
AOS-CX 10.13 REST API Guide
All AOS-CX Series Switches

Published: November 2023
Edition: 1

| 2

Copyright Information
© Copyright 2023 Hewlett Packard Enterprise Development LP.

This product includes code licensed under certain open source licenses which require source
compliance. The corresponding source for these components is available upon request. This offer is
valid to anyone in receipt of this information and shall expire three years following the date of the final
distribution of this product version by Hewlett Packard Enterprise Company. To obtain such source
code, please check if the code is available in the HPE Software Center at
https://myenterpriselicense.hpe.com/cwp-ui/software but, if not, send a written request for specific
software version and product for which you want the open source code. Along with the request, please
send a check or money order in the amount of US $10.00 to:

Hewlett Packard Enterprise Company
Attn: General Counsel
WW Corporate Headquarters
1701 E Mossy Oaks Rd Spring, TX 77389
United States of America.

Notices
The information contained herein is subject to change without notice. The only warranties for Hewlett
Packard Enterprise products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or
omissions contained herein.

Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession,
use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard
Enterprise has no control over and is not responsible for information outside the Hewlett Packard
Enterprise website.

https://myenterpriselicense.hpe.com/cwp-ui/software

Contents

Contents

Contents 3

About this document 8
Applicable products 8
Latest version available online 8
Command syntax notation conventions 8
About the examples 9
Identifying switch ports and interfaces 10
Identifying modular switch components 11

Introduction to the AOS-CX REST API 13
REST API versions 13

Compatibility 13
REST API access modes 16

Read-write access mode 16
Read-only access mode 16

REST API URI 16
Parts of a URI 16

URI path, including path parameters 17
Query component 17

Resources 18
Resource collections and singletons 18

Collections 18
Subcollections 19
Singletons 19

Categories of resource attributes 19
Configuration attributes 19
Writable attributes 20
Status attributes 20
Statistics attributes 20
Attribute categories might vary 20

Enabling Access to the REST API 21
Setting the admin password 22
Showing the REST API access configuration 22
Disabling access to the REST API 22
HTTPS server commands 23

https-server authentication certificate 23
https-server authentication password 24
https-server max-user-sessions 25
https-server rest access-mode 26
https-server rest firmware-site-distribution 27
https-server session close all 28
https-server session-timeout 28
https-server vrf 29
show https-server 31

AOS-CX 10.13 REST API Guide 3

Contents | 4

show https-server authentication 32

Accessing the AOS-CX REST API 34
Authenticating REST API sessions 34
User groups and access authorization 35

AOS-CX REST API Reference (UI) 37
Accessing the REST API using the AOS-CX REST API Reference 37

Logging in and logging out using the AOS-CX REST API Reference 38
AOS-CX REST API Reference basics 38

AOS-CX REST API Reference home page 38
Write methods (POST, PUT, PATCH, and DELETE) 42

Considerations when making configuration changes 43
Considerations for ports and interfaces 43

Hardware (system) interfaces 43
LAG interfaces 43
VLAN interfaces 44

Write methods (POST, PUT) supported in read-only mode 44
GET method usage and considerations 44

GET method parameters 44
Wildcard character support 45
Attributes parameter 45
Count parameter 46
Depth parameter 48
Filter parameter 50
Selector parameter 54

POST method usage and considerations 56
PUT method usage and considerations 57

PUT request body requirements 58
PUT behavior 58
Exceptions to the PUT strict replace behavior 58
Best practice for building the PUT request body 58

PATCH method usage and considerations 59
DELETE method usage and considerations 59
REST requests and accounting logs 59
AOS-CX REST API reference summary 59

Switch REST API access default 60
Switch REST API default access mode 60
Enabling access to the Web UI and REST API 60
Setting the REST API access mode to read-write 60
Showing the REST API access configuration 60
AOS-CX REST API Reference URL: 60
REST API versions and switch software versions 61
Getting REST API version information from a switch 61
Protocol 61
Port 61
Request and response body format 61
Session idle timeout 61
Session hard timeout 61
Authentication 61
HTTPS client sessions 61
VSX peer switch access 62

Using Curl Commands 63
About the curl command examples 63
Getting the REST API versions on the switch 64

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 5

Accessing the REST API using curl 64
Logging in using curl 65
Passing the cookie back to the switch 66
Logging Out Using Curl 67

Examples 68
Example: GET method 68
Example: Getting and deleting certificates using REST APIs 69

Getting a list of all certificates 69
Getting a certificate 69
Deleting a certificate 70

Example: Generating a self-signed certificate using REST APIs 70
Example: Getting and installing a signed leaf certificate using REST APIs 71
Example: Associating a leaf certificate with a switch feature using REST APIs 74
Example: Configuration management using REST APIs 75

Downloading a configuration 75
Downloading the startup configuration: 75
Uploading a configuration 76
Copying a configuration 76

Example: Firmware upgrade using REST APIs 77
Uploading a file as the secondary firmware image 77
Booting the system using the secondary firmware image 78

Example: Log operations using REST APIs 78
Event logs 78
Accounting (audit) logs 78

Example: Ping operations using REST APIs 79
Example: Traceroute operations using REST APIs 79
Example: User management using REST APIs 80

Creating a user 80
Changing a password 80
Deleting a user 81

Example: Creating an ACL with an interface using REST APIs 81
Example: Creating a VLAN and a VLAN interface using REST APIs 83
Example: Enabling routing on an interface 84
Example: PATCH Method 85

Enabling a VLAN 85
Enabling Central 85
Changing the Source IP of a VRF 85
Using GET and PATCH to Update the admin state of a VLAN 85
Using PATCH to Update a Non-configurable attribute 87

AnyCLI 88
Commands available per platform 88
CLI operations 92
CLI commands operations 93
Swagger 93
Full URI 93
CURL example 93
Error codes 93
Allowed commands 94
Full example 97

Secure Mode 99
Commands available per platform 102

VSX peer switches and REST API access 108
Examples of curl commands 108

Contents | 6

Example: Interacting with a VSX peer switch 109

AOS-CX real-time notifications subsystem 111
Secure WebSocket Protocol connections for notifications 111

Notification topics as switch resource URIs 112
Rules for topic URIs 112
Notification security features 113
AOS-CX real-time notifications subsystem reference summary 113

Connection protocol 113
Port 113
Message format 113
Message types 113
Authorization 113
Notification resource URI 113
Session idle timeout 114
Session hard timeout 114
Subscription persistence 114
Configuration maximums 114

Enabling the notifications subsystem on a switch 114
Establishing a secure WebSocket connection through a web browser 114
Establishing a secure WebSocket connection using a script 114
Subscribing to topics 115
Unsubscribing from topics 116
Subscription throttling 117
Parts of a subscribe message 119

Subscribe message example 119
Components of a subscribe message 119

Parts of a subscription success message 120
Example success message 120
Components of subscription success message 120
Components of a topic 120

Parts of a notification message 121
Notification message examples 121
Components of a notification message 122
Components of a topic 123

Example: Browser-based WebSocket connection 123
About the example 123
Example screen 124
Example HTML source 124

Example: Getting information about current subscribers 126

Troubleshooting 128
General troubleshooting tips 128

Connectivity 128
Resources, attributes, and behaviors 128
GET, PUT, PATCH, POST, and DELETE methods 128
Hardware and other features 130

REST API response codes 131
Error "'admin' password is not set" 132
Error "certificate verify failed" returned from curl command 132
HTTP 400 error "Invalid Operation" 132
HTTP 400 error "Value is not configurable" or "Bad Request" 133
HTTP 401 error "Authorization Required" 133

Solution 1 133
Solution 2 134

HTTP 401 error "Login failed: session limit reached" 134

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 7

HTTP 403 error "Forbidden" on a write request 134
HTTP 403 error "Forbidden" on a GET request 135
HTTP 404 error "Page not found" when accessing the switch URL 135
HTTP 404 error "Object not found" on object with "ports/" or "interfaces/" in URI Path 136
HTTP 404 error "Object not found" returned from a switch that supports multiple REST API
versions (10.04 and later) 136
HTTP 404 error "Object not found" when using a write method 136
HTTP 404 error "Page not found" when using a write method 137
Logout Fails 137

Support and Other Resources 138
Accessing Aruba Support 138
Accessing Updates 139

Aruba Support Portal 139
My Networking 139

Warranty Information 139
Regulatory Information 139
Documentation Feedback 140

Chapter 1

About this document

About this document
This document describes features of the AOS-CX network operating system. It is intended for
administrators responsible for installing, configuring, and managing Aruba switches on a network.

Applicable products
This document applies to the following products:

n Aruba 4100i Switch Series (JL817A, JL818A)
n Aruba 6000 Switch Series (R8N85A, R8N86A, R8N87A, R8N88A, R8N89A, R9Y03A)
n Aruba 6100 Switch Series (JL675A, JL676A, JL677A, JL678A, JL679A)
n Aruba 6200 Switch Series (JL724A, JL725A, JL726A, JL727A, JL728A, R8Q67A, R8Q68A, R8Q69A, R8Q70A,

R8Q71A, R8V08A, R8V09A, R8V10A, R8V11A, R8V12A, R8Q72A, JL724B, JL725B, JL726B, JL727B, JL728B,
S0M81A, S0M82A, S0M83A, S0M84A, S0M85A, S0M86A, S0M87A, S0M88A, S0M89A, S0M90A,
S0G13A, S0G14A, S0G15A, S0G16A, S0G17A)

n Aruba 6300 Switch Series (JL658A, JL659A, JL660A, JL661A, JL662A, JL663A, JL664A, JL665A, JL666A,
JL667A, JL668A, JL762A, R8S89A, R8S90A, R8S91A, R8S92A)

n Aruba 6400 Switch Series (R0X31A, R0X38B, R0X38C, R0X39B, R0X39C, R0X40B, R0X40C, R0X41A,
R0X41C, R0X42A, R0X42C, R0X43A, R0X43C, R0X44A, R0X44C, R0X45A, R0X45C, R0X26A, R0X27A,
JL741A)

n Aruba 8100 Switch Series (R9W94A, R9W95A, R9W96A, R9W97A)
n Aruba 8320 Switch Series (JL479A, JL579A, JL581A)
n Aruba 8325 Switch Series (JL624A, JL625A, JL626A, JL627A)
n Aruba 8360 Switch Series (JL700A, JL701A, JL702A, JL703A, JL706A, JL707A, JL708A, JL709A, JL710A,

JL711A, JL700C, JL701C, JL702C, JL703C, JL706C, JL707C, JL708C, JL709C, JL710C, JL711C, JL704C, JL705C,
JL719C, JL718C, JL717C, JL720C, JL722C, JL721C)

n Aruba 8400 Switch Series (JL366A, JL363A, JL687A)
n Aruba 9300 Switch Series (R9A29A, R9A30A, R8Z96A)
n Aruba 10000 Switch Series (R8P13A, R8P14A)

Latest version available online
Updates to this document can occur after initial publication. For the latest versions of product
documentation, see the links provided in Support and Other Resources.

Command syntax notation conventions

Convention Usage

example-text Identifies commands and their options and operands, code examples,

AOS-CX 10.13 REST API Guide 8

About this document | 9

Convention Usage

filenames, pathnames, and output displayed in a command window. Items
that appear like the example text in the previous column are to be entered
exactly as shown and are required unless enclosed in brackets ([]).

example-text In code and screen examples, indicates text entered by a user.

Any of the following:
n <example-text>
n <example-text>
n example-text

n example-text

Identifies a placeholder—such as a parameter or a variable—that you must
substitute with an actual value in a command or in code:

n For output formats where italic text cannot be displayed, variables
are enclosed in angle brackets (< >). Substitute the text—including
the enclosing angle brackets—with an actual value.

n For output formats where italic text can be displayed, variables
might or might not be enclosed in angle brackets. Substitute the
text including the enclosing angle brackets, if any, with an actual
value.

| Vertical bar. A logical OR that separates multiple items from which you can
choose only one.
Any spaces that are on either side of the vertical bar are included for
readability and are not a required part of the command syntax.

{ } Braces. Indicates that at least one of the enclosed items is required.

[] Brackets. Indicates that the enclosed item or items are optional.

… or
...

Ellipsis:
n In code and screen examples, a vertical or horizontal ellipsis indicates an

omission of information.
n In syntax using brackets and braces, an ellipsis indicates items that can be

repeated. When an item followed by ellipses is enclosed in brackets, zero
or more items can be specified.

About the examples
Examples in this document are representative and might not match your particular switch or
environment.

The slot and port numbers in this document are for illustration only and might be unavailable on your
switch.

Understanding the CLI prompts
When illustrating the prompts in the command line interface (CLI), this document uses the generic term
switch, instead of the host name of the switch. For example:
switch>

The CLI prompt indicates the current command context. For example:
switch>

Indicates the operator command context.
switch#

Indicates the manager command context.
switch(CONTEXT-NAME)#

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 10

Indicates the configuration context for a feature. For example:
switch(config-if)#

Identifies the interface context.

Variable information in CLI prompts
In certain configuration contexts, the prompt may include variable information. For example, when in
the VLAN configuration context, a VLAN number appears in the prompt:
switch(config-vlan-100)#

When referring to this context, this document uses the syntax:
switch(config-vlan-<VLAN-ID>)#

Where <VLAN-ID> is a variable representing the VLAN number.

Identifying switch ports and interfaces
Physical ports on the switch and their corresponding logical software interfaces are identified using the
format:
member/slot/port

On the 4100i Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

On the 6000 and 6100 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

On the 6200 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 8.
The primary switch is always member 1. If the switch is not a member of a VSF stack, then member is
1.

n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 on
member 1.

On the 6300 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 10.
The primary switch is always member 1. If the switch is not a member of a VSF stack, then member is
1.

n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

About this document | 11

For example, the logical interface 1/1/4 in software is associated with physical port 4 on member 1.

On the 6400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of a module in the switch chassis.

o Management modules are on the front of the switch in slots 1/1 and 1/2.
o Line modules are on the front of the switch starting in slot 1/3.

n port: Physical number of a port on a line module.

For example, the logical interface 1/3/4 in software is associated with physical port 4 in slot 3 on
member 1.

On the 83xx, 9300, and 10000 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

If using breakout cables, the port designation changes to x:y, where x is the physical port and y is the lane when
split to 4 x 10G or 4 x 25G. For example, the logical interface 1/1/4:2 in software is associated with lane 2 on
physical port 4 in slot 1 on member 1.

On the 8400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of a module in the switch chassis.

o Management modules are on the front of the switch in slots 1/5 and 1/6.
o Line modules are on the front of the switch in slots 1/1 through 1/4, and 1/7 through 1/10.

n port: Physical number of a port on a line module

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 on
member 1.

Identifying modular switch components
n Power supplies are on the front of the switch behind the bezel above the management modules.

Power supplies are labeled in software in the format:member/power supply:
o member: 1.
o power supply: 1 to 4.

n Fans are on the rear of the switch and are labeled in software as:member/tray/fan:
o member: 1.
o tray: 1 to 4.
o fan: 1 to 4.

n Fabric modules are not labeled on the switch but are labeled in software in the format:
member/module:

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 12

o member: 1.
o member: 1 or 2.

n The display module on the rear of the switch is not labeled with a member or slot number.

Chapter 2

Introduction to the AOS-CX REST API

Introduction to the AOS-CX REST API

The Aruba 6000 Switch Series and 6100 Switch Series only support the default VRF and has no management port.
Therefore, references in this guide to other VRFs or the management port do no apply to the 6000 switches and
6100 switches. Configuration for these switches should be done over an SVI having a physical port with access to
the SVI, since the physical ports in the 6000 and 6100 are not routed.

Switches running the AOS-CX software are fully programmable with a REST (REpresentational State
Transfer) API, allowing easy integration with other devices both on premises and in the cloud. This
programmability—combined with the Aruba Network Analytics Engine—accelerates network
administrator understanding of and response to network issues.

The AOS-CX REST API is a web service that performs operations on switch resources using HTTPS POST,
GET, PUT, PATCH, and DELETEmethods.

The AOS-CX REST API enables programmatic access to the AOS-CX configuration and state database at
the heart of the switch. By using a structured model, changes to the content and formatting of the CLI
output do not affect the programs you write. The configuration is stored in a structured database,
instead of a text file, making it easier to roll back changes, and dramatically reducing the risk of
downtime and performance issues.

REST API versions
From AOS-CX release 10.04, the AOS-CX switches support access through multiple versions of the REST
API. The REST API versions supported on the AOS-CX switches are v10.04, v10.08, v10.09, v10.10, v10.11,
and v10.12. The REST API version v10.04 is supported from AOS-CX release 10.04 and later.

REST v1 is deactivated and no longer supported with AOS-CX 10.12

The version declared in the REST request must match one of the versions of the REST API supported on
the switch. The REST API version is included in the Uniform Resource Identifier (URI) used in REST
requests.

In the following example, the REST API version is v10.12:
https://192.0.2.5/rest/v10.12/latest/system

In the following example, the REST API version is v10.09:
https://192.0.2.5/rest/v10.09/system

In the following example, the REST API version is v10.04:
https://192.0.2.5/rest/v10.04/system

Compatibility
The following table shows the compatibility of AOS-CX switches with older REST API versions. To
maintain compatibility with older versions on new AOS-CX switches, old versions continue to be
published and use the same schema as the newest REST API version.

AOS-CX 10.13 REST API Guide 13

Introduction to the AOS-CX REST API | 14

Switch
series

Rest
v10.04 API

Rest v10.08
API

Rest v10.09
API

Rest v10.10
API

Rest v10.11
API

Rest v10.12
API

6000
(Rxxxx)

Yes (with
10.12
schema)

Yes (with
10.12 schema)

Yes (with
10.12
schema)

Yes (with
10.12
schema)

Yes Yes

6100
(except for
Rxxxx)

Yes Yes Yes Yes Yes Yes

6100
(Rxxxx)

Yes (with
10.12
schema)

Yes (with
10.12 schema)

Yes (with
10.12
schema)

Yes (with
10.12
schema)

Yes Yes

6200
(except for
JLxxxA)

Yes Yes Yes Yes Yes Yes

6200
(JLxxxA)

Yes (with
10.12
schema)

Yes (with
10.12 schema)

Yes (with
10.12
schema)

Yes (with
10.12
schema)

Yes Yes

6300 Yes Yes Yes Yes Yes Yes

6400 Yes Yes Yes Yes Yes Yes

8100 N/A N/A N/A N/A N/A Yes

8320 Yes Yes Yes Yes Yes Yes

8325 Yes Yes Yes Yes Yes Yes

8360
(Except for
JL7xxC)

Yes (with
10.12
schema)

Yes (with
10.12 schema)

Yes Yes Yes Yes

8360
(JL7XXC)

Yes Yes Yes Yes Yes Yes

8400 Yes Yes Yes Yes Yes Yes

4100i Yes (with
10.12
schema)

Yes Yes Yes Yes Yes

6000 Yes (with
10.12
schema)

Yes Yes Yes Yes Yes

8360
(JL7XXC)

Yes (with
10.12
schema)

Yes (with
10.12 schema)

Yes Yes Yes Yes

9300 Yes (with
10.12
schema)

Yes (with
10.12 schema)

Yes (with
10.12
schema)

Yes Yes Yes

10000 Yes (with Yes (with Yes Yes Yes Yes

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 15

Switch
series

Rest
v10.04 API

Rest v10.08
API

Rest v10.09
API

Rest v10.10
API

Rest v10.11
API

Rest v10.12
API

10.12
schema)

10.12 schema)

The following table shows the state of each Swagger UI page per AOS-CX switch.

Switch
series

Swagger
v10.04

Swagger
v10.08

Swagger
v10.09

Swagger
v10.10

Swagger
v10.11

Swagger
v10.12

6000
(Rxxxxx)

Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes Yes

6100
(except for
Rxxxx)

Yes Yes Yes Yes Yes Yes

6100
(Rxxxx)

Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes Yes

6200
(except for
Rxxxx)

Yes Yes Yes Yes Yes Yes

6200
(Rxxxx)

Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes Yes

6300 Yes Yes Yes Yes Yes Yes

6400 Yes Yes Yes Yes Yes Yes

8100 N/A N/A N/A N/A N/A Yes

8320 Yes Yes Yes Yes Yes Yes

8325 Yes Yes Yes Yes Yes Yes

8360
(JL7XXA)

Yes Yes Yes Yes Yes Yes

8400 Yes Yes Yes Yes Yes Yes

4100i Yes (same as
10.12)

Yes Yes Yes Yes Yes

6000 Yes (same as
10.12)

Yes Yes Yes Yes Yes

8360
(JL7XXC)

Yes (same as
10.12)

Yes (same as
10.12)

Yes Yes Yes Yes

9300 Yes (same as
10.12)

Yes (same as
10.12)

Yes (same as
10.12)

Yes Yes Yes

10000 Yes (same as
10.12)

Yes (same as
10.12)

Yes Yes Yes Yes

Introduction to the AOS-CX REST API | 16

REST API access modes
The REST API supports two access modes:

n read-write (default)
n read-only

The default read-write access mode is not displayed in the show running-configuration command.
You can change the access mode to read-only using the https-server rest access-mode read-only CLI
command from the global configuration (config) context. You can validate the mode set using the show
https-server command.

Read-write access mode
In the read-write access mode:

n The AOS-CX REST API Reference shows most of the supported read and write methods for all switch
resources.

n The REST API can access and change every configurable aspect of the switch as modeled in the
configuration and state database.

The REST API is powerful, but must be used with extreme caution: For most values, no semantic
validation is performed on the data that you write to the database, and configuration errors can
destabilize the switch.

Read-only access mode
In the read-only access mode:

n Most switch resources support only GET methods, but some resources allow PUT or POST methods.
For example, you can use POST to log into the switch, use PUT to upload a new running
configuration, or use POST to upload a new firmware version.

n Read-only mode applies to all clients, including Aruba Central, Aruba Fabric Composer (AFC) and
NetEdit.

n For most switch resources, the AOS-CX REST API Reference does not show any write methods (POST,
PUT, PATCH, and DELETE) the resource might support. To show those write methods, read-write
mode must be enabled.

n A request to a read-only resource returns the code 405 Method Not Allowed.
n Once read-only mode is enabled, it can only be disabled through the switch command-line interface.

REST API URI
A switch resource is indicated by its Uniform Resource Identifier (URI). A URI is the location of a specific
web resource. A URI can be made up of several components, including the host name or IP address,
port number, the path, and an optional query string.

Parts of a URI
The two main parts of a URI are the path and the (optional) query component.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 17

URI path, including path parameters
The path is the part of the URI starting with the server URL and ending with the resource ID. In URIs that
have a query component, the path is everything before the question mark (?). The path has a hierarchy.
In a path, the forward slash (/) indicates the hierarchical relationship between resources.

Because the forward slash has a special meaning, the forward slash characters that are part of the URI
path must be percent-encoded with the code %2F, which represents the forward slash. For example, the
following URI represents the resource utilization for the management module in slot 1/5:
https://192.0.2.5/rest/v10.xx/system/subsystems/management_
module,1%2F5?attributes=resource_utilization

URI prefix

The URI prefix is the system URL and REST API version information. This information is specific to a
particular switch and REST API version, and is the same for every REST API request to that switch.

Script writers often create a variable for the URI prefix. Using a variable enables the writer to update a
script or use the same script logic for a different switch by updating the value of the URI prefix variable.

The URI prefix contains the following:

Server URL

The web server address of the switch.

Examples:

n https://192.0.2.5

n https://10.17.0.1

n https://myswitch.mycompany.com

If Virtual Switching Extension (VSX) is enabled, you can access most resources of the peer switch from
this switch by adding /vsx-peer in the URI path between the server URL and /rest. For more
information about VSX, see VSX peer switches and REST API access.

For example:
GET https://192.0.2.5/vsx-peer/rest/v10.xx/system/vsx?attributes=oper_status

REST API and version identifier
For example: /rest/v10.xx

Path parameters

A path parameter is a part of the URI path that can vary. Typically path parameters indicate a specific
instance of a resource in a collection, such as a specific VLAN in the vlans collection. The path can
contain several path parameters. Path parameters are indicated by braces {}.

