(1271z-12751) [S31A8-S31CFJ \HB\HI•RES GRAPHICS: PAGE 1 - LI.NE 11092 
(13736-13775) [S35A8-S35CF1 \HB\HI-RES GRAPHICS: PAGE 1 - LINE #093 
(14760-14799) [S39A8-S39CFJ \HB\HI-RES GRAPHICS: PAGE 1 - liNE #094 
<15784-15823) CS3D'8-S3DCFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #095 
(8744-8783) [S2228.S224FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11096 
(9768-9807) [$2628.S264FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #097 
(10792-10831) CS2A28.S2A4F] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #098 
<11816-11855) [S2E28-S2E4FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #099 
(12840-12879) [S3228-S324FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11100 
(13864-13903) [S3628-S364FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #101 
<14888-14927} [S3A28-S3A4FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 6102 
C1591z-15951) (S3E28.S3E4FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #103 
C887z-8911} CS22A8.S22CFJ \HB\HI-RES GRAPHICS: PAGE 1 - LI,NE #104 
(9896.9935) [S26A8-S26CFJ \HB\Hl·RES GRAPHICS: PAGE 1- LINE #105 
(10920-10959) [S2AA8.S2ACFJ \HB\HI-RES GRAPH1CS: PAGE 1 - LINE #106 
<11944-11983) [S2EA8-S2ECFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11107 
(12968-13007) [S32A8-S32CfJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11108 
<13992.14031) [S36A8-S36CF] \HB\Hl-RES GRAP~ICS: PAGE 1 - LINE 6109 
(15016-15055) [S3AA8-S3ACFJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #110 
(16040-16079) CS3EA8-S3ECFJ \HB\HI-RES GRAPH.ICS: PAGE 1- LINE #111 
(9000-9039) [S2328-S234FJ \HB\HI•RES GRAPHICS: PAGE 1 - LINE 11112 
(10024-10063) [S2728.S274f] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #113 
(11048-13871) [S2B28-S362FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11114 
(12072-12111> [S2F28-S2F4FJ \HB\HI-RES GRAPHICS: PAGE 1- LINE #115 
<13096-13135) [S3328-S334FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #116 
<14120-14159) [$3728.S374FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE #117 ----------------------------------------·-----.---------------·---- ~---·-·.,.-·- -----~· ~--- --------..-~--------~---- ------.--~-----

(HIRES P1L066) - (HIRES P1L117) Prof. Luebbert's "~hat's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME <DEC LOCN> [HEX LOCN] \USE-TYPE\- DESCRIPTION _____ ,...,. __ ,_ ___ ~-----~--------...------,.-~~-... ~----·~-------------.,..----··~··----.-.---.. -.._,.,.._~----------------------- ... -----..... ...---
(HIRES P1L118) 
(HIRES P1L119) 
(HIRES P1L120) 
(HIRES PH 121> 
(HI RES P1 L 122) 
(HIRES PH123) 
(HIRES P1L124) 
(HIRES PH125) 
(HIRES P1L126) 
(HIRES P1L127> 
(HI RES P1 L 128) 
(HIRES P1L129) 
(HIRES P1L130) 
(HIRES P1L131) 
(HI RES PH 132) 
(HI RES PH 133) 
(HIRES PH134) 
(HIRES P1 L1 3 5) 
(HIRES P1L136) 
(HIRES P1L137) 
(HI RES P1 L138> 
(HIRES P1L139) 
<HIRES P1L140) 
(HIRES P1L141> 
(HIRES P1L142) 
(HIRES PH143) 
(HIRES P1L144) 
(HIRES P1L145) 
(HIRES P1L146) 
(HIRES P1L147J 
{HIRES P1L148) 
(HI RES P1 L149) 
(HIRES P1L150) 
(HIRES P1L151> 
(HIRES P1L152> 
(HIRES P1L153> 
(HI R E S PH 1 5 4 ) 
(HI R E S PH 1 55} 
(HI RES P1 L 156> 
(HIRES P1L157> 
(HIRES P1L158} 
(HIRES P1L159) 
(HI RES PH 160) 
(HIRES P1L161) 
(HIRES PH162> 
(HIRES P1l163) 
(HIRES P1L164) 
(HIRES P1L165) 
(HIRES P1L166) 
(HIRES P1L 167) 
(HIRES P1L168) 

(1.5144-13871) [S3B28-S362f] \HB\HI-RES GRAPHICS: PAGE 1- LIN£ .1118 
(16168-16207} [$3F28-S3f4f] \HB\HI-RES GRAPHICS: PAGE 1 - LINE .1119 
<9128-9167) CS23A8.S23CFl \HS\HI-RES GRAPHICS: PAGE 1- LINE 1120 
<10152-10191) [S27A8-S27Cf] \HS\HI-RES GRAPHJCS: PAGE 1- LINE #121 
(11176-11215) [S2BA8-S2BCF] \HB\HI-RES GRAPHICS: PAGE 1- LINE 1122 
<12200-12239) [S2FA8-S2FCFl \HB\Hl-RES GRAPHICS: PAGE 1 - LINE 1123 
<13224-13263} U33A8-S33Cf] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11124 
(14248-14287) [S37A8-S37Cf] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #125 
(15272-15311) [S3BA8-S3BCF] \HB\HI-RES GRAPHICS: PAGE 1- LINE 1126 
(16296-16335) [S3fA8-S3FCfl \HB\HI-RES GRAPHICS: PAGE 1- LINE 11127 
(8272'.8311) [S2050.S2077] \HB\HI-RES GRAPHICS: PAGE 1 - liNE 11128 
<9296.9335> [S2450-S2477l \HS\HI-RES GRAPHICS~ PAGE 1 - LINE 1129 
<10320-10359> U2850-S2877l \HB\HI•RES GRAPHICS: PAGE 1 - LINE 1130 
<11344-11383) [S2C50-S2C77] \HS\HI-RES GRAPHICS: PAGE 1 - LINE 1131 
(12368-12407) [$3050-$3077] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11132 
(13392.13431) (S3450-S3477] \HB\HI-RES GRAPHICS: PAGE 1 - liN£ 1133 
<14416-14455) ($3850-S3877l \HB\HI-RES GRAPHICS: PAGE 1 - LIN£ 1134 
(15440-15479). ($3C50-s3C77J \HS\HI-RES GRAPHICS: PAGE 1 - LINE #135 
(8400-8423> (S20DO.S20E7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1136 
(9424-9447> [S24DO-S24E7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #137 
(10448-10471> [S28DO-S28E7] \HB\HI-RES GRAPHICS: PAGE 1 - liNE #138 
(11472.11495> [$2Coo·szcE7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #139 
<12496-12519) (S30D0-S30E7] \HB\HI-RES GRAPHICS: PAGE 1- LINE 1140 
(13520-13543) (S34DO-S34E7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #141 
(14544-14567) [S38DO-S38E7] \HB\HI~RES GRAPHJCS: PAGE 1 - LINE 11142 
<15568.15591) [S3CD0-S3C£7l \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1143 
(8528-8575) [S2150-S217f] \HB\U-RES GRAPHICS: PAGE 1- LINE 1144 
(9552-9599) [S2550-S257Fl \HS\HI-RES GRAPHICS: PAGE 1 - LIN£ #145 
<10576-10623) [S2950-S297FJ \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1146 
<11600-11647> [S2D50.S207f] \HB\HI-RES GR~PHICS: PAGE 1- LINE 11147 
(12624-12671> [S3150-S317f] \HB\HI-RES GRAPHICS: PAGE 1 - liNE 11148 
<13648-13695) (S3550-S357f] \HB\HI~RES GRAPHICS: PAGE 1 - LINE 1149 
(14672-14719> [S3950-S397f] \HB\HI-RES GRAPHICS: PAGE 1 -LINE 1150 
(15696-15743) U3D50-.S307f] \HS\HI-RES GRAPHICS: PAGE 1- LINE 11151 
(8656-8695) [S21D0-S21f7J \HB\Hl-RES GRAPHICS: PAGE 1 -LINE 11.52 
(9680-9719) (S25DO.S25F7] \HB\HI-RES GRAPHICS: PAGE 1 -liNE 1153 
(10704-10743> (S29D0-S29F7J \HB\HI-RES GRAPHICS: PAGE 1- LINE #154 
(11728-11767) CS2DD0-S2Df7J \HB\HI-RES GRAPH.ICS: PAGE 1 - liN£ 1155 
(12752-12791) ($31DO-S31f7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1156 
<13776-13815) [S35oo·s35f7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1157 
(14800-14839) [S39DO-S39F7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 1158 
(15824-15863) [$3DDO-S3Df7l \HB\HI~RES GRAPHICS: PAGE 1 - liNE 1159 
(8784-8823) [S2250-S2277] \HS\H:l•RES GUPHICS: PAGE 1- LINE 1160 
(9808-9847> CS2650-S2677J \HB\HI-RES GRAPtUCS: PAGE 1 - LINE 1161 
(10832-10871) (S2A50-S2A77J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11162 
(11856-11895) [S2E50-S2E77] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 116.3 
(12880-12919) (S3250.S3277] \HS\HI-RES GRAPHICS: PAGE 1- LINE 1164 
(13904-13943) ($3650-$3677] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11165 
(14928-14967> ($3A50-S3A77] \H8\HI-RES GRAPHICS: PAGE 1 - LINE 1166 
(15952-15991) [S3E50-S3E77l \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11167 
(8912-8951> [S22DO-S22f7J \HB\Hl-RES GRAPHICS: PAGE 1- LINE 11168 ------ ... -----------------·--~--~----------------------------~~---------------------,_ __ .,. ____ ..,~------·------------·~--~--

(HIRES P1L118> -<HIRES P1L168} Prof. Luebbert's .. What's Where in the Apple .. ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNJ \USE-TYPE\- DESCRIPTION ------------------------------------------------------------------------------------------------------------ ~---------------
(HIRES P1L169) 
(HIRES P1L170> 
(HIRES P1L171) 
(HIRES P1L1 72> 
(HIRES P1L173> 
(HIRES P1L174) 
CHI RES PH 1 75) 
<HIRES P1L176> 
(HIRES P1L177) 
(HIRES P1L178> 
(HI RES P1L 1 79) 
(HIRES P1L180) 
(HIRES P1L181> 
(HIRES P1L182) 
{HIRES P1L183) 
{HIRES P1L184) 
(HI RES P1 L 1 8 5) 
(HIRES P1L186) 
(HIRES P1L187> 
(HIRES P1L188) 
(HIRES P1L189) 
(HIRES P1L190) 
(HIRES P1L191> 
(HI RES P1 LBO> 
CHI RES P2L000) 
(HIRES P2L001) 
(HIRES P2L002) 
(HIRES P2L003) 
(HIRES P2L004> 
(HIRES P2L005> 
(HIRES P2L :J 0 6) 
CHI RES P2L007J 
(HIRES P2L:J08> 
<HIRES P2L009) 
{HIRES P2L010) 
(HIRES P2L011) 
CHI RES P2LJ12> 
(HIRES P2L013> 
(HIRES P2L014) 
(HIRES P2LD15> 
(HI RES P2LJ16) 
(HIRES P2L017) 
(HIRES P2L018) 
(HIRES P2L019) 
(HIRES P2L020> 
<HIRES P2L021) 
(HIRES P2L022) 
(HI R E S P2L 0 2 3 ) 
(HIRES P2L024) 
(HIRES P2L025> 
(HI RES P2 L ::12 6 ) 

(9936-9975) [$26DO.S26F7J \HB\HI-RES GRAPHICS: PAGE 1 -LINE 11169 
(10960-10999) [$2ADO.S2AF7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11170 
<11984-12023) ($2EDO.S2EF7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #171 
(13008-13047) [$32DO.S32f7J \HB\Hl-RES GRAPl-ilCS: PAGE 1- LINE #172 
(1403z-14071> [$36DO.S36F7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #173 
(15056-15095> ($3AD::l.S3AF7J \HB\HI-RES GRAPHICS: PAGE 1 - liNE 11174 
(16080-16119) [$3ED0.$3EF7J \HB\Hl-RES GRAPHICS: PAGE 1- LINE #175 
<9040.9087) [S2350-S237FJ \HB\H.I-RES GRAPHICS: PAGE 1 -LINE #176 
(10064-10111> [$2750.S277FJ \HB\HI-RES GRAPHICS: PAGE 1- LINE #177 
(11088-11135> [S2B50-$287FJ \HB\HI-RES GRAPH1CS: PAGE 1 - LINE #178 
<12112-12159) ($4i!f50.$2f7FJ \HB\HI-RES GRAPHICS: PAGE 1- LINE #179 
(13136-13183} [$3350-S337f] \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11180 
<14160-14207> [$3750-S377FJ \HB\HI-RES GRAPHICS: PAGE 1- LINE 11181 
<15184-15231> ($3850-S387FJ \HB\HI-RES GRAPHICS: PAGE 1- LINE #182 
<16208-16255} [S3F50-S3f7F] \HB\Hl-RES GRAPHICS: PAGE 1 - LINE #183 
(9168.9207) ($23D0.$23F7] \HB\HI-RES GRAPH.ICS: PAGE 1 -LINE #184 
(10192-18423> [$27DO-S47F7J \HB\HI-RES GRAPHICS: PAGE 1- LINE #185 
(11216-11255) [$2BD0-$28F7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11186 
( 12240-12279) (S2f00-S2FF7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #187 
(13264-13303> ($33o0-S33f7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE #188 
(14288-14327) [$37DJ-$37f7J \HS\HI-RES GRAPHICS: PAGE 1- liNE #189 
(1531z-15351> ($3B00-$38F7] \HB\HI-RES GRAPHICS: PAGE 1 - LINE #190 
(16336-16375) (S3FD0-$3FF7J \HB\HI-RES GRAPHICS: PAGE 1 - LINE 11191 

<8488-8527) ($2128-$214FJ \H9\HI-RES GRAPHICS: PAGE 1- LINE #80 
(16384-164231 ($4000-S4027J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #000 
<17408-17447) [$4400.$4427] \HB\HI-RES GRAPHICS: PAGE 2- LINE #001 
(18432-18471> [.$48::l0-S4827J \HB\Hl-RES GRAPHICS: PAGE 2- LINE #002 
(19456-19495) ($4C00-S4C27J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #003 
(20480-20519) [$5000-$5027] \HB\HI-RES GRAPH.ICS: PAGE 2- LINE #004 
(21504-21543) ($5400-$5427] \HB\Hl-RES GRAPHICS: PAGE 2- LINE #005 
<22528-22567> ($58:JO-S5827J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #006 
<23552-23591) ($5C00-$5C27] \H8\HI-RES GRAPHICS: PAGE 2 - LINE 11007 
(16512-16551> ($408::l-S40A7J \HB\HI-RES GRAPH.ICS: PAGE 2 - LINE #008 
(17536-17575> [$4480-S44A7J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #009 
(18560-18599) (S4880-S48A7] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #010 
(19584-19623> [$4C8::l-S4CA7J \H8\HI-RES GRAPHICS: PAGE 2- LINE #011 
<20608-20647) ($508J-S50A7J \HB\HI-RES GRAPHICS: PAGE 2- LINE #012 
(21632-21671) ($5480-S54A7] \HB\H.l-RES GRAPHICS: PAGE 2 - LINE #013 
(22656-22695) (S5880-S58A7J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #014 
<23680-23719} [S5C80-S5CA7J \HB\H.l-RES GRAPHICS: PAGE 2- LINE #015 
(16640-16679) [$4100-$4127] \HB\Hl-RES GRAPH.ICS: PAGE 2- LINE 11016 
(17664-17703> [$4500-S4527J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #017 
<18688-18727) ($49DJ-S4927J \HB\HI-RES GRAPHICS: PAGE 2- LINE #018 
(1971z-19751) [$4D00-$4D27J \HB\HI-RES GRAPHICS: PAGE 2- LINE #019 
(20736-20775) [$5100-$5127) \HB\HI-RES GRAPHICS: PAGE 2 - LINE #020 
<21760-21799) ($5500-$5527] \HB\HI-RES GRAPH.ICS: PAGE 2 - LINE #021 
<22784-22823) ($5900-S5'927J \HB\Hl-RES GRAPHHS: PAGE 2 - LINE #022 
<23808-23847) [S5DOO-S5D27J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #023 
<16768-16807} [$4180-S41A7] \HB\Hl~RES GRAPHICS: PAGE 2 - LINE #024 
<17792-17831> ($4580-S45A7J \HB\HI-RES GRAPHICS: PAGE 2- LINE #025 
(18816-18855) [$4980-$49A7J \HB\HI-RES GRAPHHS: PAGE 2- LINE #026 

----------·--------------------------~----------------------------------~------------~------------------------~----------
<HIRES P1L169) - (HIRES P2L026) Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC l OC N) [HEX LOC~l \USE-TYPE\ - DESCRIPTION 
---------------------------·.-----~-----.p-..,..----·---------------------..------~-- ........ ·----~ . ..--..-----..-.--.-------~-·~·- .. ._... .... 
(HIRES P2L027> (19840-19819) [S4D80-S4DA7l \HB\HI~RES GRAPHICS: PAGE 2 - LINE #027 
(HIRES P2L028> <20864-20903) [S5180-S51A7]. \HB\HI-RES GRAPHICS: PAGE 2 - LINE #028 
(HIRES P2L029) <21888-21927) [$5580-S55A7l \HB\HI-RES GRAPHICS: PAGE 2 - LINE #029 
(HIRES P2L030> <22912-22951) ($598J-S59A7] \HB\HI-RES GRAPHICS: PAGE 2- LINE #030 
(HI RES P2L031) (23936-23975> (S5D80-S5DA7l \HB\Hl-RES GRAPHICS: PAGE 2- LINE #031 
(HIRES P2L032> (16896-16935) [$4200.$4227] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #032 
(HIRES P2L033) (17920-17959> [$4600.$4627] \HB\HI~RES GRAPHICS: PAGE 2 - LINE #033 
(HIRES P2LJ34> <18944-18983> [$4AJ0-S4A27J \HB\HI-RES GRAPHICS: PAGE 2- LINE #034 
(HIRES P2L035) <19968-20007> [S4EOO-S4E27l \HB\HI-RES GRAPHICS; PAGE 2 - LINE #035 
(HIRES P2L036) <20992-21031) (S520J-S5227] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #036 
(HIRES P2L037> <22016-22055) ($5600-$5627] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1037 
(HIRES P2L038> <23040-23079> U5A00-S5A27J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #038 
(HIRES P2L039) <24064-24103) [S5EOO-S5E27] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #039 
(HIRES P2L040) (17024-17063) ($4280.S42A7l \HB\HI•RES GRAPHICS: PAGE 2- LINE #040 
(HIRES P2L041) (18048-18087> (S4680-S46A7J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #041 
(HIRES P2L042) (19072-19111) (S4A80-S4AA7J \HB\HI-RES GRAPHICS: PAGE 2- LINE #042 
CHI RES P2L043) <20096-20135) ($4E80-S4EA7l \HB\HI•RES GRAPHICS: PAGE 2 - Ll NE #043 
(HIRES P2L044> (21120-21159) ($5280-S52A7l \HB\HI-RES GRAPHICS: PAGE 2- LINE #044 
(HIRES P2L045) (21248-21287) ($5300-$5327) \HB\HI-RES GRAPHICS: PAGE 2 - LI~E #045 
(HIRES P2L045> (22144-22183) [$5680-S56A7] \HB\HJ-RES GRAPHICS: PAGE 2 - LINE #045 
(HIRES P2L046> ( 231 68-2 320 7) ($5A80-S5AA7l \HB\HI-·RES GRAPHICS: PAGE 2 - LINE #046 
(HIRES P2L047) (24192-24231) ($5E80-S5EA7] \HB\HI-RES GRAPHICS: PAGE 2- LINE #047 
(HIRES P2L048l <17152-17191) ($4300-$4327] \HB\HI-RES GRAPHICS: PAGE 2- LINE #048 
CHIRES P2LJ49) < 181 76-1821 5> ($4700-$4727] \HB\HI-RES GRAPHICS; PAGE 2 - LINE #049 
(HIRES P2L050) (19200 .• 19239) (S4800-S4B27l \HB\HI-RES GRAPHICS: PAGE 2 - LINE #050 
{HIRES P2L051) <20224-20263) {S4f00-S4f27J \HB\HI-RES GRAPHICS: PAGE 2 - LINE #051 
(HIRES P2L053> <22272-22311) ($5700-$5727] \HB\HI-RES GRAPHICS: PAGE 2- LINE #053 
<H.IRES P2LJ54) <23296-23335} CS5BOO-S5827l \HB\HI-RES GRAPHICS: PAGE 2 - LINE #054 
(HIRES P2L055) (24320-24359> (S5f00-S5F27J \HB\HI-RES GRAPHICS: PAGE 2 - LIN£ #055 
(HI RES P2L056) (17280-17319) (S4380-S43A7] \HB\HI-RES GRAPHlCS: PAGE 2- LINE #056 
(HI RES P2L057) ( 183 04-1834 3) U4780-S47A7] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1057 
011 RES P2L058) < 19328-1936 7> ($4880- S4BA 7l \HB\Hl-RES GRAPHICS: PAGE 2 - LINE #058 
(HI RES P2L059) <20352-20391) (S4F80-S4FA7] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1059 
(HIRES P2L060) <213 76-21415> CS5380-S53A 7l \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1060 
(HIRES P2L061) <22400-22439> U5780-S57A7l \HB\HI-RES GRAPHICS: PAGE 2 - LINE #061 
(HIRES P2L062) <23424-23463) U5B80-S5BA7l \HB\HI-RES GRAPHICS: PAGE 2 - LINE #062 
(HI RES P2L063) <24448-24487> [S5FSO-S5FA7l \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1063 
(HIRES P2L064) ( 16424 -16463) ($4028-S404fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE #064 
(HIRES P2L065} (17448-17487> [S4428-S444f] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1065 
(HIRES P2L066) C1847z-18511> [S4"828-S484Fl \HB\HI-RES GRAPHICS: PAGE 2- LINE #066 
CHI RES P2L06 7) ( 194 96-1953 5) (S4C28-S4C4Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1067 
(HIRES P2L068) <20520-20559> (S5028-S504fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE .#068 
CHI RES P2L069) (21544-21583) (S5428-S544Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1069 
(HIRES P2L070> <22568-22607> (S5828-S584f] \HB\Hl-RES 6RAPH1CS: PAGE 2 - LINE 1070 
(HIRES P2L071> <23592-23631} CS5C28-SSC4fl \HB\HI-RES GRAPH.ICS: PAGE 2 - LINE #071 
(HIRES P2L072> (16552-16591} (S40A8-S40Cfl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1072 
(HIRES P2L073> <17576-17615) ($44~8-S44Cf] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1073 
(HIRES P2L074) <18600-18639) ($48A8-S48CF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1074 
(HI RES P2L075> <19624 -19663) U4CA8-S4CCF) \HB\HI-RES GRAPHICS: PAGE 2 - LUIE #07S 
(HIRES P2L076) <20648-20687) (S50A8-S50CF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1076 
(HIRES P2L077) <21672-21711) (S54A8-S54Cf] \HB\HI•RES GRAPHICS: PAGE 2- LINE 1077 

----------------~-------------------~---~------------~-----·--------·-·~-----------~-------··-~--~------~-------~----
<HIRES P2L027> - (HIRES P2L077) Prof. Luebbert's "What's Where in the Apple" ALPHABETl CAL GAZeTTEER 



NAME <DEC LOC N) [HEX LOCN] \USE-TYPE\ - DESCRIPTION 

--·---------------------------------------------------------------------------------------------------------------------
(HIRES P2L078> <22696-22735) [S58A8-S58Cf] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1078 
CHIRES P2L079) (23720-23759) [S5CA8.S5CCF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1079 
(HIRES P2L080) (16680-16719) [S4128.S414F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1080 
(HIRES P2L081 > ( 17704-1774 3> [S452!.S454F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1081 
(HIRES P2L082) (18728-18767) [S4928.S494F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1082 
(HIRES P2L083) (19752-19791) [S4D28-S404F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1083 
(HIRES P2L084 > (20776-20815) [S5128.S514F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1084 
(HIRES P2L085> ( 21800-2183 9) [S552!.S554F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1085 
(HIRES P2L086> (22824.22863) [S5928.S594F] \HB\HI•RES GRAPHICS: PAGE 2 - LINE 1086 
(HIRES P2L087> <23848.23887> [S5D28.S504F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1087 
(HI RES P2LJ88> (16808-16847) [S41A8.S41CF] \HB\HI·RES GRAPHICS: PAGE 2 • LINE 1088 
(HIRES P2L089> (17832-17871) [S45A8.S45CF] \HB\HI-RES GRAPHICS: PAGE 2 - Ll NE 1089 
(HIRES P2L090) <18856.18895) [S49A8.S49CF] \H8\HI-RES GRAPHICS: PAGE 2 - LINE 1090 
(HIRES P2L091) (19880-19919) [S4DA8-S4DCF] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1091 
CHI RES P2LJ92) <20904-20943) [S51A8.S51CFl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1092 
(HIRES P2L::I93> <21928-21967) [S55A8-S55Cf] \HB\HI•RES GRAPHICS: PAGE 2- LINE 1093 
(HIRES P2L094 > C2295z-22991> [S59A!.S59Cfl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1094 
(HIRES P2L095) ( 23976-2401 5) [S5DA8.S5DCFl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1095 
(HIRES P2L096) (16936.16975) [S4228.S424Fl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1096 
(HIRES P2L098> (18984~19023> [S4A28.S4A4f] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #098 
(HIRES P2LJ99) ( 20008 •2004 7) [S4E2 8 • S4 E4 Fl \HB \HI-RES GRAPHICS: PAGE 2 - LINE 1099 
(HIRES P2L100) <21032-21071> U5228.S524Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1100 
(HIRES P2L101) <22056-22095) [S5628-S564Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1101 
(HIRES P2L102> ( 23080-2311 9) [S5A28.S5A4Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1102 
(HIRES P2L103> ( 241 04-2414 3> [S5E28-S5E4F] \HB\HI-RES GRAPHICS: PAGE 2- LINE #103 
(HIRES P2L104) ( 17064-1 7103> [S42A8-S42CF] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1104 
(HIRES P2L105) <18088.18127) [S46A8.S46CF] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1105 
(HIRES P2L1 06> (19112-19151> [S4AA8.S4ACF] \HB\HI·RES GRAPHICS: PAGE 2- LINE 1106 
(HIRES P2L107> <20136-20175> [S4EA8-S4ECF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1107 
(HIRES P2L108> <21160-21199) [S52A!.S52CFl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1108 
(HIRES P2L109) < 221 84 ·2222 3> [S56A8-S56CF) \H8\HI-RES GRAPHICS: PAGE 2 - LINE 11J9 
(HIRES P2L110) <23208-23247) U5AA8.S5ACF] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1110 
(HIRES P2L111> <24232-24271> U5EA8.S5ECFl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1111 
(HIRES P2L112> (17192.17231) U4328.S434Fl \HB\HI-RES' GRAPHICS: PAGE 2 - LINE # 1 1 2 
(HI RES P2L113> <18216-18255> [S47Z8-S474F] \Hb\HI-RES GRAPHICS: PAGE 2- LINE 1113 
(HIRES P2 L 1 1 4) (19240.22063) U4B28.S562Fl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1114 
(HIRES P2L115) <20264-20303> [S4F28-S4F4F] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1115 
(HIRES P2L116) ( 212 88 -21327> [S5328-S534Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1116 
(HIRES P2L117) <22312.22351) [S5728.S574Fl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1117 
(HIRES P2L118> <23336.22063) [S5828.S562Fl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1118 
(HIRES P2L119) <24360..,24399) [S5F28.S5F4Fl \HB\HI-RES GRAPHICS: PAGE 2- LINE 1119 
(HIRES P2L120> (17320-17359) [S43A8.S43CF] \HB\HI-RES GRAPHICS: PAGE 2- LINE #120 
(HIRES P2L 121> (18344.18383> U47A8-S47Cf] \HB\HI-RES GRAPHICS: PAGE 2- LINE 1121 
(HIRES P2L122> ( 19368.19407> [S4BA8.S4BCFl \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1122 
(HIRES P2L123) <20392-20431> [S4FA8.S4FCF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #123 
(HIRES P2L124) <21416-21455) [S53A8.S53CF] \HB\HI-RES GRAPHICS: PAGE 2- LINE #124 
(HIRES P2L125> <22440.22479) [S57A8.S57CF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1125 
(HIRES P2L126) <23464-23503> [S5BA8.S5BCFl \HB\HI·RES GRAPHICS: PAGE 2 • LINE #126 
(HIRES P2L127> <24488.24527> [S5FA8.S5FCF] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1127 
(HIRES P2L1 28 > <16464.16503> [S4050.S4077] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1128 
(HIRES P2L129) (17488-17527> [Sio450-S4477] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1129 

------------------------------------------------------------------------------------------------------------------------
(HIRES P2LJ78) - (HIRES P 2L1 29) Prof. Lu•bbert•s ''What's Wher• in the Appl•'' ALPHABETI<AL GAZ£T~EER 



NAME <DEC LOCN) [HEX LOCN] \USE-TYPE\- DESCRIPTION 

--------------------------------------------------------------------------------------------·----------------------.-~-
(HIRES P2L130) 
(HI RES P2L 131) 
(lURES P2L132> 
(HIRES P2L133) 
(HIRES P2L134) 
(HIRES P2L135) 
<HIRES P2L136) 
(HUES P2L 137> 
CHI RES P2L 138) 
(HIRES P2L139) 
(HIRES P2L140> 
(HIRES P2L141> 
(HIRES P2L142) 
(HIRES P2L143) 
(HIRES P2L144) 
(HI RES P2L 14 5) 
(HIRES P2L146) 
(HIRES P2L147) 
(HIRES P2L148) 
(HIRES P2L149) 
(HIRES P2L150) 
(HIRES P2L151> 
(HIRES P2L152) 
(HIRES P2L153> 
(HIRES P2L154> 
(HIRES P2L155) 
CHI RES P2L 1 56) 
(HIRES P2L157> 
(HIRES P2L158) 
(HIRES P2L159) 
(HIRES P2L160) 
(HIRES P2L 161> 
(HIRES P2 L 1 6 2) 
(HIRES P2L163) 
(HIRES P2L164) 
(HIRES P2L165) 
(HIRES P2L166) 
(HIRES P2L167> 
(HIRES P2L168) 
(HIRES P2L169) 
(HIRES P2L170) 
<HI RES P2L 171> 
(HI RES P2L 172) 
(HIRES P2L173) 
(HIRES P2L174> 
(HIRES P2L175> 
(HlRE1S P2L176) 
(HIRES P2L177) 
(HIRES P2L178> 
(HIRES P2L179> 
(HIRES P2L180> 

