
AOS-CX 10.10 REST v1 API
Guide

All AOS-CX Series Switches

Published: August 2022
Edition: 2

| 2

Copyright Information

©Copyright 2022 Hewlett Packard Enterprise Development LP.

Open Source Code

This product includes code licensed under theGNU General Public License, the GNU Lesser General Public
License, and/or certain other open source licenses. A completemachine-readable copy of the source code
corresponding to such code is available upon request. This offer is valid to anyone in receipt of this
information and shall expire three years following the date of the final distribution of this product version
by Hewlett Packard Enterprise Company. To obtain such source code, send a check ormoney order in the
amount of US $10.00 to:

Hewlett Packard Enterprise Company
6280 America Center Drive
San Jose, CA 95002
USA

Notices
The information contained herein is subject to changewithout notice. The only warranties for Hewlett
Packard Enterprise products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional warranty.
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Confidential computer software. Valid license fromHewlett Packard Enterprise required for possession, use,
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to theU.S. Government under
vendor's standard commercial license.

Links to third-party websites take you outside theHewlett Packard Enterprise website. Hewlett Packard
Enterprise has no control over and is not responsible for information outside theHewlett Packard
Enterprise website.

Contents

Contents

Contents 3

About this document 6
Applicable products 6
Latest version available online 6
Command syntax notation conventions 6
About the examples 7
Identifying switch ports and interfaces 8
Identifyingmodular switch components 9

Introduction to the AOS-CX REST API 10
AOS-CX REST API 10
REST API versions 10

Differences among REST API versions 11
AOS-CX Network Analytics Engine scripts 11
Interfaces and ports 11
GETmethod 11
Resource collections 11

REST API accessmodes 11
Read-write accessmode 12
Read-only accessmode 12

REST API URI 12
Parts of a URI 12

URI path, including path parameters 12
Query component 13

Resources 14
Resource collections and singletons 14
Categories of resource attributes 15

Enabling access to the REST API 17
Setting the admin password 17
Setting the REST API accessmode to read-write 18
Showing the REST API access configuration 18
Disabling access to the REST API 19
HTTPS server commands 19

https-servermax-user-sessions 20
https-server rest access-mode 20
https-server rest firmware-site-distribution 21
https-server session close all 22
https-server session-timeout 23
https-server vrf 23
show https-server 25

Accessing the AOS-CX REST API 27
Authenticating REST API sessions 27
User groups and access authorization 28

AOS-CX REST API Reference (UI) 29

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 3

Contents | 4

Accessing the REST API using the AOS-CX REST API Reference 29
Logging in and logging out using the AOS-CX REST API Reference 30

AOS-CX REST API Reference basics 30
AOS-CX REST API Reference homepage 30

Writemethods (POST, PUT, and DELETE) 33
Considerations whenmaking configuration changes 33
Considerations for ports and interfaces 34
Writemethods (POST, PUT) supported in read-only mode 35

GETmethod usage and considerations 35
GETmethod parameters 35
Attributes parameter 36
Count parameter 36
Depth parameter 37
Filter parameter 38
Selector parameter 38

POSTmethod usage and considerations 39
PUTmethod usage and considerations 40

Best practice for building the PUT request body 41
DELETEmethod usage and considerations 41
REST requests and accounting logs 41
AOS-CX REST API reference summary 41

Using Curl Commands 45
About the curl command examples 45
Getting the REST API versions on the switch 46
Accessing the REST API using curl 46

Logging in using curl 47
Passing the cookie back to the switch 48
Logging out using curl 49

Examples 50
Example: GETmethod 50
Example: Getting and deleting certificates using REST APIs 51
Example: Generating a self-signed certificate using REST APIs 52
Example: Getting and installing a signed leaf certificate using REST APIs 52
Example: Associating a leaf certificate with a switch feature using REST APIs 56
Example: Configurationmanagement using REST APIs 57
Example: Firmware upgrade using REST APIs 59
Example: Log operations using REST APIs 60
Example: Ping operations using REST APIs 61
Example: Traceroute operations using REST APIs 61
Example: Usermanagement using REST APIs 62
Example: Creating an ACL with a port using REST APIs 63
Example: Creating a VLAN with a port using REST APIs 66

VSX peer switches and REST API access 68
Example: Interacting with a VSX peer switch 69
Example: Upgrading to the latest version of VSX 70

Prerequisites 70
Upgrading VSX using normalmode 70
Upgrading VSX using pre-stagemode 70
Aborting the VSX upgrade process 71
Resetting VSX upgrade values 71

AOS-CX real-time notifications subsystem 72
SecureWebSocket Protocol connections for notifications 72

Notification topics are switch resource URIs 72

Rules for topic URIs 73
Notification security features 74
AOS-CX real-time notifications subsystem reference summary 74

Enabling the notifications subsystemon a switch 75
Establishing a secureWebSocket connection through aweb browser 75
Establishing a secureWebSocket connection using a script 75
Subscribing to topics 76
Unsubscribing from topics 77
Parts of a subscribemessage 78
Parts of a subscription successmessage 78
Parts of a notificationmessage 80
Example: Browser-basedWebSocket connection 82
Example: Getting information about current subscribers and subscriptions 85

Troubleshooting 88
General troubleshooting tips 88
REST API response codes 90
Error "'admin' password is not set" 91
Error "certificate verify failed" returned from curl command 91
HTTP 400 error "Invalid Operation" 92
HTTP 400 error "Value is not configurable" 92
HTTP 400 error "Reference failure" 93
HTTP 401 error "Authorization Required" 93
HTTP 401 error "Login failed: session limit reached" 94
HTTP 403 error "Forbidden" on awrite request 94
HTTP 403 error "Forbidden" on aGET request 94
HTTP 404 error "Page not found" when accessing the switch URL 95
HTTP 404 error "Object not found" on object with "bridge/" in URI Path 95
HTTP 404 error "Object not found" returned from a switch that supportsmultiple REST API ver-
sions (10.04 and later) 96
HTTP 404 error "Object not found" when using awritemethod 96
HTTP 404 error "Page not found" when using awritemethod 96
Logout fails 97

Support and Other Resources 98
Accessing Aruba Support 98
Accessing Updates 99

Aruba Support Portal 99
My Networking 99

Warranty Information 99
Regulatory Information 99
Documentation Feedback 100

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 5

Chapter 1
About this document

About this document
This document describes features of the AOS-CX network operating system. It is intended for administrators
responsible for installing, configuring, andmanaging Aruba switches on a network.

Applicable products
This document applies to the following products:

n Aruba 4100i Switch Series (JL817A, JL818A)
n Aruba 6000 Switch Series (R8N85A, R8N86A, R8N87A, R8N88A, R8N89A)
n Aruba 6100 Switch Series (JL675A, JL676A, JL677A, JL678A, JL679A)
n Aruba 6200 Switch Series (JL724A, JL725A, JL726A, JL727A, JL728A)
n Aruba 6300 Switch Series (JL658A, JL659A, JL660A, JL661A, JL662A, JL663A, JL664A, JL665A, JL666A,

JL667A, JL668A, JL762A, R8S89A, R8S90A, R8S91A, R8S92A)
n Aruba 6400 Switch Series (JL762A, R0X31A, R0X38B, R0X39B, R0X40B, R0X41A, R0X42A, R0X43A,

R0X44A, R0X45A, R0X26A, R0X27A, JL741A)
n Aruba 8320 Switch Series (JL479A, JL579A, JL581A)
n Aruba 8325 Switch Series (JL624A, JL625A, JL626A, JL627A)
n Aruba 8360 Switch Series (JL700A, JL701A, JL702A, JL703A, JL706A, JL707A, JL708A, JL709A, JL710A,

JL711A, JL700C, JL701C, JL702C, JL703C, JL706C, JL707C, JL708C, JL709C, JL710C, JL711C, JL704C,
JL705C, JL719C, JL718C, JL717C, JL720C, JL722C, JL721C)

n Aruba 8400 Switch Series (JL375A, JL376A)
n Aruba 9300 Switch Series (R9A29A, R9A30A, R8Z96A)
n Aruba 10000 Switch Series (R8P13A, R8P14A)

Latest version available online
Updates to this document can occur after initial publication. For the latest versions of product
documentation, see the links provided in Support and Other Resources.

Command syntax notation conventions

Convention Usage

example-text Identifies commands and their options and operands, code examples,
filenames, pathnames, and output displayed in a command window. Items that
appear like the example text in the previous column are to be entered exactly
as shown and are required unless enclosed in brackets ([]).

example-text In code and screen examples, indicates text entered by a user.

Any of the following: Identifies a placeholder—such as a parameter or a variable—that youmust

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 6

About this document | 7

Convention Usage

n <example-text>
n <example-text>
n example-text

n example-text

substitute with an actual value in a command or in code:

n For output formats where italic text cannot be displayed, variables are
enclosed in angle brackets (< >). Substitute the text—including the
enclosing angle brackets—with an actual value.

n For output formats where italic text can be displayed, variablesmight
ormight not be enclosed in angle brackets. Substitute the text
including the enclosing angle brackets, if any, with an actual value.

| Vertical bar. A logical OR that separates multiple items from which you can
choose only one.
Any spaces that are on either side of the vertical bar are included for
readability and are not a required part of the command syntax.

{ } Braces. Indicates that at least one of the enclosed items is required.

[] Brackets. Indicates that the enclosed item or items are optional.

… or
...

Ellipsis:
n In code and screen examples, a vertical or horizontal ellipsis indicates an

omission of information.
n In syntax using brackets and braces, an ellipsis indicates items that can be

repeated. When an item followed by ellipses is enclosed in brackets, zero
or more items can be specified.

About the examples
Examples in this document are representative andmight not match your particular switch or environment.

The slot and port numbers in this document are for illustration only andmight be unavailable on your
switch.

Understanding the CLI prompts
When illustrating the prompts in the command line interface (CLI), this document uses the generic term
switch, instead of the host name of the switch. For example:
switch>

The CLI prompt indicates the current command context. For example:
switch>

Indicates the operator command context.
switch#

Indicates themanager command context.
switch(CONTEXT-NAME)#

Indicates the configuration context for a feature. For example:
switch(config-if)#

Identifies the interface context.

Variable information in CLI prompts
In certain configuration contexts, the prompt may include variable information. For example, when in the
VLAN configuration context, a VLAN number appears in the prompt:
switch(config-vlan-100)#

When referring to this context, this document uses the syntax:
switch(config-vlan-<VLAN-ID>)#

Where <VLAN-ID> is a variable representing the VLAN number.

Identifying switch ports and interfaces
Physical ports on the switch and their corresponding logical software interfaces are identified using the
format:
member/slot/port

On the 4100i Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

On the 6000 and 6100 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

On the 6200 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 8. The
primary switch is alwaysmember 1. If the switch is not amember of a VSF stack, thenmember is 1.

n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 onmember 1.

On the 6300 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 10. The
primary switch is alwaysmember 1. If the switch is not amember of a VSF stack, thenmember is 1.

n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 onmember 1.

On the 6400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of amodule in the switch chassis.

o Management modules are on the front of the switch in slots 1/1 and 1/2.
o Linemodules are on the front of the switch starting in slot 1/3.

n port: Physical number of a port on a linemodule.

For example, the logical interface 1/3/4 in software is associated with physical port 4 in slot 3 onmember 1.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 8

About this document | 9

On the 83xx, 9300, and 10000 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

If using breakout cables, the port designation changes to x:y, where x is the physical port and y is the lane when
split to 4 x 10G or 4 x 25G. For example, the logical interface 1/1/4:2 in software is associated with lane 2 on
physical port 4 in slot 1 onmember 1.

On the 8400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of amodule in the switch chassis.

o Management modules are on the front of the switch in slots 1/5 and 1/6.
o Linemodules are on the front of the switch in slots 1/1 through 1/4, and 1/7 through 1/10.

n port: Physical number of a port on a linemodule

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 onmember 1.

Identifying modular switch components
n Power supplies are on the front of the switch behind the bezel above themanagement modules. Power

supplies are labeled in software in the format:member/power supply:
o member: 1.
o power supply: 1 to 4.

n Fans are on the rear of the switch and are labeled in software as:member/tray/fan:
o member: 1.
o tray: 1 to 4.
o fan: 1 to 4.

n Fabricmodules are not labeled on the switch but are labeled in software in the format:member/module:
o member: 1.
o member: 1 or 2.

n The display module on the rear of the switch is not labeled with amember or slot number.

Chapter 2
Introduction to the AOS-CX REST API

Introduction to the AOS-CX REST API

REST v1 is deprecated with the the release of AOS-CX 10.09. Following AOS-CX 10.09, REST v1 will be hidden and
can be consulted, but it is no longer supported.

Starting with AOS-CX 10.08, the REST v1 API is deprecated. It is still active, but no new features were added with
10.08 and no new features will be subsequently added.

The Aruba 6000 Switch Series and 6100 Switch Series only support the default VRF and has no management port.
Therefore, references in this guide to other VRFs or the management port do no apply to the 6000 Switch Series
and 6100 Switch Series. Configuration for these switches should be done over an SVI having a physical port with
access to the SVI, since the physical ports in the 6000 and 6100 are not routed.

The Aruba 4100i Switch Series only supports the default VRF and has no management port. Therefore, references
in this guide to other VRFs or the management port do no apply to the 4100i Switch Series. Configuration for these
switches should be done over an SVI having a physical port with access to the SVI, since the physical ports in the
4100i are not routed.

AOS-CX REST API
Switches running the AOS-CX software are fully programmablewith a REST (REpresentational State Transfer)
API, allowing easy integration with other devices both on premises and in the cloud. This programmability—
combined with the ArubaNetwork Analytics Engine—accelerates network administrator understanding of
and response to network issues.

The AOS-CX REST API is a web service that performs operations on switch resources using HTTPS POST, GET,
PUT, and DELETEmethods.

The AOS-CX REST API enables programmatic access to the AOS-CX configuration and state database at the
heart of the switch. By using a structuredmodel, changes to the content and formatting of the CLI output
do not affect the programs you write. The configuration is stored in a structured database, instead of a text
file, making it easier to roll back changes, and dramatically reducing the risk of downtime and performance
issues.

REST API versions
From the AOS-CX release 10.04, the AOS-CX switches support access throughmultiple versions of the REST
API. The REST API versions supported on the AOS-CX switches are v1 and v10.04. The REST API version
v10.04 is supported fromAOS-CX release 10.04 and later.

The version declared in the REST request must match one of the versions of the REST API supported on the
switch. The REST API version is included in theUniformResource Identifier (URI) used in REST requests.

In the following example, the REST API version is v10.04:
https://192.0.2.5/rest/v10.04/system

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 10

Introduction to the AOS-CX REST API | 11

In the following example, the REST API version is v1:
https://192.0.2.5/rest/v1/system

Each REST API version has its own REST API Guide.

Differences among REST API versions
Resources, attributes, and behaviorsmight differ among the REST API versions and AOS-CX software
release.

AOS-CX Network Analytics Engine scripts
URIs that specify monitors in Network Analytics Engine scriptsmust be REST v1 URIs.

Interfaces and ports
The REST v10.04 API provides the interfaces resource to configure and get information about switch ports
and interfaces of all types. The ports resource is not supported by the REST v10.04 API.

GETmethod
TheGETmethod query parameters differ between REST v1 and REST v10.04:

n The REST v10.04 selector parameter includes a value of writable, which enables you to get only the
mutable attributes of a resource.

n The REST v1 depth parameter has a default of 0 and a range of 0 through 3.

The REST v10.04 depth parameter has a default of 1 and a range of 1 through 4. The REST v10.04 depth=1

is equivalent to the REST v1 depth=0, and so on.

Resource collections
In REST v10.04, themembers of a resource collection are represented as JSON objects, where the key is the
index and the value is the URI of the resource.

For example, the response to a GET request to /rest/v10.04/system/vrfs is as follows:

{
"default": "/rest/v10.04/system/vrfs/default",
"mgmt": "/rest/v10.04/system/vrfs/mgmt"

}

In contrast, the response to a GET request to /rest/v1/system/vrfs on the same switch is as follows:

[
"/rest/v1/system/vrfs/default",
"/rest/v1/system/vrfs/mgmt"

]

The Aruba 6000 Switch Series and 6100 Switch Series only support the default VRF.

REST API access modes
The REST API supports two accessmodes:

n read-write (default)
n read-only

The default read-write accessmode is not displayed in the show running-configuration command. You
can change the accessmode to read-only using the https-server rest access-mode read-only CLI
command from the global configuration (config) context. You can validate themode set using the show
https-server command.

Read-write access mode
In the read-write accessmode:

n The AOS-CX REST API Reference showsmost of the supported read and writemethods for all switch
resources.

n The REST API can access and change every configurable aspect of the switch asmodeled in the
configuration and state database.

The REST API is powerful, but must be used with extreme caution: For most values, no semantic
validation is performed on the data that you write to the database, and configuration errors can
destabilize the switch.

Read-only access mode
In the read-only accessmode:

n Most switch resources support only GETmethods, but some resources allow PUT or POSTmethods. For
example, you can use POST to log into the switch, use PUT to upload a new running configuration, or use
POST to upload a new firmware version.

n Formost switch resources, the AOS-CX REST API Reference does not show any writemethods (POST, PUT,
and DELETE) the resourcemight support. To show thosewritemethods, read-writemodemust be
enabled.

REST API URI
A switch resource is indicated by its UniformResource Identifier (URI). A URI is the location of a specific web
resource. A URI can bemade up of several components, including the host name or IP address, port
number, the path, and an optional query string.

Parts of a URI
The twomain parts of a URI are the path and the (optional) query component.

URI path, including path parameters
The path is the part of the URI starting with the server URL and ending with the resource ID. In URIs that
have a query component, the path is everything before the questionmark (?). The path has a hierarchy. In a
path, the forward slash (/) indicates the hierarchical relationship between resources.

Because the forward slash has a special meaning, the forward slash characters that are part of the URI path
must be percent-encoded with the code %2F, which represents the forward slash. For example, the following
URI represents the resource utilization for themanagement module in slot 1/5:

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 12

Introduction to the AOS-CX REST API | 13

https://192.0.2.5/rest/v1/system/subsystems/management_module,1%2F5?attributes=resource_
utilization

URI prefix

TheURI prefix is the systemURL and REST API version information. This information is specific to a
particular switch and REST API version, and is the same for every REST API request to that switch.

Script writers often create a variable for theURI prefix. Using a variable enables thewriter to update a script
or use the same script logic for a different switch by updating the value of the URI prefix variable.

TheURI prefix contains the following:

Server URL

Theweb server address of the switch.

Examples:

n https://192.0.2.5

n https://10.17.0.1

n https://myswitch.mycompany.com

If Virtual Switching Extension (VSX) is enabled, you can accessmost resources of the peer switch from this
switch by adding /vsx-peer in the URI path between the server URL and /rest. Formore information
about VSX, see VSX peer switches and REST API access.

