JUDLR@! | Engineering

Simplicity

Juniper Cloud Native Router User Guide

Published
2023-12-27

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Cloud Native Router User Guide
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

1 Introduction

Juniper Cloud-Native Router Overview | 2
Juniper Cloud-Native Router Components | 5
JCNR Deployment Modes | 10
JCNR Interfaces Overview | 11
2 Common Features (All Deployment Modes)
JCNR Common Features | 24
Enabling Dynamic Device Personalization (DDP) on Individual Interfaces | 24
VLAN Sub-Interfaces | 26
3 L2 Features
L2 Features Overview | 30
Access Control Lists (Firewall Filters) | 30
MAC Learning and Aging | 33
Storm Control | 36
APIs and CLI Commands for Bond Interfaces | 38
Quality of Service (QoS) | 41
Native VLAN | 47
Prevent Local Switching | 48
4 L3 Features
L3 Features Overview | 53
IPsec Security Services | 53

JCNR as a Transit Gateway | 54

EVPN Type 5 Routing over VXLAN Tunnels | 56
Integrated Routing and Bridging on JCNR | 64
L3 Routing Protocols | 71

MPLS Support | 75

Bidirectional Forwarding Detection (BFD) | 76
Virtual Router Redundancy Protocol (VRRP) | 77
Virtual Routing Instance (VRF-Lite) | 78

ECMP | 81

BGP Unnumbered | 82

JCNR CNI Configuration Examples

JCNR Use-Cases and Configuration Overview | 84

L2 Kernel Access-Mode Interface Configuration Example | 89

Overview | 90
Configuration Example | 90

L2 virtio Trunk-Mode Interface Configuration Example | 94

Overview | 94
Configuration Example | 95

L2 VLAN Sub-Interface Configuration Example | 99

Overview | 99
Configuration Example | 100

L3 VPN Interface Configuration Example | 104
Overview | 104
Configuration Example | 105

L3 VLAN Sub-Interface Configuration Example | 111

Overview | 111

Configuration Example | 112

Monitoring and Logging

Monitor JCNR via CLI | 119
Telemetry Capabilities of Cloud-Native Router | 126

Logging and Notifications | 147

Troubleshooting

Troubleshoot via the vRouter CLI | 152
Troubleshoot via Introspect | 164
Appendix

Access cRPD CLI | 167

Access vRouter CLI | 168

Juniper Technology Previews (Tech Previews) | 170

CHAPTER

Introduction

Juniper Cloud-Native Router Overview | 2
Juniper Cloud-Native Router Components | 5
JCNR Deployment Modes | 10

JCNR Interfaces Overview | 11

Juniper Cloud-Native Router Overview

IN THIS SECTION

Overview | 2
Use Cases | 2
Architecture and Key Components | 3

Features | 4

Overview

While 5G unleashes higher bandwidth, lower latency and higher capacity, it also brings in new
infrastructure challenges such as increased number of base stations or cell sites, more backhaul links
with larger capacity and more cell site routers and aggregation routers. Service providers are integrating
cloud-native infrastructure in distributed RAN (D-RAN) topologies, which are usually small, leased
spaces, with limited power, space and cooling. The disaggregation of radio access network (RAN) and
the expansion of 5G data centers into cloud hyperscalers has added newer requirements for cloud-
native routing.

The Juniper Cloud-Native Router provides the service providers the flexibility to roll out the expansion
requirements for 5G rollouts, reducing both the CapEx and OpEx.

Juniper Cloud-Native Router (JCNR) is a containerized router that combines Juniper's proven routing
technology with the Junos containerized routing protocol daemon (cRPD) as the controller and a high-
performance Contrail® Data Plane Development Kit (DPDK) vRouter forwarding plane. It is
implemented in Kubernetes and interacts seemlessly with a Kubernetes container network (CNI)
framework.

Use Cases

The Cloud-Native Router has the following use cases:
e Radio Access Network (RAN)

The new 5G-only sites are a mix of centralized RAN (C-RAN) and distributed RAN (D-RAN). The C-
RAN sites are typically large sites owned by the carrier and continue to deploy physical routers. The
D-RAN sites, on the other hand, are tens of thousands of smaller sites, closer to the users.

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Optimization of CapEx and OpEx is a huge factor for the large number of D-RAN sites. These sites
are also typically leased, with limited space, power and cooling capacities. There is limited
connectivity over leased lines for transit back to the mobile core. Juniper Cloud-Native Router is
designed to work in the constraints of a D-RAN. It is integrated with the distributed unit (DU) and
installable on an existing 1 U server.

e Telco virtual private cloud (VPC)

The 5G data centers are expanding into cloud hyperscalers to support more radio sites. The cloud-
native routing available in public cloud environments do not support the routing demands of telco
VPCs, such as MPLS, quality of service (QoS), L3 VPN, and more. The Juniper Cloud-Native Router
integrates directly into the cloud as a containerized network function (CNF), managed as a cloud-
native Kubernetes component, while providing advanced routing capabilities.

Architecture and Key Components

The Juniper Cloud-Native Router consists of the Junos containerized routing protocol Daemon (cRPD)
as the control plane (JCNR Controller), providing topology discovery, route advertisement and
forwarding information base (FIB) programming, as well as dynamic underlays and overlays. It uses the
Data Plane Development Kit (DPDK) enabled vRouter as a forwarding plane, providing packet
forwarding for DPDK applications in a pod and host path I/O for protocol sessions. The third component
is the JCNR container network interface (CNI) that interacts with Kubernetes as a secondary CNI to
create pod interfaces, assign addresses and generate the router configuration.

The Data Plane Development Kit (DPDK) is an open source set of libraries and drivers. DPDK enables
fast packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. The applications poll for packets, to avoid the
overhead of interrupts from the NIC. Integrating with DPDK allows a vRouter to process more packets
per second than is possible when the vRouter runs as a kernel module.

In this integrated solution, the JCNR Controller uses gRPC, a high performance Remote Procedure Call,
based services to exchange messages and to communicate with the vRouter, thus creating the fully
functional Cloud-Native Router. This close communication allows you to:

e Learn about fabric and workload interfaces.
e Provision DPDK- or kernel-based interfaces for Kubernetes pods as needed.
e Configure IPv4 and IPvé6 address allocation for Pods.

e Run routing protocols such as ISIS, BGP, and OSPF.

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Features

Easy deployment, removal, and upgrade on general purpose compute devices using Helm.
Higher packet forwarding performance with DPDK-based JCNR-vRouter.

Full routing, switching, and forwarding stacks in software.

Out-of-the-box software-based open radio access network (O-RAN) support.

Quick spin up with containerized deployment.

Highly scalable solution.

L3 features such as transit gateway, support for routing protocols, BFD, VRRP, VRF-Lite, EVPN
Type-5, ECMP and BGP Unnumbered.

L2 functionality, such as MAC learning, MAC aging, MAC limiting, native VLAN and L2 statistics.
L2 reachability to Radio Units (RU) for management traffic.

L2 or L3 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs.
VLAN tagging and bridge domains.

Trunk and access ports.

Support for multiple virtual functions (VF) on Ethernet NICs.

Support for bonded VF interfaces.

Configurable L2 access control lists (ACLs).

Rate limiting of egress broadcast, unknown unicast, and multicast traffic on fabric interfaces.

IPv4 and IPvé routing.

Juniper Cloud-Native Router Components

SUMMARY IN THIS SECTION
The Juniper Cloud-Native Router solution consists of JCNR Components | 5
several components including the JCNR controller, JCNR Controller | 6

JCNR vRouter and the JCNR-CNI. This topic
provides a brief overview of the components of the
Juniper Cloud-Native Router. JCNR-CNI | 8

JCNR vRouter | 7

Syslog-NG | 9

JCNR Components

The Juniper Cloud-Native Router has primarily three components—JCNR Controller control plane, the
JCNR vRouter DPDK forwarding plane and JCNR-CNI for Kubernetes integration. All JCNR components
are deployed as containers.

The Figure 1 on page 6 shows the components of the Juniper Cloud-Native Router inside a
Kubernetes cluster

Figure 1: Components of Juniper Cloud-Native Router

Linux Host running Kubernetes

DPDK Syslog-NG
App App

Pod Pod

Standalone K8s Cluster

etcd Multus Calico
CNI CNI
Control Sched Pod Pod
Plane

JCNR-CNI

JCNR JCNR JCNR

vrouter- vrouter- lelemetry

Controller Portal

agent agent-dpdk

Pod

Intel E-810
or

Intel XL710 rr*_

Data Path

e

—
e

—

jn-000367

. JCNR components TOR Switch

I JCNR Controller

The JCNR Controller is the control-plane of the cloud-native router solution that runs the Junos
containerized routing protocol Daemon (cRPD). It is implemented as a statefulset. The controller
communicates with the other elements of the cloud-native router. Configuration, policies and rules that
you set on the controller at deployment time are communicated to other components, primarily the
JCNR vRouter, for implementation.

For example, firewall filters (ACLs) are supported on the controller to configure L2 access lists with deny
rules. The controller sends the configuration information to the JCNR vRouter through the vRouter
agent.

Juniper Cloud-Native Router Controller Functionality:

e Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

e Supports vRouter as the high-speed forwarding plane. This enables applications that are built using
the DPDK framework to send and receive packets directly to the application and the vRouter
without passing through the kernel.

e Supports configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled vRouter.

e Supports configuration of bridge domains, VLANSs, and virtual-switches.

e Advertises DPDK application reachability to core network using routing protocols primarily with
BGP, IS-IS and OSPF.

e Distributes L3 network reachability information of the pods inside and outside a cluster.
e Maintains configuration for L2 firewall.

e Passes configuration information to the vRouter through the vRouter-agent.

e Stores license key information.

o Works as a BGP Speaker from Release 23.2, establishing peer relationships with other BGP speakers
to exchange routing information.

Configuration Options
During deployment, you can Customize JCNR Configuration .

After deployment, we recommend that you use the NETCONF protocol with PyEZ to configure the
controller. You can SSH or connect via NETCONF. Finally, you can also configure the cloud-native router
by "accessing the JCNR controller CLI" on page 167 using Kubernetes commands.

JCNR vRouter

The JCNR vRouter is a high-performance datapath component. It is an alternative to the Linux bridge or
the Open vSwitch (OVS) module in the Linux kernel. It runs as a user-space process and is integrated
with the Data Plane Development Kit (DPDK) library. The vRouter pod consists of three containers—
vrouter-agent, vrouter-agent-dpdk and vrouter-telemetry-exporter.

JCNR vRouter Functionality:
e Performs routing with Layer 3 virtual private networks.
e Performs L2 forwarding.

e Supports high-performance DPDK-based forwarding.

https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/index.html
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-enabling-ssh
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-connecting-to-a-netconf-server-on-container

Benefits of vRouter:

e Integration of the DPDK into the JCNR-vRouter.
e Forwarding plane provides faster forwarding capabilities than kernel-based forwarding.
e Forwarding plane is more scalable than kernel-based forwarding.
e Support for the following NICs:
¢ Intel E810 (Columbiaville) family

e Intel XL710 (Fortville) family

JCNR-CNI

JCNR-CNI is a new container network interface (CNI) developed by Juniper. JCNR-CNI is a Kubernetes
CNI plugin installed on each node to provision network interfaces for application pods. During pod
creation, Kubernetes delegates pod interface creation and configuration to JCNR-CNI. JCNR-CNI
interacts with JCNR controller and the vRouter to setup DPDK interfaces. When a pod is removed,
JCNR-CNI is invoked to de-provision the pod interface, configuration, and associated state in
Kubernetes and cloud-native router components. JCNR-CNI works as a secondary CNI, along with the
Multus CNI to add and configure pod interfaces.

JCNR-CNI Functionality:

e Manages the networking tasks in Kubernetes pods such as:
e assigning IP addresses.
e allocating MAC addresses.

o setting up untagged, access, and other interfaces between the pod and vRouter in a Kubernetes
cluster.

e creating VLAN sub-interfaces.

e creating L3 interfaces.
e Acts on pod events such as add and delete.
e Generates cRPD configuration.

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JCNR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options such as:

¢ Instantiating different kinds of pod interfaces.
o Creating virtio-based high performance interfaces for pods that leverage the DPDK data plane.

e Creating veth pair interfaces that allow pods to communicate using the Linux Kernel networking
stack.

e Creating pod interfaces in access or trunk mode.

e Attaching pod interfaces to bridge domains and virtual routers.
o Supporting IPAM plug-in for Dynamic IP address allocation.

e Allocating unique socket interfaces for virtio interfaces.

e Managing the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and vRouter in a Kubernetes cluster.

e Connecting pod interface to a network including pod-to-pod and pod-to-network.

Integrating with the vRouter for offloading packet processing.

Benefits of JCNR-CNI:

e Improved pod interface management

e Customizable administrative and monitoring capabilities

¢ Increased performance through tight integration with the controller and vRouter components

The Role of JCNR-CNI in Pod Creation:

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into the controller.

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file. Syslog-ng runs as
a daemonset.

JCNR Deployment Modes

SUMMARY IN THIS SECTION

Read this topic to know about the various modes of Deployment Modes | 10
deploying the cloud-native router.

Deployment Modes

Starting with Juniper Cloud-Native Router Release 23.2, you can deploy and operate Juniper Cloud-
Native Router in L2, L3 and L2-L3 modes, auto-derived based on the interface configuration in the
values.yanml file prior to deployment.

NOTE: In the values.yaml file:

e When all the interfaces have an interface_mode key configured, then the mode of deployment
would be L2.

e When one or more interfaces have an interface_mode key configured and some of the interfaces
do not have the interface_mode key configured, then the mode of deployment would be L2-L3.

e When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

In L2 mode, the cloud-native router behaves like a switch and therefore does not performs any routing
functions and it doesn not run any routing protocols. The pod network uses VLANSs to direct traffic to
various destinations.

In L3 mode, the cloud-native router behaves like a router and therefore performs routing functions and
runs routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod
network is divided into an IPv4 or IPvé6 underlay network and an IPv4 or IPvé6 overlay network. The
underlay network is used for control plane traffic.

The L2-L3 mode provides the functionality of both the switch and the router at the same time. It
enables JCNR to act as both a switch and a router simultaneously by performing switching in a set of
interfaces and routing in the other set of interfaces. Cell site routers in a 5G deployment need to handle
both L2 and L3 traffic. DHCP packets from radio outdoor unit (RU) is an example of L2 traffic and data
packets moving from outdoor unit (ODU) to central unit (CU) is an example of L3 traffic.

JCNR Interfaces Overview

SUMMARY IN THIS SECTION
This topic provides information on the network Juniper Cloud-Native Router Interface
communication interfaces provided by the JCNR- Types | 11

Controller. Fabric interfaces are aggregated
interfaces that receive traffic from multiple
interfaces. Interfaces to which different workloads
are connected are called workload interfaces.

Read this topic to understand the network communication interfaces provided by the JCNR-Controller.
We cover interface names, what they connect to, how they communicate. and the services they provide.

Juniper Cloud-Native Router Interface Types

Juniper Cloud-Native Router supports two types of interfaces:

Fabric interfaces—Aggregated interfaces that receive traffic from multiple interfaces. Fabric interfaces
are always physical interfaces. They can either be a physical function (PF) or a virtual function (VF).
The throughput requirement for these interfaces is higher, hence multiple hardware queues are
allocated to them. Each hardware queue is allocated with a dedicated CPU core . The interfaces are
configured for the cloud-native router using the appropriate values.yanl file in the deployer
helmcharts. You can view the interface mapping using the dpdkinfo -c command. View the
Troubleshoot via the vRouter CLI topic in the Deployment Guide for more details. You also have
fabric workload interfaces that have low throughput requirement. Only one hardware queue is
allocated to the interface, thereby saving precious CPU resources. These interfaces can be configured
using the appropriate values.yaml file in the deployer helmcharts.

Workload interfaces—Interfaces to which different workloads are connected. They can either be
software-based or hardware-based interfaces. Software-based interfaces are either high-
performance interfaces using the Data Plane Development Kit (DPDK) poll mode driver (PMD) or a
low-performance interfaces using the kernel driver. Typically the DPDK interfaces are used for data
traffic such as the GPRS Tunneling Protocol for user data (GTP-U) traffic and the kernel-based
interfaces are used for control plane data traffic such as TCP. The kernel pod interfaces are typically
for the operations, administration and maintenance (OAM) traffic. The interfaces are configured as a
veth-pair, with one end of the interface in the pod and the other end in the Linux kernel on the host.
JCNR also supports bonded interfaces via the link bonding PMD. These interfaces can be configured
using the appropriate values.yaml file in the deployer helmcharts.

JCNR supports different types of VLAN interfaces including trunk, access and sub-interfaces across
fabric and workload interfaces.

JCNR Interface Details

The different JCNR interfaces are provided in detail below:

Agent interface

vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter. On the vRouter CLI when you issue the vif --1ist command, the
agent interface looks like this:

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 000000000
RX packets:@ bytes:0 errors:0
TX packets:650 bytes:99307 errors:0
Drops: 0

DPDK VF workload interfaces

These interfaces connect to the radio units (RUs) or millimeter-wave distributed units (mmWave-
DUs). On the vRouter CLI when you issue the vif --1ist command, the DPDK VF workload interface
looks like this:

vife/5 PCI: 0000:ca:19.1 (Speed 10000, Duplex 1)
Type:Workload HWaddr:9e:52:29:9e:97:9b
Vrf:0 Flags:L2Vof Q0S:-1 Ref:9
RX queue packets:29087 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
Fabric Interface: 0000:ca:19.1 Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 1250 QVlan Id: 1250
RX packets:29082 bytes:6766212 errors:5
TX packets:0 bytes:0 errors:0
Drops: 29896

DPDK VF fabric interfaces (Physical Trunk)

DPDK VF fabric interfaces, which are associated with the physical network interface card (NIC) on
the host server, accept traffic from multiple VLANSs.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
ens786fove {
unit @ {
family bridge {
interface-mode trunk;
vlan-id-list 1001-1100;

On the vRouter CLI when you issue the vif --list command, the DPDK VF fabric interface looks like
this:

vife/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:d6:22:c5:42:de:c3
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:12
RX queue packets:11813 errors:1
RX queue errors to lcore 0 0 0 00 000000010
Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 1001-1100
RX packets:0 bytes:0 errors:49962
TX packets:18188356 bytes:2037400554 errors:0Q
Drops:49963

e Active or standby bond interfaces (Bond Trunk)

Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or standby
mode (mode 0). You define the bond interface in the helm chart configuration as follows:

bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE

slavelnterfaces:

- "ens2fov1"

- "ens2f1v1"
- bond0d:
ddp: "auto"

interface_mode: trunk

vlan-id-list: [1001-1100]
storm-control-profile: rate_limit_pf1
native-vlan-id: 1001

no-local-switching: true

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {

bondo {
unit 0 {
family bridge
interface-mode trunk;
vlan-id-list 1001-1100;
}
}

On the vRouter CLI when you issue the vif --list command, the bond interface looks like this:

vife/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:32:f8:ad:8c:d3:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue packets:1882 errors:0
RX queue errors to lcore 0 0 0 000000000
Fabric Interface: eth_bond_bond@ Status: UP Driver: net_bonding
Slave Interface(0): 0000:81:01.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 1001-1100
RX packets:8108366000 bytes:486501960000 errors:4234
TX packets:65083776 bytes:4949969408 errors:0
Drops: 8108370394

Pod interfaces using DPDK data plane (Virtio Trunk) virtio

The trunk interfaces accept only tagged packets. Any untagged packets are dropped. These
interfaces can accept a VLAN filter to allow only specific VLAN packets. A trunk interface can be a
part of multiple bridge-domains (BD). A bridge domain is a set of logical ports that share the same
flooding or broadcast characteristics. Like a VLAN, a bridge domain spans one or more ports of
multiple devices. Virtio interfaces are associated with pod interfaces that use virtio on the DPDK
data plane.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
vhost242ip-93883f16-9ebb-4acf-b {
unit 0 {
family bridge {
interface-mode trunk;
vlan-id-list 1001-1003;

On the vRouter CLI when you issue the vif --list command, the virtio with DPDK data plane
interface looks like this:

vife/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
Type:Virtual HWaddr:00:16:3e:7e:84:a3
Vrf:65535 Flags:L2 Q0S:-1 Ref:13
RX queue errors to lcore 0 0 0 0 0 000000000
Vlan Mode: Trunk Vlan: 1001-1003
RX packets:0 bytes:@ errors:0
TX packets:10604432 bytes:1314930908 errors:0
Drops:0
TX port packets:0 errors:10604432

Pod interfaces using Kernel interface

The access interfaces accept both tagged and untagged packets. Untagged packets are tagged with
the access VLAN or access BD. Any tagged packets other than the ones with access VLAN are
dropped. The access interfaces is a part of a single bridge-domain. It does not have any parent
interface.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

routing-instances {
switch {
instance-type virtual-switch;

bridge-domains

{
bd1001 {
vlan-id 1001;
interface jvknetl-eed79ff;
}
}
}
}

On the vRouter CLI when you issue the vif --list command, the veth pair interface looks like this:

vifo/4 Ethernet: jvknet1-88c44c3
Type:Virtual HWaddr:02:00:00:3a:8f:73
Vrf:0 Flags:L2Vof Q0S:-1 Ref:10
RX queue packets:524 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
Vlan Mode: Access Vlan Id: 1001 OVlan Id: 1001
RX packets:9 bytes:802 errors:515
TX packets:0 bytes:@ errors:0
Drops: 525

L2 VLAN sub-interfaces

You can configure a user pod with a Layer 2 VLAN sub-interface and attach it to the JCNR instance.
VLAN sub-interfaces are like logical interfaces on a physical switch or router. They access only
tagged packets that match the configured VLAN tag. A sub-interface has a parent interface. A parent
interface can have multiple sub-interfaces, each with a VLAN ID. When you run the cloud-native
router, you must associate each sub-interface with a specific VLAN.

The cRPD interface configuration viewed using the show configuration command is as shown below
(the output is trimmed for brevity).

For L2:

routing-instances {
switch {
instance-type virtual-switch;

bridge-domains

{
bd100 {
vlan-id 100;
interface vhostnet1-1e555ee1-7d93-40.100;
}
}
}
}

On the vRouter, a VLAN sub-interface configuration is as shown below:

vife/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vif0/4
Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
Vrf:0 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 00 0 000000000
RX packets:0 bytes:0@ errors:0
TX packets:0 bytes:0 errors:0
Drops:0

NOTE: To see the VLAN sub-interfaces on the vRouter, connect to the vRouter agent by
executing the command kubectl exec -it -n contrail contrail-vrouter-<agent container> -- bash
command, and then run the command vif --get.

e L3 Physical Interface

vife/1 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000 <- PCI
Address
Type:Physical HWaddr:d6:93:87:91:45:6¢ IPaddr: 192.21.2.4 <- Physical interface
IP6addr:2001:192:21:2::4 <- IPv6 address
DDP: OFF SwLB: ON
Vrf:2 Mcast Vrf:2 Flags:L3L2Vof Q0S:0 Ref:16 <- L3 (only) interface
RX port packets:423168341 errors:0

RX queue errors to lcore 0 0 0 0 0000000000

Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
RX packets:423168341 bytes:29123418594 errors:0

TX packets:417508247 bytes:417226216530 errors:0

Drops:8

TX port packets:417508247 errors:0

vifo/2 PMD: ens2f2 NH: 12 MTU: 9000 <- Tap interface name as seen by cRPD

Type:Host HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Tap interface type

IP6addr:2001:192:21:2::4

DDP: OFF SwLB: ON

Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QO0S:-1 Ref:15 TxXVif:1 <-cross-connected
to vif 1

RX device packets:306995 bytes:25719830 errors:0

RX queue packets:306995 errors:0

RX queue errors to 1lcore 2 0 0 0 0 0 00000000

RX packets:306995 bytes:25719830 errors:0Q

TX packets:307489 bytes:25880250 errors:0

Drops: 0@

TX queue packets:307489 errors:0

TX device packets:307489 bytes:25880250 errors:0

Corresponding interface state in the cRPD:

show interfaces routing ens2f2
Interface State Addresses
ens2f2 Up MPLS enabled
ISO enabled
INET 192.21.2.4
INET6 2001:192:21:2::4
INET6 fe80::c5da:7e9c:e168:56d7
INET6 fe80::a0be:69ff:fe59:8b58

L3 Bond Interface

vife/3 PCI: 0000:00:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 1514 <- Bond interface (PCI
id o)
Type:Physical HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Physical interface
IP6addr:2001:192:7:7::4
DDP: OFF SwLB: ON

Vrf:1 Mcast Vrf:1 Flags:TcL3L2Vof Q0S:0 Ref:18

RX port packets:402183888 errors:0

RX queue errors to lcore 0 0 0 0 0000000000

Fabric Interface: eth_bond_bond34 Status: UP Driver: net_bonding <- Bonded
master

Slave Interface(0): 0000:5e:00.0 Status: UP Driver: net_ice <- Bond slave - 1

Slave Interface(1): 0000:af:00.0 Status: UP Driver: net_ice <- Bond slave - 2

RX packets:402183888 bytes:49519387070 errors:0

TX packets:79226 bytes:7330912 errors:0

Drops:1393

TX port packets:79226 errors:0

vifo/4 PMD: bond34 NH: 11 MTU: 9000

Type:Host HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Tap interface

IP6addr:2001:192:7:7::4

DDP: OFF SwLB: ON

Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr Q0S:-1 Ref:15 TxXVif:3 <- Tap interface
for bond

RX device packets:76357 bytes:7101918 errors:0

RX queue packets:76357 errors:0

RX queue errors to lcore 0 0 0 0 0000000000

RX packets:76357 bytes:7101918 errors:0

TX packets:75349 bytes:6946908 errors:0

Drops: 0

TX queue packets:75349 errors:0

TX device packets:75349 bytes:6946908 errors:0

Corresponding interface state in the cRPD:

show interfaces routing bond34
Interface State Addresses
bond34 Up INET6 2001:192:7:7::4
ISO enabled
INET 192.7.7.4
INET6 fe80::527c:6fff:fe48:7574

e |3 Pod Vhost-User Interface

vifo/8 PMD: vhostnet1-aa0984c7-0c1d-40a4-87 NH: 35 MTU: 9160 <- vhost-user interface of
CNF

Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:2.51.1.3 <- pod/ workload
IP6addr:abcd:2:51:1::3 <- IPv6 address of the pod

DDP: OFF SwLB: ON

Vrf:3 Mcast Vrf:3 Flags:PL3DProxyEr QO0S:-1 Ref:14

RX queue errors to lcore 0 0 0 0 0000000000

RX packets:0 bytes:0@ errors:0

TX packets:0 bytes:0 errors:0

Drops:0

Corresponding interface state in the cRPD:

show interfaces routing vhostnet1-aa0984c7-0c1d-40a4-87
Interface State Addresses
vhostnet1-aa0984c7-0c1d-40a4-87 Up INET6 enabled

INET6 abcd:2:51:1::3

ISO enabled

INET enabled

INET 2.51.1.3

e L3 Kernel Interface

vife/13 Ethernet: jvknetl1-@af476e NH: 35 MTU: 9160 <- Kernel interface (jvk) of CNF
Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:2.51.1.4 <- pod/ workload
IP6addr:abcd:2:51:1::4
DDP: OFF SwLB: ON
Vrf:1 Mcast Vrf:1 Flags:PL3DVofProxyEr Q0S:-1 Ref:11
RX port packets:47 errors:Q
RX queue errors to 1lcore 2 0 0 0 0 0 00000000
RX packets:47 bytes:13012 errors:0
TX packets:0 bytes:0 errors:0
Drops: 47

Corresponding interface state in the cRPD:

show interfaces routing jvknetl-0af476e
Interface State Addresses
jvknet1-0af476e Up INET6 enabled
INET6 abcd:2:51:1::4
ISO enabled

INET enabled
INET 2.51.1.4

e L3 VLAN Sub-Interfaces

Starting in Juniper Cloud-Native Router Release 23.2, the cloud-native router supports the use of
VLAN sub-interfaces in L3 mode.

vife/2 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
Type:Physical HWaddr:d6:93:87:91:45:6¢ IPaddr:0.0.0.0
IP6addr:fe80::d493:87ff:fe91:456c <- IPv6 address
DDP: OFF SwLB: ON
Vrf:2 Mcast Vrf:2 Flags:L3L2Vof Q0S:0 Ref:16 <- L3 (only) interface
RX port packets:423168341 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
RX packets:423168341 bytes:29123418594 errors:0
TX packets:417508247 bytes:417226216530 errors:0
Drops:8
TX port packets:417508247 errors:0

vifo/5 PMD: ens1f@vl NH: 12 MTU: 9000
Type:Host HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
IP6addr:fe80::d493:87ff:fe91:456¢
DDP: OFF SwLB: ON
Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr Q0S:-1 Ref:15 TxXVif:2 <- L3 (only) tap

interface
RX device packets:306995 bytes:25719830 errors:0
RX queue packets:306995 errors:@
RX queue errors to lcore 0 0 0 0 0000000000
RX packets:306995 bytes:25719830 errors:0
TX packets:307489 bytes:25880250
errors:0

Drops: 0

TX queue packets:307489 errors:0
TX device packets:307489 bytes:25880250 errors:0

vifo/9 Virtual: ens1f@v1.201 Vlan(o/i)(,S): 201/201 Parent:vif@/2 NH: 36 MTU: 1514 <-
VLAN fabric sub-intf with parent as vif 2 and VLAN tag as 201

Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6¢c IPaddr:103.1.1.2

IP6addr:fe80::d493:87ff:fe91:456¢

DDP: OFF SwLB: ON

Vrf:1 Mcast Vrf:1 Flags:L3DProxyEr Q0S:-1 Ref:4

RX queue errors to lcore 2 0 0 0 0 000000000

RX packets:0 bytes:0@ errors:0

TX packets:0 bytes:0 errors:0

Drops: 0

vife/10 Virtual: ens1f@v1.201 Vlan(o/i)(,S): 201/201 Parent:vif@/5 NH: 21 MTU: 9000
Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6¢c IPaddr:103.1.1.2
IP6addr:fe80::d493:87ff:fe91:456¢
DDP: OFF SwLB: ON
Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QO0S:-1 Ref:4 TxXVif:9 <- VLAN tap sub-intf

cross connected to fabric sub-intf vif 9 and parent as tap intf vif 5
RX queue errors to lcore 0 0 0 0 0000000000
RX packets:0 bytes:0@ errors:0
TX packets:0 bytes:0 errors:0
Drops:0

Corresponding interface state in cRPD:

show interfaces routing ensi1fov1.201
Interface State Addresses
ens1fov1.201 Up MPLS enabled
ISO enabled
INET6 fe80::b89c:fff:feab:e2c9

CHAPTER

Common Features (All Deployment
Modes)

JCNR Common Features | 24

Enabling Dynamic Device Personalization (DDP) on Individual Interfaces | 24

VLAN Sub-Interfaces | 26

JCNR Common Features

SUMMARY

Read this topic to learn about the Juniper Cloud-Native Router common features for all deployment
modes.

The Juniper Cloud-Native Router supports multiple "deployment modes" on page 10.

This chapter explains the common features for all deployment modes.

Enabling Dynamic Device Personalization (DDP) on
Individual Interfaces

SUMMARY

Dynamic Device Personalization (DDP) is a technology that enables programmable packet processing
pipeline provided by Intel as a profile to their NICs. JCNR supports enabling Dynamic Device
Personalization (DDP) on individual interfaces.

Starting with Juniper Cloud-Native Router (JCNR) Release 23.2, JCNR supports enabling Dynamic
Device Personalization (DDP) on individual interfaces. This feature is available on JCNR in L2, L3, and
L2-L3 modes.

Dynamic Device Personalization (DDP) is a technology that enables programmable packet processing
pipeline provided by Intel as a profile to their NICs. Multiple Intel NICs support this technology. The
support varies based on the Intel NIC type. DDP is used in packet classification where the profiles
applied to the NIC can classify multiple packet formats on the NIC enabling speeds and feeds to the
Data Plane Development Kit (DPDK).

Juniper cloud native router (JCNR) provides routing and switching functionality. JCNR supports
interfaces from different NIC cards. Some of the Intel NICs support DDP and some of them don't

support DDP. Therefore, in a deployment scenario, JCNR might have one interface from one NIC that
supports DDP and another interface from a different NIC that does not support DDP. JCNR supports
enabling DDP per interface to overcome such issues.

NOTE: For E810 PF, JCNR loads the DDP package which is bundled with JCNR. However, for
other NICs, ensure you load the DDP package on the NICs before starting JCNR.

A DDP configuration is available per interface. This configuration option overrides global DDP (ddp)
configuration for that interface. If you do not configure an interface DDP, then the global configuration
value serves as the value for that interface. If you do not configure the global DDP configuration, then
the default value for the global configuration which is of f takes effect.

NOTE: DDP is supported on the following NICs:
e E810VF

e E810PF
e X710 PF
e XXV710 PF

DDP support is not available when interfaces are defined under subnets.

You should configure DDP in the helm chart before deployment. Configuring the DDP configurations in
the helm charts for both global and at interface levels is optional. If you do not configure the DDP keys,
then the default value for global DDP which is off takes effect.

The global DDP configuration is available in the values.yaml file as shown below:

Set ddp to enable Dynamic Device Personalization (DDP)

Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

You can configure one of the following options for ddp at the interface level:

1. Auto—when set to auto, JCNR checks if the NIC supports DDP or not during deployment and
configures DPDK accordingly. Detecting whether a NIC supports DDP at run time makes is easier to
deploy JCNR in volumes.

2. On—option enables DDP on the interface without validating the NIC. Use this option only if you are
sure that the NIC supports DDP.

3. Off—is the default option at the interface level. This option disables DDP on the interface.

For example,

= etht:
ddp: "off" ## auto or on or off

NOTE: Each interface can have a different configuration for ddp. DDP is enabled for a bond
interface only if all the slave interface NICs support DDP.

VLAN Sub-Interfaces

IN THIS SECTION

Configuration Example | 26

VLAN sub-interfaces are like logical interfaces on a physical switch or router. They access only tagged
packets that match the configured VLAN tag. A sub-interface has a parent interface. A parent interface
can have multiple sub-interfaces, each with a VLAN ID. When you run the cloud-native router, you must
associate each sub-interface with a specific VLAN. Starting in Juniper Cloud-Native Router Release 23.2,
the cloud-native router supports the use of VLAN sub-interfaces in L3 mode along with the previously
supported L2 mode.

Configuration Example

The VLAN sub-interfaces are configured using the Netowrk Attachment Definition (NAD) and pod
YAML manifests. Please see the "JCNR Use-Cases and Configuration Overview " on page 84 and
relevant configuration examples for more information.

The JCNR controller interface configuration viewed using the show configuration command is as shown
below (the output is trimmed for brevity).

For L2 mode:

routing-instances {
switch {
instance-type virtual-switch;
bridge-domains

bd100 {
vlan-id 100;
interface vhostnetl1-1e555ee1-7d93-40.100;

For L3 mode:

enp24s0fe {
unit 1 {
vlan-id 10;
family inet {
address 172.168.20.3/24;

On the vRouter, a VLAN sub-interface configuration is as shown below:

For L2 mode:

vife/5 Virtual: vhostnet1-71cd7db1-1a5e-49.100 Vlan(o/i)(,S): 3003/3003 Parent:vifo/4
Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
Vrf:0 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 0 0 000000000
RX packets:0 bytes:0@ errors:0
TX packets:0 bytes:0 errors:0
Drops:0

For L3 mode:

vifo/9 Virtual: ens1fov1.201 Vlan(o/i)(,S): 201/201 Parent:vif@/2 NH: 36 MTU: 1514
Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6¢c IPaddr:103.1.1.2
IP6addr:fe80::d493:87ff:fe91:456¢
DDP: OFF SwLB: ON
Vrf:1 Mcast Vrf:1 Flags:L3DProxyEr Q0S:-1 Ref:4
RX queue errors to lcore 0 0 0 0 00 0 0000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:@ errors:0
Drops:0

vife/10 Virtual: ens1fov1.201 Vlan(o/i)(,S): 201/201 Parent:vif@/5 NH: 21 MTU: 9000
Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6¢c IPaddr:103.1.1.2
IP6addr:fe80::d493:87ff:fe91:456¢
DDP: OFF SwLB: ON
Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr Q0S:-1 Ref:4 TxXVif:9
RX queue errors to lcore 0 0 0 0 00 00000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:@ errors:0
Drops:0

CHAPTER

|2 Features

L2 Features Overview | 30

Access Control Lists (Firewall Filters) | 30

MAC Learning and Aging | 33

Storm Control | 36

APIs and CLI Commands for Bond Interfaces | 38
Quality of Service (QoS) | 41

Native VLAN | 47

Prevent Local Switching | 48

L2 Features Overview

SUMMARY

Read this topic to learn about the features available in the Juniper Cloud-Native Router when
deployed in L2 (switch) mode.

The Juniper Cloud-Native Router supports multiple "deployment modes" on page 10.

In L2 mode, the cloud-native router behaves like a switch and so performs no routing functions and runs
no routing protocols. The pod network uses VLANSs to direct traffic to various destinations.

This chapter provides information about the various L2 features supported by JCNR.

Access Control Lists (Firewall Filters)

SUMMARY IN THIS SECTION

Read this topic to learn about Layer 2 access control Access Control Lists (Firewall Filters) | 30

lists (Firewall filters) in the cloud-native router. Configuration Example | 31

Troubleshooting | 32

Access Control Lists (Firewall Filters)

Starting with Juniper Cloud-Native Router Release 22.2 we've included a limited firewall filter capability.
You can configure the filters using the Junos OS CLI within the cloud-native router controller, using
NETCONF, or the cloud-native router APIs. Starting with Juniper Cloud-Native Router Release 23.2, you
can also configure firewall filters using node annotations and custom configuration template at the time
of JCNR deployment. Please review the deployment guide for more details.

During deployment, the system defines and applies firewall filters to block traffic from passing directly
between the router interfaces. You can dynamically define and apply more filters. Use the firewall filters
to:

o Define firewall filters for bridge family traffic.

e Define filters based on one or more of the following fields: source MAC address, destination MAC
address, or EtherType.

e Define multiple terms within each filter.
e Discard the traffic that matches the filter.

e Apply filters to bridge domains.

Configuration Example

Below you can see an example of a firewall filter configuration from a cloud-native router deployment:

root@jcnr@1> show configuration firewall
firewall {
family {
bridge {
filter example {
term t1 {
from {
destination-mac-address 10:10:10:10:10:11;
source-mac-address 10:10:10:10:10:10;
ether-type arp;
}
then {
discard;

NOTE:
therdiscard

After configuration, you must apply your firewall filters to a bridge domain using the set routing-instances
vswitch bridge-domains ba3607 forwarding-options filter input filter’7 configuration command. Then you must
commit the configuration for the firewall filter to take effect.

To see how many packets matched the filter (per VLAN), you can issue the show firewall filter filter?
command on the controller CLI. For example:

show firewall filter filter7
Filter : filterl vlan-id : 3001
Term Packet

t1 0

In the preceding example, we applied the filter to the bridge domain bd3001. The filter has not yet
matched any packets.

Troubleshooting

The following table lists some of the potential problems that you might face when you implement
firewall rules or ACLs in the cloud-native router. You run most of these commands on the host server.

Table 1: L2 Firewall Filter or ACL Troubleshooting
Problem Possible Causes and Resolution Command

Firewall filters or ACLs not working = gRPC connection (port 50052) to
the vRouter is down. Check the netstat -antp|grep 50052
gRPC connection.

The ui-pubd process is not running.

Check whether ui-pubd is running. = P° aux|grep ui-pubd

Firewall filter or ACL show The gRPC connection (port 50052)

commands not working to the vRouter is down. Check the netstat -antp|grep 50052

gRPC connection.

Table 1: L2 Firewall Filter or ACL Troubleshooting (Continued))

Problem Possible Causes and Resolution Command
The firewall service is not running.

ps aux|grep firewall

show log filter.log

You must run this command in the
JCNR-controller (cRPD) CLI.

MAC Learning and Aging

SUMMARY IN THIS SECTION
Juniper Cloud-Native Router provides automated MAC Learning | 33
learning and aging of MAC addresses. Read this topic MAC Entry Aging | 35

for an overview of the MAC learning and aging
functionality in the cloud-native router.

MAC Learning

MAC learning enables the cloud-native router to efficiently send the received packets to their respective
destinations. The cloud-native router maintains a table of MAC addresses grouped by interface. The

table includes MAC addresses, VLANSs, and the interface on which the vRouter learns each MAC address
and VLAN. The MAC table informs the vRouter about the MAC addresses that each interface can reach.

The cloud-native router caches the source MAC address for a new packet flow to record the incoming
interface into the MAC table. The router learns the MAC addresses for each VLAN or bridge domain.
The cloud-native router creates a key in the MAC table from the MAC address and VLAN of the packet.
Queries sent to the MAC table return the interface associated with the key. To enable MAC learning, the
cloud-native router performs these steps:

e Records the incoming interface into the MAC table by caching the source MAC address for a new
packet flow.

e Learns the MAC addresses for each VLAN or bridge domain.
e Creates a key in the MAC table from the MAC address and VLAN of the packet.

If the destination MAC address and VLAN are missing (lookup failure), the cloud-native router floods the
packet out all the interfaces (except the incoming interface) in the bridge domain.

By default:
e MAC table entries time out after 60 seconds.
e The MAC table size is limited to 10,240 entries.

We recommend that you do not change the default values. Please contact Juniper Support if you need
to change the default values.

You can see the MAC table entries by using:

e Introspect agent at http:/ host server IP.8085/mac_learning.xml#Snh_FetchL2MacEntry

12_mac_entry_list

vrf_id vlan_id mac index packets time_since_add last_stats_change
2 1001 00:10:94:00:00: 01 5644 615123154 12:55:14.248263 00:00:00.155450
2 1001 00:10:94:00:00:65 6480 615108294 12:55:14.247765 00:00:00.155461
0 1002 00:10:94:00:00: 02 5628 615123173 12:55:14.248295 00:00:00.155470

e The command show bridge mac-table on the JCNR controller CLI:

show bridge mac-table
Routing Instance : default-domain:default-project:ip-fabric:__default__
Bridging domain VLAN id : 3002

MAC MAC Logical
address flags interface
00:00:5E:00:53:01 D bondd

e The command purel2cli --mac show on the CLI of the vRouter pod:

purel2cli --mac show

|| MAC vlan port hit_count]| |

00:01:01:01:01:03 1221 2 1101892
00:01:01:01:01:02 1221 1101819
00:01:01:01:01:04 1221 2 1101863

N

00:01:01:01:01:01 1221 2 1101879

5a:4c:4c:75:90:fe 1250 5 12

Total Mac entries 5

If you exceed the MAC address limit, the counter pkt_drop_due_to_mactable_limit increments. You can
see this counter by using the introspect agent at http:// host server IP-8085/Snh_AgentStatsReq.

If you delete or disable an interface, the cloud-native router deletes all the MAC entries associated with
that interface from the MAC table.

MAC Entry Aging

The aging timeout for cached MAC entries is 60 seconds. You can configure the aging timeout at
deployment time by editing the values.yaml file. The minimum timeout is 60 seconds and the maximum
timeout is 10,240 seconds. You can see the time that is left for each MAC entry through introspect at
http:// host server IP.8085/mac_learning.xml#Snh_FetchL2MacEntry. We show an example of the

output below:

12_mac_entry_list
vrf_id vlan_id
time_since_add

0 1001
12:55:14.248785

0 1001
12:55:14.247765

0 1002
12:55:14.248295

mac
last_stats_change
00:10:94:00:00:01
00:00:00.155450
00:10:94:00:00:65
00:00:00.155461
01:10:94:00:00:02
00:00:00.155470

index

5644

6480

5628

packets

615123154

615108294

615123173

Storm Control

SUMMARY IN THIS SECTION

Read this topic to understand how the broadcast rate Configuration Example | 36
limiting feature is implemented by the cloud-native
router when deployed in L2 mode.

The storm control or rate limiting feature controls the rate of egress broadcast, unknown unicast, and
multicast (BUM) traffic on fabric interfaces.

Configuration Example

You specify the rate limit in bytes per second by adjusting stormControlProfiles in the values.yaml file
before deployment.

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:
rate_limit_pf1:
bandwidth:
level: 0

Once a profile is created, it can be assigned to the interface via the storm-control-profile interface
attribute. For example:

- etht:
ddp: on
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

no-local-switching: true

The system applies the configured profiles to all specified fabric interfaces in the cloud-native router.
The maximum per-interface rate limit value you can set is 1,000,000 bytes per second.

If the unknown unicast, broadcast, or multicast traffic rate exceeds the set limit on a specified fabric
interface, the vRouter drops the traffic. You can see the drop counter values by running the dropstats
command in the vRouter CLI. You can see the per-interface rate limit drop counters by running the
vRouter CLI command vif --get fabric_vif_id --get-drop-stats. For example:

dropstats
L2 untag pkt drop 8832
L2 Src Mac lookup fail 880

Rate limit exceeded 29312474

When you configure a rate limit profile on a fabric interface, you can see the configured limit in bytes per
second when you run either vif --list or vif --get fabric_vif id.

vifo/2 PCI: 0000: af: 01.1 (Speed 10000, Duplex 1)
Type: Physical HWaddr: 76:5d: f5: f5: c1:7a
Vrf:0 Flags: L2Vof Q0S:-1 Ref: 8 BUM Rate Limit: 1000000
RX port packets:1 errors:0
RX queue packets:1 errors:0
RX queue errors to lore 000000000000
Driver: net_iavf
Fabric Interface: 0000:af:01.1 Status: UP
Vlan Mode: Trunk Vlan: 300 500 600
RX packets:0 bytes:0

errors:1
TX packets:0 bytes:0 errors:0
Drops: 1

NOTE:

e The rate limit is only configurable on physical interfaces and only during deployment.

e The existing global rate limit configuration fabricBMCastRateLimitis deprecated from release
22.4.

APIs and CLI Commands for Bond Interfaces

SUMMARY IN THIS SECTION
Read this topic to learn about the APIs and CLIs APIs for Bond Interfaces | 38
available in the L2 mode of the Juniper Cloud-Native CLI Commands for Bond Interfaces | 39

Router. JCNR supports an API that can be used to
force traffic to switch from the active interface to the
standby interface in a bonded pair. Another JCNR
API and a CLI can be used to view the active node
details in a bond interface.

APIs for Bond Interfaces

When you run cloud-native router in L2 mode with cascaded nodes, you can configure those nodes to
use bond interfaces. You can configure the bond mode in the values.yanl file before deployment. For
example:

bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:
- "enp59s0fove"
- "enp59s0fov1"

API to View the Active and Backup Interfaces in a Bond Interface Pair

Starting with JCNR Release 23.3, use the REST API call: curl -X GET http://127.0.0.1:9091/bond-get-active/
bond® on localhost port 9091 to fetch the active and backup interface details of a bond interface pair.

A sample output is shown below:

root@nodep23:~# curl -X GET http://127.0.0.1:9091/bond-get-active/bondd
{"active": "0000:af:01.0", "backup": "0000:af:01.1"}

API to Force Bond Link Switchover

Starting with JCNR Release 22.4, you can force traffic switchover from an active to backup interface in a
bond interface pair using a REST API. If you have configured the bond interface pair in the ACTIVE_BACKUP
mode before deploying JCNR, then the vRouter-agent exposes the REST API call: curl -X POST http://
127.0.0.1:9091/bond-switch/bondd on localhost port 9091. Use this REST API call to force traffic to switch
from the active interface to the backup interface.

A sample output is shown below:

root@nodep23:~# curl -X GET http://127.0.0.1:9091/bond-get-active/bonde
{"active": "0000:af:01.0", "backup": "0000:af:01.1"}

root@nodep23:~# curl -X POST http://127.0.0.1:9091/bond-switch/bond@

{3

root@nodep23:~# curl -X GET http://127.0.0.1:9091/bond-get-active/bonde@
{"active": "0000:af:01.1", "backup": "0000:af:01.0"}

CLI Commands for Bond Interfaces

The vRouter contains the following CLI commands which are related to bond interfaces:

e dpdkinfo -b—displays the active interface in a bonded pair.

[[root@jcnr-01 /J# dpdkinfo -b

No. of bond slaves: 2

Bonding Mode: Active Backup

Transmit Hash Policy: Layer 2 (Ethernet MAC)
MII status: UP

MII Link Speed: 10000 Mbps

Up Delay (ms): @

Down Delay (ms): 0

Driver: net_bonding

Slave Interface(@): 0000:17:01.0

Slave Interface Driver: net_iavf

Slave Interface (@): Active

Slave Interface Mac : 6E: BD: 45:0F: 4A:02

MII status: UP

MII Link Speed: 10000 Mbps

Slave Interface (1): 0000:17:11.0
Slave Interface Driver: net_iavf
Slave Interface Mac 6E: BD: 45:0F: 4A: C2

MII status: UP
MII Link Speed: 25000 Mbps

e dpdkinfo -n—displays the traffic statistics associated with your bond interfaces.

[root@jcnr-01 /1# dpdkinfo -n2

Master Info (eth_bond_bondo):

RX Device Packets: 72019, Bytes: 96419113, Errors:0, Nombufs:0
Dropped RX Packets: 37475

TX Device Packets:0, Bytes:0, Errors:0

Queue Rx:

Tx:

Rx Bytes:

Tx Bytes:

Errors:

Slave Info (0000:17:01.0):

Rx Device Packets: 72019, Bytes:66073908, Errors:0, Nombufs:@
Dropped RX Packets: 588

TX Device Packets:0, Bytes:0, Errors:0

Queue Rx:

Tx:

Rx Bytes:

Tx Bytes:

Errors:

Slave Info (0000:17:11.0):

RX Device Packets:0, Bytes:30345205, Errors:@, Nombufs:0
Dropped R Packets:36887

TX Device Packets:0, Bytes:0, Errors:0

Queue Rx:

Tx:

Rx Bytes:

Tx Bytes:

Errors:

Quality of Service (QoS)

SUMMARY IN THIS SECTION
Read this topic to learn about the quality of service QoS Overview | 41
(QoS) feature of the Juniper Cloud-Native Router Gt Sl | A5

when deployed in L2 mode.
Troubleshooting | 44

Starting in Juniper Cloud-Native Router Release 22.4, you can configure quality of service (QoS)
parameters including classification, marking, and queuing. The cloud-native router performs
classification and marking operations in vRouter and queing (scheduling) operations in the physical
network interface card (NIC). Scheduling is only supported on the E810 NIC.

QoS Overview

You enable QoS prior to the deploy time by editing the values.yanl file in Juniper-Cloud-Native-Router-
version-number/helmchart directory and changing the qosEnable value to true. The default value for the
QoS feature is false (disabled). For example:

Set true/false to Enable or Disable Q0S, note: QO0S is not supported on X710 NIC.

gosEnable: true

NOTE: You can only enable the QoS feature if the host server on which you install your cloud-
native router contains an Intel E810 NIC that is running lldp.

