
Freescale Semiconductor
User’s Guide

PTKITSOFTUG
Rev. 1, 9/2005

CONTENTS

1 PDK Task Checklist ..3
2 Welcome to the Packet Telephony

Development Kit ...5
3 PDK Host Software Environment9
4 Using the PDK Embedded File System12
5 Networking the PDK ...35
6 Building and Debugging PDK Linux

Applications ..40
7 PPCBoot ..97
8 Using the PDK Flash Memory100
9 Customizing Linux on the PDK104
10 Building and Running DSP Applications107
11 Support and Upgrades ...111

Packet Telephony Development Kit
Software
The Packet Telephony Development Kit (PDK) is a platform for
evaluating and developing voice-over packet applications. The
PDK has an MPC8260 host network processor that runs Linux,
StarCore™ DSP resource cards that execute DSP code, and a
public switched telephone network (PSTN) card with interfaces
such as E1/T1 and analog telephone lines (see
Figure 1).
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Figure 1. Components of the Packet Telephony Development Kit (PTK)

The documentation for the kit components is listed in Table 1.

CAUTION: The Packet Telephony Development Kit includes open-construction printed circuit boards that
contain static-sensitive components. These boards are subject to damage from electrostatic
discharge (ESD). To prevent such damage, you must use static-safe work surfaces and grounding
straps, as defined in ANSI/EOS/ESD S6.1 and ANSI/EOS/ESD S4.1. All handling of these boards
must be in accordance with ANSI/EAI 625.

This document describes the PDK software environment:

• How to use the Linux operating system and the embedded utilities of the PDK.

• How to build your own utilities and Linux operating system.

• How to build your own DSP utilities.

The PDK hardware is bundled with the following software:

• Flash bootloader for low-level debugging and Flash/network booting.

• Linux kernel and a file system running from Flash memory.

Table 1. PTK Components and Their Associated Documents

Component Document Document ID

Baseboard Packet Development Kit Baseboard Hardware User’s Guide PTKITBASEUG

MPC8260
Control
Processor

MPC8260 PowerQUICC II™ Family Reference Manual
(Available at the web site listed on the back page of this user’s guide.)

MPC8260UM

PSTN Card Packet Development Kit PSTN Mezzanine User’s Guide PTKITPSTNUG

StarCore DSP
Resource
Daughter card

• MSC8102 Packet Telephony Farm Card (MSC8102PFC) User’s Guide
• MSC8101 Packet Telephony Farm Card (MSC8101PFC) User’s Guide

PTKIT8101UG

PTKIT8102UG

MSC8101,
MSC8102,
MSC8103, and
MSC711x
Processors

The reference manuals and other documentation for these DSP devices are
located at the web site listed on the back page of this user’s guide.

Software Packet Telephony Development Kit Software User’s Guide PTKITSOFTUG

PSTN StarCore DSP
Resource

Daughter card

MPC8260
Control

Processor
Ethernet

Managed
Packet

Network

Telephone
Network

Baseboard
Packet Telephony Development Kit Software, Rev. 1

2 Freescale Semiconductor

PDK Task Checklist
• Linux applications to control the DSP and telephony interface cards.

• Standard Linux networking applications such as FTP, telnet, and a web server.

• Full source code for the bootloader, linux kernel, and PDK applications.

• Linux software library with source code for writing your own applications.

• Example DSP software with source code.

• Compilers for the control processor and StarCore DSP resource card.

This software makes it easy for you to download and run media gateway applications after you obtain them from
Freescale Semiconductor and third parties. These applications provide a software infrastructure for your own
media gateway applications, and you can use them for testing and evaluation.

1 PDK Task Checklist
This section gives an overview of tasks you can perform with the packet telephony development kit and where to
find information on how to do them:

• First steps. Read this document to familiarize yourself with the kit. To get started, you need a PC with
a terminal window and the serial cable included in the kit. Follow the directions in Section 3, PDK
Host Software Environment, on page 9 of this document. Remember to ensure that the power supply is
set correctly for your country before powering the unit on.

• Verify that the board is working. The PDK ships with Linux embedded in the Flash memory. After you
plug the serial port into a PC and power on the board as outlined in Section 4.1, you can log in and run
simple tasks such as ringing telephones, talking phone-to-phone or phone-to-T1 interface, and running
DSP programs. Section 3 describes several applications that you can use simply by typing in
commands. No software installation is necessary to run the applications on the PDK.

• Download and upload data and applications to the PDK. The PDK contains two Ethernet interfaces to
connect the PDK to your network. The second Ethernet plug from the serial port is used by default.
After you connect the PDK to your network, you can access it via telnet, FTP, or a web browser.
Section 5, Networking the PDK, on page 35 explains how to change network parameters such as the IP
address.

• Build Linux applications for the PDK. First, you must install a cross-complier on a PC running Linux,
as described in Section 6.1, Cross-Compiler, on page 40. A cross-compiler is included as part of the
kit in the Platform Creation Suite CDs (PCS). The PDK includes a Linux software library, libpdk,
that makes it easy to write your own applications, as described in Section 6. To get libpdk, you must
copy and unzip pdk_src_pc_newlines.zip (for a Windows PC) or
pdk_src_unix_newlines.tgz (for UNIX/Linux) on the SPT Supplemental Software CD. This
file includes the Linux kernel source, as well as the PDK software C library and example programs.
For directions on how to build your example applications, see Section 6.1. After your applications are
built, you can download them to the PDK over the network as shown in Section 5.

• Debug the applications. With Linux, use gdb, as described in Section 6.5, Debugging Applications
With GDBServer, on page 90. Linux applications should not require a hardware debugger.

• Write your own DSP software. The DSP software requires a PC running Windows and a copy of
CodeWarrior® for StarCore compile. The DSP software included with the kit builds with makefiles
under Cygwin. A 30-day evaluation copy of CodeWarrior for StarCore is included in the PDK. In
addition, some stationary (an example program and initialization files for CodeWarrior) for the
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 3

PDK Task Checklist
MSC8102PFC and MSC8101PFC (Packet Telephony Farm Card) of the PDK is included in the SPT
Supplemental Software CD.

First, install CodeWarrior for StarCore on your Windows PC. Next, unzip dsp_software.tgz on
the SPT Supplemental Software CD onto your PC and follow the instructions in Section 3, PDK Host
Software Environment, on page 9 to install the PDK stationary. You can download your code to the
DSPs either through a JTAG debugger or through the host, as described in Section 10, Building and
Running DSP Applications, on page 107.

• Get the latest software and upgrade the PDK. Section 11, Support and Upgrades, on page 111
explains how can subscribe to the PDK mail list and FTP site to get support alerts and the latest PDK
software. Also, see Section 8.1, Updating the PDK Flash Memory, on page 100.

• Third-party software. Third parties are currently porting their packet telephony software over to the
PDK. Evaluation versions of this software will be available from third-party web sites in the future.

• Get Help. Send an e-mail to support@metrowerks.com and be sure to refer to your kit by its part
number (MSC8101/3 kits as SPT8101PDK and MSC8102 kit as SPT8102PDK).
Packet Telephony Development Kit Software, Rev. 1

4 Freescale Semiconductor

Welcome to the Packet Telephony Development Kit
2 Welcome to the Packet Telephony Development Kit
This section walks you through the initial steps of getting started. For more information, refer to the Packet
Telephony Development Kit Software User’s Guide. A PDF copy of this document is included on the PDK
Supplemental Software CD in the docs/ directory.

Table 2.

Step 1:

Unpack the hardware kit contents:

• Power supply

• Power supply cable

• PDK unit

• Serial cable

• Ethernet cable

Your kit may also include daughter cards that should
be plugged in before you proceed.

Step 2:

On the power supply, ensure that the voltage is set
correctly for your country (110 or 220). If you fail to
do this, you can ruin the power supply and/or
destroy your development kit.

Development Kit Power Supply

RS-232
Cable AC Power CordEthernet Cable

PSTN
Daughter
Card
Slot

DSP Daughter
Card Slot

110-220 Switch

On-Off Switch
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 5

Welcome to the Packet Telephony Development Kit
Step 3:

Ensure that the power switch at the front of the PDK
is in the OFF position.

Step 4:

Plug the ATX power connector from the power
supply into the PDK power supply card.

Step 5:

Plug the AC power cord into the wall and ensure
that the switch on the power supply is in the ON
position. The unit will not power on yet.

Table 2.

Power Switch

ATX Power Supply
Connection

Power Supply Cable
Packet Telephony Development Kit Software, Rev. 1

6 Freescale Semiconductor

Welcome to the Packet Telephony Development Kit
Step 6:

Connect the RS-232 cable to a COM port on a PC.

Step 7:

On the PC, open a terminal emulator such as hyper
terminal or teraterm. The terminal should be
configured as follows:

• Baud rate: 115200

• Data: 8 bit

• Parity: None

• Stop: 1 bit

• Flow control: none

Step 8:

Power on the PDK by turning the power switch on
the front of the PDK to the ON position. You should
see text on the terminal window as the system boots.
Boot is complete when you see a login prompt.

Step 9:

After Linux boots in the terminal window and you
are prompted for a user name, type demo for the
user name and press return.

Table 2.

RS-232
Connector

Ethernet
Connector
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 7

Welcome to the Packet Telephony Development Kit
Now that the baseboard has booted Linux, you can run embedded applications. Your PDK may have come with a
DSP card in the second slot. Applications for the DSP card are also included in the kit. For details on the embedded
applications, networking the PDK, building your own applications, and more, refer to the Packet Telephony
Development Kit Software User’s Guide. One of your first steps should be to check for software upgrades, as
discussed in Section 11, Support and Upgrades, on page 111.

Step 10:

You can optionally connect the Ethernet to a PC or a
full-duplex hub. The PDK software assumes full-
duplex, so look for the words switch or full-duplex
on the hub or in its documentation. Either 10 or 100
Mbit Ethernet are supported, but 100 is
recommended. The second Ethernet from the serial
cable, as shown in the figure, must be used.

The default IP address for the PDK is 192.168.1.50.
From an external PC, you can telnet, FTP to and
from, or point a web browser to the PDK IP address.

Step 11:

If your kit has a PSTN card, you can connect
telephones and T1 lines to the PDK. For example, to
play with connecting phones, type init_pstn1-
s ph_to_ph and talk between adjacent pairs of
phones. Enter duslic to test ringing phones and so
on.

Table 2.

Telephone Connections
E1/T1
Connections
Packet Telephony Development Kit Software, Rev. 1

8 Freescale Semiconductor

PDK Host Software Environment
3 PDK Host Software Environment
The PDK host operating system is Linux, which offers a rich suite of networking stacks, low cost, and convenient
development environment. The PDK software environment has three primary elements.

• Bootloader. When the PDK starts up, it runs a program from Flash memory called PPCBoot.
PPCBoot (now called U-Boot) is a freeware utility that sets up the serial port and Ethernet and then
can decompress and boot a Linux image either from Flash memory or from the network using a
protocol called Trivial File Transfer Protocol (TFTP). PPCBoot also allows the Flash memory to be
reprogrammed and memory to be viewed using a simple command line interface.

• Linux kernel. The heart of the operating system. By default a compressed kernel image resides in Flash
memory. PPCBoot decompresses it into the PDK memory and then Linux starts. PPCBoot can be
reconfigured to get the Linux kernel image from a TFTP server on the network.

• File system. Linux requires a root file system. By default, a compressed root file system also resides in
Flash memory. PPCBoot decompresses it into external memory, creating a Ramdisk. Alternatively,
Network File system (NFS) can be mounted from the Ramdisk as a secondary file system, or PPCBoot
can be configured to use NFS directly as its root file system.

3.1 PDK Operating Modes
The PDK operates in three basic modes:

• Stand-alone configuration. The software is embedded on the PDK to exercise basic functionality in
Flash memory for the kernel, the root file system, and the applications (see Section 4, Using the PDK
Embedded File System).

• Stand-alone with operational network. This is the stand-alone configuration, except that the network is
plugged in and set up with the right addresses. The PDK can connect to a network and use such
facilities as FTP, telnet, web serving, and NFS, affording users more development options and the
ability to download other applications. For details, see Section 5, Networking the PDK. For
instructions on how to upgrade Flash memory over the network, see Section 8, Using the PDK Flash
Memory.

• User-configured operating system. If you are interested in building your own operating system or file
systems, an evaluation copy of Lineo Linux Platform Creation Suite is provided with PDK support.
You can also port other operating systems to the PDK.

In the second and third modes, you can build your own applications on a Linux PC using a cross-compiler. A C
software library is also included to assist you. Section 10, Building and Running DSP Applications describes how
to build custom Linux environments.

3.2 PDK DSP Software Environment
You can build and debug DSP software using CodeWarrior for StarCore. The PDK DSP cards can be booted from
the host. Example applications and bootloader utilities are provided. You can download applications over the
network and start DSP programs using the host Linux environment. The DSP devices themselves do not run Linux.
Figure 2 shows the PDK as a demonstration environment. Two PDKs are used as media gateways that make voice,
fax, and modem over IP calls to each other. The PDKs could also make voice calls to the IP phone in the figure.
Since the PDK can boot Linux from its Flash memory, it is an effective standard demonstration vehicle that is
portable and stand-alone.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 9

PDK Host Software Environment
Figure 2. PDK As a Software Demonstrator

Figure 3 shows the PDK as a test platform for software. Bulk call generation equipment is connected via T1 to the
telephony card. On the network, VoIP test equipment is connected to the Ethernet interface, which is useful for
evaluating Freescale Semiconductor or third-party software. You can use the PDK Linux that boots from Flash
memory to download and run applications. Other applications bundled with the PDK are for configuring the
telephony interfaces. If you are doing bulk testing, you may find it convenient to write test software under the
Linux environment.

Figure 3. PDK As a Test Platform

Finally, Figure 4 shows the PDK as a software development environment in which you write your own host and
DSP application code. PDK Linux offers all the development convenience of a Linux work station with shells,
telnet, native tools, file system (via NFS), and so on. In this example, the PDK uses NFS for access to large
amounts of storage and a shared development environment with PC Linux. Also, there is a suite of Metrowerks
development tools that uniformly target MPC8260 and StarCore.

Figure 4. PDK as a Software Development Environment

Ethernet
Network

PDK

DSP
Card

Telephone
Card

PDK

DSP
Card

Telephone
Card

IP Phone

LAN

PDK

DSP
Card

Telephone
Card

Test Equipment

T1

Test Equipment

PDK

DSP
Card

Telephone
Card

Test Equipment

T1

LAN
Test EquipmentMetrowerks

Debuggers

Linux Development Server:

NFS Server
TFTP (For Boot)
Packet Telephony Development Kit Software, Rev. 1

10 Freescale Semiconductor

PDK Host Software Environment
3.3 Supplemental CD Contents
No installation is necessary to run the PDK in stand-alone or networked mode. To write your own host
applications, decompress the Linux software onto a Linux PC. To write DSP applications, decompress the DSP
software onto a Windows PC and install CodeWarrior for StarCore. The following list summarizes the contents of
the PDK Supplemental CD:

• pdk_src_pc_newlines.zip
pdk_src_unix_newlines.tgz

These files contain libraries (including libpdk), utility programs, the source for the PDK Linux kernel,
and other files for the PDK platform. Source code is included, and there is source code for software
that runs on DSP devices on DSP daughter cards rather than on the PDK MPC8260 processor. Text
files in pdk_src_unix_newlines.tgz have UNIX-style newlines. Unpack this archive using
the following command on a UNIX or Linux system:

tar zxvf pdk_src_unix_newlines.tgz
Text files in pdk_src_pc_newlines.zip have Windows-style newlines. This is useful for DSP
source code and for reading Linux code on a PC. Unpack this archive with the zip utility of your
choice.

• images/pdk_00010900

Contains PDK Linux kernel version 00010900 in PPCBoot image format. This object file can be used
to boot Linux on the PDK. Of course, the version number changes from release to release.

• images/ppcboot_00010900.bin

Contains object code for the PDK bootloader PPCBoot version 00010900 in binary format. This file
programs the PDK MPC8260 Flash memory as if it has been entirely erased.

• images/rootfs_00010900.gz
images/rootfs_00010900.PPCBoot

These two files contain the file system image for the small Linux root file system that is programmed
into the MPC8260 Flash memory. The rootfs_00010900.gz file is simply a compressed file
system image. The same is true of the rootfs_00010900.PPCBoot file, except that it is
converted to PPCBoot image format. Of course, the version number changes from release to release.

• cw_files/

This directory contains configuration files for using the Metrowerks CodeWarrior DSP tools with
PDK DSP cards.

• docs/

This directory contains PDK documentation files.

• scripts/

This directory contains script files to customize the PDK for different environments.

3.4 Versions and Release Notes
The version number of the PDK software is a 32-bit hexadecimal number on the PDK Supplemental Software CD
and in the release notes. The version number of this document is 00010900. For corrections or additions to this
document for your version, consult the release notes in the /docs directory.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 11

Using the PDK Embedded File System
4 Using the PDK Embedded File System

The PDK does not require any external software or even a network connection to run most applications. Instead, it
boots Linux from the Flash memory and then decompresses a ramdisk from Flash memory into on-board memory.
This ramdisk operates just like the hard drive on a PC, except that it does not allow persistent storage; any files you
create on the ramdisk go away when the PDK is powered off. Included in the embedded ramdisk that is mounted
when you start up the PDK are several stand-alone applications that are discussed in this section. Using the
embedded Linux on the PDK is similar to using Linux on a PC. Standard command-line operators such as ls, cd,
echo, touch, and so on work the same way. The applications directory is part of the path so that you can type the
application name as a command from any directory on the PDK. Networking applications that are part of the
embedded ramdisk are documented in Section 5, Networking the PDK, on page 35.

4.1 Start-up in Stand-Alone Mode
Figure 5 shows the PDK baseboard interfaces, which are referenced in this section.

Figure 5. Baseboard Interfaces

To operate in stand-alone mode, perform the following steps:

1. Connect the serial port cable between the PDK and a PC.

2. Open a terminal emulator on your PC (for example, TeraTerm, HyperTerminal, Minicom, and so on).

3. Configure the terminal as follows:

— Baud rate: 115200

— Data: 8 bit

— Parity: none

Power Connector

JTAG ResetH.100
TDM

DSP Card
Ethernet

Baseboard
Ethernet

Serial
Port

PSTN Card
Slot DSP Card

Slot

ATM Card
Slot
Packet Telephony Development Kit Software, Rev. 1

12 Freescale Semiconductor

Using the PDK Embedded File System
— Stop: 1 bit

— Flow Control: none

4. Ensure that the baseboard and PSTN card connectors are attached, plug the PDK into an AC wall sup-
ply, and turn the power on.

WARNING: Before powering on the PDK, be sure that the power supply is set correctly for your country. A
switch on the side of the power supply indicates 110V or 220V. See the hardware manual for
details.

You should see the PDK bootloader execute and then boot Linux. Do not stop the autoboot process.

5. At the login prompt enter demo for the user name and demo for the password.

You can now run the embedded applications. To run an application, type it as a command using the
standard Linux command-line operators, such as ls, cd, echo, touch, and so on.

4.2 Baseboard Applications
The following applications can run regardless of whether the PDK baseboard is populated with mezzanines.

Table 3. Baseboard Applications

Application Usage Description

pdk_led pdk_led
on|off

Controls an LED on the PDK baseboard. For example, to turn the LED on type:
pdk_led on

pdk_version pdk_version Prints the version number of libpdk linked with the utilities. The utilities and libpdk
are tested and released as a set so they share the same version number.

progflash progflash [-w
hrcw] [-v] [-
h] filename]

Programs the Flash memory on the PDK baseboard. It is typically used to place
an updated version of the bootloader (u-boot or PPCBoot) into the Flash
memory.

The file containing the new Flash image must be in the binary format that the
PPCBoot build process uses (file.bin). Such files are produced from elf files using
objcopy -O binary. For details on upgrading the flash file system and Linux kernel
on the PDK, see Section 8.1, Updating the PDK Flash Memory, on page 100.

WARNING: Be very careful when using progflash. Never interrupt the flash
programming process (which takes several minutes). If the Flash memory
becomes corrupted and you reboot Linux, the bootloader does not function and
you cannot boot Linux to run progflash again to fix the problem. The only way out
of this problem is to use a JTAG-based external flash-programming tool.

The progflash utility is needed only to install a new version of the PDK
bootloader. This should not be necessary very often. The PDK bootloader itself
can install new versions of the Linux kernel and root file system images into the
Flash memory. The progflash utility is not needed for these tasks.

