No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Email: ee.shenzhen@sgs.com Report No.: SZEM180700656302 Page: 1 of 75 ### **FCC TEST REPORT** **Application No.**: SZEM1807006563RG **Applicant:** TCL Communication Ltd. Address of Applicant 7/F, Block F4, TCL Communication Technology Building, TCL International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen, Guangdong, P.R. China 518052 Manufacturer: TCL Communication Ltd. Address of Manufacturer 7/F, Block F4, TCL Communication Technology Building, TCL International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen, Guangdong, P.R. China 518052 Product Name: UMTS/GSM Mobile Phone Model No.(EUT): 3026G Trade Mark: alcatel FCC ID: 2ACCJB103 **Standards:** 47 CFR Part 15, Subpart C Test Method ANSI C63.10 (2013) **Date of Receipt:** 2018-08-05 **Date of Test:** 2018-08-05 to 2018-08-12 **Date of Issue:** 2018-08-17 Test Result: PASS * * In the configuration tested, the EUT complied with the standards specified above. Authorized Signature: Derek Yang Derele yang Wireless Laboratory Manager The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: SZEM180700656302 Page: 2 of 75 #### 1 Version | Revision Record | | | | | | | | |--------------------------------------|--|------------|--|----------|--|--|--| | Version Chapter Date Modifier Remark | | | | | | | | | 01 | | 2018-08-17 | | Original | Authorized for issue by: | | | |--------------------------|-----------------------------|------------| | Tested By | Mike Mu | 2017-08-17 | | | (Mike Hu) /Project Engineer | Date | | Checked By | David Chen | 2017-08-17 | | | (David Chen) /Reviewer | Date | Report No.: SZEM180700656302 Page: 3 of 75 #### 2 Test Summary | Test Item | Test Requirement | Test method | Result | |---|--|--------------------|--------| | Antenna Requirement | 47 CFR Part 15, Subpart C Section
15.203/15.247 (c) | ANSI C63.10 (2013) | PASS | | AC Power Line Conducted
Emission | 47 CFR Part 15, Subpart C Section 15.207 | ANSI C63.10 (2013) | PASS | | Conducted Peak Output
Power | 47 CFR Part 15, Subpart C Section
15.247 (a)(1) | ANSI C63.10 (2013) | PASS | | 20dB Occupied Bandwidth | 47 CFR Part 15, Subpart C Section
15.247 (a)(1) | ANSI C63.10 (2013) | PASS | | Carrier Frequencies Separation | 47 CFR Part 15, Subpart C Section
15.247 (a)(1) | ANSI C63.10 (2013) | PASS | | Hopping Channel Number | 47 CFR Part 15, Subpart C Section
15.247 (a)(1) | ANSI C63.10 (2013) | PASS | | Dwell Time | 47 CFR Part 15, Subpart C Section
15.247 (a)(1) | ANSI C63.10 (2013) | PASS | | Band-edge for RF
Conducted Emissions | 47 CFR Part 15, Subpart C Section 15.247(d) | ANSI C63.10 (2013) | PASS | | RF Conducted Spurious
Emissions | 47 CFR Part 15, Subpart C Section 15.247(d) | ANSI C63.10 (2013) | PASS | | Radiated Spurious emissions | 47 CFR Part 15, Subpart C Section
15.205/15.209 | ANSI C63.10 (2013) | PASS | | Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15, Subpart C Section
15.205/15.209 | ANSI C63.10 (2013) | PASS | Report No.: SZEM180700656302 Page: 4 of 75 #### **Contents** | | | | Page | |---|------|--|------| | 1 | VE | ERSION | 2 | | 2 | TE | ST SUMMARY | 3 | | 3 | | ENERAL INFORMATION | 5 | | | 3.1 | CLIENT INFORMATION | 5 | | | 3.2 | GENERAL DESCRIPTION OF EUT | | | | 3.3 | TEST ENVIRONMENT | 7 | | | 3.4 | DESCRIPTION OF SUPPORT UNITS | | | | 3.5 | TEST LOCATION | 7 | | | 3.6 | TEST FACILITY | | | | 3.7 | DEVIATION FROM STANDARDS | 8 | | | 3.8 | ABNORMALITIES FROM STANDARD CONDITIONS | | | | 3.9 | OTHER INFORMATION REQUESTED BY THE CUSTOMER | | | | 3.10 | Measurement Uncertainty (95% confidence levels, K=2) | | | | 3.11 | EQUIPMENT LIST | 9 | | 4 | TE | EST RESULTS AND MEASUREMENT DATA | 12 | | | 4.1 | ANTENNA REQUIREMENT | 12 | | | 4.2 | CONDUCTED EMISSIONS | 12 | | | 4.3 | CONDUCTED PEAK OUTPUT POWER | | | | 4.4 | 20DB EMISSION BANDWIDTH | 23 | | | 4.5 | CARRIER FREQUENCIES SEPARATION | | | | 4.6 | HOPPING CHANNEL NUMBER | | | | 4.7 | DWELL TIME | | | | 4.8 | BAND-EDGE FOR RF CONDUCTED EMISSIONS | | | | 4.9 | Spurious RF Conducted Emissions | | | | 4.10 | RADIATED SPURIOUS EMISSION | | | | | 10.1 Radiated Emission below 1GHz | | | | | 10.2 Transmitter Emission above 1GHz | | | | 4.11 | RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY | 69 | | 5 | PF | HOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS | 75 | Report No.: SZEM180700656302 Page: 5 of 75 #### 3 General Information #### 3.1 Client Information | Applicant: | TCL Communication Ltd. | |--------------------------|--| | Address of Applicant: | 7/F, Block F4, TCL Communication Technology Building, TCL International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen, Guangdong, P.R. China 518052 | | Manufacturer: | TCL Communication Ltd. | | Address of Manufacturer: | 7/F, Block F4, TCL Communication Technology Building, TCL International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen, Guangdong, P.R. China 518052 | #### 3.2 General Description of EUT | Product Name: | UMTS/GSM Mobile Phone | |-----------------------|---| | Model No.: | 3026G | | Trade Mark: | alcatel | | Hardware Version: | PIO | | Software Version: | 010 01 | | Operation Frequency: | 2402MHz~2480MHz | | Modulation Technique: | Frequency Hopping