You enable lldp on the NIC using the 11dptool which runs on the host server as a CLI application. Issue
the following command to enable lldp on the E810 NIC. For example, you could use the following
command:

1ldptool -T -i INTERFACE -V ETS-CFG willing=no
tsa=0:strict,1:strict,2:strict,3:strict,4:strict,

5:strict,6:strict,7:strict
up2tc=0:0,1:1,2:2,3:3,4:0,5:1,6:2,7:3
The details of the above command are:

¢ ETS-Enhanced Transmission Selection

¢ willing-The willing attribute determines whether the system uses locally configured packet
forwarding classification (PFC) or not. If you set willing to no(the default setting), the cloud-native
router applies local PFC configuration. If you set willing to yes, and the cloud-native router receives
TLV from the peer router, the cloud-native router applies the received values.

e tsa-The transmission selection algorithm is a comma seperated list of traffic class to selection
algorithm maps. You can choose ets, strict, or vendor as selection algorithms.

e up2tc-Comma-separated list that maps user priorities to traffic classes

The list below provides an overview of the classification, marking, and queueing operations performed
by cloud-native router.

e Classification:

vRouter classifies packets by examining the priority bits in the packet

vRouter derives traffic class and loss priority

vRouter can apply traffic classifiers to fabric, traffic, and workload interface types

vRouter maintains 16 entries in its classifier map

e Marking (Re-write):

vRouter performs marking operations

vRouter performs rewriting of p-bits in the egress path

vRouter derives new traffic priority based on traffic class and drop priority at egress

vRouter can apply marking to packets only on fabric interfaces

vRouter maintains 8 entries in its marking map

e Queueing (Scheduling):
e Cloud-native router performs strict priority scheduling in hardware (E810 NIC)
e Cloud-native router maps each traffic class to one queue

e Cloud-native router limits the maximum number of traffic queue to 4

e Cloud-native router maps 8 possible priorities to 4 traffic classes; It also maps each traffic class 1
hardware queue

e Cloud-native router can apply scheduling to fabric interface only

e Virtual functions (VFs) leverage the queues that you configure in the physical functions
(interfaces)

e vRouter maintains 8 entries in its scheduler map

Configuration Example

You configure QoS classifiers, rewrite rules, and schedulers in the controller using Junos set commands
or remotely using NETCONF. We display a Junos-based example configuration below:

set class-of-service classifiers ieee-802.1 class1 forwarding-class assured-forwarding loss-
priority high code-points 011

set class-of-service rewrite-rules ieee-802.1 Rule_1 forwarding-class assured-forwarding loss-
priority high code-point 110

set class-of-service schedulers schl priority high

set class-of-service scheduler-maps schl forwarding-class assured-forwarding scheduler schi
set class-of-service interfaces enp175s1 scheduler-map schi

set class-of-service interfaces enp175s1 unit @ rewrite-rules ieee-802.1 Rule_1

set class-of-service interfaces vhostnet123-3546aefd-7af8-4fe5 unit @ classifiers ieee-802.1
classi

You view the QoS configuration by "accessing the JCNR controller CLI" on page 167. Use the show
commands in Junos operation mode. The show commands reveal the configuration of classifiers, rewrite
rules, or scheduler maps individually. For example:

Show Classifier
user@jcnr-01> show class-of-service classifier
Classifier: classl, Code point type: ieee802.1p

Code point Forwarding class Loss priority

011 assured-forwarding high

Show Rewrite-Rule

user@jcnr-01> show class-of-service rewrite-rule

Rewrite rule: Rule_1, Code point type: ieee802.1p
Forwarding class Loss priority Code point

assured-forwarding high 110

Show Scheduler-Map

user@jcnr-01> show class-of-service scheduler-map schi
Scheduler map: schi
Scheduler: sch1, Forwarding class: assured-forwarding

Transmit rate: unspecified, Rate Limit: none, Priority: high

Show Interface

user@jcnr-01> show class-of-service interface vhostnet123-5a1e3079-d45e-4ab5
Physical interface: vhostnet123-5a1e3079-d45e-4ab5

Maximum usable queues: 4, Queues in use: 4

Logical interface: vhostnet123-5a1e3079-d45e-4ab5.0
Object Name Type
Classifier classi ieee802.1p

user@jcnr-01> show class-of-service interface enp175s1
Physical interface: enp175si
Maximum usable queues: 4, Queues in use: 4

Scheduler map: schi

Logical interface: enp175s1.0

Object Name Type
Rewrite-Output Rule_1 ieee802.1p
Troubleshooting

You can troubleshooting the QoS configuration "by accessing the vRouter CLI" on page 168. Use the
purel2cli command and by viewing the interface mapping.

Display Classifier Config

purel2cli --qos cla classi
Classifer name: classl1 Classifier Index: O

code-points loss priority forwarding-class

000 low best-effort
001 low best-effort
010 low best-effort
011 high assured-forwarding
100 low best-effort
101 low best-effort
110 low best-effort
1m low best-effort
vife/2 PMD: vhostnet123-3546aefd-7af8-4fe5

Type:Virtual HWaddr:aa:bb:cc:dd:ee:12

Vrf:0 Flags:L2Mon Q0S:-1 Ref:13

RX port packets:20 errors:0

RX queue packets:20 errors:0

RX queue errors to lcore 0 0 0 0 0000000000
Vlan Mode: Trunk Vlan: 100 200 300

Qos classifier: classi

RX packets:20 bytes:1200 errors:0

TX packets:0 bytes:0 errors:0

Drops:40

Display Re-write Config

purel2cli --qos rw Rule_1
Re-Write name: Rule_1 Re-write Index: 0

loss priority Forwarding-class re-write prio
low best-effort n/a
low expedited-forwarding n/a
low assured-forwarding n/a
low network-control n/a
high best-effort n/a

high expedited-forwarding n/a

high assured-forwarding 110
high network-control n/a

vife/1 PCI: 0000:af:01.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:46:d5:f3:fc:fc:92
Vrf:0 Flags:L2Vof QO0S:-1 Ref:42
RX queue errors to lcore 0 0 0 00000000000
Fabric Interface: 0000:af:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 700-705 2001
Rewrite: Rule_1
Scheduler: schi
RX packets:@ bytes:0 errors:0
TX packets:20 bytes:1200 errors:0
Drops: 0
TX port packets:20 errors:0

Display Scheduler Output

purel2cli --qos sch schi
Scheduler name: schl Scheduler Index: 0

forwarding-class priority_map
best-effort 0
expedited-forwarding 0
assured-forwarding 2
network-control 0
vife/1 PCI: 0000:af:01.0 (Speed 10000, Duplex 1)

Type:Physical HWaddr:46:d5:f3:fc:fc:92
Vrf:0 Flags:L2Vof Q0S:-1 Ref:42
RX queue errors to lcore 0 0 0 0 0000000000
Fabric Interface: 0000:af:01.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 700-705 2001
Rewrite: Rule_1
Scheduler: schi
RX packets:@ bytes:0 errors:0
TX packets:20 bytes:1200 errors:0

Drops:0
TX port packets:20 errors:0

Native VLAN

IN THIS SECTION

Native VLAN | 47

Starting in Juniper Cloud-Native Router Release 23.1, JCNR supports receiving and forwarding untagged
packets on a trunk interface. Typically, trunk ports accept only tagged packets, and the untagged packets
are dropped. You can enable a JCNR fabric trunk port to accept untagged packets by configuring a
native VLAN identifier (ID) on the interface on which you want the untagged packets to be received.
When a JCNR fabric trunk port is enabled to accept untagged packets, such packets are forwarded in
the native VLAN domain.

Native VLAN

Enable the native-vlan-id key in the Helm chart, at the time of deployment, to configure the VLAN
identifier and associate it with untagged data packets received on the fabric trunk interface. Edit the
values.yaml file in Juniper_Cloud_Native_Router_ <release-number>/helmchart directory and add the key
native-vlan-id along with a value for it. For example:

fabricInterface:
- ethl:
ddp: on
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

no-local-switching: true

NOTE: After editing the values.yaml file, you have to install or upgrade JCNR using the edited
values.yaml to ensure that the native-vlan-id key is enabled.

To verify, if native VLAN is enabled for an interface, connect to the vRouter agent by executing the
command kubectl exec -it -n contrail contrail-vrouter-<agent container> -- bash command, and then run the
command vif --get <interface index id>. A sample output is shown below:

vifo/1 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
Type:Physical HWaddr:6a:45:b2:a8:ce:5¢
Vrf:0 Flags:L2Vof Q0S:-1 Ref:11
RX port packets:36550 errors:0
RX queue packets:36550 errors:0
RX queue errors to lcore 0 0 0 0 00 0 0000000
Fabric Interface: eth_bond_bondd Status: UP Driver: net_bonding
Slave Interface(9): 0000:3b:02.0 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300
Native vlan id: 100
RX packets:36550 bytes:5875795 errors:0
TX packets:0 bytes:0 errors:0
Drops:613

Prevent Local Switching

IN THIS SECTION

Configuration Example | 49

Starting in Juniper Cloud-Native Router Release 23.1, JCNR provides support to prevent interfaces in a
bridge domain that are a part of the same VLAN group, from transmitting ethernet frame copies in
between those interfaces. The noLocalSwitching key provides the option to enable the functionality on
the selected VLAN IDs.

To prevent interfaces in a bridge domain from transmitting and receiving ethernet frame copies, enable
the noLocalSwitching key and assign a VLAN ID to it to ensure that the interfaces belonging to the
VLAN ID do not transmit frames to one another. Note that the noLocalSwitching functionality is
enabled only on the access interfaces. To enable noLocalSwitching on a trunk interface that is a part of
the same VLAN ID, you have to separately enable the trunk interface by setting the no-local-switching
key in the trunk interface to true. Use the noLocalSwitching functionality when you want to block
interfaces that are a part of a VLAN group to stop transmitting traffic directly to one another.

NOTE:
no-local-switching

Configuration Example

To prevent local switching, perform the steps below prior to the deploy time:
1. Edit the values.yaml file in Juniper_Cloud_Native_Router_<reflease-number>/helmchart directory.

2. Enable the noLocalSwitching key and provide the VLAN IDs.

noLocalSwitching: [700]

NOTE:

a. The value for the noLocalSwitching key can be an indivdual VLAN ID, or multipe comma-
separated VLAN ID values, or a VLAN ID range, or a combination of comma-separated
VLAN ID values and a VLAN ID range. For example, noLocalSwitching: [700, 701,
705-710].

b. With this step the feature is enabled for all access interfaces having the specified VLAN
ID. You can skip the next step if you do not want to enable the feature on the trunk
interface.

3. To enable the feature on a trunk interface, add the key no-local-switching and set it to true under the
trunk interface configuration.

. For example:

fabricInterface:
- bond@:
ddp: on
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100

no-local-switching: true

4. Install or upgrade JCNR using the values.yaml.

Verify Configuration

To verify the configuration, you can use the purel2cli utility available on the vRouter. View the "Access
vRouter CLI" on page 168 topic to access the vRouter shell. You can run the purel2cli commands from
the vRouter CLI. For example:

1. Run the command purel2cli --nolocal show to know all the interfaces that are enabled for
noLocalSwitching functionality on all the VLANs. A sample output is shown below:

[root@jcnr-01 /J# purel2cli --nolocal show

vlan no_local_switch_list

100 1, 2, 4,
200
300
700
701
702
703

2. Run the command purel2cli --nolocal get <VAN ID>to check if noLocalSwitching functionality is
enabled on a specific VLAN ID. A sample output is shown below:

[root@jcnr-01 /J# purel2cli --nolocal get 100

vlan no_local_switch_list

CHAPTER

L3 Features

L3 Features Overview | 53

IPsec Security Services | 53

JCNR as a Transit Gateway | 54

EVPN Type 5 Routing over VXLAN Tunnels | 56
Integrated Routing and Bridging on JCNR | 64
L3 Routing Protocols | 71

MPLS Support | 75

Bidirectional Forwarding Detection (BFD) | 76
Virtual Router Redundancy Protocol (VRRP) | 77
Virtual Routing Instance (VRF-Lite) | 78

ECMP | 81

BGP Unnumbered | 82

L3 Features Overview

SUMMARY

Read this topic to learn about the features available in the Juniper Cloud-Native Router when
deployed in L3 (router) mode.

The Juniper Cloud-Native Router supports multiple "deployment modes" on page 10.

In L3 mode, the cloud-native router behaves like a router and so performs routing functions and runs
routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod network is
divided into an IPv6 underlay network and an IPv4 or IPvé6 overlay network. The IPvé underlay network
is used for control plane traffic.

This chapter provides information about the various L3 features supported by JCNR.

IPsec Security Services

IN THIS SECTION

Overview | 54

Read this topic to understand how the cloud-native router integrates with Juniper's cSRX to provide
IPsec security services.

Juniper Cloud-Native Router (JCNR) offers containerized routing functionality for both cloud-based and
on-premise 5G environments. There is a growing demand for integrating security services with JCNR.
This functionality can be achieved using host-based service chaining. Starting Release 23.4, the cloud-
native router is integrated with Juniper's containerized SRX (cSRX) platform to provide security services
such as IPsec.

https://www.juniper.net/us/en/products/security/srx-series/csrx-containerized-firewall.html

Overview

Let us consider an IPsec security services use case with JCNR. In the figure below, the cloud-native
router connects the provider edge (PE) routers in a service provider network. The customer edge (CE)
routers or devices in the source network securely transfer data to the destination CEs via an IPsec
tunnel. In the given scenario, the IPsec tunnel initiates from the cloud-native router's security services
(cSRX) and terminates on the destination CEs. The cloud-native router and its peer PE provides the
underlay connectivity to the IPsec tunnel.

jn-000731

> PE PE S Pesﬁnation (CE)
—>
— ‘]-
‘ ‘ ‘ ‘ - ‘ ’
Device-1 Device-2 Device-4 Device-4

The cloud-native router is chained with a security service instance (cSRX) in the same Kubernetes
cluster. The cSRX instance runs as a pod service in L3 mode. Please review the Deploying cSRX with
JCNR topic for details on how to deploy cSRX for service chaining with JCNR.

NOTE: A cloud-native router instance is service chained with only one instance of cSRX and
therefore supports only one IPsec tunnel.

‘ IPsec Overview

JCNR as a Transit Gateway

JCNR can act as a transit gateway for external traffic. As a transit gateway, JCNR is neither the source
nor the destination for the traffic, but an intermediate hop. It acts as a vanilla router to switch traffic
between multiple physical interfaces.

Starting with Juniper Cloud-Native Router (JCNR) Release 23.2, JCNR can now act as a transit gateway
for external traffic. As a transit gateway, JCNR is neither the source nor the destination for the traffic,

https://www.juniper.net/documentation/us/en/software/junos/vpn-ipsec/topics/topic-map/security-ipsec-basics.html#id-ipsec-overview

but an intermediate hop. It acts as a vanilla router to switch traffic between multiple physical interfaces.
Depending on the forwarding state, JCNR can encapsulate or decapsulate the traffic between interfaces.

NOTE: Starting with JCNR Release 23.2, JCNR supports multiple fabric interfaces that enable it
to function as a transit gateway.

JCNR has to be deployed in the L3 mode to perform the transit router functionality. Add all physical
interfaces (physical and virtual functions) as fabric interfaces in the helm chart before deploying the
JCNR. The deployed JCNR does not support editing or changing the fabric interfaces during run time.
However, you can create or remove pod interfaces during run time. Here are example helm chart
configurations:

fabricInterface:
- ens2f2:
ddp: "auto"
- ens1f1:
ddp: "auto"

fabricInterface:

- subnet: 10.0.3.0/24
gateway: 10.0.3.1
ddp: "off"

- subnet: 10.0.5.0/24
gateway: 10.0.5.1
ddp: "off"

You need to configure an IP address on the loopback interface and use it as a tunnel endpoint for each
JCNR instance. The loopback IP address is the next hop address which BGP advertises to its peers. All
data packets with encapsulations like MPLSoUDP will have the outer IP address as this loopback IP
address. The loopback IP address is reachable via any of the physical interfaces. The loopback IP address
should be in a /32 subnet without a MAC address. For example:

set interfaces lol unit 1 family inet address 10.0.0.1/32

EVPN Type 5 Routing over VXLAN Tunnels

IN THIS SECTION

Enabling EVPN Type 5 Routing over VXLAN Tunnels | 57

Configuration Example and CLI Commands for EVPN Type 5 Routing over VXLAN Setup | 58

Ethernet Virtual Private Network (EVPN) with Virtual Extensible LAN (VXLAN) Type 5 routing is
designed for use in data center and cloud environments to provide efficient and scalable network
connectivity for virtualized workloads. It combines the benefits of EVPN and VXLAN to enable flexible
and seamless communication between virtual machines (VMs) and physical devices across different IP
subnets and locations. Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports
EVPN Type 5 Routing over VXLAN tunnels.

Ethernet Virtual Private Network (EVPN) technology provides a scalable and efficient way to extend
Layer 2 and Layer 3 connectivity across multiple sites. EVPN uses Border Gateway Protocol (BGP) to
exchange information between Provider Edge (PE) routers, allowing them to learn the location of
Ethernet segments and IP prefixes. This allows for the creation of virtual networks that can span
multiple sites, while providing traffic separation and isolation through the use of virtual routing and
forwarding (VRF) instances. EVPN supports several encapsulation methods, including VXLAN and MPLS,
which can be used to transport traffic across the service provider network.

VXLAN is a network overlay technology that allows the creation of virtual Layer 2 networks on top of an
existing Layer 3 network infrastructure. It extends the reach of Layer 2 segments beyond the confines of
a single physical network, which is especially useful in large-scale virtualized environments.

EVPN supports two types of routes: MAC Advertisement Route (Type 2) and IP Prefix Route (Type 5).
Type 2 routes are used to exchange MAC addresses and VLANs between PE routers, while Type 5
routes are used to exchange Layer 3 network routes. In EVPN VXLAN, Type 5 routes are used to
advertise IP prefixes and their associated MAC addresses. To reach a tenant using connectivity provided
by the EVPN VXLAN Type 5 IP prefix route, data packets are sent as Layer 2 Ethernet frames
encapsulated in the VXLAN header over the IP network across the data centers.

EVPN VXLAN Type 5 routing allows for efficient distribution of MAC and IP routing information,
enabling large-scale networks with numerous virtualized workloads to operate seamlessly. The
technology supports secure isolation of tenant traffic in shared environments, providing a virtual
network overlay that maintains separation between tenants.

To learn more about EVPN VXLAN Type 5 routing, see Understanding EVPN Pure Type-5 Routes.

NOTE: Transit router functionality should be enabled for JCNR to support EVPN VXLAN Type 5
routing. See, "JCNR as a Transit Gateway" on page 54.

Enabling EVPN Type 5 Routing over VXLAN Tunnels

Enable EVPN Type 5 routing over VXLAN tunnels using custom JCNR controller configuration via the go
template. Apply the custom configuration before installing JCNR, or for an existing JCNR installation,
delete the cRPD pod and respawn.

Use the following sample to configure EVPN Type 5 routing over VXLAN tunnels in JCNR using the jcnr-
cni-custom-config-cm.tmpl file located in Juniper_Cloud_Native_Router_<release-number>/
cRPD_examples directory.

groups {
custom {
routing-instances {
EVPN-TYPE5-VXLAN-VRF {
instance-type vrf;
protocols {
evpn {
ip-prefix-routes {
advertise direct-nexthop;
encapsulation vxlan;
vni 1000;
export EVPN-TYPE5-VXLAN-VRF-EXPORT-POLICY;

}

interface ge-0/0/1.0;
route-distinguisher 10.255.0.1:100;
vrf-target target:100:100;

To learn more about node annotations and custom configuration, see Customize JCNR Configuration .

To learn about EVPN Type 5 configuration in Junos, see Example: Configuring EVPN with Support for
Virtual Switch.

Configuration Example and CLI Commands for EVPN Type 5 Routing over
VXLAN Setup

BGP Session
CE1 <+—— | PE1JCNR |« »| PE2JCNR | ¢&——» CE2
IPv4 Underlay

10.10.14.11/24 Y 10.10.24.21/24
1234::a0a:e0b/120 1234::a0a:1815/120

<4—— VXLAN Tunnel ——»

jn-000746

The topology shown above describes a simple setup with two JCNRs deployed as provider edge routers
PE1 and PE2. The CE1 and CE2 represent hosts behind each of the PEs. As a pre-requisite, a BGP
session must exist between PE1 and PE2. Consider the following EVPN-VXLAN configuration on PE1,
with the interface enp4s0 towards CE1:

groups {
custom {
routing-instances {
orange {
instance-type vrf;
routing-options {
rib orange.inet6.0 {
multipath;
}
multipath;
}
protocols {
evpn {
ip-prefix-routes {
advertise direct-nexthop;
encapsulation vxlan;
vni 10010;

}
interface enp4so0;
route-distinguisher 1.1.1.1:4;

vrf-target target:4:4;

A VXLAN tunnel is created between routers PE1 and PE2. The 10.10.14.0/24 network routes are locally
learnt on PE1 and are advertised via EVPN Type 5 to the remote PE. Similarly, the 10.10.24.0/24
network routes are locally learnt on PE2 and advertised via EVPN Type 5 to the remote PE. All traffic
between CE1 and CE2 is forwarded between PE1 and PE2 over the VXLAN tunnel.

Use the commands listed in the sections below to troubleshoot a EVPN VXLAN Type 5 routing setup.

cRPD CLI Commands

The following CLI commands can be executed on the cRPD CLI. To access the cRPD CLI, see "Access
cRPD CLI" on page 167.

o show bgp <summary | neighbor>: Provides a summary of the EVPN connection to the peer and the status
of the connection.

A sample output is shown below:

host@pe1> show bgp summary

Threading mode: BGP I/0

Default eBGP mode: advertise - accept, receive - accept
Groups: 1 Peers: 2 Down peers: 1

Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp. evpn. 0 2 2 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn
State|#Active/Received/Accepted/Damped..

2.2.2.2 4 10345 10336 0 2 3d 5:32:50
Establ

bgp.evpn.0: 2/2/2/0
orange.evpn.@: 2/2/2/0
3.3.3.3 4 0 0 0 0 4wdd 13:28:22
Connect
e show route <summary | table | prefix>: Displays the active entries in the routing tables.

e show evpn instance: Displays information about the EVPN routing instance.

e show evpn 13-context: Displays the configured L3 context on the local box.

A sample output is shown below:

host@pe1> show evpn 13-context
L3 context

orange

Type Adv

Cfg

Direct VXLAN

Encap VNI/Label Router MAC/GW intf

10010 48:5a3:0d:78:78:d7

show evpn ip-prefix-database: Provides a list of exported and imported EVPN route prefixes and the

status of these routes.

A sample output is shown below:

root@evpn-pel-node> show evpn ip-prefix-database

L3 context: orange

IPv4->EVPN Exported Prefixes
Prefix

2.55.1.0/24

4.1.1.4/30

10.10.14.0/24

IPv6->EVPN Exported Prefixes
Prefix

1234::20a:€00/120

abcd: :401:104/126
abcd::2:55:1:0/120

EVPN->IPv4 Imported Prefixes
Prefix
2.55.2.0/24

Route distinguisher VNI/Label

Reject-Reason

2.2.2.2:4 10020
Accepted n/a
10.10.24.0/24

Route distinguisher VNI/Label

Reject-Reason
2.2.2.2:4 10020
Accepted n/a

EVPN->IPv6 Imported Prefixes
Prefix

EVPN route status

Created
Created
Created

EVPN route status

Created
Created
Created

Etag
0
Router MAC

48:5a:0d:49:fc:63

0
Router MAC

48:5a3:0d:49:fc:63

Etag

Nexthop/Qverlay GW/ESI

2.2.2.2

Nexthop/Overlay GW/ESI

2.2.2.2

Route-Status

Route-Status

1234::a0a:1800/120 0

Route distinguisher VNI/Label Router MAC Nexthop/Overlay GW/ESI Route-Status
Reject-Reason

2.2.2.2:4 10020 48:5a:0d:49:fc:63 2.2.2.2
Accepted n/a
abcd::2:55:2:0/120 0

Route distinguisher VNI/Label Router MAC Nexthop/Overlay GW/ESI Route-Status
Reject-Reason

2.2.2.2:4 10020 48:5a:0d:49:fc:63 2.2.2.2
Accepted n/a

show route table <VRF>.evpn.0: Displays the route entries in the specified routing table.

A sample output is shown below.

host@pe1> show route table orange. evpn. 0

orange.evpn.0: 4 destinations, @ routes (4 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both

5:1.1.1.1:4::0::10.10.14.0::24/248
*[EVPN/170] 4W4d 13:29:25
Fictitious
5:2.2.2.2:4::0::10.10.24.0::24/248
*[BGP/170] 3d 05:33:52, localpref 100, from 2.2.2.2
AS path: I, validation-state: unverified
t0 10.10.1.20 via enp2s@
5:1.1.1.1:4::0::1234::00a:000: :120/248
*[EVPN/170] 4w4d 13:29:25
Fictitious
5:2.2.2.2:4::0::1234::20a:1800::120/248
*[BGP/170] 3d 05:33:52, localpref 100, from 2.2.2.2
AS path: I, validation- state: unverified
to 10.10.1.20 via enp2s0

show route table <VRF>.inet.0: Displays the route entries in the specified routing table.

show route table bgp.evpn.0: Displays the route entries in the specified routing table.

A sample output with a local prefix is shown below.

host@pe1> show route table bgp.evpn.@ match-prefix 5:1.1.1.1:4::0::10.10.14.0::24

bgp.evpn.0: 10 destinations, 10 routes (10 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both
5:1.1.1.1:4::0::10.10.14.0::24/248

*[EVPN/170] 2w1ld 05:11:43

Fictitious

A sample output with a remote prefix is shown below.

host@pe1> show route table bgp.evpn.@ match-prefix 5:2.2.2.2:4::0::10.10.24.0::24
bgp.evpn.0: 10 destinations, 10 routes (10 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both
5:2.2.2.2:4::0::10.10.24.0::24/248
*[BGP/170] 2w1d 05:11:48, localpref 100, from 2.2.2.2
AS path: I, validation-state: unverified
> to 10.10.1.20 via enp2s0

show krt next-hop: Displays the configured next hop.

vRouter CLI Commands

The following CLI commands can be executed on the vRouter CLI. To access the vRouter CLI, see

"Access VRouter CLI" on page 168.

rt --get <prefix> --vrf <vrf-id> --family <inet4/inet6>: Provides the route which is pointing to the

specified IPv4 address.

A sample output is shown below.