For example:
GET https://192.0.2.5/vsx-peer/rest/v1/system/vsx?attributes=oper_status

REST API and version identifier

For example: /rest/v1

Path parameters

A path parameter is a part of the URI path that can vary. Typically path parameters indicate a specific
instance of a resource in a collection, such as a specific VLAN in the vlans collection. The path can contain
several path parameters. Path parameters are indicated by braces {}.

For example, the AOS-CX REST API Reference displays the resource for specific VLAN as the following:
/system/vlans/{id}

When you send a request for VLAN 10, the URI you providemust substitute the VLAN ID, 10, for the {id}
query parameter. For example:
/system/vlans/10

In the AOS-CX REST API Reference, you enter the value of the path parameter in theValue field of the id
parameter.

Query component
In many cases, the unique identification of a resource requires a URI that contains both a path and a query
component. The query component is sometimes called the query string.

For example, CPU utilization is a resource represented by the following URI:
https://192.0.2.5/rest/v1/system/subsystems/management_module,1%2F5?attributes=resource_
utilization

In a URI, the questionmark (?) indicates the beginning of the query component. The query component
contains nonhierarchical data, and the format of the query string depends on the implementation of the
REST API.

The query component often contains "<key>=<value>" pairs separated by the ampersand (&) character.
Multiple attribute values are supported and are separated by commas. For example:
https://192.0.2.5/rest/v1/system/vlans?depth=1&attributes=id,name,type

"Dot" notation for Network Analytics Engine URIs only

When aURI defines amonitor in an ArubaNetwork Analytics Engine (NAE) script, attribute values in the
query string support an additional dot notation that theNetwork Analytics Engine uses to access additional
information. For example:
https://192.0.2.5/rest/v1/system/subsystems/management_module,1%2F5?attributes=resource_
utilization.cpu

The dot notation is supported for certain URIs that definemonitors only in NAE scripts. URIs in NAE scripts
must only be REST v1 URIs.

Resources
In a REST API, the primary representation of data is called a resource. A resource is a representation of an
entity in the system as a URI. The entities can include hardware objects, statistical information, configuration
information, and status information. TheURI might ormight not include a query component. Resources are
nouns—anything that can be named can be a resource.

Examples of resources:

n The resource utilization information:
https://192.0.0.5/rest/v1/system/subsystems?attributes=resource_utilization

n The list of configured VLANs:
https://192.0.2.5/rest/v1/system/vlans

n The list of all users:
https://192.0.2.5/rest/v1/system/users

n The user with the ID: myadmin:
https://192.0.2.5/rest/v1/system/users/myadmin

n The secondary firmware image:
https://192.0.2.5/rest/v1/firmware?image=secondary

Resource collections and singletons

Collections
A collection is a directory of resourcesmanaged by the server. Typically, a resource collection contains
multiple resource instances and the collection name is in the plural form.

For example:

n /system/vlans

n /system/users

n /fullconfigs

AGET request to a collection returns the set of JSON objects representing themembers of the collection.
The following curl example shows theGET request and response returned for the vlans collection:

$ curl -k GET -b /tmp/auth_cookie "https://192.0.2.5/rest/v1/system/vlans"
{
"1": "/rest/v1/system/vlans/1",
"10": "/rest/v1/system/vlans/10",
"20": "/rest/v1/system/vlans/20"

}

Each URI in the list represents a configured VLAN.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 14

Introduction to the AOS-CX REST API | 15

To get the JSON data for VLAN 10, youmust either send theGET request to theURI representing VLAN 10
("/rest/v1/system/vlans/10"), or youmust use the depth parameter to expand the list of URIs in the
vlans collection to get the JSON data for all the VLANs in the collection.

Subcollections
A single resource instance can also contain subcollections of resources.

n In the following example, vlans is a subcollection of the system resource:
/system/vlans

n In the following example, routes is a subcollection of the default VRF resource instance:
/system/vrfs/default/routes

Singletons
There are some resources that can only have one instance. These resources are called singletons and the
resource collection name is in the singular form.

For example:

n /system

n /system/vsx

n /firmware

Because there is only one resource in a singleton collection, GET requests return the JSON representation of
the resource instead of a URI list of one item. In addition, you do not need to supply a resource ID in the
URL of a GET request. For example, the following GET request to the firmwareURI returns the JSON data
that represents the firmware resource:

$ curl -k GET -b /tmp/auth_cookie "https://192.0.2.5/rest/v1/firmware"
{
"current_version": "TL.10.00.0006E-686-g4a43ab9",
"primary_version": "TL.10.00.0006E-686-g4a43ab9",
"secondary_version": "",
"default_image": "primary",
"booted_image": "primary"

}

Categories of resource attributes
Resources can containmany attributes, and they are organized into the following categories to enablemore
efficient management:

Configuration attributes
Configuration attributes represent user-owned data. Although an attributemust be in the configuration
category to bemodified by a user, not all attributes in the configuration category can bemodified after the
resource instance is created. Configuration attributes that cannot be changed after the resource is created
are called immutable attributes. This distinctionmatters when using a PUT request, because immutable
attributes cannot be included in the request body.

For example, a VLAN ID is an immutable attribute. You cannot change the ID of the VLAN after the VLAN is
created. The VLAN name, in contrast, is amutable (writable) attribute. You can change the VLAN name
after the VLAN is created.

Writable attributes

Writable attributes are the subset of configuration attributes that aremutable. Writable attributes can be
modified by a user after the resource is created. When using the PUTmethod to modify a resource, only
writable attributes can be included in the request body.

In REST v10.04 and later versions, the GETmethod selector parameter includes a value of writable, which
enables you to get only themutable configuration attributes of a resource.

Status attributes
Status attributes contain system-owned data such as the admin account and various status fields. You
cannot create ormodify instances of attributes in this category.

Statistics attributes
Statistics attributes contain system-owned data such as counters. You cannot create ormodify instances of
attributes in this category.

Attribute categories might vary
A given attribute need not necessarily be in the same category from resource to resource, or even resource
instance to resource instance. If the systemowns an instance of a resource, attributes of that resource
(whichmight be configuration attributes if a user owns the resource instance) become status attributes,
which cannot bemodified by users.

For example, a user can create VLANs. However, the system can also create VLANs. System-owned VLANs
havemany attributes that are considered to be in the status category and not the configuration category.
The status category is used when the data is owned by the system and cannot be overwritten by a user.

Often a resource has a single attribute that indicates whether the resource is owned by the systemor by a
user. For example, for a VLAN, the type attribute indicates whether the VLAN was created by a user.

When this indicator attribute indicates that the resource is owned by the system, the other attributes that
might have been in the configuration category are categorized as status attributes. Likewise, when the
indicator attribute indicates that the resource is owned by a user, the other configuration attributes remain
available formodification by users. In other words, the categories for other attributes on the resource
follow the indicator attribute.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 16

Chapter 3
Enabling access to the REST API

Enabling access to the REST API
The AOS-CX Web UI and AOS-CX real-time notifications subsystem rely on the REST API, therefore, all three
are enabled or disabled together.

To access the REST API, Web UI, or notifications subsystem, theHTTPS servermust be enabled on the
specified VRF. The VRF you specify determines fromwhich network the features can be accessed. You can
enable access onmultiple VRFs, including user-defined VRFs, by entering the https-server vrf command
for each VRF on which you want to enable access.

Prerequisites

n Youmust be in the global configuration context: switch(config)#.
n The password for the admin usermust be configured on the switch.

Procedure
Enable HTTPS server access for the specified VRF.

For example:

n To enable access on all data ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

The Aruba 6000 Switch Series and 6100 Switch Series only support the default VRF.

n To enable access on theOOBM port (management interface IP address), specify themanagement VRF
(not applicable to the 6000 and 6100):

switch(config)# https-server vrf mgmt

n To enable access on ports that aremembers of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

If the switch responds with the following error, the admin usermust have a valid password:
Failed to enable https-server on VRF mgmt. 'admin' password is not set

The switch is shipped from the factory with a default user named adminwithout a password. The admin user
must set a valid password before HTTPS servers can be enabled.

Setting the admin password
Use the following API to login as the admin.
POST /rest/v1/login?username=admin

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 17

Enabling access to the REST API | 18

A new session is started and a response code 268 is returned along with themessage: "Session is
restricted. Administrator password must be set before continuing."

This session is valid only to change the admin password and logout from the REST API UI. Any other request will
return a Forbidden code (403).

Use the following API to change the admin password. Ellipses (...) represent data not included in the
example.
PUT /rest/v1/system/users/admin

{

...

"password": "<enter the password>"

...

}

After the password is changed successfully, the session restriction is removed.

Setting the REST API access mode to read-write
Enabling the read-writemode on the REST API allows write operations (POST, PUT, and DELETE) to be called
on all configurable elements in the switch database.

The REST API in read-writemode is intended for use by advanced users who have a good understanding of
the system schema and data relationships in the switch database.

The REST API in read-write mode can access every configurable element in the database. The REST API is powerful,
but must be used with extreme caution: For most values, no semantic validation is performed on the data that you
write to the database, and configuration errors can destabilize the switch.

Setting the accessmode is independent from enabling or disabling access to the REST API.

Prerequisites
Youmust be in the global configuration context: switch(config)#.

Procedure
Set the REST API accessmode to read-write.

switch(config)# https-server rest access-mode read-write

Showing the REST API access configuration
To show the REST API access configuration, in themanager context (#) of the CLI, enter the show https-

server command.

For example:

switch# show https-server
HTTPS Server Configuration

VRF : mgmt, default
REST Access Mode : read-write

The Aruba 6000 Switch Series and 6100 Switch Series only support the default VRF.

The Aruba 4100i Switch Series only supports the default VRF.

The command output lists the VRFs on which access to REST API is enabled and shows the current REST API
accessmode.

If access is not enabled on any VRF, the VRF configuration is displayed as <none>.

For example:

switch# show https-server
HTTPS Server Configuration

VRF : <none>
REST Access Mode : read-write

Disabling access to the REST API

The AOS-CX Web UI and AOS-CX real-time notifications subsystem rely on the REST API, therefore, all three are
enabled or disabled together.

Prerequisites
Youmust be in the global configuration context: switch(config)#.

Procedure
Disable HTTPS server access for the specified VRF by using the no form of the https-server vrf command.

For example, the following command disables REST API access on the switch data ports in the default VRF:

switch(config)# no https-server vrf default

You can use the show https-server command to show the current configuration:

switch# show https-server

HTTPS Server Configuration

VRF : mgmt
REST Access Mode : read-write

HTTPS server commands

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 19

Enabling access to the REST API | 20

https-server max-user-sessions
https-server max-user-sessions <SESSION-AMT>

Description
Sets themaximumamount of concurrent open sessions for any given user through theHTTPS server. The
amount of concurrent open sessionsmay have an impact on systemperformance, so it is recommended to
set this value to theminimumnecessary.

Parameter Description

<SESSION-AMT> Specifies the maximum number of user sessions allowed.
Default: 6. Maximum value: 8.

Example
Set themaximumnumber of concurrent user sessions to themaximumof 8:

switch(config)# https-server max-user-sessions 8

Command History

Release Modification

10.08 Command introduced

Command Information

Platforms Command context Authority

All platforms config Administrators or local user groupmembers with execution rights
for this command.

https-server rest access-mode
https-server rest access-mode {read-only | read-write}

Description
Changes the REST API accessmode. The default mode is read-write.

Parameter Description

read-write Selects the read/write mode. Allows POST, PUT, PATCH, and
DELETE methods to be called on all configurable elements in the
switch database.

read-only Selects the read-only mode. Write access to most switch
resources through the REST API is disabled.

Usage
Setting themode to read-write on the REST API allows POST, PUT, PATCH, and DELETEmethods to be
called on all configurable elements in the switch database.

By default, REST APIs in the device are in the read-writemode. Some switch resources allow POST, PUT,
PATCH, and DELETE regardless of REST API mode. REST APIs that are required to support theWeb UI or the
Network Analytics Engine expose POST, PUT, PATCH, or DELETE operations, even if the REST API access
mode is set to read-only.

The REST API in read/writemode is intended for use by advanced programmers who have a good
understanding of the system schema and data relationships in the switch database.

Because the REST API in read/write mode can access every configurable element in the database, it is powerful but
must be used with extreme caution: No semantic validation is performed on the data you write to the database,
and configuration errors can destabilize the switch.

On 6300 switches or 6400 switches, by default, the HTTPS server is enabled in read-writemode on the
mgmt VRF. If you enable theHTTPS server on a different VRF, theHTTPS server is enabled in read-only

mode.

Example

switch(config)# https-server rest access-mode read-only

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms config Administrators or local user groupmembers with execution rights
for this command.

https-server rest firmware-site-distribution
https-server rest firmware-site-distribution
no https-server rest firmware-site-distribution

Description
Enables the firmware site distribution server.

The firmware site distribution allows you to use a switch to distribute a firmware image file to other switches
in the same network. This prevents the switches from connecting to the cloud or an external network to
download a firmware image file.

On enabling the firmware site distribution, it exposes a REST endpoint that allows the switches to download
a switch primary or secondary firmware image.

As per the limitation, up to two switches can download the firmware image simultaneously.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 21

Enabling access to the REST API | 22

This endpoint is to be used along with REST /firmware endpoint to handle the firmware download and
installation process.

The no form of this command disables the firmware site distribution server.

Example
Enabling the firmware site distribution server:

switch(config)# https-server rest firmware-site-distribution

Disabling the firmware site distribution server:

switch(config)# no https-server rest firmware-site-distribution

Command History

Release Modification

10.10 Command introduced

Command Information

Platforms Command context Authority

All platforms config Administrators or local user groupmembers with execution rights
for this command.

https-server session close all
https-server session close all

Description
Invalidates and closes all HTTPS sessions. All existingWeb UI and REST sessions are logged out and all real-
time notification featureWebSocket connections are closed.

Usage
Typically, a user that has consumed the allowed concurrent HTTPS sessions and is unable to access the
session cookie to log out manually must wait for the session idle timeout to start another session. This
command is intended as aworkaround to waiting for the idle timeout to close an HTTPS session. This
command stops and starts the hpe-restd service, so using this command affects all existing REST sessions,
Web UI sessions, and real-time notification subscriptions.

Example

switch# https-server session close all

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms Manager (#) Administrators or local user groupmembers with execution rights
for this command.

https-server session-timeout
https-server session-timeout <MINUTES>

Description
Configures the timeout, in minutes, for any given HTTPS server session. A value of 0 disables the timeout.

Parameter Description

<MINUTES> Specifies the maximum idle time, in minutes for an HTTPS session.
Default: 20. Maximum: 480 (8 hours). 0 disables the timeout.

Example

switch(config)# https-server session-timeout 10

Command History

Release Modification

10.08 Command introduced

Command Information

Platforms Command context Authority

All platforms config Administrators or local user groupmembers with execution rights
for this command.

https-server vrf
https-server vrf <VRF-NAME>
no https-server vrf <VRF-NAME>

Description
Configures and starts theHTTPS server on the specified VRF. HTTPS server features include the REST API
and theweb user interfaces.

The no form of the command stops any HTTPS servers running on the specified VRF and removes theHTTPS
server configuration.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 23

Enabling access to the REST API | 24

Parameter Description

<VRF-NAME> Specifies the VRF name. Required. Length: Up to 32 alpha numeric
characters.

Usage
By using this command, you enable access to both theWeb UI and to the REST API on the specified VRF.
You can enable access onmultiple VRFs.

By default, 8320, 8325, 8360, 8400, 9300, and 10000 Switch Series have an HTTPS server enabled on the
mgmt VRF.

By default, the 6200, 6300, and 6400 Switch Series have an HTTPS server enabled on the mgmt VRF and on
the default VRF.

When theHTTPS server is not configured and running, attempts to access theWeb UI or REST API result in
404 Not Found errors.

The VRF you select determines fromwhich network theWeb UI and REST API can be accessed.

For example:

n If you want to enable access to the REST API andWeb UI through theOOBM port (management IP
address), specify the built-in management VRF (mgmt).

n If you want to enable access to the REST API andWeb UI through the data ports (for "inband
management"), specify the built-in default VRF (default).

n If you want to enable access to the REST API andWeb UI through only a subset of data ports on the
switch, specify other VRFs you have created.

ArubaNetwork Analytics Engine scripts run in the default VRF, but you do not have to enable HTTPS server
access on the default VRF for the scripts to run. If the switch has customArubaNetwork Analytics Engine
scripts that require access to the Internet, then for those scripts to perform their functions, youmust
configure a DNS name server on the default VRF.

Examples
Enabling access on all ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

Enabling access on theOOBM port (management interface IP address), specify themanagement VRF:

switch(config)# https-server vrf mgmt

Enabling access on ports that aremembers of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

Enabling access on themanagement port and ports that aremembers of the VRF named vrfprogs, enter
two commands:

switch(config)# https-server vrf mgmt
switch(config)# https-server vrf vrfprogs

The 6200 switches support only two VRFs. One management VRF and one default VRF. You cannot add another
VRF.

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms config Administrators or local user groupmembers with execution rights
for this command.

show https-server
show https-server [vsx-peer]

Description
Shows the status and configuration of theHTTPS server. The REST API and web user interface are accessible
only on VRFs that have theHTTPS server features configured.

Parameter Description

vsx-peer Shows the output from the VSX peer switch. If the switches do not
have the VSX configuration or the ISL is down, the output from the
VSX peer switch is not displayed. This parameter is available on
switches that support VSX.

Usage
Shows the configuration of theHTTPS server features.
VRF
Shows the VRFs, if any, for which HTTPS server features are configured.
REST Access Mode
Shows the configuration of the REST access mode:
read-write
POST, PUT, and DELETE methods can be called on all configurable elements in the switch database. This is the
default value.
read-only
Write access to most switch resources through the REST API is disabled.

Examples

switch# show https-server

HTTPS Server Configuration

VRF : default, mgmt
REST Access Mode : read-write

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 25

Enabling access to the REST API | 26

Max sessions per user : 6

Session timeout : 20

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms Manager (#) Administrators or local user groupmembers with execution rights
for this command.

Chapter 4
Accessing the AOS-CX REST API

Accessing the AOS-CX REST API
You can access the REST API using any REST client interface that supports HTTPS requests, and supports
obtaining and passing a session cookie.

Examples of client interfaces include the following:

Scripts and programs that support HTTPS requests
A flexible way to access the AOS-CX REST API is to use a programming language that supports HTTPS
requests, such as Python, to write programs that automate network management tasks.

The curl command-line interface
You can use curl commands either interactively or within a script to make REST requests. Using curl
commands is a way to execute GET requests without writing a script. Using curl commands is a way to test
REST requests that you are considering to incorporate into an application.

Browser-based interfaces such as Postman or the AOS-CX REST API Reference
Examples of browser-based interfaces include Postman and the AOS-CX REST API Reference.

The AOS-CX REST API Reference documents the switch resources, parameters, and JSONmodels for each
HTTPSmethod supported by the resource. Because the AOS-CX REST API Reference is browser-based, it can
share the session cookie with aWeb UI session active in another browser tab. The AOS-CX REST API
Reference is not intended to be used as a configuration tool and is not required for day-to-day operations.