Spread Spectrum(FHSS) | | Modulation Type: | GFSK, π/4DQPSK, 8DPSK | | Number of Channel: | 79 | | Hopping Channel Type: | Adaptive Frequency Hopping systems | | Sample Type: | Portable production | | Antenna Type: | PIFA | | Antenna Gain: | -1.5dBi | Report No.: SZEM180700656302 Page: 6 of 75 | Operation Frequency each of channel | | | | | | | | |-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------| | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | | 0 | 2402MHz | 20 | 2422MHz | 40 | 2442MHz | 60 | 2462MHz | | 1 | 2403MHz | 21 | 2423MHz | 41 | 2443MHz | 61 | 2463MHz | | 2 | 2404MHz | 22 | 2424MHz | 42 | 2444MHz | 62 | 2464MHz | | 3 | 2405MHz | 23 | 2425MHz | 43 | 2445MHz | 63 | 2465MHz | | 4 | 2406MHz | 24 | 2426MHz | 44 | 2446MHz | 64 | 2466MHz | | 5 | 2407MHz | 25 | 2427MHz | 45 | 2447MHz | 65 | 2467MHz | | 6 | 2408MHz | 26 | 2428MHz | 46 | 2448MHz | 66 | 2468MHz | | 7 | 2409MHz | 27 | 2429MHz | 47 | 2449MHz | 67 | 2469MHz | | 8 | 2410MHz | 28 | 2430MHz | 48 | 2450MHz | 68 | 2470MHz | | 9 | 2411MHz | 29 | 2431MHz | 49 | 2451MHz | 69 | 2471MHz | | 10 | 2412MHz | 30 | 2432MHz | 50 | 2452MHz | 70 | 2472MHz | | 11 | 2413MHz | 31 | 2433MHz | 51 | 2453MHz | 71 | 2473MHz | | 12 | 2414MHz | 32 | 2434MHz | 52 | 2454MHz | 72 | 2474MHz | | 13 | 2415MHz | 33 | 2435MHz | 53 | 2455MHz | 73 | 2475MHz | | 14 | 2416MHz | 34 | 2436MHz | 54 | 2456MHz | 74 | 2476MHz | | 15 | 2417MHz | 35 | 2437MHz | 55 | 2457MHz | 75 | 2477MHz | | 16 | 2418MHz | 36 | 2438MHz | 56 | 2458MHz | 76 | 2478MHz | | 17 | 2419MHz | 37 | 2439MHz | 57 | 2459MHz | 77 | 2479MHz | | 18 | 2420MHz | 38 | 2440MHz | 58 | 2460MHz | 78 | 2480MHz | | 19 | 2421MHz | 39 | 2441MHz | 59 | 2461MHz | | | #### Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: | Channel | Frequency | |---------------------|-----------| | The Lowest channel | 2402MHz | | The Middle channel | 2441MHz | | The Highest channel | 2480MHz | Report No.: SZEM180700656302 Page: 7 of 75 #### 3.3 Test Environment | Operating Environment |
| | | | |-----------------------|------------|--|--|--| | Temperature: | 24.0 °C | | | | | Humidity: | 55 % RH | | | | | Atmospheric Pressure: | 101.30 KPa | | | | #### 3.4 Description of Support Units The EUT has been tested independent unit. #### 3.5 Test Location All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057. Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted. #### 3.6 Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### CNAS (No. CNAS L2929) CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. #### • A2LA (Certificate No. 3816.01) SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01. #### VCCI The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively. #### • FCC -Designation Number: CN1178 SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory. Designation Number: CN1178. Test Firm Registration Number: 406779. #### • Industry Canada (IC) Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is issued defined therein. Any holder of this document is advised that information contained hereon reflects the Company's Findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: SZEM180700656302 Page: 8 of 75 4620C-2, 4620C-3. #### 3.7 Deviation from Standards None. #### 3.8 Abnormalities from Standard Conditions None. #### 3.9 Other Information Requested by the Customer None. #### 3.10 Measurement Uncertainty (95% confidence levels, k=2) > | No. | Item | Measurement Uncertainty | |-----|---------------------------------|--------------------------| | 1 | Total RF power, conducted | \pm 0.75dB | | 2 | RF power density, conducted | ±2.84dB | | 3 | Spurious emissions, conducted | ±0.75dB | | | | \pm 4.5dB (30MHz-1GHz) | | 4 | Radiated Spurious emission test | ±4.8dB (1GHz-25GHz) | | 5 | Conduct emission test | ±3.12 dB(9KHz- 30MHz) | | 6 | Temperature test | ±1°C | | 7 | Humidity test | ±3% | | 8 | DC and low frequency voltages | ±0.5% | Report No.: SZEM180700656302 Page: 9 of 75 #### 3.11 Equipment List | | Conducted Emission | | | | | | | | |------|--------------------|--|---------------------|---------------|---------------------------|-----------------------------|--|--| | Item | Test Equipment | Manufacturer | Model No. | Inventory No. | Cal. date
(yyyy-mm-dd) | Cal.Duedate
(yyyy-mm-dd) | | | | 1 | Shielding Room | ZhongYu Electron | GB-88 | SEM001-06 | 2018-03-10 | 2019-03-09 | | | | 2 | LISN | Rohde & Schwarz | ENV216 | SEM007-01 | 2017-10-09 | 2018-10-09 | | | | 3 | LISN | ETS-LINDGREN | 3816/2 | SEM007-02 | 2018-02-14 | 2019-02-13 | | | | 4 | 8 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T8-02 | EMC0120 | 2017-09-28 | 2018-09-28 | | | | 5 | 4 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T4-02 | EMC0121 | 2017-09-28 | 2018-09-28 | | | | 6 | 2 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T2-02 | EMC0122 | 2017-09-28 | 2018-09-28 | | | | 7 | EMI Test Receiver | Rohde & Schwarz | ESCI | SEM004-02 | 2018-02-14 | 2019-02-13 | | | | 8 | DC Power Supply | Zhao Xin | RXN-305D | SEM011-02 | 2017-10-09 | 2018-10-09 | | | | | RF connected test | | | | | | | | |------|-------------------|-------------------------|-----------|---------------|---------------------------|-----------------------------|--|--| | Item | Test Equipment | Manufacturer | Model No. | Inventory No. | Cal. date
