Measurement of RF Interference from a Model No. 85802 MyQ Garage Door Opener Transceiver For The Chamberlain Group, Inc. 300 Windsor Dr. Oak Brook, IL 60523 P.O. Number 4900067517 Date Received February 10, 2020 Date Tested February 10 – 14 & 18, 2020 Test Personnel Tylar Jozefczyk Specification FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Sections 15.207 and 15.247 for Frequency Hopping Spread Spectrum Intentional Radiators within the band 902-928MHz FCC "Code of Federal Regulations" Title 47, Part15, Subpart 15B, Section 15.107 and 15.109 for Receivers Industry Canada RSS-247 Industry Canada RSS-GEN Test Report By: Tylar Jozefczyk EMC Engineer Requested By: Adrian Perry The Chamberlain Group, Inc. Approved By: Raymond J. Klouda, Registered Professional Engineer of Illinois - 44894 Elite Electronic Engineering Inc. 1516 CENTRE CIRCLE DOWNERS GROVE, IL 60515 TEL: 630 - 495 - 9770 FAX: 630 - 495 - 9785 www.elitetest.com ### **TABLE OF CONTENTS** | PARAGRAPH | DESCRIPTION OF CONTENTS | PAGE NO. | |---------------------|---|----------| | 1. INTRODU | JCTION | 5 | | 1.1 Sco | pe of Tests | 5 | | 1.2 Pur | oose | 5 | | | iations, Additions and Exclusions | | | | C Laboratory Identification | | | 1.5 Lab | oratory Conditions | 5 | | 2. APPLICA | BLE DOCUMENTS | 5 | | 3. EUT SET | -UP AND OPERATION | 6 | | | peral Description | | | | ower Input | | | | eripheral Equipment | | | | nterconnect Cables | | | | Grounding | | | | ware | | | | erational Mode | | | 3.4 EU1 | Modifications | 7 | | 4. TEST FA | CILITY AND TEST INSTRUMENTATION | 7 | | | elded Enclosure | | | | t Instrumentation | | | 4.3 Cali | bration Traceability | 7 | | 4.4 Mea | surement Uncertainty | 7 | | 5. TEST PR | OCEDURES | 7 | | | eiver | | | | owerline Conducted Emissions | | | 5.1.1.1 | | | | 5.1.1.2 | | | | 5.1.1.3 | | | | | Radiated Measurements | | | 5.1.2.1 | | 9 | | 5.1.2.2 | | | | 5.1.2.1
5.2 Trar | | | | | nsmitteroverline Conducted Emissions | | | 5.2.1.1 | | | | 5.2.1.2 | • | | | 5.2.1.3 | | | | | 0dB Bandwidth | | | 5.2.2.1 | | | | 5.2.2.2 | | | | 5.2.2.3 | | | | | Carrier Frequency Separation | | | 5.2.3.1 | · · · · · · · · · · · · · · · · · · · | | | 5.2.3.2 | | | | 5.2.3.3 | | | | | lumber of Hopping Frequencies | | | 5.2.4.1 | | | | 5.2.4.2
5.2.4.3 | | | | 5.2.4.3 | | IZ | | | THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF ELITE ELECTRONIC ENGINEERING INCORPORATED. | | | | 5.2.5 I im | ne of Occupancy | | |-----|--------------|--|----| | | 5.2.5.1 | Requirements | 12 | | | 5.2.5.2 | Procedures | | | | 5.2.5.3 | Results | 12 | | | 5.2.6 Pea | ak Output Power | 13 | | | 5.2.6.1 | Requirements | 13 | | | 5.2.6.2 | Procedures | 13 | | | 5.2.6.3 | Results | 13 | | | 5.2.7 Dut | ty Cycle Factor Measurements | | | | 5.2.7.1 | Procedures | 13 | | | 5.2.7.2 | Results | | | | 5.2.8 Rad | diated Spurious Emissions Measurements | 14 | | | 5.2.8.1 | Requirements | 14 | | | 5.2.8.2 | Procedures | 14 | | | 5.2.8.3 | Results | | | | 5.2.9 Ban | nd Edge Compliance | | | | 5.2.9.1 | Requirements | | | | 5.2.9.2 | Procedures | | | | | 2.1 Low Band Edge | | | | | 2.2 High Band Edge | | | | 5.2.9.3 | Results | 17 | | 6. | CONCLUSI | IONS | 17 | | 7. | CERTIFICA | ATION | 17 | | 8. | ENDORSE | MENT DISCLAIMER | 17 | | 9. | EQUIPMEN | NT LIST | 18 | | Tab | le 9-1 Equip | ment List | 18 | | | | | | THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF ELITE ELECTRONIC ENGINEERING INCORPORATED. ### **REVISION HISTORY** | Revision | Date | Description | |----------|------------|-----------------| | _ | 03/26/2020 | Initial release | | | | | ### Measurement of RF Emissions from a MyQ Garage Door Opener, Model No. 85802 Transceiver #### 1. INTRODUCTION #### 1.1 Scope of Tests This document represents the results of the series of radio interference measurements performed on a The Chamberlain Group, Inc. MyQ Garage Door Opener, Model No. 85802, transceiver (hereinafter referred to as the EUT). The EUT is a frequency hopping spread spectrum transceiver. The transceiver was designed to transmit and receive in the 902-928MHz band using an integral antenna. The EUT was manufactured and submitted for testing by The Chamberlain Group, Inc. located in Oak Brook, IL. #### 1.2 Purpose The test series was performed to determine if the EUT meets the conducted RF emission requirements, radiated RF emissions requirements, and additional provisions of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Sections 15.107 and 15.109, for receivers and Subpart C, Sections 15.207 and 15.247 for Intentional Radiators Operating within the 902-928MHz band. The test series was also performed to determine if the EUT meets the conducted RF emission requirements, radiated RF emissions requirements, and additional provisions of the Industry Canada Radio Standards Specification RSS-Gen Section 5 and 7 for receivers and Industry Canada Radio Standards Specification RSS-Gen Section 8 and Industry Canada Radio Standards Specification RSS-247 for Transmitters. Testing was performed in accordance with ANSI C63.4-2014. #### 1.3 Deviations, Additions and Exclusions The following additions and exclusions were implemented during this test series: The 900MHz transmitter had testing running concurrently for a Class 2 Permissive Change with a Wi-Fi module and a Bluetooth module. As such, Elite Electronic Engineering test report number ETR2000515-02 will reference this report. #### 1.4 EMC Laboratory Identification This series of tests was performed by Elite Electronic Engineering Incorporated of Downers Grove, Illinois. The laboratory is accredited by the American Association for Laboratory Accreditation (A2LA), A2LA Lab Code: 1786-01. #### 1.5 Laboratory Conditions The temperature at the time of the test was 22°C and the relative humidity was 16%. #### 2. APPLICABLE DOCUMENTS The following documents of the exact issue designated form part of this document to the extent specified herein: - Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subparts B and C - ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" - ANSI C63.10-2014, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" - FCC Public Notice, DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems", Released March 30, 2000 - Industry Canada RSS-247, Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices" - Industry Canada RSS-GEN, Issue 5, March 2019, "General Requirements for Compliance of Radio Apparatus" #### 3. EUT SET-UP AND OPERATION #### 3.1 General Description The EUT is a MyQ Garage Door Opener, Model No. 85802. A block diagram of the EUT setup is shown as Figure 1 and a photo of test setup of the EUT is shown as Figure 2. #### 3.1.1 Power Input The EUT obtained 120VAC power via a 3 wire, 1 meter long, unshielded power cord. #### 3.1.2 Peripheral Equipment The following peripheral equipment was submitted with the EUT: | Item | Description | | | |------------------|--|--|--| | Laptop | Used to place the EUT in test mode. | | | | LCD Wall Control | Accessory acting as a load on the board. | | | | Photoeyes | Accessory acting as a load on the board. Also used to provide continuous modes for some testing. | | | #### 3.1.3 Interconnect Cables No interconnect cables were submitted with the EUT. #### 3.1.4 Grounding The EUT was grounded only through the third wire of its input power cord. #### 3.2 Software For all tests the EUT requires Firmware Version 3.3 to control the device during testing. ### 3.3 Operational Mode The EUT and all peripheral equipment were energized. The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst case emissions was utilized. | Mode | Description | |-------|---| | Tx | The EUT was powered on and set to transmit at one of the following frequencies: - 902.25MHz - 914.75MHz - 926.75MHz | | Rx | The EUT was powered on and set to receive at one of the following frequencies: - 902.25MHz - 914.75MHz - 926.75MHz | | FHSS | The EUT was powered on and set to transmit in a frequency hopping mode across the 902-928MHz band. | | Motor | The EUT was powered on and not set to transmit/receive. Instead, the EUT had the motor active and was set in one of the following modes: - Opening - Closing | #### 3.4 EUT Modifications No modifications were required for compliance. #### 4. TEST FACILITY AND TEST INSTRUMENTATION #### 4.1 Shielded Enclosure All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. With the exception of the floor, the reflective surfaces of the shielded chamber are lined with ferrite tiles on the walls and ceiling. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation. #### 4.2 Test Instrumentation The test instrumentation and auxiliary equipment used during the tests are listed in Table 9-1. All equipment was calibrated per the instruction manuals supplied by the manufacturer. Conducted and radiated emission tests were performed with an EMI receiver utilizes the bandwidths and detectors specified by the FCC. ####
4.3 Calibration Traceability Test equipment is maintained and calibrated on a regular basis. All calibrations are traceable to the National Institute of Standards and Technology (NIST). #### 4.4 Measurement Uncertainty All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence) are presented below: | Measurement Type | Expanded
Measurement
Uncertainty | |---|--| | Conducted disturbance (mains port) (150 kHz – 30 MHz) | 2.7 | | Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz) | 4.3 | | Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz) | 3.1 | | Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz) | 3.2 | #### 5. TEST PROCEDURES #### 5.1 Receiver #### 5.1.1 Powerline Conducted Emissions #### 5.1.1.1 Requirements Per the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, 15.107(a), all radio frequency voltages on the power lines of a receiver shall be below the values shown below when using a quasi-peak or average detector: #### CONDUCTED LIMITS FOR A RECEIVER | Frequency | RFI Voltage | RFI Voltage | |------------|--------------------|--------------------| | MHz | dBμV (QP) | dBμV (Average) | | 0.15 - 0.5 | 66 decreasing with | 56 decreasing with | | logarithm of frequency to 56 | | logarithm of frequency to 46 | | | |------------------------------|----|------------------------------|--|--| | 0.5 - 5 | 56 | 46 | | | | 5 - 30 | 60 | 50 | | | Note 1: The lower limit shall apply at the transition frequencies. Note 2: If the levels measured using the QP detector meet both the QP and the Average limits, the EUT is considered to have met both requirements and measurements do not need to be performed using the Average detector. #### 5.1.1.2 Procedures The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms. - 1) The EUT was operated in the Rx mode. - 2) Measurements were first made on the 120VAC high line. - 3) The frequency range from 150 kHz to 30 MHz was broken up into smaller frequency sub-bands. - 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector. - 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.) - 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits. The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF). Formula 1: VL (dB $$\mu$$ V) = MTR (dB μ V) + CF (dB) - 7) Steps (3) through (6) were repeated on the 120VAC neutral line. - 8) Steps (2) through (7) were repeated with the EUT operating in the 2 Motor modes as detailed in section 3.3. #### 5.1.1.3 Results The plots and tabular results of the peak, quasi-peak, and average conducted voltage levels acquired from each input power line with the EUT operated in the Rx mode are shown on pages 25 through 28. All power line conducted emissions measured from the EUT were within the specification limits. The emissions level closest to the limit (worst case) occurred at 527kHz. The emissions level at this frequency was 8dB within the limit. The plots and tabular results of the peak, quasi-peak, and average conducted voltage levels acquired from each input power line with the EUT operated in the Motor mode are shown on pages 29 through 36. All power line conducted emissions measured from the EUT were within the specification limits. The emissions level closest to the limit (worst case) occurred at 182kHz. The emissions level at this frequency was 5.5dB within the limit. Photographs of the test configuration which yielded the highest or worst case conducted emission levels are shown on Figure 3. #### 5.1.2 Radiated Measurements #### 5.1.2.1 Requirements Per the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Section 15.109(a), all radio frequency emissions from a receiver shall be below the limits shown on the following table: #### RADIATION LIMITS FOR A RECEIVER | Frequency | Distance between EUT | Field Strength | Field Strength | |-----------|-----------------------|----------------|----------------| | (MHz) | And Antenna in Meters | (μV/m) ¯ | (dBµV/m) | | 30-88 | 3 | 100 | 40 | | 88-216 | 3 | 150 | 43.5 | | 216-960 | 3 | 200 | 46 | | Above 960 | 3 | 500 | 54 | Note: The tighter limit shall apply at the edge between the two frequency bands. #### 5.1.2.2 Procedures Testing was performed separately on a low, middle, and high channel. The emissions in the frequency range of 30MHz to 10GHz were measured and plotted using a 'screen-dump' utility. Testing was performed with the antenna of the EUT in place. All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads. Since a quasi-peak detector and an average detector require long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector. The broadband measuring antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 10GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted. Final radiated emissions were performed on all significant broadband and narrowband emissions found in the preliminary sweeps using the following methods: - Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna. - 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken: - a) The EUT was rotated so that all of its sides were exposed to the receiving antenna. - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured. - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings. - d) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit. #### 5.1.2.1 Results Radiated emissions plots are shown on pages 37 through 54. As can be seen from the data, all emissions measured from the EUT were within the specification limits. Photographs of the test configuration which yielded the highest or worst case, radiated emission levels are shown on Figures 4 and 5. #### 5.2 Transmitter #### 5.2.1 Powerline Conducted Emissions #### 5.2.1.1 Requirements Per the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Per 15.207(a), all radio frequency voltages on the power lines of a transmitter shall be below the values shown below when using a quasi-peak or average detector: | Frequency | Conducted Limit (dBµV) | | | |------------|---|---------|--| | (MHz) | Quasi-peak | Average | | | 0.15 – 0.5 | 66 decreasing with 56 decreasing with logarithm of frequency to 56 logarithm of frequency | | | | 0.5 - 5 | 56 | 46 | | | 5 - 30 | 60 | 50 | | Note 1: The lower limit shall apply at the transition frequencies. Note 2: If the levels measured using the QP detector meet both the QP and the Average limits, the EUT is
considered to have met both requirements and measurements do not need to be performed using the Average detector. #### 5.2.1.2 Procedures The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms. - 1) The EUT was operated in the Tx mode. - 2) Measurements were first made on the 120VAC high line. - 3) The frequency range from 150 kHz to 30 MHz was broken up into smaller frequency sub-bands. - 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector. - 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.) - 6) Steps (d) and (e) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits. - 7) Steps (c) through (f) were repeated on the 120VAC neutral line. #### 5.2.1.3 Results The plots and tabular data of the peak, quasi-peak, and average conducted voltage levels acquired from each input power line with the EUT operated in the Tx mode are shown on pages 55 through 58. All power line conducted emissions measured from the EUT were within the specification limits. The emissions level closest to the limit (worst case) occurred at 182kHz. The emissions level at this frequency was 8.3dB within the limit. Photographs of the test configuration which yielded the highest or worst case conducted emission levels are shown on Figure 3. #### 5.2.2 20dB Bandwidth #### 5.2.2.1 Requirements Per 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Per section 15.247(a)(1)(i), for frequency hopping systems operating in the 902-928MHz band, the 20dB bandwidth shall be measured for determination of the carrier frequency separation limits and must not exceed 500 kHz. If the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping channels. If the 20dB bandwidth of the hopping channel is 250kHz or greater (but not greater than 500kHz), the system shall use at least 25 hopping channels. #### 5.2.2.2 Procedures The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously. The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to $\geq 1\%$ of the 20dB BW. The span was set to approximately 2 to 3 times the 20dB bandwidth. The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility. #### 5.2.2.3 Results The plots on pages 59 through 64 show that the maximum 20dB bandwidth was 205.8kHz. The 99% bandwidth was measured to be 169.83kHz. Therefore, since the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping channels. #### 5.2.3 Carrier Frequency Separation #### 5.2.3.1 Requirements Per section 15.247 (a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. #### 5.2.3.2 Procedures The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously. The resolution bandwidth (RBW) was set to > to 1% of the span. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the peaks of at least two adjacent channels. When the trace had stabilized after multiple scans, the marker-delta function was used to determine the separation between the peaks of the adjacent channels. The analyzer's display was plotted using a 'screen dump' utility. #### 5.2.3.3 Results Page 65 shows the carrier frequency separation. As can be seen from this plot, the carrier frequency separation is 499.5kHz, which is greater than the 20dB bandwidth (205.8kHz). #### 5.2.4 Number of Hopping Frequencies #### 5.2.4.1 Requirements Per section 15.247(a)(1)(i), for frequency hopping systems operating in the 902-928MHz band, the 20dB bandwidth shall be measured for determination of the carrier frequency separation limits and must not exceed 500 kHz. If the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping channels. If the 20dB bandwidth of the hopping channel is 250kHz or greater (but not greater than 500kHz), the system shall use at least 25 hopping channels. #### 5.2.4.2 Procedures The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously. The resolution bandwidth (RBW) was set to ≥ to 1% of the span. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the entire frequency band of operation. The EUT's signal was allowed to stabilize after multiple scans. The number of hopping frequencies was counted. The analyzer's display was plotted using a 'screen dump' utility. #### 5.2.4.3 Results Page 66 shows the number of hopping frequencies. As can be seen from this plot, the number of hopping frequencies is 50, which is equal to the minimum number of required hopping frequencies for systems with a 20dB bandwidth less than 250kHz. #### 5.2.5 Time of Occupancy #### 5.2.5.1 Requirements Per section 15.247(a)(1)(i), for frequency hopping systems operating in the 902-928MHz band, if the 20dB bandwidth of the hopping channel is less than 250kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. #### 5.2.5.2 Procedures The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously. The resolution bandwidth (RBW) was set to 1MHz. The peak detector and 'Max-Hold' function were engaged. With the span set to 0Hz, the sweep time was adjusted to capture a single event in order to measure the dwell time per hop. The analyzer's display was plotted using a 'screen dump' utility. Then, the sweep time was expanded to 20 seconds to capture the number of hops in the appropriate sweep time. A single sweep was made. The analyzer's display was plotted using a 'screen dump' utility. The dwell time in the specified time period was then calculated from dwell time per hop multiplied by the number of hops in the specified time period. #### 5.2.5.3 Results Pages 67 and 68 show the plots for the time of occupancy (dwell time). As can be seen from the plots, the time of occupancy can be determined by 1.27ms multiplied by 20 and further multiplied by 10. This calculated value is equal to 0.254 seconds, which is less than the 0.4 seconds maximum allowed. #### 5.2.6 Peak Output Power #### 5.2.6.1 Requirements Per section 15.247(b)(2), for frequency hopping systems operating in the 902-928MHz band and employing at least 50 hopping channels, the maximum peak output conducted power shall not be greater than 1W (30dBm). Per section 15.247(b)(4), this limit is based on the use of antennas with directional gains that do not exceed 6dBi. Since the limit allows for a 6dBi antenna gain, the maximum EIRP can be increased by 6dB to 4 Watt (36dBm). If transmitting antennas of directional gain greater than 6dBi are used, the conducted output power from the intentional radiator shall be reduced below 30dBm by the amount in dB that the directional gain of the antenna exceeds 6dBi. #### 5.2.6.2 Procedures For the antenna conducted emissions method, the antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously. The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20 dB bandwidth. The 'Max-Hold' function was engaged. The maximum meter reading was recorded. The peak power output was calculated for the low, middle and high hopping frequencies. For the radiated emissions method, the EUT was placed on the non-conductive stand and set to transmit. A bilog antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20 dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle and high hopping frequencies. The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a