The AOS-CX REST API Reference is oneway to execute GET requests without writing a script. The AOS-CX
REST API Reference can be used during script coding to help you construct the URIs—with their query
parameters—that you use in a script or curl command.

Authenticating REST API sessions
When you start a REST API session, you use the POSTmethod to access the login resource of the switch and
pass the username and password information as data. Ensure that HTTPS is configured to use port 443.
Requests to port 80 are redirected to port 443.

If the credentials are accepted, your authenticated session is started for that username, and the switch
returns a cookie containing encoded session information.

In subsequent calls to the API—including to the logout resource—the session cookie is passed back to the
switch.

The same session cookie is shared across browser tabs, and depending on the browser, multiple browser
windows. However, the same session cookie is not shared across devices and scripts. For example, if a user
logs into theWeb UI from a laptop, again with a tablet, and then uses the same user name in a curl
command, that user has three concurrent client sessions.

The maximum number of concurrent HTTPS sessions per user per switch is six. There is an upper limit of 48 total
sessions per switch. It is a best practice to log out of HTTPS sessions when you are finished using them.

HTTPS sessions will automatically time out after 20 minutes of inactivity, and have a hard time limit of eight
hours, regardless of whether the session is active. You can run the https-server session close all

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 27

Accessing the AOS-CX REST API | 28

command to close all current HTTPS sessions. Formore information about using the command, see https-
server session close all.

Authentication throughmethods other than the session cookie, such as OAuth or certificates, is not
supported. The server uses self-signed certificates.

The procedure to pass the session cookie back and forth from the switch depends on how you access the
REST API.

For example:

n If you log in to the REST API using the AOS-CX REST API Reference or using theWeb UI and open the API
Reference in another browser tab, the browser handles the session cookie for you. You do not have to
save or otherwisemanage the session cookie.

n If you access the REST API using anothermethod, such as the curl tool, youmust do the following:
o Save the session cookie returned from the login request.
o Pass that saved cookie to the switch with every subsequent request youmake to the REST API,

including the logout resource.

Although it is possible to pass the user name and password information as a query string in the login
URL, browser logs or tools outside the switch might save the accessed URL in cleartext in log entries.
Instead, Hewlett Packard Enterprise recommends that you pass the credential information as data
when using programs such as curl to log in to the switch.

For examples of accessing the REST API using curl, see Accessing the REST API using curl.

User groups and access authorization
For switch resources, the access authorization granted to a user is determined by the group to which the
user belongs. Each user group is assigned a number that represents a privilege level. This number is used to
represent the user group in logs and in places in which the group name is too long to display.

The following predefined user groups are supported:

User group Privilege level Description

operators 1 Authorized for read access to non-sensitive data.

administrators 15 Authorized for read and write access to all switch
resources. Write access also requires that the REST
API is in read-write access mode.

auditors 19 Authorized for read access to audit log (/logs/audit)
and event log (/logs/event) resources only.

All users can access the POSTmethod of the login and logout resources. However, the login requests fail if
the user is not amember of one of the predefined user groups. For example, login attempts fail when
attempted by amember of a user-defined local user group.

If a user attempts a request for which they are not authorized, the switch returns an HTTP 403 "Forbidden"
error.

If an authorized user attempts awrite request but the REST API is in read-only mode, the switch returns an
HTTP 404 "Page not found" error.

Chapter 5
AOS-CX REST API Reference (UI)

AOS-CX REST API Reference (UI)
The AOS-CX operating system includes the AOS-CX REST API Reference, which is a web interface based on the
Swagger 3.0 UI. Formore information about Swagger, see https://swagger.io/.

The AOS-CX REST API Reference provides the reference documentation for REST API, including the switch
resources, parameters, errors, and JSONmodels for each HTTPSmethod supported by the resource. The
AOS-CX REST API Reference showsmost of the supported read and writemethods for all switch resources.

Since the AOS-CX REST API Reference is browser-based, it can share the session cookie with aWeb UI session
active in another browser tab. The AOS-CX REST API Reference is not intended to be used as a configuration
tool and is not required for day-to-day operations.

The AOS-CX REST API Reference is oneway to execute HTTP requests like GET, PUT, POST, and DELETE,
without writing a script. The AOS-CX REST API Reference can be used during script coding to help you
construct the URIs and data body (in the case of POST or PUT)—with their query parameters—that you use
in a script or curl command.

Accessing the REST API using the AOS-CX REST API
Reference

Although the AOS-CX REST API Reference interacts directly with the REST API, the AOS-CX REST API Reference is not
intended as a management or configuration interface. Use caution when using the Submit button for POST or PUT
methods because this action can result in changes to your current environment.

Prerequisites

n HTTPS server accessmust be enabled on the VRF fromwhich you are accessing the switch.
n With a few exceptions, using the PUT, POST, or DELETEmethods require the following conditions to be

true:
o The REST API accessmodemust be set to read-write.
o The user name you use to log inmust be amember of the administrators group.

Procedure

n To view the reference documentation for the REST v10.04 API, access the following URL using a browser:
https://<IP-ADDR>/api/v10.04/

<IP-ADDR> is the IP address or hostname of your switch.

For example: https://192.0.2.5/api/v10.04/

n To open the reference for the REST v1 API, open a browser at: https://<IP-ADDR>/api/v1/ or at
https://<IP-ADDR>/api/

<IP-ADDR> is the IP address or hostname of your switch.

For example: https://192.0.2.5/api/v1/

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 29

https://swagger.io/

AOS-CX REST API Reference (UI) | 30

Logging in and logging out using the AOS-CX REST API Reference

Prerequisites

n Access to the switch REST API must be enabled.
n Youmust have used a supported browser to access the switch at:
https://<IP-ADDR>/api/v10.04/

<IP-ADDR> is the IP address or hostname of your switch.

Procedure
Log in to the switch using the Login resource.

1. Expand the Login section.

The POSTmethod for the login resource is displayed.

2. Expand the resource by clicking POST or the resource name, /login.
3. Click Try it out.
4. Enter your user name in theUser name field.
5. Enter your password in the Password field.
6. Click Execute. If the operation is successful, the REST API returns response code 200.

When you finish your session, log out by expanding the Logout resource and clicking Execute.

AOS-CX REST API Reference basics
The AOS-CX REST API Reference is a web interface based on Swagger 2.0. The AOS-CX REST API Reference
does the following:

n Documents the switch REST API resources, methods, models, and responses.
n Enables you to interact with the switch to view or change the configuration.

Formore information about Swagger, see https://swagger.io/.

AOS-CX REST API Reference home page
The following is an example of a portion of the AOS-CX REST API Reference homepage for a switch running
AOS-CX software:

At the bottomof the page, the AOS-CX REST API Reference shows baseURL and version information. For
example:

https://swagger.io/

[BASE URL: /rest/v1, API VERSION: 1.0.0]

n The switch resource URIs are organized in groups. The group names are listed in alphabetical order on the
AOS-CX REST API Reference homepage.

The group namedoes not alwaysmatch the resource collection name. Use the group names as a navigation
aid only.

n Group names that are in gray have theURI entries—also called endpoints—collapsed. When you hover
over the group name, it turns black. Click the group name to expand it and show the list of methods and
URIs in the group.

You can also use the Show/Hide, List Operations, and Expand Operations controls to expand or collapse
all themembers of the group.

n The following example shows the list of themethods and resource URIs in the Subsystem group:

This view is the same view that is shownwhen you click the List Operations control of the Subsystem
group.

o Themethods that are shownmight depend on the REST API accessmode. Somemethodsmight not
be displayed if the REST API accessmode is read-only.

o Methods and resourcesmight be displayed that you do not have the authorization to access. For
example, users with operator rights are not authorized to make PUT or POST requests to most
resources. If you submit a request for which you are not authorized, the switch returns the following
error:
HTTP error 403 "Forbidden"

o The resource collection name is subsystems (not Subsystem).
o Items in braces, such as {id 1}, are path parameters. If you submit a request to a resource URI that

includes a path parameter, you are required to supply a value for the parameter.
n To showmore information about an itemon the list, click the URI path. The following shows part of the

information displayed when /system/subsystems is selected:

You can use the browser scroll bar to navigate to information about the implementation of thismethod
and resource, including the required and optional parameters.
o Required parameters are shown in bold.

For example, the POSTmethod of the login resource requires a user name and password:

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 31

AOS-CX REST API Reference (UI) | 32

Path parameters such as {id} are listed as required parameters:

o The Submit button sends the request.

Although the AOS-CX REST API Reference interacts directly with the REST API, the AOS-CX REST API
Reference is not intended as a management or configuration interface. Use caution when using
the Submit button for POST or PUT methods because this action can result in changes to your
current environment.

n In GET requests, there can bemultiple attributes and parameters you can use to filter results. For
example:

You can select multiple attributes:
o To select a range of attributes, click the first attribute, then press Shift, and then click the last

attribute in the range you want to select.
o To select attributes that are not adjacent in the list, press Ctrl, then click each attribute you want to

select.
n The JSONmodel for the resource is described inModel and shownwith example values in Example

Values for eachmethod. The following example shows the JSONmodel and example values for PUT
method of the /system/subsystems/{id1}/{id2} resource:

n After a request is submitted, the AOS-CX REST API Reference shows additional information, including the
following:
o The curl command equivalent of the submitted request
o The submitted request URL, including the specified parameters and values.
o The response body returned by the switch
o The response code returned by the switch
o The response headers returned by the switch

n The curl command and request URLs are displayed using percent encoding for certain characters in the
query string portion of the URL:

Character Percent-encoded equivalent

, (comma) %2C

: (colon) %3A

When you enter curl commands or submit requests through othermeans, percent encoding is permitted
but not required in the query string of the URI.

Write methods (POST, PUT, and DELETE)
The supported writemethods are POST, PUT, and DELETE:

n POST creates a resource.
n PUT replaces a resource.
n DELETE removes a resource.

Not all resources support all writemethods. See the AOS-CX REST API Reference for themethods supported
by each resource. The REST API must be in read-writemode for the AOS-CX REST API Reference to show all
thewritemethods a resource supports.

Considerations when making configuration changes

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 33

AOS-CX REST API Reference (UI) | 34

The REST API can access and change every configurable aspect of the switch asmodeled in the configuration
and state database. However, changing the configuration of a switch through the REST API can be different
than changing the configuration through the CLI.

A single configuration change to the switch can require changes to multiple resources in the configuration
and state database. Often these changesmust bemade in a specific order.

The CLI commands have been programmed to work "behind the scenes" to make the correct database
changes and to perform data validation checks on the user input. In contrast, when you use the REST API to
make a configuration change, youmust become familiar with the representational models of the switch
resources, the type and format of the data required, and the required order of write operations to various
resources.

The REST API is powerful but must be used with extreme caution: No semantic validation is performed on the data
you write to the database, and configuration errors can destabilize the switch. Hewlett Packard Enterprise
recommends that you refer to the tested examples when using the REST API to make configuration changes.

Considerations for ports and interfaces
The REST v1 API provides the interfaces resource to configure and get information about switch ports and
interfaces of all types. You do not use the ports resource to manage ports.

Hardware (system) interfaces

n Hardware interfaces are of type system.
n Hardware interfaces are included in the database automatically.
n Interfaces of type system cannot be added or deleted.

LAG interfaces

n LAG interfaces are of type lag.
n You can use theDELETEmethod to delete a LAG interface.

Example of creating a LAG interfacewithmember ports 1/1/1 and 1/1/2:

Method and URI:
POST "/rest/v1/system/interfaces"

Request body:

{
"name": "lag50",
"vrf": "/rest/v1/system/vrfs/default",
"type": "lag",
"interfaces": [
"/rest/v1/system/interfaces/1%2F1%2F1",
"/rest/v1/system/interfaces/1%2F1%2F2"

]
}

VLAN interfaces

n VLAN interfaces are of type vlan.
n You can use theDELETEmethod to delete a VLAN interface.

Example of creating a VLAN interface:

Method and URI:
POST "/rest/v1/system/interfaces"

Request body:

{
"name": "vlan2",
"vlan_tag": "/rest/v1/system/vlans/2",
"vrf": "/rest/v1/system/vrfs/default",
"type": "vlan"

}

Write methods (POST, PUT) supported in read-only mode
The following switch resources support writemethods (POST, PUT, or both) even when the REST API access
mode is set to read-only:

n Configurationmanagement: */rest/v1/fullconfigs*
n Firmware: */rest/v1/firmware*
n User login and logout:

o */rest/v1/login

o */rest/v1/logout

n ArubaNetwork Analytics Engine and scripts: */rest/v1/system/nae_scripts*

The * indicatesmore text to be added in URI path.

GET method usage and considerations
TheGETmethod is a readmethod that gets the resource specified by theURI. Data is returned in JSON
format in the response body.

Using GET on a resource collection results in a list of URIs. Each URI in the list corresponds to a specific
resource in the collection.

Using GET on a specific resource returns the attributes of that resource.

GET method parameters
TheGETmethod supports the following parameters in the query string of the URI:

n attributes

n count

n depth

n filter

n selector

A path query parameter is specified as a "key=value" pair. When permitted, multiple values are separated by
the comma (,) character.

For example:

n attributes=id,name,type

n count=true

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 35

AOS-CX REST API Reference (UI) | 36

n depth=1

n filter=type:static

n selector=writable

A path query parameter can be used alone or in combination with other parameters. The ampersand (&)
character separates each parameter in the string.

For example:
GET "https://192.0.2.5/rest/v1/system/vlans?depth=1&attributes=id,name,type"

The count and filter attributes and wildcard character are supported fromAOS-CX release 10.05 and later.

Attributes parameter
The attributes parameter of the GETmethod reduces the returned data for each entry to include only the
attributes specified in the comma-separated list. The attribute names in theURI must match the attribute
names in the AOS-CX REST API Reference.

For a list of the available attributes for a resource, see theGETmethod of that resource in the AOS-CX REST
API Reference.

Example request:
GET "https://192.0.2.5/rest/v1/system/vlans?depth=1&attributes=id,name,type"

Example response:

{
{
"id": 1,
"name": "DEFAULT_VLAN_1",
"type": "default"

},
{
"id": 2,
"name": "VLAN2",
"type": "static"

},
{
"id": 3,
"name": "VLAN3",
"type": "static"

}
}

Count parameter
The count parameter of the GETmethod returns the number of entries that match the specified URI. The
count parameter can be useful when specifying resource collections or for getting statistical information.

You can specify the count parameter as either of the following:

n count

n count=true

Examples:

n Use the count parameter to get the total number of VLANs:
GET "https://192.0.2.5/rest/v1/system/vlans?count=true"

n Use the count parameter with the filter parameter to get the total number of interfaces in a down

administrative state:
GET "https://192.0.2.5/rest/v1/system/interfaces?count&filter=admin_state:down"

Depth parameter
The depth parameter of the GETmethod specifies to what level the URIs in response bodiesmust be
expanded and replaced by the JSON representation of those resource:

n Default: 0
n Maximum: 3

For each level of depth, the REST API expands one level of URIs into their JSON data representations in the
response body.

Using the depth parameter can result in large amounts of returned data, depending on the number of items in the
list and the amount of JSON data that represents each item.

For example, a GET request on the vlans resource returns a list of URIs. Example request:
GET "https://192.0.2.5/rest/v1/system/vlans"

Example response:

[
"/rest/v1/system/vlans/1",
"/rest/v1/system/vlans/10",
"/rest/v1/system/vlans/20"

]

To specify that thoseURIs also be expanded and replaced with the JSON data, specify depth=1 as a
parameter in theGET request.

Example request:
GET "https://192.0.2.5/rest/v1/system/vlans?depth=1"

Example response (ellipses represent data omitted from this example):

[
{
"id": 1,

"name": "DEFAULT_VLAN_1",
"type": "default",
…

"flood_enabled_subsystems": [
{

URI-of-first-subsystem
},
…
{

URI-of-last-subsystem
}

]
},

{ "id": 10,
"name": "vlan10",
"type": "static",
…

"flood_enabled_subsystems": [
{

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 37

AOS-CX REST API Reference (UI) | 38

URI-of-first-subsystem
},
…
{

URI-of-last-subsystem
}

]
}

]

Each VLAN in the preceding example includes an attribute, flood_enabled_subsystems, which contains a list
of URIs that represent the flood-enabled systems. To specify that thoseURIs also be expanded and
replaced with the JSON data, specify depth=2 as a parameter in theGET request.

Filter parameter
The filter parameter of the GETmethod reduces the returned data to include only those entries that
match the filter criteria. Specify the filter criteria in a comma-separated list of attribute name:value pairs.

Examples:

n Use the filter parameter to get only the static VLANS:
GET "https://192.0.2.5/rest/v1/system/vlans?filter=type:static"

n Use the filter parameter to get the BGP routes that have 1.1.1.1 as a peer:
GET "https://192.0.2.5/rest/v1/system/vrfs/default/bgp_routes?filter=peer:1.1.1.1"

Selector parameter
The selector parameter of the GETmethod filters the returned data to include only those attributes that
belong to the specified category. By using the selector parameter, you avoid having to list attributes
individually using the attributes parameter. The default is to include all categories. Use a comma (,) to
separatemultiple category values.

The selector categories are the following:
configuration

Contains user-owned information. Attributes in the configuration category can be supplied by users
through REST requests or through the switch CLI. Although an attributemust be in the configuration
category to bemodified by a user, not all attributes in the configuration category can bemodified after
the resource instance is created.

statistics

Contains system-supplied data such as counters. Attributes in the statistics category cannot be
written by users.

status

Contains system-owned data such as the admin account and various status fields. Attributes in the
status category cannot bewritten by users.

For example, to get the configuration attributes of all VLANs, when you specify the URI of the GETmethod,
do the following:

n Specify depth=1 to direct the REST API return the JSON representations of each VLAN instead of theURI
of each VLAN in the list. If you do not specify depth=1, the REST API returns each VLAN represented as a
URI, which does not include the attributes of the individual VLANs.

n Specify the selector parameter with the value configuration.

GET "https://192.0.2.5/rest/v1/system/vlans?depth=1&selector=configuration"

Example response:
[
{
"admin": "up",
"id": 20,
"mgmd_enable": {},
"mgmd_igmp_block_ports": [],
"mgmd_igmp_fastleave_ports": [],
"mgmd_igmp_forcedfastleave_ports": [],
"mgmd_igmp_forward_ports": [],
"mgmd_igmp_static_groups": [],
"mgmd_mld_block_ports": [],
"mgmd_mld_fastleave_ports": [],
"mgmd_mld_forcedfastleave_ports": [],
"mgmd_mld_forward_ports": [],
"mgmd_mld_static_groups": [],
"name": "VLAN20",
"type": "static"

},
{
"admin": "up",
"id": 10,
"mgmd_enable": {},
"mgmd_igmp_block_ports": [],
"mgmd_igmp_fastleave_ports": [],
"mgmd_igmp_forcedfastleave_ports": [],
"mgmd_igmp_forward_ports": [],
"mgmd_igmp_static_groups": [],
"mgmd_mld_block_ports": [],
"mgmd_mld_fastleave_ports": [],
"mgmd_mld_forcedfastleave_ports": [],
"mgmd_mld_forward_ports": [],
"mgmd_mld_static_groups": [],
"name": "VLAN10",
"type": "static"

}
]

POST method usage and considerations
The POSTmethod creates an instance of a resource in the collection specified by theURI:

n Not all resources support the POSTmethod. See the AOS-CX REST API Reference for themethods
supported by each resource. The REST API must be in read-writemode to see all the POSTmethods
supported.

n Some resources support the POSTmethod even when the REST API is in read-only mode.
n When you use the POSTmethod, the URI must point to the collection—not to the resource you are

creating. The resource you are creating is sent in JSON format in the request body.
o The JSON representationmust include all fields required by the JSONmodel of that resource.
o The JSON representation can contain only configuration attributes. It must not contain attributes in

the status or the statistics category.
n You can POST only one resource at a time.
n Most resources have a hierarchical relationship. Youmust create the parent before you can create the

child.

