

Micro-Burst Monitoring

- Micro-Burst Monitoring, on page 1
- Guidelines and Limitations for Micro-Burst Monitoring, on page 1
- Configuring Micro-Burst Detection Per-Queue, on page 3
- Clearing Micro-Burst Detection, on page 5
- Verifying Micro-Burst Detection, on page 6
- Example of Micro-Burst Detection Output, on page 6

Micro-Burst Monitoring

The micro-burst monitoring feature allows you to monitor traffic to detect unexpected data bursts within a very small time window (microseconds). This allows you to detect traffic in the network that are at risk for data loss and for network congestion.

A micro-burst is detected when the buffer utilization in an egress queue rises above the configured rise-threshold (measured in bytes). The burst for the queue ends when the queue buffer utilization falls below the configured fall-threshold (measured in bytes).

The feature provides timestamp and instantaneous buffer utilization information about the various queues where micro-burst monitoring is enabled.

Depending on the switch, you can enable the micro-burst detection per-queue or per-switch.

Guidelines and Limitations for Micro-Burst Monitoring

The following are the guidelines and limitations for micro-burst monitoring:

- Micro-burst monitoring is not supported on the Cisco Nexus 9508 switch (Cisco NX-OS Release NX-OS 7.0(3)F3(3).
- Micro-burst monitoring and detection is supported on Cisco Nexus 9300-FX platform switches, Cisco Nexus 9300-FX2 platform switches, and Cisco Nexus 9364C switches.
- show commands with the internal keyword are not supported.
- Micro-burst monitoring is available with switches that contain the Network Forwarding Engine (NFE2). The minimum micro-burst that can be detected is 0.64 microseconds for 1 3 queues.

On these switches, micro-burst monitoring is supported on unicast egress queues. It is not supported on multicast, CPU, or span queues.

• Beginning with Cisco NX-OS Release 7.0(3)I5(1), micro-burst monitoring is available on the following switches that contain an Application Spine Engine (ASE2, ASE3) or a Leaf Spine Engine (LSE):

Switch	Measurable Minimum Burst Duration					
Cisco Nexus 92160YC-X	86 μsec					
Cisco Nexus 92304QC	96 μsec					
Cisco Nexus 9272Q	96 μsec					
Cisco Nexus 9232C	96 μsec					
Cisco Nexus 9236C	96 μsec					
Cisco Nexus 93180YC-EX	73 µsec					
Cisco Nexus 93108TC-EX	78 μsec					

On these switches, micro-burst monitoring is supported on both unicast and multicast egress queues.

In addition, early detection of long bursts is supported. For bursts lasting more than 5 seconds, an early burst start record is displayed after 5 seconds from the start of the burst and is updated when the burst actually ends.

Note

On these switches, micro-burst duration is not affected by the number of queues configured.

 On switches that contain a Network Forwarding Engine (NFE2), micro-burst monitoring requires IO FPGA version 0x9 or later.

Beginning with Cisco NX-OS Release 7.0(3)I5(1), micro-burst monitoring on switches that contain an Application Spine Engine (ASE2, ASE3) or a Leaf Spine Engine (LSE) require the following IO FPGA versions:

Switch	IO FPGA Version					
Cisco Nexus 92160YC-X	0x16 or later					
Cisco Nexus 92304QC	0x10 or later					
Cisco Nexus 9272Q	0x15 or later					
Cisco Nexus 9232C	0x6 or later					
Cisco Nexus 9236C	0x14 or later					
Cisco Nexus 93180YC-EX	0x8 or later					
Cisco Nexus 93108TC-EX	0x9 or later					

For more information about EPLD programming to upgrade the FPGA, see the *Cisco Nexus 9000 Series FPGA/EPLD Upgrade Release Notes*.

• The following are guidelines for micro-burst duration on switches that contain a Network Forwarding Engine (NFE2):

Note

Micro-burst duration is the duration of the burst that can be detected. For example, when micro-burst monitoring is configured for 1 - 3 queues, micro-bursts that exceed 0.64 microseconds are detected. Increasing the number of queues that are configured for micro-burst monitoring increases the duration of the burst that can be detected.

1 - 3 queues	0.64 microsecond duration				
8 queues with 10 ports each	9.0 microsecond duration				
10 queues with 132 ports each	140 microsecond (0.14 millisecond) duration				

- By default, the switch stores a maximum of 1000 burst records. The maximum number of records is configurable within a range of 200 2000 records.
 - At least, 20 burst records are stored for each queue even when the maximum number of burst records has been reached.
 - When the maximum number of burst records has been reached, the oldest record is deleted to allow the storage of a new record.
 - You can use the hardware qos burst-detect max-records number-of-records command to configure
 the maximum number of burst records to store.
 - You can use the show hardware qos burst-detect max-records command to display the maximum number of burst records that can be stored.
- Too many back to back burst records while traffic is being drained from queues might result in jitter.