dipole antenna was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss, as required. The peak power output was calculated for low, middle, and high hopping frequencies. #### 5.2.6.3 Results For the antenna conducted emissions method, the results are presented on pages 69 through 71. The maximum peak conducted output power from the transmitter was 0.0392W (15.93dBm), which is below the 1W limit. For the radiated emissions method, the results are presented on page 72. The maximum EIRP measured from the transmitter was 0.044W (16.44dBm), which is below the 4W limit. #### 5.2.7 Duty Cycle Factor Measurements #### 5.2.7.1 Procedures The duty cycle factor is used to convert peak detected readings to average readings. This factor is computed from the time domain trace of the pulse modulation signal. With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer. This trace is obtained by tuning center frequency to the transmitter frequency and then setting a zero span width with 1msec/div. The amplitude settings are adjusted so that the on/off transitions clear the 4th division from the bottom of the display. The markers are set at the beginning and end of the "on-time". The trace is recorded. Next the spectrum analyzer center frequency is set to the transmitter frequency with a zero span width and 10msec/div. This shows if the word is longer than 100msec or shorter than 100msec. If the word period is less than 100msec, the display is set to show at least one word. The on-time and off-time are then measured. The on- time is total time signal level exceeds the 4th division. Off-time is time under for the word period. The duty cycle is then computed as the (On-time/ word period) where the word period = (On-time + Off-time). #### 5.2.7.2 Results The plots of the duty cycle are shown on data pages 73 through 75. The EUT transmits a 1.27ms pulse every 3.02ms. Since a word is greater than 100ms long, the duty cycle factor was computed over a 100msec interval. The duty cycle correction factor was calculated to be -7.55dB (see page 75 for calculation). #### 5.2.8 Radiated Spurious Emissions Measurements #### 5.2.8.1 Requirements Per section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated emissions measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a). Paragraph 15.209(a) has the following radiated emission limits: | Frequency | Field Strength | Measurement distance | |-------------|--------------------|----------------------| | (MHz) | (microvolts/meter) | (meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 3 | | 30.0-88.0 | 100 | 3 | | 88.0-216.0 | 150 | 3 | | 216.0-960.0 | 200 | 3 | | Above 960 | 500 | 3 | #### 5.2.8.2 Procedures Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads. Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency range from 30MHz to 10GHz was investigated using a peak detector function. The final open field emission tests were then manually performed over the frequency range of 30MHz to 10GHz. - 1) For all harmonics not in the restricted bands, the following procedure was used: - a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer. - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer. - c) To ensure that maximum or worst case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions: - The EUT was rotated so that all of its sides were exposed to the receiving antenna. - Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured. - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings. - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer. The measuring antenna was not raised or lowered to ensure maximized readings, instead the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT. - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required. - 2) For all emissions in the restricted bands, the following procedure was used: - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer. - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 1 MHz was used on the spectrum analyzer. - c) To ensure that maximum or worst case emission levels were measured, the following steps were taken when taking all measurements: - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna. - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured. - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings. - d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in 15.209(a), no further measurements are required. If however, the peak readings exceed the limits listed in 15.209(a), then the emissions are remeasured using a quasi-peak detector. - e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the 15.35(b) limits. 15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in 15.209(a). - f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken. If the dwell time per channel of the hopping signal is less than 100msec, then the reading obtained with the 10Hz video bandwidth may be further adjusted by a "duty cycle correction factor", derived from 20*log(dwell time/100msec). These readings must be no greater than the limits specified in 15.209(a). #### 5.2.8.3 Results Preliminary radiated emissions plots with the EUT transmitting are shown on pages 76 through 87. Final radiated emissions data are presented on data pages 88 through 96. As can be seen from the data, all emissions measured from the EUT were within the specification limits. The emissions level closet to the limit (worst case) occurred at 3609MHz. The emissions level at this frequency was 17.13dB within the limit. Photographs of the test configuration which yielded the highest or worst case radiated emission levels are shown on Figures 4 and 6. #### 5.2.9 Band Edge Compliance #### 5.2.9.1 Requirements Per section 15.247(d), the emissions at the band-edges must be at least 20dB below the highest level measured within the band but attenuation below the general limits listed in 15.209(a) is not required. #### 5.2.9.2 Procedures #### 5.2.9.2.1 Low Band Edge - 1) The EUT was setup inside the test chamber on a non-conductive stand. - 2) A broadband measuring antenna was placed at a test distance of 3 meters from the EUT. - 3) The EUT was set to transmit continuously at the channel closest to the low band-edge hopping function disabled. - 4) The EUT was maximized for worst case emissions at the measuring antenna. The maximum meter reading was recorded. - 5) To determine the band edge compliance, the following
spectrum analyzer settings were used: - a) Center frequency = low band-edge frequency. - b) Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation. - c) Resolution bandwidth (RBW) ≥ 1% of the span. - d) The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. - e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.) - f) The analyzer's display was plotted using a 'screen dump' utility. - 6) Step (5) was repeated with the frequency hopping function enabled. #### 5.2.9.2.2 High Band Edge - 1) The EUT was setup inside the test chamber on a non-conductive stand. - 2) A broadband measuring antenna was placed at a test distance of 3 meters from the EUT. - The EUT was set to transmit continuously at the channel closest to the high band-edge hopping function disabled. - 4) The EUT was maximized for worst case emissions at the measuring antenna. - 5) To determine the band edge compliance, the following spectrum analyzer settings were used: - a) Center frequency = high band-edge frequency. - b) Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation. - c) Resolution bandwidth (RBW) ≥ 1% of the span. - d) The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. - e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the right of the center frequency (band-edge) must be below the display line.) - f) The analyzer's display was plotted using a 'screen dump' utility. - 6) Step (5) was repeated with the frequency hopping function enabled. #### 5.2.9.3 Results Pages 97 through 100 show the radiated band-edge compliance results. As can be seen from these plots, the emissions at the low end band edge and the high end band edge are within the 20 dB down limits. #### 6. CONCLUSIONS It was determined that The Chamberlain Group, Inc. MyQ Garage Door Opener, Model No. 85802 frequency hopping spread spectrum transceiver did fully meet the conducted and radiated emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Sections 15.107 and 15.109 for receivers and Subpart C, Sections 15.207 and 15.247 for Intentional Radiators Operating within the 902-928MHz band, when tested per ANSI C63.4-2014. It was also determined that The Chamberlain Group, Inc. MyQ Garage Door Opener, Model No. 85802 frequency hopping spread spectrum transceiver did fully meet the conducted and radiated RF emission requirements of the Industry Canada Radio Standards Specification, RSS-Gen, Section 8.8 and Section 7.1.2 for receivers and the Industry Canada Radio Standards Specification RSS-Gen Section 8.8 and Radio Standards Specification RSS-247 for transmitters, when tested per ANSI C63.4-2014. #### 7. CERTIFICATION Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications. The data presented in this test report pertains to the EUT at the test date. Any electrical or mechanical modification made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. #### ENDORSEMENT DISCLAIMER This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST or any agency of the Federal Government. ### 9. EQUIPMENT LIST **Table 9-1 Equipment List** | Eq ID | Equipment List Equipment Description | Manufacturer | Model No. | Serial No. | Frequency
Range | Cal Date | Due Date | |-------|---------------------------------------|-----------------|-----------------------------|------------|--------------------|------------|------------| | CDW5 | DESKTOP COMPUTER | ELITE | PENTIUM 4 | 006 | 3.8GHZ | N/A | | | CDY0 | WORKSTATION | ELITE | WORKSTATION | | WINDOWS 7 | N/A | | | GRB0 | 1MHZ, LISN SIGNAL CHECKER | ELITE | LISNCHKR1M | 1 | 1MHZ | 1/9/2019 | 1/9/2021 | | GRE1 | SIGNAL GENERATOR | AGILENT | E4438C | MY42081749 | 250KHZ-6GHZ | 2/25/2020 | 2/25/2021 | | NDQ0 | TUNED DIPOLE ANTENNA | EMCO | 3121C-DB4 | 311 | 400-1000MHZ | 5/8/2018 | 5/8/2020 | | NTA3 | BILOG ANTENNA | TESEQ | 6112D | 32853 | 25-1000MHz | 10/10/2019 | 10/10/2020 | | NWQ2 | DOUBLE RIDGED WAVEGUIDE
ANTENNA | ETS LINDGREN | 3117 | 66659 | 1GHZ-18GHZ | 3/22/2018 | 3/22/2020 | | PLF2 | CISPR16 50UH LISN | ELITE | CISPR16/70A | 002 | .15-30MHz | 4/23/2019 | 4/23/2020 | | PLF4 | CISPR16 50UH LISN | ELITE | CISPR16/70A | 003 | .15-30MHz | 4/23/2019 | 4/23/2020 | | RBG3 | EMI ANALYZER | ROHDE & SCHWARZ | ESW44 | 101592 | 2HZ-44GHZ | 2/20/2019 | 3/20/2020 | | RBJ3 | EMI RECEIVER | ROHDE & SCHWARZ | ESW8 | 100984 | 2HZ-8GHZ | 3/2/2020 | 3/2/2021 | | SHC2 | Power Supplies | HENGFU | HF60W-SL-24 | A11372702 | 24V | NOTE 1 | | | T1E4 | 10DB 25W ATTENUATOR (RM
11) | WEINSCHEL | 46-10-43 | AV5805 | DC-18GHZ | 4/24/2018 | 4/24/2020 | | T2B2 | 20DB, 2W ATTENUATOR | HEWLETT PACKARD | 8491A | 11341 | DC-12.4GHZ | 9/5/2019 | 9/5/2021 | | T2F4 | 20DB, 100W ATTENUATOR | WEINSCHEL | 48-20-33 | BA0696 | DC-18GHZ | 6/5/2018 | 6/5/2020 | | VBR8 | CISPR EN FCC CE
VOLTAGE.exe | | | | | N/A | | | VBV2 | CISPR EN FCC ICES RE.EXE | ELITE | CISPR EN FCC