(18512.18551) [S4850.S4877l \HB\HI•RES GRAPHICS: PAGE 2 - LINE 1130 
<19536.19575) [S4C50.S4C77l \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1131 
<20560-20599) [S5050.S5077l \HB\HI•RES GRAPHICS: PAGE 2 - LINE 1132 
<21584.21623) [S5450.S5477l \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1133 
<22608-22647) [S5850.S5877] \HB\Hl-RES GRAPHICS: PAGE 2 - LINE 1134 
(23632.23671) [S5C50.S5C77] \HB\Hl•RES GRAPHICS: PAGE 2 - LINE 1135 
(16592.16615) [S40D~-S40E7l \HB\Hl•RES GRAPHICS: PAGE 2 • LINE 1136 
<17616-17639) [S44DO.S44E7l \HB\Hl-RES GRAPHICS: PAGE 2 - LINE 1137 
(18640-18663) CS48DO.S48E7l \HB\Hl-RES GRAPHICS: PAGE 2 - LINE 1138 
(19664-19687) [S4CDO.S4CE7J \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1139 
<20688.20711) CS50DO.S50E7l \HB\HI·RES GRA,HICS: PAGE 2- LINE 1140 
<21712-21735) CS54DO.S54E7] \HB\HI•RES GRAPHICS: PAGE 2 • LINE 1141 
(22736.22759) CS58DO.S58E7l \HB\HI•RES GRAPHICS: PAGE 2- LINE 1142 
<23760.23783) [S5CDO.S5CE7] \HB\Hl•RES GRAPHICS: PAGE 2 - LINE 1143 
(16720.16767> [S4150.S417Fl \HB\HI•RES GRAPHICS: PAGE 2 • LINE 1144 
(17744-17791) [S4550.S457Fl \HB\HI-RES GRAPHICS: PAGE 2 - LINE M1H 
(18768.18815) [S4950.S497F] \HB\Hl•RES GRAPHICS: PAGE 2- LINE 1146 
(19792.19839) [S4D5~·S4D7Fl \HB\Hl·RES GRAPHICS: PAGE 2 - LINE 1147 
<20816-20863) [S515J.S517Fl \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1148 
(21840.21887) CS5i50.S557FJ \HB\HI-RES GRAPHICS: PAGE 2 ·LINE 1149 
<22864.22911> [S595J.S597Fl \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1150 
(23888.23935> CS5D50.S507Fl \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1151 
(16848-16887> [S41D0.S41F7J \HB\HI•RES GRAPHICS: PAGE 2- LINE 1152 
C1787z-17911> [S45DO.S45F7J \HB\HI-RES GRAPHICS: PAGE 2 ·LINE 1153 
(18896-18935) [S49DO.S49F7] \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1154 
(19920.19959) [S4DDO.S4DF7] \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1155 
(20944.20983) [S51DJ.S51F7J \HB\Hl•RES GRAPHICS: PAGE 2 • LINE 1156 
<21968 .• 22007> [S55DO.S55F7J \HB\HI-RES GRAPHICS: PAGE 2- LINE 1157 
(22992-23031) [S59DO.S59F7] \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1158 
(24016.24055> [S5DD0.S5DF7J \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1159 
( 16976.17015> [S4250-S4277l \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1160 
<18000-18039> [S4650.S4677] \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1161 
<19024-19063> [S4A50.S4A77J \HB\HI-RES GRAPHICS: PAGE 2 - LINE 1162 
<20048-20087> [S4E50.S4E77) \HB\HI·RES GRAPHICS: PAGE 2 - LINE 1163 
C2107z-21111> CS5250.S5277) \HB\HI•RES GRAPHICS: PAGE 2 • LINE 1164 
(22096.22135) [S5650.S5677) \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1165 
(2}120-23159) [S5A5).S5A77J \HB\HI·RES GRAPHICS: PAGE 2 • LINE 1166 
<24144.24183) CS5E50.S5E77l \HB\NI·RES GRAPHICS: PAGE 2 • LINE 1167 
(17104.17143) [S42D).S42F7] \HB\HI-RES GRAPHICS: PAGE 2 ·LINE 1168 
(18128-18167> [S46DO.S46F7J \HB\HI-RES GRAPHICS: PAGE 2- LINE 1169 
(19152.19191> [S4ADO.S4AF7l \HB\HI·RES GRAPHJCS: PAGE 2 ·LINE 1170 
<20176.20215> [S4ED).S4EF7J \HB\HI·RES GRAPHICS: PAGE 2- LINE 1171 
<21200-21239) [S52DO.S52F7] \HB\HI·RES GRAPHICS: PAGE 2- LINE 1172 
(22224-22263) [S56DO.S56F7J \HB\HI·RES GRAPHICS: PAGE 2 ·LINE 1173 
(23248.23287> [S5ADO.S5AF7l \HB\HI·RES GRAPHICS: PAGE 2 • LINE 1174 
<24272-24311> (S5EDO.S5EF7l \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1175 
<1723z-17279) [S435J.S437Fl \HB\HJ•RES GRAPHICS: PAGE 2 • LINE 1176 
<18256-18303) [S4750.S477Fl \HB\HI·RES GRAPHICS: PAGE 2 • LINE 1177 
<19280-19327> [S4850-S487F] \HB\HI-RES GRAPHICS: PAGE 2 • LINE 1178 
<20304.20351> [S4F50.S4F7Fl \HB\HI·RES GRAPHICS: PAGE 2 - LINE 1179 
(21328.21375) [S5350.S537Fl \HB\HI·RES GRAPHICS: PAGE 2 • LINE 1180 

------------------------------------------------------------------------------------------------------------------------
(HIRES P2L130) - (HIRES P2L180) Prof. Luebbert's "What's Where 1n the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCI'O \USE-TYPE\ -DESCRIPTION 

(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
(HIRES 
HIS C R 
HLU 

HLINE 

Hll NE1 

-Hll N
HMASK 
HNDLERR 

HNDLERR 

HNDX 

HOME 

HPAG 

HPAG 

HPAG 
HPLOT 

HPOSN 

P2L181> <223Sz-22399) (S5750.S577FJ \HB\Hl·RES GRAPHICS: PAGE 2- LINE #181 
P2L182) <23376-23423> (S5B50.S5B7f) \HB\HI-RES GRAPHICS: PAGE 2- LINE #182 
P2L183) (24400-24447) (SSF50-S5f7FJ \HB\HI-RES GRAPHICS: PAGE 2- LINE #183 
P2L184) (17360-17399> (S43D::l.S43f7J \HB\HI-RES GRAPHICS: PAGE 2- LINE #184 
P2L185) <18384-18423> (S47D0-S47F7] \HB\HI-RES GRAPHICS: PAGE 2- LINE #185 
P2L186> (19408-19447) (S4BD0-S4BF7] \HB\Hl-RES GRAPHICS: PAGE 2- LINE #186 
P2L187) <20432-20471) (S4FD0-S4FF7J \HB\HI-RES GRAPHICS: PAGE 2- LINE #187 
P2L188) <21456-21495) (S53DO.S53F7l \HB\HI-RES GRAPHICS: PAGE 2- LINE #188 
P2L189) <22480-22519> (S57D0-S57F7] \HB\HI-RES GRAPHICS: PAGE 2- LINE 11189 
P2L190) (23504-23543) (S58D0-S5BF7l \HB\HI-RES GRAPHICS: PAGE 2- LINE #190 
P2L191> <24528-24567> (S5FD0-S5FF7l \HB\HI-RES GRAPHICS: PAGE 2- LINE #191 
P2L97) (17960-17999) (S4628-S464F] \HB\HI-RES GRAPHICS: PAGE 2 - LINE #97 

(·16299) (SC055] \H1 \ POKE TO 0 TO DISPLAY PAGE 2 (DOES NOT CLEAR SCREE'l) 
(·2768) [SF530l \SE\ APPLESOFT HI-RES HORIZ LINE DRAWING fROM LAST POINT PLOTTED TOX·COORD:: 

(·2023> [SF819J \SE\ 

< - 2 0 2 0 > ( Sf 8 1 C l \ S E \ 

<-4432> [SEEBOJ \SE \ 
< 4 8 > [SO 03 OJ \ P 1\ 

<15913> [S3E29J \SL\ 

X-REGCMSB>&A-REGCLSB>:Y-COORD=Y-REG 
LO-RES SIR TO DRAW HORIZONTAL LINE AT Y-COORD = (A-REG) WITH X-COORD$ FROM 
(A-REG) THRU (H2>CS002C> (A- Y-REGS ALTERED} 
LO-RES SIR. DRAW HORZ LINE AT Y-COORD ESTAB BY GBASL.H & MASK. X-CORDS FROM 
<Y-REG) THRU CS002C> (A- Y-REGS ALTERED) 
INTEGER BASIC ENTRY POINT TO DRAW A LO-RES HORIZONTAL LINE 
HI-RES GRAPHICS ON-THE-FLY BIT MASK 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LA3EL AT START OF ERROR 
HAND L1 NG MODULE 

(-16824--16816> [SBE48-SBE50J DOS 3.3- SET CARRY: STORE A-REG IN lOB AS RETURN CODE. TURN Off MOTOR. RETURN 

(805) [$0325] \P1\ 

(- 9 3 6 > (S FC 58 l \ Sf \ 

( 2 3 0 > ( SO 0 E 6 J \ P 1\ 

(806) ($0326] \P1\ 

(806) [SO 326] \P 1\ 
<-2989> [SF453J \SE\ 

(-3059) [SF40DJ \SE\ 

TO CALLER 
HI-RES ON-THE-FLY BYTE INDEX FROM BASE ADDRESS TO CURRENT PLOT BYTE (FUNCTION 
Of C OORENT X-COORD) 
CLEAR SCROLL WINDOW TO BLANKS. SET CURSOR TO TOP LEFT CORNER (A- Y-REGS 
ALTERED} 
HI-RES PAGE TO PLOT ON REGARDLESS Of WHICH PAGE BEING DISPLAYED - S20 FOR PG1: 
S40 FOR PG2 
HI-ORDER BYTE OF START ADDR OF CURRENT HI-RES DISPLAY HEM PG (POKE 32 FOR 
HI-RES PG1 - 64 FOR PG2) 
HI-RES GRAPHICS MEM PAGE fOR PLOTTING GRAPHICS S20 fOR PG1 ·s40 fOR PG2 
APPLESOFT HI-RES - CAll HPOSN THEN PlOT DOT THERE. NO DOT MAY BE PLOTTED IS 
PLOTTING NON-WHITE AT COMPLEMENTARY COLOR X COORD 
APPLESOFT HI-RES- POSN HI-RES CURSOR W/0 PLOTTING. HPAG DETERMINES WHICH 
PAGE; HORIZ = Y-REG(MSB>&X-REG(lSB)iVERT= A-REG 

(1.10 HOOK TBLS) (54-57> [$0036-$0039] \PB\MONITOR OUTPUT & INPUT HOOKS (VECTORS TO DOS OUTPUT & INPUT ROUTINES) 
MONITOR MEMORY LOCATION 'lEVEN' lEVEN <-1893) [Sf89BJ 

-IF/THEN- (-6104) [SE828J \SE\ INTEGER BASIC ENTRY TO If/THEN ROUTINE 
IFSKIP <212) (S00D4J \P1\ INTEGER BASIC MEMORY LOCATION 'IfSKIP' (If\THEN fAIL fLAG) 
ILEAV (-16456--16441> ($BFB8-SBFC7] DOS 3.3 - SECTOR TRANSLATE TABLE. SECTOR INTERLEAVING DONE WITH SOFTWARE 

PRINT "ILLEGAL DIRECT" THEN HALT AT APPLESOFT (]) LEVEL (ILLDIRPRT> (-7413) [SE30BJ \SE\ 
(ILLEGAL QTY PRJ) <-7783) [Sj;199J 
-IN#S- <-3046> (SF41AJ \SE\ 
IN <512> [S0200J 
I NC H R (- 1 0 9 2 5) ( S D 5 53 ] \ S E \ 

INDEX 
I NIT 

(94-95> (S005CS005FJ \P2\ 
<-1233) [SFB2FJ \SE\ 

\SE\ APPLESOFT -PRINT "ILLEGAL QUANTITY" AND HALT AT APPLESOFT LEVEL (]) 
INTEGER BASIC ENTRY TO ROUTINE TO SET INPUT PORT 
MONITOR & MINIASSEMBLER MEMORY LOCATION 'IN' 
APPLESOfT - GET ONE CHAR fROM CURRENT INPUT DEVICE IN A-REG & MASK Of MSB. 
USES MAIN APPLE INPUT ROUTINES & SUPPORTS HANDSHAKING 
APPLESOFT TEMPORARY (STACK) POINTER fOR MOVING STRINGS 
MONITOR SIR- SCREEN INITIALIZATION (RESET TEXT MODE) 

----------------------------------------------------------------------~------------~-----------------------------------
(HIRES P2L181) - INIT Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME CDEC LOCN> [HEX LOCNJ \USE-TYPE\ -DESCRIPTION 

INITAN C-1425) (SFA6FJ 
INITBL <-1263> [SFB11) 
CINITFACMANT> C-5056) [SEC40J \SE\ 

I NLI N C-10964> [SD52CJ \SE\ 

I NLI N+2 C-10962> [SD52EJ \SE\ 

AUTOSTART MONITOR MEMORY LOCATION 'INITAN' 
MONITOR MEMORY LOCATION 'INITBL' 
APPLESOFT FP -INITIALIZED MANTISSA OF FAC CEXCEPT EXTENSION BYTE> TO VALUE IN 
A-REGISTER 
APPLESOfT - INPUT LINE OF TEXT FROM CURRENT INPUT DEVICE INTO INPUT BUFFER 
CBUF) & FALL INTO GDBUFS. NO PROMPT! 
APPLESOFT- INPUT LINE OF TEXT FROM CURRENT INPUT DEVICE INTO INPUT BUFFER 
CBUF) & FALL INTO GDBUFS. CHAR IN X-REG USED AS PR:>MPT 

CINP SOURCE PTR> (127-128> [S007F-S0080J \P2\APPLESOFT- PTR TO CURRENT SOURCE OF INPUT. S201 DURING INPUT STATEMENT 

INPORT C-373} (SFE8BJ 
INPRT C-4839) [SED19J \SE\ 
INPRT C-371} [SFE8DJ 
·rNPUTSTR. C-7823> [SE171J \SE\ 
•INPUT- C-5206} [SEBAAJ \SE\ 
INSDS1 C-1918> [SF882J 
1NSDS2 C-1906} [SF88EJ 
INSTDSP C-1840> [SF8DOJ 
INSTDSP C-640) [SFD80J 
INT CFPINT> C-5085} [SEC23J \SE\ 

CINT=>FP} 

I NT 0 IT 
I NV FLG 
I OBPL -H 

C-8471> [SDEE9] \SE\ 

(16198} [S3F46) \SL \ 
CSO> [S0032J \P1\ 

<72-73> (S0048-S0049J \P2\ 

IF STANDARD BUFFER IN USE 
MONITOR MEMORY LOCATION 1 INPORT' 
APPLESOFT - PRINT 'IN' & CURRENT LINE II FROM CURLI~. USES LPRINT 
MONITOR MEMORY LOCATION 'INPRT' 
INTEGER BASIC ENTRY POINT TO 'INPUT A STRING' ROUTINE 
INTEGER BASIC ENTRY TO INPUT ROUTINE 
MONITOR MEMORY LOCATION 1 1NSDS1' 
MONITOR SIR- DISASSEMBLER ENTRY 
MONITOR & MINIASSEMBLER MEMORY LOCATION 'INSTDSP' (INSTRUCTION DISPLAY) 
MONITOR SIR TO DISASSEMBLE INSTRUCTION AT PCHIPCL (A- X- Y-REGS ALTERED} 
APPLESOFT FP- COMPUTES GREATES INT (FPINT>EGER VALUE OF FAC. MODIFIES CHARAC 
CSOOOD>. USES QINT CFPINT>. RESULT TO FAC. ~ODIFIES CHARAC CSOOOD> 
APPLESOFT - PULL INTEGER CX> VARIABLE POINTED TO BY FACMO.FACLO CS00AO-SOOA1) 
INTO A-REG & Y-REG AND CONVERT TO FP IN FAC. RESEJS VALTYP (RESETS Y-REG TO Q} 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'INTOIT' 
VIDEO FORMAT CONTROL: 255CSFF)aNORMAL;127CS7F>=FLASHING;63CS3F>=INVERSE 
DOS REAO-WRI TE-TRACK-SEC TOR CRWTS) 'IOBPL -H 1 (INPUT-OUTPUT CONTROL BLOCK 
POINTER) 

IOPRT C-357> [SFE9BJ MONITOR MEMORY LOCATION 'IOPRT' 
IOPRT1 C-345) [SFEA7J MONITOR MEMORY LOCATION 'IOPRT1 1 

IOPRT2 C-343> [SFEA9J MONITOR MEMORY LOCATION 'IOPRT2' 
IORTS C-168) [SFF58J JSR HERE TO FINO OUT WHERE ONE IS. SETS OVERFLOW FLAG 
IRQ C-1472) (SFA40) \SE\ AUTOSTART ROM MONITOR SIR- IRQ HANDLER 
IRQ C-1402) (SFA86) \SE\ MONITOR SIR- IRQ HANDLER. NOTE: MOVED TO SfA40 IN AUTOSTART ROM 
IRQADR.IRQLOC <1022.1023> (S03FE.S03FFJ \P2\IRQ'S VECTORED BY POINTER HERE TO SUBROUTINE TO HANDLE INTERRUPT REQUESTS 
ISCNTC C-10152) [SD858J \SE\ APPLESOFT- CHECK KEYBOARD FOR CONTROL-( <S83>. EXECUTES BREAK ROUTINE If 

THESE IS 
ISDRVO <15989> [S3E75J \DL\ DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LA3EL 'ISDRVO' 
ISLETC CCHARCHEK> C-8067> (SE07DJ \SE\ APPLESOFT -CHECKS A-REG FOR ASCII LETTER OTHERWISE CLEAR IT TO ZERO C'A' TO 

ITSGOOD 

JJTOER 
JMP T01 
JMPTOERR 

C16286> (S3F9E] \SL\ 

C15893) [S3E15] \SL\ 
(15841> [S3DE1J \SL\ 

C 1 5 84 2 > [S 3D E2] \ SL \ 

KBD - I OADR [SCOOO-l \H1\ 

KBOSTB C -1 6 3 68 ) (S C 01 C l \ H 1 \ 

1 Z'). SET C (CARRY FLAG> TO 1 IF A IS A LETTER OTHERWISE CLEAR IT TO ZERO (A
X- Y-REGS NOT ALTERED} 
DOS 3.2 DISK FORMATTER INTERIOR LABEL AT 3EGINNING Of CONTINUATION If GOOO 
CONDITION OETECTEO 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR 
DOS 3.2 RWTS CREAD-WRITE TRACK-SECTOR> INTERIOR 
OOS 3.2 RWTS CREAO-WRITE TRACK-SECTOR) INTERIOR 
ERROR HANDING ROUTINE HNOLERR) 

LABEL 'JJTOER' 
LABEL 1 JMPT01' 
LABEL 1 JMPTOERR' (JUMP TO 

MONITOR 110- PEEK TO REAO KEYBOARD. IF VAL>127 KEY HAS BEEN PRESSED SINCE 
LAST STROBED AT SC010. 
KEYBOARD STROBE- REACTIVATES KEYBOARD SO THAT VALUE Of PRESSED KEY GOES TO 
SCOOO. SETS HIGH BITTO ZER0 •• -4 

---------~-------------------------------------------~------------------------------------------------------------~--~· INITAN- KSDSTB Prof. Luebbert's "Wh•t's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCN] \USE-TYPE\ -DESCRIPTION 

KEYIN (-741> [Sf01Bl \SE\ 
I 

GETS NEXT KEY INPUT FROM KEYBOARD HARDWARE. REQUIRES LOOP TO TEST THAT KEY HAS 
INDEED BEEN READ; BY PRESENCE Of S80 BIT. ALSO REQUIRES KEYBOARD STROBE TO BE 
HIT BEFORE NEXT KEYBOARD INPUT. AUXILLIARY ACTIONS TAKEN BY KEYIN INCLUDE 
RESTORING TO THE SCREEN AREI. THE CHARACTER MODifiED BY RDKEY TO REMOVE BLINK 
INSERTED BY RDKEY AND COUNTING UP THE RANDO~ NU~BER FIELD- IGNORING OVERFLOW. 
SET-UP: X-REG NOT SIGNifiCANT & NOT AFFECTED; A-REG INPUT TO THIS ROUTINE ST:>RED 
AT (BASL)-y WHEN A KEY IS PRESSED BEFORE THE A-REG IS FILLED FROM THE KEYBOARD 
REGISTER; Y-REG USED FOR STORING A-REG IN SCREEN AREA TO <BASL)•y; CHAND CV NOT 
REFEENCED;BASL-H ARE USED AS INDICATED IN RDKEY. RESJLT: A-REG CONTAINS INPUT 
FROM KEYBOARD REGISTER; IT IS ONLY ITEM CHANGED {A-REG ALTERED} 

KEYIN2 (-735> [SFD21l MONITOR MEMORY LOCATION KEYIN2 
KSWL-KSWH (56.57> [S0038-S0039) \P2\ DOS INPUT HOOK; I.E. ADDRESS Of THE USER INPUT ROUTINE. CONTROLLED BY CURRIN 

L <53) [S0035) \P1\ 

PORT INI & KEVIN. RESET - 0 CTRL-K & INIIO SET THIS LlCN TO SFDIB OIONITOR 
KEYBOARD INPUT ROUTINE); S CTRL-K &INMS SET THIS LOCN TO SCSOO<SLOT S ROM) 
{MONITOR INPUT REG} 
MINIASSEMBER MEMORY LOCATION 'L' 

(LAST CHAR PTR) (184-185> 
(LAST V BL N A IIH ) ( 12 9- 13 0) 

[S0088-SOOB9] \P2\APPLESOFT PTR TO LAST CHAR OBTAINED THRU CHRGET ROUTINE 
[S0081.S0082] \P2\APPLESOFT - HOlDS LAST-USED VARIABLE'S NAME 

LASTIN (47> U002Fl \P1\ 

lASTPT 
LEAD2R 
LEADBL 
LENGTH 
•LEN-
LET 

(83> [S0053) \P1\ 
<250> [SOCFAJ \P1\ 
(201> [S00C9J 
(47) [S002FJ \P1\ 

(-4574) [SEE22) \SE\ 
(-9658) [SDA46) \SE\ 

lF <-922) [S FC 66) \ SE \ 

LINGET (-9716) [SDAOCJ \SE\ 

LINNUM <so-81> csoo5o-soo51l \P2\ 

USED IN CASSETTE INPUT BY RDBIT AS WORK AREA TO DETERMINE WHETHER INPUT HAS 
CHANGED 
APPLESOFT LAST USED TEMPORARY STRING POINTER 
INTEGER BASIC MEMORY LOCATION 'LEADZR' (LEADING ZEROS INDEX> 
INTEGER BASIC MEMORY LOCATION 'LEADBL' (LEADING BLAN<S INDEX) 
USED BY DISASSEMBLER TO INDICATE LENGTH OF THE INSTRuCTION. ALSO BY TRACE 
INTEGER BASIC ENTRY TO FUNCTION TO OBTAIN LENGTH Of A STRING 
APPLESOFT LET- USES CHRGET TO GET ADDRESS Of '=':EVALUATES FORMULA & STORES IT. 
ON ENTRY TXTPTR POINTS TO FIRST CHAR OF VARI~BLE NAME 
MONITOR S/R TO TO PERFORM A LINE FEED; I.E. INCREMENT cv; COMPARE CV TO WNDBTM 
IF CV<WNDBTM GOTO VTABZ TO SET BASL-H AND RETURN ELSE DECREMENT CV AND DO SCROLL 
{A-REG ALTERED} 
READ 16BIT INTEGER LINE M FROM TXTPTR INTO LINNUM. SEE APPLE ORCHARD V1111P13 FOR 
DETAILS 
APPLESOFT GENERAL PURPOSE 16 BIT NUMBER LOCATION (USES INCLUED LOCATION FOR LINE 
NUMBER) 

LINPRT (·4828> [SED24l \SE\ APPLESOFT- PRINTS 2-BYTE UNSIGNED NUMBER IN X-REG OISB> & A-REG (LSB> 
LIST (-418) [SFE5El \SE\ CALL TO DISASSEMBLE 20 INSTRUCTIONS 
LJST2 (-413> [SFE63] MONITOR MEMORY LOCATION 'LIST2' 
LljjNEM-RJiiNE"I (44-45) [S002C-S002D) \P2\ADDRESS POINTER USED BY DISASSEMBLER FOR INDEX TO MNEMONICS TA:ILE 
(LN(2)) <-5828--5824> [SE93C.SE94J] \P5\APPLESOFT FP CONSTANT (LN(2) = .30103 ••• 
LNAL-LNAH (228-229) [S00E4-SOOESJ \P2\INTEGER BASIC MEMORY LOCATIONS 'LNAL-LNAH' (LINE NU'IIBER ADDRESSHNEXT LINE 

NUMBER) 
(LO-RES PAGE 2> <2048-3071) [$0803-SOBFF) \HB\SECONDARY SCREEN BUFFER (TEXT & LOW-RES GRA~HICS PAGE 2> 
LO-RES (-16298) [SC056] \H1\ POKE TO 0 TO SET FROM HI-RES TO SAME PAGE M OF LO-RES OR TEXT 
(LO-RESLNS0/1> [S[400-S0427] \BB\ VIDEO SCREEN BUFFER LO-RES LINES 0 ANI> 1 
(LO-RESLNS10/11) [S0680-S06A7) \BB\ VIDEO SCREEN BUFFER LO-RES LINES 10 AND 11 
(L0-RESLNS12113) [S070Q-S0727J \BB\ VIDEO SCREEN BUFFER LO-RES LINES 12 ANI> 13 
(LO-RESLNS14/15) [S078Q-S07A7) \BB\ VIDEO SCREEN BUFFER LO-RES LINES 14 AND 15 
(LO-RESLNS1611/7> [S0428-S044Fl \BB\ VIDEO SCREE~ BUFFER LO-RES LINES 16 AND 17 
(LO-RESLNS18/19> [S04A8-S04CFJ \BB\ VIDEO SCREEN BUFFER LO-RES LINES 18 AND 19 
(L0-RESLNS2/3) [S0480-S04A7) \88\ VIDEO SCREEN BUFFER LO-RES LINES 2 ANI> 3 
(LO-RESLNS20/21) [S0528-S054FJ \BB\ VIDEO SCREEN BUFFER LO-RES LINES 20 AND 21 

KEVIN - (LO-RE S Prof. Luebbert's "What's Where in the Apple" ALPHA3ETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNl \USE-TYPE\- DESCRIPTION 

-------------------------------------------------------------------------------------------·------~----·-----------·~-.. 
(L0-RESLNS22/23> (S05A8-S05Cfl \BB\ 
(LO-RESLNS24/25) (S0628-S064F] \BB\ 
<LO-RESLNS26/27> (S06A8-S06CFl \88\ 
(L0-RESLNS28/29> (S0728-S074f] \BB\ 
<LO-RESLNS30/31> (S07A8-S07CF] \BB\ 
<LO-RESLNS3Z/33) U0450-S04 77] \BB\ 
( LO-RESLNS34/3 5) (S04D0-S04 f7] \BB\ 
(L0-RESLNS36/3 7) [S0 55 Q-SOS 77] \88\ 
<LO-RESLNS38/39) U05DQ-SOSF7l \8B\ 
<LO-RESLNS4/5) CS0500-S0527l \BB\ 
(LO-RESLNS40/41) [S06=0-S0677l \BB\ 
(LO-RESLNS42/4 3> [S06DQ-S06 F7l \88\ 
(L0-RESLNS44/4 5> [S075Q-S0777l \88\ 
(LO-RESLNS46/4 7> U07D0-S07F7J \88\ 
(LO-RESLNS6/7) [S0580-S05A7] \BB\ 
<LO-RESLNSB/9) [S0600-S0627l \BB\ 
(LOAD DOS 3.2 REGS> <1002> [S03EAl 

L04D 
•LOAD• 
LOCO 

LOC 1 

< -1 0 0 3 9 > [ S D8 C 9 J \ S E \ 
<-3873> [SFOOFJ 

<O> (SOOOOl \P1\ 

(1-2) [S0001-S0002l \P2\ 

VIDEO SCREEN BUFfER LO-R£S LINES 22 ANO 23 
VIOEO SCREEN BUFFER LO-RES LINES 24 ANO 25 
VIOEl SCREEN BUFFER LO-RES LINES 26 AND 27 
VIDEO SCREEN BUFFER LO-RES LINES 28 ANO 29 
VIOEO SCREEN BUFFER LO-RES LINES 30 ANO 31 
VIOEO SCREEN BUFFER LO-RES LINES 32 AND 33 
VIDEO SCREEN BUFFER LO-RES LINES 34 AND 35 
VIDEO SCREEN BUFfER LO-RES LINES 36 AND 37 
VIDEO SCREEN BUFFER LO-RES LINES 38 AND 39 
VIDEO SCREEN BUFfER LO-RES LINES 4 AND 5 
VIDEO SCREE~ BUFFER LO-RES LINES 40 AND 41 
VIDEO SCREEN BUFfER LO-R£S LINES 42 AND 43 
VIDEO SCREEN BUFFER LO-RES LINES 44 AND 45 
VIDEO SCREEN BUFFER LO-RES LINES 46 AND 47 
VIDEO SCREEN BUFFER LO-RES LINES 6 AND 7 
VIDEO SCREEN BUFFER LO-RES LINES 8 AND 9 

\SE\RECONNECT DOS 3.2 VIA APPLE MONITOR REGS. PREVIOUS CONTENTS OF MONITOR I/0 
REGS (S0036-S0039) TO DOS 3.2 INPUT & OUTPUT REGS {DOS 3.2 REGS ALTERED} 
APPLESOFT CASSETTE - LOAD A PROGRAM FROM CASSETTE TAPE 
INTEGER BASIC ENTRY TO LOAD SUBROUTINE (LOAD A PROGRAM FROM CASSETTE TAPE) 
MONITOR MEMORY LOCATION 'LOCO'. PRESET TO S4C (JMP>- (JU~P ADDRESS IN 
$001- S002> 
MONITOR MEMORY LOCATION 'LOC1'- POINTER PRESET TO 4DDRESS OF APPLESOfT SOfT 
ENTRY 

(L0G(E)2) (-4389--4385) (SEEDB-SEEDFJ \PS\APPLESOFT FP CONSTANT LOG<E>2 
LOMEML-LOMEMH (74-75> [S004A-S004Bl \P2\POINTER TO LOMEM (CONTAINS 'START Of BASIC VARIABLES' FOR INTEGER BASIC-

•LOMEM
LOW S C R 
LOWTR 

<-3895 > [Sf0C9l \SE\ 
<-16300) [SC054] \H1\ 

<155.156) [S009B-S009CJ \P2\ 

LT 
LT2 
M 

M1 

M2 

(-480> [SFE20J 
(·478) [$FE22J 

<-16384--16369> cscooo·scoon \-i1\ 

(249-251) [$00F9-S00FBJ \P3\ 

<245-247) [SOOFS-sOOF7l \P3\ 

START Of PROGRAM FOR APPLESOFT BASIC> 
INTEGER BASIC ENTRY TO LOMEM ROUTINE 
POKE TO 0 TO DISPLAY PAGE 1 (DOES NOT CLEAR SCREEN) 
APPLESOFT GENERAL PURPOSE REGISTER USED BY GETARYPT-fNDLN-BLTU <E.G. LOW END Of 
BLOCK TO BE TRANSFERRED IN BLTU) 
MONITOR MEMORY LOCATION 'LT' 
MONITOR MEMORY LOCATION 'LT2' 
EQUIVALENT ADDRESSES- ALL FOR KEYBOARD INPUT BYTE. WHEN KEY PRESSE<D ASCII 
VALUE GOES THERE AND HIGH Bl T SET 
FLOATING POINT qoUTINES FLOATING POINT ACCUMULATOR FP1 MEMORY LOC 'M1' 
(MANTISSA> 
MONITOR & OLD CNON-APPLESOFT) fLOATING POINT ACCUMULATOR 2 MEMORY LOC 'M2' 
(MANTISSA- 3 BYTES> 

