

FCC PART 15.247 TEST REPORT

For

INNOVATIVE TECHNOLOGY ELECTRONICS LLC

1 CHANNEL DRIVE, PORT WASHINGTON, NY 11050, USA

FCC ID: 2AFHW-VS170

Report Type: Original Report		Product Ty Victrola Lily	pe:
Report Number:	<u>RSZ200818802-0</u>	00	
Report Date:	2020-09-11 Jimmy Xiao		Jimm/Xiao
Reviewed By:	RF Engineer		C /
Prepared By:	Bay Area Compl 6/F., West Wing, Building, Shihua Shenzhen, Guang Tel: +86-755-333 Fax: +86-755-333 www.baclcorp.cc	Third Phase of V Road, Futian Fre gdong, China 320018 320008	es Corp. (Shenzhen) Vanli Industrial ee Trade Zone,

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
Equipment Modifications Support Equipment List and Details	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
Applicable Standard	
Result	
FCC §15.203 – ANTENNA REQUIREMENT	
Applicable Standard	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER SETUP Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	25
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
ΤΕΘΙ ΦΑΤΑ	

FCC Part 15.247

Page 2 of 48

27
28
29
44

GENERAL INFORMATION

Product	Victrola Lily
Tested Model	VS-170
Frequency Range	Bluetooth: 2402-2480MHz
Maximum Conducted Peak Output Power	Bluetooth: -0.44dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK
Antenna Specification	PCB Antenna: 0dBi
Voltage Range	DC 3.7V from battery
Date of Test	2020-08-24 to 2020-09-10
Sample serial number	RSZ200818802-RF-S1 (Assigned by BACL, Shenzhen)
Received date	2020-08-18
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty		
Occupied Channel Bandwidth		±5%		
RF Output Power	with Power meter	±0.73dB		
RF conducted test with spectrum		±1.6dB		
AC Power Lines Conducted Emissions		±1.95dB		
Emissions,	Below 1GHz	±4.75dB		
Radiated	Above 1GHz	$\pm 4.88 dB$		
Temperature		±1°C		
Humidity		±6%		
Supply	voltages	±0.4%		

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"FCC ASSIST 10.0.0.2" software was made to the EUT tested and the power level is 8.

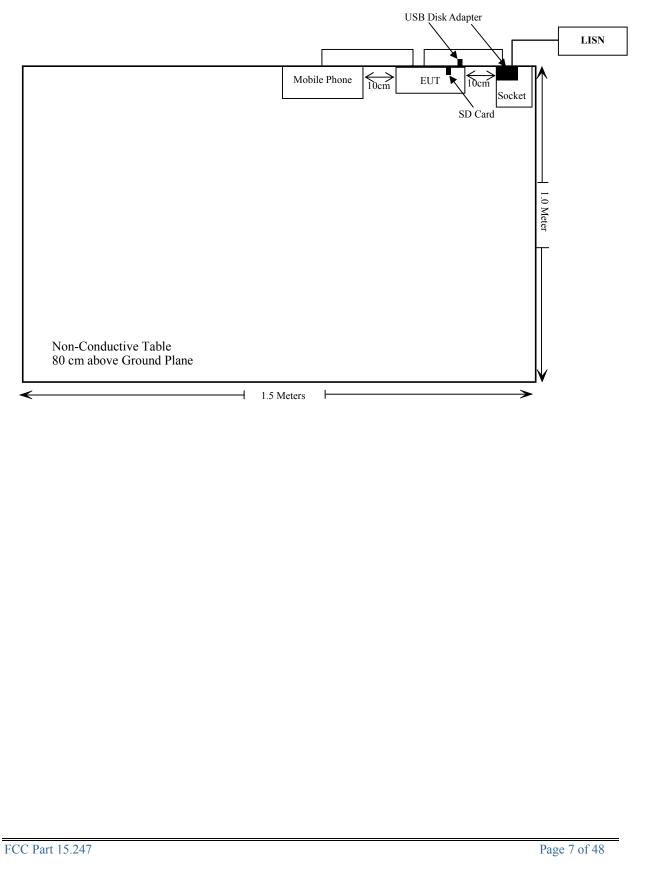
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
Dongguan Aohai Power Technology Co.,Ltd.	Adapter	A8-501000	A1906034835	
Blu Products,Inc	Mobile phone	Vivio XL5	4PLVTW4PDQSCRKBY	
Sandisk	SD Card	SDSDUNG- 128G-ZN61N	SD012463	
Kingston	USB Disk	DTSE9G2 64G	DTSE9G2	

External I/O Cable

Cable Description	Length (m) From Port		То
Un-Shielding Un-Detachable AC Cable	1.2	LISN	Socket
Un-Shielding Detachable USB Cable	0.5	Adapter	EUT
Un-Shielding Detachable Audio Cable	0.5	Mobile Phone	EUT