ICES RE.EXE | | | N/A | | | WKA1 | SOFTWARE, UNIVERSAL RCV
EMI | ELITE | UNIV_RCV_EMI | 1 | | I/O | | Create your equipment list using the database on the mainframe. Create a test equipment list. The output of this list will have a "J" prefix, followed by the job and phase number. FTP this output file to your local computer. Open the file using Word; select and copy the text here using Edit, then Paste Special, and finally Unformatted Text. That way, the text will take on the attributes of the Equipment List Text Style contained in this paragraph. Delete this paragraph when finished. # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : RX Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 01:39:22 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.186 | 55.6 | 64.2 | | 49.2 | 54.2 | | | 0.486 | 46.5 | 56.2 | | 31.0 | 46.2 | | | 0.500 | 44.0 | 56.0 | | 27.8 | 46.0 | | | 1.047 | 42.2 | 56.0 | | 37.6 | 46.0 | | | 1.966 | 42.8 | 56.0 | | 36.4 | 46.0 | | | 2.475 | 46.0 | 56.0 | | 34.1 | 46.0 | | | 4.886 | 48.1 | 56.0 | | 35.0 | 46.0 | | | 5.027 | 47.4 | 60.0 | | 35.8 | 50.0 | | | 10.445 | 38.5 | 60.0 | | 27.6 | 50.0 | | | 21.245 | 33.3 | 60.0 | | 22.8 | 50.0 | | ## FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : RX Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 01:39:22 PM Emissions Meet QP Limit Emissions Meet Ave Limit # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : RX Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 01:48:57 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.186 | 56.0 | 64.2 | | 51.5 | 54.2 | | | 0.306 | 49.4 | 60.1 | | 45.4 | 50.1 | | | 0.527 | 48.0 | 56.0 | | 35.0 | 46.0 | | | 0.858 | 43.7 | 56.0 | | 39.1 | 46.0 | | | 1.961 | 44.2 | 56.0 | | 37.2 | 46.0 | | | 2.349 | 45.4 | 56.0 | | 33.6 | 46.0 | | | 4.760 | 47.7 | 56.0 | | 34.5 | 46.0 | | | 5.000 | 41.6 | 56.0 | | 30.6 | 46.0 | | | 10.170 | 36.6 | 60.0 | | 24.8 | 50.0 | | | 20.075 | 33.9 | 60.0 | | 24.4 | 50.0 | | ## FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : RX Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 01:48:57 PM Emissions
Meet QP Limit Emissions Meet Ave Limit # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : OPEN Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:16:42 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.182 | 57.8 | 64.4 | | 49.0 | 54.4 | | | 0.486 | 48.7 | 56.2 | | 39.2 | 46.2 | | | 0.500 | 45.8 | 56.0 | | 37.4 | 46.0 | | | 1.173 | 44.3 | 56.0 | | 33.8 | 46.0 | | | 1.889 | 46.3 | 56.0 | | 35.9 | 46.0 | | | 2.610 | 48.0 | 56.0 | | 39.6 | 46.0 | | | 4.553 | 49.6 | 56.0 | | 38.0 | 46.0 | | | 5.005 | 46.6 | 60.0 | | 35.3 | 50.0 | | | 14.747 | 39.8 | 60.0 | | 30.7 | 50.0 | | | 19,697 | 34.3 | 60.0 | | 26.6 | 50.0 | | ### FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : OPEN Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:16:42 PM Emissions Meet QP Limit Emissions Meet Ave Limit # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : OPEN Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:01:03 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.182 | 54.8 | 64.4 | | 49.3 | 54.4 | | | 0.500 | 45.9 | 56.0 | | 35.2 | 46.0 | | | 1.038 | 43.9 | 56.0 | | 38.1 | 46.0 | | | 1.952 | 45.7 | 56.0 | | 38.5 | 46.0 | | | 2.471 | 46.9 | 56.0 | | 35.5 | 46.0 | | | 4.621 | 48.4 | 56.0 | | 36.5 | 46.0 | | | 5.000 | 42.3 | 56.0 | | 31.4 | 46.0 | | | 14.774 | 41.6 | 60.0 | | 29.4 | 50.0 | | | 19.837 | 34.5 | 60.0 | | 26.6 | 50.0 | | # FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : OPEN Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:01:03 PM Emissions Meet QP Limit Emissions Meet Ave Limit # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : CLOSE Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:32:47 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.182 | 58.9 | 64.4 | | 49.5 | 54.4 | | | 0.486 | 48.7 | 56.2 | | 40.0 | 46.2 | | | 0.500 | 46.1 | 56.0 | | 37.7 | 46.0 | | | 1.173 | 44.6 | 56.0 | | 34.1 | 46.0 | | | 1.759 | 46.9 | 56.0 | | 37.3 | 46.0 | | | 2.606 | 49.0 | 56.0 | | 38.5 | 46.0 | | | 4.301 | 49.8 | 56.0 | | 38.5 | 46.0 | | | 5.000 | 41.4 | 56.0 | | 31.4 | 46.0 | | | 12.137 | 38.4 | 60.0 | | 32.1 | 50.0 | | | 19.535 | 34.7 | 60.0 | | 24.3 | 50.0 | | # FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : CLOSE Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:32:47 PM Emissions Meet QP Limit Emissions Meet Ave Limit # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : CLOSE Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:49:42 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.182 | 58.6 | 64.4 | | 50.5 | 54.4 | | | 0.302 | 51.6 | 60.2 | | 45.3 | 50.2 | | | 0.527 | 49.1 | 56.0 | | 39.3 | 46.0 | | | 1.047 | 45.0 | 56.0 | | 36.6 | 46.0 | | | 1.700 | 46.1 | 56.0 | | 37.4 | 46.0 | | | 2.480 | 48.5 | 56.0 | | 38.9 | 46.0 | | | 4.441 | 49.6 | 56.0 | | 37.5 | 46.0 | | | 5.000 | 40.0 | 56.0 | | 30.9 | 46.0 | | | 12.074 | 38.6 | 60.0 | | 28.1 | 50.0 | | | 19.171 | 34.9 | 60.0 | | 26.1 | 50.0 | | ### FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : B6765T DUT Revision : 1.0 Serial Number DUT Mode : CLOSE Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : NON-POPULATED BOARD Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 11, 2020 02:49:42 PM Emissions Meet QP Limit Emissions Meet Ave Limit SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 902.25MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : H Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes : Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:16:15 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 902.25MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : V Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes : Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:16:15 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 902.25MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:16:15 PM | Freq
(MHz) | Peak
Mtr
Rdg
(dBuV) | QP
Mtr
Rdg
(dBuV) | Ant
Fac
(dB) | Amp
Fac
(dB) | Cbl
Fac
(dB) | Dist
Corr
(dB) | Peak
Total
dBµV/m | QP
Total
(dBµV/m) | QP
Limit
(dBµV/m) | QP
Lim
Mrg
(dB) | Ant
Pol | Mast
Ht
(cm) | Azim
(°) | |---------------|------------------------------|----------------------------|--------------------|--------------------|--------------------|----------------------|-------------------------|-------------------------|-------------------------|--------------------------|------------|--------------------|-------------| | 30.180 | 5.6 | -1.7 | 24.0 | 0.0 | 0.5 | 0.0 | 30.0 | 22.7 | 40.0 | -17.3 | Н | 340 | 135 | | 61.320 | 5.9 | -4.5 | 12.2 | 0.0 | 0.7 | 0.0 | 18.8 | 8.4 | 40.0 | -31.6 | H | 120 | 45 | | 72.180 | 9.4 | -4.1 | 12.5 | 0.0 | 0.7 | 0.0 | 22.7 | 9.1 | 40.0 | -30.9 | V | 200 | 45 | | 83.400 | 5.2 | -4.5 | 13.7 | 0.0 | 0.8 | 0.0 | 19.7 | 10.0 | 40.0 | -30.0 | Н | 120 | 315 | | 126.520 | 6.0 | -5.0 | 18.1 | 0.0 | 1.0 | 0.0 | 25.1 | 14.1 | 43.5 | -29.4 | V | 200 | 45 | | 309.420 | 3.4 | -4.3 | 19.4 | 0.0 | 1.5 | 0.0 | 24.4 | 16.6 | 46.0 | -29.4 | V | 200 | 135 | | 430.380 | 6.4 | -1.2 | 22.1 | 0.0 | 1.8 | 0.0 | 30.3 | 22.8 | 46.0 | -23.2 | V | 340 | 315 | | 935.040 | 4.8 | -3.0 | 26.4 | 0.0 | 2.5 | 0.0 | 33.7 | 25.9 | 46.0 | -20.1 | V | 120 | 315 | SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 902.25MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : H Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11, 2020 04:05:16 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 902.25MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : V Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11,
2020 04:05:16 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 902.25MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11, 2020 04:05:16 PM | Freq
(GHz) | Peak
Mtr
Rdg
(dBuV) | Ave.
Mtr
Rdg
(dBuV) | Ant
Fac
(dB) | Amp
Fac
(dB) | Cbl
Fac
(dB) | Dist
Corr
(dB) | Peak
Total
(dBµV/m) | Peak
Limit
(dBµV/m) | Peak
Lim
Mrg
(dB) | Ave.
Total
(dΒμV/m) | Ave.
Limit
(dΒμV/m) | Ave.
Lim
Mrg
(dB) | Ant
Pol | Mast
Ht
(cm) | Azim
(°) | |---------------|------------------------------|------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------------------------|------------|--------------------|-------------| | 1.3475 | 51.2 | 37.9 | 29.0 | -41.6 | 3.0 | 0.0 | 41.6 | 74.0 | -32.4 | 28.3 | 54.0 | -25.6 | Н | 200 | 225 | | 1.752 | 52.7 | 36.4 | 30.3 | -41.1 | 3.4 | 0.0 | 45.3 | 74.0 | -28.7 | 29.0 | 54.0 | -24.9 | V | 340 | 180 | | 1.9235 | 56.5 | 36.5 | 31.5 | -40.8 | 3.6 | 0.0 | 50.8 | 74.0 | -23.1 | 30.8 | 54.0 | -23.2 | Н | 200 | 270 | | 3.372 | 49.1 | 35.4 | 32.9 | -40.6 | 4.9 | 0.0 | 46.4 | 74.0 | -27.6 | 32.6 | 54.0 | -21.3 | V | 120 | 0 | | 6.5455 | 47.7 | 34.3 | 36.0 | -40.5 | 6.8 | 0.0 | 50.0 | 74.0 | -23.9 | 36.7 | 54.0 | -17.3 | H | 200 | 0 | | 10.4565 | 49.5 | 35.9 | 37.6 | -40.5 | 8.8 | 0.0 | 55.4 | 74.0 | -18.6 | 41.9 | 54.0 | -12.1 | V | 340 | 0 | SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 914.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : H Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes : Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:32:58 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 914.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : V Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes : Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:32:58 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 914.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:32:58 PM | Freq
(MHz) | Peak
Mtr
Rdg
(dBuV) | QP
Mtr
Rdg
(dBuV) | Ant
Fac
(dB) | Amp
Fac
(dB) | Cbl
Fac
(dB) | Dist
Corr
(dB) | Peak
Total
dBµV/m | QP
Total
(dBµV/m) | QP
Limit
(dBµV/m) | QP
Lim
Mrg
(dB) | Ant
Pol | Mast
Ht
(cm) | Azim
(°) | |---------------|------------------------------|----------------------------|--------------------|--------------------|--------------------|----------------------|-------------------------|-------------------------|-------------------------|--------------------------|------------|--------------------|-------------| | 31.320 | 6.0 | -1.7 | 23.3 | 0.0 | 0.5 | 0.0 | 29.8 | 22.1 | 40.0 | -17.9 | V | 200 | 90 | | 78.720 | 6.2 | 0.1 | 13.1 | 0.0 | 0.7 | 0.0 | 20.0 | 13.9 | 40.0 | -26.1 | Н | 340 | 45 | | 126.100 | 2.6 | -5.0 | 18.1 | 0.0 | 1.0 | 0.0 | 21.7 | 14.1 | 43.5 | -29.5 | V | 200 | 180 | | 219.660 | 8.4 | -0.4 | 15.3 | 0.0 | 1.2 | 0.0 | 24.9 | 16.1 | 46.0 | -29.9 | Н | 200 | 225 | | 541.380 | 4.4 | -3.4 | 24.4 | 0.0 | 2.1 | 0.0 | 30.9 | 23.1 | 46.0 | -22.9 | V | 340 | 270 | | 921.180 | 5.1 | -3.2 | 26.5 | 0.0 | 2.5 | 0.0 | 34.1 | 25.8 | 46.0 | -20.2 | Н | 200 | 270 | SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 914.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : H Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11, 2020 04:46:40 PM SW ID/Rev: VBV2 01/02/2019 : CHAMBERLAIN Manufacturer Model 85802 Serial Number **DUT Mode** RX @ 914.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) Scan Type Stepped Scan Test RBW 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : Feb 11, 2020 04:46:40 PM **Test Date** : T. Jozefczyk SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 914.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11, 2020 04:46:40 PM | Freq
(GHz) | Peak
Mtr
Rdg
(dBuV) | Ave.