For example, the AOS-CX REST API Reference displays the resource for specific VLAN as the following:
/system/vlans/{id}

When you send a request for VLAN 10, the URI you provide must substitute the VLAN ID, 10, for the {id}
query parameter. For example:
/system/vlans/10

In the AOS-CX REST API Reference, you enter the value of the path parameter in the Value field of the id
parameter.

Query component
In many cases, the unique identification of a resource requires a URI that contains both a path and a
query component. The query component is sometimes called the query string.

For example, CPU utilization is a resource represented by the following URI:

Introduction to the AOS-CX REST API | 18

https://192.0.2.5/rest/v10.xx/system/subsystems/management_
module,1%2F5?attributes=resource_utilization

In a URI, the question mark (?) indicates the beginning of the query component. The query component
contains nonhierarchical data, and the format of the query string depends on the implementation of
the REST API.

The query component often contains "<key>=<value>" pairs separated by the ampersand (&) character.
Multiple attribute values are supported and are separated by commas. For example:
https://192.0.2.5/rest/v10.xx/system/vlans?depth=2&attributes=id,name,type

"Dot" notation for Network Analytics Engine URIs only

When a URI defines a monitor in an Aruba Network Analytics Engine (NAE) script, attribute values in the
query string support an additional dot notation that the Network Analytics Engine uses to access
additional information. For example:
https://192.0.2.5/rest/v10.09/system/subsystems/management_
module,1%2F5?attributes=resource_utilization.cpu

The dot notation is supported for certain URIs that define monitors only in NAE scripts.

Resources
In a REST API, the primary representation of data is called a resource. A resource is a representation of
an entity in the system as a URI. The entities can include hardware objects, statistical information,
configuration information, and status information. The URI might or might not include a query
component. Resources are nouns—anything that can be named can be a resource.

Examples of resources:

n The resource utilization information:
https://192.0.0.5/rest/v10.xx/system/subsystems?attributes=resource_utilization

n The list of configured VLANs:
https://192.0.2.5/rest/v10.xx/system/vlans

n The list of all users:
https://192.0.2.5/rest/v10.xx/system/users

n The user with the ID: myadmin:
https://192.0.2.5/rest/v10.xx/system/users/myadmin

n The secondary firmware image:
https://192.0.2.5/rest/v10.xx/firmware?image=secondary

Resource collections and singletons

Collections
A collection is a directory of resources managed by the server. Typically, a resource collection contains
multiple resource instances and the collection name is in the plural form.

For example:

n /system/vlans

n /system/users

n /fullconfigs

A GET request to a collection returns the set of JSON objects representing the members of the
collection. The following curl example shows the GET request and response returned for the vlans
collection:

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 19

$ curl -k GET -b /tmp/auth_cookie "https://192.0.2.5/rest/v10.04/system/vlans"
{
"1": "/rest/v10.04/system/vlans/1",
"10": "/rest/v10.04/system/vlans/10",
"20": "/rest/v10.04/system/vlans/20"

}

Each URI in the list represents a configured VLAN.

To get the JSON data for VLAN 10, you must either send the GET request to the URI representing VLAN
10 ("/rest/v10.xx/system/vlans/10"), or you must use the depth parameter to expand the list of URIs
in the vlans collection to get the JSON data for all the VLANs in the collection.

Subcollections
A single resource instance can also contain subcollections of resources.

n In the following example, vlans is a subcollection of the system resource:
/system/vlans

n In the following example, routes is a subcollection of the default VRF resource instance:
/system/vrfs/default/routes

Singletons
There are some resources that can only have one instance. These resources are called singletons and
the resource collection name is in the singular form.

For example:

n /system

n /system/vsx

n /firmware

Because there is only one resource in a singleton collection, GET requests return the JSON
representation of the resource instead of a URI list of one item. In addition, you do not need to supply a
resource ID in the URL of a GET request. For example, the following GET request to the firmware URI
returns the JSON data that represents the firmware resource:

$ curl -k GET -b /tmp/auth_cookie "https://192.0.2.5/rest/v10.xx/firmware"
{
"current_version": "TL.10.00.0006E-686-g4a43ab9",
"primary_version": "TL.10.00.0006E-686-g4a43ab9",
"secondary_version": "",
"default_image": "primary",
"booted_image": "primary"

}

Categories of resource attributes
Resources can contain many attributes, and they are organized into the following categories to enable
more efficient management:

Configuration attributes
Configuration attributes represent user-owned data. Although an attribute must be in the
configuration category to be modified by a user, not all attributes in the configuration category can
be modified after the resource instance is created. Configuration attributes that cannot be changed

Introduction to the AOS-CX REST API | 20

after the resource is created are called immutable attributes. This distinction matters when using a
PUT request, because immutable attributes cannot be included in the request body.
For example, a VLAN ID is an immutable attribute. You cannot change the ID of the VLAN after the
VLAN is created. The VLAN name, in contrast, is a mutable (writable) attribute. You can change the
VLAN name after the VLAN is created.

Writable attributes
Writable attributes are the subset of configuration attributes that are mutable. Writable attributes
can be modified by a user after the resource is created. When using the PUT method to modify a
resource, only writable attributes can be included in the request body.
In REST v10.04 and later versions, the GET method selector parameter includes a value of writable,
which enables you to get only the mutable configuration attributes of a resource.

Status attributes
Status attributes contain system-owned data such as the admin account and various status fields.
You cannot create or modify instances of attributes in this category.

Statistics attributes
Statistics attributes contain system-owned data such as counters. You cannot create or modify
instances of attributes in this category.

Attribute categories might vary
A given attribute need not necessarily be in the same category from resource to resource, or even
resource instance to resource instance. If the system owns an instance of a resource, attributes of that
resource (which might be configuration attributes if a user owns the resource instance) become status
attributes, which cannot be modified by users.

For example, a user can create VLANs. However, the system can also create VLANs. System-owned
VLANs have many attributes that are considered to be in the status category and not the configuration
category. The status category is used when the data is owned by the system and cannot be overwritten
by a user.

Often a resource has a single attribute that indicates whether the resource is owned by the system or
by a user. For example, for a VLAN, the type attribute indicates whether the VLAN was created by a
user.

When this indicator attribute indicates that the resource is owned by the system, the other attributes
that might have been in the configuration category are categorized as status attributes. Likewise, when
the indicator attribute indicates that the resource is owned by a user, the other configuration attributes
remain available for modification by users. In other words, the categories for other attributes on the
resource follow the indicator attribute.

Chapter 3

Enabling Access to the REST API

Enabling Access to the REST API
The AOS-CX Web UI and AOS-CX real-time notifications subsystem rely on the REST API, therefore, all
three are enabled or disabled together.

To access the REST API, Web UI, or notifications subsystem, the HTTPS server must be enabled on the
specified VRF. The VRF you specify determines from which network the features can be accessed. You
can enable access on multiple VRFs, including user-defined VRFs, by entering the https-server vrf

command for each VRF on which you want to enable access.

Prerequisites

n You must be in the global configuration context: switch(config)#.
n For the password-based authentication, the password for the admin user must be configured on the

switch.
n For the certificate-based authentication method, the trust anchor (TA) profile is needed to validate

the client certificate. Also, a RADIUS server must be configured on the switch. For more information
on configuring certificates and managing certificates, see the AOS-CX Security Guide.

Procedure
Enable HTTPS server access for the specified VRF.

For example:

n To enable access on all data ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

The Aruba 6000 Switch Series and 6100 Switch Series only supports the default VRF.

n To enable access on the OOBM port (management interface IP address), specify the management VRF
(not applicable to the 6000 and 6100):

switch(config)# https-server vrf mgmt

n To enable access on ports that are members of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

In the case of password authentication, if the switch responds with the following error, the admin user
must have a valid password:
Failed to enable https-server on VRF mgmt. 'admin' password is not set

The switch is shipped from the factory with a default user named admin without a password. The admin
user must set a valid password before HTTPS servers can be enabled.

AOS-CX 10.13 REST API Guide 21

Enabling Access to the REST API | 22

Setting the admin password
Use the following API to login as the admin.
POST /rest/v10.xx/login?username=admin

A new session is started and a response code 268 is returned along with the message: "Session is
restricted. Administrator password must be set before continuing."

This session is valid only to change the admin password and logout from the REST API UI. Any other request will
return a Forbidden code (403).

Use the following API to change the admin password. Ellipses (...) represent data not included in the
example.
PUT /rest/v10.xx/system/users/admin
{
...
"password": "<enter the password>"
...
}

After the password is changed successfully, the session restriction is removed.

Showing the REST API access configuration
To show the REST API access configuration, in the manager context (#) of the CLI, enter the show https-

server command.

For example:

switch# show https-server
HTTPS Server Configuration

VRF : mgmt, default
REST Access Mode : read-write

The Aruba 6000 Switch Series and 6100 Switch Series only supports the default VRF.

The command output lists the VRFs on which access to REST API is enabled and shows the current REST
API access mode.

If access is not enabled on any VRF, the VRF configuration is displayed as <none>.

For example:

switch# show https-server
HTTPS Server Configuration

VRF : <none>
REST Access Mode : read-write

Disabling access to the REST API

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 23

The AOS-CX Web UI and AOS-CX real-time notifications subsystem rely on the REST API, therefore, all three are
enabled or disabled together.

Prerequisites
You must be in the global configuration context: switch(config)#.

Procedure
Disable HTTPS server access for the specified VRF by using the no form of the https-server vrf

command.

For example, the following command disables REST API access on the switch data ports in the default
VRF:

switch(config)# no https-server vrf default

You can use the show https-server command to show the current configuration:

switch# show https-server

HTTPS Server Configuration

VRF : mgmt
REST Access Mode : read-write

HTTPS server commands

https-server authentication certificate
https-server authentication certificate [authorization radius] [username {<CERT-FIELD>}]

Description
Enables authentication using an x509 certificate for authentication. When this option is configured, the
https-server uses the user specified certificate for authentication, and the specified authorization
mechanism is used to obtain the corresponding user role. The username embedded in the certificate is
used for authorization with a remote user database.

Enabling password authentication is the only way of disabling certificate authentication.

Only one authentication method can be enabled at a time. If you want to disable certificate-based authentication,
then the password-based authentication must be enabled.

Parameter Description

<AUTHORIZATION-RADIUS> Specifies that after certificate authentication succeeds, instead of
prompting for a password, the HTTPS server checks the RADIUS
server only for authorization.
When this parameter is omitted, authorization radius is still
the assumed active setting.

Enabling Access to the REST API | 24

Parameter Description

<CERT-FIELD> Selects which certificate username field is to be used for
authorization.
n Specify user_pincipal_name to use the certificate

UserPrincipalName (UPN) field. This is the default.
n Specify common_name to use the certificate CommonName

(CN) field.

When this parameter is omitted, user_pincipal_name is
assumed.

Example
Enabling authentication using the certificate:

switch(config)# https-server authentication certificate authorization radius
username common_name

Command History

Release Modification

10.11 Command introduced.

Command Information

Platforms Command context Authority

4100i
6200
6300
6400
8100
8320
8325
8360
8400
9300
10000

config Administrators or local user group members with execution rights
for this command.

https-server authentication password
https-server authentication password

Description
Enables authentication using username and password, which corresponds to the default authentication
mechanism. Enabling the password authentication mode disables the certificate authentication mode.

Only one authentication method can be enabled at a time.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 25

Example
Enabling authentication using the password:

switch(config)# https-server authentication password

Command History

Release Modification

10.11 Command introduced.

Command Information

Platforms Command context Authority

4100i
6200
6300
6400
8100
8320
8325
8360
8400
9300
10000

config Administrators or local user group members with execution rights
for this command.

https-server max-user-sessions
https-server max-user-sessions <SESSION-AMT>

Description
Sets the maximum amount of concurrent open sessions for any given user through the HTTPS server.
The amount of concurrent open sessions may have an impact on system performance, so it is
recommended to set this value to the minimum necessary.

Parameter Description

<SESSION-AMT> Specifies the maximum number of user sessions allowed.
Default: 6. Maximum value: 8.

Example
Set the maximum number of concurrent user sessions to the maximum of 8:

switch(config)# https-server max-user-sessions 8

Command History

Enabling Access to the REST API | 26

Release Modification

10.08 Command introduced

Command Information

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

https-server rest access-mode
https-server rest access-mode {read-only | read-write}

Description
Changes the REST API access mode. The default mode is read-write. This command does not affect
Central connections, which have permission to alter configurations regardless of the access mode set
on the switch.

Parameter Description

read-write Selects the read/write mode. Allows POST, PUT, PATCH, and
DELETE methods to be called on all configurable elements in the
switch database.

read-only Selects the read-only mode. Write access to most switch
resources through the REST API is disabled.

Usage
Setting the mode to read-write on the REST API allows POST, PUT, PATCH, and DELETE methods to be
called on all configurable elements in the switch database.

By default, REST APIs in the device are in the read-write mode. Some switch resources allow POST, PUT,
PATCH, and DELETE regardless of REST API mode. REST APIs that are required to support the Web UI or
the Network Analytics Engine expose POST, PUT, PATCH, or DELETE operations, even if the REST API
access mode is set to read-only.

The REST API in read/write mode is intended for use by advanced programmers who have a good
understanding of the system schema and data relationships in the switch database.

Because the REST API in read/write mode can access every configurable element in the database, it is powerful but
must be used with extreme caution: No semantic validation is performed on the data you write to the database,
and configuration errors can destabilize the switch.

On 6300 switches or 6400 switches, by default, the HTTPS server is enabled in read-writemode on the
mgmt VRF. If you enable the HTTPS server on a different VRF, the HTTPS server is enabled in read-only

mode.

Example

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 27

switch(config)# https-server rest access-mode read-only

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

https-server rest firmware-site-distribution
https-server rest firmware-site-distribution
no https-server rest firmware-site-distribution

Description
Enables the firmware site distribution server.

The firmware site distribution allows you to use a switch to distribute a firmware image file to other
switches in the same network. This prevents the switches from connecting to the cloud or an external
network to download a firmware image file.

On enabling the firmware site distribution, it exposes a REST endpoint that allows the switches to
download a switch primary or secondary firmware image.

As per the limitation, up to two switches can download the firmware image simultaneously.

This endpoint is to be used along with REST /firmware endpoint to handle the firmware download and
installation process.

The no form of this command disables the firmware site distribution server.

Example
Enabling the firmware site distribution server:

switch(config)# https-server rest firmware-site-distribution

Disabling the firmware site distribution server:

switch(config)# no https-server rest firmware-site-distribution

Command History

Release Modification

10.10 Command introduced

Enabling Access to the REST API | 28

Command Information

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

https-server session close all
https-server session close all

Description
Invalidates and closes all HTTPS sessions. All existing WebUI sessions (including sessions used for
Central connections) will be logged out. REST and WebUI users will have to reauthenticate. and all real-
time notification feature WebSocket connections are closed and must be resubscribed.

Usage
Typically, a user that has consumed the allowed concurrent HTTPS sessions and is unable to access the
session cookie to log out manually must wait for the session idle timeout to start another session. This
command is intended as a workaround to waiting for the idle timeout to close an HTTPS session. This
command stops and starts the hpe-restd service, so using this command affects all existing REST
sessions, Web UI sessions, and real-time notification subscriptions.

Example

switch# https-server session close all

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms Manager (#) Administrators or local user group members with execution rights
for this command.

https-server session-timeout
https-server session-timeout <MINUTES>

Description
Configures the timeout, in minutes, for any given HTTPS server session. A value of 0 disables the
timeout. This command does not affect sessions used for Central connections.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 29

Parameter Description

<MINUTES> Specifies the maximum idle time, in minutes for an HTTPS session.
Default: 20. Maximum: 480 (8 hours). 0 disables the timeout, but
the maxium is still enforced.

Example

switch(config)# https-server session-timeout 10

Command History

Release Modification

10.08 Command introduced

Command Information

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

https-server vrf
https-server vrf <VRF-NAME>
no https-server vrf <VRF-NAME>

Description
Configures and starts the HTTPS server on the specified VRF, allowing access to REST and the WebUI
from ports assigned to that VRF. This command does not affect access to Central instances, as this
feature has its own dedicated connection channel.

The no form of the command stops any HTTPS servers running on the specified VRF and removes the
HTTPS server configuration.

Parameter Description

<VRF-NAME> Specifies the VRF name. Required. Length: Up to 32 alpha numeric
characters.

Usage
By using this command, you enable access to both the Web UI and to the REST API on the specified VRF.
You can enable access on multiple VRFs.

By default, 8100, 8320, 8325, 8360, 8400, 9300, and 10000 Switch Series have an HTTPS server enabled
on the mgmt VRF.

By default, the 6200, 6300, and 6400 Switch Series have an HTTPS server enabled on the mgmt VRF and
on the default VRF.

When the HTTPS server is not configured and running, attempts to access the Web UI or REST API result
in 404 Not Found errors.

Enabling Access to the REST API | 30

The VRF you select determines from which network the Web UI and REST API can be accessed.

For example:

n If you want to enable access to the REST API and Web UI through the OOBM port (management IP
address), specify the built-in management VRF (mgmt).

n If you want to enable access to the REST API and Web UI through the data ports (for "inband
management"), specify the built-in default VRF (default).

n If you want to enable access to the REST API and Web UI through only a subset of data ports on the
switch, specify other VRFs you have created.

Aruba Network Analytics Engine scripts run in the default VRF, but you do not have to enable HTTPS
server access on the default VRF for the scripts to run. If the switch has custom Aruba Network Analytics
Engine scripts that require access to the Internet, then for those scripts to perform their functions, you
must configure a DNS name server on the default VRF.

Examples
Enabling access on all ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

Enabling access on the OOBM port (management interface IP address), specify the management VRF:

switch(config)# https-server vrf mgmt

Enabling access on ports that are members of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

Enabling access on the management port and ports that are members of the VRF named vrfprogs,
enter two commands:

switch(config)# https-server vrf mgmt
switch(config)# https-server vrf vrfprogs

The 6200 switches support only two VRFs. One management VRF and one default VRF. You cannot add another
VRF.

Command History

Release Modification

10.07 or earlier --

Command Information

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 31

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

show https-server
show https-server [vsx-peer]

Description
Shows the status and configuration of the HTTPS server. The REST API and web user interface are
accessible only on VRFs that have the HTTPS server features configured.

Parameter Description

vsx-peer Shows the output from the VSX peer switch. If the switches do not
have the VSX configuration or the ISL is down, the output from the
VSX peer switch is not displayed. This parameter is available on
switches that support VSX.

Usage
Shows the configuration of the HTTPS server features.
VRF
Shows the VRFs, if any, for which HTTPS server features are configured.
REST Access Mode
Shows the configuration of the REST access mode:
read-write
POST, PUT, and DELETE methods can be called on all configurable elements in the switch database. This is the
default value.
read-only
Write access to most switch resources through the REST API is disabled.

Examples

switch# show https-server

HTTPS Server Configuration

VRF : default, mgmt
REST Access Mode : read-write

Max sessions per user : 6

Session timeout : 20

Command History

Release Modification

10.07 or earlier --

Command Information

Enabling Access to the REST API | 32

Platforms Command context Authority

All platforms Manager (#) Administrators or local user group members with execution rights
for this command.

show https-server authentication
show https-server authentication

Description
Shows the https-server authentication mode status.

Examples
Showing the authentication method with the password mode enabled:

switch# show https-server authentication

Authentication Modes Status

Password Status : enabled

Certificate Status : disabled

Showing the authentication method with the certificate mode enabled:

switch# show https-server authentication

Authentication Modes Status

Password Status : disabled

Certificate Status : enabled

Command History

Release Modification

10.11 Command Introduced.

Command Information

Platforms Command context Authority

4100i
6200
6300
6400
8100
8320
8325
8360

Operator (>) or Manager
(#)

Operators or Administrators or local user group members with
execution rights for this command. Operators can execute this
command from the operator context (>) only.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 33

Platforms Command context Authority

8400
9300
10000

Chapter 4

Accessing the AOS-CX REST API

Accessing the AOS-CX REST API
You can access the REST API using any REST client interface that supports HTTPS requests, and supports
obtaining and passing a session cookie.

Examples of client interfaces include the following:

Scripts and programs that support HTTPS requests
A flexible way to access the AOS-CX REST API is to use a programming language that supports HTTPS
requests, such as Python, to write programs that automate network management tasks.

The curl command-line interface
You can use curl commands either interactively or within a script to make REST requests. Using curl
commands is a way to execute GET requests without writing a script. Using curl commands is a way
to test REST requests that you are considering to incorporate into an application.

Browser-based interfaces such as Postman or the AOS-CX REST API Reference
Examples of browser-based interfaces include Postman and the AOS-CX REST API Reference.
The AOS-CX REST API Reference documents the switch resources, parameters, and JSON models for
each HTTPS method supported by the resource. Because the AOS-CX REST API Reference is browser-
based, it can share the session cookie with a Web UI session active in another browser tab. The AOS-
CX REST API Reference is not intended to be used as a configuration tool and is not required for day-
to-day operations.
The AOS-CX REST API Reference is one way to execute GET requests without writing a script. The AOS-
CX REST API Reference can be used during script coding to help you construct the URIs—with their
query parameters—that you use in a script or curl command.

Authenticating REST API sessions
When you start a REST API session, you use the POST method to access the login resource of the switch
and pass the username and password information as data. Ensure that HTTPS is configured to use port
443. Requests to port 80 are redirected to port 443.

If the credentials are accepted, your authenticated session is started for that username, and the switch
returns a cookie containing encoded session information.

In subsequent calls to the API—including to the logout resource—the session cookie is passed back to
the switch.

The same session cookie is shared across browser tabs, and depending on the browser, multiple
browser windows. However, the same session cookie is not shared across devices and scripts. For
example, if a user logs into the Web UI from a laptop, again with a tablet, and then uses the same user
name in a curl command, that user has three concurrent client sessions.

The maximum number of concurrent HTTPS sessions per user per switch is eight. There is an upper limit of 48
total sessions per switch. It is a best practice to log out of HTTPS sessions when you are finished using them.

AOS-CX 10.13 REST API Guide 34

Accessing the AOS-CX REST API | 35

HTTPS sessions will automatically time out after 20 minutes of inactivity, and have a hard time limit of
eight hours, regardless of whether the session is active. You can run the https-server session close

all command to close all current HTTPS sessions. For more information about using the command, see
https-server session close all .

Authentication through methods other than the session cookie, such as OAuth or certificates, is not
supported. The server uses self-signed certificates.

The procedure to pass the session cookie back and forth from the switch depends on how you access
the REST API.

For example:

n If you log in to the REST API using the AOS-CX REST API Reference or using the Web UI and open the
API Reference in another browser tab, the browser handles the session cookie for you. You do not
have to save or otherwise manage the session cookie.

n If you access the REST API using another method, such as the curl tool, you must do the following:
o Save the session cookie returned from the login request.
o Pass that saved cookie to the switch with every subsequent request you make to the REST API,

including the logout resource.

Although it is possible to pass the user name and password information as a query string in the
login URL, browser logs or tools outside the switch might save the accessed URL in cleartext in log
entries. Instead, Hewlett Packard Enterprise recommends that you pass the credential information
as data when using programs such as curl to log in to the switch.

For examples of accessing the REST API using curl, see Accessing the REST API using curl.

User groups and access authorization
For switch resources, the access authorization granted to a user is determined by the group to which
the user belongs. Each user group is assigned a number that represents a privilege level. This number is
used to represent the user group in logs and in places in which the group name is too long to display.

The following predefined user groups are supported:

User group Privilege
level Description

operators 1 Authorized for read access to non-sensitive data.

administrators 15 Authorized for read and write access to all switch
resources. Write access also requires that the REST API
is in read-write access mode.

auditors 19 Authorized for read access to audit log (/logs/audit)
and event log (/logs/event) resources only.

All users can access the POST method of the login and logout resources. However, the login requests
fail if the user is not a member of one of the predefined user groups. For example, login attempts fail
when attempted by a member of a user-defined local user group.