Report No.: RSZ200818802-00

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

TEST EQUIPMENT LIST

Manufacturer	Description	Description Model Serial Number		Calibration Date	Calibration Due Date		
Conducted Emissions Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2020/08/04	2021/08/03		
Rohde & Schwarz	LISN	ENV216	101613	2020/08/04	2021/08/03		
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2019/11/29	2020/11/28		
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2019/11/29	2020/11/28		
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR		
	Radia	ated Emission T	est				
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2021/08/03		
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2021/08/03		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017/12/22	2020/12/21		
Unknown	Cable 2	RF Cable 2	F-03-EM197	2019/11/29	2020/11/28		
Unknown	Cable	Chamber Cable 1	F-03-EM236	2019/11/29	2020/11/28		
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR		
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2020/08/04	2021/08/03		
COM-POWER	Pre-amplifier	PA-122	181919	2019/11/29	2020/11/28		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2019/11/29	2020/11/28		
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017/12/22	2020/12/21		
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2019/11/29	2020/11/28		
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2019/11/29	2020/11/28		
SNSD	Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2020/04/20	2021/04/20		
Ducommun Technolagies	Horn antenna		1007726-02 1304	2017/12/06	2020/12/05		
	RF	Conducted Tes	t	1			
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2020/08/04	2021/08/03		
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2020/08/04	2021/08/03		
Unknown	RF Cable	Unknown	2301 276	2019/11/29	2020/11/28		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	*(180/f ²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Mode	Frequency	Anter	Antenna Gain		conducted wer	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm) (mW/cm ²)		(mW/cm^2)
Bluetooth	2402-2480	0	1	0	1	20	0.0002	1

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

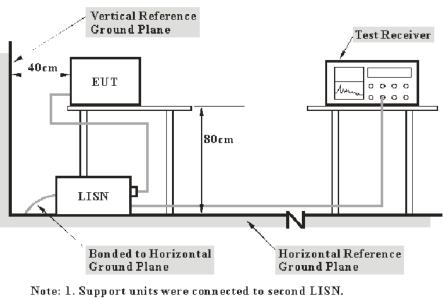
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

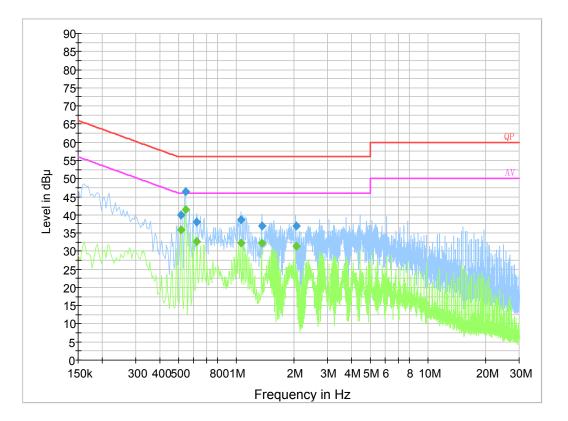
Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

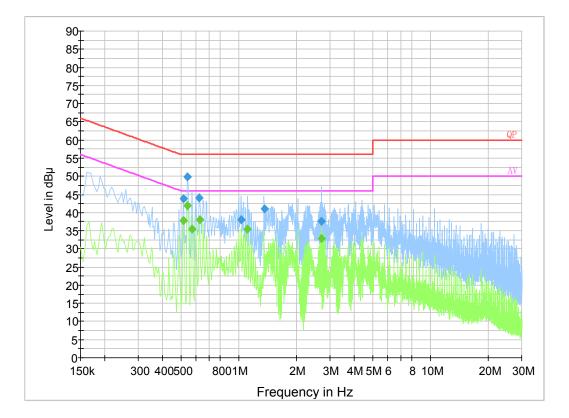
Environmental Conditions


Temperature:	25 ℃
Relative Humidity:	65 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2020-08-24.

EUT operation mode: Transmitting / Charging

Report No.: RSZ200818802-00


AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.518230	39.9	19.8	56.0	16.1	QP
0.545870	46.3	19.8	56.0	9.7	QP
0.620670	38.0	19.8	56.0	18.0	QP
1.062070	38.6	19.9	56.0	17.4	QP
1.369510	36.9	19.8	56.0	19.1	QP
2.063310	37.0	19.9	56.0	19.0	QP
0.518230	35.9	19.8	46.0	10.1	Ave.
0.545870	41.4	19.8	46.0	4.6	Ave.
0.620670	32.7	19.8	46.0	13.3	Ave.
1.062070	32.2	19.9	46.0	13.8	Ave.
1.369510	32.1	19.8	46.0	13.9	Ave.
2.063310	31.4	19.9	46.0	14.6	Ave.

Report No.: RSZ200818802-00

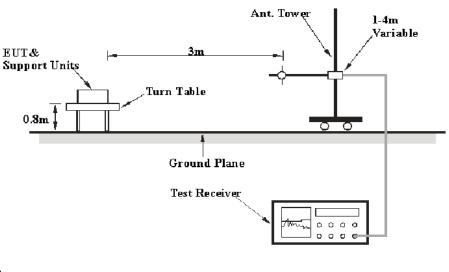
AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.514230	43.8	19.8	56.0	12.2	QP
0.541870	49.8	19.8	56.0	6.2	QP
0.624610	44.0	19.8	56.0	12.0	QP
1.034550	38.1	19.8	56.0	17.9	QP
1.361630	41.1	19.8	56.0	14.9	QP
2.717290	37.5	19.8	56.0	18.5	QP
0.518000	37.8	19.8	46.0	8.2	Ave.
0.542000	41.9	19.8	46.0	4.1	Ave.
0.574000	35.4	19.8	46.0	10.6	Ave.
0.626000	38.1	19.8	46.0	7.9	Ave.
1.114000	35.4	19.8	46.0	10.6	Ave.
2.714000	32.9	19.8	46.0	13.1	Ave.