(yyyy-mm-dd) | Cal.Duedate
(yyyy-mm-dd) | | | | 1 | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2017-10-09 | 2018-10-09 | | | | 2 | Signal Analyzer | Rohde &Schwarz | FSV | W005-02 | 2018-03-13 | 2019-03-12 | | | | 3 | Signal Generator | Rohde &Schwarz | SML03 | SEM006-02 | 2018-02-14 | 2019-02-13 | | | | 4 | Power Meter | Rohde &Schwarz | NRVS | SEM014-02 | 2017-10-09 | 2018-10-09 | | | | 5 | Power Sensor | Agilent
Technologies | U2021XA | SEM009-01 | 2017-10-09 | 2018-10-09 | | | Report No.: SZEM180700656302 Page: 10 of 75 | | RE in Chamber | | | | | | | | |------|-----------------------------------|-------------------------|-----------|---------------|---------------------------|------------------------------|--|--| | Item | Test Equipment | Manufacturer | Model No. | Inventory No. | Cal. date
(yyyy-mm-dd) | Cal.Due date
(yyyy-mm-dd) | | | | 1 | 3m Semi-Anechoic
Chamber | ETS-LINDGREN | N/A | SEM001-01 | 2018-03-10 | 2019-03-09 | | | | 2 | EMI Test Receiver | Agilent
Technologies | N9038A | SEM004-05 | 2017-10-09 | 2018-10-09 | | | | 3 | BiConiLog Antenna
(26-3000MHz) | ETS-LINDGREN | 3142C | SEM003-01 | 2017-11-01 | 2020-11-01 | | | | 4 | Double-ridged horn
(1-18GHz) | ETS-LINDGREN | 3117 | SEM003-11 | 2015-10-17 | 2018-10-17 | | | | 5 | Horn Antenna
(18-26GHz) | ETS-LINDGREN | 3160 | SEM003-12 | 2017-11-24 | 2020-11-24 | | | | 6 | Pre-amplifier
(0.1-1300MHz) | Agilent
Technologies | 8447D | SEM005-01 | 2018-02-14 | 2019-02-13 | | | | 7 | Band filter | Amindeon | Asi 3314 | SEM023-01 | N/A | N/A | | | | 8 | DC Power Supply | Zhao Xin | RXN-305D | SEM011-02 | 2017-10-09 | 2018-10-09 | | | | 9 | Loop Antenna | Beijing Daze | ZN30401 | SEM003-09 | 2018-03-10 | 2019-03-09 | | | | | RE in Chamber | | | | | | | |------|---------------------------------------|-------------------------|-----------|---------------|------------------------|----------------------------|--| | Item | Test Equipment | Manufacturer | Model No. | Inventory No. | Cal. Date (yyyy-mm-dd) | Cal. Due date (yyyy-mm-dd) | | | 1 | 10m Semi-Anechoic
Chamber | SAEMC | FSAC1018 | SEM001-03 | 2018-03-10 | 2019-03-09 | | | 2 | EMI Test Receiver
(9k-7GHz) | Rohde &
Schwarz | ESR | SEM004-03 | 2018-02-14 | 2019-02-13 | | | 3 | Trilog-Broadband
Antenna(30M-1GHz) | Schwarzbeck | VULB9168 | SEM003-18 | 2016-06-29 | 2019-06-29 | | | 4 | Pre-amplifier | Sonoma
Instrument Co | 310N | SEM005-03 | 2018-04-28 | 2019-04-28 | | | 5 | .Loop Antenna | ETS-Lindgren | 6502 | SEM003-08 | 2018/7/14 | 2021/7/13 | | Report No.: SZEM180700656302 Page: 11 of 75 | | RE in Chamber | | | | | | | | |------|-----------------------------------|--------------------------|---------------------------|------------------|---------------------------|------------------------------|--|--| | Item | Test Equipment | Manufacturer | Model No. | Inventory
No. | Cal. date
(yyyy-mm-dd) | Cal.Due date
(yyyy-mm-dd) | | | | 1 | 3m Semi-Anechoic
Chamber | AUDIX | N/A | SEM001-02 | 2018-03-10 | 2019-03-09 | | | | 2 | EXA Spectrum
Analyzer | Agilent Technologies Inc | N9010A | SEM004-09 | 2018-06-18 | 2019-06-17 | | | | 3 | BiConiLog Antenna
(26-3000MHz) | ETS-Lindgren | 3142C | SEM003-02 | 2017-11-15 | 2020-11-15 | | | | 4 | Amplifier
(0.1-1300MHz) | HP | 8447D | SEM005-02 | 2017-10-09 | 2018-10-09 | | | | 5 | Horn Antenna
(1-18GHz) | Rohde & Schwarz | HF907 | SEM003-07 | 2018-05-14 | 2020-05-13 | | | | 6 | Horn Antenna
(18-26GHz) | ETS-Lindgren | 3160 | SEM003-12 | 2017-11-24 | 2020-11-24 | | | | 7 | HornAntenna
(26GHz-40GHz) | A.H.Systems, inc. | SAS-573 | SEM003-13 | 2017-10-17 | 2020-10-16 | | | | 8 | Low Noise Amplifier | Black Diamond
Series | BDLNA-
0118-
352810 | SEM005-05 | 2017-10-09 | 2018-10-09 | | | | 9 | Band filter | Amindeon | Asi 3314 | SEM023-01 | N/A | N/A | | | Report No.: SZEM180700656302 Page: 12 of 75 #### 4 Test results and Measurement Data #### 4.1 Antenna Requirement | Standard requirement: | 47 CFR Part 15C Section 15.203 /247(c) | | | |
---|--|--|--|--| | 15 202 requirement: An intentional radiator shall be designed to ensure that no entenne other than that | | | | | 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.5dBi. #### 4.2 Conducted Emissions | Test Requirement: | 47 CFR Part 15C Section 15.207 | | | | |-----------------------|--|-------------------------|-----------|--| | Test Method: | ANSI C63.10: 2013 | | | | | Test Frequency Range: | 150kHz to 30MHz | | | | | | Frequency range (MHz) | Limit (dBuV) | | | | | Frequency range (Wiriz) | Quasi-peak | Average | | | Limit: | 0.15-0.5 | 66 to 56* | 56 to 46* | | | Liffiit. | 0.5-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | | * Decreases with the loga | rithm of the frequency. | | | | Test Procedure: | * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielder room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The lish 1 was placed 0.8 m from the boundary of the | | | | This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Report No.: SZEM180700656302 Page: 13 of 75 | | mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. | |---|---| | Test Setup: | Shielding Room Test Receiver LISN2 AC Mains Ground Reference Plane | | Exploratory