For example, to create an ACL entry:
1. The ACL must be created first by sending the JSON data of the ACL in the request body in a POST

request to theURI of the acls collection:

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 39

AOS-CX REST API Reference (UI) | 40

/system/acls

2. The entry can then be created by sending the JSON data of the entry in the request body in a POST
request to theURI of the ACL:
/system/acls/<ACL-name>,<ACL-type>/cfg_aces

PUT method usage and considerations
The PUTmethod updates an instance of a resource by replacing the existing resourcewith the resource
provided in the request body.

Configuration attributes that are set at the time a resource is created and that cannot be changed afterward
are called immutable attributes. Configuration attributes that can be changed after a resource is created
are calledmutable orwritable attributes. The PUTmethod is used replacewritable attributes only.

n Not all resources support the PUTmethod. For information about themethods supported for a
resource, see the AOS-CX REST API Reference. The REST API must be in read-writemode to see all the
PUTmethods supported.

n TheURI must specify a specific resource, not a collection.
n TheURI must specify a resource that currently exists.
n For almost all resources, the PUTmethod is implemented as a strict replace operation.

All mutable configuration attributes are replaced. Any mutable attribute that the JSON data in request body
does not include is either removed (if there is no default value) or reset to its default value.

PUT request body requirements
The JSON data in the request body must includemutable (writable) configuration attributes only.

The JSONmodel used for the PUTmethod request body is different from the JSONmodel used for theGET
or the POSTmethod.

The JSONmodel of a PUTmethod for a resource contains themutable attributes only. In contrast, the JSON
models for GET and POSTmethods can include bothmutable and immutable attributes.

See the AOS-CX REST API Reference for the JSONmodel of a PUTmethod for a resource.

PUT behavior
The PUT operation is a replace operation—not an update operation—because the resource instance in the
request body replaces every changeable configuration attribute of the existing resource. PATCH partial
updates are not supported.

Any mutable attribute that the JSON data in request body does not include is either removed (if there is no default
value) or reset to its default value.

For example:

n If you attempt a PUT operation on the System resource to change the host name, and you supply only
the host name, you will destabilize the switch because the other attributes will be reset to their defaults,
whichmight be empty.

n If you attempt to change the name of a VLAN and supply only the name in the PUT request, every other
attribute in that VLAN is set to its default of empty.

Exceptions to the PUT strict replace behavior

For Network Analytics Engine agents, the PUT behavior is not a strict replace implementation. You can
enable or disable agents without the supplying the entire set of configuration attributes in the PUT request
body. Formore information about theNetwork Analytic Engine resources, see theNetwork Analytics Engine
Guide.

Best practice for building the PUT request body
Hewlett Packard Enterprise recommends the following procedure for building the PUT request body.

Procedure

1. Use theGETmethod with selector=writable to obtain thewritable (mutable) configuration
attributes for the resource you want to change.

For example:
GET "https://192.0.2.5/rest/v1/system/interfaces/vlan200?selector=writable"

2. Change the values of the attributes to match your wanted configuration.

Any attribute you do not include in the request body will be set to its default value, which could be
empty.

3. Use the resulting JSON data as the request body for the PUT request.

DELETE method usage and considerations
TheDELETEmethod deletes an instance of a resource.

n Not all resources support the DELETEmethod. See the AOS-CX REST API Reference for themethods
supported by each resource. The REST API must be in read-writemode to see all the DELETEmethods
supported.

n TheURI must specify a specific resource instance. TheURI must not specify a collection.
n Child subcollections and resources are deleted when you delete the parent resource. For example, if you

delete an ACL, its ACL entries are deleted automatically.
n DELETE requests do not contain a request body.
n DELETE requests do not return a response body.

REST requests and accounting logs
All REST requests—including GET requests—are logged to the accounting (audit) log.

TheURI of the REST API resource for accounting logs is the following:
/rest/v1/logs/audit

In an accounting log entry for a REST request:

n service=https-server indicates that the log entry is a result of a REST API request or aWeb UI action.
n The string value of data identifies the REST API request that was executed.

Formore information about accounting log entries, see the description of the show accounting log CLI
command.

AOS-CX REST API reference summary
The following information is intended as a quick reference for experienced users. Values are not
configurable unless noted otherwise.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 41

AOS-CX REST API Reference (UI) | 42

Switch REST API access default
8320, 8325, 8360, 8400, 9300, 10000 Switch Series: Disabled

6200, 6300, 6400 Switch Series: Enabled on the mgmt VRF

6000 and 6100 Switch Series: Enabled on the default VRF

Switch REST API default access mode
Read-write

Enabling access to the Web UI and REST API
CLI command:
https-server vrf <VRF-NAME>

Example:

switch(config)# https-server vrf mgmt

Setting the REST API access mode to read-write
CLI command:
https-server rest access-mode read-write

Example:

switch(config)# https-server rest access-mode read-write

Showing the REST API access configuration
CLI command:
show https-server

Example:

switch(config)# show https-server

HTTPS Server Configuration

VRF : default, mgmt
REST Access Mode : read-write

AOS-CX REST API Reference URL:
REST v10.04 API: https://<IP-ADDR>/api/v10.04/

REST v1 API: https://<IP-ADDR>/api/v1 or https://<IP-ADDR>/api/

<IP-ADDR> is the IP address or hostname of your switch.

Example: https://192.0.2.5/api/v1/

REST API versions and switch software versions

REST API version Switch software version

v10.04 AOS-CX 10.04 and later

v1 AOS-CX 10.00 and later

Getting REST API version information from a switch
Method and URI to get the REST API versions supported on the switch:
GET "https://<IP-ADDR>/rest"

<IP-ADDR> is the IP address or hostname of your switch.

Protocol
HTTPS

Port
443

Request and response body format
JSON

Session idle timeout
20 minutes

Session hard timeout
Eight hours, regardless of whether the session is active.

Authentication
Session cookie from successful HTTPS login request.

HTTPS client sessions

n Maximumof 48 sessions per switch.
n Maximumof six concurrent client sessions per user.
n The same session cookie is shared across browser tabs and, depending on the browser, multiple browser

windows.
n The same session cookie is not shared across devices and scripts. For example, if a user logs into theWeb

UI from a laptop, again with a tablet, and then uses the same user name in a curl command, that user has
three concurrent client sessions.

VSX peer switch access
If Virtual Switching Extension (VSX) is enabled on both switches, and the ISL is up, you can access the VSX
peer switch from your connected switch. To access the peer VSX switch, insert /vsx-peer in the URI path
between the server URL and /rest. Not supported for login, Web UI, or AOS-CX REST API Reference access.
Formore information about VSX, see VSX peer switches and REST API access.

For example:

n Accessing a VSX switch:
https://192.0.2.5/rest/v1/…

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 43

AOS-CX REST API Reference (UI) | 44

n Accessing its VSX peer switch:
https://192.0.2.5/vsx-peer/rest/v1/…

Chapter 6
Using Curl Commands

Using Curl Commands
There are several tools available for accessing RESTful web service APIs, one of which is curl. The curl tool,
created by the cURL project, is a command-line application for transferring data using URL syntax.

For details on installing the curl application, see https://curl.haxx.se/download.html.

The curl application hasmany options, which are described in detail in the curl manual (run curl --manual)
and at https://curl.haxx.se/docs/manpage.html.

About the curl command examples
In the curl examples, theworkstation is running a Linux-based operating system and curl version 7.35 is
installed.

The curl examples generated by the AOS-CX REST API Referencemight use different options than in other
examples, and do not include cookie file handling because the cookie is handled by the browser.

Many examples of curl commands are formatted inmultiple lines for readability. The backslash (\)
continuation character at the end of the line indicates that the command continues on the next line.

The curl command examples in this document useminimal options. The following options are commonly
used in the curl command examples:
-b <cookie-file>

Specifies that the file <cookie-file>, which contains the session cookie, be passed with the request.
<cookie-file> specifies the path and name of the cookie file.
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, youmust save the cookie returned from the login request. Youmust provide the cookie
with every subsequent curl command.

-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates against
its list of certificate authorities, and attempts to verify self-signed certificates will fail. Therefore youmust
use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

--noproxy

Specifies that a web proxy is not required. The --noproxy option is appropriate where execution of curl
commands does not need a proxy to access the applications.
If your network is configured to require a proxy to access applications, use the --proxy option instead of
the --noproxy option.

-d '<string>'

Specifies that curl send the data in <string> in a POST request using the content-type application/x-
www-form-urlencoded.

-X

Specifies amethod that curl would not use by default. Typically used with PUT, DELETE, and POST
methods only.

-H or --header <header>

Specifies an extra header in theHTTP request.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 45

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

Using Curl Commands | 46

-D

Specifies that curl write the returned protocol headers to the standard output file. Used for debugging.
More options can be used to customize your experience for your environment. Formore information
about curl options, see:
https://curl.haxx.se/docs/manpage.html

Getting the REST API versions on the switch
To get information about the latest and all available REST API versions on a switch, execute a GET request to
the following URI:
"https://<IP-ADDR>/rest"

<IP-ADDR> is the IP address or hostname of your switch.

Examplemethod and URI:
GET "https://192.0.2.5/rest"

Example curl command:

$ curl -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest"

Example response body:
{
"latest": {
"version": "v10.04",
"prefix": "/rest/v10.04",
"doc": "/api/v10.04"

},
"v10.04": {
"version": "v10.04",
"prefix": "/rest/v10.04",
"doc": "/api/v10.04"

},
"v1": {
"version": "v1",
"prefix": "/rest/v1",
"doc": "/api/v1"

}
}

Accessing the REST API using curl
When you use curl, you log in at the beginning of your session and log out at the end of the session. When
you log in, youmust save the cookie returned from the login request so that you can pass that same cookie
value to the switch in subsequent curl commands.

Prerequisites

n Access to the switch REST API must be enabled.

Procedure

1. To access the AOS-CX REST API using curl, use curl version 7.35 or later. The examples provided in this
document are tested with version 7.35.

2. For all curl commands, use the -k option to disable certificate validation.

http://curl.haxx.se/docs/manpage.html

The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore
youmust use the –k option to disable attempts to verify self-signed certificates against a certificate
authority.

3. Start your session by logging in. When you log in, save the cookie file by specifying the -c option with
a file name.

4. In all subsequent curl commands—including logging out—pass the cookie value back to the switch by
specifying the -b option with the same file name.

5. At the end of the session, log out of the switch using curl.

Logging out at the end of the session is important because the number of concurrent HTTPS
sessions per client and per switch are limited, and session cookies are not shared across devices
and scripts.

Logging in using curl

Prerequisites

n Access to the switch REST API must be enabled.

Credential information (user name, password, domain, and authentication tokens) used in curl commands entered
at a command-line prompt might be saved in the command history. For security reasons, Hewlett Packard
Enterprise recommends that you disable command history before executing commands containing credential
information.

Procedure
Use the following curl command to access the login resource of the switch and provide your user name and
password as data:

Syntax:
curl [--noproxy <IP-ADDR>] -k -X POST
-c <COOKIE-FILE>
-H 'Content-Type: multipart/form-data'
"https://<IP-ADDR>/rest/v1/login"
-F 'username=<USER-NAME>' -F 'password=<PASSWORD>'

Options:
-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore you
must use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

-X

Specifies amethod that curl would not use by default. Typically, used only with POST, PUT, or DELETE
methods.

--noproxy <IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a proxy
to access the applications. If your network is configured to require a proxy to access applications, use the
--proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 47

Using Curl Commands | 48

-C <COOKIE-FILE>

Specifies the file in which to store the session cookie. This session cookie is required when you execute
subsequent curl commands.

-H or --header <header>

Specifies an extra header in theHTTP request.
-F

Specifies that the curl command will emulate a filled-in form in which a user has pressed the submit
button for theHTTP protocol family. This causes curl to POST data using the Content-Type
multipart/form-data.

<USER-NAME>

Specifies the user name.
<PASSWORD>

Specifies the password for the user.

Although it is possible to pass the user name and password information as a query string in the login URI, system
logs save the accessed URI in cleartext in log entries. Hewlett Packard Enterprise recommends that you pass the
credential information as data instead of in the URI when using programs such as curl to log in to the switch.

Example:

$ curl --noproxy "192.0.2.5" -k -X POST \
-c /tmp/auth_cookie \
-H 'Content-Type: multipart/form-data' \
"https://192.0.2.5/rest/v1/login" \
-F 'username=test' -F 'password=test'

Passing the cookie back to the switch

Prerequisites
Start a session by logging in to the REST API and save the cookie file.

Procedure
Use the following curl command to pass the cookie file back to the switch using the -b option.

Syntax:
curl [--noproxy <IP-ADDR>] -k GET
-b <COOKIE-FILE>
-H 'Content-Type:application/json'
-H 'Accept: application/json'
"https://<IP-ADDR>/rest/v1/system"

Options:
--noproxy <IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a proxy
to access the applications. If your network is configured to require a proxy to access applications, use the
--proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore you

must use the –k option to disable attempts to verify self-signed certificates against a certificate authority.
-b <COOKIE-FILE>

Specifies that the file <cookie-file>, which contains the session cookie, be passed with the request. The
<cookie-file> specifies the path and name of the cookie file.
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, youmust save the cookie returned from the login request. Youmust provide the cookie
with every subsequent curl command.

-H or --header <header>

Specifies an extra header in theHTTP request.
Example:

$ curl --noproxy -k GET
-b /tmp/auth_cookie \
-H 'Content-Type:application/json' \
-H 'Accept: application/json' \
"https://192.0.2.5/rest//system"

Logging out using curl

Procedure
Use the following curl command to access the logout resource of the switch:

Syntax:
curl [--noproxy <IP-ADDR>] -k -X POST
-b <COOKIE-FILE>
"https://<IP-ADDR>/rest/v1/logout"

Options:
-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore you
must use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

--noproxy <IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a proxy
to access the applications. If your network is configured to require a proxy to access applications, use the
--proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-b <COOKIE-FILE>

Specifies the file that contains the session cookie.

When you use curl, you log in at the beginning of your session and log out at the end of the session. When you
log in, youmust save the cookie returned from the login request so that you can pass that same cookie value
to the switch in subsequent curl commands. When you log in, save the cookie file by specifying the -c option
with a file name.

In subsequent curl commands, pass the cookie value back to the switch by specifying the -b option with the
same file name.

-X

Specifies amethod that curl would not use by default. Typically, used only with POST, PUT, or DELETE
methods.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 49

Using Curl Commands | 50

Example:

$ curl --noproxy "192.0.2.5" -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/logout"

Examples
The following examples show how you can use curl with AOS-CX REST API. The response body might vary
based on the AOS-CX switch series. For example, the 8320 and 6400 switches show VSX information,
whereas the 6300 and 6200 switches show VSF and PoE information.

As a best practice, before you perform aGET, PUT, POST, or DELETE operation, youmust login to create a
session and save the cookie file by specifying the -c option with a file name. After you perform the
operation, youmust logout to end the session and pass the cookie file back to the switch by specifying the -
b option with the same file name. The following examples assume that you are performing the step to login
before performing the operations in the example and logout after performing the operations. Formore
information, see Accessing the REST API using curl.

The request and response body in the following examples contain a truncated part of the actual data. The data
that you see after running the curl commands might vary. Ellipses (…) in the response body represent data not
shown in the example.

Example: GET method
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, youmust use the IP
address or hostname of that switch.

n Get the list of all VLANS:
GET "https://192.0.2.5/rest/v1/system/vlans"

n Expand the list of URIs in the vlans collection by one level, which replaces theURI for the VLAN with the
JSON data for that VLAN.

GET "https://192.0.2.5/rest/v1/system/vlans?depth=1"

n Use the count parameter to get the total number of VLANs:
GET "https://192.0.2.5/rest/v1/system/vlans?count"

n Use the count parameter with the filter parameter to get the total number of interfaces in a down
administrative state:

GET "https://192.0.2.5/rest/v1/system/interfaces?count=true&filter=admin_state:down"

n Use the filter parameter with the value type:static to get a list of only the static VLANs:
GET "https://192.0.2.5/rest/v1/system/vlans?filter=type:static"

n Use the filter parameter to get the BGP routes that have 1.1.1.1 as a peer:
GET "https://192.0.2.5/rest/v1/system/vrfs/default/bgp_routes?filter=peer:1.1.1.1"

n Use the attributes parameter to get all ports but show only the attributes name and ipv4_address:
GET "https://192.0.2.5/rest/v1/system/ports?attributes=name,ipv4_address"

n Use thewildcard character to get a list of routes for all VRFs.
GET "https://192.0.2.5/rest/v1/system/vrfs/*/routes"

n Use the selector parameter to get all the configuration attributes of VLAN 100:
GET "https://192.0.2.5/rest/v1/system/vlans/100?selector=configuration"

n Use the selector parameter to get all the system attributes that are in the categories configuration and
status:

GET "https://192.0.2.5/rest/v1/system?selector=category,status"

Example: Getting and deleting certificates using REST APIs

Getting a list of all certificates

It is important to note that the certificate resources do not support the use of internationalized strings. Since UTF8
is the only supported encoding, a Subject Alternative Name (SAN) must be used instead.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/certificates"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates”

On successful completion, the switch returns response code 200 OK and a response body containing the
certificate resource URLs indexed by the certificate name. For example:
{
"my-cert-1": "/rest/v1/certificates/my-cert-1",
"my-cert-2": "/rest/v1/certificates/my-cert-2"

}

Getting a certificate
Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/certificates/my-cert-2"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates/my-cert-2"

On successful completion, the switch returns response code 200 OK and a response body containing the
certificate.

For example:
'{
"cert_name": "my-cert-2",
"cert_type": "regular"
"cert_status": "csr_pending",
"key_type": "RSA",
"key_size": 2048,
"subject": {
"common_name": "CX-8400",
"country": "US",
"locality: "el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba"
},

"certificate": "<certificate-in-PEM-format>"
}'

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 51

Using Curl Commands | 52

Deleting a certificate
Examplemethod and URI:
DELETE "https://192.0.2.5/rest/v1/certificates/my-cert-3"

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X DELETE \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates/my-cert-3"

On successful completion, the switch returns response code 204.

Example: Generating a self-signed certificate using REST APIs
The following example generates a self-signed certificate.