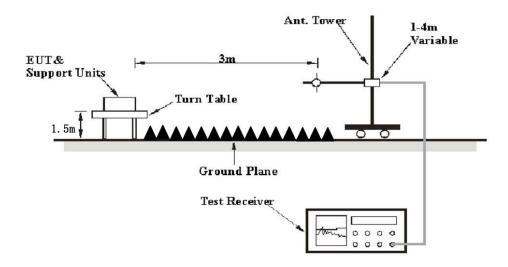
Note:

1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation

- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, according to the DA 00-705 Released March 30, 2000, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
AUUVE I GHZ	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

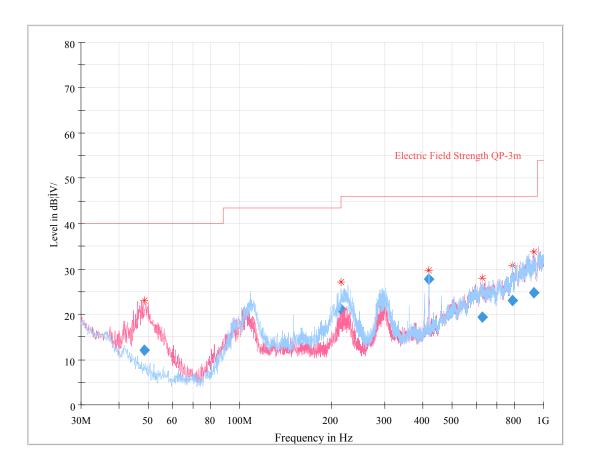
Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude


Test Data

Environmental Conditions

Temperature:	30~32.2 ℃
Relative Humidity:	55~56 %
ATM Pressure:	100.9~101.0 kPa

The testing was performed by Harris He on 2020-08-25 for below 1GHz and by Leven Gan on 2020-09-06 for above 1GHz.

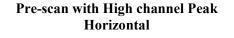
EUT operation mode: Transmitting

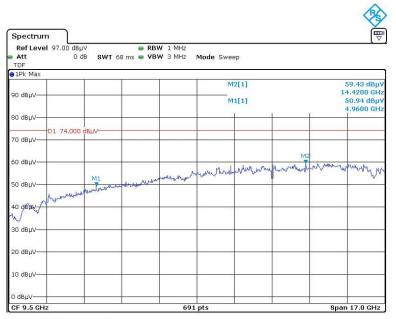
30 MHz~1 GHz: (the worst case is $\pi/4$ -DQPSK Mode, Low channel)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
48.372750	12.02	123.0	V	53.0	-18.9	40.00	27.98
215.406875	21.09	180.0	Н	274.0	-13.9	43.50	22.41
419.998625	27.75	109.0	Н	334.0	-9.5	46.00	18.25
628.173750	19.35	382.0	Н	20.0	-1.6	46.00	26.65
791.775250	22.93	149.0	Н	191.0	1.5	46.00	23.07
929.759625	24.69	191.0	V	0.0	4.7	46.00	21.31

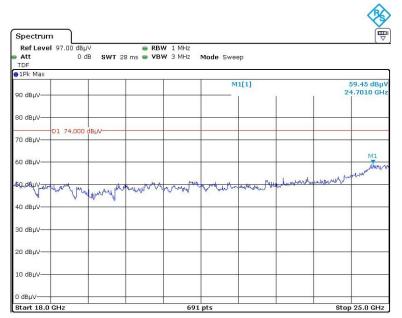
D	Re	eceiver	T	Rx An	tenna	Corrected	Corrected	T • •/	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)			Amplituda	Limit (dBµV/m)	Margin (dB)
Low Channel (2402 MHz)									
2334.42	28.73	PK	279	1.9	Н	31.64	60.37	74	13.63
2334.42	13.67	Ave.	279	1.9	Н	31.64	45.31	54	8.69
2486.35	28.79	PK	107	1.2	Н	32.13	60.92	74	13.08
2486.35	13.68	Ave.	107	1.2	Н	32.13	45.81	54	8.19
4804.00	48.79	PK	15	1.4	Н	6.28	55.07	74	18.93
4804.00	36.12	Ave.	15	1.4	Н	6.28	42.40	54	11.60
	Middle Channel (2441 MHz)								
4882.00	48.92	РК	191	2.0	Н	6.76	55.68	74	18.32
4882.00	36.89	Ave.	191	2.0	Н	6.76	43.65	54	10.35
			High Cł	nannel (2	2480 MI	Hz)			
2349.84	28.78	РК	177	2.2	Н	31.64	60.42	74	13.58
2349.84	13.71	Ave.	177	2.2	Н	31.64	45.35	54	8.65
2484.25	29.89	РК	345	2.2	Н	32.13	62.02	74	11.98
2484.25	14.28	Ave.	345	2.2	Н	32.13	46.41	54	7.59
4960.00	49.22	РК	317	2.4	Н	6.80	56.02	74	17.98
4960.00	38.07	Ave.	317	2.4	Н	6.80	44.87	54	9.13

