FCC TEST REPORT FOR

Shanghai SmartPeak Technology Co.,Ltd.
 POS Terminal
 Test Model: P600
 Additional Model No.: P600 Countertop

Prepared for	Shanghai SmartPeak Technology Co.,Ltd.
Address	Room 1, No. 3 Builiding, NO.295, Qianqiao Road, Fengxian District, Shanghai, China
Prepared by	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A \& 301 BIdg C, Juji Industrial Park
Address	Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel	(+86)755-82591330
Fax	(+86)755-82591332
Web	www.LCS-cert.com
Mail	webmaster@LCS-cert.com
Date of receipt of test sample	December 10, 2022
Number of tested samples	2
Sample No.	A120822082-1, A120822082-2
Serial number	Prototype
Date of Test	December 10, 2022 ~ December 15, 2022
Date of Report	December 23, 2022

FCC TEST REPORT FCC CFR 47 PART 15 C (15.247)	
Report Reference No. : LCSA120822082EADate of Issue................................... : December 23, 2022	
Testing Laboratory Name : Shenzhen LCS Compliance Testing Laboratory Ltd. Address ... :101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Testing Location/ Procedure...........Full application of Harmonised standards ■ Partial application of Harmonised standards \square Other standard testing method \square	
Applicant's Name \qquad Shanghai SmartPeak Technology Co.,Ltd. Address \qquad Room 1, No. 3 Builiding, NO.295, Qianqiao Road, Fengxian District, Shanghai, China	
Test Specification Standard. \qquad : FCC CFR 47 PART 15 C (15.247) Test Report Form No. \qquad : LCSEMC-1.0 TRF Originator \qquad : Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF \qquad : Dated 2011-03	
Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.	
Test Item Description. \qquad : POS Terminal Trade Mark. \qquad : SmartPeak Test Model \qquad : P600 Ratings. \qquad Input: 5V $=-2 \mathrm{~A}$ For Adapter Input: 100-240V~, 50/60Hz, 0.40A For Adapter Output: $5.0 \mathrm{~V}=-2.0 \mathrm{~A}, 10.0 \mathrm{~W}$ DC 7.4 V by Rechargeable Li-ion Battery, 2600 mAh Result \qquad : Positive	

Compiled by:

Vera Deng/ Administrator

Supervised by:

Cary Luo/ Technique principal

Gavin Liang / Manager

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

FCC -- TEST REPORT

Test Report No. : LCSA120822082EA	$\frac{\text { December 23, 2022 }}{\text { Date of issue }}$

Test Model............................	$:$ P600
EUT.....................................	$:$ POS Terminal
Applicant...............................	$:$ Shanghai SmartPeak Technology Co.,Ltd.
Address..................................	$:$ Room 1, No.3 Builiding, NO.295, Qianqiao Road, Fengxian
District, Shanghai, China	

Test Result	Positive

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Report Version	Issue Date	Revision Content	Revised By
000	December 23, 2022	Initial Issue	---

TABLE OF CONTENTS

Description Page

1. GENERAL INFORMATION 6
1.1 Description of Device (EUT) 6
1.2 Support equipment List 8
1.3 External I/O Cable 8
1.4 Description of Test Facility 8
1.5 Statement of the Measurement Uncertainty 8
1.6 Measurement Uncertainty 8
1.7 Description of Test Modes 9
2. TEST METHODOLOGY 10
2.1 EUT Configuration 10
2.2 EUT Exercise 10
2.3 General Test Procedures 10
2.4. Test Sample 10
3. SYSTEM TEST CONFIGURATION 11
3.1 Justification. 11
3.2 EUT Exercise Software 11
3.3 Special Accessories 11
3.4 Block Diagram/Schematics 11
3.5 Equipment Modifications 11
3.6 Test Setup 11
4. SUMMARY OF TEST RESULTS 12
5. SUMMARY OF TEST EQUIPMENT 13
6. MEASUREMENT RESULTS 14
6.1. Restricted Band Emission Limit 14
6.2. AC Power Line Conducted Emissions 26
7. TEST SETUP PHOTOGRAPHS OF EUT 29
8. EXTERIOR PHOTOGRAPHS OF THE EUT 29
9. INTERIOR PHOTOGRAPHS OF THE EUT 29

Shenzhen LCS Compliance Testing Laboratory Ltd
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EU