(MAC R 0 LINE 0) <1024-1143) (S0400-S0477l \HB\TEXT VIDEO SCREEN DISPLAY PAGE 1- MACROLINE ORSUBPAGE CONSISTING Of LINES 
0 - 8 & 16 

(MACROLINE1) C115z-1271> [S0480-S04F7l \HB\TEXT PAGE 1 - MACROLINE OR SUBPAGE CONSISTING :>F 3 TEXT LINES Of 40 BYTU 

•MAINLINE- (-7501> (S£283] \SE\ 
-MAN• (-4524) (SEE54l \SE\ 
MASK (46) [$002EJ \P1 \ 

MD1 (·1116) [$FBA4J 

MD2 ( -1105) [SFBAF) 

(L0-RESLNS22/23) - MD2 

(CHARACTERS) EACH PLUS A BLOCK Of 8 I-0 PERIPHERAL BYTES. SUBSEQUENT 
MACROLINES WILL BE OMITTED FROM DATABASE 
INTEGER BASIC ENTRY POINT TO MAIN LINE Of COMPILE/EXECUTE CODE 
INTEGER BASIC ENTRY TO MANUAL LINE NUMBER FUNCTION 
LOW-RES COLOR GRAPHICS MASK. SOF OR SFO TO SELECT HIGH OR LOW NIBBLE TO SPECIFY 
WHICH Of 2 PLOT LINES REP BY GBASL-H POINTER 
MONITOR 16-BIT MULITIPLY/DIVIDE SIGN-PROCESSOR. SETS ABSOLUTE VALUES OF ACL•H 
MEMORY LOCATION 'MD1' AUXL•H LEAVING RESULTING SIGN IN LS6 Of SIGN U002f) 
MONITOR MEMORY LOCATION 'MD2' 

Prof. Luebbert's .. What's Where in the Apple .. ALPHABETICAL GAZETJEER 



NAME (DEC LOCN) [HEX LOCN] \USE-TYPE\ - DESCRIPTION 

MD3 (-1100> (SFBB4] 
(•1088> (SFBCO] MORTS 

MEMFUL 
MEMSIZE 

(·7317> (SE36Bl \SE\ 
<115-116> rsocn-soo74J 

MINASM <-2458> (SF666] 

CMINUS.ONE.HALF) C-5833--5813) 
MIXCLR C-163 02) (SC 05 2] \H 1\ 

MIXSET C-16301) UC 053) \H1\ 
MNEML (·1600) (SF9COJ 
MNEMR C-1536) [SFAOOJ 
MNNDX1 C-1858) [SF8BE] 
MNNDX2 C-1854) [SF8C2l 
MNNDX3 C-1847) [SF8C9] 
MOD8CHK C-595) [SFDADJ 
MODE (49> [$0031) \P1\ 

-Moo· C-7558> [SE27A] \SE\ 
MON <-155) [SF F65l \S E\ 

MONITOR MEMORY LOCATION 'MD3' 
MO'HT3R MEMORY LOCATION 'MORTS' 
INTEGER BASIC MEMORY FULL ERROR 

\P2\ APPLESOFT HIMEM (HIGHEST LOC IN MEM AVAIL+ 1>. INIT TO HIGHEST RAM - $8FFF FOR 
48K APPLE IF DOS NOT ACTIVE BEGINNING OF DOS If DOS ACTIVE 
TURN ON MINIASSEMBLER (KEYBOARD INPUT WILL BE INTERPRETED AS A SEMBLY-LANGUAGE 
I NS T RU C T I ON) 

[SE937-SE94B) \PS\APPLESOFT FP CONSTANT MINUS ONE HALF (-1/2) 
POKE TO 0 TO RESET FROM MIXED GRAPHICS (W/4 LINES TEXT> TO FULL-SCREEN 
GRAPHICS 
POKE=O TO SET TEXT/GRAPHICS MIX (BOTTOM 4 LINES TEXT> 
MONITOR & MINIASSEMBLER MEMORY LOCATION 'MNEML' 
MONITOR & MINIASS,EMBER MEMORY LOCATION 'MNEMR' 
MONITOR MEMORY LOCATION 'MNNDX1' 
MONITOR MEMORY LOCATION 'MNNDX2' 
MONITOR MEMORY LOCATlON 'MNNOX3' 
MONITOR MEMORY LOCATION 'MOD8CHK' 
USED BY MONITOR COMMA~O PROCESSING TO INDICATE DISPOSITION OF HEX INFO IN 
THE INPUT LINE 
INTEGER BASIC ENTRY POINT TO MODULO FUNCTION 
MONITOR SIR- NORMAL ENTRY TO 'TOP' OF MONITOR WHEN RUNNING <BEEPS!> 

(MONITOR RESVD) nz-85) [S0020-S0055J \PB\APPLE II SYSTEM MONITOR RESERVED LOCATIONS ($0050-$0055 USED ONLY BY 

MONTIME (70) [$0046] \P1\ 
MONZ C-151) [SFF69J \SE\ 
M or oF < 1 5 7 4 1 > r s 3 o 7 o J \ s L \ 

MOTOROFF 
MOTORON 
MOV1 F 

MOV2F 

C-16248) [SC088] \P1\ 
C-16247> [SC089J \P1\ 

C-5343) [SEB21J \SE\ 

c-5346> [$ EB1 EJ \ SE\ 

MOVAF <TR1 =>2) (-52 77) [SE B6 3) 

MOVE (-468) [S FE2Cl \ SE \ 

MOVFA <TR2=>1) <-5293) [SE B53J 
MOV F14 CFPLOAD) <-5383> [SEAF9] 

MOVINS (-6700) [SE5D4J \SE\ 

MOVMF ( FPSTR) <-5333) [SEB2BJ 

MOVML C-5341) [SEB23l \SE\ 

MOVSTR C-6686) [SE5E2J \SE\ 

MSWAIT <-17920> [SBAOOJ \SB\ 

\SE \ 

\SE\ 
\SE\ 

\ SE\ 

MULTIPLY-DIVIDE ROUTINES AND THUS AVAILABLE IN MANY SITUATIONS) 
DOS RWTS (READ-WRITE TRACK-SECTOR) PARAMETER 'MONTIME' 
MO N I T OR S I R T 0 R E S E T A N 0 EN TE R M 0 N IT 0 R ( N 0 B E E P ) 
DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR INTERIOR LABEL- STARTSCODE TO DELAY 
UNTIL MOTOR UP TO SPEED 
DOS 3.2 READ\WRITE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'MOTOROFF' 
DOS 3.2 READ\WRITE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'MOTORON' 
APPLE SOFT FP- PACK FAC AND MOVE IT INTO TEMP1 U0093-S0097>. USES MOVMF. ON 
EX IT A-REG & Z FLAG REFLECT FACEXP. MODIF)ES INDEX <S005E-S005F> {RESET 
Y-REG:O} 
APPLESOFT FP- PACK FAC AND MOVE IT INTO TEMP2 <S0098-S009C). USES MOVMF. ON 
EX IT A-REG & Z FLAG REFLECT FACEXP {RESET Y-REG=J} 
APPLESOFT FP- PACK EXTENSION BYTE INTO FAC & MOVE fAC INTO ARG. ON EXIT 
A-REG = FACEXP AND ZERO FLAG IS SET. RESET EXTENSION BYTE = 0 {RESET X-REGzO} 
MONITOR SIR TO PERFORM A MEMORY MOVE CA1-A2 TO A4)(Y-REG MUST =0 AT CALl) 
{A-REG ALTERED} 
APPLESOFT FP- MOVE ARG INTO FAC. ON EXIT A-REG a FACEXP AND ZERO FLAG IS SET 
APPLESOFT FP MOVE MEMORY POINTED TO BY Y-REG & A-REG INTO FAC. ON EXIT A-REG 
& ZERO FLAG REFLECT FACEXP. RESET EXTENS.ION BYTE=O {RESET Y-REG:aO} 
AP:PLESOFT - MOVE STRING WHOSE DESCRIPTOR IS POINTED TO BY STRNG1 TO HEM LOC 
POINTED TO BY FORPNT 
APPLESOFT FP- PACK FAC AND MOVE IT INTO MEMORY POINTED TO BY Y-REG CMSB) & 
X-~EG CLSB). ON EXIT A-REG & ZERO FLAG REFLECT FACEXP. MODIFIES INDEX 
uoos E·soo5f> 
APPLESOFT FP- PACK FAC AND MOVE IT INTO ZERO PAGE AREA POINTED TO BY X-REG. 
USES MOVMF. ON EXIT A-REG & Z FLAG REFLECT FACEX~ 
APPLESOFT - MOVE STRING POINTED TO BY Y-REG CMS8) & X-REG (LSB) WITH LENGH 
IN A-REG TO MEMORY POINTED TO BY FRESPA 
DOS 3.3 RWTS OPERATION TIMER ROUTINE 

-----------------------------------------------------------------------------------------------------·-----------------
MD3 - MSWAIT Prof. Luebbert's "What's Where in the Apple" ALPHABET I CAL GAZET fEE R 



NAME <DEC LOCN) [HEX LOCNJ \USE-TYPE\ - DESCRIPTION 

M UL ( -11 81> [ $ F 8 6 3] \ S E \ 

MUL10 
MUL2 
MUL3 
MUL4 
MUL 5 
MULPM 

MULPM 

·MuL T
MYSEEK 

MYSEEK 

N8ITS 

NBRNCH 
NEGOP 
NEWMON 
NEWPCL 
NEWS TT 

-New· 

C-5575> [$EA39] \SE\ 
( -11 7 9) [ SF B6 5 ] 
< -11 71> [SF 860 J 
<-1162) [SFB76J 
(-1160) [$F878] 
C-1184) [SF860] \SE\ 

(-1184--1152) [SF860-SFB80] \SB\ 

C-7646) [SE222J \SE\ 
(15931> [S3E3BJ \SE\ 

( -1 6 8 06-- 16 7 55 ) [ S B E 5 A • S BE 8 0 ] 

(1 91 2 + s) [so 7 7 8 + s ] \ p 1 \ 

C-1269) l$FBOBJ 
C-4400> [SEEDOJ \SE\ 

C-140 7) !SF A 81] 
C-1331> [SFACDJ 
< -1 02 86 > [SO 70 2] \S E\ 

( -6 739) [SE5A OJ \SE\ 

(NEXT W /0 F 0 R PR T> C-8949) [SODOB] \SE \ 

NEXTOP C-2692) [SF57CJ 
-NEXT. C-593 0> (SE8D6J \SE \ 
NMI C1019} [S03FBJ 
-NODSP. <-3360) [SF2EOJ \SE\ 
NOGOOD <16276) [S3F94J \SL \ 

NORM <-2973) [SF463] \SE\ 
(-707> [SFD3DJ 

C-673) [SFD5F] 
NOT CR 
NOTCR1 
(NOTFAC) C-8552) UDE98] \SE\ 

-NOTRACE- <-3722> [SF 176] \SE\ 
NOTSURE <15651> [S3D23J \SL\ 

-Nor· C-6346) [SE736] \SE\ 
NOUNSTKC (160-191) [SOOAO-SOOBFJ 
NOUNSTKH (110-151> [S0078-S0097l 
NOUNSTKL cao-a7> csoo5o·soo57l \PB\ 

MONITOR - UNSIGNED 16-BIT MULTIPLY S/R (NOT AVAILABLE WITH AUTOSTART ROM}. 
SAME AS MULPM (Sf860> EXCEPT UNSIGNED. SEE 'SIGN' AT SOOZF {A- X- Y-REGS 
ALTERED} 
APPLESOFT FP- MULTIPLY FAC BY 10. WORKS FOR BOTH POSITIVE & NEGATIVE NUIII8ERS 
MONITOR MEMORY LOCATION 'MUL2' 
MONITOR MEMORY LOCATION 'MUL3' 
MONITOR MEMORY LOCATION 'MUL4' 
MONITOR MEMORY LOCATION 'MUL5' 
MONITOR -SIGNED 16-BIT MULTIPLY LEAVING SIGN IN LSB OF 'SIGN' {A- x- Y-REGS 
ALTER ED} 
MONITOR 16-BIT MULTIPLY SIR CNOT IN AUTOSTART ROlli). MULTIPLIER IN AUXL-AUXH 
(S0054.S0055>; MULTIPliCAND IN ACL -ACH ( S0050-S0051); XTNDL -xrNOH 
<S0052.S0053> CLEARED TO ZERos; RESULT GOES TO EXTENDED AC CS0050.S0053>. 
ALSO SEE 'SIGN' AT S002F. {A- X-REGSY-REG AL TEREO} 
INTEGER BASIC ENTRY POINT TO MULTIPLY ROUTINE 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEl AT START Of ROUTINE 
WHICH SEEKS TRACK 'N' IN SLOT #X/S10. (If DRIVENO IS- THEN DRIVE O:IF 
ORIVENO IS + THEN DRIVE 1 
DOS 3.3 - HOUSEKEEPING BEFORE 'SEEKABS'. DETERMINES NUMBER OF PHASES PER 
TRACK & STORES TRACK INFO IN APPROPRIATE SL~T-DEPENDENT LOCN 
EXAMPLE: APPLE SERIAL INTERFACE IN SLOT #S NUMBER Of DATA BITS PLUS 1 FOR 
START BIT 
MONITOR MEMORY LOCATION 'NBRNCH' 
APPLESOFT FP- LET FAC = -FAC {X- Y-REGS NOT ALTERED} 
AUTOSTART MONITOR MEMORY LOCATION 'NEWMON' 
~ONITOR MEMORY LOCATION 'NEWPCL' 
APPLESOFT- EXECUTE A NEW STATEMENT. ON ENTRY TXTPTR POINTS TO THE':' 
PRECEDING THE STMT OR ZERO AT END OF PREVIOUS LIN. USE NEWSTT TO RESTART THE 
PROGRAM WITH CONT. THIS ROUTINE DOES NOT RETURN 
IN~EGER BASIC ENTRY POINT TO CLEAR OUT OLD PROGRAM AND RESET POINTERS FOR A 
NEW PROGRAM 
APPLESOFT - PRINT ERROR MESSAGE "NEXT WITHOUT FOR" THEN HALT AT APPLESOfT 
(]) LEVEL 
MINIASSEMBLER MEMORY LOCATION 'NEXTOP' 
INTEGER BASIC ENTRY TO ROUTINE TO HANDLE 'NEXT' LOOP END 
NMI'S VECTORED TO THIS LOCATION 
INTEGER BASIC ENiRY TO ROUTINE TO TURN Off DISPLAY fUNCTION 
DOS 3.2 DISK fORMATTER INTERIOR LABEL AT BEGINNING Of CLEAN UP If NOGOOO 
CONDITION DETECTED 
NORMALIZE fl~ATING POINT NUMBER IN FP1 {A-REG ALTERED} 
MONITOR MEMORY LOCATION 'NOTCR' 
MONITOR MEMORY LOCATION 1 NOTCR1' 
APPLESOFT - LET FAC a NOT<fAC); I.E. RETURNS fAC•1 If fAC•O OR fAC•O If 
fA C < >0 
INTEGER BASIC ENTRY TO ROUTINE TO TURN Off TRACE MOOE 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL - AT THIS POINT 
PROGRAM NOT SURE WHETHER MOTOR IS RUNNING <STABLE LONG ENOUGH) 
INTEGER BASIC ENTRY TO 'NOT' <NOT A VALUE FUNCTION) 
INTEGER BASIC MEMORY LOCATION 'NOUNSTKC' (NOUN STACK COUNTER) 
INTEGER BASIC MEMORY LOCATION 'NOUNSTKH' (NOUN STACK. HI BYTE) 
INTEGER BASIC MEMORY LOCATION 'NOUNSTKL' 

-----------------------------------------------------------------------------------------------------------------~~~--~ MUL - NOUNS T KL Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZEfTEER 



NAME (DEC LOCN) (HEX LOCN] \USE-TYPE\ - DESCRIPTION -------------------------------------------------------------------------------------------------------------------------
NREL C-2696> [SF578l 
NXTA1 (•338> (SFCBAJ \SE\ 
NXTA4 C-844) (SFCB4] \SE\ 
NXTBAS (•104) [SFF98] 
NXTBIT (•112> (SFF90] 
NXTBS2 (•94) (SFFA2J 
NXTBYT C-1337> (SFAC7J 
•NXTBYTE• (·8150) (SE02A] \SE\ 
NXTCHAR <-651> (SF075J \SE\ 

NXTCHR (·83) (SFFAOJ 

NXTCOL C-1953> (SF85F J \SE \ 
NXTCOL (·1803) (SF8F5J 
NXTITM (•141) (SFF73] 
NXTLINE C-2667) (SF595J 
NXTL.NXTH (230.231) (S00E6-SOOE7J 
NXTM (•2624) (SF 5C0] 
NXTM2 C-2613> (SF5CBJ 
NXTMN C-2627> (SF5BO] 
NXTPRT ( 16086) ( S3E 06 J \SL \ 
NXTTRY (16208> (S3F50J \SL\ 
OK (15710> (S3D5EJ \SL\ 

MINIASSEMBLER MEMORY LOCATION 'NREL' 
MONITOR SIR TO INCREMENT A1 <16 BITS>. SET CARRY IF RESULT >=A2. {A-REG ALTERED} 
MONITOR SIR TO INCREMENT A4 (16 BITS) THEN 00 NXTA1 (A-REG ALTERED} 
MONITOR MEMORY LOCATION 'NXTBAS' 
140NITOR MEMORY LOCATION '"'XTBIT' 
MONITOR MEMORY LOCATION 'NXTBS2' 
AUTOSTART MONITOR MEMORY LOCATION 'NXTBYT' 
INTEGER BAS I C ENT.R Y POI NT TO GET NEXT BYTE 16-BI T POINTER 
TOP POINT IN CHAR INPUT LOOP. SAME EFFECT AS GETlN EXCEPT BYPASS PRINT OF PROMPT 
CHARACTER; ON SET-UP X-REG SHOULD BE SET TO ZERO TO 3EGIN STORING OF INPUT AT 
S200; A- Y-REGS .,OT SIGNIFICANT:CV AND BASL-H SHOULD BE COMPATIBLE POINTING IN 
THE SCROLL WINDOW; CH INDICATES WHERE ECHOING OF KEY30ARD INPUT IS TO START & 
SHOUlD BE LESS THAN WNDWOTH; RESULTS SAME AS FOR GETLNZ {A- X- Y-REGS ALTERED} 
MONITOR -TOP POINT IN GETLN CHARACTER INPUT LOOP:ROCHAR CALLED TO GET CHAR INTO 
A-REG; ON RETURN A-REG TESTED FOR PRESENCE OF CTRL-U (RIGHT ARROW); IF SO A-REG 
LOADED FROM SC/REEN MEMORY ASSUMING Y-REG CONTAINS SAME VALUE AS CH; IF A-REG 
VAL >SOF LOWER-CASE LETTER CONVERTED TO UPPER CASE; If CHAR IS A C/R IT IS 
PRINTED THROUGH COUT AND RTS EXIT OF COUT Will GIVE CONTROL BACK TO CAlLING 
PROGRAM WI X-REG INDICATING INPUT rCHAR COUNT +1: THAT IS INPUT IS IN LOCNS S200 
THRU S200-x WHERE S200•x CONTAINS A C/R; ON SET-UP A- X- Y-REGS NOT SIGNIFICANT; 
CV & BASL-H SHOULD BE COMPATIBLE (POINTING IN THE SCROLL WINOOW):CH INDICATES 
HORIZ POSN IN SCROLL WINDOW WHERE CURSOR WILL BE INDICATED BY BLINKING. ON 
RETURN CALLER A-REG WILl CONTAIN KEY VALUE:Y-REG WILL CONTAIN CONTENTS OF 
CH:X-REG WILL CONTAIN SAME VALUE AS INPUT; CV CH & BASL -H Will HAVE CHANGE ONLY 
IF AN ESCAPE KEY SEQUENCE HAS BEE~ PERFORMED 
MO.,ITOR LO-RES SIR. CHANGE COLOR TO CCOLOR)+3 {A-REG ALTERED} 
AUTOSTART MONITOR MEMORY LOCATION 'NXTCOL' 
MONITOR MEMORY LOCATION 'NXTITM' 
MINIASSEMBER MEMORY LOCATION 'NXTLINE' 

\P2\INTEGER BASIC MEMORY lOCATIONS 'NXTL-NXTH' <NEXT POINTER) 
MINIASSEMBLER MEMORY LOCATION 'NXTM' 
MINIASSEMBLER MEMORY LOCATION 'NXTM2' 
MINIASSEMBLER MEMORY LOCATION 'NXTMN' 
DOS 3.2 DISK FORMATTER- LABEL AT POINT WHERE CHECK IS MADE TO SEE IF TRACK DONE 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'NXTTRY' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL- STARTS CODE THAT IT IS 
OKAY TO CONTINUE 

COLO TEXT PTR) (121.122) (S0079··so07A] \P2\APPLESOFT OLD TEXT PTR. PTS TO LOC lN MEM FOR NEXT SH1T TO BE EXE 
OLDBRK C-1447) (SFA59] AUTOSTART MONITOR MEMORY lOCATION 'OLDBRK' 
OLDLIN <119.120> (S0077-S0078J \P2\ APPLESOFT - LAST LINE EXECUTED- LINE II AT WHICH EXECUTION INTERRUPEO SY CTRl-C 

STOP ETC • 
ONORVO (16027> (S3E9B) \DL\ DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL 'ONORVO' 
CONE) C-'5869--5865) (SE913-SE917J \P5\APPLESOFT FP CONSTANT ONE =1. 
CONE-QUARTER) C-3984- -3979) (SF 070-SF075 J \ P5 \APPL ESOFT 5-BYTE FLOATING POINT CONSTANT 1/4 CO. 25) 
CONE.BILLION) (SE014.SSED18] \P5\ APPLESOFT 5-BYTE FLOATING POINT CONSTANT 1000000000 C1E9J 
CONE.HALF> C-4508--4504) (SEE64.SEE68J \P5\APPlESOFT 5-BYTE FP CONSTANT ONE HALF (1/2) 
ONEOLY (·798) (SFCE2J MONITOR MEMORY LOCATION 'ONEDLY' 
ORMASK (243) (SQOF3] \P1\ MASK FOR OUTPUT CONTROL: NORMAL/FLASHING/INVERSE 
(OUT OF llo1E14 PRT> <-11248) ($0410] APPLESOFT- PRINT "OUT OF MEMORY" THEN HALT AT APPLESOFT (]) LEVEL 
OUTDO C-9380) (SDB5CJ \SE\ APPLESOFT- PRI'IIT THE CHARACTER IN A-REG. INVERSE-fLASH-NORMAL OPTIONS IN EFfECT 
OUTPORT C-363) (SFE95J MONITOR MEMORY LOCATION 'OUTPORT' ---------------------------------------------------------------------------------------·-----------·----- .. ----------------
NREL - OUTPORT Prof. Luebbert's "What's Where in the Apple" ALP~ABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCNJ \USE-TYPE\ -DESCRIPTION -----------------------------------------------·---------- .... -------------- --- ---~--- ---....-- ________ .,.. _____ ------------------------
OUTPRT C-361) [$fE9,7] 
0 U T Q S T ( -9 3 8 2) [ $DB 5'A J \ S E \ 
OUTSPC C-9385) [SDB57] \SE\ 
OUTVAL (200) [$00C8] 
COVERFLOWPRT) (-5931) [$E8D5J \SE\ 
P1L-P1H (50.227> [$003z-$OOE3J \P2\ 
P2L -P2H <228-229) ($00E4-SOOE5J \P2\ 
P3L- P3H ( 230 •2 31) [ $0CE6-$ OOE7J \P2 \ 
P A 0 0 L 0 ( - 1 6 2 84 ) [ $ C 0 6 4 J \ H 1 \ 

PADDLO ( -1 6 2 76) [$C06CJ \H1\ 

PADDL1 <-16283> [$C065J \H1\ 

PAODL1 ( -1 6 2 75 ) [$C06DJ \H1\ 

PAD DL 2 ( -1 6 2 82 ) [$C 06 6] \H 1 \ 

PADDL2 (-16274) [$C 06 E) \H 1 \ 

PADDL3 (-16281) [$C067] \H1\ 

PADDL3 (-16273) [$C06.FJ \H1\ 

PARCHK <-852 6) [$DEB2] \SE\ 

PCADJ (-1709) [$F95 3] 

PCADJ2 (-170 8) [$F9 54] 
PCADJ3 (-1706) [$F956 J 
PCADJ4 (-1700> ($F95C] 
PCINC2 (-1363) [$FAAD] 
PCINC3 <-1361> [$FAAF] 
PCL-PCH (58-59) aoo3 rsoo 3BJ \P2\ 

•poL • (-3269) [$F33BJ \SE\ 
-PEEK- <-4362) ($EEF6] \SE\ 
PHASON (-16255) [$C081J \P1\ 
PHSOFF (-16254) [$(082] \P1\ 

MONITOR MEMORY LOCATION 'OUTPRT' 
APPLESOFT- PRINT A QUESTION MARK 
APPLESOFT- PRINT A SPACE 
INTEGER BASIC MEMORY LOCATION 'OUTVAL' (OUTPUT VALUE TEMPORARY> 
PRINT "OVERFLOW" THEN HALT AT THE APPLESOFT ())LEVEL 
INTEGER BASIC MEMORY LOCATIONS 'PH -P1H' (AUXILIARY POINTER ONE) 
INTEGER BASIC MEMORY LOCATIONS 'P2L-P2H' (AUXILIARY POINTER TWO) 
INTEGER BASIC MEMORY LOCATIONS 'P3L-P3H' (AUXILIARY POINTER THREE> 
MONITOR MEMORY LOCATION PADDLOi HARDWARE INDISTINGUISHABLE FROM SC06Ci STATE Of 
TIMER OUTPUT FOR PADDLE 0 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES) 
MONITOR MEMORY LOCATION PADDLOi HARDWARE INDISTINGUISHABLE FROM SC064; STATE Of 
TIMER OUTPUT FOR PADDLE 0 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES) 
MONITOR MEMORY LOCATION PADDL1i HARDWARE INOISTINGUISHABLE FROM SC06Di STATE Of 
TIMER OUTPUT FOR PADDLE 1 APPEARS IN BIT 7 <NEGATIVE UNTIL TIMER EXPIRES) 
MONITOR MEMORY LOCATION PADDL1i HARDWARE INDISTINGUISHABLE FROM SC065; STATE Of 
TIMER OUTPUT FOR PADDLE 1 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES> 
MONITOR MEMORY LOCATION PADDL2i HARDWARE INDISTINGUISHABLE FROM SC06E; STATE Of 
TIMER OUTPUT FOR PADDLE 2 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES) 
MONHOR MEMORY LOCATION PADDL2i HARDWARE INDISTINGUISHABLE FROM $C066; STATE Of 
TIMER OUTPUT FOR PADDLE 2 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES} 
MONITOR MEMORY LOCATION PADDL3i HARDWARE INDISTINGUISHABLE FROM SC06Fi STATE Of 
TIMER OUTPUT FOR PADDLE 3 APPEARS IN BIT 7 ('.JEGATIVE UNTIL TIMER EXPIRES} 
MONITOR MEMORY LOCATION PADDL3i HARDWARE INDISTINGUISHABLE FROM SC067; STATE Of 
TIMER OUTPUT FOR PADDLE 3 APPEARS IN BIT 7 (NEGATIVE UNTIL TIMER EXPIRES) 
APPLESOfT PARENTHESIS CHECK- CHECK FOR '(';EVALUATE FORMULA:CHECK FOR '>'. 
USES CHKOPN & FRMEVL THEN FALLS INTO CHKCLS 
MINIASSEMBLER MEMORY LOCATION 'PCADJ' (PROGRAM COUNTER ADJUST: 0=1 BYTE; 1:2 
BYTES; 2:3 BYTES) 
MONITOR & MINIASSEMBLER MEMORY LOCATION 1 PCADJ2 1 

MONITOR MEMORY LOCATION 'PCADJ3 1 

MONITOR MEMORY L OC.A TION 'PCADJ 4' 
MONITOR MEMORY LOCATION 'PCINC2' 
MONITOR MEMORY LOCATION 'PCINC3' 
SAVE AND CONTROL AREA FOR PROGRAM COUNTER. USED IN BREAK PROCESSING ANI> 
MINIASSEMBLER. SET BY MONITOR CMOS L G S &T {PC SAVED HERE BY MONITOR) 
INTEGER BASIC ENTRY TO ROUTINE TO READ A PADDLE 
INTEGER BASIC ENTRY TO ROUTINE TO 'PEEK' AT THE CONTENTS Of A MEMORY LOCATION 
DOS 3.2 REA!>\WRITE TRACK-SECTOR (RWTS) PACKAGE PARAMETER 'PHASON' 
DOS 3.2 READ\WRITE TRACK-SECTOR (RWTS) PACKAGE PARA'HTER 'PHSOFF' 

PHSOFF-PHSON <-16256--16255) [$C08J-$C081J \P4\DOS 3.2 READ\WRITE TRACK\SECTOR PACKAGE PARAMETER STATEMACHINE 
CONTROLS TABLE: LO lO=READ;HI LO=SENSE WRITE PROTECT;LO HI=WRITE;HI 

(PI/2) 
PLOT 

PLOT1 
PLOTF NS 

-PLOT-

PNL- PNH 

H I =W R I T E L 0 A D 
(-3997--3993) [$F06r$F067J \PS\APPLESOFT 5-BYTE FLOATING POINT CONSTANT Pl/2 = 1.508 •• 

C-'2048> [$f800J \SE\ LO-RES PLOT POINT AT X-COORD=<Y-REG> Y-COORD~(A-REG) LEAVING GBASL -H AND MASK 

<-2034) [$F80EJ \SE\ 
( - 3 6 04 ) [ $ F 1 E CJ \ S E \ 

(-4545) [$EE3FJ \SE\ 

(222-223) [$00DE-$00DFJ \P2\ 

SET (Sff CALL-APPLE DEC 78) {A-REG ALTERED} 
LO-RES PLOT A POINT X-COORD=(Y-REG) Y-COORD PER GBASL-H & MASK {A-REG ALTERED} 
APPLESOFT - GET 2 LO-RES PLOTTING COORDS SEPARATED BY COMMA fM TXTPTR. PUT 
FIRST # IN FIRST AND SEC~ND # IN H2 & V2 
INTEGER BASIC ENTRY TO ROUTINE TO DO A LO-RES PLOT <I.E. PLOT A COLORED SQUARE 
ON LO-RES SCREE'I) 
INTEGER BASIC MEMORY LOCATIONS 'PNL-PNH' <CURRENT NOUN POINTER) -------------- --------------- -------·-.. ------ -----·---------- ...... -----·---------------------------------------------- -·-?----------~---

OUTPRT - P'ILPNH Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCNJ \USE-TYPE\ -DESCRIPTION 

-pop
POSTNB16 

(-3737) [$F167] \SE\ INTEGER BASIC ENTRY TO ROUTINE TO POP THE RETURN STACK FOR GOSUB 
<-18238--18213) [$B8C2-$B8DBJ \SB\DOS 3.3 POSTNIBBLE ROUTINE. CONVERTS 342 6-BIT NIBBLES Of fORM OOXXXXXX TO 

POSTNIBL (DOS 3.2> [$B9C1-BA10] \SB\ 

256 8-BIT BYTES. NIBLES STORED AT PRIMARY ($BB00-$38Ff) AND SECONDARY 
C$BC00-$BC55) BUFFERS. POINTER TO DATA PARGE STORED AT 'BUFPTR' 
C$003E-$003F>. ON ENTRY X-REG= SLOT•16i CSW ($0036-$0037) POINTS TO USER 
DATAi $0026= BYTE COUNT IN SECONDARY BUFFER. ON EXIT CARRY SET 'BUFPTR' 
Y-REG CONTAINS BYTE COUNT IN SECONDARY BUFFER 
DOS 3.1-3.2-3.2.1 (SEE $B8C2 FOR DOS 3.3> RWTS <READ-WRITE 
POSTNlBl COOS 3.2> MODULE. CONVERTS A BUFFER OF 410 ($19A> 
5-BIT NIBBLES TO 256 ($1001 REAL BYTES. $003E-$003F POINTS 
THEM INTO 

TRACK SECTOR) 
LEFT-JUST I FlED 
TO BUFFER TO PUT 

POSTNIBL (DOS 3.3> (-18238) [$B8C2] \SB\DOS 3.3 'POSTNIBL' 
PPL-PPH <202-203) [$00CA-$00CB] \P2\ INTEGER BASIC PROGRAM POINTER (START-OF-PROGRAM EQUAL TO HIMEM IF NO PROGRAM) 
-PR#S- (-3127> ($F3C9J \SE\ INTEGER BASIC ENTRY TO ROUTINE TO SET OUTPUT PORT 
PRA1 (-622) [$FD92J \SE\ PRINT CARRIAGE RETi THEN HEX OF A1H-A1li THEN MINUS SIGN {A- X- Y-REGS ALTERED} 
PRADR1 <-1776) ($F910] MONITOR MEMORY LOCATION 'PRADR1' (PRINT ADDRESS) 
PRADR2 <-1772) [$F914] MONITOR MEMORY LOCATION 'PRADR2 1 

PRADR3 (-1754) [$F926] MONITOR MEMORY LOCATION 'PRADR3' 
PRADR4 (-1750) [$F92A] MONITOR MEMORY LOCATION 'PRADR4' 
PRADR5 C-1744) [$F930J MONITOR MEMORY LOCATION 'PRADR.5' 
PRBL2 (-1716) [$F94C] \SE\ MONITOR SIR- PRINT BLANKS: X REG CONTAINS NUMBER TO PRINT. CLOBBERS Ac-x {A-

PRBL3 
PRBLNK 
PRB YTE 
PRE AD 

(-1716) [$F94C] \SE\ 
<-1720) [$F948J \SE\ 
(-550) [$FDDA] \SE\ 

(-1250) [$FB1EJ \SE\ 

X-REGS AL T:::RED} 
PRINT A-REG FOLLOWED BY (X-REGJ-1 BLANKS {A- X-REGS ALTERED} 
PRINT THREE BLANKS THROUGH COUT {A- X-REGS ALTERED} 
MONITOR S/R TO PRINT CONTENTS OF A-REG AS 2 HEX DISITS {A-REG ALTERED} 
MONITOR SIR TO READ PADDLE. X-REG CONTAINS PADDLE NUMBER (0-3) OF PADDLE TO BE 
READ. PADDLE VALUE TO Y-REG {A- Y-REGS ALTERED} 

PREAD2 (-1243) [$FB25J MONITOR MEMORY LOCATION 1 PREAD2' 
PRENIBL-PRENIB16 (-1843z--18327> [$8800-$B869] \SB\DOS 3.1-3.z-3.3 RWTS (READ-WRITE TRACK-SECTOR) PRENIBL MODULE. 

