

FlexPod Infrastructure as Code (IaC) for Red

Hat OpenShift Container Platform 4.7 Bare

Metal
Bare Metal Installer Provisioned Infrastructure for Red Hat

OpenShift Container Platform 4.7 with Cisco UCS, Cisco Nexus,

NetApp AFF A-Series and Red Hat Ansible

Published: August 2021

In partnership with:

About the Cisco Validated Design Program

The Cisco Validated Design (CVD) program consists of systems and solutions designed, tested, and document-

ed to facilitate faster, more reliable, and more predictable customer deployments. For more information, go to:

http://www.cisco.com/go/designzone.

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY,

"DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND ITS SUPPLIERS DIS-

CLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING,

USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,

SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS

OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THE DESIGNS, EVEN IF CIS-

CO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR

APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER PROFES-

SIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECH-

NICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT

TESTED BY CISCO.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx,

the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live,

Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meet-

ing To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Inter-

network Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo,

Cisco Unified Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers, Cisco UCS C-Series Rack

Servers, Cisco UCS S-Series Storage Servers, Cisco UCS Manager, Cisco UCS Management Software, Cisco

Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000 Series, Cisco Nexus 7000 Series.

Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco MDS Series, Cisco Unity, Collabora-

tion Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, Giga-

Drive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, LightStream, Linksys, MediaTone, MeetingPlace,

MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, Power-

Panels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to In-

crease Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Sys-

tems, Inc. and/or its affiliates in the United States and certain other countries. (LDW_U1).

All other trademarks mentioned in this document or website are the property of their respective owners. The use

of the word partner does not imply a partnership relationship between Cisco and any other company. (0809R)

© 2021 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/designzone

Contents

Executive Summary ... 4

Solution Overview .. 5

Technology Overview .. 8

Solution Design ... 17

Solution Deployment .. 32

References .. 109

Summary ... 110

About the Authors ... 111

Feedback... 112

Executive Summary

To help organizations with their digital transformation and to enhance their cloud-native and application modern-

ization practices, Cisco and NetApp have partnered to produce this Cisco Validated Design (CVD) for the

FlexPod™ for Red Hat OpenShift Container Platform bare metal solution delivered as Infrastructure as Code

(IaC).

FlexPod delivers an integrated architecture that incorporates compute, storage, and network design best prac-

tices thereby minimizing IT risks by validating the integrated architecture to ensure compatibility between various

components. The solution also addresses IT pain points by providing documented design guidance, deployment

guidance and support that can be used in various stages (planning, designing and implementation) of a deploy-

ment. FlexPod delivered as IaC further eliminates error-prone manual tasks, allowing quicker and more con-

sistent solution deployments.

Red Hat® OpenShift® is an enterprise-ready Kubernetes container platform with full-stack automated operations

to manage hybrid cloud and multi-cloud deployments. Red Hat OpenShift is optimized to improve developer

productivity and promote innovation. The Red Hat OpenShift Container Platform gives developers a self-service

platform on which to build and run containerized applications. With Red Hat OpenShift you can quickly start cre-

ating new cloud-native applications or cloud-enabling existing applications and spawning an environment for a

new microservice in minutes.

Combining Red Hat OpenShift with the FlexPod solution can simplify the deployment and the management of the

container infrastructure. The Red Hat Ansible integration with FlexPod solution automates deployment of FlexPod

infrastructure along with the OpenShift Container platform installation enabling customers to take advantage of

programming and automating the infrastructure at scale with agility, extending the benefits of automation to the

entire stack.

This combined solution helps organizations achieve the speed, flexibility, security, and scale required for all their

application modernization and digital transformation initiatives.

Solution Overview

Introduction

The featured FlexPod for OpenShift Container platform solution delivered as IaC is a pre-designed, integrated,

and validated architecture for the data center that combines Cisco UCS servers, the Cisco Nexus family of

switches, and NetApp AFF A-series storage into a single, flexible architecture. FlexPod is designed for high

availability (HA), with no single point of failure, while maintaining cost-effectiveness and flexibility in the design

to support a wide variety of workloads. The FlexPod solution covered in this document is for bare metal imple-

mentation of Red Hat OpenShift Container Platform (OCP) installer provisioned infrastructure (IPI), built on Enter-

prise Kubernetes for an on-premises deployment.

Integration between OpenShift Container Platform and the storage and data management services occur at sev-

eral levels, all of which are captured in the design aspects of this document. The main storage integration is

based on Container Storage Interface (CSI) Astra Trident for Kubernetes Driver for NetApp storage systems,

which enables container orchestrators such as Kubernetes to manage the life cycle of persistent storage.

The OCP platform is installed as a bare metal cluster with the OCP nodes running Red Hat Enterprise Linux Co-

reOS (RHCOS) on Cisco UCS servers.

The following design and deployment aspects of the FlexPod for OCP solution are explained in this document:

● Red Hat OpenShift Container Platform 4.7

● Red Hat OpenShift Virtualization 2.6

● FlexPod converged infrastructure

● CSI Astra Trident for Kubernetes – Dynamic storage provisioner for OpenShift

● Cisco UCS Manager 4.1(3)

The document also covers key configurations based on the validated environment and best practices.

Audience

The intended audience of this document includes but is not limited to data scientists, IT architects, sales engi-

neers, field consultants, professional services, IT managers, partner engineering, DevOps, and Site Reliability

Engineers (SREs) and customers who want to take advantage of an infrastructure built to deliver IT efficiency and

enable IT innovation.

Purpose of This Document

The purpose of this design and deployment guide is to provide a reference architecture with specific examples

indicating how the solution was designed, deployed, and tested. In addition, the document provides several best

practices and recommendations that simplify your implementation of this solution.

What’s New in this Release?

The following elements distinguish this version of FlexPod from previously published solutions:

● Support for Red Hat OpenShift Container Platform 4.7.

● Support for Red Hat OpenShift Virtualization 2.6

● Support for Red Hat OCP Bare Metal Installer provisioned infrastructure implementation.

● Fully automated solution deployment covering FlexPod infrastructure and OCP installation.

● Support for the Cisco UCS release 4.1(3)

● NetApp Astra Trident CSI for Kubernetes v1.20

Solution Summary

This solution includes a hardware stack from Cisco and NetApp, an OCP software platform and Ansible from Red

Hat, a set of domain managers and tools for integration and management.

The FlexPod solution for OpenShift Container Platform 4.7 bare metal comprises of the following core compo-

nents:

● Compute and networking components from Cisco

● Storage Systems and Astra Trident CSI plugin from NetApp

● OpenShift Container Platform software and Ansible from Red Hat

These components are integrated and validated, and the entire stack is automated so that customers can deploy

the solution quickly and economically while eliminating many of the risks associated with researching, designing,

building, and deploying similar solutions from the ground up.

 FlexPod IaC for OpenShift Container Platform 4 Bare Metal Figure 1.

Like all other FlexPod solution designs, FlexPod for OCP 4 bare metal is configurable according to demand and

usage. Customers can purchase exactly the infrastructure they need for their current application requirements

and can then scale-up by adding more resources to the FlexPod system or scale-out by adding more FlexPod

instances.

Technology Overview

FlexPod is a best practice datacenter architecture that includes the following components:

● Cisco Unified Computing System (Cisco UCS)

● Cisco Nexus and Cisco MDS* Switches

● NetApp AFF Systems

 * This CVD does not explain Fiber Channel storage connectivity; therefore, Cisco MDS is not part of the

design.

 FlexPod Component Families Figure 2.

SLOT

1

SLOT

5

SLOT

3

SLOT

7

SLOT

2

SLOT

6

SLOT

4

SLOT

8

!

UCS 5108

OK FAIL OK FAIL OK FAIL OK FAIL

NetApp AFF A-Series and
NetApp FAS Series storage

 family

Cisco Nexus and
Cisco MDS switch families

Cisco UCS
family

 AFF C190
 AFF A250
 AFF A400
 AFF A700
 AFF A800
 FAS 8000 Series
 FAS 2700 Series
 And more

 Cisco Nexus 9000 Series
 Cisco Nexus 7000 Series
 Cisco Nexus 5000 Series
 Cisco MDS
 And more

 Cisco UCS 6400 Series
 Cisco UCS 6300 Series
 Cisco UCS 6200 Series
 Cisco UCS 5108
 Cisco UCS 2408
 Cisco UCS 2304/2208/2204
 Cisco UCS B-Series
 Cisco UCS C-Series
 And more

FlexPod Datacenter solution

C
on

fi
gu

ra
ti

o
n

an
d

 c
o

nn
ec

ti
vi

ty
b

es
t

p
ra

ct
ic

es

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

P/S

FAN

STATUS

USB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DS-C9132T-K9

C
O

N
S

O
L

E
M

G
M

T
 E

T
H

0

LINK ACT

M
G

M
T

 E
T

H
1

LINK ACT
17

18

31

32

M9XT-FC1632

UCS

C220 M5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

1

6

S

2

7 8

3

9

4

10

5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

XXN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

XN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

These components are connected and configured according to the best practices of both Cisco and NetApp to

provide an ideal platform for running a variety of enterprise workloads with confidence. FlexPod can scale up for

greater performance and capacity (adding compute, network, or storage resources individually as needed), or it

can scale out for environments that require multiple consistent deployments (such as rolling out of additional

FlexPod stacks). The reference architecture covered in this document leverages Cisco Nexus 9000 for the net-

work switching element.

One of the key benefits of FlexPod is its ability to maintain consistency during scale. Each of the component

families shown (Cisco UCS, Cisco Nexus, and NetApp AFF) offers platform and resource options to scale the

infrastructure up or down, while supporting the same features and functionality that are required under the con-

figuration and connectivity best practices of FlexPod.

The FlexPod reference architecture explained in this document leverages:

● Cisco UCS Manager on Cisco 4th Generation 6454 Fabric Interconnects to support 10GbE, 25GbE, 40GbE,

and 100GbE connectivity from various components.

● Cisco UCS 5108 Chassis with Cisco UCS B200 M5 blade servers and Cisco UCS C220 M5 rack servers to

support Red Hat OCP 4 bare metal deployment.

● High-Speed Cisco NXOS based Nexus 93180YC-FX switching designed to support up to 100GbE con-

nectivity.

● NetApp AFF A400 with NVMe disk shelves and 25GbE connectivity to the Cisco Nexus switching fabric.

● Red Hat OpenShift Container Platform (version 4.7)

● NetApp Astra Trident CSI Plugin version 21.04

The key features and highlights for these FlexPod components are explained below.

Cisco Unified Computing System

Cisco Unified Computing System™ (Cisco UCS®) is an integrated computing infrastructure with intent-based

management to automate and accelerate deployment of all your applications, including virtualization and cloud

computing, scale-out and bare metal workloads, and in-memory analytics, as well as edge computing that sup-

ports remote and branch locations and massive amounts of data from the Internet of Things (IoT). The system is

flexible, agile, and adaptable, and the portfolio of products supported by Cisco UCS includes blade, rack, multi-

node, and storage-intensive servers; converged infrastructure; hyperconverged infrastructure; and solutions for

the network edge such as Cisco UCS Mini. Cisco UCS supports blade, rack, multinode, and storage servers in a

single domain of up to 160 servers.

Cisco UCS B200 M5 Blade Servers

The Cisco UCS B200 M5 server shown in Figure 3, is a half-width blade upgrade from the Cisco UCS B200 M4.

 Cisco UCS B200 M5 Blade Server Figure 3.

It features the following:

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

● 2nd Gen Intel® Xeon® Scalable and Intel® Xeon® Scalable processors with up to 28 cores per socket

● Up to 24 DDR4 DIMMs for improved performance with up to 12 DIMM slots ready for Intel Optane™ DC

Persistent Memory

● Up to two GPUs

● Two Small-Form-Factor (SFF) drive slots

● Up to two Secure Digital (SD) cards or M.2 SATA drives

● Up to 80 Gbps of I/O throughput with Cisco UCS 6454 FI

For more information about the Cisco UCS B200 M5 Blade Servers,

see: http://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-

servers/datasheet-c78-739296.html.

Cisco UCS C220 M5 Rack Servers

The Cisco UCS C220 M5 rack server shown in Figure 4, is a high-density 2-socket rack server that is an up-

grade from the Cisco UCS C220 M4.

 Cisco UCS C220 M5 Rack Server Figure 4.

It features the following:

● 2nd Gen Intel® Xeon® Scalable and Intel® Xeon® Scalable processors, 2-socket

● Up to 24 DDR4 DIMMs for improved performance with up to 12 DIMM slots ready for Intel Optane™ DC

Persistent Memory

● Up to 10 Small-Form-Factor (SFF) 2.5-inch drives or 4 Large-Form-Factor (LFF) 3.5-inch drives (77 TB

storage capacity with all NVMe PCIe SSDs)

● Support for 12-Gbps SAS modular RAID controller in a dedicated slot, leaving the remaining PCIe Genera-

tion 3.0 slots available for other expansion cards

● Modular LAN-On-Motherboard (mLOM) slot that can be used to install a Cisco UCS Virtual Interface Card

(VIC) without consuming a PCIe slot

● Dual embedded Intel x550 10GBASE-T LAN-On-Motherboard (LOM) ports

● Up to 100 Gbps of I/O throughput with Cisco UCS 6454 FI

For more information about the Cisco UCS B200 M5 Blade Servers,

see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-

servers/datasheet-c78-739281.html.

Cisco UCS 6400 series Fabric Interconnects

The Cisco UCS Fabric Interconnects (FIs) provide a single point for connectivity and management for the entire

Cisco UCS system. Typically deployed as an active-active pair, the system’s FIs integrate all components into a

single, highly available management domain controlled by the Cisco UCS Manager. Cisco UCS FIs provide a sin-

UCS

C220 M5

S
321

2
 T

B
H

D
2

T
7

K
L
6

G
N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2

T
7

K
L
6

G
N

S
A

T
A

 H
D

D

X3
.2

 T
B

N
V

M
E

H
Y

H
3

2
0

0

X 3
.2

 T
B

N
V

M
E

H
Y

H
3

2
0

0

X

http://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/datasheet-c78-739296.html
http://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/datasheet-c78-739296.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739281.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739281.html

gle unified fabric for the system, with low-latency, lossless, cut-through switching that supports LAN, SAN and

management traffic using a single set of cables.

The Cisco UCS 6454 (Figure 5) deployed for this validation, provides the management and communication

backbone for the Cisco UCS B-Series Blade Servers, Cisco UCS 5108 B-Series Server Chassis and Cisco UCS

Managed C-Series Rack Servers. All servers attached to the Cisco UCS 6454 Fabric Interconnect become part

of a single, highly available management domain. In addition, by supporting a unified fabric, the Cisco UCS 6454

provides both the LAN and SAN connectivity for all servers within its domain. The Cisco UCS 6454 supports de-

terministic, low-latency, line-rate 10/25/40/100 Gigabit Ethernet ports, a switching capacity of 3.82 Tbps, and

200 Gbps bandwidth between FI 6454 and IOM 2408 per 5108 blade chassis, independent of packet size and

enabled services.

 Cisco UCS 6400 series Fabric Interconnect Figure 5.

Cisco UCS 2408 Fabric Extender

The Cisco UCS 2408 connects the I/O fabric between the Cisco UCS 6454 Fabric Interconnect and the Cisco

UCS 5100 Series Blade Server Chassis, enabling a lossless and deterministic converged fabric to connect all

blades and chassis together.

The Cisco UCS 2408 Fabric Extender has eight 25-Gigabit Ethernet, FCoE-capable, Small Form-Factor Plugga-

ble (SFP28) ports that connect the blade chassis to the fabric interconnect. Each Cisco UCS 2408 provides 10-

Gigabit Ethernet ports connected through the midplane to each half-width slot in the chassis, giving it a total of

32 10G interfaces to Cisco UCS blades. Typically configured in pairs for redundancy, two fabric extenders pro-

vide up to 400 Gbps of I/O from FI 6400's to 5108 chassis.

Cisco UCS 1400 Series Virtual Interface Cards (VICs)

Cisco VICs support Cisco SingleConnect technology, which provides an easy, intelligent, and efficient way to

connect and manage computing in your data center. Cisco SingleConnect unifies LAN, SAN, and systems man-

agement into one simplified link for rack servers and blade servers. This technology reduces the number of net-

work adapters, cables, and switches needed and radically simplifies the network, reducing complexity. Cisco

VICs can support 256 Express (PCIe) virtual devices, either virtual Network Interface Cards (vNICs) or virtual

Host Bus Adapters (vHBAs), with a high rate of I/O Operations Per Second (IOPS), support for lossless Ethernet,

and 10/25/40/100-Gbps connection to servers. The PCIe Generation 3 x16 interface helps ensure optimal

bandwidth to the host for network-intensive applications, with a redundant path to the fabric interconnect. Cisco

VICs support NIC teaming with fabric failover for increased reliability and availability. In addition, it provides a

policy-based, stateless, agile server infrastructure for your data center.

The Cisco VIC 1400 series is designed exclusively for the M5 generation of Cisco UCS B-Series Blade Servers

and Cisco UCS C-Series Rack Servers. The adapters can support 10/25/40/100-Gigabit Ethernet and Fibre

Channel over Ethernet (FCoE). It incorporates Cisco’s next-generation Converged Network Adapter (CNA) tech-

nology and offers a comprehensive feature set, providing investment protection for future feature software re-

leases.

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Cisco UCS Management

While Cisco UCS is stateless, programmable infrastructure, the Cisco UCS unified API is how management tools

program it. This enables the tools to help guarantee consistent, error-free, policy-based alignment of server

personalities with workloads. Through automation, transforming the server and networking components of your

infrastructure into a complete solution is fast and error-free because programmability eliminates the error-prone

manual configuration of servers and integration into solutions. Server, network, and storage administrators are

now free to focus on strategic initiatives rather than spending their time performing tedious tasks.

Cisco UCS Manager

Cisco UCS® Manager (UCSM) provides unified, integrated management for all software and hardware compo-

nents in Cisco UCS manages a single domain through an intuitive HTML 5-based GUI. is embedded in each fab-

ric interconnect. Running in a redundant, high-availability configuration, it creates a single, self-aware, self-

integrating unified system that recognizes and integrates components as they are added to the system. It quickly

and accurately configures computing, network, storage, and storage-access resources to reduce the chance of

errors that can cause downtime. Its role and policy-based approach helps organizations more easily align poli-

cies and configurations with workloads. While Cisco UCS Manager requires an “always on” connection, our oth-

er tools are evolving to manage systems to which they are not continuously connected.

Cisco Intersight Software-as-a-Service Management

This platform has the broadest scope of the Cisco UCS management tools. It enables programming the infra-

structure by automating configuration and management, but it goes the farthest in integrating with outside ser-

vices and tools.