If a user attempts a request for which they are not authorized, the switch returns an HTTP 403
"Forbidden" error.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 36

If an authorized user attempts a write request but the REST API is in read-only mode, the switch returns
an HTTP 404 "Page not found" error.

Chapter 5

AOS-CX REST API Reference (UI)

AOS-CX REST API Reference (UI)
The AOS-CX operating system includes the AOS-CX REST API Reference, which is a web interface based
on the Swagger 3.0 UI. For more information about Swagger, see https://swagger.io/.

The AOS-CX REST API Reference provides the reference documentation for REST API, including the switch
resources, parameters, errors, and JSON models for each HTTPS method supported by the resource. The
AOS-CX REST API Reference shows most of the supported read and write methods for all switch
resources.

Since the AOS-CX REST API Reference is browser-based, it can share the session cookie with a Web UI
session active in another browser tab. The AOS-CX REST API Reference is not intended to be used as a
configuration tool and is not required for day-to-day operations.

The AOS-CX REST API Reference is one way to execute HTTP requests like GET, PUT, POST, PATCH, and
DELETE, without writing a script. The AOS-CX REST API Reference can be used during script coding to
help you construct the URIs and data body (in the case of PATCH, POST, or PUT)—with their query
parameters—that you use in a script or curl command.

Accessing the REST API using the AOS-CX REST API Reference

Although the AOS-CX REST API Reference interacts directly with the REST API, the AOS-CX REST API
Reference is not intended as a management or configuration interface. Use caution when using the
Submit button for POST, PATCH, or PUT methods because this action can result in changes to your
current environment.

Prerequisites

n HTTPS server access must be enabled on the VRF from which you are accessing the switch.
n With a few exceptions, using the PUT, POST, PATCH, or DELETE methods require the following

conditions to be true:
o The REST API access mode must be set to read-write.
o The user name you use to log in must be a member of the administrators group.

Procedure

1. To view the reference documentation for the REST v10.xx API, access the following URL using a
browser: https://<IP-ADDR>/api/v10.xx/

<IP-ADDR> is the IP address or hostname of your switch.

For example: https://192.0.2.5/api/v10.xx/

AOS-CX 10.13 REST API Guide 37

https://swagger.io/

AOS-CX REST API Reference (UI) | 38

Logging in and logging out using the AOS-CX REST API Reference

Prerequisites

n Access to the switch REST API must be enabled.
n You must have used a supported browser to access the switch at:

https://<IP-ADDR>/api/v10.xx/

<IP-ADDR> is the IP address or hostname of your switch.

Procedure

1. Log in to the switch using the Login resource:
1. Expand the Login section.

The POST method for the login resource is displayed.
2. Expand the resource by clicking POST or the resource name, /login.
3. Click Try it out.
4. Enter your user name in the User name field.
5. Enter your password in the Password field.
6. Click Execute.

If the operation is successful, the REST API returns response code 200.
2. When you finish your session, log out by expanding the Logout resource and clicking Execute.

AOS-CX REST API Reference basics
This section provides information about the different components of the AOS-CX REST API user
interface.

AOS-CX REST API Reference home page
The following is an example of a portion of the AOS-CX REST API Reference home page for a switch
running AOS-CX software:

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 39

n The link at the top of the page displays the JSON representation of the RESTful interface.
n The Servers drop-down lists the base URL to access the REST API.
n The switch resource URIs are organized in groups. The group names are listed in alphabetical order

on the AOS-CX REST API Reference home page.

The group name does not always match the resource collection name. Use the group names as a
navigation aid only.
n Group names that are in gray have the URI entries—also called endpoints—collapsed. When you

hover over the group name, it turns black. Click the group name to expand it and show the list of
methods and URIs in the group.

The following example shows the list of the methods and URIs in the Subsystem group:

n The methods that are shown might depend on the REST API access mode. Some methods might not
be displayed if the REST API access mode is read-only.

AOS-CX REST API Reference (UI) | 40

n Methods and resources might be displayed that you do not have the authorization to access. For
example, users with operator rights are not authorized to make PATCH, PUT, or POST requests to
most resources. If you submit a request for which you are not authorized, the switch returns the
following error: HTTP error 403 "Forbidden"

n The resource collection name is subsystems (not Subsystem).
n Items in braces, such as {type} and {name}, are path parameters. If you submit a request to a

resource URI that includes a path parameter, you are required to supply a value for the parameter.

To show more information about an item on the list, click the URI path. The following example shows a
part of the information displayed when GET on /system/subsystems is selected:

You can use the browser scroll bar to navigate to information about the implementation of this method
and resource, including the required and optional parameters. You must click Try it out to edit the
parameters.

n The required parameters are shown with * required.

For example, the POST method of the login resource requires a user name and password:

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 41

n Path parameters, such as {id}, are listed as required parameters:

n The Execute button sends the request. Click Cancel to exit the edit mode without sending the
request.

Although the AOS-CX REST API Reference interacts directly with the REST API, the AOS-CX REST API Reference is not
intended as a management or configuration interface. Use caution when using the Execute button for PATCH,
POST, or PUT methods because this action can result in changes to your current environment.

In GET requests, there can be multiple attributes and parameters you can use to filter results.

For example:

You can select multiple attributes:

n To select a range of attributes, click the first attribute, then press Shift, and then click the last
attribute in the range you want to select.

n To select attributes that are not adjacent in the list, press Ctrl, then click each attribute you want to
select.

The JSON model for the resource is described in Model and shown with example values in Example
Values for each method. The following example shows the JSON model and example values for PUT
method of the /system/subsystems/{type}/{name} resource:

AOS-CX REST API Reference (UI) | 42

After a request is submitted, the AOS-CX REST API Reference shows additional information, including
the following:

n The curl command equivalent of the submitted request
n The submitted request URL, including the specified parameters and values.
n The response body returned by the switch
n The response code returned by the switch
n The response headers returned by the switch

The curl command and request URLs are displayed using percent encoding for certain characters in the
query string portion of the URL:

Character Percent-encoded equivalent

, (comma) %2C

: (colon) %3A

/ (forward slash) %2F

When you enter curl commands or submit requests through other means, percent encoding is
permitted but not required in the query string of the URI.

Write methods (POST, PUT, PATCH, and DELETE)
The supported write methods are POST, PUT, PATCH, and DELETE:

n POST creates a resource.
n PUT replaces a resource.
n PATCH updates a resource.
n DELETE removes a resource.

SwaggerPUTModelEV-v10.04.png
SwaggerPUTModelEV-v10.04.png

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 43

Not all resources support all write methods. See the AOS-CX REST API Reference for the methods
supported by each resource. The REST API must be in read-write mode for the AOS-CX REST API
Reference to show all the write methods a resource supports.

Considerations when making configuration changes
The REST API can access and change every configurable aspect of the switch as modeled in the
configuration and state database. However, changing the configuration of a switch through the REST API
can be different than changing the configuration through the CLI.

A single configuration change to the switch can require changes to multiple resources in the
configuration and state database. Often these changes must be made in a specific order.

The CLI commands have been programmed to work "behind the scenes" to make the correct database
changes and to perform data validation checks on the user input. In contrast, when you use the REST
API to make a configuration change, you must become familiar with the representational models of the
switch resources, the type and format of the data required, and the required order of write operations
to various resources.

The REST API is powerful but must be used with extreme caution: No semantic validation is performed
on the data you write to the database, and configuration errors can destabilize the switch. Hewlett
Packard Enterprise recommends that you refer to the tested examples when using the REST API to
make configuration changes.

Considerations for ports and interfaces
The REST API provides the interfaces resource to configure and get information about switch ports
and interfaces of all types. You do not use the ports resource to manage ports.

Hardware (system) interfaces

n Hardware interfaces are of type system.
n Hardware interfaces are included in the database automatically.
n Interfaces of type system cannot be added or deleted.

LAG interfaces

n LAG interfaces are of type lag.
n You can use the DELETE method to delete a LAG interface.

Example of creating a LAG interface with member ports 1/1/1 and 1/1/2:

Method and URI:
POST "/rest/v10.xx/system/interfaces"

Request body:
{

"name": "lag50",
"vrf": "/rest/v10.xx/system/vrfs/default",
"type": "lag",
"interfaces": [

"/rest/v10.xx/system/interfaces/1%2F1%2F1",

AOS-CX REST API Reference (UI) | 44

"/rest/v10.xx/system/interfaces/1%2F1%2F2"
]

}

VLAN interfaces

n VLAN interfaces are of type vlan.
n You can use the DELETE method to delete a VLAN interface.

Example of creating a VLAN interface:

Method and URI:
POST "/rest/v10.xx/system/interfaces"

Request body:
{

"name": "vlan2",
"vlan_tag": "/rest/v10.04/system/vlans/2",
"vrf": "/rest/v10.04/system/vrfs/default",
"type": "vlan"

}

Write methods (POST, PUT) supported in read-only mode
The following switch resources support write methods (POST, PUT, or both) even when the REST API
access mode is set to read-only:

n Configuration management: */rest/v10.xx/fullconfigs*
n Firmware: */rest/v.10xx/firmware*
n User login and logout:

o */rest/v.10xx/login

o */rest/v.10xx/logout

n Aruba Network Analytics Engine and scripts: */rest/v10.xx/system/nae_scripts*

The * indicates more text to be added in URI path.

GET method usage and considerations
The GET method is a read method that gets the resource specified by the URI. Data is returned in JSON
format in the response body.

Using GET on a resource collection results in a list of URIs. Each URI in the list corresponds to a specific
resource in the collection.

Using GET on a specific resource returns the attributes of that resource.

GET method parameters
The GET method supports the following parameters in the query string of the URI:

n attributes

n count

n depth

n filter

n selector

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 45

A path query parameter is specified as a "key=value" pair. When permitted, multiple values are
separated by the comma (,) character.

For example:

n attributes=id,name,type

n count=true

n depth=2

n filter=type:static

n selector=writable

A path query parameter can be used alone or in combination with other parameters. The ampersand (&)
character separates each parameter in the string.

For example:
GET "https://192.0.2.5/rest/v10.09/system/vlans?depth=2&attributes=id,name,type"

The count and filter attributes and wildcard character are supported from AOS-CX release 10.05 and
later.

Wildcard character support
When you use the GET method, the URI can contain the asterisk (*) wildcard character instead of a
component in URI path. You can use wildcard characters in multiple places in the path. You cannot use a
wildcard character as part of the query string.

The wildcard character must replace the entire component in the path. Regular expressions are not
supported. For example, you can use a wildcard to specify all VRFs, but you cannot use a regular
expression to specify all VRFs that begin with the letter r.

By using a wildcard character in place of a component in the path, you can specify that GET return
information about multiple resources without requiring you to name each resource instance or to
execute multiple GET requests.

For example:

n The following URI specifies all routes regardless of VRF:
"https://192.0.2.5/rest/v10.xx/system/vrfs/*/routes"

n The following URI specifies all ACL entries of type IPv4, regardless of the name of the ACL:
"https://192.0.2.5/rest/v10.xx/system/acls/*,ipv4/cfg_aces"

n The following URI specifies the connection state of all BGP neighbors belonging to all BGP routers in
the "red" VRF:

"https://192.0.2.5/rest/v10.xx/system/vrfs/red/bgp_routers/*/bgp_
neighbors/*?attributes=status"

Attributes parameter
The attributes query parameter consists of a comma-separated list of attribute names related to a
collection or a specific resource. It allows the user to retrieve specific attributes in the request instead of
returning the whole set of attributes for the resource, which is the default behavior if the query
parameter is not specified.

Behavior
It can be used in a collection, a specific resource, and in a request including wildcards. If the request for
any resource includes an attribute that does not exist, a bad request (HTTP 400) will be returned and the
request will fail. There is no limit on the number of attributes that can be specified in the request.

Use case

AOS-CX REST API Reference (UI) | 46

It allows for more efficient data retrieval and can reduce the amount of data transferred over the
network. It reduces CPU and memory consumption, especially in cases with resources that contain
many attributes and high amount of data, which also improves the response time to the user.

Examples
Valid specific Interface attribute list

GET https://<IP>/rest/<version>/system/interfaces/ubt?attributes=arp_timeout,ip_
mtu,mvrp_enable,interfaces

{
"arp_timeout": 1800,
"interfaces": {

"ubt": "/rest/latest/system/interfaces/ubt"
},
"ip_mtu": 1500,
"mvrp_enable": false

}

Valid VLAN collection attribute list

GET https://<IP>/rest/<version>/system/vlans/1?attributes=name,type,admin

{
"admin": "up",
"name": "DEFAULT_VLAN_1",
"type": "default"

}

Count parameter
The count parameter indicates the request wants to obtain the total number of entries related to a
resource. A successful response contains a JSON format with the count key and a number as the value.

It works with requests including wildcard and other query parameters. Omitting it in the request is
equivalent to specifying count=false. Including it in the request as count= is equivalent to specifying
count=true. A request with count to a specific resource is valid and will return 1.

Use Cases
The user gets the number of entries instead of the values of entries. Requests to dynamic or protected
resources are not limited.

Limitations
It is not supported for notifications.

Examples

Single resource
A request with a count to a specific resource is valid and will return 1.

GET https://<IP>/rest/<version>/system/vrfs/default?count=true

{

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 47

"count": 1
}

Collection
The database has 2 BGP routers under the default VRF. This configuration will return 2.

GET https://<IP>/rest/<version>/system/vrfs/default/bgp_routers?count=true

{
"count": 2

}

Wildcard
The database has 2 BGP Routers under the default VRF and 1 under mgmt VRF. First 2 BGP routers
have 2 aggregate addresses, the other one has 1 address. This configuration will return 5.

GET https://<IP>/rest/<version>/system/vrfs/*/bgp_routers/*/aggregate_
addresses/*,*?count=true

{
"count": 5

}

Filter
The database has 2 BGP Routers under the default VRF and 1 under mgmt VRF. First 2 BGP routers
have trap_enable set as true, the other one as false. This configuration will return 1.

GET https://<IP>/rest/<version>/system/vrfs/default/bgp_
routers?count=true&filter=trap_enable:false

{
"count": 1

}

Interfaces
The database has 54 interfaces (1/1/1-52), a UBT interface and a LAG member. This configuration will
return 54.

GET https://<IP>/rest/<version>/system/interfaces?count=true

{
"count": 54

}

Invalid count value

GET https://<IP>/rest/<version>/system/vrfs/*/bgp_routers/*/aggregate_
addresses/*,*?count=invalid

AOS-CX REST API Reference (UI) | 48

Invalid value for 'count' query parameter. Valid values are 'true' or none, and
'false'.

Depth parameter
The depth query parameter is used to specify how many levels of URIs should be expanded and
replaced with their corresponding JSON representation in the response body. As each level of depth is
expanded, the REST API will add one level of URIs into the response body.

Syntax
depth=N

N is an integer. The value should be greater than or equal to 1.

Behavior
When the depth query parameter is not specified, it uses a default value of 1. Non-expanded references
are shown as URIs to the corresponding tables following the Hypermedia as the Engine of Application
State (HATEOAS) REST principle.

If a resource can be expanded into N layers deep, and the specified depth value is N+M, the M
additional expansions will be ignored.

Use case
The depth parameter is used to control the amount of referenced objects retrieved. Thus obtaining
more information when a given resource has internal references to others.

Limitations
High depth values (>= 3) are not restricted but can have a significant impact on the CPU and memory
usage.

It is important to note that using the depth parameter can result in a large amount of data being
returned, especially if there are many items in the list and each item contains a significant amount of
JSON data.

To avoid this problem, analyze if instead of using a high depth, the required data can be accessed
through a direct REST request to the resource.

Alternatively, consider utilizing a combination of depth and attributes query parameters to filter down
the needed columns.

Examples
No depth specified (default : 1)

GET https://<IP>/rest/<version>system/users

{
"admin": "/rest/latest/system/users/admin"

}

Depth : 0

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 49

GET https://<IP>/rest/<version>system/users?depth=0

invalid value for 'depth' query parameter

Depth : 1

GET https://<IP>/rest/<version>system/users?depth=1

{
"admin": "/rest/latest/system/users/admin"

}

Depth : 2

GET https://<IP>/rest/<version>system/users?depth=2

{
"admin": {

"authorized_keys": {},
"current_password": "",
"is_user_lockedout": false,
"login_failure_attempts": 0,
"name": "admin",
"origin": "built-in",
"password":

"AQBapbVXeRc4bwfvtYSxqiJ0AJ10jiqeV1z9lJUv7zJpzHVMYgAAABSHgjLoTr4B15Nu4hqLN21jeNpM8
i901YDB7n2OLSS/MhGiPm4PZcrv3tNv38ZiEnQ9Sa6IIrOIbr109NfaO+C3KEVWiG3uSeeGmeq8H0N4KZv
x0JTlfaphJtCvsgLw0zTQ",

"user_group": {
"administrators": "/rest/latest/system/user_groups/administrators"

}
}

}

Depth : 3

GET https://<IP>/rest/<version>system/users?depth=3

{
"admin": {

"authorized_keys": {},
"current_password": "",
"is_user_lockedout": false,
"login_failure_attempts": 0,
"name": "admin",
"origin": "built-in",
"password":

"AQBapbVXeRc4bwfvtYSxqiJ0AJ10jiqeV1z9lJUv7zJpzHVMYgAAABSHgjLoTr4B15Nu4hqLN21jeNpM8
i901YDB7n2OLSS/MhGiPm4PZcrv3tNv38ZiEnQ9Sa6IIrOIbr109NfaO+C3KEVWiG3uSeeGmeq8H0N4KZv
x0JTlfaphJtCvsgLw0zTQ",

"user_group": {
"administrators": {

"inherit_rules": null,
"name": "administrators",
"origin": "built-in",
"rbac_rules": "/rest/latest/system/user_

groups/administrators/rbac_rules"

AOS-CX REST API Reference (UI) | 50

}
}

}
}

Depth : 4

GET https://<IP>/rest/<version>system/users?depth=4

{
"admin": {

"authorized_keys": {},
"current_password": "",
"is_user_lockedout": false,
"login_failure_attempts": 0,
"name": "admin",
"origin": "built-in",
"password":

"AQBapbVXeRc4bwfvtYSxqiJ0AJ10jiqeV1z9lJUv7zJpzHVMYgAAABSHgjLoTr4B15Nu4hqLN21jeNpM8
i901YDB7n2OLSS/MhGiPm4PZcrv3tNv38ZiEnQ9Sa6IIrOIbr109NfaO+C3KEVWiG3uSeeGmeq8H0N4KZv
x0JTlfaphJtCvsgLw0zTQ",

"user_group": {
"administrators": {

"inherit_rules": null,
"name": "administrators",
"origin": "built-in",
"rbac_rules": {}

}
}

}
}

Depth : 99

GET https://<IP>/rest/<version>system/users?depth=99

{
"admin": {

"authorized_keys": {},
"current_password": "",
"is_user_lockedout": false,
"login_failure_attempts": 0,
"name": "admin",
"origin": "built-in",
"password":

"AQBapbVXeRc4bwfvtYSxqiJ0AJ10jiqeV1z9lJUv7zJpzHVMYgAAABSHgjLoTr4B15Nu4hqLN21jeNpM8
i901YDB7n2OLSS/MhGiPm4PZcrv3tNv38ZiEnQ9Sa6IIrOIbr109NfaO+C3KEVWiG3uSeeGmeq8H0N4KZv
x0JTlfaphJtCvsgLw0zTQ",

"user_group": {
"administrators": {

"inherit_rules": null,
"name": "administrators",
"origin": "built-in",
"rbac_rules": {}

}
}

}
}

Filter parameter

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 51

The filter parameter provides additional filtering capabilities. This query parameter filters rows and
entries depending on the value of one or more attributes.

Syntax

filter=type:value

: is ascii %3A and , is ascii %2C
Single filter:

...&filter=type:vlan

Multiple filters:

...&filter=type:vlan,admin_state:up

REST handles multiple filters with an AND logic. It means only rows which satisfy both filters are retrieved.

Behavior
If a filter is specified, the response will only include rows in which the value for the specified attribute
matches the specified value. Combining filter query parameters with other query parameters such as
depth or attribute is valid.

Use case
This query parameter allows the user to retrieve rows where one or more of its columns matches a
specified value. This allows more efficient data retrieval and a reduction of CPU and memory
consumption on scenarios where the resource contains a high quantity of rows. Additionally, response
time is improved since less data needs to be retrieved and transferred over the network.

Limitations
Filters are optional and support only integer, boolean, and string types.

Examples
No filter

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2

{
"0": {

"bfd_enable": false,
"distance": 1,
"id": 0,
"ip_address": null,
"port": null,
"tag": null,
"type": "nullroute",
"use_forwarding_address": false

AOS-CX REST API Reference (UI) | 52

},
"1": {

"bfd_enable": true,
"distance": 2,
"id": 1,
"ip_address": null,
"port": null,
"tag": null,
"type": "nullroute",
"use_forwarding_address": false

},
"2": {

"bfd_enable": false,
"distance": 2,
"id": 2,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

},
"3": {

"bfd_enable": true,
"distance": 2,
"id": 3,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

}
}

bfd_enable : false

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=bfd_enable:false

{
"0": {

"bfd_enable": false,
"distance": 1,
"id": 0,
"ip_address": null,
"port": null,
"tag": null,
"type": "nullroute",
"use_forwarding_address": false

},
"2": {

"bfd_enable": false,
"distance": 2,
"id": 2,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

}
}

bfd_enable : true

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 53

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=bfd_enable:false

{
"1": {

"bfd_enable": true,
"distance": 2,
"id": 1,
"ip_address": null,
"port": null,
"tag": null,
"type": "nullroute",
"use_forwarding_address": false

},
"3": {

"bfd_enable": true,
"distance": 2,
"id": 3,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

}
}

type : forward

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=type:forward

{
"2": {

"bfd_enable": false,
"distance": 2,
"id": 2,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

},
"3": {

"bfd_enable": true,
"distance": 2,
"id": 3,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

}
}

Multiple filters

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=type:forward&filter=bfd_
enable:true

AOS-CX REST API Reference (UI) | 54

OR

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=type:forward,bfd_enable:true

{
"3": {

"bfd_enable": true,
"distance": 2,
"id": 3,
"ip_address": null,
"port": null,
"tag": null,
"type": "forward",
"use_forwarding_address": false

}
}

Unrecognized filter

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=id:0

filter 'id' is unknown

Non-matching type filter

GET https://<IP>/rest/<version>/system/vrfs/VRF_1/static_
routes/190.1.1.0%2F24/static_nexthops?depth=2&filter=tag:null

filter 'tag' value must be of type 'integer'

Selector parameter
REST API provides the use of selectors to allow filtering over an attributes category.

Syntax
selector=selector type

The valid selectors are the following:
configuration

Filters by read/write attributes (category type configuration).
statistics

Filters by read-only attributes which hold numerical values such as counters (category type statistics).

status

Filters by non-statistic read-only attributes (category type status).
writable

Filters by attributes that are mutable and can only be modified in PUT & PATCH operations. This
selector is not allowed on collections.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 55

n Certain statistics fields are not updated in real time, and are instead updated during preset intervals.

n The category of certain attributes may change depending on the configuration of the switch. For example,
for different resources of the same type (ex. VLAN1 vs VLAN200) some of its attributes could be either status
(which is read-only) or configuration (which is read-write).

Behavior
If a selector is specified, the response will exclude attributes whose category does not match the
specified selector. Combining selector query parameters with other query parameters such as depth or
attribute is valid. An empty selector value is allowed but ignored; no filtering will occur.

Use case
Selectors allow for more efficient data retrieval and can reduce the amount of data transferred over the
network.

Limitations
Selectors are not supported in notifications.

