
Copyright © 2016-2023. Cloud Software Group, Inc. All Rights Reserved.

TIBCO Flogo® Enterprise
User Guide
Version 2.23.0 | November 2023

TIBCO Flogo® Enterprise User Guide

2 | Contents

Contents
Contents 2

Introduction 7
Concepts 7

Creating Your First REST API 9
Procedure 10

App Development 28
Creating and Managing a Flogo App Using the UI 28

Creating an App 28

Validating your App 33

Editing an App 34

Auto-Upgrade of Activities, Triggers, and Connections 34

Renaming an App 35

Editing the Version of an App 35

Using App Tags 36

Using Notes 39

Switching Between Display Views On the App Page 40

Deleting an App 42

Exporting and Importing an App 43

App File Persistence 52

Creating Flows and Triggers 55
Flows 55

Triggers 93

Synchronizing a Schema Between Trigger and Flow 94

Data Mappings 94
Data Mappings Interface 94

Mapping Data from the Data Mappings Interface 97

TIBCO Flogo® Enterprise User Guide

3 | Contents

Scopes in Data Mappings 100

Data Types 102

Reserved Keywords to be Avoided in Schemas 103

Mapping Different Types of Data 105

Mapping Data by Using if/else Conditions 136

Using Functions 140

Using Expressions 141

Supported Operators 143

Developing APIs 144
Using an OpenAPI Specification 144

Using GraphQL Schema 151

Using App Properties and Schemas 154
App Properties 154

App Schemas 173

Using Connectors 177
Creating Connections 178

Editing Connections 178

Deleting Connections 179

Using Extensions 179
Important Considerations 180

Creating Extensions 181

Uploading Extensions 188

Pulling Extensions from an Open Source Public Git Repository 192

Deleting Extensions or Extension Categories 194

Flow Tester 194
Testing Flows from the UI 195

Testing Flows from the CLI 211

Using the test command to test your flow from the CLI 212

Unit Testing 215
Creating and Running a Test Case 216

Creating and Running a Test Suite 222

Exporting and Importing a Unit Test 224

TIBCO Flogo® Enterprise User Guide

4 | Contents

Enabling On-premises Services in Unit Testing 225

Unit Testing for the CI/CD 225

Deployment and Configuration 228
Building an App Executable 228

Building the App 228

Environment Variables 232

App Configuration Management 236
Consul 236

AWS Systems Manager Parameter Store 242

AWS AppConfig 248

Environment Variables 253

Overriding Security Certificate Values 255

Encrypting Password Values 257

Container Deployments 257
Kubernetes 258

Amazon Elastic Container Service (ECS) and Fargate 265

Pivotal Cloud Foundry 267

Microsoft Azure Container Instances 272

Google Cloud Run 276

Red Hat OpenShift 279

Serverless Deployments 284
Developing for Lambda 284

Deploying a Flogo App to Microsoft Azure Functions 295

Deploying a Flogo App in Knative 301

Pushing Apps to TIBCO Cloud 306

Monitoring 308
About the TIBCO Flogo® Enterprise Monitoring App 308

Using the Flogo Enterprise Monitoring App 309

Running Flogo Enterprise Monitoring as a Standalone App 310

Running the TIBCO Flogo® Enterprise Monitoring App On Docker 310

TIBCO Flogo® Enterprise User Guide

5 | Contents

Running the Flogo Enterprise Monitoring Application On Kubernetes 313

Configuring the Flogo Enterprise Monitoring App 318

Registering a Flogo App with the Flogo Enterprise Monitoring App 320

About TIBCO Flogo® Flow State Manager 322
Using Flogo Flow State Manager 323

Configuring the PostgreSQL Database 323

Running Flogo Flow State Manager as a Standalone App 325

Running Flogo Flow State Manager on Docker 326

Running Flogo Flow State Manager on Kubernetes 327

Configuring Flogo Flow State Manager 328

Starting Flogo Enterprise Monitoring with Details of Flogo Flow State Manager 328

Starting the App Binary 329

Viewing Statistics by Using Flogo Enterprise Monitoring app 329
Apps Page 330

Metrics Page 331

Executions Page 335

App Metrics 338
Enabling App Metrics 340

Enabling statistics collection using environment variables 340

Logging App Metrics 341

Fields returned in the response 342

Prometheus 344

OpenTelemetry Collector 350

Distributed Tracing 353
Tracing Apps Using Jaeger 355

Tracing Apps by Using AWS X-Ray 357

Tracing Apps by Using OpenTelemetry Collector 360

Using APIs 368
Healthcheck API 368

Go Language Runtime Statistics and Profiling 369

CPU and Memory Profiling 371

TIBCO Flogo® Enterprise User Guide

6 | Contents

Monitoring and Managing Enterprise Apps in TIBCO Cloud Integration 372

Best Practices 374

Performance Tuning 379
Tuning Environment Variables 379

FLOGO_RUNNER_TYPE 380

FLOGO_LOG_LEVEL 385

GOGC 387

CPU and Memory Monitoring 389
Top Command 389

Docker Stats Command 390

Runtime Statistics and Profiling 390

Samples 391

TIBCO Documentation and Support Services 392

Legal and Third-Party Notices 394

TIBCO Flogo® Enterprise User Guide

7 | Introduction

Introduction
TIBCO Flogo® Enterprise is an open-core product based on Project Flogo™, an open-source
ecosystem for event-driven apps. Its ultra-light app engine offers you the flexibility to
deploy your Flogo apps in containers, as serverless functions, or as static binaries on IoT
edge devices. You can quickly implement microservices, serverless functions, event-driven
apps, integrations, and APIs.

Flogo apps are created in TIBCO Cloud™ Integration, which provides a wizard-driven web-
based tool to create integration apps without having to leave your browser. For more
information on creating and using Flogo apps, see TIBCO Cloud Integration documentation.

To migrate an existing app (created using release 2.14.0 or a prior release) from Flogo
Enterprise to TIBCO Cloud™ Integration, see TIBCO Flogo® Enterprise Transition Guide.

If you are entitled to TIBCO Flogo Enterprise and you would like to get access to TIBCO
Cloud Integration to design your TIBCO Flogo applications, you can send a Support
Request on https://supportapps.tibco.com/ by using this template to provide the required
Cloud contact details for us to provision Cloud access.

Concepts
This section describes the main concepts used in the Flogo Enterprise environment.

Apps

Flogo apps are developed as event-driven apps using triggers and actions and contain the
logic to process incoming events. A Flogo app consists of one or more triggers and one or
more flows.

Trigger

Triggers receive events from external sources such as Apache Kafka®, Salesforce, GraphQL.
Handlers residing in the triggers, dispatch events to flows. Flogo Enterprise provides a set
of out-of-the-box triggers. Also provides a range of connectors for receiving events from a
variety of external systems.

https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/introduction2.html
https://supportapps.tibco.com/
https://community.tibco.com/s/article/Request-access-to-TIBCO-Flogo-Enterprise-on-TIBCO-Cloud-Integration

TIBCO Flogo® Enterprise User Guide

8 | Introduction

Flow

The Flogo provides a set of actions for processing events in a manner suitable to your
implementation logic. The flow allows you to implement the business logic as a process.
You can visually design and test the flows using the UI. A flow consists of one or more
activities that perform a specific task. Activities are linked to facilitate the flow of data
between them and contain conditional logic for branching. Each flow is also connected to a
default error handler. A Flogo app can have one or more flows. A flow can be activated by
one or more triggers within the app.

Activity

Activities perform specific tasks within the flow. A flow typically contains multiple activities.

How Flogo Works

The trigger consists of one or more handlers that serve as the means of communication
between the trigger and the flow. When the trigger receives an event, it uses the respective
flow handlers to pass the data from the event to the flow in the form of flow input. The
business logic in the flow then can use the event data coming in through the flow input.
When the trigger expects a reply from the flow, the data from the flow is passed on to the
trigger in the form of flow output. A flow can contain one or more conditional branches.

Summary:

1. Create an app.

TIBCO Flogo® Enterprise User Guide

9 | Introduction

2. Create a flow in your app.

3. Add one or more activities to the flow and configure them.

4. Optionally, add a trigger to your flow. You can add one or more triggers to a flow as
and when you need them.

5. Build your app.

Creating Your First REST API
This tutorial walks you through the steps to build a simple app with a REST service in Flogo
Enterprise. It shows how to create a basic app that returns the booking details of a specific
customer based on a query sent to the app. In this tutorial, the query sent to the app
checks whether the passenger's family name is "Jones". The app then returns the booking
details.

For the sake of this tutorial, the sample data used are: A passenger whose family name is
"Jones" and travels by the "Business" class. All other customers travel by "Economy"
class.

Overall Structure of the App

This app contains:

l ReceiveHTTPMessage trigger: This trigger listens for an HTTP GET request containing
the family name of the passenger requesting flight booking details. After it receives a
request, it triggers the flow attached to the trigger.

l FlightBookings flow: This flow is attached to the ReceiveHTTPMessage trigger. This
flow handles the business logic of the app. In this flow, you must configure a
LogMessage activity to log a custom message when a request is received
successfully. The LogMessage activity has two success branches:

o The first branch accepts requests with any family name and uses a condition to
check if the family name in the request is "Jones". It runs a Return activity to
return the information of a flight booked in "Business" class for Jones.

o The second branch runs when the first branch runs as false (that is, the family
name is not "Jones"). It runs a Return1 activity to return the information of a
flight booked in "Economy" class if the family name is not "Jones".

TIBCO Flogo® Enterprise User Guide

10 | Introduction

Note: Each branch must have its Return activity as the last activity in the
branch.

Procedure
The high-level steps for creating and configuring the app in this tutorial are as follows:

1. Create a new app.

2. Create a JSON schema to reuse it across your app. The JSON schema describes the
format of the JSON data used in the tutorial. In this tutorial, we use a simple JSON
schema for the request that the REST service receives and the response that the
service sends back. You can specify the JSON schema directly or specify JSON data,
which is converted to JSON schema automatically.

3. Create a flow and add a REST trigger (Receive HTTP Message).

4. Map trigger output to flow input. This is the bridge between the trigger and the flow
where the trigger passes on the request data to the flow input.

5. Map flow output to trigger reply. This is the bridge between the flow output and the
response that the trigger sends back to the HTTP request it received. After the flow
has finished running, the output of the flow execution is passed back to the trigger
by the Return activity. Hence, we map the flow output to the trigger reply. This
mapping is done in the trigger configuration.

6. Add a LogMessage Activity to the flow and configure a message that the activity must
log in to the logs for the app as soon as it receives a request.

7. Add the first branch to check whether the passenger’s last name is Jones to return
the information of a flight booked in "Business" class for Jones.

8. Add a second branch to process any other passengers and return the information of
a flight booked in "Economy" class if the family name is not Jones.

9. Validate the app to make sure that there are no errors or warnings in any flows or
activities.

10. Build the app.

11. Test the app.

#GUID-A2E569AC-748D-4B7E-8C1A-5003D6CC0E02.html

TIBCO Flogo® Enterprise User Guide

11 | Introduction

Step 1: Create an app

To create a Flogo app:

1. Click Apps.

2. Click Create/Import. The What do you want to build? dialog opens.

3. To create a Flogo app:

l Under Quickstart > All app types;Apps, click Create a Flogo app.

l In the block that displays below your selection, click Create Flogo app.

A Flogo app is created with the default name in the New_Flogo_App_<sequential_
app_number> format.

4. Click the default app name to make it editable. Change the app name to FlightApp
and click anywhere outside the name to save the changes made to the name.

Step 2: Create a JSON schema

1. Copy the following JSON sample to use in your app:

{
"Class" : "string",
"Cost" : 0,
"DepartureDate" : "2017-05-27",
"DeparturePoint" : "string",
"Destination" : "string",
"FirstName" : "string",
"Id" : 0,
"LastName" : "string"

TIBCO Flogo® Enterprise User Guide

12 | Introduction

}

Note: Ensure that you use straight quotes when entering the schema
elements and values.

2. On the Apps page, in the Flows section, click Schemas.

3. In the Schemas dialog that opens, click Schema to add a JSON schema.

4. Name your schema as FlightResponse and paste the copied schema into the text
editor. Alternatively, if you enter JSON data in the editor, the JSON data is
automatically converted to JSON schema.

5. Click Save.

Step 3: Create a flow and add a REST trigger

Every app must have at least one flow and, in most cases, a trigger that initiates the flow.
Create a flow with the REST trigger. The ReceiveHTTPMessage REST trigger listens for an
incoming REST request that contains the details of a passenger who wants to book a flight.
Specify the fields for the request in the REST trigger in JSON schema format.

TIBCO Flogo® Enterprise User Guide

13 | Introduction

To create a flow:

1. On the Flows page, click Create.

The Add triggers and flows dialog is displayed. The Flow option is selected by
default.

2. In the Flow details section, provide the following details and click Create:
Name: FlightBookings.
Description: Optional description of the flow.

3. On the FlightBookings flow page, click the Triggers icon. The trigger palette opens.

4. From the Triggers palette, drag the Receive HTTP Message trigger to the Triggers
area on the left. The Configure trigger: ReceiveHTTPMessage dialog opens.

TIBCO Flogo® Enterprise User Guide

14 | Introduction

a. Select GET as the Method.

b. Enter /flightbookings in the Resource path box.

c. Enable the Use App Level Schema toggle next to Response Schema to open
the Schemas dialog and select the FlightResponse schema you defined earlier.

The schema you select automatically appears in the Response Schema box.

d. Click Continue.

5. Next, select Copy Schema when prompted.

The schema that you entered when creating the trigger is automatically copied to the
Flow Inputs & Outputs tab to match the input and output of the trigger.

A new flow is created and attached to a REST trigger.

Your flow must look similar to the following image:

TIBCO Flogo® Enterprise User Guide

15 | Introduction

6. Lastly, close the Flow Inputs & Outputs tab.

Step 4: Map trigger output to flow input

When REST trigger receives a request from a passenger (a REST request), the data from the
request is produced by the ReceiveHTTPMessage REST trigger. For the request to be
processed, this output must be used by the flow in the form of flow input. Hence, you must
map the trigger output to the flow input.

To do this:

1. Click the REST Trigger icon to open its configuration dialog.

In the Configuration dialog, multiple tabs are displayed in a column on the left.
Trigger Settings is selected by default.

2. Click Output Settings to add the query parameter.

3. Click Add row to add a query parameter.

4. In the new row that appears in the Query Parameters table, enter the value of
ParameterName as lastname and click Save in the same row (in the Actions
column).

5. To start the mapping, click the Map to Flow Inputs tab and configure the mapping
of the trigger output. On the Map to Flow Inputs tab, the Available data and Flow
inputs panes are displayed. Flow inputs is the list of flow inputs that can be mapped
to the trigger outputs in the Available data pane. Only headers are displayed in the
flow inputs. The new query parameter is not visible yet.

6. Save the trigger configuration and click on Sync to display the new values. Now,
queryParams must appear in the Flow inputs column.

TIBCO Flogo® Enterprise User Guide

16 | Introduction

7. In the Flow inputs column, click headers.

The headers text editor on the right of Flow inputs appears empty to begin with.

8. To map the trigger output headers to the flow input header:

a. Expand $trigger to see all the trigger outputs available. This displays the
headers and body.

b. Drag headers from the Available data pane to headers in the Flow inputs
pane. Alternatively, click headers from the Flow inputs pane, drag headers
from the Available data pane into the text editor.
The text editor must now display $trigger.headers and a connection line
appears between the two panes. This indicates that you have successfully
mapped the trigger output headers to the flow input header. The numbers at
the end of the connection line indicate the total number of mappings for the
selected element.

TIBCO Flogo® Enterprise User Guide

17 | Introduction

9. To map the flow input, in the Flow inputs column, click queryParams. The data
mapper view is the same as the one while mapping headers. The queryParams text
editor appears empty to begin with. Drag queryParams from the Available data
pane and drop it on queryParams in the Flow inputs pane. The text editor must
now display $trigger.queryParams. This indicates that you have successfully
mapped the trigger output queryParams to the flow input queryParams.

10. To save your progress, Click Save.

This completes the mapping of flow inputs.

Step 5: Map the flow output to trigger reply

When the execution of the flow is completed, the output must be sent back to the trigger
for the trigger to send a reply to the REST request initiator. Hence, the flow output data
must be mapped to the trigger reply, which then returns the result of the flow execution to
the REST request initiator.

To map the flow output to the trigger reply:

1. In the left pane, click the Map from Flow Outputs tab to configure the mapping of
the trigger reply. The Available data and Trigger reply panes are displayed. You can
map the following trigger replies to the flow outputs - code and data.

2. In the Map from Flow Outputs section:

a. The Available data pane displays the data available for the mapping. $flow

TIBCO Flogo® Enterprise User Guide

18 | Introduction

appears in this pane. To see all the flow outputs available for the mapping,
expand $flow. This displays code and data.

b. Drag code from Available data and drop it on code in the Trigger reply pane.
$flow.code appears in the code text editor. You have successfully mapped the
code in Trigger reply to the code in Available data.

c. Repeat the same steps to map data from Trigger reply with data from
Available data.

Note: You can expand data in both the Trigger reply pane and the
Available data pane to see the tree structure of the data you have
defined in the schema.

3. Click Save and close the trigger dialog.

Step 6: Add a Log Message Activity to the flow

The flow uses the LogMessage activity to log an entry in the app logs when the trigger
receives a request from the passenger that reaches the trigger in the form of a REST
request.

To add a LogMessage activity:

1. On the FlightBookings flow page, click Activities, the activities palette opens.

2. In the Activities palette, under General tab, select Log Message and drag it to the
activities area.

TIBCO Flogo® Enterprise User Guide

19 | Introduction

3. Drag a connection line from StartActivity to the LogMessage activity that you have
created.

4. Now, to configure the LogMessage activity with a message to log when it receives an
incoming request from the ReceiveHTTPMessage trigger:

a. Click the LogMessage activity to open the configurations dialog.

b. Click the Input tab. The Available data and Activity inputs columns are
displayed on the right side of the LogMessage activity tabs.

c. Click the message to open the mapper to the right. Configure a message to be
logged by the LogMessage activity when the input from the request that the
trigger received is passed on to and received by the flow.

d. To configure the message, click Functions, and expand the string. Click concat
(str, str2) to add the function to the message box.

TIBCO Flogo® Enterprise User Guide

20 | Introduction

e. Select str in the box and replace it by entering "Request received for: "
(include the quotes too): string.concat(Request received for: ", str2).

5. Replace str2 with the family name of the passenger who booked the flight.
(The family name of the passenger is passed on from the trigger to the flow. We had
mapped this trigger output to flow input previously. Hence it is now available for
mapping under $flow in Available data.)

a. In the Available data pane, expand $flow and expand queryParams.

b. Drag lastname and drop it in place of str2.

c. Click Save.

6. Close the LogMessage dialog.

Your flow must now look like this:

Step 7: Add the first Return Activity branch

To add a Return activity and the branch to configure its condition to look for the family
name "Jones":

1. From the Activities palette, drag Return activity available under Default category to
the activity area.

2. Now, to configure a connection line between a LogMessage activity to the Return
activity. Configure the branch with a condition to read the family name of the

TIBCO Flogo® Enterprise User Guide

21 | Introduction

passenger.

3. Drag a highlighted arrow from the LogMessage activity to the Return activity.

4. Hover over and click the branch label on the connection line you just created. The
configuration window for branch condition opens.

5. In the Branch Mapping Settings dialog that opens, select the Success with
condition branch condition.

a. Click Functions. Select the string>>contains(str1, str2). The selected function
is added to the condition text editor.

b. Configure str1 in the expression to take the value of the family name that the
user enters. In the Available data, expand $flow > queryParams. Drag
lastname to str1. This family name is the name entered by the user in the
search query.

c. Replace str2 in the condition by manually typing "Jones".

d. Click Save. This branch runs when the name entered as a query parameter is
Jones.

6. Now, Configure the Return activity for the branch to produce the flow results if this
branch runs (when the passenger's family name is anything but Jones):

a. Click the return activity to open the configuration dialog.

b. Click code under Flow outputs to open the mapper and type 200 in the code
box, which is the HTTP success code.

TIBCO Flogo® Enterprise User Guide

22 | Introduction

c. Expand the next flow output data. All the different elements under data that
are returned by this activity are displayed. Assign a value to each field under
data.

d. Start by clicking Class under data and type "Business" as Jones is traveling by
"Business" class.

e. Click Cost to type a number of your choice. You can also use a function to
randomize the value. To do so, in the Functions section, expand the number
category and click random(). Enter 5000 as an input parameter to the random
() function.

f. Click DepartureDate to enter the departure date in any format of your choice.
Use quotation marks as the date needs to be specified as a string. For example,
“01/01/21” or "January 1, 2021" are valid values.

g. Click DeparturePoint to enter the departure airport name of your choice. Use
quotation marks as the departure point needs to be specified as a string. For
example, “LAX” or “LHR” are valid values.

h. Click Destination to enter a string for this field. For example, "Paris" or “JFK”
are valid values.

i. Click FirstName to enter the first name associated with the family name Jones.
For example, "Brian" or "Paul" are valid values.

j. Click Id to enter a number of your choice. You can also use a function to
randomize the value. To do so, in the Functions section, expand the number
category and click random(). Enter 999999 as an input parameter to the
random() function.

k. Click LastName to map this field to the query parameter lastname. Before
doing so, we can use a string function to capitalize the family name that is
returned by our app. To do so, under Functions, expand the string and click
toTitleCase(str). Once string.toTitleCase(str) is added to your box, select str
to replace it with the query parameter. Expand $flow and then queryParams
under Available data. Drag lastname and drop it in place of str. The text
editor must look like this:

TIBCO Flogo® Enterprise User Guide

23 | Introduction

l. Click Save and then close the Return Activity Configuration dialog.

Your flow must look like this:

Step 8: Add a second Return Activity branch

The second branch that you add from the LogMessage activity runs when the success
condition of the first branch is not matched. If the passenger's family name is not "Jones",
the passenger's seat is in "Economy" class.

To add a second branch from the LogMessage activity:

1. Duplicate the Return activity from the first branch instead of manually adding
another Return activity. You can copy the activity by clicking . The copied activity

must appear next to your original Return activity:

2. Click the CopyOfReturn activity to configure the response this branch return.

3. First, to create a connection between the LogMessage activity and the Return1
activity, hover over to the LogMessage activity, you see that an arrow highlighted.
Drag the arrow to the Return activity.

4. Select the Success with no matching condition branch condition. If the conditions
of all the other Success with condition branches are not true, this branch is run.
This means, if the family name entered as a query parameter is not Jones, this
second branch is run.

TIBCO Flogo® Enterprise User Guide

24 | Introduction

5. Now, in the configuration window click the name of the activity to make it editable
and rename the activity.

6. In the Flow outputs section, expand data, select Class, and type "Economy” as this
branch must return "Economy" class bookings.

7. Click Save and close the dialog.

Your flow must look like this:

Step 9: Validate the app

Your app is now ready. Before you push the app to the Cloud, validate all the flows for any
errors or warnings. To do so, click Validate. Flogo validates each flow and activity within
the flow. For any errors or warnings, you see the respective icons next to the flow name or
activity tab, which contains the error or warning.

On successful validation, you get the following message:

TIBCO Flogo® Enterprise User Guide

25 | Introduction

Step 10: Build the App

Your app is now ready to be built. You can build a Flogo app using:

l As an executable file.

1. Click the left arrow next to the flow name to open the FlightApp page.

2. Click Build.

3. Select your target platform from the Build drop-down list. Select Windows/amd64
on Windows, Darwin/amd64 on Macintosh or Linux/amd64, or Linux/86 on Linux
from the list.

You see a build log with the progress of the build command. When the build
completes, you see an executable file called FlightApp-darwin_<processor> in your
/Downloads directory.

Step 11: Test the app

Now that the app has been built successfully, you run the app. Once it runs successfully,
you can test your API in a REST client.

On Macintosh and Linux platforms:

To test the app:

1. Open a terminal and change the directory to the location of FlightApp-darwin_
amd64, FlightApp-linux_amd64, or FlightApp-linux_86 file depending on your
platform.

2. Run the following commands:

l chmod +x <FlightApp-darwin_amd64>

l ./FlightApp-darwin_amd64

TIBCO Flogo® Enterprise User Guide

26 | Introduction

Note: In the commands, use the file name specific to your platform -
FlightApp-linux_amd64 or FlightApp-linux_86 in the case of Linux.

3. Click Allow in the following dialog:

The following messages are displayed in the console:

4. Make a note of the port number 9999 and path /flightbookings in the logs.

5. You can test your API in a REST client such as Postman by entering the port number
9999, path /flightbookings, and query parameter lastname. For example,
http://localhost:9999/flightbookings?lastname=jones.

TIBCO Flogo® Enterprise User Guide

27 | Introduction

In the above example, note that since the query parameter sent has the family name
as "Jones", the Class in the response has been automatically set to "Business"
class.

6. Go back to your terminal. You must see the logs you configured with the Log activity.

TIBCO Flogo® Enterprise User Guide

28 | App Development

App Development
Flogo Enterprise offers a wizard-driven approach to app development. You can create apps
in Flogo Enterprise using only a browser. It is powered by Project Flogo™, a lightweight
integration engine.

For more information about Project Flogo™, go to http://www.flogo.io/.

Creating and Managing a Flogo App Using the
UI
This section describes how to create and manage Flogo® apps.

Creating an App
You can create a Flogo® app from the Apps page.

Procedure
1. Log in to TIBCO Cloud™ Integration.

2. On the Apps page, click Create/Import.

The What do you want to build? dialog is displayed.

http://www.flogo.io/

TIBCO Flogo® Enterprise User Guide

29 | App Development

3. To create a Flogo app:

l Under Quickstart > All app types > Apps, click Create a Flogo app.

l On the left, select a category that identifies the type of integration you need.
On the right, click Create a Flogo app. In the block that displays below your
selection, click Create Flogo app.

The app is created and the App Details Page is displayed for the new app. By
default, the app is named in sequential order in the format New_Flogo_App_
<sequential_number>. For example, if you created three apps without renaming
them, then the first one has a default name of New_Flogo_App_1, the second one is
called New_Flogo_App_2 and, the third one is called New_Flogo_App_3. The version of
a newly created app is 1.0.0 and is displayed as v: 1.0.0 beside the name of the
app. You can edit the version of the app. For more information, refer to Editing the
Version of an App.

4. Edit the app name to a meaningful string. To do so, click anywhere within the app
name and edit it, then click anywhere outside the text box to persist your change.

TIBCO Flogo® Enterprise User Guide

30 | App Development

Note: The app name must not contain any spaces. It must start with a
letter or underscore. The app name can contain letters, digits, periods,
dashes, and underscores.

5. Click Create.

Result
The Add triggers and flows dialog is displayed. You can now create one or more flows for
the app. See the Creating a Flow topic and its subtopics for details on creating a flow.
When the app is created, the following files are generated in the <FLOGO_
HOME>/apps/<app>/ directory:

l flogo.json: contains the app itself.

l manifest.json: contains the manifest details such as the endpoints, memory
resource details. The manifest.json file is automatically updated whenever you
modify the app.