Accessed from the cloud or through an optional local management appliance, Intersight provides a single inter-

face from which you can undertake lifecycle management of your servers whether they are in a core data center

or at the network edge. New features are continually integrated, and you can keep up to date on the most cur-

rent enhancements by visiting cisco.com/go/intersight.

The Intersight platform enables you to configure the identity, personality, and connectivity of blade and rack

servers. Intersight provides the following additional capabilities that are complementary to the basic deployment

and configuration features:

● Global dashboard and inventory - When you manage your infrastructure with Cisco Intersight, you can

view a global dashboard that gives you overall server status and enables you to drill down to view individ-

ual components (such as disk drives) With a global inventory of your devices, it’s easy to track the location

of each of your assets.

● Cisco TAC - With Intersight’s integration with Cisco TAC, you can quickly remediate problems because

expertise and information can flow seamlessly between Intersight and your Cisco support center. The sys-

tem can open cases and upload supporting documentation for fast resolution. It maintains the status of

your contracts and licenses so that you can administer them from the same interface.

● Recommendation engine - This feature gives you recommendations on configurations and help you im-

plement best practices. Intersight has insight into your operating system and driver versions. It can use

these to validate that your implementations are supported by Cisco’s Hardware Configuration List (HCL).

https://www.cisco.com/c/en/us/products/servers-unified-computing/intersight/index.html

DevOps and Tool Support

The Cisco UCS unified API is of great benefit to developers and administrators who want to treat physical infra-

structure the way they treat other application services, using processes that automatically provision or change IT

resources. Similarly, your IT staff needs to provision, configure, and monitor physical and virtual resources; au-

tomate routine activities; and rapidly isolate and resolve problems. The Cisco UCS unified API integrates with

DevOps management tools and processes and enables you to easily adopt DevOps methodologies.

Cisco Nexus

Cisco Nexus series switches provide an Ethernet switching fabric for communications between the Cisco UCS,

NetApp storage controllers, and the rest of a customer’s network. There are many factors to consider when

choosing the main data switch in this type of architecture to support both the scale and the protocols required

for the resulting applications. All Nexus switch models including the Cisco Nexus 5000 and Cisco Nexus 7000

are supported in this design and may provide additional features such as FCoE or OTV. However, be aware that

there may be slight differences in setup and configuration based on the switch used. The validation for this de-

ployment leverages the Cisco Nexus 9000 series switches, which deliver high performance

10/25/40/50/100GbE ports, density, low latency, and exceptional power efficiency in a broad range of compact

form factors.

Many of the most recent single-site FlexPod designs also use this switch due to the advanced feature set and

the ability to support Application Centric Infrastructure (ACI) mode. When leveraging ACI fabric mode, the Nexus

9000 series switches are deployed in a spine-leaf architecture. Although the reference architecture covered in

this design does not leverage ACI, it lays the foundation for customer migration to ACI in the future, and fully

supports ACI today if required.

For more information, go to: http://www.cisco.com/c/en/us/products/switches/nexus-9000-series-

switches/index.html.

This FlexPod design deploys a single pair of Cisco Nexus 93180YC-FX top-of-rack switches (Figure 6) within

each placement, using the traditional standalone mode running NX-OS.

 Cisco Nexus 93180YC-FX Figure 6.

NetApp AFF A400

The NetApp AFF A400 offers full end-to-end NVMe support. The front-end NVMe/FC connectivity makes it pos-

sible to achieve optimal performance from an all-flash array for workloads that include artificial intelligence, ma-

chine learning, real-time analytics as well as business-critical databases. On the back end, the A400 supports

both serial-attached SCSI (SAS) and NVMe-attached SSDs, offering the versatility for current customers to

move up from their legacy A-Series systems and satisfying the increasing interest that all customers have in

NVMe-based storage. Furthermore, this system was built to provide expandability options, so you won’t have to

make a costly leap from a midrange to a high-end system to increase scalability. Consider this a way to future-

proof your NetApp investment.

The NetApp AFF A400 offers greater port availability, network connectivity, and expandability. The NetApp AFF

A400 has 10 PCIe Gen3 slots per high availability pair. The NetApp AFF A400 offers 25GbE or 100GbE, as well

as 32Gb/FC and NVMe/FC network connectivity. This model was created to keep up with changing business

CISCO NEXUS N9K-C93180YC-EX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

https://www.cisco.com/c/en/us/products/switches/nexus-9000-series-switches/index.html
https://www.cisco.com/c/en/us/products/switches/nexus-9000-series-switches/index.html

needs and performance and workload requirements by merging the latest technology for data acceleration and

ultra-low latency in an end-to-end NVMe storage system.

 NetApp AFF A400 Figure 7.

The NetApp AFF A400 has a 4U enclosure with two possible onboard connectivity configurations (25GbE or

32Gb/FC). In addition, the A400 is the only A-Series system that has the new smart I/O card with offload engine.

The offload engine is computational and independent from the CPU, which allows better allocation of processing

power. This system also offers an improved level of serviceability over the previous NetApp 4U chassis: The fan

cooling modules have been moved from inside the controller to the front of the chassis, so cabling does not

have to be disconnected and reconnected when replacing an internal fan.

The NetApp AFF A400 is well suited for enterprise applications that require the best balance of performance and

cost, as well as very demanding workloads that require ultra-low latency. The smart I/O card serves as the de-

fault cluster interconnect, making the system an ideal solution for highly compressible workloads.

For more information, go to: https://docs.netapp.com/platstor/topic/com.netapp.nav.a400/home.html?cp=3.

This FlexPod design deploys a HA pair of A400 controller running ONTAP 9.8.

NetApp Astra Trident CSI Plugin

Astra Trident is an open-source, fully supported storage orchestrator for containers created by NetApp. It has

been designed from the ground up to help you meet your containerized applications’ persistence demands using

industry-standard interfaces, such as the Container Storage Interface (CSI). With Astra Trident, microservices

and containerized applications can take advantage of enterprise-class storage services provided by the full

NetApp portfolio of storage systems. In a FlexPod environment, Astra Trident is utilized to allow end users to

dynamically provision and manage persistent volumes for containers backed by FlexVols and LUNs hosted on

ONTAP-based products such as NetApp AFF and FAS systems.

Astra Trident has a rapid development cycle, and just like Kubernetes, is released four times a year. Starting with

the v21.04.0 release, the setup of Astra Trident is performed by the Trident operator using a Helm chart which

makes large scale deployments easier, and provides additional support including self-healing for the pods that

are deployed as a part of the Astra Trident install.

Red Hat OpenShift Container Platform

The RedHat OpenShift Container Platform (OCP) is a container application platform that brings together CRI-0

and Kubernetes and provides an API and web interface to manage these services. CRI-O is an implementation

of the Kubernetes CRI (Container Runtime Interface) to enable using Open Container Initiative (OCI) compatible

runtimes. It is a lightweight alternative to using Docker as the runtime for Kubernetes.

https://docs.netapp.com/platstor/topic/com.netapp.nav.a400/home.html?cp=3
https://kubernetes-csi.github.io/docs/introduction.html

OCP allows customers to create and manage containers. Containers are standalone processes that run within

their own environment, independent of operating system and the underlying infrastructure. OCP helps develop-

ing, deploying, and managing container-based applications. It provides a self-service platform to create, modify,

and deploy applications on demand, thus enabling faster development and release life cycles. OCP has a micro-

services-based architecture of smaller, decoupled units that work together. It runs on top of a Kubernetes clus-

ter, with data about the objects stored in etcd, a reliable clustered key-value store.

 OpenShift Container Platform Overview Figure 8.

Kubernetes Infrastructure

Within OpenShift Container Platform, Kubernetes manages containerized applications across a set of CRI-O runtime

hosts and provides mechanisms for deployment, maintenance, and application-scaling. The CRI-O service packages,

instantiates, and runs containerized applications.

A Kubernetes cluster consists of one or more masters and a set of worker nodes. This solution design includes

HA functionality at the hardware as well as the software stack. A Kubernetes cluster is designed to run in HA

mode with 3 master nodes and a minimum of 2 worker nodes to help ensure that the cluster has no single point

of failure.

Red Hat Core OS

OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS), a container-oriented operating

system that combines some of the best features and functions of the CoreOS and Red Hat Atomic Host operat-

ing systems. RHCOS is specifically designed for running containerized applications from OpenShift Container

Platform and works with new tools to provide fast installation, Operator-based management, and simplified up-

grades.

RHCOS includes the following:

● Ignition, which OpenShift Container Platform uses as a first boot system configuration for initially bringing

up and configuring machines.

● CRI-O, a Kubernetes native container runtime implementation that integrates closely with the operating

system to deliver an efficient and optimized Kubernetes experience. CRI-O provides facilities for running,

stopping, and restarting containers. It fully replaces the Docker Container Engine, which was used in

OpenShift Container Platform 3.

● Kubelet, the primary node agent for Kubernetes that is responsible for launching and monitoring contain-

ers.

 RHCOS was used on all control plane and worker nodes to support the automated OCP 4 deployment.

Red Hat Ansible

Red Hat Ansible Automation helps Red Hat OpenShift Container Platform users create and run reusable infra-

structure code and automate provisioning tasks for infrastructure components.

Ansible is simple and powerful, allowing users to easily manage various physical devices within FlexPod- includ-

ing the provisioning of Cisco UCS bare metal servers, Cisco Nexus switches and NetApp AFF storage. Using

Ansible’s Playbook-based automation is easy and integrates into your current provisioning infrastructure.

Finally, Ansible also provides robust container and native Kubernetes management, expanding to Red Hat

OpenShift Container Platform and other container technologies.

Solution Design

The FlexPod for Red Hat OpenShift Container Platform provides an end-to-end architecture with Cisco and

NetApp technologies that demonstrate support for OCP workloads with high availability and server redundancy.

The architecture consists of an OCP bare metal cluster deployed on Cisco UCS M5 servers within FlexPod infra-

structure, with the Cisco UCS servers and NetApp storage attached to the Cisco Nexus 93180YC-FX switches in

NXOS mode.

Figure 9 illustrates a base design. Each of the components can be scaled easily to support specific business re-

quirements. For example, additional OCP nodes can be deployed to scale the OCP environment to increase

compute capacity, additional storage controllers or disk shelves can be deployed to improve I/O capability and

throughput.

 The solution was validated using Cisco UCS B200 M5 and Cisco UCS C220 M5 servers to show the ver-

satility of the Cisco UCS platform. Customers can choose to deploy OCP on just the Cisco UCS B-Series

servers, the Cisco UCS C-Series or Cisco UCS C125 servers depending on their requirements.

Figure 9 provides a high-level overview of the FlexPod for OCP cluster architecture.

 OpenShift Container Platform 4 Bare Metal on FlexPod Figure 9.

OpenShift Virtualization is an add-on to OpenShift Container Platform that allows you to run and manage virtual

machine workloads alongside container workloads. The OpenShift Virtualization feature has been validated with-

in this solution to deploy traditional VMs into OpenShift where they run side by side with containers on the same

OCP cluster deployed on the FlexPod infrastructure.

 OpenShift Virtualization Figure 10.

Design Requirements

This section explains the key design requirement and various prerequisites for delivering this new solution.

The FlexPod solution for OCP bare metal closely aligns with NXOS based FlexPod CVDs and meets the following

general design requirements:

● Resilient design across all layers of the infrastructure with no single point of failure.

● Scalable design with the flexibility to add compute capacity, storage, or network bandwidth as needed.

● Modular design that can be replicated to expand and grow as the needs of the business grow.

● Flexible design that can support components beyond what is validated and documented in this guide.

● Simplified design with ability to automate and integrate with external automation and orchestration tools.

For Red Hat OCP 4 integration into a traditional FlexPod solution, the following specific design considerations are

also observed:

● High Availability of master nodes with a minimum of 3 master nodes deployed.

● A minimum of 2 worker nodes with ability to increase the nodes as the load requirements increase.

● Automating the FlexPod infrastructure deployment and OCP installation by utilizing Ansible Playbooks to

simplify the installation and reduce the deployment time.

● Present persistent storage (volumes) to the containerized applications by utilizing the NetApp Astra Trident

CSI framework.

● Dedicated Cisco UCS vNICs for different traffic needs with UCS Fabric Failover for high availability.

FlexPod Physical Topology

This FlexPod design utilizes Cisco UCS servers connected and managed through Cisco UCS 6454 Fabric Inter-

connects and the integrated Cisco UCS Manager (UCSM). These high-performance servers are configured as

compute nodes where Red Hat Core OS (RHCOS) is loaded using local boot leveraging the onboard M.2 drives.

The persistent storage volumes for containers are provisioned on the NetApp AFF A400 using NFS NAS storage

and iSCSI block storage.

This design has the following physical connectivity between the components of FlexPod:

● 4 X 25 Gb Ethernet connections port-channeled between the Cisco UCS 5108 Blade Chassis and the Cis-

co UCS Fabric Interconnects

● 2 or 4 25 Gb Ethernet connections between the Cisco UCS C-Series rackmounts and the Cisco UCS Fab-

ric Interconnects

● 4 X 25 Gb Ethernet connections port-channeled between the Cisco UCS Fabric Interconnect and Cisco

Nexus 9000 switches

● 2 X 100 Gb Ethernet connections port-channeled between the Cisco Nexus Switches for the vPC peer-

link

● 4 X 25 Gb Ethernet connections port-channeled between the Cisco Nexus Switches and each NetApp AFF

A400 storage controller

 FlexPod Physical Topology Figure 11.

FlexPod with OCP Logical Topology

Figure 12 illustrates the FlexPod with Red Hat OpenShift Container Platform logical topology with OCP compo-

nents utilizing compute, network, and storage resources on FlexPod. The storage and network connectivity to

Red Hat OpenShift Container Platform Cluster nodes running on Cisco UCS M5 servers is enabled by the Cisco

Nexus 9k switches within FlexPod.

Persistent storage is a critical part of running stateful containers, and Red Hat OpenShift Container Platform with

Kubernetes simplifies storage management by abstracting details of how storage is provisioned and how it is

consumed. Persistent volumes for containers can be static or dynamically provisioned, in this case it is dynamic

with FlexPod and is enabled by the NetApp Astra Trident CSI Driver. Dynamic volume provisioning allows stor-

age volumes to be created on-demand, NetApp Astra Trident CSI eliminates the need to pre-provision storage

for containers and allows persistent storage provisioning during the container deployment. This solution used

NFS and iSCSI storage for dynamic storage provisioning.

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified cluster

network that enables communication between pods across the OpenShift Container Platform cluster. This pod

network is established and maintained by the OpenShift SDN, which configures an overlay network using Open

vSwitch (OVS). The default OpenShift SDN solution is built on top of Open vSwitch (OVS). With OpenShift, the

cluster admin can choose to deploy with one of the OpenShift native SDN plug-ins or they can opt to deploy the

cluster using a third-party SDN from the supported ecosystem such as Cisco ACI. For this solution, we have

used the OpenShift native SDN plug-in (OVN-Kubernetes).

NetApp storage

controllers

AFF-A400

Cisco Nexus

93180YC-FX

Cisco Unified

Computing System
Cisco UCS 6454 Fabric

Interconnects, UCS 2408

Fabric Extenders, UCS B-

Series Blade Servers with

UCS VIC 1440, UCS C-

Series Rack Servers with

UCS VIC 1457, UCS C4200

Chassis, and UCS C125

Servers with UCS VIC 1455

vPC vPC

vPC vPC

SLOT

1

SLOT

5

SLOT

3

SLOT

7

SLOT

2

SLOT

6

SLOT

4

SLOT

8

!

UCS 5108

OK FAIL OK FAIL OK FAIL OK FAIL

x 4 x 4

x 2 x 2

x 2 x 2

UCS

C220 M5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

1

6

S

2

7 8

3

9

4

10

5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

XXN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

XN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

UCS

C220 M5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

1

6

S

2

7 8

3

9

4

10

5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

XXN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

XN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

x 2 x 2

x 2 x 2

x 2 x 2

x 2 x 2

Legend

25-Gbps converged

100-Gbps Ethernet

25-Gbps Ethernet

AFF
A800

AFF
A800

 FlexPod for OCP 4 Bare Metal Logical Topology Figure 12.

FlexPod Network Connectivity and Design

The Layer 2 network connection to each Fabric Interconnect is implemented as Virtual Port Channels (vPC) from

the upstream Nexus Switches. In the switching environment, the vPC provides the following benefits:

● Allows a single device to use a Port Channel across two upstream devices

● Eliminates Spanning Tree Protocol blocked ports and use all available uplink bandwidth

● Provides a loop-free topology

● Provides fast convergence if either one of the physical links or a device fails

● Helps ensure high availability of the network

The upstream network switches can connect to the UCS 6454 Fabric Interconnects using 10G, 25G, 40G, or

100G port speeds. In this design, the 25GB ports were tested for the virtual port channels. Virtual port channels

were also configured between the Nexus switches and NetApp AFF A400s to also transport the storage traffic

between the Cisco UCS servers and the NetApp AFF A400s.

 Network Connectivity – vPC Enabled Connections Figure 13.

FlexPod Compute Connectivity

The FlexPod compute design supports both Cisco UCS B-Series and C-Series. Cisco UCS supports the

OpenShift environment by providing robust, highly available, and integrated compute resources centrally man-

aged from Cisco UCS Manager in the Enterprise or from Cisco Intersight Software as a Service (SaaS) in the

cloud. In this validation effort, multiple Cisco UCS B-Series and C-Series servers are booted from local M.2 SA-

TA SSDs, these drives are configured in Raid 1 using the Cisco Boot Optimized M.2 Raid Controller. The servers

have access to NFS and iSCSI storage for persistent storage volumes presented from the NetApp AFF storage

cluster.

vPC vPC

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

x 2 x 2

x 2 x 2

Cisco Nexus
93180YC-FX

Cisco UCS
6454 FI

 Compute Connectivity Figure 14.

The Cisco UCS chassis in the design are populated with Cisco UCS B200 M5 blade servers and each of these

blade servers contain one physical network adapter (Cisco VIC 1440) and a port expander that passes con-

verged fibre channel over Ethernet (FCoE) and Ethernet traffic through the chassis mid-plane to the 2408 FEXs.

The FEXs are redundantly connected to the fabric interconnects using 4X25Gbps ports per FEX to deliver an ag-

gregate bandwidth of 200Gbps to the chassis. Full population of each 2408 FEX can support 8x25Gbps ports,

providing an aggregate bandwidth of 400Gbps to the chassis. The connections from the Cisco UCS Fabric Inter-

connects to the FEXs are automatically configured as port channels by specifying a Chassis/FEX Discovery Poli-

cy within UCSM.