[host@pel /J# rt --get 10.10.24.0/24 --vrf 1

Match 10.10.24.0/24 in vRouter inet4 table 0/1/unicast

Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, M1=MAC-IP learnt route

VRouter inet4 routing table @/1/unicast

Destination PPL Flags Label Nexthop Stitched MAC(Index)
10.10.24.0/24 0 LPT 10020 30 =

vxlan --dump: Provides information regarding the VNIs that are configured and the next hop.

A sample output is shown below.

[host@pel /J# vxlan --dump
VXLAN Table
VNID NextHop

e nh --get <nh-id>: Provides the next hop details.

A sample output is shown below.

[root@evpn-pel-node /1# nh --get 30
1d:30 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:5 Vrf:o
Flags:Valid, Policy, Vxlan, Etree Root, 13_vxlan,
0if:1 Len:14 Data:52 54 00 78 c8 f2 52 54 00 ee 83 cd 08 00 Sip:1.1.1.1
Dip:2.2.2.2
L3_Vxlan_SMac:48:5a:0d:78:78:d7 L3_Vxlan_DMac:48:5a:0d:49:fc:63

e vif --list: Provides a list of enterprises configured with the vif.
e flow --1: Displays all the active flows in the system.

Use this command to verify the traffic flowing between CE1 and CE2 on the vRouter. A sample
output is shown below.

[host@pel /1# flow -1
Flow table(size 161218560, entries 629760)

Entries: Created 11 Added 11 Deleted 20 Changed 26Processed 11 Used Overflow entries 0
(Created F10wWS/CPU: 0 0 0 0 0 0 0 0 0 0 11 0 (oflows 0)

Action: F-Forward, D=Drop N=NAT(S-SNAT, D=DNAT, PS=SPAT, Pd=DPAT, L=Link Local Port)
Other: K(nh)=Key Nexthop, S(nh)=RPF Nexthop

Flags: E-Evicted, Ec-Evict Candidate, N=New Flow, M-Modified Dm=Delete Marked
TCP(r=reverse): S-SYN, F=FIN, R=RST, C-HalfClose, E-Established, D=Dead

Stats: Packets/Bytes

Index Source: Port/Destination: Port Proto(V)

95644<=>443840 10.10.24.21:30 1 (1)

10.10.14.11:0
(Gen: 1, K(nh): 8, Action:F, Flags:, 005: -1, S(nh):30, Stats: 16/1344,
SPort 56932, TTL @. Sinfo 2.2.2.2)

443840<=>95644 10.10.14.11:30 1 (1)
10.10.24.21:0
(Gen: 1, K(nh):8, Action:F, Flags:, Q0S: -1, S(nh):41, Stats: 16/1344,
SPort 53983, TTL @, Sinfo 0.0.0.0)

e vifdump <vif-number>: Displays all the packet details for the specified vif.

A sample output is shown below.

[host@pel /J# vifdump 3 -nevv
vifo/3 PCI: 0000:04:00.0 NH: 8 MTU: 9000
dropped privs to tcpdump
tcpdump: listening on mon3, link-type EN10MB (Ethernet), snapshot length 262144 bytes
20:15:15.611827 52:54:00:2c:f6:16 > 52:54:00:ef:3c:4d, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 64, id 1764, offset @, flags [DF], proto ICMP (1), length 84)

10.10.14.11 > 10.10.24.21: ICMP echo request, id 16, seq 25, length 64
20:15:15.612472 52:54:00:ef:3c:4d > 52:54:00:2c:f6:16, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 62, id 14142, offset @, flags [nonel, proto ICMP (1), length 84)

10.10.24.21 > 10.10.14.11: ICMP echo reply, id 16, seq 25, length 64
20:15:16.626773 52:54:00:2c:T6:16 > 52:54:00:ef:3c:4d, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 64, id 1863, offset @, flags [DF], proto ICMP (1), length 84)

10.10.14.11 > 10.10.24.21: ICMP echo request, id 16, seq 26, length 64
20:15:16.627404 52:54:00:ef:3c:4d > 52:54:00:2c:T6:16, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 62, id 14187, offset @, flags [nonel, proto ICMP (1), length 84)

10.10.24.21 > 10.10.14.11: ICMP echo reply, id 16, seq 26, length 64

Integrated Routing and Bridging on JCNR

IN THIS SECTION

Configuring IRB | 65
Troubleshooting IRB | 68

Integrated Routing and Bridging (IRB) is a networking concept that combines the functionalities of
routing and bridging within a single network infrastructure. This integration allows for seamless
communication between devices on different network segments or subnets.

In a router, packets are forwarded based on their destination IP addresses. Routers operate at Layer 3
(Network Layer) of the OSI model and make decisions about the best path for a packet to reach its
destination. In a bridge, frames are forwarded based on MAC addresses. Bridges operate at Layer 2
(Data Link Layer) and use MAC addresses to determine the appropriate segment for a frame.

IRB combines the features of routing and bridging in a single device, typically a router. This allows the
device to make forwarding decisions based on both IP addresses and MAC addresses. IRB is particularly
useful when you want to enable communication between devices on different subnets in a network. It
allows the router to route traffic between subnets based on IP addresses. Instead of having separate
routers and bridges, IRB simplifies network design by consolidating these functions into a single device.
In VLAN environments, each VLAN can be considered a separate subnet, and the router with IRB
capability can route traffic between these VLANSs.

Starting with Juniper Cloud-Native Router (JCNR) Release 23.4, JCNR supports IRB, using which you
can configure both routing and bridging settings in a unified manner. You can configure IRB interfaces
and connect Bridge Domains (BD’s) to perform routing between bridge domains.

To learn more about IRB, see /ntegrated Routing and Bridging.

NOTE:
e Configurable MAC address on IRB is not supported in JCNR Release 23.4

e MTU is not configurable on IRB

e BGP unnumbered is not supported on IRB interfaces

Configuring IRB

A pair of IRB interfaces are created for each BD, one for host connectivity (i.e., tap IRB interface) and
another for forwarding traffic on fabric (i.e., fabric IRB interface). A single tap interface is created per L2
instance and all tap IRB interfaces that are configured in that L2 instance are created as sub-interfaces
on that tap interface.

Consider the following topology shown below and configure IRB on JCNR.

Bridge Domain
(ens4f1)

wn
CE2 |«—— | JCNR |« »| PEl |¢—»| CE1 5
BD419 3
£
1.104.19.4 IRB.419 Blue19_VRF
1.104.19.3 6.1.19.1

<4— VXLAN Tunnel —»

Configuring an IRB interface

Configure an IRB interface as shown in the example below using the jcnr-cni-custom-config-cm. tmpl file
located in Juniper_Cloud_Native_Router_<release-number>/cRPD_examples directory.

interfaces {

irb {
unit 419 {
family inet {
address 1.104.19.3/24;
}
family inet6 {
address 2419::3/64;
}
}
}
ens4f1 {
unit 0 {
family bridge {
interface-mode trunk;
vlan-id-list [100 200 400 414-423 500 1;
}
}
}

Attaching an IRB interface as an L3-routing interface to a Bridge

Attach an IRB interface as an L3-routing interface to a Bridge using the example below.

routing-instances {
vswitch {

instance-type virtual-switch;

bridge-domains {
bd419 {
vlan-id 419;

routing-interface irb.419;

3

interface ens4f1;

Attaching an IRB interface to VRF

An IRB interface can be a part of VRF-0 or VRF-N. The example shown below demonstrates how you
can attach IRB.419 to a VRF Bluel9.

routing-instances {
blue19 {
instance-type vrf;
protocols {
bgp {

group ce_pe_19_v4 {
type external;
local-address 1.104.19.3;
peer-as 1002;
local-as 64512;
bfd-1liveness-detection {

minimum-interval 300;

}
neighbor 1.104.19.4;

}

group ce_pe_19_v6 {
type external;
local-address 2419::3;
peer-as 1002;
local-as 64512;
bfd-1liveness-detection {

minimum-interval 300;

}
neighbor 2419::4;

evpn {
ip-prefix-routes {
advertise direct-nexthop;
encapsulation vxlan;
vni 2019;

export vrf_route_19;

}

interface irb.419;

interface 100.19;

route-distinguisher 100.100.100.1:2019;
vrf-target target:20:2019;

Troubleshooting IRB

Use the commands listed in the sections below to troubleshoot an IRB setup.

cRPD CLI Commands

The following CLI commands can be executed on the cRPD CLI. To access the cRPD CLI, see "Access
cRPD CLI" on page 167.

e run show bridge mac-table vlan-id <id>: Provides the Bridge MAC table details.

root@jcnr# run show bridge mac-table vlan-id 419

MAC flags (S - Static MAC, D - Dynamic MAC)
Routing Instance : default-domain:contrail:ip-fabric:default
Bridging domain VLAN id : 419

MAC MAC Logical
address flags interface
02:22:ec:ac:6b:24 D irb.419

e4:5d:37:2b:2a:aa D ens4f1

e run show bgp summary: Provides a summary of the BGP session running on the IRB.

root@jcnr# run show bgp summary

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Accepted/Damped. . .

1.104.19.4 1002 284 280 0 0 2:11:02 Establ
blue19.inet.0: 9/9/9/0

2419::4 1002 283 280 0 0 2:10:58 Establ

bluel19.inet6.0: 9/9/9/0

e run show bfd session: Provides a summary of the BFD session running on the IRB.

root@jcnr# run show bfd session
Detect Transmit

Address State Interface Time Interval Multiplier
1.104.19.4 Up irb.419 0.900 0.300 3
2419::4 Up irb.419 0.900 0.300 3

e run ping routing-instance blue19 1.104.19.3 source 1.104.19.4 count 1 rapid: Provides a confirmation of the
network connectivity to the IRB interface from CE2.

root@CE2# run ping routing-instance blue19 1.104.19.3 source 1.104.19.4 count 1 rapid
PING 1.104.19.3 (1.104.19.3): 56 data bytes

!

--- 1.104.19.3 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 9.041/9.041/9.041/0.000 ms

e run ping routing-instance bluel9 6.1.19.1 source 1.104.19.4 count 1 rapid: Provides a confirmation of the
network connectivity to remote prefixes from CE2 through the IRB interface.

root@E2# run ping routing-instance blue19 6.1.19.1 source 1.104.19.4 count 1 rapid
PING 6.1.19.1 (6.1.19.1): 56 data bytes

!

--- 6.1.19.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 17.773/17.773/17.773/0.000 ms

e run traceroute routing-instance blue19 6.1.19.1 source 1.104.19.4 no-resolve: Provides the trace routes to
remote prefixes from CE2 through the IRB interface.

root@CE2# run traceroute routing-instance bluel9 6.1.19.1 source 1.104.19.4 no-resolve
traceroute to 6.1.19.1 (6.1.19.1) from 1.104.19.4, 30 hops max, 52 byte packets
1 1.104.19.3 14.341 ms 14.932 ms 14.997 ms

2 6.1.19.1

14.962 ms 9.985 ms 14.906 ms

vRouter CLI Commands

The following CLI commands can be executed on the vRouter CLI. To access the vRouter CLI, see
"Access VRouter CLI" on page 168.

e vif --list | grep <interface ID>: Provides the VIF ID of the specified interface.

bash-5.1# vif --list | grep irb.419

vifo/26
vife/27

Virtual: irb.419 NH: 73
Virtual: irb.419 Vlan(o/i)(,S): 419/419

e vif --get 26: Provides the VRF ID where IRB.419 is attached to.

bash-5.1# vif --get 26

vifo/26

Virtual: irb.419 NH: 73

Type:Irb HWaddr:02:22:ec:ac:6b:24 IPaddr:1.104.19.3
IP6addr:2419::3

DDP: OFF SwLB: ON

Vrf:2 Mcast Vrf:2 Flags:L3L2DProxyEr Q0S:-1 Ref:16

RX queue errors to lcore 0 0 0 0 0 0 0 00000000
Vlan Mode: Access Vlan Id: 419 O0Vlan Id: 419

RX packets:66910 bytes:5409152 errors:0

TX packets:71340 bytes:5718843 errors:0

Drops:9

bash-5.1# vif --get 27

vife/27

Virtual: irb.419 Vlan(o/i)(,S): 419/419

Parent:vif@/9 Sub-type: host-irb-tap

Type:Virtual(Vlan) HWaddr:02:22:ec:ac:6b:24 IPaddr:1.104.19.3
IP6addr:2419::3

DDP: OFF SwLB: ON

Vrf:2 Mcast Vrf:65535 Flags:L3L2DProxyEr QO0S:-1 Ref:1 TxXVif:26

RX queue errors to lcore 20 0 0 0 0 000000000
RX packets:71248 bytes:5711219 errors:0

TX packets:66828 bytes:5134644 errors:0

Drops:0

e rt --get 1.104.19.4/32 --vrf 2: Provides the data plane encapsulation for CE2’s IP.

bash-5.1# rt --get 1.104.19.4/32 --vrf 2
Match 1.104.19.4/32 in vRouter inet4 table 0/2/unicast

Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, M1=MAC-IP learnt route
VRouter inet4 routing table 0/2/unicast

Destination PPL Flags Label Nexthop Stitched MAC(Index)
1.104.19.4/32 0 PT = 113 -

bash-5.1# nh --get 113

1d:113 Type:Encap Fmly:AF_INET/6 Rid:0 Ref_cnt:11 Vrf:2
Flags:Valid, Policy, Etree Root,
EncapFmly:0806 0if:26 Len:14
Encap Data: e4 5d 37 2b 2a aa 02 22 ec ac 6b 24

e purel2cli --mac show: Provides the MAC table in the vRouter.

bash-5.1# purel2cli --mac show | grep 419
02:22:ec:ac:6b:24 419 26 1
e4:5d:37:2b:2a:aa 419 3 68174

L3 Routing Protocols

SUMMARY IN THIS SECTION
Read this topic to know about the L3 routing Supported L3 protocols | 72
protocols that are supported by the Juniper Cloud BGP | 72

Native Router, including BGP, IS-IS, and OSPF.

IS-IS | 73
OSPF | 74

Supported L3 protocols

The Juniper Cloud-Native router supports the following L3 routing protocols, each of which can be
configured via node annotations at the time of deployment or via the "cRPD CLI" on page 167 for a
running cRPD pod. Here is an example configuration snippet from the go template with node
annotations:

protocols {
isis {
interface all;
{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
source-packet-routing {
srgb start-label {{.Env.SRGB_START_LABEL}} index-range {{.Env.SRGB_INDEX_RANGE}};
node-segment {
{{if .Node.srIPv4NodeIndex}}
ipv4-index {{.Node.srIPv4NodeIndex}};
{{end}}
{{if .Node.srIPv6NodeIndex}}
ipv6-index {{.Node.srIPv6NodeIndex}};

{{end}}
}
}
{{end}}
level 1 disable;
}
}
BGP

BGP is an exterior gateway protocol (EGP) that is used to exchange routing information among routers
in different autonomous systems (ASs). BGP routing information includes the complete route to each
destination. BGP uses the routing information to maintain a database of network reachability

information, which it exchanges with other BGP systems. BGP uses the network reachability information
to construct a graph of AS connectivity, which enables BGP to remove routing loops and enforce policy
decisions at the AS level. The cloud-native router supports BGP version 4. Here is an example to
configure BGP protocol on the cloud-native router "via the cRPD shell" on page 167:

set protocols bgp group CNI type internal

set protocols bgp group CNI local-address 10.0.0.1

set protocols bgp group CNI family inet-vpn unicast

set protocols bgp group CNI family inet6-vpn unicast

set protocols bgp group CNI neighbor 10.0.1.1 peer-as 64512
set protocols bgp group CNI neighbor 10.0.1.1 local-as 64512

set routing-options route-distinguisher-id 10.0.0.1

You can issue the show bgp summary command on the cRPD shell to view the BGP summary information for
all routing instances. For example:

user@host> show bgp summary
Threading mode: BGP I/0
Default eBGP mode: advertise - accept, receive - accept

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp.13vpn.0

2 2 0 0 0 0
bgp.13vpn-inet6.0

2 2 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped. . .
10.0.1.1 64512 249 211 0 0 1:32:42 Establ

bgp.13vpn.0: 2/2/2/0
bgp.13vpn-inet6.0: 2/2/2/0
jenr-3.inet.0: 2/2/2/0
jenr-3.inet6.0: 2/2/2/0

Refer the BGP User Guide for more information.

IS-IS

The IS-IS protocol is an interior gateway protocol (IGP) that uses link-state information to make routing
decisions. IS-1S is a link-state IGP that uses the shortest-path-first (SPF) algorithm to determine routes.
IS-1IS evaluates the topology changes and determines whether to perform a full SPF recalculation or a

https://www.juniper.net/documentation/us/en/software/junos/bgp/index.html

partial route calculation (PRC). IS-IS uses hello packets that allow network convergence to occur quickly
when network changes are detected. The cloud-native router supports IS-IS.

Here is an example to configure IS-1S protocol on the cloud-native router "via the cRPD shell" on page
167:

set security forwarding-options family iso mode packet-based

set interfaces eno3v@ unit @ family inet address 10.100.12.1/30

set interfaces eno3v@ unit @ family iso

set interfaces 100 unit @ family inet address 192.168.0.1/32

set interfaces 1lo@ unit @ family iso address 49.0002.0192.0168.0001.00
set protocols isis interface eno3ve

set protocols isis interface 100.0

You can issue the show isis adjacency and show isis interface commands to verify the protocol
configuration. Refer the IS-IS User Guide for information.

OSPF

OSPF is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS).
OSPF uses link-state information to make routing decisions, making route calculations using the
shortest-path-first (SPF) algorithm (also referred to as the Dijkstra algorithm). Each router running OSPF
floods link-state advertisements throughout the AS or area that contain information about that router’s
attached interfaces and routing metrics. Each router uses the information in these link-state
advertisements to calculate the least cost path to each network and create a routing table for the
protocol. The cloud-native router supports OSPF version 2 (OSPFv2) and OSPF version 3 (OSPFv3).
Here is an example to configure IS-IS protocol on the cloud-native router "via the cRPD shell" on page
167:

set protocols ospf area 0.0.0.0 interface bond@

set protocols ospf area 0.0.0.0 interface lo passive

https://www.juniper.net/documentation/us/en/software/junos/is-is/index.html

Once you bring up the pods, verify the OSPF configuration:

show ospf neighbor
Address Interface State 1D Pri Dead
192.168.123.254 bond0 Full 123.1.1.254 128 36

show route 1.1.24.24

inet.0: 27 destinations, 29 routes (27 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both

1.1.24.24/32 *[OSPF/10] 00:07:08, metric 2
> to 192.168.123.254 via bond@

Refer the OSPF User Guide for more information.

MPLS Support

IN THIS SECTION

MPLS Support | 76

The Juniper Cloud-Native Router contains support for MPLS routing protocols. You use the JCNR-
controller, or cRPD, to configure MPLS using the node annotations at the time of deployment or via the
"cRPD CLI" on page 167.

The cRPD then sends the configuration to the vRouter-agent, using gRPC. The vRouter-agent then
converts the configuration to network policies that it imlements in the vRouter. The cloud-native router
supports the following MPLS-based routing protocols:

https://www.juniper.net/documentation/us/en/software/junos/ospf/index.html

MPLS Support

e L3 MPLS VPN (MPLS)—L3 MPLS VPNs are also known as BGP/MPLS VPNs because BGP is used to
distribute VPN routing information across the provider’s backbone, and MPLS is used to forward
VPN traffic across the backbone to remote VPN sites. The cloud-native router can particpate as a
sending, receiving or transit router using the MPLS protocol. Review the L3 VPN User Guide for more
information.

e Segment Routing-MPLS (SR-MPLS)—Segment routing is a control-plane architecture that enables an
ingress router to steer a packet through a specific set of nodes and links in the network without
relying on the intermediate nodes in the network to determine the actual path it should take. SR-
MPLS employs segment routing in MPLS. The cloud-native router can participate as a sending,
receiving or transit router in SR-MPLS networks. Review the Junos source packet routing topic for a
configuration example.

¢ MPLS over UDP (MPLSoUDP)—MPLSoUDP is an overlay technology that encapsulates MPLS
packets within UDP packets to traverse through some networks that do not support native MPLS or
SR-MPLS. The cloud-native router can participate as a sending, receiving or transit router using
MPLSoUDP. Review the Configuring Next-Hop-Based MPLSoUDP Tunnels topic for a configuration
example.

e Label Distribution Protocol (LDP)—The Label Distribution Protocol (LDP) is a protocol for distributing
labels in non-traffic-engineered applications. LDP allows routers to establish label-switched paths
(LSPs) through a network by mapping network-layer routing information directly to data link layer-
switched paths. The cloud-native router can participate as a sending, receiving or transit router using
LDP. Review the LDP Overview topic for more information.

Bidirectional Forwarding Detection (BFD)

SUMMARY

Read this topic to know about the support for Bidirectional Forwarding Detection (BFD) in the
Juniper Cloud-Native router.

The Bidirectional Forwarding Detection (BFD) protocol is a simple hello mechanism that detects failures
in a network. A pair of routing devices exchange BFD packets. The devices send hello packets at a
specified, regular interval. The device detects a neighbor failure when the routing device stops receiving

https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/index.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/ref/statement/source-packet-routing-edit-protocols-isis.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html#id-example-configuring-nexthopbased-mplsoverudp-dynamic-tunnels
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html

a reply after a specified interval. The cloud-native router supports BFD. Review the Understanding BFD
topic for more information.

Virtual Router Redundancy Protocol (VRRP)

SUMMARY

Read this topic to learn about the support for the Virtual Router Redundancy Protocol (VRRP) in
Juniper Cloud-Native router.

The Virtual Router Redundancy Protocol (VRRP) enables hosts on a LAN to make use of redundant
routing platforms on that LAN without requiring more than the static configuration of a single default
route on the hosts. The VRRP routing platforms share the IP address corresponding to the default route
configured on the hosts. At any time, one of the VRRP routing platforms is the primary (active) and the
others are backups. If the primary routing platform fails, one of the backup routing platforms becomes
the new primary routing platform, providing a virtual default routing platform and enabling traffic on the
LAN to be routed without relying on a single routing platform. Using VRRP, a backup device can take
over a failed default device within a few seconds. This is done with minimum VRRP traffic and without
any interaction with the hosts. When JCNR is deployed in the containerized network function (CNF)
mode in cloud deployments, the VRRP unicast can be used to decide between the active and backup
JCNR nodes. Review the Understanding VRRP topic for more information.

NOTE: To enable VRRP for JCNR on an EKS cluster, a ConfigMap must be configured. Please
review JCNR ConfigMap for VRRP topic for more information

https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/bfd.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/vrrp-understanding.html

Virtual Routing Instance (VRF-Lite)

SUMMARY IN THIS SECTION

Read this topic to understand the implementation of Configuration | 78
virtual routing instances in JCNR.

Virtual routing instances allow administrators to divide the cloud-native router into multiple
independent virtual routers, each with its own routing table. Splitting a device into many virtual routing
instances isolates traffic traveling across the network without requiring multiple devices to segment the
network. You can use virtual routing instances to isolate customer traffic on your network and to bind
customer-specific instances to customer-owned interfaces. Virtual routing and forwarding (VRF) is often
used in conjunction with Layer 3 subinterfaces, allowing traffic on a single physical interface to be
differentiated and associated with multiple virtual routers. Each logical Layer 3 subinterface can belong
to only one routing instance. Review the Virtual Router Instances topic for more information.

Configuration

You can create a virtual routing instance in JCNR via a network attachment definition (NAD) manifest.
Here is an example NAD to create a bluenet virtual router routing instance:

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:
name: blue

spec:
config: '{

"cniVersion":"0.4.0",
"name": "blue-net",
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "bluenet",

"instanceType": "virtual-router

e

https://www.juniper.net/documentation/us/en/software/junos/multicast-l2/topics/topic-map/virtual-routing-instances.html

"kubeConfig":"/root/.kube/config"

]
} 1

Note the instanceType is set to virtual-router. Refer to "JCNR Use-Cases and Configuration Overview " on
page 84 for more information on NAD.

Here is an example configuration for a podblue pod with an interface (192.168.11.10/24) attached to the blue
network (output is trimmed for brevity):

apiVersion: vi
kind: Pod
metadata:
name: podblue
annotations:
k8s.v1.cni.cncf.io/networks: |

[
{

"name": "blue",

"interface":"net1",

"cni-args": {
"interfaceType":"veth",
"dataplane": "dpdk",
"mac":"aa:bb:cc:dd:ee: 10",
"ipConfig":{

"ipv4":{
"address":"192.168.11.10/24",
"gateway":"192.168.11.1",
"routes":["192.168.11.0/24"]

Vs

"ipv6":{
"address":"abcd::192.168.11.10/112",
"gateway":"abcd::192.168.11.1",
"routes":["abcd::192.168.11.0/112"]

}

}
}
}
]

spec:

As you apply the NAD and the pod manifests using the kubectl apply -f manifest command, the bluenet
routing instance and bluenet.inet.0 routing table is created in the JCNR controller. You can configure
JCNR to enable communication from podblue to pods on the remote network. Additional cRPD
configuration can be perfomed by "accessing the cRPD shell" on page 167. Here is an example cRPD
configuration:

1. Configure the local fabric interface and the BGP protocol:

set interfaces ens2f@ unit @ family inet address 10.10.10.11/24
set protocols bgp group overlay type internal

set protocols bgp group overlay local-address 10.10.10.11

set protocols bgp group overlay local-as 64520

set protocols bgp group overlay neighbor 10.10.10.12 peer-as 64520

where 10.10.10.12/24 is the IP address of the BGP peer or neighbor router.