Examplemethod and URI:
POST "https://192.0.2.5/rest/v1/certificates"

Example request body:
{
...
"certificate_name": "my-cert-1",
"subject": {
"country": "US",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
"common_name": "CX-8400"},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "self-signed"

...
}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates”
–d '{
...
"certificate_name": "my-cert-1",
"subject": {
"country": "US",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
"common_name": "CX-8400"},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "self-signed"

...
}'

On successful completion, the switch returns response code 201 Created.

Example: Getting and installing a signed leaf certificate using REST
APIs

This example includes the step to create a trust anchor (TA) profile. If the TA profile had previously been
configured, that step of the examplewould be skipped. The TA profile is used to validate the signed
certificate when you import the certificate as part of the PUT request.

Formore information about certificates and certificatemanagement, see the Security Guide.

Procedure

1. Create a TA profile:
a. From the certificate authority (CA), get a copy of the certificate against which you will validate leaf

certificates.

The certificate you validate leaf certificates against can be a root certificate or an intermediate
certificate.

The steps to get the leaf certificate depend on the CA and the operating system you use.
b. Create a JSON object with a certificate key and a name key.

For example:
{
"name": "<profile-name>",
"certificate": "<root-ca-cert>"

}

n For the value of the name key, replace <profile-name>with the name of the TA profile you
want to create.

n For the value of the certificate key, replace <root-ca-cert> by pasting the copied
certificate. After pasting, edit the text to ensure proper loading as a JSON object by doing the
following:
o Ensure the certificate headers and footers are treated as separate lines by adding \n

characters after the header and before the footer.

The following example shows the \n characters in bold.
{
"name": "myta",
"certificate": "-----BEGIN CERTIFICATE-----\nMIIF2DCCA8CgAwIBAgIlCnL

MA0GCSqGSIb3DQEBCwUAMHkxCzAJBgNVBAYTAkdCMRAwDgYDVQQIDAdFbmdsYW5kMRIwEAYDVQDAl
...
PKj0FmJ1+Qzw9Bcm6HiPTyxOVozMeRQzSQhTZVlh3OvBw/cUwTIqFJCe/afNQCqa9XnvTpJvP/Q3z
...
S4L9sxrk/i3hKB88\n-----END CERTIFICATE-----"
}

o Ensure that any private key headers and footers are treated as separate lines by adding \n
characters before and after them as needed.

For example:
\n-----BEGIN PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2CA
\n-----END PRIVATE KEY-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
IJ6L/UhEtH523nUkdV6gvAgoYaD83PswToAGv5VS8OMFTPttrn5/K
...
OgSecqZsG6arbx0ESaYBir1c/6rPspcjbx283iD1MWOpeoS2aEmOX=
\n-----END ENCRYPTED PRIVATE KEY-----\n

c. Use the POSTmethod to create the TA profile with the copied certificate. Include the JSON object
in the request body:

Examplemethod and URI:
POST "https://192.0.2.5/rest/v1/system/pki_ta_profiles"

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 53

Using Curl Commands | 54

Example curl commands:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/primary_auth_cookie \
-H 'Content-Type:application/json'
"https://192.0.2.5/rest/v10.04/system/pki_ta_profiles"
-d '{
"name": "myta",
"certificate": "-----BEGIN CERTIFICATE-----

\nMIIF2DCCA8CgAwIBAgIJANkWgud1lCnL

MA0GCSqGSIb3DQEBCwUAMHkxCzAJBgNVBAYTAkdCMRAwDgYDVQQIDAdFbmdsYW5kMRIwEAYDVQQ
KDAl
...

PKj0FmJ1+Qzw9Bcm6HiPTyxOVozMeRQzSQhTZVlh3OvBw/cUwTIqFJCe/afNQCqa9XnvTpJvP/Q
3ze6
S4L9sxrk/i3hKB88\n-----END CERTIFICATE-----"
}'

On successful completion, the switch returns response code 201 Created.

2. Create a certificate with a pending certificate signing request (CSR).

For information about the required and optional items in the request body, see the JSONmodel for
the certificates resource in the AOS-CX REST API Reference.

Examplemethod and URI:
POST "https://192.0.2.5/rest/v1/certificates"

Example request body:
{
"certificate_name": "my-cert-name",
"subject": {
"common_name": "CX-8400"
"country": "US",
"locality":"el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "regular"

}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/primary_auth_cookie \
-d '{
"certificate_name": "my-cert-name",
"subject": {
"common_name": "CX-8400"
"country": "US",
"locality":"el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
},

"key_type": "RSA",

"key_size": 2048,
"cert_type": "regular"

}'
"https://192.0.2.5/rest/v1/certificates"

On successful completion, the switch returns response code 201 Created.
3. Get the certificate you created in the previous step.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/certificates/my-cert-name"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/certificates/my-cert-name"

On successful completion, the switch returns response code 200 OK and a response body containing
the CSR in PEM format.

4. Send the CSR to the CA for signing.

The steps to send the CSR depend on the CA and the operating system you use.

The CA returns the signed certificate in PEM format.
5. Import the signed certificate by using a PUT request to update the my-cert-name certificate with the

signed certificate you received from the CA.

The imported certificate datamust include all the intermediate CA certificates in the certificate chain
leading to the certificate that was imported into the specified TA profile.

If you copy and paste the certificate into a JSON object, youmust ensure that the certificate and private
key headers and footers are processed as separate lines by editing the text to add \n characters as needed.

As part of the PUT request, the switch attempts to validate the certificate against the pool of all TA profiles
installed on the switch. The certificate is accepted if it is validated with one of the TA profiles.

Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/certificates/my-cert-name"

Example request body:
{
"certificate": "-----BEGIN CERTIFICATE-----\n

MIIFRDCCAyygAwIBAgQP8nS2Vp15u0xXMdkDJzANBgkqhkiG9w0Bv
...
1NGNm3NG03GqPScs/TF9bVyFA5BOS5lmmkfRYK8D/kMTfRreSdxis
YQ1u1NqShps=
\n-----END CERTIFICATE-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2+/
cb4=
\n-----END ENCRYPTED PRIVATE KEY-----"
}

Example curl commands:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/primary_auth_cookie \

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 55

Using Curl Commands | 56

-d '{
"certificate": "-----BEGIN CERTIFICATE-----\n

MIIFRDCCAyygAwIBAgQP8nS2Vp15u0xXMdkDJzANBgkqhkiG9w0Bv
...
1NGNm3NG03GqPScs/TF9bVyFA5BOS5lmmkfRYK8D/kMTfRreSdxis
YQ1u1NqShps=
\n-----END CERTIFICATE-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2+/
cb4=
\n-----END ENCRYPTED PRIVATE KEY-----"
}'
"https://192.0.2.5/rest/v1/certificates/my-cert-name"

On successful completion, the switch returns response code 200 OK.

The certificate is installed and ready to be associated with switch features.

Example: Associating a leaf certificate with a switch feature using
REST APIs
The following example associates the signed certificate my-cert-namewith theHTTPS server switch feature.
For complete information about the switch features to which you can associate a leaf certificate, see the
Security Guide.

1. Get the configuration attributes of the system resource:

Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/system?selector=configuration"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/system?selector=configuration"

On successful completion, the switch returns response code 200 and a JSON object containing the
configuration attributes.

2. In the portion of the response body that defines the certificate name for theHTTPS server, change
the value to: my-cert-name.

The certificate name associated with theHTTPS server is the value assigned to the https-server key,
which is under the certificate_association key. By default, the certificate name is: local-cert.

The request body of a PUT request is permitted to include only themutable configuration attributes. In
the AOS-CX software releases to which this example applies, all the configuration attributes for the system
resource aremutable attributes, so you do not need to edit the JSON object to remove the immutable
attributes.

3. Using a PUT request, update the system resourcewith the edited JSON data as the request body.

Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/system"

Example request body:

{
"aaa": {

...
},

...
"certificate_association": {

"https-server": "my-cert-name",
"syslog-client": "local-cert"

},
...
}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/primary_auth_cookie \
-d '{

"aaa": {
...

},
...

"certificate_association": {
"https-server": "my-cert-name",
"syslog-client": "local-cert"

},
...
}'
"https://192.0.2.5/rest/v1/system"

On successful completion, the switch returns response code 200 OK.

Example: Configuration management using REST APIs

Downloading a configuration
Downloading the current configuration:

n Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/fullconfigs/running-config"

Downloading the startup configuration:

n Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/fullconfigs/startup-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/fullconfigs/startup-config"

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 57

Using Curl Commands | 58

On successful completion, the switch returns response code 200 OK and a response body containing the
entire configuration in JSON format.

Uploading a configuration
The following example shows uploading a configuration to become the running configuration. The running
configuration is the only configuration that can be updated using this technique, however, you can copy
other configurations. Formore information about copying configurations, see Copying a configuration.

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/fullconfigs/running-config"

The request body must contain the configuration—in JSON format—to be uploaded.

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/fullconfigs/running-config" \
–d '{
…
}'

The configuration being uploaded—represented as ellipsis but not shown in this example—is in JSON format
in the body of the command (enclosed in braces).

On successful completion, the switch returns response code 200 OK.

Copying a configuration
To replace an existing configuration with another, use a REST PUT request to the destination configuration.
Use the from query string parameter to specify the source configuration.

n At least one of the source or the destination configurationmust be either running-config or startup-
config. You cannot copy a checkpoint to a different checkpoint.

n If you specify a destination checkpoint that exists, an error is returned. You cannot overwrite an existing
checkpoint.

The syntax of themethod and URI is as follows:
PUT "https://<IPADDR>/rest/v1/fullconfigs/<destination-config>?
from=/rest/v1/fullconfigs/<source-config>"

Copying the running configuration to the startup configuration:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/fullconfigs/startup-config?
from=/rest/v1/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/startup-config?
from=/rest/v1/fullconfigs/running-config"

Copying the startup configuration to the running configuration:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/fullconfigs/running-config?
from=/rest/v1/fullconfigs/startup-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/running-config?
from=/rest/v1/fullconfigs/startup-config"

Copying a checkpoint to the running configuration:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/fullconfigs/running-config?
from=/rest/v1/fullconfigs/MyCheckpoint"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/running-config?
from=/rest/v1/fullconfigs/MyCheckpoint"

Copying the running configuration to a checkpoint:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/fullconfigs/MyCheckpoint?
from=/rest/v1/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/MyCheckpoint?
from=/rest/v1/fullconfigs/running-config"

Example: Firmware upgrade using REST APIs

Uploading a file as the secondary firmware image
In the following example, a curl command is used to upload the firmware image file from the local
workstation to the switch, as the secondary firmware image. The -F option specifies that the POSTmethod
is used to upload the file.

Examplemethod and URI:
POST "https://192.0.2.5/rest/v1/firmware?image=secondary"

The request body contains the switch firmware image file in binary format.

Example curl command:

$ curl --noproxy -k -b /tmp/auth_cookie \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-F "fileupload=@/myfirmwarefiles/myswitchfirmware_2020020905.swi" \
https://192.0.2.5/rest/v1/firmware?image=secondary

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 59

Using Curl Commands | 60

In the curl command, the POST request is handled as part of the -F option.

Booting the system using the secondary firmware image
Examplemethod and URI:
POST "https://192.0.2.5/rest/v1/boot?image=secondary"

Example curl command:

$ curl --noproxy -k -X POST -b /tmp/auth_cookie \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
"https://192.0.2.5/rest/v1/boot?image=secondary"

Example: Log operations using REST APIs

Event logs
AGET request to /rest/v1/logs/eventURI returns all entries from all the event logs on the switch,
including logs from internal processes.

The information returned by this request was not optimized for human readability. If you want to examine
the log entries, Hewlett Packard Enterprise recommends that you use theWeb UI. TheWeb UI also provides
amethod to export log entries.

In the following example, the MESSAGE_ID parameter filters the output to include event logmessages only:

n 50c0fa81c2a545ec982a54293f1b1945 identifies event logmessages from the activemanagement
module.

n 73d7a43eaf714f97bbdf2b251b21cade identifies event logmessages from the standby management
module. Not all switches have a standby management module.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/logs/event?
limit=1000&
priority=4&
since=24%20hour%20ago&
MESSAGE_ID=50c0fa81c2a545ec982a54293f1b1945,73d7a43eaf714f97bbdf2b251b21cade"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/logs/event?
limit=1000&
priority=4&
since=24%20hour%20ago&
MESSAGE_ID=50c0fa81c2a545ec982a54293f1b1945,73d7a43eaf714f97bbdf2b251b21cade"

Accounting (audit) logs
AGET request to the /rest/v1/logs/auditURI returns all entries from the accounting logs on the switch.

For a list of supported query parameters, see the AOS-CX REST API Reference.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/logs/audit?
since=24%20hour%20ago&
usergroup=administrators&
session=CLI"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/logs/audit?
since=24%20hour%20ago&
usergroup=administrators&
session=CLI"

Example: Ping operations using REST APIs
This example gets ping statistics for the ping target.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/ping?
ping_target=192.0.2.10&
is_ipv4=true&
ping_data_size=100&
ping_time_out=2&
ping_repetitions=1&
ping_type_of_service=0&
include_time_stamp=false&
include_time_stamp_address=false&
record_route=false&
mgmt=false"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/ping?
ping_target=192.0.2.10&
is_ipv4=true&
ping_data_size=100&
ping_time_out=2&
ping_repetitions=1&
ping_type_of_service=0&
include_time_stamp=false&
include_time_stamp_address=false&
record_route=false&
mgmt=false"

On successful completion, the switch returns response code 200 OK and a response body containing the
output string produced by the ping operation.

Example: Traceroute operations using REST APIs
Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/traceroute?
ip=192.0.2.10&
is_ipv4=true&
timeout=3&
destination_port=33434&
max_ttl=30&
min_ttl=1&
probes=3&
mgmt=false"

Example curl command:

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 61

Using Curl Commands | 62

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/traceroute?
ip=192.0.2.10&
is_ipv4=true&
timeout=3&
destination_port=33434&
max_ttl=30&
min_ttl=1&
probes=3&
mgmt=false"

On successful completion, the switch returns response code 200 OK and a response body containing the
output string produced by the traceroute operation.

Example: User management using REST APIs

Creating a user
Examplemethod and URI:
POST "https://192.0.2.5/rest/v1/system/users"

Example request body:
{
...
"name": "myadmin",
"password": "P@ssw0rd",
"user_group": "/rest/v1/system/user_groups/administrators",
"origin": "configuration"

...
}

Example curl command:

$ curl --noproxy -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/users”
–d '{
...
"name": "myadmin",
"password": "P@ssw0rd",
"user_group": "/rest/v1/system/user_groups/administrators",
"origin": "configuration"

...
}'

On successful completion, the switch returns response code 201 Created.

Changing a password
Examplemethod and URI:
PUT "https://192.0.2.5/rest/v1/system/users/myadmin"

Example request body:
{
"password": "P@ssw0rd2g"

}

Example curl command:

$ curl --noproxy -k -X PUT \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/users/myadmin”
–d '{
"password": "P@ssw0rd2g"

}'

On successful completion, the switch returns response code 200 OK.

Deleting a user
Examplemethod and URI:
DELETE "https://192.0.2.5/rest/v1/system/users/myadmin"

Example curl command:

$ curl --noproxy -k -X DELETE \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/users/myadmin"

On successful completion, the switch returns response code 204 No Content.

Example: Creating an ACL with a port using REST APIs
This example shows creating the following ACL and port configuration on a switch at IP address 192.0.2.5:
interface 1/1/2

no shutdown
apply access-list ip ACLv4 out

access-list ip ACLv4
10 permit tcp 10.0.100.101 eq 80 10.0.100.102 eq 8000

1. Creating the ACL.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"cfg_version": 0,
"list_type": "ipv4",
"name": "ACLv4"}'
"https://192.0.2.5/rest/v1/system/acls"

2. Creating an ACL entry.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d
'{
...
"action": "permit",
"dst_ip": "10.0.100.102/255.255.255.255",
"dst_l4_port_max": 8000,
"dst_l4_port_min": 8000,
"protocol": 6,
"sequence_number": 10,
"src_ip": "10.0.100.101/255.255.255.255",
"src_l4_port_max": 80,
"src_l4_port_min": 80
...

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 63

Using Curl Commands | 64

}'
"https://192.0.2.5/rest/v1/system/acls/ACLv4/ipv4/cfg_aces"

3. Getting the ACL configuration information to use in the next step. Ellipses (…) represent data not
shown in the example.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/acls/ACLv4/ipv4?selector=configuration"
{
...
"cfg_aces": {},
"cfg_version": 0

...
"list_type": "ipv4",
"name": "ACLv4"

...
}

4. Updating the ACL configuration using the return body received from theGET request performed in
the previous step.

When you send a PUT request, the JSON request body must not contain immutable attributes. The AOS-CX
REST API Referencemodel for the PUTmethod of the resource shows themutable attributes. Any mutable
attributes you do not include in the PUT request body are set to their defaults, which could be empty.

The AOS-CX REST API Reference JSONmodel for the PUTmethod of the /system/acls/{id1}/{id2}
resource shows the following example:
{
"cfg_aces": {
"integer": "URL"

},
"cfg_version": 0

}

The following example shows the request to update the ACL configuration:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d '{
"cfg_aces":{"10":"/rest/v1/system/acls/ACLv4/ipv4/cfg_aces/10"},
"cfg_version":1}' \
"https://192.0.2.5/rest/v1/system/acls/ACLv4/ipv4"

5. Creating port 1/1/2.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"name": "1/1/2",
"admin":"up",
"interfaces":["/rest/v1/system/interfaces/1%2F1%2F2"],
"vrf":"/rest/v1/system/vrfs/default"}' \
"https://192.0.2.5/rest/v1/system/ports"

6. Getting the configuration information for the interface.

TheGET response body includes only the configuration attributes that have been set.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/interfaces/1%2F1%2F2?selector=configuration"
{
...
"options": {},
"other_config": {},
"udld_arubaos_compatibility_mode": "forward_then_verify",
"udld_compatibility": "aruba_os",
"udld_enable": false,
"udld_interval": 7000,
"udld_retries": 4,
"udld_rfc5171_compatibility_mode": "normal",
"user_config": {}

...
}

7. Verifying which configuration attributes aremutable and therefore can be included in the PUT
request.

When you send a PUT request, the JSON request body must not contain immutable attributes. The
AOS-CX REST API Reference JSONmodel for the PUTmethod of the resource shows themutable
attributes. Any mutable attributes you do not include in the PUT request body are set to their
defaults, which could be empty.