Mtr
Rdg
(dBuV) | Ant
Fac
(dB) | Amp
Fac
(dB) | Cbl
Fac
(dB) | Dist
Corr
(dB) | Peak
Total
(dBµV/m) | Peak
Limit
(dBµV/m) | Peak
Lim
Mrg
(dB) | Ave.
Total
(dΒμV/m) | Ave.
Limit
(dBµV/m) | Ave.
Lim
Mrg
(dB) | Ant
Pol | Mast
Ht
(cm) | Azim
(°) | |---------------|------------------------------|------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------------------------|------------|--------------------|-------------| | 1.3715 | 50.4 | 37.7 | 28.8 | -41.5 | 3.0 | 0.0 | 40.7 | 74.0 | -33.3 | 28.0 | 54.0 | -25.9 | Н | 120 | 315 | | 2.5695 | 49.8 | 36.8 | 32.4 | -41.3 | 4.3 | 0.0 | 45.3 | 74.0 | -28.7 | 32.2 | 54.0 | -21.8 | Н | 120 | 45 | | 3.3805 | 49.7 | 35.5 | 32.9 | -40.6 | 4.9 | 0.0 | 47.0 | 74.0 | -27.0 | 32.8 | 54.0 | -21.2 | V | 120 | 0 | | 5.738 | 50.9 | 34.4 | 34.9 | -40.5 | 6.5 | 0.0 | 51.8 | 74.0 | -22.2 | 35.3 | 54.0 | -18.7 | V | 340 | 225 | | 11.021 | 49.2 | 35.5 | 37.9 | -40.5 | 9.0 | 0.0 | 55.5 | 74.0 | -18.4 | 41.9 | 54.0 | -12.1 | Н | 120 | 270 | | 16.7305 | 49.2 | 35.7 | 41.9 | -39.8 | 11.4 | 0.0 | 62.6 | 74.0 | -11.3 | 49.2 | 54.0 | -4.8 | Н | 120 | 0 | SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 926.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : H Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:52:20 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 926.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : V Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes : Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:52:20 PM SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : PHOENIX BOARD Serial Number : N/A DUT Mode : RX @ 926.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Scan Type : Stepped Scan Test RBW : 120 kHz Prelim Dwell Time (s) : 0.0001 Notes Test Engineer : T. Jozefczyk Test Date : Feb 14, 2020 06:52:20 PM | Freq
(MHz) | Peak
Mtr
Rdg
(dBuV) | QP
Mtr
Rdg
(dBuV) | Ant
Fac
(dB) | Amp
Fac
(dB) | Cbl
Fac
(dB) | Dist
Corr
(dB) | Peak
Total
dBµV/m | QP
Total
(dBµV/m) | QP
Limit
(dΒμV/m) | QP
Lim
Mrg
(dB) | Ant
Pol | Mast
Ht
(cm) | Azim
(°) | |---------------|------------------------------|----------------------------|--------------------|--------------------|--------------------|----------------------|-------------------------|-------------------------|-------------------------|--------------------------|------------|--------------------|-------------| | 30.720 | 5.6 | -1.7 | 23.7 | 0.0 | 0.5 | 0.0 | 29.7 | 22.4 | 40.0 | -17.6 | Н | 340 | 0 | | 72.060 | 10.7 | -3.8 | 12.5 | 0.0 | 0.7 | 0.0 | 23.9 | 9.4 | 40.0 | -30.6 | V | 120 | 180 | | 76.440 | 10.9 | -4.6 | 12.8 | 0.0 | 0.7 | 0.0 | 24.4 | 8.9 | 40.0 | -31.1 | V | 120 | 90 | | 121.840 | 3.0 | -5.1 | 18.2 | 0.0 | 0.9 | 0.0 | 22.2 | 14.0 | 43.5 | -29.5 | Н | 340 | 315 | | 296.820 | 3.3 | -4.4 | 19.1 | 0.0 | 1.5 | 0.0 | 23.9 | 16.1 | 46.0 | -29.9 | V | 340 | 315 | | 552.000 | 3.8 | -3.8 | 24.8 | 0.0 | 2.1 | 0.0 | 30.7 | 23.1 | 46.0 | -22.9 | Н | 200 | 180 | | 578.700 | 5.1 | -4.5 | 24.5 | 0.0 | 2.1 | 0.0 | 31.7 | 22.1 | 46.0 | -23.9 | V | 200 | 270 | | 932.940 | 5.7 | -3.0 | 26.4 | 0.0 | 2.5 | 0.0 | 34.6 | 26.0 | 46.0 | -20.0 | Н | 340 | 135 | SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 926.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) : H Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11, 2020 05:34:03 PM SW ID/Rev: VBV2 01/02/2019 : CHAMBERLAIN Manufacturer Model 85802 Serial Number **DUT Mode** RX @ 926.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Ant. Polarization(s) Scan Type Stepped Scan Test RBW 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : Feb 11, 2020 05:34:03 PM **Test Date** : T. Jozefczyk SW ID/Rev: VBV2 01/02/2019 Manufacturer : CHAMBERLAIN Model : 85802 Serial Number DUT Mode : RX @ 926.75MHZ Turntable Step Angle (°): 45 Mast Positions (cm) : 120, 200, 340 Scan Type : Stepped Scan Test RBW : 1 MHz Prelim Dwell Time (s) : 0.0001 Notes : LOCKED PCB Test Engineer : T. Jozefczyk Test Date : Feb 11, 2020 05:34:03 PM |
Freq
(GHz) | Peak
Mtr
Rdg
(dBuV) | Ave.
Mtr
Rdg
(dBuV) | Ant
Fac
(dB) | Amp
Fac
(dB) | Cbl
Fac
(dB) | Dist
Corr
(dB) | Peak
Total
(dBµV/m) | Peak
Limit
(dBµV/m) | Peak
Lim
Mrg
(dB) | Ave.
Total
(dBµV/m) | Ave.
Limit
(dΒμV/m) | Ave.
Lim
Mrg
(dB) | Ant
Pol | Mast
Ht
(cm) | Azim
(°) | |---------------|------------------------------|------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------------------------|------------|--------------------|-------------| | 1.2805 | 51.5 | 38.5 | 29.0 | -41.8 | 2.9 | 0.0 | 41.6 | 74.0 | -32.4 | 28.6 | 54.0 | -25.4 | H | 200 | 225 | | 2.4265 | 51.7 | 36.5 | 32.2 | -41.1 | 4.2 | 0.0 | 47.0 | 74.0 | -27.0 | 31.8 | 54.0 | -22.2 | H | 200 | 225 | | 4.231 | 47.7 | 34.6 | 33.6 | -40.2 | 5.5 | 0.0 | 46.5 | 74.0 | -27.5 | 33.4 | 54.0 | -20.6 | Н | 200 | 90 | | 6.4955 | 48.2 | 34.3 | 35.9 | -40.6 | 6.8 | 0.0 | 50.4 | 74.0 | -23.6 | 36.5 | 54.0 | -17.5 | V | 120 | 270 | | 10.628 | 48.9 | 35.7 | 37.7 | -40.5 | 8.9 | 0.0 | 55.0 | 74.0 | -19.0 | 41.8 | 54.0 | -12.2 | V | 120 | 135 | | 17.506 | 48.9 | 35.4 | 41.8 | -39.8 | 11.7 | 0.0 | 62.5 | 74.0 | -11.4 | 49.0 | 54.0 | -5.0 | V | 120 | 45 | # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : HAWKEYE LED OPERATOR DUT Revision : 1.0 Serial Number : OPERATOR MODEL # B6765T (RED) DUT Mode : TX Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 10, 2020 03:56:15 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.182 | 51.7 | 64.4 | | 45.7 | 54.4 | | | 0.464 | 47.7 | 56.6 | | 34.8 | 46.6 | | | 0.500 | 42.9 | 56.0 | | 26.2 | 46.0 | | | 1.195 | 42.7 | 56.0 | | 36.6 | 46.0 | | | 1.907 | 45.3 | 56.0 | | 35.2 | 46.0 | | | 2.498 | 46.1 | 56.0 | | 33.8 | 46.0 | | | 4.796 | 48.7 | 56.0 | | 34.8 | 46.0 | | | 5.000 | 45.6 | 56.0 | | 32.7 | 46.0 | | | 12.240 | 36.9 | 60.0 | | 16.8 | 50.0 | | | 19.702 | 39.6 | 60.0 | | 29.5 | 50.0 | | # FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : HAWKEYE LED OPERATOR DUT Revision : 1.0 Serial Number : OPERATOR MODEL # B6765T (RED) DUT Mode : TX Line Tested : 120VAC 60HZ HIGH LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes : Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 10, 2020 03:56:15 PM Emissions Meet QP Limit Emissions Meet Ave Limit # FCC Part 15 Subpart B Conducted Emissions Test Significant Emissions Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : HAWKEYE LED OPERATOR DUT Revision : 1.0 Serial Number : OPERATOR MODEL # B6765T (RED) DUT Mode : TX Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 10, 2020 04:10:01 PM Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold | Freq
MHz | Quasi-peak
Level
dBµV | Quasi-peak
Limit
dBµV | Excessive
Quasi-peak
Emissions | Average
Level
dBµV | Average
Limit
dBµV | Excessive
Average