2. Export the inet routes using the BGP protocol:

set policy-options policy-statement send_direct term 1 from protocol direct
set policy-options policy-statement send_direct term 1 then accept
set policy-options policy-statement send_direct term reject then reject

set protocols bgp group overlay export send_direct

3. Leak the routes from the bluenet routing instance to the default routing instance:

set groups cni routing-instances bluenet routing-options interface-routes rib-group inet
blue_to_inet

set routing-options rib-groups blue_to_inet import-rib bluenet.inet.@

set routing-options rib-groups blue_to_inet import-rib inet.@

4. Leak only the BGP routes matching prefix 192.168.12.0 from inet.0 to the bluenet routing instance,
where 192.168.12.0/24 is the remote pod network:

set policy-options policy-statement inet_to_blue term from_bgp from instance master
set policy-options policy-statement inet_to_blue term from_bgp from protocol bgp
set policy-options policy-statement inet_to_blue term from_bgp from route-filter
192.168.12.0/24 orlonger

set policy-options policy-statement inet_to_blue term from_bgp then accept

set policy-options policy-statement inet_to_blue term reject then reject

set routing-options rib-groups inet_to_blue import-rib inet.0

set routing-options rib-groups inet_to_blue import-rib bluenet.inet.@
set routing-options rib-groups inet_to_blue import-policy inet_to_blue
set groups cni routing-instances bluenet routing-options instance-import inet_to_blue

NOTE: JCNR supports route leaking between virtual router routing instances for routes with

interface, receive, resolve and table next-hops.

‘ Rib-Groups

ECMP

SUMMARY

Read this topic to know about the support for ECMP with flow stickiness in the Juniper Cloud-Native
Router.

Equal-cost multipath (ECMP) is a network routing strategy that allows for traffic of the same session, or
flow—that is, traffic with the same source and destination—to be transmitted across multiple paths of
equal cost. It is a mechanism that allows you to load balance traffic and increase bandwidth by fully
utilizing otherwise unused bandwidth on links to the same destination.

When forwarding a packet, the routing technology must decide which next-hop path to use. In making a
determination, the device takes into account the packet header fields that identify a flow. When ECMP
is used, next-hop paths of equal cost are identified based on routing metric calculations and hash
algorithms. That is, routes of equal cost have the same preference and metric values, and the same cost
to the network. The ECMP process identifies a set of routers, each of which is a legitimate equal cost
next hop towards the destination. The routes that are identified are referred to as an ECMP set. Because
it addresses only the next hop destination, ECMP can be used with most routing protocols.

An equal-cost multipath (ECMP) set is formed when the routing table contains multiple next-hop
addresses for the same destination with equal cost. (Routes of equal cost have the same preference and

https://www.juniper.net/documentation/us/en/software/junos/static-routing/topics/ref/statement/rib-groups-edit-routing-options.html

metric values.) If there is an ECMP set for the active route, the Cloud-Native Router uses a consistent
hash to choose one of the next-hop addresses from the ECMP members to forward the packet.

The cloud-native router supports ECMP for both Container Network Interface (CNI) and transit router
modes. It supports flow stickiness when the number of next-hops is changed. The cloud-native router
also supports ECMP next-hop for tunneled traffic.

BGP Unnumbered

SUMMARY

Read this topic to know about the support for BGP unnumbered in the cloud-native router.

Juniper Cloud-Native Router supports BGP unnumbered peering starting in Release 23.2. This feature
allows BGP to auto-discover and to create peer neighbor sessions using the link-local IPvé addresses of
directly connected neighbors. Using BGP unnumbered peering, which dynamically discovers IPVé
neighbors, reduces the burden of manually configuring an IPvé6 underlay. It is used in N-tier Clos
architecture for point-to-point links. BGP unnumbered is supported in the default VRF (VRF-0) and
virtual routing instances (virtual-router). Read the BGP Unnumbered topic for more information.

NOTE: When a BGP unnumbered IPvé6 session is established between 2 provider edge routers
(PEs) and IPv4 routes are being exchanged over that session, then the next hop for an IPv4 route
is an IPvé6 address. This feature is supported on PEs having Linux kernel version 5 and above. If
the Linux kernel version is below 5, then the IPv4 routes are not added to the routing table.

https://www.juniper.net/documentation/us/en/software/nce/nce-225-bgp-unnumbered/index.html

CHAPTER

JCNR CNI Configuration Examples

JCNR Use-Cases and Configuration Overview | 84

L2 Kernel Access-Mode Interface Configuration Example | 89
L2 virtio Trunk-Mode Interface Configuration Example | 94
L2 VLAN Sub-Interface Configuration Example | 99

L3 VPN Interface Configuration Example | 104

L3 VLAN Sub-Interface Configuration Example | 111

JCNR Use-Cases and Configuration Overview

SUMMARY IN THIS SECTION

Read this chapter to review configuration examples Configuration Example | 84
for various Juniper Cloud-Native Router use cases Troubleshooting | 88

when deployed in the container network interface

(CNI) mode.

The Juniper Cloud-Native Router can be deployed as a virtual switch or a transit router, either as a pure
container network function (CNF) or as a container network interface (CNI). In the CNF mode, there are
no application pods running on the node and the router only performs packeting switching or
forwarding through various interfaces on the system. In the CNI mode, application pods using software-
based network interfaces such as veth-pairs or DPDK vhost-user based interfaces, attach to the cloud-
native router. This chapter provides configuration examples for attaching different workload interface
types to the cloud-native router CNI instance.

Configuration Example

The JCNR CNiI is deployed as a secondary CNI along with Multus as a primary CNI, to create different
types of secondary interfaces for the application pod. Multus uses a network attachment definition
(NAD) file to configure a secondary interface for the application pod. The NAD specifies how to create a
secondary interface, IP address allocation, network instance and more. A pod can have one or more
NADs, typically one per pod interface. The config: field in the NAD file defines the JCNR CNI
configuration. Here is a generic format of the NAD:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: <vrf-name>
spec:
config: '{
"cniVersion":"0.4.0",
"name": "<vrf-name>",
"plugins": [
{
"type": "jcnr",

uargsu . {

"key1":"valuel",
"key2","value2",

}Y

"ipam": {
"type": "<ipam-type>",
1,
"kubeConfig":"/etc/kubernetes/kubelet.conf"
}
]

} 1

While configuring the NAD for the JCNR plugin type, the following keys are supported:
Table 2: Supported Keys in NAD

Key Description
instanceName The routing-instance name
instanceType One of:

virtual-router—for non-VPN-related applications
vrf—Layer 3 VPN implementations

virtual-switch—Layer 2 implementations

interfaceType Either "veth" or "virtio"

vlanld A valid vlan id "1-4095"

bridgeVlanld A valid vlan id "1-4095"

vlanldList A list of command separated vlan-id, e.g: "1, 5, 7, 10-20"
parentinterface Valid interface name as it should appear in the pod. Child/sub-interfaces

have parentinterface as their prefix followed by "" If parentinterface is
specified, sub interface must be explicitly specifiied.

vrfTarget The route-target for vrf routing instance

Table 2: Supported Keys in NAD (Continued))

Key Description

bridgeDomain Bridge Domain under which pod interface should be attached in the virtual-
switch instance.

type (ipam) static—assigns same IP to all pods, to assign a unique IP per pod define a
unique NAD per pod per interface

host-local—unique IP address per pod interface on the same host. IP
addresses are not unique across two different nodes

whereabouts—unique IP address per pod across all nodes

(https:/github.com/k8snetworkplumbingwg/whereabouts)

Consider the example NAD for a layer 2 kernel access mode interface:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vswitch-pod1-bd100
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vswitch-pod1-bd100",

"plugins": [
{
"type": "jcnr",
"args": {

"instanceName": "vswitch",
"instanceType": "virtual-switch",
"interfaceType": "veth",
"bridgeDomain": "bd100",
"bridgeVlanId": "100"
g
"ipam": {
"type": "static",
"addresses": [
{
"address":"99.61.0.2/16",
"gateway":"99.61.0.1"
1,

https://github.com/k8snetworkplumbingwg/whereabouts

"address":"1234::99.61.0.2/120",
"gateway":"1234::99.61.0.1"

]
}Y
"kubeConfig":"/etc/kubernetes/kubelet.conf"

]
} 1

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation. For example:

apiVersion: vi1
kind: Pod
metadata:
name: podl
annotations:
k8s.v1.cni.cncf.io/networks: vswitch-pod1-bd100
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- kind-worker
containers:
- name: pod1
image: ubuntu:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: false
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:

- name: dpdk

mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
volumes:
- name: dpdk
hostPath:

path: /var/run/jcnr/containers

The volume mount host path exposes the UNIX domain socket of the vhost-user port to the DPDK
application. The DPDK interface details are stored at /dpdk/dpdk-interfaces. json inside the application
container for the DPDK application to consume. It is also exported into the pod as a pod annotation.

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to refer the corresponding NAD. If a NAD points to jcnr as the CNI plug in, Multus calls
the JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD.
JCNR-CNI then generates and pushes a configuration into cRPD.

Troubleshooting

Pods main fail to come up for various reasons:
¢ Image not found

o (NIl failed to add interfaces

e CNI failed to push configuration into cRPD
e CNIl failed to invoke vRouter REST APIs

e The NAD is invalid or undefined

The following commands will be useful to troubleshooting pod issues:

Check the Pod status
kubectl get pods -A

Check pod state and CNI logs
kubectl describe pod <pod-name>

Check the pod logs
kubectl logs pod <pod-name>

Check the net-attach-def
kubectl get net-attach-def <net-attach-def-name> -o yaml

Check CNI logs
tail -f /var/log/jcnr/jcnr-cni.log

Check the cRPD config added by CNI (on the cRPD CLI)

cli> show configuration groups cni

L2 Kernel Access-Mode Interface Configuration

Example
SUMMARY IN THIS SECTION
Read this topic to learn how to add a user pod with a Overview | 90

kernel/veth access-mode interface to an instance of
the cloud-native router.

Configuration Example | 90

Overview

You can configure a user pod with a Layer 2 access-mode kernel interface and attach it to the JCNR
instance. The Juniper Cloud-Native Router must have an L2 interface configured at the time of
deployment. Your high-level tasks are:

e Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

e Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI.

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 84 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here is an example NAD to create a Layer 2 kernel/veth access-mode interface with static IPAM:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vswitch-pod1-bd100
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vswitch-pod1-bd100",
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "vswitch",

"instanceType": "virtual-switch",
"interfaceType": "veth",

"bridgeDomain": "bd100",

"bridgeVlanId": "100"

1,
"ipam": {
"type": "static",
"addresses": [
{
"address":"99.61.0.2/16",
"gateway":"99.61.0.1"
3,
{
"address":"1234::99.61.0.2/120",
"gateway":"1234::99.61.0.1"
}
]
3,
"kubeConfig":"/etc/kubernetes/kubelet.conf"
}
]

} 1

The NAD defines a bridge domain bd106 under which a veth type pod interface should be attached in
the virtual-switch instance.

It also defines a static IP address to be assigned to the pod interface.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad-access_mode.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vswitch-pod1-bd100 created

3. Verify the NAD is created.

[root@jcnr-011# kubectl get net-attach-def
NAME AGE
vswitch-pod1-bd100 59s

4. Here is an example yaml to create a pod attached to the vswitch-pod1-bd100 network:

apiVersion: vi
kind: Pod
metadata:
name: podl
annotations:
k8s.v1.cni.cncf.io/networks: vswitch-pod1-bd100
spec:
containers:
- name: podl
image: ubuntu:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: false
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation

5. Apply the pod manifest.

[root@jcnr-011# kubectl apply -f pod_access_mode.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~J# kubectl get pods
NAME READY STATUS RESTARTS AGE
podl 1/1 Running 0 2m38s

7. Describe the pod to verify a secondary interface is created and attached to the vswitch-pod1-bd100
network. (The output is trimmed for brevity).

[root@jcnr-01 ~J# kubectl describe pod pod1

Name : pod1

Namespace: default

Priority: 0

Node: jcnr-01/10.100.20.25

Start Time: Mon, 26 Jun 2023 09:36:57 -0400
Labels: <none>

Annotations: cni.projectcalico.org/containerID:

5b92668a6d7580e587de951d660c99969ce98bc239502afab6f9d191653f1e9b
cni.projectcalico.org/podIP: 10.233.91.79/32
cni.projectcalico.org/podIPs: 10.233.91.79/32

k8s.v1.cni.cncf.io/network-status:

{
"name": "k8s-pod-network",
"ips": [
"10.233.91.79"
1
"default": true,
"dns": {3}
3

"name": "default/vswitch-pod1-bd100",
"interface": "net1",
"ips": [
"99.61.0.2",
"1234::633d:2"
1,
"mac": "02:00:00:5D:74:76",
"dns": {3}
1]

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 168
and issue the vif --list command.

vifo/2 Ethernet: jvknet1-7c557fe MTU: 9160
Type:Virtual HWaddr:02:00:00:66:01:56
DDP: OFF SwLB: ON
Vrf:0 Flags:L2Vof Q0S:-1 Ref:8
RX port packets:20 errors:0
RX queue errors to lcore © 0 0 0 0 0 0 0000000
Vlan Mode: Access Vlan Id: 100 OVlan Id: 100
RX packets:7 bytes:518 errors:13
TX packets:31 bytes:2438 errors:0
Drops:14
TX port packets:31 errors:0

Note that the interface type is Virtual and the Vlan mode is set to access with the Vlan ID set to 100.
The VREF is always O for L2 interfaces.

L2 ..o Trunk-Mode Interface Configuration Example

SUMMARY IN THIS SECTION
Read this topic to learn how to add a user pod with a Overview | 94
virtio trunk-mode interface to an instance of the Configuration Example | 95

cloud-native router.

Overview

You can configure a user pod with a Layer 2 trunk-mode virtio interface and attach it to the JCNR
instance. The Juniper Cloud-Native Router must have an L2 interface configured at the time of
deployment. Your high-level tasks are:

e Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

e Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI.

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 84 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here is an example NAD to create a Layer 2 trunk-mode virtio interface interface with static IPAM:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vswitch
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vswitch",
"type": "jenr",
"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"vlanIdList":"201, 202, 203"
B
"ipam": {
"type": "static",
"capabilities":{"ips":true},

"addresses": [

{
"address":"10.2.1.1/24",
"gateway":"10.2.1.253"
"address":"2001::10.2.1.1/120",
"gateway":"2001::10.2.1.253"
}
]

"kubeConfig":"/etc/kubernetes/kubelet.conf"
} 1

The NAD defines the VLAN IDs for the virtual-switch instance to which the pod's trunk interface will
be attached.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad_trunk_mode.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vswitch created

3. Verify the NAD is created.

[root@jcnr-0171# kubectl get net-attach-def
NAME AGE

vswitch 57s

4. Here is an example yaml to create a pod attached to the vswitch network:

apiVersion: vi
kind: Pod
metadata:
name: podl
annotations:
k8s.v1.cni.cncf.io/networks: vswitch
spec:
containers:
- name: pod1
image: ubuntu:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: false
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk

subPathExpr: $(KUBERNETES_POD_UID)
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation.

5. Apply the pod manifest.

[root@jcnr-0171# kubectl apply -f pod_trunk_mode.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~J# kubectl get pods
NAME READY STATUS RESTARTS AGE
podl 1/1 Running @ 38s

7. Describe the pod to verify a secondary interface is created and attached to the vswitch network. (The
output is trimmed for brevity).

[root@jcnr-01 ~J# kubectl describe pod pod1l

Name: pod1

Namespace: default

Priority: 0

Node: jcnr-01/10.100.20.25

Start Time: Mon, 26 Jun 2023 09:53:31 -0400
Labels: <none>

Annotations: cni.projectcalico.org/containerID:
ac6f0a26ebfe68adf3b020d0def96f09e6b2b5c6303f55c0dde277b1cef9Idf
cni.projectcalico.org/podIP: 10.233.91.81/32
cni.projectcalico.org/podIPs: 10.233.91.81/32
jenr. juniper.net/dpdk-interfaces:
[

"name": "net1",

"vhost-adaptor-path": "/dpdk/vhost-net1.sock",
"vhost-adaptor-mode": "client",
"ipv4-address": "10.2.1.1/24",

"ipv6-address": "2001::a02:101/120",
"mac-address": "02:00:00:5B:C7:9F"

}
]
k8s.v1.cni.cncf.io/network-status:
{
"name": "k8s-pod-network",
"ips": [
"10.233.91.81"
[P
"default": true,
"dns": {3}
1A
"name": "default/vswitch",
"interface": "net1",
"ips": [
"10.2.1.1",
"2001::a202:101"
1,
"mac": "02:00:00:5B:C7:9F",
"dns": {3}
1]

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 168
and issue the vif --list command.

vife/2 PMD: vhostnet1-57f38cc@-6555-4bc2-ac MTU: 9160
Type:Virtual HWaddr:02:00:00:dc:c9:27
DDP: OFF SwLB: ON
Vrf:0 Flags:L2 Q0S:-1 Ref:11
RX queue errors to lcore 0 0 0 0 0 0 00000000
Vlan Mode: Trunk Vlan: 201-203
RX packets:0 bytes:0 errors:0
TX packets:4 bytes:256 errors:0
Drops:0
TX port packets:@ errors:4

Note that the interface type is Virtual and the Vlan mode is set to trunk with the Vlan ID set to 201-203.
The VRF is always O for L2 interfaces.

L2 VLAN Sub-Interface Configuration Example

SUMMARY IN THIS SECTION

Read this topic to learn how to add a user pod with a Overview | 99
Layer 2 VLAN sub-interface to an instance of the
cloud-native router.

Configuration Example | 100

Overview

You can configure a user pod with a Layer 2 VLAN sub-interface and attach it to the JCNR instance. The
Juniper Cloud-Native Router must have an L2 interface configured at the time of deployment. The cRPD
must be configured with the valid VLAN configuration for the fabric interface. For example:

set interfaces ethl unit 100 vlan-id 100

NOTE: Note that the unit number and the VLAN ID must match.

Your high-level tasks are:

e Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

e Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 84 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here is an example NAD to create a Layer 2 VLAN sub-interface:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vswitch-bd201-sub
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vswitch-bd201-sub",
"capabilities":{"ips":true},
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"bridgeDomain": "bd201",
"bridgeVlanId": "201",
"parentInterface": "net1",
"interface": "net1.201"

B
"ipam": {
"type": "static",
"capabilities":{"ips":true},
"addresses": [
{
"address":"10.3.0.1/24",
"gateway":"10.3.0.254"
B
{
"address":"2001:db8:3003::10.3.0.1/120",
"gateway":"2001:db8:3003::10.3.0.1"
3
1
B

"kubeConfig":"/etc/kubernetes/kubelet.conf"

]
} 1

The NAD defines a bridge domain bd201 and a sub-interface net1.201 with a parent interface net1. The
pod will be attached in the virtual-switch instance.. It also defines a static IP address to be assigned to
the pod interface.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad_12_vlan_subinterface.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vswitch-bd201-sub created

3. Verify the NAD is created.

[root@jcnr-011# kubectl get net-attach-def
NAME AGE
vswitch-bd201-sub 43s

4. Here is an example yaml to create a pod attached to the vswitch-bd201-sub network:

apiVersion: vi
kind: Pod
metadata:
name: podl
annotations:
k8s.v1.cni.cncf.io/networks: "vswitch-bd201-sub”
spec:
containers:
- name: pod1
image: ubuntu:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: false
resources:
requests:
memory: 2Gi
limits:
hugepages-1Gi: 2Gi
env:
- name: KUBERNETES_POD_UID

valueFrom:
fieldRef':
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
- mountPath: /dev/hugepages
name: hugepage
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers
- name: hugepage
emptyDir:
medium: HugePages

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation.

5. Apply the pod manifest.

[root@jcnr-011# kubectl apply -f pod_access_mode.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~J# kubectl get pods
NAME READY STATUS RESTARTS AGE
podl 1/1 Running 0 40s

7. Describe the pod to verify a secondary interface is created and attached to the vswitch-bd201-sub
network. (The output is trimmed for brevity).

[root@jcnr-01 ~J# kubectl describe pod pod1

Name : pod1

Namespace: default

Priority: 0

Node: jecnr-01/10.100.20.25

Start Time: Mon, 26 Jun 2023 09:53:31 -0400

Labels: <none>

Annotations: cni.projectcalico.org/containerID:
58642dd26f85769e14d302153357e84e6900398532d1b82b50a845ac1eded51a
cni.projectcalico.org/podIP:
cni.projectcalico.org/podIPs:
jenr. juniper.net/dpdk-interfaces:
[

"name": "net1",

"vhost-adaptor-path": "/dpdk/vhost-net1.sock",
"vhost-adaptor-mode": "client",
"ipv4-address": "10.3.0.1/24",

"ipv6-address": "2001:db8:3003::a03:1/120",
"mac-address": "02:00:00:84:DC:42",

"vlan-id": "201"

]
k8s.v1.cni.cncf.io/network-status:
{
"name": "k8s-pod-network",
"ips": [
"10.233.91.97"
[P
"default": true,
"dns": {3}
1A
"name": "default/vswitch-bd201-sub",
"interface": "net1",
"ips": [
"10.3.0.1",
"2001:db8:3003::203:1"
1,
"mac": "02:00:00:84:DC:42",
"dns": {3
}]

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 168
and issue the vif --list command.

vife/2 PMD: vhostnet1-d5eeedec-dd7c-4e MTU: 9160
Type:Virtual HWaddr:02:00:00:84:dc: 42
DDP: OFF SwLB: ON

Vrf:65535 Flags:L2 Q0S:-1 Ref:14

RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:0 bytes:0 errors:0

TX packets:0 bytes:0 errors:0

Drops:0

TX port packets:@ errors:293

vifo/3 Virtual: vhostnetl-d5eeed4ec-dd7c-4e.201 Vlan(o/i)(,S): 201/201 Parent:vif@/2 MTU:
1514

Type:Virtual(Vlan) HWaddr:02:00:00:84:dc:42

DDP: OFF SwLB: ON

Vrf:0 Flags:L2 Q0S:-1 Ref:1

RX queue errors to 1core 0 0 0 0 0 00 0000000

RX packets:0 bytes:0 errors:0

TX packets:208 bytes:17071 errors:0

Drops:0

Note that the interface type is Virtual and the Vlan ID set to 201. The parent interface is vife/2. The
VRF is always O for L2 sub-interfaces.

L3 VPN Interface Configuration Example

SUMMARY IN THIS SECTION

Read this topic to learn how to add a user pod with a Overview | 104
virtio and kernel interfaces attached to an L3 VPN
instance on the cloud-native router.

Configuration Example | 105

Overview

You can configure a user pod with a virtio and kernel interfaces to an L3 VPN instance on the cloud-
native router. The Juniper Cloud-Native Router must have an L3 interface configured at the time of
deployment. Your high-level tasks are:

e Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

e Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI.

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 84 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Hereis an example NAD to create a virtio interface attached to an L3 VPN instance:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vrf100
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vrf100",
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "vrf100",
"instanceType": "vrf",
"vrfTarget":"100:1"
Vs
"ipam": {
"type": "static",
"addresses": [
{
"address":"99.61.0.2/16",
"gateway":"99.61.0.1"

"address":"1234::99.61.0.2/120",
"gateway":"1234::99.61.0.1"

]
e
"kubeConfig":"/etc/kubernetes/kubelet.conf"

]
} 1

The NAD defines a virtual routing and forwarding (VRF) instance vrf100 to which the pod's virtio
interface will be attached. You must use the vrf instance type for Layer 3 VPN implementations.
The NAD also defines a static IP address to be assigned to the pod interface.

Apply the NAD manifest to create the network.

kubectl apply -f nad_virtio_L3vpn.yaml

networkattachmentdefinition.k8s.cni.cncf.io/vrf100 created

Here is an example NAD to create a kernel interface attached to an L3VPN instance:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vrf200
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vrf200",
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "vrf200",
"instanceType": "vrf",
"interfaceType": "veth",
"vrfTarget":"200:1"
B
"ipam": {
"type": "static",
"addresses": [

"address":"99.62.0.2/16",
"gateway":"99.62.0.1"

"address":"1234::99.62.0.2/120",
"gateway":"1234::99.62.0.1"

]
})
"kubeConfig":"/etc/kubernetes/kubelet.conf"

]
} 1

The NAD defines a virtual routing and forwarding (VRF) instance vrf200 with a veth interface type to
which the pod's kernel interface will be attached.

It also defines a static IP address to be assigned to the pod interface.

Apply the NAD manifest to create the network.

kubectl apply -f nad_kernel_L3vpn.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vrf200 created

Verify the NADs are created.

[root@jcnr-011# kubectl get net-attach-def

NAME AGE
vrf100 8m40s
vrf200 55s

Here is an example yaml to create a pod attached to the vrf100 and vrf200 networks:

apiVersion: vi
kind: Pod
metadata:
name: podl
annotations:
k8s.v1.cni.cncf.io/networks: vrf100, vrf200

spec:

containers:
- name: pod1
image: ubuntu:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: false
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation.

Apply the pod manifest.

[root@jcnr-011# kubectl apply -f pod_access_mode.yaml
pod/pod1 created

Verify the pod is running.

[root@jcnr-01 ~J# kubectl get pods
NAME READY STATUS RESTARTS AGE
podl 1/1 Running @ 2m38s

Describe the pod to verify two secondary interface are created and attached to the vrf100 and vrf200
networks. (The output is trimmed for brevity).