1 GHz - 25 GHz: (Scan with GFSK, $\pi/4$ -DQPSK mode, the worst case is $\pi/4$ -DQPSK Mode)

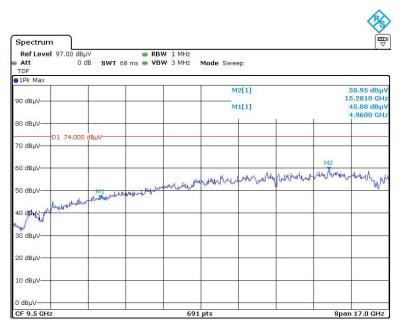

Note:


Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

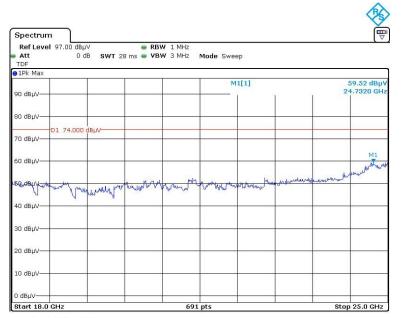
Corrected Amplitude = Corrected Factor + Reading


Margin = Limit - Corrected. Amplitude

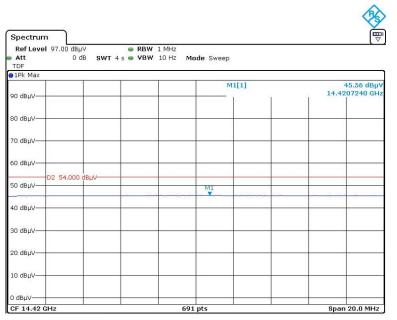
The other spurious emission which is 20dB to the limit was not recorded.



Date: 6.SEP.2020 09:00:40

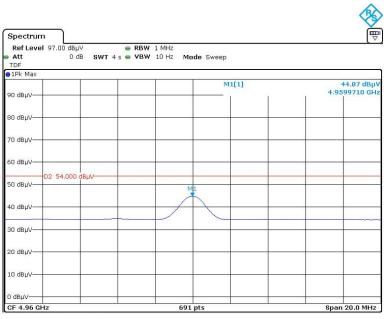


Date: 6.SEP.2020 10:02:58


Vertical

Date: 6.SEP.2020 09:16:59

Date: 6.SEP.2020 10:11:43

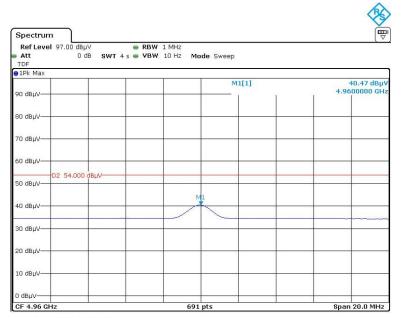


Date: 6.SEP.2020 09:03:23

TDF	4 s 👄 VBW 10 Hz Mode Sv	veep	
91Pk Max 90 dBµV		M1[1]	46.09 dBµ' 24.7007400 GH
90 080V-			
BO dBµV			
70 dBµV			
50 dBµV			
D2 54.000 dBµV	MI		
	The second secon		
40 dBµV			
30 dBµV			
20 dBµV			
10 dBµV			

Date: 6.SEP.2020 10:06:42

Date: 6.SEP.2020 09:07:26



Ref Lev Att TDF	el 97.00 dBµ O c		● RBW 4 s ● VBW		ode Sweep		
1Pk Max							
90 dBµV—					M1[1]	1 1	46.29 dBµV 15.2867020 GHz
80 dBµV—							
70 dBµV—				-			
60 dBµV—							
50 dBµV—	D2 54.000	dBµV				MI	
40 dBµV—							
30 dBµV—				8			
20 dBµV—				-			
10 dBµV—							

Date: 6.SEP.2020 09:19:51

Ref Level 9 Att		● RBW 1 7T4s ● VBW 3	Sweep	
TDF 1Pk Max				
90 dBµV			M1[1]	46.43 dBµ\ 24.7412910 GH:
80 dBµV			 	
70 dвµV			 	
60 dBµV			 	
50 dBµV	54.000 dBµV-			M1
40 dBµV	-			
30 dBµV				
20 dBµV				
10 dBµV		-		
0 dBµV			 	

Date: 6.SEP.2020 10:15:12

Date: 6.SEP.2020 09:23:30

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Bravos Zhao on 2020-09-10.

EUT operation mode: Transmitting

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bravos Zhao on 2020-09-10.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bravos Zhao on 2020-09-10.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bravos Zhao on 2020-09-10.

EUT operation mode: Transmitting

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bravos Zhao on 2020-09-10.