Emissions | |-------------|-----------------------------|-----------------------------|--------------------------------------|--------------------------|--------------------------|-----------------------------------| | 0.177 | 53.7 | 64.6 | | 47.8 | 54.6 | | | 0.500 | 46.0 | 56.0 | | 28.8 | 46.0 | | | 0.894 | 43.9 | 56.0 | | 37.0 | 46.0 | | | 1.894 | 45.7 | 56.0 | | 33.7 | 46.0 | | | 2.480 | 47.0 | 56.0 | | 34.5 | 46.0 | | | 4.630 | 48.8 | 56.0 | | 34.8 | 46.0 | | | 7.435 | 47.0 | 60.0 | | 33.9 | 50.0 | | | 12.236 | 46.7 | 60.0 | | 33.5 | 50.0 | | | 19.063 | 37.5 | 60.0 | | 28.2 | 50.0 | | # FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data VBR8 01/08/2020 Manufacturer : CHAMBERLAIN Model : HAWKEYE LED OPERATOR DUT Revision : 1.0 Serial Number : OPERATOR MODEL # B6765T (RED) DUT Mode : TX Line Tested : 120VAC 60HZ NEUTRAL LINE Scan Step Time [ms] : 30 Meas. Threshold [dB] : 0 Notes Test Engineer : T. Jozefczyk Limit : Class B Test Date : Feb 10, 2020 04:10:01 PM Emissions Meet QP Limit Emissions Meet Ave Limit | | DATA PAGE | |-------------------|---| | MANUFACTURER | The Chamberlain Group, Inc. | | EUT | MyQ Garage Door Opener | | MODEL NO. | 85802 | | TEST | FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted | | MODE | Tx – 902.25MHz | | DATE TESTED | February 10 – 14, 2020 | | TEST PERFORMED BY | Tylar Jozefczyk | | NOTES | 20dB BW = 205.8kHz | #### **OCCUPIED BANDWIDTH - 20DB BW** Date: 19.FEB.2020 04:51:43 | | DATA PAGE | |-------------------|---| | MANUFACTURER | The Chamberlain Group, Inc. | | EUT | MyQ Garage Door Opener | | MODEL NO. | 85802 | | TEST | FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted | | MODE | Tx – 902.25MHz | | DATE TESTED | February 10 – 14, 2020 | | TEST PERFORMED BY | Tylar Jozefczyk | | NOTES | 99% BW = 169.83kHz | ## **OCCUPIED BANDWIDTH - 99%** Date: 19.FEB.2020 04:52:30 | | DATA PAGE | |-------------------|---| | MANUFACTURER | The Chamberlain Group, Inc. | | EUT | MyQ Garage Door Opener | | MODEL NO. | 85802 | | TEST | FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted | | MODE | Tx – 914.75MHz | | DATE TESTED | February 10 – 14, 2020 | | TEST PERFORMED BY | Tylar Jozefczyk | | NOTES | 20dB BW = 205.8kHz | ### **OCCUPIED BANDWIDTH - 20DB BW** Date: 19.FEB.2020 04:55:37 | | DATA PAGE | |-------------------|---| | MANUFACTURER | The Chamberlain Group, Inc. | | EUT | MyQ Garage Door Opener | | MODEL NO. | 85802 | | TEST | FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted | | MODE | Tx – 914.75MHz | | DATE TESTED | February 10 – 14, 2020 | | TEST PERFORMED BY | Tylar Jozefczyk | | NOTES | 99% BW = 169.83kHz | #### **OCCUPIED BANDWIDTH - 99%** Date: 19.FEB.2020 04:55:09 | | DATA PAGE | |-------------------|---| | MANUFACTURER | The Chamberlain Group, Inc. | | EUT | MyQ Garage Door Opener | | MODEL NO. | 85802 | | TEST | FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted | | MODE | Tx – 926.75MHz | | DATE TESTED | February 10 – 14, 2020 | | TEST PERFORMED BY | Tylar Jozefczyk | | NOTES | 20dB BW = 205.8kHz | #### **OCCUPIED BANDWIDTH - 20DB BW** Date: 19.FEB.2020 04:56:53 | DATA PAGE | | | | | |-------------------|---|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Occupied Bandwidth - Conducted | | | | | MODE | Tx – 926.75MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | 99% BW = 167.83kHz | | | | #### **OCCUPIED BANDWIDTH - 99%** Date: 19.FEB.2020 05:05:45 | DATA PAGE | | | | | |-------------------|---|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Carrier Frequency Separation | | | | | MODE | FHSS | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | Separation = 499.5kHz | | | | ## **CARRIER FREQUENCY SEPARATION** Date: 19.FEB.2020 05:25:38 | DATA PAGE | | | | | |-------------------|---|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Number of Hopping Channels | | | | | MODE | FHSS | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | # of Hopping Channels = 50 | | | | ### **NUMBER OF HOPPING CHANNELS** Date: 19.FEB.2020 05:23:24 | DATA PAGE | | | | | |-------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Time of Occupancy | | | | | MODE | FHSS | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | Burst = 1.27ms | | | | #### TIME OF OCCUPANCY 10:31:12 11.02.2020 | DATA PAGE | | | | | |-------------------|---|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Time of Occupancy | | | | | MODE | FHSS | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | Time of Occupancy = # of bursts × burst duration x10 where : (x10 is needed to convert from 2 seconds to 20seconds) | | | | | NOTES | $= (20) \times (1.27) \times (10)$ | | | | | | = 254ms = 0.254s | | | | ### TIME OF OCCUPANCY Date: 28.FEB.2020 16:12:07 | DATA PAGE | | | | |
-------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – RF Output Power - Conducted | | | | | MODE | Tx – 902.25MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | RF Output Power = 15.92dBm | | | | ### **RF OUTPUT POWER - CONDUCTED** 10:17:32 11.02.2020 | DATA PAGE | | | | | |-------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – RF Output Power - Conducted | | | | | MODE | Tx – 914.75MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | RF Output Power = 15.91dBm | | | | ### **RF OUTPUT POWER - CONDUCTED** 10:34:26 11.02.2020 | DATA PAGE | | | | | |-------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – RF Output Power - Conducted | | | | | MODE | Tx – 926.75MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | RF Output Power = 15.93dBm | | | | ### **RF OUTPUT POWER - CONDUCTED** 10:40:53 11.02.2020 | DATA PAGE | | | | |-------------------|---|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | EUT | MyQ Garage Door Opener | | | | MODEL NO. | 85802 | | | | TEST | FCC §15.247, RSS-247 – RF Output Power - Radiated | | | | MODE | Tx | | | | DATE TESTED | February 10 – 14, 2020 | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | NOTES | | | | # **RF OUTPUT POWER** | Freq.
(MHz) | Ant
Pol | Wide
BW
Meter
Reading
(dBµV) | Matched
Sig. Gen.
Reading
(dBm) | Equivalent
Antenna
Gain
(dB) | Cable
Loss
(dB) | EIRP
Total
(dBm) | Limit
(dBm) | Margin
(dB) | |----------------|------------|--|--|---------------------------------------|-----------------------|------------------------|----------------|----------------| | 902.25 | Н | 82.89 | 12.54 | 2.15 | 1.63 | 13.06 | 30.00 | -16.94 | | 902.25 | V | 84.19 | 14.18 | 2.15 | 1.63 | 14.70 | 30.00 | -15.30 | | 914.75 | Н | 84.96 | 14.76 | 2.15 | 1.64 | 15.27 | 30.00 | -14.73 | | 914.75 | V | 84.83 | 14.95 | 2.15 | 1.64 | 15.46 | 30.00 | -14.54 | | 926.75 | Н | 85.84 | 15.94 | 2.15 | 1.65 | 16.44 | 30.00 | -13.56 | | 926.75 | V | 84.34 | 14.91 | 2.15 | 1.65 | 15.41 | 30.00 | -14.59 | EIRP = Calculated Signal (dBm) + Antenna Gain (dB) – Cable Loss (dB) | DATA PAGE | | | | |-------------------|-----------------------------------|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | EUT | MyQ Garage Door Opener | | | | MODEL NO. | 85802 | | | | TEST | FCC §15.247, RSS-247 – Duty Cycle | | | | MODE | Tx | | | | DATE TESTED | February 10 – 14, 2020 | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | NOTES | Burst Duration = 1.27ms | | | ### **DUTY CYCLE - BURST** 10:31:12 11.02.2020 | DATA PAGE | | | | |-------------------|-----------------------------------|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | EUT | MyQ Garage Door Opener | | | | MODEL NO. | 85802 | | | | TEST | FCC §15.247, RSS-247 – Duty Cycle | | | | MODE | Tx | | | | DATE TESTED | February 10 – 14, 2020 | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | NOTES | Burst Cycle = 3.02ms | | | #### **DUTY CYCLE - BURST** 10:30:07 11.02.2020 | DATA PAGE | | |-------------------|--| | MANUFACTURER | The Chamberlain Group, Inc. | | EUT | MyQ Garage Door Opener | | MODEL NO. | 85802 | | TEST | FCC §15.247, RSS-247 – Duty Cycle | | MODE | Tx | | DATE TESTED | February 10 – 14, 2020 | | TEST PERFORMED BY | Tylar Jozefczyk | | NOTES | Duty Cycle = $20\log\left(\frac{(\# of \ bursts) \times (burst \ duration)}{100ms}\right)$
= $20\log\left(\frac{(33) \times (1.27ms)}{100ms}\right)$
= $20(-0.41296)$ = -7.55dB | #### **DUTY CYCLE** 10:32:50 11.02.2020 | DATA PAGE | | | | | | | | | |-------------------|--|--|--|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | | | | EUT | MyQ Garage Door Opener | | | | | | | | | MODEL NO. | 85802 | | | | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in Non- | | | | | | | | | 1231 | Restricted Bands | | | | | | | | | MODE | Tx – 902.25MHz | | | | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | | | | NOTES | | | | | | | | | | Freq.