Test Model	: P600
Additional Model No.	: P600 Countertop

Model Declaration : PCB board, structure and internal of these model(s) are the same, So no

Power Supply	Input: 5V=-
	For Adapter
	For Adapter
	DC 7.4V by
Hardware Version	/
Software Version	V0.70.7506

Bluetooth	$:$
Frequency Range	$: 2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Channel Number	$: 79$ channels for Bluetooth V4.1(DSS)
	40 channels for Buetooth V4.1 (DTS)
Channel Spacing	$: 1 \mathrm{MHz}$ for Bluetooth V4.1 (DSS)
2MHz for Bluetooth V4.1 (DTS)	
Modulation Type	$:$ GFSK, $\pi / 4-$ DQPSK, 8-DPSK for Bluetooth V4.1(DSS) GFSK for Bluetooth V4.1 (DTS)
Bluetooth Version	$:$ V4.1
Antenna Description	$:$ PIFA Antenna, 0.5dBi(Max.)
WIFI(2.4G Band)	$:$

Frequency Range : 2412MHz ~ 2462 MHz

Channel Spacing	$: 5 \mathrm{MHz}$
Channel Number	$: 11$ Channels for 20MHz bandwidth (2412~2462MHz)

Modulation Type : IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)
IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna Description : PIFA Antenna, 0.5dBi(Max.)

2G	:
Support Band	$: \square$ GSM 900 (EU-Band) \square DCS 1800 (EU-Band) \boxtimes GSM 850 (U.S.-Band) \boxtimes PCS 1900 (U.S.-Band)
Release Version	: R99
GPRS Class	: Class 12
EGPRS Class	: Class 12
Type Of Modulation	: GMSK for GSM/GPRS; GMSK/8PSK for EGPRS
Antenna Description	PIFA Antenna 0.5 dBi (max.) For GSM 850 0.5 dBi (max.) For PCS 1900

Shenzhen LCS Compliance Testing Laboratory Ltd
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

3G	
Support Band	: ØWCDMA Band II (U.S.-Band) WCDMA Band V (U.S.-Band) WCDMA Band IV (U.S.-Band) \square WCDMA Band I (EU-Band) WCDMA Band VIII (EU-Band)
Release Version	R9
Type Of Modulation	: QPSK, 16QAM
Antenna Description	PIFA Antenna 0.5 dBi (max.) For WCDMA Band II 0.5 dBi (max.) For WCDMA Band V
LTE	: 0.5 Bi (max) For ${ }^{\text {a }}$
Support Band	E-UTRA Band 2(U.S.-Band) E-UTRA Band 4(U.S.-Band) E-UTRA Band 7(U.S.-Band)
LTE Release Version	R9
Type Of Modulation	: QPSK/16QAM
Antenna Description	: PIFA Antenna 0.5 dBi (max.) For E-UTRA Band 2 0.5 dBi (max.) For E-UTRA Band 4 0.5 dBi (max.) For E-UTRA Band 7
Power Class	: Class 3
NFC	:
Operating Frequency	: 13.56 MHz
Modulation Type	: ASK
Antenna Description	: Internal, 0.5dBi(Max.)
GPS function	Support and only RX
Extreme temp.	: $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Tolerance	
Extreme vol. Limits	: 6.4VDC to 8.4VDC (nominal: 7.4 VDC)

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen Sorghum red Electronics Technology Co,.Ltd	ADAPTER1	GLH50D2000HW	---	FCC

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
Type-C Port	1	N/A
IC Card Port	1	N/A

1.4 Description of Test Facility

NVLAP Accreditation Code is 600167-0.
FCC Designation Number is CN5024.
CAB identifier is CN0071.
CNAS Registration Number is L4595.
Test Firm Registration Number: 254912.
The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10:2013 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1 GHz .

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	$9 \mathrm{KHz} \sim 30 \mathrm{MHz}$	3.10 dB	(1)
	$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	2.96 dB	(1)
	$200 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	3.10 dB	(1)
	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$	3.80 dB	(1)
Conduction Uncertainty	$: 26.5 \mathrm{GHz} \sim 40 \mathrm{GHz}$	3.90 dB	(1)
Power disturbance	$:$	$30 \mathrm{MHz} \sim 30 \mathrm{MHz}$	1.63 dB

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$.