Test Mode: | Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode. | | Final Test Mode: Through Pre-scan, find the DH5 of data type and GFSK modulation lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report. | | | Instruments Used: | Refer to section 5.10 for details | | Test Results: | Pass | Remark: Mode a= Bluetooth Conducted Emission Report No.: SZEM180700656302 Page: 14 of 75 #### **Measurement Data** An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. Live line: Site : Shielding Room Condition: Line Job No. : 06563CR Test mode: a | | F | Cable | LISN | Read | 1 7 | Limit | 0ver | DI- | |----|------|-------|--------|-------|-------|-------|--------|---------| | | Freq | Loss | Factor | Level | Level | Line | Limit | Remark | | | MHz | dB | dB | dBuV | dBuV | dBuV | dB | | | 1 | 0.15 | 0.02 | 9.51 | 23.15 | 32.68 | 55.82 | -23.14 | Average | | 2 | 0.15 | 0.02 | 9.51 | 36.39 | 45.92 | 65.82 | -19.90 | QP | | 3 | 0.20 | 0.03 | 9.50 | 15.36 | 24.89 | 53.67 | -28.78 | Average | | 4 | 0.20 | 0.03 | 9.50 | 28.06 | 37.59 | 63.67 | -26.08 | QP | | 5 | 1.09 | 0.11 | 9.50 | 13.12 | 22.73 | 46.00 | -23.27 | Average | | 6 | 1.09 | 0.11 | 9.50 | 23.66 | 33.27 | 56.00 | -22.73 | QP | | 7 | 2.20 | 0.16 | 9.51 | 18.25 | 27.92 | 46.00 | -18.08 | Average | | 8 | 2.20 | 0.16 | 9.51 | 25.56 | 35.23 | 56.00 | -20.77 | QP | | 9 | 2.85 | 0.18 | 9.54 | 19.59 | 29.31 | 46.00 | -16.69 | Average | | 10 | 2.85 | 0.18 | 9.54 | 30.25 | 39.97 | 56.00 | -16.03 | QP | | 11 | 4.07 | 0.19 | 9.54 | 18.71 | 28.44 | 46.00 | -17.56 | Average | | 12 | 4.07 | 0.19 | 9.54 | 28.79 | 38.52 | 56.00 | -17.48 | QP | Report No.: SZEM180700656302 Page: 15 of 75 #### Neutral line: Site : Shielding Room Condition: Neutral Job No. : 06563CR Test mode: a | | _ | Cable | LISN | Read | | Limit | 0ver | | |----|------|-------|--------|-------|-------|-------|--------|---------| | | Freq | Loss | Factor | Level | Level | Line | Limit | Remark | | | MHz | dB | dB | dBuV | dBuV | dBuV | dB | | | 1 | 0.15 | 0.02 | 9.58 | 24.15 | 33.75 | 55.91 | -22.16 | Average | | 2 | 0.15 | 0.02 | 9.58 | 38.21 | 47.81 | 65.91 | -18.10 | QP | | 3 | 0.20 | 0.03 | 9.57 | -6.99 | 2.61 | 53.54 | -50.93 | Average | | 4 | 0.20 | 0.03 | 9.57 | 14.45 | 24.05 | 63.54 | -39.49 | QP | | 5 | 1.72 | 0.14 | 9.64 | 17.26 | 27.04 | 46.00 | -18.96 | Average | | 6 | 1.72 | 0.14 | 9.64 | 27.43 | 37.21 | 56.00 | -18.79 | QP | | 7 | 2.50 | 0.17 | 9.64 | 19.85 | 29.66 | 46.00 | -16.34 | Average | | 8 | 2.50 | 0.17 | 9.64 | 30.48 | 40.29 | 56.00 | -15.71 | QP | | 9 | 2.93 | 0.18 | 9.65 | 19.48 | 29.31 | 46.00 | -16.69 | Average | | 10 | 2.93 | 0.18 | 9.65 | 30.89 | 40.72 | 56.00 | -15.28 | QP | | 11 | 3.24 | 0.18 | 9.66 | 19.44 | 29.28 | 46.00 | -16.72 | Average | | 12 | 3.24 | 0.18 | 9.66 | 30.27 | 40.11 | 56.00 | -15.89 | QP | #### Notes: - 1. The following Quasi-Peak and Average measurements were performed on the EUT: - 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss. This document is issued by the Company subject to its General Conditions of Service printed overleaf,
available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indennification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: SZEM180700656302 Page: 16 of 75 #### 4.3 Conducted Peak Output Power Report No.: SZEM180700656302 Page: 17 of 75 #### **Measurement Data** | | GFSK mode | | | | | | | |---|-------------------------|-------------|--------|--|--|--|--| | Test channel Peak Output Power (dBm) Limit (dBm) Result | | | | | | | | | Lowest | 5.65 | 20.97 | Pass | | | | | | Middle | 4.67 | 20.97 | Pass | | | | | | Highest | 3.64 | 20.97 | Pass | | | | | | | π/4DQPSK m | ode | | | | | | | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result | | | | | | Lowest | 5.65 | 20.97 | Pass | | | | | | Middle | 4.69 | 20.97 | Pass | | | | | | Highest | 3.64 | 20.97 | Pass | | | | | | | 8DPSK mode | | | | | | | | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result | | | | | | Lowest | 5.65 | 20.97 | Pass | | | | | | Middle | 4.67 | 20.97 | Pass | | | | | | Highest | 3.65 | 20.97 | Pass | | | | | Report No.: SZEM180700656302 Page: 18 of 75 Test plot as follows: Date: 14.AUG.2018 11:28:58 Date: 14.AUG.2018 11:30:35 Report No.: SZEM180700656302 Page: 19 of 75 Date: 14.AUG.2018 11:31:45 Date: 14.AUG.2018 11:35:54 Report No.: SZEM180700656302 Page: 20 of 75 Date: 14.AUG.2018 11:35:38 Date: 14.AUG.2018 11:33:13 Report No.: SZEM180700656302 Page: 21 of 75 Date: 14.AUG.2018 11:36:52 Date: 14.AUG.2018 11:38:23 Report No.: SZEM180700656302 Page: 22 of 75 Date: 14.AUG.2018 11:38:49 Report No.: SZEM180700656302 Page: 23 of 75 #### 4.4 20dB Emission Bandwidth #### **Measurement Data** | | 20dB Emission Bandwidth (kHz) | | | | | |--------------|-------------------------------|----------|--------|--|--| | Test channel | GFSK | π/4DQPSK | 8DPSK | | | | Lowest | 815.2 | 1261.7 | 1258.7 | | | | Middle | 815.2 | 1258.7 | 1258.7 | | | | Highest | 815.2 | 1261.7 | 1261.7 | | | Report No.: SZEM180700656302 Page: 24 of 75 Date: 14.AUG.2018 12:02:08 Date: 14.AUG.2018 12:01:46 Report No.: SZEM180700656302 Page: 25 of 75 Date: 14.AUG.2018 11:46:02 Date: 14.AUG.2018 11:44:05 Report No.: SZEM180700656302 Page: 26 of 75 Date: 14.AUG.2018 11:44:51 Date: 14.AUG.2018 11:45:22 Report No.: SZEM180700656302 Page: 27 of 75 Date: 14.AUG.2018 11:43:06 Date: 14.AUG.2018 11:42:43 Report No.: SZEM180700656302 Page: 28 of 75 Date: 14.AUG.2018 11:39:28 Report No.: SZEM180700656302 Page: 29 of 75 ### 4.5 Carrier Frequencies Separation Report No.: SZEM180700656302 Page: 30 of 75 | | GFSK mode | | | | | | |--------------|---|-------------|--------|--|--|--| | Test channel | Carrier Frequencies