Option Summary

–v Print version number and exit

–h Print the help message and exit

–w hrcw Use HRCW (0xNNNNNNNN) rather
than the default HRCW for the
MPC8260.

prmap prmap Displays the MPC8260 memory map.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 13

Using the PDK Embedded File System
4.3 PSTN1 Card Applications
The PDK PSTN1 card provides four plain old telephone service (POTS) telephone interfaces and four E1/T1
interfaces (see Figure 6). It contains the following major components:

• QuadFALC E1/T1 framer and line interface unit.

• Two DuSCLIC chip sets with a total of four POTS ports.

• Time slot interchanger (TSI) for flexible system connectivity. The TSI is the heart of the PSTN1 card.
The TSI interconnects four TDM streams numbered 0 to 3, as described in Table 4. Each stream has
128 8-bit channels providing a total bit rate of 8 MHz per stream.

Figure 6. PSTN Card

The TSI allows any stream on any time slot to connect to any other stream and time slot. Thus, for example, the
TSI can connect all the E1/T1 channels and the four POTS ports to the CT_D0/CT_D1 stream that is routed to the
DSPs. It can also connect the POTS ports directly to each other or to E1/T1 channels and so on. The remainder of
this section describes the applications that control the PST1 card.

Table 4. Four TDM Streams Interconnected by the Time Slot Interchanger

Stream Description

Stream 0 Moves from the TSI to the baseboard via signals CT_D0 and CT_D1. These signals are routed to
the DSP card and then to the DSP TDM ports.

Stream 1 Moves from the TSI to the QuadFALC E1/T1 framer.

Stream 2 Moves from the TSI to the DuSLICs.

Stream 3 Moves from the TSI to the baseboard via signals CT_D4 and CT_D5. These signals are routed to
the DSP card and then to the DSP TDM ports. They are also routed to a TDM port on the 8260.

Quad E1/T1 FramerFour Codecs

Time-Slot
Switch

S
LIC

S
LIC

S
LIC

S
LIC

Four E1/T1 LinesFour POTS

Bus Interface

IRQ

CT5 Rx to MPC8260 and DSP Card

CT4 Tx to MPC8260 and DSP Card

CT1 Rx from DSP Card

CT0 Tx to DSP Card

Stream 2 Stream 1

Stream 0

Stream 3

SPI

IRQ
Packet Telephony Development Kit Software, Rev. 1

14 Freescale Semiconductor

Using the PDK Embedded File System
init_pstn1
Usage

init_pstn1 [OPTION] [OPTION]...

Description

Resets and configures the PSTN1 card. Use init_pstn1 to establish the initial PSTN1 card configuration.
Subsequently, run tsi, qf, and duslic to change or view the dynamically configurable parameters of the PSTN1 card.
See the descriptions of these utilities. init_pstn1 is by far the most convenient way to initialize the PSTN1 card.
Use it and avoid using the “i” options to program qf, tsi, and duslic.

To perform a simple test of the PSTN1 card that enables you to talk between the phone pairs, connect a pair of
telephones to PSTN1 POTS (RJ-11) port 0 and 1, 2 and 3 (or both) and enter the following command:

init_pstn1 -s ph_to_ph

Option Summary

Options –f, –l, –c, and –C all refer to the PSTN1 card T1 interface. If you are not using T1, you can omit these
options.

–f esf|d4 Selects the T1 framing type. Default: esf

-l b8zs|ami Selects the T1 linecoding type. Default: b8zs.

-c master|slave Selects the T1 clocking mode. Default: slave.

-C Selects clear-channel mode (that is, disables T1 robbed bit signaling).

-s tsi_script. A script of TSI commands. Default: null_script. See tsi for
details.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 15

Using the PDK Embedded File System
qf
Usage

qf -i -c (master|slave)] [-f (esf|d4)] [-l (b8zs|ami)] [-C] [-T]

Description

Changes the configuration mode of the T1 framer on the PSTN card. qf is used with the -i option as part of the
PSTN1 card initialization. It also runs in an interactive mode that is useful for experimenting with T1 signaling. qf
is typically run without any options in an interactive mode. Without any options, qf does not initialize the
QuadFALC but instead allows interactive access to certain QuadFALC control and status functions. You must have
previously initialized the QuadFALC with qf -i OPTIONS or more simply init_pstn1 OPTIONS.

With ESF framing, there are four signaling bits (often called A, B, C, and D), so signaling values for a channel
range from 0 to 15. Bit A is the most significant. With D4 framing, there are only two signaling bits (A and B), so
signaling values range from 0 to 3. Bit A is still the most significant. You can run the qf utility interactively by
entering qf and then entering help to see a list of commands.

Option Summary

Interactive Commands

-i Initializes the QuadFALC T1/E1 interface on the PSTN1 card and exits.
The options for this application are valid only if the QuadFALC is
initialized by either qf or init_pstn1. There is little reason to run qf with -i
since running init_pstn1 is more convenient because it automatically
handles interactions among the devices on the PSTN1 card. For example,

qf -i -c slave -f d4 -l ami

initializes the QuadFALC as a clock slave with d4 framing and ami
linecoding. Options -c -f -l, and -C are ignored without -i.

-f esf|d4 Selects T1 framing type. Default: esf.

-l b8zs|ami Selects T1 linecoding type. Default: b8zs.

-c
master|slave

Selects T1 clocking mode. Default: slave.

-C Selects clear-channel mode (that is, disables T1 robbed bit signaling).

-T Tests T1 and exits. This test assumes that PSTN1 T1/E1 ports 0 and 1 and
also 2 and 3 are interconnected with T1 crossover cables and that the
QuadFALC has been initialized with qf -i OPTIONS or more simply
init_pstn1 OPTIONS. Results are printed, and exit status value 0
indicates a passing test.

help Prints a list of commands.

swr falc_no
chan val

Writes val to the signaling bits for the channel on falc_no.

srd falc_no
chan

Reads signaling bits for the channel on falc_no.

srd_all Reads the signaling bits for all channels on all FALCs.

stat falc_no Reads the status of falc_no.
Packet Telephony Development Kit Software, Rev. 1

16 Freescale Semiconductor

Using the PDK Embedded File System
exit Exits qf.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 17

Using the PDK Embedded File System
tsi
Usage

tsi [OPTION] [OPTION]...

Description

The tsi utility controls the time-slot interchanger on the PDK PSTN1 card. It can make a connection between any
time slot on any stream and any other time slot on any other stream. This program is used with the -i option for
PSTN1 card initialization and can also run in an interactive mode to provide many features that are very useful in
debugging and monitoring data on the PDK TDM highways. Numbers can be decimal or hexadecimal (for
example, 0x12). Time slots are numbered from 0 to 127.

The PSTN1 card TSI interfaces to four 128 time slot streams:

Option Summary

Interactive Commands

Without any options, tsi does not initialize the TSI but instead allows interactive access to certain TSI control and
status functions. You must have initialized the QuadFALC with tsi -i OPTIONS or more simply
init_pstn1 OPTIONS. You can run the tsi utility interactively by entering tsi and then entering help to
see a list of commands.

Stream Connects TSI to

Stream 0 CT_D0/CT_D1 (to baseboard)

Stream 1 QuadFALC on the PSTN1 card

Stream 2 Dual SLICs on the PSTN1 card

Stream 3 CT_D4/CT_D5 (to baseboard)

-V Be verbose.

-v Prints version information and exits.

-i Initializes the TSI on the PSTN1 card and exits. There is little reason to run
tsi with -i since running init_pstn1 is more convenient because it
automatically handles interactions among the devices on the PSTN1 card.

-h Prints a command summary and exits.

-c Clears all connections.

-s name Runs a script and exits.

make
dst_stream
dst_slot
src_stream
src_slot

The output on (dst_stream, dst_slot) is the input from
(src_stream, src_slot).

break
dst_stream
dst_slot

The output on (dst_stream, dst_slot) is tri-stated.
Packet Telephony Development Kit Software, Rev. 1

18 Freescale Semiconductor

Using the PDK Embedded File System
Example

Attach a pair of phones to PSTN1 POTS (RJ-11) ports 0 and 1 and optionally another pair to ports 2 and 3. Enter
the init_pstn1 command to initialize the card. Next, enter the tsi command followed by the state
command to see that the TSI connection memory is all zeros. There are no connections. Enter the following four
commands:

make 2 0 2 1
make 2 1 2 0
make 2 2 2 3
make 2 3 2 3

You can now talk between the pairs of phones because the PSTN1 card design (and default DuSLIC initialization)
has the following order:

• POTS port 0 on Stream 2 time slot 0

• POTS port 1 on Stream 2 time slot 1

• POTS port 2 on Stream 2 time slot 2

• POTS port 3 on Stream 2 time slot 3

Each make creates a uni-directional connection, so the first of the four make commands in the example routes
sound from POTS 1 to POTS 0.

TSI Scripts

Creating TSI connections can be tedious, so the tsi utility allows them to be placed into scripts that can run in
interactive mode using the source command. In addition, numerous predefined scripts establish common
connection patterns. The list command in interactive mode lists their names. These predefined scripts are
ordinary text files, and by default they reside in the /usr/local/pdk/etc/pstn1 directory so you can

loop
dst_stream
dst_slot

The output on (dst_stream, dst_slot) is the input from
(dst_stream, dst_slot).

const
dst_stream
dst_slot value

The output on (dst_stream, dst_slot) is value, an 8-bit number.

d stream Takes a snapshot of the input values on all time slots on the selected stream.
Prints the values to stdout.

tsd stream
slot

Prints the value of one time slot to stdout.

clear

state Prints the state of the TSI registers and connection memory to stdout.

help Prints the help message to stdout.

exit Terminates TSI or quits the file being sourced.

verbose Be verbose

quiet Do not be verbose.

list Lists standard scripts.

source
filename

Runs commands from filename. The file cannot contain a source command.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 19

Using the PDK Embedded File System
examine them. You can also write your own scripts. To locate script files named in a source command (or with
the -s option)., the tsi utility first searches the current directory, and, if it does not find the script there, it then
searches the /usr/local/pdk/etc/pstn1 directory. A summary of the predefined scripts follows.

const_ctd_0_1 Drives constants equal to time slot index on CT_D0/CT_D1.

const_ctd_4_5 Drive constants equal to time slot index on CT_D4/CT_D5.

null_script Does nothing.

ph_to_ph Connects POTS 0 <-> POTS 1 and POTS 2 <-> POTS 3.

ph_to_t1_0 Connects POTS to T1 line 0.

The four POTS ports are connected to the first four time slots of T1 line 0
as follows:

POTS 0 to T1 line 0 first time slot

POTS 1 to T1 line 0 second time slot

POTS 2 to T1 line 1 first time slot

POTS 3 to T1 line 1 second time slot

This script and ph_to_t1_0_1 are useful for connecting the PDK phones to
external T1 equipment, in effect using the PDK as a simple channel bank
and establishing four connections.

If you connect T1 line 0 to T1 line 1 with a T1 crossover cable, you can talk
from phone-to-phone much as you can with ph_to_ph. However, the
conversation travels over T1 instead of just to the TSI and back.

If you try this, set the T1 clocking to master to run as root:

init_pstn1 -c master -C -s ph_to_t1_0_1

ph_to_t1_0_1 Connects POTS to T1 lines 0 and 1.

The four POTS ports are connected to the first four time slots of T1 line 1,
as follows:

• POTS 0 to T1 line 0 time slot 0
• POTS 1 to T1 line 1 time slot 0
• POTS 2 to T1 line 0 time slot 1
• POTS 3 to T1 line 1 time slot 1

ph_to_t1_1 Connects the four POTS ports to the first four time slots of T1 line 1.
Packet Telephony Development Kit Software, Rev. 1

20 Freescale Semiconductor

Using the PDK Embedded File System
pstn_to_ctd_0_1 Connects POTS and T1 to CT_DO/CT_D1. This script connects all POTS
ports and all T1 channels to stream 0 (CT_D0/CT_D1), thus connecting the
POTS ports and T1 channels to a stream that can be accessed by DSP
devices on the PDK DSP card. The connection pattern is:

• Time slot 0–3 to POTS 0–3
• Time slot 4–27 to T1 line 0 (24 time slots)
• Time slot 28–34 to 7 more time slots in case line 0 is E1
• Time slot 35–58 to T1 line 1 (24 time slots)
• Time slot 59–65 to 7 more time slots in case line 1 is E1
• Time slot 66–89 to T1 line 2 (24 time slots)
• Time slot 90–96 to 7 more time slots in case line 2 is E1
• Time slot 97–120 to T1 line 3 (24 time slots)
• Time slot 121–127 to 7 more time slots in case line 3 is E1
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 21

Using the PDK Embedded File System
duslic
Usage

duslic [-i]

Description

A utility to control the POTS interfaces on the PSTN1 card. The duslic utility is used with the -i option as part of
PSTN1 card initialization. It also runs in an interactive mode to demonstrate DuSLIC capabilities.

Option Summary

Interactive Mode

Running duslic without -i causes it to enter an interactive mode. It automatically prints a menu of commands. For
example, entering R0 rings an on-hook phone attached to POTS port 0. Entering S0 stops this ringing. The
commands are self-explanatory. Ring and tone cadence is not supported.

The PSTN1 card must be initialized (generally by running init_pstn1) before you can run duslic in interactive
mode.

-i Initializes the DuSLICs on the PSTN1 card and exits. There is little reason
to run duslic with -i. Running init_pstn1 is more convenient because it
automatically handles interactions among the devices on the PSTN1 card.
Packet Telephony Development Kit Software, Rev. 1

22 Freescale Semiconductor

Using the PDK Embedded File System
reset_telc
Usage

reset_telc

Description

The reset_telc utility resets but does not initialize the PSTN1 card. Generally, you should use init_pstn1 rather than
reset_telc because the latter both resets and initializes the PSTN1 card.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 23

Using the PDK Embedded File System
4.4 DSP Card Applications
A variety of DSP cards are available, but they all share a common bus interface to one or more MSC8101 or
MSC8101 DSP devices. The bus interface is called HDI16. Currently, two DSP cards are supported:

• MSC8101PFC with six MSC8101 DSP devices (see Figure 7)

• MSC8102PFC with a single MSC8101DSP device that switches packets for five MSC8102 DSP
devices (see Figure 8)

For the MSC8101PFC, the MPC8260 device can boot, configure, and communicate with all six DSP devices from
its local bus. For the MSC8102PFC, the MPC8260 device can communicate directly with only the single
MSC8101 DSP card.

Figure 7. MSC8101PFC

You must set an environment variable, pdk_dspc, before you can run either the MSC8101PFC or the
MSC8102PFC. If you have an MSC8101PFC, enter the following command:

export pdk_dspc=8101pfc

If you have an MSC8102PFC, enter the following command:

export pdk_dspc=8102pfc

MSC8101

HDI16

MSC8101

HDI16

MSC8101

HDI16

MSC8101

HDI16

MSC8101

HDI16

MSC8101

HDI16

SDRAM SDRAM SDRAM

SDRAM SDRAM SDRAM

FPGA

TDM

UTOPIA

Local Bus
Connects to
HDI16

MII to Ethernet
PHY

MII to Ethernet
PHY
Packet Telephony Development Kit Software, Rev. 1

24 Freescale Semiconductor

Using the PDK Embedded File System
Figure 8. MSC8102PFC

The remainder of this section describes the applications that control the PFCs.

FCC1

MSC8101 FPGA

16 MB

SDRAM
DSI MSC8102

16 MB

SDRAM

16 MB

SDRAM

16 MB

SDRAM

16 MB

SDRAM

DSI MSC8102

DSI MSC8102

DSI MSC8102

DSI MSC8102

32
Bits

32
Bits

32
Bits

32
Bits

32
Bits

CT Bus

CT Bus

CT Bus

CT Bus

CT Bus

PN2

PN2

PN2

PN2

PN2

32-Bit

32-/64-Bit
System

Bus

CPORT

GMII Interface

Host

UTOPIA

Ethernet

(MII 1)

Ethernet

(MII 2)

Ethernet

(RMII)

Buffer

FCC2

SMC2

MUX

FPGA

PN4

PN5

PN5

PN2

PN1

PN3

8 MB

SDRAM

4 MB

Flash

Latch

MUX Latch

8-Bit
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 25

Using the PDK Embedded File System
reset_dspc
Usage

reset_dspc [-v] [-f filename]

Description

Performs a total reset and initialization of the DSP card. You should not have to use this program to run other DSP
utilities.

Option Summary

-v Prints the version number and exits.

-hrcw value Use value as the HRCW instead of the default.

-h Prints the help message and exits.

-f filename Loads filename rather than the default.
Packet Telephony Development Kit Software, Rev. 1

26 Freescale Semiconductor

Using the PDK Embedded File System
hditest
Usage

hditest [-h] [-v] [-f filename]

Description

Performs a low-level test of the HDI16 interface(s) of the DSP card, as follows:

1. Resets the DSP devices.

2. Downloads a small program to them that reads data from HDI16, modifies the data, and writes it back
to the MPC8260.

3. The MPC8260 writes data to the HDI16 port(s) and then reads data from them and verifies that the
data read is correct.

The pdk_dspc environment variable must be set to the type of DSP card you are using, MSC8101PFC,
MSC8102PFC, and so on.

Running hditest disrupts any other HDI16 activity. For example, do not run hditest while the HDI16 device driver
(HETH) is loaded.

Option Summary

-v Prints the version number and exits.

-h Prints the help message and exits.

-f filename Loads filename rather than the default DSP test program. A non-standard
implementation of the DSP test program can be used instead of the default.
You will rarely use this option.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 27

Using the PDK Embedded File System
hdidl
Usage

hdidl OPTIONS_AND_FILENAMES

Description

Downloads programs onto the DSP devices via their HDI16 port and starts the programs running. The programs to
be downloaded must be either S-record or ROM bootloader files. The pdk_dspc environment variable must be set
to the type of DSP card you are using, MSC8101PFC, MSC8102PFC, and so on.

Option Summary

Command-line arguments are processed from left to right. For example, if you are using an MSC8101PFC DSP
daughter card, which has six MSC8101 DSP devices, each with an HDI16 port that the MPC8260 can access on its
bus, you would enter the following command:

hdidl -f 1 -l 2 p1.srec -rbl -f 4 -l 5 p2.rbl -srec -f 0 -l 0 p3.srec

• -f 1 -l 2 specify that the next program is to be downloaded to DSP devices with indices from 1 to
2 inclusive and run on them.

• p1.srec gives the filename of this program. It is assumed to be in S-record format because this is the
default. The .srec extension is not significant.

• -rbl specifies that subsequent files are to be in ROM bootloader format.

• -f 4 -l 5 p2.rbl means download and run program p2.rbl onto DSP devices 4 and 5.

• -srec indicates that subsequent files are to be in S-record format.

The arguments -f 0 -l 0 p3.srec download and run the p3.srec file.

Table 5 summarizes the example:

-v Prints the version number and exit

-h Prints the help message and exit.

-f Index of the first DSP device (default 0).

-l Index of the last DSP device (default 0)

-rbl The following files are in ROM bootloader format.

-srec The following files are in S-record format (default).

FILENAME Name of file to download.

Table 5. hdidl Command for an MSC8101PFC

DSP Device Program Format

1–2 pl.srec S-record

4–5 p2.rbl RBL

0 p3.srec S-record
Packet Telephony Development Kit Software, Rev. 1

28 Freescale Semiconductor

Using the PDK Embedded File System
The Metrowerks CodeWarrior linker produces programs in elf format. You can convert these files to S-record
files using the elfsrec utility program supplied with CodeWarrior. For example, the following command converts
elf file file.eld into S-record file file.srec:

elfsrec -l -d file.srec file.eld

The s2boot utility supplied with the PDK converts S-record files into ROM bootloader files as follows.

s2boot file.srec file.rbl

Downloading S-records is a two-stage process. First, hdidl uses the ROM bootloader to download the stage 1 boot
program that programs the DSP memory controller to enable its external memory and then accepts the S-records
during stage 2. On the MSC8101 device, the stage 1 bootloader uses only the CPM dual-port RAM. Therefore, the
only restriction on the addresses in the S-records is that they not be in the CPM dual-port RAM.1 ROM bootloader
files have more restrictions, and it is recommended that you use S-record files in most cases.

1. To violate this restriction, you would have to use a linker command file to place a section into the dual port
RAM—not a typical thing to do.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 29

Using the PDK Embedded File System
s2boot
Usage

s2boot [-oldformat] [-b address] infile outfile

Description

Converts S-record files into ROM bootloader files. In normal usage, the program should be linked to require only
internal DSP memory, and the -b option is not used. For information on the ROM bootloader, consult the DSP
device reference manual.