PRE RR 
PRG END 
PRH EX 

<-211> [$FF2DJ \SE\ 
(175-176) [$00AF-$00BOJ \P2\ 

(-541) [$FDE3] \SE\ 

C-539) [$FDE5J 

CONVERTS A PAGE OF 256 OF REAL BYTES TO A SECTOR OF 410 ($19Al 
R I G HT J US TI F I ED 5 B I T N I B B L E S ( E XC E P T D 0 S 3 • 3 C 0 N VERTS T 0 3 4 2 6 
BIT NIBBLES OF THE FORM OOXXXXXX). POINTER TO PAGE TO CONVERT AT 
$003E-$003Fi DATA STORED AT PRIMARY XXX) SECONDARY BUFFERSi ON 
EXIT X-REG XXX) Y-REG CONTAIN $Ff & CARRY SET. 
MONITOR S/R TO PRINT "ERR" AND SOUND BELL. {A- Y-REGS(?) ALTERED} 
APPLESOFT POINTER TO END OF PROGRAM. !'lOT CHANGED BY LOMEM: 
MONITOR SIR TO PRINT RIGHT NIBBLE Of A-REG AS A SINGLE HEX DIGIT {A-REG 
ALTERED} 
MONITOR MEMORY LOCATION 'PRHEXZ' 
INTEGER BASIC MEMORY LOCATION 'PRINOW' (PRINT IT NOW FLAG> 
INTEGER BASIC ENTRY POINT TO PRINT ERROR MESSAGE/BEll 

PRH EX Z 
PRINOW 
-PRINT
PRL -PRH 
PRMN1 
PRMN2 

(215) [$00D7J \P1\ 
(-4397) [$EED3] \SE\ 
(220-221> [$00DC-$00DD] 

<-1803) [$F8F5J 
\P2 \ INTEGER BASIC MEMORY LOCATIONS 'PRL-PRH' (CURRENT LINE VALUE} 

MONITOR MEMORY LOCATION 'PRMN1' (PRINT MNEMONIC) 

P RNTAX 
<-1799) ($F8F9] 

C-1727> ($F941] \SE\ 

PRNTBL (-1829) [$F8DB] 
PRNTFAC <-4818) ($ED2E] \SE\ 
PRNTOP (-1836) (SF804] 
.• PRNTSTR- C-4605) ($EE03J \SE\ 

PRNTX <-1724> [$F944] \SE\ 

POP - PRNTX 

MONITOR MEMORY LOCATION 'PRMN2' 
MONITOR SIR-PRINT CONTENTS OF A-REG & X-REG AS HEX DIGITS {A- X-REGS 
ALTERED} 
MONITOR MEMORY LOCATION 'PRNTBL' 
APPLESOFT- PRINTS & DESTROYS CURRENT VALUE OF FAC. USES FOUT & STROUT 
MONITOR MEMORY LOCATION 'PRNTOP• (PRINT OPERATION CODE) 
INTEGER BASIC ENTRY TO FUNCTION WHICH PRINTS A STRING 
PRINT CONTENTS OF X-REG AS HEX DIGITS {A- X-REGS ALTERED} 

Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNJ \USE-TYPE\ -.DESCRIPTION 

PRNT YX 
PROGI 0 
PROMPT 

(-1728> [$F940] \SE\ 
(-9983> [$D901J \SE\ 
(51) [$0033] \P1\ 

-PRTERR• (-3743) [$F161J \SE\ 
PRYX2 (-!>18) [$FD96] \Sf\ 

PTRGET 

P TRIG 

PTR I G 

PTRMOV 

PUT NEW 

PVL- PVH 

PWD TH 
PWRCON 
PWR EDUP 

PWRUP 
PXL •pxH 
G6L \G6H 

Q 7L \Q 7H 

QDRNT 
GINT 

<-8221) [$DfE3J \SE\ 

C-1627z--16257> [$C070-$C07FJ \H1\ 

<-1627z--16257) ($C070-SC07FJ \!-11\ 

(15684) [$3D44] \SL \ 

(-.7126) [SE42AJ \SE\ 

<204-205> [$00CCSOOCD] \P2\ 

C1784+S) [$06F8+SJ \P1 \ 
( -1 2 8 3) ($FA F D ] 

(1012> ($03F4] \P1\ 

(-1370) [$FAA6] 
<224-225) ($0CEQ-$00E1J \P2\ 
<-16244--162.43> cscoac-scJ8DJ \P2\ 

C-16242--16241) CSC08E-SC08FJ \P2\ 

( 8 3 ) [ $0 0 53] \ p 1 \ 
<-5134) ($EBF2] \SE\ 

(R0-R15) co-31 > csoooo-soo1FJ \PB\ 

ROL -RoH co·n csoooo-sooo1J \P2\ 
<R1> <2-3> csooorsooo3J \P2\ 
<R10> c2o·2n csoo14·soo1sJ \P2\ 
(R11> <22-23> ($0016-$0017] \P2\ 
(R12> <24-25> ($0018-$0019] \P2\ 
<R13> <26-27> csoo1rsoo13J \P2\ 
<R14> <28-29> csoo1c·soo1DJ \P2\ 
R15L.R15H <30-31> ($001E.$001FJ \P2\ 

(R2> (4-5) [$0004-$0005] \P2\ 
CR3) (6.7) [$0006-$0007] \P2\ 
<R4> <8-9> csoooa·sooo9J \P2\ 
(R5) <10-11> [SQOOA-SOOOBJ \P2\ 
<R6> <12-13> rsoooc·sooODJ \P2\ 
<R7> <14-15> rsoooE·soooFJ \f'2\ 
(R8) (16-17) [$0010-$0011) \P2\ 

MONITOR SIR- PRINT CONTENTS Of Y AND X AS 4 HEX DIGITS (A- X-REGS ALTERED} 
APPLESOFT CASSETTE - SET UP A1 & A2 TO SAVE PRJGRAM TEXT ON CASSETTE 
PROMPT CHARACTER WRITTEN TO SCREEN WHENEVER A LINE OF INPUT IS CALLED FOR 
BY GETLN ROUTINE 
INTEGER BASIC ENTRY TO ROUTINE TO PRINT AN ERROR MESSAGE 
MONITOR S/R TO PRINT CAR RET THEN HEX OF Y-REG & X-REG THEN A DASH {A-REG 
ALTERED} 
APPLESOFT- READ VAR NAME FROM CHRGET AND fiND If IN MEMORY (OR CREATE 
APPROPRIATE SIMPLE VARIABLE OR ARRAY). DOES MUCH HOUSEKEEPING 
ALL 16 ADDRESSES DECODE TO SINGLE SWITCH WHICH TRIGGERS PADDLE TIMERS 
DURING PH I-2 
GAME CONTROLLER STROBE. WHEN READ CAUSES FALG INPUTS OF GAME CONTROLLERS 
TO GO Off & TIMING LOOPS RESTARTED 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL - STARTS CODE TO 
MOVE OUT ALL POINTERS FROM IOB (IN-OUT-BLOCK> TO ZERO PAGE 
APPLESOFT --STRING FUNCTION RETURNING WITH RESULT INDSCTMP. MOVE DSCTMP TO 
TEMP DESCRIPTOR & PUT POINTER TO DESCRIPTOR IN FACMO-FACLO & flAG RESULT 
AS STRING 
INTEGER BASIC CURRENT VARIABLE POINTER (END OF CURRENT VARIABLE EQUAL TO 
LOMEM If NO ACTIVE CURRENT VARIABLE ) 
EXAMPLE:APPLE SERIAL INTERFACE CARD IN SLOT #S- PRINTER WIDTH ('PWDTH') 
AUTOSTART MONITOR MEMORY LOCATION 'PWRCON' 
AUTOSTART ROM POWER UP MASK. SET BY SETPWRC TO EXCLUSIVE 'OR' Of $03F3 & 
SODAS 
AUTOSTART MONITOR MEMORY LOCATION 1 PWRUP' 
INTEGER BASIC MEMORY LOCATIONS 'PXL-PXH' (CURRENT VER3 POINTER) 
DOS 3.2 READ-WRITE TRACK\SECTOR PACKAGE PARAMETER 'G6L-Q6H 1 CQ6 LOW CAUSES 
DOS 3.2 TO READ A SYTE) 
DOS 3.2 READ-WRITE TRACK\SECTOR PACKAGE PARAMETER 'G7L-G7H' (Q7 LOW SETS 
DOS 3.2 FOR READ MODE> 
HI-RES GRAPHICS QDRNT: 2 LSB'S ARE ROTATION QUADRANT FOR DRAW 
APPLESOFT QUICK GREATEST INTEGER FUNCTION. LEAVE INT(FAC>IN FAC MANTISSA 
(HO-MO-LO SIGNED>. ASUMES FAC<2.23 (RESET Y-REG=O} 
'SWEET-16' REGISTERS RO THRU R15 OF 'SWEET-16 1 <16-BIT INTERPRETER IN 
MONITOR> 
'SWEET-16' REGISTER RO (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
'SWEET-16 1 REGISTER R1 <IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
'SWEET-16' REGISTER R10 CIN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
'SWEET-16' REGISTER R11 CIN 16-BIT PSEUDOMACH.INE IN APPLE SYSTEM MONllOR) 
'SWEET-16' REGISTER R12 <IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
'SWEET-16' REGISTER R13 CIN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
'SWEET-16' REGISTER R14 <IN 16-BIT PSEUDOMACHI~E IN APPLE SYSTEM MONITOR) 
'SWEET-16 1 REGISTER R15 CUSED AS PROGRAM COUNTER IN 16-BIT PSEUDOMACHINE 
IN APPLE SYSTEM MONITOR> {REG-R15 } 
'SWEET-16' REGISTER R2 (IN 16-BIT PSEUDOMACHINE IN 
'SWEET-16' REGISTER R3 (IN 16-BIT PSEUDOMACHINE IN 
'SWEET-16' REGISTER R4 <IN 16-BIT PSEUDOMACHINE IN 
'SWEET-16' REGISTER R5 <IN 16-BIJ PSEUOOMACHINE IN 
'SWEET-16' REGISTER R6 <IN 16-BIT PSEUOOMACHINE IN 
'SWEET-16• REGISTER R7 CIN 16,-BIT PSEUDOMACHINE IN 
'SWEET-16' REGISTER R8 (IN 16-BIT PSEUDOMACHINE IN 

APPLE 
APPLE 
APPLE 
APPLE 
APPLE 
APPLE 
APPLE 

SYSTEM 
SYSTEM 
SYSTEM 
SYSTEM 
SYSTEM 
SYSTEM 
SYSTEM 

MONITOR> 
MONITOR) 
MONITOR) 
MONITOR) 
MONITOR) 
MONITOR) 
MONITOR) ----------------------------------------- ---~---------------------------------------------------------------------··---

PRNTYX - (R8> Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNJ \USE-TYPE\ - DESCRIPTION 

<R9> <18-19> csoo1z-soonJ \P2\ 'SWEET-16' REGISTER R9 (IN 16-BIT PSEUDOMACHINE IN APPLE SYSTEM MONITOR) 
MONITOR ~EMORY LOCATION 'RD2' RD2 (-246) ($FF0A) 

RD2BIT (-774) (SFCF A] MONITOR TWO-EDGE TAPE SENSE; I.E. LOOPS DECREMENTING Y-REG UNTIL HARDWARE HAS 
INDICATED TWO TRANSITIONS OF TAPE INPUT REGISTER. CONTENTS OF Y-REG ON RETURN 

RD3 <-234> [$FF16] 
COMPARED WITH CONTENTS ON ENTRY MEASURE TIME REQUIRED f)R TRANSITIONS. CALLS RDBIT 
MONITOR MEMORY LOCATION 'RD3' 

RDADR16 [8944] ~OS 3.3 SYNONYM FOR READADR 
R DB I T ( - 7 71 ) ( SF C F D ] ~ONITOR- LOOPS DECREMENTING Y-REG UNTIL CASSETTE TAPE INPUT REGISTER CHANGES 

(EITHER 0=>1 OR 1=>0>. BIT VALUE RETURNED IS DETERMINED FROM RESIDUAL COUNT OF 

RDBYT 2 
RDBYTE 

RDCHAR 

RDK EY 

- RD KEY • 
RDR IGHT 

RDRIGHT 

RDRIGHT 

ROSP1 
READ 

READ 

READ 16 

<-786 > [SFCEEJ 
<-788) (SFCE C] 

(-715) ($FD35J \SE\ 

<-756) [SfOOCJ \SE\ 

<-3247> (Sf351J \SE\ 
<15815) ($3DC7J \SL\ 

Y-REG. CALLED BY RD2BIT AND READ 
MONITOR MEMORY LOCATION 'RDBYT2' 
MONITOR- READS BITS FROM CASSETTE TAPE UNTIL BYTE ACCU14ULATED (CALLED BY MONITOR 
READ MEMORY LOCAT 10'11 'RDBYTE' SHAPE l ABLE LOAD) 
CALLS RDKEY TO GET NEXT CHAR PLACED INTO A-REG. IF ESCAPE KEY PRESSED CALLS 'ESC1' 
FOR ESCAPE KEY PROCESSING; AFTER ESCAPE KEY AND KEY FOLLOWING HAVE BEEN READ & 
PROCESSED CONTROL RETURNS TO RDCHAR ROUTINE AS IF IT WERE JUST BEING ENTERED {A- X
V-REGS ALTERED} 
SAME AS RDCHAR EXCEPT BYPASSES ESCAPE KEY MONITOR SUPPORT; PICKS UP AND SAVE THE 
CHARACTER IN THE SCREEN AREA AT BASL.H CH CLEAVING Y-REG CONTAINING CONTENTS Of CH) 
IT THEN CHANGES THAT CHARACTER TO BLINKING TO INDICATE CURRENT CURSOR POSN; ASKS 
FOR NEXT INPUT CHAR TO BE PLACED IN A-REG BY DOING AN INDIRECT JUMP VIA KSWL•H 
WHICH IS NORMALLY POINTING AT KEYIN. RETURN IS THEREFORE TO THE CALLER OF RDKEY
NOT TO RDKEY ROUTINE ITSELF. SET-UP: A- X- Y-REGS NOT SIGNIFICANT; CV AND SASL-H 
SHOULD BE COMPATABLE POINTING IN THE SCROLL WINDOw; CH INDICATES HORIZONTAL 
POSITION WHERE CURSOR WILL BLINK. RESULTS: A-REG CONTAINS THE INPUT CHARACTER 
(WHICH MAY BE ANY CHARACTER INCLUDING ANY CONTROL KEY OR ESCAPE KEY);X-REG IS 
UNCHANGED: Y-REG CONTAINS CONTENTS OF CH; CV CH BASL-H REMAIN UNCHANGED {A- X-
Y-REGS ALTERED} 
INTEGER BASIC ENTRY TO ROUTINE TO READ AN INPUT FOR BASIC FROM KEYBOARD 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LABEL WHICH STARTS CODE TO 
DETERMINE If ONE IS READING CORRECT TRACK SECTOR AND VOLUME 

C-16964--16916) ($BDBC-$BDEC] \SH\DOS 3.3- INITIALIZE MAX RETRIES AT 48. READ ADDRESS FIELD VIA 'RDADR16' 
($B944). If GOOD READ BRANCH TO 'RDRIGHT' CSBDED>. IF BAD TRY AGAIN 
DECREMENTING RETRIES. If NONE LEFT PREPARE TO RECALIBRATE. DECREMENT RECAL 
COUNT. IF NO MORE THEN 'DRVERR' ($BE04>. OTHERWISE RESET RESEEKS AT 4 AND 
RECALl BRA TE ARM. TRY AGAIN 

(-16915--16893) ($8DED-$BE03] \SE\DOS 3.3- VERIFY TRACK. IF CORRECT BRANCH TO 'RTTRK' ($BE10) OTHERWISE GOTO 
'SETTRK' ($BE95) AND DECREMENT RESEEK COUNT. IF ZERO RECAL OTHERWISE RESEEK TRACK 

(-1308) ($FAE4] MONITOR MEMORY LOCATION 'RDSP1' 
(·111179--18076) ($88FD.$B964] \SB\DOS 3.1·3.z-3.2.1 (SEE S88DC FOR DOS 3.3 'READ') R~TS (READ-WRITE TRACK-SECTOR 

<-259) ($ FEFD] \ SE\ 

READ MODJLE. READS A SECTOR OFF THE DISK FORMING 410 ($19A) 5-BIT 
RIGHT-JUSTIFIED NIB3LES 
READS DATA FROM CASSETTE TAPE PUTTING 
A1L-H ($003C-$003D) AND CONTINUING TO 
BY A2L -H ($003E-$003F >. ALSO COMPUTES 
( $002E) 

F I R S T DATA REA 0 IN T 0 L OC A T I ON P 0 I NT E 0 T 0 B Y 
READ UNTIL DATA GOES TO LOCATION POINTED TO 
A RUNNING EXCLUSI'JE OR CHECKSUM IN 'CHECKSUM' 

<-18212--18109) ($88DCSB943] \SB\DOS 3.3 'READ' IN RWTS (READ-WRITE TRACK-SECTOR>. READS A SECTOR OFF THE 
DISK INTO SECONDARY BUFFER ($BC00-$BC55) HIGH TO LOW THEN INTO PRIMARY 
($BB00-$8BFf) LOW TO HIGH EN ROUTE TO OVERALL PROCESS OF FORMING $153 
RIGHT-JUSTIFIED 6-BIT NIBBLES 

------------------------------------------------------------------------------------------------------------------------
( R9) - READ 1 6 Prof. Luebbert's "What's Where in the Apple" ALP HA B E T I C A L G A Z E T TEE R 



NAME (DEC LOCN) (HEX LOCN] \USE-TYPE\- DESCRIPTION 
------------------------------------------------------- --------·---- -------------------------------------- ----~---------------
READADR (DOS 3.2) (-18075--17984> ($8965-$89C0] \SB\DOS 3.1-3.z-3.2.1 <SEE $8944 FOR DOS 3.3 'REAI>AI>R <DOS 3.2>'> 

RWTS (READ-WRITE TRACK SECTOR> READ ADDRESS MODULE. READS 
ADDRESSES ON THE SECTORS Of CURRENT TRACK UNTIL IT FINDS A 
SECTOR. THEN IT RETURNS PUTTING CHECKSUM INTO $002(;SECTOR INTO 
S002D:TRACK INTO S002E; AND VOLUME INTO S002f •. CARRY IS SET ON ERROR 

READADR-RDADR1 6 (DOS 3. 3> (.3)$8944-$899F] \SB\DOS 3.3 READADR. FUNCTION SAME AS READADR-RDAOR16 (DOS 3.2> 
READX1 <-254) ($FF02J 
REASON <-11293) ($D3E3J \SE\ 

REGDSP 

REGZ 
REL 

(-1321> ($FAD7J \SE\ 

(-321> ($ FEBFJ \ SE\ 
<-2816> CSF5COJ 

<-2804) [$F50CJ 
(-2794) [$F516J 

<-1736) ($F938] 
<-9818) [$D9A6J \SE\ 

(248) [$0Qf8] \P1\ 

REL 2 
REL 3 
REL A DR 
REMN 
REM S T K 
(RESET> ( - 6 0 66 ) ( $ E 8 4 E] \ S E \ 

RESET 
RESET 
RESETZ 
RESTOR 

(-1438) [$FA62J 
(-167> ($FF59J \SE\ 

(-2670> ($F592] 
<-10167> UD849J \SE\ 

RESTORE (-193) ($FF3F] \SE\ 

RESTR1 
RESUME 

(-188) ($FF44J 
(·3305) [$F317] \SE\ 

(RET W/0 GOSUB) (-986.3} [$D979J 
-RETURN- <-5 979) ($E8A5] \ SE\ 
RGDSP1 (-1318> ($FADAJ \SE\ 

RGT I M 
RND 

RND 

(16094) [$3EDEJ \SL\ 
<201-205) [$00C9-SOOCDJ \PS\ 

(-4178) [$EFAEJ \SE\ 

HI-RES GRAPHICS- READ WITHOUT HEADER 
CHECKS FOR ENOUGH ROOM IN MEMORY; CHECKS THAT ADDR Y-REGCMSB>&A-REG(LSBl 
LESS THAN FRETOP. MAY CAUSE GARBAGE COLLECTIO~. CAUSE OMERR If NO ROOM 
DISPLAY SAVED REGISTER CONTENTS FROM MEMORY LOCNS $0045-$0049 WITH 
PRECEDING CARRIAGE RETURN <SEE 'SAVE' ROUTINE AT $ff4A) {A- X-REGS 
ALTERED} 
MONITOR S/R TO DISPLAY REGISTERS 
MINIASSEMBLER MEMORY LOCATION 'REL' 
MINIASSEMBLER MEMORY LOCATION 'REL2' 
MINIASSEMBLER MEMORY LOCATION 'REL3' 
MONITOR MEMORY LOCATION 'RELADR' (RELATIVE ADDRESS) 
APPLESOFT- CALCULATE OFfSET IN Y-REG FROM TXTPTR TO NEXT COL(Q) 
APPLESOFT STACK POINTER SAVED BEFORE EACH STATEMENT 
RESET FACEXPC$0090) AND SOOA2 UACSIGN) & A-REG TO ZERO (A-REG=>O;x
Y-REG NOT ALTERED) 
AUTOSTART MONITOR MEMORY LOCATION 'RESET' 
CALL HERE HAS SAME EFFECT AS PUSHING RESET BUTTON 
MINIASSEMBLER MEMORY LOCATION 'RESETZ' 
APPLESOFT RESTORE FUNCTION - SET DATA POINTER (DATPTR> TO BEGINNING OF 
THE PROGRAM 
RESTORE 65~2 REGISTERS: CS0045>=>A-Reg; ($0046)=>X-Reg; ($0047l=>Y-Reg; 
($0048)=>P-Reg; {A- X- Y- P-REGS ALTERED} 
MONITOR MEMORY LOCATION 'RESTR1' 
APPLESOfT ERROR PROC- RESTORE CURLIN FROM ERRLIN & TXTPTR FROM ERRPOS. 
TRANSFER ERRSTK INTO 6502 STACK POINTER 
APPLESOFT - PRINT "RETURN WITHOUT GOSUB" THEN HALT AT APPLESOFT (]) LEVEL 
INTEGER BASIC ENTRY TO ROUTINE FOR RETURN FRO.., GOSUB 
DISPLAY SAVED REGISTER CONTENTS fROM MEMORY LOCNS $0045-$0049 WITHOUT 
PRECEDING CARRIAGE RETURN CSEE 'SAVE' ROUTINE AT $fF4A) (A- X-REGS 
ALTERED} 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'RGTIM' 
APPLESOfT FLOATING POINT RANDOM NUMBER {5-BYTE FLOATING POINT PACKED 
FORMAT C9=EXP CA-CO=MANTISSA) 
APPLESOFT FP- FORM A 'RANDOM' NUMBER IN FAC USING ORIGINAL VALUE IN FAC 
AS PARAMETER 'KEY' OR 'SEED'. MODIFIES MANY FP LOCNS 

RNDL-RNDH <78-79> [$0C4E-$004fJ \P2\ 16 BIT NO. RANDOMIZED WITH EACH KEY ENTRY DONE BY MONITOR KEYIN ROUTINE 
(AND BY MANY OTHER ROUTINES SUCH AS SERIAL & COMM CARD WHICH ARE USED TO 

- RND
RNG ERR 
RTA R 

RTBL 
RTMASK 

(-4274) ($Ef4EJ \SE\ 
(-4504) ($EE 68 J \P1 \ 

( - 2 'H 7> ( $F 4 7 D J \S E \ 

(-1255) [$FB19] 
<-2036) [$F80C J 

REPLACE KEYIN). RANDOMIZATION ACCOMPLISHED BY CONTINUOUSLY INCREMENTING 
WHILE AWAITING KEY30ARD INPUT. HIGH ORDER BYTE $4f 
INTEGER BASIC ENTRY TO RANDOM NUMBER GENERATOR 
INTEGER BASIC RANGE ERROR 
DENORMALIZE fP1 BY SHifTING M1<&E> RIGHT 1 BIT POSN & INCREMENTING X1 {A
X-REGS ALTERED} 
MONITOR MEMORY LOCATION 'RTBL' 
MONITOR MEMORY LOCATION 'RTMASK' 

-----------------------~-----------------------------------------------------------------------------------------------
READADR (DOS 3.2) - RTMASK Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME CDEC LOCN) (HEX LOCNJ \USE-TYPE\ -DESCRIPTION 
-------------------·------------- .... --------------------------------------------------------------------------------------------
RTMSKZ (-1921> [$F87FJ 
RTNJMP C-1327) ($FAD1] 
RTNL-RTNH (44-45) [$002C-$002D] 
RTS1 {-1999) ($f831J 
RTS2 C-1695) ($F<i61J 
RTS2B (-1041> [$fBEFJ 
RTS2D C-1234) (Sf82 EJ 
RTS3 <-1028) [$F8FCJ 
RTS4 C-981> [$FC2BJ 
RTS48 C-824> ($FCC8J 
RTS4C (-571> ($FDC5J 
RTS5 (-489> ($ fE 17] 
RTTRK <15856> ($.3DFOJ \SL\ 

MONITOR MEMORY LOCATION 'RTMSKZ' 
MONITOR MEMORY LOCATION 'RTNJMP' 

\P2\MONITOR RETURN POINTER (POINTS 
MONITOR MEMORY LOCATION 'RTS1' 
MONITOR MEMORY LOCATION 1 RTS2' 
MONITOR MEMORY LOCATION 'RTS2B' 
MONITOR MEMORY LOCATION 'RTS2D' 
MONITOR MEMORY LOCATION 'RTS3' 
MONITOR MEMORY LOCATION 'RTS4' 
MONITOR MEMORY LOCATION 'RTS4B' 
MONITOR MEMORY LOCATION 'RTS4C' 
MONITOR MEMORY LOCATION 'RTS5' 

TO SAVE AREA USED BY INSTRUCTION TRACE ROUTINE) 

DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEL WHICH ASSUMES RIGHT TRACK 
SELECTED AND BEGINS CHECK Of CORRECT VOLUME NUMBER ON DISKETTE 

RTTRK (-16880--16859) [$BE10-$BE25J DOS 3.3 -CHECK VOL# FOUND VS VOL# WANTED. IF NO VOL SPECIFIED NO ERROR OTHERWISE 
IF MISMATCH LOAD A-REG WITH $20 (VOLUME MISMATCH ERROR) AND EXIT VIA 'HNDLERR' 
($BE48) 