(MHz) | Ant
Pol. | Meter
Reading
(dBµV) | Ambien
t | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Peak
Total
dBµV/
m
at 3m | Peak
Total
µV/m
at 3m | Peak
Limit
μV/m
at 3m | Margi
n
(dB) | |----------------|-------------|----------------------------|-------------|---------------------|----------------------|--------------------|--------------------------------------|--------------------------------|--------------------------------|--------------------| | 902.25 | Н | 82.87 | | 2.90 | 26.3
2 | 0.00 | 112.09 | 402191.3
6 | | | | 902.25 | V | 84.09 | | 2.90 | 26.3
2 | 0.00 | 113.31 | 462841.9
8 | | | | 1804.5
0 | Н | 65.32 | | 3.84 | 30.7
5 | -
40.89 | 59.02 | 893.46 | 46284.2
0 | -34.29 | | 1804.5
0 | V | 62.89 | | 3.84 | 30.7
5 | -
40.89 | 56.59 | 675.42 | 46284.2
0 | -36.72 | | 6315.7
5 | Н | 48.80 | | 6.32 | 35.5
3 | -
40.15 | 50.50 | 334.79 | 46284.2
0 | -42.81 | | 6315.7
5 | V | 48.84 | | 6.32 | 35.5
3 | -
40.15 | 50.54 | 336.34 | 46284.2
0 | -42.77 | | 7218.0
0 | Н | 40.38 | Ambien
t | 6.86 | 35.9
2 | -
40.07 | 43.09 | 142.80 | 46284.2
0 | -50.21 | | 7218.0
0 | V | 39.21 | Ambien
t | 6.86 | 35.9
2 | -
40.07 | 41.92 | 124.80 | 46284.2
0 | -51.38 | | 902.00 | Н | 50.99 | | 2.90 | 26.3
2 | 0.00 | 80.21 | 10245.23 | 46284.2
0 | -13.10 | | 902.00 | V | 52.10 | | 2.90 | 26.3
2 | 0.00 | 81.32 | 11641.84 | 46284.2
0 | -11.99 | | DATA PAGE | | | | | | | | | | |-------------------|---|--|--|--|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | | | | | EUT | MyQ Garage Door Opener | | | | | | | | | | MODEL NO. | 85802 | | | | | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in | | | | | | | | | | 1231 | Restricted Bands | | | | | | | | | | MODE | Tx – 902.25MHz | | | | | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | | | | | NOTES | | | | | | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Peak
Total
dBµV/m
at 3m | Peak
Total
µV/m
at 3m | Peak
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|----------------------------------|--------------------------------|--------------------------------|----------------| | 2706.75 | Н | 53.05 | | 4.57 | 32.42 | -40.41 | 49.63 | 302.96 | 5000.00 | -24.35 | | 2706.75 | V | 52.95 | | 4.57 | 32.42 | -40.41 | 49.53 | 299.49 | 5000.00 | -24.45 | | 3609.00 | Н | 58.56 | | 5.42 | 33.18 | -40.31 | 56.85 | 695.72 | 5000.00 | -17.13 | | 3609.00 | V | 57.56 | | 5.42 | 33.18 | -40.31 | 55.85 | 620.06 | 5000.00 | -18.13 | | 4511.25 | Н | 50.84 | Ambient | 5.63 | 34.28 | -40.10 | 50.64 | 340.40 | 5000.00 | -23.34 | | 4511.25 | V | 51.11 | Ambient | 5.63 | 34.28 | -40.10 | 50.91 | 351.14 | 5000.00 | -23.07 | | 5413.50 | Н | 53.50 | | 5.93 | 34.65 | -40.25 | 53.83 | 491.61 | 5000.00 | -20.15 | | 5413.50 | V | 53.51 | | 5.93 | 34.65 | -40.25 | 53.84 | 492.17 | 5000.00 | -20.14 | | 8120.25 | Н | 50.59 | Ambient | 7.10 | 36.00 | -39.97 | 53.72 | 485.28 | 5000.00 | -20.26 | | 8120.25 | V | 50.97 | Ambient | 7.10 | 36.00 | -39.97 | 54.10 | 506.98 | 5000.00 | -19.88 | | 9022.50 | Н | 51.83 | Ambient | 7.91 | 36.50 | -39.73 | 56.51 | 669.33 | 5000.00 | -17.47 | | 9022.50 | V | 51.34 | Ambient | 7.91 | 36.50 | -39.73 | 56.02 | 632.62 | 5000.00 | -17.96 | | DATA PAGE | | | | | | | | | |-------------------|--|--|--|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | | | | EUT | Q Garage Door Opener | | | | | | | | | MODEL NO. | 85802 | | | | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Restricted Band | | | | | | | | | 1231 | Averages | | | | | | | | | MODE | Tx – 902.25MHz | | | | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | | | | NOTES | | | | | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Duty
Cycle
(dB) | Average
Total
dBµV/m
at 3m | Average
Total
µV/m
at 3m | Average
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|-----------------------|-------------------------------------|-----------------------------------
-----------------------------------|----------------| | 2706.75 | Н | 37.81 | | 4.57 | 32.42 | -40.41 | 0.00 | 34.39 | 52.41 | 500.00 | -19.59 | | 2706.75 | V | 37.85 | | 4.57 | 32.42 | -40.41 | 0.00 | 34.43 | 52.65 | 500.00 | -19.55 | | 3609.00 | Н | 41.24 | | 5.42 | 33.18 | -40.31 | 0.00 | 39.53 | 94.72 | 500.00 | -14.45 | | 3609.00 | V | 43.61 | | 5.42 | 33.18 | -40.31 | 0.00 | 41.90 | 124.43 | 500.00 | -12.08 | | 4511.25 | Н | 35.77 | Ambient | 5.63 | 34.28 | -40.10 | 0.00 | 35.57 | 60.05 | 500.00 | -18.41 | | 4511.25 | V | 35.80 | Ambient | 5.63 | 34.28 | -40.10 | 0.00 | 35.60 | 60.25 | 500.00 | -18.38 | | 5413.50 | Н | 40.01 | | 5.93 | 34.65 | -40.25 | 0.00 | 40.34 | 104.02 | 500.00 | -13.64 | | 5413.50 | V | 39.74 | | 5.93 | 34.65 | -40.25 | 0.00 | 40.07 | 100.84 | 500.00 | -13.91 | | 8120.25 | Н | 35.97 | Ambient | 7.10 | 36.00 | -39.97 | 0.00 | 39.10 | 90.16 | 500.00 | -14.88 | | 8120.25 | V | 36.01 | Ambient | 7.10 | 36.00 | -39.97 | 0.00 | 39.14 | 90.57 | 500.00 | -14.84 | | 9022.50 | Н | 36.42 | Ambient | 7.91 | 36.50 | -39.73 | 0.00 | 41.10 | 113.54 | 500.00 | -12.88 | | 9022.50 | V | 36.41 | Ambient | 7.91 | 36.50 | -39.73 | 0.00 | 41.09 | 113.41 | 500.00 | -12.89 | | DATA PAGE | | | | | | | | | | |-------------------|--|--|--|--|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | | | | | EUT | MyQ Garage Door Opener | | | | | | | | | | MODEL NO. | 85802 | | | | | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in Non- | | | | | | | | | | 1231 | Restricted Bands | | | | | | | | | | MODE | Tx – 914.75MHz | | | | | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | | | | | NOTES | | | | | | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Peak
Total
dBµV/m
at 3m | Peak
Total
µV/m
at 3m | Peak
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|----------------------------------|--------------------------------|--------------------------------|----------------| | 914.75 | Н | 84.84 | | 2.92 | 26.27 | 0.00 | 114.03 | 503080.57 | | | | 914.75 | V | 84.33 | | 2.92 | 26.27 | 0.00 | 113.52 | 474392.21 | | | | 1829.50 | Н | 61.83 | | 3.86 | 30.84 | -40.85 | 55.69 | 608.74 | 50308.06 | -38.34 | | 1829.50 | V | 58.33 | | 3.86 | 30.84 | -40.85 | 52.19 | 406.85 | 50308.06 | -41.84 | | 5488.50 | Н | 45.40 | | 5.95 | 34.66 | -40.24 | 45.77 | 194.31 | 50308.06 | -48.26 | | 5488.50 | V | 47.02 | | 5.95 | 34.66 | -40.24 | 47.39 | 234.15 | 50308.06 | -46.64 | | 6403.25 | Н | 39.76 | Ambient | 6.34 | 35.76 | -40.14 | 41.71 | 121.79 | 50308.06 | -52.32 | | 6403.25 | V | 40.15 | Ambient | 6.34 | 35.76 | -40.14 | 42.10 | 127.38 | 50308.06 | -51.93 | | DATA PAGE | | | | | | | | | | |-------------------|---|--|--|--|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | | | | | EUT | MyQ Garage Door Opener | | | | | | | | | | MODEL NO. | 85802 | | | | | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in | | | | | | | | | | 1231 | Restricted Bands | | | | | | | | | | MODE | Tx – 914.75MHz | | | | | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | | | | | NOTES | | | | | | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Peak
Total
dBµV/m
at 3m | Peak
Total
µV/m
at 3m | Peak
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|----------------------------------|--------------------------------|--------------------------------|----------------| | 2744.25 | Н | 52.72 | Ambient | 4.62 | 32.54 | -40.40 | 49.47 | 297.67 | 5000.00 | -24.50 | | 2744.25 | V | 52.39 | Ambient | 4.62 | 32.54 | -40.40 | 49.14 | 286.58 | 5000.00 | -24.83 | | 3659.00 | Н | 54.00 | | 5.43 | 33.21 | -40.27 | 52.37 | 415.64 | 5000.00 | -21.60 | | 3659.00 | V | 54.27 | | 5.43 | 33.21 | -40.27 | 52.64 | 428.77 | 5000.00 | -21.33 | | 4573.75 | Н | 51.55 | Ambient | 5.64 | 34.33 | -40.13 | 51.39 | 371.17 | 5000.00 | -22.59 | | 4573.75 | V | 50.89 | Ambient | 5.64 | 34.33 | -40.13 | 50.73 | 344.02 | 5000.00 | -23.25 | | 7318.00 | Н | 49.75 | Ambient | 6.88 | 35.89 | -40.06 | 52.46 | 419.85 | 5000.00 | -21.52 | | 7318.00 | V | 49.48 | Ambient | 6.88 | 35.89 | -40.06 | 52.19 | 407.00 | 5000.00 | -21.79 | | 8232.75 | Н | 50.89 | Ambient | 7.17 | 36.04 | -39.94 | 54.16 | 510.63 | 5000.00 | -19.82 | | 8232.75 | V | 51.11 | Ambient | 7.17 | 36.04 | -39.94 | 54.38 | 523.73 | 5000.00 | -19.60 | | 9147.50 | Н | 51.24 | Ambient | 8.10 | 36.51 | -39.70 | 56.15 | 641.62 | 5000.00 | -17.83 | | 9147.50 | V | 51.22 | Ambient | 8.10 | 36.51 | -39.70 | 56.13 | 640.14 | 5000.00 | -17.85 | | DATA PAGE | | | | | | | | | | |-------------------|--|--|--|--|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | | | | | EUT | MyQ Garage Door Opener | | | | | | | | | | MODEL NO. | 85802 | | | | | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Restricted Band | | | | | | | | | | 1231 | Averages | | | | | | | | | | MODE | Tx – 914.75MHz | | | | | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | | | | | NOTES | | | | | | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Duty
Cycle
(dB) | Average
Total
dBµV/m
at 3m | Average
Total
µV/m
at 3m | Average
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|-----------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------| | 2744.25 | Н | 37.71 | Ambient | 4.62 | 32.54 | -40.40 | 0.00 | 34.46 | 52.87 | 500.00 | -19.51 | | 2744.25 | V | 37.76 | Ambient | 4.62 | 32.54 | -40.40 | 0.00 | 34.51 | 53.18 | 500.00 | -19.46 | | 3659.00 | Н | 40.87 | | 5.43 | 33.21 | -40.27 | 0.00 | 39.24 | 91.67 | 500.00 | -14.73 | | 3659.00 | V | 40.19 | | 5.43 | 33.21 | -40.27 | 0.00 | 38.56 | 84.77 | 500.00 | -15.41 | | 4573.75 | Н | 36.29 | Ambient | 5.64 | 34.33 | -40.13 | 0.00 | 36.13 | 64.06 | 500.00 | -17.85 | | 4573.75 | V | 36.29 | Ambient | 5.64 | 34.33 | -40.13 | 0.00 | 36.13 | 64.06 | 500.00 | -17.85 | | 7318.00 | Н | 34.75 | Ambient | 6.88 | 35.89 | -40.06 | 0.00 | 37.46 | 74.66 | 500.00 | -16.52 | | 7318.00 | V | 34.75 | Ambient | 6.88 | 35.89 | -40.06 | 0.00 | 37.46 | 74.66 | 500.00 | -16.52 | | 8232.75 | Н | 36.38 | Ambient | 7.17 | 36.04 | -39.94 | 0.00 | 39.65 | 96.07 | 500.00 | -14.33 | | 8232.75 | V | 36.39 | Ambient | 7.17 | 36.04 | -39.94 | 0.00 | 39.66 | 96.18 | 500.00 | -14.32 | | 9147.50 | Н | 36.36 | Ambient | 8.10 | 36.51 | -39.70 | 0.00 | 41.27 | 115.69 | 500.00 | -12.71 | | 9147.50 | V | 36.42 | Ambient | 8.10 | 36.51 | -39.70 | 0.00 | 41.33 | 116.49 | 500.00 | -12.65 | | DATA PAGE | | | | | |-------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in Non- | | | | | 1231 | Restricted Bands | | | | | MODE | Tx – 926.75MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | | | | | | Freq.