Option Summary

-oldformat Uses the bootloader format of early revisions of the MSC8101 that you
probably do not have.

-b address Assumes memory starts at address rather than 0

-h Prints this message.
Packet Telephony Development Kit Software, Rev. 1

30 Freescale Semiconductor

Using the PDK Embedded File System
8101pfc_internal_test
Usage

8101pfc_internal_test

Description

Downloads and runs a program that tests the external memory of each DSP on the MSC8101PFC. The program
then returns a DSP status that is displayed on stdout.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 31

Using the PDK Embedded File System
tdmtest
Usage

tdmtest

Description

Tests the PSTN1 card and MSC8101PFC TDM interfaces together. The program causes a constant pattern to be
driven on the TDM bus, which the DSP devices then test for. A test status is displayed on the stdout.
Packet Telephony Development Kit Software, Rev. 1

32 Freescale Semiconductor

Using the PDK Embedded File System
8101pfc_fpga_test
Usage

8101pfc_fpga_test [-i] [-h] [-v] [commands] . . .

Description

Tests and probes the control registers in the FPGA on an MSC8101PFC. The program can accept commands via a
script file, an interactive prompt, or the command line. Commands provided through the command line are
executed in the order given. The script file option simply takes input from a file and runs it through the interactive
prompt interface. The interactive interface has a help (?) command that describes the commands available to the
user. The interactive prompt includes the same type of commands as the command-line interface plus a few extra
useful commands such as hdi-read, hdi-write, and reset. The HDI versions of the read and write commands perform
64-bit read and write accesses to a DSP device in the farm. The reset command performs an HRESET on a specified
DSP device in the farm and then downloads the sdltest.rbl program to the DSP. The sdltest.rbl
program is required for the hditest (or –t) command to work properly.

Take care when using this program while other programs are accessing the FPGA or DSP devices. For example,
this program can alter the MODCK value presented to the DSP farm and can interrupt and reset each DSP. If it is
used improperly, bus errors and other severe problems can occur.

This program requires root privileges because system memory is mapped into the user space. Typical usage is
similar to sudo 8101pfc_fpga_test -r TDAR. Reading a register value does not affect another program.
Avoid writing new values into the FPGA registers and performing tests when an MSC8101PFC is in use.

Option Summary

Commands

The commands are completed in the specified order.

-i Initializes the FPGA and DSP devices to a state suitable for testing. This
option forces the reprogramming of the FPGA and DSP devices when the
program first starts running. The program downloads the sdltest.rbl
file to the DSP farm. Do not use this option when snooping the value of the
FGPA registers of a running system because the registers are set back to the
default.

-h Prints the version number and exits.

-v Display the version number.

-I Enter interactive mode.

-F filename Read commands from a script.

-w reg value Store the value in reg (use register names).

-r reg Read the value stored in reg.

-b reg mask Flip every bit of reg from mask.

-t dsp Run hditest on DSP[0–5].

-f Run full test on FPGA and DSP devices.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 33

Using the PDK Embedded File System
Register Names

GCR, RCR, ICSR, IMR, RQSR, TDAR, RDAR

4.5 Application Source Code
Most utility programs are implemented with libpdk and thus also serve as examples of how to use the various
libpdk functions. If you compile a utility program from its source code, the executable setuid bit is not set and
the file is owned by you rather than root. However, you must be root to run the program.

Source code for all PDK applications is included in the PDK Supplemental CD as part of the kit. You may want to
reference the source code in building your own applications, but compiling the source is not necessary because the
binaries reside in the Flash memory. To access the source, unzip one of the two following files on the PDK
Supplemental Software CD:

• pdk_src_pc_newlines.zip (for a Windows PC)

• pdk_src_unix_newlines.tgz (for UNIX/Linux)

The PDK utilities are in the sc140/drivers/mpc8260/apps directory.
Packet Telephony Development Kit Software, Rev. 1

34 Freescale Semiconductor

Networking the PDK
5 Networking the PDK
To network the PDK, plug an Ethernet cable into the second Ethernet connection from the serial cable. (See the
PDK Baseboard User’s Guide or the quick start card for a diagram.) You must use the second of four connections,
counting from the one closest to the serial port

����� ����������	
������������
��
�
����
����
�����
������	������������������������������
����

����
������������
�������	���������������������	��
���������������������	
��������
���������

�
���������
�
����� �
��!"�����!""�##��
��
����
���������
������
�!""�#��
���������������

The unit must have an IP address that works with the network. The PDK ships with the default IP address
192.168.1.50. If this IP address does not work for you, you can change it by following the steps in Section 5.1.
Static IP addresses are used for the PDK and the server.

5.1 Changing the IP Address of the PDK
The procedure for changing the PDK IP address is as follows:

1. Plug in and configure the serial cable for stand-alone operating mode, as described in Section 3.1,
PDK Operating Modes, on page 9.

2. Plug the Ethernet cable into the second Ethernet connection from the serial cable, as described earlier.

You must have selected values for the following items:

— IP address, netmask, and default gateway IP address for the PDK.

— Server machine IP address.

3. Change the network parameters in the bootloader, which is a freeware bootloader called PPCBoot dis-
tributed on the PDK CD in mpc8260_boot), as follows:

a. Power on the PDK and watch your terminal. Within a second or two you should see PPCBoot
messages showing the system speed, and so on. Then you are prompted to press any key to stop
the boot.

b. Press a key. The PPCBoot command prompt appears: pdk=>. If you do not see any text, contact
Metrowerks. Here is an example of what you should see.

--
|PPCBoot 2.0.0 (May 23 2003 - 18:50:17)
|
|MPC8260 Reset Status: External Soft, External Hard
|
|MPC8260 Clock Configuration
| - Bus-to-Core Mult 4.5x, VCO Div 2, 60x Bus Freq 22-65 , Core Freq 100-300
| - dfbrg 0, corecnf 0x17, busdf 5, cpmdf 1, plldf 0, pllmf 2
| - vco_out 396000000, scc_clk 99000000, brg_clk 99000000
| - cpu_clk 297000000, cpm_clk 198000000, bus_clk 66000000
|
|CPU: MPC8260 (Rev 14, Mask unknown [immr=0x0062,k=0x002d]) at 297 MHz
|Board: Freescale Semiconductor’s PDK
|I2C: ready
|DRAM: 128 MB
|FLASH: 8 MB
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 35

Networking the PDK
|In: serial
|Out: serial
|Err: serial
|Hit any key to stop autoboot: 0
pdk=>

4. Enter the PRINTENV command to see the network and boot parameters stored in Flash memory. You may
want to change some of these parameters. Here is an example of what you should see.

|pdk=> printenv
|bootdelay=5
|baudrate=115200
|ethaddr=00:11:c0:a8:01:2c
|hostname=pdk4
|rootpath=/usr3/ppcroots/pdk4
|bootfile=pdk_0004
|nfsboot=tftpboot; setenv bootargs root=/dev/nfs rw
nfsroot=$(serverip):$(rootpat
h) ip=$(ipaddr):$(serverip):$(gatewayip):$(netmask):$(hostname):eth0:off;
bootm
|romboot=setenv bootargs root=/dev/ram
ip=$(ipaddr):$(serverip):$(gatewayip):$(ne
tmask):$(hostname192.):eth0:off; bootm ff810000 ff900000
filesize=2bde82
|gatewayip=192.168.1.12
|netmask=255.255.255.0
|ipaddr=192.168.1.12
|serverip=192.168.1.12
|bootcmd=tftpboot; setenv bootargs root=/dev/nfs rw
nfsroot=$(serverip):$(rootpat
h) ip=$(ipaddr):$(serverip):$(gatewayip):$(netmask):$(hostname):eth0:off;
bootm

|pdk_dsp_prog=000000160000000090c090c090c090c090c090c090c090c0311c2200be0
090c090c090c090c090c090c090c090c090c090c0000052e3ad1c0000000a0000002090c0
90c090c090c090c0000000000000000000006f3f90c00000000000000000ffff000000000
000
|pdk_dsp_mask=1
|pdk_dsp_hrcw=0x3580001a
|stdin=serial
|stdout=serial
|stderr=serial
|
|Environment size: 979/262140 bytes
pdk=>

As you can see, this board has the following settings:
Packet Telephony Development Kit Software, Rev. 1

36 Freescale Semiconductor

Networking the PDK
— PDK IP Address: 192.168.1.44

— PDK Hardware Ethernet Address: 00:11:c0:a8:01:2c

— PDK NFS root path: /usr3/ppcroots/pdk4

— PDK default gateway: # (Note: do not change this)

— PDK netmask: 255.255.255.0

— PDK system (host) name: pdk4

— TFTP server IP Address: 192.168.1.12

— Name of Linux kernel file: pdk_0004 (bootfile)

See Section 7.3, PPCBoot Environment Variables, on page 98.

5. Change the setting of any environment variable by entering the following command at the PPCBoot
prompt:

setenv variable value

The value can contain spaces. However, put a forward slash (\) before any semicolons (;) in the value.
Most variables are self-explanatory. In bootcmd, you can see how the parameters are used to build the
boot arguments that are passed to the Linux kernel. The rootpath must match a line in the NFS server
/etc/exports file.

6. Use printenv to verify that the settings are correct and then enter saveenv to save the settings
into PDK Flash memory. You should be able to power-cycle the PDK, stop the boot by pressing a key,
and see the new values when you execute printenv. You can power down the PDK at this point and
proceed to server configuration.

If you completely reprogram the PDK Flash memory with a new PPCBoot image, most environment
variable values will be lost. It can be convenient to use a TeraTerm script to reset them. TeraTerm is a
freeware Windows terminal emulator available from the net. An example TeraTerm script is supplied
in the scripts/ directory of the PDK Supplemental Software CD.

7. When the network parameters are correct or if the defaults work with your network, you can either
power on or reset the PDK and Linux boots. The reset button is in the corner near the power supply
plug.

8. When you telnet or FTP to the PDL from an external computer on the network, your user name is
demo with a password of demo.

For all Linux networking services to work after you change the IP address or host name using the
PPCBoot procedure, you must also edit the file on the PDK /etc/hosts with the new host name and
IP address. See Section 9.1, Customize the Embedded Ramdisk, on page 104.

5.2 Accessing Linux Networking Services
The following clients are available as services you can use from the PDK:

• Telnet. To telnet from the PDK to another machine, use the IP address of the target machine (for
example, telnet 192.168.1.50).

• FTP. You can FTP from the PDK to another FTP server. From the PDK, simply type ftp <server
address>.

• NFS. On the PDK, NFS can be mounted by root (type su): mount /home2. You must set up an NFS
server on your host machine according to instructions on the host.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 37

Networking the PDK
The following servers run on the PDK (that is, you can target the PDK using these network services from another
machine)

• Telnet. To telnet to the PDK, use its IP address (for example, telnet 192.168.1.50).

• FTP. You can FTP files from another machine to the PDK, which can be a convenient way to upload
software to the PDK. To FTP to the PDK, point your web browser to
ftp://demo@192.168.1.50 or run FTP manually: ftp 192.168.1.50.

• Web. The PDK ships with a web server running and an example page. To see it, point your PC web
browser to http://192.168.1.50.

5.3 Configuring a TFTP Server
TFTP is useful for upgrading the Flash memory and booting over the network. PPCBoot on the PDK uses a TFTP
server running on a Windows or Linux PC to transfer files.

5.3.1 Windows TFTP
If you do not already have a TFTP server, consider using the freeware tftpd32 available at
http://tftpd32.jounin.net. This simple TFTP server runs as an ordinary Windows application on a PC
and requires no special installation. Download its zip image and unpack it into a directory on your Windows PC. To
run it, simply double-click on tftp32.exe. A small window appears. Click on settings. You may wish to
uncheck all servers but TFTP since you do not need them. Also, notice the USE TFTPD32 ONLY ON THIS INTERFACE box.
If your PC has only one Ethernet interface, this box shows your TFTP server IP address. There is no need to check
this box.

5.3.2 Linux TFTP
Unfortunately, many standard X86 PC Linux distributions do not automatically install a TFTP server (or a client
you can use to test the server). You may want to consult the documentation accompanying your Linux distribution.
The directions in this section show how to configure your PC TFTP server. The PDK is already configured to act as
a TFTP client, so no PDK configuration is necessary.

With RedHat 7.3, the TFTP client is installed in /usr/bin/tftp. If this file does not exist, you do not have the
client installed. The server is /usr/sbin/in.tftpd. If this file does not exist, you do not have the server
installed. Again in RedHat 7.3, the installers for the client and server are on CD disk 3 in the directory
RedHat/RPMS. The RPM files are as follows:

• tftp-0.28-2.i386.rpm

• tftp-server-0.28-2.i386.rpm

You can install them by mounting the CD (for example at /mnt/cdrom) and typing in the following commands
as root:

cd /mnt/cdrom/RedHat/RPMS
rpm -ivh tftp-0.28-2.i386.rpm
rpm -ivh tftp-server-0.28-2.i386.rpm

You must then enable the TFTP server using the GNOME GUI (RedHat 7.3): Main
Menu/Programs/System/Service configuration. If you have difficulties, take a look at the
/etc/xinetd.d/tftp file. If you edit this file, you must send the appropriate signal1 to xinetd or just reboot.

1. See your system’s xinetd man page.
Packet Telephony Development Kit Software, Rev. 1

38 Freescale Semiconductor

Networking the PDK
The TFTP installation should create a /tftpboot directory. Copy the PTO Linux kernel file to this /tftpboot
directory. The Linux kernel file has a name such as pdk_NNNN, where NNNN is a release number.

It is recommended that you test the TFTP server using the TFTP client also on the server. Following is an example
of how to do this, assuming the TFTP server IP address is 192.168.1.12 and iptel3-CC is its command prompt:

iptel3-25 cd /tmp
iptel3-26 tftp 192.168.1.12
tftp> get pdk_0003
Received 558693 bytes in 0.2 seconds

tftp> quit

You may need /tftpboot/pdk_0003 instead of pdk_0003.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 39

Building and Debugging PDK Linux Applications
6 Building and Debugging PDK Linux Applications
To run and debug Linux applications, perform these overall steps

1. Install a cross compiler on your Linux host PC.

2. Build the programs.

3. Transfer them to the PDK (using FTP, NFS, or TFTP).

4. Run the programs and debug them using GDBServer.

The easiest way to compile your own applications for the PDK is to use a cross-complier on a PC running Linux.
The enclosed Lineo Platform Creation Suite contains a cross compiler that can be used for this purpose.

6.1 Cross-Compiler
The Metrowerks PCS product includes a PowerPC cross-compiler that runs on an X86 Linux machine. You can use
it to compile programs for the PDK’ MPC8260 device. PCS includes a GUI-based development system, but you
can also run the cross-compiler from the command line by setting some environment variables. The following csh
commands show what to do. A different shell (such as bash) may require a different syntax, but the csh commands
show what must be done.

set path=($path /opt/Embedix/tools/bin)
setenv CROSS_COMPILE powerpc-linux-
alias ppcmake "make ARCH=ppc CROSS_COMPILE=$CROSS_COMPILE"

The compiler is named powerpc-linux-gcc so you can compile as follows:

powerpc-linux-gcc myprogram.c

There are many other sources for cross-compilers (and even native compilers) for use with the PDK, but if you mix
tools you may have problems with conflicting library versions. It is best to use one set consistently.

The usual way to build an application is via a PowerPC gcc cross-compiler installed on a server machine such as an
x86 running Linux. There are several sources for cross-compilers, one being the Linux Platform Creation Suite
(PCS) from Freescale Semiconductor/Metrowerks. By default, PCS installs a cross-compiler and associated tools
in the following directory on the x86 server:

/opt/Embedix/tools/bin

You must ensure that this directory is in your command-path. You must also know the cross-compiler prefix. PCS
uses powerpc-linux, so the name of the cross-compiler is powerpc-linux-gcc.

To install the cross-compiler, perform the following steps:

1. Install PCS on your host machine according to PCS instructions:

Put the PCS CD into your Linux host, log into X as root, and run install.sh Then do the same
with the 8260BSP, included on the PDK CD as follows:

 mpc8260_pcs/mpc8260adsp-2.0-rev2.iso

2. To build everything, first follow the instructions in README.PCS on the PCS installation CD.

3. Set the CROSS_COMPILE environment variable on your host PC and your path to point to the cross
complier.
Packet Telephony Development Kit Software, Rev. 1

40 Freescale Semiconductor

Building and Debugging PDK Linux Applications
This step is accomplished by editing your .cshrc file or other start-up file, depending on which
shell you are using. Here is an example of how to set up your environment:

set path=($path /opt/Embedix/tools/bin)
setenv CROSS_COMPILE powerpc-linux-
alias ppcmake "make ARCH=ppc CROSS_COMPILE=$CROSS_COMPILE"

4. Examine the ../mpc8260/libpdk/etc/make.defs file. You must set the value of your cross-
compiler prefix in this file. The make.defs file is used to build some but not all of the items
described in this the sections that follow.

5. You can now build applications using the makefiles included in the mpc8260 directory by simply
going to the directory and entering make.

6.2 libpdk
Linux libpdk provides a user-space application programming interface to the DSP and telephony interface
resources of the PDK. In concert with PDK Linux device drivers, the API provides full access to the PDK
capabilities and functions. The functions configure and control DSP and telephony cards and handle other tasks.
The library is located in the libpdk directory on the PDK CD. By default, libpdk is installed in the
/usr/local/pdk directory on the PDK. Following is an example program that links libpdk to access the libpdk
version number.

#include <stdio.h>
#include <pdk.h>
int
main(int argc, char **argv)
{

printf("libpdk version %08lx\n", pdk_version);

return 0;
}

You can compile this program on an X86 Linux machine with libpdk installed:

powerpc-linux-gcc foo.c -I/usr/local/pdk/include -L/usr/local/pdk/lib -lpdk

powerpc-linux-gcc is the PowerPC cross-compiler installed on the X86 Linux machine by Metrowerks PCS.
See the libpdk manual for descriptions of all libpdk functions, variables, and include files.

6.2.1 Building libpdk and Utilities
To build libpdk, first examine the ../mpc8260/libpdk/etc/make.defs file and ensure that
CROSS_COMPILE is set to your cross-compiler prefix. Next, in the mpc8260 directory, enter the following:

make clean
make

The libpdk utilities are not statically linked. Your Linux root file system must have the same library versions (for
example, for libc) that are used by the cross-compiler. Let LIBPDKDIR be the libpdk directory. You must link
library $LIBPDKDIR/lib/libpdk.a into your application as illustrated here:

gcc -o myapp myapp.c -L $LIBPDKDIR/lib -lpdk.a

Many libpdk functions access physical memory-mapped hardware resources, so programs that use libpdk must be
run with Linux root privileges.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 41

Building and Debugging PDK Linux Applications
6.2.2 libpdk Example Code
The apps directory contains several examples of how to use libpdk that also serve as helpful utilities in the
development kit. See Section 4.2, Baseboard Applications, on page 13. To build the applications, type make in the
individual directory or at the main libpdk root directory. Most applications require super-user permissions to run.
You can get these permissions without having to log in as root by typing sudo before the executable. For example,
to turn on the LED, type sudo pdk_led ON at the shell prompt.

6.2.3 Checking libpdk Function Return Codes
Many libpdk functions return a value of type long int in which a negative value indicates an error. Numerous
#defines in the libpdk define specific error codes. In addition, the libpdk API defines a global variable that
contains an error message after an error occurs:

extern char pdk_errstring[];

Thus, the following code example shows a reasonable way to check libpdk calls for errors.

if (pdk_dsp_reset(0, 0, PDK_RESET) < 0) {

fprintf(stderr, "%s\n", pdk_errstring);
exit(1);

}

Checking libpdk function calls for return values that indicate errors is highly recommended, although for reasons
of conciseness, the examples in this document do not usually show this step.

6.2.4 General libpdk Utilities
The general libpdk utilities, listed in Table 6, are used independently of whether a mezzanine card is present.

6.2.5 DSP Card libpdk Utilities
In PDK mezzanine cards, the DSP devices receive communications over their host ports. The libpdk defines
functions to initialize DSP devices, download programs to them, and communicate with them.

Table 6. General libpdk Utilities

Name Description

pdk_version Returns the software version.

pdk_set_led Controls the LED on the baseboard.

pdk_immr_init Initializes the global IMMR so that the memory map can be accessed.

pdk_map_to_user Accesses physical address space from a user-space application.

