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1 Introduction 
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instruction set is a powerful 
addition to the packet processing toolkit. As Intel’s latest generation of SIMD instruction 
set, Intel® AVX-512 (also known as AVX-512) is a game changer, doubling register width, 
doubling the number of available registers, and generally offering a more flexible 
instruction set compared to its predecessors. Intel® AVX-512 has been available since 
the 1st Generation Intel® Xeon® Scalable processors and is now optimized in the latest 
3rd Generation processors with compelling performance benefits. 

This paper is the second in a series of white papers that focuses on how to write packet 
processing software using the Intel® AVX-512 instruction set. This paper describes how 
SIMD optimizations are enabled in software development frameworks such as DPDK and 
FD.io. It includes examples of using Intel® AVX-512 in these frameworks as well as the 
performance benefits obtained, demonstrating performance gains in excess of 300% in 
microbenchmarks1. 

The previous paper in this series is an introduction for software engineers looking to 
write packet processing software with Intel® AVX-512 instructions. The paper provides a 
brief overview of the Intel® AVX-512 instruction set along with some pointers on where 
to find more information. It also describes microarchitecture optimizations for Intel® 
AVX-512 in the latest 3rd Generation Intel® Xeon® Scalable processors. An executive 
summary of these papers is also available. 

This white paper is intended for organizations developing or deploying packet 
processing software on the latest 3rd Generation Intel® Xeon® Scalable processors. 

It is a part of the Network Transformation Experience Kit, which is available at 
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits. 

 

 
1 Benchmarked with DPDK 20.02 L3FWD-ACL and DPDK-TEST_ACL. See backup for workloads and configurations or visit 
    www.Intel.com/PerformanceIndex. Results may vary. 

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-processing-with-intel-avx-512-instruction-set-solution-brief
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-processing-with-intel-avx-512-instruction-set-solution-brief
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
www.Intel.com/PerformanceIndex
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1.1 Terminology 
ABBREVIATION DESCRIPTION 

ACL Access Control List 

AES Advanced Encryption Standard 

CPE Customer Premise Equipment 

DPDK Data Plane Development Kit (dpdk.org) 

FD.io Fata Data I/O (an umbrella project for Open Source network projects) 

FIB Forwarding Information Base 

HPC High Performance Computing 

IDS/IPS Intrusion Detection Systems/Intrusion Prevention Systems 

IP Internet Protocol 

ISA Instruction Set Architecture 

LPM Longest Prefix Match 

MAC Media Access Control address 

PMD Poll Mode Driver 

SIMD Single Instruction Multiple Data (term used to describe vector instruction sets such as Intel® SSE, Intel® AVX, and so on) 

SSE Streaming SIMD Extensions (Intel® SSE is a predecessor to Intel® AVX instruction set) 

VPP FD.io Vector Packet Processing, an Open Source networking stack (part of FD.io) 

VxLAN Virtual Extensible LAN, a network overlay protocol.  

Vhost Virtual Host 

 

1.2 Reference Documentation 

REFERENCE SOURCE 

Intel® 64 and IA-32 Architectures Optimization Reference Manual https://www.intel.com/content/dam/www/public/us/en/documents/man
uals/64-ia-32-architectures-optimization-manual.pdf  

Intel® 64 and IA-32 Architectures Software Developer Manual https://software.intel.com/content/www/us/en/develop/articles/intel-
sdm.html  

Intel® AVX-512 - Packet Processing with Intel® AVX-512 Instruction 
Set Solution Brief 

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-
packet-processing-with-intel-avx-512-instruction-set-solution-brief 

Intel® AVX-512 – Instruction Set for Packet Processing Technology 
Guide 

https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-
instruction-set-for-packet-processing-technology-guide 

 

2 Overview 
SIMD code has been used in Packet Processing for some years now. DPDK, for example, has been using SIMD instructions since its 
2014 1.7.0 release. That release debuted with Intel® SSE 4.2 support in the Poll Mode Driver (PMD) for Intel's 10-Gigabit Ethernet 
Products. Since then Intel has added support for Intel® AVX2 and, now most recently, the AVX-512 instruction sets to DPDK. 

DPDK's use of SIMD instructions has grown over time, expanding to include PMDs supporting Intel's 40- and 100-Gigabit Ethernet 
Product portfolio as well as PMDs for hardware from other vendors, the Virtio PMD, and associated Vhost backend. DPDK’s SIMD 
use has also grown to include a number of libraries such as the DPDK Longest Prefix Match (LPM), Forwarding Information Base 
(FIB), and Access Control List (ACL) libraries. A recent example is DPDK adding Cryptodev support for Intel’s new Vector AES (VAES) 
instruction set extension supported on 3rd Generation Intel® Xeon® Scalable processors, which is offering significant performance 
improvements in AES cryptography. Partly due to the increased use of vectorization as well as the generation-on-generation Intel 
microarchitectural enhancements, DPDK's performance on Intel platforms has improved dramatically over time2. DPDK’s recent 
enablement of Intel® AVX-512 is described in detail in subsection 4.1. 