To avoid jitter, configure the fall-threshold to be less than the rise-threshold. As a best practice, configure the fall-threshold to be approximately 20% of the rise-threshold value (bytes).

Configuring Micro-Burst Detection Per-Queue

You can enable micro-burst detection for all interfaces on the device.

You can enable independent micro-burst thresholds per queue on the following switches:

- Cisco Nexus 9300-EX/FX2 platform switches
- Cisco Nexus 9300-GX platform switches from Release 9.3(3)
- Cisco Nexus 9336C-FX switches
- Cisco Nexus 93360YC-FX2 and Cisco Nexus 93216TC-FX2 from Release 9.3(7)

The parameters are defined under the individual queues in the queuing policy-maps.

SUMMARY STEPS

- 1. configure terminal
- 2. policy-map type queuing policy-map-name
- 3. class type queuing class-name
- 4. burst-detect rise-threshold rise-threshold-bytes bytes fall-threshold fall-threshold-bytes bytes
- 5. exit
- 6. exit
- **7. interface ethernet** *slot/port*
- **8. service-policy type queuing output** *policy-map-name*

DETAILED STEPS

	Command or Action	Purpose				
Step 1	configure terminal	Enters global configuration mode.				
	Example:					
	<pre>switch# configure terminal switch(config)#</pre>					
Step 2	policy-map type queuing policy-map-name	Configures the policy map of type queuing and then enters				
	Example:	policy-map mode for the policy-map name you specify.				
	<pre>switch(config) # policy-map type queuing xyz switch(config-pmap-que) #</pre>					
Step 3	class type queuing class-name	Configures the class map of type queuing and then enters policy-map class queuing mode.				
	Example:					
	<pre>switch(config-pmap-que)# class type queuing c-out-def</pre>					
	switch(config-pmap-c-que)#					
Step 4	burst-detect rise-threshold rise-threshold-bytes bytes fall-threshold fall-threshold-bytes bytes	Specifies the rise-threshold and the fall-threshold for micro-burst detection.				
	Example:					
	<pre>switch(config-pmap-c-que)# burst-detect rise-threshold 208 bytes fall-threshold 208 bytes</pre>					
Step 5	exit	Exits policy-map queue mode.				
	Example:					
	<pre>switch(config-pmap-c-que)# exit switch(config-pmap-que)#</pre>					

	Command or Action	Purpose Exits policy-map queue mode.				
Step 6	exit					
	Example:					
	<pre>switch(config-pmap-que)# exit switch(config)#</pre>					
Step 7	interface ethernet slot/port	Configures the interface.				
	Example:					
	<pre>switch(config) # interface ethernet 1/1 switch(config-if) #</pre>					
Step 8	service-policy type queuing output policy-map-name	Adds the policy map to the input or output packets of the system.				
	Example:					
	<pre>switch(config-if)# service-policy type queuing output custom-out-8q-uburst</pre>					

Clearing Micro-Burst Detection

You can clear micro-burst detection for all interfaces or a selected interface.

Note

Even after removing the queuing policy from an interface, previous micro-burst statistics remain. Use the **clear queuing burst-detect** command to clear the remaining records.

Procedure

	Command or Action	Purpose				
Step 1	clear queuing burst-detect $[slot]$ [interface $port$ [queue $queue-id$]]	Clears micro-burst information from all interfaces or the specified interface.				
	Example:					

Example

• Example for an interface:

clear queuing burst-detect interface Eth1/2

• Example for a queue:

clear queuing burst-detect interface Eth1/2 queue 7

Verifying Micro-Burst Detection

The following displays micro-burst monitoring information:

Command	Purpose			
show queuing burst-detect	Displays micro-burst counters information for all interfaces.			

• Example for an interface:

show queuing burst-detect interface Eth 1/2

• Example for a queue:

show queuing burst-detect interface Eth 1/2 queue 7

Example of Micro-Burst Detection Output

Example output of TOR switch.