Separation (kHz) | | | | | | | Middle | 1001 | 543.5 | Pass | | | | | | π/4DQPSK m | node | | | | | | Test channel | Carrier Frequencies
Separation (kHz) | Limit (kHz) | Result | | | | | Middle | 1001 | 841.1 | Pass | | | | | | 8DPSK mode | | | | | | | Test channel | Carrier Frequencies
Separation (kHz) | Limit (kHz) | Result | | | | | Middle | 1001 | 841.1 Pass | | | | | Note: According to section 6.4, | | 00.151 | | |--------------|----------------------|----------------------------------| | Mode | 20dB bandwidth (kHz) | Limit (kHz) | | IVIOGE | (worse case) | (Carrier Frequencies Separation) | | GFSK | 815.2 | 543.5 | | π/4DQPSK | 1261.7 | 841.1 | | 8DPSK 1261.7 | | 841.1 | Report No.: SZEM180700656302 Page: 31 of 75 #### Test plot as follows: Date: 14.AUG.2018 11:53:21 Date: 14.AUG.2018 11:54:26 Report No.: SZEM180700656302 Page: 32 of 75 Date: 14.AUG.2018 12:01:00 Report No.: SZEM180700656302 Page: 33 of 75 #### 4.6 Hopping Channel Number #### **Measurement Data** | Mode | Hopping channel numbers | Limit | |----------|-------------------------|-------| | GFSK | 79 | ≥15 | | π/4DQPSK | 79 | ≥15 | | 8DPSK | 79 | ≥15 | Report No.: SZEM180700656302 Page: 34 of 75 Date: 14.AUG.2018 12:50:24 Date: 14.AUG.2018 12:51:49 Report No.: SZEM180700656302 Page: 35 of 75 Date: 14.AUG.2018 12:53:13 Report No.: SZEM180700656302 Page: 36 of 75 #### 4.7 Dwell Time #### **Measurement Data** | Operation Modes | On time (ms) on one channel | |-----------------|-----------------------------| | DH1 | 0.428 | | DH3 | 1.681 | | DH5 | 2.950 | | 2DH1 | 0.429 | | 2DH3 | 1.690 | | 2DH5 | 2.935 | | 3DH1 | 0.429 | | 3DH3 | 1.684 | | 3DH5 | 2.935 | Report No.: SZEM180700656302 Page: 37 of 75 #### **Bluetooth Time of Occupancy Calculation** Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s, since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600/6=266.67 hops/slot 400ms x 79 Channel = 31.6 s (Time of Occupancy Limit) Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation) 266.67 hops/second/79 channels=3.38 hops/second (# of hops/second on one channel) 3.38 hops/second/channel*31.6seconds=106.67 hops (#hops over a 31.6 second period) 106.67 hops *2.950 ms/channel =314.68 ms(worst case dwell time for one channel in 1x/EDR modes) With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800hops/s, AFH mode also uses 6 slots so the Bluetooth transmitter hops at a rate of 800/6=133.3 hops/s/slot 400ms x 20 Channel = 8 s (Time of Occupancy Limit) Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation) 133.3 hops/second/20 channels=6.67 hops/second (#hops/second on one channel) 6.67 hops/second *8seconds=53.34 hops (#hops over a 8 seconds period) 53.34 hops x2.950 ms/channel=157.35 ms(worst case dwell time for one channel in AFH mode) Report No.: SZEM180700656302 Page: 38 of 75 #### Test plot as follows: Date: 14.AUG.2018 13:27:15 Date: 14.AUG.2018 13:23:24 Report No.: SZEM180700656302 Page: 39 of 75 Date: 14.AUG.2018 13:20:20 Date: 14.AUG.2018 13:26:58 Report No.: SZEM180700656302 Page: 40 of 75 Date: 14.AUG.2018 13:23:50 Date: 14.AUG.2018 13:20:02 Report No.: SZEM180700656302 Page: 41 of 75 Date: 14.AUG.2018 13:25:18 Date: 14.AUG.2018 13:24:09 Report No.: SZEM180700656302 Page: 42 of 75 Date: 14.AUG.2018 13:19:36 Report No.: SZEM180700656302 Page: 43 of 75 #### 4.8 Band-edge for RF Conducted Emissions Report No.: SZEM180700656302 Page: 44 of 75 #### Test plot as follows: Date: 14.AUG.2018 13:07:46 Date: 14.AUG.2018 13:08:50 Report No.: SZEM180700656302 Page: 45 of 75 Date: 14.AUG.2018 13:06:43 Date: 14.AUG.2018 13:05:56 Report No.: SZEM180700656302 Page: 46 of 75 Date: 14.AUG.2018 13:03:19 Date: 14.AUG.2018 13:02:26 Report No.: SZEM180700656302 Page: 47 of 75 Date: 14.AUG.2018 13:04:20 Date: 14.AUG.2018 13:05:09 Report No.: SZEM180700656302 Page: 48 of 75 Date: 14.AUG.2018 12:56:31 Date: 14.AUG.2018 13:00:24 Report No.: SZEM180700656302 Page: 49 of 75 Date: 14.AUG.2018 12:58:14 Date: 14.AUG.2018 12:59:44 Report No.: SZEM180700656302 Page: 50 of 75 #### 4.9 Spurious RF Conducted Emissions | Test Requirement: | 47 CFR Part 15C Section 15.247 (d) | |------------------------|---| | Test Method: | ANSI C63.10:2013 Section 7.8.8 | | Test Setup: | Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane | | Limit: | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. | | Exploratory Test Mode: | Non-hopping transmitting with all kind of modulation and all kind of data type | | Final Test Mode: | Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. | | Instruments Used: | Refer to section 5.10 for details | | Test Results: | Pass | Report No.: SZEM180700656302 Page: 51 of 75 #### Test plot as follows: Test mode: GFSK Test channel: Lowest Date: 14.AUG.2018 13:10:28 Date: 14.AUG.2018 13:11:41 Report No.: SZEM180700656302 Page: 52 of 75 Date: 14.AUG.2018 13:12:16 Date: 14.AUG.2018 13:15:10 Report No.: SZEM180700656302 Page: 53 of 75 Date: 14.AUG.2018 13:13:57 Date: 14.AUG.2018 13:13:00 Report No.: SZEM180700656302 Page: 54 of 75 Date: 14.AUG.2018 13:16:22