Table 7. DSP Card libpdk Utilities

Name Description

pdk_dspc_init Globally initializes the DSP card.

pdk_dspc_type Indicates the type of DSP card.

pdk_num_hdi16 Returns the number of HDI16 ports (DSPs) available.

pdk_send_rscfg Sends the Hardware Reset Configuration Word (HRCW) to the DSP card.

pdk_tx_to_hdi16 Sends data to the HDI16 port of a DSP device.
Packet Telephony Development Kit Software, Rev. 1

42 Freescale Semiconductor

Building and Debugging PDK Linux Applications
Another convenient way to communicate with DSP devices is to use the Linux driver HETH. This network driver
can use standard Linux network facilities to send packets to the DSP farms. For details, see Section 6.3.2, HETH-
HDI16, on page 85.

In addition to libpdk functions allowing host port communication, you can get direct access to host port registers by
first calling pdk_dspc_init, as illustrated here:

#include <pdk.h>
#include <pdk_hdi16.h>
extern volatile unsigned short

*pdk_hdi16_icr[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_cvr[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_isr[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rx3[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rx2[PDK_MAX_HDI16];
extern volatile unsigned short

pdk_hdi16_rx1[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rx0[PDK_MAX_HDI16];
extern volatile unsigned short

pdk_hdi16_tx3[PDK_MAX_HDI16];
extern volatile unsigned short

pdk_hdi16_tx2[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_tx1[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_tx0[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rscfg0[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rscfg1[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rscfg2[PDK_MAX_HDI16];
extern volatile unsigned short

*pdk_hdi16_rscfg3[PDK_MAX_HDI16];

The pdk_dspc_init function sets these arrays of pointers to permit direct user-space access to host-side HDI16
registers for each DSP device on the DSP card. For example, you can read the value of the ISR register on the DSP
with index 3 (counting from 0) as follows:

myval = *pdk_hdi16_isr[3];

pdk_rx_from_hdi16 Receives data from a DSP device.

pdk_hdi16_rbl Downloads and runs a program on one or more DSP devices.

pdk_hdi16_download Downloads and runs a program in S-record format on one or more DSP
devices.

pdk_dsp_reset Resets one or more DSP devices.

Table 7. DSP Card libpdk Utilities (Continued)

Name Description
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 43

Building and Debugging PDK Linux Applications
6.2.6 PSTN1 Card libpdk Utilities
The PSTN card naming conventions are as follows:

• Time slots are numbered starting with 0.

• POTS ports are numbered starting with 0.

• T1/E1 lines are numbered starting with 0.

Table 8 lists the PSTN1 care utilities.

The PSTN card contains a time slot interchanger (TSI) that can connect any time slot of a stream to any other time
slot of a stream. The TSI switches among four streams, each with 128 8-bit wide time slots. Symbolic names for
TDM streams available to the TSI are as follows:

 #include <pdk_pstn1_tsi.h>
#define PDK_PSTN1_STREAM_CT_D0_D1 0
#define PDK_PSTN1_STREAM_QFALC 1
#define PDK_PSTN1_STREAM_DUSLIC 2
#define PDK_PSTN1_STREAM_CT_D4_D5 3

Before any TSI function listed in Table 9 is called, the card must be initialized by calling both pdk_telc_init and
pdk_pstn1_reset_card according to the guidelines of those functions.

The PSTN card has a quad E1/T1 framer called the QuadFALC that acts as a physical interface to either four E1 or
four T1 connections. E1 and T1 cannot be function at the same time. A variety of framing modes are supported.
The four E1/T1 connections are multiplexed onto a single TDM stream (stream 1) running to and from the TSI.
This stream is byte-interleaved between the four E1 or T1 connections as shown in Table 10, where F is the
framing bit and TS is the time slot on the T1/E1. The pdk_init_telc_pstn1 function must be called once before any
other TSI function is called.

Table 8. PSTN1 Card libpdk Utilities

Name Description

pdk_telc_init Initializes the memory controller and global variables for interaction with the
PSTN1 card.

pdk_pstn1_reset_card Globally resets the PSTN1 card.

Table 9. Time-Slot Switch Control Functions

Name Description

pdk_pstn1_tsi_init Initializes the time-slot switch.

pdk_pstn1_make_conn Connects two time slots on the switch.

pdk_pstn1_break_conn Breaks two time slots on the switch.

pdk_pstn1_loop_conn Sets the loopback bit in the TSI for the selected stream and time slot.

pdk_pstn1_const_conn Sends a constant down a particular time-slot.

pdk_pstn1_clear_all_conn Clears all connections.
Packet Telephony Development Kit Software, Rev. 1

44 Freescale Semiconductor

Building and Debugging PDK Linux Applications
The PSTN card also has four POTS lines for analog telephones. Each of the two DuSLIC devices on the board
provides two POTS ports. This functionality is demonstrated in apps/duslic test. The analog ports provide a
standard PSTN front-end to the user and are interfaced to the TSI via a SLIC-CODEC pair. The codec, an Infineon
DuSlic PEB3265, controls the port behavior. The DuSLIC interfaces to the controller (MPC8260), through the
Serial Peripheral Interface (SPI). Therefore, spi8260.o (mpc8260/linux_drivers/spi/) must be
inserted into the running kernel before any DuSLIC-related code is executed. See Section 6.3.1, Serial Peripheral
Interface (SPI), on page 83. Table 12 lists the analog telephone control functions.

Table 10. E1/T1 Frame Control

Time Slot T1/E1 1 T1/E1 2 T1/E1 3 T1/E1 4

0 F

1 F

2 F

3 F

4 TS1

5 TS1

6 TS1

7 TS1

8 TS2

9 TS2

10 TS2

11 TS2

12 TS3

.

96 TS24

97 TS24

98 TS24

99 TS24

Table 11. E1/T1 Framer Control Functions

Name Description

pdk_pstn1_qf_setup_t1 Initializes the framer to T1 mode.

pdk_pstn1_qf_read_sig Reads the signaling bits.

pdk_pstn1_qf_write_sig Writes the signaling bits.

pdk_pstn1_qf_status Gets the framer status.

pdk_pstn1_qf_get_current_framing Returns the current framing mode.

pdk_pstn1_qf_get_current_sig_mode Returns the current signaling mode.

pdk_pstn1_qf_test_activate_t1 Starts a T1 loopback test.

pdk_pstn1_qf_test_deactivate_t1 Ends a T1 loopback test.

pdk_pstn1_qf_print_state Prints out all the framer registers.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 45

Building and Debugging PDK Linux Applications
6.2.7 libpdk Global Variables
char pdk_errstring[];

If a libpdk function returns something other than PDK_NOERR, libpdk writes an error message into pdk_errstring.
An application can choose to print this message.

6.2.8 libpdk Functions
Table 13 shows an overview of the libpdk functions described in this section.

Table 12. Analog Telephone Control Functions

Name Description

pdk_pstn1_ds_init Initializes the POTS interface.

pdk_pstn1_ds_ring Rings a telephone.

pdk_pstn1_ds_tone Produces a ringback, busy, or fastbusy tone.

pdk_pstn1_ds_version Returns the silicon version of the DualSLIC.

pdk_pstn1_ds_hook Returns the hook state of a telephone.

Table 13. libpdk Functions

Function Purpose Page

pdk_dsp_reset Resets one or more DSP devices. page 48

pdk_dspc_init Globally initializes the DSP daughter card. page 49

pdk_dspc_type Indicates the type of the DSP daughter card (MSC8102, MSC8101,
and so on).

page 50

pdk_hdi16_download Downloads and runs a program in S-record format on one or more
DSP devices on the DSP daughter card.

page 51

pdk_hdi16_rbl Downloads and runs a program on one or more DSP devices on the
DSP daughter card using the DSP ROM bootloader.

page 53

pdk_immr_init Initializes the global IMMR so that the memory map can be
accessed.

page 54

pdk_map_to_user Accesses the physical address space from a user-space application. page 55

pdk_num_hdi16 Counts the HDI16 ports available on the DSP daughter card. page 56

pdk_pstn1_break_conn Breaks a switched connection. The output of the destination time slot
on the destination stream is tri-stated.

page 57

pdk_pstn1_clear_all_conn Breaks all connections. The outputs of all time slots on all streams is
tri-stated.

page 58

pdk_pstn1_const_conn Outputs a constant value. The output of the destination time slot on
the destination stream is the value of the input parameter value.

page 59

pdk_pstn1_ds_hook Allows an application to poll the hook state of a POTS port. page 60

pdk_pstn1_ds_init Resets the POTS card interface. page 61

pdk_pstn1_ds_ring Generates and stops ringing on a particular extension. page 62

pdk_pstn1_ds_tone Generates the indicated tones on a phone or stops their generation. page 63

pdk_pstn1_ds_version Returns the hardware revision number of the DuSLIC. page 64

pdk_pstn1_loop_conn Sets the loopback bit in the TSI for the selected stream and time slot. page 65

pdk_pstn1_make_conn Switches a single time slot on a single stream to another time slot on
any other stream.

page 66
Packet Telephony Development Kit Software, Rev. 1

46 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_get_current_framing Returns the current E1/T1 framing mode in use. page 67

pdk_pstn1_qf_get_current_sig_mode Returns the current E1/T1 signalling type in use. page 68

pdk_pstn1_qf_print_state Dumps the state of the QuadFALC to stdio, which is convenient for
debugging.

page 69

pdk_pstn1_qf_read_sig Reads the signalling bits for a channel. page 70

pdk_pstn1_qf_setup_t1 Initializes the framer to a given T1 configuration. The contents of the
TDM stream to the TSI are not valid until this function is called.

page 71

pdk_pstn1_qf_status Reads the framer status for an E1/T1 stream. page 72

pdk_pstn1_qf_test_activate_t1 Starts a loopback test on one of th four E1/T1 connections. page 73

pdk_pstn1_qf_test_deactivate_t1 Deactivates the loopback test. page 74

pdk_pstn1_qf_write_sig Writes the signalling bits for a channel. page 75

pdk_pstn1_reset_card Globally resets the PSTN card. page 76

pdk_pstn1_tsi_init Initializes the TSI. page 77

pdk_rx_from_hdi16 Read from the DSP device HDI16 port. page 78

pdk_send_rscfg Write the Hardware Reset Configuration Words (HRCW) to one or
more DSP devices.

page 79

pdk_set_led Controls the PDK baseboard LED. page 80

pdk_telc_init Initializes the memory controller and global variables for interaction
with the PSTN card.

page 83

pdk_tx_to_hdi16 Writes to the DSP device HDI16 port. page 82

pdk_version Contains the version number of libpdk. page 83

Table 13. libpdk Functions (Continued)

Function Purpose Page
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 47

Building and Debugging PDK Linux Applications
pdk_dsp_reset
Resets one or more DSP devices.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern long int (*pdk_dsp_reset)(unsigned long first, unsigned long last, unsigned long
options);

Parameters

Return Value

• PDK_UNSUPPORTED_RESET. The DSP board does not support the type of reset selected by
options or the DSP devices chosen by first and last cannot be reset in the chosen manner.

• PDK_NOERR. Option is supported.

Usage

• This function resets the DSP devices on DSP daughter cards. The reset capabilities of DSP cards
differ. Usually, it is best to use the PDK_RESET option, which performs a type of reset that the card
supports, if any. It brings the DSP device completely out of reset. For example, if PDK_RESET on a
particular card type performs a power-on reset, it also sends any needed reset configuration word.

• If the card does not support resetting individual DSP devices, pdk_dsp_reset returns
PDK_UNSUPPORTED_RESET unless the call requests that all DSP devices be reset.

• Resets on different types of DSP cards may have different side effects.

• Be sure to study the documentation for the DSP card carefully.

first Index of the first DSP to reset.

last Index of the last DSP to reset.

options • PDK_RESET. Do an unspecified reset.
• PDK_HRESET. Do an HRESET.
• PDK_PORESET. Do a PORESET and automatically send the default

HRCW.
• PDK_PORESET_NO_HRCW. Do a PORESET but do not send the

HRCW.
Packet Telephony Development Kit Software, Rev. 1

48 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_dspc_init
Globally initializes the DSP card.

Syntax

#include <pdk.h>
long int pdk_dspc_init(unsigned long dsp_card, ...);

Parameters

Return Value

• PDK_NO_SUCH_BOARD. Illegal board parameter.

• PDK_NOERR. Initialization successful.

Usage

pdk_dspc_init performs an MSC8101PFC initialization sequence, as follows:

1. Programs and starts up the FPGA.

2. Programs the MPC8260 memory controller, if necessary.

It performs an MSC8102PFC initialization sequence, which programs the MPC8260 memory controller, if
necessary. A second call to pdk_dspc_init has no effect. Programs that use this function must be run with root
privileges. pdk_dspc_init does not necessarily reset the DSP devices. Generally, a call to pdk_dspc_init should be
followed by a call to pdk_dsp_reset. pdk_dspc_init does nothing that prevents multiple programs from running at
the same time and accessing a disjoint set of DSPs.

Examples

pdk_dspc_init(PDK_DSPC_8102PFC, PDK_DSPC_OPTION_END);

dsp_card One of PDK_DSPC_LASH8101, PDK_DSPC_PFC8101,
PDK_DSPC_PFC8102, or PDK_ENVIRONMENT.

PDK_ENVIRONMENT causes the DSP card type to be read from the
pdk_dspc environment variable. It should have a value of 8101pfc or
8102pfc.

options List of options that must end with PDK_DSPC_OPTION_END. At this
time, there are no options.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 49

Building and Debugging PDK Linux Applications
pdk_dspc_type
Indicates the type of the DSP daughter card.

Syntax

#include <pdk.h>
extern unsigned long pdk_dspc_type;

Return Value

After pdk_dspc_init is called, pdk_dspc_type indicates the type of the DSP card. Possible value are
PDK_DSPC_PFC8102 or PDK_DSPC_LASH8101.

Usage

The application should only read this variable, not write to it. This function is useful when the application passes
PDK_ENVIRONMENT as the DSP card type to pdk_dspc_init.
Packet Telephony Development Kit Software, Rev. 1

50 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_hdi16_download
Downloads and runs a program in S-record format on one or more DSP devices.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern long int (*pdk_hdi16_download) (unsigned long first, unsigned long last, char
*filename);

Parameters

Return Value

If the download succeeds, pdk_hdi16_download returns the number of payload bytes downloaded. Otherwise, it
returns a negative value and indicates one of these errors:

• PDK_HDI16_RBL_ERR. The DSP has indicated an error in the bootloading process. The DSP must
be reset to recover.

• PDK_HDI16_NOFILE. The file (filename) could not be accessed.

• PDK_HDI16_UNSUPCARD. The pdk_hdi16_download function is not supported on the card in use.

• PDK_HDI16_UNSUPSREC. The file contains an S-record on an unsupported type.

• PDK_HDI16_NONSREC. The file contains an illegal line; one that is not in S-record format.

• PDK_HDI16_POLLOUT. The DSP did not respond.

Usage

• This function uses a two-stage boot process. It first downloads a program that enables the DSP
device’s external memory and then accepts S-records from the MPC8260. The MPC8260 device then
sends the S-records in the file to the DSP device via HDI16. The termination S-record contains a start
address. At the end of the first boot stage, the DSP jumps to this address.

• The Metrowerks CodeWarrior toolset supplies a command-line utility called elfsrec that converts
.eld files into S-record files.

• One advantage of using pdk_hdi16_download rather than directly using pdk_hdi16_rbl to download
programs is that pdk_hdi16_download permits programs to be downloaded to external memory. Also,
there is no need to organize the program being downloaded to avoid overwriting the ROM bootloader
stack in internal memory.

• On the MSC8101 device, the first-stage boot program runs from the CPM dual-port memory.
Therefore, the S-records must not address the dual-port memory or the first-stage bootloader may be
overwritten.

• The state of the DSP device during the download is as follows:

— The DSP ROM bootloader has run. The ROM bootloader does quite a bit of device initialization.
See the reference manual for the particular DSP type.

— If the DSP has external memory, the DSP memory controller has been programmed to enable it.

first Index of the first DSP to be serviced.

last Index of the last DSP to be serviced.

filename A pointer to the file where the DSP program resides. The file must be in S-record format.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 51

Building and Debugging PDK Linux Applications
• The following S-record types are supported: S0, S1, S2, S3, S7, S8, and S9.

• You must call pdk_dspc_init before using this function.
Packet Telephony Development Kit Software, Rev. 1

52 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_hdi16_rbl
Downloads and runs a program on one or more DSP devices using the DSP ROM bootloader.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern long int (*pdk_hdi16_rbl)(unsigned long first, unsigned long last, unsigned long
checksum, char *filename);

Parameters

Return Value

• PDK_HDI16_RBL_ERR. The DSP has indicated an error in the bootloading process. The DSP must
be reset to recover.

• PDK_NOERR. Bootloading was successful

Usage

The s2boot utility is provided under the tools directory. This tool converts S-records produced by the DSP complier
into a format that pdk_hdi16_rbl understands. Usage is as follows:

s2boot [-oldformat] infile outfile

The output file is a sequence of blocks for loading. Each block contains 16-bit hexadecimal numbers in the
following format:

 size most significant half
size least significant half
addr most significant half
addr least significant half
data
checksum
checksum complement

The last block is the start block (for example, the length field is zero). You must call pdk_dspc_init before using
this function.

first Index of the first DSP to be serviced.

last Index of the last DSP to be serviced.

checksum A checksum feature not currently implemented. Under this release any unsigned long
works.

filename A pointer to the file where the DSP program resides. The file must be formatted
correctly.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 53

Building and Debugging PDK Linux Applications
pdk_immr_init
Initializes the global IMMR so that the memory map can be accessed.

Syntax

#include <pdk_int_map.h>
void pdk_immr_init(void);

Usage

• Call pdk_immr_init() and then access the registers using the #defined names in pdk_int_map.h.

• Programs that use this facility must be run with root privileges.
Packet Telephony Development Kit Software, Rev. 1

54 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_map_to_user
Accesses the physical address space from a user-space application.

Syntax

#include <pdk_map_to_user.h>
void *pdk_map_to_user (unsigned long base, unsigned long size);

Parameters

Usage

• A call to pdk_map_to_user returns a user-space address pointer to the physical address region defined
by base and size. The MMU then automatically maps user-space accesses to the region into
physical space accesses.

• pdk_map_to_user is a simple wrapper to the standard Linux mmap function and is used to map special
device /dev/mem.

• Programs that use this facility must be run with root privileges.

base Physical address of the start region.

size Size of the region in bytes.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 55

Building and Debugging PDK Linux Applications
pdk_num_hdi16
Counts the HDI16 ports available on the DSP card.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern unsigned long pdk_num_hdi16;

Return Value

The count is based on the design of the DSP card rather than the number of DSP devices actually populated and
functional on the board.

Usage

You must call pdk_dspc_init before using this function.
Packet Telephony Development Kit Software, Rev. 1

56 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_break_conn
Breaks a switched connection. The output of the destination time slot on the destination stream is tri-stated.

Syntax

#include <pdk_pstn1_tsi.h>
int pdk_pstn1_break_conn(unsigned long dst_stream, unsigned long dst_slot);

Parameters

Return Value

• PDK_PSTN1_TSI_NOT_INITIALIZED. The TSI was not initialized.

• PDK_NOERR. The TSI was commanded to switch.

dst_stream Which of the destination streams is to be tri-stated.

dst_slot Which of the 128 time slots on the stream are to be tri-stated.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 57

Building and Debugging PDK Linux Applications
pdk_pstn1_clear_all_conn
Breaks all connections. The outputs of all time slots on all streams are tri-stated.

Syntax

#include <pdk_pstn1_tsi.h>
int pdk_pstn1_clear_all_conn(void);
Packet Telephony Development Kit Software, Rev. 1

58 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_const_conn
Outputs a constant value. The output of the destination time slot on the destination stream is the value of input
parameter.

Syntax

#include <pdk_pstn1_tsi.h>
int pdk_pstn1_const_conn(unsigned long dst_stream, unsigned long dst_slot,
unsigned char value);

Parameters

Usage

For the list of defined dst_streams, see Section 6.2.6, PSTN1 Card libpdk Utilities, on page 44.

dst_stream Which of the destination streams is to drive a constant.

dst_slot Which of the 128 time slots on the stream are to drive the constant.

value The 8-bit constant to be driven.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 59

Building and Debugging PDK Linux Applications
pdk_pstn1_ds_hook
Allows an application to poll the hook state of a POTS port.

Syntax

#include <pdk.h>
#include <pdk_pstn1_duslic.h>
char pdk_pstn1_ds_hook(int channel);

Parameters

Return Value

• PDK_PSTN1_DS_ONHOOK. The port is on hook (hung up).