belv6# show queuing burst-detect detail slot 1 =======

Microburst Statistics

Flags: E - Early start record, U - Unicast, M - Multicast

Ethernet Intfc	Queue 	Start Depth (bytes)	i	art Time	Peak Depth (bytes)	i	k Time	End Depth (bytes)	End Time	Duration
Eth1/36	00	310128	2011/01/11	22:31:51:08172	3 310128	2011/01/11 2	2:31:51:08172	5 0 2	011/01/11 22:31:51	:081918 193.14 us
Eth1/36	U0	311168	2011/01/11	22:31:51:18176	311168	2011/01/11 2	2:31:51:18170	5 0 2	11/01/11 22:31:51	:181959 193.90 us
Eth1/36	U0	283712	2011/01/11	22:31:51:28182	283712	2011/01/11 2	2:31:51:28182	5 0 2	11/01/11 22:31:51	:282018 193.63 us
Eth1/36	U0	283712	2011/01/11	22:31:51:381862	2 283712	2011/01/11 2	2:31:51:38180	2 0 2	11/01/11 22:31:51	:382056 193.42 us
Eth1/36	U0	312000	2011/01/11	22:31:51:48188	312000	2011/01/11 2	2:31:51:48188	5 0 2	11/01/11 22:31:51	:482080 194.42 us
Eth1/36	U0	221312	2011/01/11	22:31:51:581974	1 221312	2011/01/11 2	2:31:51:58197	4 0 2	11/01/11 22:31:51	:582168 193.58 us
Eth1/36	00	291616	2011/01/11	22:31:51:681964	1 291616	2011/01/11 2	2:31:51:68196	4 0 2	11/01/11 22:31:51	:682157 193.10 us
Eth1/36	U0	190112	2011/01/11	22:31:51:782067	7 190112	2011/01/11 2	2:31:51:78200	7 18512 20	11/01/11 22:31:51	:782154 86.22 us
Eth1/36	00	70512	2011/01/11	22:31:51:882167	7 70512	2011/01/11 2	2:31:51:88216	7 0 2	11/01/11 22:31:51	:882253 85.74 us
Eth1/36	U0	185328	2011/01/11	22:31:52:08211	1 185328	2011/01/11 2	2:31:52:08211	.1 0 2	011/01/11 22:31:52	:082304 193.09 us
Eth1/36	U0	245856	2011/01/11	22:31:52:182158	245856	2011/01/11 2	2:31:52:18215	8 0 2	11/01/11 22:31:52	:182352 193.34 us
Eth1/36	00	138112	2011/01/11	22:31:52:282293	3 138112	2011/01/11 2	2:31:52:28229	3 0 2	11/01/11 22:31:52	:282380 86.53 us
Eth1/36	U0	242112	2011/01/11	22:31:52:382284	1 242112	2011/01/11 2	2:31:52:38228	4 0 2	11/01/11 22:31:52	:382478 193.55 us
Eth1/36	U0	136448	2011/01/11	22:31:52:482264	1 2 1 2 3 3 1 2	2011/01/11 2	2:31:52:48234	8 0 2	11/01/11 22:31:52	:482542 278.16 us
Eth1/36	U0	299312	2011/01/11	22:31:52:582334	1 299312	2011/01/11 2	2:31:52:58233	4 0 2	11/01/11 22:31:52	:582612 278.12 us
Eth1/36	U0	184912	2011/01/11	22:31:52:682432	2 184912	2011/01/11 2	2:31:52:68243	2 13312 20	11/01/11 22:31:52	:682517 85.42 us
Eth1/36	00	148304	2011/01/11	22:31:52:782387	7 148304	2011/01/11 2	2:31:52:78238	7 0 2	11/01/11 22:31:52	:782580 192.94 us
Eth1/36	00	226512	2011/01/11	22:31:52:882492	2 226512	2011/01/11 2	2:31:52:88249	2 0 2	011/01/11 22:31:52	:882685 193.37 us

Example of show queuing burst-detect nir detail command:

config# show queuing burst-detect nir

slot 1

Microburst Statistics

Flags: E - Early start record, U - Unicast, M - Multicast

```
Peak Time
Ethernet |Queue|Start Depth|
                                 Start Time
                                                  |Peak Depth|
    |End Depth| End Time
                                        |Duration
Interface| | (bytes) |
                                                   | (bytes) |
  | (bytes) |
                                         Eth1/6| U6 |
                   416 | 2023/06/28 13:11:45:005625 |
                                                        3120 | 2023/06/28
13:11:45:005626 |
                   416 | 2023/06/28 13:11:45:005627 |
                                                         1.11 us
  Eth1/6| U6 |
                   416 | 2023/06/28 13:11:45:005057 |
                                                        3120 | 2023/06/28
13:11:45:005058 |
                   416 | 2023/06/28 13:11:45:005059 |
                                                        1.44 us
```

Example of telemetry configuration on the switch to receive micro-burst data:

```
telemetry
destination-group 1
ip address receiver_ip_address port receiver_port protocol grpc encoding GPB-compact
sensor-group 1
data-source native
path microburst
subscription 1
dst-grp 1
snsr-grp 1 sample-interval 0
```

Example of Micro-Burst Detection Output