The Cisco UCS C220 M5 nodes are equipped with Cisco UCS VIC 1457 or Cisco UCS PCIe VIC 1455. Cisco

UCS VIC 1455/1457 has four 25GbE ports which are connected to the Cisco UCS 6454 FI in pairs such that

ports 1 and 2 are connected to the Cisco UCS 6454 FI-A and the ports 3 and 4 are connected to the FI-B as

shown in Figure 13. Optionally, only ports 1 and 3 from each VIC 1455/57 and be connected with network

bandwidth reduced from 50 Gbps to 25 Gbps to each FI.

Fabric Failover for Ethernet: Architecture for High Availability

Cisco UCS is designed for high availability, with no single point of failure in its network infrastructure. Each

adapter in Cisco UCS connects to both fabrics (A and B) and the fabric interconnects are designed to work in an

active-active model, with automated failover of network in the event of a failure. The system is designed so that

if either fabric A or fabric B fails, the remaining fabric can take on the traffic from the failed fabric. Cisco VICs

support fabric failover by moving traffic from one fabric to the other according to failover policies established on

a per-vNIC basis. This eliminates complicated operating system NIC teaming configurations. Fabric failover

makes the failure of a fabric transparent to the operating system.

Figure 15 illustrates the UCS Fabric failover mechanism, in this example one vNIC connects to fabric A but fails

over to fabric B in the event of a fabric failover.

Cisco UCS fabric failover is an important feature because it reduces the complexity of defining NIC teaming

software for failover on the host. It does this transparently in the fabric based on the network property that is de-

fined in the service profile. With Cisco UCS fabric failover, NIC teaming is not necessary on the OCP nodes, and

the high availability is managed at the UCS level more efficiently.

SLOT

1

SLOT

5

SLOT

3

SLOT

7

SLOT

2

SLOT

6

SLOT

4

SLOT

8

!

UCS 5108

OK FAIL OK FAIL OK FAIL OK FAIL

x 4 x 4

x 2 x 2

x 2 x 2

UCS

C220 M5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

1

6

S

2

7 8

3

9

4

10

5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

XXN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

XN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

UCS

C220 M5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

1

6

S

2

7 8

3

9

4

10

5

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

XXN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X2
 T

B
H

D
2
T

7
K

L
6
G

N

S
A

T
A

 H
D

D

X

XN
V

M
E

 S
S

D

8
0

0
 G

B
N

V
M

E
H

W
H

8
00

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

! ResetConsole

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

UCS B200 M5

UCS-HD300G10L12G
126bps 10K SAS
300GB

!

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

CISCO UCS-FI-6454

49 50 51 52 53 541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ENV

STS

BCN

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

 Cisco UCS Fabric Failover Figure 15.

NIC Bonding versus Cisco UCS Fabric Failover

OpenShift Container Platform network requirements in this design are standard Ethernet only, while OCP 4 de-

ployment can work with two network interfaces in bonded mode for each traffic type (bare metal public VLAN

and VM network VLAN), it is recommended to use a single network interface for each traffic type and enable

Cisco UCS Fabric Failover for resiliency versus NIC bonding in the operating system. With Cisco UCS Fabric

Failover the management and operation of failover and link aggregation is handled in the networking fabric. The

Fabric Failover is enabled in the vNIC templates within the Cisco UCS service profiles which makes it easy to

implement NIC resiliency across any number of servers managed by Cisco UCS, this eliminates the need to con-

figure every server individually.

NIC teaming is often implemented to aggregate lower-speed NICs in order to gain throughput. Since OCP de-

sign with Cisco UCS leverages 25/40GbE connections, aggregation is generally not required.

Service Profile Configuration

The Cisco UCS servers are deployed using Cisco UCS Service Profiles (SP) that consists of server identity in-

formation pulled from pools (WWPN, MAC, UUID, and so on) as well as policies covering connectivity, firmware,

and power control options, and so on. The service profiles are provisioned from the Cisco UCS Service Profile

Templates that allow rapid creation, as well as guaranteed consistency of the hosts at the Cisco UCS hardware

layer.

Service Profile for OCP Hosts

In FlexPod deployments, each Cisco UCS server (B-Series or C-Series), equipped with a Cisco Virtual Interface

Card (VIC), is configured for multiple virtual interfaces (vNICs) which appear as standards-compliant PCIe devic-

es to the OS. The service profile configuration for an OCP host is shown in Table 1, Figure 16, and Figure 17 for

OCP Worker and Master nodes respectively.

Each OCP host service profile supports:

● Managing the OCP hosts using a common management segment

● OS local boot using the mirrored M.2 onboard drives on the Cisco UCS servers (boot from SAN was not

supported with OCP nodes at the time of this validation).

● Six vNICs (NFS and iSCSI vNICs are only required on the Worker Nodes) used as follows in the same order

specified below:

● One vNIC for provisioning traffic to support OCP installer provisioned infrastructure. The MTU value for this

interface is set as a Jumbo MTU (9000). This should be the first vNIC on the UCS servers and this sup-

ports provisioning network which is non-routable network used for provisioning the underlying operating

system (RHCOS) on each node that is part of the OpenShift Container Platform Cluster.

● One vNIC for OCP Public Bare Metal Network traffic. The baremetal network is a routable network. The

second vNIC on the UCS servers is used to support the baremetal network.

● One vNIC for OpenShift Virtualization VM Network traffic.

● One NFS vNIC for NFS storage traffic. The MTU value for this interface is set as a Jumbo MTU (9000).

● One iSCSI-A vNIC utilizes iSCSI-A VLAN (defined only on Fabric A) to provide access to iSCSI-A path.

The MTU value for this interface is set as a Jumbo MTU (9000).

● One iSCSI-B vNIC utilizes iSCSI-B VLAN (defined only on Fabric B) to provide access to iSCSI-B path. The

MTU value for this interface is set as a Jumbo MTU (9000).

 OCP Host Service Profile Table 1.

Machine Provisioning

Traffic

BareMetal

Public Traffic

OpenShift

Virtualization

NFS iSCSI-A iSCSI-B

Provisioner

Node

vNIC1

Fabric-A

failover to

Fabric-B

vNIC2

Fabric-B

failover to

Fabric-A

vNIC3

Fabric-A failover

to Fabric-B

vNIC4

Fabric-B

failover

to

Fabric-A

vNIC5

Fabric-A

Only

vNIC6

Fabric-B

Only node

Master Node vNIC1

Fabric-A

failover to

Fabric-B

vNIC2

Fabric-B

failover to

Fabric-A

NA

NA NA

NA

Worker Node vNIC1

Fabric-A

failover to

Fabric-B

vNIC2

Fabric-B

failover to

Fabric-A

vNIC3

Fabric-B failover

to Fabric-A

vNIC4

Fabric-B

failover

to

vNIC5

Fabric-A

Only

vNIC6

Fabric-B

Only node

Machine Provisioning

Traffic

BareMetal

Public Traffic

OpenShift

Virtualization

NFS iSCSI-A iSCSI-B

Fabric-A

 Cisco UCS – Server Interface Design for OCP Worker Nodes Figure 16.

 Cisco UCS – Server Interface Design for OCP Master Nodes Figure 17.

FlexPod Storage Design for OCP

The FlexPod for OCP uses the NetApp Astra Trident CSI driver that is an add-on component that needs to be

installed on the OpenShift Container Platform cluster. Astra Trident enables the integration between the storage

and OCP cluster.

The NetApp AFF A400 storage array supports both NFS and iSCSI protocols. For the purpose of this validated

design, both NFS and iSCSI were used for dynamic persistent storage for Containers and VMs.

Dynamic Storage Provisioning

OpenShift provides dynamic provisioning of storage for applications by utilizing the StorageClass resource. Us-

ing dynamic storage, you can select different types of back-end storage. The back-end storage is segregated

into different tiers depending on the needs of your application. When requesting storage, a user can specify a

PersistentVolumeClaim with an annotation that specifies the value of the StorageClass they prefer.

To order the storage, you must create a PVC. The PVC determines the specification for the storage that you

want to provision. After the PVC is created, the storage device and the PV are automatically created for you.

Figure 18 shows how block storage is dynamically provisioned in a cluster. This sample flow works similarly with

other storage types, such as file storage.

 Dynamic Storage Provisioning Workflow Figure 18.

Developer/Automation submits storage requirements in the form of standard Persistent Volume Claims that

specifies the storage type, storage class, size, and so on.

NetApp Astra Trident CSI Plugin listens to and intercepts Persistent Volume Claims based on Storage Class.

Creating a PVC in a cluster automatically triggers the storage plug-in for the requested type of storage to provi-

sion storage with the given specification.

Storage provisioning API call sent to NetApp AFF A400, and storage is provisioned.

The storage plug-in automatically creates a persistent volume (PV) in the cluster, a virtual storage device that

points to the actual storage device on your NetApp AFF A400.

The PVC and PV are automatically connected to each other. The status of the PVC and the PV changes to Bound

and the PVC is used to mount persistent storage to your app. If you delete the PVC, the PV and related storage

instance are also deleted.

OCP Virtual Switching Architecture  

The OpenShift Container Platform cluster uses a virtualized network for pod and service networks. The OVN-

Kubernetes Container Network Interface (CNI) plug-in is a network provider for the default cluster network. A

cluster that uses the OVN-Kubernetes network provider also runs Open vSwitch (OVS) on each node. OVN con-

figures OVS on each node to implement the declared network configuration.

The OVN-Kubernetes default Container Network Interface (CNI) network provider implements the following fea-

tures:

● Uses OVN (Open Virtual Network) to manage network traffic flows. OVN is a community developed, ven-

dor agnostic network virtualization solution.

● Implements Kubernetes network policy support, including ingress and egress rules.

● Uses the Geneve (Generic Network Virtualization Encapsulation) protocol rather than VXLAN to create an

overlay network between nodes.

Figure 19 shows the distribution of network interfaces on each OCP worker node with one Open vSwitch bridge,

for Pod-to-Pod communication and the other dedicated Linux bridge created for VM external network when

VMs are deployed leveraging the OpenShift Virtualization feature. Each bridge has one NIC within the OS provid-

ing access to external networks. The other four network interfaces on the OCP nodes are used for communica-

tion via the provisioning network and access to NFS, iSCSI-A, and iSCSI-B traffic via dedicated interfaces. Ap-

propriate VLANs are enabled at the UCS level to support different traffic types.

 Virtual Switching and Connectivity Diagram for a Cisco UCS M5 OCP Host Figure 19.

With OpenShift Virtualization, each VM deployed is controlled via a virt-launcher pod that is created with each

VM. The default networking type for OpenShift Virtualization VMs is Masquerade. The VM will be assigned a

non-routable IP and you can access the VM using the IP of the virt-launcher pod that was deployed alongside it.

This makes the VM accessible in the same way that containers are accessed.

Alternatively, you can connect the VM to the host network by creating a bridge interface on the OCP nodes using

Nmstate. The Nmstate operator is installed with OpenShift Virtualization and provides you with the Node Network

Configuration Policy (NNCP) object to update the host network settings. Figure 19 has a sample config bridge

called br1 created from an interface called eth2 (the interface name differs based on how the host views it) on

the OCP nodes.

Solution Deployment

Deployment Hardware and Software

The deployment of hardware and software for FlexPod with OpenShift Container Platform is detailed in the fol-

lowing sections.

Software Revision

Table 2 lists the software versions for hardware and virtual components used in this solution. Each of these ver-

sions been used have been certified within interoperability matrixes supported by Cisco and NetApp. For more

current supported version information, consult the following sources:

● NetApp IMT (NetApp Support Login Required)

● Cisco UCS Hardware and Software Interoperability Tool (Cisco ID Required)

Additionally, it is also strongly suggested to align FlexPod deployments with the recommended release for the

Cisco Nexus 9000 switches used in the architecture:

● Recommended Cisco NX-OS Releases for Cisco Nexus 9000 Series Switches

 Hardware and Software Revisions Table 2.

Layer Device Image Comments

Compute Cisco UCS Fabric Interconnects 6400

Series, Cisco UCS B200 M5, Cisco UCS

C220 M5

4.1(3b) Includes the Cisco UCS-

IOM 2408, Cisco UCS

Manager, Cisco UCS

VIC 1440, and Cisco

UCS VIC 1457/1455

Network Cisco Nexus Switches 9.3(7) Nexus Switches

Storage NetApp AFF A400 ONTAP 9.8 Software version

Software OpenShift Container Platform 4.7 Software version

OpenShift Virtualization 2.5 Software version

OCP Master Node RHCOS 4.7 OS version

OCP Worker Node RHCOS 4.7 OS version

Provisioner Node RHEL 8.3 OS version

NetApp Astra Trident CSI Plugin 21.04 Software version

Physical Cabling for FlexPod with OCP Bare Metal

The information in this section is provided as a reference for cabling the physical equipment in a FlexPod envi-

ronment. Customers can adjust the ports according to their individual setup but when done so the variables must

be changed in the Ansible automation Playbooks. This document assumes that out-of-band management ports

are plugged into an existing management infrastructure at the deployment sites. The interfaces shown in Figure

https://mysupport.netapp.com/matrix/#welcome
https://ucshcltool.cloudapps.cisco.com/public/
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/recommended_release/b_Minimum_and_Recommended_Cisco_NX-OS_Releases_for_Cisco_Nexus_9000_Series_Switches.html

20 will be used in various configuration steps. Additional 1Gb management connections will be needed for an

out-of-band network that sits apart from the FlexPod infrastructure. Each Cisco UCS fabric interconnect, Cisco

Nexus switch and NetApp storage controller is connected to the out-of-band network. Layer 3 network connec-

tivity is required between the Out-of-Band (OOB) and In-Band (IB) Management Subnets.

 Physical Cabling for FlexPod with OCP 4 Bare Metal Figure 20.

NetApp AFF A400

Controller - 01
NetApp AFF A400

Controller - 02

UCS 6454

Fabric Interconnect - A
UCS 6454

Fabric Interconnect - B

Nexus 93180YC-FX Switch - A Nexus 93180YC-FX Switch - B

e0e-f e0g-h e0e-f e0g-h

e0a

ifgrp a0a ifgrp a0a

UCS C220 M5

UCS VIC 1457
1

2

E1/18 E1/19 E1/20 E1/20 E1/19 E1/18

E1/

45-46

L1

L2

L1

L2

E1/

21-22

E1/

23-24

E1/49

E1/

47-48
E1/

45-46

E1/

47-48

E1/

21-22

E1/

23-24

E1/50

E1/49

E1/50
E1/

17-18

E1/

19-20

E1/

17-18

E1/

19-20

FI Uplink

Ports
FI Uplink

Ports

FI Server Ports

Po10

Po145 Po146

Po121Po123 Po123Po121

Po117 Po119 Po117 Po119

Peer Link

3

4

UCS C220 M5

E1/17 E1/9-12

x 4

E1/17E1/9-12

x 4

e0b

e0a

e0b

UCS VIC 1457
3

4

1

2

1 GbE

10 GbE

25 GbE

100/40 GbE

32 GbFC

Port Channel

vPC

5108 Chassis

2
4

0
8
 F

E
X

 - A

2
4

0
8
 F

E
X

 - B

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

x 2 x 2

x 2

x 2

x 2 x 2

x 2

x 2

e3a

e3b

e3a

e3b

UCS C220 M5

UCS VIC 1457
3

4

1

2

E1/22 E1/21E1/21 E1/22

VLANs Configuration

To enable connectivity between various layers of the FlexPod system and to provide external connectivity to the

OCP cluster and workloads deployed in the form of Containers and VMs, several VLANs are configured and ena-

bled on various paths.

Table 3 list VLANs configured for setting up the FlexPod environment along with their usage.

 VLANs Table 3.

VLAN ID Name Usage

2 Native-VLAN Use VLAN 2 as Native VLAN

instead of default VLAN (1)

13 OOB-MGMT-VLAN Out of Band Management VLAN

to connect the management ports

for various devices

914 OpenShift Virtualization Dedicated VLAN for OpenShift

Virtualization Public Traffic

904 OCP Provisioning VLAN for OpenShift Provisioning

Network

113 OCP Bare Metal VLAN for OpenShift Bare Metal

Public Network

3154 NFS NFS VLAN for provisioning NFS

persistent volumes

3014 iSCSI-A iSCSI-A VLAN for provisioning

iSCSI persistent volumes

3024 iSCSI-B iSCSI-B VLAN for provisioning

iSCSI persistent volumes

Some of the key highlights of VLAN usage are as follows:

● VLAN 13 allows customers to manage and access out of band management interfaces of various devices.

● VLAN 113 is used for all the OCP infrastructure (DNS, DHCP, and so on) as well as OCP cluster nodes.

● VLAN 904 is used by the VMs deployed on the OpenShift Cluster for public access

● VLAN 3154 is configured to provide access to NFS storage on the NetApp storage cluster.

● A pair of iSCSI VLANs (3014 and 3024) are configured to provide access to iSCSI storage on the NetApp

storage cluster.

Bare Metal Compute Options and Sizing

Table 4 lists the Cisco UCS compute options that are supported for OCP installation.

 Cisco UCS Server Node Configuration Options Table 4.

Server Node Cisco UCS B200 M5 Cisco UCS C220 M5

CPU
2x 2nd Gen Intel® Xeon®

Scalable

2x 2nd Gen Intel® Xeon®

Scalable

Memory
DDR4-2933-MHz

 DDR4-2933-MHz

Server Node Cisco UCS B200 M5 Cisco UCS C220 M5

Storage (Boot Drives)

(2) M.2 SATA SSD – RAID1 (2) M.2 SATA SSD – RAID1

Storage Controller Cisco Boot optimized M.2

RAID controller

(UCS-M2-HWRAID)

Cisco Boot optimized M.2

RAID controller

(UCS-M2-HWRAID)

Network VIC 1440 + Port Expander VIC 1457/1455

The deployment procedure in this document covers OCP cluster installation on Cisco UCS B200M5 and Cisco

UCS C220M5 servers. In the lab validation, 3 Cisco UCS B200 M5 servers were used for the master nodes and 3

Cisco UCS C220 M5 servers were used for the worker nodes.

Sizing

This is a general recommendation and not specific to a customer environment. It is important to properly size the

solution with all of its components by a qualified Engineer or Architect per the specific requirements of the cus-

tomer. There is no one size fits all approach, hence specific sizing and performance testing were excluded from

the CVD.

For example, at the Cisco UCS level, customers have the option to include servers with different processors and

core counts, and with the combination of the right amount of memory the servers can be optimized for the right

cost-performance configuration. The same strategy is applicable across all the layers of FlexPod including net-

work and storage.

It is important to size the servers to meet the minimal requirements of the OCP platform, to account for failures

of servers and by that to make sure that OCP HA related rules can be followed upon server failure with enough

resources available for OCP to redistribute the workloads from the failing host or when performing upgrades and

other maintenance tasks.

Example Sizing Guidelines (Worker Nodes)

Determine how many nodes and pods are required for your OpenShift Container Platform cluster. Cluster scala-

bility correlates to the number of pods in a cluster environment. That number influences the other numbers in

your setup. See Cluster Limits for the latest limits for objects in OpenShift Container Platform.