• PDK_PSTN1_DS_OFFHOOK. The port if off hook.

Usage

The SPI driver must be installed to use this function. See Section 6.3.1, Serial Peripheral Interface (SPI), on page
83.

Channel Selects the POTS port (0–3).
Packet Telephony Development Kit Software, Rev. 1

60 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_ds_init
Resets the POTS card interface.

Syntax

#include <pdk.h>
#include <pdk_pstn1_duslic.h>
int pdk_pstn1_ds_init(void);

Return Value

PDK_NOERR if successful or a value less than zero if it is not.

Usage

• Must be called before any of the DuSLIC-related operations. This function resets the DuSLICs,
configures all the registers related to the different DuSLIC parameters, sets filter and tone generator
frequencies, and finally puts the DuSLICs in Active mode.

• The SPI driver must be installed to use this function. See Section 6.3.1, Serial Peripheral Interface
(SPI), on page 83.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 61

Building and Debugging PDK Linux Applications
pdk_pstn1_ds_ring
Generates and stops ringing on a particular extension.

Syntax

#include <pdk.h>
#include <pdk_pstn1_duslic.h>
int pdk_pstn1_ds_ring(int channel, int action);

Parameters

Return Value

• PDK_NOERR if successful.

• PDK_PSTN1_DS_NO_SUCH_CHANNEL if channel < 0 or channel > 3.

Usage

The SPI driver must be installed to use this function. See Section 6.3.1, Serial Peripheral Interface (SPI), on page
83.

channel Selects the POTS port. If you look at the PSTN1 card from the connector (RJ11
and RJ45) side, then channel 0 is the leftmost. Channel indexes are 0–3.

action Must be PDK_PSTN1_DS_START or PDK_PSTN1_DS_STOP.
Packet Telephony Development Kit Software, Rev. 1

62 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_ds_tone
Generates the indicated tones on a phone or stops their generation.

Syntax

#include <pdk.h>
#include <pdk_pstn1_duslic.h>
int pdk_pstn1_ds_tone(int channel, int tone_type, int action);

Parameters

Return Value

• PDK_NOERR if successful.

• PDK_PSTN1_DS_NO_SUCH_CHANNEL if channel < 0 or channel > 3.

Usage

When a call is made to stop tone generation (action == PDK_PSTN1_DS_STOP), the tone_type parameter is
ignored. It is good style to use tone_type PDK_PSTN1_DS_ANY in this case.

channel Selects the POTS port on which to generate a tone. If you look at the PSTN1 card
from the connector (RJ11 and RJ45) side, then channel 0 is the leftmost. Channel
indexes are 0–3.

tone_type Which tone to generate. Must be one of the following:

• PDK_PSTN1_DS_DIAL
• PDK_PSTN1_DS_RINGBACK
• PDK_PSTN1_DS_BUSY
• PDK_PSTN1_DS_FASTBUSY

action Must be PDK_PSTN1_DS_START or PDK_PSTN1_DS_STOP.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 63

Building and Debugging PDK Linux Applications
pdk_pstn1_ds_version
Returns the hardware revision number of the DuSLIC.

Syntax

#include <pdk.h>
#include <pdk_pstn1_duslic.h>
char pdk_pstn1_ds_version(int ds_number);

Parameters

Return Value

Hardware revision number of the DuSLIC.

Usage

There are two DuSLICs on the PSTN1 card. They are numbered 0 and 1

ds_number Selects the DuSLIC to be queried. Must be 0 or 1.
Packet Telephony Development Kit Software, Rev. 1

64 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_loop_conn
Sets the loopback bit in the TSI for the selected stream and time slot.

Syntax

#include <pdk_pstn1_tsi.h>
int pdk_pstn1_loop_conn(unsigned long dst_stream, unsigned long dst_slot);

Parameters

Usage

• See the TSI data sheet. This function may not do what you think. If you want the TSI to echo what it
reads from the outside, use pdk_pstn1_make_conn to make a connection from the stream and slot to
itself.

• For the list of defined dst_streams, see section Section 6.2.6, PSTN1 Card libpdk Utilities, on page 44.

dst_stream Which of the destination streams is to be looped back.

dst_slot Which of the 128 time slots on the stream is to be looped back.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 65

Building and Debugging PDK Linux Applications
pdk_pstn1_make_conn
Switches a single time slot on a single stream to another time slot on any other stream.

Syntax

#include <pdk_pstn1_tsi.h>
int pdk_pstn1_make_conn(unsigned long dst_stream, unsigned long dst_slot, unsigned long
src_stream, unsigned long src_slot);

Parameters

Return Value

• PDK_PSTN1_TSI_NOT_INITIALIZED. The TSI was not initialized.

• PDK_NOERR. The TSI cleared all connections.

Usage

The output of the destination time slot on the destination stream is the input from the source time slot on the source
stream. The connection is one way. Two calls to function pdk_pstn1_make_conn are needed to create a full-duplex
connection. For the list of defined streams, see section Section 6.2.6, PSTN1 Card libpdk Utilities, on page 44.

dst_stream Which of the four TDM streams is the destination.

dst_slot Which of the 128 time slots on the stream is the destination.

src_stream Which of the four TDM streams is the source.

dst_slot Which of the 128 time slots on the stream is the source.
Packet Telephony Development Kit Software, Rev. 1

66 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_get_current_framing
Returns the current E1/T1 framing mode in use.

Syntax

#include <pdk_pstn1_qfalc.h>
int pdk_pstn1_qf_get_current_framing(void);

Return Value

PDK_PSTN1_QF_ESF_FRAMING or PDK_PSTN1_QF_D4_FRAMING.

Usage

The QuadFALC must have been set up by a call to pdk_pstn1_qf_setup_t1 before this function is called. The set-up
call can be made by a different application.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 67

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_get_current_sig_mode
Returns the current E1/T1 signaling type in use.

Syntax

#include <pdk_pstn1_qfalc.h>
pdk_pstn1_qf_get_current_sig_mode(void);

Return Value

PDK_PSTN1_QF_CLEAR_CHAN_MODE or PDK_PSTN1_QF_REGULAR_MODE.

Usage

The QuadFALC must have been set up by a call to pdk_pstn1_qf_setup_t1 before this function is called. The set-up
call can be made by a different application.
Packet Telephony Development Kit Software, Rev. 1

68 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_print_state
Dumps the state of the QuadFALC to stdio, which is convenient for debugging.

Syntax

#include <pdk_pstn1_qfalc.h>
int pdk_pstn1_qf_print_state(void);

Return Value

PDK_NOERR. Success.

Usage

To ensure that the card has been reset properly, pdk_telc_init must be called before pdk_pstn1_qf_print_state is
called.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 69

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_read_sig
Reads the signaling bits for a channel.

Syntax

#include <pdk_pstn1_qfalc.h>
long pdk_pstn1_qf_read_sig(long falc_no, long chan);

Parameters

Return Value

The value of the signaling bits.

Usage

• The QuadFALC must have been set up by a call to pdk_pstn1_qf_setup_t1 before this function is
called. The set-up call can be made by a different application.

• In T1, signaling bits are transferred from one end of the T1 to the other (in both directions) using bit
robbing. The number of signaling bits per channel depends on the framing mode in use. ESF provides
four bits called A, B, C, and D (ABCD bits). D4 provides two bits called A and B (AB) bits.

• The pdk_pstn1_qf_read_sig function permits the PDK MPC8260 to read the most recent values of the
signaling bits received by the QuadFALC. The bits are stored in the four least significant bits for ESF
and the two least significant bits for D4. Bit A is first.

• In clear channel mode, no bit robbing occurs, so there is no access to signaling bits.

falc_no Selects one of the four streams. Must be a number from 0 to 3.

chan Channel to read. For T1, this must be a number between 0 and 23.
Packet Telephony Development Kit Software, Rev. 1

70 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_setup_t1
Initializes the framer to a given T1 configuration. The contents of the TDM stream to the TSI are not valid until this
function is called.

Syntax

#include <pdk_pstn1_qfalc.h>
void pdk_pstn1_qf_setup_t1(int clockMode, int framingType, int codingType, int
signalingType);

Parameters

Usage

The QuadFALC must be memory mapped by calling pdk_telc_init before the first call to pdk_pstn1_qf_setup_t1.
In addition, The PSTN1 card must be properly reset by calling pdk_pstn1_reset_card before every call to
pdk_pstn1_qf_setup_t1. Note that calling pdk_pstn1_reset_card unconfigures all the other devices on the PSTN1
card, so they must also be reconfigured.

clockMode Indicates whether the clocking comes from the internal clock (master) or is
derived from the line (slave). In T1, unless one end of the connection is the
master and another is the slave, errors can result. clockMode should be
either PDK_PSTN1_QF_MASTER_MODE or

PDK_PSTN1_QF_SLAVE_MODE, as defined in
pdk_pstn1_qfalc.h.

framingType Indicates D4 or ESF framing. This parameter must be set to
PDK_PSTN1_QF_D4_FRAMING or PDK_PSTN1_QF_ESF_FRAMING.

codingType Indicates either AMI or B8ZS line coding. This parameter should be set to
either PDK_PSTN1_QF_AMI_LINE_CODE or
PDK_PSTN1_QF_B8ZS_LINE_CODE.

signalingType Selects clear channel mode (PDK_PSTN1_QF_CLEAR_CHAN_MODE) or
regular T1 robbed bit signaling (PDK_PSTN1_QF_REGULAR_MODE).
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 71

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_status
Reads the framer status for a T1/E1 stream.

Syntax

#include <pdk_pstn1_qfalc.h>
char pdk_pstn1_qf_status(long falc_no);

Parameters

Return Value

Framer status (8 bits).

Usage

The QuadFALC must be set up by a call to pdk_pstn1_qf_setup_t1 before this function is called. The set-up call
can be made by a different application.

This function reads the QuadFALC FRS0 register for the selected stream. The most significant bit of the char
returned indicates Loss of Signal (LOS). This is often called the Red Alarm. If this bit is not working, the E1/T1
link is not operating properly. See the QuadFALC data sheet from Infineon for details.

falc_no Selects one of the four streams. Must be a number from 0 to 3.
Packet Telephony Development Kit Software, Rev. 1

72 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_test_activate_t1
Starts a loopback test on one of the four E1/T1 connections.

Syntax

#include <pdk_pstn1_qfalc.h>
void pdk_pstn1_qf_test_activate_t1(int falc_no, int testType);

Parameters

Usage

The QuadFALC must be set up by a call to pdk_pstn1_qf_setup_t1 before this function is called. The set-up call
can be made by a different application.

falc_no Indicates one of the four streams on which to start the test. Must be a number
from 0 to 3.

testType One of four tests that can be run. The test types as defined in
pdk_pstn1_qfalc.h:

• PDK_PSTN1_QF_LOCAL_LOOPBACK
• PDK_PSTN1_QF_PAYLOAD_LOOPBACK
• PDK_PSTN1_QF_REMOTE_LOOPBACK
• PDK_PSTN1_QF_CHANNEL_LOOPBACK
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 73

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_test_deactivate_t1
Deactivates the loopback test.

Syntax

#include <pdk_pstn1_qfalc.h>
void pdk_pstn1_qf_test_deactivate_t1(int falc_no, int testType);

Parameters

Usage

pdk_pstn1_qf_test_activate_t1 must be called before the test is deactivated, and the testType parameter must be
identical.

falc_no Indicates one of the four streams on which to end the test. Must be a number from
0 to 3.

testType The testType of the test started by pdk_pstn1_qf_test_activate_t1. The test types
as defined in pdk_pstn1_qfalc.h:

• PDK_PSTN1_QF_LOCAL_LOOPBACK
• PDK_PSTN1_QF_PAYLOAD_LOOPBACK
• PDK_PSTN1_QF_REMOTE_LOOPBACK
• PDK_PSTN1_QF_CHANNEL_LOOPBACK
Packet Telephony Development Kit Software, Rev. 1

74 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_qf_write_sig
Writes the signaling bits for a channel.

Syntax

#include <pdk_pstn1_qfalc.h>
void pdk_pstn1_qf_write_sig(long falc_no, long chan, long val);

Parameters

Usage

• The QuadFALC must be set up by a call to pdk_pstn1_qf_setup_t1 before this function is called. The
set-up call can be made by a different application.

• The values written continue to be sent as the signaling bits for chan until the application changes the
value by calling pdk_pstn1_qf_write_sig again.

• See also pdk_pstn1_qf_read_sig.

falc_no Selects one of the four streams. Must be a number from 0 to 3.

chan Channel to write. For T1, it must be a number between 0 and 23.

val Signaling bit value to write. When ESF framing is used, the four least significant
bits are written. For D4, the two least significant bits are written.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 75

Building and Debugging PDK Linux Applications
pdk_pstn1_reset_card
Globally resets the PSTN card.

Syntax

#include <pdk.h>
int pdk_pstn1_reset_card (void);

Return Value

PDK_NOERR. All is well.

Usage

Resets the PSTN card in a two-step process:

1. Asserts and deasserts the reset line to the PSTN card.

2. Writes the needed CPLD registers to reset the CPLD-mapped devices.
Packet Telephony Development Kit Software, Rev. 1

76 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_pstn1_tsi_init
Initializes the TSI.

Syntax

#include <pdk_pstn1_tsi.h>
int pdk_pstn1_tsi_init(void);

Return Value

• PDK_PSTN1_TSI_MEM_ERROR. As part of initialization, a memory test is run on the time-slot-
assigner. This is an indication that the test failed.

• PDK_NOERR. All is well.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 77

Building and Debugging PDK Linux Applications
pdk_rx_from_hdi16
Reads from the DSP device HDI16 port.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern long int (*pdk_rx_from_hdi16)(unsigned long index, unsigned short *data, unsigned
long poll_count);

Parameters

Return Value

• PDK_HDI16_POLLOUT. The host port HDI16 Rx registers were empty after polling poll_count
times, or the DSP device did not initialize the host port.

• PDK_NOERR. The read was successful.

Usage

• Each call to pdk_rx_from_hdi16 reads four unsigned shorts from the selected HDI16 port.

• You must call pdk_dspc_init before using this function.

index Index of the DSP to be written.

data A pointer to the 16-bit value to be read to the DSP host port.

poll_count The number of times to poll the Rx ready bit on the host port before giving up.
Packet Telephony Development Kit Software, Rev. 1

78 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_send_rscfg
Writes the Hardware Reset Configuration Word (HRCW) to one or more DSP devices.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern void (*pdk_send_rscfg)(unsigned long first, unsigned long last, pdk_hdi16_rscfg_t
*pdk_hdi16_rscfg);

Parameters

Usage

• DSP devices with HDI16 ports (such as the MSC8101 device) require an HRCW to be written to their
HDI16 port after power-on reset.

• The pdk_dspc_init function sets this function pointer to a function that writes the given HRCWs to one
or more DSP devices.

����� ����$����������	
���
��������	��������%�����
�
���������
��������
��������

• You must call pdk_dspc_init before using any of the facilities in this section.

Example

/* Send default hardware reset configuration word to DSP 0 */
pdk_send_rscfg(0, 0, 0);

first The first DSP in the farm to which to write the configuration word.

last6 The last DSP in the farm to which to write the configuration word.

pdk_hdi16_rsc
fg

The reset configuration word. If pdk_hdi16_rscfg has a value of zero,
function pdk_send_rscfg automatically uses the default HRCW for the
initialized DSP card. The reset word is defined as follows:

 typedef struct {

unsigned char rscfg[4];

} pdk_hdi16_rscfg_t;

extern pdk_hdi16_rscfg_t
pdk_hdi16_rscfg[PDK_MAX_HDI16];
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 79

Building and Debugging PDK Linux Applications
pdk_set_led
Controls the PDK baseboard’s LED.

Syntax

#include <pdk.h>
void pdk_set_led(unsigned int state);

Parameters

Usage

You must call pdk_immr_init() before calling this function.

state State of the LED. Must be either PDK_LED_OFF or PDK_LED_ON.
Packet Telephony Development Kit Software, Rev. 1

80 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_telc_init
Initializes the memory controller and global variables for interaction with the PSTN card.

Syntax

#include <pdk.h>
long pdk_telc_init(unsigned long tel_card, ...)

Parameters

Return Value

PDK_NOERR. All is well.

Usage

• Since this function performs no actual reset on the card, it is harmless to call it multiple times (or by
multiple applications).

• Programs that use this facility must be run with root privileges.

Example

res = pdk_telc_init(PDK_TELC_PSTN1, PDK_OPTION_END);

tel_card Currently, only PDK_TELC_PSTN1 is available.

options List of options that must end with PDK_DSPC_OPTION_END. There are
currently no options associated with this function.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 81

Building and Debugging PDK Linux Applications
pdk_tx_to_hdi16
Writes to the DSP device HDI16 port.

Syntax

#include <pdk.h>
#include <pdk_hdi16.h>
extern long int (*pdk_tx_to_hdi16)(unsigned long index, unsigned short *data, unsigned long
poll_count);

Parameters

Return Value

PDK_HDI16_POLLOUT. The host port’s HDI16 Tx registers were full after polling poll_count times, or the DSP
device did not initialize the host port.

PDK_NOERR. The write was successful.

Usage

• Each call to pdk_tx_to_hdi16 writes four unsigned shorts to the selected HDI16 port.

• You must call pdk_dspc_init before using this function.

index Index of the DSP to be written.

data A pointer to the 16-bit value to be written to the DSP host port.

poll_count The number of times to poll the Tx ready bit on the host port before giving up.
Packet Telephony Development Kit Software, Rev. 1

82 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk_version
Global pdk_version contains the version number of libpdk.

Syntax

#include <pdk.h>
extern unsigned long pdk_version;

Return Value

The format is 0x00VVMMPP, where the hexadecimal digits are interpreted as

• VV = Major revision number

• MM = Minor revision number

• PP = patch level.

6.3 Linux Drivers
There are Linux drivers apart from libpdk. The SPI driver is automatically installed when the PDK Linux starts up
from Flash memory. If you are creating your own Linux image, you must install these drivers.

The heth.o and spi8260.o drivers are Linux kernel modules. Building them requires a configured kernel source tree.
You must first perform the steps for building the kernel, described in Section 9.2, Build the Linux Operating
System from the Cross-Complier, on page 105, at least through the ppcmake dep clean step. If the
../mpc8260_kernel/linuxppc_2_4_20/.config file does not exist, you do not have a configured
kernel source tree.

The first step in building the Linux drivers is to examine ../mpc8260/libpdk/etc/make.defs and verify
that CROSS_COMPILE and KERNELDIR are correctly set. KERNELDIR is the directory that must contain
.configc. Next, enter the driver source directory:

 ../mpc8260/linux_drivers/heth

or

 ../mpc8260/linux_drivers/spi8260

and enter the following command to create the .o file for the driver. It can be loaded with insmod:

make clean
make

6.3.1 Serial Peripheral Interface (SPI)
The SPI is a full-duplex synchronous serial interface for connecting low-/medium-bandwidth external devices
using four wires:

• Master Out Slave In (MOSI). Supplies the output data from the master to the inputs of the slaves.

• Master In Slave Out (MISO). Supplies the output data from a slave to the input of the master. There
can be no more than one slave transmitting data during any particular transfer.

• Serial Clock (SCLK). A control line driven by the master, regulating the flow of data bits.

• Slave Select (SS). A control line that allows slaves to be turned on and off with hardware control.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 83

Building and Debugging PDK Linux Applications
In the PDK, the SPI driver is used to communicate with the DuSLIC over the MPC8260 SPI, configure the
DuSLIC, issue commands, and so on. Currently, the only devices connected to the SPI port are the DuSLIC
telephone interfaces on the PSTN1 card. The SPI driver runs under the Linux 2.4 kernel used by PTO Linux.

6.3.1.1 Installing and Using the SPI
The SPI driver is a standard character driver. You can access it using standard kernel function calls such as open(),
read(), write(), and close(). Normally, you access the SPI port using libpdk functions, but you can get direct access
using the directions in this section.

1. Install the SPI driver as root:

insmod spi8260.o

This step is performed by default when Linux starts up.