-RUN #N- C-4110) [$Eff2J \SE\ 
RUN <-10906) [$D566] \SE\ 
RUNMODE (217) [$00D9] \P1\ 
RUNMODE <217) ($00D9] \P1\ 

-RuN• 
RWT S 

C-4116) [$EFECJ \SE\ 
<15616) ($3DOOJ \SE\ 

(15616-16027) [$3D00-$3E9BJ 
<247) [$00F7J \P\ 

RWT S 
S16PAG 
SAME SLOT (15661) ($3D2DJ \SL\ 

INTEGER 3ASIC ENTRY TO ROUTINE TO RUN fROM LINE #N 
APPLESOfT - RUN THE PROGRAM IN MEMORY. THIS ROUTINE DOES NOT RETURN 
INTEGER BASIC MEMORY LOCATION 'RUNMODE' USED AS RUN MODE FLAG BYTE 
USED BY DOS TO TEST FOR D.IRECT-DEFERRED MODE USAGE. IF $AAB6 CONTAINS 0 AND BIT 7 
Of THIS LOCATION IS CLEAR DOS ASSUMES DIRECT MODE AND WILL NOT DO OPEN OR OTHER 
\l IRECT MODE COMMANDS 
APPLE INTEGER BASIC RUN ROUTINE (RUN FROM BEGINNING) 
DOS 3.1/3.2 READ\WRIJE A TRACK & SECTOR. UPON ENTRY A- & Y-REGS POINT AT IlO 
CONTROL BLOCK CIOB> 

\SB\DOS .3.1/3 .. 2 RWTS SUBROUTINE 
SWEET-16 MEMORY LOCATION 'S16PAG' 
DOS 3.2 RWTS (READ-WRITE TRACX-SECTOR) INTERIOR LABEl- STARTS CODE TO DETERMINE If 
SAME SLOT BEING USED 

SAME SLOT (-17100--17069) ($8D34-$8053J \SB\ENTER READ MODE AND READ WITH DELAY~ TO SEE If DISK IS SPINNING. SAVE 

SAV1 
SAVE 
SAVE 

(-180> [$FF4CJ 
C-10064) UD8BOJ \SE\ 
C-182> ($ff4A] \SE\ 

-sAve- c-3776> CSF140J \SE\ 
SB C691z-7423) [$1B00-$1CFFJ 
SCALE <231) ($00E7J \P1\ 
SCALE (807) U0327J \P1\ 
-sCRATCH• C-4096) ($FOOOJ \SE\ 
SCRL 1 ( -906) ( SFC76] 
SCRL2 (-884) ($FC8CJ 
SCRL3 (-875) [$FC95] 
SCRN (-1935) [$F871J \SE\ 

SCRN2 
-sc RN
scRou 
SCRTCH 
SECT 

C-1927> [$F879J 
(-7542) [$E28AJ \SE\ 
C-912) ($FC70J \SE\ 
<-10677) [$D64B] \Sf\ 

( 4 5) ( $ 00 2 D J \ P 1 \ 

RESULTS OF TEST AND TURN ON MOTOR ANYHOW 
MONITOR MEMORY LOCATION 'SAV1' 
APPLESOFT CASSETTE - SAVE THE PROGRAM IN MEMORY TO CASSETTE TAPE 
MONITOR S/R TO SAVE 6502 REGISTERS: (A-REG>=>$0045; CX-REG>=>$0046; 
<Y-REG>=>$0047; <P-REG>=>$0048; (S-REG)=>$0049 {NONE} 
INTEGER BASIC ENTRY TO ROUTINE TO SAVE A PROGRAM TO CASSETTE TAPE 
TEMPO~ARY LOCATION OF DOS ~2 RELOCATION CODE DURING DOS 3.2 BOOT {SB} 
HI-RES GRAPHICS SCALE FACTOR 
ON-THE-FLY SCALE FACTOR FOR DRAW- SHAPE• MOVE 
INTEGER BASIC ENTRY TO SCRATCH EVERYTHING ROUTINE 
MONITOR MEMORY LOCATION 'SCRL1' 
MONITOR MEMORY LOCATION 'SCRL2' 
MONITOR - CLEAR LINE (8ASL-HJ {WHOLE LINE} THEN SET NEW BASL•H FROM CV & WNDLFT 
GET (LOAD TO A-REG> LO-RES GRAPHICS COLOR OF POINTY-COORD= (A-REG); X-COORD= 
(X-REG) {A-REG ALTERED} 
MONITOR MEMORY LOCATJON 'SCRN2' 
INTEGER BASIC ENTRY POINT TO SCREEN x- y- COLOR VALUE FUNCTION 
MONITOR S/R TO SCROLL UP 1 LINE. {A- Y-REGS ALTERED} 
APPLESOfT INITIALIZATION- THE 'NEW' COMMAND. CLEARS PROGRAM VARIABLES & STACK 
DOS RWTS CREAD-WRITE TRACK-SECTOR) PARAMETER FOR CURRENT DISK SECTOR --------------·------- ------------·----------------~-------·----·---------------------------------------------------------- -------

RTMSKZ - SECT Prof. Luebbert's "What's Where in the Appte" ALP~ABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNJ \USE-TYPE\ -DESCRIPTION 
-------------·--·------------------------------~-~-~----------------.-----·-·-----------------~-- .. ------------~---------~------------
SEEK <15948) (S3E4CJ \SE\ DOS 3.2 RWTS <READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT SOFT ENTRY POINT OF SEEK 

SUBROUTINE 
SEEKABS COOS 3.2) 
SEEKABS (DOS 3.3> 

(-18016> (SB9AQ] \SB\DOS 3.2 'SEEKABS' 
(-18016--17924) (SB9AO-SB9fCJ \SB\DOS 3.3- MOVES DISK AREM TO DESIRED TRACK. CALLS ARM MOVE DELAY 

SUBROUTINE <SB9FD). ON ENTRY $0478 CONTAINS CURRENT TRACK; X-REG 
CONTAINS SLOT•16; A-REG DESIRED TRACK. ON EXIT X-REG UNCHANGED; 

S.EEKABS 

SEEKCNT 
SET ANO 

SET A N1 
SET AN2 
SETAN3 
-sEreuF
SETCOL 

SETGR 

C-17890--17777} (SBA1E-$BA8F] \SB\ 

(1275) (S04FB] \P1\ 
C-16296) UC058J \FF\ 

( - 1 6 2 94 ) ($ C 0 5 A] \ ff \ 
( -1 62 92) (SC 05 C] \F F \ 
C-16290) ($C05E] \FF\ 

<-3796> [SF12C] \SE\ 
<-1948> ($F864] \SE\ 

C-1216} ($FB40] \SE\ 

SETHCOL (-2324) [$F6EC] \SE\ 
-sETHOR- (-3810> ($f11EJ \SE\ 
SETHRL <-12288) (SDOOOJ \SE\ 
SETIFLG <-378) ($FE86] 
SETINV C-384) (SfE80] \SE\ 
SETKBO C-375) [SFE89] 
SETMOZ (-483) [SFE10] 
S ET M 0 0 E ( -4 8 8) ( SF E 1 8 ] 
SETNORM <-380) ($FE84] \SE\ 
SETPG3 C-1367) ($FAA9J 
•sETPRMPT- C-8186) (SE006] \SE\ 
SETPWRC C-1169) (SFB6FJ \SE\ 
SETTRK (16002> ($3E82] \SM\ 

SETTRK (-16747--16722> ($BE95-SBEAEJ 
SETTRK2 (16015) (S3E8F] \SM\ 
SETTXT <-1223) (SFB39J \SE\ 
SETVID C-365) (SFE93] 
SETWNO (-1205) (SFB4B] \SE\ 
SGN CFPSGN> C-5232) [$EB90] \SE\ 

-sGN- C-6308> (SE75CJ \SE\ 
SHAPEL-SHAPEH (26-27> ($001A-S001BJ \P2\ 
SHAPEX C81) ($0051] \P1\ 

A-REG Y-REG CLOBBERED; $0478 &S002A: FINAL TRACK:S27 PRIOR TRACK 
(JF SEEK NEEDED>. USES S0026;S0027;S002A;S002B. EXITS TO CALLER 
DOS 3.1-3.2-3.2.1 (SEE S89AO FOR DOS 3.3) RWTS (READ-WRITE TRACK SECTOR) 
SEEKABS MODULE. MOVES HEAD TO TRACK SPECifiED SY A-REG. $0478 IS CURRENT. 
RWTS DOES PHASE OFF FOR ALL fOUR BEFORE CALL 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR} SEEK C~UNTER PARAMETER 
VALUE<>O WHEN GAME ANO IS SET. POKE 0 TO CLEAR GAME l/0 OUTPUT ANO <3.5V 
AT PIN 15) 
POKE 0 TO CLEAR GAME I/0 OUTPUT AN1 (3.5V AT PIN 14) 
POKE 0 TO CLEAR GAME I/0 OUTPUT AN2 <3.5V AT PIN 13) 
POKE 0 TO CLEAR GAME I/0 OUTPUT AN3 <3.5V AT PIN 12) 
INTEGER BASIC ENTRY TO ROUTINE TO SET UP PROGRAM SAVE/LOAD PARAMETERS 
SET LO-RES COLOR TO COLOR CODE SPECIFIED BY A-REG FOR FUTURE PLOTTING 
{A-REG ALTERED} 4 

MONITOR SIR- SET GRAPHIC MODE (GR). THIS INCLUDES SETTING TO MIXED 
MODE:CLEARING GRAPHICS PART OF SCREEN; AND RESETTING 
WNDTOP-WNOLFT-WNOWDTH.WNOBTM & TABV {A-REG ALTERED} 
APPLESOFT HI-RES - SET COLOR TO CONTENTS OF X-REG (MUST BE LESS THAN 8> 
INTEGER BASIC ENTRY TO SET UP HEADER FOR SAVE/LOAD PARAMETERS 
HI-RES GRAPHICS INIT S/R CALL (ROM VERSION) 
MONITOR MEMORY LOCATION 'SETIFLG' 
MONITOR SIR TO SET VIDEO OUTPUT TO INVERSE 
MONITOR MEMORY LOCATION 'SETKB0 1 

MONITOR MEMORY LOCATION 'SETMOZ' 
MONITOR MEMORY LOCATION 1 SETMOOE' 
MONITOR S/R TO SET VIDEO OUTPUT TO NORMAL (NOT INVERSE) 
AUTOSTART MONITOR MEMORY LOCATION 'SETPG3' 
INTEGER BASIC ENTRY POINT TO SET UP 1 >1 PROMPT 
SET POWER CONDITION (AUTOSTART ROM ONLY) 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL - CODE SETS THE 
SLOT-DEPENDENT TRACK LOCATION 
DOS 3.3 - SET TRACK N 
DOS 3.2 RWTS (READ-WRITE INTERIOR LABEL 'SETTRK2' 
MONITOR SIR- SET SCREEN TO TEXT MODE. CLOBBERS ACCUMULATOR {A-REG ALTERED} 
MONITOR MEMORY LOCATIO~'SETVID' 

MONITOR SIR- SET NORMAL LOW-RESOLUTION GRAPHICS WINDOW 
APPLESOFT FP- CALLS SIGN AND FLOATS THE RESULT IN THE fAC. FAC••1 IF fAC 
WAS +;:Q If FAC WAS Q;•-1 IF FAC WAS -
INTEGER BASIC ENTRY POINT TO GET SIGN OF A NUMBER 
HI-RES POINTER TO SHAPE LIST (ON-THE-FLY SHAPE POINTER) 
HI-RES GRAPHICS SHAPE TEMP. 

SHAPXL ·sHA~XH (808.809) ($0328-50329] \P2\ S T ART-OF-SHAPE-TABLE POINTER 
SHLOAO <-11335) UD3B9) \SE\ 
S HL 0 A 0 (- 21 8 7) ( SF 7 7 5 ] \ S E \ 

SEEK - SHLOAO 

HI-RES GRAPHICS SHLOAD S/R CALL 
APPLESOFT HI-RES. LOADS SHAPE TAB~E INTO MEMORY fROM TAPE ABOVE MEMSIZ 
CHIMEM> AND SETS POINTER AT S00E8 

Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETJEER 



NAME (DEC LOCN) [HEX LOCN) \USE-TYPE\ - DESCRIPTION 

SIGN (47) [S002FJ \P1\ 

S I G N ( 2 4 3 ) [ SO 0 f 3 J \ P 1 \ 
SIGN (-5246> [SEB82J \SE\ 

SIN (-4111> UEFF1J \SE\ 

SLOOP (-1351) [SFAB9) 
(SLOT II> <2040> [S07F8J 

SLOT C1528+S> [SC5F8+S) \P1\ 
S NG fL T ( - 7 4 2 3) [ SE3 01 ) \ S E \ 

SOFTEV (1010.1011) [S03Fz-S03F3] \P2\ 

SPACE C-2631 > [Sf5B9) 
SPDBYT (241) (S00F1] \P1\ 

S PK R (- 1 6 3 3 6 ) ( SC 0 3 0] \ H 1 \ 
SPKR (-16336--16321) [SC030-SC03Fl \H1 \ 

SPNT (73) [$0049] \P1\ 

SQR ( F PSQR) <-4467> (SEE8DJ \SE\ 

(SQR(.5)) <-5843--5839) [$E92D-SE931) \P5\ 
(SQR(2)) <-5838--5834) (SE93z-SE936] \P5\ 
SRCH2L ·sRCH2H c21o· 21 1> rsooD2-sOOD3J \P2\ 
SRCHL.SRCHH <208.209) (S00DO.S00D1J \P2\ 
STAT C2040+S> (S07f8+S] \P1\ 

STATUS 

STATUS 

S TB ITS 

STEP 

STEPZ 
-sTEP-
STILLON 

STI TLE 
S TK I NI 
STOADV 

<72> [$0048) \P1\ 

(1400+S) (S0578+SJ \P1\ 

<1272+S) (S04F8+S) \P1\ 

(-1469) [SFA43) 

(-316> (SFEC4J 
<-3463) (SF279] \SE\ 

(15646) (S3D1E) \SL\ 

(-1179) [SFB65] 
<-10621 > (SD683J \SE\ 
(-104(1) (SFBFOJ \SE\ 

$01 BIT SET AFTER CALL TO MULPM OR ~IVPM (SIG~ED 16 ~IT MULT OR DIV) TO 
SPECIFY WHETHER COMPLEMENT NEEDED (NOTE liJULPM & DIVPM IN OLD MONITOR ONLY 
• NOT I N A U T 0 S TA R T> 
MONITOR & FLOATING POINT ROUTINES MEMORY LOC 'SIGN' 
APPLESOFT FP - SETS A-REG ACCORDING TO VALUE OF FAC. ON EXIT A-REG=1 IF 
FAC +:A-REG•O IF FAC=O;A-REG•SFF If FAC- {X- Y-REGS NOT ALTERED} 
APPLESOFT FP- COMPUTE THE SINE OF THE NUMBER IN FAC. RESULT TO FAC. 
MODIFIES INDEX CHARAC COMPTRTYP XORFPSGN & MANY OTHER FP LOCNS 
AUTOSTART MONIYOR MEMORY LOCATION 'SLOOP' 
CONTAINS SLOT NUMBER (IN THE FORMAT SCS) Of THE PERIPHERAL CARD CURRENTLY 
ACTIVE -PRINT PEEKC2040>-192 YIELDS SLOT # IN DECIMAL FORMAT 
DOS READ-WRITE-TRACK-SECTOR CRWTS) 'SLOT' =HOLDS SLOT NUMBER USED 
APPLESOFT - FLOAT THE UNSIGNED INTEGER IN Y-REG INTO FAC. RESETS VALTYP. 
(RESET Y-REG•O} 
AUTOSTART ROM RESET VECTOR USED FOR SOFT ENTRY TO LANGUAGE IN USE -
DEFAULT VALUE SE003 FOR APPLESOFT 
MINIASSEMBLER MEMORY LOCATION 'SPACE' 
USED FOR SPEED CONTROL OF OUTPUT & DISPLAY. SPEED 0-255 CSOO-SFF> 
CONTROLS INSERTED DELAY) 
PEEK TO TOGGLE SPEAKER (PRODUCES A 'CLICK') 
SPEAKER TOGGLE FLIP FLOP. READ ONLY - DO NOT ~RITE TO THES ADDRESSES 
WHICH ARE DECODED AS SAME SINGLE BIT LOCN 
USER STACK POINTER (S-REGISTER> SAVED HERE BY MONITOR 'SAVE' ROUTINE ON 
BRK & DURING TRACE 
APPLESOFT FP- TAKE SQUARE ROOT OF FAC. RESULT TO fAC. MODIFIES CHARAC 
INDEX AND MANY OTHER FP LOCNS 
APPLESOFT FP CONSTANT SQRC.5) = .707 •• 
APPLESOFT FP CONSTANT SQR(2) = 1.414 ••• 
INTEGER BASIC MEMORY LOCATION 'SRCH2L' (SECOND VARIABLE SEARCH POINTER> 
INTEGER BASIC MEMORY LOCATION 'SRCHL' (POINTER TO SEARCH VARIABLE TABLE) 
APPLE COMMJNICATIONS INTERFACE CARD IN SLOT #S - STATUS (SEE ACIC MANUAL 
PG 1 7). E.G. POKE 2040+S-17 
USER STATUS REGISTER (P-REGISTER> SAVED HERE ON BRK TO MONITOR & DURING 
TRACE. WARNING: INITIALIZE BEFORE G FUNCTION TO AVOID DECIMAL MODE If DOS 
HAS BEEN USED 
EXAMPLE: APPLE SERIAL INTERFACE IN SLOT #S: PARITY CHECKSUM OPTIONS (SEE 
MANUAL) 
EXAMPLE: APPLE SERIAL INTERFACE IN SLOT #S: CONTAIN NUMBER Of STOP BITS 
(INCLUDING 1 PARITY BIT> 
MONITOR SIR- PERFORM A SINGLE STEP (NOT AVAILABLE WITH AUTOSTART ROM>. 
EXECUTES ONE INSTRUCTION AT CPCL.H) WITH REGISTER RESTORE BEFORE; 
REGISTER SAVE AFTER; UPDATE OF PCL•H; DISPLAY Of INSTRUCTION & DISPLAY OF 
RESULT REGISTERS 
MONITOR MEMORY LOCATION 'STEPZ' 
INTEGER BASIC ENTRY TO ROUTINE TO HANDLE STEP fUNCTION fOR fOR/NEXT LOOP 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR lABEL STARTS COD£ WHICH 
SENSES IF MOTOR STilL ON 
AUTOSTART MONITOR MEMORY LOCATION 'STITLE' 
APPLESOFT STACK INITIALIZATION- CLEARS THE STACK 
MONITOR -LOAD Y FROM CH; STORE A-REG TO SCREEN AT (BASL>•r; AND GOTO 
ADVANCE (SFBF4) {A- Y-REG ALTERED} 

---------·--------------------- ---·-------------------· ------------- ----------------~---- -----·····------ --~--~-----·- --~· --.----
SIGN - STOADV Prof. Lt.tebbert 's "What • s Where in the Apple" AlPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCNJ \USE-TYPE\ - DESCRIPTION 
---------------------.---------------------~-·-.--------------·------------ .... --·--- .. -....-----··--·---·---·---·-·---·---~-···---
•sTOPPED AT- C-5949) CSE8C3) \SE\ INTEGER BASIC ENTRY TO ROUTINE TO PRINT 'STOPED AT LINE#' 
STOR C-501> CSFEOBJ MONITOR MEMORY LOCATION 'STOR' 
STREND (109-110) [S006D-S006EJ \P2\APPLESOFT STORAGE END POINTER (POINTS TO TOP Of ARRAY STORAGE I.E. TO END OF 

STRINI 

S TR L1 T 
STRLT2 

S TR NG1 
STRNG2 
STROUT 

STRPRT 
STRSPA 
STRTXT 
STX TPT 
SUBFLG 
SUBTBL 
SUBTBL 

C-7211) [SE3D5J \SE\ 

C-7193) [SE3E7J \SE\ 
C-7187> [SE3EOJ \SE\ 

(171-172> CSOOAB-SOOACJ 
(173-174) CSOOAD-SOOAE] 
C-9414) (SDB3A] \SE\ 

(-9411) (SDB3D] \SE\ 
(-7203) (SE3DDJ \SE\ 
C-8575) [SDE81J \SE\ 
<-10601 > [SD697J \SE\ 
<20) ($0014] 
<-29) [$FFE3] ' 
C-29--23> (SFFE3-SffE9J 

NUMERIC STORAGE IN US~) 

APPLESOFT - GET SPACE FOR CREATION Of A STRING & CREATE DISCRIPTOR fOR IT IN 
DSCTMP. ON ENTRY A-REG : lEN OF STRING. 
APPlESOFT - STORE A QUOTE IN ENDCHR AND CHARAC SO THAT STRlT2 WILL STOP ON IT 
APPLESOFT - BUilD DESCRIPTOR FOR STRING liTERAL WHOSE 1ST CHAR POINTED TO BY Y-REG 
(MSB) & X-REG (LSB>. PUT INTO TEMPORARY & POINTER TO IT IN FACMO-FACLO. 

\P2\APPLESOFT POINTER TO A STRING USED IN 'MOVINS' STRING UTiliJY 
\P2\APPLESOFT POINTER TO A STRING USED IN STRLT2 STRING UTILITY 

APPLESOFT - PRINT STRING POINTED TO BY Y-REG CMSB) & A-REG CLSB>. STRING MUST END 
WITH A ZERO OR QUOTE 
APPLESOH - PRINT A STRING WHOSE DESCR.IPTOR IS POINTED TO BY FACMO-fACLO 
APPLESOFT - JSR TO GETSPA. STORE THE POINTER & LENGTH IN DSCTMP. 
APPLESOfT - SET Y-REG CMSB> & X-REG<LSB> TO TXTPTR + CARRY BIT AND FALL INTO STRliT 
APPLESOfJ INITIALIZATION - SET TXTPTR TO BEGINNING Of PROGRAM 
APPLESOFT SUBSCRIPT flAG: $00= SUBSCRIPTS ALLOWED:S80• SUBSCRIPTS NOT ALLOWED 
'SUBTBL' L.S.B. ADDRESS-1 OF BASCONT SUBROUTINE 

\PB\TABLE Of SUBROUTINE ADDRESSES -1 {INDEX PC WITH TBL ITEM FOR SIR ENTRY}: (ADDRESS 
MSB • SfE; LSB a TABLE ENTRY +1) 

-suBTRACTIJN- <-6270) ($E782J \SE\INTEGER BASIC ENTRY POINT TO SUBTRACTION fUNCTION 
SYNCHR C-8512) [SDECO] \SE\ APPLESOH SYNTAX CHARACTER CHECK- CHECKS TO VERIFY TXTPTR PO.INTS TO SAME CHARACJER 

AS THAT .lN A-REG. NORMAL EXIT THRU CHGET TO GET NEX CHAR FROM INPUT BUFfER OTHEJISE 
SYNTAX ERROR. TXTPTR NOT MODifiED. {Y-REG RESET TO ZERO} 

SYNPAGL-SYNPAGH C254.255J UOOFE-SOOFF.J INTEGER BASIC SYNTAX PAGE POINTER. IF $00ff NOT ZERO THEN ERROR CONDITION 
EXISTS 

SYNSTKOX (253> [SOOFD] \P1\ INTEGER BASIC MEMORY LOCATION 4 SYNSTKDX' (SYNTAX STACK INDEX VALUE) 
SYNSTKH C88) [$0C58J INTEGER BASIC MEMORY LOCATION 'SYNSTKH' 
SYNSTKL <128-159} [S0080-S009f] INTEGER BASIC MEMORY LOCATION 'SYNSTKL' (SYNTAX STACK LOCATION) 
-sYNTABL• C-5120--4609) [SEC00-SEDff] \PB\INTEGER BASIC SYNTAX TABLE 
(TABLE1 DOS 3.2.1> C-17780) [SBA8C] \SB\OOS 3.2.1 RWTS OPERATION TIMER ROUTINE TABLE1 
TABV C-1189) [$FB5BJ \SE\ PLACE CURSOR AT LINE CA-REG) COLUMN CCHJ SETTING CV AND BASL-H FROM A-REG 

-rAe
TAN 

(-6236} [SE7A4J \SE\ 
<-4038) UF03A] \SE\ 

T.APEIN 
TAPE IN 
TAPE OUT 
TAPE OUT 

<-16288> (SC060J 
[ S C 0 6 0 /8 ] \H 1 \ 

C-16352) ($C020] \H1\ 
<-16352--16337> rsco2o-sco2FJ 

TEMP C44 ·4 5> r soozc-soo2DJ \P2\ 
TEMP1 (147-1 51) [$0093-$0097] \P5\ 
TEMP2 <152-156) (S0098-S009CJ \P5\ 
TEMP3 (138-142> [S008A-S008E] \PS\ 
TEMPPT <82) {$0052] \P1 \ 
<TEXTLNO) [S0400-S0427.J \BB\ 
CTEXTLN1) [S048Q-S04A7J \BB\ 
CTEXTLN10) [S0528-S054F.J \BB\ 
<TEXTLN11> [$05A8-S05CF] \BB\ 

{A-REG ALTERED} 
INTEGER BASIC ENTRY POINT TO HORIZONTAL TAB FUNCUO .. 
APPLESOfT FP - COMPUTE THE TANGENT Of THE NUMBER IN FAC. RESULT TO fAC. 
MODIFIES CHARAC INDEX XORFPSGN AND MANY OTHER FP LOCNS 
MONITOR MEMORY LOCATION 'TAPEIN' 
STATE OF 'CASSETE DATA IN' APPEARS IN BIT 7 
PEEK TO TOGGLE CASSETTE OUTPUT CCREATE A 'CLICK' ON RECORDING) 
\H1\CASSETTE OUTPUT TOGGLE FliP FLOP. READ ONLY DO .. OT WRITE TO THESE ADDRESSES 
WtilCH ARE DECODED AS SAME SINGLE BIT t.OCN 
DOS RWTS <READ-WRITE TRACK-SECTOR TEMPORARY STORAGE fOR ADDRESS INfORMATION 
APPLESOfT REGISTER TEMP1 fOR FLOATING POINT MATH PACKAGE !PACKED 5-B'fTE FORMAT) 
APPLESOfT FLOATING POINT MATH PACKAGE REGISTER TEMP2 (PACKED 5-BYTE FORMAT> 
APPLESOfT REGISTER TEMP3 FOR FlOATING POINT MATH PACKAGE (PACKED 5-BYTE FORMAT) 
APPLESOfT TEMPORARY POINT - LAST USED TEMPORARY STRING DESCRIPTOR <SEE DSCTMP) 
VIDEO SCREEN BUFfER TEXT LINE 0 
VIDEO SCREEN BUFFER TEXT LINE 1 
VIDEO SCREEN BUFFER TEXT LINE 10 
VIDEO SCREE .. BUffER TEXT LINE 11 

---------------------------------<-----..... --.. --.. -----"~""·--------.. --------~-----------------~,.--- .. ---·---------~----·----------
STOf'PED AT - (JEXTLN Pr.of. Lu·ebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCN] \USE-TYPE\ -DESCRIPTION 
_________ !,_ ___________ , ____________________________________________ ,_ ___ ·-~----------------------~---------------------~---

<TEXTLN12) (S0628-S064F] \BB\ 
<TEXTLN13) (S06A8-S06CFJ \BB\ 
<TEXTLN14) (S0728-$074FJ \88\ 
<TEXTLN15) (S07A8-S07C F] \BB\ 
<TEXTLN16) (S0450-S0477] \BB\ 
<TEXTLN17) ($04D0-S04f7] \8B\ 
CTEXTLN18) (S0550-S0577] \88\ 
CTEXTLN19) (S05DO-.S05F7J \88\ 
CTEXTLN2) ($050D-S0527J \BB\ 
<TEXTLN20) (S06=D-S0677J \BB\ 
CTEXTLN21) (S 0600-S06F 7] \8B\ 
CTEXTLN22> ($0750-$0777] \BB\ 
CTEXTLN23> (S07DO-S07F7J \8B\ 
<TEXTLN3) ($0580-S05A7J \BB\ 
<TEXTLN4) (S060D-S0627J \88\ 
<TEXTLN5) (S068D-S06A7] \BB\ 
<TE XTLN6) (SO 700-$07 27] \BB \ 
<TEXTLN7> (SQ780-$07A7J \68\ 
<TE X Tl N8) (SO 42 8-$04 4F] \B8 \ 
CTEXTLN9) (S04A8-S04CFJ \BB\ 
<TEXTMACROLINE2) (1280-1399) 

VI DE 0 SCREEN BUFf E R TEXT liNE 1 2 
VIDEO SCREEN BUFFER TEXT LINE 13 
VIDEO SCREEN BUFFER TEXT LINE 14 
VIDEO SCREEN SUFFER TEXT LINE 15 
VIDEO SCREEN BUffER TEXT LINE 16 
VI D E 0 S C RE EN BUff E R TE X T Ll N E 1 7 
VIDEO SCREEN BUFFER TEXT LINE 18 
VIDEO SCREEN BUffER TEXT LINE 19 
VIDEO SCREEN BUFFER TEXT LINE 2 
VIDEO SCREEN BUFFER TEXT LINE 20 
VIDEO SCREEN BUffER TEXT LINE 21 
VIDEO SCREEN BUFFER TEXT LINE 22 
VIDEO SCREEN BUFFER TEXT LINE 23 
VIDEO SCREEN BUFFER TEXT liNE 3 
VIDEO SCREEN BUffER TEXT LINE 4 
VIDEO SCREEN BUFfER TEXT LINE 5 
VIDEO SCREEN BUFFER TEXT LINE 6 
VIDEO SCREEN BUFFER TEXT LINE 7 
VIDEO SCREEN BUFfER TEXT LINE 8 
VIDEO SCREEN BUFFER TEXT LINE 9 

[$0500-$0577] \H8\TEXTVIDEO DISPLAY - SUBPAGE 2. CONSISTS OF TE~T LINES 2- 10 & 18 
FOLL~WED BY AN 8-BYTE BLOCK FOR I-0 PERIPHERALS 

TEXTTA8 (103-104) ($0067-$0068] \P2\ APPLESOFT TEXT TABLE POINTER (POINTS TO TO BEGINNING Of PROGRAM TEXT • DEFAULT 
VALUE $0801 

(TIMER DOS 3.1-3.2) (-17793) [$8A7FJ \S8\DOS 3 .. 1-3.2 RWTS OPERATION TIMER ROUTINE 
(TIMER DOS 3.2.1) C-17797) ($BA7BJ \SB\DOS 3.2.1 RWTS OPERATION TIMER ROUTINE 
TITLE (-1271) (SFB09J AUTOSTART MONITOR MEMORY LOCATION 'TITLE' 
-TO/FOR- <-5808) (SE950] \SE\ INTEGER BASIC ENTRY POINT TO ROUTINE TO HANDLE LOOP COUNTER II TO II STEP II 
Ti>KNDX (241> (S0CF1J \P1\ INTEGER BASIC MEMORY LOCATION 'TOKNDX' (TOKEN INDEX VALUE) 
TOKNDXSTK (209-240> [S00D1-SOOFOJ INTEGER BASIC MEMORY LOCATION 'TOKNDXSTK' ('TOKEN INDEX STACK?) 
<TOOCOMPLEX) (-7120> fSE430J \SE\ APPLESOFT - PRINT "fORMULA TOO COMPLex•• THEN HALT AT APPLESOfT (]) LEVEL 
TOSUB C-66) (SFFSE] MONITOR & MINIASSEMBER MEMORY LOCATION 'TOSU8' 
TRACE C-318> (SFEC2J \SE\ CALL TO PERFORM MONITOR TRACE 
-TRACEIT- (-3715) (SF17D] \SE\ INTEGER BASIC ENTRY TO ROUTINE TO EXECUTE THE TRACE FUNCTION 
-TRACE- C-3727) (SF171] \SE\ INTEGER BASIC ENTRY TO ROUTINE TO SET TRACE MODE FOR EXECUTION 
TRACK - TRKN C46l {S002EJ \P1\ DOS RWTS (READ-WRITE TRACK-SECTOR) TRACK NUMBER 
TRKCNT (65) (S0041] \P1\ DOS DISK SYSTEM FORMATTER SPECIAL TRACK COUNTER 
TRKDON (16243-16340) (S3F73-$3fD4] \SS\DOS 3.2 DISK fORMATTER C~ECK TRACK fORMATTING ROUTINE 
TRKDON C-4237) ($EF73] \SE\ DOS 3.2 DISk FORMATTER INTERIOR LABEL AT POINT WHERE TRACK FORMATTING IS DONE 