Environment sizing can be done according to tested cluster maximums or according to your application require-

ments. While planning your environment, determine how many pods are expected to fit per node:

Required Pods per Cluster / Pods per Node = Total Number of Nodes Needed

If you want to scope your cluster at 2500 pods, assuming the 250 maximum pods per node, you will need at

least ten nodes:

2500 / 250 = 10

If you increase the number of nodes to 15, the pods per node distribution changes to 167 pods per node.

https://docs.openshift.com/container-platform/4.7/scalability_and_performance/planning-your-environment-according-to-object-maximums.html

The current maximum number of pods per node is 250. However, the number of pods that fit on a node is de-

pendent on the application itself. Consider the application’s memory, CPU, and storage requirements.

Table 5 lists components you might consider for a sample application environment.

 Environment Components Table 5.

Pod type Pod quantity Max memory CPU cores Persistent

storage

apache 100 500 MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

postgresql 100 1 GB 2 10 GB

The overall resource requirements for this application are: 450 CPU cores, 350GB RAM, and 1.3TB stor-

age plus overhead required for OCP operations.

Ansible Automation Workflow and Solution Deployment

The FlexPod with OCP 4 bare metal solution uses a management workstation (control machine) to run Ansible

playbooks to configure Cisco Nexus, Cisco UCS, NetApp ONTAP Storage and Install the OCP Cluster.

Figure 21 illustrates the FlexPod with OCP 4 bare metal solution implementation workflow which is explained in

the following sections. The FlexPod infrastructure layers are first configured in the order illustrated in the follow-

ing figure before installing the OCP on the UCS bare metal cluster.

 Ansible Automation Workflow Figure 21.

Prerequisites

Setup of the solution begins with a management workstation that has access to internet and with a working in-

stallation of Ansible. The management workstation commonly runs a variant of Linux or MacOS for ease of use

with these command-line-based tools. Instructions for installing the workstation are not included in this docu-

ment, but basic installation and configuration of Ansible is covered. A guide for getting started with Ansible can

be found at the following link:

● Getting Started with Red Hat Ansible: https://www.ansible.com/resources/get-started

To use the Ansible playbooks demonstrated in this document, the management workstation must also have a

working installation of Git and access to the Cisco DevNet public GitHub repository. The Ansible playbooks used

in this document are cloned from the public repositories, located at the following links:

● Cisco DevNet: https://developer.cisco.com/codeexchange/github/repo/ucs-compute-solutions/FlexPod-

IaC-OCP4

● GitHub repository: https://github.com/ucs-compute-solutions/FlexPod-IaC-OCP4

● Red Hat OpenShift repository for IPI automated install: https://github.com/openshift-kni/baremetal-

deploy.git

The Cisco Nexus Switches, NetApp Storage and Cisco UCS must be physically racked, cabled, powered, and

configured with the management IP addresses before the Ansible-based installation procedure can begin as

shown in the cabling diagram (Figure 20). If necessary, upgrade the Cisco Nexus Switches to release 9.3(7) and

the Cisco UCS System to 4.1(3b) with the default firmware packages for both blades and rack servers set to

4.1(3b).

https://www.ansible.com/resources/get-started
https://developer.cisco.com/codeexchange/github/repo/ucs-compute-solutions/FlexPod-IaC-OCP4
https://developer.cisco.com/codeexchange/github/repo/ucs-compute-solutions/FlexPod-IaC-OCP4
https://github.com/ucs-compute-solutions/FlexPod-IaC-OCP4
https://github.com/openshift-kni/baremetal-deploy.git
https://github.com/openshift-kni/baremetal-deploy.git

Before running each Ansible Playbook to setup the Network, Storage, Cisco UCS, and install OCP various varia-

bles must be updated based on the customers environment and specific implementation with values such as the

VLANs, pools and ports on Cisco UCS, IP addresses for NFS and iSCSI interfaces and values needed for the

OCP installation.

 Day 2 Configuration tasks such as OpenShift Virtualization configuration and Astra Trident installation af-

ter the OCP cluster is installed have been performed manually and the information has been provided in

the later sections of this document.

Prepare Management Workstation (Control Machine)

In this section, the installation steps are performed on the CentOS management host to prepare the host for so-

lution deployment to support the automation of Cisco UCS, Cisco Nexus, NetApp Storage and OCP installation

using Ansible Playbooks.

 The following steps were performed on a RHEL 8.3 Virtual Machine.

To prepare the management workstation, follow these steps:

1. Install EPEL repository on the management host.

[root@fp-ansible ~]# dnf install https://dl.fedoraproject.org/pub/epel/epel-release-

latest-8.noarch.rpm

2. Install Ansible engine.

[root@fp-ansible ~]# dnf install ansible

3. Verify Ansible version to make sure it is at a minimum release 2.9.

[root@fp-ansible ~]# ansible --version

ansible 2.9.21

 config file = /etc/ansible/ansible.cfg

 configured module search path = ['/root/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

 ansible python module location = /usr/lib/python3.6/site-packages/ansible

 executable location = /usr/bin/ansible

 python version = 3.6.8 (default, Mar 18 2021, 08:58:41) [GCC 8.4.1 20200928 (Red Hat

8.4.1-1)]

4. Install UCS SDK.

[root@fp-ansible ~]# pip3 install ucsmsdk

5. You should be able to SSH into each of the Cisco Nexus switches that will be configured using Ansible so

that the SSH keys are cached.

[root@fp-ansible ~]# ssh admin@192.168.156.21

The authenticity of host '192.168.156.21 (192.168.156.21)' can't be established.

RSA key fingerprint is SHA256:YWSl7OaDF7VbOqg9ImRTY2bwFXIrajHAKd/xoOwBCgk.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.156.21' (RSA) to the list of known hosts.

User Access Verification

Password:

6. Install NetApp specific python modules.

[root@fp-ansible ~]# pip3 install netapp-lib

7. Install ansible-galaxy collections for Cisco UCS, Cisco Nexus and NetApp as follows:

[root@fp-ansible ~]# ansible-galaxy collection install cisco.nxos

[root@fp-ansible ~]# ansible-galaxy collection install cisco.ucs

[root@fp-ansible ~]# ansible-galaxy collection install netapp.ontap

8. Install the following python modules required for OCP installation using Ansible:

● python3-dns

● uri

● python3-netaddr

[root@fp-ansible ~]# dnf install python3-dns

[root@fp-ansible ~]# pip3 install uri

[root@fp-ansible ~]# dnf install python3-netaddr

 We validated the Ansible automation with both python 2.7.5 and python 3.6 as the python interpreter for

Ansible.

Clone GitHub Collection

You will use GitHub repos from two public locations, the first step in the process is to clone the GitHub collection

named flexpod-IaC-OCP4 (https://github.com/ucs-compute-solutions/FlexPod-IaC-OCP4) and baremetal-

deploy (https://github.com/openshift-kni/baremetal-deploy) to new empty folders on the management work-

station. Cloning the collections creates a local copy, which is then used to run the playbooks that have been cre-

ated for this solution. To clone the GitHub collection, follow these steps:

1. From the management workstation, create a new folder for the project. The GitHub collection will be cloned

in a new folder inside this one, named ocp4.

2. Open a command-line or console interface on the management workstation and change directories to the

new folder just created.

3. Clone the GitHub collection using the following commands:

git clone https://github.com/ucs-compute-solutions/FlexPod-IaC-OCP4.git

https://github.com/ucs-compute-solutions/FlexPod-IaC-OCP4
https://github.com/openshift-kni/baremetal-deploy

git clone https://github.com/openshift-kni/baremetal-deploy.git

4. Change directories to the new folder named ocp4.

5. Change directories to the folder named FlexPod-IaC-OCP4.

FlexPod Deployment using Playbooks

This section explains the installation and configuration of all the infrastructure layers with in FlexPod. The Ansible

Playbook tree structure is shown below with the directory structure and various roles and tasks:

├── group_vars

│ ├── all.yml

│ ├── nexus.yml

│ ├── ontap

│ └── ucs.yml

├── host_vars

│ ├── n9kA.yml

│ └── n9kB.yml

├── inventory

├── LICENSE

├── licenses.yaml

├── README.md

├── roles

│ ├── NEXUSconfig

│ │ ├── defaults

│ │ │ └── main.yml

│ │ └── tasks

│ │ ├── configure_default_gw.yml

│ │ ├── configure_nxos_features.yml

│ │ ├── configure_nxos_global_settings.yml

│ │ ├── configure_nxos_ntp.yml

│ │ ├── configure_nxos_vlans.yml

│ │ ├── configure_nxos_vpc.yml

│ │ ├── initiate_nxos_config_backup.yml

│ │ ├── main.yml

│ │ ├── save_nxos_config.yml

│ │ └── set_nxos_interfaces.yml

│ ├── ONTAP

│ │ ├── ontap_lifs

│ │ │ └── tasks

│ │ │ └── main.yml

│ │ ├── ontap_network

│ │ │ └── tasks

│ │ │ └── main.yml

│ │ ├── ontap_primary_setup

│ │ │ └── tasks

│ │ │ └── main.yml

│ │ ├── ontap_svm

│ │ │ └── tasks

│ │ │ └── main.yml

│ │ ├── ontap_volumes

│ │ │ └── tasks

│ │ │ └── main.yml

│ │ └── README.md

│ ├── UCSadmin

│ │ ├── defaults

│ │ └── tasks

│ │ ├── configure_dns.yml

│ │ ├── configure_ntp_server.yml

│ │ ├── configure_ucs_timezone.yml

│ │ ├── create_ucs_org.yml

│ │ └── main.yml

│ ├── UCSequipment

│ │ ├── defaults

│ │ │ └── main.yml

│ │ └── tasks

│ │ ├── configure_ucs_auto_discovery.yml

│ │ ├── configure_ucs_chassis_discovery.yml

│ │ ├── configure_ucs_info_policy.yml

│ │ ├── configure_ucs_server_port.yml

│ │ ├── configure_ucs_udld_policy.yml

│ │ ├── configure_ucs_uplink_PC.yml

│ │ └── main.yml

│ ├── UCSlan

│ │ ├── defaults

│ │ │ └── main.yml

│ │ └── tasks

│ │ ├── configure_ucs_adapter_policy.yml

│ │ ├── configure_ucs_iscsi_vnic_templates.yml

│ │ ├── configure_ucs_mac_pools.yml

│ │ ├── configure_ucs_mgmt_ip_pool.yml

│ │ ├── configure_ucs_NCP.yml

│ │ ├── configure_ucs_OCP_LCP.yml

│ │ ├── configure_ucs_system_qos.yml

│ │ ├── configure_ucs_vlans.yml

│ │ ├── configure_ucs_vnic_templates.yml

│ │ └── main.yml

│ ├── UCSserver

│ │ ├── defaults

│ │ │ └── main.yml

│ │ └── tasks

│ │ ├── add_ucs_pmem_policy_to_SPT.yml

│ │ ├── configure_ucs_app_direct_pmem_policy.yml

│ │ ├── configure_ucs_bios_policy.yml

│ │ ├── configure_ucs_boot_policy.yml

│ │ ├── configure_ucs_ipmi_profile.yml

│ │ ├── configure_ucs_PCP.yml

│ │ ├── configure_ucs_server_pool.yml

│ │ ├── configure_ucs_SPT.yml

│ │ ├── configure_ucs_uuid_pool.yml

│ │ ├── main.yml

│ │ └── update_ucs_maintenance_policy.yml

│ └── UCSstorage

│ ├── defaults

│ │ └── main.yml

│ └── tasks

│ ├── configure_ucs_disk_group_policy.yml

│ ├── configure_ucs_storage_profile.yml

│ └── main.yml

├── Setup_LAN_Connectivity.yml

├── Setup_Lic.yaml

├── Setup_Nexus.yml

├── Setup_ONTAP.yml

├── Setup_UCS.yml

└── vars

 └── ontap_main.yml

The following information must be modified based on your environment; more information needs to be modified

specific to each device automation which is explained later in this document in the device automation sections.

● inventory - contains the variables such as device IP addresses and authentication details:

● group_vars/all.yml – contains the VLAN ids required for the solution deployment, update this file based on

your environment

● vars/ontap_main.yml – contains the variables that are required for the configuration of NetApp ONTAP

FlexPod Network Configuration

 Make sure the FlexPod cabling and initial configuration has been completed on the Cisco Nexus switch-

es.

The following information must be modified based on your specific environment, before running the Nexus Au-

tomation Playbook:

● Switch Interface details in the following files if using different ports.

● vPC domain id, Port Channel details and Nexus features in the following files if using different port channel

ids or features.

Once the information has been updated in the respective files, run the Nexus switch Ansible playbook:

[root@fp-ansible FlexPod-IaC-OCP4]# ansible-playbook ./Setup_Nexus.yml -i inventory

Login into the Nexus switches and verify the configuration has been completed as desired before proceeding

with the next section to configure NetApp Storage and Cisco UCS.

FlexPod Storage Configuration

Prior to executing the Setup_ONTAP.yml playbook to configure the ONTAP storage system as per the require-

ments of OCP 4, the following operations must be completed:

● Physical rack and stack of hardware

● Cabling and Power-on

● Initialization of ONTAP OS – disk assignment

● Cluster Create - Node Management IPs and ONTAP Cluster with IP and password

 Aggregate creation is part of the automation.

ONTAP Initial Setup

From a console port program attached to the storage controller A (node 01) console port, run the node setup

script. This script appears when ONTAP 9.8 boots on the node for the first time.

To setup ONTAP, follow these steps:

1. Follow the prompts to set up node 01.

Welcome to node setup.

You can enter the following commands at any time:

 "help" or "?" - if you want to have a question clarified,

 "back" - if you want to change previously answered questions, and

 "exit" or "quit" - if you want to quit the setup wizard.

 Any changes you made before quitting will be saved.

You can return to cluster setup at any time by typing “cluster setup”.

To accept a default or omit a question, do not enter a value.

This system will send event messages and weekly reports to NetApp Technical Support.

To disable this feature, enter "autosupport modify -support disable" within 24 hours.

Enabling AutoSupport can significantly speed problem determination and resolution

should a problem occur on your system.

For further information on AutoSupport, see:

http://support.netapp.com/autosupport/

Type yes to confirm and continue {yes}: yes

Enter the node management interface port [e0M]: Enter

Enter the node management interface IP address: <node01-mgmt-ip>

Enter the node management interface netmask: <node01-mgmt-mask>

Enter the node management interface default gateway: <node01-mgmt-gateway>

A node management interface on port e0M with IP address <node01-mgmt-ip> has been cre-

ated

Use your web browser to complete cluster setup by accessing https://<node01-mgmt-ip>

Otherwise press Enter to complete cluster setup using the command line interface:

2. To complete the cluster setup, open a web browser and navigate to https://<node01-mgmt-ip>. The setup

wizard will step you through Cluster configuration setup.

3. Enter the storage cluster name and administrative password.

4. Cluster configuration will take few minutes and after the setup the URL will be redirected to the cluster IP.

5. In the System manager, click Overview under Cluster to verify the storage nodes.

ONTAP Automated Configuration

To complete the automated setup/ configuration of the ONTAP storage system, follow these steps:

1. Navigate to the ‘/vars/ontap_main.yml’ file and fill it out with your environment specific values.

 The format of the variable file needs to be maintained as it is, any changes to the structure of the file may

lead to failure in execution of the playbook.

 Sample values are pre-populated against some variables to provide the user additional clarity on how

the variable needs to be filled out. Please replace the sample values with your environment specific in-

formation.

2. Navigate to the ‘/group_vars/ontap’ file and update it with the admin credentials for the ONTAP cluster and

Node Management Ips.

3. Update the ‘inventory’ file with a record of the ONTAP Cluster Management IP.

4. Run the playbook to setup ONTAP storage as per the requirements of OCP 4 using the below command:

ansible-playbook Setup_ONTAP.yml -i inventory

 NetApp Astra Trident will be installed and configured after the OpenShift Container Platform has been

setup.

FlexPod UCS Compute Configuration

To configure FlexPod UCS Compute, follow these steps:

 Update the following information as required based on your environment before running the UCS Auto-

mation Playbook.

1. Port details and tasks to be included for UCSequipment configuration role if different from the defaults.

2. Management and MAC address pool details for UCSlan configuration role.

3. UUID pool, UCS servers list and IPMI details for UCSServer configuration role.

 Change the values in the mentioned files with caution, only change the information that is required. All

the other files can be left to defaults, modify them only if you want to go with a different naming conven-

tion or if you do not have the identical hardware discussed in this design.

4. Once the above information has been updated in the respective files, run the UCS Ansible playbook:

[root@fp-ansible FlexPod-IaC-OCP4]# ansible-playbook ./Setup_UCS.yml -i inventory

5. Login into the Cisco UCS Manager and verify the configuration has been completed as desired.

6. As part of the UCS Playbook, there are two Service Profile templates created, one for Master nodes and the

other for the worker nodes, we will use these service profile templates to create and assign Service Profiles

to the UCS servers. Either the master node or worker node service profile can be used for the provisioner

node.

Create UCS Service Profiles

To create service profiles from the service profile template, follow these steps:

1. Connect to the Cisco UCS 6454 Fabric Interconnect UCS Manager, click the Servers tab in the navigation

pane.

2. Click Service Profile Templates > Sub-Organizations > OCP > Service Template OCP-Master.

3. Right-click OCP-Master and choose Create Service Profiles from Template.

4. Enter OCP-Master- for the service profile prefix.

5. Enter 0 for the “Name Suffix Starting Number.”

6. Enter 3 for the “Number of Instances.”

7. Click OK to create the service profiles.

8. Click OK in the confirmation message to provision three FlexPod Service Profiles.

9. Click Service Profile Templates > Sub-Organizations > OCP > Service Template OCP-Worker.

10. Right-click OCP-Worker and choose Create Service Profiles from Template.

11. Enter OCP-Worker- for the service profile prefix.

12. Enter 0 for the “Name Suffix Starting Number.”

13. Enter 3 for the “Number of Instances.”

14. Click OK to create the service profiles.

15. Click OK in the confirmation message to provision three FlexPod Service Profiles.

16. Wait for the Service Profile association to complete and proceed to the next steps details in the next section.

 You will use one of the worker nodes service profile and use it as a provisioner node, the same machine

can be added as a worker node into the cluster later if desired without any changes, though a dedicated

provisioner node is recommended to simplify the expansion process that can initiated from the provi-

sioner node. The validation team used a dedicated provisioner node and installed a cluster with two

worker nodes initially and expanded the cluster with one additional worker node.