EUT operation mode: Transmitting

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

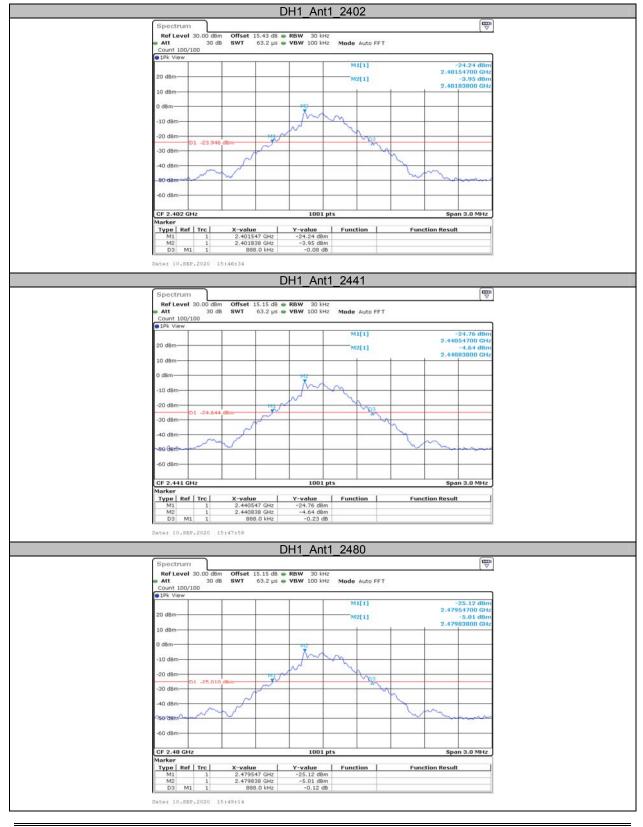
Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Bravos Zhao on 2020-09-10.

EUT operation mode: Transmitting

APPENDIX


Appendix A: 20dBEmission Bandwidth

Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.888		PASS
		2441	0.888		PASS
		2480	0.888		PASS
2DH1	Ant1	2402	1.281		PASS
		2441	1.281		PASS
		2480	1.284		PASS

Report No.: RSZ200818802-00

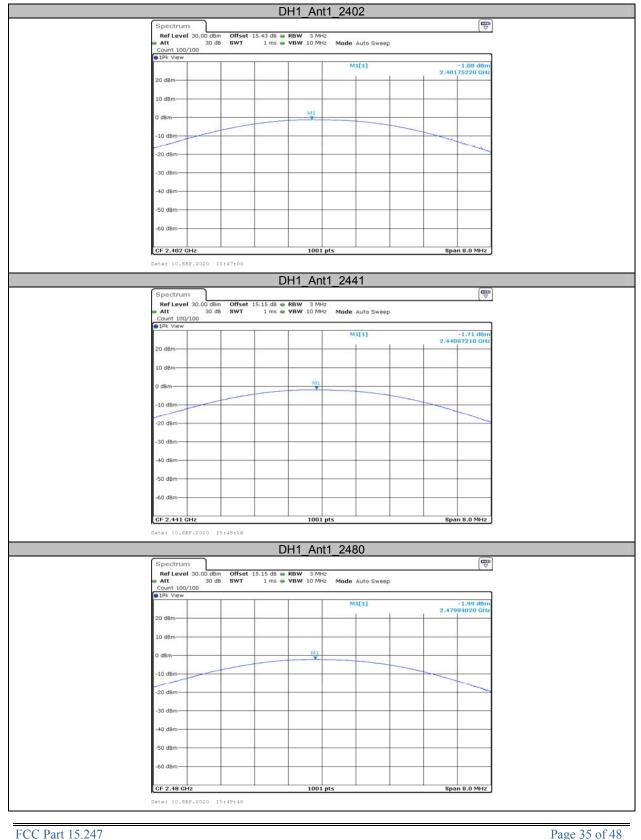
Test Graphs

FCC Part 15.247

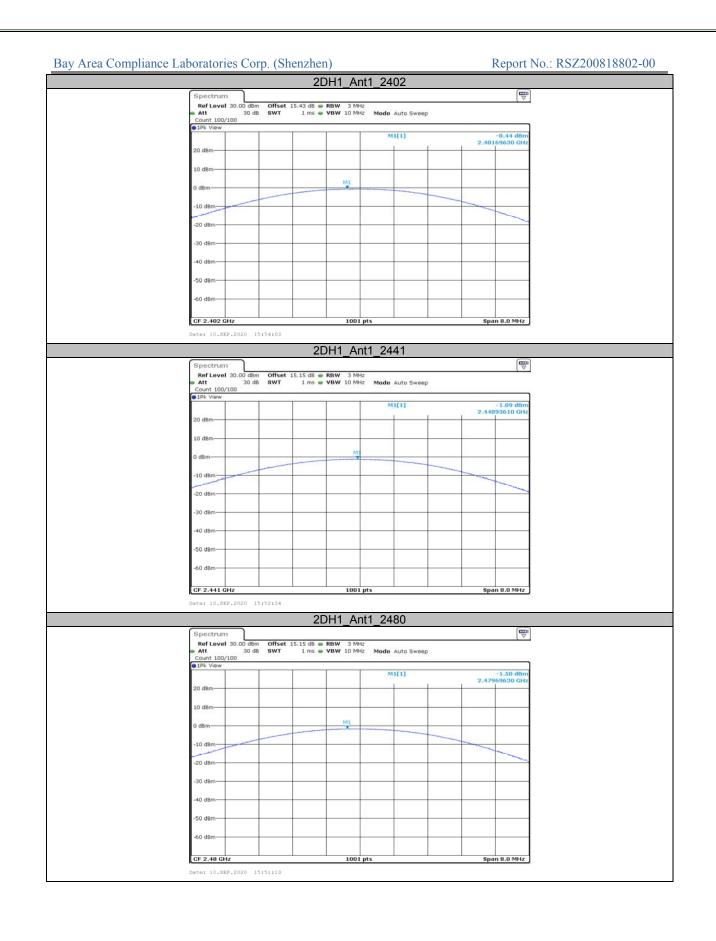
Page 32 of 48

FCC Part 15.247

Page 33 of 48


Appendix B: Maximum conducted Peak output power

Test Result


Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH1	Ant1	2402	-1.08	<=20.97	PASS
		2441	-1.71	<=20.97	PASS
		2480	-1.99	<=20.97	PASS
2DH1	Ant1	2402	-0.44	<=20.97	PASS
		2441	-1.09	<=20.97	PASS
		2480	-1.50	<=20.97	PASS