(MHz) | Ant
Pol. | Meter
Reading
(dBµV) | Ambien
t | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Peak
Total
dBµV/
m
at 3m | Peak
Total
μV/m
at 3m | Peak
Limit
μV/m
at 3m | Margi
n
(dB) | |----------------|-------------|----------------------------|-------------|---------------------|----------------------|--------------------|--------------------------------------|--------------------------------|--------------------------------|--------------------| | 926.75 | Н | 85.48 | | 2.94 | 26.4
7 | 0.00 | 114.89 | 555282.1
3 | | | | 926.75 | V | 83.50 | | 2.94 | 26.4
7 | 0.00 | 112.91 | 442093.0
6 | | | | 1853.5
0 | Н | 59.06 | | 3.88 | 30.9
7 | -
40.81 | 53.10 | 451.74 | 55528.2
1 | -41.79 | | 1853.5
0 | V | 54.51 | | 3.88 | 30.9
7 | -
40.81 | 48.55 | 267.54 | 55528.2
1 | -46.34 | | 5560.5
0 | Н | 39.73 | Ambien
t | 5.99 | 34.6
9 | -
40.23 | 40.17 | 102.01 | 55528.2
1 | -54.72 | | 5560.5
0 | V | 39.55 | Ambien
t | 5.99 | 34.6
9 | -
40.23 | 39.99 | 99.92 | 55528.2
1 | -54.90 | | 6487.2
5 | Н | 39.02 | Ambien
t | 6.35 | 35.9
5 | -
40.13 | 41.19 | 114.72 | 55528.2
1 | -53.70 | | 6487.2
5 | V | 39.05 | Ambien
t | 6.35 | 35.9
5 | -
40.13 | 41.22 | 115.11 | 55528.2
1 | -53.67 | | 9267.5
0 | Н | 40.43 | Ambien
t | 8.07 | 36.5
2 | -
39.67 | 45.35 | 185.16 | 55528.2
1 | -49.54 | | 9267.5
0 | V | 40.00 | Ambien
t | 8.07 | 36.5
2 | -
39.67 | 44.92 | 176.21 | 55528.2
1 | -49.97 | | 928.00 | Н | 30.93 | | 2.94 | 26.5
0 | 0.00 | 60.36 | 1042.86 | 55528.2
1 | -34.53 | | 928.00 | V | 28.40 | | 2.94 | 26.5
0 | 0.00 | 57.83 | 779.34 | 55528.2
1 | -37.06 | | DATA PAGE | | | | | |-------------------
---|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Harmonics in | | | | | 1231 | Restricted Bands | | | | | MODE | Tx – 926.75MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Peak
Total
dBµV/m
at 3m | Peak
Total
µV/m
at 3m | Peak
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|----------------------------------|--------------------------------|--------------------------------|----------------| | 2780.25 | Н | 52.54 | Ambient | 4.66 | 32.48 | -40.38 | 49.30 | 291.70 | 5000.00 | -24.68 | | 2780.25 | V | 51.69 | Ambient | 4.66 | 32.48 | -40.38 | 48.45 | 264.51 | 5000.00 | -25.53 | | 3707.00 | Н | 52.58 | | 5.44 | 33.22 | -40.23 | 51.02 | 355.50 | 5000.00 | -22.96 | | 3707.00 | V | 50.89 | | 5.44 | 33.22 | -40.23 | 49.33 | 292.64 | 5000.00 | -24.65 | | 4633.75 | Н | 50.45 | Ambient | 5.65 | 34.32 | -40.16 | 50.26 | 325.98 | 5000.00 | -23.72 | | 4633.75 | V | 50.20 | Ambient | 5.65 | 34.32 | -40.16 | 50.01 | 316.73 | 5000.00 | -23.97 | | 7414.00 | Н | 49.90 | Ambient | 6.90 | 35.81 | -40.05 | 52.57 | 424.93 | 5000.00 | -21.41 | | 7414.00 | V | 49.60 | Ambient | 6.90 | 35.81 | -40.05 | 52.27 | 410.50 | 5000.00 | -21.71 | | 8340.75 | Н | 51.01 | Ambient | 7.22 | 36.10 | -39.91 | 54.42 | 526.12 | 5000.00 | -19.56 | | 8340.75 | V | 51.22 | Ambient | 7.22 | 36.10 | -39.91 | 54.63 | 539.00 | 5000.00 | -19.35 | | | DATA PAGE | | | | | |-------------------|--|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | EUT | MyQ Garage Door Opener | | | | | | MODEL NO. | 85802 | | | | | | TEST | FCC §15.247, RSS-247 – Radiated Spurious Emissions – Restricted Band | | | | | | 1531 | Averages | | | | | | MODE | Tx – 926.75MHz | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | NOTES | | | | | | | Freq.
(MHz) | Ant.
Pol. | Meter
Reading
(dBµV) | Ambient | CBL
Fac.
(dB) | Ant.
Fac.
(dB) | Pre
Amp
(dB) | Duty
Cycle
(dB) | Average
Total
dBµV/m
at 3m | Average
Total
µV/m
at 3m | Average
Limit
µV/m
at 3m | Margin
(dB) | |----------------|--------------|----------------------------|---------|---------------------|----------------------|--------------------|-----------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------| | 2780.25 | Н | 37.51 | Ambient | 4.66 | 32.48 | -40.38 | 0.00 | 34.27 | 51.69 | 500.00 | -19.71 | | 2780.25 | V | 37.53 | Ambient | 4.66 | 32.48 | -40.38 | 0.00 | 34.29 | 51.81 | 500.00 | -19.69 | | 3707.00 | Н | 37.45 | | 5.44 | 33.22 | -40.23 | 0.00 | 35.89 | 62.28 | 500.00 | -18.09 | | 3707.00 | V | 35.85 | | 5.44 | 33.22 | -40.23 | 0.00 | 34.29 | 51.80 | 500.00 | -19.69 | | 4633.75 | Н | 35.52 | Ambient | 5.65 | 34.32 | -40.16 | 0.00 | 35.33 | 58.44 | 500.00 | -18.65 | | 4633.75 | V | 35.54 | Ambient | 5.65 | 34.32 | -40.16 | 0.00 | 35.35 | 58.57 | 500.00 | -18.63 | | 7414.00 | Н | 34.74 | Ambient | 6.90 | 35.81 | -40.05 | 0.00 | 37.41 | 74.18 | 500.00 | -16.57 | | 7414.00 | V | 34.76 | Ambient | 6.90 | 35.81 | -40.05 | 0.00 | 37.43 | 74.36 | 500.00 | -16.55 | | 8340.75 | Н | 36.21 | Ambient | 7.22 | 36.10 | -39.91 | 0.00 | 39.62 | 95.74 | 500.00 | -14.36 | | 8340.75 | V | 36.19 | Ambient | 7.22 | 36.10 | -39.91 | 0.00 | 39.60 | 95.52 | 500.00 | -14.38 | | | DATA PAGE | | | | | |-------------------|----------------------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | EUT | MyQ Garage Door Opener | | | | | | MODEL NO. | 85802 | | | | | | TEST | FCC §15.247, RSS-247 – Band Edge | | | | | | MODE | Tx – 902.25MHz | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | NOTES | | | | | | #### **BAND EDGE - LOW** Date: 15.FEB.2020 01:23:28 | DATA PAGE | | | | | |-------------------|----------------------------------|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | SERIAL NO. | S/N 1 | | | | | TEST | FCC §15.247, RSS-247 – Band Edge | | | | | MODE | Tx – 926.75MHz | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | | | | | #### **BAND EDGE - HIGH** Date: 15.FEB.2020 02:01:40 | DATA PAGE | | | | | |-------------------|----------------------------------|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | EUT | MyQ Garage Door Opener | | | | | MODEL NO. | 85802 | | | | | TEST | FCC §15.247, RSS-247 – Band Edge | | | | | MODE | FHSS | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | NOTES | | | | | #### **BAND EDGE - LOW** Date: 19.FEB.2020 05:32:49 | | DATA PAGE | | | | | |-------------------|----------------------------------|--|--|--|--| | MANUFACTURER | The Chamberlain Group, Inc. | | | | | | EUT | MyQ Garage Door Opener | | | | | | MODEL NO. | 85802 | | | | | | TEST | FCC §15.247, RSS-247 – Band Edge | | | | | | MODE | FHSS | | | | | | DATE TESTED | February 10 – 14, 2020 | | | | | | TEST PERFORMED BY | Tylar Jozefczyk | | | | | | NOTES | | | | | | #### **BAND EDGE - HIGH** Date: 19.FEB.2020 05:33:38