Date: 14.AUG.2018 13:17:10 Report No.: SZEM180700656302 Page: 55 of 75 #### Remark: Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Report No.: SZEM180700656302 Page: 56 of 75 #### 4.10 Radiated Spurious Emission | Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205 | | | | | | | |-------------------|--|-------------|----------------|-------------|----------------|--------------|--| | Test Method: | ANSI C63.10: 2013 | | | | | | | | Test Site: | Measurement Distance | e: 3n | n or 10m (Semi | -Anechoic (| Chamber) | | | | | Frequency | | Detector | RBW | VBW | Remark | | | | 0.009MHz-0.090MH | Z | Peak | 10kHz | 30kHz | Peak | | | | 0.009MHz-0.090MHz | Z | Average | 10kHz | 30kHz | Average | | | | 0.090MHz-0.110MHz | Quasi-peak | 10kHz | 30kHz | Quasi-peak | | | | Receiver Setup: | 0.110MHz-0.490MHz | Peak | 10kHz | 30kHz | Peak | | | | Receiver Setup. | 0.110MHz-0.490MHz | Z | Average | 10kHz | 30kHz | Average | | | | 0.490MHz -30MHz | | Quasi-peak | 10kHz | 30kHz | Quasi-peak | | | | 30MHz-1GHz | Quasi-peak | 100 kHz | 300kHz | Quasi-peak | | | | | Above 1GHz | Peak | 1MHz | 3MHz | Peak | | | | | Above 1G112 | | Peak | 1MHz | 10Hz | Average | | | | Frequency Fie | | strength | Limit | Domork | Measurement | | | | Frequency | (mic | rovolt/meter) | (dBuV/m) | Remark | distance (m) | | | | .009MHz-0.490MHz | 2400/F(kHz) | | - | - | 300 | | | | .490MHz-1.705MHz | 240 | 00/F(kHz) | - | - | 30 | | | | .705MHz-30MHz | 30 | | - | - | 30 | | | | 30MHz-88MHz | 100 | 1 | 40.0 | Quasi-
peak | 3 | | | I imaile. | 88MHz-216MHz | 150 | 1 | 43.5 | Quasi-
peak | 3 | | | Limit: | 216MHz-960MHz | 200 | 1 | 46.0 | Quasi-
peak | 3 | | | | 960MHz-1GHz | 500 | 1 | 54.0 | Quasi-
peak | 3 | | | | Above 1GHz | 500 | 1 | 54.0 | Averag
e | 3 | | | | Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission lir applicable to the equipment under test. This peak limit applies to the to peak emission level radiated by the device. | | | | | | | Report No.: SZEM180700656302 Page: 57 of 75 Report No.: SZEM180700656302 Page: 58 of 75 | Test Procedure: | a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2400MHz), the middle channel (2441MHz), the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. | |------------------------|--| | Exploratory Test Mode: | Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. | | Final Test Mode: | Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. | | Instruments Used: | Refer to section 5.10 for details | | Test Results: | Pass | Report No.: SZEM180700656302 Page: 59 of 75 #### 4.10.1 Radiated Emission below 1GHz The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance, $L_3 / L_{10} = D_{10} / D_3$ Remark: L₃: Level @ 3m distance. Unit: uV/m; L₁₀: Level @ 10m distance. Unit: uV/m; D₃: 3m distance. Unit: m D₁₀: 10m distance. Unit: m The level at 3m test distance is below: | Frequency
(MHz) | Level @
10m
(dBuV/m) | Level @
10m (uV/m) | Level @ 3m
(uV/m) | Level @ 3m
(dBuV/m) | Limit @ 3m
(dBuV/m) | Over Limit
(dB) | Ant.
Polarization | |--------------------|----------------------------|-----------------------|----------------------|------------------------|------------------------|--------------------|----------------------| | 30.21 | 19.03 | 8.94 | 29.81 | 29.49 | 40 | -10.51 | V | | 45.86 | 18.3 | 8.22 | 27.41 | 28.76 | 40 | -11.24 | V | | 75.71 | 13.78 | 4.89 | 16.29 | 24.24 | 40 | -15.76 | V | | 87.11 | 14.99 | 5.62 | 18.72 | 25.45 | 40 | -14.55 | V | | 155.91 | 15.57 | 6.00 | 20.02 | 26.03 | 43.5 | -17.47 | V | | 357.93 | 17.51 | 7.51 | 25.03 | 27.97 | 43.5 | -15.53 | V | | 42.3 | 14.34 | 5.21 | 17.37 | 24.80 | 40 | -15.20 | Н | | 156.46 | 15.23 | 5.77 | 19.25 | 25.69 | 43.5 | -17.81 | Н | | 261.98 | 14.03 | 5.03 | 16.76 | 24.49 | 43.5 | -19.01 | Н | | 354.18 | 17.2 | 7.24 | 24.15 | 27.66 | 43.5 | -15.84 | Н | | 526.4 | 20.48 | 10.57 | 35.23 | 30.94 | 46 | -15.06 | Н | | 827.49 | 25.9 | 19.72 | 65.75 | 36.36 | 46 | -9.64 | Н | Report No.: SZEM180700656302 Page: 60 of 75 | 30MHz~1GHz (QP) | | | |-----------------|-----------------------|----------| | Test mode: | Charge + Transmitting | Vertical | Condition: 10m VERTICAL Job No. : 06563RG Test Mode: a | | | Cable | Ant | Preamp | Read | | Limit | 0ver | |------|--------|-------|--------|--------|-------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | | _ | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | | | | 1 pp | 30.21 | 6.70 | 12.48 | 32.61 | 32.46 | 19.03 | 30.00 | -10.97 | | 2 | 45.86 | 6.82 | 12.88 | 32.53 | 31.13 | 18.30 | 30.00 | -11.70 | | 3 | 75.71 | 7.02 | 9.17 | 32.59 | 30.18 | 13.78 | 30.00 | -16.22 | | 4 | 87.11 | 7.17 | 8.65 | 32.62 | 31.79 | 14.99 | 30.00 | -15.01 | | 5 | 155.91 | 7.48 | 13.40 | 32.51 | 27.20 | 15.57 | 30.00 | -14.43 | | 6 | 357.93 | 8.29 | 14.02 | 32.43 | 27.63 | 17.51 | 37.00 | -19.49 | Report No.: SZEM180700656302 Page: 61 of 75 Condition: 10m HORIZONTAL Job No. : 06563RG Test Mode: a | | | Cable | Ant | Preamp | Read | | Limit | 0ver | |------|--------|-------|--------|--------|-------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | | | MHz | dB | dB/m | dB |