Report No.: RSZ200818802-00

Test Graphs

Page 35 of 48

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	>=0.592	PASS
2DH1	Ant1	Нор	1.000	>=0.854	PASS

Note: the limit = (2/3) * 20dB bandwidth

Report No.: RSZ200818802-00

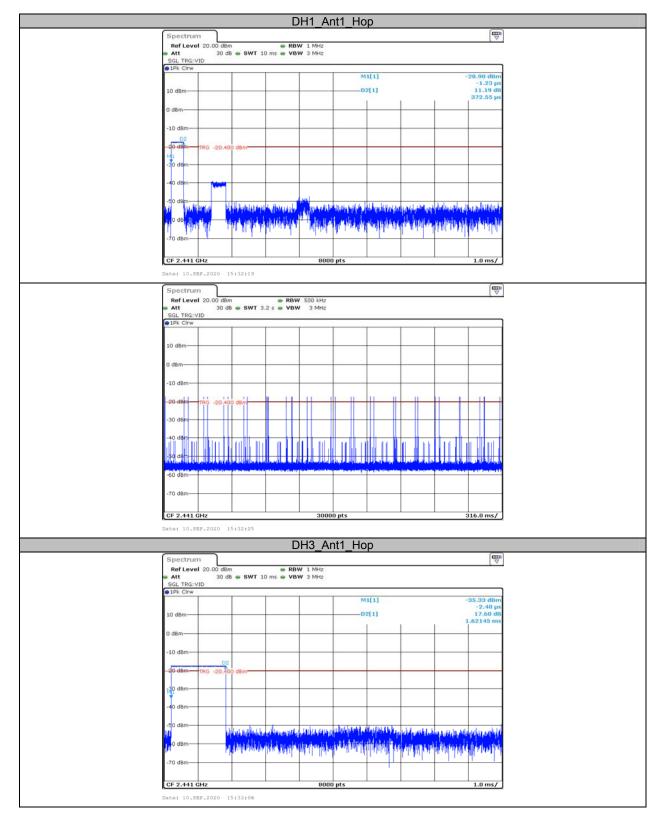
Test Graphs

FCC Part 15.247

Page 38 of 48

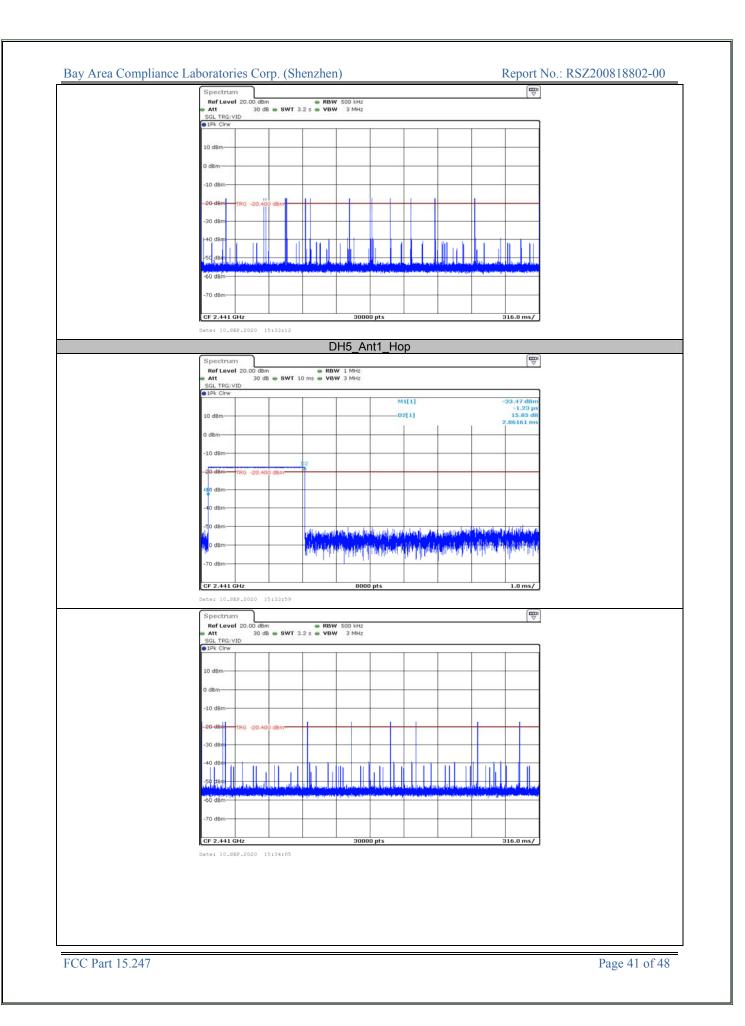
Appendix D: Time of occupancy

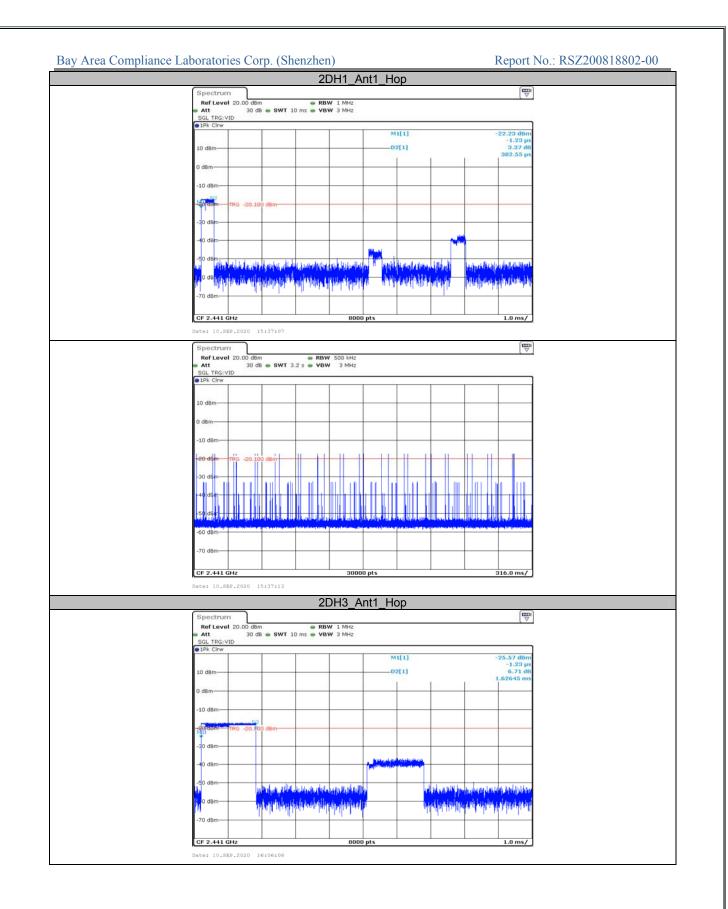