Examples
User Table:

"name" : follows -> origin
"origin" : per-value { "built-in" : status, "configuration" : configuration }
"password" : configuration
"current_password" : volatile
"user_group" : follows -> origin
"login_failure_attempts" : status
"is_user_lockedout" : status
"authorized_keys" : configuration

Status Selector:

GET https://<IP>/rest/<version>/system/users/admin?selector=status

{
"is_user_lockedout": false,
"login_failure_attempts": 0,
"name": "admin",
"origin": "built-in",
"user_group": {

"administrators": "/rest/latest/system/user_groups/administrators"
}

}

Configuration Selector:

GET https://<IP>/rest/<version>/system/users/admin?selector=status

{
"authorized_keys": {},

AOS-CX REST API Reference (UI) | 56

"current_password": "",
"password":

"AQBapT9vR8JqxjB7VSaMxY2c9Fe0pBR8dzeBm3XkKds6XsxXYgAAAM/PA8DTxwbZ3+ToBzHyZEA43L5XE
CFqDltyfWSXPfG5gfh5sfIjRbRTiMjYVABELDhsC0atI3IufvYDOCQLebsIy5a2+wQ3/r8haPrjuIFidWq
ca2dPJq+vXQElB0Db3K0+"
}

Statistics Selector:

GET https://<IP>/rest/<version>/system/users/admin?selector=statistics

{}

Invalid Selector value:

GET https://<IP>/rest/<version>/system/users/admin?selector=invalid

invalid value for 'selector' query parameter. Valid values are 'configuration',
'status', 'statistics', 'writable' or none

Writable on collections:

GET https://<IP>/rest/<version>/system/vrfs?selector=writable

Writable selector is not allowed with resource collections

Multiple Selector :

GET https://<IP>/rest/<version>/system/vrfs?selector=configuration&selector=status

In 10.12 or earlier versions, first parameter takes priority:

{
"authorized_keys": {},
"current_password": "",
"password":

"AQBapT9vR8JqxjB7VSaMxY2c9Fe0pBR8dzeBm3XkKds6XsxXYgAAAM/PA8DTxwbZ3+ToBzHyZEA43L5XE
CFqDltyfWSXPfG5gfh5sfIjRbRTiMjYVABELDhsC0atI3IufvYDOCQLebsIy5a2+wQ3/r8haPrjuIFidWq
ca2dPJq+vXQElB0Db3K0+"
}

In 10.13 or later versions, selector accepts only one value:

invalid request: selector accepts just one value

POST method usage and considerations
The POST method creates an instance of a resource in the collection specified by the URI:

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 57

n Not all resources support the POST method. See the AOS-CX REST API Reference for the methods
supported by each resource. The REST API must be in read-write mode to see all the POST methods
supported.

n Some resources support the POST method even when the REST API is in read-only mode.
n When you use the POST method, the URI must point to the collection—not to the resource you are

creating. The resource you are creating is sent in JSON format in the request body.
o The JSON representation must include all fields required by the JSON model of that resource.
o The JSON representation can contain only configuration attributes. It must not contain attributes

in the status or the statistics category.
n You can POST only one resource at a time.
n Most resources have a hierarchical relationship. You must create the parent before you can create

the child.

For example, to create an ACL entry:
1. The ACL must be created first by sending the JSON data of the ACL in the request body in a POST

request to the URI of the acls collection:
/system/acls

2. The entry can then be created by sending the JSON data of the entry in the request body in a
POST request to the URI of the ACL:
/system/acls/<ACL-name>,<ACL-type>/cfg_aces

The following is an example of using the POST method to create a subinterface instance:
POST "https://{{mgmt-ip}}/rest/v10.11/system/interfaces"
{
"name": "1/1/3.1026",
"type": "vlansubint",
"routing": true,
"subintf_parent": "/rest/latest/system/interfaces/1%2F1%2F3",
"subintf_vlan": 1026,
"ip4_address": "10.5.2.1/24",
"admin": "up"
}

For more information about subinterfaces, refer to the Fundamentals Guide.

PUT method usage and considerations
The PUT method updates an instance of a resource by replacing the existing resource with the resource
provided in the request body.

Configuration attributes that are set at the time a resource is created and that cannot be changed
afterward are called immutable attributes. Configuration attributes that can be changed after a
resource is created are called mutable or writable attributes. The PUT method is used replace writable
attributes only.

n Not all resources support the PUT method. For information about the methods supported for a
resource, see the AOS-CX REST API Reference. The REST API must be in read-writemode to see all
the PUT methods supported.

n The URI must specify a specific resource, not a collection.
n The URI must specify a resource that currently exists.

AOS-CX REST API Reference (UI) | 58

n For almost all resources, the PUT method is implemented as a strict replace operation.

All mutable configuration attributes are replaced. Any mutable attribute that the JSON data in request
body does not include is either removed (if there is no default value) or reset to its default value.

PUT request body requirements
The JSON data in the request body must include mutable (writable) configuration attributes only.

The JSON model used for the PUT method request body is different from the JSON model used for the
GET or the POST method.

The JSON model of a PUT method for a resource contains the mutable attributes only. In contrast, the
JSON models for GET and POST methods can include both mutable and immutable attributes.

See the AOS-CX REST API Reference for the JSON model of a PUT method for a resource.

PUT behavior
The PUT operation is a replace operation—not an update operation—because the resource instance in
the request body replaces every changeable configuration attribute of the existing resource. To update
specific fields, use the PATCH operation.

Any mutable attribute that the JSON data in request body does not include is either removed (if there is no default
value) or reset to its default value.

For example:

n If you attempt a PUT operation on the System resource to change the host name, and you supply
only the host name, you will destabilize the switch because the other attributes will be reset to their
defaults, which might be empty.

n If you attempt to change the name of a VLAN and supply only the name in the PUT request, every
other attribute in that VLAN is set to its default of empty.

Exceptions to the PUT strict replace behavior
For Network Analytics Engine agents, the PUT behavior is not a strict replace implementation. You can
enable or disable agents without the supplying the entire set of configuration attributes in the PUT
request body. For more information about the Network Analytic Engine resources, see the Network
Analytics Engine Guide.

Best practice for building the PUT request body
Hewlett Packard Enterprise recommends the following procedure for building the PUT request body.

1. Use the GET method with selector=writable to obtain the writable (mutable) configuration
attributes for the resource you want to change.

For example:
GET "https://192.0.2.5/rest/v10.xx/system/interfaces/vlan200?selector=writable"

2. Change the values of the attributes to match your wanted configuration.

Any attribute you do not include in the request body will be set to its default value, which could

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 59

be empty.
3. Use the resulting JSON data as the request body for the PUT request.

PATCH method usage and considerations
The PATCH method is an HTTP method that updates values in an existing resource using only the
desired values in the request body.

n The PATCH method does not require fetching the current resource in order to send a new request, as
the PUT method requires, simplifying automation and reducing bandwidth usage.

n The PATCH method is used to add JSON keys or array elements, but cannot be used to remove
JSON keys or array elements.

n This method is only supported by the system and the resources under it. Not all resources support
the PATCH method.

The REST API must be in read-writemode to see all the PATCH methods supported.

PATCH is only available on versions REST v10.04 or later.

DELETE method usage and considerations
The DELETE method deletes an instance of a resource.

n Not all resources support the DELETE method. See the AOS-CX REST API Reference for the methods
supported by each resource. The REST API must be in read-writemode to see all the DELETE
methods supported.

n The URI must specify a specific resource instance. The URI must not specify a collection.
n Child subcollections and resources are deleted when you delete the parent resource. For example, if

you delete an ACL, its ACL entries are deleted automatically.
n DELETE requests do not contain a request body.
n DELETE requests do not return a response body.

REST requests and accounting logs
All REST requests—including GET requests—are logged to the accounting (audit) log.

The URI of the REST API resource for accounting logs is the following:
/rest/v10.xx/logs/audit

In an accounting log entry for a REST request:

n service=https-server indicates that the log entry is a result of a REST API request or a Web UI
action.

n The string value of data identifies the REST API request that was executed.

For more information about accounting log entries, see the description of the show accounting log CLI
command.

AOS-CX REST API reference summary

AOS-CX REST API Reference (UI) | 60

The following information is intended as a quick reference for experienced users. Values are not
configurable unless noted otherwise.

Switch REST API access default
8100, 8320, 8325, 8360, 8400, 9300, 10000 Switch Series: Enabled on the mgmt VRF

6200, 6300, 6400 Switch Series: Enabled on the mgmt VRF

4100i, 6000, 6100 Switch Series: Enabled on the default VRF

Switch REST API default access mode
Read-write

Enabling access to the Web UI and REST API
CLI command:
https-server vrf <VRF-NAME>

Example:

switch(config)# https-server vrf mgmt

Setting the REST API access mode to read-write
CLI command:
https-server rest access-mode read-write

Example:

switch(config)# https-server rest access-mode read-write

Showing the REST API access configuration
CLI command:
show https-server

Example:

switch(config)# show https-server

HTTPS Server Configuration

VRF : default, mgmt
REST Access Mode : read-write

AOS-CX REST API Reference URL:
REST latest API: https://<IP-ADDR>/api/latest/

REST v10.09 API: https://<IP-ADDR>/api/v10.09/

REST v10.08 API: https://<IP-ADDR>/api/v10.08/

REST v10.04 API: https://<IP-ADDR>/api/v10.04/

<IP-ADDR> is the IP address or hostname of your switch.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 61

Example: https://192.0.2.5/api/v10.04/

REST API versions and switch software versions

REST API version Switch software version

v10.09 AOS-CX 10.09 and later

v10.08 AOS-CX 10.08 and later

v10.04 AOS-CX 10.04 and later

Getting REST API version information from a switch
Method and URI to get the REST API versions supported on the switch:
GET "https://<IP-ADDR>/rest"

<IP-ADDR> is the IP address or hostname of your switch.

Protocol
HTTPS

Port
443

Request and response body format
JSON

Session idle timeout
20 minutes

Session hard timeout
Eight hours, regardless of whether the session is active.

Authentication
Session cookie from successful HTTPS login request.

HTTPS client sessions
n Maximum of 48 sessions per switch.
n Maximum of six concurrent client sessions per user.
n The same session cookie is shared across browser tabs and, depending on the browser, multiple

browser windows.
n The same session cookie is not shared across devices and scripts.

For example, if a user logs into the Web UI from a laptop, again with a tablet, and then uses the same
user name in a curl command, that user has three concurrent client sessions.

AOS-CX REST API Reference (UI) | 62

VSX peer switch access
If Virtual Switching Extension (VSX) is enabled on both switches, and the ISL is up, you can access the
VSX peer switch from your connected switch. To access the peer VSX switch, insert /vsx-peer in the URI
path between the server URL and /rest. Not supported for login, Web UI, or AOS-CX REST API Reference
access. For more information about VSX, see VSX peer switches and REST API access.

For example:

n Accessing a VSX switch:
https://192.0.2.5/rest/v10.xx/…

n Accessing its VSX peer switch:
https://192.0.2.5/vsx-peer/rest/v10.xx/…

Chapter 6

Using Curl Commands

Using Curl Commands
There are several tools available for accessing RESTful web service APIs, one of which is curl. The curl
tool, created by the cURL project, is a command-line application for transferring data using URL syntax.

For details on installing the curl application, see https://curl.haxx.se/download.html.

The curl application has many options, which are described in detail in the curl manual (run curl --

manual) and at https://curl.haxx.se/docs/manpage.html.

About the curl command examples
In the curl examples, the workstation is running a Linux-based operating system and curl version 7.35 is
installed.

The curl examples generated by the AOS-CX REST API Reference might use different options than in
other examples, and do not include cookie file handling because the cookie is handled by the browser.

Many examples of curl commands are formatted in multiple lines for readability. The backslash (\)
continuation character at the end of the line indicates that the command continues on the next line.

The curl command examples in this document use minimal options. The following options are
commonly used in the curl command examples:

-b<cookie-file>

Specifies that the file <cookie-file>, which contains the session cookie, be passed with the request.
<cookie-file> specifies the path and name of the cookie file.
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, you must save the cookie returned from the login request. You must provide the
cookie with every subsequent curl command.

-k

Specifies that the curl program not attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates will fail.
Therefore you must use the –k option to disable attempts to verify self-signed certificates against a
certificate authority.

--noproxy

Specifies that a web proxy is not required. The --noproxy option is appropriate where execution of
curl commands does not need a proxy to access the applications.
If your network is configured to require a proxy to access applications, use the --proxy option
instead of the --noproxy option.

-d '<string>'

Specifies that curl send the data in <string> in a POST request using the content-type application/x-
www-form-urlencoded.

AOS-CX 10.13 REST API Guide 63

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

Using Curl Commands | 64

-X

Specifies a method that curl would not use by default. Typically used with PUT, DELETE, and POST
methods only.

-H or --header <header>

Specifies an extra header in the HTTP request.

-D

Specifies that curl write the returned protocol headers to the standard output file. Used for
debugging.

More options can be used to customize your experience for your environment. For more information
about curl options, see:

https://curl.haxx.se/docs/manpage.html

Getting the REST API versions on the switch
To get information about the latest and all available REST API versions on a switch, execute a GET
request to the following URI:
"https://<IP-ADDR>/rest"

<IP-ADDR> is the IP address or hostname of your switch.

Example method and URI:
GET "https://192.0.2.5/rest"

Example curl command:

$ curl -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest"

Example response body:
{

"latest": {
"version": "v10.09",
"prefix": "/rest/v10.09",
"doc": "/api/v10.09"

},
"v10.09": {

"version": "v10.09",
"prefix": "/rest/v10.09",
"doc": "/api/v10.09"

},
"v10.04": {

"version": "v10.04",
"prefix": "/rest/v10.04",
"doc": "/api/v10.04"

}
}

Accessing the REST API using curl
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, you must save the cookie returned from the login request so that you can pass that
same cookie value to the switch in subsequent curl commands.

http://curl.haxx.se/docs/manpage.html

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 65

Prerequisites

n Access to the switch REST API must be enabled.

Procedure

1. To access the AOS-CX REST API using curl, use curl version 7.35 or later. The examples provided in
this document are tested with version 7.35.

2. For all curl commands, use the -k option to disable certificate validation.

The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail.
Therefore you must use the –k option to disable attempts to verify self-signed certificates against
a certificate authority.

3. Start your session by logging in. When you log in, save the cookie file by specifying the -c option
with a file name.

4. In all subsequent curl commands—including logging out—pass the cookie value back to the
switch by specifying the -b option with the same file name.

5. At the end of the session, log out of the switch using curl.

Logging out at the end of the session is important because the number of concurrent HTTPS sessions per
client and per switch are limited, and session cookies are not shared across devices and scripts.

Logging in using curl

Prerequisites
Access to the switch REST API must be enabled.

Credential information (user name, password, domain, and authentication tokens) used in curl commands entered
at a command-line prompt might be saved in the command history. For security reasons, Hewlett Packard
Enterprise recommends that you disable command history before executing commands containing credential
information.

Procedure
Use the following curl command to access the login resource of the switch and provide your user name
and password as data:

Syntax:
curl [--noproxy <IP-ADDR>] -k -X POST
-c <COOKIE-FILE>=
-H 'Content-Type: multipart/form-data'
"https://<IP-ADDR>/rest/v10.xx/login"-F 'username=<USER-NAME>' -F 'password=<PASSWORD>'

Options:
-k

Specifies that the curl program not attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore

Using Curl Commands | 66

you must use the –k option to disable attempts to verify self-signed certificates against a certificate
authority.

-X

Specifies a method that curl would not use by default. Typically, used only with POST, PUT, PATCH, or
DELETE methods.

--noproxy IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a
proxy to access the applcations. If your network is configured to require a proxy to access
applications, use the --proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-C <COOKIE-FILE>

Specifies the file in which to store the session cookie. This session cookie is required when you
execute subsequent curl commands.

-H or --header <header>

Specifies an extra header in the HTTP request.
-F

Specifies that the curl command will emulate a filled-in form in which a user has pressed the submit
button for the HTTP protocol family. This causes curl to POST data using the Content-Type
multipart/form-data.

<USER-NAME>

Specifies the user name.
<PASSWORD>

Specifies the password for the user.

Although it is possible to pass the user name and password information as a query string in the login URI, system
logs save the accessed URI in cleartext in log entries. Hewlett Packard Enterprise recommends that you pass the
credential information as data instead of in the URI when using programs such as curl to log in to the switch.

Example:

$ curl --noproxy "192.0.2.5" -k -X POST \
-c /tmp/auth_cookie \-H 'Content-Type: multipart/form-data'
\"https://192.0.2.5/rest/v10.09/login" \
-F 'username=test' -F 'password=test'

Passing the cookie back to the switch

Prerequisites
Start a session by logging in to the REST API and save the cookie file.

Procedure
Use the following curl command to pass the cookie file back to the switch using the -b option.

Syntax:
curl [--noproxy <IP-ADDR>] -k GET
-b <COOKIE-FILE>
-H 'Content-Type:application/json'
-H 'Accept: application/json'
"https://<IP-ADDR>/rest/v10.xx/system"

Options:
--noproxy <IP-ADDR>

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 67

Optional. The --noproxy option is appropriate where execution of curl commands does not need a
proxy to access the applications. If your network is configured to require a proxy to access
applications, use the --proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-k

Specifies that the curl program not attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore
you must use the –k option to disable attempts to verify self-signed certificates against a certificate
authority.

-b <COOKIE-FILE>

Specifies that the file <cookie-file>, which contains the session cookie, be passed with the request.
The <cookie-file> specifies the path and name of the cookie file.
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, you must save the cookie returned from the login request. You must provide the
cookie with every subsequent curl command.

-H or --header <header>

Specifies an extra header in the HTTP request.
Example:

$ curl --noproxy -k GET
-b /tmp/auth_cookie \
-H 'Content-Type:application/json' \
-H 'Accept: application/json' \
"https://192.0.2.5/rest//system"

Logging Out Using Curl
Use the following curl command to access the logout resource of the switch:
Syntax:
curl [--noproxy <IP-ADDR>] -k -X POST
-b <COOKIE-FILE>
"https://<IP-ADDR>/rest/v10.xx/logout"

Options:
-k

Specifies that the curl program not attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore
you must use the –k option to disable attempts to verify self-signed certificates against a certificate
authority.

--noproxy<IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a
proxy to access the applications. If your network is configured to require a proxy to access
applications, use the --proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-b <COOKIE-FILE>

Specifies the file that contains the session cookie.

Using Curl Commands | 68

When you use curl, you log in at the beginning of your session and log out at the end of the session. When you
log in, you must save the cookie returned from the login request so that you can pass that same cookie value to
the switch in subsequent curl commands. When you log in, save the cookie file by specifying the -c option with a
file name.

In subsequent curl commands, pass the cookie value back to the switch by specifying the -b option with the
same file name.

-X

Specifies a method that curl would not use by default. Typically, used only with POST, PUT, or DELETE
methods.

Example:

$ curl --noproxy "192.0.2.5" -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/logout"

Examples
The following examples show how you can use curl with AOS-CX REST API. The response body might
vary based on the AOS-CX switch series. For example, the 8320 and 6400 switches show VSX
information, whereas the 6300 and 6200 switches show VSF and PoE information.

As a best practice, before you perform a GET, PUT, PATCH, POST, or DELETE operation, you must login
to create a session and save the cookie file by specifying the -c option with a file name. After you
perform the operation, you must logout to end the session and pass the cookie file back to the switch
by specifying the -b option with the same file name. The following examples assume that you are
performing the step to login before performing the operations in the example and logout after
performing the operations. For more information, see Accessing the REST API using curl.

The request and response body in the following examples contain a truncated part of the actual data. The data
that you see after running the curl commands might vary. Ellipses (…) in the response body represent data not
shown in the example.

Example: GET method
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

n Get the list of all VLANS:
GET "https://192.0.2.5/rest/v10.xx/system/vlans"

n Expand the list of URIs in the vlans collection by one level, which replaces the URI for the VLAN
with the JSON data for that VLAN.

GET "https://192.0.2.5/rest/v10.xx/system/vlans?depth=2"

n Get the administrative state of interface 1/1/3:
https://192.0.2.5/rest/v10.xx/system/interfaces/1%2F1%2F3?attributes=admin

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 69

n Use the attributes parameter to get all interfaces but show only the attributes name and ipv4_

address:
GET "https://192.0.2.5/rest/v10.xx/system/interfaces?depth=2&attributes=name,ipv4_
address"

n Use the selector parameter to get all the writable configuration attributes of VLAN 100:
GET "https://192.0.2.5/rest/v10.xx/system/vlans/100?selector=writable"

n Use the selector parameter to get all the system attributes that are in the categories
configuration and status:

GET "https://192.0.2.5/rest/v10.xx/system?selector=configuration,status"

Example: Getting and deleting certificates using REST APIs

Getting a list of all certificates

It is important to note that the certificate resources do not support the use of internationalized strings. Since
UTF8 is the only supported encoding, a Subject Alternative Name (SAN) must be used instead.

Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/certificates"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/certificates”

On successful completion, the switch returns response code 200 OK and a response body containing
the certificate resource URLs indexed by the certificate name. For example:
{

"my-cert-1": "/rest/v10.xx/certificates/my-cert-1",
"my-cert-2": "/rest/v10.xx/certificates/my-cert-2"

}

Getting a certificate
Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/certificates/my-cert-2"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/certificates/my-cert-2"

On successful completion, the switch returns response code 200 OK and a response body containing
the certificate.

For example:
'{

"cert_name": "my-cert-2",
"cert_type": "regular"
"cert_status": "csr_pending",
"key_type": "RSA",
"key_size": 2048,
"subject": {

"common_name": "CX-8400",
"country": "US",

Using Curl Commands | 70

"locality: "el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba"
},

"certificate": "<certificate-in-PEM-format>"
}'

Deleting a certificate
Example method and URI:
DELETE "https://192.0.2.5/rest/v10.xx/certificates/my-cert-3"

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X DELETE \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/certificates/my-cert-3"

On successful completion, the switch returns response code 204.

Example: Generating a self-signed certificate using REST APIs
The following example generates a self-signed certificate.

Example method and URI:
POST "https://192.0.2.5/rest/v10.xx/certificates"

Example request body:
{
...

"certificate_name": "my-cert-1",
"subject": {

"country": "US",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
"common_name": "CX-8400"},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "self-signed"

...
}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/certificates”
–d '{
...
"certificate_name": "my-cert-1",
"subject": {
"country": "US",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
"common_name": "CX-8400"},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "self-signed"

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 71

...
}'

On successful completion, the switch returns response code 201 Created.

Example: Getting and installing a signed leaf certificate using REST
APIs
This example includes the step to create a trust anchor (TA) profile. If the TA profile had previously been
configured, that step of the example would be skipped. The TA profile is used to validate the signed
certificate when you import the certificate as part of the PUT request.

For more information about certificates and certificate management, see the Security Guide.

1. Create a TA Profile
a. From the certificate authority (CA), get a copy of the certificate against which you will validate

leaf certificates.

The certificate you validate leaf certificates against can be a root certificate or an intermediate
certificate.

The steps to get the leaf certificate depend on the CA and the operating system you use.
b. Create a JSON object with a certificate key and a name key.

For example:
{
"name": "<profile-name>", "certificate": "<root-ca-cert>"
}

n For the value of the name key, replace <profile-name> with the name of the TA profile you
want to create.

n For the value of the certificate key, replace <root-ca-cert> by pasting the copied
certificate.

n After pasting, edit the text to ensure proper loading as a JSON object by doing the following:

o Ensure the certificate headers and footers are treated as separate lines by adding \n
characters after the header and before the footer.

The following example shows the \n characters in bold.
{

"name": "myta",
"certificate": "-----BEGIN CERTIFICATE-----\nMIIF2DCCA8CgAwIBAgIlCnL

MA0GCSqGSIb3DQEBCwUAMHkxCzAJBgNVBAYTAkdCMRAwDgYDVQQIDAdFbmdsYW5kMRIwEAYDVQDAl
...
PKj0FmJ1+Qzw9Bcm6HiPTyxOVozMeRQzSQhTZVlh3OvBw/cUwTIqFJCe/afNQCqa9XnvTpJvP/Q3z
...
S4L9sxrk/i3hKB88\n-----END CERTIFICATE-----"\
}

o Ensure that any private key headers and footers are treated as separate lines by adding
\n characters before and after them as needed.