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity

1.7 Description of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz . With basic data rate feature, the data rates can be up to $1 \mathrm{Mb} / \mathrm{s}$ by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)
BT 4.1	2402	$1 / 2 / 3$
	2441	$1 / 2 / 3$
	2480	
For Conducted Emission		
Test Mode	TX Mode/Hopping Mode	
For Radiated Emission		
Test Mode	TX Mode/Hopping Mode	

Worst-case mode and channel used for $150 \mathrm{KHz}-30 \mathrm{MHz}$ power line conducted emissions was determined to be TX (1 Mbps-High Channel).
Worst-case mode and channel used for $9 \mathrm{KHz}-1000 \mathrm{MHz}$ radiated emissions was determined to be TX (1Mbps-High Channel).

Pre-test AC conducted emission at charge from High mode, recorded worst case.
Pre-test AC conducted emission at both voltage AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$ and $\mathrm{AC} 240 \mathrm{~V} / 60 \mathrm{~Hz}$, recorded worst case.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209 and 15.247.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the normal operating mode for Hopping Numbers and Dwell Time test and a continuous transmits mode for other tests.
According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.1.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz and 1.5 m above ground plane above 1 GHz . The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.4 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(A120822082-1)	Engineer sample - continuous transmit
Sample 2(A120822082-2)	Normal sample - Intermittent transmit

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmits condition.

3.2 EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (**1\#\#) provided by application.

3.3 Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
--	--	--	--	--

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup
 Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C

Applied Standard: FCC Part 15 Subpart C					
FCC Rules	Description of Test	Test Sample	Result	Remark	
$\S 15.209(\mathrm{a})$	Radiated Spurious Emissions	Sample 1	Compliant	Note 1	
$\S 15.207(\mathrm{a})$	AC Mains Conducted Emissions	Sample 2	Sample 2	Compliant	
$\S 15.247(\mathrm{i}) \S 1.1310$	RF Exposure	Note 1			
$\S 15.247(\mathrm{i}) \S 2.1093$		Compliant	Note 2		

Remark:

1. Note 1 - Test results inside test report;
2. Note 2 - Test results in other test report (SAR Report);

5. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R\&S	NRVS	100444	$2022-06-16$	$2023-06-15$
2	Power Sensor	R\&S	NRV-Z81	100458	$2022-06-16$	$2023-06-15$
3	Power Sensor	R\&S	NRV-Z32	10057	$2022-06-16$	$2023-06-15$
4	Test Software	Tonscend	JS1120-2	$/$	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	$2022-10-29$	$2023-10-28$
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	$2022-10-29$	$2023-10-28$
7	DC Power Supply	Agilent	E3642A	N/A	$2022-10-29$	$2023-10-28$
8	EMI Test Software	AUDIX	E3	$/$	N/A	N/A
9	$3 m$ Semi Anechoic Chamber	SIDT	SAC-3M	$03 C H 03-H Y$	$2022-06-16$	$2023-06-15$
10	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	$2021-08-29$	$2024-08-28$
12	By-log Antenna	SCHWARZBECK	VULB9163	$9163-470$	$2021-09-12$	$2024-09-11$
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	$9120 D-1925$	$2021-09-05$	$2024-09-04$
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	$2021-08-29$	$2024-08-28$
15	Broadband Preamplifier	SCHWARZBECK	BBV9719	$9719-025$	$2022-06-16$	$2023-06-15$
16	EMI Test Receiver	R\&S	ESR 7	101181	$2022-06-16$	$2023-06-15$
17	RS SPECTRUM ANALYZER	R\&S	FSP40	100503	$2022-10-29$	$2023-10-28$
18	Broadband Preamplifier	$/$	BP-01M18G	P190501	$2022-06-16$	$2023-06-15$
19	6dB Attenuator	$/$	$100 W / 6 d B$	1172040	$2022-06-16$	$2023-06-15$
20	3dB Attenuator	$/$	$2 N-3 d B$	1	$2022-10-29$	$2023-10-28$
21	EMI Test Receiver	R\&S	ESPI	101940	$2022-08-18$	$2023-08-17$
22	Artificial Mains	R\&S	ENV216	101288	$2022-06-16$	$2023-06-15$
23	$10 d B$ Attenuator	SCHWARZBECK	MTS-IMP-136	$261115-001-00$	$2022-06-16$	$2023-06-15$
24	EMI Test Software	Farad	EZ	$/$	N/A	N/A