The AOS-CX REST API Reference JSONmodel for the PUTmethod of the /system/interfaces/{id}
resource shows the following example:
{
...
"description": "string",
"options": {},
"other_config": {},
"udld_arubaos_compatibility_mode": "string",
"udld_compatibility": "string",
"udld_enable": true,
"udld_interval": 0,
"udld_retries": 0,
"udld_rfc5171_compatibility_mode": "string",
"user_config": {}

...
}

8. Enabling the interface using all the attributes in the return body received from theGET request,
modifying the user_config attribute to be: "user_config":{"admin":"up"}

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d '
{
...
"options": {},
"other_config": {},
"udld_arubaos_compatibility_mode": "forward_then_verify",
"udld_compatibility": "aruba_os",
"udld_enable": false,
"udld_interval": 7000,
"udld_retries": 4,
"udld_rfc5171_compatibility_mode": "normal",
"user_config": {
"admin": "up"

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 65

Using Curl Commands | 66

}
...
}' \
"https://192.0.2.5/rest/v1/system/interfaces/1%2F1%2F2"

In the preceding example, the followingmutable attribute listed in the previous step was not
included, so it is set to its default, which could be empty:
selftest_disable

9. Getting the port configuration information to use in the next step.

Ellipses (…) represent data not shown in the example.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/ports/1%2F1%2F2?selector=configuration"
{
...
"aclv4_out_cfg": {},
"aclv4_out_cfg_version": {},
"admin": {},
"arp_timeout": 1800,

...
"virtual_ip4_routers": {},
"virtual_ip6_routers": {},
"vlan_trunks": []

...
}

10. Adding the ACL information to the port using the return body received from theGET request
performed in the previous step after verifying the values that are permitted in the JSONmodel for
the PUTmethod. Themodified values are shown in the following example.

Ellipses (…) represent data not shown in the example.

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d '{
...
"admin":"up",
"interfaces":["/rest/v1/system/interfaces/1%2F1%2F2"],
"aclv4_out_cfg":"/rest/v1/system/acls/ACLv4/ipv4",
"aclv4_out_cfg_version":0,
...
}' -D- \
"https://192.0.2.5/rest/v1/system/ports/1%2F1%2F2"

Example: Creating a VLAN with a port using REST APIs
This example shows creating the following VLAN and port configuration on a switch at IP address 192.0.2.5:
vlan 2

no shutdown
interface vlan 2

1. Creating the VLAN.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d
'{
...
"name":"vlan2",
"id":2,
"type":"static",
"admin":"up"
...
}' \
"https://192.0.2.5/rest/v1/system/vlans"

2. Creating a port and configure the VLAN information.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d
'{
...
"name": "1/1/2",
"admin":"up",
"interfaces":["/rest/v1/system/interfaces/1%2F1%2F2"],
"vlan_mode":"access",
"vlan_tag":"/rest/v1/system/vlans/2",
"routing":false
...
}' \
-D- "https://192.0.2.5/rest/v1/system/ports"

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 67

Chapter 7
VSX peer switches and REST API access

VSX peer switches and REST API access
If Virtual Switching Extension (VSX) is enabled, you can access the REST API of a peer switch without having
to separately log into ormanage a session cookie from that peer switch.

To access a peer REST API from your connected switch, insert /vsx-peer in the URI path after the server URL
and before the REST API and version identifier.

For example:
https://192.0.2.5/vsx-peer/rest/v1/...

The following uses of /vsx-peer in the URI path are not supported:

n You cannot specify the login resource. Requests to /vsx-peer/rest/v1/login are not required because
logging in to one device automatically gives you access to the peer device.

n You cannot access the Web UI of a VSX peer switch. Setting the browser address to https://<connected_
switch_ip>/vsx-peer is not supported.

n You cannot specify a VSX peer switch in the URIs in topic subscriptionmessages in the real-time notifications
framework. However, you can access the real-time notifications framework on the VSX peer switch by setting
the connection address to the following:

wss://<connected_switch_ip>/vsx-peer/rest/v1/notification

Please note the following points when using REST API with VSX.

n VSX must be enabled on both switches, and the interswitch link (ISL) must be up.
n REST API accessmust be enabled on the switch to which you are connected.
n For write access, the REST API accessmodemust be set to read-write on the switch to which you are

connected.
n Youmust be logged in to the switch to which you are connected. For example, if you are connected to the

primary VSX switch, youmust be logged in to the primary switch.
n When configuration synchronization is enabled, supported configuration changes on the primary VSX

switch are replicated on the secondary VSX switch. Changing the configuration of a secondary VSX switch
might cause the configurations to be out of synchronization.

n Audit messages are logged on the peer switch, with the user information from the switch to which the
user is connected.

Examples of curl commands
Getting the VSX status of the secondary VSX switch while connected to the primary VSX switch at IP address
192.0.2.5:

$ curl --noproxy "192.0.2.5" -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/vsx?attributes=oper_status"

Getting the VSX status of the primary VSX switch while connected to the secondary VSX switch at IP address
192.0.2.6:

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 68

VSX peer switches and REST API access | 69

$ curl --noproxy "192.0.2.6" -k GET \
-b /tmp/secondary_auth_cookie \
"https://192.0.2.6/vsx-peer/rest/v1/system/vsx?attributes=oper_status"

Getting the names and IP addresses of interfaces on secondary VSX switch while connected to the primary
VSX switch at IP address 192.0.2.5:

$ curl --noproxy "192.0.2.5" -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/interfaces?depth=1&attributes=name,ipv4_
address"

Formore information about VSX, see the Virtual Switching Extension (VSX) Guide.

Example: Interacting with a VSX peer switch
In the following examples, Virtual Switching Extension (VSX) is enabled, the primary VSX switch IP address is
192.0.2.5, and the secondary VSX switch IP address is 192.0.2.6.

Getting the list of all VLANS on the connected switch at IP address 192.0.2.5:

n Examplemethod and URI:
GET "https://192.0.2.5/rest/v1/system/vlans"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/system/vlans"

Getting the list of all VLANs on the peer VSX switch:

n Examplemethod and URI:
GET "https://192.0.2.5/vsx-peer/rest/v1/system/vlans"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/vlans"

Getting the VSX status of the secondary VSX switch while connected to the primary VSX switch at IP address
192.0.2.5:

n Examplemethod and URI:
GET “https://192.0.2.5/vsx-peer/rest/v1/system/vsx?attributes?oper_status"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/vsx?attributes?oper_status"

You can also get the VSX status of the primary VSX switch while connected to the secondary VSX switch.

Example: Upgrading to the latest version of VSX

To perform an upgrade using REST API, the minimum supported version of AOS-CX must be 10.07 or later.

Prerequisites

n The admin passwordmust be configured on the VSX peers.

user admin password plaintext admin

n The REST API accessmodemust be set to read-write.

https-server rest access-mode read-write

n The running configurationmust be saved before the upgrade.
n The upgrade image versionmust be validated and verified.
n The REST accessmust be enabled on the vrf that the REST commands are being sent from.

https-server vrf mgmt

In the following examples, Virtual Switching Extension (VSX) is enabled, the primary VSX switch IP address is
10.102.8.145, the software update URL is tftp://10.100.0.12/halon/GL_10_07_0001BC.swi, and the VRF is
mgmt.

To log in to VSX primary, use the following command:

curl -g -v -k -c /tmp/rest-cookie "https://10.102.8.145/rest/v1/login" -d
"username=admin&password=admin"
--noproxy "*"

Upgrading VSX using normal mode
The following curl command downloads new software from the TFTP server and verifies the download. After
a successful verification, the command installs the software to the alternative software bank of both the
VSX primary and secondary switches. The command then reboots them in sequence, the VSX secondary
switch followed by VSX primary switch. For example, if a switch has booted with the primary flashmemory,
then the command will install the software to secondary flashmemory.

curl -g -v -k -b /tmp/rest-cookie -X PUT "https://10.102.8.145/rest/v1/system/vsx"
-H "Accept: application/json"
-d '{"device_role":"primary", "isl_port":"/rest/v1/system/ports/1%2F1%2F26",
"software_update_url": "tftp://10.100.0.12/halon/GL_10_07_0001.swi",
"software_update_vrf":"/rest/v1/system/vrfs/mgmt"}' --noproxy "*"

Upgrading VSX using pre-stage mode
The following curl command upgrades the VSX pairs using the specified boot bank on both the devices.
Before running this command, copy the new software copy the new software to a USB flash drive that the
switch is capable of booting from, then specify the USB as the target URL for the "software_update_url", as

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 70

VSX peer switches and REST API access | 71

shown in the example.

curl -g -v -k -b /tmp/rest-cookie -X PUT "https://10.102.8.145/rest/v1/system/vsx"
-H "Accept: application/json" -d '{"device_role":"primary",
"isl_port":"/rest/v1/system/ports/1%2F1%2F26",
"software_update_url": "usb://boot_bank=primary",
"software_update_vrf":"/rest/v1/system/vrfs/mgmt"}' --noproxy "*"

Aborting the VSX upgrade process
The following curl command aborts the VSX upgrade process. The value for abort request represents the
number of times a software update process was requested to be aborted. The value for abort request must
be incremented by 1. For example, if you are requesting an abort for the second time, the valuewill be 2.
The abort operation takes effect only when the update operation is in progress.

curl -g -v -k -b /tmp/rest-cookie -X PUT "https://10.102.8.145/rest/v1/system/vsx"
-H "Accept: application/json" -d '{"device_role":"primary",
"isl_port":"/rest/v1/system/ports/1%2F1%2F26","software_update_abort_request":1}' --
noproxy "*"

Resetting VSX upgrade values
The following example curl command resets the VSX upgrade values:

curl -g -v -k -b /tmp/rest-cookie -X PUT "https://10.102.8.145/rest/v1/system/vsx"
-H "Accept: application/json" -d '{"device_role":"primary",
"isl_port":"/rest/v1/system/ports/1%2F1%2F26"}' --noproxy "*"

Formore information, see the Virtual Switching Extension (VSX) Guide.

Chapter 8
AOS-CX real-time notifications

subsystem

AOS-CX real-time notifications subsystem
The AOS-CX REST API, combined with built-in databases that provide configuration, state, statistical data, and
time-series data for the features and protocols running in the switch, provides a flexiblemeans for switch
programmability. Each resource or collection of resources inside the switch is uniquely identified by its URI.

Clients can use the REST API to request information about resources. However, this polling ability does not
address the specific use cases in which network management systems need to receive live data or real-time
events from the switch. There is a need to have a live notification subsystem that provides the remote
network management systemwith real-time information about any changes that occur in the switch. Timely
information about changes is important for troubleshooting and statistical data analyses, as well as for the
immediate reaction to real-time events.

The AOS-CX real-time notifications subsystem enables external clients to connect to the switch through a
secureWebSocket Protocol connection and to receive real-time notifications about the switch resources and
the configuration changes, state changes, and statistical information that interest them.

TheWebSocket Protocol was selected based on latency, throughput, resource utilization, network overhead,
and security requirements. Multiple clients and connections are supported.

AOS-CX notificationmessages use JSON encoding. The JSON encoding was designed to align with REST
payloads, which enable clients to use combined REST and notification solutions.

The ability to subscribe to these push notifications about a variety of types of information about the switch,
combined with the structured nature of the JSON data reported by the switch database, enables a form of
network monitoring commonly called telemetry streaming.

Interested clients, known as subscribers, might include the following:

n Web clients such as the AOS-CX Web UI
n Network management systems
n Monitoring scripts

Secure WebSocket Protocol connections for notifications
You subscribe to and receive notifications from the switch through a secureWebSocket Protocol (wss://)
connection.

A secureWebSocket Protocol connection is a secure, persistent, and full-duplex connection between a client
and a server. Either the client or the server can send data in the form of messages at any time.

The handshake part of theWebSocket Protocol uses HTTPS, so there is no need to open a new port on the
switch side, and there is no need to provide a new authenticationmechanism. When you connect to a switch
through a secureWebSocket Protocol connection, you pass the session cookie received from logging in to
the REST API. SecureWebSocket Protocol connections to switches running AOS-CX software remain active
until the connection is closed, even after the session cookie expires. Multiple clients and connections are
supported.

Formore information about theWebSocket Protocol see RFC 6455: The WebSocket Protocol at:

https://tools.ietf.org/html/rfc6455

Notification topics are switch resource URIs

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 72

https://tools.ietf.org/html/rfc6455

AOS-CX real-time notifications subsystem | 73

When you subscribe to notifications, you subscribe to notifications about specific topics. A topic is the URI
of a specific switch resource. That URI can contain a query string that specifies particular attributes of that
resource.

For example, specifying the following URI as a topic results in notifications being sent when the
administrative state or link state of any interface changes, but not when some other attribute of an
interface changes:
/rest/v1/system/interfaces?depth=1&attributes=admin_state,link_state

The AOS-CX REST API Reference lists all the switch resources. You can use theGETmethod of the resource in
the AOS-CX REST API Reference to determine theURI for that switch resource, including the query string to
specify an attribute or list of attributes.

Rules for topic URIs
A topic is the URI of a switch resource:

n Not all switch resource URIs are supported as notification topics.

The Implementation Notes section of the GETmethod of the resource in the AOS-CX REST API Reference
indicates if the resource is not supported by the notifications subsystem.

n Wildcard characters (*) are not supported.
n Specifying a resource on a peer VSX switch, by including /vsx-peer in the URIs for topic subscription

messages, is not supported. To specify a peer switch, include /vsx-peer in the URL of theWSS
connection. For example, to get notifications about VLANs on a peer, first open a connection to
wss://192.0.2.5/vsx-peer/rest/v1/notification and then subscribe to /rest/v1/system/vlans as
the topic name.

n You can specify a specific resource instance or a collection of resources.

Examples of specific resource instances:
o /rest/v1/system/vrfs/default

o /rest/v1/system/vlans/1

Examples of resource collections:
o /rest/v1/system/vrfs/default/bgp_routers

o /rest/v1/system/vlans

n The depth query parameter is supported, with amaximum value of 1, only with resource collections. For
example:
o Correct: /rest/v1/system/vlans?depth=1
o Incorrect: /rest/v1/system/vlans/2?depth=1

n The attributes query parameter is supported. You can specify a comma-separated list of attribute
names in the query string for either resource collections or resource instances. If attributes are specified,
then the subscriber receives notificationmessages only when the value of one of the specified attributes
changes.

For example:
o The following URI specifies the administrative state and link state of all interfaces on the switch:
/rest/v1/system/interfaces?attributes=admin_state,link_state

o The following URI specifies the names of the VLANs:
/rest/v1/system/vlans?depth=1&attributes=name

The names of the attributesmust match the names as documented in the AOS-CX REST API Reference for the
GETmethod of the resource.

Notification security features
The notification feature uses secureWebSocket connections based on the TLS v1.2 protocol (Transport
Layer Security version 1.2), which is the same protocol used for the REST HTTPS connections.

The switch uses self-signed certificates. To avoid certificate verification errors, disable certificate verification
when establishing the connection.

AOS-CX real-time notifications subsystem reference summary
The following information is intended as a quick reference for experienced users. Values are not
configurable unless noted otherwise.

Connection protocol
WebSocket secure (wss://)

Port
443

Message format
JSON

Message types
The following are the supportedmessage types:

n subscribe

n unsubscribe

n success

n error

n notification

Authorization
Session cookie from successful HTTPS login request

Notification resource URI
wss://<IP-ADDR>/rest/v1/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v1/notification

Session idle timeout
None

Session hard timeout
None

Subscription persistence
Subscriptions are active only while theWebSocket secure connection is open.

Configuration maximums

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 74

AOS-CX real-time notifications subsystem | 75

n Maximumnumber of subscribers per switch: 50
n Maximumnumber of subscriptions per subscriber: 80
n Maximumnumber of topics in one subscriptionmessage: eight

Enabling the notifications subsystem on a switch
The AOS-CX real-time notifications subsystem relies on the REST API, so the REST API must be enabled on
the switch and VRF fromwhich you want to receive notifications.

HTTPS servermust be enabled on the specified VRF. The VRF you specify determines fromwhich network
theHTTPS server can be accessed. You can enable access onmultiple VRFs, including user-defined VRFs.

Procedure
Enable REST API access on the VRF fromwhich you will access the switch.

Establishing a secure WebSocket connection through a
web browser
Prerequisites

n Access to the switch REST API must be enabled. The REST API accessmode can be either read-only or
read/write.

n Theweb browser you usemust support the secureWebSocket Protocol.

Procedure

1. Open aweb browser page and log in to the switchWeb UI or the REST API.

The session cookie ismanaged by the browser and is shared among browser tabs.
2. From a different tab in the same browser, open the page that contains theWebSocket interface.

For example, many browsers have a plugin for secureWebSocket connections.
3. Connect to the switch at the following URL:

wss://<IP-ADDR>/rest/v1/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v1/notification

After the connection is established, you can use the interface to send subscribe or unsubscribemessages
and to view the responses and notificationmessages.

Establishing a secure WebSocket connection using a script
Prerequisites
Access to the switch REST API must be enabled. The REST API accessmode can be either read-only or
read/write.

Procedure

1. If you are using a script, youmust include the actions to log in, get the session cookie, store the
session cookie, and pass the session cookie with the secureWebSocket connection request.

When you create the secureWebSocket connection, use the following URL:
wss://<IP-ADDR>/rest/v1/notification

2. <IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v1/notification

3. The exact methods to use to create connections and handle notificationmessages depend on the
scripting language and library module you choose.

Subscribing to topics
Prerequisites

n Youmust have a secureWebSocket connection to the switch.
n Access to the switch REST API must be enabled. The REST API accessmode can be either read-only or

read/write.

Procedure
Using theWebSocket secure connection, send a subscribemessage that contains the topics to which you
want to subscribe and a poll interval hint, if any.

Some resource attributes—typically in the statistics category—are not populated until a client requests the
information. The value of hint specifies how often—in seconds—the notification subsystem is to request
information about the topics in the list.

For example:
{
"type": "subscribe",
"topics": [
{
"name": "/rest/v1/system/vrfs"

},
{
"name": "/rest/v1/system/vlans/1?attributes=admin,oper_state_reason"

}
],
"hint": 5

}

If the subscriber already has a subscription to the specified topic, the following error is returned:
{
"type":"error",
"message":"The topic or combination of topics have been already subscribed."

}

If the URI in the topic name specifies a resource that is not in the configuration and state database, the
following error is returned:
{"type":"error","message":"Object not found."}

Example of amessage returned by a successful subscription attempt:
{
"type": "success",
"subscriber_name": "4bcf8uka90ki",
"subscription_name": "ns83n58dky",
"data": [
{
"topicname": "/rest/v1/system/vlans/1?attributes=admin,oper_state_reason",
"resources": [
{
"operation": "",
"uri": "/rest/v1/system/vlans/1",

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 76

AOS-CX real-time notifications subsystem | 77

"values": {
"admin": "up",
"oper_state_reason": "no_member_port"

}
}

]
},
{
"topicname": "/rest/v1/system/vrfs",
"resources": [
{
"operation": "",
"uri": "/rest/v1/system/vrfs/default",
"values": {}

},
{
"operation": "",
"uri": "/rest/v1/system/vrfs/mgmt",
"values": {}

}
]

}
]

}

Unsubscribing from topics
Prerequisites

n Youmust have a secureWebSocket connection to the switch.
n The switchmust have REST API access enabled. The REST API accessmode can be either read-only or

read/write.

Procedure
Use the secureWebSocket connection to send an unsubscribemessage that specifies the topic or topics
fromwhich you no longer want notifications.

Use a comma to separate topics in a list of topics.