Creating an App from a Saved Specification
If you have an existing specification saved in either the TIBCO Cloud™ Integration - API
Modeler or on your local machine, you can use the specification to create a Flogo app.
Currently, Flogo Enterprise supports app creation using a Swagger Specification 2.0,
OpenAPI Specification 3.0, and GraphQL Schema.

The specification must exist before creating the Flogo app.

For more information on creating an app using a specification, see the following topics:

l Creating a New App Using an OpenAPI Specification

l Creating a New App Using GraphQL Schema

Also, see the appropriate topics under the Building APIs section for information on how to
create a Flogo app using the specification.

Creating a New App Using an OpenAPI Specification
You can create a Flogo app by uploading an API specification file or importing an existing
file stored in the API Modeler. You can simply drag the specification file to the UI or

TIBCO Flogo® Enterprise User Guide

31 | App Development

navigate to it.

Before you begin
For requirements and considerations, see Using an OpenAPI Specification. For details about
the OpenAPI specification, see OpenAPI Specification.

Procedure
1. Log in to TIBCO Cloud™ Integration.

2. On the Apps page, select Create/Import. The What do you want to build? dialog is
displayed.

3. In the block that displays below your selection, select one of the following options:

l Create a flow using an API specification that exists in the TIBCO Cloud™
Integration-API Modeler. To do this, on the API Specs tab, select the
specification that you want to use.

l Use an API specification saved locally on your computer by uploading it to Flogo
Enterprise. To do this, click the Upload file tab. Browse to the saved API
specification on your local machine or drag your saved API specification into the
dialog.

4. Click Import OpenAPI spec.

https://swagger.io/specification/

TIBCO Flogo® Enterprise User Guide

32 | App Development

The app is created and the App Details Page is displayed for the new app. Your app is
running but has zero instances. To start and scale your app, see Starting, Stopping, and
Scaling apps.

Note: While creating an app with a REST Trigger - ReceiveHTTPMessage, If the
API specification changes, you can merge the changes into an existing app by
either uploading the updated specification file again. Or, click Refresh that
appears beside the Browse tab under API Spec in the REST trigger configuration
window.

To Refresh the API spec file, you must make the API spec editable by clicking
in the trigger configuration window.

For any flows that are already implemented, adding, or deleting any method in
TCAM does not impact the flows in the app.

If there are any changes made in the Spec file in TCAM UI while your trigger
configuration window is also open in Flogo, Refresh does not appear in the
trigger configuration window. Close and reopen the trigger configuration
window.

Creating a New App Using GraphQL Schema
You can create GraphQL triggers by dragging and dropping your GraphQL schema file into
the UI or by navigating to the file.

Before you begin
For requirements and considerations, see Using GraphQL Schema.

Procedure
1. Log in to TIBCO Cloud™ Integration.

2. On the Apps page, select Create/Import. The What do you want to build? dialog is
displayed.

TIBCO Flogo® Enterprise User Guide

33 | App Development

3. In the block that displays below your selection, browse to the GraphQL schema file or
drag the file to the dialog.

4. Click Import GraphQL file.

What to do next
The app is created and the App Details Page is displayed for the new app. Your app is
running but has zero instances.

Validating your App
After you have created the flows in your app, you must validate the app before you push it
to the cloud.
To validate your app, click Validate on the app details page. This validates each flow and
activity. If a flow or activity has an error, it displays an error or warning icon on the top-
right corner of the flow or activity.

Important Considerations
l When you open any flow for the first time or switch to a flow for the first time, the

TIBCO Flogo® Enterprise User Guide

34 | App Development

validation is auto-triggered for that instance only. After that, for any change in the
canvas, you must do a manual validation check by clicking Validate.

l If a flow is already a part of open tabs and no unsaved changes exist for that flow,
while switching to that flow from any other flow, validation is not triggered.

l After a flow's validation is completed, the validation details are cached and remains
present till you move out of the flow to the Flow List page or you refresh the page.

l If you add or change triggers and activities in a flow or any change in canvas, no
validation is triggered. To observe the latest validation, click Validate.

l If a new tab is opened, validation is triggered.

If a sub-flow is appended, validation is triggered when the subflow is clicked. If you
call a subflow already present on the Flows tab, validation is not triggered.

For more information, see Viewing Errors and Warnings.

Editing an App
You can edit your Flogo app from the Apps page. Click any app to edit flows, triggers, and
so on.

Warning: Editing the same app in two browser tabs is not supported.

When you modify the app, the flogo.json and manifest.json files in <FLOGO_
HOME>/apps/<app>/ are updated automatically. For example, if you add a flow and add a
trigger to it, the flogo.json and manifest.json files are updated automatically to include
the details of the flow and the trigger.

Auto-Upgrade of Activities, Triggers, and
Connections
Flogo supports the automatic upgrade of activities, triggers, and connections. Thus, you
can view the newly added fields without exporting and reimporting apps. In case of
updates to the activities and triggers, open the app to upgrade it automatically. To view
updates for connections, you must open the connection from the Connections page.

TIBCO Flogo® Enterprise User Guide

35 | App Development

Considerations for Auto-Upgrade
l Contributions from activities, triggers, and connections are auto-upgraded only if the

contribution version is also updated.

l Field values that you enter previously are auto-populated after the upgrade. The new
fields have default values, if the field is mandatory. You need not reconfigure the app.

l When you open the connection from the Connections page and cancel or close the
dialog, the newly added connection properties appear in the Properties dialog. The
same happens on the Environment Control tab of the app along with the existing
connection properties. If you save or log in to the connector (wherever applicable),
then only the connection properties used in the connection appear in the Properties
dialog and on the Environment Control tab of the app.

l New connection-related fields at the Activity or trigger level are populated only when
you save or log in to the existing connection.

Renaming an App
To rename an existing app:

Procedure
1. Open the app details page by clicking the app name.

2. Click anywhere in the app name and edit the name.

3. Click away from the app name to see your changes.

Editing the Version of an App
When you create an app, the default version of the app is 1.0.0. You can edit the version of
an app.

The format of a valid app version is:

TIBCO Flogo® Enterprise User Guide

36 | App Development

xxx.xxx.xxx

Note: Alphabets or special characters are not allowed in an app version.

Some examples of valid app versions are:

1.1.1
11.22.13
111.222.333

Procedure
1. Open the app details page.

Besides the name of the app, the version of the app is displayed as follows:
New_Flogo_App_<sequential_number> v: 1.0.0

For a newly created app, the version is 1.0.0.

2. To edit the version of the app, click the version number and specify the new version.

The new version of the app is reflected everywhere. For example, in runtime logs.

Using App Tags
You can use app tags to provide additional information and organize your apps. For
example, you use it to specify whether it is a REST app, or whether it is running in
Kubernetes. One or more tags can be added to an app. You can view and filter the tags
from the list of apps on the Apps page. The tags are preserved after exporting a Flogo app.

Adding Tags

To add or change tags in an app:

1. Click the Apps tab.

2. Click the app that you want to modify. The App Details page opens.

3. Click Tags or +Tags (if the app has no tags). Tags that have already been applied to

TIBCO Flogo® Enterprise User Guide

37 | App Development

this app are shown.

For example, the following screenshot shows that the app FE has no tags. Click
+Tags to view the tags in the organization.

l To add a tag, enter a name in the search control, then click Create New. Tags
are case-sensitive.

l If you enter text in the search box, all matching tags in your organization are
shown. This search is case-insensitive. Click a tag to add it.

l Click close (×) next to a tag to remove it from the app.

4. Click outside the dialog to save the changes.

The same set of tags is used across your organization. A tag is deleted from your
organization when it is removed from the last app using it.

Filtering Tags

To filter the apps list on the Apps page:

1. In the filters shown on the left side of the apps list, the Tags filter shows the total
number of tags and search control. Enter text in the search filter to show buttons for
each tag containing the text. This search is case-insensitive.

For example, the following screenshot shows the tags starting with the letters "Che".

TIBCO Flogo® Enterprise User Guide

38 | App Development

2. Click a tag to limit the list of displayed apps to only apps with that tag. Click a
selected tag to clear it. You can select multiple tags.

A tag icon is next to each name in the Name column on the Apps page. Hover over the

tag icon to see a list of all the tags in that app. The following screenshot displays the tags
for the app FE.

Notes
l When you export a Flogo app, its app tags are not retained in the Flogo JSON app

archive file.

l When you create tags, they are case-sensitive, but the tag filter search is case-

TIBCO Flogo® Enterprise User Guide

39 | App Development

insensitive. For example, you can create unique app tags for abc and ABC, but when
you search for an a in the search control, both are shown.

Role Requirements
l Admins can edit tags for any app in their organization.

l Users can only edit tags on apps they own.

l Read-only users cannot change tags on any app.

Using Notes
You can use Notes to keep a track of information about any flow, activity, or trigger. It
helps you in keeping updates and important references, especially when the flow is very
large and complex. This feature is available in the Error Handler tab also.

Understanding Notes with an Example

Let us take an example of a Flogo app that invokes a REST service. You use the
ReceiveHTTPMessage Trigger and InvokeRESTService, LogMessage and Return Activities
to create the app.

Here, you can add Notes in the following manner:

1. Flow Note -
This note gives information about the flow.
In the above case, the Flow Note can be - "This app invokes a Rest service and
generates a log message that shows the status of the invoked Rest service".

2. Trigger Note -
This note is used to add information about a respective Trigger.

TIBCO Flogo® Enterprise User Guide

40 | App Development

For the above example, add the Trigger Note that says - "This trigger listens to
incoming REST requests."

3. Activity Note -
This Note displays information about a respective Activity.
For the above example, the note for InvokeRESTService Activity can be - "This
Activity invokes an external service".

4. To view all the Notes, click the icon on the right-hand sidebar.

Note:
l Use the icon on the Activities and Triggers to add the respective Notes.

l Use the icon next to the Error Handler tab to add Flow notes.

l In all cases,
- Notes are not added,

- Notes are added.

l The Save option on any note is enabled only after some content is added
in it.

l If you are a Read-Only user, you cannot add, delete, or edit a note.

Switching Between Display Views On the App Page
On clicking an app name on the Apps page, the app details page opens. The flows in the
app are listed on the app details page. You have the option to view this page in the Trigger
View or Flow View. By default, it opens in the Trigger View. Click Trigger View dropdown
and select Flow View from the menu to switch to the flow view. When you are in the flow

TIBCO Flogo® Enterprise User Guide

41 | App Development

view, click Flow View and select Trigger View from the dropdown menu to go back to the
trigger view.

Trigger View

In this view, the flows are displayed attached to one or more triggers that they use. If a
flow is attached to multiple triggers, it is attached to each trigger separately. You can see a
single flow multiple times on the page but attached to different triggers. Flow that is not
attached to any triggers display No trigger in place of the trigger name.

The following image shows the Trigger View:

In the image above, MyRESTFlow2 is attached to both TimerTrigger and
ReceiveHTTPMessage trigger, hence it appears twice. The MyTimerFlow was created with
a new timer trigger hence it is not attached to the first timer trigger and the TimerTrigger
appears twice on the page.

Hovering on a trigger displays the New flow option. Click the New flow option to create a
flow to attach the newly created flow to that trigger.

Hovering over No trigger displays the Add trigger option, which takes you to the triggers
catalog.

TIBCO Flogo® Enterprise User Guide

42 | App Development

Flow View

In this view, each flow is shown separately with a trigger attached to it on the extreme left
side. Shown below is a Flow View representation of the Trigger View image above:

The following image shows the Flow View:

Notice that MyRESTFlow2 shows two triggers. That is because this flow is attached to two
triggers as you can see in the Trigger View. A blank flow shows 0 triggers against it as it is
not attached to any triggers.

Deleting an App
You can delete an app using the Delete app icon, which appears when you hover your
mouse cursor at the end of the app row.

To delete an app:

Procedure
1. On the Apps page, hover your mouse cursor to the end of the app row until the

TIBCO Flogo® Enterprise User Guide

43 | App Development

Delete app icon () appears.

2. Click the Delete app icon.

3. On the confirmation dialog, click Delete app.

Result
The selected app is deleted. The <FLOGO_HOME>/apps/<app>/manifest.json file is also
deleted.

Exporting and Importing an App
You can export and import apps and use them as templates for development. Or, simply
put them in a version control system such as GitHub.

Tip: When an app is created, the flogo.json file and manifest.json file are
automatically created in the <FLOGO_HOME>/apps/<app>/ directory. Instead of
using the Export option, you can use the files from the <FLOGO_
HOME>/apps/<app>/ directory to push the app directly using the TIBCO Cloud™
CLI. For more information see, Creating an App and Editing an App.

Exporting an App
Here are a few things to keep in mind before you export an app:

l When you export an app, all the flows in your app get exported. You cannot choose
the flows to export.

l Passwords that are configured in any activities within any flow or connection in the
app to be exported are removed in the exported app. Manually configure the
credentials in the flows after importing such apps.

l Some apps created in Project Flogo™ use the any data type. The any data type is not
supported in Flogo Enterprise. Such apps get imported successfully, but the element
of type any gets converted into an empty object. Explicitly use the mapper to
populate the empty object with member elements.

TIBCO Flogo® Enterprise User Guide

44 | App Development

Warning:
When exporting an app, if the app contains open configurations to hold its test
data, the open configurations are not exported with the app. Open
Configurations in an app must be exported independently of the app export.

To export an app:

Procedure
1. On the Apps page, click the app to open the app details page.

2. Click the shortcut menu ().

3. Click Export.

Using the Export option dropdown menu, download the following:

l App - exports a single <appname>.json file. You can use this option to
download an app that you plan to import into TIBCO Cloud Integration using
the drag-and-drop method.

l TIBCO Cloud Integration artifacts - downloads two files, manifest.json, and
flogo.json. The manifest.json contains the manifest details such as the
endpoints, memory resource details. The flogo.json contains the app itself.
These artifacts are needed to push the app directly using the TIBCO Cloud™
CLI. You must have the TIBCO Cloud™ CLI installed on your local machine to do
so. Use this option to push a Flogo app to TIBCO Cloud Integration without
having to import it into TIBCO Cloud Integration. See the section Pushing Apps
to TIBCO Cloud for details on how to do this.

Exporting an App's JSON File
When an app's binary is built, the .json file is embedded within the binary file. To export
the .json file from the binary file to the disk, use the following command:

./<app-binary-name> --export app

The .json is exported as <app-binary-name>.json.

TIBCO Flogo® Enterprise User Guide

45 | App Development

Tip: To provide a different file name to the exported .json, use the following
command:

./<app-binary-name> --export -o <new-app-binary-name>.json app

Importing an App
Importing the .json file of an app, makes it easy to use flows and triggers from another
Flogo app. You can import the .json file to a new app, which does not have flows. You can
also import it to an existing app that contains flows.

Important Considerations
Consider the following points before you import an app:

l Flogo apps that are exported from Flogo Enterprise 2.5.0 and later cannot be
imported into previous versions of Flogo Enterprise.

l A flow in the app can have the community-developed extensions. You can import
such apps without the extension. You can import the extension later by clicking the
missing extension.

l Some apps created in Project Flogo use the any data type. The any data type is not
supported in Flogo Enterprise. Such apps get imported successfully, but the element
of type any gets converted into an empty object. Explicitly use the mapper to
populate the empty object with member elements.

l The passwords and secrets for any connections configured in the app do not get
imported. Reconfigure any password or secret for the connection after the app has
been imported.

l When you import an app that does not have a Return Activity in any flow (main or
branched flow), the Return Activity is not added automatically by default. However, if
an existing app already has Return activities in main or branched flows, the app is
imported as expected.

l When importing an app, the long and double data types get converted to the number
data type.

l When importing an app into an existing app, if the existing app has entities with the

TIBCO Flogo® Enterprise User Guide

46 | App Development

same name as the ones you are importing, a warning is displayed. You can opt not to
import those flows, activities, or triggers. You can go back and rename them using
the UI, export the app again, and reimport it.

l When importing apps that were exported from Project Flogo, be aware of the
following:

o If the apps being imported use an Activity that is not supported in Flogo
Enterprise, a validation error is displayed.

o You can only import apps that were created in Project Flogo version 0.5.2 or
above.

Importing Your App to a New App
1. On the Apps page, click Create/Import.

2. In the block that displays below, upload the JSON file of the app to be imported. You
can browse and select the file or drag it to upload the file.

3. Click the Import Flogo app.

Result
The app is created. After the import is complete, the App Details Page is displayed
for the new app.
If your app uses a connection and that connection name and type exist in the org,
your Flogo app uses the same connection by default. Otherwise, a new connection is
created based on the imported app.

Note: If you are reusing the same connection name and type, make sure
that the credentials are correct or match with the intended usage.

For example, if you import an app that uses the SalesForce connection SFTest and a
SalesForce connection with the name SFTest exists in your org, then the app being
imported uses SFTest by default.

TIBCO Flogo® Enterprise User Guide

47 | App Development

Importing Your App to an Existing App
1. Log in to TIBCO Cloud™ Integration.

2. On the Apps page, open the existing app by clicking its name. The Apps Details Page
is displayed.

3. Click the shortcut menu () and select Import.

4. In the Import app dialog, upload the JSON file of the app that you want to import.
You can select the file or drag the file to upload. Click Upload.

5. In the dialog that opens, check the Errors and Warnings section for generic
messages as well as any specific errors or warnings about the app you are importing.
Flogo Enterprise validates whether all the activities and triggers used in the app are
available on the Extensions tab.

Note: The suffixes used in the mapper have undergone some changes. Due
to this, you may receive a mapper-related warning in the dialog when
importing an existing app. See Changes in Suffixes Used in the Mapper.

TIBCO Flogo® Enterprise User Guide

48 | App Development

6. Select the entities that you want to import from the source app:

l Default: All flows, triggers, and connections are selected for import.

l Use the dropdown list in the upper-left corner and the Search field to narrow
down the information displayed.

l Use the checkboxes to clear selections of specific flows or triggers or click
Unselect all to clear all the selections.

l If you select specific triggers or flows to import, the dialog lists only those
connections that are used in the selected flows and triggers. If you want to use
the existing connection, select the existing connection from the Connections in
current environment > Existing connections dropdown list. You can also

TIBCO Flogo® Enterprise User Guide

49 | App Development

choose to create a connection instead.

l If you select All, existing connections are automatically reused. A new
connection is created by default. If you want to use an existing connection,
select the existing connection from the Connections in current environment
> Existing connections dropdown list.

l If you select a trigger for import, all flows associated with that trigger are
selected by default.

l If you want to import a flow without importing the attached trigger, select the
flow only. Do not select the attached trigger. The flow is imported as a blank
flow without being attached to a trigger.

7. After ensuring that all the entities you want to import are selected, click Import.

8. After importing an app, you must reconfigure all the newly created connections. For
example, set the password of the new connection after the app is imported.

Changes in Suffixes Used in the Mapper
The suffixes used in the mapper have undergone some changes. Due to this, you may
receive a mapper-related warning in the dialog when importing an existing app. Click
Continue and the app imports successfully. After the import completes, be sure to remap
the properties in the activities that show errors. This ensures that they switch to the new
suffix format.

The following table lists the changes in the suffixes:

Original suffix
appearing in
imported apps

New suffix used
by the Mapper
(after you
remap)

For example Used when mapping

Activity_id.
Activity_
parameter

$Activity[Activity_
id].
Activity_
parameter

Old suffix:

$InvokeRESTService.
responseBody.userId

New suffix after
remapping property:

$Activity

When mapping to a
parameter in the Activity's
output. Used to resolve
Activity params.

TIBCO Flogo® Enterprise User Guide

50 | App Development

Original suffix
appearing in
imported apps

New suffix used
by the Mapper
(after you
remap)

For example Used when mapping

[InvokeRESTService].
responseBody.userId

$TriggerData $trigger Old suffix:

$TriggerData.
queryParams.title

New suffix after
remapping property:

$trigger.
queryParams.
title

When mapping from the
output of the trigger to the
flow input

N/A

There was no
equivalent for
this in the old
mapper

$flow.headers.
parameter

$flow.body.
parameter

$flow is a newly
introduced suffix, which
did not have an
equivalent suffix in the
old mapper.

When mapping to any
parameter in the flow's
header or input schema
(schema entered on the
Input tab of Flow Inputs &
Outputs dialog) which is
the same as the output of
the trigger, since the
output of the trigger is
mapped to the input of the
flow.

Used to resolve parameters
from within the current
flow. If a flow has a single
trigger and no input
parameters defined, then
the output of the trigger is
made available via $flow.

TIBCO Flogo® Enterprise User Guide

51 | App Development

Resolving Missing Activities and Triggers
When you import an app that contains one or more activities or triggers that are not
installed in your environment, you see a warning in the Import App dialog.

Note: When importing an app that has a connection configured in it, but the
connector is not installed in your environment, after you install the connector,
the connection configuration field values of type SECRETS are retained
postinstallation as long as they were not configured using app properties. If you
had configured your SECRETS as app properties, you need to reconfigure them
after installing the missing connector. This is because all configured app
properties are wiped out when the app is imported.

To resolve missing activities or triggers for TIBCO provided connectors

When an Activity or trigger used in an app being imported is missing from your Flogo
Enterprise environment, the flows in the app get imported, but you see a warning in the
Import App dialog.

When you validate your app by clicking Validate in the app details dialog, you see an error

marker () next to the flow name. This indicates that one or more activities or triggers
are missing. The number next to it indicates how many activities or triggers that are
missing appear in the flow. When you click the missing activities or triggers, you are
prompted to refer to the connector installation guide.

Note: Do not upload a TIBCO connector using Upload Extension. For more
information on how to install a TIBCO connector, refer to the connector
installation guide.

This is also true when you copy an app into the designated folder (the folder you specified
when you started the UI) for your apps on your local machine.

TIBCO Flogo® Enterprise User Guide

52 | App Development

To resolve missing custom activities or triggers

When one or more of your custom activities or triggers used in the app being imported are
missing from your Flogo Enterprise installation, you see a warning in your Import App
dialog similar to the following:

Once the app is imported, you see an error marker () next to the flow name. After you
install the missing Activity or trigger, this marker goes away. The number next to the error
indicates how many activities or triggers are missing in the flow.

To install the missing custom activities or triggers:

1. Click the flow name to open the flow details page. The Upload an extension dialog
opens. You can upload the custom Activity or trigger from the Git repository, hence
only the From Git repository option is enabled.

2. Click From Git repository. The Git repository URL text box is pre-populated.

3. Click Import. Flogo Enterprise downloads the Activity or trigger from the Git
repository and uploads it on your Extensions tab. Refer to the section, Uploading
Extensions for details on this option.

App File Persistence
Your Flogo app files get persisted to the directory that you specify on your local machine.
You can use an external source control system such as Git or SVN to store your apps. You
can then check in and check out your apps locally from the remote repository. This makes
it possible for you to implement the continuous Integration/Continuous deployment
(CI/CD) pipeline by leveraging any tool available in the market to integrate your app
development with the app deployment.

When you start the UI, you are prompted to point to the directory where you have checked
out your apps. If you do not provide any path, the apps are stored in the default directory,
which is: <FLOGO_HOME>/data/localstack/apps.

TIBCO Flogo® Enterprise User Guide

53 | App Development

If you restart the UI, at the time of restart, if you want to continue using the same directory
that you had specified, click Enter on your keyboard when it prompts you to set the path.
It stores the path preference that you set the last time.

After the UI starts, you should be able to see all your apps on the app list page in the UI.
From this point on, when you create an app or modify an existing app, the changes are
saved to the directory location that you provided when starting Flogo Enterprise.

Each app that you store on your local machine has its folder and the folder name must be
identical to the app name. If another user makes changes to your app, you must sync your
local repository with the remote repository (do a pull) to get the changes made by that
user.

Warning:
l The app file name must be called flogo.json.

l The folder name containing the app must be identical to the app name
appearing in the flogo.json file for the app.

Loading new apps from the disk - When a new app is added to the directory, refreshing
the browser loads the app into the UI. You do not need to restart the UI.

Loading the updated app from the disk - In case the flogo.json on the disk is updated
(due to minor changes or checkout a newer version from the source control system), click
the Reload from Disk to load the updated app into the UI. Be aware that this action
overrides existing changes in the app. Reload from Disk option is available under the
shortcut menu that is next to the other buttons on the app page.

If another user adds an app to your remote repository, the app gets downloaded to your
local repository when you do a pull from the remote repository. For the new app to display
on the UI, you must refresh your browser. You do not need to restart either the browser or
Flogo Enterprise.

You can import any exported app to Flogo Enterprise. To do so, create a folder with an
identical name as the app name in your local repository, then copy the flogo.json file for
the app to the folder. For apps that are created using the UI, Flogo Enterprise

TIBCO Flogo® Enterprise User Guide

54 | App Development

automatically generates a unique ID for each app. But, if you load an existing flogo.json
file, the app may or may not have an app ID defined in it. Flogo Enterprise checks to see if
an ID exists in the flogo.json file for the app. If an ID does not exist for the app, Flogo
Enterprise generates a unique ID and adds an ID attribute in the flogo.json file before
loading the app.

Note the following:

l If you change the ID of the app in your flogo.json file, you see a duplicate app on
the UI. Refresh your browser to fix this issue. If you continue to work on the app with
the old app ID, your changes are lost when you restart the UI.

l All apps that exist in the path that you provided during Flogo Enterprise installation
get loaded on the UI. You cannot selectively choose the apps to be loaded on the UI.

l Any Launch Configurations (containing your test data for the app) associated with
the app are stored in the <app_folder> > test folder along with the flogo.json file
for the app.

l File permissions - You must have "write" permission for the app directory on your
local machine. Otherwise, the app is not loaded and displayed in the UI. An error is
displayed in the log located in <FLOGO_HOME>/<FLOGO_VERSION>/logs/studio.logs.

l When importing an app, if any extensions are missing, a broken plug-in icon is
displayed on the missing Activity.

l If the app has any missing extension or if a connector uses the associated
connection, you see the connection post-installation of the missing extension or
connector.

l If you add an app to your local app repository, if that app has any missing extension,
after uploading the missing extension, the connection in the extension maintains the
secrets and passwords that were already configured in the connection for the app.
Refer to the Resolving Missing Extensions section for details on how to resolve
missing extensions in an app.

l You may notice a change in secret encrypted values in flogo.json after opening the
apps using the UI. This does not affect the run time.

l We recommend that you do not modify flogo.json manually to avoid any mishaps.

l When upgrading to Flogo Enterprise the current version from an older Flogo
Enterprise version, the existing apps automatically get migrated to the directory that
you have created on your local disk. You do not need to migrate them manually.

l If your app repository gets deleted while in use, you must restart the UI and set a

TIBCO Flogo® Enterprise User Guide

55 | App Development

new app repository. Do not continue to work with the deleted repository. Also keep
in mind that even if you recreate a directory with the same name, your changes do
not take effect until you restart the UI.