2. Open an interface to the SPI driver in your C program:

int fd;
fd = open("/dev/spi", O_RDWR); /* Open device SPI for Read/Write */

3. Write to the SPI Driver (and therefore to the SPI):

fd = write(fd, buf, buf_size); /* Write Buffer (address buf), length
/* buf_size to the SPI Interface */

4. Read from the SPI driver (and hence to the SPI):

fd = read(fd, buf, buf_size); /* Read into Buffer (address buf), length
 /* buf_size from the SPI Interface */

5. Close an interface to the SPI driver:

int fd;
fd = close(fd); /* Close interface to device SPI for Read/Write */

6. Uninstall the SPI driver as root:

rmmod spi8260

6.3.1.2 Understanding the SPI
The information in this section is not necessary for using the SPI driver, but it helps you to understand how the SPI
works. Linux treats devices as files. Specific device nodes must be created in the /dev directory to indicate the
presence of devices. For example, a serial port (say ttyS0) has an entry /dev/ttyS0 and all the references to this
serial port are through this entry in the /dev directory. An entry for the SPI is created with the.mknod. (.make
node.) command, as follows:

[root@linux-2.4.2_20]# mknod /dev/spi 89 0

The two integers, 89 and 0, indicate the major and minor numbers for the interface. Successfully registered, the SPI
driver is SPI Major = 89. After the SPI Driver is inserted into the running kernel, it can be viewed as one of the
devices running in the kernel.

#> cat /proc/devices
Character devices:

1 mem
2 pty
3 ttyp
4 ttyS
5 cua
7 vcs
Packet Telephony Development Kit Software, Rev. 1

84 Freescale Semiconductor

Building and Debugging PDK Linux Applications
10 misc
89 spi/* SPI device with Major number 89 */
108 ppp
128 ptm
136 pts
162 raw

Next, you can find whether the interrupt for the SPI has been installed:

#:>~/code/SPI# cat /proc/interrupts
CPU0

2: 0 8260 SIU Edge spi /* Interrupt number 2 for the SPI */
33: 76708260 SIU Edge fenet
40: 428 8260 SIU Edge uart
41: 0 8260 SIU Edge uart
BAD: 0

Another utility for finding out how many interrupts a particular interface has generated is the interrupt statistics
file. The output of the file is as follows:

root@aural:~/code/SPI# cat /proc/stat
cpu 148 0 456 18236
cpu0 148 0 456 18236
page 0 0 Interrupt No. 2 = SPI
swap 0 0 |
intr 8190 7
712 0 0 0 0 0 0 478 0
0
0
0
0
0
disk_io:
ctxt 7352
btime 0 processes 104

6.3.2 HETH-HDI16
HETH is a Linux Ethernet driver that interfaces to the HDI16 port of the MSC8101 DSP device. The driver
receives Ethernet frames from the Linux kernel and writes them via an MCP8260 IDMA to the HDI16. It also
receives frames from the HDI16 via IDMA and sends them to the Linux kernel. This driver permits a Linux
application to communicate with the MSC8101 DSP device using standard Linux sockets. The Linux kernel can
also automatically route packets between other network interfaces, such as the MPC8260 FCC Ethernet, and the
DSP device.

HETH and each DSP device can be considered as nodes with their own IP addresses on the same class 3 subset.
The least significant byte of the HETH IP address is 1. For the MSC8101PFC, the least significant byte of the IP
address for MSC8101 DSP 0, 1, 2, 3, 4, and 5 are 2, 3, 4, 5, 6, and 7, respectively. For the MSC8102PFC, the least
significant byte of the MSC8101 IP address can take any value.

6.3.2.1 Software Requirements
The HETH driver runs under the Linux 2.4 kernel used by PTO Linux. It requires a CPM microcode patch that
modifies the behavior of IDMAs in external request mode when DREQ is level sensitive. This patch is assumed to
be built into the Linux kernel. However, HETH cannot dynamically apply it. The patch requires that an address on
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 85

Building and Debugging PDK Linux Applications
the same bus as the HDI16 ports be readable at any time. This address is hardcoded into heth.c as
PDK_LOCAL_ADDR. It is assumed that a memory controller bank has mapped this address before HETH is
loaded. libpdk and the utilities do this with the DSP board initialization functions.

6.3.2.2 Downloading and Installing HETH
The HETH driver typically operates with both an MSC8101 DSP program and an MPC8260 application-level
program running on Linux. To install the HETH driver, you must use the hdidl utility to download an MSC8101
program to the DSP on the MSC8102PFC or to one or more DSP devices on the MSC8101PFC. Next, you must
load and configure the HETH driver using the insmod and ifconfig commands, respectively. Then the Linux
application communicates with the MSC8101 DSP device using standard Linux sockets. Table 14 lists the
requirements for an example DSP program to illustrate the download procedure.

Download a program to the MSC8101 DSP and run it on the MSC8102PFC as follows:

hdidl –rbl -f 0 -l 0 hdiecho_8102pfc.rbl

Download a program to two MSC8101 DSP devices on and run it on the MSC8101PFC as follows:

hdidl –rbl -f 0 -l 0 hdiecho_8101pfc.rbl –f 2 –l 2 hdiecho_8101pfc.rbl

The example DSP program initializes the HDI16 port, completes the initial synchronization sequence with the
MPC8260 (see heth_design_overview.txt in the heth directory for details on the initialization
sequence), and reads packets from the HDI16 and processes them as follows:

 1. Swaps Ethernet MAC addresses.

 2. Swaps the IP address (last two bytes).

 3. If the packet is a UDP packet, swaps the UDP ports.

 4. Sends the packet back to the MPC8260.

6.3.2.3 Loading and Starting HETH
The HETH driver is a dynamically loadable kernel module. Root loads it into the kernel as follows:

sudo /sbin/insmod heth.o heth_dsp_mask = bit_mask_value

Table 14. Requirements for Downloading the HETH Driver

DSP Program hdiecho_dsp.c

Program Directory sc140/drivers/mpc8260/apps/hdiecho

Download Procedure 1. Compile the DSP program.
2. Use s2boot to convert the executable to a file in the rbl format.

Utility for Converting the
Executable to rbl Format

s2boot

rbl File Names
• hdiecho_8102pfc.rbl for the MSC8102PFC
• hdiecho_8101pfc.rbl for the MSC8101PFC

Environment Variable
Set pdk_dspc to the type of DSP card you are using: MSC8101PFC or
MSC8102PFC.

Utility for Downloading a
Program

hdidl
Packet Telephony Development Kit Software, Rev. 1

86 Freescale Semiconductor

Building and Debugging PDK Linux Applications
• The bit_mask_value is an unsigned a 16-bit mask value to enable various DSP devices.

• If heth_dsp_mask is not set in the insmod command, it takes the default value 0. This parameter
must be equal to 0 for the MSC8102PFC and must have a non-zero value for the MSC8101PFC.

• For the MSC8101PFC, each bit of the least significant 6 bits of bit_mask_value enables the
corresponding DSP device. The least significant bit corresponds to DSP 0. For example, if the
bit_mask_value is 5, only DSP 0 and DSP 2 are enabled to receive, process, and send packets.

To bring up the HETH interface and assign ut an IP address, run ifconfig as root:

ifconfig heth0 192.168.10.1

This command assigns IP address 192.168.10.1 to the heth0 interface. Take care to assign an IP address that does
not conflict with your current network settings. You can verify that HETH is running by entering an ifconfig
command with no arguments. The following entry appears for heth0, as well as entries for all the other network
interfaces on your system.

heth0 Link encap:Ethernet HWaddr 00:11:C0:A8:0A:01
inet addr:192.168.10.1 Bcast:192.168.10.255 Mask:255.255.255.0
UP BROADCAST RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

6.3.2.4 Transferring Data Packets to/from the DSP
You can use any utility or method for sending a packet, but be sure that your DSP program understands the packet
type. Netcat (nc) is a freely available UNIX utility that can send and receive UDP (and other) packets. For
example, the following command runs nc and gets it ready to send UDP packets to port 7 of IP address
192.168.10.4:

nc -u 192.168.10.4 7

Because it is on the heth0 network (due to the heth0 IP address and netmask), the packets are sent out via heth0 to
the second (count from 0) MSC8101 DSP on the MSC8101PFC or to the single MSC8101 DSP on the
MSC8102PFC.

For example, if you use nc to send the UDP datagram with payload hello to the second MSC8101 DSP on the
MSC8101PFC or to the single MSC8101 DSP on the MSC8102PFC, you see hello echoed back at you from that
MSC8101 DSP:

nc -u 192.168.10.4 7
hello
hello

If you use nc to send the UDP datagram with payload hello to MSC8101 DSP 0 on the MSC8101PFC, you see
hello echoed back to you from the MSC8101 DSP 0. Note that the last byte of the IP address is the DSP number
(0) plus 2.

nc -u 192.168.10.2 3
hello
hello
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 87

Building and Debugging PDK Linux Applications
6.3.2.5 Unloading HETH
To unload HETH, run the following command as root:

/sbin/ifconfig heth0 down
/sbin/rmmod heth

In the heth directory, the heth_unload file contains commands to bring down and unload the HETH driver. The
module parameter heth_dsp_mask is set to 0 in heth_load, because this script is used to load the HETH driver
for the MSC8102PFC. In heth_load_8101pfc, the heth_dsp_mask parameter is set to 28, which is 16 + 8
+ 4 to indicate that the second, third, and fourth (count from 0) MSC8101 DSP devices s are enabled. Therefore,
the corresponding hdidl command to download and run the DSP program must be:

hdidl -rbl -f 2 -l 4 /usr/local/pdk/etc/msc8101/hdiecho_8101pfc.rbl

6.3.2.6 Log of HETH Test Run
This section summarizes the steps for running HETH and shows a screen log of a successful HETH test run. The
procedure is as follows:

1. Set the pdk_dspc environment variable to MSC8102PFC and download the rbl file compiled and
converted from the source code hdiecho_dsp.c. The sudo command runs the command on its
command line as root:

pdk1-3 cd sc140/drivers/mpc8260/apps/hdiecho
pdk1-4 setenv pdk_dspc 8102pfc
pdk1-5 hdidl –rbl -f 0 -l 0 hdiecho_8102pfc.rbl

2. Load the HETH driver and execute ifconfig to verify that it is loaded. The heth_load script exe-
cutes the necessary insmod and ifconfig commands:

pdk1-6 cd ../..
pdk1-7 cd linux_drivers/heth
pdk1-8 sudo ./heth_load
Warning: loading ./heth.o will taint the kernel: no license
pdk1-9 ifconfig heth0
 heth0 Link encap:Ethernet HWaddr 00:11:C0:A8:0A:01

inet addr:192.168.10.1 Bcast:192.168.10.255 Mask:255.255.255.0
UP BROADCAST RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

3. Send packets out the heth0 interface.

We use nc, then ping, and then flood ping. Note that because of how hdiecho works, the DSP
does not respond to ping. It forwards the ICMP echo request to the MPC8260, which then responds (to
itself) by way of the DSP. When a DSP device receives an ICMP packet, it swaps the source and
destination IP addresses and sends the packet back to the MPC8260 device.
Packet Telephony Development Kit Software, Rev. 1

88 Freescale Semiconductor

Building and Debugging PDK Linux Applications
pdk1-10 nc -u 192.168.10.4 123
hello
hello
how are you
how are you

punt!
pdk1-11 ping -c 1 192.168.10.4
PING 192.168.10.4 (192.168.10.4)from 192.168.10.1:56(84) bytes of data.
64 bytes from 192.168.10.4: icmp_seq=0 ttl=64 time=350 usec
--- 192.168.10.4 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.350/0.350/0.350/0.000 ms
pdk1-12 sudo ping -f -c 100 192.168.10.4
PING 192.168.10.4 (192.168.10.4)from 192.168.10.1:56(84) bytes of data.
 --- 192.168.10.4 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.210/0.211/0.232/0.013 ms

4. Execute ifconfig and notice how many packets were sent and received. HETH has not yet properly
computed the byte counts for Rx bytes and Tx bytes.

 pdk1-13 ifconfig heth0
 heth0 Link encap:Ethernet HWaddr 00:11:C0:A8:0A:01

inet addr:192.168.10.1 Bcast:192.168.10.255 Mask:255.255.255.0
UP BROADCAST RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:204 errors:0 dropped:0 overruns:0 frame:0
TX packets:205 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

5. Unload the driver. The heth_unload script executes the necessary ifconfig and rmmod commands.

 pdk1-14 sudo ./heth_unload

6.4 MPC8260 Control Registers and Memory-Mapped Devices
The MPC8260 device has numerous memory mapped registers, and also memory-mapped peripherals are common
in PowerPC-based systems such as the PDK. The Linux operating system provides complete MMU-based memory
protection so you cannot simply access the MPC8260 memory-mapped registers from applications as you might on
a bare board or a board running a simple RTOS using pointers and physical addresses. Instead, you can either write
a device driver or use mmap to map the special device /dev/mem. Writing a device driver is the standard
approach and is probably the only possible approach if your project involves interrupts.1 If your project need not
involve interrupts, using mmap is much simpler than writing a device driver, and libpdk provides some abstractions
to make it simpler still.

To access the memory-mapped registers in the memory map based on the SIU Internal Memory Map Register
(IMMR), simply call pdk_immr_init as shown and link to libpdk.

#include <stdio.h>
#include <pdk_int_map.h>

1. Linux device drivers are a complicated subject. If you need to write one, consult Alessandro Rubini and Jonathan
Corbet, Linux Device Drivers, second edition, 2001. Be prepared to deal with some differences on PowerPC-based
systems. You may also want to examine the PDK drivers spi8260.c and heth.c.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 89

Building and Debugging PDK Linux Applications
int
main(int argc, char **argv)
{

pdk_immr_init();
printf("BR0 is %08lx\n", PDK_BR0);

return 0;
}

Look at /usr/local/pdk/include/pdk_int_map.h. After the call to pdk_immr_init, the
pdk_immr_base pointer variable contains a user space address pointer. The MMU automatically converts any
access to the address region defined by this address and size 0x20000 (PDK_IMMR_SIZE) to an access to the
IMMR memory address region. The pdk_int_map.h file contains an (incomplete) set of #defines for accessing
individual control registers.

If you want to use a C structure type to define the control registers, such a structure type is buried in the MPC8260
Linux kernel source. You can create a pointer to this structure type and set it to the value in pdk_immr_base after
the call to pdk_immr_init. This implies that Linux code and bare-board code for accessing control registers can be
identical except for one call to pdk_immr_init.

You can access a different physical address region with libpdk, perhaps to access a memory-mapped peripheral, as
follows:

#include <pdk_map_to_user.h>

and then calling

void *pdk_map_to_user (unsigned long base, unsigned long size);

The pdk_map_to_user function is a small wrapper around the standard Linux mmap function. It returns a user-
space pointer to the physical address region defined by base and size. Of course, you must be very careful when
accessing physical addresses. It is easy to conflict with or crash Linux or other software. To access addresses in
physical memory from Linux, follow the guidelines discussed here. Consult the hardware manuals for details on
memory controller settings and the various peripherals.

6.5 Debugging Applications With GDBServer
You can use GDBServer to debug PDK applications from your host machine. GDB is common a GNU debugger.
The procedure is as follows:

Table 15. PDK Physical Memory Map

Address Bus Usage

0x00000000 System Baseboard SDRAM Bank 1

0x04000000 System Baseboard SDRAM Bank 2

0x08000000 Local Baseboard Local SDRAM (not programmed by default)

0xF0000000 Internal Baseboard internal MPC8260 memory space

0xF8300000 System PSTN1 Card QUADFALCC T1 Framer

0xF8400000 System PSTN1 card TSI time-slot assigner and PSTN1 card
CPLD

0xFC000000 Local DSP card host port

0xFF800000 System Baseboard Flash memory
Packet Telephony Development Kit Software, Rev. 1

90 Freescale Semiconductor

Building and Debugging PDK Linux Applications
1. On the host (probably an x86 server), compile the application normally:

ppc_82xx-gcc -g -o foo foo.c

2. Transfer the binary to the target.

3. On the target (pdk) run the program under GDBServer:

gdbserver 192.168.1.12:6780 foo

192.168.1.12 is the host IP address, and 6780 is a port you arbitrarily choose. GDBServer notifies you
if the port is already in use.

4. On the host, run GDB and connect to the GDBServer:

 ppc_82xx-gdb foo

This GDB is configured as --host=i386-redhat-linux --target=ppc-linux:

(gdb) target remote 192.168.1.44:6780
Remote debugging using 192.168.1.44:6780
0x300100d4 in ?? ()
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
(gdb)

5. Use GDB normally, except use cont instead of run:

(gdb) b main
Breakpoint 1 at 0x1000051c: file foo.c, line 12.
(gdb) cont
Continuing.
Error while mapping shared library sections:
/lib/ld.so.1: No such file or directory.
Error while reading shared library symbols:
/lib/ld.so.1: No such file or directory.
Breakpoint 1, main () at foo.c:12
12 for (i = 0; i < 10; i++) {
gdb)

6.6 Debugging Applications With a JTAG Debugger
You can use a debugger to debug and run your own applications directly on the MPC8260 device or program the
Flash memory. Most debuggers have a configuration file to set up the memory controller and the SIU. These
configuration files have various formats, but the numbers and addresses to which they are written remain the same
from debugger to debugger.

The JTAG header is in the corner of the baseboard near the reset button. See the baseboard documentation for
details on JTAG and the connector. This section shows one example configuration file that works with the PDK.
You can use it as a starting point for your own debugger. You do not need to set up the IMMR unless you are
booting from default mode. If you get the HRCW from Flash memory, the IMMR is already set up for you.

; init core register
; The MSR comes up with a value of 0x40, which means the exception prefix
; is 0xfff00000. The trap exception fails to execute properly so we can
; set up breakpoints unless MSR[IP] = 0.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 91

Building and Debugging PDK Linux Applications
WREG MSR 0x00000000 ;clear MSR
WM32 0x000101A8 0xf0000000 ;IMMR: COMMENT ME OUT WHEN BOOTING
FROM

;FLASH
WM32 0xf0010004 0xFFFFFFc3 ;SYPCR: disable watchdog timer
WM32 0xf0010C80 0x00000001 ;SCCR: normal operation

WM32 0xf0010000 0x02240000 ;SIMUCR
WM32 0xf0010d60 0x00000018 ;Bring the TDM/DSP cards out of reset
WM32 0xf0010d70 0x00000018 ;Bring the TDM/DSP cards out of reset
WM32 0xf0010104 0xFF801836 ;OR0: Flash 8MB, CS early negate, 6
w.s.
, Timing relax
WM32 0xf0010100 0xFF801001 ;BR0: Flash @0xFF800000, 16bit, no
parity

;--------------- 60x SDRAM Bank 1 -------------
WM16 0xF0010184 0x19 ;MPTPR: Divide Bus clock by 35
(MPTPR+1)
WM8 0xF001019C 0x14 ;PSRT: Divide MPTPR output by 26
(PSRT+1)
WM32 0xF001010C 0xFC002CC0 ;OR1 : 64MB, 4 banks, row start at A6,
12 rows
WM32 0xF0010108 0x00000041 ;BR1 : SDRAM @0x00000000, 32bit, no
parity
WM32 0xF0010190 0xEB4e24a3 ;PSDMR: Precharge all banks
WM8 0x00000000 0xFF ;Access SDRAM
WM32 0xF0010190 0xCB4e24a3 ;PSDMR: CBR Refresh
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
WM8 0x00000000 0xFF ;Access SDRAM
M32 0xF0010190 0xDB4e24a3 ;PSDMR: Mode Set
WM8 0x00000000 0xFF ;Access SDRAM
WM32 0xF0010190 0xC34e24a3 ;PSDMR: enable refresh, normal operation

;--------------- 60x SDRAM Bank 2 ------------------
WM16 0xF0010184 0x19 ;MPTPR: Divide Bus clock by 35
(MPTPR+1)
WM8 0xF001019C 0x14 ;PSRT: Divide MPTPR output by 26
(PSRT+1)
WM32 0xF0010114 0xFC002CC0 ;OR2: 64MB, 4 banks, row start at
A6,12

;rows
WM32 0xF0010110 0x04000041 ;BR2: SDRAM @0x04000000, 64bit, no
parity
WM32 0xF0010190 0xEB4E24A3 ;PSDMR: Precharge all banks
WM8 0x04000000 0xFF ;Access SDRAM
WM32 0xF0010190 0xCB4E24A3 ;PSDMR: CBR Refresh
WM8 0x04000000 0xFF ;Access SDRAM
WM8 0x04000000 0xFF ;Access SDRAM
WM8 0x04000000 0xFF ;Access SDRAM
WM8 0x04000000 0xFF ;Access SDRAM
WM8 0x04000000 0xFF ;Access SDRAM
WM8 0x04000000 0xFF ;Access SDRAM
Packet Telephony Development Kit Software, Rev. 1