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity

6. MEASUREMENT RESULTS

6.1. Restricted Band Emission Limit

6.1.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz		MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
\11 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(\21)	

I1 Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
12 \backslash Above 38.6
According to $\S 15.247$ (d): 20 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength $($ microvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

6.1.2. Measuring Instruments and Setting

Please refer to of equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

[^0]| Spectrum Parameter | Setting |
| :--- | :--- |
| Attenuation | Auto |
| Start Frequency | 1000 MHz |
| Stop Frequency | $10^{\text {th }}$ carrier harmonic |
| RB / VB (Emission in restricted band) | $1 \mathrm{MHz} / 1 \mathrm{MHz}$ for Peak, $1 \mathrm{MHz} / 1 / \mathrm{T} \mathrm{kHz}$ for Average |
| RB / VB (Emission in non-restricted band) | $1 \mathrm{MHz} / 1 \mathrm{MHz}$ for Peak, $1 \mathrm{MHz} / 1 / \mathrm{T} \mathrm{kHz}$ for Average |

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	$9 \mathrm{kHz} \sim 150 \mathrm{kHz} / \mathrm{RB} / \mathrm{VB} 200 \mathrm{~Hz} / 1 \mathrm{KHz}$ for QP/AVG
Start \sim Stop Frequency	$150 \mathrm{kHz} \sim 30 \mathrm{MHz} / \mathrm{RB} / \mathrm{VB} 9 \mathrm{kHz} / 30 \mathrm{KHz}$ for QP/AVG
Start \sim Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz} / \mathrm{RB} / \mathrm{VB} 120 \mathrm{kHz} / 1 \mathrm{MHz}$ for QP

6.1.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
--- If the EUT is a floor standing device, it is placed on the ground.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 3 meter.
--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.
--- The antenna height is 1.0 meter.
--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position $\left(0^{\circ}\right.$ to $\left.360^{\circ}\right)$ and by rotating the elevation axes $\left(0^{\circ}\right.$ to $\left.360^{\circ}\right)$.
--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 3 meter.
--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.
--- The antenna is polarized vertical and horizontal.
--- The antenna height changes from 1 to 4 meter.
--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.
--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^{\circ}$) and antenna movement between 1 and 4 meter.
--- The final measurement will be done with QP detector with an EMI receiver.
--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 3 meter.
--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.
--- The antenna is polarized vertical and horizontal.
--- The antenna height scan range is 1 meter to 4 meter.
--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.
--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $\left(\pm 45^{\circ}\right.$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
--- The measurement distance is 1 meter.
--- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.1.4. Test Setup Layout

Below 30MHz

Below 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 $d B /$ decade form 3 m to 1.5 m .

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity

6.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.1.6. Results of Radiated Emissions ($9 \mathrm{KHz} \sim 30 \mathrm{MHz}$)

Temperature	$23.8^{\circ} \mathrm{C}$	Humidity	52.1%
Test Engineer	Nick Peng	Configurations	BT

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

Note:
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
Distance extrapolation factor $=40$ log (specific distance $/$ test distance) (dB);
Limit line $=$ specific limits $(\mathrm{dBuV})+$ distance extrapolation factor.
6.1.7. Results of Radiated Emissions ($30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$)

Temperature	$23.8^{\circ} \mathrm{C}$	Humidity	52.1%
Test Engineer	Nick Peng	Configurations	BT

PASS.

Only record the worst test result in this report.
The test data please refer to following page.

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity

Below 1GHz

Horizontal $70.0 \mathrm{dBu} / \mathrm{m}$							
				\square			
60						15C_30-1000m	M
50							\cdots
40				\checkmark			
40				\square			
30							
20							
10				maphertr	$4 \text { moses }$		
0							
-10							
-10							
-20							
-30							
30.000	60.00		(MHz)	${ }^{30}$			1000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	32.0667	33.93	-18.17	15.76	40.00	-24.24	QP
2	65.5726	35.15	-19.19	15.96	40.00	-24.04	QP
3	96.0985	38.00	-18.45	19.55	43.50	-23.95	QP
4	171.9945	43.96	-19.36	24.60	43.50	-18.90	QP
5	312.1792	36.58	-14.92	21.66	46.00	-24.34	QP
6	845.0877	34.37	-8.99	25.38	46.00	-20.62	QP

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@Ics-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

Note:

1). Pre-scan all modes and recorded the worst case results in this report (1Mbps-High Channel).
2). Emission level ($\mathrm{dBuV} / \mathrm{m}$) $=20 \log$ Emission level ($u \mathrm{~V} / \mathrm{m}$).
3). Level $=$ Reading + Factor, Margin $=$ Level-Limit, Factor $=$ Antenna Factor + Cable Loss - Preamp Factor.