Creating Flows and Triggers
An app can have one or more flows and a flow can be attached to one or more triggers.
Similarly, a trigger can have multiple flows attached to it.

Flows

Each flow represents specific business logic in an app. A flow contains one or more
activities. The flow execution is started by a trigger. A new flow can be created only from
the app details page.

Triggers

You have the option to create a trigger without creating a flow. You can create a trigger
from an existing specification that you have saved in either the TIBCO Cloud™ Integration -
API Modeler or on your local machine. Optionally, you can create a trigger when creating a
flow by selecting the Start with a trigger option during flow creation.

Activities, Triggers, Unit test, Properties and Schema Panel

You can add a trigger or an activity in a flow from the Activities or Triggers palettes
available in this panel. You can also get in or out of the unit test mode using the Unit Test
palette. Properties and Schemas palette can be used to manage the properties and
schemas. By default the panel exists on the right side of the canvas, but by clicking the
Move to Left icon you can move the panel to the left of the canvas.

Flows
This section contains information about creating and managing flows in your app.

TIBCO Flogo® Enterprise User Guide

56 | App Development

Creating a Flow
Every app has at least one flow. Each flow can be attached to one or more triggers. You
have the option to first create a blank flow (a flow without a trigger) and then attach the
flow to one or more triggers. On the App Details page, click Create to create the first flow
in an app.

Before creating a flow that uses connectors, ensure that you create the required
connections. For more information, see created the necessary connections.

Warning: In an app with multiple triggers, the port number must be unique for
all the triggers that require a port number. For example, REST and/or GraphQL
triggers. Two triggers in the same app cannot run on the same port.

For flows that are attached to multiple triggers, you cannot disable a trigger. Specify a
particular trigger to run. Or, specify the order in which the triggers run. When a flow runs,
all triggers get initialized in the order that they appear within the flow.

When using the Lambda, S3, or Gateway triggers, keep the following in mind:

l You can have only one Lambda trigger. An app that has a Lambda trigger cannot
contain any other triggers including another Lambda trigger. Also, as the Lambda
trigger supports only one handler per trigger, it can have only one flow attached to it.
However, the apps that contain a Lambda trigger can contain blank flows that can
serve as subflows for the flow attached to the Lambda trigger.

l You can have only one S3 trigger in an app. An app that has an S3 trigger cannot
contain any other triggers including another S3 trigger. The S3 trigger supports
multiple handlers (flows), so you can have multiple flows in the app that are attached
to the same S3 trigger. You can also have blank flows in the app, which can serve as
subflows for the flows that are attached to the S3 trigger.

l You can have only one Gateway trigger in an app. An app that has a Gateway trigger
cannot contain any other triggers including another Gateway trigger. The Gateway
trigger supports multiple handlers (flows), so you can have multiple flows in the app
that are attached to the same Gateway trigger. You can also have blank flows in the
app, which can serve as subflows for the flows that are attached to the Gateway
trigger.

The output of a trigger provides the input to the flow. Hence, it must be mapped to the
flow input. When creating a flow without a trigger, there must be a well-defined contract
within the flow that specifies the input to the flow and the output expected after the flow

TIBCO Flogo® Enterprise User Guide

57 | App Development

completes execution. You define this contract in the Flow Inputs & Outputs dialog. The
Flow Inputs & Outputs contract works as a bridge between the flow and the trigger,
hence every trigger has to be configured to map its output to the Input parameters defined
in Flow Inputs & Outputs. You do this on the Map to Flow Inputs tab of the trigger.

Likewise, for triggers (such as the ReceiveHTTPMessage REST trigger) that send back a
reply to the caller, the trigger reply must be mapped to the flow outputs (parameters
configured on the Output tab of the Flow Inputs & Outputs accordion tab). You do this
mapping on the Map from Flow Outputs tab of the trigger.

A Return Activity is not added by default. Depending on your requirements, you must add
and configure the Return Activity manually. For example, if any trigger needs to send a
response back to a server, its output must be mapped to the output of the Return Activity
in the flow.

The Map Outputs tab of the Return Activity displays the flow output schema that you
configured on the Output tab of the Flow Inputs & Outputs accordion tab. The Map from
Flow Output tab of the trigger constitutes the trigger reply. This tab also displays the flow
output schema that you configured on the Output tab of the Flow Inputs & Outputs
accordion tab.

Perform the following steps when using a ReceiveHTTPMessage REST trigger:

l Add a Return Activity at the end of the flow.

l On the Map Outputs tab of the Return Activity, map the elements in the schema to
the data coming from the upstream activities.

l On the Map from Flow Output tab of the trigger, map the trigger reply elements to
the flow output elements.

Follow these steps to create a flow:

1. On the Apps page, Click an app name to open its page.

2. Under the Flows page, click Create . The Add triggers and flows dialog opens.

3. Enter a name for the flow in the Name text box. Flow names within an app must be
unique. An app cannot contain two flows with the same name.

4. Optionally, enter a brief description of what the flow does in the Description text
box. The Flow option is selected by default. To create a flow from a specification,
select the specification under Start with and refer to the appropriate section under
Building APIs.

5. Click Create. The Flow gets created.

TIBCO Flogo® Enterprise User Guide

58 | App Development

6. After a Flow is created, you can start with either of the following actions:

l Start with a trigger - If you know the trigger with which you want to activate
the flow, select this option. Select a trigger from the Triggers palette. For more
details on the type of trigger that you want to create, see the relevant section
in the Starting with a Trigger topic. If there are existing flows attached to
triggers, you are prompted to either use an existing trigger or use a new trigger
that has not been used in an existing flow within the app.

l Configure flow inputs and outputs - Select this option if you know the
algorithm for the flow, but do not yet know the circumstances that cause the
flow to run. It creates a blank flow that is not attached to any trigger. Flow
inputs and outputs create a contract between the trigger and the flow. When
you create a trigger, you must map the output of the trigger to the input of the
flow. This contract serves as a bridge between the trigger and the flow. You
have the option to attach your flow to one or more triggers at any later time
after the flow has been created.

If you selected Start with a trigger, the flow is attached to the trigger you selected.
If you selected Configure flow inputs and outputs, a blank flow without a trigger
gets created.

Note: StartActivity is a special activity that is always added to the newly
created flows.

Selecting a Trigger When Creating a New Flow
When creating a flow, you have the option to either select an existing trigger or select one
from the triggers palette.

Trigger configuration fields are categorized into two groups as explained below. A single
trigger can be associated with multiple handlers.

TIBCO Flogo® Enterprise User Guide

59 | App Development

l Trigger Settings - These settings are common for the trigger across all flows that use
that trigger. If and when a flow attached to the trigger changes any Trigger Settings
field, the change gets propagated to all flows attached to the trigger.

l Handler Settings - These settings apply to a specific flow attached to the trigger.
Hence, each flow can set its values for the Handler Settings fields in the trigger. To
do so, open the flow and click the trigger to open its configuration dialog. Click the
Settings tab and edit the fields in the Handler Settings section.

Creating a Trigger When Another Trigger of the Same Type Exists

There may be cases when a specific type of trigger exists. For example, there might be a
REST trigger that exists. When creating a REST flow, you are prompted to select the
existing REST trigger or create a trigger by selecting it from the triggers palette. If you want
a REST trigger with a different trigger setting than the one that exists, such as a different
port or a security options, Select the Create new option and then select the trigger from
the ensuing trigger palette. This creates a REST trigger and attaches your new flow to it.

Creating a Flow Starting with a Trigger
When creating a flow, if you know the circumstances in which you want the flow to
activate, select the Start with a trigger option and select an available trigger that
activates the flow.

Warning: If an app has multiple triggers that require a port to be specified,
make sure that the port number is unique for each trigger. For example, REST or
GraphQL trigger. Two triggers in the same app cannot run on the same port.

If you are unsure of the circumstances under which the flow should be activated, or if you
want the flow to be activated under more than one situation, use the Configure flow
inputs and outputs option and attach the flow to one or more triggers later as needed.
See Creating a Flow without a Trigger for more details on this.

Creating a Flow Attached to a REST Trigger
When creating a flow with a REST (Receive HTTP Message) trigger, you can enter the
schema in the Configure trigger dialog during flow creation. Also, you can use a Swagger
2.0 or OpenAPI 3.0 specification file that you have saved either in TIBCO Cloud™ Integration
- API Modeler or on your local machine.

TIBCO Flogo® Enterprise User Guide

60 | App Development

For more details on using a specification file, see the Using an OpenAPI Specification
section.

Note: If you want to have two flows using the same operation on the same
resource, while creating the flows on the Settings tab of the
ReceiveHTTPMessage trigger, ensure that you configure different ports for each
flow.

You can create a REST flow by entering a JSON schema or dragging an API specification
JSON file. See the Using an OpenAPI Specification section about using a specification file.

Warning: If you modify the Reply Settings tab of a ReceiveHTTPMessage
trigger, the corresponding ConfigureHTTPResponse activities within that flow
do not change appropriately. This happens when you remove fields from the
Reply Settings tab. Redo the mappings for the ConfigureHTTPResponse
Activity.

To create a REST flow by entering the schema:

1. Click an app name on the Apps page.

2. Click Create. The Add triggers and flows dialog opens. Flow under Create New is
selected by default.

3. Enter a name for the flow in the Name text box. Flow names within an app must be
unique.

4. Optionally, enter a brief description of the flow in the Description text box.

5. Click Create. A flow with a specified name is created.

6. Now, click Triggers palette. The triggers palette opens with all the available triggers
listed.

7. Drag the Receive HTTP Message to the Triggers area on the left. The trigger
configuration dialog opens.

8. Select the REST operation under the Method that you want to implement by clicking
it.

TIBCO Flogo® Enterprise User Guide

61 | App Development

Note: Two REST triggers cannot have an identical port, path, and method
combination. Each REST trigger needs to differ from the other for the same
flow with either a unique port, path, or operation.

9. Enter a resource path in the Resource Path text box.

10. Enter the JSON schema or JSON sample data for the operation in the Response
Schema text box. This is the schema for both input and output.

11. Click Continue.

12. Select one of the following options:

If you select Copy Schema, the schema that you entered in the step 10 above
automatically gets copied or displayed in a tree format to the following locations
when the trigger gets added:

l Trigger output, on the Map to Flow Inputs tab of the trigger

l Flow input, on the Input Settings tab of the Flow Inputs & Outputs accordion
tab.

l Trigger reply (if the trigger has a reply), in the Reply Settings of the trigger.

For details on configuration parameters, see the REST Trigger section.

If you select Just add the trigger, a REST trigger is added to the flow without any
configuration. You can configure this REST trigger later by clicking the trigger from
the app details page. Any changes made to the trigger must be saved by clicking

rest.htm

TIBCO Flogo® Enterprise User Guide

62 | App Development

Save.

The flow page opens.

13. Map the trigger output to the flow input.

a. Open the trigger configuration dialog by clicking the trigger:

b. Open the Map to Flow Inputs tab.

c. Map the elements under Flow inputs to their corresponding elements under
Available data one at a time.

14. Map the flow output to the trigger reply as follows:

a. In the trigger configuration dialog, click the Map from Flow Outputs tab.

b. Map the elements under Trigger reply to their corresponding elements under
Available data.

c. Close the dialog.

15. Click Save to save your changes.

Creating a Flow attached to the GraphQL Trigger
You can create GraphQL flows by uploading a GraphQL schema file with an .gql or
.graphql extension. Flogo then creates the appropriate flows based on your schema.

When the flow gets created, a GraphQL trigger automatically gets generated and attached
to each flow that gets created.

To create a flow using a GraphQL schema, see the Using GraphQL Schema topic. For
details on the GraphQL trigger, see "GraphQL Trigger" section in TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide.

Creating a Flow Attached to Other Triggers
This section applies to triggers that are not REST, or GraphQL triggers.

To create a flow with such a trigger:

1. Click an app name on the Apps page to open the app details page.

2. click Create. The Add triggers and flows dialog opens.

3. Enter a name for the flow in the Name text box.

TIBCO Flogo® Enterprise User Guide

63 | App Development

Flow names within an app must be unique.

4. Optionally, enter a brief description of what the flow does in the Description text box
and click Create.

A flow gets created and the flow details page opens.

5. From the Triggers palette, select the desired trigger and drag it to the triggers area.

6. Click the trigger to display its properties.

7. Configure the properties for the trigger. See the respective trigger section in TIBCO
Flogo® Enterprise Activities, Triggers, and Connections Guidefor details.

Creating a Blank Flow (Flow without a Trigger)
You can create a flow in the Flogo app without attaching it to a trigger. This method of
creating a blank flow is useful when the logic for the flow is available, but you do not know
the condition under which the flow should activate. You can start by creating a flow with
the logic and attach it to one or more triggers later.

Follow these steps to create a flow without a trigger:

1. Click an app name on the Apps page to open the app details page.

2. click Create. The Add triggers and flows dialog opens. Flow is selected by default.

3. Enter a name for the flow in the Name text box.

Flow names within an app must be unique.

4. Optionally, enter a brief description of what the flow does in the Description text
box.

5. Click Create. The flow details page opens.

6. Click Flow Inputs & Outputs to configure the inputs and/or outputs to the flow on
the Input or Output tab respectively. See Flow Inputs & Outputs Tab.

Mapping trigger outputs to flow inputs and flow outputs to trigger reply creates a
contract between the trigger and the flow. Hence, when you attach the flow to a
trigger later, you must map the output of the trigger to the flow input. You have the
option to attach your flow to one or more triggers later after the flow has been
created. See Attaching a Flow to One or More Triggers for details.

7. Enter a JSON schema containing the input fields to the flow on the Input Settings
tab and click Save.

TIBCO Flogo® Enterprise User Guide

64 | App Development

8. Enter the JSON schema containing the flow output fields on the Output Settings tab
and click Save.

9. When you are ready to add a trigger, refer to Adding Triggers to a Flow to add one or
more triggers to the flow. For triggers that need to send back a response to the
server, you must map the flow output to the reply of the trigger.

Flow Input & Output Tab
Use these tabs to configure the input to the flow and the flow output. These tabs are
particularly useful when you create blank flows that are not attached to any triggers.

Note: The schemas for input and output to a flow can be entered or modified
only on this Flow Inputs & Outputs tab. You cannot coerce the flow input or
output from outside this accordion tab.

Both these tabs (the Input tab and the Output tab) have two views:

l JSON schema view:

You can enter either the JSON data or the JSON schema in this view. Click Save to
save your changes or Discard to revert the changes. If you entered JSON data, the
data is converted to a JSON schema automatically when you click Save.

l List view:

This view allows you to view the data that you entered in the JSON schema view in a
list format. In this view, you can:

o Enter your data directly by adding parameters one at a time

o Mark parameters as required by selecting its checkbox.

o When creating a parameter, if you select its data type like an array or an object,
an ellipsis (…) appears to the right of the data type. Click the ellipsis to provide
a schema for the object or array.

o Use an app-level schema by selecting Use an app-level schema. On the
Schemas page that appears, click Select beside the schema that you want to
use. The name of the schema is displayed beside Use an app-level schema
and the schema is displayed in a read-only mode.

TIBCO Flogo® Enterprise User Guide

65 | App Development

Note: You cannot edit an app-level schema in the List view if Use an
app-level schema is selected. To edit an app-level schema, follow
the instructions in the section Editing an App-level Schema. You can,
however, switch to another app-level schema by clicking Change
and selecting another app-level schema. You can also unbind the
app-level schema (by deselecting Use an app-level schema) from a
trigger, activity, or the input and output of a flow. After you unbind
the app-level schema, you can make changes to it using the schema
editor in the List view.

o Click Save to save the changes or Discard to discard your changes.

Attaching a Flow to One or More Triggers
If you had created a blank flow without attaching it to a trigger, you can attach it to an
existing trigger that is being used by another flow in the same app.

A flow that was created without being attached to a trigger has its input and output
parameters defined on the Flow Inputs & Outputs accordion tab. You can access it by
clicking the blue bar with the same label. The output from the trigger is the input to the
flow. So, you must map the input parameters defined on the Input tab of this dialog to the
trigger output parameters. This mapping must be done in the trigger. The mapping creates
a contract between the trigger and the flow and is mandatory for the flow and the trigger
to interact with each other.

You can use one of these methods to attach a flow to a trigger:

1. From the app details page:

a. Open the app details page by clicking the app.

b. Hover over No trigger, then click Add trigger. The flow details page opens.

2. From the flow details page:

a. Open the flow details page by clicking the flow name on the app details page.

b. From the Triggers palette, drag a desired trigger to the triggers area.

For REST and GraphQL triggers, you are prompted to enter additional handler setting
details. Refer to the "REST Trigger" and "GraphQL Trigger" section in TIBCO Flogo®
Enterprise Activities, Triggers, and Connections.

#GUID-07B62C46-E02B-4EB5-82C0-C7C16223EA34

TIBCO Flogo® Enterprise User Guide

66 | App Development

Click the trigger icon to configure the trigger as needed. For REST and GraphQL triggers, be
sure to map the trigger outputs to flow inputs and the flow outputs to the trigger reply.

Catching Errors
You can configure a flow to catch errors at two levels:

l At the flow level by configuring the Error Handler in the flow. Refer to the section,
Creating an Error Handler Flow for more details on configuring the error handler in
the flow.

l At the Activity level by creating an error branch from an Activity. Refer to the Types of
Branch Conditions section for details on how to create an error branch from an
Activity.

Creating an Error Handler Flow
Use the Error Handler to catch exceptions that occur while running a flow. The error
handler is designed to catch exceptions in the activities within a flow. If there are multiple
flows in an app, the error handler must be configured for each flow separately. Branching
is supported for error handler flows similar to the other flows.

To configure the error handler:

1. Click an existing activity in a flow.

2. Click the Error handler tab.

The error handler opens with the error Activity displayed.

Clicking the error activity exposes the fields that you can configure for an error that
is generated by the activity.

TIBCO Flogo® Enterprise User Guide

67 | App Development

The Map to Flow Inputs tab of the error Activity has three elements, Activity,
message, and data. The activity element is used to output the name of the activity
that is generating the error, the message element is used to output the error
message string, and the data element can be configured to output any data related
to the error. The message element on the Input tab of any activity in the Error
Handler flow can be configured to output one or all of these three elements.

3. From the Activities palette, add an activity for which you want to configure the error
message. Add a branch to connect the error with the activity that you have added.

The Input tab of that Activity displays a message in its input schema. This is a
required element that you must map.

Note: A Return Activity is not added by default. Depending on your
requirements, you must add the Return Activity manually.

4. Click the message in the input schema to open its mapper.

TIBCO Flogo® Enterprise User Guide

68 | App Development

5. Expand $error to expose the Activity, message, and data elements that you can
configure for the error message.

To map the message element under Activity inputs, you can either manually type in
the error string enclosed in double-quotes or use the concat function under string in
the mapper to output the Activity name along with a message. See Using Functions
for more details.

6. Continue configuring the error message for each activity in the flow.

If there is error for the activity in any flow of the app, it is output in the log for the
app when the app is built.

TIBCO Flogo® Enterprise User Guide

69 | App Development

Here is an example of how an error handler flow looks after it is configured:

Viewing Errors and Warnings
Flogo Enterprise uses distinct icons to display errors and warnings within an app.

The following icons are used:

- error icon. Resolve the errors before building the app. Errors should not be ignored.

- warning icon. Warnings are generated to alert you of something that might need to
change in the entity where the warning icon is displayed. You have the option to ignore the
warning and move on.

Here is the hierarchy of errors and warnings reported in Flogo Enterprise:

Flow level reporting - when you click an app name, the app details page opens displaying
the list of flows in the app. If there are errors or warnings in a flow, appropriate icons are
displayed next to the flow name along with a number, where the number indicates an
aggregate number of errors or warnings in the flow. If there are no errors or warnings,
these icons are not displayed.

Activity and Trigger level reporting - when you click a flow name, the flow details page
opens displaying the implementation of the flow. This page displays errors if any at the
activity level. For instance, a LogMessage activity may displays an error symbol within the
activity configuration. Resolve the error before proceeding.

Activity and Trigger configuration tab level reporting - when you click an activity or a
trigger in the flow, its configuration page opens, displaying the various tabs. Click a tab to
see the errors or warnings in the configuration within that tab.

TIBCO Flogo® Enterprise User Guide

70 | App Development

Activity and Trigger configuration tab level reporting - When you click on an activity or
a trigger in the flow, its configuration page opens, displaying the various tabs. Click a tab
to see the errors or warnings in the configuration within that tab.

Using Subflows
Flogo provides the ability to call any flow from another flow in the same app. The flow
being called becomes the subflow of the caller flow. This helps in separating the common
app logic by extracting the reusable components in the app and creating standalone flows
for them within the app. Any flow in the app can become a subflow for another flow within
the same app. Also, there are no restrictions on how many subflows a flow can have or
how many times the same subflow can be called or iterated in another flow. Hence,
subflows are useful when you want to iterate a piece of app logic more than once or have
the same piece of logic repeat in multiple locations within the app.

Here are a few points to keep in mind when creating and using subflows:

l The subflow and its calling flow must both reside within the same app. You cannot
call a flow from another app as a subflow in your app.

l Since you can call any flow from any other flow within the app, you must be careful
not to create cyclical dependency where a flow calls a subflow and the subflow, in
turn, calls its calling flow. This results in an infinite calling cycle and the "Cyclic
dependency detected in the subflow" error is displayed.

TIBCO Flogo® Enterprise User Guide

71 | App Development

l You can configure the iteration details on the Loop tab of the Start a SubFlow
Activity. The Start a SubFlow Activity iterates multiple times, resulting in the subflow
being called multiple times.

Important: You can delete any flow in an app even though the flow might
be in use as a subflow within another flow. You do not receive any error
messages at the time of deletion, but when you run the app, its execution
fails with an error.

Creating Subflows
You create a subflow exactly like you would create any other blank flow.

To create a subflow:

1. Identify the piece of logic in your app that you want to reuse elsewhere in the app or
iterate multiple times.

2. Create a flow without a trigger for that logic. See the Creating a flow without a
trigger section for details on how to create such a flow.

3. To use this flow as a subflow within another flow, you must add a Start a SubFlow
Activity at the location in the calling flow from where you want to call the subflow.
For example, if you want to call a subflow after the third Activity in your calling flow,
insert a Start a SubFlow Activity as the fourth Activity in the calling flow. To do so:

a. Open the calling flow.

b. On the flow details page, click the Activities palette.

c. Under the Default category, select the Start a SubFlow activity and drag it to
the activities area.

d. Add the branches to connect the SubFlow activity with the activity that you
want to call a subflow from and to the activity where the subflow must end.
Also set the branch conditions for each connection line wherever required.

e. Click the StartaSubFlow activity to open the configuration dialog. To call the
required subflow, select the subflow from the Select flow dropdown in the
Settings tab and save the changes. If you want to see the flow in detail use the
Open Subflow option in the Settings tab or click the icon on the

StartaSubflow Activity. This appends the flow tab to the right of the previously

TIBCO Flogo® Enterprise User Guide

72 | App Development

appended flow tabs. In the below example, we call the Flow 3 flow using the
StartaSubflow Activity. After clicking the Open Subflow tab, we see theFlow 3
flow tab next to the Flow 1 flow tab.

Note:

l If the subflow is already selected in StartaSubflow Activity,
then you can directly open that subflow in a different flow tab
by clicking on the icon on activity tile.

l If icon is present on the StartaSubflow Activity, it means a
subflow is selected in the StartaSubflow Activity.

l An opened subflow tab becomes "active" only after you select
it from the Flows list dropdown or when you switch to that
subflow.

l When you try to open an already opened subflow tab, it is
highlighted.

The schemas that you had configured in the Input Settings and Output
Settings of the Flow Inputs&Outputs tab in the selected subflow appear on
the Input and Output tabs of the StartaSubFlow Activity.

You can now configure the input and output for the subflow in the
StartaSubFlow Activity. If you add additional input and/or output parameters
on the Flow Inputs & Outputs tab of your subflow, they become available to
configure from the Input and/or Output tabs of the StartaSubFlow Activity.

TIBCO Flogo® Enterprise User Guide

73 | App Development

The output from the StartaSubFlow Activity is available for use as input in all
activities that appear after it.

At app runtime, the StartaSubFlow Activity in the calling flow calls the
selected subflow.

f. If you want your subflow to iterate multiple times, configure the iteration
details on the Loop tab of the StartaSubFlow activity. Refer to the Using the
Loop section for details on how to configure the Loop tab.

Creating a Flow Execution Branch
Activities in a flow can have one or more branches. If you specify a condition for a branch,
the branch runs only when the condition is met. You also have the option to create an
error branch from an activity. The purpose of the error branch is to catch any errors that
might occur while running an activity. Branching is also supported for Error Handler flows,
to catch all errors at the flow level.

Note:
l You cannot create a branch from a trigger or a Return Activity.

l All activities that come after a branch are run irrespective of how the
branch condition evaluates.

A Return activity ends the flow execution. Regardless of where the Return activity is
placed in the flow, the flow execution exits the process as soon as it encounters a Return
activity anywhere in the flow.

Note: A Return Activity is not added by default. Depending on your
requirements, you must add the Return Activity manually. For example, if any
trigger needs to send a response back to a server, its output must be mapped to
the output of the Return Activity in the flow.

To create a flow execution branch:

1. From the Apps page, click the app name then click the flow name to open the flow
details page.

2. For a start branch, drag a connection line from the a blue arrow on StartActivity
icon to the desired activity that you want to start the execution with.

TIBCO Flogo® Enterprise User Guide

74 | App Development

A branch gets created.

Each branch has a label associated with it. The label has the following format:

When branching to a specific activity:
<Name of activity in main flow>to<Name of activity in branch>
For example, LogMessagetoInvokeRESTService.

3. You can add a branch between the two activities. Hover over the activity that you
want to start with and drag a connection line to the activity you want to connect to.

4. Clicking the branch opens the Branch Mapping Settings dialog.

TIBCO Flogo® Enterprise User Guide

75 | App Development

5. Select either of the branch conditions: Success, Success with condition, Success
with no matching condition, or Error. See Types of Branch Conditions for details on
the conditions.

6. Click Save.

7. Add a condition to a branch as required. See Setting Branch Conditions for details.

8. If you want the flow execution to end after this branch is run successfully, add and
configure the Return activity at the end of the branch. If you do not want the flow
execution to end, do not add a Return activity at the end of the branch.

Joining or merging branches
You can now connect multiple activities to a single activity. In this case, an activity is
executed only after all connected activities are either executed or skipped due to
conditional branch.

TIBCO Flogo® Enterprise User Guide

76 | App Development

Types of Branch Conditions
Flogo Enterprise supports multiple types of branch conditions.

Select one of the following conditions during branch creation:

l Success

A success branch is run whenever an activity is run successfully. If there is an error in
the activity completion, this branch does not run. The branch has no conditions set
in it.

l Success with condition

Select this condition if you want a branch to run only when a particular condition is
met. If you select this condition and do not provide the condition, the branch never
runs.