Similarly, FD.io VPP debuted in the open source community with Intel® SSE 4.2 support in 2015, subsequently adding support for 
Intel® AVX2 and Intel® AVX-512 instruction sets in 2018. When FD.io VPP debuted as an Open Source Project, vectorization usage 
was initially confined to a small number of VPP graph nodes such as classifiers (ACLs). Since that time, similar to DPDK, 

 
2 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-processing-with-intel-avx-512-instruction-set-solution-brief
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-packet-processing-with-intel-avx-512-instruction-set-solution-brief
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-instruction-set-for-packet-processing-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-instruction-set-for-packet-processing-technology-guide
www.Intel.com/PerformanceIndex
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vectorization usage in FD.io VPP has grown rapidly to the point where it is now used widely in places such as the VLIB library, the 
glue between the graph nodes, the Ethernet and IP layers, and in the FD.io VPP native PMDs such as the AVF plugin for Intel's 40- 
and 100-Gigabit product portfolio, Virtio, and MemIF plugins. FD.io’s recent enablement of Intel® AVX-512 is described in detail in 
subsection 4.2 

This document is for software engineers wanting to write Packet Processing software with Intel® AVX-512 (henceforth referred to as 
AVX-512) and is structured as follows: 
• Vectorization Approaches describes two approaches to writing vectorized code: using vector intrinsics and using compiler vector 

literals approaches, as used by DPDK and FD.io VPP respectively. 
• Microarchitecture Optimizations describes how these optimizations are enabled at runtime in DPDK and FD.io VPP, detailing the 

configuration switches and APIs that enable these optimizations. 
• Optimization Examples describes examples of optimizations developed with AVX-512 instructions drawn from DPDK and FD.io 

VPP, where AVX-512 is used to accelerate the DPDK’s Forwarding Information Base (FIB) Library and FD.io VPP’s VxLAN 
decapsulation3.  

 

3 Vectorization Approaches 
It is worth noting that DPDK and FD.io take slightly different approaches to vectorization of code. DPDK typically favors a slightly 
more hand-crafted approach while FD.io VPP trusts the compiler to do a little more optimization. 

3.1 DPDK approach 
The DPDK approach typically favors the use of vector intrinsics, which are built-in functions that are specially handled by the 
compiler. These vector intrinsics usually map 1:1 with vector assembly instructions. Consider, for example, 8-bit vector addition 
with the AVX-512 intrinsic _mm512_add_epi8.  

The code sample below loads two 512-bit vectors of 8-bit integers from the unaligned memory locations dest and src, performs 
an addition of the two vectors with _mm512_add_epi8, and returns the results. 

#include <immintrin.h> 

#include <stdint.h>  

 

uint8_t *addx8(uint8_t *dest, uint8_t *src) { 

 

    __m512i a = _mm512_loadu_epi64 (src); 

    __m512i b = _mm512_loadu_epi64 (dest); 

 

    _mm512_storeu_epi64(dest, _mm512_add_epi8(a, b)); 

 

    return dest;} 

The code snippet above generates the following assembler code with the Clang 10 compiler, where the almost 1:1 mapping from 
vector intrinsic to assembly instructions can be observed.  
Note: The Intel® AVX-512 intrinsic, _mm512_add_epi8, is converted to a vpaddb assembly form, and the intrinsic, 

_mm512_loadu_epi8, is converted to a memory read from zmmword ptr(s). 
addx8:                   # @addx8 

 mov                   rax, rdi 

 vmovdqu64             zmm0, zmmword ptr [rdi] 

 vpaddb                zmm0, zmm0, zmmword ptr [rsi] 

 vmovdqu64             zmmword ptr [rdi], zmm0 
 vzeroupper 

 ret 

 
3 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://godbolt.org/z/n1dE8oanY
https://clang.llvm.org/
www.Intel.com/PerformanceIndex
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3.2 FD.io VPP approach 
The FD.io VPP approach makes use of compiler language extensions called Vector Literals. These are compiler built-in data-type 
attributes and operators and are considered by some developers to be easier to code with compared to using vector intrinsics as 
described in the previous section. Vector literals are supported by both GCC and Clang compilers.  

To use vector literals, the developer declares a data type as having the attribute vector_size, which declares the data type as a 
vector of values and describes the data type’s size in bytes. A 64-byte vector_size indicates that the data type must be an alias 
of a 512-bit register, and that any operations performed on a variable of that data type usually generates AVX-512 instructions.  

This assertion is dependent on correctly setting those compiler flags that permit the use of AVX-512 instructions. For more details, 
see subsection 4.2. Similarly, a 32-byte vector_size aliases a 256-bit register and usually generates AVX2 instructions.  

Table 1 describes some examples of VPP data types declared as vector literals. 

Table 1. Examples of Declaring Vector Literals 

VPP DATA TYPE C DATA TYPE VECTOR SIZE (BYTES) INSTRUCTION SET DESCRIPTION 

u8x64 uint8_t 64 AVX-512 Packed Array of 64 x 8-bit Integers 

u8x32 uint8_t 32 AVX2 Packed Array of 32 x 8-bit Integers 

u8x16 uint8_t 16 SSE Packed Array of 16 x 8-bit Integers 

u64x8 uint64_t 64 AVX-512 Packed Array of 8 x 64-bit Integers 

u64x4 uint64_t 32 AVX2 Packed Array of 4 x 64-bit Integers 

u64x2 uint64_t 16 SSE Packed Array of 2 x 64-bit Integers 

Vector literals give developers access to a standard set of operators (arithmetic, bitwise, and so on) provided by the compiler. The 
developer trusts the compiler to generate the equivalent vector instructions targeted at appropriate instruction set generation, and 
to optimize where possible. FD.io VPP also provides a library of macros to perform common operations (splat, scatter, gather, and 
so on) to compliment vector literals4. These can be found in the FD.io VPP vppinfra/vector*.h header files. 