dBuV | dBuV/m | dBuV/m | dB | | 4 | 42. 70 | 6 00 | 42.42 | 22.54 | 26.06 | 44.24 | 30.00 | 45.66 | | 1 | 42.30 | 6.80 | 13.12 | 32.54 | 26.96 | 14.34 | 30.00 | -15.66 | | 2 | 156.46 | 7.48 | 13.40 | 32.51 | 26.86 | 15.23 | 30.00 | -14.77 | | 3 | 261.98 | 7.91 | 11.55 | 32.47 | 27.04 | 14.03 | 37.00 | -22.97 | | 4 | 354.18 | 8.27 | 13.93 | 32.43 | 27.43 | 17.20 | 37.00 | -19.80 | | 5 | 526.40 | 8.72 | 17.30 | 32.42 | 26.88 | 20.48 | 37.00 | -16.52 | | 6 pp | 827.49 | 9.30 | 21.43 | 32.14 | 27.31 | 25.90 | 37.00 | -11.10 | Report No.: SZEM180700656302 Page: 62 of 75 #### 4.10.2 Transmitter Emission above 1GHz | Test mode: | GFSK(DH5) | Test channel: | Lowest | Remark: | Peak | Vertical | |---------------|-----------|-------------------|--------|----------|-------|----------| | i cot illouc. | | i cot oriaririoi. | LOWCOL | rtomant. | 1 Car | Vortioai | Site : chamber Condition: 3m VERTICAL Job No : 06563RG Mode : 2402 TX RSE | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | |------|----------|-------|--------|--------|-------|--------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | | | | | | 1 | 1634.543 | 5.31 | 26.40 | 41.49 | 45.61 | 35.83 | 74.00 | -38.17 | peak | | 2 | 4405.090 | 7.46 | 33.44 | 42.40 | 46.55 | 45.05 | 74.00 | -28.95 | peak | | 3 | 4804.000 | 7.89 | 33.97 | 42.47 | 45.57 | 44.96 | 74.00 | -29.04 | peak | | 4 pp | 6507.536 | 11.52 | 35.60 | 41.21 | 44.42 | 50.33 | 74.00 | -23.67 | peak | | 5 | 7206.000 | 10.08 | 36.07 | 40.71 | 42.66 | 48.10 | 74.00 | -25.90 | peak | | 6 | 9608.000 | 10.75 | 37.67 | 37.74 | 37.38 | 48.06 | 74.00 | -25.94 | peak | Report No.: SZEM180700656302 Page: 63 of 75 Test mode: GFSK(DH5) Test channel: Lowest Remark: Peak Horizontal Site : chamber Condition: 3m HORIZONTAL Job No : 06563RG Mode : 2402 TX RSE | | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | |---|----|----------|-------|--------|--------|-------|--------|--------|--------|--------| | | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | - | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | 4505 404 | F 33 | 26.26 | 44 40 | 45 00 | 25 24 | 74.00 | 20.70 | | | 1 | | 1625.121 | 5.32 | 26.36 | 41.49 | 45.02 | 35.21 | 74.00 | -38.79 | реак | | 2 | | 4109.872 | 7.11 | 32.91 | 42.35 | 46.83 | 44.50 | 74.00 | -29.50 | peak | | 3 | | 4804.000 | 7.89 | 33.97 | 42.47 | 47.87 | 47.26 | 74.00 | -26.74 | peak | | 4 | pp | 6659.763 | 11.08 | 35.70 | 41.10 | 43.83 | 49.51 | 74.00 | -24.49 | peak | | 5 | | 7206.000 | 10.08 | 36.07 | 40.71 | 43.35 | 48.79 | 74.00 | -25.21 | peak | | 6 | | 9608.000 | 10.75 | 37.67 | 37.74 | 37.47 | 48.15 | 74.00 | -25.85 | peak | Report No.: SZEM180700656302 Page: 64 of 75 Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Vertical Site : chamber Condition: 3m VERTICAL Job No : 06563RG Mode : 2441 TX RSE | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | |---|-------------|-------|--------|--------|-------|--------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 1426.916 | 5.24 | 25.53 | 41.36 | 46.76 | 36.17 | 74.00 | -37.83 | peak | | 2 | 4495.125 | 7.55 | 33.59 | 42.42 | 46.00 | 44.72 | 74.00 | -29.28 | peak | | 3 | 4882.000 | 7.97 | 34.06 | 42.48 | 46.06 | 45.61 | 74.00 | -28.39 | peak | | 4 | 6395.654 | 11.34 | 35.50 | 41.30 | 43.33 | 48.87 | 74.00 | -25.13 | peak | | 5 | 7323.000 | 10.05 | 36.16 | 40.63 | 42.36 | 47.94 | 74.00 | -26.06 | peak | | 6 | pp 9764.000 | 10.82 | 37.76 | 37.52 | 37.96 | 49.02 | 74.00 | -24.98 | peak | Report No.: SZEM180700656302 Page: 65 of 75 Test mode: GFSK(DH5) Test channel: Middle Remark: Peak Horizontal Site : chamber Condition: 3m HORIZONTAL Job No : 06563RG Mode : 2441 TX RSE | | | | | _ | | | | _ | | |-----|------------|-------|--------|--------|-------|--------|--------|--------|--------| | | | Cable | Ant | Preamp | Kead | | Limit | Over | | | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | | | | | | 1 | 1663.137 | 5.27 | 26.52 | 41.51 | 45.80 | 36.08 | 74.00 | -37.92 | peak | | 2 | 4379.699 | 7.43 | 33.39 | 42.40 | 46.06 | 44.48 | 74.00 | -29.52 | peak | | 3 | 4882.000 | 7.97 | 34.06 | 42.48 | 46.14 | 45.69 | 74.00 | -28.31 | peak | | 4 p | p 6395.654 | 11.34 | 35.50 | 41.30 | 45.13 | 50.67 | 74.00 | -23.33 | peak | | 5 | 7323.000 | 10.05 | 36.16 | 40.63 | 40.70 | 46.28 | 74.00 | -27.72 | peak | | 6 | 9764,000 | 10.82 | 37.76 | 37.52 | 38.08 | 49.14 | 74.00 | -24.86 | neak | Report No.: SZEM180700656302 Page: 66 of 75 Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Vertical Site : chamber Condition: 3m VERTICAL Job No : 06563RG Mode : 2480 TX RSE | | Freq | | | Preamp
Factor | | | | | Remark | |-----|------------|-------|-------|------------------|-------|-------|-------|--------|--------| | | MHz | | | dB | | | | | | | 1 | 1667.951 | 5.27 | 26.54 | 41.51 | 46.27 | 36.57 | 74.00 | -37.43 | peak | | 2 | 4367.058 | | | | | | | | • | | 3 | 4960.000 | | | | | | | | • | | 4 p | p 6602.265 | 11.24 | 35.66 | 41.14 | 43.61 | 49.37 | 74.00 | -24.63 | peak | | 5 | 7440.000 | 10.02 | 36.25 | 40.56 | 42.78 | 48.49 | 74.00 | -25.51 | peak | | 6 | 9920,000 | 10.90 | 37.85 | 37.31 | 36.92 | 48.36 | 74.00 | -25.64 | peak | Report No.: SZEM180700656302 Page: 67 of 75 Test mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal Site : chamber Condition: 3m HORIZONTAL Job No : 06563RG Mode : 2480 TX RSE | | Fred | | | Preamp