You can form an expression using anything available under upstream activity outputs
and available functions, which should evaluate to a boolean result value.

l Success with no matching condition

This branch condition is displayed only when you already have an existing Success
with condition branch.

l Error

A branch with this condition runs if there are errors in completion of the activity. An
activity can have only one Error branch.

Details of the error, such as the Activity and the type of the error message, are
returned in $error. For example:

The Error branch flow differs from the error handler flow. In the error branch, the
error branch is designed to catch exceptions at the activity level from which the error
branch originates. Whereas the error handler flow is designed to catch exceptions
that occur in any activity within the flow. So, if you handle the errors by creating an
error branch at the activity level, the flow execution control never transfers to the

TIBCO Flogo® Enterprise User Guide

77 | App Development

error handler flow.

Order in which Branches are Run
When an Activity has multiple branches, regardless of the number of branches or the order
in which the branches appear in the UI, the branch execution follows a pre-defined order.

Note: The flow execution ends if it encounters a Return activity at any branch.
In such situations, the activities that are placed after the return activity are not
run.

The order in which the branches are run is as follows.

1. Success with condition branch

This branch runs only if its branch condition is met.

2. Success with no matching condition branch

This branch condition is displayed only when there is at least one existing Success
with condition branch for the Activity. The Success with no matching condition
branch is typically used when you want a specific outcome if none of the Success
with condition branches meet their condition.

l This branch runs only if none of the Success with condition branches run. If
the Success with condition branch runs and it does not have a Return Activity
at the end of the branch, the flow execution control is passed to the success
branch. If the Success with condition has a Return activity, the flow execution
is ended after the Success with condition branch runs.

l If you delete all Success with condition branches without deleting the Success
with no matching condition branch, you receive a warning informing you that
the Success with no matching condition branch is orphaned.

3. Success branch

When an Activity has both Success and Success with condition branches, always the
success with condition branch runs first. And if there are multiple success branches,
the order of execution depends on the reverse order in which the each branch was
created, that is, the success branch that was created at last is executed first.

4. The Error branch is run as soon as the flow execution encounters an error.

TIBCO Flogo® Enterprise User Guide

78 | App Development

Setting Branch Conditions
You can set conditions on a branch such that only if the condition is met the branch runs.

To set conditions on a branch:

1. Click the branch you want to set the conditions for. The Branch Mapping Settings
dialog opens.

2. Select a branch condition: Success, Success with condition, or Error. If you already
have a Success with condition branch present, you see Success with no matching
condition.

See the section, Types of Branch Conditions, for details on the three conditions.

3. Click Save.

4. If you selected Success with condition, the mapper opens for you to set the
condition. Click the condition.

The mapper is exposed to the right of the dialog. The functions that you can use to
form the condition are shown under Functions.

5. Enter an expression with the condition or click a field from the output of a preceding
Activity to use it. The output from preceding activities appears under the left
Upstream Output in a tree format.

TIBCO Flogo® Enterprise User Guide

79 | App Development

Note:

l The condition must resolve to a boolean type. The following image shows
how the branches appear based on the branch condition:

l When you hover over the branch lines or the branch labels, they appear in
different colours according to the condition that is set.

o Green - Success

o Orange - Success with condition

o Purple - Success with no matching condition

o Red - Error.

These lines indicate the exact start and end points of the connection
between any two activities. This is helpful in large and complex flows
where the exact flow seems unclear and jumbled. The branch labels

TIBCO Flogo® Enterprise User Guide

80 | App Development

indicate the names of the activities that are connected. You can rename
the labels as per requirement. For the success with condition label, when
it is empty or when there is a wrong condition, a icon appears on it.

Deleting a Branch
You can delete a branch at any time after creating it.

To delete a branch:

1. Hover over the branch that you want to delete. A branch label appears.

2. On the label, click icon that appears.

TIBCO Flogo® Enterprise User Guide

81 | App Development

3. On the confirmation dialog, click Delete branch. The selected branch is deleted.

Duplicating a Flow
You can duplicate an existing flow in an app. All activities in the flow along with their
existing configurations get duplicated to a new flow in the app. The duplicate of the
original flow gets created with a default name beginning with "Copy of" in the same app.
You can rename the flow by clicking the flow name in the top-left corner of the flow details
page. After you have duplicated the flow, you can add more activities, rearrange existing
activities by dragging them to the desired location or delete activities from the flow
duplicate.

Note: The triggers in the flow do not get duplicated. Also, if a flow has subflows,
the subflows do not get duplicated.

To duplicate a flow:

1. Open the Apps page and click the app to open the app details page.

2. Hover over to the extreme right of the flow that you want to duplicate until the
Duplicate flow icon displays.

3. Click the Duplicate flow icon. A duplicate of the flow gets created in the app.

4. Edit the duplicated flow as needed to add, rearrange, or delete activities in the flow
and the app.

TIBCO Flogo® Enterprise User Guide

82 | App Development

Editing a Flow
You can edit the flow name or its description after creating the flow. You can also add
more activities. Rearrange existing activities by dragging them to the desired location or
delete activities from the flow.

To edit a flow:

1. On the Apps page, click the app name to open the app details page.

2. Click the flow name that opens the flow page. Rebuild the app after making the
required changes.

To edit the flow name, click anywhere in the flow name and edit the name. To add
an activity between two existing activities, you can make a space by dragging the
activities to anywhere you want in the activities area.

Switching Between Flows in an App
In an app that has multiple flows, you can switch between the flows within an app. There
are two ways of doing it:

1. Using the Flows list dropdown:

Click the Flows list dropdown beside the flow name and select the flow you want to
open.

2. Using the flow tabs:

When you choose a flow from the Flows list dropdown, each flow appends to the
right of the previously opened flow tab and this flow tab is set to active. The

TIBCO Flogo® Enterprise User Guide

83 | App Development

remaining tabs are inactive. You can simply click these flow tabs to switch between
the flows.

You can also move a tab to the left or right of any existing tab.

NOTE: Only opened and appended tabs can be moved to the tabs section. The
moving of tabs is applicable for the current instance only. For example, if you
navigate back to the Flow List page and return to canvas, the state of the moved tabs
is lost. Similarly, if you refresh the page, the state of the moved tabs is lost.

Note:

l If you try to open a flow tab that is already appended, then that flow
tab is set to active wherever it is present.

l Whenever you refresh the app, the order of the flow tabs remains
same.

l Caching of Flow tabs

When there are many flow tabs open, the first one is the main tab and the rest
are appended tabs. In case you have to go back to the other flows and come
back to the main flow tab again, the other appended flows remain there until
closed. At a time, only one of the tabs remain active. For example, the Flow 1
is the main flow tab and the rest are appended flow tabs.

TIBCO Flogo® Enterprise User Guide

84 | App Development

Note:

l A maximum of 10 flow tabs can be opened. You must close flows that are
not required before opening a new flow.

l You cannot switch between flow tabs while configuring the App properties
or Schema.

l During testing, the flow tabs are not accessible to user.

Deleting a Flow
You can delete a flow from the app details page.

To delete a flow:

1. On the Apps page, click the app name to open its app details page.

2. Hover over to the extreme right of the flow name that you want to delete until the
Delete flow icon displays.

3. Click the Delete flow icon.

4. On the confirmation dialog, click Delete. The selected flow is deleted.

Note: If multiple flows are attached to a trigger only the specific flow gets
deleted. If there is only one flow attached to the trigger, the trigger also gets
deleted.

Adding an Activity
After a flow is created, you must add activities to the flow.

1. From the Apps page, click the app name then click the flow name to open the flow
details page.

2. Click the Activities palette available on the right side. The categories of the activities
are displayed.

3. Click the category from which you want to add an activity. For example, to add a

TIBCO Flogo® Enterprise User Guide

85 | App Development

general activity such as Log Message, click the General category.

4. Drag the required activity to the activities area.

5. To change the order in which the activities appear in the flow, you can drag the
activity anywhere in the activities area.

6. Click the activity to open its configuration dialog and configure it.

Tip: If you want to add an activity in between two activities, you can directly
drop the activity on the branch label in between the two activities. You need not
delete the incoming and outgoing connections and reconnect them.

Searching for a Category or Activity
You can search an activity or category by entering the activity or category name in the
Search box of the Activity palette.

You can enter either the full or partial name (a string of characters appearing in the name)
of the activity or category in the Search box.

l All categories whose names either wholly match the search string or contain the
partial search string in their name get displayed.

l Only those activities in the category whose names contain the search string are
displayed in the search results. The activities in the category whose names do not
match or contain the search string are not displayed in the search results.

l For any activity whose name wholly or partially matches the search string, the
category that contains that activity is displayed. For example, if you enter "delete" in
the search box, since there are activities whose name contains the string "delete" in
Marketo, Salesforce, Zoho-CRM, all these categories are displayed, even though the
category names themselves do not contain the string "delete".

Configuring an Activity
After adding an activity, you must configure it with the required input data. Also configure
the output schema for activities that generate an output.

TIBCO Flogo® Enterprise User Guide

86 | App Development

There are three ways to configure data for an activity:

l Configuring static data where you manually type the data in the mapper for the field.
For example, type in a string that you want to output. Strings must be enclosed in
double quotes. Numbers must be typed in without quotes.

l Mapping an Activity input to the output from one of the activities preceding it in the
flow, provided that the previous activities have some output.

l Using functions. For example, the concat function to concatenate two strings.

To configure an activity:

1. On the flow details page, click an activity.

The configuration box opens beneath the activity.

2. Click each tab in the configuration box under the activity name and either manually
enter the required value, use a function, or on the Input tab, map the output from
the trigger or a preceding activity using the mapper. Refer to the Mapper section for
details on mapping.

If one or more activities are not configured properly in a flow, the error or warning
icon is displayed in its upper-right corner. Click the activity whose tab contains the

TIBCO Flogo® Enterprise User Guide

87 | App Development

error or warning. For more details, see the Errors and Warnings.

Duplicating an Activity
You can duplicate an activity within the same flow. The activity along with the existing
configuration is duplicated into a new activity. The duplicate of the original activity is
created with a default name beginning with CopyOf. You can rename the activity by clicking
the activity name. Duplicating an activity saves you time and effort in situations when you
want to create an activity with similar or the same configurations as an existing activity in
the flow. After you duplicate the activity, you can change the configuration, move it around
in the flow by dragging and dropping it to the required location or delete it from the flow.

Note: A trigger within a flow cannot be duplicated.

To duplicate an activity:

1. From the Apps page, click the app name and then click the flow name to open the
flow details page.

2. Hover over the activity that you want to copy and click .

For example, in the following screenshot, the Return activity is duplicated and added
to the flow. The duplicate activity is called CopyofReturn:

TIBCO Flogo® Enterprise User Guide

88 | App Development

3. Configure the duplicated activity as required.

Using the Loop Feature in an Activity
When creating a flow, you may want to iterate a certain piece of logic multiple times. For
example, you want to send an email about an output of a certain activity activity1 in your
flow to multiple recipients. To do so, you can add a SendMail activity following activity1 in
your flow. Then configuring the SendMail activity to iterate multiple times when activity1
outputs the desired result. Each iteration of the SendMail activity is used to send an email
to one recipient.

Keep the following in mind when using the Loop feature:

l Iteration is supported for an activity only. You configure the iteration details on the
Loop tab of the activity.

l The Loop tab is unavailable for certain activities that do not require iteration. For
example, the Return activity. Its purpose is to exit the flow execution and return data
to the trigger.

l You cannot iterate through a trigger.

l For apps that were created in Project Flogo and imported into Flogo Enterprise, the
key type on the Loop tab is converted from the string to the relevant data type of

TIBCO Flogo® Enterprise User Guide

89 | App Development

value in Flogo Enterprise.

To configure multiple iterations of an Activity:

1. Click the Activity in the flow to expose its configuration tabs.

2. Click the Loop tab.

3. Select a type of iteration from the Type menu.

The default type is None, which means the Activity does not iterate.

Iterate

This type allows you to enter a number that represents the number of times you
would like the Activity to iterate without considering any condition for iterating.

Click iterator to open the mapper to its right. You can either enter a number
(integer) to specify the number of times the activity must iterate or you can set an
expression for the loop by either entering the expression manually or mapping the
output from the preceding activities or triggers. You can also use the available
functions along with the output from previous activities and/or manually entered
values to form the loop expression. The loop expression determines the number of
times the activity iterates.

Warning: The loop expression must either return a number or an array.
The array can be of any data type. If your loop expression returns a
number, for example 3, your activity iterates three times. If your loop
expression returns an array, the activity iterates as many times as the
length of the array. You can hover over the expression after entering the
expression to make sure that the expression is valid. If the expression is
not valid, a validation error is displayed.

If you select this type, the Input tab of the Activity displays the $iteration scope in
the output area of the mapper. $iteration contains three properties, key, index,
and value. index is used to hold the index of the current iteration. The value holds
the value that exists at the index location of the current iteration if the loop
expression evaluates to an array. If the loop expression evaluates an array of objects,
value also displays the schema of the object. If the loop expression evaluates to a
number, the value contains the same integer as the index for each iteration. To
examine the result of each iteration of the Activity, you can map the index and value
to the message input property in the LogMessage Activity and print them. The key is
used to hold the element name when configuring a condition if the value evaluates
to an object. However, you can map only to the output of the last iteration if you did

TIBCO Flogo® Enterprise User Guide

90 | App Development

not set the Accumulate Output checkbox to Yes. See the Accumulating the Activity
Output for All Iterations section for more details on this.

Repeat while true

Refer to https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-
dev/Flow-Design-Concepts/loops.sample for an example of how to use this feature.

Select this type if you want to set up a condition for the iteration. This acts like the
do-while loop where the first iteration is run without checking the condition and the
subsequent iterations exit the loop or continue after checking the condition. You set
the condition under which you want the activity to iterate by setting the condition
element. The condition gets evaluated before the next iteration of the activity. The
activity iterates only if the condition evaluates to true. It stops iterating once the
condition evaluates to false. Click condition, and manually enter an expression for
the condition. For example, $iteration[index] < 5.

Keep in mind that the index for the Repeat while true iteration begins at zero and
iterates n+1 times. If you enter 4 as the iterator value, it runs as the following
iterations: 0,1,2,3,4.

By default, the results of only the final iteration are saved and available. All previous
iteration results are ignored. If you would like the results of all iterations to be stored
and available, set Accumulate to Yes.

You have the option to set a time interval (in ms) between each iteration, which can
help you manage the throughput of your machine. To spread the iterations out, set
the Delay element. The default delay time is 0 ms, which results in no delay.

Result
After you enter the loop expression, the loop icon appears on the top-right corner of the
activity.

Accumulating the Activity Output for All Iterations
When using the Loop tab to iterate over an Activity, you have the option to specify if you
want the Loop to output the cumulative data from all iterations. You can do so by setting
the Accumulate checkbox to Yes.

When the Accumulate checkbox is set to Yes, the activity accumulates the data from each
iteration and outputs that collective data as an array of objects. Here, each object contains
the output from the corresponding iteration. The accumulated results are displayed as an
array in the downstream activities in the mapper and be available for mapping.

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts/loops.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts/loops.sample

TIBCO Flogo® Enterprise User Guide

91 | App Development

When mapping to an element within an object in the output array of the activity, you must
provide the index of the element to which you want to map. For instance, when you click a
property within the object under responseBody, the expression displayed in the mapper is
$activity [<activity-name>] [<<index>>].responseBody.<property-name>. Replace
<<index>> with the actual index of the object to whose property that you want to map.

When the Accumulate checkbox is not selected, the output of the Loop displays an object
that contains only the data from the last iteration. Data from all previous iterations is
ignored. When mapping to an element in the output object of the activity, when you click a
property within the object under responseBody, the expression displayed in the mapper is
$activity [<activity-name>].responseBody.<property-name>.

The Output tab of the activity changes based on your selection of the Accumulate
checkbox. The parent element (the name of the activity and the data type of the iteration
output) is displayed regardless of your selection. If you set the Accumulate checkbox to
Yes, the data type of the parent element is an array of objects. If you did not select the
checkbox, the data type of the parent element is an object. The Output tab contents are
also available in the mapper allowing for the downstream activities to map to them.

Accessing the Activity Outputs in Repeat While True Loop
This feature is useful when an activity needs to use the loop feature to do batch processing
or fetch multiple records by running the activity multiple times. With each iteration of the
activity, the output is available for mapping to the activity input.

This feature is available in all activities that generate an output (have an Output tab).

To use this feature:

1. On the Loop tab, set the Type to Repeat while true.

2. Set the Access output in input mappings to Yes.

This makes the output of the activity iteration available in the Upstream Output for
mapping. Now you can map your output as a next input parameter.

3. Enter a condition in its text box. The activity evaluates this condition before each
run. If the condition evaluates to true the activity runs.

TIBCO Flogo® Enterprise User Guide

92 | App Development

Note: The output is only available in subsequent iterations after the first
iteration. Since the activity output is not available for the first iteration, your
condition must perform a check to see if it is the first iteration of the activity.

For example, use $iteration[index]> 0 && isdefined($activity
[SFQuery].output.locator) to begin your condition. The $iteration[index]>
0 checks to make sure that it is not the first run of the activity. The isdefined
($activity[SFQuery].output.locator) function checks whether the output
field exists.

Using the Retry On Error Feature in an Activity
Using the Retry on Error tab, you can set the number of times the flow tries to run the
activity on encountering an error that can be fixed on retrial. The errors such as waiting for
a server to start, intermittent connection failures, or connection timeout can be fixed on
retrial.

You can set the count and the interval in one of the following ways:

l Manually type the value in the mapper

l Map the value from the previous Activity

l Select a function from the list of functions

l Map app property to override the values

Field Description

Count The number of times the flow should attempt to run the activity. This value
must be an integer.

Interval

(in
millisecond)

The time to wait in between each attempt to run the activity. This value
must be an integer.

Note: The Count and Interval fields are mandatory. By default, the values are
set to 0.

TIBCO Flogo® Enterprise User Guide

93 | App Development

Deleting an Activity
You can delete an activity in a flow from the flow details page.

To delete an activity:

1. On the Apps page, click the app name then click the flow name to open the flow
details page.

2. Hover over the activity that you want to delete and click icon.

Triggers
Triggers are used to activate flows. This section contains information on creating and
managing triggers in your app.

Creating a Trigger without a Flow
You have the option to either create a trigger as a part of the process of creating a flow or
you can create a trigger without creating a flow.

Refer to the section, Creating a Flow, to create a trigger during the flow creation process.

To create a trigger without creating a flow, follow the steps below:

Procedure
1. On the app details page, click Create.

The Add Triggers and Flows dialog opens.

2. Under Create new, click Trigger to select it.

The triggers catalog opens to the right.

3. Select the trigger that you want to create in the triggers catalog.

The trigger gets created with a placeholder for a flow attached to it.

TIBCO Flogo® Enterprise User Guide

94 | App Development

Deleting a Trigger
You can delete a trigger from the app details page by hovering over the trigger and clicking
Delete.

Synchronizing a Schema Between Trigger and Flow
If you make any changes to the schema that you entered when creating the trigger, you
must explicitly save any changes you make, then propagate the changes to the flow input
and flow output. This is done by synchronizing the schemas.

To synchronize the schema between the trigger and the flow:

Procedure
1. Click the trigger to open its configuration details.

2. Make your changes and click Save. If you do not click Save, a warning message is
displayed asking you to first save your changes before the schema can be
synchronized.

3. Click Sync on the top-right corner.

The trigger output schema is copied to flow inputs and the trigger reply schema is
copied to flow outputs.

Data Mappings
Flogo Enterprise provides a graphical data mapper to map data between the activities
within a flow, and between the trigger and the flows attached to the trigger within an app.
Use the mapper to enter the flow or Activity input values manually or map the input
schema elements to output data of the same data type from preceding activities, triggers,
or the flow itself.

Data Mappings Interface
An Activity has access to the output data from the trigger to which the flow is attached. It
also has access to the output from any of the activities that precede it in the same flow

TIBCO Flogo® Enterprise User Guide

95 | App Development

provided that the trigger or Activity has an output. This data is displayed in a tree structure
under Available data in the mapper. The input schema for the Activity is displayed in the
Activity inputs pane to the right of the Available data pane. You can map data coming
from the upstream output to the input fields of the Activity. Also, each Activity has access
to the input fields of the flow to which the Activity belongs. You can enter the flow input
schema on the Input Settings tab of the Flow Inputs and Outputs tab.

When you click an activity or trigger on the flow details page, the configuration page for
that activity or trigger opens. The following image is an example of the configuration page
that opens when you click the InvokeRESTService activity.

The left-most pane displays the tabs for the configuration fields for that Activity or trigger.
Each Activity or trigger has one or more of the following tabs:

l Settings

For triggers, this tab is displayed as Trigger Settings. This tab shows the Activity
settings, trigger settings, or handler settings.

o Activity settings are specific to the Activity.

o Trigger settings are specific to the particular trigger.

o Handler settings apply to a specific flow attached to the trigger. Each flow
attached to the trigger can have its own handler settings.

l Input Settings

On this tab, you can enter the schema for the flow or Activity input.

l Input

This tab is displayed for activities and shows the schema that you entered on the
Input Settings tab in a tree format. You can manually enter values for any elements
in the input schema or map any input element to the output from previous activities
or triggers on this tab.

TIBCO Flogo® Enterprise User Guide

96 | App Development

l Output Settings

On this tab, you can enter the schema for the flow or Activity output.

l Output

This tab displays the schema that you entered on the Output Settings tab in a tree
format. The schema displayed on this tab is set to read-only as it is for informational
purposes only.

l Map to Flow Inputs

The settings on this tab must be configured only if your trigger has an output, for
example, in the REST or GraphQL triggers. You manually enter or map the elements
from the trigger output (schema set on Output Settings tab) to the flow input
elements (schema entered on the Input Settings tab of the Flow Inputs & Outputs
tab). This allows the output from the trigger to become the input to the flow.

l Reply Settings

This tab is applicable only to triggers that send replies to the caller, such as the REST
or GraphQL triggers. You enter the trigger reply schema on this tab.

l Map from Flow Outputs

This tab is specific to triggers that need to send a reply to the caller, such as the
REST or GraphQL triggers. You manually enter or map the elements from the output
of the flow (schema set on Reply Settings tab) to the flow output elements (schema
entered on the Output Settings tab of the Flow Inputs & Outputs). This allows the
output of the flow to become the reply that the trigger sends back to the request
that it receives.

l Loop

On this tab, enter the iteration details for activities that you want to iterate.

When mapping, you can use data from the following sources:

l Literal values - literal values can be strings or numeric values. These values can be
either manually typed in or mapped to a value from the output of the trigger or a
preceding activity in the same flow. To specify a string, enclose the string in double
quotes. To specify a number, type the number in the text box for the field. Constants
and literal values can also be used as input to functions and expressions.

l An input element that is directly mapped to an element of the same type in the
Available data.

l Mapping using functions - the mapper provides commonly used functions that you

TIBCO Flogo® Enterprise User Guide

97 | App Development

can use with the data to be mapped. The functions are categorized into groups. Click
a function to use its output in your input data. When you use a function, placeholders
are displayed for the function arguments. Click a placeholder argument within the
function and drag an element from the Available data to replace the placeholder.
Functions are grouped into logical categories. For more details, see Using Functions.

l Expressions - you can enter an expression whose evaluated value is mapped to the
input field. For more details, see Using Expressions.

The error and warning icons are displayed on the Activity inputs pane, on the
configuration fields in the left-most pane, and the activity tile. In case of errors in mapping
(such as empty mandatory fields and incorrect mapping at activity or trigger level), an error
icon is displayed. A warning icon is displayed if your changes are not saved or
discarded, input and output are not mapped in triggers, or mappings are removed for
mandatory fields.

Mapping Data from the Data Mappings Interface
In the following example, in the Activity inputs pane, clicking the arrow expands the

object pathParams. You can select the input (in this case, id) that you want to map. A
section with a text editor opens on the right side in the mapper.

To map data coming from the upstream output to the input fields of the Activity:

In the Available data pane, click the arrow to view the fields. You can map an element

from the Activity inputs pane to an element in the Available data pane using one of the
following methods:

l Drag the element from Available data and drop it on the input in the Activity inputs

TIBCO Flogo® Enterprise User Guide

98 | App Development

pane. The mapping is displayed in the text editor.

l Click the element from the Activity inputs pane. The text editor opens on the right
side of the mapper. Drag the element from the Available data pane and drop it in
the text editor.

l Click the element from the Activity inputs pane and double-click the element in the
Available data pane to map it to the input.

A connection line appears to show the mapping between the Available data and the
Activity inputs.

To add functions in the mapper, refer to the Using Functions section.

Connection Lines

Connection lines show the mapping between the data and the input. These lines appear
when you map an element from the Available data with an element from the Activity
inputs. The lines also appear for mapped arguments. When the mapped element is
selected in the Activity inputs pane, the connection line is blue. Otherwise, it is gray. The
numbers at the ends of a connection line indicate the total number of mapped elements
for a particular element.

The following screenshot shows the connection lines and the total count of mappings for
each element.

TIBCO Flogo® Enterprise User Guide

99 | App Development

Errors in Mapping

In the mapper, you can see the total count of errors and warnings each in the mapping
next to the parent object in the Activity inputs pane.

In the following example, the parent object input has a total of two errors in mapping.

Expanding the input object shows that the array cakes is mapped incorrectly. This also
shows that cakes contains one element with incorrect mapping.

TIBCO Flogo® Enterprise User Guide

100 | App Development

Expanding the array cakes shows that the array batter under the object batters has an
error in mapping.

Note: The errors in mappings are also observed when the property in the app
properties dialog is edited, moved from a group to another or from a group to
top level as a standalone property. A warning message regarding the same pops
up on the screen when you edit any properties.

Scopes in Data Mappings
The Available data pane in the mapper displays the output data from preceding activities,
triggers, and flow inputs. This area groups the output elements based on a scope. A scope
represents a boundary in the Available data within which an input element can be
mapped. For example, when mapping an input element to an element from the output of a
trigger, the scope of the input element is represented in Available data as $trigger. The
following scopes are currently supported by the mapper.

TIBCO Flogo® Enterprise User Guide

101 | App Development

Scope
Name

Used to... Available in...

$trigger Map flow input to
trigger output.

Trigger (Map to Flow Inputs tab) to map flow inputs
to trigger outputs.

$flow Map flow output to
trigger reply.

l Trigger (Map to Flow Outputs tab) to map flow
output to trigger reply.

l Activities (Input tab) to map Activity input to
flow input.

l Return Activity (Map Output tab) to map flow
output to flow input.

$Activity.
[Activity-
name]

Map input elements
of the Activity to
elements from the
output of previous
activities.

$activity represents the scope of an activity.
[activity-name] indicates the activity whose scope
that you are defining. Each preceding activity has its
own scope in the mapper.