#include <immintrin.h> 

#include <stdint.h>  

typedef uint8_t u8x64 __attribute__((aligned(8))) 

                      __attribute__((__vector_size__(64))); 

uint8_t *addx8(uint8_t *dest, uint8_t *src) { 

    u8x64 a = *(u8x64*) src; 

    u8x64 b = *(u8x64*) dest; 

    *(u8x64 *) dest = a + b;    

    return dest; 

} 

The code snippet above generates the following assembler in Clang 10, which is equivalent to the DPDK vector intrinsics snippet 
described in the previous section. Note that the + operator is converted to a vpaddb instruction, and that the cast and pointer 
dereferences *(u8x64*) is converted to a memory read from zmmword ptr(s).   

 
4 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex . Results may vary. 

Intel maintains the Intel® Intrinsics Guide that provides a complete database of Intel® Architecture SIMD intrinsics, all the 
way from Intel® MMX to Intel® AVX-512 instruction sets, along with descriptions of functionality, throughput, and latency, 
on different generations of Intel® Microprocessors, along with mappings to SIMD instructions. 

https://godbolt.org/z/zxch47Enz
http://www.intel.com/PerformanceIndex
https://software.intel.com/sites/landingpage/IntrinsicsGuide
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addx8:                # @addx8 

 mov       rax, rdi 

 vmovdqu64        zmm0, zmmword ptr [rdi] 

 vpaddb    zmm0, zmm0, zmmword ptr [rsi] 

 vmovdqu64       zmmword ptr [rdi], zmm0 

 vzeroupper 

 ret 

Table 2 lists a subset of the standard C operators natively supported by vector literals. The full list is available in the Clang 
documentation. 

Table 2. Examples of Operations Supported by Vector Literals 

OPERATION OPERATORS 

Extraction [ ] 

Increment/decrement ++, – – 

Arithmetic +,*,/ and % 

bitwise operators &,|,^ and ~ 

shift operators >>,<< 

logic operators !, &&, || 

Assignment = 

It is worth noting that the GCC and Clang compilers also support two built-in functions that are complementary to vector literals: 
• __builtin_shufflevector function that provides an alias to vector permutation/shuffle/swizzle operations, and  
• __builtin_convertvector function that provides an alias to vector conversion operations.  

These built-in functions work like the vector literals described above, automatically generating vector instructions appropriate to 
the size of the data type passed as arguments. That is, when passed a 64-byte vector literal these built-ins usually generate AVX-
512 instructions with the compiler optimizing where possible. 

 

4 Microarchitecture Optimizations 
Software built on DPDK or FD.io VPP typically must run on a diverse number of platforms, including different generations of 
microarchitecture (1st, 2nd, and 3rd Generation Intel® Xeon® Scalable processors) and different processors-types (Intel® Xeon® and 
Intel Atom®). The difficulty is that creating platform-specific software releases adds complexity and costs for software vendors. The 
ideal solution, therefore, is to have one binary release of a given product that runs without difficulty on diverse platforms and also 
optimizes where possible5. 

DPDK and FD.io VPP achieve auto-optimization for their execution environment with a single binary—using a technique called 
function multi-versioning to create multi-architecture binaries—which is described in the following sections. 

4.1 DPDK’s function multi-versioning 
The DPDK 20.11 release added two new APIs to the environment abstraction layer (EAL) to get and set the maximum SIMD bitwidth. 
The maximum SIMD bitwidth implies the largest register size in bits and the associated SIMD instruction set that can be used by 
DPDK libraries, drivers, and applications.  The APIs are listed in Table 3. 
  

 
5 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

https://clang.llvm.org/docs/LanguageExtensions.html#vector-operations
https://clang.llvm.org/docs/LanguageExtensions.html#vector-operations
https://clang.llvm.org/docs/LanguageExtensions.html#builtin-shufflevector
https://clang.llvm.org/docs/LanguageExtensions.html#builtin-convertvector
http://www.intel.com/PerformanceIndex
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Table 3. DPDK 20.11 RTE VECT APIs  

API DESCRIPTION 

uint16_t rte_vect_get_max_simd_bitwidth(void); This API returns a value from the enumeration 
rte_vect__max_simd, indicating the 
maximum permitted register size to be used by 
DPDK applications. 

int rte_vect_set_max_simd_bitwidth(uint16_t bitwidth); This API sets a value from the enumeration 
rte_vect_max_simd, indicating the maximum 
permitted register size to be used by DPDK 
applications. 

The rte_max_simd enumeration details are listed in Table 4.  

Table 4. DPDK rte_vect_max_simd Enumeration 

ENUMERATION DESCRIPTION 

RTE_VECT_SIMD_DISABLED Indicates that DPDK must follow scalar only code paths. 

RTE_VECT_SIMD_128 Indicates that DPDK may follow scalar and Intel® SSE4.2 code paths, prioritizing Intel® SSE4.2. 

RTE_VECT_SIMD_256 Indicates that DPDK may follow scalar, Intel® SSE4.2 and Intel® AVX2 code paths, prioritizing Intel® AVX2. 

RTE_VECT_SIMD_512 Indicates that DPDK may follow scalar, Intel® SSE4.2, Intel® AVX2 and Intel® AVX-512 code paths, 
prioritizing Intel® AVX-512. 

In DPDK it is common for one algorithm to have multiple implementations, each supporting a different generation of SIMD 
technologies. In this common optimization technique, there may be several microarchitecture-optimized versions of the same 
algorithm in a given library or PMD simultaneously. DPDK6 is therefore able to optimize for the microprocessor on which it is 
executing by choosing the fastest possible implementation of the algorithm at runtime, provided other prerequisite conditions are 
met.  