Factor | | | | | Romank | |-----|------------|-------|-------|------------------|-------|--------|--------|--------|-----------| | | | | | | | | | | Kelliai K | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 1692.231 | 5.24 | 26.64 | 41.53 | 45.09 | 35.44 | 74.00 | -38.56 | peak | | | 4456.315 | | | | | | | | • | | 3 | 4960.000 | 8.05 | 34.15 | 42.49 | 47.09 | 46.80 | 74.00 | -27.20 | peak | | 4 p | p 6602.265 | 11.24 | 35.66 | 41.14 | 44.49 | 50.25 | 74.00 | -23.75 | peak | | 5 | 7440.000 | 10.02 | 36.25 | 40.56 | 43.18 | 48.89 | 74.00 | -25.11 | peak | | 6 | 9920.000 | 10.90 | 37.85 | 37.31 | 38.35 | 49.79 | 74.00 | -24.21 | peak | Report No.: SZEM180700656302 Page: 68 of 75 #### Remark: 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor - 2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report. - 4) All Modes have been tested, but only the worst case data displayed in this report. Report No.: SZEM180700656302 Page: 69 of 75 #### 4.11 Restricted bands around fundamental frequency | Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205 | | | | | | | | |-------------------|---|--------------------|-------------------------|--|--|--|--|--| | Test Method: | ANSI C63.10: 2013 | | | | | | | | | Test Site: | Measurement Distance: 3m or 10m (Semi-Anechoic Chamber) | | | | | | | | | | Frequency
30MHz-88MHz | Limit (dBuV/m @3m) | Remark Quasi-peak Value | | | | | | | | 88MHz-216MHz | 43.5 | Quasi-peak Value | | | | | | | Limit: | 216MHz-960MHz | 46.0 | Quasi-peak Value | | | | | | | | 960MHz-1GHz | 54.0 | Quasi-peak Value | | | | | | | | Above 1GHz | 54.0 | Average Value | | | | | | | | Above 1GH2 | 74.0 | Peak Value | | | | | | | Test Setup: | | | | | | | | | Figure 1. 30MHz to 1GHz Figure 2. Above 1 GHz Report No.: SZEM180700656302 Page: 70 of 75 | Test Procedure: | a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are
performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. | | | | | |------------------------|--|--|--|--|--| | Exploratory Test Mode: | Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. | | | | | | Final Test Mode: | Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report. | | | | | | Instruments Used: | Refer to section 5.10 for details | | | | | | Test Results: | Pass | | | | | | | I | | | | | Report No.: SZEM180700656302 Page: 71 of 75 #### Test plot as follows: Note: All modulations have been tested, but only the worst data showed in this report. Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical Site : chamber Condition: 3m VERTICAL Job No : 06563RG Mode : 2402 Band edge | | Freq | | | Preamp
Factor | | | | | Remark | |---|-------------|------|-------|------------------|-------|--------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 2378.949 | 5.46 | 28.50 | 41.87 | 56.93 | 49.02 | 74.00 | -24.98 | peak | | 2 | 2390.000 | 5.47 | 28.52 | 41.87 | 55.03 | 47.15 | 74.00 | -26.85 | peak | | 3 | pp 2402.000 | 5.49 | 28.54 | 41.88 | 99.57 | 91.72 | 74.00 | 17.72 | peak | Report No.: SZEM180700656302 Page: 72 of 75 Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal Site : chamber Condition: 3m HORIZONTAL Job No : 06563RG Mode : 2402 Band edge Note : BT 1 2 | Freq | | | | Read
Level | | | | Remark | | |----------------------|----|------|----|---------------|--------|--------|------|--------|---| | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | ——dB | | - | | 2389.356
2390.000 | | | | | | | | - | | | on 2402.000 | | | | | | | | • | | Report No.: SZEM180700656302 Page: 73 of 75 Peak GFSK (DH5) Test channel: Highest Remark: Vertical Worse case mode: Site : chamber Condition: 3m VERTICAL : 06563RG Job No Mode : 2480 Band edge Note : BT | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | |---|-------------|-------|--------|--------|--------|--------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | | | | | | 1 | pp 2480.000 | 5.59 | 28.67 | 41.91 | 101.76 | 94.11 | 74.00 | 20.11 | peak | | 2 | 2483.500 | 5.60 | 28.67 | 41.91 | 61.47 | 53.83 | 74.00 | -20.17 | peak | | 3 | 2484.321 | 5.60 | 28.67 | 41.91 | 60.35 | 52.71 | 74.00 | -21.29 | neak | Report No.: SZEM180700656302 Page: 74 of 75 Worse case mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal Site : chamber Condition: 3m HORIZONTAL Job No : 06563RG Mode : 2480 Band edge Note : BT 1 2 3 | _ | | | | | | | | | | |----|----------|-------|--------|--------|--------|--------|--------|--------|--------| | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | | | | | | pp | 2480.000 | 5.59 | 28.67 | 41.91 | 100.61 | 92.96 | 74.00 | 18.96 | peak | | | 2483.500 | 5.60 | 28.67 | 41.91 | 61.00 | 53.36 | 74.00 | -20.64 | peak | | | 2483.871 | 5.60 | 28.67 | 41.91 | 61.33 | 53.69 | 74.00 | -20.31 | neak | Report No.: SZEM180700656302 Page: 75 of 75 Note: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor All Modes have been tested, but only the worst case data displayed in this report. #### 5 Photographs - EUT Constructional Details Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1807006563RG. The End