[root@jcnr-01 ~J# kubectl describe pod pod1
Name: pod1
Namespace: default

Priority: 0

Node: jcnr-01/10.100.20.25

Start Time: Mon, 26 Jun 2023 09:53:31 -0400

Labels: <none>

Annotations: cni.projectcalico.org/containerID:

6705c204abcabaeaad241¢c1791ea911d57bd972336d969ac5d6a482¢96348d95
cni.projectcalico.org/podIP: 10.233.91.100/32
cni.projectcalico.org/podIPs: 10.233.91.100/32

jenr. juniper.net/dpdk-interfaces:

L
{
"name": "net1",
"vhost-adaptor-path": "/dpdk/vhost-net1.sock",
"vhost-adaptor-mode": "client",
"ipv4-address": "99.61.0.2/16",
"ipv6-address": "1234::633d:2/120",
"mac-address": "02:00:00:A9:B3:23"
}
]
k8s.v1.cni.cncf.io/network-status:
[{
"name": "k8s-pod-network",
"ips": [
"10.233.91.100"
1
"default": true,
"dns": {3}
A
"name": "default/vrf100",
"interface": "net1",
"ips": [
"99.61.0.2",
"1234::633d:2"
1,
"mac": "02:00:00:A9:B3:23",
"dns": {3
A

"name": "default/vrf200",
"interface": "net2",
"ips": [
"99.62.0.2",
"1234::633e:2"
1,
"mac": "02:00:00:E0:AC:59",

“dns“: {}
3]

10. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 168
and issue the vif --list command.

vife/5 PMD: vhostnet1-2464783d-1ddd-4bf5-b7 NH: 16 MTU: 9160
Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:99.61.0.2
IP6addr:1234::633d:2
DDP: OFF SwLB: ON
Vrf:1 Mcast Vrf:1 Flags:PL3DProxyEr Q0S:-1 Ref:14
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:Q bytes:0 errors:0
TX packets:0 bytes:@ errors:0
Drops:0

vife/6 Ethernet: jvknet2-2464783 NH: 19 MTU: 9160
Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:99.62.0.2
IP6addr:1234::633e:2
DDP: OFF SwLB: ON
Vrf:2 Mcast Vrf:2 Flags:PL3DVofProxyEr Q0S:-1 Ref:11
RX port packets:28 errors:0
RX queue errors to lcore 0 0 0 0 0000000000
RX packets:28 bytes:13612 errors:0
TX packets:0 bytes:0 errors:0
Drops:28

Note that the interface type is Virtual and the type of interface is L3. You can see the IP addresses
assigned to the interfaces for the corresponding valid VRF numbers.

L3 VLAN Sub-Interface Configuration Example

SUMMARY IN THIS SECTION

Read this topic to learn how to add a user pod with a Overview | 111
Layer 3 VLAN sub-interface to an instance of the
cloud-native router.

Configuration Example | 112

Overview

You can configure a user pod with a Layer 3 VLAN sub-interface and attach it to the JCNR instance. The
Juniper Cloud-Native Router must have an L3 interface configured at the time of deployment. The cRPD
must be configured with the valid VLAN configuration for the fabric interface. For example:

set interfaces ens1flvl unit 201 vlan-id 201
set interfaces ens1flvl unit 201 family inet address 192.168.123.1/24
set interfaces ens1flvl unit 201 family inet6 address abcd:192:168:123::1/64

set routing-instance blue interface ens1fiv1.201

Your high-level tasks are:

e Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

e Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 84 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here are example NADs to create a Layer 3 VLAN sub-interface:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: vrf201
spec:
config: '{
"cniVersion":"0.4.0",
"name": "vrf201",
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "vrf201",
"instanceType": "virtual-router",

"parentInterface":"net1",

"vlanId": "201"
Vs
"ipam": {
"type": "static",
"addresses": [
{
"address":"99.61.0.2/16",
"gateway":"99.61.0.1"
B
{
"address":"1234::99.61.0.2/120",
"gateway":"1234::99.61.0.1"
3
]
B

"kubeConfig":"/etc/kubernetes/kubelet.conf"

]
} 1

The NAD defines virtual-router instances vrf201 with the parent interface net1 and VLAN ID 201. A
virtual-router instance type is similar to a VPN routing and forwarding instance type, but used for

non-VPN-related applications. There are no virtual routing and forwarding (VRF) import, VRF export,
VREF target, or route distinguisher requirements for this instance type. The pod VLAN sub-interface is
attached to vrf201 instance. The NAD also defines static IP addresses to be assigned to the pod
interface.

2. Apply the NAD manifests to create the networks.

kubectl apply -f nad_13_vlan_subinterface_201.yaml

networkattachmentdefinition.k8s.cni.cncf.io/vrf201 created

3. Verify the NADs are created.

kubectl get net-attach-def
NAME AGE
vrf201 30s

4. Here is an example yaml to create a pod attached to the vrf201 and vrf202 networks:

apiVersion: vi
kind: Pod
metadata:
name: podl
annotations:
k8s.v1.cni.cncf.io/networks: |

[
{
"name": "vrf201",
"interface":"net1.201"
}
]
spec:
containers:
- name: pod1

image: ubuntu:latest
imagePullPolicy: IfNotPresent
securityContext:

privileged: false
env:

- name: KUBERNETES_POD_UID

valueFrom:

fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers

The pod attaches to the router instances using the k8s.v1.cni.cncf.io/networks annotation.

5. Apply the pod manifest.

[root@jcnr-011# kubectl apply -f pod_l13_subinterface.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~J# kubectl get pods
NAME READY STATUS RESTARTS AGE
podl 1/1 Running 0 38s

7. Describe the pod to verify a secondary interface is created and attached to the vrf201 network. (The
output is trimmed for brevity).

[root@jcnr-01 ~J# kubectl describe pod pod1

Name : pod1

Namespace: default

Priority: 0

Node: jecnr-01/10.100.20.25

Start Time: Mon, 26 Jun 2023 09:53:31 -0400
Labels: <none>

Annotations: cni.projectcalico.org/containerID:

90de252886b3e0a97526ac175544078fb03debf05650946d759e2de@d5179c17
cni.projectcalico.org/podIP: 10.233.91.126/32
cni.projectcalico.org/podIPs: 10.233.91.126/32
jenr. juniper.net/dpdk-interfaces:

[

"name": "net1.201",

"vhost-adaptor-path": "/dpdk/vhost-net1.sock",

"vhost-adaptor-mode": "client",
"ipv4-address": "99.61.0.2/16",
"ipv6-address": "1234::633d:2/120",
"mac-address": "02:00:00:8C:97:A2",

"vlan-id": "201"
}
]
k8s.v1.cni.cncf.io/network-status:
{
"name": "k8s-pod-network",
"ips": [
"10.233.91.126"
[P
"default": true,
"dns": {3}
e
"name": "default/vrf201",
"interface": "net1.201",
"ips": [
"99.61.0.2",
"1234::633d:2"
1,
"mac": "02:00:00:8C:97:A2",
"dns": {3
1

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 152

and issue the vif --list command.

vife/11 PCI: 0000:b3:11.1 (Speed 10000, Duplex 1) NH: 16 MTU: 9014

interface

Type:Physical HWaddr:b2:56:78:5c:af:fa IPaddr:0.0.0.0

DDP: OFF SwLB: ON

Vrf:0 Mcast Vrf:0 Flags:L3L2Vof Q0S:0 Ref:42
RX port packets:10988509 errors:0
RX queue errors to lcore 0 0 0 0 0 0 00000000

Fabric Interface: 0000:b3:11.1

Status: UP Driver: net_iavf

RX packets:10988509 bytes:5582067106 errors:0

---> fabric

vife/17
interface

vifo/48

TX packets:10988484 bytes:5581953776 errors:0
Drops:0
TX port packets:10988484 errors:0

PMD: ens1flvl NH: 44 MTU: 9000

Type:Host HWaddr:b2:56:78:5c:af:fa IPaddr:0.0.0.0
DDP: OFF SwLB: ON

Vrf:0 Mcast Vrf:0 Flags:L3L2 Q0S:0 Ref:41 TxXVif:11
RX device packets:2201 bytes:935980 errors:0

RX queue packets:2201 errors:0

RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:2201 bytes:935980 errors:0

TX packets:493 bytes:161906 errors:0

Drops:0

TX queue packets:493 errors:0

TX device packets:493 bytes:161906 errors:0

Virtual: ens1f1v1.201 Vlan(o/i)(,S): 201/201 NH: 161 MTU: 1514
Parent:vif@/11 Sub-type: physical-tap

interface, parent is a physical interface

vifo/49

Type:Virtual(Vlan) HWaddr:b2:56:78:5c:af:fa IPaddr:192.168.123.1
IP6addr:abcd:192:168:123::1

DDP: OFF SwLB: ON

Vrf:201 Mcast Vrf:201 Flags:L3DProxyEr QO0S:-1 Ref:4

RX queue errors to lcore 0 0 0 0 0 00 0000000

RX packets:0 bytes:0 errors:0

TX packets:18 bytes:1836 errors:0

Drops:0

Virtual: ens1f1v1.201 Vlan(o/i)(,S): 201/201 NH: 156 MTU: 9000
Parent:vif0/17 Sub-type: Host-tap

interface, parent is a tap interface

vifo/50

Type:Virtual(Vlan) HWaddr:b2:56:78:5c:af:fa IPaddr:192.168.123.1
IP6addr:abcd:192:168:123::1

DDP: OFF SwLB: ON

Vrf:201 Mcast Vrf:65535 Flags:L3DProxyEr QO0S:-1 Ref:4 TxXVif:48
RX queue errors to lcore 0 0 0 0 0 00 0000000

RX packets:18 bytes:1908 errors:0

TX packets:0 bytes:0@ errors:0

Drops:0

PMD: vhostnet1-9403fd77-648a-47 NH: 177 MTU: 9160

---> tap

---> L3 sub-

---> L3 sub-

---> pod

interface
Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:65535 Mcast Vrf:65535 Flags:L3DProxyEr Q0S:-1 Ref:20
RX queue errors to lcore 0 0 0 0 0 00 0000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:@ errors:0
Drops:0

vife/51 Virtual: vhostnet1-9403fd77-648a-47.202 Vlan(o/i)(,S): 202/202 NH: 17 MTU: 1514
Parent:vif0/50 ---->L3 pod
sub-interface, parent is the pod interface
Type:Virtual(Vlan) HWaddr:00:00:5e:00:01:00 IPaddr:99.62.0.2
IP6addr:1234::633e:2
DDP: OFF SwLB: ON
Vrf:2 Mcast Vrf:2 Flags:PL3DProxyEr Q0S:-1 Ref:4
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:0 bytes:0 errors:0
TX packets:0 bytes:0@ errors:0
Drops:0

You can see the IP addresses assigned to the sub-interfaces for the corresponding valid VRF
numbers.

CHAPTER

Monitoring and Logging

Monitor JCNR via CLI | 119

Telemetry Capabilities of Cloud-Native Router | 126

Logging and Notifications | 147

Monitor JCNR via CLI

SUMMARY IN THIS SECTION
This topic contains instructions to access the JCNR Accessing the JCNR Controller (cRPD)
controller (c(RPD) CLI and run operational commands. CLI | 119

Example Show Commands | 121

Example Clear Commands | 126

Accessing the JCNR Controller (cRPD) CLI

You can access the command-line interface (CLI) of the cloud-native router controller by accessing the
shell of the running cRPD container.

NOTE: The commands below are provided as an example. The cRPD pod name must be replaced
from your environment. The command outputs may differ based on your environment.

List the K8s Pods Running in the Cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0

41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running 0

41m

jenr kube-crpd-worker-ds-8tnf7 1/1 Running 0

41m

jenr syslog-ng-54749b7b77-v24hq 1/1 Running 0

41m

kube-system calico-kube-controllers-57b9767bdb-5whj6 1/1 Running 2 (92d ago)

129d

kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d
kube-system dns-autoscaler-7f76f4dd6-qg5vdp 1/1 Running 2 (92d ago)
129d
kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d
kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d
kube-system kube-proxy-16xm8 1/1 Running 2 (92d ago)
129d
kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the cRPD pod—kube-crpd-worker-ds-8tnf7 in this example output . You will use the pod
name to connect to the running container's shell.

Connect to the cRPD CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash
where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the

name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The cRPD pod has only one running container. Here is an example command:

kubectl exec -n jcnr -it kube-crpd-worker-ds-8tnf7 -- bash

The result of the above command should appear similar to:

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),

install-cni (init)

===

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2020-2022, Juniper Networks, Inc. All rights reserved.

root@jcnr-01: /#
At this point, you have connected to the shell of the cRPD. Just as with other Junos-based shells, you

access the operational mode of the cloud-native router the same way as if you were connected to the
console of a physical Junos OS device.

root@jcnr-01:/# cli

root@jcnr-cni>

Example Show Commands

Here are some example show commands you can execute:

show interfaces terse

Interface@link Oper State Addresses

__crpd-brd1 UNKNOWN fe80: :achf:beff:fe8a:e046/64
calilb684d67bd4@if3 UP fe80: :ecee:eeff:feee:eeee/64
cali34cf41e29bb@if3 UP fe80: :ecee:eeff:feee:eeee/64

docker@ DOWN 172.17.0.1/16

enol upP 10.102.70.146/24 fe80::a94:efff:fe79:dcae/64
eno2 uP

eno3 upP 10.1.1.1/24 fe80::a94:efff:fe79:dcac/64
eno3v] uP

eno4 DOWN

enp0s20foulu6 UNKNOWN

ens2f0 DOWN

ens2f1 DOWN

erspan@@NONE DOWN

etho UNKNOWN 169.254.143.126/32 fe80::b4db:eeff:fe78:9f43/64
gre@@NONE UNKNOWN

gretap0@@NONE DOWN

ip6tn10@NONE UNKNOWN fe80::74b6:2cff:fea7:d850/64

irb DOWN

kube-ipvs@ DOWN 10.233.0.1/32 10.233.0.3/32 10.233.35.229/32
lo UNKNOWN 127.0.0.1/8 ::1/128

1si UNKNOWN fe80::cc59:6dff:fe9c:4db3/64

nodelocaldns DOWN 169.254.25.10/32

S1t@@NONE

UNKNOWN ::169.254.143.126/96 ::10.233.91.64/96 ::172.17.0.1/96 ::10.102.70.146/96 ::10.1.1
.1/96 ::127.0.0.1/96

tun10@NONE UNKNOWN

vxlan.calico UNKNOWN 10.233.91.64/32 fe80::64c6:34ff:fecd:3522/64

show configuration routing-instances
vswitch {
instance-type virtual-switch;
bridge-domains {

bd100 {

vlan-id 100;
}
bd200 {

vlan-id 200;
}
bd300 {

vlan-id 300;
}
bd700 {

vlan-id 700;

interface enp59s0f1vo;
}
bd701 {

vlan-id 701;
}
bd702 {

vlan-id 702;
}
bd703 {

vlan-id 703;
}
bd704 {

vlan-id 704;
}
bd705 {

vlan-id 705;

interface bond@;

show bridge ?
Possible completions:
mac-table Show media access control table

statistics Show bridge statistics information

show bridge mac-table ?

Possible completions:

<[Enter]> Execute this command

count Number of MAC address

mac-address MAC address in the format XX:XX:XX:XX:XX:XX

vlan-id Display MAC address learned on a specified VLAN or 'all-vlan'

| Pipe through a command

show bridge mac-table
Routing Instance : default-domain:default-project:ip-fabric:__default__
Bridging domain VLAN id : 3002

MAC MAC Logical
address flags interface
00:00:5E:00:53:01 D bond@

show bridge statistics ?
Possible completions:
<[Enter]> Execute this command
vlan-id Display statistics for a particular vlan (1..4094)

| Pipe through a command

show bridge statistics
Bridge domain vlan-id: 100
Local interface: bond@
Broadcast packets Tx : @ Rx : 0
Multicast packets Tx : @ Rx : 0
Unicast packets Tx : 0 Rx : 0

Broadcast bytes Tx : 0 Rx : 0
Multicast bytes Tx 1 0 Rx : 0
Unicast bytes Tx : 0 Rx : 0
Flooded packets 1 0
Flooded bytes 1 0
Local interface: ensifovi
Broadcast packets Tx : @ Rx : 0
Multicast packets Tx 0 Rx : 0
Unicast packets Tx : 0 Rx : 0
Broadcast bytes Tx 1 0 Rx : 0
Multicast bytes Tx : 0 Rx : 0
Unicast bytes Tx 1 0 Rx : 0
Flooded packets 1 0
Flooded bytes 1 0
Local interface: ensl1f3vi
Broadcast packets Tx 0 Rx : 0
Multicast packets Tx 0 Rx : 0
Unicast packets Tx 0 Rx : 0
Broadcast bytes Tx 1 0 Rx : 0
Multicast bytes Tx 0 Rx : 0
Unicast bytes Tx 0 Rx : 0
Flooded packets 0

show firewall filter filter1
Filter : filterl vlan-id : 3001
Term Packet

t1 0

show configuration firewall:firewall
family {
bridge {
filter filterl {
term t1 {
from {
destination-mac-address 10:30:30:30:30:31;
source-mac-address 10:30:30:30:30:30;
ether-type oam;
}
then {
discard;

show route 172.68.20.2/32 table nadl.inet

nadl.inet.0: 11 destinations, 15 routes (11 active, @ holddown, @ hidden)
@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

172.68.20.2/32 @[BGP/170] 00:00:23, localpref 100, from 1.1.1.220
AS path: I, validation-state: unverified
> via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.1.220), Push 48
[BGP/170] 00:13:18, localpref 100, from 1.1.24.24
AS path: I, validation-state: unverified
> via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.24.24), Push 16
#[Multipath/255] 00:00:23, metric2 2
via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.1.220), Push 48
> via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.24.24), Push 16

show interfaces routing enp216s0f0
Interface State Addresses
enp216s0f0 Up MPLS enabled
ISO enabled
INET 192.168.123.3
INET6 2001:192:168:123::3
INET6 fe80::42a6:b7ff:fe2c:a448

show dynamic-tunnels database
*- Signal Tunnels #- PFE-down
Table: inet.3
Destination-network: 1.1.1.220/32
Destination-network: 1.1.24.24/32
Tunnel to: 1.1.24.24/32
Reference count: 4
Next-hop type: UDP (forwarding-nexthop)
Source address: 1.1.1.35
Next hop: v6 mapped, tunnel-composite, 0x557917afc91c, nhid @

VPN Label: Push 16, Reference count: 2
Ingress Route: [OSPF] 1.1.24.24/32, via metric 2
Traffic Statistics: Packets 0, Bytes 0
State: Up
Aggregate Traffic Statistics:

Example Clear Commands

Here are some example clear commands:

clear bridge mac-table ?

Possible completions:

<[Enter]> Execute this command
mac-address Clear specific MAC address
vlan-id Clear mac-table for a specified vlan-id (1..4094)

| Pipe through a command

clear bridge statistics ?
Possible completions:
<[Enter]> Execute this command
vlan-id Clear L2 interface statistics for a specified vlan-id (1..4094)

| Pipe through a command

Telemetry Capabilities of Cloud-Native Router

IN THIS SECTION

JCNR Telemetry | 127

Read this topic to learn about the telemetry data available from Juniper Cloud-Native Router.

JCNR Telemetry

Juniper Cloud-Native Router comes with telemetry capabilities that enable you to see performance
metrics and telemetry data. Telemetry data is derived separately from the vRouter and the cRPD. For
vRouter, the container contrail-vrouter-telemetry-exporter provides you this visibility. This container
runs alongside the other vRouter containers in the contrail-vrouter-masters pod.

For vRouter, the telemetry exporter periodically queries the Introspect on the vRouter-agent for
statistics and reports metrics information in response to the Prometheus scrape requests. You can
directly view the telemetry data by using the following URL: http:// host server IP address:8070. The
following table shows the sample output.

NOTE: We've grouped the output shown in the following table. The cloud-native router does not
group or sort the output on live systems.

Table 3: Sample vRouter Telemetry Output

Group Sample Output

Memory usage per

vRouter
TYPE virtual_router_system_memory_cached_bytes gauge

HELP virtual_router_system_memory_cached_bytes Virtual router system memory cached
virtual_router_system_memory_cached_bytes{vrouter_name="jcnr.example.com"} 2635970448
TYPE virtual_router_system_memory_buffers gauge

HELP virtual_router_system_memory_buffers Virtual router system memory buffer
virtual_router_system_memory_buffers{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_system_memory_bytes gauge

HELP virtual_router_system_memory_bytes Virtual router total system memory
virtual_router_system_memory_bytes{vrouter_name="jcnr.example.com"} 2635970448

TYPE virtual_router_system_memory_free_bytes gauge

HELP virtual_router_system_memory_free_bytes Virtual router system memory free
virtual_router_system_memory_free_bytes{vrouter_name="jcnr.example.com"} 2635969296
TYPE virtual_router_system_memory_used_bytes gauge

HELP virtual_router_system_memory_used_bytes Virtual router system memory used
virtual_router_system_memory_used_bytes{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_virtual_memory_kilobytes gauge

HELP virtual_router_virtual_memory_kilobytes Virtual router virtual memory
virtual_router_virtual_memory_kilobytes{vrouter_name="jcnr.example.com"} 0

TYPE virtual_router_resident_memory_kilobytes gauge

HELP virtual_router_resident_memory_kilobytes Virtual router resident memory
virtual_router_resident_memory_kilobytes{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_peak_virtual_memory_bytes gauge

HELP virtual_router_peak_virtual_memory_bytes Virtual router peak virtual memory

virtual_router_peak_virtual_memory_bytes{vrouter_name="jcnr.example.com"} 2894328001

Table 3: Sample vRouter Telemetry Output (Continued)

Group

Packet count per
interface

Sample Output

TYPE virtual_router_phys_if_input_packets_total counter

HELP virtual_router_phys_if_input_packets_total Total packets received by physical
interface
virtual_router_phys_if_input_packets_total{vrouter_name="jcnr.example.com",interface_na
me="bond@"} 1483

TYPE virtual_router_phys_if_output_packets_total counter

HELP virtual_router_phys_if_output_packets_total Total packets sent by physical
interface
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond@"} 32969

TYPE virtual_router_phys_if_input_bytes_total counter

HELP virtual_router_phys_if_input_bytes_total Total bytes received by physical
interface
virtual_router_phys_if_input_bytes_total{interface_name="bond@",vrouter_name="jcnr.exam
ple.com"} 125558

TYPE virtual_router_phys_if_output_bytes_total counter

HELP virtual_router_phys_if_output_bytes_total Total bytes sent by physical interface
virtual_router_phys_if_output_bytes_total{vrouter_name="jcnr.example.com",interface_nam
e="bonde"} 4597076
virtual_router_phys_if_input_bytes_total{vrouter_name="jcnr.example.com",interface_name
="bond@"} 228300499320
virtual_router_phys_if_output_bytes_total{interface_name="bond@",vrouter_name="jcnr.exa
mple.com"} 228297889634
virtual_router_phys_if_input_packets_total{interface_name="bond@",vrouter_name="jcnr.ex
ample.com"} 1585421179
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond@"} 1585402623
virtual_router_phys_if_output_packets_total{interface_name="bond@",vrouter_name="jcnr.e
xample.com"} 1585403344

Table 3: Sample vRouter Telemetry Output (Continued)

Group

CPU usage per
vRouter

Drop packet count
per vRouter

Sample Output

TYPE virtual_router_cpu_1min_load_avg gauge

HELP virtual_router_cpu_1min_load_avg Virtual router CPU 1 minute load average
virtual_router_cpu_1min_load_avg{vrouter_name="jcnr.example.com"} 0.11625

TYPE virtual_router_cpu_5min_load_avg gauge

HELP virtual_router_cpu_5min_load_avg Virtual router CPU 5 minute load average
virtual_router_cpu_5min_load_avg{vrouter_name="jcnr.example.com"} 0.109687

TYPE virtual_router_cpu_15min_load_avg gauge

HELP virtual_router_cpu_15min_load_avg Virtual router CPU 15 minute load average

virtual_router_cpu_15min_load_avg{vrouter_name="jcnr.example.com"} 0.110156

TYPE virtual_router_dropped_packets_total counter
HELP virtual_router_dropped_packets_total Total packets dropped
virtual_router_dropped_packets_total{vrouter_name="jcnr.example.com"} 35850

Table 3: Sample vRouter Telemetry Output (Continued)

Group

Packet count per
interface per VLAN

Sample Output

TYPE virtual_router_interface_vlan_multicast_input_packets_total counter

HELP virtual_router_interface_vlan_multicast_input_packets_total Total number of
multicast packets received on interface VLAN
virtual_router_interface_vlan_multicast_input_packets_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_broadcast_output_packets_total counter

HELP virtual_router_interface_vlan_broadcast_output_packets_total Total number of
broadcast packets sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_packets_total{interface_id="1",6vlan_id="
100"} ©

TYPE virtual_router_interface_vlan_broadcast_input_packets_total counter

HELP virtual_router_interface_vlan_broadcast_input_packets_total Total number of
broadcast packets received on interface VLAN
virtual_router_interface_vlan_broadcast_input_packets_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_multicast_output_packets_total counter

HELP virtual_router_interface_vlan_multicast_output_packets_total Total number of
multicast packets sent on interface VLAN
virtual_router_interface_vlan_multicast_output_packets_total{interface_id="1",vlan_id="
100"} @

TYPE virtual_router_interface_vlan_unicast_input_packets_total counter

HELP virtual_router_interface_vlan_unicast_input_packets_total Total number of
unicast packets received on interface VLAN
virtual_router_interface_vlan_unicast_input_packets_total{interface_id="1",vlan_id="100
"} o

TYPE virtual_router_interface_vlan_flooded_output_bytes_total counter

HELP virtual_router_interface_vlan_flooded_output_bytes_total Total number of output
bytes flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_bytes_total{interface_id="1",vlan_id="100"
lo

TYPE virtual_router_interface_vlan_multicast_output_bytes_total counter

HELP virtual_router_interface_vlan_multicast_output_bytes_total Total number of
multicast bytes sent on interface VLAN
virtual_router_interface_vlan_multicast_output_bytes_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_unicast_output_packets_total counter

HELP virtual_router_interface_vlan_unicast_output_packets_total Total number of
unicast packets sent on interface VLAN
virtual_router_interface_vlan_unicast_output_packets_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_broadcast_input_bytes_total counter

Table 3: Sample vRouter Telemetry Output (Continued)

Group

Sample Output

HELP virtual_router_interface_vlan_broadcast_input_bytes_total Total number of
broadcast bytes received on interface VLAN
virtual_router_interface_vlan_broadcast_input_bytes_total{interface_id="1",vlan_id="100
"} o

TYPE virtual_router_interface_vlan_multicast_input_bytes_total counter

HELP virtual_router_interface_vlan_multicast_input_bytes_total Total number of

multicast bytes received on interface VLAN
virtual_router_interface_vlan_multicast_input_bytes_total{vlan_id="100",interface_id="1
"} o

TYPE virtual_router_interface_vlan_unicast_input_bytes_total counter

HELP virtual_router_interface_vlan_unicast_input_bytes_total Total number of unicast
bytes received on interface VLAN
virtual_router_interface_vlan_unicast_input_bytes_total{interface_id="1",vlan_id="100"}
0

TYPE virtual_router_interface_vlan_flooded_output_packets_total counter

HELP virtual_router_interface_vlan_flooded_output_packets_total Total number of
output packets flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_packets_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_broadcast_output_bytes_total counter

HELP virtual_router_interface_vlan_broadcast_output_bytes_total Total number of
broadcast bytes sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_bytes_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_unicast_output_bytes_total counter

HELP virtual_router_interface_vlan_unicast_output_bytes_total Total number of

unicast bytes sent on interface VLAN
virtual_router_interface_vlan_unicast_output_bytes_total{interface_id="1",vlan_id="100"

}o

For cRPD, the telemetry exporter in the cRPD pod is disabled by default. You have to enable the

telemetry exporter deployment by specifying the following override parameter in the helm install
command while installing JCNR.