Youmust be connected as the same subscriber that subscribed to the topic. For example, youmust be
using the sameweb browser session or be passing the same session cookie with the request.

For example, to unsubscribe notifications about the default VRF, send the followingmessage through the
WebSocket secure connection:

{
"type": "unsubscribe",
"topics": [
{
"name": "/rest/v1/system/vrfs/default"

}
]

}

If the subscriber does not have a subscription to that topic, the followingmessage is returned:
{
"type": "error",
"message": "subscription /rest/v10.04/system/vrfs doesn't exist"
"data": null

}

The error can indicate that you have already unsubscribed, the connection was lost, or you attempted to
unsubscribe from a different subscriber.

If the request is successful, the followingmessage is returned:
{
"type": "success",
"message": "Successfully unsubscribe."

}

Parts of a subscribe message
A subscribemessage is themessage sent when a subscriber requests a subscription to a topic on a switch.
The subscribemessage is in JSON format.

Subscribe message example
{
"type": "subscribe",
"topics": [
{
"name": "/rest/v1/system/vrfs"

},
{
"name": "/rest/v1/system/vlans/1?attributes=admin,oper_state_reason"

}
],
"hint": 5

}

Components of a subscribe message
type

Required. For a subscribemessage, youmust specify the following value: subscribe
topics

Required. The value is a comma-separated list of one ormore topics in JSON format. A topic includes one
component:
name

Required. The name of the topic, identified by theURI of the switch resource, including the optional
query string.

hint

Optional. Some resource attributes—typically in the statistics category—are not populated until a client
requests the information. The value of hint specifies how often—in seconds—the notification
subsystem is to request information about the topics in the list. The same hint value applies to all the
topics in the list.
If the same resource is a topic in multiple subscriptions that have different values for hint, the
notification subsystemuses the smallest value.
Default: 10

Parts of a subscription success message
When a subscription request is successful, a subscription successmessage is returned. The subscription
successmessage is in JSON format.

Example success message
{
"type": "success",
"subscriber_name": "4bcf8uka90ki",

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 78

AOS-CX real-time notifications subsystem | 79

"subscription_name": "ns83n58dky",
"data": [
{
"topicname": "/rest/v1/system/vlans/1?attributes=admin,oper_state_reason",
"resources": [
{
"operation": "",
"uri": "/rest/v1/system/vlans/1",
"values": {
"admin": "up",
"oper_state_reason": "no_member_port"

}
}

]
},
{
"topicname": "/rest/v1/system/vrfs",
"resources": [
{
"operation": "",
"uri": "/rest/v1/system/vrfs/default",
"values": {}

},
{
"operation": "",
"uri": "/rest/v1/system/vrfs/mgmt",
"values": {}

}
]

}
]

}

Components of subscription success message
type

Identifies the type of message. Successmessages have the type: success
subscriber_name

Contains a unique identifier that represents the name of the subscriber.
subscription_name

Contains a unique identifier that represents the name of the specific subscription.
data

Contains a comma-separated list of one ormore topics in JSON format.

Components of a topic
In a subscription successmessage, each topic in the data contains the following components:
topicname

Contains the name of the topic, identified by theURI of the switch resource, including the optional query
string.

resources

Contains a comma-separated list of one ormore resources in JSON format. When theURI of a topic is a
resource collection, a topic includesmultiple resources. In the examplemessage, the vrfs resource
includes two VRF instances: default and mgmt.
Each resource includes the following components:
operation

The value of operation is empty for successmessages. This component is used for notification
messages only.

uri

Contains theURI of the resource instancewithin the resource collection. If the topicname is a resource
instance instead of a collection, urimatches the path portion of the URI in topicname.

values

Contains the names and current values of the attributes that were specified in the query string of
topicname.

Parts of a notification message
A notificationmessage is themessage sent to the subscriber when there is a change to a switch resource
that is the topic of a subscription. The notificationmessage is in JSON format.

The content of a notificationmessage depends on the type of change that occurred.

Notification message examples
For the following examples, assume that the following subscribemessagewas used:
{
"topics": [
{
"name": "/rest/v1/system/vlans?depth=1&attributes=name"

}
],
"type": "subscribe"

}

The subscriber receives a notification when the name of any VLAN changes:

In the following example, VLAN7 has been added to the switch configuration:
{
"data": [
{
"resources": [
{
"operation": "inserted",
"uri": "/rest/v1/system/vlans/VLAN7",
"values": {
"name": "VLAN7"

}
}

],
"topicname": "/rest/v1/system/vlans?depth=1&attributes=name"

}
],
"type": "notification"

}

In the following example, VLAN7 has been deleted from the configuration:
{
"data": [
{
"resources": [
{
"operation": "deleted",
"uri": "/rest/v1/system/vlans/VLAN7",
"values": {}

}
],
"topicname": "/rest/v1/system/vlans?depth=1&attributes=name"

}
],
"type": "notification"

}

In the following example, the subscriber has subscribed to the following topic:
/rest/v1/system/interfaces/1%2F1%2F2?attributes=name,admin_state

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 80

AOS-CX real-time notifications subsystem | 81

If either the name or the administrative state of interface 1/1/2 changes, a notificationmessage is sent. If
attributes other than name or administrative state changes, no notificationmessage is sent.

In the following example, the administrative state of the interface changed to up.
{
"data": [
{
"resources": [
{
"operation": "modified",
"uri": "/rest/v1/system/interfaces/1%2F1%2F2",
"values": {
"admin_state": "up"

}
}

],
"topicname": "/rest/v1/system/interfaces/1%2F1%2F2?attributes=name,admin_state"

}
],
"type": "notification"

}

Components of a notification message
type

Identifies the type of message. Notificationmessages have the type: notification
data

Contains a comma-separated list of one ormore topics in JSON format.

Components of a topic
In a notificationmessage, each topic in the data contains the following components:
topicname

Contains the name of the topic, identified by theURI of the switch resource, including the optional query
string.

resources

Contains a comma-separated list of one ormore resources in JSON format. When theURI of a topic is a
resource collection, a topic includesmultiple resources.
Each resource includes the following components:

operation

For notificationmessages, operation is one of the following values:
inserted

The resource or resource attributewas added to the configuration of the switch.
deleted

The resource or resource attributewas deleted from the switch.
modified

The resource or resource attribute changed.
uri

Contains theURI of the resource instancewithin the resource collection. If the topicname is a resource
instance instead of a collection, urimatches the path portion of the URI in topicname.

values

The content of values depends on the operation:

n When the operation value is deleted, values is empty.
n When the operation value is inserted, values contains the current names and values of the

attributes specified in the query portion of the topicname. If no query string was included in
topicname, all attributes and values for that resource are included.

n When the operation value is modified, values contains the name and current value of the attribute
in the query string that changed value:
o If no query string was included in topicname, all attributes and values for that resource are

included.
o If multiple attributes are included in the query string of a topic and only some of those attribute

values changed, only the changed attributes are included.
o If an attribute that was not included in the query string changes, no notificationmessage is sent

because that attribute is not part of the subscription.

Example: Browser-based WebSocket connection
About the example
The following example, websocket-client.html, uses HTML and Javascript to create awebpage that you
can use to establish aWSS connection and send and receive notificationmessages.

n Access to the switch REST API must be enabled on the VRF through which this browser will connect to the
switch.

n Before you can use theHTML page, youmust log in to the switchWeb UI or REST API from a separate tab
in the sameweb browser session. The browser shares the session cookie between tabs.

n When the browser page is open, in Server Location, substitute the switch IP address for {IPAddress} in
wss://{IPAddress}/rest/v1/notification, then click Connect.

n Enter the subscriptionmessage in Request and click Send.
n Responses and notifications are shown in Response.

Example screen

Example HTML source

<!DOCTYPE html>
<html lang="en">
<head>

<title>Web Socket Client Example</title>
<script type="text/javascript">

window.onload = function () {
var conn;
var log = document.getElementById("log");
var msg = document.getElementById("msg");

function appendLog(item) {
var doScroll = log.scrollTop === log.scrollHeight -

log.clientHeight;

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 82

AOS-CX real-time notifications subsystem | 83

log.appendChild(item);
if (doScroll) {

log.scrollTop = log.scrollHeight - log.clientHeight;
}

}

document.getElementById("connect").onclick = function () {
var server = document.getElementById("wsURL");
conn = new WebSocket(server.value);
if (window["WebSocket"]) {

if (conn) {
conn.onopen = function (evt) {

document.getElementById("disconnect").disabled = false
document.getElementById("sendMsg").disabled = false
document.getElementById("connect").disabled = true
document.getElementById("status").innerHTML =

"Connection opened"
}
conn.onclose = function (evt) {

document.getElementById("status").innerHTML =
"Connection closed"

document.getElementById("connect").disabled = false
};
conn.onmessage = function (evt) {

var messages = evt.data.split('\n');
for (var i = 0; i < messages.length; i++) {

var item = document.createElement("pre");
item.innerText = messages[i];
appendLog(item);

}
}

}
} else {

var item = document.createElement("pre");
item.innerHTML = "Your browser does not support

WebSockets.";
appendLog(item);

}
};

document.getElementById("disconnect").onclick = function () {
conn.close()
document.getElementById("sendMsg").disabled = true
document.getElementById("connect").disabled = false
document.getElementById("disconnect").disabled = true
document.getElementById("status").innerHTML = "Connection closed"

};

document.getElementById("form").onsubmit = function () {
if (!conn) {

return false;
}
if (!msg.value) {

return false;
}
conn.send(msg.value);
var item = document.createElement("pre");
item.classList.add("subscribeMsg");
item.innerHTML = msg.value;
appendLog(item);
return false;

};

};

</script>
<style type="text/css">

html {
overflow: hidden;

}

body {
overflow: hidden;
padding: 0;
margin: 0;
width: 100%;
height: 100%;
background: gray;

}

#log {
background: white;
margin: 0;
padding: 0.5em 0.5em 0.5em 0.5em;
top: 1.5em;
left: 0.5em;
right: 0.5em;
bottom: 3em;
overflow: auto;
position: absolute;
height: 530px;

}

#form {
padding: 0 0.5em 0 0.5em;
margin: 0;
position: absolute;
bottom: 3em;
top: 5em;
left: 8px;
width: 100%;
overflow: hidden;

}

#serverLocation {
padding-top: 0.3em;

}

#requestSection {
height: 38px;

}

#responseMsgSection {
height: 570px;
position: relative;

}
</style>

</head>
<body>
<fieldset id="serverLocation">

<legend>Server Location</legend>
<div>

<input type="button" id="connect" value="Connect"/>
<input type="button" id="disconnect" value="Disconnect" disabled/>
<input type="text" id="wsURL" value="wss://{IPAddress}/rest/v1/notification"

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 84

AOS-CX real-time notifications subsystem | 85

size="64">

</div>
</fieldset>
<fieldset id="requestSection">

<legend>Request</legend>
<form id="form">

<input type="submit" type="submit" value="Send" ; disabled/>
<input type="text" id="msg" size="80"/>

</form>
</fieldset>
<fieldset id="responseMsgSection">

<legend>Response</legend>
<div id="log"></div>

</fieldset>
</body>
</html>

Example: Getting information about current subscribers
and subscriptions
To get information about the subscribers receiving notifications from a switch, youmust use the REST API.

Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, youmust use the IP
address or hostname of that switch.

Prerequisites
Youmust be logged in to the switch REST API.

Procedure

n To get the list of current subscribers, send aGET request to the notification_subscribers resource.

For example:
GET "https://192.0.2.5/rest/v1/system/notification_subscribers"

The response body is a list of URIs. The identifier at the end of theURI string is the subscriber name.

For example:

[
"rest/v1/system/notification_subscribers/z6901beisjgf",
"rest/v1/system/notification_subscribers/18l9g87erb42"

]

nTo get a list of all subscriptions of all subscribers, use the depth=1 parameter when sending theGET request to
the notification_subscribers resource.

For example:
GET "https://192.0.2.5/rest/v1/system/notification_subscribers?depth=1"

The response body contains the list of subscriptions for each subscriber.

In the following example,
n Subscriber z6901beisjgf has two subscriptions:

o 5mzo50lgoo

o pouswxt9m9

n Subscriber 18l9g87erb42 has one subscription:
o dz95lljqwk

[
{
"name": "z6901beisjgf",
"notification_subscriptions": {
"5mzo50lgoo": "rest/v1/system/notification_

subscribers/z6901beisjgf/notification_subscriptions/5mzo50lgoo",
"pouswxt9m9": "rest/v1/system/notification_

subscribers/z6901beisjgf/notification_subscriptions/pouswxt9m9"
},
"type": "ws"

},
{
"name": "18l9g87erb42",
"notification_subscriptions": {
"dz95lljqwk": "rest/v1/system/notification_

subscribers/18l9g87erb42/notification_subscriptions/dz95lljqwk"
},
"type": "ws"

}
]

nTo get a list of subscriptions that belong to a specific subscriber, send aGET request to the notification_
subscriptions resource of the subscriber.

The following example gets the list of all the subscriptions of subscriber z6901beisjgf:
GET "https://192.0.2.5/rest/v1/system/notification_
subscribers/z6901beisjgf/notification_subscriptions"

The response body is a list of URIs. The identifier at the end of theURI string is the subscription name.

Example response body:

[
"rest/v1/system/notification_subscribers/z6901beisjgf/notification_

subscriptions/5mzo50lgoo",
"rest/v1/system/notification_subscribers/z6901beisjgf/notification_

subscriptions/pouswxt9m9"
]

n To get detailed information about a specific subscription, send aGET request to the notification_
subscriptions/{subscription-ID} resource for that subscription.

The notification_subscriptions resource is a child resource of the specific subscriber:
/system/notification_subscribers/{subscriber-id}/notification_subscriptions/{subscription-
id}

For example, to get information about subscription 5mzo50lgoo, youmust specify the subscriber name and
the subscription name in theURI:
GET "https://192.0.2.5/rest/v1/system/notification_subscribers/z6901beisjgf/notification_
subscriptions/5mzo50lgoo"

Example response body:

{
"5mzo50lgoo": {

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 86

AOS-CX real-time notifications subsystem | 87

"resource": [
"/rest/v1/system/ports?attributes=admin,vlan_mode,vlan_tag,vlan_

trunks,interfaces&depth=1"
]

}
}

n To get detailed information about all subscriptions of specific subscriber, use the depth=1 parameter
when sending theGET request to the notification_subscriptions resource of that subscriber.

For example:
GET "https://192.0.2.5/rest/v1/system/notification_subscribers/z6901beisjgf/notification_
subscriptions?depth=1"

Example response body:

{
"5mzo50lgoo": {
"resource": [
"/rest/v1/system/ports?attributes=admin,vlan_mode,vlan_tag,vlan_

trunks,interfaces&depth=1"
]

},
"pouswxt9m9": {
"resource": [
"/rest/v1/system/interfaces?attributes=type,hw_intf_info,link_state,link_

speed,error,other_config"
]

}
}

Chapter 9
Troubleshooting

Troubleshooting

General troubleshooting tips
Connectivity
Connectivity is often the first issue you encounter. Ensure that you have enabled https-server on the VRF
you are trying to use.

n To connect to the REST API through themanagement (OOBM) port, REST API accessmust be enabled on
themanagement VRF.

n To connect to the REST API through a data port, REST API accessmust be enabled on the default VRF or a
user-created VRF that includes that data port.

Resources, attributes, and behaviors

n Resources, attributes, and behaviorsmight differ between different versions of the switch software. For
example:

The bridge resourcewas eliminated from theURI path of REST v1 URIs beginning with AOS-CX version 10.03:
o Example of getting the list of VLANs for a switch running AOS-CX version 10.02:

GET "https://192.0.2.5/rest/v1/system/bridge/vlans"

o Example of getting the list of VLANs for a switch running AOS-CX version 10.03:
GET "https://192.0.2.5/rest/v1/system/vlans"

If you are getting errors whenmaking requests to switches with different software versions, use the AOS-CX
REST API Reference on each switch to compare theURI paths and attributes for the resource. Youmight need
to alter your code to handle the different software versions.

n Resources, attributes, and behaviorsmight differ between different versions of the REST API, and a switch
supports access throughmultiple versions of the REST API.

GET, PUT, POST, and DELETE methods

n Most resources do not allow POST, PUT, or DELETEmethods and do not display thosemethods in the
AOS-CX REST API Reference unless the REST accessmode is set to read-write.

n The JSONmodel of a resource can vary by method used. The JSON data you receive from theGET
method is not the same as the JSON data you can ormust providewith the POST or PUTmethods:
o TheGETmethodmodel contains all the attributes.
o The POSTmethodmodel contains only the configuration attributes.
o The PUTmethodmodel contains only themutable (changeable) configuration attributes. If you do

not provide all themutable attributes in the request body of the PUT request, those attributes you do
not provide are set to their defaults, which could be empty. If you attempt to provide an immutable
attribute in a PUT request, an error is returned.

n Use theGETmethod with the selector=configuration parameter to get only the configuration
attributes of a resource. You can use the AOS-CX REST API Reference to view information about the
supportedmethods and resourcemodels.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 88

Troubleshooting | 89

n You can obtain additional platform-specific information through GET requests for product information
attributes or subsystem collections. Aruba 8400 switch examples:
o Example request:
GET "https://192.0.2.5/rest/v1/system/subsystems"

Example response body:

[
"/rest/v1/system/subsystems/chassis,base",
"/rest/v1/system/subsystems/line_card,1%2F3",
"/rest/v1/system/subsystems/management_module,1%2F5"

]

o Example request:
GET "https://192.0.2.5/rest/v1/system/subsystems/chassis,base?attributes=product_info"

Example response body:

{
"product_info": {
"base_mac_address": "00:00:5E:00:53:00",
"device_version": "",
"instance": "1",
"number_of_macs": "512",
"part_number": "JL375A",
"product_description": "8400 8-slot Chassis/3xFan Trays/18xFans/Cable

Manager/X462 Bundle",
"product_name": "8400 Base Chassis/3xFT/18xFans/Cbl Mgr/X462 Bundle",
"serial_number": "SG00A2A00A",
"vendor": "Aruba"

}
}

n Aruba 8320 switch examples:
Example request:

GET "https://192.0.2.5/rest/v1/system/subsystems

Example response body:

[
"/rest/v1/system/subsystems/chassis/base",
"/rest/v1/system/subsystems/line_card,1%2F1",
"/rest/v1/system/subsystems/management_module,1%2F1"

]

Hardware and other features

n Different switches have different hardware and features. For example, themanagement module
resource ID is 1/1 for some switches, and 1/4 or 1/5 for other switches. To get information about the
switchmodel, use theGETmethod request with theURI for the platform_name system attribute.

For example:
GET "https://192.0.2.5/rest/v1/system?attributes=platform_name"

The following is an example of a response body for an Aruba 8320 switch:

{
"platform_name": "8320"

}

The following is an example of a response body for an Aruba 8400 switch:

{
"platform_name": "8400X"

}

n Thewords "port" and "interface" havemeanings that are different fromother network operating
systems. In the AOS-CX operating system:
o A port is the logical representation of a port.
o An interface is the hardware representation of a port.

n You can enable debugging logs by using the debug command. Themodule name is rest. You can specify
all severity log levels or aminimum severity log level.