DPDK uses the value set by rte_vect_set_max_simd_bitwidth and the capabilities of the microprocessor to determine 
which microarchitecture-optimized function version to use. A good example is the DPDK Virtio PMD, which uses AVX-512 optimized 
code paths when the following conditions are met: 
• The microprocessor supports AVX-512, detected by calling rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) 
• The application has enabled AVX-512, detected by calling rte_vect_get_max_simd_bitwidth(void)  
• In addition, the Virtio PMD-specific requirements are also met: 

− Virtual Machines’ Virtio interface supports the Virtio 1 standard 
− Virtual Machines’ Virtio interface has enabled Virtio in order feature flag 

The DPDK EAL also supports a force-max-simd-bitwidth command-line parameter to override calls to 
rte_vect_set_max_simd_bitwidth. This parameter is useful for testing purposes. Provided other prerequisite conditions 
are met: 
• Specifying --force-max-simd-bitwidth=64 disables vectorized code paths  
• Specifying --force-max-simd-bitwidth=512 enables AVX-512 code-paths  

 
Note: When the application does not specify a preference through the rte_vect_set_max_simd_bitwidth API, a 

microarchitecture-specific default is used. On Intel® Xeon® microarchitectures, the default is to use Intel® AVX2 instructions, 
while on Intel Atom® platforms the default is to use Intel® SSE4.2 instructions. 

4.1.1 DPDK Libraries 
Some DPDK libraries enable the calling application to specify a preferred algorithm implementation through their API. Examples of 
such libraries are the DPDK Forwarding Information Base (FIB) and Access Control List (ACL) libraries. For example, the DPDK ACL 
library has two search calls to find a matching ACL rule for a given input buffer: 
  

 
6 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

www.Intel.com/PerformanceIndex
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Table 5. DPDK 20.11 ACL API  

API DESCRIPTION 

int rte_acl_classify (const struct rte_acl_ctx 
*ctx, const uint8_t **data, uint32_t *results, 
uint32_t num, uint32_t categories) 

Performs search for a matching ACL rule for each input data 
buffer. Automatically determines the optimal search algorithm to 
use based on microprocessor capabilities and any preference 
specified through the EAL APIs.  

int rte_acl_classify_alg (const struct 
rte_acl_ctx *ctx, const uint8_t **data, 
uint32_t *results, uint32_t num, uint32_t 
categories, enum rte_acl_classify_alg alg) 

Performs search for a matching ACL rule for each input data buffer 
using the algorithm specified, provided it is supported by the 
microprocessor and permitted by the DPDK EAL.  

Table 6 lists the lookup algorithms supported by the DPDK ACL library, used with the rte_acl_classify_alg function.  

Table 6. DPDK rte_acl_classify_alg Enumeration 

ENUMERATION DESCRIPTION 

RTE_ACL_CLASSIFY_SCALAR Scalar implementation, does not require any specific HW support. 

RTE_ACL_CLASSIFY_SSE Intel® SSE4.1 implementation, can process up to eight flows in parallel. Requires SSE 4.1 support. 
Requires maximum SIMD bitwidth to be at least 128 bits. 

RTE_ACL_CLASSIFY_AVX2 Intel® AVX2 implementation; can process up to 16 flows in parallel. Requires AVX2 support. 
Requires maximum SIMD bitwidth to be at least 256 bits. 

RTE_ACL_CLASSIFY_AVX512X16 Intel® AVX-512 implementation, can process up to 16 flows in parallel. Uses 256-bit width SIMD 
registers. Requires AVX512 support. Requires maximum SIMD bitwidth to be at least 256 bits. 

RTE_ACL_CLASSIFY_AVX512X32 Intel® AVX-512 implementation, can process up to 32 flows in parallel. Uses 512-bit width SIMD 
registers. Requires AVX512 support. Requires maximum SIMD bitwidth to be at least 512 bits. 

Similar to the DPDK Virtio PMD, the DPDK ACL library uses AVX-512 optimized lookup code paths when the following conditions 
are met:7 
• The microprocessor supports AVX-512, detected by calling rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F). 
• The application has enabled AVX-512, detected by calling rte_vect_get_max_simd_bitwidth(void).  
• Once the prior conditions are met, the rte_acl_classify function automatically selects an AVX-512 optimized lookup 

algorithm. The rte_acl_classify_alg function uses the algorithm specified in the alg parameter, allowing AVX-512 
optimized lookup algorithms to be selected, once the prior conditions are met.  

4.2 FD.io VPP’s multi-arch variants 
FD.io VPP is implemented as a directed graph of nodes, with each graph node containing some state and specifying a function to 
process packets. Each graph node is typically encapsulated inside a separate C source file and resulting object file at build time. In 
the FD.io VPP build system, many graph nodes are designated as multi-arch variants. This designation causes the FD.io VPP build 
system to build a separate variant of the graph node for each generation of microprocessor microarchitecture supported by FD.io 
VPP. 
  

 
7 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

http://www.intel.com/PerformanceIndex
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Figure 1. Multi-arch Variants in FD.io VPP 

As shown in Figure 1, on Intel® Architecture, FD.io VPP currently supports optimizing for 3rd Generation Intel® Xeon® Scalable 
processors – codenamed Ice Lake (ICL), 1st Generation Intel® Xeon® Scalable processors - codenamed Skylake (SKX), Intel ® Xeon® E 
processors - codenamed Haswell (HSW), and Intel Atom® microarchitectures (default). Therefore, a number of microarchitecture-
specific object files are built per graph node, with one per supported microarchitecture, and then linked into a single FD.io VPP 
binary.  