--set jcnr-cni.telemetryExporter.enable=true

The cRPD telemetry exporter periodically queries the NETCONF on the cRPD for statistics and reports
metrics information in response to the Prometheus scrape requests. You can directly view the telemetry
data by using the following URL: http:// host server IP address.8072.

NOTE: If the 8072 port is unavailable you can choose an alternate port to collect telemetry data
by specifying the following override parameter in the helm install command while installing JCNR.

--set jcnr-cni.telemetryExporter.metricsPort=<number>

The following table shows the sample output.

Table 4: Sample cRPD Telemetry Output

Group

BGP summary

Sample Output

TYPE crpd_bgp_rib_table_received_prefixes_total
counter

HELP crpd_bgp_rib_table_received_prefixes_total
Total number of BGP RIB table prefixes received
crpd_bgp_rib_table_received_prefixes_total{node="exam
ple.juniper.net", table="bgp.13vpn.0"} 0

TYPE crpd_bgp_rib_table_external_prefixes gauge

HELP crpd_bgp_rib_table_external_prefixes Number

of BGP RIB table external prefixes
crpd_bgp_rib_table_external _prefixes{node="example. ju
niper.net",table="bgp.13vpn.0"} 0

TYPE crpd_bgp_rib_table_active_external_prefixes
gauge

HELP crpd_bgp_rib_table_active_external_prefixes
Number of BGP RIB table active external prefixes
crpd_bgp_rib_table_active_external_prefixes{node="exa
mple.juniper.net", table="bgp.13vpn.0"} @

TYPE
crpd_bgp_rib_table_suppressed_internal_prefixes gauge
HELP
crpd_bgp_rib_table_suppressed_internal_prefixes
Number of BGP RIB table internal prefixes currently
inactive, because of damping or other reasons
crpd_bgp_rib_table_suppressed_internal_prefixes{node=
"example. juniper.net",table="bgp.13vpn.0"} 0

TYPE crpd_bgp_rib_table_prefixes gauge

HELP crpd_bgp_rib_table_prefixes Number of BGP RIB
table prefixes
crpd_bgp_rib_table_prefixes{node="example. juniper.net
" table="bgp.13vpn.0"} @

TYPE crpd_bgp_rib_table_active_prefixes gauge

HELP crpd_bgp_rib_table_active_prefixes Number of
BGP RIB table active prefixes
crpd_bgp_rib_table_active_prefixes{table="bgp.13vpn.0
" node="example.juniper.net"} 0

TYPE crpd_bgp_rib_table_history_prefixes gauge

HELP crpd_bgp_rib_table_history_prefixes Number of
BGP RIB table withdrawn prefixes stored locally to
keep track of damping history
crpd_bgp_rib_table_history_prefixes{node="example. jun
iper.net", table="bgp.13vpn.0"} @

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

TYPE
crpd_bgp_rib_table_suppressed_external_prefixes gauge
HELP
crpd_bgp_rib_table_suppressed_external_prefixes
Number of BGP RIB table external prefixes currently
inactive, because of damping or other reasons
crpd_bgp_rib_table_suppressed_external_prefixes{node=
"example. juniper.net",table="bgp.13vpn.0"} 0

TYPE crpd_bgp_rib_table_active_internal_prefixes
gauge

HELP crpd_bgp_rib_table_active_internal_prefixes
Number of BGP RIB table active internal prefixes
crpd_bgp_rib_table_active_internal_prefixes{node="exa
mple. juniper.net",table="bgp.13vpn.0"} @

TYPE crpd_bgp_rib_table_pending_prefixes gauge

HELP crpd_bgp_rib_table_pending_prefixes Number of
BGP RIB table prefixes in process by BGP import
policy
crpd_bgp_rib_table_pending_prefixes{node="example. jun
iper.net", table="bgp.13vpn.0"} @

TYPE crpd_bgp_rib_table_accepted_prefixes_total
counter

HELP crpd_bgp_rib_table_accepted_prefixes_total
Total number of BGP RIB table prefixes accepted
crpd_bgp_rib_table_accepted_prefixes_total{node="exam
ple.juniper.net", table="bgp.13vpn.0"} 0

TYPE crpd_bgp_rib_table_damped_prefixes gauge

HELP crpd_bgp_rib_table_damped_prefixes Number of
BGP RIB table prefixes with a figure of merit

greater than zero, but still active because the

value has not reached the threshold at which
suppression occurs
crpd_bgp_rib_table_damped_prefixes{node="example. juni
per.net",table="bgp.13vpn.0"} 0

TYPE
crpd_bgp_rib_table_accepted_external_prefixes_total
counter

HELP
crpd_bgp_rib_table_accepted_external_prefixes_total
Total number of BGP RIB table external prefixes
accepted
crpd_bgp_rib_table_accepted_external_prefixes_total{n
ode="example. juniper.net",table="bgp.13vpn.0"} 0

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

TYPE crpd_bgp_rib_table_internal_prefixes gauge

HELP crpd_bgp_rib_table_internal_prefixes Number

of BGP RIB table internal prefixes
crpd_bgp_rib_table_internal _prefixes{node="example. ju
niper.net",table="bgp.13vpn.0"} 0

TYPE crpd_bgp_rib_table_suppressed_prefixes gauge

HELP crpd_bgp_rib_table_suppressed_prefixes Number
of BGP RIB table prefixes currently inactive,

because of damping or other reasons
crpd_bgp_rib_table_suppressed_prefixes{node="example.
juniper.net",table="bgp.13vpn.0"} 0

TYPE
crpd_bgp_rib_table_accepted_internal_prefixes_total
counter

HELP
crpd_bgp_rib_table_accepted_internal_prefixes_total
Total number of BGP RIB table internal prefixes
accepted
crpd_bgp_rib_table_accepted_internal_prefixes_total{n
ode="example. juniper.net",table="bgp.13vpn.0"} 0
crpd_bgp_rib_table_external _prefixes{node="example. ju
niper.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_active_external_prefixes{node="exa
mple.juniper.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_suppressed_internal_prefixes{table
="bgp.13vpn-inet6.0",node="example. juniper.net"} 0
crpd_bgp_rib_table_received_prefixes_total{node="exam
ple.juniper.net", table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_active_prefixes{node="example. juni
per.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_history_prefixes{node="example. jun
iper.net", table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_suppressed_external_prefixes{node=
"example. juniper.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_active_internal_prefixes{node="exa
mple.juniper.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_pending_prefixes{node="example. jun
iper.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_prefixes{node="example. juniper.net
" table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_damped_prefixes{node="example. juni
per.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_accepted_external_prefixes_total{n

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

ode="example. juniper.net",table="bgp.13vpn-inet6.0"}
0
crpd_bgp_rib_table_internal_prefixes{table="bgp.13vpn
-inet6.0",node="example. juniper.net"} 0
crpd_bgp_rib_table_accepted_prefixes_total{node="exam
ple.juniper.net", table="bgp.13vpn-inet6.0"} @
crpd_bgp_rib_table_accepted_internal_prefixes_total{n
ode="example. juniper.net",table="bgp.13vpn-inet6.0"}
0
crpd_bgp_rib_table_suppressed_prefixes{node="example.
juniper.net",table="bgp.13vpn-inet6.0"} 0
crpd_bgp_rib_table_received_prefixes_total{node="exam
ple.juniper.net", table="bgp.evpn.0"} 0
crpd_bgp_rib_table_external_prefixes{node="example. ju
niper.net",table="bgp.evpn.0"} 0
crpd_bgp_rib_table_active_external_prefixes{node="exa
mple.juniper.net", table="bgp.evpn.0"} @
crpd_bgp_rib_table_suppressed_internal_prefixes{table
="bgp.evpn.0",node="example. juniper.net"} 0
crpd_bgp_rib_table_prefixes{node="example. juniper.net
" table="bgp.evpn.0"} 0
crpd_bgp_rib_table_active_prefixes{node="example. juni
per.net",table="bgp.evpn.0"} 0
crpd_bgp_rib_table_history_prefixes{node="example. jun
iper.net", table="bgp.evpn.0"} @
crpd_bgp_rib_table_suppressed_external_prefixes{table
="bgp.evpn.0",node="example. juniper.net"} 0
crpd_bgp_rib_table_active_internal_prefixes{node="exa
mple.juniper.net", table="bgp.evpn.0"} @
crpd_bgp_rib_table_pending_prefixes{node="example. jun
iper.net", table="bgp.evpn.0"} @
crpd_bgp_rib_table_accepted_prefixes_total{table="bgp
.evpn.0",node="example. juniper.net"} 0
crpd_bgp_rib_table_damped_prefixes{node="example. juni
per.net",table="bgp.evpn.0"} 0
crpd_bgp_rib_table_accepted_external_prefixes_total{n
ode="example. juniper.net",table="bgp.evpn.0"} 0
crpd_bgp_rib_table_internal_prefixes{node="example. ju
niper.net",table="bgp.evpn.0"} 0
crpd_bgp_rib_table_suppressed_prefixes{node="example.
juniper.net",table="bgp.evpn.0"} 0
crpd_bgp_rib_table_accepted_internal_prefixes_total{n
ode="example. juniper.net", table="bgp.evpn.0"} 0

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

TYPE crpd_bgp_peer_input_messages_total counter

HELP crpd_bgp_peer_input_messages_total Total
number of messages received from BGP peer
crpd_bgp_peer_input_messages_total{peer_address="11.1
1.11.11", peer_as="64512" ,node="example. juniper.net"}
5

TYPE crpd_bgp_peer_output_messages_total counter

HELP crpd_bgp_peer_output_messages_total Total
number of messages sent to BGP peer
crpd_bgp_peer_output_messages_total{node="example. jun
iper.net",peer_address="11.11.11.11" peer_as="64512"}
4

TYPE crpd_bgp_peer_route_gueue_count gauge

HELP crpd_bgp_peer_route_queue_count Current

number of messages that are queued to be sent to BGP
peer
crpd_bgp_peer_route_queue_count{node="example. juniper
.net" peer_address="11.11.11.11" ,peer_as="64512"} @
TYPE crpd_bgp_peer_state gauge

HELP crpd_bgp_peer_state BGP peer state
(1=Established, 2=Idle, 3=Connect, 4=Active,
5=0penSent, 6=0penConfirm)
crpd_bgp_peer_state{node="example. juniper.net" ,peer_a
ddress="11.11.11.11" ,peer_as="64512"} 1

TYPE crpd_bgp_peer_flaps_total counter

HELP crpd_bgp_peer_flaps_total Total number of
times the BGP peer session has gone down and then
come back up
crpd_bgp_peer_flaps_total{peer_address="11.11.11.11",
peer_as="64512" node="example. juniper.net"} 1

TYPE
crpd_bgp_peer_rib_table_accepted_prefixes_total
counter

HELP
crpd_bgp_peer_rib_table_accepted_prefixes_total

Total number of BGP RIB table active prefixes
accepted from BGP peer
crpd_bgp_peer_rib_table_accepted_prefixes_total{peer_
as="64512" ,table="bgp.13vpn.0" ,node="example. juniper.
net",peer_address="11.11.11.11"} @

TYPE crpd_bgp_peer_rib_table_suppressed_prefixes
gauge

HELP crpd_bgp_peer_rib_table_suppressed_prefixes

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

Number of BGP RIB table prefixes received from BGP
peer currently inactive, because of damping or other
reasons
crpd_bgp_peer_rib_table_suppressed_prefixes{node="exa
mple. juniper.net",peer_address="11.11.11.11" peer_as=
"64512" ,table="bgp.13vpn.0"} 0

TYPE crpd_bgp_peer_rib_table_active_prefixes gauge
HELP crpd_bgp_peer_rib_table_active_prefixes

Number of BGP RIB table active prefixes received

from BGP peer
crpd_bgp_peer_rib_table_active_prefixes{node="example
.juniper.net",peer_address="11.11.11.11",peer_as="645
12",table="bgp.13vpn.0"} 0
crpd_bgp_peer_rib_table_active_prefixes{node="example
.juniper.net",peer_address="11.11.11.11",peer_as="645
12" ,table="bgp.13vpn-inet6.0"} 0
crpd_bgp_peer_rib_table_accepted_prefixes_total{node=
"example. juniper.net",peer_address="11.11.11.11",peer
_as="64512",table="bgp.13vpn-inet6.0"} @
crpd_bgp_peer_rib_table_suppressed_prefixes{node="exa
mple. juniper.net",peer_address="11.11.11.11" peer_as=
"64512" ,table="bgp.13vpn-inet6.0"} 0
crpd_bgp_peer_rib_table_active_prefixes{node="example
.juniper.net",peer_address="11.11.11.11",peer_as="645
12" ,table="bgp.evpn.0"} 0
crpd_bgp_peer_rib_table_accepted_prefixes_total{node=
"example. juniper.net",peer_address="11.11.11.11",peer
_as="64512",table="bgp.evpn.0"} 0
crpd_bgp_peer_rib_table_suppressed_prefixes{node="exa
mple. juniper.net",peer_address="11.11.11.11" peer_as=
"64512" ,table="bgp.evpn.0"} 0

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Route table summary

Sample Output

TYPE crpd_route_table_destinations gauge

HELP crpd_route_table_destinations Number of
destinations for which there are routes in the
routing table
crpd_route_table_destinations{node="example.juniper.n
et",table="inet.0"} 13

TYPE crpd_route_table_routes gauge

HELP crpd_route_table_routes Number of routes in
the routing table
crpd_route_table_routes{node="example. juniper.net",ta
ble="inet.@"} 15

TYPE crpd_route_table_active_routes gauge

HELP crpd_route_table_active_routes Number of
active routes in the routing table
crpd_route_table_active_routes{node="example. juniper.
net",table="inet.0"} 13

TYPE crpd_route_table_holddown_routes gauge

HELP crpd_route_table_holddown_routes Number of
routes in the routing table that are in the hold-
down state before being declared inactive
crpd_route_table_holddown_routes{node="example. junipe
r.net",table="inet.0"} 0

TYPE crpd_route_table_hidden_routes gauge

HELP crpd_route_table_hidden_routes Number of
routes in the routing table that are not used,
because of routing policy
crpd_route_table_hidden_routes{node="example. juniper.
net",table="inet.0"} 0
crpd_route_table_routes{node="example. juniper.net",ta
ble="inet.3"} 1
crpd_route_table_active_routes{node="example. juniper.
net",table="inet.3"} 1
crpd_route_table_holddown_routes{node="example. junipe
r.net",table="inet.3"} 0
crpd_route_table_hidden_routes{node="example. juniper.
net",table="inet.3"} 0
crpd_route_table_destinations{node="example.juniper.n
et", table="inet.3"} 1
crpd_route_table_holddown_routes{node="example. junipe
r.net",table="mpls.0"} 0
crpd_route_table_hidden_routes{node="example. juniper.

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

net",table="mpls.0"} 0
crpd_route_table_destinations{node="example. juniper.n
et",table="mpls.0"} 4
crpd_route_table_routes{node="example. juniper.net",ta
ble="mpls.0"} 4
crpd_route_table_active_routes{node="example. juniper.
net",table="mpls.0"} 4
crpd_route_table_active_routes{node="example. juniper.
net",table="inet6.0"} 34
crpd_route_table_holddown_routes{node="example. junipe
r.net", table="inet6.0"} 0
crpd_route_table_hidden_routes{node="example. juniper.
net",table="inet6.0"} 0
crpd_route_table_destinations{node="example. juniper.n
et",table="inet6.0"} 34
crpd_route_table_routes{table="inet6.0",node="example
.juniper.net"} 38
crpd_route_table_destinations{node="example. juniper.n
et",table="inet6.3"} 1
crpd_route_table_routes{node="example. juniper.net",ta
ble="inet6.3"} 1
crpd_route_table_active_routes{node="example. juniper.
net",table="inet6.3"} 1
crpd_route_table_holddown_routes{node="example. junipe
r.net",table="inet6.3"} 0
crpd_route_table_hidden_routes{node="example. juniper.
net",table="inet6.3"} 0

TYPE crpd_route_table_protocol_routes gauge

HELP crpd_route_table_protocol_routes Number of
routes in the routing table learned from the protocol
crpd_route_table_protocol_routes{protocol="Direct",no
de="example. juniper.net", table="inet.0"} 6

TYPE crpd_route_table_protocol_active_routes gauge
HELP crpd_route_table_protocol_active_routes

Number of active routes in the routing table learned
from the protocol
crpd_route_table_protocol_active_routes{protocol="Dir
ect",node="example. juniper.net", table="inet.0"} 6
crpd_route_table_protocol_active_routes{node="example
.juniper.net", table="inet.0" ,protocol="Local"} 3
crpd_route_table_protocol_routes{node="example. junipe
r.net",table="inet.0",protocol="Local"} 5

crpd_route_table_protocol_routes{node="example. junipe

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

r.net",table="inet.0",protocol="0SPF"} 4
crpd_route_table_protocol_active_routes{node="example
.juniper.net",table="inet.@" ,protocol="0SPF"} 4
crpd_route_table_protocol_routes{node="example. junipe
r.net",table="inet.3",protocol="Tunnel"} 1
crpd_route_table_protocol_active_routes{node="example
.juniper.net", table="inet.3",protocol="Tunnel"} 1
crpd_route_table_protocol_routes{node="example. junipe
r.net",table="mpls.0",protocol="MPLS"} 4
crpd_route_table_protocol_active_routes{node="example
.juniper.net", table="mpls.@",protocol="MPLS"} 4
crpd_route_table_protocol_routes{node="example. junipe
r.net",table="inet6.0",protocol="Direct"} 8
crpd_route_table_protocol_active_routes{node="example
.juniper.net", table="inet6.0",protocol="Direct"} 4
crpd_route_table_protocol_routes{table="inet6.0",prot
ocol="Local",node="example. juniper.net"} 29
crpd_route_table_protocol_active_routes{node="example
.juniper.net", table="inet6.0",protocol="Local"} 29
crpd_route_table_protocol_routes{node="example. junipe
r.net",table="inet6.0",protocol="INET6"} 1
crpd_route_table_protocol_active_routes{node="example
.juniper.net", table="inet6.0",protocol="INET6"} 1
crpd_route_table_protocol_routes{node="example. junipe
r.net",table="inet6.3",protocol="Tunnel"} 1
crpd_route_table_protocol_active_routes{node="example

.juniper.net", table="inet6.3" ,protocol="Tunnel"} 1

Table 4: Sample cRPD Telemetry Output (Continued)

Group

OSPF summary

Sample Output

TYPE crpd_ospf_packets_sent_total counter

HELP crpd_ospf_packets_sent_total Total number of
OSPF packets sent
crpd_ospf_packets_sent_total{node="example. juniper.ne
t",packet_type="Hello"} 26

TYPE crpd_ospf_packets_received_total counter

HELP crpd_ospf_packets_received_total Total number
of OSPF packets received
crpd_ospf_packets_received_total{node="example. junipe
r.net",packet_type="Hello"} 4
crpd_ospf_packets_sent_total{node="example. juniper.ne
t", packet_type="DbD"} 3
crpd_ospf_packets_received_total{node="example. junipe
r.net",packet_type="DbD"} 4
crpd_ospf_packets_sent_total{node="example. juniper.ne
t",packet_type="LSReq"} 1
crpd_ospf_packets_received_total{node="example. junipe
r.net",packet_type="LSReq"} 1
crpd_ospf_packets_sent_total{node="example. juniper.ne
t",packet_type="LSUpdate"} 2
crpd_ospf_packets_received_total{node="example. junipe
r.net",packet_type="LSUpdate"} 3
crpd_ospf_packets_sent_total{node="example. juniper.ne
t",packet_type="LSAck"} 3
crpd_ospf_packets_received_total{node="example. junipe
r.net",packet_type="LSAck"} 2

TYPE crpd_ospf_dbd_packets_retransmitted_total
counter

HELP crpd_ospf_dbd_packets_retransmitted_total
Total number of OSPF database descriptor packets
retransmitted
crpd_ospf_dbd_packets_retransmitted_total{node="examp
le.juniper.net"} 1

TYPE crpd_ospf_lsa_packets_retransmitted_total
counter

HELP crpd_ospf_lsa_packets_retransmitted_total
Total number of OSPF link-state advertisement

packets retransmitted
crpd_ospf_lsa_packets_retransmitted_total{node="examp
le.juniper.net"} @

TYPE crpd_ospf_lsa_packets_flooded_total counter

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Sample Output

HELP crpd_ospf_lsa_packets_flooded_total Total
number of OSPF link-state advertisement packets
flooded
crpd_ospf_lsa_packets_flooded_total{node="example. jun
iper.net"} 1

TYPE crpd_ospf_flood_queue_depth gauge

HELP crpd_ospf_flood_queue_depth Number of entries
in the extended queue
crpd_ospf_flood_queue_depth{node="example. juniper.net
"} o

TYPE crpd_ospf_error_total counter

HELP crpd_ospf_error_total Total number of OSPF
receive errors

crpd_ospf_error_total{error_type="no-
error",node="example. juniper.net"} @

TYPE crpd_ospf_neighbor_state gauge

HELP crpd_ospf_neighbor_state OSPF neighbor state
(0=Down, 1=Full, 2=Attempt, 3=Exchange, 4=ExStart,
5=Init, 6=Loading, 7=2Way)
crpd_ospf_neighbor_state{neighbor_address="113.113.11
3.3" interface_name="enp6s0" ,node="example. juniper.ne
t"} 1

Table 4: Sample cRPD Telemetry Output (Continued)

Group

MPLS statistics

Sample Output

TYPE crpd_mpls_ingress_lsp_sessions_down gauge

HELP crpd_mpls_ingress_lsp_sessions_down Number of
MPLS ingress LSP sessions
crpd_mpls_ingress_lsp_sessions_down{node="example. jun
iper.net"} @

TYPE crpd_mpls_ingress_lsp_sessions gauge

HELP crpd_mpls_ingress_lsp_sessions Number of MPLS
ingress LSP sessions
crpd_mpls_ingress_lsp_sessions{node="example. juniper.
net"} 0

TYPE crpd_mpls_lsp_make_before_breaks_total counter
HELP crpd_mpls_lsp_make_before_breaks_total Total
number of LSP make before break procedures performed
crpd_mpls_lsp_make_before_breaks_total{node="example.
juniper.net"} 0

TYPE crpd_mpls_lsp_bandwidth_increases_total
counter

HELP crpd_mpls_lsp_bandwidth_increases_total Total
number of LSP bandwidth increases performed
crpd_mpls_lsp_bandwidth_increases_total{node="example
.juniper.net"} @

TYPE crpd_mpls_lsp_bandwidth_decreases_total
counter

HELP crpd_mpls_lsp_bandwidth_decreases_total Total
number of bandwidth decreases performed
crpd_mpls_lsp_bandwidth_decreases_total{node="example
.juniper.net"} 0

TYPE crpd_mpls_lsp_update_cspf_failures_total
counter

HELP crpd_mpls_lsp_update_cspf_failures_total

Total number of in-place LSP auto-bandwidth resizing
failures at the CSPF path computation stage
crpd_mpls_lsp_update_cspf_failures_total{node="exampl
e.juniper.net"} 0

TYPE crpd_mpls_lsp_update_signaling_errors_total
counter

HELP crpd_mpls_lsp_update_signaling_errors_total
Total number of in-place LSP auto-bandwidth resizing
failures when RSVP signaling error is received
crpd_mpls_lsp_update_signaling_errors_total{node="exa

mple.juniper.net"} 0

Table 4: Sample cRPD Telemetry Output (Continued)

Group

Prometheus is an open-source systems monitoring an

Sample Output

TYPE crpd_mpls_lsp_update_signaling_timeouts_total
counter

HELP crpd_mpls_lsp_update_signaling_timeouts_total
Total number of in-place LSP auto-bandwidth resizing
failures when RSVP signaling takes too long to
complete
crpd_mpls_lsp_update_signaling_timeouts_total{node="e
xample.juniper.net"} 0

TYPE crpd_mpls_label_space_total_labels gauge

HELP crpd_mpls_label_space_total_labels The total
label space available
crpd_mpls_label_space_total_labels{label_space="LSI",
node="example. juniper.net"} 999984

TYPE crpd_mpls_label_space_free_labels gauge

HELP crpd_mpls_label_space_free_labels The number
of freely available labels
crpd_mpls_label_space_free_labels{node="example.junip
er.net",label_space="LSI"} 999984
crpd_mpls_label_space_total_labels{node="example. juni
per.net",label_space="Block"} 999984
crpd_mpls_label_space_free_labels{node="example.junip
er.net",label_space="Block"} 999984
crpd_mpls_label_space_total_labels{node="example. juni
per.net",label_space="Dynamic"} 999984
crpd_mpls_label_space_free_labels{node="example.junip
er.net",label_space="Dynamic"} 999984
crpd_mpls_label_space_total_labels{node="example. juni
per.net",label_space="Static"} 48576
crpd_mpls_label_space_free_labels{node="example.junip
er.net",label_space="Static"} 48576

d alerting toolkit. You can use Prometheus to

retrieve telemetry data from the cloud-native router host servers and view that data in the HTTP
format. A sample of Prometheus configuration looks like this:

- job_name: "prometheus-JCNR-1a2b3c"

metrics_path defaults to '/metrics'
scheme defaults to 'http'.

static_configs:
- targets: ["<host-server-IP>:8070"]

Logging and Notifications

IN THIS SECTION

Logging | 147

Notifications | 148

Read this topic to learn about logging and notification functions in Juniper Cloud-Native Router. We
discuss the location of log files, what you can log, and various log levels. You can also learn about the
available notifications and how the notifications are implemented in the cloud-native router.