OpenShift Container Platform Installation and Configuration

OCP 4.7 is deployed on the Cisco UCS infrastructure as bare metal servers. Three master nodes and two worker

nodes are deployed in the validation environment and additional worker nodes can easily be added to increase

the scalability of the solution. This document will guide you through the process of using the Ansible playbooks

to deploy a Baremetal Installer Provisioned Infrastructure (IPI) of Red Hat OpenShift 4.7. For the manual deploy-

ment details refer to Red Hat documentation at “https://docs.openshift.com/container-

platform/4.7/installing/installing_bare_metal_ipi/ipi-install-overview.html”.

OpenShift Container Platform – Installation Requirements

Installer-provisioned installation provides support for installing OpenShift Container Platform on bare metal

nodes. This guide provides a methodology to achieving a successful installation using Ansible.

During installer-provisioned installation on bare metal, the installer on the bare metal node labeled

as provisioner creates a bootstrap VM. The role of the bootstrap VM is to assist in the process of deploying an

OpenShift Container Platform cluster. The bootstrap VM connects to the baremetal network and to

the provisioning network, if present, via the network bridges. When the installation of OpenShift Container Plat-

form control plane nodes is complete and fully operational, the installer destroys the bootstrap VM automatically

and moves the virtual IP addresses (VIPs) to the appropriate nodes accordingly. The API VIP moves to the con-

trol plane nodes and the Ingress VIP moves to the worker nodes.

 The installation of the OCP platform is a multi-step process that must be carefully planned for each cus-

tomer environment. There are several prerequisites for preparing the infrastructure and the nodes for the

https://docs.openshift.com/container-platform/4.7/installing/installing_bare_metal_ipi/ipi-install-overview.html
https://docs.openshift.com/container-platform/4.7/installing/installing_bare_metal_ipi/ipi-install-overview.html

installation, and it is also important to recognize that the installation procedure may vary between the dif-

ferent versions of OCP, the validation team tested installation of OCP 4.6 and 4.7 versions.

Prerequisites

The FlexPod for OCP utilizes installer-provisioned infrastructure (IPI) cluster configuration for OCP installation

therefore when provisioning and managing the FlexPod infrastructure, you must provide all the supporting clus-

ter infrastructure and resources, including the provisioning node, networking, storage, and individual cluster ma-

chines.

The following supporting cluster resources are required for the IPI installation:

● The control plane and compute machines that make up the cluster

● Cluster networking

● Storage for the cluster infrastructure and applications

 Before starting the installation of OpenShift platform, make sure Cisco UCS, NetApp Storage, and the

Cisco Nexus switches are configured as per the design discussed in the design section of this docu-

ment.

Network Requirements

The following infrastructure services needs to be deployed to support the OCP cluster, during the validation of

this solution we have provided VMs to run the required services. Customers can use existing DNS and DHCP

services available in the data center:

There are various infrastructure services prerequisites for deploying OCP 4. These prerequisites are as follows:

● DNS and DHCP services – these services were configured on Microsoft Windows Server VMs

● NTP Distribution was done with Nexus switches

● Specific DNS entries for deploying OCP – added to the DNS server

● An HTTP server to host VM image files – OpenShift Virtualization

● A Linux VM for initial automated installation and cluster management – a CentOS / RHEL VM with appropri-

ate packages

● A RHEL server used as provisioner host.

Customers can choose to combine some of these services on a single VM e.g., DNS and DHCP on a single VM

and can choose to deploy these services on a platform and version of their choice, for example a windows-

based DNS or DHCP server.

NTP

Each OpenShift Container Platform node in the cluster must have access to an NTP server.

NICs

NICs configured on the Cisco UCS servers based on the design previously discussed.

DNS

Clients access the OpenShift Container Platform cluster nodes over the baremetal network. Configure a subdo-

main or subzone where the canonical name extension is the cluster name.

The following domain and OCP cluster names are used in this deployment guide:

● Base Domain: flexpod.cisco.com

● OCP Cluster Name: ocp

Table 6 lists the information for fully qualified domain names used during validation. The API and Nameserver

addresses begin with canonical name extensions. The hostnames of the control plane and worker nodes are ex-

emplary, so you can use any host naming convention you prefer.

 DNS FQDN Names Used Table 6.

Usage Hostname IP Address

API api.ocp.flexpod.cisco.com 10.1.156.226

Ingress LB (apps) *.apps.ocp.flexpod.cisco.com 10.1.156.227

Worker-2 provisioner.ocp.flexpod.cisco.com 10.1.156.216

Master-0 master-0.ocp.flexpod.cisco.com 10.1.156.211

Master-1 master-1.ocp.flexpod.cisco.com 10.1.156.212

Master-2 master-2.ocp.flexpod.cisco.com 10.1.156.213

Worker-0 worker-0.ocp.flexpod.cisco.com 10.1.156.214

Worker-1 worker-1.ocp.flexpod.cisco.com 10.1.156.215

DHCP

For the bare metal network, a network administrator must reserve several IP addresses, including:

● One IP address for the API endpoint

● One IP address for the wildcard Ingress endpoint

● One IP address for the provisioner node (DHCP server assigns to the node)

● One IP address for each master node (DHCP server assigns to the node)

● One IP address for each worker node (DHCP server assigns to the node)

 Get the MAC addresses of the bare metal Interfaces from the UCS service profiles for each node to be

used in the DHCP configuration to assign reserved IP addresses to the nodes. KVM IP address also

needs to be gathered for the master and worker nodes from the service profiles.

To gather the MAC addresses of the bare metal interfaces on the nodes, follow these steps:

1. Launch the Cisco UCS Manager GUI. In the navigation pane, click the Servers tab. Expand Servers > Service

Profiles > Sub-Organization > OCP.

2. Click each node service profile and then click the Network tab on the right. Note “MAC Address” displayed

for each bare metal vNIC.

3. Click the General tab and expand the Management IP address on the right to note IP address assigned to the

server from the KVM management pool.

Table 7 lists the IP address used for the OCP cluster including bare metal network IPs and UCS KVM Manage-

ment IPs for IPMI access.

 IP Addresses Table 7.

Hostname IP Address
UCS KVM Mgmt.

IP Address
MAC Address

provisioner.ocp.flexpod.cisco.com 10.1.156.216 00:25:B5:A1:3B:09

master-0.ocp.flexpod.cisco.com 10.1.156.211 192.168.156.245 00:25:B5:A1:3B:00

master-1.ocp.flexpod.cisco.com 10.1.156.212 192.168.156.246 00:25:B5:A1:3B:01

master-2.ocp.flexpod.cisco.com 10.1.156.213 192.168.156.247 00:25:B5:A1:3B:02

worker-0.ocp.flexpod.cisco.com 10.1.156.214 192.168.156.248 00:25:B5:A1:3B:03

worker-1.ocp.flexpod.cisco.com 10.1.156.215 192.168.156.249 00:25:B5:A1:3B:06

Setup the Provisioner Node

When the prerequisites are completed, install Red Hat Enterprise Linux (RHEL) 8.3 on your UCS server designat-

ed as provisioner host and follow the steps below to prepare the host.

Download RHEL 8.3 DVD ISO

If the RHEL DVD image has not been downloaded, follow these steps to download the ISO:

1. Click the following link RHEL 8.3 Binary DVD.

 A user_id and password are required on the website (redhat.com) to download this software.

2. Download the .iso (rhel-server-8.3-x86_64-dvd.iso) file.

3. Follow the prompts to launch the KVM console.

Operate System Installation

To install RHEL 8.3 on the UCS server, follow these steps:

1. Copy the disk image downloaded into your workstation.

2. If Cisco UCS Manager GUI is not open, log in.

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.3/x86_64/product-software

3. In the Navigation pane, click the Servers tab

4. On the Servers tab, expand Servers > Service Profiles.

5. Click the Provisioner node service profile

6. In the Work pane, click the General tab.

7. In the Actions area, click KVM Console. The KVM Console opens in a separate window.

8. From the KVM console, choose Virtual Media > Activate Virtual Devices to open the Virtual Media Session

dialog box. Then choose Virtual Media > CD/DVD.

9. In the Virtual Disk Management dialog box, map the virtual media selecting Choose File. Navigate to the lo-

cation of the RHEL 8.3 DVD ISO, select the ISO, and click Open. Back in the Virtual Disk Management dialog

box, select Map Drive.

10. Boot the server. During the boot process, when you see the Cisco splash screen, press F6 to go into the

Boot Menu. (You can also use a User Defined Macro to send F6).

11. Once in the Boot Menu, select UEFI: Cisco vKVM-Mapped vDVD1.24 and press Enter.

12. On boot, RHEL installation media is detected. From the Installation menu, use arrow keys to select Install Red

Hat Enterprise Linux 8.3. This should stop automatic boot countdown.

13. Continue with the prompts and complete OS installation, installing Server with GUI from Local Media not reg-

istered with Red Hat Network.

 The server will reboot after the OS installation.

 The server gets an IP address assigned dynamically on the second interface from the DHCP server since

you reserved an IP address for the second vNIC MAC address.

14. Accept the RHEL license and Quit the INITIAL SETUP. Close the KVM console.

Create the User kni

To create the user kni, follow these steps:

1. Login into the provisioner node via ssh as root.

2. Create a user (kni) to deploy as non-root and provide that user sudo privileges:

[root@provisioner ~]# useradd kni

[root@provisioner ~]# passwd kni

[root@provisioner ~]# echo "kni ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/kni

[root@provisioner ~]# chmod 0440 /etc/sudoers.d/kni

Enable Local yum Repository on Provisioner Host

To enable the local yum repository on the provisioner host, follow these steps:

1. Using a secure copy (scp) tool, copy rhel-8.3-x86_64-dvd.iso to /root on the provisioner host.

2. SSH to the provisioner host as root.

3. Using an editor, add “/root/rhel-8.3-x86_64-dvd.iso /media/rhel8dvd iso9660 loop 0 0” as the last

line in /etc/fstab.

4. Permanently mount the RHEL 8 installation ISO to a /media/rhel8dvd:

[root@provisioner ~]# mkdir /media/rhel8dvd

[root@provisioner ~]# mount -a

mount: /media/rhel8dvd: WARNING: device write-protected, mounted read-only.

5. Create new repo file as shown below. There are two repositories in RHEL 8, named 'BaseOS' and 'App-

Stream'.

[root@provisioner ~]# vi /etc/yum.repos.d/my.repo

[root@provisioner ~]# cat /etc/yum.repos.d/my.repo

[dvd-BaseOS]

name=DVD for RHEL8 - BaseOS

baseurl=file:///media/rhel8dvd/BaseOS

enabled=1

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

[dvd-AppStream]

name=DVD for RHEL8 - AppStream

baseurl=file:///media/rhel8dvd/AppStream

enabled=1

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

6. As a final step, it is a good idea to run the command yum clean all once:

[root@provisioner ~]# yum clean all

7. Check whether you can get the packages list from the DVD repositories.

[root@provisioner ~]# yum --noplugins list

8. Manually install python3-crypto and python3-pyghmi packages on the provision host:

[root@provisioner ~]# curl -o python3-crypto-2.6.1-18.el8ost.x86_64.rpm

https://trunk.rdoproject.org/rhel8-master/deps/latest/Packages/python3-crypto-2.6.1-

18.el8ost.x86_64.rpm

[root@provisioner ~]# dnf -y install ./python3-crypto-2.6.1-18.el8ost.x86_64.rpm

[root@provisioner ~]# curl -o python3-pyghmi-1.0.22-2.el8ost.noarch.rpm

https://trunk.rdoproject.org/rhel8-master/deps/latest/Packages/python3-pyghmi-1.0.22-

2.el8ost.noarch.rpm

[root@provisioner ~]# dnf -y install ./python3-pyghmi-1.0.22-2.el8ost.noarch.rpm

Deploy IPI on Bare Metal using Ansible Playbook

This section provides detailed instructions to install OpenShift Container Platform 4.7 on Cisco UCS nodes using

Ansible.

Run the Ansible Playbook to Install OCP Cluster

1. Change directory to ocp4/baremetal-deploy/ansible-ipi-install. The Ansible files tree structure is shown be-

low:

├── ansible.cfg

├── inventory

│ └── hosts.sample

├── playbook.yml

└── roles

 ├── installer

 │ ├── defaults

 │ │ └── main.yml

 │ ├── files

 │ ├── handlers

 │ │ └── main.yml

 │ ├── meta

 │ │ └── main.yml

 │ ├── tasks

 │ │ ├── 10_get_oc.yml

 │ │ ├── 15_disconnected_registry_create.yml

 │ │ ├── 15_disconnected_registry_existing.yml

 │ │ ├── 20_extract_installer.yml

 │ │ ├── 23_rhcos_image_paths.yml

 │ │ ├── 24_rhcos_image_cache.yml

 │ │ ├── 25_create-install-config.yml

 │ │ ├── 30_create_metal3.yml

 │ │ ├── 40_create_manifest.yml

 │ │ ├── 50_extramanifests.yml

 │ │ ├── 55_customize_filesystem.yml

 │ │ ├── 59_cleanup_bootstrap.yml

 │ │ ├── 60_deploy_ocp.yml

 │ │ ├── 70_cleanup_sub_man_registeration.yml

 │ │ └── main.yml

 │ ├── templates

 │ │ ├── 99-etc-chrony.conf.j2

 │ │ ├── chrony.conf.j2

 │ │ ├── install-config-appends.j2

 │ │ ├── install-config.j2

 │ │ └── metal3-config.j2

 │ ├── tests

 │ │ ├── inventory

 │ │ └── test.yml

 │ └── vars

 │ └── main.yml

 └── node-prep

 ├── defaults

 │ └── main.yml

 ├── handlers

 │ └── main.yml

 ├── library

 │ └── nmcli.py

 ├── meta

 │ └── main.yml

 ├── tasks

 ├── 100_power_off_cluster_servers.yml

 ├── 10_validation.yml

 │ ├── 15_validation_disconnected_registry.yml

 │ ├── 20_sub_man_register.yml

 │ ├── 30_req_packages.yml

 │ ├── 40_bridge.yml

 │ ├── 45_networking_facts.yml

 │ ├── 50_modify_sudo_user.yml

 │ ├── 60_enabled_services.yml

 │ ├── 70_enabled_fw_services.yml

 │ ├── 80_libvirt_pool.yml

 │ ├── 90_create_config_install_dirs.yml

 │ └── main.yml

 ├── templates

 │ ├── dir.xml.j2

 ├── tests

 │ ├── inventory

 │ └── test.yml

 └── vars

 └── main.yml

The following information must be modified based on your specific environment:

● inventory - contains the file hosts.sample that:

● contains all the modifiable variables, their default values, and their definition. Some variables are empty

ensuring users give an explicit value.

● the setting up of your provision node, master nodes, and worker nodes. Each section will require addition-

al details (i.e., Management credentials).

● roles - contains two roles: node-prep and installer. node-prep handles all the prerequisites that the provi-

sioner node requires prior to running the installer. The installer role handles extracting the installer, setting

up the manifests, and running the Red Hat OpenShift installation.

2. Ensure that your environment is using Ansible 2.9 or greater. The following command can be used to verify.

[root@fp-ansible ansible-ipi-install]# ansible --version

ansible 2.9.21

 config file = /root/ocp4/baremetal-deploy/ansible-ipi-install/ansible.cfg

 configured module search path = ['/root/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

 ansible python module location = /usr/lib/python3.6/site-packages/ansible

 executable location = /usr/bin/ansible

 python version = 3.6.8 (default, Mar 18 2021, 08:58:41) [GCC 8.4.1 20200928 (Red Hat

8.4.1-1)]

3. Copy your public SSH key to your provisioner node using ssh-copy-id.

4. From the automation host, execute the following commands to copy the ssh key to provisioner host:

[root@fp-ansible ansible-ipi-install]# ssh-keygen

[root@fp-ansible ansible-ipi-install]# ssh-copy-id

kni@provisioner.ocp.flexpod.cisco.com

[root@fp-ansible ansible-ipi-install]# ssh kni@provisioner.ocp.flexpod.cisco.com

[kni@provisioner ~]$ exit

5. Modify the inventory/hosts file:

a. The hosts file provides all the definable variables and provides a description of each variable. Some of

the variables are explicitly left empty and require user input for the playbook to run.

b. The hosts file ensures all your nodes that will be used to deploy IPI on baremetal are setup. There are 4

groups: masters, workers, provisioner, and registry_host (optional). The masters and workers group col-

lects information about the host such as its name, role, user management (such as BMC) user, user

management (such as BMC) password, ipmi_address, ipmi_port to access the server and the provision

mac address (NIC1) that resides on the provisioning network.

c. Below is a sample of the inventory/hosts file that has been used to install OCP cluster in the validation

lab:

[root@fp-ansible ansible-ipi-install]# cat inventory/hosts

[all:vars]

Required configuration variables for IPI on Baremetal Installations #

ansible_python_interpreter=/usr/bin/python3

The provisioning NIC (NIC1) used on all baremetal nodes

prov_nic=eno5

The public NIC (NIC2) used on all baremetal nodes

pub_nic=eno6

(Optional) Set the provisioning bridge name. Default value is 'provisioning'.

#provisioning_bridge=provisioning

(Optional) Set the baremetal bridge name. Default value is 'baremetal'.

#baremetal_bridge=baremetal

(Optional) Activation-key for proper setup of subscription-manager, empty value skips

registration

#activation_key=""

(Optional) Activation-key org_id for proper setup of subscription-manager, empty val-

ue skips registration

#org_id=""

The directory used to store the cluster configuration files (install-config.yaml,

pull-secret.txt, metal3-config.yaml)

dir=”{{ ansible_user_dir }}/clusterconfigs”

The version of the openshift-installer, undefined or empty results in the playbook

failing with error message.

Values accepted: 'latest-4.3', 'latest-4.4', explicit version i.e. 4.3.0-0.nightly-

2019-12-09-035405

version=latest-4.7

(Optional) Fully disconnected installs require manually downloading the release.txt

file and hosting the file

on a webserver accessible to the provision host. The release.txt file can be down-

loaded at

https://mirror.openshift.com/pub/openshift-v4/clients/ocp-dev-preview/{{ version

}}/release.txt (for DEV version)

https://mirror.openshift.com/pub/openshift-v4/clients/ocp/{{ version }}/release.txt

(for GA version)

Example of hosting the release.txt on your example.com webserver under the 'latest-

4.3' version directory.

http://example.com:<port>/latest-4.3/release.txt

Provide the webserver URL as shown below if using fully disconnected

#webserver_url=http://example.com:<port>

Enter whether the build should use 'dev' (nightly builds) or 'ga' for Generally

Available version of OpenShift

Empty value results in playbook failing with error message.

build=ga

Provisioning IP address (default value)

prov_ip=172.22.0.3

(Optional) Enable playbook to pre-download RHCOS images prior to cluster deployment

and use them as a local

cache. Default is false.

#cache_enabled=True

(Optional) The port exposed on the caching webserver. Default is port 8080.