At runtime, FD.io VPP detects the microarchitecture on which it is executing and automatically configures each graph node to use 
the multi-arch variant optimized for that microarchitecture. As shown in Figure 1, the multi-arch variant prioritization causes FD.io 
VPP to have a preference for the ICL variant when executing on 3rd Generation Intel Xeon Scalable processors The 3rd Generation 
Intel Xeon Scalable processor-optimized variant has a preference for AVX-512 instructions, while the 1st Generation Intel Xeon 
Scalable processor (SKX) and Intel Xeon E processor (HSW) variants have a preference for AVX2 instructions, and the default 
preference is for the omnipresent SSE4.2 instructions.  

The IPv4 forwarding packet processing pipeline comprises the graph nodes shown in Figure 2. 
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Figure 2. FD.io VPP IPv4 Packet Processing Pipeline 

Figure 3 shows that on the 3rd Generation Intel® Xeon® Scalable processors, FD.io VPP automatically executes microarchitecture-
specific variants of the Ethernet Input and IP4 Lookup graph nodes containing Intel® AVX-512 instructions. 
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Figure 3. FD.io VPP IPv4 Packet Processing Pipeline on 3rd Generation Intel® Xeon® Scalable Processors 

In a majority of cases, to optimize the multi-arch variants for the specific microarchitecture generations, FD.io VPP trusts the 
compiler to optimize the code where it can by specifying -mtune=icelake-client, -mprefer-vector-width=avx512, 
and so on. These settings instruct the compiler to optimize using the Intel® AVX-512 instruction set on 3rd Generation Intel Scalable 
processors wherever it can. In addition, hand-crafted optimizations may also be introduced wrapped in CLIB_HAVE_VEC512 
defines. In this way, the vlib and vppinfra infrastructure libraries are hand-optimized with Intel® AVX-512 instructions, and the 
functionality of these libraries are used throughout the FD.io VPP codebase8.  

In the code snippet below, the FD.io VPP vppinfra function clib_memset_u64 is an equivalent to libc’s memset function. It 
provides a good example of these kind of hand-crafted optimizations. It uses the CLIB_HAVE_VEC* defines to create AVX-512, 
AVX2 and scalar variants of the function, with always_inline causing the function to then be inlined into 3rd Generation Intel 

 
8 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 
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Xeon Scalable processors, 1st Generation Intel Scalable processors, and other architecture-specific graph node variants. Note the 
heavy use of the vector literals described in subsection 3.2 in this function.  

static_always_inline void                               

clib_memset_u64 (void *p, u64 val, uword count)         

{ 

  u64 *ptr = p;                                         

#if defined(CLIB_HAVE_VEC512)                           

  u64x8 v512 = u64x8_splat (val);                       

  while (count >= 8)                                    

    {                                                   

      u64x8_store_unaligned (v512, ptr);                

      ptr += 8;                                         

      count -= 8;                                       

    }                                                   

  if (count == 0)                                       

    return;                                             

#endif                                                  

#if defined(CLIB_HAVE_VEC256)                           

  u64x4 v256 = u64x4_splat (val);                       

  while (count >= 4)                                    

    {                                                   

      u64x4_store_unaligned (v256, ptr);                

      ptr += 4;                                         

      count -= 4;                                       

    }                                                   

  if (count == 0)                                       

    return;                                             

#else                                                   

  while (count >= 4)                                    

    {                                                   

      ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;          

      ptr += 4;                                         

      count -= 4;                                       

    }                                                   

#endif                                                  

  while (count--)                                       

    ptr++[0] = val;                                     

} 

 

5 Optimization Examples 
This section describes Intel® AVX-512 optimizations to the DPDK FIB library and FP.io VPP tunnel decapsulation. 

5.1 DPDK FIB library 
The following example is taken from the DPDK FIB Library, where Intel® AVX-512 instruction set is used to parallelize table lookups 
to the Forwarding Information Base (FIB) lookup table. The DPDK FIB library is commonly used in software such as Virtual Routers 
to help direct Internet Protocol (IP) packets to the next router or gateway (next hop) on the path to their intended destination.  
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The DPDK FIB Library lookup is designed to receive an IP address as input and return a next hop index. A developer may then use 
the next hop index to look up a separate table, outside of the FIB library. The table will usually contain additional application-
specific information, such as the next hop’s MAC address, an egress interface, and so on. The FIB library supports different lengths 
of next hop indexes depending on the intended use case, ranging from CPE (customer-premises equipment) devices that are 
required to accommodate a handful of next hops, to a carrier grade router that may need to accommodate millions of next hops. 
The next hop index length is specified at table creation. It is immutable at runtime and may be defined as 8-bit (IPv4 only),16-bit, 
32-bit or 64-bit.  

In order to understand the AVX-512 optimization, it is useful to first describe the scalar version of the code and its limitations. Also, 
in order to produce a readable example, this section initially focuses on the first 24 Most Significant Bits (MSBs) of the IPv4 lookup 
algorithm. However, it will become clear that the same technique is scaled to also parallelize IPv6 lookups.  