Example specifying all severity log levels:

switch# debug rest all

Example specifying aminimum severity log level of error:

switch# debug rest all severity error

REST API response codes
The following table describes the different categories of the response codes.

Category Description

2xx Indicates that the request was accepted successfully.

4xx Returns the client-side error response with the error message.

5xx Returns the server-side error response with the error message.

The following are some response codes that you will see in the REST API.

Response
code Status Description

200 OK Returned from GET and PUT operations, and non-configuration API calls such as
Login or Logout when the request is successfully completed.

201 Created Returned from POST operations when a new resource was successfully created.

204 No Content Returned from a PUT, POST, or DELETE operation when the request was
successfully processed and there is no content to return.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 90

Troubleshooting | 91

Response
code Status Description

400 Bad request A problem with the request body, such as invalid syntax, incorrectly formatted
JSON, or data violating a database constraint.

401 Unauthorized No active session for this client (the login API has not been called) or too many
sessions already created from this client.

403 Forbidden The client session is valid, but does not have permissions to access the requested
resource.

404 Not found The resource does not exist, or the URI is incorrect for the desired resource. Can
also occur when accessing the POST, PUT, or DELETE API while the REST access-
mode is set to read-only.

500 Internal
server error

An unexpected error has occurred in processing the request. View the logs on the
device for details.

503 Service
unavailable

The device is receiving more requests than it can process and is defensively
rejecting requests to protect resources.

Error "'admin' password is not set"
Symptom
An attempt to enable theHTTPS server using the https-server vrf command fails and the following error
is returned:
Failed to enable https-server on VRF <VRF>. 'admin' password is not set

Cause
The switch is shipped from the factory with a default user named adminwithout a password. The admin user
must set a valid password before HTTPS servers can be enabled.

Action
From the global configuration context, set a valid password for the admin user.

For example:

switch(config)# user admin password
Changing password for user admin
Enter password:************
Confirm password:************

Error "certificate verify failed" returned from curl
command
Symptom
A curl command to the switch URL fails with an error similar to the following:
SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

Cause

The curl program could not verify the switch server certificate against the CA certificate bundle that comes
with the curl installation, and you did not include the -k option in the curl command.

Action
Retry the command with the -k option included.

The switch HTTPS server uses self-signed certificates, which cannot be verified against a certificate authority.
The -k option disables curl certificate validation.

For example:

$ curl -k --noproxy "192.0.2.5" GET /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/vlans"

HTTP 400 error "Invalid Operation"
Symptom
A REST request returns response code 400 and the response body contains the following text string:
Invalid operation

Cause
Themethod used for this REST request is not supported for the specified resource. For example, the
Invalid operation response is returned if you attempt a DELETE request on the system resource.

Action
Use amethod supported by the resource.

The AOS-CX REST API Reference displays themethods supported by each resource.

HTTP 400 error "Value is not configurable"
Symptom
A PUT or POST request returns response code 400 and the response body contains the following text string:
Value <value> is not configurable

Cause
The JSON data in the POST or PUT request body contains non-configuration or immutable attributes.

Action
Retry the request with the correct JSON resourcemodel for that PUT or POSTmethod.

To determine the configuration attributes of a resource, you can send aGET request with the
selector=configuration query parameter to the resource. Using the REST v10.04 API, you can also use the
GETmethod with the selector=writable parameter to get only themutable configuration attributes of the
resource.

You can also use the AOS-CX REST API Reference to verify the JSONmodel of the PUT or POSTmethod of
the resource.

The category an attribute belongs to can depend on whether that instance of the resource is owned by the
systemor owned by a user. Configuration attributes can become status attributes in resource instances that
are owned by the system. Status attributes can not bemodified by users.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 92

Troubleshooting | 93

In addition, some configuration attributes cannot be changed after a resource is created. These immutable
attributes cannot be included in a PUT request.

HTTP 400 error "Reference failure"
Symptom
A REST request returns response code 400 and the response body contains the following text string:
Reference failure

Cause
You attempted to delete a resource that is referenced by other resources. Typically, this error occurs for
resources that have no clear parent in the resource hierarchy, such as ports. For example, the Reference
failure response is returned if you attempt a DELETE request on a port.

Action
Remove all references to the resource.

After all references to a resource are removed, the resource is deleted automatically.

HTTP 401 error "Authorization Required"
Symptom
A REST request returns response code 401 and the response body contains the following text string:
Authorization Required

This responsemeans that no valid session was found for the session token passed to the API.

Solution 1

Cause
The user attempting the request is not logged into the REST API for one of the following reasons:

n The user has not yet logged in.
n The user logged in but the session has expired.

Action
Log in to the REST API.

Solution 2

Cause
The user attempting the request is not logged in to the REST API because the user did not pass the correct
session cookie to the API. Typically, incorrect session cookies are not a causewhen accessing the REST API
through a browser because the browser automatically handles the session cookie.

Action

1. Ensure that you save the session cookie returned from the login request.
2. Ensure that you pass the same cookie back to the switch with every REST API request, including the

request to log out.

HTTP 401 error "Login failed: session limit reached"
Symptom
A REST request orWeb UI login attempt returns response code 401 and the response body contains the
following text string:
Login failed: session limit reached

Cause
A user attempted to log into the REST API or theWeb UI, but that user already has themaximumnumber of
concurrent sessions running.

Action

1. Log out fromone of the existing sessions.

Browsers share a single session cookie acrossmultiple tabs or even windows. However, scripts that
POST to the login resource and later do not POST to the logout resource can easily create the
maximumnumber of concurrent sessions.

2. If the session cookie is lost and it is not possible to log out of the session, then wait for the session
idle time limit to expire.

When the session idle timeout expires, the session is terminated automatically.
3. If it is required to stop all HTTPS sessions on the switch instead of waiting for the session idle time

limit to expire, you can stop all HTTPS sessions using the https-server session close all

command.

This command stops and starts the hpe-restd service, so using this command affects all existing REST
sessions andWeb UI sessions.

HTTP 403 error "Forbidden" on a write request
Symptom
A POST, PUT, or DELETE REST request returns response code 403 and the response body contains the
following text string:
Forbidden

Cause
The user attempting the request is not amember of the administrators group.

Action
Log in to the REST API with a user name that has administrator rights as part of the administrators group.

The usermust be amember of the predefined administrators group. POST requests to the login resource
fail formembers of a user-defined local user group.

HTTP 403 error "Forbidden" on a GET request
Symptom
AGET REST request returns response code 403 and the response body contains the following text string:
Forbidden

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 94

Troubleshooting | 95

Cause
The user attempting the request is amember of the Auditors group, and theGET request specified a switch
resource that users with auditor rights are not permitted to access.

Action
Log in to the REST API with a user name that has operator or administrator rights.

HTTP 404 error "Page not found" when accessing the
switch URL
Symptom
The switch is operational and you are using the correct URL for the switch, but attempts to access the REST
API orWeb UI result in an HTTP 404 "Page not found" error.

Cause
REST API access is not enabled on the VRF that corresponds to the access port you are using. For example,
you are attempting to access the REST API orWeb UI from themanagement (OOBM) port, and access is not
enabled on the mgmt VRF.

Action
Use the https-server vrf command to enable REST API access on the specified VRF.

For example:

switch(config)# https-server vrf mgmt

HTTP 404 error "Object not found" on object with "bridge/"
in URI Path
Symptom
A request wasmade to a switch running AOS-CX version 10.03 or later using a REST v1 URI that contains
bridge/ in the URI path. The request returns response code 404 and the response body contains the
following text string:
Object not found

Cause
The resource does not exist in the system. TheURI in the request is incorrect.

The bridge collection was eliminated from the REST v1 API in AOS-CX version 10.03.

Action
Remove the following from theURI and retry the request:
bridge/

Example of getting the list of VLANs for a switch running AOS-CX version 10.02:
GET "https://192.0.2.5/rest/v1/system/bridge/vlans"

Example of getting the list of VLANs for a switch running AOS-CX version 10.03:
GET "https://192.0.2.5/rest/v1/system/vlans"

HTTP 404 error "Object not found" returned from a switch
that supports multiple REST API versions (10.04 and later)
Symptom
A switch that supportsmultiple REST API versions returns response code 404 and the response body
contains the following text string:
Object not found

Cause
The resource does not exist in the system. TheURI in the request is incorrect for the version of the REST API
specified in the request.

Action
Verify the URI of the resource and retry the request.

The schema for resources accessed through the REST v1 API can differ from the schema for the resources
accessed through the REST v10.04 API.

For example, a REST request with the following URI will fail because the interfaces collection does not exist in
the REST v1 API:
/rest/v1/system/interfaces/lag50

The correct URI for the lag50 resource in the REST v1 API is the following:
/rest/v1/system/ports/lag50

HTTP 404 error "Object not found" when using a write
method
Symptom
A PUT or DELETE request returns response code 404 and the response body contains the following text
string:
Object not found

Cause
The resource does not exist in the system. TheURI in the request is incorrect or the resource has not been
added to the configuration.

Action
Verify the URI of the resource you are attempting to change or delete and retry the request.

HTTP 404 error "Page not found" when using a write
method
Symptom
Using theGETmethod is successful, but attempting a POST, PUT, or DELETEmethod results in an HTTP 404
"Page not found" error.

Cause
The REST API accessmode is set to read-only.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 96

Troubleshooting | 97

Action
Set the REST API accessmode to read-write.

switch(config)# https-server rest access-mode read-write

Enabling the read-writemode on the REST API allows POST, PUT, and DELETE operations to be called on all
configurable elements in the switch database.

Logout fails
Symptom
An attempt to log out of the REST API from a script or curl command fails.

Cause
The session cookie was not supplied or does not contain the correct session token.

Action

1. Repeat the command and send the correct session cookie ormodify the script to send the correct
session cookie.

2. If the session cookie has been lost and it is not possible to log out of the session, wait for the session
idle time limit to expire.

When the session idle timeout expires, the session is terminated automatically.

Chapter 10
Support and Other Resources

Support and Other Resources

Accessing Aruba Support

Aruba Support Services https://www.arubanetworks.com/support-services/

AOS-CX Switch Software Documentation
Portal

https://www.arubanetworks.com/techdocs/AOS-CX/help_
portal/Content/home.htm

Aruba Support Portal https://asp.arubanetworks.com/

North America telephone 1-800-943-4526 (US & Canada Toll-Free Number)

+1-408-754-1200 (Primary - Toll Number)

+1-650-385-6582 (Backup - Toll Number - Use only when all other
numbers are not working)

International telephone https://www.arubanetworks.com/support-services/contact-
support/

Be sure to collect the following information before contacting Support:

n Technical support registration number (if applicable)
n Product name,model or version, and serial number
n Operating systemname and version
n Firmware version
n Errormessages
n Product-specific reports and logs
n Add-on products or components
n Third-party products or components

Other useful sites
Other websites that can be used to find information:

Airheads social
forums and
Knowledge
Base

https://community.arubanetworks.com/

AOS-CX Switch
Software
Documentation
Portal

https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm

Aruba https://www.arubanetworks.com/techdocs/hardware/DocumentationPortal/Content/home.htm

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 98

https://www.arubanetworks.com/support-services/
https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm
https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm
https://asp.arubanetworks.com/
https://www.arubanetworks.com/support-services/contact-support/
https://www.arubanetworks.com/support-services/contact-support/
https://community.arubanetworks.com/
https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm
https://www.arubanetworks.com/techdocs/hardware/DocumentationPortal/Content/home.htm

Support and Other Resources | 99

Hardware
Documentation
and
Translations
Portal

Aruba software https://asp.arubanetworks.com/downloads

Software
licensing

https://lms.arubanetworks.com/

End-of-Life
information

https://www.arubanetworks.com/support-services/end-of-life/

Aruba
Developer Hub

https://developer.arubanetworks.com/

Accessing Updates
You can access updates from the Aruba Support Portal or theHPEMy NetworkingWebsite.

Aruba Support Portal
https://asp.arubanetworks.com/downloads

If you are unable to find your product in the Aruba Support Portal, youmay need to searchMy Networking,
where older networking products can be found:

My Networking
https://www.hpe.com/networking/support

To view and update your entitlements, and to link your contracts and warranties with your profile, go to the
Hewlett Packard Enterprise Support CenterMore Information on Access to Support Materials page:
https://support.hpe.com/portal/site/hpsc/aae/home/

Access to some updatesmight require product entitlement when accessed through theHewlett Packard
Enterprise Support Center. Youmust have an HP Passport set up with relevant entitlements.

Some software products provide amechanism for accessing software updates through the product
interface. Review your product documentation to identify the recommended software updatemethod.

To subscribe to eNewsletters and alerts:

https://asp.arubanetworks.com/notifications/subscriptions (requires an active Aruba Support Portal (ASP)
account to manage subscriptions). Security notices are viewablewithout an ASP account.

Warranty Information
To viewwarranty information for your product, go to https://www.arubanetworks.com/support-
services/product-warranties/.

Regulatory Information
To view the regulatory information for your product, view the Safety and Compliance Information for Server,
Storage, Power, Networking, and Rack Products, available at https://www.hpe.com/support/Safety-
Compliance-EnterpriseProducts

https://asp.arubanetworks.com/downloads
https://lms.arubanetworks.com/
https://www.arubanetworks.com/support-services/end-of-life/
https://developer.arubanetworks.com/
https://asp.arubanetworks.com/downloads
https://www.hpe.com/networking/support
https://support.hpe.com/portal/site/hpsc/aae/home/
https://asp.arubanetworks.com/notifications/subscriptions
https://www.arubanetworks.com/support-services/product-warranties/
https://www.arubanetworks.com/support-services/product-warranties/
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts

Additional regulatory information
Aruba is committed to providing our customers with information about the chemical substances in our
products as needed to comply with legal requirements, environmental data (company programs, product
recycling, energy efficiency), and safety information and compliance data, (RoHS andWEEE). Formore
information, see https://www.arubanetworks.com/company/about-us/environmental-citizenship/.

Documentation Feedback
Aruba is committed to providing documentation that meets your needs. To help us improve the
documentation, send any errors, suggestions, or comments to Documentation Feedback (docsfeedback-
switching@hpe.com). When submitting your feedback, include the document title, part number, edition,
and publication date located on the front cover of the document. For online help content, include the
product name, product version, help edition, and publication date located on the legal notices page.

AOS-CX 10.10 REST v1 API Guide | (All AOS-CX Series Switches) 100

https://www.arubanetworks.com/company/about-us/environmental-citizenship/
mailto:docsfeedback-switching@hpe.com
mailto:docsfeedback-switching@hpe.com

	Contents
	About this document
	Applicable products
	Latest version available online
	Command syntax notation conventions
	About the examples
	Identifying switch ports and interfaces
	Identifying modular switch components

	Introduction to the AOS-CX REST API
	AOS-CX REST API
	REST API versions
	Differences among REST API versions
	AOS-CX Network Analytics Engine scripts
	Interfaces and ports
	GET method
	Resource collections

	REST API access modes
	Read-write access mode
	Read-only access mode

	REST API URI
	Parts of a URI
	URI path, including path parameters
	Query component

	Resources
	Resource collections and singletons
	Categories of resource attributes

	Enabling access to the REST API
	Setting the admin password
	Setting the REST API access mode to read-write
	Showing the REST API access configuration
	Disabling access to the REST API
	HTTPS server commands
	https-server max-user-sessions
	https-server rest access-mode
	https-server rest firmware-site-distribution
	https-server session close all
	https-server session-timeout
	https-server vrf
	show https-server

	Accessing the AOS-CX REST API
	Authenticating REST API sessions
	User groups and access authorization

	AOS-CX REST API Reference (UI)
	Accessing the REST API using the AOS-CX REST API Reference
	Logging in and logging out using the AOS-CX REST API Reference

	AOS-CX REST API Reference basics
	AOS-CX REST API Reference home page

	Write methods (POST, PUT, and DELETE)
	Considerations when making configuration changes
	Considerations for ports and interfaces
	Write methods (POST, PUT) supported in read-only mode

	GET method usage and considerations
	GET method parameters
	Attributes parameter
	Count parameter
	Depth parameter
	Filter parameter
	Selector parameter

	POST method usage and considerations
	PUT method usage and considerations
	Best practice for building the PUT request body

	DELETE method usage and considerations
	REST requests and accounting logs
	AOS-CX REST API reference summary

	Using Curl Commands
	About the curl command examples
	Getting the REST API versions on the switch
	Accessing the REST API using curl
	Logging in using curl
	Passing the cookie back to the switch
	Logging out using curl

	Examples
	Example: GET method
	Example: Getting and deleting certificates using REST APIs
	Example: Generating a self-signed certificate using REST APIs
	Example: Getting and installing a signed leaf certificate using REST APIs
	Example: Associating a leaf certificate with a switch feature using REST APIs
	Example: Configuration management using REST APIs
	Example: Firmware upgrade using REST APIs
	Example: Log operations using REST APIs
	Example: Ping operations using REST APIs
	Example: Traceroute operations using REST APIs
	Example: User management using REST APIs
	Example: Creating an ACL with a port using REST APIs
	Example: Creating a VLAN with a port using REST APIs

	VSX peer switches and REST API access
	Example: Interacting with a VSX peer switch
	Example: Upgrading to the latest version of VSX
	Prerequisites
	Upgrading VSX using normal mode
	Upgrading VSX using pre-stage mode
	Aborting the VSX upgrade process
	Resetting VSX upgrade values

	AOS-CX real-time notifications subsystem
	Secure WebSocket Protocol connections for notifications
	Notification topics are switch resource URIs
	Rules for topic URIs
	Notification security features
	AOS-CX real-time notifications subsystem reference summary

	Enabling the notifications subsystem on a switch
	Establishing a secure WebSocket connection through a web browser
	Establishing a secure WebSocket connection using a script
	Subscribing to topics
	Unsubscribing from topics
	Parts of a subscribe message
	Parts of a subscription success message
	Parts of a notification message
	Example: Browser-based WebSocket connection
	Example: Getting information about current subscribers and subscriptions

	Troubleshooting
	General troubleshooting tips
	REST API response codes
	Error 'admin' password is not set
	Error certificate verify failed returned from curl command
	HTTP 400 error Invalid Operation
	HTTP 400 error Value is not configurable
	HTTP 400 error Reference failure
	HTTP 401 error Authorization Required
	HTTP 401 error Login failed: session limit reached
	HTTP 403 error Forbidden on a write request
	HTTP 403 error Forbidden on a GET request
	HTTP 404 error Page not found when accessing the switch URL
	HTTP 404 error Object not found on object with bridge/ in URI Path
	HTTP 404 error Object not found returned from a switch that supports multiple...
	HTTP 404 error Object not found when using a write method
	HTTP 404 error Page not found when using a write method
	Logout fails

	Support and Other Resources
	Accessing Aruba Support
	Accessing Updates
	Aruba Support Portal
	My Networking

	Warranty Information
	Regulatory Information
	Documentation Feedback