92 Freescale Semiconductor

Building and Debugging PDK Linux Applications
WM8 0x04000000 0xFF ;Access SDRAM
WM8 0x04000000 0xFF ;Access SDRAM
WM32 0xF0010190 0xDB4E24A3 ;PSDMR: Mode Set
WM8 0x04000000 0xFF ;Access SDRAM
WM32 0xF0010190 0xC34E24A3 ;PSDMR: enable refresh, normal
operation

;;;;;;;;;;;; Local SDRAM ;;;;;;;;;;;;;;;;
WM16 0xf0010184 0x19 ;MPTPR: Divide Bus clock by 35
(MPTPR+1)
WM8 0xf00101A4 0x14 ;LSRT: Divide MPTPR output by 26
(PSRT+1)
WM32 0xf0010124 0xFF0030C0 ;OR4:16 MB,4 banks, row start at
A10,12

;rows
WM32 0xf0010120 0x08001861 ;BR4:local SDRAM @0x00000000,32bit,no

;parity
WM32 0xf0010194 0x286ab553 ;LSDMR: Precharge all banks
WM8 0x08000000 0xFF ;Access SDRAM
WM32 0xf0010194 0x86ab553 ;LSDMR: CBR Refresh
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM8 0x08000000 0xFF ;Access SDRAM
WM32 0xf0010194 0x186ab553 ;LSDMR: Mode Set
WM8 0x08000000 0xFF ;Access SDRAM
WM32 0xf0010194 0x406ab553 ;LSDMR: enable refresh, normal
operation

;--
;initialize QuadFALC
;--
WM32 0xF0010144 0xFFFF8106 ;OR8: 32 KB block size, non-burst.
WM32 0xF0010140 0xF83008A1 ;BR8: Base Register Bank 8,8bit port
size,

 ;UPMB) on 60x bus.
; write transactions
WM32 0xF0010174 0x10015418
WM32 0xF0010188 0x0FF3F000
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FF0F300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FF0F300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FF0F004
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FF3F300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FF3F300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x3FF3F001
WM8 0xF8300000 0xFF
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 93

Building and Debugging PDK Linux Applications
; read transaction
WM32 0xF0010174 0x10015400
WM32 0xF0010188 0x8FFFF000
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FFCF300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FFCF300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FFCF004
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FFFF300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x0FFFF300
WM8 0xF8300000 0xFF
WM32 0xF0010188 0x3FFFF001
WM8 0xF8300000 0xFF

; exception
WM32 0xF0010174 0x1001543C
WM32 0xF0010188 0xFFFFCC05
WM8 0xF8300000 0xFF

; Run
WM32 0xF0010174 0x00015400

;--
;initialize HDI16
;--

WM32 0xF001013C 0xFFE00104 ;OR7: Burst off, idle clocks
inserted

;(conservative!)
WM32 0xF0010138 0xFC001081 ;BR7: 16bit port size, (UPMA)

; write transactions
WM32 0xF0010170 0x90000018
WM32 0xF0010188 0x8FFFF000
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFFF000
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFF3000
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFF7004
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x3FFFF001
WM8 0xFC000000 0xFF
WM32 0xF0010188 0xFFFFFFFF
WM8 0xFC000000 0xFF
WM32 0xF0010188 0xFFFFFFFF
WM8 0xFC000000 0xFF

; read transaction
WM32 0xF0010170 0x90000000
WM32 0xF0010188 0xFFFFFC00
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFFFC00
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFF3C00
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFF3C00
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFF3C00
WM8 0xFC000000 0xFF
Packet Telephony Development Kit Software, Rev. 1

94 Freescale Semiconductor

Building and Debugging PDK Linux Applications
WM32 0xF0010188 0x0FFF3C04
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x0FFF3C00
WM8 0xFC000000 0xFF
WM32 0xF0010188 0x3FFFF0C01
WM8 0xFC000000 0xFF

; Run
WM32 0xF0010170 0x80000000

;initialize TSI
;--

WM32 0xF001014C 0xFFFF8106 ;OR9: 32 KB block size, non-
burst.
WM32 0xF0010148 0xF84010C1 ;BR9: Base Register Bank 9,16 bit
port

;size, (UPMC) on 60x bus.

; write transactions
WM32 0xF0010178 0x10008818
WM32 0xF0010188 0x0FF3F300
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FF0F380
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FF0F300

WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FF0F300
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FF0F380
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FF0F004
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FF3F300
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x3FF3F001
WM8 0xF8400000 0xFF

; read transaction
WM32 0xF0010178 0x10008800
WM32 0xF0010188 0x8FFFF000
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FFCF380
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FFCF300
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FFCF300
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FFCF300
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FFCF380
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x0FFCF004
WM8 0xF8400000 0xFF
WM32 0xF0010188 0x1FFFF001
WM8 0xF8400000 0xFF

; exception
WM32 0xF0010178 0x1000883C
WM32 0xF0010188 0xFFFFCC05
WM16 0xF8400000 0xFF
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 95

Building and Debugging PDK Linux Applications
; Run
WM32 0xF0010178 0x00008800

;;;;;; Bring 8102PFC DSP out of RESET
;WM16 0xFC040000 0x3434
;WM16 0xFC040002 0x8080
;WM16 0xFC040004 0x0000
;WM16 0xFC040006 0x3E3E

;;;;;; write 0 to PC13 ;;;;;
WM32 0xf0010d40 0x00040000
WM32 0xf0010d50 0x00000000

[TARGET]
;;; This is debugger-specific stuff
CPUTYPE 8260 ;the CPU type (603EV,750,8240,8260)
JTAGCLOCK 0 ;use 16 MHz JTAG clock
BOOTADDR 0xFFF00100 ;boot address used for start-up break
;WORKSPACE 0x00000000 ;workspace in target RAM for fast download
BDIMODE AGENT ;the working mode (LOADONLY | AGENT | GATEWAY)
BREAKMODE SOFT ;SOFT or HARD, HARD uses PPC hardware breakpoints
STEPMODE HWBP
VECTOR CATCH ;catch unhandled exceptions
Packet Telephony Development Kit Software, Rev. 1

96 Freescale Semiconductor

PPCBoot
7 PPCBoot
PPCBoot (now known as u-boot) is a freeware bootloader available in the PDK Flash memory. The PPCBoot
source is also redistributed on the PDK supplemental CD with all the PDK-specific changes. PPCBoot is useful for
booting Linux from either a TFTP server over the network or from Flash memory, reprogramming the Flash
memory, and performing low-level tasks such as viewing memory. Once everything is installed, PTO Linux
automatically boots as follows without user interaction:

1. On power-up, PPCboot begins running from the PDK Flash memory. System parameters such as the
PKD IP address, the server IP address, and so on are also stored in Flash memory.

2. The Linux kernel and root file system are read from the Flash memory and decompressed into external
SDRAM. This is the default mode of operation.

Alternatively, PPCBoot can use the standard Trivial File Transfer Protocol (TFTP) to load the kernel
image into PDK RAM from the TFTP server disk. PPCBoot then starts the Linux kernel.

3. The Linux kernel sets up the MMU and starts configuring peripherals such as the serial port. It sets up
the FCC Ethernet, configures the TCP/IP stack, and mounts the root file system from a Ramdisk
(default) or you can configure an NFS server.

4. Initialization scripts from the root file system run. Optionally, user home directories are mounted from
the NFS server and the clock is set from the ntp or time server.

5. The PTO Linux boot is complete. The user can log in either via serial port or telnet.

7.1 Booting from the Network
Booting from the network requires a TFTP server. See Section 5.3, Configuring a TFTP Server, on page 38. The
PDK can also boot by getting its kernel via TFTP from a TFTP server rather than from Flash memory and its root
file system from an NFS server rather than from Flash memory. Such network booting is an advanced topic and
you can skip it. Booting the PDK via the network requires the following resources:

• A TFTP server to supply a kernel image file. The file supplied for use with the Flash memory is
sufficient.

• An NFS server to supply a root file system.

The PDK PPCBoot variables and their values make it easy to switch between stand-alone (Flash memory) booting
and network (NFS) booting. The following variables are either new or different in network booting:

• serverip. Must be set to the IP address of the machine—for both the TFTP server (for the kernel) and
the NFS server for the root file system. The serverip variable has nothing to do with time-servers in
network boots. However, if you configure your TFTP/NFS server also to be a time-server, the serverip
value is consistent with both stand-alone and network booting.

• rootpath. Must be set to the NFS-exported directory that is to be the root of the PDK root file system.
For example /usr3/ppcroots/pdk1. The value must be consistent with an entry in your NFS
server /etc/exports file.

• bootfile. Must be set to the kernel to be loaded by TFTP. Its value is pdk_XXXX or
/tftpboot/pdk_XXXX, depending on how the TFTP server is configured.

The steps for booting via the network are as follows:

1. Set the bootcmd environment variable:

setenv bootcmd $(nfsboot)
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 97

PPCBoot
2. Optionally, you can save the environment variables:

 saveenv

3. Boot using the command:

 boot

4. Switch back to stand-alone booting:

 setenv bootcmd $(romboot)

5. If lack of a time-server causes a problem:

 setenv serverid #

6. Optionally, save the environment variables:

 saveenv

7. Boot using the command:

 boot

Typing setenv commands to set PPCBoot environment variables can be tedious. Many terminal emulators support
scripting and writing scripts that can set the variables and save a lot of time and error. TeraTerm is a useful free
terminal emulator for Windows. It is available at
http://hp.vector.co.jp/authors/VA002416/teraterm.html. Freescale Semiconductor supplies
TeraTerm scripts in the scripts/ directory of the PDK Supplemental Software CD:

• update.ttl for updating the kernel and rootfs in Flash memory

• pdk_env.ttl for setting environment variables

You can edit these environment variables to customize them for your settings and use them to speed the processes
discussed in this document, as well as to eliminate potential errors.

7.2 Building PPCBoot
Building PPCBoot requires a cross-compiler. See Section 6.1, Cross-Compiler, on page 40. To build PPCBoot 2.0,
first examine mpc8260_boot/ppcboot-2.0.0/Makefile and check the setting of CROSS_COMPILE. It
must match your cross-compiler prefix. Then, in the ppcboot-2.0.0 directory, enter the following commands:

make distclean
make pdk_config
make all

These commands create the ppcboot.bin file, which must be programmed into the PDK Flash memory. The
ppcboot.srec file is the same file but in S-record format. This step also builds the tools/mkimage utility.
You may want to copy mkimage to a directory that is on your command path on the x86 server. You need mkimage
to finish building the Linux kernel into a bootable form.

7.3 PPCBoot Environment Variables
The PPCBoot environment variables discussed in this section are unique to the PDK. Some variables control
resetting and bootloading a DSP card from PPCboot, which is useful if you want to work with the DSP card
without Linux. The environment variables are as follows:

• pdk_dsp_mask. A bit mask defining the DSP devices to which to write the HRCW at power-on. For
example, a value of 1 writes the HRCW only to DSP 0 and a value of 3 writes the HRCW to DSP 0 and
Packet Telephony Development Kit Software, Rev. 1

98 Freescale Semiconductor

PPCBoot
DSP 1. You can use only a value of 1 at this time since the memory controller programming supports
only the MSC8102PFC. If this variable is not set or is set to zero, no HRCW is written.

• pdk_dsp_hrcw. The HRCW value, for example, 0x3580001A. If this variable is not set, no HRCW is
written.

• pdk_dsp_prog. A hexadecimal string containing ROM bootloader blocks of a small program to
download. This is used with the MSC8102PFC to download a small program that causes the MSC8101
of the card to branch to Flash memory. If this variable is not set, no program is downloaded.

• pdk_be_verbose. If this variable is set (to any value), information is printed while HRCWs are written
and programs are written to the DSP card.

• pdk_no_buffer_hack. If this variable is set to any value, do not use the following lines to control the
buffer blue-wire fix on early (first revision) baseboards. This is not needed on boards shipping today:

*my_pcdir |= 0x00040000;
*my_pcdat &= ~0x00040000;

• nfsboot. The boot parameters for booting Linux over the network and mounting NFS. The standard
PPCBoot bootcmd parameter must be set to nfsboot, as follows:

setenv bootcmd=$(nfsboot)

• romboot. The boot parameters for booting Linux from Flash memory and mounting a ramdisk as the
root file system. The standard PPCBoot bootcmd parameter must be set to romboot, as follows:

setenv bootcmd=$(romboot)
nfsboot is set as the bootcmd by default.

7.4 PDK Baud Rate
The PDK should operate at 115200 baud. The baud rate can be changed via the baudrate PPCBoot variable, as
follows:

setenv baudrate 115200
saveenv

Be sure that clocks_in_mhz and bootargs are not set. Delete them issuing the following commands:

setenv clocks_in_mhz
setenv bootargs
saveenv
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 99

Using the PDK Flash Memory
8 Using the PDK Flash Memory
Table 16 shows the Flash memory map. Files listed in this table are located in the mpc8260/images directory
on the PDK supplemental software CD.
,

8.1 Updating the PDK Flash Memory
This section describes how to update the Linux kernel and file system image in the PDK baseboard Flash memory.
The Flash images that ship with your PDF are located in the mpc8260_configuration directory. If your
Flash memory is overwritten or if you need a starting- place for development, you can use a commercial Flash
memory programmer to replace images. In addition, PPCBoot can program most areas of the Flash memory.

WARNING: Modifying the Flash memory may render your unit inoperable if you cannot get working images
back on. You may have to buy a tool such as CodeWarrior for PowerPC to reprogram the Flash
memory. Using PPCBoot to program the Flash memory is typically safe because it protects itself.

It is assumed that the PDK is booting in its default stand-alone mode rather than from a network server, but see the
note on network booting later in this section.

Updating the Linux kernel and the file system image requires two files:

• A kernel image file: pdk_XXXX

Example: pdk_jan21_patch

• A root file system image file: rootfs_YYYY.PPCBOOT

Example: jan26b_rootfs.PPCBoot

where XXXX and YYYY are version numbers.

Following is a summary of the overall steps in upgrading the Flash memory:

1. Place the update files on your TFTP server.

2. Connect a terminal or terminal emulator to the PDK baseboard serial port, connect its Ethernet, power
on, and press any key to stop the boot.

3. Review and set the PPCBoot environment variables for the update.

4. Enter commands to erase the old kernel image from Flash memory and load the new one.

5. Enter commands to erase the old file system image from Flash memory and load the new one.

6. Review and set the PPCBoot environment variables for booting.

Table 16. Flash Memory Map

Address Contents File
PPCBoot
Writable

0xFF800000 Hardware Reset Configuration Word (HRCW),
which is used by the MPC8260 hardware
bring-up sequence.

hrcw_300.bin. Y

0xFF810000 Compressed Linux kernel. • images/pdk_xxxxxxxx, where xxxxxxxx is
the version number.

• images/rootfs_xxxxxxxx.PPCBoot, where
xxxxxxxx is the version number.

Y

0xFF900000 Compressed root file system, which contains
all the files that go into the ramdisk at start-up.

images/ppcboot_xxxxxxxx.bin, where
xxxxxxxx is the version number.

Y

0xFFF00000 The PPCBoot bootloader. ppcboot.bin. N
Packet Telephony Development Kit Software, Rev. 1

100 Freescale Semiconductor

Using the PDK Flash Memory
The remainder of this section discusses each of these steps in detail.

8.1.1 Place Update Files on the TFTP Server and Connect to a Terminal
To perform the Flash memory update you need a TFTP server and the IP address of that server. See Section 5.3,
Configuring a TFTP Server, on page 38. Connect to the PDK and stop boot. Your PDK baseboard must be on the
same Ethernet as your TFTP server, so connect an Ethernet cable to the PDK Ethernet port that is second closest to
the serial port.

The PDK TFTP client does not work through routers, so if you AND the PDK IP address with the PDK netmask
and AND the TFTP server IP address with the TFTP server netmask, the two resulting network numbers must be
the same. You must also connect the PDK baseboard serial port to a terminal or terminal emulator and start the
terminal or terminal emulator. The PDK serial settings are as follows:

• 115200 Baud

• 8 Data bits

• 1 Stop bit

• No parity

• No flow control

Power-on the PDK. When you are prompted to press a key to stop the boot, do so. You should then see the PDK
PPCBoot prompt, pdk=>.

8.1.2 Review and Set PPCBoot Environment Variables
The PDK update and boot process is controlled by PPCBoot environment variables. To see them and their values,
enter the following command:

printenv

The variables for the update process are:

• ipaddr. Must be set to the PDK IP address.

• netmask. Must be set to the PDK netmask.

• ethaddr. Must be set to the PDK hardware Ethernet address.

• serverip. Must be set to the TFTP server IP address.

The command to set a variable is as follows:

setenv variable value

Following is an example of setting two environment variables:

setenv ipaddr 192.168.1.41
setenv ethaddr 00:11:c0:a8:01:29

Ethernet hardware addresses are supposed to be 6-byte globally unique values. The PDK hardware address is set in
software. The value you choose must be different from that of any other Ethernet interface on your local LAN.
Also, some upper bits of the Ethernet address have a special meaning, so it is recommended that you set the
Ethernet hardware address to 00:11:A:B:C:D, where A, B, C, and D are the digits of the PDK IP address in
hexadecimal. You might also use the hardware address of another Ethernet interface and ensure that it is turned off
when the PDK is turned on. Consult your network administrator if you are in doubt about these settings.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 101

Using the PDK Flash Memory
8.1.3 Update the Kernel Image
The procedure for updating the kernel image is as follows:

1. TFTP the new Linux kernel:

 tftp 100000 "pdk_XXXX"

pdk_XXXX is the new kernel file. Some TFTP servers may require that /tftpboot/ be prepended
to the file name.

WARNING: It is extremely important that you enter the erase address parameters exactly as they are indicated.
Before executing any erase command, always verify the address parameters. If you accidentally
erase the part of Flash memory that contains the bootloader itself, you cannot boot Linux and you
cannot use the bootloader to fix the Flash memory because the bootloader has been erased. At this
point you have a dead board that can only be brought back by means of a JTAG-based Flash
programmer, which you may not have. In this case, you must to send the board to Freescale
Semiconductor.

2. Erase part of the old kernel:

 erase ff810000 ff8fffff

3. Program the new kernel into Flash memory:

 cp.b 100000 ff810000 $(filesize)

The TFTP command automatically sets the filesize variable, so type this command literally. The flash
commands can take a minute or two to complete.

8.1.4 Update the File System Image
The process for updating the file system image is similar to that for upgrading the kernel. The procedure is as
follows:

1. TFTP the new file system image:

TFTP 100000 rootfs_YYYY.PPCBOOT.

where YYYY is the version id.

2. Erase the old file system image:

erase ff900000 ffbfffff

Be sure to verify the address parameters before executing the command.

3. Program the new file system image into Flash memory:

cp.b 100000 ff900000 $(filesize)

It is important to include the double quotes around the upgrade file parameter of the TFTP command.

4. Review and set the PPCBoot environment variables for booting.

8.1.5 Review the PPCBoot Environment Variables for Stand-alone Booting
The PPCBoot environment variables are as follows:

• ipaddr. Should be set to the PDK IP address. The specific value matters only if you use the PDK
Ethernet. Set it to 192.168.1.41 as a default.

• netmask. Should be set to the PDK netmask. The specific value matters only if you use the PDK
Ethernet. Set it to 255.255.255.0 as a default.
Packet Telephony Development Kit Software, Rev. 1

102 Freescale Semiconductor

Using the PDK Flash Memory
• ethaddr. Should be set to the PDK hardware Ethernet address. The specific value matters only if you
use the PDK Ethernet. Set it to 00:11:c0:a8:01:29 as a default.

• gatewayip. Must be set to #.

• hostname. Must be set to the PDK hostname (example: pdk1).

• serverip. Can be set to a time server IP address, else #. If you plan to use the PDK Ethernet and have a
functioning TCP time protocol server, you can set serverip to the time-server IP address. Otherwise,
you must set serverip to value # via the following command:

setenv serverip #
Otherwise, the PDK may hang indefinitely while waiting for a response from the time-server.