$iteration Keeps record of the
current iteration and
is available only
when the iterator is
enabled for an
activity on the Loop
tab.

Input tab of an Activity that has Loop enabled. This
tab is displayed only when the Loop for the Activity is
enabled. The following elements are displayed under
$iteration:

l key - This element represents the iteration
index. Thus, it is always of type number. For
example, if the Loop expression is set to an
array, the key element represents the array
index of the current iteration.

l value - The value can be of any type depending
on what is being iterated. For example, if you
are iterating through an array of strings, the
value is of type string.

$property
[property-
name]

Map to app
properties that are
defined in the app.

For any app that has app properties defined, this
scope is available for mapping from any activity that
allows mapping. Even the app properties from the
connection are available for mapping under this

TIBCO Flogo® Enterprise User Guide

102 | App Development

Scope
Name

Used to... Available in...

scope.

All the mapped configurations can be pre-checked
using a flow tester or by creating a pre-check flow.

$loop Map elements within
an array.

$loop is prefixed to the element name when mapping
an element that is within an array. The scope of $loop
is the current array that you are iterating through.

$flowctx Map the flow context
details to the current
flow.

Input tab of every activity. The scope provides flow
context details that can be mapped to any activity
that allows mapping. Using this scope, the unique
parameter like FlowId, Flowname, ParentFlowId,
ParentFlowName, SpanId, TraceId can be accessed
in the flow and subflow.

Here:

l The ParentFlowId and ParentFlowName is the ID
and name of the flow that is invoking the
current flow.

l The TraceId is the unique ID of a single request,
job, or an action initiated by the user.

l The SpanId is the unique ID of the activity

Note: This scope is only available for the flow
configuration and not for the trigger configuration.

Data Types

Supported data types
The following data types are supported:

TIBCO Flogo® Enterprise User Guide

103 | App Development

l BIT

l CHAR

l DECIMAL

l INTEGER

l TEXT

l NUMERIC

l REAL

l SMALLINT

l DATE

l TIMESTAMP

l MONEY

l ENUM

l JSON

l XML

l TINYINT

l VARCHAR

l SMALL MONEY

Unsupported data types
The following data types are not supported:

l BIGINT

l BINARY

Reserved Keywords to be Avoided in Schemas
Flogo uses some words as keywords or reserved names. Do not use such words in your
schema. When you import an app, if the schema entered on the Input or Output tab of an

TIBCO Flogo® Enterprise User Guide

104 | App Development

Activity or trigger contains reserved keywords, after the app is imported, such attributes
are treated as special characters and might cause runtime errors.

Avoid using the keywords listed below in your schema:

l break

l case

l catch

l class

l const

l continue

l debugger

l default

l delete

l do

l else

l enum

l export

l extends

l false

l finally

l for

l function

l get

l if

l import

l in

l index

l instanceof

TIBCO Flogo® Enterprise User Guide

105 | App Development

l new

l null

l return

l set

l super

l switch

l this

l Generate

l true

l try

l typeof

l var

l void

l while

l with

Mapping Different Types of Data
The mapper opens when you click any element in the input schema tree on an Activity
configuration tab.

You can map the following elements:

l A single element from the input to another single element in the output.

Note: If the single element comes from an array in the output, then you
must manually add the array index to use. For example,
$flow.body.Account.Address[0] city.

l A standalone object (an object that is not in an array).

l An array of primitive data type to another array of primitive data type.

TIBCO Flogo® Enterprise User Guide

106 | App Development

l An array of non-primitive data types (object data type or a nested array) to another
array of the same non-primitive data type.

Keep the following in mind when using the mapper:

l Make sure that you map all elements that are marked as required (have a red asterisk
against them), whether they are standalone primitive types, within an object, or
within an array. When mapping identical objects or arrays, such elements get
automatically mapped, but if you are mapping non-identical objects or arrays, be
sure to map the elements marked as required individually.

l The in and new attributes are treated as special characters if you use them in the
schema that you enter in the REST Activity or trigger. For example, mappings such as
$flow.body ["in"] and $flow.body ["new"] are not supported. If an imported app
contains these attributes after the app is imported into Flogo. It results in runtime
errors.

l Use of the anonymous array is not supported on the Flow Input & Output tab and
the Return Activity configurations. To map to an anonymous array, you must create
a top-level object or a root element and render that.

l You cannot use a scope (identified with a beginning $ sign) in an expression, for
example, renderJSON($flow, true). You can use an object or element under it, for
example, renderJSON($flow.input, true).

l You can only map one element at a time.

TIBCO Flogo® Enterprise User Guide

107 | App Development

Note: If the output element names contain special characters other than an
underscore (_), they appear in bracket notation in the mapping text box.

In the following example, name under Available data does not contain any
special characters. Hence it is displayed in dot notation.

In the following example, name 1 contains a space. Hence it appears in the
bracket notation.

Mapping an Enum value
You can map values of the Enum data type to the Activity Inputs element directly by
selecting the values from the Use available values dropdown.

This feature is available for all Activities and Triggers that have a schema option.

TIBCO Flogo® Enterprise User Guide

108 | App Development

Tip: Always use the enum keyword to identify the constant values.

Mapping a Single Element of Primitive Data Type
You can map a single element of a primitive data type to a single element of the same type
in the output schema under Available data.

l Drag the element from the Available data and drop it on the destination element
that you want to map in the Activity inputs pane.

In the following example, drag and drop FlowName (source) on message
(destination) to map it. Alternatively, click message. Drag and drop FlowName in the
text editor, or double-click FlowName.

TIBCO Flogo® Enterprise User Guide

109 | App Development

Mapping an Object
Standalone objects (objects not within an array) whose property data types match can be
mapped at the root level. If the destination object is identical to the source object under
Available data (both, the names of the properties as well as their data types match
exactly), you need not match the elements in the object individually. If the property names
are not identical, then you must map each property individually within the object.

For example, in the image below the Person objects are identical. So, you can map Person
to Person. You need not map name and age individually.

In the following image, the data types match but the property names do not match. In
such a case, you must map each property individually in addition to mapping the object
root.

TIBCO Flogo® Enterprise User Guide

110 | App Development

Mapping Arrays
When mapping arrays, you must first map their array root before you can map their child
elements.

The following mappings are supported when mapping arrays.

l Mapping arrays of primitive data types

l Mapping an array of objects

l Mapping nested arrays

Mapping an Array of Primitive Data Types
To map arrays of the same primitive data type, you only need to map the array root. You
need not map the array elements.

Here is an example of mapping arrays of primitive data types:

The array names need not to match, but their data types must match. In Available data,
$flow points to numArray which is the scope for numArray in the input.

When you do not have a matching data type array in your output

If you want to map an array of primitive data types, but you do not have an array of the
same data type in your Available data, you can create an array using the array.create
(item) function.

TIBCO Flogo® Enterprise User Guide

111 | App Development

Note: array.create(item) can only be used to create an array of primitive
data types. You cannot use it to create an array of objects.

To do so:

1. Click the array for which you want to do the mapping in the input schema. The
mapper opens to its right.

2. Click Functions and click array to expand it.

3. Click create(item). It appears in the text editor.

4. Replace item with the output element to create the array.

In the following image, to map strArray, you would need to create an array since
there is no array of strings under Available data. So, you map strArray by creating
an array. The array.create() function accepts any of the following: a hardcoded
string, an element from Available data, an expression, or a function as shown below
as long as they all evaluate to the appropriate data type.

Mapping Complex Arrays
Complex arrays are arrays of objects that can optionally contain nested arrays. You can
map these arrays using the 3 available options - Configure with Items, Configure with
Source and Configure with JSON.

For examples, refer to https://github.com/TIBCOSoftware/tci-
flogo/tree/master/samples/app-dev/Mapping-Arrays/array.forEach.sample.

When you use the Configure with Items option, you define an implicit scope consisting of
everything available in the Available data. It is equivalent to creating an implicit array with

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/array.forEach.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/array.forEach.sample

TIBCO Flogo® Enterprise User Guide

112 | App Development

a single object element consisting of everything in the Available data. Hence, the resulting
length of the array is always one element.

To create a confined scope within the Available data, use the Configure with Source
option. When using this option, you must map 3 fields - Source, Loop name and the Filter
by. Here, the Loop name gets auto populated. When mapping identical arrays, the source
name gets inserted in the Select Source field by default.

The Source defines the scope within the Available data. Simply put, the input object or
array can only be mapped to elements in the Available data that fall within the boundary
indicated by its scope.

The Loop name is a scoping variable given to the scope that you have defined in the first
argument. By default, the scoping variable name is the same as the input element name
for which you are defining the scope. By doing so, the mapper associates the input object
to its scope by the scoping variable. Once there is a scoping variable for the scope, the
mapper uses that scoping variable to refer to the scope in future mappings. You can edit
the scoping variable to any string that might be more meaningful to you. The scoping
variable is particularly useful when mapping the child elements in nested arrays.

The Filter by field is optional. When iterating through an upstream output array, you can
enter a filter to specify a particular condition for mapping as the Filter by field. When using
this field, you must enter the scoping variable in the loop name field. Only array elements
that match the filter get mapped. For instance, if you are iterating through an array,
array1, in the upstream output with a filter $loop.name=="Jane" mapped in the Filter by
field, if array1 has 10 elements and only four out of them match the condition of the filter,
only those four elements are mapped to the input array and the remaining six are skipped.
This results in the size of the input array being only four elements, even though array1 has
10 elements. See the section, Filtering Array Elements to Map Based on a Condition for
more details.

Note: If you have used the array.forEach() in a legacy app, to update your app
with the current changes, delete the old mapping and remap the elements. A
scoping variable is now included in the Loop name field. For example, if the old
mapping is: array.forEach($flow.body.Book), after remapping,
$flow.body.Book is added to the Source field, where "Book" is added in the
Loop name field, which is also the scoping variable.

TIBCO Flogo® Enterprise User Guide

113 | App Development

Note: If you use a function as a source array in the source field, the array
element schema cannot be determined and a design-time validation error is
returned. It is recommended that you use the mapper to define the function
output schema and then use it in the source field.

Mapping of unmapped arrays
With the support of first class for.each() in the Mapper activity, you can map elements to an
unmapped array in 3 different ways.

l Using the Configure with Source option

For mapping, double click the element from Available data array. You can also drag
the element of the Available data array to the element of the Activity inputs array.

Note: To change the element that is already mapped, either drag another
element or select the element from the source array.

TIBCO Flogo® Enterprise User Guide

114 | App Development

l Using the Configure with Items option

You can add the elements to your array manually.

l Using the Configure with JSON option

You can map the empty array by literal value mapping or type in the required
expression.

Note:
o Reset option can be used to delete all the items from the array and

set the array to default form.

o Clear mappings can be used to remove all the mappings on the
item level.

o For an empty for.each() array, you can clear the mappings for child
items only.

Add Items to Array
Now, when there is need to map more than one array object in same array, you can add
items to the array. Each item can be mapped with different values.

TIBCO Flogo® Enterprise User Guide

115 | App Development

For example, If one item is mapped with the flow input, the other can be mapped with
literal values.

You can add an item to array:

1. For an unmapped array

You can add an item in an unmapped array.

Note: Use the Configure with Items option for adding a single item.

2. For empty for.each() array

You can also add an item to an empty For.each() array.

TIBCO Flogo® Enterprise User Guide

116 | App Development

Note:
l For all pre-existing array mappings with empty array.foreach() the

properties are displayed as array item and the array level mapping is
not editable.

l On adding empty array.foreach(), input mapper at array level turns
to non editable.

l Elements under existing array mapping which has array.foreach()
without source are wrapped in an item object.

3. Primitive data type array

An item can even be added to an empty primitive data type array.

Note:
l Add item option is not available for an array of type 'any'.

l On importing an app with inline array mapping, array elements are
wrapped in an item object.

l On adding items under an array, mapping cannot be done at the item-level

TIBCO Flogo® Enterprise User Guide

117 | App Development

Mapping Identical Arrays of Objects
When mapping an array of objects in the input to an identical array of objects (matching
property names and data types) in Available data, keep the following in mind:

l Map the array at the root level by either dragging or double clicking the Available
Source array. The Configure with Source screen displays the array scope and the
scoping variable. You need not map the array object properties individually if you
want all properties to be mapped and if the object property names are identical. The
properties are automatically mapped.

l If you do not want all the properties within the object to be mapped or if the names
of object properties do not match, you must map the object properties individually
too after mapping the root. If you do not do the child mapping individually, the
mismatched properties in the objects remain unmapped if the properties are not
marked as required (marked with a red asterisk). If such a property is marked as
required, then you see a warning.

l The size of the input array is determined by the size of the array in Available data to
which you are mapping.

To map identical arrays of objects:

l Drag the array you want to map from Available data (objArray in the image below)
and drop it on the array in the Flow outputs pane (objArray1 in the image below).
The Configure with Source screen appears in the text box. If the names of all the
child elements match, the child elements get mapped automatically. You need not
match each child element individually. In this example, none of the child names
match, so you would need to do the individual mapping otherwise none of the
elements get mapped.

The "objArray1" in the Loop name is the scoping variable that constitutes the scope

TIBCO Flogo® Enterprise User Guide

118 | App Development

of the current input array. Basically, this means that you can map any element in
objArray1 with an element of the same data type in flow.objArray in the Available
data. So, you are defining the scope of objArray1 to be all the elements within
objArray.

Mapping Array Child Elements to Non-Array Elements or to an
Element in a Non-Matching Array
There may be situations when you want to map an element within an array of objects to
an output element that is not in an array or belongs to a non-matching array in the
Available data pane. In such a situation, you must create an array with a single element.
You do this by using the Configure with JSON option. When you use this option, it creates
an array with an item having a single object element. The single object element treats
everything in the Available data as the children of the newly created array object element.
This allows you to map to any of the Available data elements as they are now treated as if
they were within an array.

Important: When using the Configure with Items option be sure to map the
child elements individually. Otherwise, no child elements get mapped. Only
elements that you have specifically mapped acquire the mapped values.

Note: Keep in mind that in this scenario, the resulting length of the array is
always one element.

Mapping an array child element to a non-array element is a two-step process:

1. Click the input array root (objArray in the example below) and select the Configure
with Items option.

This creates an array of objects with a single element in it. The element contains
everything under Available data, hence allowing you to map to any element in the
Available data pane. The element you are mapping to can be a non-array element or
reside within a nested array.

TIBCO Flogo® Enterprise User Guide

119 | App Development

2. Map each element in the input array individually to any element of the same data
type under Available data.

To map an element inside an array, provide the index of the array. To map an
element in a nested array, provide the index for both the parent and the nested array
as shown.

Mapping Nested Arrays
Before you map a nested array, you must map its parent root. The scoping variable is
particularly useful when mapping the child elements in nested arrays.

The example below is that of a nested array, where Address is a nested array whose parent
is Customer:

TIBCO Flogo® Enterprise User Guide

120 | App Development

To map Address:

1. Map its parent, Customer. When you map Customer, you automatically set the scope
of Customer.

In the image, Customer is mapped to MyCustomer. In the Select Source field, the
$flow.MyCustomer is the source array (from which Customer gets the data) that you
are mapping to. This defines the scope (boundary) in the Available data within
which you can map Customer. So, this is the scope of Customer.

The Loop name field, "Customer", is the scoping variable given to this scope - the
loop here refers to the iteration of Customer. By default, the scoping variable has the
same name as the loop for which the scope is being defined (in this case Customer).
You can edit the scoping variable to any string that might be more meaningful to
you. This is equivalent to saying that mapping of a child element of Customer can
happen only to children of MyCustomer in Available data.

2. Map Address. Now the scope of Address gets defined.

TIBCO Flogo® Enterprise User Guide

121 | App Development

Notice the mapping for Address:

l contains the parent scope as well. The parent scope is referred to by its
scoping variable, "Customer". Remember that the scope of Customer is already
set when you mapping Customer to MyCustomer in the first step, so we can
now simply refer to the parent scope by its scoping variable, "Customer".

l $loop[Customer] refers to the iteration of the MyCustomer array. $loop
represents the memory address of the MyCustomer (the scope for Customer)
in Available data.

l $loop[Customer].MyAddress1 is the scope of Address. This scope is denoted
by the scoping variable "Address", which is the second variable in this
mapping. Since Address is a nested array of Customer, when you map to
Address or its child elements, its mapping includes the scope of Customer as
well.

Mapping Child Elements within a Nested Array Scope
A child element in the input array can be directly mapped to a child element of the same
data type within the array scope. As mapping is done within the nested array scope, you
need not explicitly state the scoping variable for the nested array scope. The mapping
appears as $loop.<element>.

To map a nested array child element:

1. Map the parent of the nested array.

2. Map the nested array itself.

3. Map the nested array child elements if the names are not identical or if you do not
want to map all elements in the nested array.

TIBCO Flogo® Enterprise User Guide

122 | App Development

In the following example, since street is within the scope of address1, street1 is
directly mapped to street. $loop implicitly points to address which is the scope for
address1 in the input schema.

Mapping a Nested Array Child Element Outside the Nested Array
Scope
To map a nested array child element outside the nested array scope but within its parent
array, you must use the scoping variable of the parent array.

1. Map the parent array root.

2. Map the nested array root.

3. Map the nested array child element.

TIBCO Flogo® Enterprise User Guide

123 | App Development

In the image below, $loop implicitly points to address. In addition, the mapping also
explicitly specifies the scope of the parent, "objArray1". This is because zip1 is
mapped to code which is outside the scope of address1, but within the scope of its
parent array, objArray1.

Mapping an Element from a Parent Array to a Child Element in a
Nested Array within the Parent
When mapping a primitive data type child element of the parent array to a child element of
its nested array, the scope in the mapping is implicitly set to the scope of the parent array.
In addition, you must provide the index of the nested array element whose variable you
want to map to.

1. Map the parent array root.

2. Map the nested array root.

3. Map the parent array element.

TIBCO Flogo® Enterprise User Guide

124 | App Development

In this example, $loop is implicitly set to the scope of Customer which is
MyCustomer. Notice that you must provide the index of the object in the MyAddress
array whose MyCountry element you want to map to.

Filtering Array Elements to Map Based on a Condition
When mapping arrays of objects, you can filter the objects that are mapped by specifying a
filter in the Filter by field when Configure with Source option is selected.

Specify the filter in the Filter by field. The Select Source value is the scope of the element
that is mapped and the Loop name is the scoping variable.

To add the filter in the Filter by field, the Source name and the Loop name must be
specified.

Here's an example that contains a filter in the Filter by field:

The above example indicates the following:

l objArray1 is being mapped to objArray in Available data

TIBCO Flogo® Enterprise User Guide

125 | App Development

l When iterating through objArray in the Available data, only the array elements in
objArray whose child element, user is "Jane" get mapped. If user is not equal to
"Jane" the iteration for that object is skipped and objArray1 does not acquire that
object.

l $loop here specifies the scope of the current loop that is being iterated, in this case
objArray, whose scope is objArray1 in Available data.

Mapping JSON Data with the json.path() Function
Use the json.path() function to query an element within JSON data. The JSON data being
queried can come from the output of an Activity or trigger. In the mapper, you can use the
json.path() function by itself when providing value to an input parameter or use it within
expressions to refer to data within a JSON structure.

This function takes two arguments:

l the search path to the element within the JSON data

l the JSON object that contains the JSON data you are searching
You can specify a filter to be used by the json.path() function to narrow down the results
returned by the json.path() function.

In order to reach the desired node or a specific field in the node in the JSON data, you
must follow a specific notation defined in the JsonPath specification. Refer to
https://github.com/oliveagle/jsonpath for details on the notation to be used and specific
examples of using the notation.

Consider the example below which is available for you to experiment with at
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-
dev/json.path.sample.

Examples

The following is an example of how to use the function:

json.path("$.store.book[?(@.price > 10)].title", $flow.body)

In this example, $.store.book[?(@.price > 10)].title is the query path. [?(@.price >
10)] is a filter used to narrow down the query results. $flow.body is the JSON object
against which the query is run (in this case the JSON object comes from the flow input,

https://github.com/OLIVEAGLE/JSONPATH
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/json.path.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays/json.path.sample

TIBCO Flogo® Enterprise User Guide

126 | App Development

hence $flow). So, this query searches the books array within the $flow.body JSON object
and returns the title of the books whose price is more than $10.

Consider the following sample JSON data:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

{
"store": {

"book": [
{
"category": "reference",
"author": "Nigel Rees",
"title": "Sayings of the Century",
"Availability": [

{
"Country": "India",
"Quantity": 4000,
"Address": [
{

"city": "houston"
}

]
}

],
"price": 8.95

},
{
"category": "fiction2",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"Availability": [

{
"Country": "USA",
"Quantity": 5000,
"Address": [
{

"city": "sugarland"
}

]
}

],
"price": 12.99

TIBCO Flogo® Enterprise User Guide

127 | App Development

},
{
"category": "fiction3",
"author": "Herman Melville",
"title": "Moby Dick",
"isbn": "0-553-21311-3",
"Availability": [

{
"Country": "UK",
"Quantity": 7000,
"Address": [
{

"city": "stafford"
}

]
}

],
"price": 8.99

},
{
"category": "fiction4",
"author": "J. R. R. Tolkien",
"title": "The Lord of the Rings",
"isbn": "0-395-19395-8",
"Availability": [

{
"Country": "Australia",
"Quantity": 2000,
"Address": [
{

"city": "aaaaa"
}

]
}

],
"price": 22.99

}
],
"bicycle": {

"color": "red",
"price": 19.95

}
},
"expensive": 10

}

TIBCO Flogo® Enterprise User Guide

128 | App Development

The following are examples of some JSON query paths that search the JSON data above
and return the category of the book. In the examples below, the second input parameter
for this function, data is the name of the file that contains the above JSON code.

l json.path("$.store.book[?(@.Availability[?(@.Quantity >=
6000)])].category", $flow.data)

In the example above, the query scope is the entire book array. The filter used to
query this array is the condition, [?(@.Availability[?(@.Quantity >= 6000)])].
Only the category values for the book elements that have Quantity >= 6000 is
returned. So, this query returns fiction3.

l json.path("$.store.book[?(@.author == 'Nigel Rees')].category",
$flow.data)

returns reference since it uses the filter [?(@.author == 'Nigel Rees')] and the
only book authored by Nigel Rees in this array of books has its category as
reference.

l json.path("$.store.book[?(@.Availability[?(@.Address[?(@.city ==
'sugarland')])])].category", $flow.data)

This query is an example of a nested filter where [?(@.Availability[?(@.Address[?
(@.city == 'sugarland')])])] is the outer filter and the nested filter within it is [?
(@.city == 'sugarland')]. It returns reference.

l json.path("$.store.book[0].category", $flow.data)

This query does not use a filter. It returns reference, since your query scope is
limited to the book[0] element only within the store object and your request is to
return the value of category.

Constructing the any, param, or object Data Type in
Mapper
When mapping values for data type any or object, you must manually enter the values in
the mapper text box.
Below are some examples of how to construct the data type any:

Assigning a literal value to data type any

To assign literal values to the any data type, you click on the element of type any, then
simply enter the values you want to assign to it in the mapper text box. For example, to
assign the string Hello! enter:

TIBCO Flogo® Enterprise User Guide

129 | App Development

"Hello!"

Assigning an object value to an object or element of data type any

Here is an example of how to assign literal values to an object:

{
"Author": "Martin Fowler",
"ISBN": "0-321-12742-0",
"Price": "$45"

}

Here, "Author", "ISBN", and "Price" are the object properties. You can use a function
instead of a literal value when assigning values for each element. See the "Using a
function" section for details on how to use a function.

Assigning an array value to an object or data type any

Here is an example of how to assign an array value to an array of objects or to an element
of data type any:

[
{

"Author": "Martin Fowler",
"ISBN": "0-321-12742-0",
"Price": "$45"

}
]

You can use a function instead of a literal value when assigning values for each element.
See the "Using a function" section for details on how to use a function.

Assigning a value from the upstream output

When mapping to an element from the upstream output, the data type of the source
element whose value you are assigning determines the data type of the destination
element. For example, if you assign the value of an array, then the target element (the
element of data type any) is treated as an array, likewise for a string, number, boolean, or
object. For example, if you are mapping $flow.Author which is an array, then the Author
object in the input (destination object) would also be an array. That is, there is a direct
assignment from the source to the destination.

TIBCO Flogo® Enterprise User Guide

130 | App Development

l Single Element of Primitive Data Type: To assign the value of a single element of a
primitive data type that belongs to the output of the trigger, a preceding Activity, or
the flow input, you must enter the expression for it. For example to assign the value
of isbn which comes from the flow input, enter the expression:

"=$flow.isbn"

Here, $flow is the scope within which isbn falls.

l An object: When assigning an object, you must create a mapping node within the
object. The mapping node is used to define how the object should be constructed and
the various fields within the object mapped. For example, to assign the bookDetails
object, enter:

{
"mapping": {
"Author": "=$flow.author",
"ISBN": "=$flow.name",
"Price": 20,
"BestSeller": true
}
}

You can use a function instead of a literal value when assigning values for each
element. See the "Using a function" section for details on how to use a function.

l An array of objects: The following two examples show you how to assign values to
arrays:

o Building a new array

To provide values for an array that has a fixed size (where the number of
elements is declared), you must provide the values for each array element. For
example, if the array has two elements, you must provide the values for each
property of the object for both objects. Here is an example of how to do that:

{
"mapping": {

"books": [
{
"author": "=$loop.author",

TIBCO Flogo® Enterprise User Guide

131 | App Development

"title": "=$loop.title",
"price": "=$loop.price"

},
{
"author": "Author2",
"title": "BookTitle",
"price": 19.8

}
]

}
}

In the example above books is an array of two elements. The values for each
property for both elements are provided.

You can use a function instead of a literal value when assigning values for each
element. For details, see Using Functions.

o Building an Array from an upstream output array

In the following example, books is an array of books coming from the upstream
output. To iterate over the array, $flow.store.books in upstream output, and
assign its values to the input array, you would enter the following in the
mapper text box:

{
"mapping": {

"@foreach($flow.store.books)": {
"author": "=$loop.author",
"title": "=$loop.title",
"price": "=$loop.price"

}
}

}

The "@foreach($flow.store.books)" indicates that you are iterating an array
of objects where the $flow.store.books is the array. $flow is the scope within
which store.books falls and $loop represents the scope for each property
within the object. Refer to the following section for details on the forEach()
function.

l Using a function: The following example leverages the output of a REST Invoke
Activity to get a pet from the public petstore service. The mapper uses the
string.concat() function and assigns the function return value to the description

TIBCO Flogo® Enterprise User Guide

132 | App Development

field in the data structure:

{
"mapping": {

"data.description": "=string.concat(\"The pet category name is:
\",$Activity[rest_3].result.category.name)"

}
}

Assigning Values to the param Data Type
When you import an app that was originally created in Project Flogo™, the app could
contain elements that are of data type param. The param data type is similar to the object
data type in that it consists of key-value pairs. The difference between an object and a
param is that the object can contain values of any data type whereas the values for
elements in the param data type must be of data type string only.