TRK F RM 
TRYADR 
TRYADR2 
TRY NEXT 
TRYTRK 

TRYTRK 

TRYTRK2 

(16046) ($3EAEJ \SL\ 
(15776) ($3DAOJ \SL \ 
(15784) ($3DA8J \SL\ 
<-2724) (SF55CJ 

(15754) ($3D8AJ \SL\ 

AND CHECKING OF THAT fORMATTING BEGINS 
DOS 3.2 DISK FORMATTER LABEl AT POINT WHERE TRACK FORMATTING 9EGINS 
DOS 3.2 RWTS CREAD-WR.ITE TRACK SECTOR) INTERIOR LABEL 'TRYADR' 
DOS 3.2 RWTS (READ-WRITE TRACK SECTOR) INTERIOR LA3El 'TRYADR2 
MINIASSEM8LER MEMORY LOCATION 'TRYNEXT' 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEL - TRY DISK TRACK AS PART 
Of LOCATING CORRECT SECTOR FOR READ 

C-16981--16965) ($BDAB.$BDBBJ \SB\DOS 3.3- GET COMMAND CODE. If NULl EXIT VIA 'ALLDONE' CSBE46) TURNING OFF 
DRIVE & RETURNING TO CALLER. If COMMAND CODE=4 BRANCH TO 'FORMDSK' CSBEbD>; 
OTHERWISE MOVE LOW BIT INTO CARRY CSET=READ;CLEAR=~RITEl AND SAVE VALUE ON 
STATUS REG. IF WRITE OP~ DAT-A IS PRENIBBILIZED VIA 'PRENIB16' (SB800) 

<15771> (S3D9BJ \Sl\ DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR INTERIOR LABEl 'TRYTRK2' ------·----... ----------------------~-..-------------------- .. ~------------------·---------------------------------------------·---
<TEXTLN12) - TRYTRK2 Prof. Luebbert•s "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN> [HEX LOCN] \USE-TYPE\ - DESCRIPTION 

<TWO PI) <-3989--3985) [$F068-$ F06F] 
TXTCLR (-16304) [$C05CJ \H1\ 
TXTNDX (200) [$00C8) 
TXTNDXSTK {168-199) [$00A8-$00C7J 
TXTPTR (184-185) [$00B8-$00B9] \P2\ 
TXTSET <-16303l [$C051J \H1\ 
(UNDEF' D STMT PR T) (-9860) [ $D97CJ 
-uNPACC <-8083) [$E06D] \SE\ 
UP- CURSUP (-998) ($FC1AJ \SE\ 
USR (-310) [$FECA] 
USRADR (1016) [$03F8] 
V2 (45) [$002D) \P1 \ 

\P5\APPLESOFT 5-BYTE FLOATING POINT CONSTANT 2•PI = 6.2832 ••• 
POKE TO 0 TO SET fROM TEXT TO GRAPHICS MODE WIO ClEARING SCREEN 
INTEGER BASIC MEMORY LOCATION 'TXTNDX' <TEXT INDEX VALUE) 
INTEGER BASIC MEMORY LOCATION 'TXTNDXSTK' (TEXT INDEX STACK) 
TXTPTR - POINTS AT NEXT CHAR OR TOKEN FROM PROG (CIA DEC 78) 
POKE TO 0 TO SET FROM GRAPHICS TO TEXT MODE W/0 RESETTING SCROLLING WINDOW 
APPLESOFT- PRINT "UNDEF'D STATEMENT" THEN HAL~ AT APPLESOFT ())LEVEL 
INTEGER BASIC ENTRY POINT TO UNPACK TOKENED CODE TO MNEMONICS 
MONITOR S/R TO MOVE CURSOR UPWARD (If POSSIBLE) {A-REG ALTERED} 
MONITOR MEMORY LOCATION 'USR' 
IN MONITOR MODE KEYBOARD ENTRY OF CTL-Y WILL CAUSE JSR HERE 
90TTOM PT OF LO-RES VERT LINE DRAWN BY VLINE. RANGE: 0-19(-$21) FOR MIXED SCR; 
0-23 r·s17> FOR FUll SCR 

·vALGETL.VALGETH- (206-207> [$00CE-$00CFJ \P2\INTEGER BASIC PRIMARY EVALUATOR TEMPORARY LOCATION 
-vALL-VALH• (206-207) [$00CE-$00CFJ \P2\INTEGER BASIC 16-BIT TEMPORARY VALUE FOR MATHEMATICAL OPERATIONS 
VALTYP C17) [$0011] APPLESOFT FLAG FOR lAST FAC (FLOATING ACCUMULATOR) OPERATION: $00 = NUMBE~; 
VAR PNT 
V ART AB: 

(131-132> [$0083-$0084] \P2\ 
(105-106) [$0069-$006A] \P2\ 

VARTIO (-10000) [$D8F() \SE\ 
- V E R 8 A D L - ( - 56 1 6--5 4 9 7) [ $ E A 1 o- $ E A 8 7] 
·vERBADRH- (-5496) [$EA88J \PB\ 
VERBNOW <214) [$00D6) \P1\ 
VFY (-458) [$FE36] \SE\ 
VFYOK (-424) [$FE58] 
VIDOUT (-1027> [$FBFD] \SE\ 

VIDWAIT 
VLI NE 

VLI NEZ 

-vL IN
VOL UME 
VTAB 

VTABZ 
-vTAs· 
WAIT 

WAIT2 
WAI T3 
WBYTE 
WINBLB2 
WINBLC 
WLOOP 
WNOBTM 
WND L F T 
WND TOP 

(-1160) [$FB78J 
C-2008) [SF828J \SE\ 

(-2010) [$F826] \SE\ 

<- 4 4 1 0) [$EE C 6 J \ S E \ 
(47> [S002FJ \P1\ 

<-990> [SFC22J \SE\ 

(-988) [SFC24J \SE\ 
<-4521> [SEE57J \SE\ 

(-856) [$ FCA8] \ SE\ 

(-855> [SFCA9) 
(-854) [SFCAAJ 
(16315> [S3FBB] \SL\ 

(16331) [S3FCB] \SL\ 
C-4147> [SEFCD] \SL\ 

(16256) ($3F80J \SL\ 
<35) [$0023] \P1\ 
<32) [$0020) \P1\ 
(34) [$0022] \F1\ 

$FF=STRING 
APPLESOFT POINTER TO THE LAST-USED VARIABLE'S VALUE (USED BY PTRGET) 
APPLESOFT VARIABLE TABLE POINTER - POINTS TO TO START Of SIMPLE VARIABLE SPACE 
(AT END Of APPLESOFT PROGRAM TEXT) 
APPLESOFT CASSETTE - SET UP A1 & A2 TO SAVE 3 BYTES ($0050-$0052) FOR LENGTH 

\PB\INTEGER BASIC VERB DISPATCH TABLE LOW BYTE 
INTEGER BASIC VERB DJSPATCH TABLE HI BYTE 
INTEGER BASIC \!EMORY LOCATION 'VERBNOW' (VERB CURRENTLY IN USE) 
MONITOR SIR TO PERFORM A MEMORY VERIFY (A1-A2 TO A4) 
MONITOR MEMORY LOCATION 'VFYOK' 
MONITOR SIR- OUTPUT A-REGISTER AS ASCII ON TEXT SCREEN OR PROCESS CONTROL 
CHARACTER. If (A)<$80 GOTO STOADV; =$87 SOUND BELL; =$88 GOTO as; =S8A GOTO 
LF; =S8D GOTO CR; >S9F GOTO STOADV; OTHERWISE IGNORE ENTRY SCREEN RTS 1 
AUTOSTART MONITOR MEMORY LOCATION 'VIDWAIT' 
LO-RES PLOT VERT LINE AT X-COORD = (Y-REG) AND Y-COORD FROM (A-REG> THRU 
CS002D) {A-REG ALTERED} 
LO-RES PLOT VERTICAL LINE AT X-COORD = (Y-REG> AND Y-COORD FROM 
(A-REG)+1+CARRY THRU (S002D> {A-REG ALTERED} 
INTEGER BASIC ENTRY POINT TO DRAW A LO-RES VERTICAL LINE 
DOS RWTS (READ-WRITE TRACK-SECTOR) DISK VOLUME NUM3ER 
PERFORM A VERTICAL TAB TO ROW SPECIFIED IN A-REG (S0-$17). SET BASL-H fROM CV 
(AND WNDLFT) {A-REG ALTERED} 
SET BASL-H FROM (A-REG> AND WNDLFT WITHOUT REGARD TO CV {A-REG ALTERED} 
INTEGER BASIC ENTRY TO VERTICAL TAB fUNCTION 
CALL FOR WAIT LOOP. WAIT ESTIMATED AT 2.5A.}+13.5A+13 WAIT CYCLES OF 1.02 
MICROSECONDS W!iERE A IS CONTENTS Of A-REG WHEN SIR CALLED 
MONITOR MEMORY LOCATION 'WAIT2' 
MONITOR MEMORY LOCATION 'WAIT]' 
DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING OF TIGHT TIMING ROUTINE 
DOS 3.2 DISK F:>RMATTER INTERIOR LABEL 'WINBLB2' 
D 0 S 3. 2 D I S K F 0 R M A T I N TE R I 0 R L ABEL ' 1111 N B L C ' 
DOS 3.2 DISK FORMATTER INTERIOR LABEL AT BEGINNING Of 26 MICROSECOND WAIT LOOP 
BOTTOM LINE OF SCROLL WINDOW: RANGE (WNOTOP)+1 TO 24<518). 
LEFT COLUMN OF SCROLL WINDOW: RANGE 0-39 OR so·s27. USEI> ONLY IN VTABZ. 
TOP LINE OF SCROLL WINDOW: RANGE 0-22($16) FOR FULL TEXT SCREEN 20-22($14-$16) 
FOR MIXED SCREEN 

(TWO PI) - WNDTOP Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCN] \USE-TYPE\ -DESCRIPTION 

WNDWDTH (33) [$0021] \P1\ 
WNIBLA (16330) [$3FCAJ \SL\ 
WR1 (-300) [$FED4] 
W RBI T (- 8 1 0) [ $ FC D 6 J 
WRBYT2 (-273) [$fEE F] 
W RB YT E (- 27 5) [$FEE D] 
WRIT (15922) [$3E32J \SL\ 

WRIT C-16815--16807) [$BE51-$B£59J 

(16098) [$3EE2J \SL\ 

WIDTH Of THE SCROLL WINDOW: RANGE:1 TO 40-(WNDLFT> OR $1 TO $28 - (WNOLFT) 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WNIBLA' 
MONITOR MEMORY LOCATION 'WR1' 
MONITOR -WRITES A BIT TO CASSETTE TAPE CCALLED BY oiRBYTE AND HEAOR) 
MONITOR MEMORY LOCATION 'WRBYT2' 
MONITOR - USES WRBIT TO WRITE 10 BITS TO CASSETTE TAPE 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR) INTERIOR LABEL AT START Of CODE TO WRITE 
NIBBLES TO DISK IF NOT WRITE PROTECTED 
DOS 3.3- WRITE A SECTOR USING 'WRITE16' ($B82A); IF GOOD WRITE EXIT VIA 
'ALLDONE' ($BE46) OTHERWISE LOAD A-REG WITH $10 (WRITE PROTECT ERROR) AND EXIT 
VIA 'HNDLERR' ($BE48) 

WRIT2 
WRIT3 
WRITE 

(16103) [$3EE7J \SL\ 
(-18326--18180) [$B86A-SB8FC) 

DOS 3.2 OISK FORMATTER INTERIOR LABEL 'WRIT2' 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WRIT3' 

\SB\DOS 3.1·3.2-3.2.1 (SEE $B82A FOR DOS 3.3 'WRITE') RWTS (READ-WRITE 

WRITE C-307> [SFECDJ \SE\ 

WRITE16 (DOS 3.3> ( -1 8390--1824 9) 

WRITSF 
WRNIBL 
WRT APE 
WRTRK 

<16102) [$3EE6J \SL\ 
(-4146) [$EFCEJ \SL\ 
<-795) [$FCE5J 

(16068> [$3EC4] \SL\ 

TRACK-SECTOR) WRITE MODULE. WRITES A SUFFER Of 410 ($19A) 5-BIT 
RIGHT-JUSTIFIED NIBBLES ONTO THE DISK SURFACE AS A SECTOR CONVERTING THEM T:> 
A 8-B IT 'DISK BYTE' F 0 R MAT FIRST 
MONITOR SIR TO WRITE DATA FROM MEMORY TO CASSETTE TAPE- FIRST MEMORY LOCATION 
POINTED TO BY A1L-H ($003C$0030); LAST BY A2L.H ($003E •. $003FJ. CASSETTE TAPE 
GETS 10 SECONDS OF TONE HEADER THEN THE DESIGNATED DATA BITS AND ONE CHECKSJM 
BYTE 

($B82A-$B8B7] \SB\D:>S 3.3 'WRITE 1 • WRITES PRENIBBILIZED DATA fROM PRIMARY & 
SECONDARY BUFFERS TO DISK; CALLS WRITE-A-BYTE s-R; WRITES 5 BYTES 
AUTSYNC- STARTING DATA MARKS ($05-$AA-$AD)- 342 BYTES DATA- ONE 
BYTE CHECKSUM- AND CLOSING DATA MARKS ($DE-$AA-$EB>. USES WRITE 
TRANSLATE TABLE ($BA29>. ON ENTRY X-REG CONTAINS SLOT#•16. ON 
EXIT X-REG UNCHANGED;y-REG SOO; CARRY CLEAR. USES $0026-$0027- $678 
DOS 3.2 DISK FORMATTER INTERIOR LABEL 'WRITSF' 
DOS 3.2 DISK FORMAT INTERIOR LABEL 'WRNIBL' 
MONITOR MEMORY LOCATION 'WRTAPE' 
DOS 3.2 DISK FORMATTER - LABEL AT POINT WHERE WRITE OF fORMATTING INfO 
ONTO TRACK BEGINS-- A HIGHLY TIMING-SENSITIVE AREA Of CODE 

XOL-XOH (800-801> [$0320-$0321] \P2\ HI-RES GRAPHICS- PRIOR X-COORD SAVE AFTER HLIN OR HPLOT 
X 1 ( 2 4 8) [ $0 OF 8] 

X2 (244) [$00F4] \P1\ 

XAM (-589) [$FDB3J \SE\ 

XAM8 (-605) [$FDA3] \SE\ 

X AM PM (-570) [$FDC6] 
X BAS I C (-336) [$FEB OJ \ SE\ 
XBRK (-1380) [$FA9CJ 
X DRAW <-2467) [$ F65 OJ \SE\ 

XJMP (-1340) [$FAC4J 
XJMPAT (-1339) [$FAC5J 
XJSR (-1351) [$FA89J 
XQ1 (-1416) [$FA78] 

WND WDTH - XQ 1 

OLD (NON-APPLESOFT> FLOATING POINT ROUTINES F~~ATING POINT ACCUMULATOR 
FP1 MEMORY LOC 'X1' (EXPONENT> 
MONITOR & OLD (NON-APPLESOFT) FlOATING POINT ROUTINES fLOATING POINT 
ACCUMULATOR 2 MEMORY LOC 'X2' (EXPONENT> 
MONITOR SIR TO EXAMINE CONTENTS OF MEMORY FROM (A1L-A1H) TO<A2L-A2H>. 
Y-REG=O BEfORE CALL {A-REG ALTERED} 
MONITOR SIR TO EXAMINE 8 MEM LOCNS. PRINTS HEX OF MEMORY FROM XXXX TO 
XXX7 WHERE XXXX IS CONTENTS OF A1L-A1H; Y-REG MUST =0 ON ENTRY {A-REG 
ALTERED } 
MONITOR MEMORY LOCATION 'XAMPM' 
MONITOR Sl R TO JUMP TO BA Sl C 
MONITOR MEMORY LOCATION 'XBRK' 
APPLESOFT HI-RES -DRAW SHAPE POINTED TO BY Y-REGCMSBJ&X-REG(LSB) BY 
INVERTING EXISTING COLOR Of DOTS SHAPE DRAWS OVER. A-REG = ROT FACTOR 
MONITOR MEMORY LOCATION 'XJMP' 
MONITOR MEMORY LOCATION 'XJMPAT' 
MONITOR MEMORY LOCATION 'XJSR' 
MONITOR MEMORY LOCATION 'XQ1' 

Prof. Luebbert's "What's Where in the Apple" ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCN] \USE-TYPE\ - DESCRIPTION 

XQ2 (-1414) ($FA7A] 
XQINIT <-145!1> [$FA4EJ 
XQT/XQTNZ (60-67> [$003C$0043J \PB\ 

XREG (70> [$0046] \P1 \ 

XRTI (-1371> [$FAA5J 
XRTS (-1367> [$FAA9] 
XSAVE (216> [$0008] \P1\ 

XTNDL ·xTNOH <8rs3> uoo5rsoo53J \P2\ 

XTO Y ( 1 5 9 9 5 > [ $ 3 E 7 B J \ 0 L \ 
XTOY (-16754--16748) ($BE8E-$BE94] 
YO (802> [$0322] \P1\ 
YCNT <71> [$0047] \P1 \ 

Y REG <71 ) [ $ 00 4 7 J \ P 1 \ 

Y SAV (52) [ $00 34 J \ P 1 \ 

YSAV1 (53) [$0035] \P1\ 

YTEMP 
ZERDLY 
ZMODE 
ZMODE 
Z PG BM 3 

( 201) [$00C9] 
<-805) [$FCDB] 

C-132> [$FF7CJ 
(-57> [$FFC7] 

ZPGFCB (67-67) csoo4rsoo43J 

M 0 N I T 0 R ME M 0 R Y L 0 CA T I 0 N ' X Q 2 ' 
MONITOR MEMORY LOCATION 'XQINIT' 
8 BYTE WORK AREA FOR INSTRUCTION STEP/TRACE. 'lEXT INSTRUCTION SOMETIMES 
MOVED HERE 
USER X-REG SAVED HERE ON BRK TO MONITOR & DURING TRACE 

MONITOR MEMORY LOCATION 'XRTI' 
MONITOR MEMORY LOCATION 'XRTS' 
INTEGER BASIC MEMORY LOCATION 'XSAVE' (TEMPORARY STORAGE FOR CONTENTS OF 
X-REGISTER) 
OLD MONITOR (NOT AUTOSTART> - USED IN 16-BIT ~ULT & DIVIDE AS ACCUMULATOR 
EXTENSION <TO 32 BITS) 
DOS 3.2 RWTS (READ-WRITE TRACK-SECTOR> INTERIOR LABEL 'XTOY' 
DOS 3.3 - X-REG/16 =>Y-REG. USED TO PUT SLOT INTO Y-REG 
HI-RES GRAPHICS YO - MOST RECENT Y-COORDINATE 
DOS DISK SYSTEM FORMATTER NYBBLE COUNTER (ALSO COUNTER FOR DISK-DRIVE 
MOTOR-ON TIME?) 
USERY-REG SAVED HERE ON BRK TO MONITOR & DURING TRACE {Y-REG SAVED HERE 
ON BRK} 
USED BY MONITOR COMMAND PROCESSOR TO SAVE CONTENTS OF Y-REGISTER DURING 
PROCESSOR {Y-REGISTfR SAVE LOCN FOR MONITOR} 
USED TO SAVE CONTENTS OF Y-REGISTER ACROSS A :ALL TO SCREEN OUTPUT 
ROUTINES. {Y-REGISTER SAVE LOCN FOR COUT1} 
INTEGER BASIC MEMORY LOCATION 'YTEMP' (TEMPORARY STORAGE FOR Y-REGISTER) 
MONITOR MEMORY LOCATION 'ZERDLY' 
MONITOR & MINIASSE7'1BLE,R MEMORY LOCATION 'ZMODE' 
MONITOR MEMORY LOCATION 'ZMODE' 
DOS - USED AS GENERAL PURPOSE POINTER BY SECOND-LEVEL DOS ROUTINES 

XQ2 - ZPGBM Prof. Luebbert's "What's W.he.re in the Apple" ALPHABETICAL GAZETTEER 



Appendix A 

The Apple I I e -- A New Edition 

Memory Pages 192-207 and 248-255 

($COOO-$CFFF and $F800-$FFFFJ 

A.l 
Overview 

The latest Apple II, called the "I I e" for 
"enhanced", has several features added that 
make ' it more standard and versatile. The 
keyboard has been improved and will now 
generate all 128 ASCII key codes, including 
screen display of lower case. The RESET key now 
requires pressing the CONTROL key 
simultaneously and rebooting can be accomplish
ed by pressing CTRL-OPEN APPLE-RESET, sav
ing wear and tear on the on/ off switch, always a 
weak point. A CTRL-CLOSED APPLE RESET 
initiates a built-in self-test. The screen display 
has been improved to allow either 40 or 80 col
umn display under software control. There is also 
a full cursor control in all four directions. The 
16K language card has been made a built-in 
feature and slot 0 has been eliminated. Inter
national versions are available for European and 
Asian buyers with switchable character sets. 

Despite all these additional features, 
compatability was kept with most of the previous 
software. All of the standard monitor entry points 
were preserved so that, unless software uses un
documented monitor entries, it should run on the 
I I e. The only other problem that might arise is 
the utilization of one formerly unused page zero 
location. A program that used that location will 
probably not function propeily on the new Apple. 

Another new feature is the addition of a 64K 
expansion available as an enhanced 80 column 
card, which will make additional memory 
available to sophisticated programs such as 
Visicalc. 

A.2 
A Third Apple Monitor 

There is now a third major version of the 
Apple monitor to go along with the Auto-Start 
and (old) System monitors. While all of the 
documented entry points remain the same, most 
of the routines jump to the new ROM in the 
$Cl00-$CFFF range. These new routines check 
on the availability and status of 80 column and 

extended 80 column cards, and use this additional 
hardware for enhanced displays and cursor 
control, when available. 

The major differences between the II+ and the 
I I e are as follows: 

a) RESET, OPEN APPLE and CLOSED APPLE 
keys: The Control key must now be pressed to 
initiate the RESET cycle. This will eliminate ac
cidental RESETs as the keys are on opposite sides 
of the keyboard. The APPLE keys are paddle 
button extensions to the keyboard and can be 
used in conjunction with the RESET cycle to in
itiate the self diagnostic tests (CLOSED) or 
power-on reboot (OPEN). 

b) EDITING: In addition to the I, J, K, and L 
diamond cursor control pattern, there are four ar
row keys that can also be used to move the cursor 
on the screen. Pressing ESC to enter the editing 
mode changes the cursor to an inverse 11 + 11 to in
dicate editing mode. Additional commands are 
also available. ESC-R enters upper-case restrict 
mode, which allows only upper-case letters 
during keyboard entry except after typing a 111 ', 

when both upper and lower case are allowed for 
PRINT statement. Typing another 1111 returns to 
upper-case only. ESC-T exits this mode. ESC-4 
displays a 40 column screen similar to the II + , 
while ESC-8 shifts to the new 80 column screen 
display. ESC CTRL-Q exits the new made entire
ly, returning to the old 40 column display, and 
turning off the 80 column card. 

A.3 
The New Display 

In order to maintain compatability with the 
old II and II + , it was necessary to design a screen 
display that utilized the old screen memory 
($400-$7FF). This was insufficient for 80 column 
display, so Apple designed an 80 column card 
with its own memory mapped into the same ad
dresses. The hardware alternates its scans from 
one set of memory to the other when in 80 col
umn mode. Characters are stored alternating 
from one address to the next, with all the odd 
screen locations in main memory and all the even 
ones on the auxiliary card. 



There are routines in the new monitor areas 
that can convert an 80 column screen to 40 by 
moving the alternate characters to the main board 
and throwing away the last 40 characters in each 
column. The opposite switch is accomplished by 
a similar move to the auxiliary card, using only 
the leftmost 40 columns for the characters 
previously on the screen. 
A.4 
Hardware Locations 

On the older Apples, the addresses 
$COOO-$COOF were equivalent addresses and were 
only partly decoded by the hardware. This meant 
that reading any of those would yield the same 
result (reading the keyboard), which was also true 
of $C010-$C01F (clearing the keyboard strobe). 
These addresses are now fully decoded and pro
vide a set of soft switches/ status indicators for 
the new 80 column card and extended 80 column 
card (with 64K memory expansion). 

The switches include options to read and/ or 
write either the main board locations or the aux
iliary card locations, to set the standard zero page 
and system stack (main board) or the alternate 
zero page and system stack (auxiliary card), to 
tum on or off the $CXOO ROMs, to enable or 
disable the 80 column display, and to tum on the 
normal or alternate character sets (normal has 
upper case flash instead of lower case inverse). 

Additionally, there are a group of locations 
that can be read to determine the current switch 
settings so that any program changing the 
switches can save the current settings and restore 
them at the end. States that can be determined in
clude READ/WRITE status, language card bank 
status, 80 column status, page status, and text 
mode. 

A.S 
Software Status 

Apple has always reserved some unused loca
tions in the text page RAM as scratch memory for 

·the 7 hardware slots (1-7). Several of these loca
tions are now permanently assigned to the new 80 
column cards, when they are in use, and are used 
to store the current cursor location, I/0 status, 
and BASL/BASH in Pascal. 

One particular location ($4FB) is the software 
MODE status. Each bit is indicative of the cur
rent state of operations: BASIC/Pascal, interrupts 
set/ cleared, Pascal 1.0/ 1.1, normal/inverse 
video, GOTOXY in progress/not in progress, 
upper case restrict/literal mode, BASIC in
put/print, and ESC-R active/inactive. 

These locations enable a program to deter
mine the current state of the machine more easily 
than before, and make it simpler to utilize the 
new hardware configurations in programming. 

A.6 
Programming Considerations 

The standard Applesoft GET and INPUT (and 
associated monitor routine KEYIN) were not 
designed to work with an 80 column display and 
using them while in 80 column mode can cause 
loss of data or erasure of program in memory, but 
this can be overcome by a routine explained in 
Appendix E of the new Applesoft Tutorial. 
Reading the keyboard directly ($COOO) functions 
the same as before. 

Do not assume an Apple I I e or 80 column 
card when writing programs; one of the first 
routines should check for the type of machine be
ing used. Apple supplies a program that will do 
this on ''The Applesoft Sampler''; and Call 
A.P.P.L.E. has also published a routine for this 
purpose. HTAB will not function beyond the 40th 
column. While POKE 36,POS works most of the 
time, Apple recommends POKE 1403,POS (0-79) 
for the I I e. This routine will not work at all for 
an old Apple. 

It is the programmer's responsibilty to tum off 
the 80 column card at the end of a program. Do 
not quit the card with the cursor beyond the 39th 
column, as this can cause unpredictable results 
including program erasure. In case of accidently 
executing this command, pressing RETURN im
mediately will usually recover the cursor to the 
left margin. It is also necessary to tum the 80 col
umn card off before sending output to printers, 
modems, etc. 

VTAB no longer works when a window is set 
(by POKing 32,33 etc.). The solution is to VTAB 
to the location -1, and then do a PRINT prior to 
PRINTing the actual data. This causes the 
firmware to recognise the new VTAB location. 

These cautions are a small price to pay for the 
increased versatility and flexability of the new 
Apple I /e. 



HEX LOCN (DEC LOCN) [NAME] ~USE-TYPE~ - DESCRIPTION 

There is 1 page 0 location that was not formerly used which is now used. 

$1F (31) [YSAV1] ~P1~ Temporary storage for theY Legister 

There are several locations in the text page that are storage for permanent data in these unused screen locations. 
Any routine which sets page 2 must restore page 1 so that these data may be accessed. 