#webserver_caching_port=8080

(Optional) Enable IPv6 addressing instead of IPv4 addressing on both provisioning and

baremetal network

#ipv6_enabled=True

(Optional) When ipv6_enabled is set to True, but want IPv4 addressing on provisioning

network

Default is false.

#ipv4_provisioning=True

(Optional) When ipv6_enabled is set to True, but want IPv4 addressing on baremetal

network

#ipv4_baremetal=True

(Optional) A list of clock servers to be used in chrony by the masters and workers

#clock_servers=["pool.ntp.org","clock.redhat.com"]

(Optional) Provide HTTP proxy settings

#http_proxy=http://USERNAME:PASSWORD@proxy.example.com:8080

(Optional) Provide HTTPS proxy settings

#https_proxy=https://USERNAME:PASSWORD@proxy.example.com:8080

(Optional) comma-separated list of hosts, IP Addresses, or IP ranges in CIDR format

excluded from proxying

NOTE: OpenShift does not accept '*' as a wildcard attached to a domain suffix

i.e. *.example.com

Use '.' as the wildcard for a domain suffix as shown in the example below.

i.e. .example.com

#no_proxy_list="172.22.0.0/24,.example.com"

The default installer timeouts for the bootstrap and install processes may be too

short for some baremetal

deployments. The variables below can be used to extend those timeouts.

(Optional) Increase bootstrap process timeout by N iterations.

#increase_bootstrap_timeout=2

(Optional) Increase install process timeout by N iterations.

#increase_install_timeout=2

(Optional) Disable RedFish inspection to intelligently choose between IPMI or RedFish

protocol.

By default this feature is enabled and set to true. Uncomment below to disable and

use IPMI.

redfish_inspection=false

(Optional) Modify files on the node filesystems, you can augment the "fake" roots for

the

control plane and worker nodes.

If defined, playbook will look for files in control plane and worker subdirectories.

Otherwise, it will look in {{ role_path }}/files/customize_filesystem (default)

For more information on modifying node filesystems visit: https://bit.ly/36tD30f

#customize_node_filesystems="/path/to/customized/filesystems"

(Optional) Modify the path to add external manifests to the deployed nodes.

If defined, the playbook will copy manifests from the user provided directory.

Otherwise, files will be copied from the default location

'roles/installer/files/manifests/*'

#customize_extramanifests_path="/path/to/extra/manifests

######################################

Vars regarding install-config.yaml #

######################################

Base domain, i.e. example.com

domain=flexpod.cisco.com

Name of the cluster, i.e. openshift

cluster=ocp

The public CIDR address, i.e. 10.1.1.0/21

extcidrnet=10.1.156.0/24

An IP reserved on the baremetal network.

Deprecated in OpenShift 4.5 (https://github.com/openshift/installer/pull/3304)

dnsvip=10.1.156.250

An IP reserved on the baremetal network for the API endpoint.

(Optional) If not set, a DNS lookup verifies that api.<clustername>.<domain> provides

an IP

apivip=10.1.156.226

An IP reserved on the baremetal network for the Ingress endpoint.

(Optional) If not set, a DNS lookup verifies that *.apps.<clustername>.<domain> pro-

vides an IP

ingressvip=10.1.156.227

The master hosts provisioning nic

(Optional) If not set, the prov_nic will be used

#masters_prov_nic=""

Network Type (OpenShiftSDN or OVNKubernetes). Playbook defaults to OVNKubernetes.

Uncomment below for OpenShiftSDN

#network_type="OpenShiftSDN"

(Optional) A URL to override the default operating system image for the bootstrap

node.

The URL must contain a sha256 hash of the image.

See

https://github.com/openshift/installer/blob/master/docs/user/metal/customization_ipi.md

Example https://mirror.example.com/images/qemu.qcow2.gz?sha256=a07bd...

#bootstraposimage=""

(Optional) A URL to override the default operating system image for the cluster

nodes.

The URL must contain a sha256 hash of the image.

See

https://github.com/openshift/installer/blob/master/docs/user/metal/customization_ipi.md

Example https://mirror.example.com/images/metal.qcow2.gz?sha256=3b5a8...

#clusterosimage=""

A copy of your pullsecret from https://cloud.redhat.com/openshift/install/metal/user-

provisioned

pullse-

cret='{"auths":{"cloud.openshift.com":{"auth":"b3BlbnNoaWZ0LXJlbGVhc2UtZGV2K3NyZWR1bGEx

eG9kbzV2N2llZmVjdHFqN2ZrcGVmMWkwdG06STEzWDUwSEo2SDdGVDZQVVNWWVFDWEZFS0dET0VKN1pRRUtIQkc

2VFRMNExMV0IyVktHT0ZZUE9CNVhXVlhXVA==","email":"email@cisco.com"},"quay.io":{"auth":"b3

BlbnNoaWZ0LXJlbGVhc2UtZGV2K3NyZWR1bGExeG9kbzV2N2llZmVjdHFqN2ZrcGVmMWkwdG06STEzWDUwSEo2S

DdGVDZQVVNWWVFDWEZFS0dET0VKN1pRRUtIQkc2VFRMNExMV0IyVktHT0ZZUE9CNVhXVlhXVA==","email":"e

mail@cisco.com"},"registry.connect.redhat.com":{"auth":"NTMxOTQxOTV8dWhjLTFYb0RvNVY3SUV

mRWNUUUo3RmtQZUYxaTB0bTpleUpoYkdjaU9pSlNVelV4TWlKOS5leUp6ZFdJaU9pSmtaakZsT1RGaU0yVTJZVG

cwTTJRM1lUQXlOek5pTlRBMllqQmhOalEwWWlKOS5BeU9CbzBDQU13dW9paEZ5MllXTVlaS2JsdVVFOWJ4NXFye

mJEbWk-

tYm5FUU1aa1k3WGJsaW9qX1BZb2RLd1AtRU5LZGdWYkpEakhqMDJjQXYyc3J6TnVfOURhWjFVQWJGbmhIMl9GLU

s0dnc4V3hoU0pPdk9raU95XzZjeERHVHhoQVQ4Z1gxWnd6bzVaUHNJUHB6THkxazVpdzhLcWRzeWlJTnoweVpHT

mRWb00tYlVDd3BGN3N4QVRqVG1VVkRqMDV3OGhNeUJINnBvT0NYZjBZMVBZZUJWdUp2OVh5YVJRbldSRG9FQmMy

X3pucU1JVVE5dHg2VW52d29Vb3ZNLWJTa2FKR1JMci16Z0xnR0EtanU5RjY0aC1rS0VRVGFVSGh4blZUazYxMVd

tYlRZX3prQWdzU0VDdHFpNGJNeTRDUndZazBUVU50SHBWaERWbGJTYURhdVc4TmVwdHNVSzRNZnRaMnFYbVV5My

10X1BJZ3FkeUs2b25vSDBrSV9QN0l0SXRDbXhaZFdDTlJRSV9aWWpqdC1TcU5Pc3I2VmFQWndZT2t2R1hCUE1Mc

XNPei1XMHliWkc5WWZydkZvSURxenN2QzJHamUtVlBhSXo5X0MtMFVFbjRVNkJjaU9UdVpVR0tIVDZtVjRDQXZX

eThDREJ2cTNrTXlramJCM2xocG9xOThUX29iQ0pDcHR5Qmg4QzVoV1NxVUttZjdSazUzOXZqT1FOWWltMXBNRkp

KakZaRzRNLUJ1TzJEeFR6RFp3VTJhajRGUEQtdFd2T20yTDJOSkZJc0tuSlFOT3Zub1U3VDB3SnlhZ0F4b2JKNU

x3MmdvdDdyeV9rQjZraUZNc0U1TTRsQ3BabU15dlpnalQ5MndMSEk3d2VZcVBLTHpIdGRSUkZOZw==","email"

:"email@cisco.com"},"registry.redhat.io":{"auth":"NTMxOTQxOTV8dWhjLTFYb0RvNVY3SUVmRWNUU

Uo3RmtQZUYxaTB0bTpleUpoYkdjaU9pSlNVelV4TWlKOS5leUp6ZFdJaU9pSmtaakZsT1RGaU0yVTJZVGcwTTJR

M1lUQXlOek5pTlRBMllqQmhOalEwWWlKOS5BeU9CbzBDQU13dW9paEZ5MllXTVlaS2JsdVVFOWJ4NXFyemJEbWk

tYm5FUU1aa1k3WGJsaW9qX1BZb2RLd1AtRU5LZGdWYkpEakhqMDJjQXYyc3J6TnVfOURhWjFVQWJGbmhIMl9GLU

s0dnc4V3hoU0pPdk9raU95XzZjeERHVHhoQVQ4Z1gxWnd6bzVaUHNJUHB6THkxazVpdzhLcWRzeWlJTnoweVpHT

mRWb00tYlVDd3BGN3N4QVRqVG1VVkRqMDV3OGhNeUJINnBvT0NYZjBZMVBZZUJWdUp2OVh5YVJRbldSRG9FQmMy

X3pucU1JVVE5dHg2VW52d29Vb3ZNLWJTa2FKR1JMci16Z0xnR0EtanU5RjY0aC1rS0VRVGFVSGh4blZUazYxMVd

tYlRZX3prQWdzU0VDdHFpNGJNeTRDUndZazBUVU50SHBWaERWbGJTYURhdVc4TmVwdHNVSzRNZnRaMnFYbVV5My

10X1BJZ3FkeUs2b25vSDBrSV9QN0l0SXRDbXhaZFdDTlJRSV9aWWpqdC1TcU5Pc3I2VmFQWndZT2t2R1hCUE1Mc

XNPei1XMHliWkc5WWZydkZvSURxenN2QzJHamUtVlBhSXo5X0MtMFVFbjRVNkJjaU9UdVpVR0tIVDZtVjRDQXZX

eThDREJ2cTNrTXlramJCM2xocG9xOThUX29iQ0pDcHR5Qmg4QzVoV1NxVUttZjdSazUzOXZqT1FOWWltMXBNRkp

KakZaRzRNLUJ1TzJEeFR6RFp3VTJhajRGUEQtdFd2T20yTDJOSkZJc0tuSlFOT3Zub1U3VDB3SnlhZ0F4b2JKNU

x3MmdvdDdyeV9rQjZraUZNc0U1TTRsQ3BabU15dlpnalQ5MndMSEk3d2VZcVBLTHpIdGRSUkZOZw==","email"

:"email@cisco.com"}}}'

(Optional) Disable BMC Certification Validation. When using self-signed certificates

for your BMC, ensure to set to True.

Default value is False.

#disable_bmc_certificate_verification=True

(Optional) Enable RedFish VirtualMedia/iDRAC VirtualMedia

#enable_virtualmedia=True

(Required when enable_virtualmedia is set to True) Set an available IP address from

the baremetal net for these two variables

#provisioningHostIP=<baremetal_net_IP1>

#bootstrapProvisioningIP=<baremetal_net_IP2>

(Optional) Change the boot mode of the OpenShift cluster nodes to legacy mode (BIOS).

Default is UEFI.

#bootmode=legacy

Master nodes

The hardware_profile is used by the baremetal operator to match the hardware discov-

ered on the host

See https://github.com/metal3-io/baremetal-

operator/blob/master/docs/api.md#baremetalhost-status

ipmi_port is optional for each host. 623 is the common default used if omitted

poweroff is optional. True or omitted (by default) indicates the playbook will power

off the node before deploying OCP

otherwise set it to false

(Optional) OpenShift 4.6+, Set Root Device Hints to choose the proper device to in-

stall operating system on OpenShift nodes.

root device hint options include: ['device-

Name','hctl','model','vendor','serialNumber','minSizeGigabytes','wwn','rotational']

Root Device Hint values are case sensitive. If incorrect case given, entry omitted

from install-config.yaml

root_device_hint="deviceName"

root_device_hint_value="/dev/sda"

[masters]

master-0 name=master-0 role=master ipmi_user=ipmiadmin ipmi_password=password ip-

mi_address=192.168.156.245 ipmi_port=623 provision_mac=00:25:B5:A1:3A:00 hard-

ware_profile=default poweroff=true

master-1 name=master-1 role=master ipmi_user=ipmiadmin ipmi_password=password ip-

mi_address=192.168.156.246 ipmi_port=623 provision_mac=00:25:B5:A1:3A:01 hard-

ware_profile=default poweroff=true

master-2 name=master-2 role=master ipmi_user=ipmiadmin ipmi_password=password ip-

mi_address=192.168.156.247 ipmi_port=623 provision_mac=00:25:B5:A1:3A:02 hard-

ware_profile=default poweroff=true

Worker nodes

[workers]

worker-0 name=worker-0 role=worker ipmi_user=ipmiadmin ipmi_password=password ip-

mi_address=192.168.156.248 ipmi_port=623 provision_mac=00:25:B5:A1:3A:03 hard-

ware_profile=unknown poweroff=true

worker-1 name=worker-1 role=worker ipmi_user=ipmiadmin ipmi_password=password ip-

mi_address=192.168.156.249 ipmi_port=623 provision_mac=00:25:B5:A1:3A:06 hard-

ware_profile=unknown poweroff=true

Provision Host

[provisioner]

provisioner.ocp.flexpod.cisco.com

Registry Host

Define a host here to create or use a local copy of the installation registry

Used for disconnected installation

[registry_host]

registry.example.com

[registry_host:vars]

The following cert_* variables are needed to create the certificates

when creating a disconnected registry. They are not needed to use

an existing disconnected registry.

cert_country=US # two letters country

cert_state=MyState

cert_locality=MyCity

cert_organization=MyCompany

cert_organizational_unit=MyDepartment

The port exposed on the disconnected registry host can be changed from

the default 5000 to something else by changing the following variable.

registry_port=5000

The directory the mirrored registry files are written to can be modified from the de-

fault /opt/registry by changing the following variable.

registry_dir="/opt/registry"

The following two variables must be set to use an existing disconnected registry.

Specify a file that contains extra auth tokens to include in the

pull-secret if they are not already there.

disconnected_registry_auths_file=/path/to/registry-auths.json

Specify a file that contains the addition trust bundle and image

content sources for the local registry. The contents of this file

will be appended to the install-config.yml file.

disconnected_registry_mirrors_file=/path/to/install-config-appends.json

masters_prov_nic="" variable needs to be adjusted if the interface name on masters is

different than the interface name from the provisioning node. This can be the case if

there are different Cisco adapters used on the UCS servers.

Default IMPI access userid and password have been used that are hardcoded in the Ansi-

ble scripts, change them as needed.

d. Prior to the installation of Red Hat OpenShift, include the machine config file to be included during the in-

stallation. This file has been included before starting the installation to assign IP addresses to the NFS

and iSCSI interfaces on Worker nodes. Any other extra configuration can be performed during installation

by placing the machineconfig files in the “baremetal-deploy/ansible-ipi-

install/roles/installer/files/manifests” directory.

e. To create the machine-config file, MAC addresses and iSCSI IP addresses need to be gathered.

f. To gather the MAC addresses of the iSCSI interfaces on the worker nodes, launch the Cisco UCS Man-

ager GUI. In the navigation pane, click the Servers tab. Expand Servers > Service Profiles > Sub-

Organization > OCP.

g. Click each worker node service profile and then click the Network tab on the right. Note “MAC Address”

displayed for each iSCSI vNIC.

h. Create a new ifcfg text file which defines a HWADDR which corresponds to the MAC address of the

adapter to be configured. Create one file for each adapter on all worker nodes.

HWADDR=00:25:B5:A1:3B:04

TYPE=Ethernet

BOOTPROTO=none

IPADDR=192.168.154.214

PREFIX=24

ONBOOT=yes

i. Run the following command to base64 encode the ifcfg file(s):

cat ifcfg-file | base64 -w 0

SFd-

BRERSPTAwOjI1OkI1OkExOjNCOjA0ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRERSPTE5Mi4xNj

guMTU0LjIxNApQUkVGSVg9MjQKT05CT09UPXllcwo=

j. Create a new machineconfig yaml file which contains the base64 encoded ifcfg files. Append the base64

content after data:text/plain;charset=utf-8;base64,

Below is an example to configure three network adapters (NFS, iSCSI-A and iSCSI-B) on each worker node in a

cluster consisting of two worker nodes. A file was created with the name the-machine-config and the contents

were updated as follows:

[root@fp-ansible manifests]# cat machine.yaml

{

 "apiVersion": "machineconfiguration.openshift.io/v1",

 "kind": "MachineConfig",

 "metadata": {

 "labels": {

 "machineconfiguration.openshift.io/role": "worker"

 },

 "name": "99-storage-network"

 },

 "spec": {

 "config":

 {

 "ignition": {

 "config": {},

 "timeouts": {},

 "version": "2.1.0"

 },

 "networkd": {},

 "passwd": {},

 "storage": {

 "files": [

 {

 "filesystem": "root",

 "path": "/etc/sysconfig/network-scripts/ifcfg-worker-0-eno8",

 "contents": {

 "source": "data:text/plain;charset=utf-

8;base64,SFdBRERSPTAwOjI1OkI1OkExOjNCOjA0ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRE

RSPTE5Mi4xNjguMTU0LjIxNApQUkVGSVg9MjQKT05CT09UPXllcwo=",

 "verification": {}

 },

 "mode": 420

 },

 {

 "filesystem": "root",

 "path": "/etc/sysconfig/network-scripts/ifcfg-worker-0-eno9",

 "contents": {

 "source": "data:text/plain;charset=utf-

8;base64,SFdBRERSPTAwOjI1OkI1OkExOjNBOjA1ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRE

RSPTE5Mi4xNjguMTQuMjE0ClBSRUZJWD0yNApPTkJPT1Q9eWVzCg==",

 "verification": {}

 },

 "mode": 420

 },

 {

 "filesystem": "root",

 "path": "/etc/sysconfig/network-scripts/ifcfg-worker-0-eno10",

 "contents": {

 "source": "data:text/plain;charset=utf-

8;base64,SFdBRERSPTAwOjI1OkI1OkExOjNCOjA1ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRE

RSPTE5Mi4xNjguMjQuMjE0ClBSRUZJWD0yNApPTkJPT1Q9eWVzCgo=",

 "verification": {}

 },

 "mode": 420

 },

 {

 "filesystem": "root",

 "path": "/etc/sysconfig/network-scripts/ifcfg-worker-1-eno8",

 "contents": {

 "source": "data:text/plain;charset=utf-

8;base64,SFdBRERSPTAwOjI1OkI1OkExOjNCOjA3ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRE

RSPTE5Mi4xNjguMTU0LjIxNQpQUkVGSVg9MjQKT05CT09UPXllcwo=",

 "verification": {}

 },

 "mode": 420

 },

 {

 "filesystem": "root",

 "path": "/etc/sysconfig/network-scripts/ifcfg-worker-1-eno9",

 "contents": {

 "source": "data:text/plain;charset=utf-

8;base64,SFdBRERSPTAwOjI1OkI1OkExOjNBOjA4ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRE

RSPTE5Mi4xNjguMTQuMjE1ClBSRUZJWD0yNApPTkJPT1Q9eWVzCg==",

 "verification": {}

 },

 "mode": 420

 },

 {

 "filesystem": "root",

 "path": "/etc/sysconfig/network-scripts/ifcfg-worker-1-eno10",

 "contents": {

 "source": "data:text/plain;charset=utf-

8;base64,SFdBRERSPTAwOjI1OkI1OkExOjNCOjA4ClRZUEU9RXRoZXJuZXQKQk9PVFBST1RPPW5vbmUKSVBBRE

RSPTE5Mi4xNjguMjQuMjE1ClBSRUZJWD0yNApPTkJPT1Q9eWVzCgo=",

 "verification": {}

 },

 "mode": 420

 },

]

 },

 "systemd": {}

 },

 "osImageURL": ""

 }

}

k. The Ansible playbook connects to your provision host and runs through the node-prep role and

the installer role. No modification is necessary. All modifications of variables may be done within

the inventory/hosts file.

l. Following is a sample playbook.yml file:

- name: IPI on Baremetal Installation Playbook

 hosts: provisioner

 roles:

 - node-prep

 - installer

m. Run the Ansible playbook to install OCP Cluster, the output below has been trimmed down with only the

end portion shown for a successful installation:

[root@fp-ansible ansible-ipi-install]# export ANSIBLE_CONFIG=./ansible.cfg

[root@fp-ansible ansible-ipi-install]# ansible-playbook -i inventory/hosts playbook.yml

TASK [installer : Deploy OpenShift Cluster]

**

Friday 21 May 2021 14:48:08 -0400 (0:00:00.132) 0:01:14.635 ************

changed: [provisioner.ocp.flexpod.cisco.com]

TASK [installer : Run OpenShift Cluster install as async task]

Friday 21 May 2021 15:56:29 -0400 (1:08:20.237) 1:09:34.872 ************

skipping: [provisioner.ocp.flexpod.cisco.com]

TASK [installer : Wait for kubeconfig file]

**

Friday 21 May 2021 15:56:29 -0400 (0:00:00.254) 1:09:35.126 ************

skipping: [provisioner.ocp.flexpod.cisco.com]

TASK [installer : Wait for Bootstrap Complete]

Friday 21 May 2021 15:56:29 -0400 (0:00:00.129) 1:09:35.256 ************

skipping: [provisioner.ocp.flexpod.cisco.com]

TASK [installer : Wait for Install Complete]

Friday 21 May 2021 15:56:29 -0400 (0:00:00.125) 1:09:35.381 ************

skipping: [provisioner.ocp.flexpod.cisco.com]

PLAY RECAP

provisioner.ocp.flexpod.cisco.com : ok=88 changed=32 unreachable=0 failed=0

skipped=97 rescued=2 ignored=1

Friday 21 May 2021 15:56:29 -0400 (0:00:00.020) 1:09:35.402 ************

===

installer : Deploy OpenShift Cluster --

--------------------------- 4100.24s

installer : Power off hosts ---

------------------------------ 5.11s

Extracting the installer --

------------------------------ 4.00s

node-prep : Install required packages ---

------------------------------ 3.93s

installer : Untar the openshift-client-linux-4.7.11.tar.gz ----------------------------

------------------------------ 2.32s

Gathering Facts ---

------------------------------ 2.31s

node-prep : Gather the rpm package facts --

------------------------------ 1.77s

node-prep : Enable Services (firewalld) ---

------------------------------ 1.69s

node-prep : Create Bridge labeled baremetal for ipv4 ----------------------------------

------------------------------ 1.63s

installer : Copy openshift-baremetal-install binary to /usr/local/bin -----------------

------------------------------ 1.62s

installer : Copy oc binary to /usr/local/bin --

------------------------------ 1.51s

node-prep : Add "{{ ansible_user }}" user to libvirt group and get ssh key setup ------

------------------------------ 1.42s

installer : Get the ocp client tar gunzip file --

------------------------------ 1.24s

installer : Create OpenShift Manifest ---

------------------------------ 1.12s

node-prep : Reload baremetal bridge and slave interfaces ------------------------------

------------------------------ 1.08s

node-prep : Enable and restart Services ---

------------------------------ 1.04s

node-prep : Reload provisioning bridge and slave interfaces ---------------------------

------------------------------ 1.04s

installer : Generate install-config.yaml --

------------------------------ 0.99s

node-prep : Confirm whether or not internet connectivity on provisioner host ----------

------------------------------ 0.91s

node-prep : Define Storage Pool for default ---

------------------------------ 0.88s

n. Once the playbook has successfully completed, verify that your environment is up and running.

o. Log into the provisioner node:

[root@fp-ansible ansible-ipi-install]# ssh kni@provisioner.ocp.flexpod.cisco.com

p. Export the kubeconfig file located in the ~/clusterconfigs/auth directory:

[kni@provisioner ~]$ export KUBECONFIG=/home/kni/clusterconfigs/auth/kubeconfig

q. Verify the nodes in the OpenShift Cluster:

[kni@provisioner ~]$ oc get nodes

NAME STATUS ROLES AGE VERSION

master-0.ocp.flexpod.cisco.com Ready master 132m v1.20.0+2817867

master-1.ocp.flexpod.cisco.com Ready master 132m v1.20.0+2817867

master-2.ocp.flexpod.cisco.com Ready master 132m v1.20.0+2817867

worker-0.ocp.flexpod.cisco.com Ready worker 104m v1.20.0+2817867

worker-1.ocp.flexpod.cisco.com Ready worker 101m v1.20.0+2817867

r. Check the overall status by issuing the tail command to the .openshift_install.log log file in the install di-

rectory folder:

[kni@provisioner ~]$ tail -f /home/kni/clusterconfigs/.openshift_install.log

time="2021-05-21T15:56:28-04:00" level=info msg="Install complete!"

time="2021-05-21T15:56:28-04:00" level=info msg="To access the cluster as the sys-

tem:admin user when using 'oc', run 'export KUBECON-

FIG=/home/kni/clusterconfigs/auth/kubeconfig'"

time="2021-05-21T15:56:28-04:00" level=info msg="Access the OpenShift web-console here:

https://console-openshift-console.apps.ocp.flexpod.cisco.com"

time="2021-05-21T15:56:28-04:00" level=info msg="Login to the console with user:

\"kubeadmin\", and password: \"AU7fG-cbGzA-UrsXB-De4bT\""

time="2021-05-21T15:56:28-04:00" level=debug msg="Time elapsed per stage:"

time="2021-05-21T15:56:28-04:00" level=debug msg=" Infrastructure: 18m2s"

time="2021-05-21T15:56:28-04:00" level=debug msg="Bootstrap Complete: 14m22s"

time="2021-05-21T15:56:28-04:00" level=debug msg=" Bootstrap Destroy: 10s"

time="2021-05-21T15:56:28-04:00" level=debug msg=" Cluster Operators: 35m19s"

time="2021-05-21T15:56:28-04:00" level=info msg="Time elapsed: 1h8m20s"

s. On successful completion of the installation, a message with access information will be displayed as

shown above, the default kube-admin password is also stored in the file

“/home/kni/clusterconfigs/auth/kubeadmin-password.”

t. Point your browser to your web-console URL to login to OCP. Use kubeadmin for the username and the

generated password to log into the system.

u. The OCP Dashboard is loaded upon successful login:

v. To ssh into one of the nodes, from the provisioner node logged in as kni:

[kni@provisioner ~]$ ssh core@worker-0

w. To be able to log into the nodes from the Ansible VM, create the kni user on the Ansible VM, then copy

the kni keys and the clusterconfigs directory from the provisioner to the Ansible VM:

[root@fp-ansible ansible-ipi-install]# useradd kni

[root@fp-ansible ansible-ipi-install]# passwd kni

[root@fp-ansible ~]# echo "kni ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/kni

[root@fp-ansible ~]# chmod 0440 /etc/sudoers.d/kni

[root@fp-ansible ansible-ipi-install]# su -l kni

[kni@fp-ansible ~]$ cd .ssh

[kni@fp-ansible .ssh]$ scp kni@provisioner.ocp.flexpod.cisco.com:/home/kni/.ssh/id_* ./

[kni@fp-ansible .ssh]$ cd

[kni@fp-ansible ~]$ scp -r

kni@provisioner.ocp.flexpod.cisco.com:/home/kni/clusterconfigs ./

x. To be able to run the oc command from the Ansible VM, download the Linux command-line tools from

https://cloud.redhat.com/openshift/install/metal/installer-provisioned, and as root, copy the openshift-

client-linux.tar.gz file to /tmp on the Ansible VM:

[kni@fp-ansible ~]$ cd /tmp

[kni@fp-ansible tmp]$ sudo tar -xvzf openshift-client-linux.tar.gz

[kni@fp-ansible tmp]$ sudo cp oc /usr/local/sbin/

[kni@fp-ansible tmp]$ sudo cp kubectl /usr/local/sbin/

[kni@fp-ansible ~]$ export KUBECONFIG=/home/kni/clusterconfigs/auth/kubeconfig

[kni@fp-ansible ~]$ oc get nodes

y. Begin the process of converting the provisioner node to the worker-2 node by first Installing ipmitool on

the Ansible VM:

[kni@fp-ansible ~]$ sudo dnf install ipmitool

z. Create ifcfg files for the worker-2 storage interfaces and convert them to base64 using the “cat ifcfg-file

| base64 -w 0” command. In the OpenShift Container Platform console, select Compute > Machine-

Configs > 99-storage-network. In the dialog for 99-storage-network, select YAML. Select and copy the

three entries for the worker-1 interfaces and paste just below worker-1. Edit the entries for worker-2

and replace the base64 info with the generated base64 entries as shown below. Click Save, then Re-

load.

https://cloud.redhat.com/openshift/install/metal/installer-provisioned

aa. In the DNS and DHCP servers, remove the provisioner FQDN DNS and DHCP reservation entry and cre-

ate corresponding worker-2 entries. Also, remove the provisioner entry from the reverse lookup DNS

zone if that zone exists and confirm the worker-2 entry.

bb. From the Ansible VM, logged in as the kni user, use the ipmitool to power down the provisioner node.

The server’s CIMC IP address can be obtained by selecting the Service Profile in Cisco UCS Manager

and checking Management IP Address under the General tab. Verify that the server shuts down in UCS

Manager.

[kni@fp-ansible ~]# ipmitool -I lanplus -H 192.168.156.250 -U ipmiadmin -P password

chassis power off

cc. Using two ssh logins to the Ansible VM, create the bmh.yaml file to be used to add worker-2 to the OCP

cluster.

[kni@fp-ansible ~]$ echo -ne "ipmiadmin" | base64

aXBtaWFkbWlu

[kni@fp-ansible ~]$ echo -ne "password" | base64

cGFzc3dvcmQ=

[kni@fp-ansible ~]$ vi bmh.yaml

[kni@fp-ansible ~]$ cat bmh.yaml

apiVersion: v1

kind: Secret

metadata:

 name: worker-2-bmc-secret

type: Opaque

data:

 username: aXBtaWFkbWlu

 password: cGFzc3dvcmQ=

apiVersion: metal3.io/v1alpha1

kind: BareMetalHost

metadata:

 name: worker-2

spec:

 online: true

 bootMACAddress: 00:25:B5:A1:3A:09

 bmc:

 address: ipmi://192.168.156.250

 credentialsName: worker-2-bmc-secret

dd. Create the bare metal node:

[kni@fp-ansible ~]$ oc -n openshift-machine-api create -f bmh.yaml

secret/worker-2-bmc-secret created

baremetalhost.metal3.io/worker-2 created

ee. OCP will power up and inspect the bare metal node:

[kni@fp-ansible ~]$ oc -n openshift-machine-api get bmh worker-2

NAME STATUS PROVISIONING STATUS CONSUMER BMC HARDWARE

PROFILE ONLINE ERROR

worker-2 OK inspecting ipmi://192.168.156.250

true

ff. Ensure the PROVISIONING STATUS is ready before provisioning the bare metal node:

[kni@fp-ansible ~]$ oc -n openshift-machine-api get bmh worker-2

NAME STATUS PROVISIONING STATUS CONSUMER BMC HARDWARE

PROFILE ONLINE ERROR

worker-2 OK ready ipmi://192.168.156.250 unknown

true

gg. Get a count of the number of worker nodes:

[kni@fp-ansible ~]$ oc get nodes

NAME STATUS ROLES AGE VERSION

master-0.ocp.flexpod.cisco.com Ready master 3h2m v1.20.0+2817867

master-1.ocp.flexpod.cisco.com Ready master 3h2m v1.20.0+2817867

master-2.ocp.flexpod.cisco.com Ready master 3h2m v1.20.0+2817867

worker-0.ocp.flexpod.cisco.com Ready worker 154m v1.20.0+2817867

worker-1.ocp.flexpod.cisco.com Ready worker 151m v1.20.0+2817867

hh. Get the machine set:

[kni@fp-ansible ~]$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE

ocp-snshd-worker-0 2 2 2 2 3h21m

ii. Increase the number of worker nodes by one:

[kni@fp-ansible ~]$ oc scale --replicas=3 machineset ocp-snshd-worker-0 -n openshift-

machine-api

machineset.machine.openshift.io/ocp-snshd-worker-0 scaled

jj. Check the status of the bare metal node until the PROVISIONING STATUS is provisioned and the server

has rebooted. This can take 30 minutes or more:

[kni@fp-ansible ~]$ oc -n openshift-machine-api get bmh worker-2

NAME STATUS PROVISIONING STATUS CONSUMER BMC

HARDWARE PROFILE ONLINE ERROR

worker-2 OK provisioned ocp-snshd-worker-0-ptwzd ip-

mi://192.168.156.250 unknown true

kk. Once provisioned, ensure the bare metal node is Ready:

[kni@fp-ansible ~]$ oc get nodes

NAME STATUS ROLES AGE VERSION

master-0.ocp.flexpod.cisco.com Ready master 3h20m v1.20.0+2817867

master-1.ocp.flexpod.cisco.com Ready master 3h20m v1.20.0+2817867

master-2.ocp.flexpod.cisco.com Ready master 3h20m v1.20.0+2817867

worker-0.ocp.flexpod.cisco.com Ready worker 172m v1.20.0+2817867

worker-1.ocp.flexpod.cisco.com Ready worker 169m v1.20.0+2817867

worker-2.ocp.flexpod.cisco.com Ready worker 80s v1.20.0+2817867

Install OpenShift Virtualization

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform cluster. You

can use the OpenShift Container Platform 4.7 web console to subscribe to and deploy the OpenShift Virtualiza-

tion Operators.

Subscribe to the OpenShift Virtualization Catalog

Before you install OpenShift Virtualization, subscribe to the OpenShift Virtualization catalog from the OpenShift

Container Platform web console. Subscribing gives the openshift-cnv namespace access to the OpenShift Virtu-

alization Operators.

To subscribe to the OpenShift Virtualization catalog, follow these steps:

1. Open a browser window and log into the OpenShift Container Platform web console.

2. Navigate to the Operators > OperatorHub page.

3. Search for OpenShift Virtualization and then select it.

4. Read the information about the Operator and click Install.

5. On the Install Operator page: for Installed Namespace, ensure that the Operator recommended

namespace option is selected. This installs the Operator in the mandatory openshift-cnv namespace, which

is automatically created if it does not exist.

6. Select stable from the list of available Update Channel options. This ensures that you install the version of

OpenShift Virtualization that is compatible with your OpenShift Container Platform version.

7. For Approval Strategy, ensure that Automatic, which is the default value, is selected. OpenShift Virtualization

automatically updates when a new z-stream release is available.

8. Click Install.

9. OpenShift Virtualization will take a few minutes to install. Click View installed Operators in Namespace

openshift-cnv.

10. On the Installed Operators screen, the Status displays Succeeded when OpenShift Virtualization finishes in-

stallation.

Install NetApp Astra Trident on OpenShift Container Platform

In a FlexPod environment, Trident is utilized to allow end users to dynamically provision and manage persistent

volumes for containers backed by FlexVols and LUNs hosted on NetApp A400. Beginning with version v21.04.0

release, the setup of Astra Trident is performed by the Trident operator using Helm chart. The Astra Trident Op-

erator controls the installation of Astra Trident, taking care to self-heal the install and manage changes as well

as upgrades to the Astra Trident installation. The following procedure details the steps required to install and

configure Astra Trident to manage persistent storage for containers in the OpenShift on FlexPod solution.

Prerequisites to Deploy Trident Operator by using Helm

To deploy Trident Operator using Helm, follow these steps:

1. Full support/ access to a Kubernetes cluster min. version 1.16

2. Install Helm.

3. Download the Trident installer bundle using the below commands and extract it to a directory:

[kni@fp-ansible-2 ~]$ wget

https://github.com/netApp/trident/releases/download/v21.04.0/trident-installer-

21.04.0.tar.gz

[kni@fp-ansible ~]$ tar -xvf trident-installer-21.04.0.tar.gz

[kni@fp-ansible ~]$ cd trident-installer/helm

[kni@fp-ansible helm]$ oc create namespace trident

[kni@fp-ansible helm]$ helm install ocp-trident ocp-trident-operator-21.04.0.tgz –n

trident

4. Verify that the Trident operator and the pods related to Trident are deployed and running:

kni@fp-ansible-2 helm]$ oc get pod -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-5bqxq 2/2 Running 0

trident-csi-696b685cf8-bh7dj 6/6 Running 0 21s

trident-csi-chwg5 2/2 Running 0 21s

trident-csi-jsrj8 2/2 Running 0 21s

trident-csi-mmxcx 2/2 Running 0 21s

trident-csi-rxpsx 2/2 Running 0 21s

trident-csi-w29sm 2/2 Running 0 21s

trident-operator-7c748d957-rmgj9 1/1 Running 0 21s

 If any of the pods are not in Running state, it could be because of the pull rate limit enforced by Docker.

5. To confirm, run the oc describe command:

kni@fp-ansible-2 helm]$ oc describe pod <<POD Name>> -n trident

6. If you see the following response, proceed to step 4 to fix the issue:

You have reached your pull rate limit. You may increase the limit by authenticating and

upgrading: https://www.docker.com/increase-rate-limit

Docker image pulls for anonymous users is restricted to 100 pulls in 24 hours.