For example:
\n-----BEGIN PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...

Using Curl Commands | 72

iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2CA

\n-----END PRIVATE KEY-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
IJ6L/UhEtH523nUkdV6gvAgoYaD83PswToAGv5VS8OMFTPttrn5/K
...
OgSecqZsG6arbx0ESaYBir1c/6rPspcjbx283iD1MWOpeoS2aEmOX=
\n-----END ENCRYPTED PRIVATE KEY-----\n

c. Use the POST method to create the TA profile with the copied certificate. Include the JSON
object in the request body:

Example method and URI:
POST "https://192.0.2.5/rest/v10.xx/system/pki_ta_profiles"

Example curl commands:

$ curl --noproxy 192.0.2.5 -k -X POST \ -b /tmp/primary_auth_cookie \ -H
'Content-Type:application/json' "https://192.0.2.5/rest/v10.04/system/pki_ta_
profiles" -d '{ "name": "myta", "certificate": "-----BEGIN CERTIFICATE-----
\nMIIF2DCCA8CgAwIBAgIJANkWgud1lCnL
MA0GCSqGSIb3DQEBCwUAMHkxCzAJBgNVBAYTAkdCMRAwDgYDVQQIDAdFbmdsYW5kMRIwEAYDVQQKDAl
...
PKj0FmJ1+Qzw9Bcm6HiPTyxOVozMeRQzSQhTZVlh3OvBw/cUwTIqFJCe/afNQCqa9XnvTpJvP/Q3ze6
S4L9sxrk/i3hKB88\n-----END CERTIFICATE-----" }

' On successful completion, the switch returns response code 201 Created.

2. Create a certificate with a pending certificate signing request (CSR).

For information about the required and optional items in the request body, see the JSON model
for the certificates resource in the AOS-CX REST API Reference.

Example method and URI:
POST "https://192.0.2.5/rest/v10.xx/certificates"

Example request body:
{
"certificate_name": "my-cert-name",
"subject": {

"common_name": "CX-8400"
"country": "US",
"locality":"el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "regular"

}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/primary_auth_cookie \
-d '{
"certificate_name": "my-cert-name",
"subject": {

"common_name": "CX-8400"
"country": "US",
"locality":"el camino",
"state": "CA",
"org": "HPE",

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 73

"org_unit": "Aruba",
},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "regular"

}'
"https://192.0.2.5/rest/v10.09/certificates"

On successful completion, the switch returns response code 201 Created.
3. Get the certificate you created in the previous step.

Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/certificates/my-cert-name"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/certificates/my-cert-name"

On successful completion, the switch returns response code 200 OK and a response body
containing the CSR in PEM format.

4. Send the CSR to the CA for signing.

The steps to send the CSR depend on the CA and the operating system you use.

The CA returns the signed certificate in PEM format.
5. Import the signed certificate by using a PUT request to update the my-cert-name certificate with

the signed certificate you received from the CA.

The imported certificate data must include all the intermediate CA certificates in the certificate
chain leading to the certificate that was imported into the specified TA profile.

If you copy and paste the certificate into a JSON object, you must ensure that the certificate and
private key headers and footers are processed as separate lines by editing the text to add \n

characters as needed.

As part of the PUT request, the switch attempts to validate the certificate against the pool of all TA
profiles installed on the switch. The certificate is accepted if it is validated with one of the TA
profiles.

Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/certificates/my-cert-name"

Example request body:
{
"certificate": "-----BEGIN CERTIFICATE-----\n

MIIFRDCCAyygAwIBAgQP8nS2Vp15u0xXMdkDJzANBgkqhkiG9w0Bv
...
1NGNm3NG03GqPScs/TF9bVyFA5BOS5lmmkfRYK8D/kMTfRreSdxis
YQ1u1NqShps=
\n-----END CERTIFICATE-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2+/
cb4=
\n-----END ENCRYPTED PRIVATE KEY-----"
}

Using Curl Commands | 74

Example curl commands:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/primary_auth_cookie \
-d '{
"certificate": "-----BEGIN CERTIFICATE-----\n

MIIFRDCCAyygAwIBAgQP8nS2Vp15u0xXMdkDJzANBgkqhkiG9w0Bv
...
1NGNm3NG03GqPScs/TF9bVyFA5BOS5lmmkfRYK8D/kMTfRreSdxis
YQ1u1NqShps=
\n-----END CERTIFICATE-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2+/
cb4=
\n-----END ENCRYPTED PRIVATE KEY-----"
}'
"https://192.0.2.5/rest/v10.09/certificates/my-cert-name"

On successful completion, the switch returns response code 200 OK.

The certificate is installed and ready to be associated with switch features.

Example: Associating a leaf certificate with a switch feature using
REST APIs
The following example associates the signed certificate my-cert-name with the HTTPS server switch
feature. For complete information about the switch features to which you can associate a leaf
certificate, see the AOS-CX Security Guide.

Procedure

1. Get the configuration attributes of the system resource:

Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/system?selector=configuration"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/system?selector=configuration"

On successful completion, the switch returns response code 200 and a JSON object containing
the configuration attributes.

2. In the portion of the response body that defines the certificate name for the HTTPS server,
change the value to: my-cert-name.

The certificate name associated with the HTTPS server is the value assigned to the https-server
key, which is under the certificate_association key. By default, the certificate name is: local-
cert

The request body of a PUT request is permitted to include only the mutable configuration
attributes. In the AOS-CX software releases to which this example applies, all the configuration

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 75

attributes for the system resource are mutable attributes, so you do not need to edit the JSON
object to remove the immutable attributes.

3. Using a PUT request, update the system resource with the edited JSON data as the request body.

Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/system"

Example request body:
{

"aaa": {
...

},
...

"certificate_association": {
"https-server": "my-cert-name",
"syslog-client": "local-cert"

},
...
}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/primary_auth_cookie \
-d '{

"aaa": {
...

},
...

"certificate_association": {
"https-server": "my-cert-name",
"syslog-client": "local-cert"

},
...
}'
"https://192.0.2.5/rest/v10.09/system"

On successful completion, the switch returns response code 200 OK.

Example: Configuration management using REST APIs

Downloading a configuration
Downloading the current configuration:

n Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/fullconfigs/running-config"

Downloading the startup configuration:

n Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/fullconfigs/startup-config"

n Example curl command:

Using Curl Commands | 76

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/fullconfigs/startup-config"

On successful completion, the switch returns response code 200 OK and a response body containing
the entire configuration in JSON format.

Uploading a configuration
The following example shows uploading a configuration to become the running configuration. The
running configuration is the only configuration that can be updated using this technique, however, you
can copy other configurations. For more information about copying configurations, see Copying a
configuration.

n Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/fullconfigs/running-config"

The request body must contain the configuration—in JSON format—to be uploaded.
n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/fullconfigs/running-config" \
–d '{
…
}'

The configuration being uploaded—represented as ellipsis but not shown in this example—is in JSON
format in the body of the command (enclosed in braces).

On successful completion, the switch returns response code 200 OK.

Copying a configuration
To replace an existing configuration with another, use a REST PUT request to the destination
configuration. Use the from query string parameter to specify the source configuration.

n At least one of the source or the destination configuration must be either running-config or
startup-config. You cannot copy a checkpoint to a different checkpoint.

n If you specify a destination checkpoint that exists, an error is returned. You cannot overwrite an
existing checkpoint.

The syntax of the method and URI is as follows:
PUT "https://<IPADDR>/rest/v10.xx/fullconfigs/<destination-config>?
from=/rest/v10.xx/fullconfigs/<source-config>"

Copying the running configuration to the startup configuration:

n Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/fullconfigs/startup-config?
from=/rest/v10.xx/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 77

"https://192.0.2.5/rest/v10.09/fullconfigs/startup-config?
from=/rest/v10.09/fullconfigs/running-config"

Copying the startup configuration to the running configuration:

n Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/fullconfigs/running-config?
from=/rest/v10.xx/fullconfigs/startup-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v10.09/fullconfigs/running-config?
from=/rest/v10.09/fullconfigs/startup-config"

Copying a checkpoint to the running configuration:

n Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/fullconfigs/running-config?
from=/rest/v10.xx/fullconfigs/MyCheckpoint"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v10.09/fullconfigs/running-config?
from=/rest/v10.09/fullconfigs/MyCheckpoint"

Copying the running configuration to a checkpoint:

n Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/fullconfigs/MyCheckpoint?
from=/rest/v10.xx/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v10.09/fullconfigs/MyCheckpoint?
from=/rest/v10.09/fullconfigs/running-config"

Example: Firmware upgrade using REST APIs

Uploading a file as the secondary firmware image
In the following example, a curl command is used to upload the firmware image file from the local
workstation to the switch, as the secondary firmware image. The -F option specifies that the POST
method is used to upload the file.

Example method and URI:
POST "https://192.0.2.5/rest/v10.xx/firmware?image=secondary"

The request body contains the switch firmware image file in binary format.

Example curl command:

Using Curl Commands | 78

$ curl --noproxy -k -b /tmp/auth_cookie \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-F "fileupload=@/myfirmwarefiles/myswitchfirmware_2020020905.swi" \
https://192.0.2.5/rest/v10.09/firmware?image=secondary

In the curl command, the POST request is handled as part of the -F option.

Booting the system using the secondary firmware image
Example method and URI:
POST "https://192.0.2.5/rest/v10.xx/boot?image=secondary"

Example curl command:

$ curl --noproxy -k -X POST -b /tmp/auth_cookie \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
"https://192.0.2.5/rest/v10.09/boot?image=secondary"

Example: Log operations using REST APIs

Event logs
A GET request to /rest/v10.xx/logs/event URI returns all entries from all the event logs on the switch,
including logs from internal processes.

The information returned by this request was not optimized for human readability. If you want to
examine the log entries, Hewlett Packard Enterprise recommends that you use the Web UI. The Web UI
also provides a method to export log entries.

In the following example, the MESSAGE_ID parameter filters the output to include event log messages
only:

n 50c0fa81c2a545ec982a54293f1b1945 identifies event log messages from the active management
module.

n 73d7a43eaf714f97bbdf2b251b21cade identifies event log messages from the standby management
module. Not all switches have a standby management module.

Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/logs/event?
limit=1000&
priority=4&
since=24%20hour%20ago&
MESSAGE_ID=50c0fa81c2a545ec982a54293f1b1945,73d7a43eaf714f97bbdf2b251b21cade"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/logs/event?
limit=1000&
priority=4&
since=24%20hour%20ago&
MESSAGE_ID=50c0fa81c2a545ec982a54293f1b1945,73d7a43eaf714f97bbdf2b251b21cade"

Accounting (audit) logs

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 79

A GET request to the /rest/v10.xx/logs/audit URI returns all entries from the accounting logs on the
switch.

For a list of supported query parameters, see the AOS-CX REST API Reference.

Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/logs/audit?
since=24%20hour%20ago&
usergroup=administrators&
session=CLI"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/logs/audit?
since=24%20hour%20ago&
usergroup=administrators&
session=CLI"

Example: Ping operations using REST APIs
This example gets ping statistics for the ping target.

Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/ping?
ping_target=192.0.2.10&
is_ipv4=true&
ping_data_size=100&
ping_time_out=2&
ping_repetitions=1&
ping_type_of_service=0&
include_time_stamp=false&
include_time_stamp_address=false&
record_route=false&
mgmt=false"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/ping?
ping_target=192.0.2.10&
is_ipv4=true&
ping_data_size=100&
ping_time_out=2&
ping_repetitions=1&
ping_type_of_service=0&
include_time_stamp=false&
include_time_stamp_address=false&
record_route=false&
mgmt=false"

On successful completion, the switch returns response code 200 OK and a response body containing
the output string produced by the ping operation.

Example: Traceroute operations using REST APIs
Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/traceroute?
ip=192.0.2.10&
is_ipv4=true&

Using Curl Commands | 80

timeout=3&
destination_port=33434&
max_ttl=30&
min_ttl=1&
probes=3&
mgmt=false"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/traceroute?
ip=192.0.2.10&
is_ipv4=true&
timeout=3&
destination_port=33434&
max_ttl=30&
min_ttl=1&
probes=3&
mgmt=false"

On successful completion, the switch returns response code 200 OK and a response body containing
the output string produced by the traceroute operation.

Example: User management using REST APIs

Creating a user
Example method and URI:
POST "https://192.0.2.5/rest/v10.xx/system/users"

Example request body:
{
...

"name": "myadmin",
"password": "P@ssw0rd",
"user_group": "/rest/v10.xx/system/user_groups/administrators",
"origin": "configuration"

...
}

Example curl command:

$ curl --noproxy -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/system/users”
–d '{
...
"name": "myadmin",
"password": "P@ssw0rd",
"user_group": "/rest/v10.09/system/user_groups/administrators",
"origin": "configuration"

...
}'

On successful completion, the switch returns response code 201 Created.

Changing a password
Example method and URI:
PUT "https://192.0.2.5/rest/v10.xx/system/users/myadmin"

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 81

Example request body:
{

"password": "P@ssw0rd2g"
"current_password": "current_password"

}'

}

Example curl command:

$ curl --noproxy -k -X PUT \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/system/users/myadmin”
–d '{
"password": "P@ssw0rd2g"
"current_password": "current_password"

}'

}'

On successful completion, the switch returns response code 200 OK.

Deleting a user
Example method and URI:
DELETE "https://192.0.2.5/rest/v10.xx/system/users/myadmin"

Example curl command:

$ curl --noproxy -k -X DELETE \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/system/users/myadmin"

On successful completion, the switch returns response code 204 No Content.

Example: Creating an ACL with an interface using REST APIs
This example shows creating the following ACL and interface configuration on a switch at IP address
192.0.2.5:
access-list ip ACLv4

10 permit tcp 10.0.100.101 eq 80 10.0.100.102 eq 8000
interface 1/1/2

no shutdown
apply access-list ip ACLv4 out

1. Creating the ACL.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"cfg_version": 0,
"list_type": "ipv4",
"name": "ACLv4"}'
"https://192.0.2.5/rest/v10.09/system/acls"

2. Creating an ACL entry.

Using Curl Commands | 82

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"action": "permit",
"dst_ip": "10.0.100.102/255.255.255.255",
"dst_l4_port_max": 8000,
"dst_l4_port_min": 8000,
"protocol": 6,
"sequence_number": 10,
"src_ip": "10.0.100.101/255.255.255.255",
"src_l4_port_max": 80,
"src_l4_port_min": 80}'
"https://192.0.2.5/rest/v10.09/system/acls/ACLv4,ipv4/cfg_aces"

3. Getting the ACL writable configuration attributes to use in the next step.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/system/acls/ACLv4,ipv4?selector=writable"

Response body:
{
...
"cfg_aces": "/rest/v10.04/system/acls/ACLv4,ipv4/cfg_aces",
"cfg_version": 3738959816497071,
"vsx_sync": []

...
"list_type": "ipv4",
"name": "ACLv4"

...
}

4. Updating the ACL configuration using the return body received from the GET request performed
in the previous step.

Any writable attributes you do not include in the PUT request body are set to their defaults, which
could be empty.

The following example shows the request to update the ACL configuration:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d '{
"cfg_aces":{"10":"/rest/v10.09/system/acls/ACLv4,ipv4/cfg_aces/10"},
"cfg_version":1}' \
"https://192.0.2.5/rest/v10.09/system/acls/ACLv4,ipv4"

5. Getting the writable attributes of an interface.

The GET response body includes only the configuration attributes that have been set.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \

"https://192.0.2.5/rest/v10.09/system/interfaces/1%2F1%2F2?selector=writabl
e"

Response body:

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 83

{
...
"cdp_disable": false,
"description": null,
"lldp_med_loc_civic_ca_info": {},
"lldp_med_loc_civic_info": null,
"lldp_med_loc_elin_info": null,
"options": {},
"other_config": {

"lldp_dot3_macphy_disable": false,
"lldp_med_capability_disable": false,
"lldp_med_network_policy_disable": false,
"lldp_med_topology_notification_disable": false

},
"pfc_priorities_config": null,
"selftest_disable": false,
"udld_arubaos_compatibility_mode": "forward_then_verify",
"udld_compatibility": "aruba_os",
"udld_enable": false,
"udld_interval": 7000,
"udld_retries": 4,
"udld_rfc5171_compatibility_mode": "normal",
"user_config": {

"admin": "down"
...
}

6. Enabling the interface and adding the ACL information to the interface by using the return body
received from the GET request performed in the previous step. The modified values are shown in
the following example.

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d
'{
...
"user_config": {"admin": "up" },
"aclv4_out_cfg":"/rest/v10.09/system/acls/ACLv4,ipv4",
"aclv4_out_cfg_version":1,
...
}' -D- \
"https://192.0.2.5/rest/v10.09/system/interfaces/1%2F1%2F2"

Example: Creating a VLAN and a VLAN interface using REST APIs
This example shows creating the following VLAN and interface configuration on a switch at IP address
192.0.2.5:
vlan 2

no shutdown
interface vlan 2

1. Creating the VLAN.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"name":"vlan2",
"id":2,
"type":"static",
"admin":"up"}' \
"https://192.0.2.5/rest/v10.09/system/vlans"

Using Curl Commands | 84

2. Creating an interface with VLAN information

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"vrf": "/rest/v10.09/system/vrfs/default",
"vlan_tag":"/rest/v10.09/system/vlans/2",
"name":"vlan2",
"type":"vlan"}' \
-D- "https://192.0.2.5/rest/v10.09/system/interfaces"

Example: Enabling routing on an interface
The following example shows how to enable routing on an interface.
interface 1/1/1

routing

1. Getting the writable configuration information for the interface.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
-H 'Content-Type:application/json'
-H 'Accept: application/json'

"https://192.0.2.5/rest/v10.09/system/interfaces/1%2F1%2F1?selector=writabl
e"

Response body:

The GET response body includes only the configuration attributes that have been set.

{
...
"routing": false,
"udld_arubaos_compatibility_mode": "forward_then_verify",
"udld_compatibility": "aruba_os",
"udld_enable": false,
"udld_interval": 7000,
"udld_retries": 4,
"udld_rfc5171_compatibility_mode": "normal",
"user_config": {}
"vlan_mode": null,
"vlan_tag": null,
"vlan_translations": {},
"vlan_trunks": [],
"vlans_per_protocol": {},
"vrf": null,

...
}

2. Update the interface using the return body received from the GET request, modifying the routing
attribute to be: "routing": true.

Any writable attributes you do not include in the PUT request body are set to their defaults, which
could be empty.

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 85

$ curl --noproxy -X PUT \
-b /tmp/auth_cookie \
-H 'Content-Type: application/json'
-H 'Accept: application/json'
-d '{
...
"routing":true,
...
}'
"https://192.0.2.5/rest/v10.09/system/interfaces/1%2F1%2F1"

Example: PATCH Method

Enabling a VLAN
Example curl command:

$ curl -k --noproxy <ip> -X PATCH -b /tmp/cookies -d '{"admin":"up"}' -D-
"https://<ip>/rest/<version>/system/vlans/100"

Enabling Central
Example curl command:

$ curl -k --noproxy <ip> -b /tmp/cookies -X PATCH -d '{"disable":false}' -D-
"https://<ip>/rest/<version>/system/aruba_central"

Changing the Source IP of a VRF
Example curl command:

$ curl -k --noproxy <ip> -b /tmp/cookies -X PATCH -d '{"source_ip":
{"all":"10.1.1.1"}}' -D- "https://<ip>/rest/<version>/system/vrfs/mgmt"

Using GET and PATCH to Update the admin state of a VLAN
Example GET curl command:

$ curl --noproxy -k -X GET "https://192.0.2.5/rest/v10.09/system/vlans/100 -H
"accept: */*" -d "" -b /tmp/auth_cookie
HTTP/1.1 200 OK
Server: nginx
Date: Wed, 03 Nov 2021 22:53:02 GMT
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked
Connection: keep-alive
Etag: be17a56d01ca6eba8fc1901a4f5d2fd6
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubdomains;
Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';

On successful completion, the switch returns the following:

Using Curl Commands | 86

{
...

"admin": "up",
"clear_ip_bindings": {},
"delete_macs_rejected": {},
"delete_macs_requested": {},
"description": null,
"flood_enabled_subsystems": {},
"id": 100,
"internal_usage": {},
"macs": "/rest/v10.09/system/vlans/100/macs",
"macs_invalid": null,

...
}

Example PATCH curl command:

$ curl --noproxy -k -X PATCH "https://192.0.2.5/rest/v10.09/system/vlans"/100 -H
"accept: */*" -d '{"admin": "down"}' -b /tmp/auth_cookie
HTTP/1.1 204 No Content
Server: nginx
Date: Wed, 03 Nov 2021 22:54:43 GMT
Connection: keep-alive
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubdomains;
Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';

Example GET curl command:

$ curl --noproxy -k -X GET "https://192.0.2.5/rest/v10.09/system/vlans/100 -H
"accept: */*" -d "" -b /tmp/auth_cookie
HTTP/1.1 200 OK
Server: nginx
Date: Wed, 03 Nov 2021 22:53:02 GMT
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked
Connection: keep-alive
Etag: be17a56d01ca6eba8fc1901a4f5d2fd6
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubdomains;
Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';
$ curl --noproxy -k -X GET "https://192.0.2.5/rest/v10.09/system/vlans"/100 -H
"accept: */*" -d "" -b /tmp/auth_cookie
HTTP/1.1 200 OK
Server: nginx
Date: Wed, 03 Nov 2021 22:54:52 GMT
Content-Type: application/json; charset=utf-8
Transfer-Encoding: chunked
Connection: keep-alive
Etag: d54a643eb48515e94ea94bd501d9d2c8
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubdomains;

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 87

Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';

On successful completion, the switch returns the following:
{
...

"admin": "down",
"clear_ip_bindings": {},
"delete_macs_rejected": {},
"delete_macs_requested": {},
"description": null,
"flood_enabled_subsystems": {},
"id": 100,
"internal_usage": {},
"macs": "/rest/v10.09/system/vlans/100/macs",
"macs_invalid": null,

...
}

Using PATCH to Update a Non-configurable attribute
Example PATCH curl command:

$ curl --noproxy -k -X PATCH "https://192.0.2.5/rest/v10.09/system/vlans"/100 -H
"accept: */*" -d '{"oper_state": "up"}' -b /tmp/auth_cookie
HTTP/1.1 400 Bad Request
Server: nginx
Date: Wed, 03 Nov 2021 23:08:02 GMT
Content-Type: text/plain; charset=utf-8
Content-Length: 73
Connection: keep-alive
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubdomains;
Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';

cannot modify the attribute: oper_state, reason: Non-configurable column
$

Chapter 7

AnyCLI

AnyCLI
AnyCLI is a custom REST resource that allows for a predefined list of troubleshooting CLI commands to
be executed via REST API. Only one command is permitted per request and no concurrent requests are
allowed. The resource also provides an endpoint to retrieve the full list of available commands.

AnyCLI does not support CLI configuration commands. Only a subset of read-only show commands are available.

URI

n The URI to execute a CLI command: /rest/{version}/cli
n The URI to retrieve allowed CLI commands: /rest/{version}/cli/commands

Limitations

n Valid versions: v10.04 and higher
n Invalid version: v1

Security
Allowed roles: Administrator and operator.

Prohibited: Auditor

Response Time
If the response time exceeds the http server timeout (10min) the command will be canceled and with a
408 Request Timeout generated.

Concurrent Requests
One command is allowed per request.

Commands available per platform
The mechanism exposed via REST mirrors the same level of support the CLI has for a predefined list of
CLI commands. If a command is available but has a limitation, then the REST CLI feature will reflect the
same. For details in the description, usability, and health of any particular command, it is recommended
to review the functionality guide where the feature that command belongs to is documented.

Not all show commands are available on every platform. As per the Error Code section, an "invalid
command" response is expected whenever the CLI doesn't support the command. However, without
executing the command through CLI REST has no visibility into whether the command is available on any
given platform. Since the /cli/commands endpoint does not interact with CLI, it does not filter
unsupported commands.