• nfsboot. Must be set exactly (literally) to the following long value:

tftpboot\; setenv bootargs root = /dev/nfs rw
nfsroot = \$(serverip):\$(rootpath)
p=\$(ipaddr):\$(serverip):\$(gatewayip):\$(netmask):\$(hostname)::off\;
bootm

 Though it wraps as you see it here, the command to set this value is all one line:
setenv nfsboot tftpboot\; setenv bootargs root=/dev/nfs rw
nfsroot=\$(serverip):\$(rootpath) ip = \$(ipaddr):\$(serverip)
:\$(gatewayip):\$(netmask):\$(hostname)::off\; bootm

• romboot. Must be set exactly (literally) to the very long value:

setenv bootargs root=/dev/ram
ip=\$(ipaddr):\$(serverip):\$(gatewayip):\$(netmask)
:\$(hostname)::off\; bootm ff810000 ff900000

Though it wraps as you see it here, the command to set this value is all one line:

setenv romboot setenv bootargs root=/dev/ram
ip=\$(ipaddr):\$(serverip):\$(gatewayip)
:\$(netmask):\$(hostname)::off\; bootm ff810000 ff900000

• bootcmd. Must be set exactly (literally) to $(romboot), as follows:

setenv bootcmd $(romboot)

At this point, all variables needed for stand-alone booting are set. To save their values to Flash memory, enter the
command:

saveenv

CAUTION: If you forget this step, you must set all of these values again the next time you power-on the PDK.

You can now boot the pdk:

 boot
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 103

Customizing Linux on the PDK
9 Customizing Linux on the PDK
The overall steps in customizing Linus on the PDK are as follows:

1. Customize the embedded Ramdisk.

2. Build the Linux operating system from the cross-compiler.

3. Use the Lineo Linux platform creation suite on the PDK.

The remainder of this section describes these steps in detail.

9.1 Customize the Embedded Ramdisk
Linux requires a root file system. The type of file system used on the PDK is called a Ramdisk. When the kernel
boots, the Ramdisk image is uncompressed from Flash memory into RAM. To modify the embedded Ramdisk,
perform the following steps:

1. You should have a device on your Linux host called /dev/loop or /dev/loop0, loop1, and so
on. If you do not, you can make a loop device as follows:

sudo mknod dev/loop0 b 7 0

2. Unzip the root file system provided in /mpc8260_images:

gunzip my_rootfs.gz

3. Mount the file system using a loop device:

sudo mount -o loop my_rootfs /mnt/loop/

4. Make a directory and copy the contents of the root file system:

mkdir rootfsdir
sudo cp -dpR /mnt/loop/* ./rootfsdir

5. Unmount the loop device:

sudo umount /mnt/loop

6. Make any modifications you need to make (adding programs, users, and so on).

7. To create a new image, you must first make a temporary file and fill it with zeros as a basis for your
root file system:

dd if=/dev/zero of=/tmp/fsfile2 bs=1k count=16384

Where 16384 is the size of your file system in bytes.

8. Make this temporary file into a file system, responding with y to any prompt:

mke2fs -N 2000 /tmp/fsfile2

9. Mount the new file system on the loop device:

sudo mount -t ext2 -o loop /tmp/fsfile2 /mnt/loop

If you do not have a /mnt/loop you can simply make it by running

sudo mkdir /mnt/loop

10. Copy your root file system to the loop device:

sudo cp -dpR ./rootfsdir/* /mnt/loop

11. Unmount the loop device:

sudo umount /mnt/loop
Packet Telephony Development Kit Software, Rev. 1

104 Freescale Semiconductor

Customizing Linux on the PDK
12. Compress the file system:

dd if=/tmp/fsfile2 bs=1k | gzip -v9 > /tmp/my_new_rootfs.gz

This step may take some time.

13. The image must be in a format PPCBoot can read. Add the mkimage program in
mpc8260_boot/ppcboot-2.0.0/tools. to your /usr/local/bin directory so that it
is easily callable in the future. To make the image, invoke mkimage as follows (all one line):

mkimage -n "My wonderful root filesystem 1.0" -A ppc -O linux
-T

ramdisk -C gzip -a 0 -e 0 -d /tmp/my_new_rootfs.gz
./my_new_rootfs.PPCBoot

14. Install your new root file system into Flash memory, as described in Section 8.1, Updating the PDK
Flash Memory, on page 100.

 For example, if your host TFTP server is set up and your PDK is connected to the network, you can
use the following three commands within PPCBoot to put a new compressed file system into Flash
memory:

tftp "/tftpboot/my_new_rootfs.PPCBoot"
erase ff900000 ffbfffff
cp.b 100000 ff900000 $(filesize)

9.2 Build the Linux Operating System from the Cross-Complier
To build the kernel, it is convenient to have a ppcmake alias that runs make but also passes in the following
variables:

• ARCH, which takes the value ppc

• CROSS_COMPILE, which is your cross-compiler prefix. For example, tcsh users might use the
following three lines in their .cshrc file:

set path=($path /opt/Embedix/tools/bin)
setenv CROSS_COMPILE powerpc-linux-
alias ppcmake "make ARCH=ppc CROSS_COMPILE=$CROSS_COMPILE"

After you have the ppcmake alias, cd to the kernel source directory,
mpc8260_kernel/linuxppc_2_4_20, and enter these commands:

ppcmake mrproper
ppcmake pdk_config oldconfig

If the system queries you for configuration settings, respond with n for all but CONFIG_SCC1_CONSOLE, which
must have a y response. If queried for the Ramdisk size, enter a value of 16384. Next, enter these commands:

ppcmake dep clean
ppcmake zImage

To build natively simply use make instead of ppcmake.

These steps build the arch/ppc/boot/images/vmlinux.gz file. Use mkimage to convert this file into a
form that PPCBoot can use. The mk_linux script shows how to do this. You can run mk_linux, assuming mkimage
is in your path, as follows:

cd ..
mk_linux NNNN
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 105

Customizing Linux on the PDK
where NNNN is the PDK kernel build string. This step creates the pdk_NNNN file. You must then get the image
onto the PDK either by booting it over the network or by writing it to Flash memory. For instructions on getting the
image to the PDK, see Section 8.1, Updating the PDK Flash Memory, on page 100.

9.3 Use the Lineo Linux Platform Creation Suite on the PDK
The Lineo Platform Creation Suite allows you to build and configure custom embedded Linux images with ease,
assuming that you are familiar with Linux and are referencing standard Lineo PCS documentation. In the
procedure that follows, [N] is a step that all PCS users must perform, regardless of the target, and [P] is a PDK-
specific step:

1. [N] Install PCS following the standard instructions from Lineo.

2. [N] Install the 8260ADS BSP following the standard instructions from Lineo.

3. [P] As root, copy the PDK patch file to the /opt/Embedix/bsp/mpc8260adsp2.0/
Packages directory. This path assumes PCS is installed in the default place.

4. [P] As root, edit the /opt/Embedix/bsp/mpc8260adsp-2.0/config-data/
buildcontrol/kernel.lbc file and add the patch file to the %patches section:

 %patches
8260_linuxppc_2_4_20-mw.patch
linux-8260ads-flash.patch
linux-pdk.patch

 No extra whitespace allowed.

5. N] Run the PCS tw command to create a project in the usual way, selecting the MPC8260ADS as your
board, which is patched so the software runs on the PDK.

6. [P] Using the tw GUI to set kernel configuration parameters, turn off FCC2 for the Ethernet and start
using FCC1. We could switch the PDK to use FCC2 and avoid this step.

7. [P] Using the GUI execute a force rebuild (a reasonable thing to do for the [N] case also, but is
not required).

8. [N] Using the GUI, execute deploy. Enter the proper parameters for networking features, select NFS
deployment, if desired. The auto-host-configuration should configure your host machine. Ignore the
Flash programming step, but set the PPCBoot environment variables.

9. [N] Boot Linux.

The only PCS problem is that PCS installs a PPCBoot source for the ADS board with permissions that do not allow
it to be read, so there is a build error that can be ignored.
Packet Telephony Development Kit Software, Rev. 1

106 Freescale Semiconductor

Building and Running DSP Applications
10 Building and Running DSP Applications
Building DSP applications requires CodeWarrior for StarCore, which is provided as part of the PDK. You can build
the code either by using the CodeWarrior GUI on a PC running windows or by using makefiles on a PC running
windows with CodeWarrior installed. To build using makefiles it is recommended that cygwin be installed. For
details on building CodeWarrior applications, consult the CodeWarrior documentation. For debugger access to the
DSP devices, project stationary for CodeWarrior is provided. See Section 10.3, Installing CodeWarrior PDK
Stationary for the MSC8101PFC, on page 108 and Section 10.4, Installing CodeWarrior PDK Stationary for the
MSC8102PFC, on page 109. Code can be downloaded to the DSP via the CodeWarrior debugger or from the
MPC8260 Linux host. Code can be debugged when it is downloaded from the host using the attach to process
feature of the CodeWarrior debugger.

10.1 Using the Host to Download Software to the DSP
The libpdk library provides a function that loads a DSP program in S-record format onto a DSP device via its
HDI16 port. The DSP program is then run. S-record format is a text file format in which the code/data to be loaded
is represented as hexadecimal characters. The Metrowerks CodeWarrior tool set provides an elfsrec command-line
utility that converts .eld files into S-record files, as follows:

elfsrec -l -d filename.srec filename.eld

The pdk_hdi16_download function downloads and runs the S-record file as shown in the following example:

#include <stdio.h>
#include <pdk.h>
#include <pdk_hdi16.h>
int
main(int argc, char **argv)
{

pdk_dspc_init(PDK_DSPC_8101PFC, PDK_OPTION_END);
pdk_dsp_reset(1, 2, PDK_RESET);
pdk_hdi16_download(1, 2, "blink.srec");

return 0;
}

This program must be compiled and linked with libpdk and run with root privileges. The pdk_dspc_init function
initializes the selected DSP card. The DSP devices with an HDI16 port accessible to the MPC8260 are numbered
from index 0. The pdk_dsp_reset call resets DSP devices with indices from 1 to 2. The pdk_hdi16_download call
downloads and runs the blink.srec file on these same two DSP devices. See Section 6.2.5, DSP Card libpdk
Utilities, on page 42 for information on how to check the error return codes of these functions. The
pdk_hdi16_download function uses a two-stage boot process. The S-records can be loaded to external memory as
well as internal memory because the first stage of the boot process programs the DSP memory controller.

DSP devices with HDI16 ports have a boot mode in which a program can be downloaded to internal (not external)
memory using a bootloader program in ROM. The ROM bootloader algorithm has a number of restrictions and
also uses a stack in internal memory that the program being downloaded must not overwrite. See the reference
manual for the DSP’ device. The libpdk pdk_hdi16_rbl function downloads a file in ROM Bootloader format to
one or more DSP devices. You must call pdk_dsp_reset to get the DSP ROM bootloaders running before you call
pdk_hdi16_rbl. Programs that use pdk_hdi16_rbl must be run with root privileges. The s2boot utility converts a
file in S-record format into a file in ROM Bootloader format:

s2boot filename.srec filename.rbl
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 107

Building and Running DSP Applications
The s2boot source code is provided with the PDK. It is a plain C program that should be easy to compile on many
systems. It has been used on X86 Linux, X86 Win32 (compiled using the cygwin package), and Sparc/Solaris.

10.2 Accessing the DSP HDI16 Port
The libpdk library contains several functions and other facilities for accessing DSP HDI16 ports. See the libpdk
manual and /usr/local/pdk/include/pdk_hdi16.h file for details. Following is an example that also
shows the use of pdk_hdi16_rbl.

#include <stdio.h>
#include <pdk.h>
#include <pdk_hdi16.h>
#define DSP_NO 5
int
main(int argc, char **argv)
{

unsigned short b[4], i;
pdk_dspc_init(PDK_DSPC_8101PFC, PDK_OPTION_END);
pdk_dsp_reset(0, pdk_num_hdi16 - 1, PDK_RESET); /* resetting all DSPs */
pdk_hdi16_rbl(DSP_NO, DSP_NO, 0,
"/usr/local/pdk/etc/msc8101/sdltest.rbl");
for (i = 0; i < 4; i++) b[i] = i;
pdk_tx_to_hdi16(DSP_NO, b, 0);
pdk_rx_from_hdi16(DSP_NO, b, 0);
printf("%hx %hx %hx %hx\n", b[0], b[1], b[2], b[3]);
return 0;

}

The pdk_tx_to_hdi16 function sends an array of four unsigned shorts to the selected DSP device, and the function
pdk_rx_from_hdi16 reads four unsigned shorts from a DSP and writes them to an array. The hditest utility uses the
/usr/local/pdk/etc/msc8101/sdltest.rbl file. It reads the four unsigned shorts but interprets them
as two unsigned longs (longs are four bytes, shorts are two) and adds 1 to each. It then sends them back to the
MPC8260. Therefore, the example program should print 0 2 2 4. The program must be run with root privileges.

10.3 Installing CodeWarrior PDK Stationary for the MSC8101PFC
The CodeWarrior for StarCore IDE allows you to create project templates called stationery that simplify project
and code generation by providing common source code, linker command files, and debugger, compiler,
optimization, and linker settings associated with a particular platform. In the future, fully qualified CodeWarrior
stationery for the MSC8101PFC will be integrated into the IDE. For now, the following instructions assist you in
creating projects you can download through the JTAG port with the CodeWarrior for StarCore IDE.

First, you must configure the JTAG port to recognize all devices on the physical JTAG chain. On the
MSC8101PFC are six devices that are the six MSC8101 cores. Use the MSC8101PFC_JTAG.cfg file in
cw_files/msc8101pfc.zip to configure the JTAG port for the MSC8101PFC, as follows:

1. Copy the MSC8101PFC_JTAG.cfg file to a place within the project directory structure.

2. Select this file as the JTAG configuration file in the PROJECT TARGET SETTINGS panel under DEBUGGER →
REMOTE DEBUGGING → Edit Connections.

3. In the EDIT CONNECTIONS window, check the MULTI-CORE DEBUGGING box and select the
MSC8101PFC_JTAG.cfg file.
Packet Telephony Development Kit Software, Rev. 1

108 Freescale Semiconductor

Building and Running DSP Applications
4. Click OK to return to the REMOTE DEBUGGING panel, check the MULTI-CORE DEBUGGING box, and select the
CORE INDEX for which the project is intended.

On the MSC8101PFC, the MSC8101 devices are labeled DSP1, DSP2, DSP3, DSP4, DSP5, and
DSP6. However, the corresponding core indices are as follows: DSP1 is core 5, DSP2 is core 4, DSP3
is core 3, DSP4 is core 2, DSP5 is core1, and DSP6 is core 0.

10.4 Installing CodeWarrior PDK Stationary for the MSC8102PFC
The CodeWarrior for StarCore IDE allows you to create project templates called stationery that simplify project
and code generation by providing common source code, linker command files, and debugger, compiler,
optimization, and linker settings associated with a particular platform. In the future, fully qualified CodeWarrior
stationery for the MSC8102PFC will be integrated into the IDE. For now, the following instructions assist you in
creating projects you can download and debug through the JTAG port with the CodeWarrior for StarCore IDE.

First, you must configure the JTAG port to recognize all devices on the physical JTAG chain. On the
MSC8102PFC are 21 devices, as follows:

• One MSC8101 device with a single core.

• Five MSC8102 DSP devices, each with four cores. These 20 cores are the additional 20 devices on the
JTAG chain.

Use the MSC8102PFC_JTAG.cfg file in cw_files/msc8102pfc.zip to configure the JTAG port for the
MSC8102PFC, as follows:

1. Copy the MSC8102PFC_JTAG.cfg file to a place within the project directory structure.

Select the file as the JTAG configuration file in the PROJECT TARGET SETTINGS panel under DEBUGGER → REMOTE

DEBUGGING → Edit Connections.

In the EDIT CONNECTIONS window, check the MULTI-CORE DEBUGGING box and select the MSC8102PFC_JTAG.cfg
file.

Click OK to return to the Remote Debugging panel, check the MULTI-CORE DEBUGGING box, and select the CORE INDEX
for which the project is intended. The MSC8102PFC devices are mapped to the core indices as shown in Table 17.

Table 17. MSC8102PFC Core Indices

Device Core Index

DSP5 Core 0 Core 1

DSP5 Core 1 Core 2

DSP5 Core 2 Core 3

DSP5 Core 3 Core 4

DSP4 Core 0 Core 6

DSP4 Core 1 Core 7

DSP4 Core 2 Core 8

DSP4 Core 3 Core 9

DSP3 Core 0 Core 11

DSP3 Core 1 Core 12

DSP3 Core 2 Core 13

DSP3 Core 3 Core 14
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 109

Building and Running DSP Applications
In addition to the JTAG configuration file, there are register initialization files to configure the devices so that the
debugger can access the device registers. For the MSC8102PFC, there are two register initialization files, which
are both located in cw_files/msc8102pfc.zip:

• One for the MSC8101 device, PFC_8101.cfg.

• Core 0 of any MSC8102 DSP device, PFC_8102core0.cfg.

Like the JTAG configuration file, these two files should be placed within the project directory path. Then you can
successfully debug an MSC8102 project, as follows:

1. Create a dummy MSC8101 project.

This project is used only to download the initialization file. It is not necessary to run the project. The
proper JTAG configuration file and multi-core debugging settings must be made according to the
instructions provided earlier.

2. Within the MSC8101 dummy project target settings panel (SELECT DEBUGGER → SC100 TARGET SET-
TINGS), check the RESET ON CONNECT option.

3. Also from the SC100 Target Settings panel, check the USE INITIALIZATION FILE option and select the
PFC_8101.cfg as the initialization file.

4. From within the MSC8102 project, set up the MSC8102PFC JTAG configuration file and multi-core
debugging settings. The core index must correspond to one of the five core 0 indices.

5. In the MSC8102 project target settings panel, ensure that DEBUGGER → SC100 TARGET SETTINGS →
RESET ON CONNECT is not selected.

6. Also in the SC100 TARGET SETTINGS panel, check the USE INITIALIZATION FILE option and select
PFC_8102core0.cfg as the initialization file.

7. Download the MSC8101 dummy project to the MSC8101 on the MSC8102PFC. This is core 25 in the
MSC8102 JTAG chain.

8. Only after the MSC8101 dummy project is downloaded, download and run/debug the MSC8102
project.

DSP2 Core 0 Core 16

DSP2 Core 1 Core 17

DSP2 Core 2 Core 18

DSP2 Core 3 Core 19

DSP1 Core 0 Core 21

DSP1 Core 1 Core 22

DSP1 Core 2 Core 23

DSP1 Core 3 Core 24

MSC8101 Core 25

Table 17. MSC8102PFC Core Indices (Continued)

Device Core Index
Packet Telephony Development Kit Software, Rev. 1

110 Freescale Semiconductor

Support and Upgrades
11 Support and Upgrades
You can obtain PDK support through standard Metrowerks support by sending an e-mail message to
support@metrowerks.com. To stay up-to date on the latest software and documentation you can subscribe to
the PDK mailing list by sending an e-mail to the following address:

join-mptp-spt-announce@mptp.metrowerks.com

When you are on the list, you get a pointer and a password to the PDK FTP site where you can download the latest
software, documentation, and Flash images. The list also announces any support alerts or new versions that are
available.
Packet Telephony Development Kit Software, Rev. 1

Freescale Semiconductor 111

Document Order No.:

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
PTKITSOFTUG
Rev. 1

	1 PDK Task Checklist
	2 Welcome to the Packet Telephony Development Kit
	3 PDK Host Software Environment
	3.1 PDK Operating Modes
	3.2 PDK DSP Software Environment
	3.3 Supplemental CD Contents
	3.4 Versions and Release Notes

	4 Using the PDK Embedded File System
	4.1 Start-up in Stand-Alone Mode
	4.2 Baseboard Applications
	4.3 PSTN1 Card Applications
	4.4 DSP Card Applications
	4.5 Application Source Code

	5 Networking the PDK
	5.1 Changing the IP Address of the PDK
	5.2 Accessing Linux Networking Services
	5.3 Configuring a TFTP Server

	6 Building and Debugging PDK Linux Applications
	6.1 Cross-Compiler
	6.2 libpdk
	6.3 Linux Drivers
	6.4 MPC8260 Control Registers and Memory-Mapped Devices
	6.5 Debugging Applications With GDBServer
	6.6 Debugging Applications With a JTAG Debugger

	7 PPCBoot
	7.1 Booting from the Network
	7.2 Building PPCBoot
	7.3 PPCBoot Environment Variables
	7.4 PDK Baud Rate

	8 Using the PDK Flash Memory
	8.1 Updating the PDK Flash Memory

	9 Customizing Linux on the PDK
	9.1 Customize the Embedded Ramdisk
	9.2 Build the Linux Operating System from the Cross-Complier
	9.3 Use the Lineo Linux Platform Creation Suite on the PDK

	10 Building and Running DSP Applications
	10.1 Using the Host to Download Software to the DSP
	10.2 Accessing the DSP HDI16 Port
	10.3 Installing CodeWarrior PDK Stationary for the MSC8101PFC
	10.4 Installing CodeWarrior PDK Stationary for the MSC8102PFC

	11 Support and Upgrades

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