Here's an example of assigning values to a param data type element:

{
"mapping": {
"Author": "=$flow.author",
"ISBN": "=$flow.name",
"Price": "$20"

}
}

Coercing of Activity Input, Output, and Trigger Reply
Fields
In the OSS marked Activity input, output, or trigger reply configuration, if you have defined
a parameter, but have not defined or cannot define a schema for the parameter, you can
coerce the parameter to take the value from a schema that you dynamically define during
design time. This feature is particularly useful for apps that were created in Project Flogo
and imported to Flogo Enterprise. Such apps most likely have activities for which input
parameters or output are not defined with a schema.

Currently, coercion of parameters is supported only for the following data types:

l array

TIBCO Flogo® Enterprise User Guide

133 | App Development

l object

l param

l any

After you enter the schema, it is displayed in a tree format under Activity inputs, Output
tab, or Trigger reply in the mapper. All subsequent activities also display the elements of
the schema under the Activity in the Upstream Output. The schema elements are now
available for you to map.

Important Considerations
l Coercion is supported only in the Default category activities which are the activities

marked as OSS, except for the Return and Start a SubFlow activities. These two
activities display flow-level data. The flow-level inputs and outputs can be entered or
modified only on the Flow Inputs & Outputs accordion tab, hence they cannot be
coerced from the Input tab of the Activity itself.

l Currently, coercion is supported only for top-level parameters. Nested coercion (for
example, an object within an object) is not supported.

l Currently, coercing a schema for trigger input is not supported. The coercing option
is not available on the Map to Flow Inputs tab in the trigger configuration. This is
because the parameters you see on this tab are flow input parameters and are not
related to the trigger. You have the option to coerce these parameters on the Input
tab of the Flow Inputs & Outputs accordion tab.

l After you have mapped a child element within a parameter, if you change the name
of the parent or the child, your mapping is lost. However, if you change the data type
of the element, the mapping is preserved, but you see an error related to the
mismatch in data type.

l The schema you enter is preserved when you export and import the app.

l If you edit the schema at a later time, as long as you click Apply after editing, your
edits are displayed in the mapper. You must then click Save in the mapper to persist
your schema changes.

l You cannot coerce a parameter or edit its schema in any activity appearing in a
subflow. For example, if the OracleDatabaseQuery activity appears in both the main
flow and the subflow, you cannot edit the schema of any of its parameters in the
subflow. But you can edit the schema of the OracleDatabaseQuery activity in the

TIBCO Flogo® Enterprise User Guide

134 | App Development

main flow. This is because the subflow activity input and output schemas are
inherited from the main flow. There is a possibility that the same subflow could be
used in multiple main flows, so if you edit an activity in the subflow it could break
another main flow that uses the subflow.

To provide the schema for coercion:

1. On the flow details page, click the activity or trigger to open its configuration.

2. Click any of the following tabs that you want to configure:

l Input: To configure a parameter in the activity input

l Output: To configure the schema for the activity output

l Map from Flow Outputs: To configure the trigger reply

3. To configure a schema:

l For a parameter in activity input, hover your mouse cursor over the parameter
name for which you want to configure the schema under Activity inputs.

l For the Activity output, hover your mouse cursor over the parameter name for
which you want to configure the schema.

l For a parameter in the trigger reply, hover your mouse cursor over the
parameter name.

Click the ellipsis icon () that appears next to it. Clear mappings and Coerce with
schema options are displayed.

4. Click the Coerce with schema option.

Note: The Coerce with schema icon appears against the parameter name
for only those parameters that do not have a schema defined on the Input
Settings tab (or a schema cannot be defined because the Activity does not
have an Input Settings tab, for example, the OSS-marked activities) and
whose data type is one of the following: array, param, object, or any.

5. Enter the schema for the parameter or activity output and click Apply. The mapper
validates that the data type of the schema you entered matches the data type of the
parameter being coerced. If the data types do not match, Apply remains disabled
and you see an error. For activity input and trigger reply, the schema you enter
displays in a tree format under the parameter name in the mapper.

l For the activity output, the schema is displayed in a tree format on the Output

TIBCO Flogo® Enterprise User Guide

135 | App Development

tab of the activity. Available data displays the output of the preceding
activities.

6. Click Save to persist the schema into the database or Discard to discard the schema.
Now you can map the child elements within the parameter. In the case of the activity
Output tab, the output tree does not display in the current activity but is displayed
in the mapper for subsequent activities only. Once persisted in the database, these
schema trees get displayed in the Available data area of the mapper for subsequent
activities. This allows you to map to them in subsequent activities.

Clear Mapping of Child Elements in Objects and Arrays
After mapping an array or an object, you can clear the mapping of all the child elements
within that array or object with one click. The mapping is cleared at the root level and
mapping for everything under that root gets cleared, even the nested arrays and objects,
should there be any. To clear mapping for individual elements in an array or object
selectively, click on that element and delete the mapping for it.

To clear the mappings for all child elements of an array or object:

1. In the mapper, hover your mouse cursor to the right end of the root name until the
ellipsis icon () appears and click it.

2. Click Clear mappings

TIBCO Flogo® Enterprise User Guide

136 | App Development

Ignoring Missing Object Properties when Mapping
Objects
There may be instances when you map objects where one or more object properties might
be missing in the source or target object. The mapper can be set to ignore such cases.

If you want the mapper to ignore such cases, you must set the FLOGO_MAPPING_SKIP_
MISSING engine variable to true. The mapper ignores the missing mapping as long as the
element is optional (not marked as mandatory with a red asterisk against it). Elements
marked as mandatory must be mapped. For more details, see the section on Environment
Variables.

Mapping Data by Using if/else Conditions
The if/else statements are used to execute blocks of code based on the specified
conditions.

if (condition1)
{
// execute this block of code

}
else if (condition2)
{
// execute this block of code if the previous condition fails

}
else
{
// execute this block of code if all conditions fail

}

You can add conditions in your data mappings to get outputs based on those conditions.
You can add conditions to primitive objects, nested arrays, nested objects, and any other
type of input. if/else conditions are available in activities and triggers in the main flow
and error handler.

To Map Data Using Conditions

1. Click the ellipsis icon to open the menu of the element to which you want to add

TIBCO Flogo® Enterprise User Guide

137 | App Development

the conditions. Select Add Condition. An If condition is added to the element.

2. In the text editor of the If condition, enter an expression whose result evaluates to a
Boolean value. You can enter the expression manually or map data from the
Available data pane. If children elements exist, you can enter values for them.

TIBCO Flogo® Enterprise User Guide

138 | App Development

3. To add an Else-if or an Else condition, click the ellipsis icon to open the menu
of the element with the If condition. Click Add Else-If or Add Else.

Considerations when using conditions:
l For one If condition, you can add multiple Else-if conditions and one Else

condition.

l You can add an Else condition only from an element with an If condition.

l You can add an Else-if condition from an If condition and from an Else-if
condition.

Note: In case the option to add conditions is not visible for the last element in
the Activity inputs pane, scroll further down to view the options.

Deleting a Condition

Click the ellipsis icon to open the menu of the condition that you want to delete. Click
Delete.

TIBCO Flogo® Enterprise User Guide

139 | App Development

To delete an If condition that has Else-if and Else
conditions:
You cannot directly delete an If condition that has Else-if and Else conditions. You must
first delete the Else-if and Else conditions to delete the parent If condition.

In the following example, to delete the If condition on Character, you must delete the
Else-if and Else conditions.

TIBCO Flogo® Enterprise User Guide

140 | App Development

Note: For OSS activities having the Coerce with schema option, you can
maintain only one schema for the input that you coerce. If you add conditions to
the coerced inputs, you cannot change the schema specific to a condition. When
you update the schema, it is updated for all the blocks.

Using Functions
You can use a function from the list of functions available under Functions in the mapper.
Input parameters to the function can either be mapped from an element under Available
data, a literal value, or an expression that evaluates to the appropriate data type or any
combination of them.

The procedure below illustrates an example that concatenates two strings and assigns the
concatenated value to the message. We manually enter a value for the first string (str1)
and map the second string to id under $flow. The value for id comes from the flow input.

1. Click the message to open the text editor to the right.

2. Click Functions. Expand the string function group and click concat(str1, str2).

3. Select str1 in the function and type "Received: " (be sure to include the double
quotes as shown below) to replace str1 with it.

TIBCO Flogo® Enterprise User Guide

141 | App Development

4. Drag id from $flow and drop it in place of str2.

At run time, the output from the concat function is mapped to the message.

Using Expressions
You can use two categories of data mapping expressions in Flogo.

Basic Expression

Basic expressions can be written using any combination of the following by using
operators:

l literal values

l functions

l previous Activity or trigger output

TIBCO Flogo® Enterprise User Guide

142 | App Development

Refer to Supported Operators for details on the operators that can be used within a basic
expression.

Here are some examples of basic expressions:

string.concat("Rest Invoke response status code:",$activity
[InvokeRESTService].statusCode)

The above example combines the string and the statusCode from the InvokeRestService
activity.

string.length($activity[InvokeRESTService].responseBody.data) >=7

The above example checks whether the length of data of the responseBody is greater than
or equal to 7.

$activity[InvokeRESTService].statusCode == 200 && $activity
[InvokeRESTService].responseBody.data == "Success"

The above example checks whether the statusCode is 200 and the data of responseBody
has the value as "Success".

Ternary Expression

Ternary expressions are assembled as follows:

condition ? statement1 : statement2

The condition is to be evaluated first. If it evaluates to true, then statement1 is executed.
If the condition evaluates to false, then statement2 is executed.

Here is an example of basic ternary expression:

$Activity[InvokeRESTService].statusCode == 200 ? "Response
successfully":"Response failed, status code not 200"

In the above example $Activity[InvokeRESTService].statusCode == 200 is the
condition to be evaluated.

l If the condition evaluates to true (meaning statusCode equals 200), it returns

TIBCO Flogo® Enterprise User Guide

143 | App Development

Response successfully.

l If the condition evaluates to false (meaning statusCode does not equal 200), it
returns Response failed, status code not 200.

Here is an example of a nested ternary expression:

$Activity[InvokeRESTService].statusCode == 200 ? $Activity
[InvokeRESTService].responseBody.data == "Success" ? "Response with
correct data" : "Status ok but data unexpected" : "Response failed,
status code not 200"

The example above checks first to see if statusCode equals 200.

l If the statusCode does not equal 200,it returns Response failed, status code not
200.

l If the statusCode equals 200, only then it checks to see if the responseBody.data is
equal to "Success".

o If the responseBody.data is equal to "Success", it returns Response with
correct data.

o If the responseBody.data is not equal to "Success", it returns Status ok but
data unexpected.

Supported Operators
Flogo supports the operators that are listed below.

l ==

l ||

l &&

l !=

l >

l <

l >=

TIBCO Flogo® Enterprise User Guide

144 | App Development

l <=

l +

l -

l /

l %

l Ternary operators - nested ternary operators are supported.

For example, $activity[InvokeRESTService].statusCode==200?($activity
[InvokeRESTService].statusCode==200?true:false):false

Developing APIs
Flogo Enterprise lets you take an API-first development approach to implement APIs from a
Swagger Specification 2.0, OpenAPI Specification 3.0, or GraphQL schema. After you upload
an API specification file or a GraphQL schema, Flogo Enterprise validates the file and if the
validation passes, it automatically creates the flows and triggers for you.

Using an OpenAPI Specification
You can create the Flogo app logic (flows) by importing an API specification file. You can
simply drag a specification file to the UI or navigate to it. If you have an existing
specification file stored in the TIBCO Cloud™ Integration - API Modeler or TIBCO Cloud™ API
Modeler, select it when creating the flow. The flows for your app are automatically created
based on the definitions in the specification file that you uploaded.

Tip: For more information on the TIBCO Cloud™ API Modeler, see TIBCO Cloud™
API Modeler.

When you create an app from a specification, the ConfigureHTTPResponse and Return
activities are automatically added to the flow. The mappings from trigger output to flow
inputs get configured for you based on the definitions in the specification. The output of
the ConfigureHTTPResponse Activity is automatically mapped to the Return Activity
input. However, you must configure the input to the ConfigureHTTPResponse Activity
manually. If you have multiple response codes configured in the REST trigger, the first
response code is configured in the ConfigureHTTPResponse Activity by default. The only

https://docs.tibco.com/pub/tcam/latest/doc/html/Default.htm
https://docs.tibco.com/pub/tcam/latest/doc/html/Default.htm

TIBCO Flogo® Enterprise User Guide

145 | App Development

exception to this is if you have a response code of 200 configured. In that case, the 200
response code is configured in the ConfigureHTTPResponse Activity by default.

Before the Flogo app is created, a validation process ensures that the features defined in
the specification are supported in Flogo Enterprise.

Considerations when using an API specification file to create a Flogo app:

l Flogo Enterprise supports Swagger Specification 2.0 and OpenAPI Specification 3.0.

l Currently, Flogo Enterprise supports only the JSON format.

l Cyclic dependency is not supported when creating flows from specifications. For
example, if you have a type Book that contains an object element of the type, Author.
The type Author in turn contains an element of the type Book, that represents the
books written by the author. To retrieve the Author, it creates a cyclic dependency
where the Author object contains the Book object and the Book type, in turn, contains
the Author object.

l String, integer, and boolean are the data types supported by Flogo Enterprise. A data
type that appears in your specification but is not supported by Flogo Enterprise
results in an error being displayed.

l Schema references within schemas are not supported.

l If the specification has a response code other than 200 (OK) or 500 (Error), the
method that contains the unsupported response code is not created.

l You can enter a schema for the response code 200, but the 500 response code must
be a string.

l Basepath element in the schema is not supported.

If you get a validation error, you can either cancel the process of generating the app or
click Continue. If you opt to continue, the process of app creation continues and the parts
of the specification that did not pass the validation are ignored.

Note: The REST reply data type is by default set to any data type. To configure
the reply to an explicit data type, see Configuring the REST Reply section.

To create an app using an API specification and upload the specification file:

Procedure
1. Log in to TIBCO Cloud™ Integration.

TIBCO Flogo® Enterprise User Guide

146 | App Development

2. On the Apps page, select Create/Import. The What do you want to build? dialog is
displayed.

3. To create a Flogo app using an OpenAPI specification:

l Under Quickstart > All app types > APIs, click Create an app from OpenAPI.

l On the left, select a category that identifies the type of integration you need.
On the right, click Create an app from OpenAPI.

4. In the block that displays below your selection, select one of the following options:

l Create a flow using an API specification that exists in the TIBCO Cloud™
Integration-API Modeler. To do this, on the API Specs tab, select the
specification that you want to use.

l Use an API specification saved locally on your computer by uploading it to Flogo
Enterprise. To do this, click the Upload file tab. Browse to the saved API
specification on your local machine or drag your saved API specification into the
dialog.

5. Click Import OpenAPI spec.

6. In each flow:

a. Open the flow by clicking its name.

TIBCO Flogo® Enterprise User Guide

147 | App Development

b. Click the trigger to open its configuration dialog.

c. Map the following:

l On the Map to Flow Inputs tab, map the Available data to Flow inputs.

l On the Map from Flow Outputs tab, map the Available data to Trigger
reply.

To test the deployed app, follow the procedure in the Testing the Deployed App
section.

You can also download the specification used to create the app by following the
procedure in Downloading the API Specification Used section.

You also have the option to copy the endpoint URL from the Endpoints tab by
clicking the Copy spec URL. Or you can click the () icon next to the endpoint URL

itself.

The following is a list of Swagger 2.0 and OpenAPI Specification 3.0 features supported in
Flogo:

l Path Templating

l Media Type

o Request Types: application/json, multipart/formdata, x-www-form-
urlencoded

o Response Types: text/plain, application/json

l Multiple Status Codes

l Path Item Object

l Parameter Object

l Request Body Object

l Reference Object

l Header Object

l Security Scheme Object

For more information, refer to OpenAPI Specification.

https://swagger.io/specification/

TIBCO Flogo® Enterprise User Guide

148 | App Development

Result
The app is created and the App Details Page is displayed for the new app. Your app does
not run and has zero instances. To start and scale your app, see Starting, Stopping, and
Scaling Apps.

Configuring the REST Reply
When creating a REST app from a Swagger 2.0 or OpenAPI 3.0 API specification, the
ReceiveHTTPMessage reply data type is set to any by default. You must explicitly configure
the reply type.

To explicitly configure the reply type, add a ConfigureHTTPResponse Activity in the flow.
This Activity must immediately precede the Return Activity in the flow.

You can configure custom codes that you want to use in the HTTP reply on the Reply
Settings tab of the ReceiveHTTPMessage trigger.

Follow these steps to configure your HTTP reply:

Procedure
1. Open the REST trigger configuration pane by clicking it.

2. On the Reply Settings tab of the ReceiveHTTPMessage REST trigger, configure the
custom codes that you want to use. Refer to the section, "REST Trigger" in the
Activities, Triggers, and Connections Guide.

3. Add a ConfigureHTTPResponse Activity immediately preceding the Return Activity in
the flow.

4. Open the ConfigureHTTPResponse Activity by clicking it and configure it as follows:

TIBCO Flogo® Enterprise User Guide

149 | App Development

a. On the Settings tab:

i. If your flow is attached to multiple REST triggers, select the trigger in
which you have configured the code you want to use from the Trigger
Name drop-down menu. The Trigger Name field does not display if your
flow is attached to only one REST trigger.

ii. Select a response code from the Code field menu. Only the codes
configured in the selected trigger are displayed in the menu.

b. The Input tab displays the schema for the response code. Map the elements or
manually enter a value for the elements.

c. Click Save.

5. Configure the Return Activity by mapping the code and body (which is currently of
data type any).

6. Click Save.

7. On the Map from Flow Outputs tab in the ReceiveHTTPMessage trigger, map the
code and body to the corresponding elements from the flow output.

8. Click Save.

TIBCO Flogo® Enterprise User Guide

150 | App Development

Testing the Deployed App
The deployed app can be tested using its API specification.
To test the deployed app:

Procedure
1. Open the app.

2. Click Endpoints to open the tab.

3. Click Test.

Downloading the API Specification Used
You can download the API specification used to create the app.
To download the specification:

1. Open the app.

2. Click Endpoints to open its tab.

3. Click the shortcut menu () to the extreme right of the Endpoint URL.

4. Click Download spec.

The downloaded specification may not be the same as the original specification that
was used to create the app. This could happen because Flogo Enterprise follows its
convention when generating a specification from its apps. Also, any changes that you
might have made after creating the app are reflected in the downloaded specification
but are not changed in the original specification from which you created the app. The
original specification remains untouched. Use the downloaded specification only for
testing the app.

TIBCO Flogo® Enterprise User Guide

151 | App Development

Using GraphQL Schema
GraphQL provides a powerful query language for your APIs enabling clients to get the exact
data that they need. It can get data from multiple resources in a single request by
aggregating the requested data to form one result set. GraphQL provides a single endpoint
for accessing data in terms of types and fields.

Flogo Enterprise provides an out-of-the-box GraphQL trigger that turns your Flogo app into
a GraphQL server implementation. Each flow in the app acts like a GraphQL field resolver.
So, the output of the flow must match the return type of the field in the schema.

Flogo Enterprise allows you to create GraphQL triggers by dragging and dropping your
GraphQL schema file into the UI or by navigating to the file. A flow gets automatically
created for every query and mutation type in your schema. You must then open the flow
and define what kind of data you want the flow to return. This saves you the time and
effort to programmatically define data structures on the server.

Note: This section assumes that you are familiar with GraphQL. To learn about
GraphQL, refer to the GraphQL documentation.

GraphQL server implementation in Flogo Enterprise

To obtain samples of GraphQL schemas and app JSON files, go to
https://github.com/project-flogo/graphql.

To use GraphQL in Flogo Enterprise, you must create a GraphQL trigger. Use one of the
methods below to create a GraphQL trigger.

l You must use only one schema per app. If you attach your app to another GraphQL
Trigger, you must use the same original schema.

l The implementation of the GraphQL server in Flogo Enterprise currently does not
return the specified field ordering in a query when a request is received. It does not
affect the correctness of the response returned, but affects the readability and is non-
compliant with current specifications.

l The GraphQL schema must have either .gql or .graphql extension.

For details on the GraphQL trigger refer to the "GraphQL Trigger" section in the TIBCO
Flogo® Enterprise Activities, Triggers, and Connections Guide.

https://github.com/project-flogo/graphql

TIBCO Flogo® Enterprise User Guide

152 | App Development

Creating a New Flogo App Using a GraphQL Schema

1. Log in to TIBCO Cloud™ Integration.

2. On the Apps page, select Create/Import. The What do you want to build? dialog
box is displayed.

3. Under Quickstart > All app types > APIs, click Create an app from GraphQL.

4. Click browse to upload and navigate to your locally stored GraphQL schema file to
upload it.

5. Click Import GraphQL file. The new GraphQL trigger gets created with a flow
attached to it.

Note: Once the trigger is created from the wizard, the trigger configuration is
fixed and cannot be changed.

To implement a single method in your .gql file

To implement a single method:

1. In Flogo Enterprise, open the app details page and click Create. The Add triggers

TIBCO Flogo® Enterprise User Guide

153 | App Development

and flows dialog box opens.

2. Under Create new, click Flow.

3. Enter a name for the flow in the Name text box. Optionally, enter a description for
the flow in the Description text box.

4. Click Create.

5. Select Start with a trigger.

6. In the Triggers catalog, select the appropriate GraphQL Trigger card.

7. Follow the screen prompts to configure the trigger. A flow with the name you
specified gets created and attached to the newly created GraphQL trigger. This flow
implements the method that you selected.

Tip: If needed, you can later make changes to the GraphQL schema file and
upload it using the GraphQL trigger without creating a new flow.

To implement all methods defined in your .gql file

You can create flows to implement all methods defined in your .gql file. To do so:

1. On the app details page, click Create. The Add triggers and flows dialog box opens.

2. Under Start with, click GraphQL Schema.

3. Upload your <name>.gql file by either dragging and dropping it to the Add triggers
and flows dialog box or navigating to it using the browse to upload link. Flogo
Enterprise validates the file extension. You see a green checkmark and the Upload
appears.

4. Click Upload. Flogo Enterprise validates the contents of your schema and if it passes
the validation, it creates the flows based on the methods defined in your schema file.
One flow is created for each method in your schema. All the flows are attached to the
same trigger.

Manually attaching a flow to an existing GraphQL trigger

If you have an existing flow in an app, you can manually attach it to a GraphQL trigger. To
do so:

TIBCO Flogo® Enterprise User Guide

154 | App Development

1. Click the flow name to open the flow details page.

2. Click the icon to the left of your flow. By default, the existing GraphQL triggers in

the app are displayed.

3. Select one of the existing GraphQL triggers and follow the on-screen directions.

Limitations on constructs in a GraphQL schema

Flogo Enterprise currently does not support the following GraphQL constructs:

l Custom scalar types

l Custom directives

l Subscription type

l Cyclic dependency in the schema. For example, if you have a type Book that contains
an object element of the type, Author. The type Author in turn contains an element
of type Book which represents the books written by the author. To retrieve the
Author, it creates a cyclic dependency where the Author object contains the Book
object and the Book type, in turn, contains the Author object.

Using App Properties and Schemas
This section discusses how to create app properties, which you can use when populating
field values. It also describes how to create a schema that can be reused in your app.

App Properties
App properties provide a way to override property values included in the app binary. You
can configure some supported fields with app properties when configuring triggers and
activities. Connection-related app properties cannot be used for configuration anywhere
within an app. Their only purpose is to allow you to change a connection value if need be
during runtime. Configuration fields in your flow that require their values to be changed
when the app goes from a testing stage to production are best configured using app
properties instead of hard coding their values. App properties for triggers and activities
reside within the app. App properties for connections are not modifiable from the App
Properties dialog box in the app.

TIBCO Flogo® Enterprise User Guide

155 | App Development

The URL field in an Activity is a good example of a field for which you would want different
values – may be an internal URL when testing the app and an external URL when the app
goes into production. You may want the URL used in the Activity to change when the app
goes from a test environment to production. In such a case, it is best to configure the URL
field in the Activity with an app property instead of hard-coding the URL. This way, you can
change the URL by changing the value of the app property used to configure the URL field.

Before building the app, you can change the default value of an app property from the App
Properties dialog box. Once you have built the app and have the app binary, use the CLI to
change the value of an app property in the app.

An app property value can have one of the following data types:

l string

l boolean

l number

l password

Values for the password data type are encrypted and are not visible by default. But when
configuring the password value, you can click on the Show/Hide password property
value icon () to see the value temporarily to verify that it has been entered correctly.

App properties are saved within the app, so when you export or import an app, app
properties configured in the app also get exported or imported with the app. Properties of
data type password do not retain their values when an app is exported. So, you must
reconfigure the password after importing the app.

If you import an app that was created in a prior version, even though this feature is
available to the app since the activities were created in an older version of Flogo Enterprise
you need to re-create them to be able to see the slider against their fields which allows you
to configure an app property for that field.

Creating App Properties
You can create an app property as a standalone property or as a part of a group. Use a
group to organize app properties under a parent. A parent acts as an umbrella to hold
related app properties and is labeled with a meaningful name. A parent does not have a
data type associated with it. For instance, if you want to group all app properties

TIBCO Flogo® Enterprise User Guide

156 | App Development

associated with a particular Activity, you can create a group with a parent that has the
Activity name and create all that Activity-related app properties under that parent.

As an example, you can create LOG_LEVEL as a standalone app property without a parent.
Or you can create it as a part of a hierarchy such as LOG.LOG_LEVEL with the parent of the
hierarchy being LOG and LOG_LEVEL being the app property under LOG. Keep in mind that
if you group properties, you must refer to them using the dot notation starting from the
parent. For example, the LOG_LEVEL property must be referred to as LOG.LOG_LEVEL. You
can nest a group within a group.

App Properties Dialog Box Views
You can view existing app properties for an app in the App Properties dialog box. By
clicking on the +Group or +Property, the app properties dialog box lets you add a new
group or a property and rename it. An empty app properties' dialog box looks like this:

Nested groups and properties can also be created from the app properties dialog box by
clicking on the +group or +property of each group.

TIBCO Flogo® Enterprise User Guide

157 | App Development

The name of the property added can be changed from default to anything you want. Even
the type of property value can be changed by selecting it from the drop down. You can
drag a property with unique names from one group to another but not within the same
group.

TIBCO Flogo® Enterprise User Guide

158 | App Development

Creating a Standalone App Property
To create a standalone app property for your app, follow the steps below.

To create a group, see Creating a Group.

Note: The standalone properties (properties that are not in a group) or the
properties within the same group must have unique names.

Procedure
1. If your app does not exist, create a new app, and click Properties shown on the

screen below.

If your app already exists, then open the app details page and click Properties.
The App Properties dialog box opens.

If you already have existing properties, they are displayed. Click +Property to add
another property.