The example that follows is an IPv4 address lookup to retrieve a 32-bit next hop index. As shown in Figure 4, the FIB IPv4 lookup 
traverses two tables—tbl24 and tbl8—where the most significant 24-bits of the IPv4 address is used to index into the tbl24 table 
and the least significant 8-bits, along with information from tbl24 is used to index into the tbl8 table.  When the Least Significant Bit 
(LSB) in a given tbl24 entry is set, it indicates that tlb8 table must be referenced for the next hop index (1). When the LSB is clear, 
the next hop index is the 31 MSBs of the tbl24 entry.   

Table tbl24 is sized in memory, dependent on the size of the next hop index (2). An 8-bit next hop index implies a 16-megabyte 
table, a 16-bit next hop index implies a 32-megabyte table, 32-bit next hop index implies a 64-megabyte table, and so on. The size 
of the tbl8 table is similarly a function of the size of the next hop index. 

 

Figure 4. DPDK FIB Library IPv4 Tables 

The FIB library supports a number of scalar and vectorized next hop lookup algorithms.9 The scalar/macro IPv4 lookup implements 
the IPv4 lookup logic as a macro (or template), where tlb24 and its entries are recast at build time as a vector of 8- to 64-bit integers 
depending on the size of the next hop index. The resulting functions, dir24_8_lookup_bulk_[1b,2b,4b,8b], are then 
inlined into the calling logic. 

Figure 5 shows the steps to retrieve a 32-bit next hop index from tbl24 with the scalar/macro IPv4 lookup. The lookup logic is 
broken into three stages: retrieving an entry from the tbl24 table (get_tbl_entry), shifting out the LSB (shift_to_bits), 
and then optionally looking up the tbl8 table. 
• get_tbl_entry: an index is generated from the most significant 24 bits of the IP address by shifting right by eight bits. The tbl24 

table entry is then read at the memory offset generated from the index and the next hop size. 
• shift_to_bits: When the LSB in the tlb24 table entry is clear, the entry is shifted right to remove the LSB, what remains is returned 

as the next hop index, shown as (1) in Figure 5.  
• lookup_tlb8: When the LSB in the tlb24 table entry is set, the entry is shifted right to remove the LSB, the upper bits are then 

combined with the least significant 8-bits of the IP address to index into table tlb8, shown as (2) in Figure 5. 

 
9 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

2 ^ 24

...

0x0000000 1
...

(1)...

0xFFFFFFFFFidx

uint32_t tbl24

uint32_t tbl8

0x01234567

(2)

http://www.intel.com/PerformanceIndex
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Figure 5. DPDK FIB Library IPv4 Next Hop Lookup 

The vectorized IPv4 FIB lookup implements the IPv4 lookup logic with the AVX-512 instruction set, retrieving the next hop for 16 
IPv4 addresses in parallel for the next hop sizes of 8-bit, 16-bit, and 32-bit, and retrieving eight (8) next hops in parallel for 64-bit 
next hop indexes. 

Figure 6 shows the steps to retrieve 32-bit next hop indexes from the FIB tbl24 table with AVX-512 instruction set. This breaks 
down into two stages: the tbl24 table entry (get_tlb_entry) is retrieved using the upper 24-bits of the IP address and the LSB 
of the entry is then tested to determine if the tlb8 table must be referenced. 
• get_tlb_entry: For 16 IPv4s addresses in parallel, 16 table indexes are generated from the upper 24 bits of the IPv4 addresses, by 

shifting right by 8 bits. The intrinsic _mm512_i32gather_epi32 then multiplies the 16 table indexes by a scaling factor of 1, 2 
or 4, depending on the next hop index size in bytes—in this case, 4 bytes—to generate 16 offsets in memory.  The intrinsic 
_mm512_i32gather_epi32 then reads the 32 bits at the generated offsets to retrieve 16 tbl24 entries in parallel.  

• test_lsb: The LSB of each 16 tbl24 table entries are then tested in parallel with the intrinsic _mm512_test_epi32_mask, with 
the table tbl8 then referenced for those of the 16 tbl24 table entries whose LSB is set.  The _mm512_test_epi32_mask 
intrinsic returns a mask—used in subsequent masked operations—to eliminate branching and only referencing the tbl8 table for 
those entries indicated. 
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Figure 6. DPDK FIB Library IPv4 Next Hop Lookup with Optimization 

In this way, tbl24 lookups are parallelized to perform 16 lookups simultaneously, compared to the single lookup described 
previously. An interested reader can find the full code for the IPv4 table lookup here. 

The DPDK FIB library implements IPv6 next hop lookups in a similar manner to IPv4. The first 24-bits of the IPv6 address is looked 
up in table tbl24, and subsequent 8-bit chunks of the 128-bit IPv6 address are recursively looked up in table tbl8. The AVX-512 
optimization of IPv6 next hop lookup also works in a similar manner to IPv4, where 16 next hop indexes are retrieved in parallel for 
16-bit and 32-bit next hop sizes, and eight next hop indexes are retrieved in parallel for 64-bit next hop sizes.  

As shown in Figure 7, to prepare for a 32-bit next hop lookup, 16 IPv6 addresses (1) are transposed into four AVX-512 registers 
such that the first 32 bits of each address are transposed to the 1st register, the second 32 bits are transposed to the 2nd register, 
and so on. The first 24 bits of each packed 32-bit value in the 1st register are then used to retrieve 16 tbl24 table entries in parallel. 
Table tbl24 entries and the next 8 bits from the IPv6 addresses are then used to look up 16 tbl8 table entries in parallel. Table tbl8 
entries and the next 8-bit chunk of the IPv6 addresses are then recursively read in this manner until the LSB of the tbl8 entries are 
cleared, indicating that the next hop index may be read and returned. An interested reader can find the full code for the IPv6 table 
lookup here10. 