Logging

The Juniper Cloud-Native Router pods and containers use syslog as their logging mechanism. You can
determine the location of the log files at the deployment time by retaining or changing the value of the
log_path key in the values.yaml file. By default, the location of the log files is /var/log/jcnr. The system
stores log files from all the cloud-native router pods and containers in the log_path directory.

In addition, a syslog-ng pod stores event notification data in JSON format on the host server. The
syslog-ng pod stores the JSON-formatted notifications in the directory specified by the
syslog_notifications key in the values.yaml file. By default, the file location is /var/log/jcnr and the
filename is jenr_notifications.json. You can change the location and filename by changing the value of
the syslog_notifications key before the cloud-native router deployment.

When you use the default file locations, the /var/log/jcnr directory displays the following files:

[root@jcnr-01 jcnrl# 1s

action.log contrail-vrouter-dpdk-init.log filter
12cos.log __policy_names_rpdc__
contrail-vrouter-agent.log contrail-vrouter-dpdk.log filter.log

license mgd-api

__policy_names_rpdn__ cos
messages mosquitto
vrouter-kernel-init.log cscript.log

messages.0.gz na-grpcd

NOTE:
contrail-vrouter-dpdk.logjcnr-cni.log

Notifications

jenr-cni.log

jenr_notifications. json

The syslog-ng pod continuously monitors the preceding log files for notification events such as interface
up, interface down, interface add, and so on. When these events appear in a log file, syslog-ng converts
the log events into notification events and stores the events in JSON format within the
syslog_notifications file configured in the values.yaml file.

Here is a sample of syslog-ng notifications:

Table 5: Supported Notifications

Notification

License Near Expiry

License Expired

License Invalid

License OK

License Grace Period

License Not Present

JCNR Init Success

JCNR Init Failure

Source Pod

cRPD

cRPD

cRPD

cRPD

cRPD

cRPD

Deployer

Deployer

Table 5: Supported Notifications (Continued)

Notification Source Pod
JCNR Graceful Shutdown Request Deployer
JCNR Graceful Shutdown Complete Deployer
JCNR Graceful Shutdown Failure Deployer
JCNR Restart Deployer
JCNR Upgrade Success Deployer
JCNR Upgrade Failure Deployer
Upstream Fabric Bond Member Link Up vRouter
Upstream Fabric Bond Member Link Down vRouter
Upstream Fabric Bond Link Up vRouter
Upstream Fabric Bond Link Down vRouter
Upstream Fabric Bond Link Switchover vRouter
Downstream Fabric Link Up vRouter
Downstream Fabric Link Down vRouter
Appliance Link Up vRouter
Appliance Link Down vRouter
Any JCNR Application Critical Errors vRouter
Any JCNR Application Warnings vRouter

Any JCNR Application Info vRouter

Table 5: Supported Notifications (Continued)

Notification

JCNR Rate Limits Reached

JCNR MAC Table Limit Reached

JCNR CLI Start

JCNR CLI Stop

JCNR Kernel App Interface Up

JCNR Kernel App Interface Down

JCNR Virtio User Interface Up

JCNR Virtio User Interface Down

Source Pod

vRouter

vRouter

cRPD or vRouter-Agent

cRPD or vRouter-Agent

vRouter

vRouter

vRouter

vRouter

CHAPTER

Troubleshooting

Troubleshoot via the vRouter CLI | 152

Troubleshoot via Introspect | 164

152

Troubleshoot via the vRouter CLI

IN THIS SECTION

® Accessing the vRouter CLI | 152

® Troubleshooting via the vRouter CLI | 154

Read this topic to learn about the various troubleshooting commands available in the vRouter CLI.
The following commands are covered in this topic:

e "Accessing the vRouter CLI" on page 152

e "Verify vRouter Interfaces via the vif Command" on page 154

¢ "View the running configuration of the vRouter" on page 155

e "View L2 Configuration and Statistics via the purel2cli Command" on page 156
e "View status and statistics of DPDK using the dpdkinfo Command" on page 159
e "Display routes and next hops using the rt and nh Commands" on page 162

e "Display all active flows using the flown Command" on page 163

I Accessing the vRouter CLI

You can access the command-line interface (CLI) of the vRouter by accessing the shell of the running
vRouter-agent container.

NOTE: The commands below are provided as an example. The vRouter pod name must be
replaced from your environment. The command outputs may differ based on your environment.

List the K8s Pods running on the cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0

41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running 0

41m

jenr kube-crpd-worker-ds-8tnf7 1/1 Running 0

41m

jenr syslog-ng-54749b7b77-v24hq 1/1 Running 0

41m

kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d ago)
129d

kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d

kube-system dns-autoscaler-7f76f4dd6-qg5vdp 1/1 Running 2 (92d ago)
129d

kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d

kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d

kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d

kube-system kube-proxy-16xm8 1/1 Running 2 (92d ago)
129d

kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d

kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the vRouter pod—contrail-vrouter-masters-dfxgm in this example output . You will use the
pod name to connect to the running container's shell.

Connect to the vRouter CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The vRouter pod has three containers. When the container name is not specified, the command will
default to the vrouter-agent container shell. Here is an example:

[root@jcnr-011# kubectl exec -n contrail -it contrail-vrouter-masters-dfxgm -- bash

Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk,

contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-init-dpdk
(init)

[root@jcnr-01 /1#

At this point, you have connected to the vRouter's CLI.

Troubleshooting via the vRouter CLI

You can run commands in the CLI to learn about the state of the vRouter.
Verify vRouter Interfaces via the vif Command

The command shown below allows you to see which interfaces are present on the vRouter:

vif --list
Vrouter Operation Mode: Purel2
Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload, Mon=Interface
is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS

Left Intf
HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vife/e Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 00 0 000000000
RX packets:@ bytes:0 errors:0
TX packets:11 bytes:4169 errors:0
Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 25000, Duplex 1)
Type:Physical HWaddr:46:37:1f:de:df:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue errors to lcore 00 0 000000000
Fabric Interface: eth_bond_bond® Status: UP Driver: net_bonding
Slave Interface(0): 0000:3b:02.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:3b:02.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 700-705
RX packets:@ bytes:0 errors:0
TX packets:378 bytes:81438 errors:0
Drops:0

vife/2 PCI: 0000:3b:0a.0 (Speed 25000, Duplex 1)
Type:Workload HWaddr:ba:69:c0:b7:1f:ba
Vrf:0 Flags:L2Vof Q0S:-1 Ref:7
RX queue errors to lcore 00 0 000000000
Fabric Interface: 0000:3b:0a.@ Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 700 OVlan Id: 700
RX packets:378 bytes:81438 errors:2
TX packets:0 bytes:0 errors:0
Drops:391

View the running configuration of the vRouter

To see the status of the vRouter, enter the following command in the vRouter CLI:

[root@jcnr-01 /1# ps -eaf | grep vrouter-dpdk

root 116 90 99 Mar30 ? 118-08:05:37 /contrail-vrouter-dpdk --no-daemon --
socket-mem=1024 1024

--allow=0000:5a:02.0 --
vdev=eth_bond_bond@,mode=1,socket_id=0,mac=3a:1a:b7:86:1c:4f,primary=0000:5a:02.0,

slave=0000:5a:02.0 --12_table_size=10240 --yield_option @ --ddp --12_mode
root 1134749 1134365 0 16:41 pts/0 00:00:00 grep --color=auto vrouter-dpdk

The output contains several elements.

Table 6: vRouter Status Attributes

Flag

--12_mode

--12_table_size

--allow=<PCI Id>

--ddp

Meaning

The vRouter is running in L2 mode.

The current number of entries in the MAC table. The
default size is 10240 entries.

The PCI ID of fabric and fabric workload interfaces.
More than one ID can appear in the output. These IDs
serve as an allowlist.

Enable Intel DDP support.

We enable DDP by default in the values.yaml file in the
vRouter.

NOTE: The Intel XL710 NIC does not support DDP.

View L2 Configuration and Statistics via the purel2cli Command

The purel2cli command is a useful utility to view the JCNR L2 configuration and statistics. Start by using

the purel2cli --help command.

[root@jcnr-01 /J# purel2cli --help

Usage: purel2cli [--mac show]
[--vlan show]
[--vlan get <VLAN_ID>]
[--acl show <VLAN_ID>]
[--acl reset-counters <VLAN_ID>]
[--12stats get <VIF_ID> <VLAN_ID>]
[--clear VLAN_ID]

[--gos classifier/re-write/scheduler <NAME>]

[--gos cla/rw/sch <NAME>]
[--nolocal show]
[--nolocal get <VLAN_ID>]

[--sock-dir <sock dir>]
[--help]

The purel2cli --mac show command shows the MAC addresses that the vRouter has dynamically learned.

purel2cli --mac show

|| MAC vlan port hit_count]| |
00:01:01:01:01:03 1221 2 1101892
00:01:01:01:01:02 1221 2 1101819
00:01:01:01:01:04 1221 2 1101863
00:01:01:01:01:01 1221 2 1101879
5a:4c:4c:75:90:fe 1250 5 12

Total Mac entries 5

The purel2cli --vlan show command shows the VLANs and associated ports.

purel2cli --vlan show

VLAN PORT

1201 1,2,3,4,
1202 1,2,3,4,
1203 1,2,3,4,
1204 1,2,3,4,
1205 1,2,3,4,

You can also issue the purel2cli --vlan get command to get more details about the VLAN.

purel2cli --vlan get <vlan-id>

Issue the purel2cli --12stats command to view L2 statistics. For example:

purel2cli --12stats get <virtual_interface_ID> <VLAN_ID>

purel2cli --12stats get 2 1221
Vlan id count: 1

Statistics for vif 2 vlan 1221

Rx Pkts Rx Bytes Tx Pkts Tx Bytes
Unicast 245344824 48152682842 835552 1667761792
Broadcast 0 0 0 0
Multicast 0 0 0 0
Flood 0 0 0 0

purel2cli --clear '#'

purel2cli --clear 100

Table 7: purel2cli Command Options for L2 Statistics

Sample Command Function

purel2cli --12stats get 'x' '4' Get statistics for all virtual interfaces (vif) and all VLAN
IDs.

purel2cli --12stats get 'x' 100 Get statistics for all vif that are part of VLAN 100

purel2cli --12stats get 1 '«' Get statistics for all VLANSs for which interface 1 is a
member

purel2cli --12stats get 1 100 Get statistics for interface 1 and VLAN 100

The command shows the VLAN to port mapping in the vRouter.You can use the command to see the
bridge domain table entry for a specific VLAN: There are several variations of the command that allow
you to display and filter L2 statistics in the vRouter. The base form of the command is: . The table below
shows the available command options and what they do. It also provides a sample output using one of
the options:The following command is an example of the L2 statistics for interface 2 and VLAN
1221:You can clear the statistics from the vRouter with the purel2cli command in the form: . Clears all
statistics from all VLANSs in the vRouter. Clears all statistics for VLAN id 100.

Packet Tracing via the dropstats Command

The vRouter tracks the packets that it drops and includes the reason for dropping them. The table below
shows the common reasons for vRouter to drop a packet. When you execute the dropstats command,
the vRouter does not show a counter if the count for that counter is O.

Table 8: Dropstats Counters

Counter Name Meaning

L2 bd table drop No interfaces in bridge domain

L2 untag pkt drop Untagged packet arrives on trunk or sub-interface
L2 Invalid Vlan Packet VLAN does not match interface VLAN

L2 Mac Table Full No more entries available in the MAC table

L2 ACL drop Packet matched firewall filter (ACL) drop rule

L2 Src Mac lookup fail Unable to match (or learn) the source MAC address

Example output from the dropstats command looks like:

dropstats

L2 bd table Drop 43

L2 untag pkt drop 716

L2 Invalid Vlan 7288253
Rate limit exceeded 673179706
L2 Mac Table Full 41398787
L2 ACL drop 8937037
L2 Src Mac lookup fail 247046

View status and statistics of DPDK using the dpdkinfo Command

The dpdkinfo command provides insight into the status and statistics of DPDK. The dpdkinfo command
has many options. The following sections describe the available options and the example output from
the dpdkinfo command. You can run the dpdkinfo command only from within the vRouter-agent CLI.

dpdkinfo --help
Usage: dpdkinfo [--help]

--version|-v Show DPDK
Version

--bond|-b Show Master/
Slave bond information

--lacp|-1 <all/conf> Show LACP

information from DPDK

--mempool |-m <all/<mempool-name>> Show Mempool

information

--stats|-n <vif index value> Show Stats
information

--xstats|-x <vif index value> Show Extended
Stats information

--1core|-c Show Lcore
information

--app|-a Show App
information

--ddp| -d <list> <list-flow> Show DDP information
for X710 NIC

--rx_vlan|-z <value> Show VLan
information

Optional: --buffsz <value> Send output

buffer size (less than 1000Mb)

The command dpdkinfo -c shows the Lcores assigned to DPDK VF fabric interfaces and the queue ID for
each interface.

dpdkinfo -c
No. of forwarding lcores: 4

Lcore 10:
Interface: 0000:18:01.1 Queue ID: 0
Interface: 0000:18:0d.1 Queue ID: 0
Interface: 0000:86:00.0 Queue ID: @
Lcore 11:
Interface: 0000:18:01.1 Queue ID: 1
Interface: 0000:18:0d.1 Queue ID: 1
Interface: 0000:86:00.0 Queue ID: 1
Lcore 12:
Interface: 0000:18:01.1 Queue ID: 2
Interface: 0000:18:0d.1 Queue ID: 2
Interface: 0000:86:00.0 Queue ID: 2
Lcore 13:

Interface: 0000:18:01.1 Queue ID: 3

Interface: 0000:18:0d.1 Queue ID: 3
Interface: 0000:86:00.0 Queue ID: 3

The command dpdkinfo -m all shows all of the memory pool information.

dpdkinfo -m all

Name Size Used Available
rss_mempool 16384 1549 14835
frag_direct_mempool 4096 0 4096
frag_indirect_mempool 4096 0 4096
packet_mbuf_pool 8192 2 8190

The command dpdkinfo -n 3 displays statistical information for a specific interface.

dpdkinfo -n 3
Interface Info(0000:18:0d.1):
RX Device Packets:6710, Bytes:1367533, Errors:0, Nombufs:0
Dropped RX Packets:0
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
Tx:
Rx Bytes:
Tx Bytes:
Errors:

The command dpdkinfo -x 3 displays extended statistical information for a specific interface.

dpdkinfo -x 3

Driver Name:net_iavf

Interface Info0:0000:18:0d.1

Rx Packets:
rx_good_packets: 6701
rx_unicast_packets: 0
rx_multicast_packets: 2987
rx_broadcast_packets: 3714
rx_dropped_packets: 0

Tx Packets:
tx_good_packets: 0

tx_unicast_packets: 0
tx_multicast_packets: @
tx_broadcast_packets: @
tx_dropped_packets: 0
Rx Bytes:
rx_good_bytes: 1365696
Tx Bytes:
tx_good_bytes: 0
Errors:
rx_missed_errors: 0
rx_errors: 0
tx_errors: @
rx_mbuf_allocation_errors: 0
inline_ipsec_crypto_ierrors: 0
inline_ipsec_crypto_ierrors_sad_lookup: 0
inline_ipsec_crypto_ierrors_not_processed: 0
inline_ipsec_crypto_ierrors_icv_fail: @
inline_ipsec_crypto_ierrors_length: 0
Others:
inline_ipsec_crypto_ipackets: @

Display routes and next hops using the rt and nh Commands

Use the rt command to display all routes in a VRF. The nh command enables you to inspect the next hops
that are known by the vRouter. Next hops tell the vRouter the next location to send a packet in the path
to its final destination.

For example, for IPv4 traffic:

rt --get 172.68.20.2/32 --vrf 4
Match 172.68.20.2/32 in vRouter inet4 table 0/4/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, M1=MAC-IP learnt route

vRouter inet4 routing table 0/4/unicast

Destination PPL Flags Label Nexthop Stitched MAC(Index)
172.68.20.2/32 0 LPT 16 193 =

nh --get 193

1d:193 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:264 Vrf:o

Flags:Valid, Policy, MPLSoUDP, Etree Root,
0if:4 Len:14 Data:88 e6 4b 09 7d 46 40 a6 b7 2c a4 48 08 00 Sip:1.1.1.35 Dip:1.1.24.24

For example, for IPvé traffic:

rt --get 2001:172:68:20::/64 --vrf 4 --family inet6
Match 2001:172:68:20::/64 in vRouter inet6 table @0/4/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, M1=MAC-IP learnt route

VRouter inet6 routing table 0/4/unicast

Destination PPL Flags Label Nexthop Stitched MAC(Index)
2001:172:68:20::/64 0 LPT 16 193 =

nh --get 193

1d:193 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:264 Vrf:o

Flags:Valid, Policy, MPLSoUDP, Etree Root,
0if:4 Len:14 Data:88 e6 4b 09 7d 46 40 a6 b7 2c a4 48 08 00 Sip:1.1.1.35 Dip:1.1.24.24

Display all active flows using the flow Command

Use the flow command to display all active flows in a system. For example:

flow -1 --match 169.83.47.170:9398
Flow table(size 161218560, entries 629760)

Entries: Created 162630 Added 162614 Deleted 35136 Changed 35202Processed 162630 Used Overflow
entries 0
(Created Flows/CPU: 0 0 0 0 0 0 0 0 0 0 241 546 15 161828)(oflows 0)

Action:F=Forward, D=Drop N=NAT(S=SNAT, D=DNAT, Ps=SPAT, Pd=DPAT, L=Link Local Port)
Other:K(nh)=Key_Nexthop, S(nh)=RPF_Nexthop
Flags:E=Evicted, Ec=Evict Candidate, N=New Flow, M=Modified Dm=Delete Marked
TCP(r=reverse):S=SYN, F=FIN, R=RST, C=HalfClose, E=Established, D=Dead
Stats:Packets/Bytes

Listing flows matching ([169.83.47.1701:9398)

Index Source:Port/Destination:Port Proto(V)
328196<=>524233 169.83.47.170:9398 6 (2)
172.68.20.20:2159
(Gen: 3, K(nh):206, Action:F, Flags:, TCP:, E:1, Q0S:-1, S(nh):206, Stats:6/360,
SPort 63929, TTL @, Sinfo 38.0.0.0)

524233<=>328196 172.68.20.20:2159 6 (2)
169.83.47.170:9398

(Gen: 3, K(nh):206, Action:F, Flags:

SPort 60311, TTL @, Sinfo 0.0.0.0)

, TCP:, Q0S:-1, S(nh):250, Stats:0/0,

Troubleshoot via Introspect

IN THIS SECTION

Introspect | 164

Introspect

For vRouter-agent debugging, we use Introspect. You can access the Introspect data at http:/<host
server IP>:8085. Here is a sample of the Introspect data:
Table 9: Modules shown in contrail-vrouter-agent debug output

Link

agent.xml

agent_ksync.xml

agent_profile.xml

agent_stats_interval.xml

controller.xml

and Description

Shows agent operational data. Using this introspect, you can see the
list of interfaces, VMs, VNs, VRFs, security groups, ACLs and mirror
configurations.

Shows agent ksync layer for data objects such as interfaces and
bridge ports.

shows agent operdb, tasks, flows, and statistics summary.

View and set collection period for statistics.

Shows the connection status of the jenr-controller (cRPD)

Table 9: Modules shown in contrail-vrouter-agent debug output (Continued)

Link

cpuinfo.xml

ifmap_agent.xml

kstate.xml

mac_learning.xml

sandesh_trace.xml

sandesh_uve.xml

stats.xml

task.xml

and Description

Shows the CPU load and memory usage on the compute node.

Shows the current configuration data received from ifmap.

Shows data configured in the vRouter data path.

Shows entries in vRouter-agent MAC learning table.

Gives the different agent module traces such as oper, ksync, mac
learning, and grpc.

Lists all the user visible entitities (UVESs) in the vRouter-agent. The
UVEs are used for analytics and telemetry.

Shows vRouter-agent slow path statistics such as error packets,
trapped packets, and debug statistics.

Shows vRouter-agent worker task details.

NOTE: The table shows grouped output. The cloud-native router does not group or sort the

output on live systems.

The http:// host server IP address.8085 page displays only a list of HTML links.

CHAPTER

Appendix

Access cRPD CLI | 167
Access vRouter CLI | 168

Juniper Technology Previews (Tech Previews) | 170

Access cRPD CLI

You can access the command-line interface (CLI) of the cloud-native router controller by accessing the
shell of the running cRPD container.

NOTE: The commands below are provided as an example. The cRPD pod name must be replaced
from your environment. The command outputs may differ based on your environment.

View the running pods in the cluster:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0

41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running 0

41m

jenr kube-crpd-worker-ds-8tnf7 1/1 Running 0

41m

jenr syslog-ng-54749b7b77-v24hq 1/1 Running 0

41m

kube-system calico-kube-controllers-57b9767bdb-5wbhj6 1/1 Running 2 (92d ago)
129d

kube-system calico-node-3j4m5b 1/1 Running 2 (92d ago)
129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d

kube-system dns-autoscaler-7f76f4dd6-g5vdp 1/1 Running 2 (92d ago)
129d

kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d

kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d

kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d

kube-system kube-proxy-16xm8 1/1 Running 2 (92d ago)
129d

kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)

129d

kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the cRPD pod—kube-crpd-worker-ds-8tnf7 in this example output . You will use the pod
name to connect to the running container's shell.

Connect to the cRPD CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The cRPD pod has only one running container. Here is an example command:

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),
install-cni (init)

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2020-2022, Juniper Networks, Inc. All rights reserved.
root@jcnr-01:/#
At this point, you have connected to the shell of the cRPD. Just as with other Junos-based shells, you

access the operational mode of the cloud-native router the same way as if you were connected to the
console of a physical Junos OS device.

root@jcnr-01:/# cli
root@jcnr-cni>

Access vRouter CLI

You can access the command-line interface (CLI) of the vRouter by accessing the shell of the running
vRouter-agent container.

NOTE: The commands below are provided as an example. The vRouter pod name must be
replaced from your environment. The command outputs may differ based on your environment.

List the running pods on the K8s Cluster:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0

41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running 0

41m

jenr kube-crpd-worker-ds-8tnf7 1/1 Running 0

41m

jenr syslog-ng-54749b7b77-v24hq 1/1 Running 0

41m

kube-system calico-kube-controllers-57b9767bdb-5wbhj6 1/1 Running 2 (92d ago)
129d

kube-system calico-node-3j4m5b 1/1 Running 2 (92d ago)
129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d

kube-system dns-autoscaler-7f76f4dd6-g5vdp 1/1 Running 2 (92d ago)
129d

kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d

kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d

kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d

kube-system kube-proxy-16xm8 1/1 Running 2 (92d ago)
129d

kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d

kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the vRouter pod—contrail-vrouter-masters-dfxgm in this example output . You will use the
pod name to connect to the running container's shell.

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The vRouter pod has three containers. When the container name is not specified, the command will
default to the vrouter-agent container shell. Here is an example:

[root@jcnr-011# kubectl exec -n contrail -it contrail-vrouter-masters-dfxgm -- bash

Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk,

contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-init-dpdk
(init)

[root@jcnr-01 /J#

At this point, you have connected to the vRouter's CLI.

Juniper Technology Previews (Tech Previews)

Tech Previews enable you to test functionality and provide feedback during the development process of
innovations that are not final production features. The goal of a Tech Preview is for the feature to gain
wider exposure and potential full support in a future release. Customers are encouraged to provide
feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards

relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

https://support.juniper.net/support/

	Table of Contents
	Introduction
	Juniper Cloud-Native Router Overview
	Juniper Cloud-Native Router Components
	JCNR Deployment Modes
	JCNR Interfaces Overview

	Common Features (All Deployment Modes)
	JCNR Common Features
	Enabling Dynamic Device Personalization (DDP) on Individual Interfaces
	VLAN Sub-Interfaces

	L2 Features
	L2 Features Overview
	Access Control Lists (Firewall Filters)
	MAC Learning and Aging
	Storm Control
	APIs and CLI Commands for Bond Interfaces
	Quality of Service (QoS)
	Native VLAN
	Prevent Local Switching

	L3 Features
	L3 Features Overview
	IPsec Security Services
	JCNR as a Transit Gateway
	EVPN Type 5 Routing over VXLAN Tunnels
	Integrated Routing and Bridging on JCNR
	L3 Routing Protocols
	MPLS Support
	Bidirectional Forwarding Detection (BFD)
	Virtual Router Redundancy Protocol (VRRP)
	Virtual Routing Instance (VRF-Lite)
	ECMP
	BGP Unnumbered

	JCNR CNI Configuration Examples
	JCNR Use-Cases and Configuration Overview
	L2 Kernel Access-Mode Interface Configuration Example
	Overview
	Configuration Example

	L2 virtio Trunk-Mode Interface Configuration Example
	Overview
	Configuration Example

	L2 VLAN Sub-Interface Configuration Example
	Overview
	Configuration Example

	L3 VPN Interface Configuration Example
	Overview
	Configuration Example

	L3 VLAN Sub-Interface Configuration Example
	Overview
	Configuration Example

	Monitoring and Logging
	Monitor JCNR via CLI
	Telemetry Capabilities of Cloud-Native Router
	Logging and Notifications

	Troubleshooting
	Troubleshoot via the vRouter CLI
	Troubleshoot via Introspect

	Appendix
	Access cRPD CLI
	Access vRouter CLI
	Juniper Technology Previews (Tech Previews)