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity
6.1.8. Results of Radiated Emissions ($1 \mathrm{GHz} \sim 26 \mathrm{GHz}$)

Note: All the modes have been tested and recorded worst mode in the report.
The worst test result for GFSK, Channel 0 / 2402 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	53.76	33.06	35.04	3.94	55.72	74.00	-18.28	Peak	Horizontal
4804.00	42.56	33.06	35.04	3.94	44.52	54.00	-9.48	Average	Horizontal
4804.00	54.24	33.06	35.04	3.94	56.20	74.00	-17.80	Peak	Vertical
4804.00	43.91	33.06	35.04	3.94	45.87	54.00	-8.13	Average	Vertical

The worst test result for GFSK, Channel 39 / 2441 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measure d $\mathrm{dBuv} / \mathrm{m}$	Limit $\mathrm{dBuv} / \mathrm{m}$	Margin dB	Remark	Pol.
4882.00	58.64	33.16	35.15	3.96	60.61	74.00	-13.39	Peak	Horizontal
4882.00	44.55	33.16	35.15	3.96	46.52	54.00	-7.48	Average	Horizontal
4882.00	57.08	33.16	35.15	3.96	59.05	74.00	-14.95	Peak	Vertical
4882.00	40.80	33.16	35.15	3.96	42.77	54.00	-11.23	Average	Vertical

The worst test result for GFSK, Channel $78 / 2480 \mathrm{MHz}$

Freq. MHz	Readin g dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	53.96	33.26	35.14	3.98	56.06	74.00	-17.94	Peak	Horizontal
4960.00	44.34	33.26	35.14	3.98	46.44	54.00	-7.56	Average	Horizontal
4960.00	61.02	33.26	35.14	3.98	63.12	74.00	-10.88	Peak	Vertical
4960.00	42.44	33.26	35.14	3.98	44.54	54.00	-9.46	Average	Vertical

The worst test result for m/4-DQPSK, Channel $0 / 2402 \mathrm{MHz}$

Freq. MHz	Reading dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measure d $\mathrm{dBuv} / \mathrm{m}$	Limit dBuv/ m	Margin dB	Remark	Pol.
4804.00	53.28	33.06	35.04	3.94	55.24	74.00	-18.76	Peak	Horizontal
4804.00	41.34	33.06	35.04	3.94	43.30	54.00	-10.70	Average	Horizontal
4804.00	52.63	33.06	35.04	3.94	54.59	74.00	-19.41	Peak	Vertical
4804.00	37.41	33.06	35.04	3.94	39.37	54.00	-14.63	Average	Vertical

The worst test result for m/4-DQPSK, Channel $39 / 2441$ MHz

Freq. MHz	Reading dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measure d $\mathrm{dBuv} / \mathrm{m}$	Limit $\mathrm{dBuv} / \mathrm{m}$	Margin dB	Remark	Pol.
4882.00	59.79	33.16	35.15	3.96	61.76	74.00	-12.24	Peak	Horizontal
4882.00	42.37	33.16	35.15	3.96	44.34	54.00	-9.66	Average	Horizontal
4882.00	57.58	33.16	35.15	3.96	59.55	74.00	-14.45	Peak	Vertical
4882.00	42.89	33.16	35.15	3.96	44.86	54.00	-9.14	Average	Vertical

The worst test result for $\pi / 4-D Q P S K$, Channel $78 / 2480 \mathrm{MHz}$

Freq. MHz	Readin g dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measure d dBuv/m	Limit dBuv/ m	Margin dB	Remark	Pol.
4960.00	58.67	33.26	35.14	3.98	60.77	74.00	-13.23	Peak	Horizontal
4960.00	43.14	33.26	35.14	3.98	45.24	54.00	-8.76	Average	Horizontal
4960.00	56.11	33.26	35.14	3.98	58.21	74.00	-15.79	Peak	Vertical
4960.00	42.30	33.26	35.14	3.98	44.40	54.00	-9.60	Average	Vertical