TIBCO Flogo® Enterprise User Guide

159 | App Development

2. Click on the newly created property to make it editable and rename it. The property
gets created.

Note: The property name must not contain any spaces or special
characters other than a dash (-) or an underscore (_).

3. Select the data type for the new property from its drop-down list.

4. Enter a default value for the property in the text box next to the property.

Note: Only for certificates, the value must be of the format: <encoded_
value>. To get the encoded value of the contents, you can use
https://www.base64encode.org/ or any other base64 encoding tool.

For example, for an SSL certificate, you can specify the app property as follows:

https://www.base64encode.org/

TIBCO Flogo® Enterprise User Guide

160 | App Development

5. Click Save.

Note: Flogo Enterprise runs validation in the background as you create a
property. The validation takes into consideration the property type and
default value of the property that you entered. Save gets enabled only
when the validation is successful. Make sure you do not skip this step of
saving your newly created property or group.

Creating a Group
You can create one or more standalone app properties or group app properties such that
they show up in a hierarchy. A group (or hierarchy) consists of a parent node, which is just
a label and does not have a data type associated with it. You must create properties within
the parent. You can do so in the Application Properties dialog box. When creating a group
you must add the parent first and then create the app properties under the parent.

TIBCO Flogo® Enterprise User Guide

161 | App Development

Note:

l With drag option, a standalone property can be rearranged to another
location or a property under the group can be moved to another group.

l A group with its nested groups and properties can be dragged to move
from one location to another. Also a nested group can be moved up in the
hierarchy or to the root level. However, no two groups can have same
name on same level.

l Group names within an app must be unique. Also, property names within a
group must be unique.

l You cannot create a group and an app property with the same name in the
same hierarchy.

Procedure
1. Open the app details page and click App Properties.

2. Click +Group on the upper-right corner to add the group.

3. Click on the newly created group name to make it editable and Enter a meaningful
name for the group.

The group gets created. The group is simply a label and cannot be used by itself. So,
you must add a group or a property within the group.

4. To add a property within the group, hover your mouse cursor to the extreme right of
the group until +Property appears in the group row.

TIBCO Flogo® Enterprise User Guide

162 | App Development

5. Click +Property to add the property and rename it.

6. Select a data type for the property and enter a value. Entering a value and selecting a
data type is mandatory. Save remains disabled without it.

7. Click Save.

The property gets created under the parent.

Note: You can even add a nested group under the parent group by clicking
on +Group in the group row.

Deleting a Group or Property
An existing group or a property can be deleted in following ways.

To delete a property

1. Open the App Properties dialog box from the app details page.

2. Hover your mouse cursor to the extreme right end of the property and click Delete.

3. Click Save.

To delete a group or a nested group

1. Open the App Properties dialog box from the app details page.

2. Hover your mouse cursor to the extreme right end of the group and click Delete. A
confirmation window appears.

TIBCO Flogo® Enterprise User Guide

163 | App Development

Here,

l Delete all child properties and groups deletes all the standalone properties
and nested groups and properties under the group.

l Fold all children into Group_2 > Group_1 deletes the nested group but the
properties under the nested group are shifted into the parent group.

l Move all children to top level deletes the parent or a nested group and shifts
all the properties to the top level as a standalone properties.

3. Select the desired delete option on the confirmation window and click Confirm.

Caution: The property path mappings may update on editing the property or on
moving a property from a nested group to a parent group or if the property is
shifted out of the group to top level as a standalone property.

TIBCO Flogo® Enterprise User Guide

164 | App Development

Using App Properties in a Flow
Configuring a field with an app property is recommended for fields that require their values
to be overridden when the app goes into production. Hence, the decision as to which fields
in an Activity should support app properties (which fields can be configured using an app
property) must be decided at the time when the extension for the category is being
developed. The fields that can be configured using an app property display a slider against
their names in the UI.

You can use environment variables to assign new values to your app properties at runtime.
For more information, refer to Overriding Security Certificate Values. You can also override
the app property values at runtime using a JSON file. For more information, refer to Using
a JSON File to Override App Property Values.

Connection-specific app properties are visible in the App Properties dialog box after you
select a connection when configuring the Activity or trigger, but they appear in read-only
mode. This is because connections are reusable across apps and connection-related app
properties are managed (refreshed) automatically. Connection-related app properties
cannot be used for configuration anywhere within an app. Their only purpose is to allow
you to change a connection value if need be during runtime. For more details on how the
connection properties get created and used, see Using App Properties in Connections.

To configure a field with an app property:

Procedure
1. Open the flow details page.

2. Click the Activity whose field you want to configure with an app property.

This opens the configuration pane for the Activity.

3. Click the slider () against the name of the field you want to configure with an

app property. If the field does not display a slider, the field cannot be configured
with an app property.

TIBCO Flogo® Enterprise User Guide

165 | App Development

4. The App Properties dialog box opens. Only those app properties whose data type
matches the data type of the field are displayed. You can also create a new group or
a property in this view. Here, you can add a single property or a group at a time.

5. Select the property you want to configure for the field.

The property name appears in the text box for the field and the default value of the
property gets implicitly assigned to the field.

After configuring the property, if you want to change a field to use a different
property, hover your mouse cursor over the end of the text box for the field until the
Select another property value icon appears. Click the Select another property
value icon.

TIBCO Flogo® Enterprise User Guide

166 | App Development

For a field that has been configured with an app property, you can unlink the
property from the field. Refer to Unlinking an App Property from a Field Value for
more details.

Using App Properties in the Mapper
You can use app properties when mapping an input field. The app properties available for
mapping are grouped under the $property domain-specific scope in the mapper. All
mapper rules and conditions apply to the use of app properties as well. For example, the
data type of the app property value must match with the input field data type when
mapping. Connection-related app properties that are used by any connection field in an
Activity do not appear under $property since they cannot be accessed. Connection-related
app properties cannot be used for configuration anywhere within an app. Their only
purpose is to allow you to change a connection value if need be during runtime. Hence,
they cannot be used to map input fields.

Refer to the section on Mapper for details on how to use the mapper.

Unlinking an App Property from a Field Value
For a field that has been configured with an app property, if you decide at a later time not
to use the app property, you can click and slide its slider ball () to the left. This
removes the app property from the field (unlink it from the field) but leaves the field
configured with the default value of the app property. The field retains the default value of
the app property, but it gets disassociated from the app property and appears as a
manually entered value. Hence, if you change the default value of the app property beyond
this point, it does not affect the value of the field.

TIBCO Flogo® Enterprise User Guide

167 | App Development

Using App Properties in Connections
Connection-related app properties can be used to modify or configure app properties
anywhere within an app. If needed, the connection related app properties also allow you to
change the connection values during runtime. Before you build, your app, their values can
only be edited in the connection details dialog box, the dialog box where you provided the
credentials for the connection. You can open this dialog box by editing the connection from
the Connections page in the UI. Connection-related properties are useful when you want
to change the value for one of the connection fields, for example, a URL, when an app goes
from the testing stage to production.

You can use environment variables to assign new values to your app properties at runtime.
For more information, refer to Overriding Security Certificate Values. You can also override
the app property values at runtime using a JSON file. For more information, refer to Using
a JSON File to Override App Property Values.

How the connection-related app properties get created

You cannot explicitly create connection-related properties. When you select a connection in
the Connection field of an Activity, the supported properties associated with that
connection automatically get created and populated in the App Properties dialog box.

While creating a connection, the fields in the connection details dialog box that support

app properties are marked with icon. One property gets created for each field that is

marked with in the connection details dialog box. The values you enter for such fields
in the connection details dialog box become the default values for the connection
properties. The properties take their name from the connection field they represent in the
connection details dialog box.

You begin by creating a connection. In the example below, only the Connection URL and
Authentication Key fields support app properties. These are the only two fields that

display against them.

TIBCO Flogo® Enterprise User Guide

168 | App Development

Once the connection is created, you can use it to configure the Connection field in an
Activity. In the example below, the connection created above is being used to configure the
Connection field of the TCMMessagePublisher Activity.

After configuring the Connection field with the connection, if you open the App Properties
dialog box, the connection properties for the field (enclosed in the red box in the image
below) is displayed. Notice that only the supported properties (Connection URL and
Authentication Key) are displayed in a read-only mode.

TIBCO Flogo® Enterprise User Guide

169 | App Development

The properties that are displayed in the App Properties dialog box change dynamically
based on your selection of the connection to use. You can only view the connection
properties. You cannot edit or delete them from the App Properties dialog box. Deleting
the Activity that uses the connection automatically removes the associated connection
properties that the Activity used from the App Properties dialog box.

Using connection-related app properties

Connection-related app properties are available for use from the mapper. You can use
these properties to change a connection value (for example, a URL or password) just before
an app goes from a testing stage to production. All the mapped configurations can be pre-
checked using a flow tester or by creating a pre-check flow. Their values cannot be
changed from the App Properties dialog box, change their values in the connection details
dialog box before building the app.

Editing an App Property
You can change the default value or data type of an app property at any time.

After the app has been built, you can override an app property from the CLI.

TIBCO Flogo® Enterprise User Guide

170 | App Development

Changing the Default Value of a Property from the App
Properties Dialog Box
You can change the default value of an existing app property at any time after creating the
property. Before you build the app, you can change the default value in the App
Properties dialog box.

To change the default value of an existing app property:

Procedure
1. Open the App Properties dialog box by clicking Properties on the app details page.

2. Click inside the text box for the property value you want to change.

3. Edit the value.

4. Click Save.

Changing the Name or Data Type of an App Property after
Using It
If you change either the name of an app property or its data type after you have used the
property to configure a field in an Activity or trigger, the field displays an error message.
You must explicitly reconfigure the field to use the modified property by deleting the
property from the text box for the field and adding the modified property.

When Importing an App
An app being imported could have its app properties. The app properties get imported
along with the app. If an app property in the app being imported has a name that is
identical to a property in the host app, a warning message is displayed with a choice to
either overwrite the existing host property (by clicking Continue) with the property
definition from the imported app or cancel the import process altogether.

App properties of type password do not retain their values when the app is exported, hence
you must reconfigure the default values of all app properties of data type password after
you import the app.

TIBCO Flogo® Enterprise User Guide

171 | App Development

Exporting App Properties to a File
You can export the app properties to a JSON file or a .properties file. The exported JSON
file can be used to override app property values. The .properties file can be used to
create a ConfigMap in Kubernetes. When using the exported properties file, the values in
the properties file get validated by the app during runtime. If a property value in the file is
invalid, you get an error saying so and the app proceeds to use the default value for that
property instead.

Exporting the app properties to a JSON file

Exporting the app properties to a JSON file allows you to override the default app property
values during app runtime. It is useful if you want to test your app by plugging in different
test data with successive test runs of your app. You can set the app properties in the
exported file to a different value during each run of the app. The default app property
values get overridden with the values that you set in the exported file.

To export the app properties to a JSON file, run the following command from the directory
where your app resides:

./<app-binary-name> -export props-json

The properties get exported to <app-binary-name>-props.json file.

Exporting app properties to a .properties file

You cannot use a .properties file format to override the app properties that were
externalized using environment variables. The .properties file is useful when creating the
ConfigMap in Kubernetes. To export the app properties to a .properties file, run the
following command from the directory where your app resides:

./<app-binary-name> -export props-env

The properties get exported to <app-binary-name>-env.properties file. The names of the
app properties appear in all uppercase in the exported env.properties file. For example, a
property named Message appears as MESSAGE. A hierarchy such as x.y.z appears as X_Y_Z.

TIBCO Flogo® Enterprise User Guide

172 | App Development

Overriding an App Property Value While Testing a Flow
1. On the flow details page, click Test.

2. Start a new Launch Configuration by clicking Create a Launch Configuration or
using an existing Launch Configuration that you had exported from another flow by
clicking Import a Launch Configuration.

The Launch Configurations dialog box opens. For more information about Launch
Configurations, see Flow Tester.

App properties defined in the app and those defined in a connection are listed under
properties.

3. Select the property whose value you want to override and specify the new app
property value on the right side.

4. Click Next.

The input values you entered are displayed and validated. If no errors are found you
get the message, Input settings are alright.

5. Click Run to execute the flow with the input data you provided in the step above.

6. Click Stop Testing.

TIBCO Flogo® Enterprise User Guide

173 | App Development

App Schemas
You can define a JSON or Avro schema such that it is available for reuse across an app.
Creating an app-level schema saves you time and effort of entering the same schema
multiple times. An app-level schema can be used in any flow, Activity, or trigger
configuration where a schema editor is provided. You can simply pick an existing schema
from a list. For example, app-level schemas are available from the following locations:

l Inputs or Outputs tab of a flow (including Error Handler flows and subflows)

l Input or Output Settings tab of an Activity

l Output or Reply Settings tab of a trigger

App-level schemas are filtered based on the type of Activity or trigger. For example, only
JSON schemas are displayed in a REST trigger or Activity configuration.

Currently, Flogo Enterprise only supports the JSON and Avro types of schemas.

Defining an App-Level Schema

Procedure
1. On the App Details page, click Schemas.

The Schemas page opens.

2. Click +Schema.

3. In the Schema Name field, enter a schema name.

4. Select the type of schema. You can select either JSON or Avro schema. The default is
JSON schema.

5. Enter the schema in the schema editor.

Note: If you enter JSON data in the editor, it is automatically converted to
JSON schema.

6. Click Save.

TIBCO Flogo® Enterprise User Guide

174 | App Development

Result
After the schema is defined, it can be used in any Activity or trigger configuration by using
Use an app-level schema in the schema editor of the Activity or trigger.

Editing an App-Level Schema
When you make changes to an app-level schema, the changes are automatically reflected
everywhere the schema is used.

To edit an app-level schema:

Procedure
1. On the App Details page, click Schemas.

The Schemas page opens.

2. Expand the schema to be edited.

3. Edit the schema name or the schema in the editor, as required.

4. Click Save.

If the app-level schema is used in any flow, Activity, or trigger, a warning is displayed.

Deleting an App-Level Schema

Warning: Deleting a schema removes its reference from all the places where it is
used, but it retains a copy of the schema in the fields that use the schema.

Procedure
1. On the App Details page, click Schemas.

The Schemas page opens.

2. Click the Delete icon beside the schema to be deleted.

Result
After confirmation, the selected schema is deleted.

TIBCO Flogo® Enterprise User Guide

175 | App Development

Using an App-Level Schema
You can use an app-level schema from a flow, trigger, or Activity from the following tabs:

l Inputs or Outputs tab of a flow

l Input or Output Settings tab of an Activity

l Output or Reply Settings tab of a trigger

Flow Input & Output Tab
Use these tabs to configure the input to the flow and the flow output. These tabs are
particularly useful when you create blank flows that are not attached to any triggers.

Note: The schemas for input and output to a flow can be entered or modified
only on this Flow Inputs & Outputs tab. You cannot coerce the flow input or
output from outside this accordion tab.

Both these tabs (the Input tab and the Output tab) have two views:

l JSON schema view:

You can enter either the JSON data or the JSON schema in this view. Click Save to
save your changes or Discard to revert the changes. If you entered JSON data, the
data is converted to a JSON schema automatically when you click Save.

l List view:

This view allows you to view the data that you entered in the JSON schema view in a
list format. In this view, you can:

o Enter your data directly by adding parameters one at a time

o Mark parameters as required by selecting its checkbox.

o When creating a parameter, if you select its data type like an array or an object,
an ellipsis (…) appears to the right of the data type. Click the ellipsis to provide
a schema for the object or array.

o Use an app-level schema by selecting Use an app-level schema. On the
Schemas page that appears, click Select beside the schema that you want to
use. The name of the schema is displayed beside Use an app-level schema
and the schema is displayed in a read-only mode.

TIBCO Flogo® Enterprise User Guide

176 | App Development

Note: You cannot edit an app-level schema in the List view if Use an
app-level schema is selected. To edit an app-level schema, follow
the instructions in the section Editing an App-level Schema. You can,
however, switch to another app-level schema by clicking Change
and selecting another app-level schema. You can also unbind the
app-level schema (by deselecting Use an app-level schema) from a
trigger, activity, or the input and output of a flow. After you unbind
the app-level schema, you can make changes to it using the schema
editor in the List view.

o Click Save to save the changes or Discard to discard your changes.

Input or Output Settings Tab of an Activity
When configuring an Activity, you can select an app-level schema on its Input or Output
Settings tab. For example, the following screenshot shows an app-level schema selected in
the Response Schema field of the Output Settings tab of an InvokeRESTService Activity.

Output or Reply Settings Tab of a Trigger
When configuring a trigger, you can select an app-level schema on its Output or Reply
Settings Tab. For example, the following screenshot shows an app-level schema selected
in the Reply Data Schema field of the Reply Settings tab of a ReceiveHTTPMessage
trigger.

#GUID-07B62C46-E02B-4EB5-82C0-C7C16223EA34

TIBCO Flogo® Enterprise User Guide

177 | App Development

Note: If there is a change in the schema attached to a trigger, click Sync to
synchronize it with the input and/or output of the flow.

Using Connectors

Note: This section is applicable only if you have uploaded custom extensions for
connectors. The Extensions tab displays your uploaded extensions.

To use the Flogo connectors:

1. Create one or more connections.

2. If you do not already have an app, create an app.

3. Create a flow.

4. Add the activities about the connector you use as needed.

5. Build the app.

TIBCO Flogo® Enterprise User Guide

178 | App Development

Creating Connections
You must create connections before using the connectors in a flow. Flogo Enterprise uses
the configuration provided in these connections to connect to the respective app, data
sources, systems, or SaaS.

Before you begin
You must have valid accounts for the SaaS apps to which you want to connect.
To create a connection, click the Connections tab on the Flogo Enterprise page.

To create a connection using a connector tile:

1. If this is the first connection you are creating, click the Create connection link. For
subsequent connections, click Create on the Connections page.

2. Click the connector tile for which you want to create a connection.

3. Follow the instructions to configure the connection when prompted.

Note:
l You can have a maximum of four active Salesforce connections for one

user at any time. If you create more than four connections for the same
user, the first connection that you created gets deactivated. This limit is
enforced by Salesforce.

l Make sure that the pop-up blocker in your browser is configured to always
allow pop-ups from an app site. On macOS, clicking the link to the site
results in the connection details page hanging, so make sure to select
Always allow pop-ups from <site>.

Editing Connections
You can edit the name and other settings of your connection.
To edit an existing connection:

Procedure
1. In Flogo Enterprise, click the Connections tab to open its page.

2. In the list of existing connections, click the connection that you want to edit. Edit the

TIBCO Flogo® Enterprise User Guide

179 | App Development

connection details in the connection details dialog box that opens.

3. Click Save.

Note: Flogo supports automatic upgrade of activities, triggers, and connections.
To view updates for connections, you must open the connection from the
Connections page. For more information, see Auto-Upgrade of Activities,
Triggers, and Connections.

Deleting Connections
You can delete an existing connection.

Procedure
1. In Flogo Enterprise, click the Connections tab to open its page.

2. In the list of existing connections, hover over the connection name that you want to
delete until you see the Delete connection icon () appear at the end of the row.

If the connection is being used by an app, you can see a blue icon in the Usage
column. Hover over the icon to see which apps use the connection.

Note: You cannot delete such connections.

3. Click the Delete connection icon.

4. On the confirmation dialog box, click Delete connection.

Result
The selected connection is deleted.

Using Extensions
You can create extensions for Flogo Enterprise or you can upload a Project Flogo extension
into Flogo Enterprise.

TIBCO Flogo® Enterprise User Guide

180 | App Development

You can create and contribute extensions for the following:

l activities

l triggers (you can define custom triggers that you can upload and use to create a
flow)

l connectors (a connector provides configuration details to connect external apps, for
example, Salesforce)

l functions (to be used inside the mapper when mapping elements)

l custom category extensions

After creating your extension, you upload its .zip file using the upload dialog box.

The extension you upload must follow the guidelines found on the GitHub page,
https://tibcosoftware.github.io/tci-flogo/building-extensions/.

Important Considerations
Keep the following in mind before you upload your extension:

l A read-only user cannot upload an extension.

l When uploading your Activity or trigger extension, by default Flogo Enterprise
compiles your extension before uploading it. If you would like to skip the compilation
process, make sure to compile all the *.ts files in your extension and generate a .js
file for each .ts file. The .js file must have an identical name as its corresponding
.ts file.

l You are responsible for the life cycle (uploading, updating, deleting) of the extension
that you contribute. Any extension that you contribute is visible and available for use
only to you.

l When creating your Activity or trigger extension, if you did not specify a category for
the extension, the extension is placed in the Default category.

l The category name for an extension must be unique. If a category by the name
already exists, the upload completely overwrites the category. Out-of-the-box
contributions cannot be overwritten.

l Special characters are not supported in Activity and trigger names. A validation error
is displayed while uploading if any names contain special characters.

https://tibcosoftware.github.io/tci-flogo/building-extensions/

TIBCO Flogo® Enterprise User Guide

181 | App Development

l Uploading new extension(s) to an existing category overwrites the entire category
and all its contents. So, to add a new extension to an existing category while keeping
the extension(s) that already exist in that category, be sure to include the existing
extension(s) along with the new Activity, connection, or trigger when creating the
.zip file to be uploaded.

l You cannot delete a single extension from any category other than the Default
category. To delete a single trigger, Activity, or connector from a category, you must
re-upload the whole category which includes all the extensions you want to keep
minus the extension you want to delete. The same applies when editing an extension
within a category - after editing an extension on your local machine, make sure to re-
upload the whole category, the edited extension plus all the existing extensions in
the category. Uploading only the edited extension overwrites the category causing
you to lose the other extensions in the category.

An extension that you upload to Flogo Enterprise is available for use in any flow that
currently exists in your app or any flow that you create later.

Creating Extensions
Flogo exposes a number of different extension points. You can easily extend the
capabilities available, by building your own activities. In this section, you explore the
Activity contribution point and learn how to build a custom Activity in GO.

Step 1: Generate a basic framework
The easiest way to start creating Activities is to clone the content of the
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/extensions/TIBCO. The
Activity built returns the concatenation of the two parameters and displays it on the
console.

You must pull the following sample Activity to begin working on Flogo Core.

git clone https://github.com/TIBCOSoftware/tci-
flogo/tree/master/samples/extensions/TIBCO
mkdir-p myNewActivity
cp -R core/examples/Activity/* /myNewActivity

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/extensions/TIBCO

TIBCO Flogo® Enterprise User Guide

182 | App Development

Step 2: Update the Metadata
After you have pulled an example from the Flogo core, the first step is to update the
descriptor.json file with the required information. The file contains the metadata for the
new Flogo Activity. The metadata in the file contains the following elements.

Element Description

name The name of the Activity

This must match with the name of the folder in which the Activity
has been added.

version The version of the Activity.

The semantic versioning for the activities must be used.

type The type of contribution.

For example: flogo:Activity in this case.

title The application title to be displayed in the Flogo Web UI.

ref The reference to the GO package that is used by the web UI to
fetch the contribution details during the installation.

description A brief description of the Activity.

This is displayed in the Flogo Web UI.

author The creator of the Activity.

settings An array of name-type pairs that describe the Activity settings.

Note:
l Activity settings are pre-compiled and can be used to

increased performance.

l The settings are not fetched for every invocation.

input An array of name-type pairs that describe the input to the
Activity.

TIBCO Flogo® Enterprise User Guide

183 | App Development

Element Description

The anInput parameter must be of the string type.

output An array of name-type pairs that describe the output of the
Activity.

The anOutput parameter must be of the string type.

The updated descriptor.json file must look as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

{
"name": "sample-Activity",
"type": "flogo:Activity",
"version": "0.0.1",
"title": "Sample Activity",
"description": "Sample Activity",
"homepage":"https://github.com/project-

flogo/tree/master/examples/Activity",
"settings": [

{
"name": "aSetting",
"type": "string",
"required": true

}
],
"input": [

{
"name": "anInput",
"type": "string",
"required": true

}
],
"output": [

{
"name": "anOutput",
"type": "string"

}
]

TIBCO Flogo® Enterprise User Guide

184 | App Development

Step 3: Build the Logic
Now, you must update the .GO files available in the current directory. The . GO files in the
directory are as follows:

File types Description

Activity.go contains the logic behind Activity implementation in GO

Activity_test.go contains unit tests for the Activity

metadata.go contains the basic input, output, and settings metadata
used by the engine

The first step is to update the metadata.go file. Define the input, output, and settings in
the file. These details are used by the engine to build the Activity. Also it is used for
leveraging contributions using the Flogo GO library. This enables GO developers to leverage
strongly typed objects for IDE auto-completion.

The sample package of the metadata file must look like as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

import "github.com/project-flogo/core/data/coerce"

type Settings struct {
ASetting string `md:"aSetting,required"`

}

type Input struct {
AnInput string `md:"anInput,required"`

}

func (i *Input) FromMap(values map[string]interface{}) error {
strVal, err := coerce.ToString(values["anInput"])
if err != nil {

return err
}

TIBCO Flogo® Enterprise User Guide

185 | App Development

i.AnInput = strVal
return nil

}

func (i *Input) ToMap() map[string]interface{} {
return map[string]interface{}{

"anInput": i.AnInput,
}

}

type Output struct {
AnOutput string `md:"anOutput"`

}

func (o *Output) FromMap(values map[string]interface{}) error {
strVal, err := coerce.ToString(values["anOutput"])
if err != nil {

return err
}
o.AnOutput = strVal
return nil

}

func (o *Output) ToMap() map[string]interface{} {
return map[string]interface{}{

"anOutput": o.AnOutput,
}

}

The next step is to look at the Business logic and update the Activity.go file.

The sample package of the Activity file must look like as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

package sample

import (
"github.com/project-flogo/core/Activity"
"github.com/project-flogo/core/data/metadata"

)

func init() {

TIBCO Flogo® Enterprise User Guide

186 | App Development

//Activity.Register(&Activity{}, New) to create instances using
factory method 'New'
_ = Activity.Register(&Activity{})

}

var ActivityMd = Activity.ToMetadata(&Settings{}, &Input{}, &Output{})

//New optional factory method, should be used if one Activity instance
per configuration is desired
func New(ctx Activity.InitContext) (Activity.Activity, error) {

s := &Settings{}
err := metadata.MapToStruct(ctx.Settings(), s, true)
if err != nil {

return nil, err
}

ctx.Logger().Debugf("Setting: %s", s.ASetting)

act := &Activity{} //add aSetting to instance

return act, nil
}

// Activity is an sample Activity that can be used as a base to create a
custom Activity
type Activity struct {
}

// Metadata returns the Activity's metadata
func (a *Activity) Metadata() *Activity.Metadata {

return ActivityMd
}

// Eval implements api.Activity.Eval - Logs the Message
func (a *Activity) Eval(ctx Activity.Context) (done bool, err error) {

input := &Input{}
err = ctx.GetInputObject(input)
if err != nil {

return true, err
}

ctx.Logger().Debugf("Input: %s", input.AnInput)

output := &Output{AnOutput: input.AnInput}
err = ctx.SetOutputObject(output)

TIBCO Flogo® Enterprise User Guide

187 | App Development

if err != nil {
return true, err

}

return true, nil
}

Now, to test and build the Activity, you must get below GO packages.

go mod init
go mod tidy

Step 4: Perform Unit Testing
After you have completed the building logic of the Activity, you must now perform a unit
test. Unit testing gives you an automated way to test the Activity to make sure that it
works. This also lets other developers run the same tests to validate the output.