Test Result

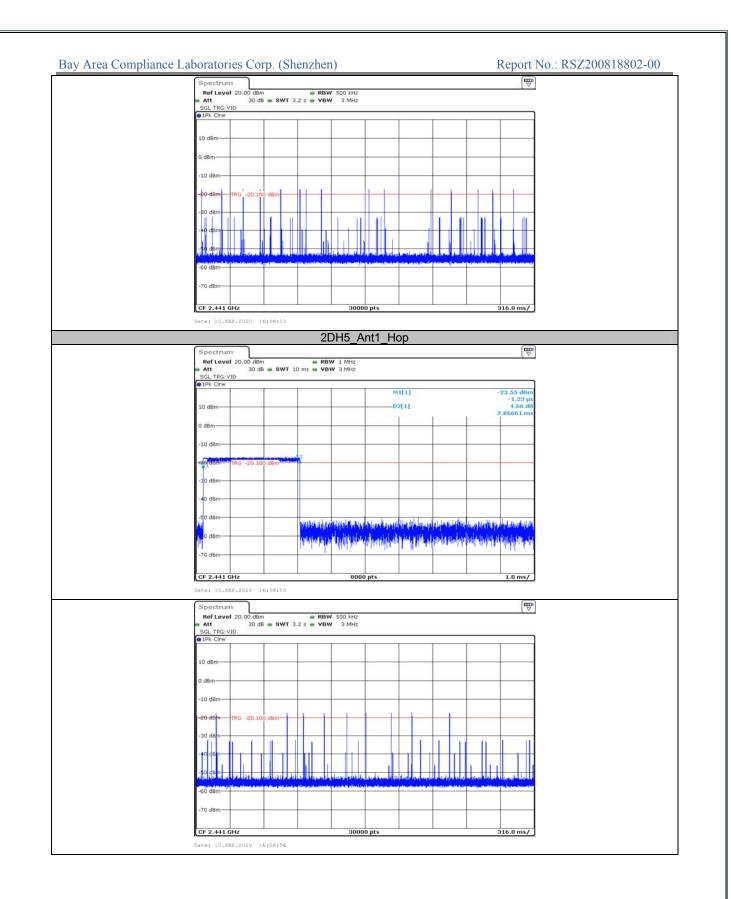

Test Mode	Antenna	Channel	Burst Width [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	330	0.123	<=0.4	PASS
DH3	Ant1	Нор	1.62	150	0.243	<=0.4	PASS
DH5	Ant1	Нор	2.86	90	0.258	<=0.4	PASS
2DH1	Ant1	Нор	0.38	320	0.122	<=0.4	PASS
2DH3	Ant1	Нор	1.63	170	0.276	<=0.4	PASS
2DH5	Ant1	Нор	2.87	100	0.287	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=Burst Width*Total hops