 
10 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 

uint32_t  tbl24[0]

...

get_tlb_entry test_lsb

X

...

...

...

...

ips = _mm512_loadu_si512(...);
ips = _mm512_srli_epi32(ips, 8);
_mm512_i32gather_epi32(ips, tlb24, 4)

lookup_tlb8

_mm512_test_epi32_mask(res, lsb);
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https://git.dpdk.org/dpdk/tree/lib/librte_fib/dir24_8_avx512.c
https://git.dpdk.org/dpdk/tree/lib/librte_fib/trie_avx512.c#n70
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Figure 7. DPDK FIB Library IPv6 Next Hop Lookup with Optimization 

The DPDK FIB library has a number of scalar non-parallelized implementations. Of them the highest performing is the scalar/macro 
lookup described in Figure 5. A microbenchmark was generated using the DPDK FIB Test Application (app/dpdk-test-fib). Table 7 
lists the test configuration parameters. 

Table 7. DPDK FIB Test Configuration 

PARAMETERS DESCRIPTION 
Test by Intel 

Test date 28 March 2021  

Platform Intel Corporation Reference Platform* 

# Nodes 1 

# Sockets 2 

CPU Intel® Xeon® Gold 6338N CPU 
Cores/socket, Threads/socket 32, 64 

CPU Frequency 2.2GHz 

L3 Cache 48MiB 

microcode 0x8d055260 

BIOS version WLYDCRB1.SYS.0020.P86.2103050636 

System DDR Mem Config: slots / capacity / run-speed 16 / 16384GB / 3200MT/s 
Turbo, P-states OFF 

Hyper Threads Enabled 

OS Ubuntu 20.04.1 LTS (Focal Fossa) 

Kernel 5.4.0-40-generic 

DPDK Version DPDK 21.02 

Compiler GCC 9.3.0-10 ubuntu2 
 *Intel® Reference Platform (RP) for 3rd Generation 

Intel® Xeon® Scalable Processor 

Figure 8 illustrates the performance improvement with the AVX-512 parallelized IPv6 lookup compared to the scalar/macro lookup, 
where the AVX-512 parallelized lookup improves performance in excess of 35%11.  

 
11 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 
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• Clock Cycles (shown on the primary y-axis) is the numbers of cycles consumed by the IPv6 lookup operation. This is measured 
by reading rdtsc before and after one million IPv6 lookups and then calculating a cycles-per-operation value.  

• Next Hop Size (shown on the x-axis) is the next hop size in bytes. 
• % Improvement (shown on the secondary y-axis) is the percentage improvement obtained using AVX-512 version over the 

baseline scalar/macro version of the code. 

 

Figure 8. DPDK Optimization of FIB Library (Clock Cycles) 

5.2 FD.io VPP tunnel decapsulation 
The following example is taken from FD.io VPP, where the AVX-512 instruction set is used in network overlay termination to avoid 
expensive Tunnel Endpoint table lookups. In order to understand the optimization better, it is useful to first describe the scalar 
version of the code and its limitations.  

In FD.io VPP, network overlay protocols such as GENEVE, GTPU, and VxLAN use an optimization technique where a hash of the last 
packet as well as its Tunnel Endpoint information is cached. Then, if the hash of the next/current packet matches that of the last 
packet, an expensive Tunnel Endpoint table lookup can be avoided (shown in Figure 9 as hash_get). However, as shown in Figure 
9, when the hash values do not match, the lookup is triggered, and the cached hash value is updated. 

current_packet->hash == 
last_packet->hash

hash_get (vtep_table, 
current_packet->hash)

ifvtep4_check return PASS
True

False

if return FAIL
False

True

current_packet = last_packet
return PASS

0xDEADBEEF

current_packet->hash

0x8BADF00D

last_packet->hash

0xDEADBEEF 0xDEADBEEF

X X

 

Figure 9. FD.io VPP Tunnel Decapsulation 
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This technique can work well with a few tunnel endpoints, and where network traffic exhibits a lot of batching. However, introducing 
multiple tunnel endpoints and interleaving packets from these endpoints cause the comparison of the cached value to miss on 
every packet and quickly diminish the value of this optimization. 

hash_splat =
u64x8_splat(current_packet-

>hash)

u64x8_cmpeq_mask(
hash_splat, cache)

hash_get (vtep_table, 
current_packet->hash)

if

vtep4_check_x8

return PASS
True

False

if return FAIL
False

True

0xDEADBEEF

hash_splat

0xFFFFFFFF

cache

cache = 
u64x8_load_aligned(vtep4_cach

e)

...

0xDEADBEEF

0xDEADBEEF

0

6

7

...

0xFFFFFFFF

0xFFFFFFFF

0xDEADBEEF 0xBACE1234

...

0xDEADBEEF

0xDEADBEEF

0

6

7

...

0xDEADBEEF

0x1234BACE

0xDEADBEEF 0xBACE1234

...

0xDEADBEEF

0xDEADBEEF

0

6

7

...

0xDEADBEEF

0x1234BACE

X X

//update vtep4_cache
return PASS  

Figure 10. FD.io VPP Tunnel Decapsulation with Optimization 

As shown in Figure 10, the AVX-512 optimized version vtep4_check_x8 works as a drop in replacements for the original function 
vtep4_check. This version simply maintains a cache of eight Tunnel Endpoints compared to the single cached value in the 
original version of the code. As a developer you are then able to check the hash of the current packet against the hash of the eight 
Tunnel Endpoints simultaneously in a single u64x8_cmpeq_mask (_mm512_cmpeq_epu64_mask) operation. Note the heavy 
use of vector literals described in subsection 3.2 in Figure 10. 