The Allowed Commands section lists the complete set of commands available through REST CLI. The
commands from that list (which are not present in the Commands Available Per Platform table) are
available in every platform.

The table below describes whether a command is available or not for any given platform. An X denotes
the command is available in that platform:

AOS-CX 10.13 REST API Guide 88

AnyCLI | 89

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show active-gateway X X X X X X X X

show aaa authentication
port-access interface all
client-status

X X X X X X X

show bgp all X X X X X X X X

show bgp all community X X X X X X X X

show bgp all
extcommunity

X X X X X X X X

show bgp all flap-
statistics

X X X X X X X X

show bgp all neighbors X X X X X X X X

show bgp all paths X X X X X X X X

show bgp all summary X X X X X X X X

show bgp all-vrf all X X X X X X X X

show bgp all-vrf all
neighbors

X X X X X X X X

show bgp all-vrf all paths X X X X X X X X

show bgp all-vrf all
summary

X X X X X X X X

show bgp ipv4 unicast X X X X X X X X

show bgp ipv4 unicast
community

X X X X X X X X

show bgp ipv4 unicast
extcommunity

X X X X X X X X

show bgp ipv4 unicast
flap-statistics

X X X X X X X X

show bgp ipv4 unicast
neighbors

X X X X X X X X

show bgp ipv4 unicast
paths

X X X X X X X X

show bgp ipv4 unicast
summary

X X X X X X X X

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 90

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show bgp l2vpn evpn X X X X X X X

show bgp l2vpn evpn
extcommunity

X X X X X X X

show bgp l2vpn evpn
neighbors

X X X X X X X

show bgp l2vpn evpn
paths

X X X X X X X

show bgp l2vpn evpn
summary

X X X X X X X

show dhcp-server X X X X X X X X X

show dhcpv4-snooping
binding

X X X X X X X X

show dhcpv4-snooping X X X X X X X X

show dhcpv6-server X X X X X X X X X

show dhcpv6-snooping
binding

X X X X X X X X

show dhcpv6-snooping X X X X X X X X

show evpn evi detail X X X X X X X

show evpn evi X X X X X X X

show evpn mac-ip X X X X X X X

show evpn vtep-
neighbor all-vrfs

X X X X X X X

show gbp role-mapping X X X

show interface vxlan vni
vteps

X X X X X X X X

show interface vxlan vni X X X X X X X X

show interface vxlan
vteps detail

X X X X X X X X

show interface vxlan
vteps

X X X X X X X X

show ip mroute X X X X X X X X X

AnyCLI | 91

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show ip ospf all-vrfs X X X X X X X X X

show ip ospf border-
routers all-vrfs

X X X X X X X X X

show ip pim X X X X X X X X X

show ipv6 mroute X X X X X X X X X

show ipv6 ospfv3 all-vrfs X X X X X X X X X

show ipv6 ospfv3
border-routers all-vrfs

X X X X X X X X X

show ipv6 pim6 X X X X X X X X X

show nd-snooping
binding

X X X X

show nd-snooping
prefix-list

X X X X

show nd-snooping
statistics

X X X X X X X

show nd-snooping X X X X X X X

show port-access clients
onboarding-method
device-profile

X X X X X X X

show port-access clients
onboarding-method
dot1x

X X X X X X X

show port-access clients
onboarding-method
mac-auth

X X X X X X X

show port-access clients
onboarding-method
port-security

X X X X X X X

show port-access clients X X X X X X X

show port-access gbp X X X

show port-access policy X X X X X X X

show port-access port-
security interface all
client-status

X X X X X X X

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 92

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show port-access port-
security interface all
port-statistics

X X X X X X X

show port-access role
local

X X X X X X X

show port-access role
radius

X X X X X X X

show port-access port-
security violation client-
limit-exceeded interface
all

X X X X X X X

show power-over-
ethernet

X X X X X

show radius dyn-
authorization

X X X X X X X

show secure mode X X X X X X X X X X X X

show ubt brief X X X X

show ubt information X X X X

show vsf detail X X

show vsf link detail X X

show vsf link error-detail X X

show vsf topology X X

show vsf X X

show vsx ip igmp X X X X X X X

show vsx ip route X X X X X X X

show vsx ipv6 route X X X X X X X

show vsx mac-address-
table

X X X X X X X

show vsx status X X X X X X X

CLI operations
Obtains the vtysh output from executing a command.

POST

AnyCLI | 93

Body of the request must contain a cmd key with the corresponding command from the allowed list of
commands as its value. Response body will contain the plain/text output of vtysh if successful.

Request body

{
"cmd": <cmd>

}

Response body

<vtysh_output>

CLI commands operations
Obtains the list of allowed commands.

GET
Response body will contain a JSON objects commands with the list of allowed commands.

Response body

{
"commands": <allowed_commands>

}

Swagger
https://{IP}/api/{version}/cli

Full URI
n Full URI: https://{IP}/rest/{version}/cli/
n Full URI: https://{IP}/rest/{version}/cli/commands/

CURL example

curl -k --noproxy "{IP}" -b cookies \
-X POST "https://{IP}/rest/cli" \
-H "content-type: application/json" \
-d '{"cmd":"show uptime"}'

curl -k --noproxy "{IP}" -b cookies \
-X GET "https://{IP}/rest/cli/commands" \
-H "accept: application/json"

Error codes

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 94

HTTP Code Error Response

200 OK None VTYSH output

400 Bad Request Invalid Input, Command incomplete or
Ambiguous command

Invalid command.

400 Bad Request Invalid JSON Payload missing key Invalid JSON input. '{}' required
parameter missing

401 Unauthorized Authorization error 401 Authorization Required

403 Forbidden Command not allowed (non in preset-list) Command '{}' not allowed

403 Forbidden Command not allowed on CLI Command not allowed

429 Too Many Requests Multiple Concurrent Requests Error 429 Too Many Requests

502 Bad Gateway Any other CLI error Command execution failed

Allowed commands
n show aaa accounting
n show aaa authentication port-access interface all client-status
n show aaa authentication
n show aaa authorization
n show aaa server-groups
n show active-gateway
n show arp all-vrfs
n show arp
n show bgp all
n show bgp all community
n show bgp all extcommunity
n show bgp all flap-statistics
n show bgp all neighbors
n show bgp all paths
n show bgp all summary
n show bgp all-vrf all
n show bgp all-vrf all neighbors
n show bgp all-vrf all paths
n show bgp all-vrf all summary
n show bgp ipv4 unicast
n show bgp ipv4 unicast community
n show bgp ipv4 unicast extcommunity
n show bgp ipv4 unicast flap-statistics
n show bgp ipv4 unicast neighbors
n show bgp ipv4 unicast paths
n show bgp ipv4 unicast summary

AnyCLI | 95

n show bgp l2vpn evpn
n show bgp l2vpn evpn extcommunity
n show bgp l2vpn evpn neighbors
n show bgp l2vpn evpn paths
n show bgp l2vpn evpn summary
n show boot-history
n show capacities
n show capacities-status
n show class ip
n show class ipv6
n show clock
n show copp-policy statistics
n show dhcp-relay
n show dhcp-server
n show dhcpv4-snooping binding
n show dhcpv4-snooping
n show dhcpv6-relay
n show dhcpv6-server
n show dhcpv6-snooping binding
n show dhcpv6-snooping
n show environment
n show evpn evi detail
n show evpn evi
n show evpn mac-ip
n show evpn vtep-neighbor all-vrfs
n show gbp role-mapping
n show interface brief
n show interface error-statistics
n show interface lag
n show interface physical
n show interface qos
n show interface queues
n show interface statistics
n show interface tunnel
n show interface utilization
n show interface vxlan vni vteps
n show interface vxlan vni
n show interface vxlan vteps detail
n show interface vxlan vteps
n show interface vxlan
n show interface
n show ip dns
n show ip helper-address

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 96

n show ip igmp
n show ip mroute
n show ip multicast summary
n show ip ospf all-vrfs
n show ip ospf border-routers all-vrfs
n show ip ospf interface all-vrfs
n show ip pim
n show ip route all-vrfs
n show ipv6 helper-address
n show ipv6 mld
n show ipv6 mroute
n show ipv6 neighbors all-vrfs
n show ipv6 neighbors
n show ipv6 ospfv3 all-vrfs
n show ipv6 ospfv3 border-routers all-vrfs
n show ipv6 ospfv3 interface all-vrfs
n show ipv6 pim6
n show lacp aggregates
n show lacp interfaces
n show lldp local
n show lldp neighbor
n show loop-protect
n show mac-address-table
n show module
n show nd-snooping binding
n show nd-snooping prefix-list
n show nd-snooping statistics
n show nd-snooping
n show ntp associations
n show ntp servers
n show ntp status
n show port-access clients onboarding-method device-profile
n show port-access clients onboarding-method dot1x
n show port-access clients onboarding-method mac-auth
n show port-access clients onboarding-method port-security
n show port-access clients
n show port-access gbp
n show port-access policy
n show port-access port-security interface all client-status
n show port-access port-security interface all port-statistics
n show port-access role local
n show port-access role radius
n show port-access port-security violation client-limit-exceeded interface all

AnyCLI | 97

n show power-over-ethernet
n show qos dscp-map
n show qos queue-profile
n show qos schedule-profile
n show qos trust
n show radius dyn-authorization
n show radius-server
n show resources
n show secure-mode
n show spanning-tree detail
n show spanning-tree mst detail
n show system inventory
n show system resource-utilization
n show tacacs-server
n show ubt brief
n show ubt information
n show uptime
n show version
n show vlan
n show vrf
n show vsf detail
n show vsf link detail
n show vsf link error-detail
n show vsf topology
n show vsf
n show ztp information

Full example
Get the full list of available commands:

n URI: /rest/{version}/cli/commands
n Valid versions: v10.04 and higher
n Operation: GET
n Query parameters: empty
n Request body: empty
n Response body: snippet

curl -X GET -b /tmp/cookies \
"https://{IP}/rest/{version}/cli/commands" \
-H "accept: application/json

n Response body: snippet

AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 98

{
"commands":[
...
"show lldp local",
"show lldp neighbor",
...
]

}

Then, retrieve the vtysh output from the command with a POST:

n URI: /rest/{version}/cli
n Operation: POST
n Query parameters: empty
n Request body: snippet

{
"cmd": "show uptime"

}

curl -X POST -b /tmp/cookies "https://{IP}/rest/{version}/cli" \
-H "content-type: application/json" -d '{"cmd":"show uptime"}'

n Response body: snippet

System has been up 11 minutes

Chapter 8

Secure Mode

Secure Mode
Secure mode provides a method of setting the security mode of the device. A zeroization is required
before switching between enhanced and standard secure modes.

Setting secure mode requires populating writable attribute SYSTEM::secure_mode with the following
value:
true

Limitations

n Valid versions: v10.04 and higher
n Invalid version: v1

Security
Allowed roles: Administrator and operator.

Prohibited: Auditor

Example
The "secure_mode" variable has two values, as follows:

nfalse: secure mode flag is not set and the device continues to operate in its current state

ntrue: secure mode flag is set and the device reboots immediately, performs a zeroization, and boots to
Secure mode

The "secure_mode" flag always returns false as the device reboots immediately after this value is set, and after
booting to any mode, the flag is reset to false.

Get the secure mode writable attributes:

* __URI__: `/REST/{VERSION}/system`
* __ Valid versions__: `v10.04` and higher
* __Operation__: `GET`
* __Query parameters__:
* `selector=writable`
* __Request body__: empty
* __Response body__:
```json
{
...
"secure_mode":null
...
}
```
* __Description__: Get writable secure mode attributes to use them for a `PUT`
* __Swagger__: `https://{IP}/api/{version}/#/System/get_system`
* __Full URI__: `https://{IP}/rest/{version}/system?selector=writable`
* __Curl example__:
```bash
curl -X GET -b /tmp/cookies \

AOS-CX 10.13 REST API Guide 99



Secure Mode | 100

"https://{IP}/rest/{version}/system?selector=writable" \
-H "accept: application/json"
```
"secure_mode":null
* __CLI equivalent commands__: N/A

Or, get relevant secure mode parameters:

* __URI__: `/REST/{VERSION}/system`
* __ Valid versions__: `v10.04` and higher
* __Operation__: `GET`
* __Query parameters__:
* `selector=writable`
* __Request body__: empty
* __Response body__:
```json
{
...
"secure_mode":null
...
}
```
* __Description__: Get writable secure mode attributes to use them for a `PUT`
* __Swagger__: `https://{IP}/api/{version}/#/System/get_system`
* __Full URI__: `https://{IP}/rest/{version}/system?selector=writable`
* __Curl example__:
```bash
curl -X GET -b /tmp/cookies \
"https://{IP}/rest/{version}/system?attributes=secure_mode" \
-H "accept: application/json"
```
<HTTP/1/1 200 OK
< Server: nginx
< Date: Mon, 27 Mar 2023 22:35:54 GMT
< Content-Type: application/json; charset=utf-8
< Content-Length: 62
< Connection: keep-alive
< Etag: 52c2158e26ef504acd5b65a6e00b4a2b
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
< Strict-Transport-Security: max-age=31536000; includeSubdomains;
< Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';
<
{
"secure_mode": null,
}

Then, use the returned JSON to do a PATCH:

* __URI__: `/REST/{VERSION}/system`
* __ Valid versions__: `v10.10` and higher
* __Operation__: `PATCH`
* __Query parameters__: empty
* __Request body__:
```json
{
"secure_mode":true



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 101

}
```
* __Description__: Initiate a zeroization followed by setting secure mode
* __Swagger__: `https://{IP}/api/{version}/#/System/patch_system`
* __Full URI__: `https://{IP}/rest/{version}/system`
* __Curl example__:
```bash
curl {IP} -X PATCH -b /tmp/cookies \
"https://{IP}/rest/{version}/system" \
-H "accept: */*" \
-H "Content-Type: application/json" \
-d \
"{
\"secure_mode\":true
}"
```
* __CLI equivalent commands__:
* [secure-mode enhanced](#secure-mode-command)

Or, use the returned JSON to do a PUT:

* __URI__: `/REST/{VERSION}/system`
* __ Valid versions__: `v10.10` and higher
* __Operation__: `PATCH`
* __Query parameters__: empty
* __Request body__:
```json
{
"secure_mode":true
}
```
* __Description__: Initiate a zeroization followed by setting secure mode
* __Swagger__: `https://{IP}/api/{version}/#/System/patch_system`
* __Full URI__: `https://{IP}/rest/{version}/system`
* __Curl example__:
```bash
curl {IP} -X PUT -b /tmp/cookies \
"https://{IP}/rest/{version}/system" \
-H "accept: */*" \
-H "Content-Type: application/json" \
-d \
"{
\"secure_mode\":true
}"

Showing the secure mode setting is read from the SYSTEM::secure_mode_status attribute:

* __URI__: `/REST/{VERSION}/system`
* __ Valid versions__: `v10.10` and higher
* __Operation__: `GET`
* __Query parameters__: empty
* __Request body__: empty
* __Response body__:
``json
{
...
"secure_mode_status":"enhanced"
...
}



Secure Mode | 102

```
* __Description__: Get the current status of secure mode.
* __Swagger__: `https://{IP}/api/{version}/#/System/get_system`
* __Full URI__: `https://{IP}/rest/{version}/system`
* __Curl example__:
```bash
curl -X GET -b /tmp/cookies \
"https://{IP}/rest/{version}/system" \
-H "accept: application/json"

Or, showing the relevant secure mode parameters:

* __URI__: `/REST/{VERSION}/system`
* __ Valid versions__: `v10.10` and higher
* __Operation__: `GET`
* __Query parameters__: empty
* __Request body__: empty
* __Response body__:
``json
{
...
"secure_mode_status":"enhanced"
...
}
```
* __Description__: Get the current status of secure mode.
* __Swagger__: `https://{IP}/api/{version}/#/System/get_system`
* __Full URI__: `https://{IP}/rest/{version}/system`
* __Curl example__:
```bash
curl -X GET -b /tmp/cookies \
"https://{IP}/rest/{version}/system?attributes=secure_mode_status" \
-H "accept: application/json"
< HTTP/1.1 200 OK
< Server: nginx
< Date: Mon, 27 Mar 2023 22:35:54 GMT
< Content-Type: application/json; charset=utf-8
< Content-Length: 62
< Connection: keep-alive
< Etag: 52c2158e26ef504acd5b65a6e00b4a2b
< X-Frame-Options: SAMEORIGIN
< X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
< Strict-Transport-Security: max-age=31536000; includeSubdomains;
< Content-Security-Policy: script-src 'self' 'unsafe-inline'; object-src 'none';
font-src *; media-src 'none'; form-action 'self';
<
{
"secure_mode_status": "enhanced"
}

Commands available per platform
The mechanism exposed via REST mirrors the same level of support the CLI has for a predefined list of
CLI commands. If a command is available but has a limitation, then the REST CLI feature will reflect the
same. For details in the description, usability, and health of any particular command, it is recommended
to review the functionality guide where the feature that command belongs to is documented.

Not all show commands are available on every platform. As per the Error Code section, an "invalid
command" response is expected whenever the CLI doesn't support the command. However, without



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 103

executing the command through CLI REST has no visibility into whether the command is available on
any given platform. Since the /cli/commands endpoint does not interact with CLI, it does not filter
unsupported commands.

The Allowed Commands section lists the complete set of commands available through REST CLI. The
commands from that list (which are not present in the Commands Available Per Platform table) are
available in every platform.

The table below describes whether a command is available or not for any given platform. An X denotes
the command is available in that platform:

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show active-gateway X X X X X X X X

show aaa authentication
port-access interface all
client-status

X X X X X X X

show bgp all X X X X X X X X

show bgp all community X X X X X X X X

show bgp all
extcommunity

X X X X X X X X

show bgp all flap-
statistics

X X X X X X X X

show bgp all neighbors X X X X X X X X

show bgp all paths X X X X X X X X

show bgp all summary X X X X X X X X

show bgp all-vrf all X X X X X X X X

show bgp all-vrf all
neighbors

X X X X X X X X

show bgp all-vrf all paths X X X X X X X X

show bgp all-vrf all
summary

X X X X X X X X

show bgp ipv4 unicast X X X X X X X X

show bgp ipv4 unicast
community

X X X X X X X X

show bgp ipv4 unicast
extcommunity

X X X X X X X X

show bgp ipv4 unicast
flap-statistics

X X X X X X X X



Secure Mode | 104

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show bgp ipv4 unicast
neighbors

X X X X X X X X

show bgp ipv4 unicast
paths

X X X X X X X X

show bgp ipv4 unicast
summary

X X X X X X X X

show bgp l2vpn evpn X X X X X X X

show bgp l2vpn evpn
extcommunity

X X X X X X X

show bgp l2vpn evpn
neighbors

X X X X X X X

show bgp l2vpn evpn
paths

X X X X X X X

show bgp l2vpn evpn
summary

X X X X X X X

show dhcp-server X X X X X X X X X

show dhcpv4-snooping
binding

X X X X X X X X

show dhcpv4-snooping X X X X X X X X

show dhcpv6-server X X X X X X X X X

show dhcpv6-snooping
binding

X X X X X X X X

show dhcpv6-snooping X X X X X X X X

show evpn evi detail X X X X X X X

show evpn evi X X X X X X X

show evpn mac-ip X X X X X X X

show evpn vtep-
neighbor all-vrfs

X X X X X X X

show gbp role-mapping X X X

show interface vxlan vni
vteps

X X X X X X X X



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 105

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show interface vxlan vni X X X X X X X X

show interface vxlan
vteps detail

X X X X X X X X

show interface vxlan
vteps

X X X X X X X X

show ip mroute X X X X X X X X X

show ip ospf all-vrfs X X X X X X X X X

show ip ospf border-
routers all-vrfs

X X X X X X X X X

show ip pim X X X X X X X X X

show ipv6 mroute X X X X X X X X X

show ipv6 ospfv3 all-vrfs X X X X X X X X X

show ipv6 ospfv3
border-routers all-vrfs

X X X X X X X X X

show ipv6 pim6 X X X X X X X X X

show nd-snooping
binding

X X X X

show nd-snooping
prefix-list

X X X X

show nd-snooping
statistics

X X X X X X X

show nd-snooping X X X X X X X

show port-access clients
onboarding-method
device-profile

X X X X X X X

show port-access clients
onboarding-method
dot1x

X X X X X X X

show port-access clients
onboarding-method
mac-auth

X X X X X X X

show port-access clients
onboarding-method
port-security

X X X X X X X



Secure Mode | 106

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show port-access clients X X X X X X X

show port-access gbp X X X

show port-access policy X X X X X X X

show port-access port-
security interface all
client-status

X X X X X X X

show port-access port-
security interface all
port-statistics

X X X X X X X

show port-access role
local

X X X X X X X

show port-access role
radius

X X X X X X X

show port-access port-
security violation client-
limit-exceeded interface
all

X X X X X X X

show power-over-
ethernet

X X X X X

show radius dyn-
authorization

X X X X X X X

show secure mode X X X X X X X X X X X X

show ubt brief X X X X

show ubt information X X X X

show vsf detail X X

show vsf link detail X X

show vsf link error-detail X X

show vsf topology X X

show vsf X X

show vsx ip igmp X X X X X X X

show vsx ip route X X X X X X X



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 107

Commands
Available Per
Platform

4
1
0
0
i

6
0
0
0

6
1
0
0

6
2
0
0

6
3
0
0

6
4
0
0

8
3
2
0

8
3
2
5

8
3
6
0

8
4
0
0

9
3
0
0

1
0
0
0
0

show vsx ipv6 route X X X X X X X

show vsx mac-address-
table

X X X X X X X

show vsx status X X X X X X X



Chapter 9

VSX peer switches and REST API access

VSX peer switches and REST API access
If Virtual Switching Extension (VSX) is enabled, you can access the REST API of a peer switch without
having to separately log into or manage a session cookie from that peer switch.

To access a peer REST API from your connected switch, insert /vsx-peer in the URI path after the server
URL and before the REST API and version identifier.

For example:
https://192.0.2.5/vsx-peer/rest/v10.xx/...

The following uses of /vsx-peer in the URI path are not supported:

n You cannot specify the login resource. Requests to /vsx-peer/rest/v10.04/login are not required
because logging in to one device automatically gives you access to the peer device.

n You cannot access the Web UI of a VSX peer switch. Setting the browser address to https://<connected_
switch_ip>/vsx-peer is not supported.

n You cannot specify a VSX peer switch in the URIs in topic subscription messages in the real-time notifications
framework. However, you can access the real-time notifications framework on the VSX peer switch by setting
the connection address to the following:

wss://<connected_switch_ip>/vsx-peer/rest/v10.xx/notification

Please note the following points when using REST API with VSX.

n VSX must be enabled on both switches, and the interswitch link (ISL) must be up.
n REST API access must be enabled on the switch to which you are connected.
n For write access, the REST API access mode must be set to read-write on the switch to which you are

connected.
n You must be logged in to the switch to which you are connected. For example, if you are connected to

the primary VSX switch, you must be logged in to the primary switch.
n When configuration synchronization is enabled, supported configuration changes on the primary VSX

switch are replicated on the secondary VSX switch. Changing the configuration of a secondary VSX
switch might cause the configurations to be out of synchronization.

n Audit messages are logged on the peer switch, with the user information from the switch to which the
user is connected.

Examples of curl commands
n Getting the VSX status of the secondary VSX switch while connected to the primary VSX switch at IP

address 192.0.2.5:

AOS-CX 10.13 REST API Guide 108



VSX peer switches and REST API access | 109

$ curl --noproxy "192.0.2.5" -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v10.09/system/vsx?attributes=oper_status"

n Getting the VSX status of the primary VSX switch while connected to the secondary VSX switch at IP
address 192.0.2.6:

$ curl --noproxy "192.0.2.6" -k GET \
-b /tmp/secondary_auth_cookie \
"https://192.0.2.6/vsx-peer/rest/v10.09/system/vsx?attributes=oper_status"

n Getting the names and IP addresses of interfaces on secondary VSX switch while connected to the
primary VSX switch at IP address 192.0.2.5:

$ curl --noproxy "192.0.2.5" -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-
peer/rest/v10.09/system/interfaces?depth=2&attributes=name,ipv4_address"

For more information about VSX, see the Virtual Switching Extension (VSX) Guide.

Example: Interacting with a VSX peer switch
In the following examples, Virtual Switching Extension (VSX) is enabled, the primary VSX switch IP
address is 192.0.2.5, and the secondary VSX switch IP address is 192.0.2.6.

Getting the list of all VLANS on the connected switch at IP address 192.0.2.5:

n Example method and URI:
GET "https://192.0.2.5/rest/v10.xx/system/vlans"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v10.09/system/vlans"

Getting the list of all VLANs on the peer VSX switch:

n Example method and URI:
GET "https://192.0.2.5/vsx-peer/rest/v10.xx/system/vlans

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v10.09/system/vlans"

Getting the VSX status of the secondary VSX switch while connected to the primary VSX switch at IP
address 192.0.2.5:



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 110

n Example method and URI:
GET “https://192.0.2.5/vsx-peer/rest/v10.xx/system/vsx?attributes?oper_status"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v10.09/system/vsx?attributes?oper_status"

You can also get the VSX status of the primary VSX switch while connected to the secondary VSX switch.



Chapter 10

AOS-CX real-time notifications
subsystem

AOS-CX real-time notifications subsystem
The AOS-CX REST API, combined with built-in databases that provide configuration, state, statistical data,
and time-series data for the features and protocols running in the switch, provides a flexible means for
switch programmability. Each resource or collection of resources inside the switch is uniquely identified
by its URI.

Clients can use the REST API to request information about resources. However, this polling ability does
not address the specific use cases in which network management systems need to receive live data or
real-time events from the switch. There is a need to have a live notification subsystem that provides the
remote network management system with real-time information about any changes that occur in the
switch. Timely information about changes is important for troubleshooting and statistical data analyses,
as well as for the immediate reaction to real-time events.

The AOS-CX real-time notifications subsystem enables external clients to connect to the switch through
a secure WebSocket Protocol connection and to receive real-time notifications about the switch
resources, configuration changes, state changes, and statistical information of their interest.

The WebSocket Protocol was selected based on latency, throughput, resource utilization, network
overhead, and security requirements. The handshake part of the WebSocket protocol uses HTTPS, so
there is no need to open a new port on the switch side, and there is no need to provide a new
authentication mechanism. Multiple clients and connections are supported.

AOS-CX notification messages use JSON encoding. The JSON encoding was designed to align with REST
payloads, which enable clients to use combined REST and notification solutions.

The ability to subscribe to these push notifications about a variety of types of information about the
switch, combined with the structured nature of the JSON data reported by the switch database, enables
a form of network monitoring commonly called telemetry streaming.

Interested clients, known as subscribers, might include the following:

n Web clients such as the AOS-CX Web UI
n Network management systems
n Monitoring scripts

Secure WebSocket Protocol connections for notifications
You subscribe to and receive notifications from the switch through a secure WebSocket Protocol
(wss://) connection.

A secure WebSocket Protocol connection is a secure, persistent, and full-duplex connection between a
client and a server. Either the client or the server can send data in the form of messages at any time.

The handshake part of the WebSocket Protocol uses HTTPS, so there is no need to open a new port on
the switch side, and there is no need to provide a new authentication mechanism. When you connect to
a switch through a secure WebSocket Protocol connection, you pass the session cookie received from
logging in to the REST API. Secure WebSocket Protocol connections to switches running AOS-CX software
remain active until the connection is closed, even after the session cookie expires. Multiple clients and
connections are supported.

AOS-CX 10.13 REST API Guide 111



AOS-CX real-time notifications subsystem | 112

For more information about the WebSocket Protocol see RFC 6455: The WebSocket Protocol at:
https://tools.ietf.org/html/rfc6455

Notification topics as switch resource URIs
When you subscribe to notifications, you subscribe to notifications about specific topics. A topic is the
URI of a specific switch resource. That URI can contain a query string that specifies particular attributes
of that resource.

For example, specifying the following URI as a topic results in notifications being sent when the
administrative state or link state of any interface changes, but not when some other attribute of an
interface changes:
/rest/v10.09/system/interfaces?depth=2&attributes=admin_state,link_state

The AOS-CX REST API Reference lists all the switch resources. You can use the GET method of the
resource in the AOS-CX REST API Reference to determine the URI for that switch resource, including the
query string to specify an attribute or list of attributes.

Rules for topic URIs
A topic is the URI of a switch resource:

Not all switch resource URIs are supported as notification topics.

The Implementation Notes section of the GET method of the resource in the AOS-CX REST API
Reference indicates if the resource is not supported by the notifications subsystem.

n Wildcard characters (*) are supported. In this example, you can subscribe to all VLANS:

```dita/rest/v10.04/system/vlans/*
```

n Specifying a resource on a peer VSX switch, by including /vsx-peer in the URIs for topic subscription
messages, is not supported.

To specify a peer switch, include /vsx-peer in the URL of the WSS connection. For example, to get
notifications about VLANs on a peer, first open a connection to wss://192.0.2.5/vsx-

peer/rest/v10.xx/notification and then subscribe to /rest/v10.04/system/vlans as the topic
name.

You can specify a specific resource instance or a collection of resources. Examples of specific resource
instances:

n /rest/v10.xx/system/vrfs/default

n /rest/v10.xx/system/vlans/1

Examples of resource collections:

n /rest/v10.xx/system/vrfs/default/bgp_routers

n /rest/v10.xx/system/vlans

The depth query parameter is supported, with a maximum value of 2, only with resource collections. For
example:

n Correct: /rest/v10.xx/system/vlans?depth=1
n Incorrect: /rest/v10.xx/system/vlans?depth=3.

https://tools.ietf.org/html/rfc6455


AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 113

The attributes query parameter is supported. You can specify a comma-separated list of attribute
names in the query string for either resource collections or resource instances. If attributes are
specified, then the subscriber receives notification messages only when the value of one of the specified
attributes changes. For example:

The following URI specifies the administrative state and link state of all interfaces on the switch:

/rest/v10.xx/system/interfaces?attributes=admin_state,link_state

The following URI specifies the names of the VLANs:
/rest/v10.xx/system/vlans?depth=2&attributes=name

The names of the attributes must match the names as documented in the AOS-CX REST API Reference
for the GET method of the resource.

Notification security features
The notification feature uses secure WebSocket connections based on the TLS v1.2 protocol (Transport
Layer Security version 1.2), which is the same protocol used for the REST HTTPS connections.

The switch uses self-signed certificates. To avoid certificate verification errors, disable certificate
verification when establishing the connection.

AOS-CX real-time notifications subsystem reference summary
The following information is intended as a quick reference for experienced users. Values are not
configurable unless noted otherwise.

Connection protocol
WebSocket secure (wss://)

Port
443

Message format
JSON

Message types
The following are the supported message types:

n subscribe

n unsubscribe

n success

n error

n notification

Authorization
Session cookie from successful HTTPS login request

Notification resource URI
wss://<IP-ADDR>/rest/v10.xx/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v10.xx/notification



AOS-CX real-time notifications subsystem | 114

Session idle timeout
None

Session hard timeout
None

Subscription persistence
Subscriptions are active only while the WebSocket secure connection is open.

Configuration maximums

n Maximum number of subscribers per switch: 50
n Maximum number of topics in one subscription message: 2000

Enabling the notifications subsystem on a switch
The AOS-CX real-time notifications subsystem relies on the REST API, so the REST API must be enabled
on the switch and VRF from which you want to receive notifications.

HTTPS server must be enabled on the specified VRF. The VRF you specify determines from which
network the HTTPS server can be accessed. You can enable access on multiple VRFs, including user-
defined VRFs.

Establishing a secure WebSocket connection through a web
browser
Prerequisites

n Access to the switch REST API must be enabled. The REST API access mode can be either read-only or
read/write.

n The web browser you use must support the secure WebSocket Protocol.

Procedure

1. Open a web browser page and log in to the switch Web UI or the REST API.

The session cookie is managed by the browser and is shared among browser tabs.
2. From a different tab in the same browser, open the page that contains the WebSocket interface.

For example, many browsers have a plugin for secure WebSocket connections.
3. Connect to the switch at the following URL:

wss://<IP-ADDR>/rest/v10.xx/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v10.xx/notification

After the connection is established, you can use the interface to send subscribe or unsubscribe
messages and to view the responses and notification messages.

Establishing a secure WebSocket connection using a script



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 115

Access to the switch REST API must be enabled. The REST API access mode can be either read-only or
read/write.

n If you are using a script, you must include the actions to log in, get the session cookie, store the
session cookie, and pass the session cookie with the secure WebSocket connection request.

When you create the secure WebSocket connection, use the following URL:
wss://<IP-ADDR>/rest/v10.xx/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v10.xx/notification

n The exact methods to use to create connections and handle notification messages depend on the
scripting language and library module you choose.

Subscribing to topics
Prerequisites

n You must have a secure WebSocket connection to the switch.
n Access to the switch REST API must be enabled. The REST API access mode can be either read-only or

read/write.

Procedure
Using the WebSocket secure connection, send a subscribe message that contains the topics to which
you want to subscribe.

Some resource attributes—typically in the statistics category—are not populated until a client requests
the information.

For example:

{
"type": "subscribe",
"topics": [

{
"name": "/rest/v10.04/system/vrfs"

},
{

"name": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_reason"
}

]
}

If there is an error in the syntax of the subscribe message, an error message is sent back to the client
with the description of the error. For example, for the following incorrect subscribe message:

...
{"topics":[{"name":"/rest/v10.04/system/vrfssss"}],"type":"subscribe"}
...

The corresponding error message is sent:



AOS-CX real-time notifications subsystem | 116

{
"type":"error",
"message": "resource or attribute vrfssss not found",
"data": null

}

If the subscriber already has a subscription to the specified topic, the following error is returned:

{
"type":"error",
"message":"The topic or combination of topics have been already subscribed."

}

Example of a message returned by a successful subscription attempt:

{
"type": "success",
"data": [

{
"topicname": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_

reason",
"resources": [

{
"operation": "",
"uri": "/rest/v10.04/system/vlans/1",
"values": {

"admin": "up",
"oper_state_reason": "no_member_port"

}
}

]
},
{

"topicname": "/rest/v10.04/system/vrfs",
"resources": [

{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/default",
"values": {}

},
{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/mgmt",
"values": {}

}
]

}
],
"subscriber_name": "4bcf8uka90ki",

}

Unsubscribing from topics
Prerequisites



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 117

n You must have a secure WebSocket connection to the switch.
n The switch must have REST API access enabled. The REST API access mode can be either read-only or

read/write.

Procedure
Use the secure WebSocket connection to send an unsubscribe message that specifies the topic or topics
from which you no longer want notifications.

Use a comma to separate topics in a list of topics.

You must be connected as the same subscriber that subscribed to the topic. For example, you must be
using the same web browser session or be passing the same session cookie with the request.

For example, to unsubscribe notifications about the default VRF, send the following message through
the WebSocket secure connection:

{
"type": "unsubscribe",
"topics": [

{
"name": "/rest/v10.04/system/vrfs/default"

}
]

}
If the subscriber does not have a subscription to that topic, the following
message is returned:

{
"type": "error",
"message": "subscription /rest/v10.04/system/vrfs doesn't exist"
"data": null

}

The error can indicate that you have already unsubscribed, the connection was lost, or you attempted to
unsubscribe from a different subscriber.

If the request is successful, the following message is returned:

{
"type": "success",
"message": "Successfully unsubscribe."

}

Subscription throttling
Throttling is an optional parameter that can be passed in the subscription message to specify the
notification interval in seconds. Notifications are only sent if there are any changes during the specified
interval of time.

Showing a subscription for all VLANs with an interval of 5 seconds:

{
"type": "subscribe",
"interval": 5,
"topics": [

{



AOS-CX real-time notifications subsystem | 118

"name":"/rest/v10.04/system/vlans?depth=2"
}

]
}

With the throttling above, the system will send notifications for all VLANs every 5 seconds if there are
any changes to the VLANs.

In Figure 1, Subscription throttling notifications, the system sent a notification because a change was
made to the description and voice was enabled for one of the VLANs during the specified interval of
time.

Figure 1 Subscription throttling notifications

Subscription throttling can also be used to handle notifications for resource attributes that only provide
interval-based notifications, known as on-demand attributes.

Showing a subscription for an on-demand attributes with an interval of 10 seconds:

{
"type": "subscribe",
"interval": 10,
"topics": [

{
"name":"/rest/v10.04/system/interfaces/1%2F14?attributes=aclv4_out_
  statistics,policy_out_statistics"

}
]

}

In Figure 2, Subscription throttling notifications for on-demand attributes, the system sent a notification
for the on-demand attributes during the interval specified in the example above.

Figure 2 Subscription throttling notifications for on-demand attributes



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 119

Parts of a subscribe message
A subscribe message is the message sent when a subscriber requests a subscription to a topic on a
switch. The subscribe message is in JSON format.

Subscribe message example

{
"type": "subscribe",
"topics": [

{
"name": "/rest/v10.04/system/vrfs"

},
{

"name": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_reason"
}

]
}

Components of a subscribe message
type

Required. For a subscribe message, you must specify the following value: subscribe
topics

Required. The value is a comma-separated list of one or more topics in JSON key-value format. A
topic includes one component:
name

Required. The name of the topic, identified by the URI of the switch resource, including the
optional query string.



AOS-CX real-time notifications subsystem | 120

Parts of a subscription success message
When a subscription request is successful, a subscription success message is returned. The subscription
success message is in JSON format.

Example success message

{
"type": "success",
"data": [

{
"topicname": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_

reason",
"resources": [

{
"operation": "",
"uri": "/rest/v10.04/system/vlans/1",
"values": {

"admin": "up",
"oper_state_reason": "no_member_port"

}
}

]
},
{

"topicname": "/rest/v10.04/system/vrfs",
"resources": [

{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/default",
"values": {}

},
{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/mgmt",
"values": {}

}
]

}
],
"subscriber_name": "4bcf8uka90ki",

}

Components of subscription success message
type

Identifies the type of message. Success messages have the type: success
subscriber_name

Contains a unique identifier that represents the name of the subscriber.
data

Contains a comma-separated list of one or more topics in JSON format.

Components of a topic
In a subscription success message, each topic in the data contains the following components:
topicname



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 121

Contains the name of the topic, identified by the URI of the switch resource, including the optional
query string.

resources

Contains a comma-separated list of one or more resources in JSON format. When the URI of a topic is
a resource collection, a topic includes multiple resources. In the example message, the vrfs resource
includes two VRF instances:default and mgmt.
Each resource includes the following components:
operation

The value of operation is empty for success messages. This component is used for notification
messages only.

uri

Contains the URI of the resource instance within the resource collection. If the topicname is a
resource instance instead of a collection, urimatches the path portion of the URI in topicname

values

Contains the names and current values of the attributes that were specified in the query string of
topicname.

Parts of a notification message
A notification message is the message sent to the subscriber when there is a change to a switch
resource that is the topic of a subscription. The notification message is in JSON format.

The content of a notification message depends on the type of change that occurred.

Notification message examples
For the following examples, assume that the following subscribe message was used:

{
"type": "subscribe",
"topics": [

{
"name": "/rest/v10.04/system/vlans?depth=2&attributes=name"

}
]

}

The subscriber receives a notification when the name of any VLAN changes:

In the following example, VLAN7 has been added to the switch configuration:

{
"type": "notification",
"data": [

{
"topicname": "/rest/v10.04/system/vlans?depth=2&attributes=name",
"resources": [

{
"operation": "inserted",
"uri": "/rest/v10.04/system/vlans/VLAN7",
"values": {

"name": "VLAN7"
}

}



AOS-CX real-time notifications subsystem | 122

]
}

]
}

In the following example, VLAN7 has been deleted from the configuration:

{
"type": "notification",
"data": [

{
"topicname": "/rest/v10.04/system/vlans?depth=2&attributes=name",
"resources": [

{
"operation": "deleted",
"uri": "/rest/v10.04/system/vlans/VLAN7",
"values": {}

}
]

}
]

}

In the following example, the subscriber has subscribed to the following topic:
/rest/v10.xx/system/interfaces/1%2F1%2F2?attributes=name,admin_state

If either the name or the administrative state of interface 1/1/2 changes, a notification message is sent.
If attributes other than name or administrative state changes, no notification message is sent.

In the following example, the administrative state of the interface changed to up.

{
"type": "notification",
"data": [

{
"topicname":

"/rest/v10.04/system/interfaces/1%2F1%2F2?attributes=name,admin_state",
"resources": [

{
"operation": "modified",
"uri": "/rest/v10.04/system/interfaces/1%2F1%2F2",
"values": {

"admin_state": "up"
}

}
]

}
]

}

Components of a notification message

type

Identifies the type of message. Notification messages have the type: notification

data



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 123

Contains a comma-separated list of one or more topics in JSON format.

Components of a topic
In a notification message, each topic in the data contains the following components:

topicname

Contains the name of the topic, identified by the URI of the switch resource, including the optional
query string.

resources

Contains a comma-separated list of one or more resources in JSON format. When the URI of a topic is
a resource collection, a topic includes multiple resources.
Each resource includes the following components:
operation

For notification messages, operation is one of the following values:
inserted

The resource or resource attribute was added to the configuration of the switch.
deleted

The resource or resource attribute was deleted from the switch.
modified

The resource or resource attribute changed.

uri

Contains the URI of the resource instance within the resource collection. If the topicname is a
resource instance instead of a collection, urimatches the path portion of the URI in topicname.

values

The content of values depends on the operation:

n When the operation value is deleted, values is empty.
n When the operation value is inserted, values contains the current names and values of the

attributes specified in the query portion of the topicname. If no query string was included in
topicname, all attributes and values for that resource are included.

n When the operation value is modified, values contains the name and current value of the
attribute in the query string that changed value:
o If no query string was included in topicname, all attributes and values for that resource are

included.
o If multiple attributes are included in the query string of a topic and only some of those

attribute values changed, only the changed attributes are included.
o If an attribute that was not included in the query string changes, no notification message is

sent because that attribute is not part of the subscription.

Example: Browser-based WebSocket connection

About the example



AOS-CX real-time notifications subsystem | 124

The following example, websocket-client.html, uses HTML and Javascript to create a webpage that
you can use to establish a WSS connection and send and receive notification messages.

n Access to the switch REST API must be enabled on the VRF through which this browser will connect to
the switch.

n Before you can use the HTML page, you must log in to the switch Web UI or REST API from a separate
tab in the same web browser session. The browser shares the session cookie between tabs.

n When the browser page is open, in Server Location, substitute the switch IP address for
{IPAddress} in wss://{IPAddress}/rest/v10.xx/notification, then click Connect.

n Enter the subscription message in Request and click Send.
n Responses and notifications are shown in Response.

Example screen

Example HTML source
<!DOCTYPE html>
<html lang="en">
<head>

<title>Web Socket Client Example</title>
<script type="text/javascript">

window.onload = function () {
var conn;
var log = document.getElementById("log");
var msg = document.getElementById("msg");

function appendLog(item) {
var doScroll = log.scrollTop === log.scrollHeight - log.clientHeight;
log.appendChild(item);
if (doScroll) {

log.scrollTop = log.scrollHeight - log.clientHeight;
}

}

document.getElementById("connect").onclick = function () {
var server = document.getElementById("wsURL");
conn = new WebSocket(server.value);
if (window["WebSocket"]) {

if (conn) {
conn.onopen = function (evt) {

document.getElementById("disconnect").disabled = false
document.getElementById("sendMsg").disabled = false
document.getElementById("connect").disabled = true
document.getElementById("status").innerHTML = "Connection

opened"
}
conn.onclose = function (evt) {

document.getElementById("status").innerHTML = "Connection



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 125

closed"
document.getElementById("connect").disabled = false

};
conn.onmessage = function (evt) {

var messages = evt.data.split('\n');
for (var i = 0; i < messages.length; i++) {

var item = document.createElement("pre");
item.innerText = messages[i];
appendLog(item);

}
}

}
} else {

var item = document.createElement("pre");
item.innerHTML = "<b>Your browser does not support WebSockets.</b>";
appendLog(item);

}
};

document.getElementById("disconnect").onclick = function () {
conn.close()
document.getElementById("sendMsg").disabled = true
document.getElementById("connect").disabled = false
document.getElementById("disconnect").disabled = true
document.getElementById("status").innerHTML = "Connection closed"

};

document.getElementById("form").onsubmit = function () {
if (!conn) {

return false;
}
if (!msg.value) {

return false;
}
conn.send(msg.value);
var item = document.createElement("pre");
item.classList.add("subscribeMsg");
item.innerHTML = msg.value;
appendLog(item);
return false;

};
};

</script>
<style type="text/css">

html {
overflow: hidden;

}

body {
overflow: hidden;
padding: 0;
margin: 0;
width: 100%;
height: 100%;
background: gray;

}

#log {
background: white;
margin: 0;
padding: 0.5em 0.5em 0.5em 0.5em;
top: 1.5em;
left: 0.5em;
right: 0.5em;
bottom: 3em;



AOS-CX real-time notifications subsystem | 126

overflow: auto;
position: absolute;
height: 530px;

}

#form {
padding: 0 0.5em 0 0.5em;
margin: 0;
position: absolute;
bottom: 3em;
top: 5em;
left: 8px;
width: 100%;
overflow: hidden;

}

#serverLocation {
padding-top: 0.3em;

}

#requestSection {
height: 38px;

}

#responseMsgSection {
height: 570px;
position: relative;

}
</style>

</head>
<body>
<fieldset>

<legend>Server Location</legend>
<div>

<input type="button" value="Connect"/>
<input type="button" value="Disconnect" disabled/>
<input type="text" value="wss://{IPAddress}/rest/v10.04/notification" size="64">
<span></span>

</div>
</fieldset>
<fieldset>

<legend>Request</legend>
<form>

<input type="submit" value="Send" ; disabled/>
<input type="text" size="80"/>

</form>
</fieldset>
<fieldset>

<legend>Response</legend>
<div></div>

</fieldset>
</body>
</html>

Example: Getting information about current subscribers
To get information about the subscribers receiving notifications from a switch, you must use the REST
API.

Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 127

Prerequisites
You must be logged in to the switch REST API.

Procedure
To get the list of current subscribers, send a GET request to the notification_subscribers resource.

For example:
GET "https://192.0.2.5/rest/v10.xx/system/notification_subscribers"

The response body is a list of URIs. The identifier at the end of the URI string is the subscriber name.

For example:
[

"rest/v10.xx/system/notification_subscribers/z6901beisjgf",
"rest/v10.xx/system/notification_subscribers/18l9g87erb42"

]



Chapter 11

Troubleshooting

Troubleshooting

General troubleshooting tips

Connectivity
Connectivity is often the first issue you encounter. Ensure that you have enabled https-server on the VRF
you are trying to use.

n To connect to the REST API through the management (OOBM) port, REST API access must be enabled
on the management VRF.

n To connect to the REST API through a data port, REST API access must be enabled on the default VRF
or a user-created VRF that includes that data port.

Resources, attributes, and behaviors
Resources, attributes, and behaviors might differ between different versions of the switch software.

If you are getting errors when making requests to switches with different software versions, use the
AOS-CX REST API Reference on each switch to compare the URI paths and attributes for the resource.
You might need to alter your code to handle the different software versions.

Resources, attributes, and behaviors might differ between different versions of the REST API, and the
switch supports access through multiple versions of the REST API.

OSPF and BGP routing information updates frequently due to the nature of these resources. Best
practices is to avoid using the REST API to view information about these resources, as this will trigger a
large number of insert event notifications.

The REST API supports Aruba clients such as Central, NetEdit, the AOS-CX WebUI and Network Analytics Engine
(NAE), and Aruba Fabric Composer (AFC). Each of these clients makes use of REST through polling or
subscriptions, where different requests are made to show the updated data to the user. Although it is possible to
use one or more of these clients simultaneously, it is not recommended to have more than one of the clients
connected at the same time, this can will cause high CPU and memory usage.

GET, PUT, PATCH, POST, and DELETE methods
Most resources do not allow POST, PATCH, PUT, or DELETE methods and do not display those methods
in the AOS-CX REST API Reference unless the REST access mode is set to read-write.

The JSON model of a resource can vary by method used. The JSON data you receive from the GET
method is not the same as the JSON data you can or must provide with the POST or PUT methods:

n The GET method model contains all the attributes.
n The POST method model contains only the configuration attributes.
n The PATCH method updates values in an existing resource using only the desired values in the

request body.

AOS-CX 10.13 REST API Guide 128



Troubleshooting | 129

n The PUT method model contains only the mutable (changeable) configuration attributes. If you do
not provide all the mutable attributes in the request body of the PUT request, those attributes you
do not provide are set to their defaults, which could be empty. If you attempt to provide an
immutable attribute in a PUT request, an error is returned.

Use the GET method with the selector=configuration parameter to get only the configuration
attributes of a resource. Using the REST v10.04 API and later, you can also use the GET method with the
selector=writable parameter to get only the mutable configuration attributes of a resource.

You can use the AOS-CX REST API Reference to view information about the supported methods and
resource models. You can obtain additional platform-specific information through GET requests for
product information attributes or subsystem collections.

Aruba 8400 switch examples:
Example request:
GET "https://192.0.2.5/rest/v10.xx/system/subsystems"

Example response body:

{
"chassis,1": "/rest/v10.04/system/subsystems/chassis,1",
"line_card,1/3": "/rest/v10.04/system/subsystems/line_card,1%2F3",
"management_module,1/5": "/rest/v10.04/system/subsystems/management_

module,1%2F5"
}

Example request:
GET "https://192.0.2.5/rest/v10.xx/system/subsystems/chassis,1?attributes=product_info"

Example response body:

{
"product_info": {

"base_mac_address": "00:00:5E:00:53:00",
"device_version": "",
"instance": "1",
"number_of_macs": "512",
"part_number": "JL375A",
"product_description": "8400 8-slot Chassis/3xFan Trays/18xFans/Cable

Manager/X462 Bundle",
"product_name": "8400 Base Chassis/3xFT/18xFans/Cbl Mgr/X462 Bundle",
"serial_number": "SG00A2A00A",
"vendor": "Aruba"

}
}

Aruba 8320 switch examples:
Example request:
GET "https://192.0.2.5/rest/v10.xx/system/subsystems

Example response body:

{
"chassis,1": "/rest/v10.04/system/subsystems/chassis,1",
"line_card,1/1": "/rest/v10.04/system/subsystems/line_card,1%2F1 ",
"management_module,1/1": "/rest/v10.04/system/subsystems/management_



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 130

module,1%2F1"
}

Example request:
GET "https://192.0.2.5/rest/v10.xx/system/subsystems/chassis,1?attributes=product_info"

Example response body:

{
"product_info": {

"base_mac_address": "00:00:5E:00:53:01",
"device_version": "",
"instance": "1",
"number_of_macs": "74",
"part_number": "JL479A",
"product_description": "8320",
"product_name": "8320",
"serial_number": "TW00000000",
"vendor": "Aruba"

}
}

Hardware and other features
Different switches have different hardware and features. For example, the management module
resource ID is 1/1 for some switches, and 1/4 or 1/5 for other switches. To get information about the
switch model, use the GET method request with the URI for the platform_name system attribute.

For example:
GET "https://192.0.2.5/rest/v10.xx/system?attributes=platform_name"

The following is an example of a response body for an Aruba 8320 switch:

{
"platform_name": "8320"

}

The following is an example of a response body for an Aruba 8400 switch:

{
"platform_name": "8400X"

}

The words "port" and "interface" have meanings that are different from other network operating
systems. In the AOS-CX operating system:

n A port is the logical representation of a port.
n An interface is the hardware representation of a port.

You can enable debugging logs by using the debug command. The module name is rest. You can specify
all severity log levels or a minimum severity log level.

Example specifying all severity log levels:

switch# debug rest all



Troubleshooting | 131

Example specifying a minimum severity log level of error:

switch# debug rest all severity error

REST API response codes
The following table describes the different categories of the response codes.

Category Description

2xx Indicates that the request was accepted successfully.

4xx Returns the client-side error response with the error message.

5xx Returns the server-side error response with the error message.

The following are some response codes that you will see in the REST API.

Response code Status Description

200 OK Returned from GET and PUT operations, and non-
configuration API calls such as Login or Logout when
the request is successfully completed.

201 Created Returned from POST operations when a new resource
was successfully created.

204 No Content Returned from a PUT, POST PATCH,, or DELETE
operation when the request was successfully
processed and there is no content to return.

400 Bad request A problem with the request body, such as invalid
syntax, incorrectly formatted JSON, or data violating a
database constraint.

401 Unauthorized No active session for this client (the login API has not
been called) or too many sessions already created
from this client.

403 Forbidden The client session is valid, but does not have
permissions to access the requested resource.

404 Not found The resource does not exist, or the URI is incorrect for
the desired resource. Can also occur when accessing
the POST, PUT, PATCH, or DELETE API while the REST
access-mode is set to read-only.

500 Internal server error An unexpected error has occurred in processing the
request. View the logs on the device for details.



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 132

Response code Status Description

503 Service unavailable The device is receiving more requests than it can
process and is defensively rejecting requests to
protect resources.

Error "'admin' password is not set"
Symptom
An attempt to enable the HTTPS server using the https-server vrf command fails and the following
error is returned:
Failed to enable https-server on VRF <VRF>. 'admin' password is not set

Cause
The switch is shipped from the factory with a default user named admin without a password. The admin
user must set a valid password before HTTPS servers can be enabled.

Action
From the global configuration context, set a valid password for the admin user.

For example:
switch(config)# user admin password
Changing password for user admin
Enter password:************
Confirm password:************

Error "certificate verify failed" returned from curl
command
Symptom
A curl command to the switch URL fails with an error similar to the following:
SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

Cause
The curl program could not verify the switch server certificate against the CA certificate bundle that
comes with the curl installation, and you did not include the -k option in the curl command.

Action
Retry the command with the -k option included.

The switch HTTPS server uses self-signed certificates, which cannot be verified against a certificate
authority. The -k option disables curl certificate validation.

For example:

$ curl -k --noproxy "192.0.2.5" GET /tmp/auth_cookie \
"https://192.0.2.5/rest/v10.09/system/vlans"

HTTP 400 error "Invalid Operation"



Troubleshooting | 133

Symptom
A REST request returns response code 400 and the response body contains the following text string:
Invalid operation

Cause
The method used for this REST request is not supported for the specified resource. For example, the
Invalid operation response is returned if you attempt a DELETE request on the system resource.

Action
Use a method supported by the resource.

The AOS-CX REST API Reference displays the methods supported by each resource.

HTTP 400 error "Value is not configurable" or "Bad Request"
Symptom
A PUT, PATCH, or POST request returns response code 400 and the response body contains the
following text string:
Value <value> is not configurable

Cause
The JSON data in the POST, PATCH, or PUT request body contains non-configuration or immutable
attributes.

Action
Retry the request with the correct JSON resource model for that PUT, PATCH, or POST method.

To determine the configuration attributes of a resource, you can send a GET request with the
selector=configuration query parameter to the resource. Using the REST v10.04 API or later, you can
also use the GET method with the selector=writable parameter to get only the mutable configuration
attributes of the resource.

You can also use the AOS-CX REST API Reference to verify the JSON model of the PUT, PATCH, or POST
method of the resource.

The category an attribute belongs to can depend on whether that instance of the resource is owned by
the system or owned by a user. Configuration attributes can become status attributes in resource
instances that are owned by the system. Status attributes can not be modified by users.

In addition, some configuration attributes cannot be changed after a resource is created. These
immutable attributes cannot be included in a PUT request.

HTTP 401 error "Authorization Required"
Symptom
A REST request returns response code 401 and the response body contains the following text string:
Authorization Required

This response means that no valid session was found for the session token passed to the API.

Solution 1

Cause



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 134

The user attempting the request is not logged into the REST API for one of the following reasons:

n The user has not yet logged in.
n The user logged in but the session has expired.

Action
Log in to the REST API.

Solution 2

Cause
The user attempting the request is not logged in to the REST API because the user did not pass the
correct session cookie to the API. Typically, incorrect session cookies are not a cause when accessing the
REST API through a browser because the browser automatically handles the session cookie.

Action

1. Ensure that you save the session cookie returned from the login request.
2. Ensure that you pass the same cookie back to the switch with every REST API request, including

the request to log out.

HTTP 401 error "Login failed: session limit reached"
Symptom
A REST request or Web UI login attempt returns response code 401 and the response body contains the
following text string:
Login failed: session limit reached

Cause
A user attempted to log into the REST API or the Web UI, but that user already has the maximum
number of concurrent sessions running.

Action

1. Log out from one of the existing sessions.

Browsers share a single session cookie across multiple tabs or even windows. However, scripts
that POST to the login resource and later do not POST to the logout resource can easily create the
maximum number of concurrent sessions.

2. If the session cookie is lost and it is not possible to log out of the session, then wait for the
session idle time limit to expire.

When the session idle timeout expires, the session is terminated automatically.
3. If it is required to stop all HTTPS sessions on the switch instead of waiting for the session idle time

limit to expire, you can stop all HTTPS sessions using the https-server session close all

command.

This command stops and starts the hpe-restd service, so using this command affects all existing
REST sessions and Web UI sessions.

HTTP 403 error "Forbidden" on a write request



Troubleshooting | 135

Symptom
A POST, PUT, PATCH, or DELETE REST request returns response code 403 and the response body
contains the following text string:
Forbidden

Cause
The user attempting the request is not a member of the administrators group.

Action
Log in to the REST API with a user name that has administrator rights as part of the administrators
group.

The user must be a member of the predefined administrators group. POST requests to the login
resource fail for members of a user-defined local user group.

HTTP 403 error "Forbidden" on a GET request
Symptom
A GET REST request returns response code 403 and the response body contains the following text
string:
Forbidden

Cause
The user attempting the request is a member of the Auditors group, and the GET request specified a
switch resource that users with auditor rights are not permitted to access.

Action
Log in to the REST API with a user name that has operator or administrator rights.

HTTP 404 error "Page not found" when accessing the switch
URL
Symptom
The switch is operational and you are using the correct URL for the switch, but attempts to access the
REST API or Web UI result in an HTTP 404 "Page not found" error.

Cause
REST API access is not enabled on the VRF that corresponds to the access port you are using. For
example, you are attempting to access the REST API or Web UI from the management (OOBM) port, and
access is not enabled on the mgmt VRF.

Action
Use the https-server vrf command to enable REST API access on the specified VRF.

For example:

switch(config)# https-server vrf mgmt



AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 136

HTTP 404 error "Object not found" on object with "ports/"
or "interfaces/" in URI Path
Symptom
A request was made with an URI that contains rest/v10.xx/ and ports/ or interfaces/ in the URI
path, and the request returns response code 404 and the response body contains the following text
string:
Object not found

Cause
The resource does not exist in the system. The URI in the request is incorrect.

The ports collection does not exist in the REST v10.04 or later API schema.

Action
Change the request to a request that is valid for the REST v10.04 or later API.

HTTP 404 error "Object not found" returned from a switch
that supports multiple REST API versions (10.04 and later)
Symptom
A switch that supports multiple REST API versions returns response code 404 and the response body
contains the following text string:
Object not found

Cause
The resource does not exist in the system. The URI in the request is incorrect for the version of the REST
API specified in the request.

Action
Verify the URI of the resource and retry the request.

HTTP 404 error "Object not found" when using a write
method
Symptom
A PUT or DELETE request returns response code 404 and the response body contains the following text
string:
Object not found

Cause
The resource does not exist in the system. The URI in the request is incorrect or the resource has not
been added to the configuration.

Action
Verify the URI of the resource you are attempting to change or delete and retry the request.



Troubleshooting | 137

HTTP 404 error "Page not found" when using a write
method
Symptom
Using the GET method is successful, but attempting a POST, PUT, or DELETE method results in an HTTP
404 "Page not found" error.

Cause
The REST API access mode is set to read-only.

Action
Set the REST API access mode to read-write.

switch(config)# https-server rest access-mode read-write

Enabling the read-write mode on the REST API allows POST, PUT, and DELETE operations to be called on
all configurable elements in the switch database.

Logout Fails
Symptom
An attempt to log out of the REST API from a script or curl command fails.

Cause
The session cookie was not supplied or does not contain the correct session token.

Action

1. Repeat the command and send the correct session cookie or modify the script to send the correct
session cookie.

2. If the session cookie has been lost and it is not possible to log out of the session, wait for the
session idle time limit to expire.

When the session idle timeout expires, the session is terminated automatically.



Chapter 12

Support and Other Resources

Support and Other Resources

Accessing Aruba Support

Aruba Support Services https://www.arubanetworks.com/support-services/

AOS-CX Switch Software Documentation
Portal

https://www.arubanetworks.com/techdocs/AOS-CX/help_
portal/Content/home.htm

Aruba Support Portal https://asp.arubanetworks.com/

North America telephone 1-800-943-4526 (US & Canada Toll-Free Number)

+1-408-754-1200 (Primary - Toll Number)

+1-650-385-6582 (Backup - Toll Number - Use only when all other
numbers are not working)

International telephone https://www.arubanetworks.com/support-services/contact-
support/

Be sure to collect the following information before contacting Support:

n Technical support registration number (if applicable)
n Product name, model or version, and serial number
n Operating system name and version
n Firmware version
n Error messages
n Product-specific reports and logs
n Add-on products or components
n Third-party products or components

Other useful sites
Other websites that can be used to find information:

Airheads social
forums and
Knowledge Base

https://community.arubanetworks.com/

AOS-CX Switch
Software
Documentation
Portal

https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm

Aruba Hardware
Documentation

https://www.arubanetworks.com/techdocs/hardware/DocumentationPortal/Content/home.
htm

AOS-CX 10.13 REST API Guide 138

https://www.arubanetworks.com/support-services/
https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm
https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm
https://asp.arubanetworks.com/
https://www.arubanetworks.com/support-services/contact-support/
https://www.arubanetworks.com/support-services/contact-support/
https://community.arubanetworks.com/
https://www.arubanetworks.com/techdocs/AOS-CX/help_portal/Content/home.htm
https://www.arubanetworks.com/techdocs/hardware/DocumentationPortal/Content/home.htm
https://www.arubanetworks.com/techdocs/hardware/DocumentationPortal/Content/home.htm


Support and Other Resources | 139

and Translations
Portal

Aruba software https://asp.arubanetworks.com/downloads

Software
licensing

https://lms.arubanetworks.com/

End-of-Life
information

https://www.arubanetworks.com/support-services/end-of-life/

Aruba Developer
Hub

https://developer.arubanetworks.com/

Accessing Updates
You can access updates from the Aruba Support Portal or the HPE My Networking Website.

Aruba Support Portal
https://asp.arubanetworks.com/downloads

If you are unable to find your product in the Aruba Support Portal, you may need to search My
Networking, where older networking products can be found:

My Networking
https://www.hpe.com/networking/support

To view and update your entitlements, and to link your contracts and warranties with your profile, go to
the Hewlett Packard Enterprise Support Center More Information on Access to Support Materials
page:

https://support.hpe.com/portal/site/hpsc/aae/home/

Access to some updates might require product entitlement when accessed through the Hewlett Packard
Enterprise Support Center. You must have an HP Passport set up with relevant entitlements.

Some software products provide a mechanism for accessing software updates through the product
interface. Review your product documentation to identify the recommended software update method.

To subscribe to eNewsletters and alerts:

https://asp.arubanetworks.com/notifications/subscriptions (requires an active Aruba Support Portal
(ASP) account to manage subscriptions). Security notices are viewable without an ASP account.

Warranty Information
To view warranty information for your product, go to https://www.arubanetworks.com/support-
services/product-warranties/.

Regulatory Information
To view the regulatory information for your product, view the Safety and Compliance Information for
Server, Storage, Power, Networking, and Rack Products, available at https://www.hpe.com/support/Safety-
Compliance-EnterpriseProducts

Additional regulatory information

https://asp.arubanetworks.com/downloads
https://lms.arubanetworks.com/
https://www.arubanetworks.com/support-services/end-of-life/
https://developer.arubanetworks.com/
https://asp.arubanetworks.com/downloads
https://www.hpe.com/networking/support
https://support.hpe.com/portal/site/hpsc/aae/home/
https://asp.arubanetworks.com/notifications/subscriptions
https://www.arubanetworks.com/support-services/product-warranties/
https://www.arubanetworks.com/support-services/product-warranties/
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts


AOS-CX 10.13 REST API Guide | (All AOS-CX Series Switches) 140

Aruba is committed to providing our customers with information about the chemical substances in our
products as needed to comply with legal requirements, environmental data (company programs,
product recycling, energy efficiency), and safety information and compliance data, (RoHS and WEEE). For
more information, see https://www.arubanetworks.com/company/about-us/environmental-citizenship/.

Documentation Feedback
Aruba is committed to providing documentation that meets your needs. To help us improve the
documentation, send any errors, suggestions, or comments to Documentation Feedback (docsfeedback-
switching@hpe.com). When submitting your feedback, include the document title, part number, edition,
and publication date located on the front cover of the document. For online help content, include the
product name, product version, help edition, and publication date located on the legal notices page.

https://www.arubanetworks.com/company/about-us/environmental-citizenship/
mailto:docsfeedback-switching@hpe.com
mailto:docsfeedback-switching@hpe.com

	Contents
	About this document
	Applicable products
	Latest version available online
	Command syntax notation conventions
	About the examples
	Identifying switch ports and interfaces
	Identifying modular switch components

	Introduction to the AOS-CX REST API
	REST API versions
	Compatibility

	REST API access modes
	Read-write access mode
	Read-only access mode

	REST API URI
	Parts of a URI
	URI path, including path parameters
	Query component


	Resources
	Resource collections and singletons
	Collections
	Subcollections
	Singletons

	Categories of resource attributes
	Configuration attributes
	Writable attributes
	Status attributes
	Statistics attributes
	Attribute categories might vary



	Enabling Access to the REST API
	Setting the admin password
	Showing the REST API access configuration
	Disabling access to the REST API
	HTTPS server commands
	https-server authentication certificate
	https-server authentication password
	https-server max-user-sessions
	https-server rest access-mode
	https-server rest firmware-site-distribution
	https-server session close all
	https-server session-timeout
	https-server vrf
	show https-server
	show https-server authentication


	Accessing the AOS-CX REST API
	Authenticating REST API sessions
	User groups and access authorization

	AOS-CX REST API Reference (UI)
	Accessing the REST API using the AOS-CX REST API Reference
	Logging in and logging out using the AOS-CX REST API Reference

	AOS-CX REST API Reference basics
	AOS-CX REST API Reference home page

	Write methods (POST, PUT, PATCH, and DELETE)
	Considerations when making configuration changes
	Considerations for ports and interfaces
	Hardware (system) interfaces
	LAG interfaces
	VLAN interfaces

	Write methods (POST, PUT) supported in read-only mode

	GET method usage and considerations
	GET method parameters
	Wildcard character support
	Attributes parameter
	Count parameter
	Depth parameter
	Filter parameter
	Selector parameter


	POST method usage and considerations
	PUT method usage and considerations
	PUT request body requirements
	PUT behavior
	Exceptions to the PUT strict replace behavior
	Best practice for building the PUT request body

	PATCH method usage and considerations
	DELETE method usage and considerations
	REST requests and accounting logs
	AOS-CX REST API reference summary
	Switch REST API access default
	Switch REST API default access mode
	Enabling access to the Web UI and REST API
	Setting the REST API access mode to read-write
	Showing the REST API access configuration
	AOS-CX REST API Reference URL:
	REST API versions and switch software versions
	Getting REST API version information from a switch
	Protocol
	Port
	Request and response body format
	Session idle timeout
	Session hard timeout
	Authentication
	HTTPS client sessions
	VSX peer switch access


	Using Curl Commands
	About the curl command examples
	Getting the REST API versions on the switch
	Accessing the REST API using curl
	Logging in using curl
	Passing the cookie back to the switch
	Logging Out Using Curl

	Examples
	Example: GET method
	Example: Getting and deleting certificates using REST APIs
	Getting a list of all certificates
	Getting a certificate
	Deleting a certificate

	Example: Generating a self-signed certificate using REST APIs
	Example: Getting and installing a signed leaf certificate using REST APIs
	Example: Associating a leaf certificate with a switch feature using REST APIs
	Example: Configuration management using REST APIs
	Downloading a configuration
	Downloading the startup configuration:
	Uploading a configuration
	Copying a configuration

	Example: Firmware upgrade using REST APIs
	Uploading a file as the secondary firmware image
	Booting the system using the secondary firmware image

	Example: Log operations using REST APIs
	Event logs
	Accounting (audit) logs

	Example: Ping operations using REST APIs
	Example: Traceroute operations using REST APIs
	Example: User management using REST APIs
	Creating a user
	Changing a password
	Deleting a user

	Example: Creating an ACL with an interface using REST APIs
	Example: Creating a VLAN and a VLAN interface using REST APIs
	Example: Enabling routing on an interface
	Example: PATCH Method
	Enabling a VLAN
	Enabling Central
	Changing the Source IP of a VRF
	Using GET and PATCH to Update the admin state of a VLAN
	Using PATCH to Update a Non-configurable attribute



	AnyCLI
	Commands available per platform
	CLI operations
	CLI commands operations
	Swagger
	Full URI
	CURL example
	Error codes
	Allowed commands
	Full example

	Secure Mode
	Commands available per platform

	VSX peer switches and REST API access
	Examples of curl commands
	Example: Interacting with a VSX peer switch

	AOS-CX real-time notifications subsystem
	Secure WebSocket Protocol connections for notifications
	Notification topics as switch resource URIs
	Rules for topic URIs
	Notification security features
	AOS-CX real-time notifications subsystem reference summary
	Connection protocol
	Port
	Message format
	Message types
	Authorization
	Notification resource URI
	Session idle timeout
	Session hard timeout
	Subscription persistence
	Configuration maximums


	Enabling the notifications subsystem on a switch
	Establishing a secure WebSocket connection through a web browser
	Establishing a secure WebSocket connection using a script
	Subscribing to topics
	Unsubscribing from topics
	Subscription throttling
	Parts of a subscribe message
	Subscribe message example
	Components of a subscribe message

	Parts of a subscription success message
	Example success message
	Components of subscription success message
	Components of a topic

	Parts of a notification message
	Notification message examples
	Components of a notification message
	Components of a topic

	Example: Browser-based WebSocket connection
	About the example
	Example screen
	Example HTML source

	Example: Getting information about current subscribers

	Troubleshooting
	General troubleshooting tips
	Connectivity
	Resources, attributes, and behaviors
	GET, PUT, PATCH, POST, and DELETE methods
	Hardware and other features

	REST API response codes
	Error 'admin' password is not set
	Error certificate verify failed returned from curl command
	HTTP 400 error Invalid Operation
	HTTP 400 error Value is not configurable or Bad Request
	HTTP 401 error Authorization Required
	Solution 1
	Solution 2

	HTTP 401 error Login failed: session limit reached
	HTTP 403 error Forbidden on a write request
	HTTP 403 error Forbidden on a GET request
	HTTP 404 error Page not found when accessing the switch URL
	HTTP 404 error Object not found on object with ports/ or interfaces/ in URI Path
	HTTP 404 error Object not found returned from a switch that supports multiple...
	HTTP 404 error Object not found when using a write method
	HTTP 404 error Page not found when using a write method
	Logout Fails

	Support and Other Resources
	Accessing Aruba Support
	Accessing Updates
	Aruba Support Portal
	My Networking

	Warranty Information
	Regulatory Information
	Documentation Feedback