Note 2: Total hops=Hopping Number in 3.16s*10

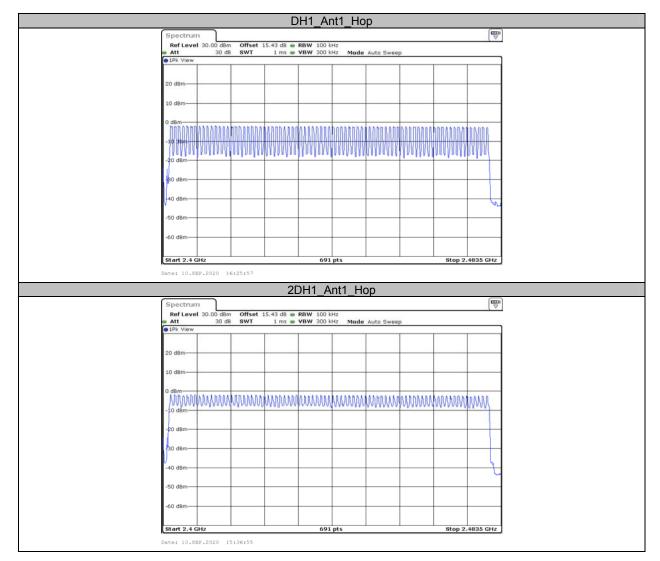

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)


Test Graphs



FCC Part 15.247

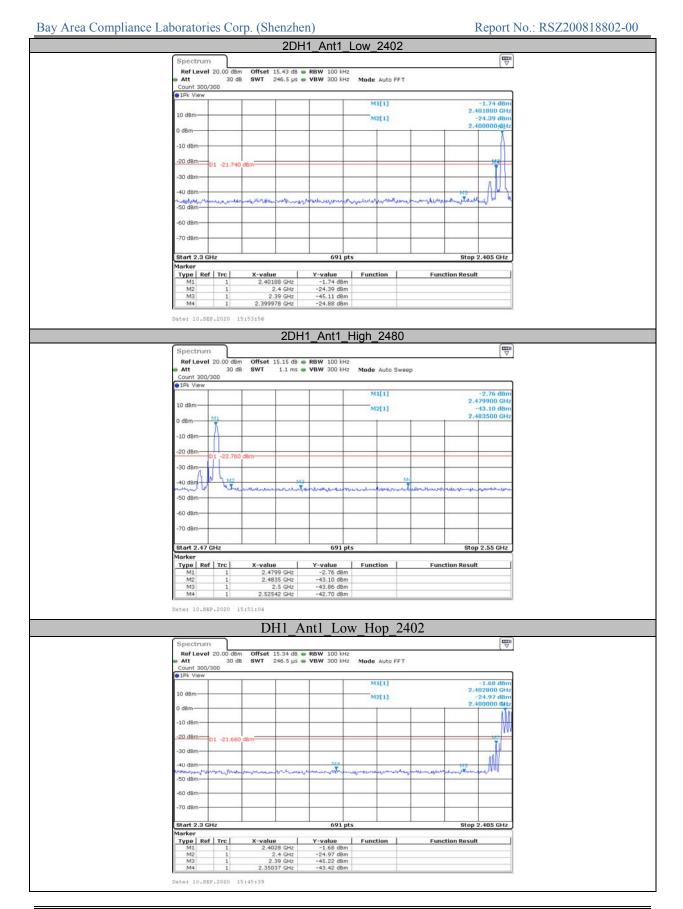
Page 40 of 48


Appendix E: Number of hopping channels

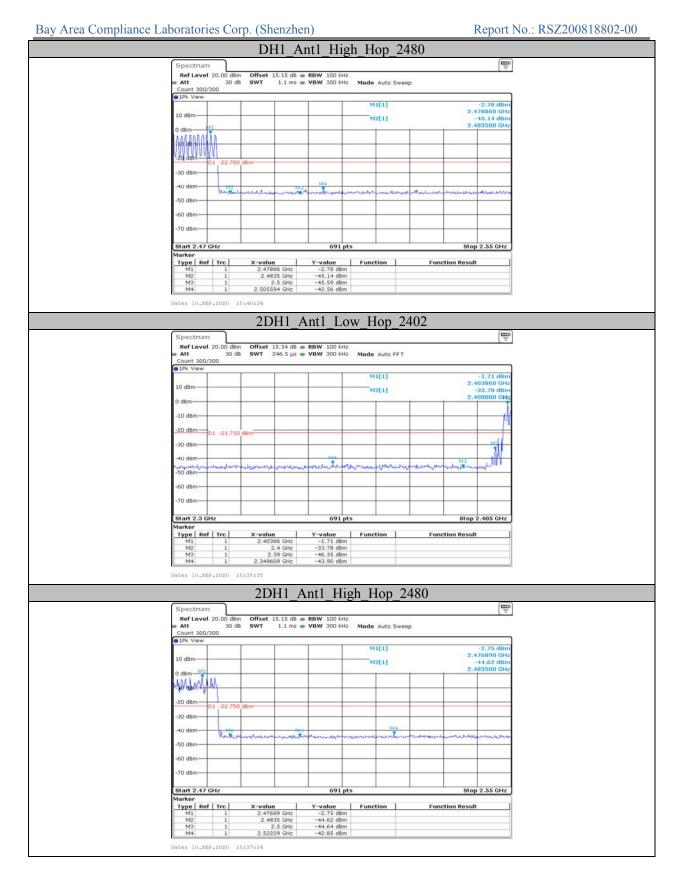
Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS

Report No.: RSZ200818802-00


Test Graphs

Appendix F:Band edge measurements


Test Graphs

FCC Part 15.247

Page 47 of 48

***** END OF REPORT *****

FCC Part 15.247

Page 48 of 48