 A docker user login is required to pull the Trident images.

https://github.com/netApp/trident/releases/download/v21.04.0/trident-installer-21.04.0.tar.gz
https://github.com/netApp/trident/releases/download/v21.04.0/trident-installer-21.04.0.tar.gz
https://www.docker.com/increase-rate-limit

To authenticate using a Docker Account to pull the images, follow these steps:

1. SSH to the worker node where the pod is scheduled and login to Docker hub using your user credentials.

2. After login, it will create an authentication config file at ${XDG_RUNTIME_DIR} /containers/auth.json:

[core@worker-0 ~]$podman login docker.io

[core@worker-0 ~]$cat ${XDG_RUNTIME_DIR}/containers/auth.json

3. Copy the contents of the authentication config file from the worker node and paste it in a file (json) on the

management host.

4. On the management host, set the docker authentication to be used by OC for pulling the image from Docker

Hub:

kni@fp-ansible-2 helm]$ oc set data secret/pull-secret -n openshift-config --from-

file=.dockerconfigjson=docker-auth.json

5. Move the trident-installer directory to the desired destination:

[kni@fp-ansible-2 ~]$ echo $PATH

[kni@fp-ansible-2 ~]$ mv trident-installer /usr/local/bin

[kni@fp-ansible-2 ~]$ tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 21.04.0 | 21.04.0 |

+----------------+----------------+

Prepare the Worker Node

All the worker nodes in the Kubernetes cluster need to be able to mount the volumes that users have provi-

sioned for their pods. For the ontap-nas driver (NAS backend), workers need the NFS tools and for the ontap-

san driver (SAN backend) iSCSI tools are required. Also, multipath needs to be enable for iSCSI.

Recent versions of RedHat CoreOS have both NFS and iSCSI utilities installed by default. Make sure that the

utilities are installed on all worker nodes.

rpm -qa | grep nfs-utils

systemctl status nfs-client.target

rpm -q iscsi-initiator-utils

To enable iSCSI and multipath service on the worker nodes a machine config file needs to be created which will

be handled by Machine Config Operator (MCO).

1. Log into the OCP web console and navigate to Compute > Machine Configs. Click Create Machine Config.
Copy and paste the YAML file and click Create

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 name: 99-worker-ontap-iscsi

 labels:

 machineconfiguration.openshift.io/role: worker

spec:

 config:

 ignition:

 version: 3.2.0

 storage:

 files:

 - contents:

 source: data:text/plain;charset=utf-

8;base64,ZGVmYXVsdHMgewogICAgICAgIHVzZXJfZnJpZW5kbHlfbmFtZXMgeWVzCiAgICAgICAgZmluZF9

tdWx0aXBhdGhzIHllcwp9CgpibGFja2xpc3RfZXhjZXB0aW9ucyB7CiAgICAgICAgcHJvcGVydHkgIihTQ1N

JX0lERU5UX3xJRF9XV04pIgp9CgpibGFja2xpc3Qgewp9Cgo=

 verification: {}

 filesystem: root

 mode: 400

 path: /etc/multipath.conf

 systemd:

 units:

 - name: iscsid.service

 enabled: true

 state: started

 - name: multipathd.service

 enabled: true

 state: started

 osImageURL: ""

2. Once the configuration is created it will take approximately 20 to 30 minutes to apply the configuration on
the worker nodes. During that time the Updating section will be “True” under Compute > MachineConfigPool

3. Once the configuration is applied followed by a reboot the Updated field will be set to “True” for the worker
node.

4. Verify that both iSCSI and multipath services are up and running by login into the worker nodes.

systemctl status iscsid

systemctl status multipathd

Provision NAS Storage for the Applications Running in OCP

To provision NAS storage, follow these steps:

1. Create a NAS Backend - paste the below content into a yaml file. Example - ocp_nas_backend.yaml:

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ocp-nas-backend",

 "managementLIF": "Management_LIF_IP",

 "dataLIF": "NFS_LIF_IP",

 "svm": "OCP-SVM",

 "username": "admin",

 "password": "########",

 "limitAggregateUsage": "80%",

 "nfsMountOptions": "nfsvers=3",

 "defaults": {

 "spaceReserve": "volume",

 "exportPolicy": "default",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

2. Run the tridentctl command with the yaml file to create the backend.

tridentctl create backend -f ocp_nas_backend.yaml -n trident

3. Create a NAS Storage Class – paste the following content into a yaml file, for example ocp_nas_sc.yaml:.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ocp-nas-sc-gold

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas"

 media: "ssd"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

4. Create the NAS storage class using the yaml file:

oc create -f ocp_nas_sc.yaml

5. Create a NAS persistent volume claim (PVC) that uses the storage class that was created in the previous

step:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ocp-nas-pvc

 namespace: trident

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

 storageClassName: ocp-nas-sc-gold

6. Create the NAS PVC from the yaml file:

oc create -f ocp_nas_pvc.yaml -n trident

7. From the ONTAP CLI verify the newly created volume with a size of 10 GB.

Provision SAN Storage for the Applications running in OCP

To provision the SAN storage, follow these steps:

1. Create an iSCSI Backend; paste the following content into a yaml file. For example, ocp_san_backend.yaml.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ocp-san-backend",

 "managementLIF": "Management_LIF_IP",

 "dataLIF": "iSCSI_LIF_IP",

 "svm": "OCP-SVM",

 "username": "admin",

 "password": "########",

 "defaults": {

 "spaceReserve": "volume",

 "spaceAllocation": "false",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

2. Create a SAN storage class; paste the following content into a yaml file, for example

ocp_san_storageclass.yaml:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ocp-san-gold

provisioner: csi.trident.netapp.io

mountOptions:

- discard

parameters:

 backendType: "ontap-san"

 fsType: "ext4"

3. Create the SAN storage class using the yaml file:

[root@fp-ansible-2 OCP_Trident]# oc create -f ocp_san_storageclass.yaml

4. Create a SAN persistent volume claim (PVC) using the storage class created in the previous step:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ocp-san-pvc

 namespace: trident

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Gi

 storageClassName: ocp-san-gold

 The accessModes for iSCSI Volumes cannot be set as RWX (Read-Write-Many) since iSCSI disks cannot

be shared between hosts with write access.

5. Create the SAN storage PVC:

[root@fp-ansible-2 OCP_Trident]# oc create -f ocp_san_pvc.yaml -n trident

Use Persistent Volumes to Deploy Applications in OpenShift Container Platform

The Persistent Volume Claims that were created earlier using NAS and SAN backends can be declared in de-

ployment.yaml files to mount the associated Persistent Volumes to Pods/ Containers in the OpenShift Container

Platform Kubernetes environment.

Below is a sample deployment.yaml file that uses the ‘ocp-nas-pvc’ Persistent Volume Claim to provide persis-

tent storage to the nginx web application’s html pages:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 namespace: nginx

 labels:

 app: nginx

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 imagePullPolicy: Always

 image: nginx

 ports:

 - containerPort: 80

 volumeMounts:

 - mountPath: /usr/share/nginx/html

 name: nginx-data

 volumes:

 - name: nginx-data

 persistentVolumeClaim:

 claimName: ocp-nas-pvc

A demonstration video that details the NetApp Astra Trident’s Data Management features for OpenShift Kuber-

netes operations is available here Data Management with Containers Featuring Persistence with Trident.

Deploy OpenShift Virtualization

To deploy OpenShift virtualization, after subscribing to the OpenShift Virtualization catalog, create the OpenShift

Virtualization Operator Deployment custom resource to deploy OpenShift Virtualization, and follow these steps:

1. Navigate to the Operators > Installed Operators page.

2. Click OpenShift Virtualization.

3. Click the OpenShift Virtualization Operator Deployment tab and click Create HyperConverged.

https://tv.netapp.com/detail/video/6053057408001/data-management-with-containers-featuring-persistence-with-trident?autoStart=true&q=Trident%20Data%20Management

4. Click Create to launch OpenShift Virtualization. Enter ocp-nas-sc-gold as the Storage Class Name and ena-

ble Bare Metal Platform. Click Create.

5. Navigate to the Workloads > Pods page and monitor the OpenShift Virtualization pods under the openshift-

cnv project until they are all Running. After all the pods display the Running state, you can access OpenShift

Virtualization.

Connect Virtual Machines to an External Network

Each VM deployed is controlled via a virt-launcher pod that is created with each VM. The default networking

type for OpenShift Virtualization VMs is Masquerade. The VM will be assigned a non-routable IP and you can

access the VM using the IP of the virt-launcher pod that was deployed alongside it. This makes the VM accessi-

ble in the same way that containers are accessed.

Alternatively, you can connect the VM to the host network by creating a bridge interface on the OCP nodes using

Nmstate. The Nmstate operator is installed with OpenShift Virtualization and provides you with the Node Network

Configuration Policy (NNCP) object to update the host network settings. Container-native virtualization us-

es nmstate to report on and configure the state of the node network. This makes it possible to modify network

policy configuration, such as by creating a Linux bridge on all nodes, by applying a single configuration manifest

to the cluster.

The following is a sample configuration to create a bridge called br1 from an interface called eth1 on the OCP

nodes.

Network Configuration using Nmstate

OpenShift Virtualization uses nmstate to report on and configure the state of the node network. This makes it

possible to modify network policy configuration, such as by creating a Linux bridge on all nodes, by applying a

single configuration manifest to the cluster.

To configure the network using Nmstate, follow these steps:

1. Verify the state of the network on the OCP nodes.

[kni@fp-ansible ~]$ oc get nns

NAME AGE

master-0.ocp.flexpod.cisco.com 2m56s

master-1.ocp.flexpod.cisco.com 2m54s

master-2.ocp.flexpod.cisco.com 2m54s

worker-0.ocp.flexpod.cisco.com 2m52s

worker-1.ocp.flexpod.cisco.com 2m51s

https://nmstate.github.io/
https://nmstate.github.io/

worker-2.ocp.flexpod.cisco.com 2m59s

2. Inspect a NodeNetworkState object to view the network on a worker node within the cluster .

[kni@fp-ansible ~]$ oc get nns worker-0.ocp.flexpod.cisco.com -o yaml

3. Create an interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy manifest to the

cluster. The manifest details the requested configuration for the interface. You will use the dedicated inter-

face you created on Cisco UCS for OpenShift virtualization.

 By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add

the spec: nodeSelector parameter and the appropriate <key>:<value> for your node selector.

4. Create the NodeNetworkConfigurationPolicy manifest. The following example configures a new Linux bridge

on all worker nodes with one interface eno7 with no IP address assigned and name it br1:

[kni@fp-ansible ~]$ cat linux-bridge.yaml

apiVersion: nmstate.io/v1beta1

kind: NodeNetworkConfigurationPolicy

metadata:

 name: worker-br1

spec:

 nodeSelector:

 node-role.kubernetes.io/worker: ''

 desiredState:

 interfaces:

 - name: br1

 description: Linux bridge with eno7 as a port

 type: linux-bridge

 state: up

 ipv4:

 dhcp: true

 enabled: true

 bridge:

 options:

 stp:

 enabled: false

 port:

 - name: eno7

5. Create Linux bridge using nm state operator using the file created with contents shown in the previous step.

[kni@fp-ansible ~]$ oc apply -f linux-bridge.yaml

nodenetworkconfigurationpolicy.nmstate.io/worker-br1 created

6. Verify created node network policy using nnce:

[kni@fp-ansible ~]$ oc get nnce

NAME STATUS

master-0.ocp.flexpod.cisco.com.worker-br1 NodeSelectorNotMatching

master-1.ocp.flexpod.cisco.com.worker-br1 NodeSelectorNotMatching

master-2.ocp.flexpod.cisco.com.worker-br1 NodeSelectorNotMatching

worker-0.ocp.flexpod.cisco.com.worker-br1 SuccessfullyConfigured

worker-1.ocp.flexpod.cisco.com.worker-br1 SuccessfullyConfigured

worker-2.ocp.flexpod.cisco.com.worker-br1 SuccessfullyConfigured

Create Network Attachment Definition

To create the network attachment definition to allow VMs to be able to connect to external network using the

dedicated vNIC on Cisco UCS, follow these steps:

1. In the OpenShift GUI console, click the Networking drop-down list and select Network Attachment Defini-

tions. The Network Attachment Definition screen lists your network attachment definitions.

2. Click Create Network Attachment Definition. The Create Network Attachment Definition page displays. Com-

plete the following fields based on the bridge configuration you created to connect to an external network.

3. Enter a Name for the network attachment definition.

4. Optionally, enter a Description of the network attachment definition.

5. From Network Type, select CNV Linux bridge.

6. Enter the Bridge name.

7. Optionally, enter the VLAN Tag Number.

8. Click Create.

9. While logged into OpenShift Console, click Workloads > Virtualization.

10. Click Create virtual machine.

11. Select the Operating System type and version. In this case we have selected RHEL 8.0+ VM to install a RHEL

8.0 VM using the image previously downloaded and hosted on a web server.

12. Click Next.

13. In the Boot source type, select Import via URL.

14. In the Import URL, add the webserver information hosting your image,

http://10.1.156.150/OCPBM/RHEL/rhel-8.3-update-2-x86_64-kvm.qcow2, or follow the prompts to down-

load the KVM guest image to your web server.

15. Leave Persistent Volume Claim size as “ 20 GB”, change it if needed.

http://10.1.156.150/OCPBM/RHEL/rhel-8.3-update-2-x86_64-kvm.qcow2

16. Click Customize virtual machine.

 Optionally, change the size of the VM and Workload Type based on what application will be installed on

this VM.

17. Change the name of this VM and click Next.

18. Click Add Network Interface on the right size of the page:

 A new Network interface will be created along with the Pod Networking interface to provide VM the abil-

ity to have external connectivity as well as connectivity to POD network to communicate with the PODs

deployed if there is an application consisting of VMs and container PODs. Optionally, click the three vir-

tual dots on the default network interface displayed to change the network from Pod Networking to the

external network created in previous section to have external connectivity for the VM or leave it to de-

faults to have connectivity to POD network only.

19. Change the Network Type to ucs-ext-network.

20. Click Add.

21. Click Next and click Next again to review the information Click Create Virtual Machine to create the VM.

22. Click See virtual machine details to verify the VM details and IP addresses assigned after a few minutes. For

external access to the VM, either a DHCP server can be setup in the OpenShift Virtualization VLAN and L3

access configured, or a static IP address can be assigned in the VM once it has been brought up.

The following image shows a 20G volume created for the VM dynamically on the NetApp cluster.

23. Click the Console tab to verify the VM installed successfully and to verify the VM access password.

24. Log into the VM using External IP address or via console and access credentials to verify connectivity to the

External network as well as the POD Network.

References

Products and Solutions

Cisco Unified Computing System:

http://www.cisco.com/en/US/products/ps10265/index.html

Cisco UCS 6400 Series Fabric Interconnects:

https://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-6400-series-fabric-

interconnects/tsdproducts-support-series-home.html

Cisco UCS 5100 Series Blade Server Chassis:

http://www.isco.com/en/US/products/ps10279/index.html

Cisco UCS B-Series Blade Servers:

http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-b-series-blade-servers/index.html

Cisco UCS C-Series Rack Servers:

http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c-series-rack-servers/index.html

Cisco UCS Adapters:

http://www.cisco.com/en/US/products/ps10277/prod_module_series_home.html

Cisco UCS Manager:

http://www.cisco.com/en/US/products/ps10281/index.html

Cisco Intersight:

https://www.cisco.com/c/en/us/products/servers-unified-computing/intersight/index.html

Cisco Nexus 9000 Series Switches:

http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-

serieshome.html

Red Hat OpenShift:

https://www.openshift.com/

http://www.cisco.com/en/US/products/ps10265/index.html
https://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-6400-series-fabric-interconnects/tsdproducts-support-series-home.html
https://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-6400-series-fabric-interconnects/tsdproducts-support-series-home.html
http://www.isco.com/en/US/products/ps10279/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-b-series-blade-servers/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c-series-rack-servers/index.html
http://www.cisco.com/en/US/products/ps10277/prod_module_series_home.html
http://www.cisco.com/en/US/products/ps10281/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/intersight/index.html
http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-serieshome.html
http://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/tsd-products-support-serieshome.html
https://www.openshift.com/

Summary

This solution design based on Cisco FlexPod User Provisioned Infrastructure for Red Hat OpenShift Container

Platform 4.7 is optimal for production-ready deployment processes with latest best practices, a stable, highly

available environment to run enterprise-grade application containers offered as infrastructure as code with fully

automated deployment of FlexPod infrastructure and installation of OCP cluster.

FlexPod is the optimal shared infrastructure foundation to deploy a variety of IT workloads. It is built on leading

computing, networking, storage, and infrastructure software components. The integration of FlexPod converged

infrastructure with OpenShift Container Platform provides a very good starting point for enterprise IT to make in-

roads into DevOps and CI/CD model for application development to address immediate business needs and re-

ducing time to market. Enterprises can accelerate on the path to an enterprise-grade Kubernetes solution with

Red Hat OpenShift Container Platform running on Cisco FlexPod infrastructure installer provisioned infrastruc-

ture.

About the Authors

John George, Technical Marketing Engineer, Cisco UCS Data Center Solutions Engineering, Cisco Systems, Inc.

John has been involved in designing, developing, validating, and supporting the FlexPod Converged Infrastruc-

ture since it was developed over nine years ago. Before his roles with FlexPod, he supported and administered a

large worldwide training network and VPN infrastructure. John holds a Master's degree in Computer Engineering

from Clemson University.

Arvind Ramakrishnan, Sr. Solutions Architect, Hybrid Cloud Infrastructures, NetApp Inc.

Arvind focusses on development, validation and implementation of Hybrid Cloud Infrastructure solutions that in-

clude NetApp products. He has more than 10 years of experience in the IT industry specializing in Data Man-

agement, Security, Cloud and Data Center technologies. Arvind holds a bachelor’s degree in Electronics and

Communication and a master’s degree in Compute Systems and Infrastructure.

Abhinav Singh, Technical Marketing Engineer, Hybrid Cloud Infrastructures, NetApp Inc.

Abhinav has more than 11 years of experience in Data Center infrastructure solutions which includes On-prem

and Hybrid cloud space. He focuses on the validating, supporting, implementing cloud infrastructure solutions

that include NetApp products. Prior joining to NetApp, he was with Cisco Systems India as a Technical Consult-

ing Engineer working on Cisco Application Centric Infrastructure (ACI). Abhinav holds multiple certifications like

CCNP Enterprise, Cisco Specialist - Data Center Core, VMware Double VCP (DCV, NSX-T), NSX-V Implementa-

tion Expert. Abhinav holds a bachelor's degree in Electrical & Electronics.

Acknowledgements

For their support and contribution to the design, validation, and creation of this Cisco Validated Design, the au-

thors would like to thank:

● Sreeni Edula, Technical Marketing Engineer, Cisco Systems, Inc.

● Haseeb Niazi, Technical Marketing Engineer, Cisco Systems, Inc.

Feedback

For comments and suggestions about this guide and related guides, join the discussion on Cisco Community at

https://cs.co/en-cvds.

https://cs.co/en-cvds
https://cs.co/en-cvds