Figure 11 describes the flow of traffic through the FD.io VPP application. The Traffic Generator sends VxLAN encapsulated packets 
to a 100 GbE interface controlled by the FD.io VPP application. Each VxLAN tunnel is handled by a single virtual interface. The FD.io 
VPP application terminates the VxLAN tunnels and forwards the packets onto the next interface via an L2 bridge. The Traffic 
Generator receives the decapsulated packets and measures the performance in packets per second.  
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Figure 11. VPP VxLAN Tunnel Termination Application Traffic Flow Diagram (4-Tunnel Example) 

Figure 12 shows AVX-512 optimizations improving performance of the VxLAN decapsulation graph node by over 80% for 2, 4, and 
8 VxLAN Endpoints12. This then translates into a performance improvement of up to 11% for the entire packet processing 
application as shown in Figure 13, where the VxLAN decapsulation graph node accounts for roughly 15-25% of the total packet 
processing cost depending on the test scenario.  

 

Figure 12. FD.io VPP Optimization of VPP Tunnel Termination (Clock Cycles) 

Figure 12 illustrates the performance improvement with the AVX-512 optimized version VxLAN tunnel decapsulation when 
compared to the scalar version of the code, with the AVX-512 optimized version offering better scalability and resilience with up to 
eight Tunnel Endpoints.  
• Clocks Cycles (shown on the primary y-axis) is the numbers of cycles consumed by the VxLAN Tunnel decapsulation graph node. 

It is measured by the FD.io VPP show runtime internal metrics with a VxLAN Tunnel decapsulation test case. The show runtime CLI 
command in VPP shows the runtime cost of each VPP graph node in clock cycles per packet.  

• Number of endpoints (shown on the primary x-axis) is the number of VxLAN Tunnels. 
• % Improvement (shown on the secondary y-axis) is the percentage improvement obtained using AVX-512 version over the 

scalar version of the code. 

 
12 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 
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Note: The single VxLAN endpoint case has a small drop in performance of 2 cycles per packet associated with additional cost of 

the AVX-512 compare. This drop, although visible in runtime statistics in Figure 12, is absent in the throughput 
measurements in Figure 13. 

 

Figure 13: FD.io VPP Optimization of VPP Tunnel Termination (Throughput) 

Figure 13 similarly illustrates the performance improvement in the VxLAN packet processing pipeline, where again we see improved 
scalability and resilience of the AVX-512 optimized version in the throughput numbers. 
• Frames/second (shown on the primary y-axis) is the throughput of the VxLAN Tunnel decapsulation test case in frames per 

second. 
• Number of endpoints (shown on the primary x-axis) is the number of Tunnel Endpoints. 
• % Improvement (shown on the secondary y-axis) is the percentage improvement13 obtained using the AVX-512 version over the 

baseline scalar version of the code. 

The test configuration used to perform the above tests are listed in Table 8. 

Table 8. VPP VxLAN Tunnel Termination Test Configuration 

PARAMETER DESCRIPTION 
Test by Intel 

Test date 28 March 2021  

Platform Intel Corporation Reference Platform* 

# Nodes 1 

# Sockets 2 

CPU Intel® Xeon® Gold 6338N CPU 
Cores/socket, Threads/socket 32, 64 

CPU Frequency 2.2 GHz 

L3 Cache 48MiB 

microcode 0x8d055260 

BIOS version WLYDCRB1.SYS.0020.P86.2103050636 

System DDR Mem Config: slots/capacity/run-speed 16/16384 GB/2667 MT/s 
Turbo, P-states OFF 

Hyper Threads Enabled 

NIC Intel Corporation Ethernet Controller E810-2CQDA2 for QSFP 
(rev 02) 

OS Ubuntu 20.04.1 LTS (Focal Fossa) 

Kernel 5.4.0-40-generic 

VPP Version VPP 21.01-release 

 
13 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary. 
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Compiler GCC 9.3.0-10 ubuntu2 

 *Intel® Reference Platform (RP) for 3rd Generation Intel® Xeon® Scalable 
Processor 

 

6 Summary 
If you are a Network Software Engineer, motivated to solve compute bound problems in your Packet Processing software, this 
document’s intention is to clearly establish that Intel® AVX-512 development skills are a worth-while addition to your skill set and 
provide enough pointers to get started.  

The Vectorization Approaches section describes the different development approaches of vector intrinsics and vector literals for 
writing AVX-512 packet processing code. The Microarchitecture Optimizations section covers the software configuration and APIs 
that enable Intel® AVX-512 optimizations, detailing how Intel® AVX-512 support is detected and implemented in packet processing 
software. The  

Optimization Examples section concludes this document by walking through simple examples of significant optimizations achieved 
in well-known packet processing software with Intel® AVX-512 instructions.  

DPDK and FD.io are both great places to start writing packet processing software with the AVX-512 instruction set, as they contain 
features to detect and enable AVX-512 optimizations at runtime. They provide access to the vector intrinsics and literals used to 
write optimized packet processing code, and they provide examples of the kinds of optimizations that accelerate a packet 
processing application.  

So, do not wait, now is the time to get started as DPDK and FD.io provide a great foundation for your next AVX-512 optimized 
packet processing application. 
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