$478 (1144) [TEMP1] ~P1~ 
$47B (1147) [OLDCH] ~P1~ 
$4FB (1275) [MODE] ~P1~ 

$57B (1403) [QUACH] ~P1~ 

$5FB (1531) [OURCV] ~P1~ 
$67B (1659) [CHAR] ~P1~ 
$6FB (1787) [XCOORD] ~P1~ 

$77B (1915) [OLDBASL) ~P1~ 
$7FB (2043) [OLDBASH] ~P1~ 

$0000 - S07FF 

A temporary storage location 
Old CH set for user 
Current operating mode acording to the following bits: 

Bit 0 Off Normal mode (Pascal) 
Bit 0 On Transparent mode (Pascal) 
Bit 0 Off Caller set interrupts (BASIC) 
Bit 0 On Ca I I er cleared interrupts (BASIC) 
Bit 1 Off Pascal 1.1 FIW active 
Bit 1 On Pascal 1. 0 Interface 
Bit 2 Off Normal video (Pascal) 
Bit 2 On Inverse video (Pascal) 
Bit 3 Off GOTOXY not in progress 
Bit 3 On GOTOXY in progress 
B1t 4 Off Upper case restrict mode 
Bit 4 On Literal upper/lower case mode 
Bit 5 Off Current language is BASIC 
Bit 5 On Current language 
Bit 6 Off BASIC PRINT 
Bit 6 On BASIC INPUT 
Bit 7 Off ESC-A inactive 
Bit 7 On ESC-A act i ve 

80 column CH 
Cursor vertical 
In/Out character 

is Pascal 

X coordinate in GOTOXY routine 
Pascal saved BASL 
Pascal saved BASH 

Prof. Luebbert's "What's Where in the Apple" lie NUMERIC ATLAS 



~£~_19~~-JQ£~_19~~l_J~~~J--~~£~J!f£~-~-Q£~~~JfJJ9~------------------------------------------------------------------

$COOO-$C01F (49152-49183) \H\ 
$COOO (49152) [CLR80COL) \H1\ 
$C001 (49153) [SET80COL) \H1\ 
$C002 (49154) [RDMAINRAMJ \H1\ 
$C003 (49155) (ROCARDRAMl \H1\ 
$C004 (49156) [WRMAINRAMJ \H1\ 
$COOS (49157) [WRCARDRAM) \H1\ 
$C007 (49159) [SETINTCXROM) \H1\ 
$C008 (49160) [SETSTDZPJ \H1\ 
$C009 (49161) [SETALTZPJ \H1\ 
$COOB (49163) [SETSLOTC3ROMJ \H1\ 
$COOC (49164) [CLR80VID] \H1\ 
$COOD (49165) [SET80VID) \H1\ 
$COOE (49166) [CLRALTCHAR) \H1\ 
$COOF (49167) [SETALTCHAR) \H1\ 
$C011 (49169) [RDLCBNK2l \H1\ 
$C012 (49170) [ROLCRAMJ \H1\ 
$C013 (49171) [RDRAMRD) \H1\ 
$C014 (49172) [RDRAMWRT] \H1\ 
$C018 (49176) [RD80COL) \H1\ 
$C019 (49177) [ROVBLBAR) \H1\ 
$C01A (49178) [RDTEXT) \H1\ 
$C01C (49180) [ROPAGE21 \H1\ 
$C01F (49183) [R080VID) \H1\ 
$C100-$CFFF (49408-53247) [CXOOROM) 

$C100 (49408) [B.FUNC] \SE\ 
$C107 (49415) [B.FUNCNKJ \SE\ 
$C10E (49422) [B.FUNCNEJ \SE\ 

$COOO - $C10E 

Hardware locations/switches 
Disable 80 column store 
Enable 80 column store 
Read RAM on mainboard 
Read RAM on card 
Write RAM on ma•nboard 
Write RAM. on card 
Set internal CXOO ROM 
Set standard zero page/stack 
Set alternate zero page/stack 
Enable C300 slot ROM 
Disable 80 column video 
Enable 80 column video 
Norma I I ower case, f I ash upper case 
Normal/inverse lower case, no flash 
Reads language card bank 2 
Reads language card RAM enable 
Reads RAMREAD state 
Reads BANKWRT state 
Reads SET80COL 
Reads VBL signal 
Reads Text mode 
Reads page 1/2 status 
Reads SET80VID 
\SB\ A new set of subroutines to handle the 80 column card and auxi I I iary 
memory in slot 3. It is entered from the GOTOCX subroutine in the F800 ROM which 
sets Interrupts, turns on the CXOO ROMs, and JMPs to C100. Function code is in 
Y reg. Note: "B." routines are the new way. "F." routines are the old way. 
Stack has status of bank and IRQ. Uses A,Y registers. 
Function Codes: 
0 CLREOP 
1 HOME 
2 SCROLL 
3 CLREOL 
4 CLEOLZ 
5 INIT & RESET 
6 KEYIN 
7 Fix ESCape Character 
8 SETWND 
If there is a card in the slot then the new video routines are used, sincg the 
screen hole locations belong to the card. Otherwise the F8 ROM routines are 
duplicated to avoid slot 3 interference with another type of interface. 
Entry point for alI routines with code in Y.Check first for KEYIN Y=6 
Check for ESCape-fix Y=7 
Test for card. If present, use the new routines, if not, old routines 

Prof. Luebbert's "What's Where in the Apple" //e NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] \USE-TYPE'\ - DESCRIPTION 
----------------------------------------------------------------------------------------------------------------------

$C11F (49439) [B.OLDFUNCJ '\SE'\ 

$C129 (49449) [F.CLAEOPJ '\SE'\ 
$C143 (49475) [F.HOME] '\SE\ 
$C14D (49485) [F.SCAOLL] \SE'\ 
$C17D (49533) (F.CLREOLJ '\SE\ 
$C18A (49546) (F.SETWNDl '\SE'\ 
$C19C (49564) (F.CLEOLZJ \SE\ 
$C1A1 (49569) (F.GORET] '\L'\ 
$C1A4 (49572) (B.FUNCO] '\SE\ 
$C1CD (49613) (B.SCROLL] \SE'\ 
$C1D3 (49619) (B.CLREOL] \SE'\ 
$C1D9 (49625) (B.CLEOLZJ '\SE'\ 
$C1E1 (49633) [B.CLREOP] \SE\ 
$C1E7 (49639) (B.SETWNDJ '\SE'\ 
$C1EA (49642) [B.RESET] '\SE'\ 
$C1ED (49645) (B.HOMEJ '\SE'\ 
$C1FF (49663) [B.VfCTORJ \SE\ 
$C20E (49678) [B.GETCHJ \SE\ 
$C211 (49681) [B.FUNC11 \SE\ 

$C219 (49689) (B.SETWNDX] \SE\ 
$C234 (49716) [B.RESETXJ \SE\ 

$C261 (49761) (DIAGSJ \SE\ 
$C26E (49774) (B.ESCFIXJ '\SE\ 

$C280 (49792) (ESCIN] \P4\ 
$C284 (49796) [ESCOUT] \P4\ 
$C288 (49800) (B.KEYIN] \SE\ 

$C2C6 (49862) [KEYDLY] \SE\ 

$C2EB (49899) (F.RETURN] \SE\ 

$C300 (49920) (BASICINTJ \SE\ 
$C307 (49927) [BASICOUT] \SE\ 
$C30B (49931) (PASFPT] \P6\ 
$C311 (49937) [128KJMPJ \P6\ 
$C317 (49943) (BASICENTJ \SE\ 

$C11F - $C317 

Pushes $C1 on stack, and low byte address of the function -1 by looking up in 
F.TABLE indexed by Y. Then does fake RTS to routine. · 
Monitor SIR to clear from the cursor to the end of page. 
Clear scrol I window to blanks. Set cursor to top left corner. 
Monitor SIR to scrol I up one I ine. 
Monitor S/R to clear to end of I ine. 
Monitor SIR to set normal low-resolution graphics window, cursor bottom left. 
Monitor S/R to clear entire I ine. 
Exit routine to F.RETURN 
Entry point to new routines. Sets the IRQ mode and screen holes, Y reg. 
Entry po1nt for monitor routine to scroll up one line 
Entry point for monitor routine to clear to end of line 
Entry point for monitor routine to clear entire I ine 
Entry point for monitor routine to clear to end of page 
Entry point for monitor routine to set text window 
Entry point for monitor routine to reset entire system 
Monitor SIR to clear the text page and put cursor in upper left corner 
Monitor SIR to check on 80 col use and get current Cursor Horizontal position (CH) 
Save CH in screenhole 
Pushes SC1 on stack, and low byte address of the function -1 by looking up in 
B.TABLE indexed by Y. Then does fake RTS to routine. 
Monitor SIR to set normal text window 40180 columns 
Monitor routine to reset system, checks for "Apple" keys for cold start, else does 
warm restart Without diagnostics, blasts memory from BFXX down to stack, checks 
80 col board to see if CX ROM needs resetting, and returns 
Entry point for monitor SIR diagnostics 
Monitor SIR to map i,j,k,m and<-,",->, and V into I,J,K,M for cursor movement 
Returns with old form of character in A. 
Table of arrow keys 
"J,K,M,I" translations for arrows 
Monitor routine to read a l<ey with new additions to save ex bani< status, check 
interrupt status, put new cursor ASC"$FF'' on screen, JSR to KEYDLY (old RDKEY), 
restore the original screen character, put the new character in A reg., clear the 
keyboard strobe and return to caller. 
Monitor routine to get a key from KBD, also checking interrupts, and sti I I 
incrementing RNDL and RNDH, the random locations 
Monitor routine to exit from CX ROM routines either leaving 110 disabled or 
enab I i ng i t i f i t was on entry 
Sets INIT Flag (V) and branches to BASIC 110 entry point 
Clears INIT Flag (V) and branches to BASIC 110 entry point 
Pascal 1.1 firmware protocol table 
Jump table for 128K support routines 
BASIC 110 entry point, saves CHAR. A, Y, X, and P, put Is P from stack, checks IRQ 
status, and sets appropriately. 

---------------------------------------------
Prof. Luebbert's "What's Where in the Apple" /le NUMERIC ATLAS 



HEX LOCN (DEC LOCN) (NAME] 'USE-TYPE' - DESCRIPTION 

SC336 (49974) [BASICENT2] 'SE' 

$C34B-$C362 (49995-50018) [PJUMPS) 
$C348 (49995) [JPINITJ 'SE' 
$C351 (50001) [JPREADJ 'SE' 
$C357 (50007) [JPWRITEJ 'SE' 
SC35D (50013) [JPSTAT} 'SE' 
$C363 (50019) [MOVE} 'SE' 

SC3BO (50096) [XFERJ 'SE' 

SC3EB (50155) [SETC8J 'SE' 

$C800 (51200) [PINIT1] 'SE' 
$C803 (51203) [BASICINITJ 'SE' 

$C816 (51222) [BINIT11 'SE' 

$C84B (51272) [PREAD1.0] 
$C850 (51280) [BINIT21 'L' 
$C85D (51293) [CLEARITJ 'L' 
$C866 (51302) [C8BASIC] 'L' 

$C874 (51316) [C8B21 'L' 
$C87E (51326) [C8B31 'L' 

SC890 (51344) [C8B41 'L' 
$C896 (51350) [BOUT] 'SE' 
SC8A1 (51361) [BPRINT] 'SE' 

SCSCC (51404) [BPNCTL] 'SE' 

$C8E2 (51426) [BIORETJ 'L' 
$C8F6 (51446) (BINPUT] 'SE' 
$C905 (51461) [B.INPUT] 'SE' 

SC336 - $C905 \ 

Turns off any slots using ca area. sets C8SLOT to SC3. checks INIT fl·ag. and jumps 
to warm or cold BASIC in ca ROM 
Pascal jump table 
Pascal INIT 
Pascal READ 
Pascal WRITE 
Pascal STATUS 
Monitor S/R to move memory across memory banks. Cal I with A1 =Source start, 
A2 =Source end, A4 =Destination start. Carry set for Main to Card, 
Carry clear for Card to Main. 
Transfer program control from main board to card or vice versa. $3ED-S3EE is 
address to be executed upon transfer, carry set means transfer to card, carry 
clear means transfer to main board, V flag clear means use standard zero 
page/stack, V flag set means use alternate zero page/stack. 
Also uses $3ED-$3EE in destination bank. 
Enter via JMP not JSR. 
Setup IRQ C800 protocol. Stores $C3 in C8SLOT. 

Pasca I 1. 0 in i t 
Checks the F8 ROM version, if not //e, copies ROM to RAM Card, and checks again, 
if sti I I not good, hangs the system. 
Set up BASIC l/0 in CSW and KSW to point to BASICENT in the C3 ROM and set text or 
graphics windows 
Pascal 1.0 input hook 
Check for 80 column mode and enable, if so 
Monitor routine to set lower case mode, clear screen and clears carry 
Monitor routine to check mode and set 80 column store in case Integer BASIC cleared 
Also rounds WNDWDTH to next lower even, if odd in 80 column mode. 
Monitor routine to check current CHand store it if different from OLDCH 
Monitor routine to check RAM card for correct version and, if not, recopy the 
F8ROM to RAM card , check again and hang if not correct. 
Monitor routine to check carry, on clear-print a character, set-input a character 
Monitor S/R to set MODE to BASIC printing, fal Is through to BPRINT 
Monitor S/R to output character in CHAR, checks for CTRL-S, clears high bit, checks 
for CTRL chars, if it is, process and return, if not, fall through to BPNCTL. 
Monitor S/R to reload CHAR (to get 8th bit, and print the char on the screen, 
Increments cursor horizontal and scrol Is, if necessary 
Monitor routine to store cursor position, restore X, Y, and A and return to BASIC 
Monitor routine to set MODE to BASIC input, get the cursor position, and CHAR 
Monitor routine to inverse char at current position, get a char from the keyboard. 
remove cursor, and process char, including ESCapes. If not ESC then JMP to NOESC. 

Prof. Luebbert's "What's Where in the Apple" //e NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] 'USE-TYPE' - DESCRIPTION 

$C91S (514SO) [ESCAPING] 'SE' 

$C972 (51570) [ESCTABJ 'P17' 
$C9S3 (515S7) [ESCCHARJ 'P17' 
$C994 (51604) [PSTATUS) 'SE' 

$C9A6 (51622) [PHOOK] 'SE' 
$C987 (51639) [NOESC) 'SE' 

$C9DF (51679) [B.CHKCANJ 'L' 
$C9F7 (51703) [B.FLIP] 'L' 
$CA02 (51714) [B.CANLIT] 'L' 
SCAOA (51722) [8.FIXCHARJ 'L' 
$CA24 (5174S) [B.INRETJ 'L' 
$CA27 (51751) [GETPRIORJ 'SE' 

$CA4A (517S6) [PINIT1.0l 'SE' 
$CA4F (51791) [PINITJ 'SE' 
$CA51 (51793) [PINIT2) 'L' 

$CA74 (51S2S) [PREADJ 'SE' 

$CASE (51S54) [PWRITE) 'SE' 

$C91S - $CASE 

Monitor routine to process ESCape command sequences; The commands are: 
I - Home and Clear screen 
E - Clear to end of I ine 
F - Clear to end of page 
A,K,->- Cursor right 
B,J,<-- Cursor left 
C,M,V - Cursor down 
D,I,A- Cursor up 
R- Restrict to uppercase 
T - Turn off Esc-A 
4 - Go to 40 column mode 
S - Go to SO column mode 
CTRL-Q- Quit new routines. (PR•O/IN•O) 

Places ESCape cursor on screen, GETs a command key, puts lower case into upper, 
checks the ESCTAB for a valid character. If the char is there, load A with theY 
index into ESCCHAR, and "print" the control character, if its not, check for "T", 
"R" and "CTRL-Q" special functions and process, if its not, return to caller. 
If the ESCCHAR entry has the high bit set, return to ECSAPING, otherwise return 
to caller. 
Table of ESCape codes 
Table of corresponding control codes-high bit set for "remain in ESCape mode" 
pascal check if ready for input or output, return 3 in X 
if not ready (ILLEGAL OPERATION) 
Pascal 1.0 output hook 
Monitor routine to process normal characters. Checks for copy char (right arrow), 
I iteral input, double quotes to turn I i teral input off/on, and restricted case 
input before storing in CHAR and returning to caller 
Monitor routine to check for cancelling literal mode 
Monitor routine to switch the literal mode 
Monitor routine to cancel I i teral mode 
Monitor routine to up/shift the character in non-literal or restrict mode 
Monitor routine to return to caller from input 
Monitor S/R to get the character before the cursor. Uses OURCH, OURCV; destroys A, 
TEMP1; outputs BEQ if character ·is double quote, BNE if not. Used for changing 
I iteral mode if backspacing over a double quote. 
Pasca I in i t i a I i za t ion 1 . 0 
Pasca I in i t i a I i za t ion 1 . 1 
Set up for running Pascal, set mode, set window, zero page, check for card, 
return X=9 (NO DEVICE) if missing, turn on card, set normal lower case mode, 
home and clear screen, put·cursor on screen and return. 
Pasca I input-Get a character, remove high bit, store in CHAR, if 1. 1 return 
"$C3" in X, 1.0 return CHAR in A 
Pascal output-Set zero page, turn cursor off, check GOTOXY Mode and process if 
necessary, check if GOTOXY and start if true, else store it on screen, increment 
cursor horizontal, check if transparent mode and do carriage return/1 ine feed if 
necessary, replace the cursor and return. 

Prof. Luebbert's "What's Where in the Apple .. //e NUMERIC ATLAS 



HEX LOCN (DEC LOCN) [NAME] \USE-TYPE\ - DESCRIPTION ----------------------------------------------------------------------------------------------------------------------

$CB15 (51989) [GETKEY] \SE\ 

$CB24 (52004) [TESTCARDJ \SE\ 

$CB51 (52049) [BASCALC) \SE\ 

$CB54 (52052) [BASCALCZJ \SE\ 

$CB99 (52121) [CTLCHARJ \SE\ 

$CBB6 (52150) [CTLXFERJ \L\ 

$CBBC (52156) [X.BELL] \SE\ 
$CBCF (52175) [WAIT] \SE\ 
$CBDB (52187) [X.BSJ \SE\ 
$CBEC (52204) [X.CRl \SE\ 
$CCOD (52237) [X.EMl \SE\ 
$CC1A (52250) [X.SUBl \SE\ 
$CC26 (52262) [X.FS) \SE\ 
$CC34 (52276) [X.US] \SE\ 
$CC49 (52297) {X,SO] \SE\ 
$CC52 (52306) [X.Sil \SE\ 
$CC5F (52319) {CTLADLJ \P24\ 
$CC78 (52344) {CTLADHJ \P24\ 
$CC91 (52369) [X.Lf] \SE\ 
$CCA4 (52388) [SCROLLUP] \SE\ 
$CCAA (52394) [SCROLLDNJ \SE\ 
$CCAE (52398) [SCROLL1] \L\ 
$CCB8 (52408) [SCROLL2] \L\ 
$CCCO (52416) [SCROLL80) \L\ 
$CCD1 (52433) [SCRLSUB) \SE\ 
$CD11 (52497) [X.SCRLRETJ \L\ 

$CD23 (52515) [X.VTJ \SE\ 
$CD42 (52546) [X.FFJ \SE\ 
$CD48 (52552) [X.GS) \SE\ 
$CD4E (52558) [X.GSEOLZJ \SE\ 
$CD59 (52569) [X.DC1) \SE\ 
$CD77 (52599) [X.DC2l \SE\ 
$CD90 (52624) [X.NAK] \SE\ 
$CD9B (52635) [FULL80] \SE\ 
$CDAA (52650) [QUIT] \SE\ 

Monitor S/R to read the keyboard, incrementing the random locations while waiting, 
load the char into A, clear the keyboard strobe and return 
Monitor S/R to test for presence of 80 column card, destroys A,Y; returns BEQ if 
card is there, BNE if not. 
Monitor S/A to calcurate base address for screen I ine using OURCV. 
Stores result in BASL/BASH. 
Monitor S/R to calculate base address for screen I ine using CV. Checks for 40/80 
column mode and if IRQ is enabled and not in Pascal, uses SNIFFIRQ to check 
for interrupts. 
Monitor S/R to process command control characters. Char in A to process, 
returns BCC if executed, BCS if not control command. 
Monitor routine to push CTLADH and CTLADL onto stack for control routine address 
and execute a fake RTS. 
Monitor S/R to beep speaker, same as F8: BELL1 
Montor S/R to wait depending on A. Same as F8: WAIT 
Mon tor S/R to execute a backspace 
Mon tor S/R to execute a carriage return 
Mon tor S/R to execute HOME 
Montor S/R to execute clear line 
Mon tor S/R to execute a forward space 
Montor S/R to execute a reverse linefeed 
Monitor S/R to execute "normal video" 
Monitor S/R to execute ''inverse video" 
Table of low byte addresses for control characters subroutines: 0 = lnval id 
Table of high byte addresses for control character subroutines: 0 = lnval id 
Monitor S/R to execute I inefeed 
Mon·tor S/R to scrol I the screen up one I ine 
Montor S/R to scrol I the screen down one line 
Montor routine to check for 40/80 columns 
Montor routine to scrol I 40 columns 
Montor routine to scrol I the other 40 columns 
Montor S/R to scroll only 40 column active window 
Mon tor rotuine to clear top or bottom I ine (depending on scrol I up or down) 
Return to user via BASCALC. 
Monitor S/R to clear to end of page 
Monitor S/R to home the cursor. Returns via X.VT to clear screen. 
Monitor S/R to clear to end of I ine 
Monitor S/R to clear entire I ine 
Monitor S/R to set 40 column mode 
Monitor S/R to set 80 column mode 
Monitor S/R/ to quit 80 column card 
Monitor S/R to set ful I 80 column window parameters 
Monitor S/R to res.tore 40 column window,convert 80 to 40 if needed, set cursor at· 
bottom left corner, reset video and keyboard to old mode 

----------------------------------------------------------------------------------------------------------------------NUMERIC ATLAS $CB15 - $CDAA Prof. Luebbert's "What's Where in the Apple" //e 
/--



HEX LOCN (DEC LOCN) [NAME] 'USE-TYPE' - DESCRIPTION 

$CDDB (52699) [SCRN84] '~E' 

$CEOA (52746) [ATEFOR] 'SE' 
$CE22 (52770) [GET84] 'SE' 
$CE32 (52786) [SCRN48] 'SE' 

$CE63 (52835) [FORATEJ 'SE' 
$CE91 (52881) [CLRHALF) 'SE' 
$CEA3 (52899) [D048) 'L' 
$CEAF (52911) [SETCH] 'SE' 

$CEDD (52957) [INVERT] 'SE' 
$CEF2 (52978) [STORCHAR] 'SE' 
$CF01 (52993) [PICK] 'SE' 

$CF06 (52998) [SCREENIT] 'SE' 

$CFOE (53006) [SCREEN80] 'L' 

$CF2A (53034) [STOR80] 'L' 
$CF37 (53047) [SCREEN40) 'L' 

$CF4A (53066) [STOR40) 'L' 
$CF52 (53074) [ESCON] 'SE' 

$CF65 (53093) [ESCOFF] 'SE' 

$CF6E (53102) [ESCRETJ 'L' 
$CF78 (53112) [COPYROM] 'SE' 

$CFC8 (53192) [PSETUP] 'SE' 

$CFEA (53226) [f.TABLE] 'P9' 

$CFF3 (53235) [B.TABLE] 'P9' 

Monitor SIR to convert 80 column screen to 40 column screen. Moves leftmost 40 
characters to TXTPAGE1 
Monitor SIR to convert one I ine from 80 to 40 columns 
Monitor SIR to move one character from 80 window to 40 window 
Monitor SIR to convert 40 column screen to 80 column screen. Moves whole 40 
character screen to left most 40 positions on 80 column screen 
Monitor SIR/ to convert one I ina from 80 to 40 columns 
Monitor SIR to clear right half of both screen pages 
Monitor SIR to move one character from 80 to 40 columns 
Monitor SIR to set QUACH and CH. In 40 column mode sets to A value. In 80 column 
mode, sets to 0 unless less than 8 from end of I ina, in which case moves up 
near right 
Monitor SIR to invert the character at the current screen location: CH,CV 
Monitor SIR to store character in A at screen horizontal position Y. 
Monitor SIR to read the character at screen position Y =horizontal, returns with 
character in A 
Monitor SIR/ to either store character on screen or read character from screen. 
V clear for pick, V set for store, character in A for store, Y = CH position. 
Saves Y and checks for mode. 40 branches to SCREEN40, 80 tal Is through to SCREEN80 
Monitor routine to calculate which page, and if V set, branch to STOR80, 
otherwise read the character from the screen and return. 
Monitor routine to store the character on the screen. 
Monitor routine to get cursor position, and if V set, branch to STOR40, otherwise 
read the character from the screen and return. 
Monitor routine to store the character on the screen. 
Monitor SIR to save current character in CHAR and put inverse"+" on screen. 
Returns via ESCRET. 
Monitor SIR to replace original character back on the screen that was saved 
in CHAR. Fat Is through to ESCRET. 
Monitor routine to put character on screen and return. 
Monitor SIR to copy the F8 ROM to the language card. Destroys .X andY. Uses 
CSWLICSWH (which it saves) as hook for transfer. Sets ROM/RAM banks for transfer, 
moves the bytes, and resets the language card to it's previous state before 
returning. 
Monitor S/R to set up zero page for Pascal operation. Checks 40-80 columns, sets 
INVFLG, and updates BASL/BASH before returning. 
Table of addresses for ESCape functions in 40 column mode. Entries at SCFF0-1 are 
used by SCROLL (Label = PLUSMINUS1). 
Table of addresses for ESCape functions in 80 column mode. Entries at $CFF9-A are 
used by SCROLL (Label = WNDTAB). 

----------------------------------------------------------------------------------------------------------------------$CDDB - $CFFF Prof. Luebbert's "What's Where in the Apple" //e NUMERIC ATLAS 



~E~-~~E~_JPEE-~~5~J_l~~~El __ ~~~E:!~fE~_:_PE~E~JfJJ~~------------------------------------------------------------------

Changes in the F800 ROM 

$F7FF (63487) (?] was $D7, is now $78, appears to be unused 
$FA75-$FA7A (64117-64122) [RESET] A change in the RESET code to allow for the presence of an 80 column card. Does a 

JSR to GOTOCX V=5 
$FBOA-$FBOD (64226-64269) [TITLE] 
$FB51-$FB54 (64337-64340) [SETWNDJ 

APPLE )[ ~> Apple )£ 
A change in the SETWND code to allow for the presence of an 80 column card. Does 
a branch to GOTOCX V=8 

$FBA3 (64419) [ESCNOWJ A change in the ESCNOW code to allow for i,j,k,m and arrow keys. Does JSR to RSDEC 
which is the old KEVIN2 

$FBB3 (64435) [VERSION) 
$FBB4-$FBCO (64436-64448) [GOTOCX] 

ID code for check on which kind of Apple it is //e=$06 )[+=SEA J[=$38 
Formerly NOPs, now code to save current ROM states, set interrupts. turn on CXOO 
ROMS and JMP to C100:new code for 80 cols. Requires function code to be in V Reg. 

$FC42-$FC45 
$FC46-$FC57 
$FC58-$FC5B 
$FC5C-$FC61 
$FC70-$FC71 
$FC72-$FC74 
$FC75-$FC9B 

$FC9C-$FC9D 
$FC9E-$FCA7 
$FD1B-$FD20 
$FD21-$FD28 
$FD29-$FD2D 

(64578-64581) 
(64582-64599) 
(64600-64603) 
(64604-64609) 
(64624-64625) 
(64626-64628) 
(64629-64667) 

(64668-64669) 
(64670-64679) 
(64795-64800) 
(64801-64808) 
(64809-64813) 

$FD30 (64816) (ESC] 

[CLREOP) Changed to branch to GOTOCX V=O 
[COPVRT] Notice of copyright "(C) 1981-82, APPLE" 
[HOME) Changed to branch to GOTOCX V=1 
[AUTHOR1] "RICK A" for Rick Auricchio 
[SCROLL) Changed to jump to GOTOCX V=2 
[XGOTOCXJ A JMP to GOTOCX for long branching purposes 
[SNIFFIRQJ IRQ Sniffer for Video Code: A new routine to check the current video mode, 

CXROM usage, and check for interrupts 
[CLREOL] Changed to branch to GOTOCX V=3 
[CLREOLZJ Changed to branch to GOTOCX V~4 
[KEVIN] Changed to jump to GOTOCX V=6 KEVIN no longer fal Is through to KEVIN2. 
(RDESC] Formerly KEVIN2, changed to jump to GOTOCX V=7 
(FUNCEXIT] Return from GOTOCX here: A new routine that restores the CXROM bank and the 

IRQ before an RTS to the cal I ing routine. 
A change to JSR to RDESC instead of RDKEV 

$FD42-$FD43 (64834-64835) [NOTCR] A change to NOPs of the cursor inverse mode. No longer needed now that the 
cursor is a standard character. 

$FD83 (64899) [CAPTSTl 'P1' 
$FEAF (65199) [CKSUMFIX] 'P1' 
$FEC5-$FEC9 (65221-65225) [AUTHOR2J 

$F7FF - SFFFF 

A change in the input AND mask that used to convert lower case input to upper case 
Correct CKSUM at create time. 
"Bryan" for Bryan Stearns. 