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity

The worst test result for 8-DPSK, Channel $0 / 2402 \mathrm{MHz}$

Freq. MHz	Reading dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuv} / \mathrm{m}$	Limit dBuv $/ \mathrm{m}$	Margin dB	Remark	Pol.
4804.00	58.59	33.06	35.04	3.94	60.55	74.00	-13.45	Peak	Horizontal
4804.00	42.02	33.06	35.04	3.94	43.98	54.00	-10.02	Average	Horizontal
4804.00	55.88	33.06	35.04	3.94	57.84	74.00	-16.16	Peak	Vertical
4804.00	43.02	33.06	35.04	3.94	44.98	54.00	-9.02	Average	Vertical

The worst test result for 8-DPSK, Channel 39 / 2441 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuv} / \mathrm{m}$	Limit $\mathrm{dBuv} / \mathrm{m}$	Margin dB	Remark	Pol.
4882.00	59.45	33.16	35.15	3.96	61.42	74.00	-12.58	Peak	Horizontal
4882.00	43.90	33.16	35.15	3.96	45.87	54.00	-8.13	Average	Horizontal
4882.00	55.69	33.16	35.15	3.96	57.66	74.00	-16.34	Peak	Vertical
4882.00	44.88	33.16	35.15	3.96	46.85	54.00	-7.15	Average	Vertical

The worst test result for 8-DPSK, Channel 78 / 2480 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB / m	Pre. Fac. dB	Cab. Loss dB	Measured $\mathrm{dBuv} / \mathrm{m}$	Limit $\mathrm{dBuv} / \mathrm{m}$	Margin dB	Remark	Pol.
4960.00	58.09	33.26	35.14	3.98	60.19	74.00	-13.81	Peak	Horizontal
4960.00	42.64	33.26	35.14	3.98	44.74	54.00	-9.26	Average	Horizontal
4960.00	58.34	33.26	35.14	3.98	60.44	74.00	-13.56	Peak	Vertical
4960.00	42.04	33.26	35.14	3.98	44.14	54.00	-9.86	Average	Vertical

Notes:

1). Measuring frequencies from $9 \mathrm{KHz} \sim 10$ th harmonic (ex. 26 GHz), at least have 20 dB margin found between lowest internal used/generated frequency to 30 MHz .
2). Radiated emissions measured in frequency range from $9 \mathrm{KHz} \mathrm{\sim 10th}$ harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
3). $18 \sim 25 \mathrm{GHz}$ at least have 20 dB margin. No recording in the test report.
4). Measured Level $=$ Reading Level + Factor, Margin $=$ Measured Level - Limit, Factor $=$ Antenna Factor + Cable Loss - Preamp Factor

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

6.2. AC Power Line Conducted Emissions

6.2.1 Standard Applicable

According to $\S 15.207$ (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Quasi-peak	Limits $(\mathrm{dB} \mu \mathrm{V})$
	66 to 56	56 to 46
0.15 to 0.50	56	46
0.50 to 5	60	50
5 to 30		

* Decreasing linearly with the logarithm of the frequency

6.2.2 Block Diagram of Test Setup

6.2.3 Test Results

Temperature	$24.5^{\circ} \mathrm{C}$	Humidity	53.3%
Test Engineer	Nick Peng	Configurations	BT

PASS.

The test data please refer to following page.

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
Scan code to check authenticity

AC Conducted Emission @ AC 120V/60Hz (worst case)

Line

Shenzhen LCS Compliance Testing Laboratory Ltd
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@Ics-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

Neutral

***Note: Pre-scan all modes and recorded the worst case results in this report (1Mbps-High Channel). Measurement $=$ Reading + Correct, Margin $=$ Measurement - Limit.
Correct Factor= Lisn Factor+Cable Factor

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.Ics-cert.com
Scan code to check authenticity

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

[^0]: Shenzhen LCS Compliance Testing Laboratory Ltd.
 Add: 101, 201 Bldg A \& 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
 Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com
 Scan code to check authenticity