Prof. Luepbert's "What's Where in the Apple" //e NUMERIC ATLAS 



NAME (DEC LOCN) [HEX LOCNJ 'USE-TYPE' - DESCRIPTION 

? (63487) [$f7ff] 
ATEFOR (52746) [$CEOA] 'SE' 
AUTHOR1 (64604-64609) [$FC5C-$FC61} 
AUTHOR2 (65221-65225) [$FEC5-$FEC9} 
B.CANLIT (51714) [$CA02) 'L' 
B.CHKCAN (51679) [$C9DFJ 'L' 
B.CLREOL (49619) [$C1D3J 'SE' 
B.CLEOLZ (49625) [$C1D9l 'SE' 
B.CLREOP (49633) [$C1E11 'SE' 
B.ESCFIX (49774) ($C26E1 'SE' 
B.INPUT (51461) [$C905] 'SE' 

B.FIXCHAR (51722) [$CAOA] 'L' 
B.FLIP (51703) ($C9f7] 'L' 
B.FUNC (49408) [$C100} 'SE' 
B.FUNC1 (49661) [$C2111 'SE' 

B.FUNCNE (49422) [$C10E] 'SE' 
B.FUNCNK (49415) [$C107] 'SE' 
B.FUNCO (49572) [$C1A4] 'SE' 
B.GETCH (49678) [$C20EJ 'SE' 
B. INRET (51748) [$CA24] 'L' 
B.KEYIN (49600) [$C268] 'SE' 

B.OLDFUNC (49439) ($C11f] 'SE' 

B.RESETX (49716) ($C234J 'SE' 

B.SCROLL (49613) [$C1CDl 'SE' 
B.SETWND (49639) [$C1E7l 'SE' 
B.SETWNDX (49689) [$C219] 'SE' 
B.TABLE (53235) [$CFF3] 'P9' 

B.VECTOR (49663) [$C1ff] 'SE' 
BASCALC (52049) ($CB51] 'SE' 

BASCALCZ (52052) ($CB54] 'SE' 

BASICENT (49943) [$C317] 'SE' 

BASICENT2 (49974) ($C336] 'SE' 

AUTHOR1 - BASICENT2 

was $D7, is now $76, appears to be unused 
Monitor S/R to convert one I tne from 60 to 40 columns 
"RICK A" for Rick Auricchio 
"Bryan" for Bryan Stearns. 
Monitor routine to cancel I i teral mode 
Monitor routine to check for cancel I ing I i teral mode 
Entry point for monitor routine to clear to end of ltne 
Entry point for mont tor routine to clear ent 1 re I ine 
Entry point for monitor routine to clear to end of page 
Monitor S/R to map i ,j,k,m and <-,A,->, and V into I,J,K,M for cursor movement 
Monitor routine to inverse char at current position, get a char from the keyboard, 
remove cursor, and process char, inc I ud i ng ESCapes. If not ESC then JMP to NOESC. 
Monitor routine to up/shift the character in non-1 iteral or restrict mode 
Monitor routine to switch the It teral mode 
Entry potnt for alI routines wtth code in Y.Check first for KEYIN Y=6 
Pushes $C1 on stack, and low byte address of the function -1 by looking up in 
B.TABLE indexed by Y. Then does fake RTS to routine. 
Test for card. If present, use the new routines, if not. old routines 
Check for ESCape-fix Y=7 
Entry point to new routines. Sets the IRQ mode and screen holes, Y reg. 
Save CH in screenhole 
Monitor routine to return to caller from input 
Monitor routine to read a key with new addition~ to save CX bank status, check 
interrupt status, put new cursor ASC"$FF" on screen, JSR to KEYOLY (old RDKEY) 
Pushes $C1 on stack, and low byte address of the function -1 by looking up in 
F.TABLE indexed by Y. Then does fake RTS to routine. 
Monitor routine to reset system, checks for "Apple" keys for cold start, else does 
warm restart without dtagnostics, blasts memory from BFXX down to stack, checks 
60 col board to see if CX ROM needs resetting, and returns 
Entry point for monitor routine to scroll up one I ine 
Entry point for monitor routine to set text window 
Monitor S/R to set normal text window 40/60 columns 
Table of addresses for ESCape functions in 60 column mode. Entries at $CFF9-A are 
used by SCROLL (Label = WNDTAB). 
Monitor S/R to check on 60 col use and get current Cursor Horizontal position (CH) 
Monitor S/R to calculate base address for screen I ina using OURCV. 
Stores result in BASL/BASH. 
Monitor S/R to calculate base address for screen line ustng CV. Checks for 40/80 
column mode and if IRQ is enabled and not in Pascal, uses SNIFFIRQ to check 
f or i n t e r r up t s . ' 
BASIC l/0 entry point, saves CHAR, A, Y, X, and P, pul Is P from stack, checks IRQ 
status, and sets appropriately. 
Turns off any slots using C6 area, sets C6SLOT to $C3, checks INIT flag, and jumps 
to warm or cold BASIC in C6 ROM 

Prof. Luebbert's "What's Where in the Apple" //e ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCN] 'USE-TYPE' - DESCRIPTION 
---------------------------------------------------------------------------~----------------------~-------------------

BASICINIT (51203) [$C803] 'SE' 

BASICINT (49920) [$C300] 'SE' 
BASICOUT (49927) [$C3071 'SE' 
BINIT1 (51222) [$C816] 'SE' 

BINIT2 (51280) [$C850] 'L' 
BINPUT (51446) [$C8F6] 'SE' 
BIORET (51426) [$C8E21 'L' 
BOUT (51350) [$C896] 'SE' 
BPNCTL (51404) [$C8CC1 'SE' 

SPRINT (51361) [$C8A1] 'SE' 

C8B2 (51316) [$C8741 'L' 
C883 (51326) [$C87EJ 'L' 

C884 (51344) [$C8901 'L' 
CSBASIC (51302) [$C866) 'L' 

CAPTST (64899) [$F083] 'P1' 
CHAR (1659) [$678) 'P1' 
CKSUMFIX (65199) [$FEAF] 'P1' 
CLEARIT (51293) [$C85DJ 'L' 
CLRSOCOL (49152) [$C0001 'H1' 
CLRSOVID (49164) [$COOC] 'H1' 
CLRALTCHAR (49166) [$COOE1 'H1' 
CLREOL (64668-64669) [$FC9C-$FC9D1 
CLREOLZ (64670-64679) [$FC9E-$FCA7] 
CLREOP (64578-64581) [$FC42-$FC45] 
CLRHALF (52881) [$CE91] 'SE' 
COPYROM (53112) [$CF781 'SE' 

COPYRT (64582-64599) [$FC46-$FC57) 
CTLADH (52344) [$CC78] 'P24' 
CTLADL (52319) ($CC5FJ 'P24' 

CTLCHAR ~52121) ($CB99] 'SE' 

CTLXFER (52150) ($CBB6] 'L' 

CXOOAOM (49408-53247) [$C100-$CFFFJ 

BASICINIT - CXOOAOM 

Checks the FS ROM version, if not //e, copies ROM to RAM Card, and checks again, 
if stilI not good, hangs the system. 
Sets INIT Flag (V) and branches to BASIC I/O entry point 
Clears INIT Flag (V) and branches to BASIC l/0 entry point 
Set up BASIC l/0 in CSW and KSW to point to BASICENT in the C3 ROM and set text or 
graphics windows 
Check for 80 column mode and enable, if true 
Monitor routine to set MODE to BASIC input, get the cursor position, and CHAR 
Monitor routine to store cursor position, restore X, Y, and A and return to BASIC 
Monitor S/R to set MODE to BASIC printing, falls through to BPRI,NT 
Monitor S/R to reload CHAR (to get 8th bit, and print the char on the screen, 
Increments cursor horizontal and scrol Is, if necessary 
Monitor S/R to output character in CHAR, checks for CTRL-S, clears high bit, checks 
for CTRL chars, if it is, process and return, if not, fall through to BPNCTL. 
Monitor routine to check current CHand store it if different from OLDCH 
Monitor routine to check RAM card for correct version and, if not, recopy the 
FSROM to RAM card , check again and hang if not correct. 
Monitor routine to check carry, on clear-print a character, set-input a character 
Monitor routine to check mode and set 80 column store in case Integer BASIC cleared 
Also rounds WNDWDTH to next lower even, if odd in 80 column mode. 
A change in the input AND mask that used to convert lower case input to upper case 
In/Out character 
Correct CKSUM at create time. 
Monitor routine to set lower case mode, clear screen and clears carry 
Disable 80 column store 
Disable 80 column video 
Normal lower case, flash upper case 
Changed to branch to GOTOCX Y=3 
Changed to branch to GOTOCX Y=4 
Changed to branch to GOTOCX Y=O 
Monitor S/R to clear right half of ooth screen pages 
Monitor S/R to copy the FS ROM to the language card. Destroys X andY. Uses 
CSWL/CSWH (which it saves) as hook for transfer. Sets ROM/RAM banks for transfer, 
moves the bytes, and resets the language card to it's previous state before 
returning. 
Not ice of copyright ''(C) 1981-82, APPLE" 
Table of high byte addresses for control character subroutines: 0 = lnval id 
Table of low byte addresses for control characters subroutines: 0 = lnval id 

Monitor S/R to process command control characters. Char in A to process, 
returns BCC if executed, BCS if not coatrol command. 
Monitor routine to push CTLADH and CTLAOL onto stack for control routine address 
and execute a fake RTS. 
'SB' A new set of subroutines to handle the 80 column card and auxill iary 
memory in slot 3. It is entered from the GOTOCX subroutine in the FSOO ROM which 
sets interrupts, turns on the CXOO ROMs, and JMPs to C100. Function code is in 
Y reg. Note: "B." routines are the new way. "F." routines are the old way. 
Stack has status of bank and IRQ. Uses A,Y registers. 

Prof. Luebbert's "What's Where in the Apple" //e ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCN] \USE-TYPE\ - DESCRIPTION 

DIAGS (49761) [$C261] \SE\ 
D048 (52899) [$CEA3] \L\ 
ESC (64816) [$FD301 
ESCAPING (51480) [$C918] \SE\ 

ESCCHAR (51587) [$C9831 \P17\ 
ESCIN (49792) [$C280] \P4\ 
ESCNOW (64419) [$FBA3] 

ESCOFF (53093) [$CF65] \SE\ 

ESCON (53074) [$CF52] \SE\ 

ESCOUT (49796) [$C284] \P4\ 
ESCRET (53102) [$CF6El \L\ 
ESCTAB (51570) [$C972] \P17\ 
F.CLREOL (49533) [$C17DJ \SE\ 
F.CLEOLZ (49564) [$C19C] \SE\ 
F.CLREOP (49449) [$C129] \SE\ 
F.GORET (49569) [$C1A1] \L\ 
F.HOME (49475) [$C143] \SE\ 
F.RETURN (49899) [SC2EBJ \SE\ 

F.SCROLL (49485) [$C14DJ \SE\ 
F.SETWND (49546) [$C18AJ \SE\ 
F.TABLE (53226) [$CFEAJ \P9\ 

Entry point for monitor S/R diagnostics 
Monitor routine to move one character from 80 to 40 columns 
A change to JSR to RDESC instead of ROKEY 
Monitor routine to process ESCape command sequences. Places ESCape 
cursor on screen, GETs a command key, puts lower case into upper, 
checks the ESCTAB for a valid character. If the char is there, load A with theY 
index into ESCCHAR, and "print" the control character, if its not, check for "T", 
"A" and "CTRL-Q" special functions and process, if its not, return to caller. 
If the ESCCHAR entry has the high bit set, return to ECSAPING, otherwise return 
to caller. 
Table of corresponding control codes-high bit set for "remain in ESCape mode" 
Table of arrow keys 
A change in the ESCNOW code to allow for i ,j,k,m and arrow keys. Does JSR to RSDEC 
which is the old KEYIN2 
Monitor S/R to replace original character back on the screen that was saved 
in CHAR. Fal Is through to ESCRET. 
Monitor S/R to save current character in CHAR and put inverse "•" on screen. 
Returns via ESCRET. 
"J,K,M,I" translations for arrows 
Monitor routine to put character on screen and return. 
Table of ESCape codes 
Monitor S/R to clear to end of I 1ne. 
Mon i tor S/R to c I ear en t i r e I i ne. 
Monitor S/R to clear from the cursor to the end of page. 
Exit routine to F.RETURN 
Clear scrol I w1ndow to blanks. Set cursor to top left corner. 
Monitor routine to exit from CX ROM rout1nes either leaving l/0 disabled or 
enab I i ng i t 1 f i t was on entry 
Monitor S/R to scrol I up one I 1ne. 
Monitor S/R to set normal low-resolution graphics window, cursor bottom left. 
Table of addresses for ESCape functions in 40 column mode. Entries at $CFF0-1 are 
used by SCROLL (Label = PLUSMINUS1). 

FORATE (52835) [$CE631 \SE\ Monitor S/R/ to convert one I ine from 80 to 40 columns 
FULL80 (52635) [$C09BJ \SE\ Monitor S/R to set ful I 80 column window parameters 
FUNCEXIT (64809-64813) [$F029-$FD2Dl Return from GOTOCX here: A new routine that restores the CXROM bank and the 

GET84 (52770) [$CE221 \SE\ 
GETKEY (51989) [$CB15l \SE\ 

GETPRIOR (51751) [$CA271 \SE\ 

DIAGS - GETPRIOR 

IRQ before an RTS to the cal I ing routine. 
Monitor S/R to move one character from 80 window to 40 window 
Monitor S/R to read the keyboard, incrementing the random locations while waiting, 
load the char into A, clear the keyboard strobe and return 
Monitor S/R to get the character before the cursor. Uses OURCH, OURCV; destroys A, 
TEMP1; outputs BEQ if character is double quote, BNE if not. Used for changing 
I tteral mode if backspacing over a double quote. 

Prof. Luebbert's "What's Where in the Apple" //e ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCN] \USE-TYPE\ - DESCRIPTION 

GOTOCX (64436-64448) [$FBB4-$FBCOJ 

HOME (64600-64603) ($FC58-$FC5BJ 
INVERT (52957) [$CEDDJ \SE\ 
JPINIT (49995) ($C34BJ \SE\ 
JPREAD (50001) [$C351] \SE\ 
JPSTAT (50013) [$C35DJ \SE\ 
JPWRITE (50007) [$C357] \SE\ 
KEYDLY (49862) ($C2C6J \SE\ 

KEYIN (64795-64800) ($FD1B-$FD20] 
MODE (1275) [$4FBJ \P1\ 
MOVE (50019) [$C363] \SE\ 

NOESC (51639) [$C9B7l \SE\ 

NOTCR (64834-64835) [$FD42-$FD43] 

OLDBASH (2043) [$7FBJ \P1\ 
OLDBASL (1915) [$778] \P1\ 
OLDCH (1147) [$4781 \P1\ 
128KJMP (49937) [$C311] \P6\ 
OURCH (1403) [$578] \P1\ 
OURCV (1531) [$5FBJ \P1\ 
PASFPT (49931) [$C308] \P6\ 
PHOOK (51622) [$C9A6] \SE\ 
PICK (52993) [$CF01] \SE\ 

PINIT (51791) [$CA4FJ \SE\ 
PINIT1 (51200) [$C800] \SE\ 
PINIT1.0 (51786) [$CA4A) \SE\ 
PINIT2 (51793) [$CAS1} \L\ 

PJUMPS (49995-50018) [$C34B-$C362] 
PREAD (51828) [$CA74] \SE\ 

PREAD1.0 (51272) [$C84Bl 
PSETUP (53192) [$CFC8J \SE\ 

PSTATUS (51604) [$C994J \SE\ 

GOTOCX - PSTATUS 

Formerly NOPs. now code to save current ROM states. set interrupts, turn on CXOO 
ROMS and JMP to C100:new code for 80 cots. Requires function code to be in Y Reg. 
Changed to branch to GOTOCX Y=1 
Monitor S/R to invert the character at the current screen location: CH,CV 
Pascal INIT 
Pascal READ 
Pascal STATUS 
Pascal WRITE 
Monitor routine to get a key from KBD. also checking interrupts, and sti I I 
increment i ng RNDL and RNDH, the random I oca t i orrs 
Changed to jump to GOTOCX Y=6 KEYIN no longer fat Is through to KEYIN2. 
Current operating mode acording bits set. 
Monitor S/R to move memory across memory banks. Cal I with A1 =Source start, 
A2 =Source end, A4 =Destination start, Carry set for Main to Card, 
Carry clear for Card to Main. 
Monitor routine to process normal characters. Checks for copy char (right arrow), 
literal input. double quotes to turn lateral input off/on. and restricted case 
input before storing in CHAR and returning to caller 
A change to NOPs of the cursor inverse mode. No longer needed now that the 
cursor is a standard character. 
Pascal saved BASH 
Pascal saved BASL 
Old CH set for user 
Jump table for 128K support routines 
80 column CH 
Cursor vertical 
Pascal 1.1 firmware protocol table 
Pascal 1.0 output hook 
Monitor S/R to read the character at screen position Y =horizontal, returns with 
character in A 
Pasca I in i t i a I i za t ion 1. 1 
Pasca I 1 . 0 in i t 
Pascal initialization 1.0 
Set up for running Pascal, set mode, set window, zero page, check for card, 
return X=9 (NO DEVICE) if missing, turn on card, set normal lower case mode, 
home and clear screen, put cursor on screen and return. 
Pascal jump table 
Pascal input-Get a character, remove high bit, store in CHAR, if 1.1 return 
"$C3" in X, 1.0 return CHAR in A 
Pascal 1.0 input hook 
Monitor S/R to set up zero page for Pascal operation. Checks 40-80 columns, sets 
INVFLG, and updates BASL/BASH before returning. 
pascal check if ready for input or output, return 3 in X 
if not ready (ILLEGAL OPERATION) 

Prof. Luebbert's "What's Where in the Apple" //e ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) [HEX LOCNJ 'USE-TYPE' - DESCRIPTION 

PWRITE (51854) [$CASE) 'SE' 

QUIT (52650) [$CDAAJ 'SE' 

RD80COL (49176) ($C018) 'H1' 
RD80VID (49183) ($C01F) 'H1' 
RDCARDRAM (49155) [$C003) 'H1' 
RDESC (64801-64808) [$FD21-$FD28) 
RDLCBNK2 (49169) [$C011) 'H1' 
RDLCRAM (49170) [$C012] 'H1' 
RDMAINRAM (49154) [$C002] 'H1' 
RDPAGE2 (49180) [$C01C] 'H1' 
RDRAMRD (49171) [$C013) 'H1' 
RDRAMWRT (49172) [$C014] 'H1' 
RDTEXT (49178) [$C01A] 'H1' 
RDVBLBAR (49177) [$C019] 'H1' 
RESET (64117-64122) [$FA75-$FA7A] 

SCREEN40 (53047) [$CF37] 'L' 

SCREEN80 (53006) [$CFOEJ 'L' 

SCREENIT (52998) [$CF06] 'SE' 

SCRLSUB (52433) [$CCD1] 'SE' 
SCRN48 (52786) [$CE321 'SE' 

SCRN84 (52699) [$CDDBJ 'SE' 

SCROLL (64624-64625) [$FC70-$FC71] 
SCROLL1 (52398) [$CCAE] 'L' 
SCROLL2 (52408) [$CC88] 'L' 
SCROLL80 (52416) [$CCCO] 'L' 
SCROLLDN (52394) [$CCAA] 'SE' 
SCROLLUP (52388) [$CCA41 'SE' 
SET80COL (49153) [$C001] 'H1' 
SET80VID (49165) [$COOD] 'H1' 
SETALTCHAR (49167) [$COOF] 'H1' 
SETALTZP (49161) [$C009] 'H1' 
SETC8 {50155) [$C3EBl 'SE' 
SETCH (52911) [$CEAFl 'SE' 

Pascal output-Set zero page, turn cursor off, check GOTOXY Mode and-process if 
necessary, check if GOTOXY and start. if true, else store it·on screen, increment 
cursor horizontal, check if transparent mode and do carriage return/line feed if 
necessary, replace the cursor and return. · · 
Monitor S/R to restore 40 column window,convert 80 to 4o if needed, set cursor at 
bot tom I eft corner, reset video and keyboard to ,.o I d mode 
Reads SET80COL 
Reads SET80VID 
Read RAM on card 
Formerly KEYIN2, changed to jump to GOTOCX Y=7 
Reads language card bank 2 
Reads language card RAM enable 
Read RAM on mainboard 
Reads page 1/2 status 
Reads RAMREAD state 
Reads BANKWRT state 
Reads Text mode 
Reads VBL signal 
A change in the RESET code to allow for the presence of an 80 column card. Does a 
JSR to GOTOCX Y=5 
Monitor routine to get cursor position, and if V set, branch to STOR40, otherwise 
read the character from the screen and return. 
Monitor routine to calculate which page, and if V set, branch to STOR80, 
otherwise read the character from the screen and return. 
Monitor S/R/ to either store character on screen or read character from screen. 
V clear for pick, V set for store, character in A for store, Y = CH position. 
Saves Y and checks for mode. 40 branches to SCREEN40, 80 falls through to SCREEN80 
Monitor S/R to scrol I only 40 column active window 
Monitor S/R to convert 40 column screen to 80 column screen. Moves whole 40 
character screen to left most 40 positions on 80 column screen 
Monitor S/R to convert 80 column screen to 40 column screen. Moves leftmost 40 
characters to TXTPAGE1 
Changed to jump to GOTOCX Y=2 
Monitor routine to check for 40/80 columns 
Monitor routine to scrol I 40 columns 
Monitor routine to scrol I the other 40 columns 
Monitor S/R to scrol I the screen down one I ine 
Monitor S/R to scrol I the screen up one I ine 
Enable 80 column store 
Enable 80 column video 
Normal/inverse lower case. no flash 
Set alternate zero page/stack 
Setup IRQ C800 protocol. Stores $C3 in C8SLOT. 
Monitor S/R to set OURCH and CH. In 40 column mode sets to A value. In 80 column 
mode, sets to 0 unless less than 8 from end of I ine, in which case ~ves up 
near right 

-----------------~--------------------------~------------------------------------------------------~------------------
PWRITE - SETCH Prof. Luebbert's "What's Where in the Apple" //e ALPHABETICAL GAZETTEER 



NAME (DEC LOCN) (HEX LOCNJ 'USE-TYPE' - DESCRIPTION 

SETINTCXROM (49159) [$C007] 'H1' 
SETSLOTC3ROM (49163) [$COOB1 'H1' 
SETSTDZP (49160) [$C008] 'H1' 
SETWND (64337-6,4340) [$FB51-$F&54] 

Set internal CXOO ROM 
Enable C300 slot ROM 
Set standard zero page/stack 
A change in the SETWND code to allow for the presence of an 80 column card. Does 
a branch to GOTOCX Y=8 

SNIFFIRQ (64629-64667) [$FC75-$FC9BJ IRQ Sniffer for Video Code: A new routine to check the current video mode1 

STOR40 (53066) [$CF4AJ 'L' 
STOR80 (53034) [$CF2AJ 'L' 
STORCHAR (52978) [$CEF2] 'SE' 
TEMP1 (1144) [$478] ,p1, 
TESTCARD (52004) [$CB24] 'SE' 

TITLE (64226-64269) [$FBOA-$FBOD] 
VERSION (64435) [$FBB3J 
WAlT (52175) [$CBCF) 'SE' 
WRCARDRAM (49157) [$COOS] 'H1' 
WRMAINRAM (49156) [$C004] 'H1' 
X.BELL (52156) [$CBBCJ 'SE' 
X.BS (52187) [$CBDB] 'SE' 
X.CR (52204) [SCBECJ 'SE' 
X.OC1 (52569) [$CD59] 'SE' 
X.DC2 (52599) [$CD77] 'SE' 
X.EM (52237) [$CCOD] 'SE' 
X.FF (52546) [$CD421 'SE' 
X.FS (52262) [$CC26l 'SE' 
X.GS (52552) [$CD48] 'SE' 
X.GSEOLZ (52558) ($CD4EJ 'SE' 
X.LF (52369) [$CC91] 'SE' 
X.NAK (52624) [$C090] 'SE' 
X.SCRLRET (52497) [$C011] 'L' 

X.SI (52306) [$CC52] 'SE' 
X.SO (52297) [$CC49] 'SE' 
X.SUB (52250) [$CC1AJ 'SE' 
X.US (52276) [$CC34] 'SE' 
X.VT (52515) [$CD23] 'SE' 
XCOORD (1787) [$6FB] 'P1' 
XFER (50096) [$C3BOJ 'SE' 

CXROM usage and interrupt status 
Monitor ro.ut ine to store the character 
Monitor routine to store the character 
Monitor S/R to store character in A at 
A temporary storage location 

on the screen. 
on the screen. 
screen horizontal position Y. 

Monitor S/R to test for presence of 80 column card, destroys A,Y; returns BEQ if 
card is there, BNE if not. 
APPLE -> Apple 
ID code for check on which kind of Apple it is //e=$06 +=SEA =$38 
Monitor SIR to wait depending on A. Same as F8: WAIT 
Write RAM on card 
Write RAM on mainboard 
Monitor S/R to beep speaker, same as F8: BELL1 
Monitor S/R to execute a backspace 
Monitor SIR to execute a carriage return 
Monitor SIR to set 40 column mode 
Monitor SIR to set 80 column mode 
Monitor SIR to execute HOME 
Monitor SIR to home the cursor. Returns via X.VT to clear screen. 
Monitor S/R to execute a forward space 
Monitor S/R to clear to end of I ine 
Monitor SIR to clear entire line 
Monitor SIR to execute I inefeed 
Monitor S/R/ to quit 80 column card 
Monitor rotuine to clear top or bottom I ine (depending on scrol I up or down) 
Return to user via BASCALC. 
Monitor S/R to execute "inverse video" 
Monitor S/R to execute "normal video" 
Monitor S/R to execute clear I ine 
Monitor S/R to execute a reverse I inefeed 
Monitor S/R to clear to end of page 
X coordinate in GOTOXY routine 
Transfer program control from main board to card or vice versa. $3ED-$3EE is address 
to be executed upon transfer, carry set means transfer to card, carry clear means 
transfer to main board, V flag clear means use standard zero page/stack, V flag 
set means use alternate zero page/stack. Also uses $3ED-$3EE in destination bank. 
Enter via JMP not JSR. 

XGOTOCX (64626-64628) [$FC72-$FC74] A JMP to GOTOCX for long branching purposes 
YSAV1 (31) [$1FJ 'P1' Temporary storage for theY register 

----------------~--------~----------------------------------------------------------~---------------------------------
SETINTCXROM - YSAV1 Prof. Luebbert's "What's Where in the Apple" lie ALPHABETICAL GAZETTEER 



:ttta::a::tttttt:::::t::::ttt:ttt:::::ttttttttttlttttttttt:::te::~tt~~~~ ~~;;::::::e:o:::::;::::::a:~ 

ttttltttlttltttttttttlttttttttt::ttlt~tttttt~tt ::: :::::::: :::::tttttttttttt:::;:tttttt~t;t:tttltttt: 

Announcing 

MICRO 
The Magazine for Serious Computerists 

Are you ready for a higher level of microcomputing? 

If you 

• really relate to your computer 
• want to know what makes it work 
• aren't afraid to get your hands on it and in it 
• enjoy experimenting 
• want to continue improving your skills, whether novice or expert 

then MICRO is designed for you. 

MICRO will excite you ... educate you ... entertain you ... challenge you ... 
but only if you are one of that special group who want to go a step beyond the ordinary, to 
expand their computing horizons infinitely! 

MICRO is unique ... a practical how-to magazine for serious users of the Apple (as well as a 
few other serious personal computers). It's full of hands-on projects and programs with 
the kind of depth you just don't find in the usual computer magazines. In fact, the original 
Apple Atlas appeared in MICRO long before this book was published, and MICRO readers · 
also got the Apple //e Appendix as articles in the magazine. 

Numerous Complete Programs (worth many times the price of the subscription) are 
included in every issue. You get 12 informative issues for just $24.00 (a saving of $6.00 on 
newsstand prices). Subscribe now and join other adventurous users on a higher level of 
microcomputing. 

MICRO INK 
P .0. Box 6502 

Chelmsford, MA 01824 
617/256·3649 

Visa and MasterCard accepted 

~~;:::::::~tlttt~:=~=~~~t:::tt't;;~tttt::::~:;~::::::~;~~~·~~~==ttt::~~ 

:tttttttttttt:~=~~~~~~~tttttttt::~::;::::::~~ttt~=~~t::::;::t~ttttt:~;::~;::t~ 



~~~~=~~eetaa:~et~l~ll~~~;e;;:ta~ee~~~:~~~~==~=~==:ttt:ettl~tttttttt:~:tt~~==~t ~::a~ttttttttet:::ttt:eee:: 
~~==t~;;~eetet:~;;~eeee:e:::~~~~=~~wt~t•ttttltttttt:::ttttetttttte::a:ettlttt~;;a::e:t:e:~~

Announcing Other Works on the Apple Computer
from

MICRO INK
MICRO on the Apple

A series of books for Apple users

Each volume in this series presents the best Apple articles from MICRO magazine in an integrated
collection, plus additional material that has never before been publ ished. Articles and programs have
been updated by the original authors or MICRO's staff. All programs have been tested and entered on
a diskette which comes with the book. Each volume in the series is 6 x 9 inches, with approximately
224 pages, and includes a pocket for storing the diskette. A Wire-0 binding allows the book to lie flat
when open.
[Since these programs were all written for the Apple II, some of them may not work on the Apple //e.]

Volume 1 is currently out-of-print.
Volume 2 contains:

Breaker: An Apple II Debugging Aid
Step and Trace for the Apple II Plus
Tracer: A Debugging Tool for the Apple II
Integer BASIC Subroutine Pack and Load
MEAN 14: A Pseudo-Machine Floating Point

Processor for the Apple II
Screen Write/File Routine
Bi-Directional Scrolling
lngeger BASIC Program List by Page
Paged Printer Output
Hexadecimal Printer
Common Variables
PRINT USING for Applesoft
Searching String Arrays
Applesoft and Matrices
AM PER-SORT
Trace List Utility
Versatile Hi-Res Function Plotter
Hi-Res Picture Compression
An Apple Flavored Lifesaver
... plus 12 additional articles

(Diskette in 13 sector DOS 3.2 format)
(May be 'muffined' to 16 sector format)

Volume 3 contains:

Applesoft Line Finder Routine
Am per-Search
Applesoft Variable Lister
Double Barrelled Disassembler
Cross Referencing 6502 Programs
A Fast Fractional Math Package for the 6502
Applesoft Error Messages from Machine

Language
Serial Line Editor
Trick DOS
LACRAB: Formatted Program Listings
Apple Color Filter
True 3-D Images
Apple Bits: Low Resolution Graphics
Apple Byte Table
How Microsoft BASIC Works
Simple Securities Manager
Solar System Simulation
Reversi Game
Musical Duets

(Diskette in 16 sector DOS. 3.3 format)

The price of each volume (including the diskette) is $24.95.
For shipping and handling on mail orders, add $2.00 tor surface shipping.
Massachusetts residents add 5% tor sales tax.

MICRO INK
P.O. Box 6502

Chelmsford, MA 01824
Telephone: (617) 256·3649

VISA and Mastercard accepted.

~~~ettee:tt:~tttttt~~tt~~=~~t:;;:;;;;~~t:;::::e~~:~~=~;e~~~=~~~~=~~ 

~~~~~ett:::e:t~tt:a::~e:::~~lt~~tttte~:~~~tt~;;~tt:::::~~==:~~ 


What's Where in the Apple
A Complete Guide to the Apple Computer
* * Apple II * Apple II Plus * Apple 1/e * *

Every Apple user needs this book! The original What's Where in the Apple? provided more
information on the Apple's memory than was available anywhere else. Now this REVISED
EDITION shows you how to use. this valuable data.

Providing both a numerical Atlas and an alphabetical Gazetteer, What's Where in the
Apple ... P/us ... guides the user to over 2,000 memory locations of PEEKs, POKEs, and CALLs.

The names and locations of various Monitor, DOS, Integer BASIC, and Applesoft routines are
listed, and information is provided on their use.

The easy-to-read format includes:

• The address in hexadecimal (useful for assembly programming) SfC 58
<-936)

(HOME)
\S E \

.... CLEAR SCROLL WINDOW TO BLANKS.

• The address in signed decimal (useful for BASIC programming) .

• The common name of the address or routine

• Information on the use and type of routine

• A description of the routine
SET CURSOR TO TOP LEFT CORNER

• Related register information {A- Y-REGS ALTERED}

Applesoft and Integer BASIC users will find information which will speed up and streamline
programs. Assembly language users will gain access to routines which will simplify coding
and interfacing. Both BASIC and assembly language users will find this book helpful in
understanding the Apple II, and essential for mastering it! (ISBN: 0-938222-09-0)

$19.95 in U.S.

About the Author
William F. Luebbert is adjunct Professor of Engineering at Thayer School of Engineering,
Dartmouth College, Hanover, New Hampshire. He is also president of the Computer Literacy
Institute, an organization founded in 1980 to train educators in the uses and applications of
computers in education.

Professor Luebbert, now a U.S. Army retired Colonel, served on the faculty of the U.S. Military
Academy, West Point, New York, from 1960 to 1978, where he taught Electrical Engineering and
headed the Academic Computer Center.

He has received the Automation Educator of the Year Award from Business Automation
Magazine, the Certified Data Processor Award from the Data Processing Management
Association, and the American Society for Engineering Education Award and Prize for
excellence in teaching engineering students.

MICRO INK
P.O. Box 6502

Chelmsford, MA 01824

83-354

	What's Where in the Apple
	Table of Contents
	Acknowlegements
	Introduction
	Chapter I: There's More In Your Apple II System Than You May Think
	Chapter II: The World of System-Specific Programming
	Chapter III: PEEKing Can Be Informative
	Chapter IV: POKEs Can Make Changes
	Chapter V: CALLs Can Make Things Happen
	Chapter VI: Apple Architecture I
	Chapter VII: Apple Architecture II: Addressing in the Apple II Microprocessor
	Chapter VIII: Machine-Language Programs Can Live Happily in a BASIC Environment
	Chapter IX: Overview of Apple System Memory Allocation
	Chapter X: The Apple System Quick-Access Area (Memory Page 0 ($0000-00FF))
	Chapter XI: The Apple System Stack Page
	Chapter XII: The Apple Keyboard Input Buffer Memory Page Two ($0200-$02FF) & The GetIn System of Input Associated With It
	Chapter XIII: The Monitor and DOS Vector Page
	Chapter XIV: Test and Low-Resolution Graphics Display Memory Pages 4-7 and 8-11 ($400-$7FF and $800-$0BFF)
	Chapter XV: 'User Memory' for BASIC Programmers
	Chapter XVI: High-Resolution Graphics Display Memory Pages 32-63 & 64-95 ($2000-$3FFF & $4000-$5FFF)
	Chapter XVII: The Disk Operating System Default Location = Memory Pages 150-191 ($9600-$BFFF)
	Chapter XVIII: The Specialized Input-Output Memory - Memory Pages 192-207 ($C000-$CFFF)
	Chapter XIX: Applesoft BASIC Interpreter
	Chapter XX: The System Monitor Location - Memory Pages 248 - 255 ($F800 - $FFFF)
	Atlas
	Use-Type Guide
	Gazetteer
	Appendix A: The Apple //e - A New Edition - Memory Pages 192-207 & 248-255 ($C000-$CFFF & $F800-$FFFF)