The sample package of the Activity_test file must look like as follows:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

package sample

import (
"testing"

"github.com/project-flogo/core/Activity"
"github.com/project-flogo/core/support/test"
"github.com/stretchr/testify/assert"

)

func TestRegister(t *testing.T) {

ref := Activity.GetRef(&Activity{})
act := Activity.Get(ref)

assert.NotNil(t, act)
}

TIBCO Flogo® Enterprise User Guide

188 | App Development

func TestEval(t *testing.T) {

act := &Activity{}
tc := test.NewActivityContext(act.Metadata())
input := &Input{AnInput: "test"}
err := tc.SetInputObject(input)
assert.Nil(t, err)

done, err := act.Eval(tc)
assert.True(t, done)
assert.Nil(t, err)

output := &Output{}
err = tc.GetOutputObject(output)
assert.Nil(t, err)
assert.Equal(t, "test", output.AnOutput)

}

To run all the test cases for your Activity run below command.

go test

On a successful run the result must look like as follows:

PASS
ok github.com/tibco/newConnector/myNewActivity 0.002s

Step 5: Upload the Activity in the Flogo App
Now, you can use the Activity in a Flogo app.

To install the Activity in Flogo, in the web UI, under Environment and Tools, go to the
Extensions tab, and click Upload.

Uploading Extensions

Before you begin
When uploading an extension, you can see the logs on the screen. You can change the log
levels at runtime by setting the FLOGO_LOG_LEVEL engine variable. Be sure to do so before

TIBCO Flogo® Enterprise User Guide

189 | App Development

you begin uploading your extension. For details on the FLOGO_LOG_LEVEL engine variable,
see the Environment Variables section. For more details on the environment and engine
variables, see the Configuring App Properties section.

To upload an extension:

Note: This procedure assumes that you have the .zip file for your extension
available for upload.

1. Click the Extensions tab.

2. If this is the first extension, click Upload an extension.

If there are existing extensions, click the Upload in the upper-right corner:

The Upload an extension dialog box opens. If you want to upload from the Git
repository select From Git repository. See the section, Pulling Extensions from an
Open Source Public Git Repository for more details on this.

To upload an extension residing in a .zip file locally, click From a Zip file.

https://integration.cloud.tibco.com/docs/using/using-apps/configuring-apps/configuring-app-properties.html

TIBCO Flogo® Enterprise User Guide

190 | App Development

3. Click the browse to upload link and navigate to your extension .zip file.
Alternatively, drag the .zip file from your local machine to the area defined by a
dotted line in the Upload an extension dialog box.

4. If you would like to skip the compilation process, select the Skip Compilation check
box. If the check box is selected, Flogo Enterprise performs a check before uploading
to make sure that every .ts file has a corresponding .js file present. If a .ts file does
not have a .js file, the validation fails, and your extension does not upload.

5. Click Upload and compile.

Flogo Enterprise validates the contents in the .zip file. If the .zip file contains a
valid folder structure, it compiles the extension code. Once the code is compiled
successfully, it uploads the extension to Flogo Enterprise. You can view the progress
of the upload or any errors that occur in the logs:

TIBCO Flogo® Enterprise User Guide

191 | App Development

A Complete message is displayed after the extension is successfully uploaded. If
there were any compilation errors during the upload, you see an error message and
the upload exits. You can copy-paste the error message if required.

6. Click Done to close the dialog box.

You can view your extension on the Extensions page. The newly added extension
appears under the category that you specified. If you had not specified a category for
the extension, it appears in the Default category. Connectors are denoted by the

symbol, triggers are denoted by the symbol, activities are denoted by the

symbol, and functions have the symbol next to them.

The new extension displays the following:

l timestamp when the extension was loaded

l name of the extension contributor

TIBCO Flogo® Enterprise User Guide

192 | App Development

l version of the extension

Note: While creating a flow, the icon is shown on activities that are
present on the Extensions tab.

The Search field that appears above the category searches within the categories for
the Activity, trigger, or connector you specified in the search text box. You can filter
the displayed extensions by clicking the Triggers, Connectors, or Activities buttons.

The extension is now available for you to use. If you uploaded an Activity, the Activity
is available for use when creating a flow or editing an existing flow. The Activity
appears under the category you defined for it when creating the extension. The
output of the Activity is available in the mapper just as it is for any default activities
that come with the Flogo Enterprise.

If you uploaded a connector, the connector is available for creating new connections
on the Add Connections > Select connection type dialog box.

If you uploaded a trigger, the trigger is available for you to select in the Create a
Flow dialog box. If you select the trigger, it creates the flow with your trigger.

If you uploaded a function, it is available to be used inside the mapper when
mapping elements.

If you uploaded a category, it is available to use when adding any new activities
while designing a flow. Triggers and connections in the category can be used as
mentioned above.

Pulling Extensions from an Open Source Public Git
Repository
You can upload extensions that are available from an open-source public Git repository by
pulling them directly into Flogo Enterprise. This section describes how to pull the Default
category Project Flogo extensions directly from an external public Git repository and
upload it to Flogo Enterprise. Pulling from private Git repositories is currently not
supported.
Keep the following in mind when pulling the contribution:

l You can download only from public repositories. Accessing private Git repositories is
not supported.

TIBCO Flogo® Enterprise User Guide

193 | App Development

l The Git repository link should be the reference of the Activity and not the URL.

l The repository link needs to be a reference of the contribution and must not begin
with http:// or https://, for example, to pull the LogMessage Activity from the
Project Flogo Git repository, use github.com/project-flogo/contrib/Activity/log

l Any new default category contribution that you pull from the Git repository gets
appended to the ones that already exist for the category in Flogo Enterprise.
Contributions pulled and uploaded to other categories in Flogo Enterprise, overwrites
the category itself. Hence, if there are any existing activities in the category, they get
deleted when the category is overwritten.

l Default category extensions can only be downloaded one at a time.

To pull an extension from a public Git repository:

Procedure
1. On the Extensions page, click Upload.

The Upload an extension dialog box opens.

2. Click From Git repository.

When you select this option you are prompted to enter the location of the Git
repository from which you want to pull the extension.

3. Enter the reference to the extension in the Git repository.

Important: Make sure you do not enter the initial http://

4. Click Import.

Flogo Enterprise validates the format of the reference you entered in the Git
repository URL text box. Import remains disabled until you enter a valid reference
format. A .zip file for the Activity gets generated and uploaded to the Default
category on the Extensions page in Flogo Enterprise. Once you start the process of
downloading the contribution from the Git repository, you cannot cancel the process
or switch to the process of uploading From a Zip file. You must wait for the upload
process to complete, then click Done.

5. Click Done.

The extension you uploaded appears on the Extensions page.

TIBCO Flogo® Enterprise User Guide

194 | App Development

Deleting Extensions or Extension Categories
From the Extensions page, you can delete:

l an existing extension from the Default category

l a custom extension category

Procedure
1. Click the Extensions tab.

The existing extensions are displayed on the Extensions page.

2. To delete an extension from the Default category, on the tile of the extension that
you want to delete, click and select Delete.

3. To delete a custom extension category, on the right side of the screen, click and

select Delete.

Individual items within a custom extension category cannot be deleted. The entire
custom extension category must be deleted.

4. In the confirmation dialog box, click Delete.

Result
The selected extension or extension category is deleted.

Flow Tester
After you design a flow, use the Flow Tester to test the flow.

When designing a flow, runtime errors can go undetected until you build the app to
execute the flow. It can become particularly cumbersome to test flows that start with a
trigger since the triggers activate based on an external event. So, before you can test the
flow, you need to configure the external app to send a message to the trigger to activate
the trigger and consequently execute the flow. The Flow Tester eliminates the need to
activate the trigger to execute the flow.

You provide the input to the flow in the Flow Tester. The Flow Tester executes the flow on
demand without using a trigger. Each Activity executes independently and displays its logs.
This lets you detect errors in the flow upfront without actually building the app.

TIBCO Flogo® Enterprise User Guide

195 | App Development

Note:

l The Flow Tester takes some time to start as the engine is built from scratch every
time you start the Flow Tester. The time taken to start the Flow Tester depends upon
the number of contributions used in the app and the resources assigned to the
Docker daemon.

l The Flow Tester is disabled when Activity type contributions are missing in the flow
execution.

l Expressions and functions are not evaluated in the Flow Tester. Input provided is
passed as is.

l You can run the Flow Tester in the debug mode with the following features only:

o Test run the flow

o See the flow execution

o Select an Activity that is executed and see the inputs and outputs

o Change the inputs to other valid values and start the Activity from that point
onwards

l You cannot:

o Insert a debug point and stop the flow execution at a tile

o Skip a tile from test execution

Testing Flows from the UI
You can use the Flow Tester from the Flogo Enterprise UI or you can use the CLI to run the
test command in the Flow Tester. This section describes how to use the Flow Tester from
the UI.
When using the Flow Tester from the UI, you must populate your test data in the Launch
Configuration. Launch Configuration is a mechanism used by the Flow Tester to store your
test data.

What is a Launch Configuration?
A Launch Configuration is a test configuration that contains a set of data with which to test
the flow. Create a Launch Configuration to hold the test data that you want to use as input

TIBCO Flogo® Enterprise User Guide

196 | App Development

to the flow. Launch Configurations allow you to save and use your input data without
having to enter it every time you want to test or retest the flow.

Blank flows use data configured on the Input Settings tab of the Flow Inputs & Outputs
accordion tab as the input to the flow. Flows created with a trigger use the output of the
trigger as input to the flow.

Launch Configurations are particularly useful when you want to test the flow multiple
times with complex data or multiple sets of data. Create a Launch Configuration once with
the data and use the Launch Configuration as input to the flow instead of manually
entering the data every time you want to execute the flow. You can create multiple Launch
Configurations, each containing a different set of data. A Launch Configuration can contain
only one set of data. To test a flow with multiple sets of data, create multiple Launch
Configurations for a flow with each containing one set of data, then test the flow with one
Launch Configuration at a time.

Once you create a Launch Configuration, it automatically gets saved and is available to you
until you explicitly delete it.

Note: When exporting an app, if the app contains Launch Configurations, the
Launch Configurations do not get exported with the app. Launch Configurations
in an app must be exported independently of the app export.

Creating and Using a Launch Configuration
Launch Configurations need not be explicitly saved. They persist even after you exit Flogo
Enterprise and log back in later.

Creating your first Launch Configuration

To create the very first Launch Configuration in a flow:

1. On the flow details page, click Test.

You can either start a new Launch Configuration by clicking Create a Launch
Configuration or use an existing Launch Configuration that you had exported from
another flow by clicking Import a Launch Configuration.

TIBCO Flogo® Enterprise User Guide

197 | App Development

2. Click Create a Launch Configuration.

The Flow Tester opens with the left pane displaying the Launch Configuration name.
By default, a new Launch Configuration is named "Launch Configuration x" where x
stands for a number. For example, since this is the first Launch Configuration that
you are creating, the name of the Launch Configuration displays as Launch
Configuration 1. The next Launch Configuration you create is named Launch
Configuration 2. You can edit the name in the right pane. The right pane opens the
mapper which displays the flow input tree.

TIBCO Flogo® Enterprise User Guide

198 | App Development

3. Optionally, enter a meaningful string to replace the default name in the Launch
Configuration name text box.

4. Select the log level from the Log Level drop-down menu.

5. Select Using on-premise services if you want to test apps that connect to on-
premise systems.

Note: Before you select this check box, enable the flogotester service for
your organization using the API. For more information, see Enabling or
Disabling the TIBCO Flogo® Flow Tester for an Organization with the API.

6. Enter the values for the elements in the input tree. Refer to Configuring a Launch
Configuration for details on entering values.

Note: If your flow does not require an input, for example, if your flow was
created with a Timer trigger that does not have an output (consequently
no input to the flow), you can continue testing the flow without using the
mapper in the Flow Tester.

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html

TIBCO Flogo® Enterprise User Guide

199 | App Development

7. Click Next.

The input values you entered are displayed and validated. If no errors are found you
get the message, Input settings are alright.

8. Click Run to execute the flow with the input data you provided in the step above.

All the activities in the flow are executed. For details, see What can you do using the
Flow Tester?.

9. Click Stop Testing.

Creating Subsequent Launch Configurations
If you have an existing Launch Configuration:

Procedure
1. Click New to create another Launch Configuration.

TIBCO Flogo® Enterprise User Guide

200 | App Development

2. Follow the procedure from step 3 onwards in Creating your first Launch
Configuration.

What can you do using the Flow Tester?
When you use the Flow Tester to test a flow, all the activities in the flow are executed.
While the flow tester is active, you cannot add or delete an Activity in the flow.

When an Activity is being executed, a blue animation is displayed around it. When the
execution of the Activity is completed, the Activity is highlighted in the flow and the blue
animation moves to the next Activity. Activities that have not completed execution are
greyed out. This helps you see the progress made in the execution of the flow.

Attention: It is a good practice to stop testing by clicking Stop Testing when you finish
running a flow in the Flow Tester, as the login session remains active for the entire time
that you are in the testing mode.

TIBCO Flogo® Enterprise User Guide

201 | App Development

Handling errors

If the Activity encounters an error, it is highlighted with a red colored border and a red
error icon is displayed on the the Error handler tab (if the error handler is run in the
background). You can click the Error handler tab to find out till where the execution took
place successfully. Note that when you navigate back to the Main flow, the red error icon is
not displayed on the Error handler tab.

Note:
l If you start the execution from the Error handler tab, execution is moved

on to the Main flow tab (as an error handler is always a part of the main
flow).

You can, however, start a test from a tile on the Error Handler tab. In this
case, the execution starts from the Error Handler tab.

l If the execution is started from a sub-flow, the execution does not move to
the Main flow and acts as a normal tile execution (as a sub-flow is an
independent flow).

Executing the flow from a specific Activity onwards

You can debug a specific Activity in the Main flow or Error Handler flow. If it is successful,
the output is shown on the Output tab. If an Activity does not have any output (for
example, the Return Activity), it shows the Output tab as blank. If the Activity is erroneous,
the error is shown on the Errors tab.

TIBCO Flogo® Enterprise User Guide

202 | App Development

To execute the flow from a specific Activity (and not from the beginning of the flow) with
different input data, perform the following steps.

Note:
l This can be done only after the entire flow has been executed at least

once.

l When you start the execution of a flow from a specific Activity in the flow,
you cannot start the execution again from any Activity before the current
Activity. If you need to do that, you must launch a new test.

For example, a flow includes A1 -> A2 -> A3 -> A4 -> A5 activities and
execution is started from the A3 Activity onwards. In subsequent
executions, you cannot start the execution from any Activity before A3;
execution always starts from A3 onwards. If you want to run the flow from
an Activity prior to A3, you must launch a new test.

1. Select the Activity from which you want to run the flow.

The Activity is highlighted in blue. The Activity data is displayed on the Inputs and
Outputs tab. If an error is returned, an Error tab is displayed in place of the Outputs
tab.

2. On the Inputs tab, change the input values as required. You cannot do dynamic
mappings here.

3. Click Run test from this Activity.

The execution begins from the current Activity. The logs are also displayed only for the
current Activity and subsequent activities in the flow.

TIBCO Flogo® Enterprise User Guide

203 | App Development

Note: Once the execution starts from a tile, you cannot access preceding tasks
executed in the previous runs. The previous activities are greyed out. If you want
to run the flow from a previous Activity, you must launch a new test.

Logging information

As the activities are executed, the runtime engine logs for the activities are displayed in the
Logs output window. The format of the logs is similar to the logs displayed while running
an app binary.

To copy these logs, you can click Copy logs.

You can also switch from the Flow logs view to the Activity data view by clicking Activity
data.

Configuring a Launch Configuration
When you click a Launch Configuration name, its mapper opens to its right. The mapper
displays the input tree in the left pane.

TIBCO Flogo® Enterprise User Guide

204 | App Development

Procedure
1. Select Using on-premise services if you want to test apps that connect to on-

premise systems.

Note: Before you select this check box, enable the flogotester service for
your organization using the API. For more information, see Enabling or
Disabling the TIBCO Flogo® Flow Tester for an Organization with the API.

2. To configure the mapping, expand the input tree in the left pane.

3. Click an element to add a value to the element.

4. Enter the value for that element in the text box to its right.

When entering values for the elements, be aware of the following:

l The input tree for a Launch Configuration mapper displays the input you
configured on the Flow Inputs & Outputs accordion tab for blank flows. For
flows created with a trigger, it displays the output schema of the trigger.

l For flow inputs that contain only single objects, you must enter the input
values at the root level. The example below shows how to enter the values for
a single object, Customer:

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/organization/flogo-tester-access.html

TIBCO Flogo® Enterprise User Guide

205 | App Development

l When mapping an array of objects, the input must be provided at the array
root level, which means that you must provide input for all objects in the array
by clicking on the root of the array. You cannot configure the input at the array
element level.

In the example below, the Customer is an array of objects. Each object within
the Customer array contains ID, Phone, and Name elements. When providing
values for Customer, you cannot give the input at the element (ID, Phone, or
Name) level. Doing so does not specify the index of the Customer object for
which you are assigning the value(s). Hence, you must assign the value to the
whole Customer object. Since the Customer array has multiple objects, assign
values to each object in the Customer array by separating the objects with a
comma delimiter. The array size is determined based on the number of objects
for which you provide values. In the example below, the array size is two since
there are two objects for which values have been provided.

5. You can override app property values in the launch configuration. Properties defined
in the app and those defined in a connection are listed under properties. Select the
property whose value you want to override and specify the new app property value
on the right side.

TIBCO Flogo® Enterprise User Guide

206 | App Development

Note: For a password, you must provide an encrypted password value. For
more information, see Encrypting Password Values.

6. Click Next.

The mapper performs validations to ensure the validity of the JSON structure and
also validates that you have entered values for all elements that are marked as
required in the schema.

If there are any errors in your input, the mapper displays a list of errors. If no errors
are found you get the message, Input settings are alright.

TIBCO Flogo® Enterprise User Guide

207 | App Development

In your test environment, only the validation errors related to invalid JSON structure
prevent you from proceeding with your testing. Errors about missing values for
required elements serve as a warning but allow you to proceed with your testing.
This is because it is possible that an element that is marked as a required field in the
schema may not have been used in the activity at the time of testing. In that case,
the element is not needed for the flow to run. But in the production environment,
your app does not run successfully until you provide input values for all elements
marked as required in your schema.

Exporting a Launch Configuration
There may be occasions when you want to use the same test data configurations for
testing multiple flows. You have the option to create a Launch Configuration that contains
this data in one flow, export the Launch Configuration, then import it into each of the
other flows. The ability to export a Launch Configuration is particularly useful when the
data set is very complex. In such a scenario, you can export a Launch Configuration, import
it into another flow and test the flow with the imported Launch Configuration. Reusing a
Launch Configuration by exporting and importing it saves you the time and effort needed
to create a separate Launch Configuration for each flow.

To export a Launch Configuration:

Procedure
1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch

Configuration name that you want to export.

TIBCO Flogo® Enterprise User Guide

208 | App Development

2. Click the Export Launch Configuration () icon.

A file with the name <flow-name>_<Launch Configuration-name>.json is
downloaded to your Downloads directory. You can import this file into another flow
and use the Launch Configuration that you just exported. Refer to Importing a
Launch Configuration for details on how to import a Launch Configuration.

Note: The Launch Configuration name is not preserved, so the imported
Launch Configuration is given a default name of "Launch Configuration x"
where x stands for the next number in the series of existing Launch
Configurations. For example, if you have two existing Launch
Configurations in the flow, the imported Launch Configuration is named
Launch Configuration 3. You have the option to edit the name to make it
more meaningful.

Importing a Launch Configuration
Launch Configurations are stored as JSON files, so when you export a Launch
Configuration, you export its JSON file. You import the Launch Configuration that was
exported from another flow by importing the JSON file of the Launch Configuration into
the flow.

Note: The Launch Configuration name is not preserved, so the imported Launch
Configuration is given a default name of "Launch Configuration x" where x
stands for the next number in the series of existing Launch Configurations. For
example, if you have two existing Launch Configurations in the flow, the
imported Launch Configuration is named Launch Configuration 3. You have the
option to edit the name to make it more meaningful.

To import a Launch Configuration, follow this procedure:

Before you begin
You must export the Launch Configuration you want to import and have its JSON file
accessible before you follow the procedure below.

TIBCO Flogo® Enterprise User Guide

209 | App Development

If this is the first Launch Configuration

1. If this is the first Launch Configuration in the flow (no existing Launch
Configurations), click Test on the flow details page.

2. Click Import a Launch Configuration.

3. You have the option to either drag the JSON file of the Launch Configuration you
want to import, or navigate to the file using the browse to upload link.

4. Click Import. Data in the Launch Configuration being imported gets validated. In case
there are any errors, they are displayed in the Import dialog box.

When there are existing Launch Configurations

If there are existing Launch Configurations in the flow, click Import in the Flow Tester and
either drag the JSON file that was exported from another flow, or navigate to the file using
the browse to upload link, then click Import.

Cloning a Launch Configuration
Whereas exporting and importing a Launch Configuration is useful for using the same set of
data in two or more flows, cloning a Launch Configuration is useful when you want to test
the same flow with two sets of data that have only minor differences.

A good use case for cloning

TIBCO Flogo® Enterprise User Guide

210 | App Development

Clone a Launch Configuration when you need to test a flow multiple times using the same
input schema, but different values for one or more elements in the schema during each
round of testing. You can start by creating a Launch Configuration, then cloning it, then
editing the cloned Launch Configuration. You can create as many clones as needed. Each
clone is a separate Launch Configuration having the same input schema. You can change
the values for the elements in each cloned Launch Configuration as required. Use the
original Launch Configuration for one round of testing and the cloned Launch
Configuration(s) for the subsequent round(s). This saves you the effort of editing a single
Launch Configuration.
To clone an existing Launch Configuration:

Procedure
1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch

Configuration name that you want to clone.

2. Click the Clone Launch Configuration () icon. The cloned Launch Configuration is

named Copy <name-of-the-original-Launch Configuration> by default. You can
edit the name of the Launch Configuration in the Launch Configuration name text
box.

Deleting a Launch Configuration
When you create a Launch Configuration, it automatically gets saved until you explicitly
delete it.
To delete a Launch Configuration:

TIBCO Flogo® Enterprise User Guide

211 | App Development

Procedure
1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch

Configuration name that you want to delete.

2. Click the Delete Launch Configuration () icon.

Testing Flows from the CLI
This feature allows you to test your Flogo app using the Flogo app binary itself. Once you
have built the binary for a Flogo app, you can test it using the test command. This feature
is also useful to automate the testing process for a flow.

You can do the following from the CLI:

l List all flows in a specified app

l Generate test data for a given flow

l Test a flow against test data you specify in a JSON file

l Test a flow against test data you specify in a JSON file and generate the output of
the test in an output file that you specify

Before you begin
l The app binary must be readily accessible on the machine from which you plan to

test it.

Follow these steps to get help on the test command:

Procedure
1. Open a command prompt or terminal window depending on your platform.

2. Navigate to the folder where you stored the app binary.

3. Run the following command to get the online help on the test command:

On Windows: <app-binary> -test

On Macintosh: ./<app-binary> -test

On Linux: ./<app-binary> -test

TIBCO Flogo® Enterprise User Guide

212 | App Development

This command outputs the usage for the test command along with some examples.
Refer to test Command for details.

4. Run the command with the appropriate option to test your app. For example, if your
app binary name is MyTestApp-darwin-amd64, to get the names of the flows in your
app, run: ./MyTestApp-darwin-amd64 -test -flows

The output of the command lists all the flows in the app.

Using the test command to test your flow from the
CLI
To test a flow:

Procedure
1. Generate the input JSON file using the -flowdata option with the command as

described (./<app_binary> -test -flowdata <flow_name>). This generates a JSON
file (<app-name>_<flow-name>_input.json) with the input fields that you specified
when creating the flow on the Input tab of the Flow Inputs & Outputs tab of the
blank flow.

Note: You can also use the test configurations that were exported from
Launch Configuration as the input file instead of generating the input file
with the -flowdata option.

2. Modify the generated file, <app-name>_<flow-name>_input.json, from step 1 to set
specific values for the input fields in the file.

3. Use the <app-name>_<flow-name>_input.json file to test your flow:

./<app_binary> -test -flowin <app-name>_<flow-name>_input.json -flowout
<output>.json

For example, if your app name is MyTestApp and the input file generated by -flowin
is MyTestApp_MyFlow_input.json and the output file you specify for -flowout is
MyOutput.json, the command looks as follows:

./MyTestApp -test -flowin MyTestApp_MyFlow_input.json -flowout

TIBCO Flogo® Enterprise User Guide

213 | App Development

MyOutput.json

The test Command
Use the test command in Flogo Enterprise to test your Flogo app.

Options Description and Example

-flows

SYNTAX:

./<binary_filename -test -flows

Lists all flows in the specified <binary_filename>
app.

Example:

./MyTestApp -test -flows

where MyTestApp is the app binary.

-flowdata

SYNTAX:

./<binary_filename> -test -flowdata
<flow-name>

Generates input fields data file for a given flow.
The input test data is generated based on the
Flow Inputs you provided when creating the
flow (on the Input tab of Flow Inputs &
Outputs).

Example:

./MyTestApp -test -flowdata
TestFlow

where MyTestApp is the app binary and
TestFlow is a flow within MyTestApp. A JSON
file with the file name with format <app-name>_
<flow-name>_input.json gets created. This file
contains the generated input fields configured
on the Input tab of the Flow Inputs &
Outputs.

You can edit this file to set specific values for
the input fields and use the file to test your
flow using the -flowin option described below.

TIBCO Flogo® Enterprise User Guide

214 | App Development

Options Description and Example

-flowin

SYNTAX:

./<binary_filename> -test -flowin
<path-to-input-file>

Test flow against given test data contained in
an input JSON file. This file must exist in the
location that you specify in the command.

Example:

./MyTestApp -test -flowin
/usr/TestFlow_input.json

where MyTestApp is the app binary and
/usr/TestFlow_input.json is the path to the
JSON file containing the input to the flow.

Note: You can also use the test
configurations that were exported from
Launch Configuration as the input file in this
command.

-flowout

SYNTAX:

./<binary_filename> -test -flowin <path to test
data file> -flowout <path-to-output-file-name>

Write flow output (if applicable) to the specified
file. If a file with the specified name does not
already exist in the specified location, Flogo
Enterprise creates the file. If you do not specify
a file name, the output gets printed to the
console.

Example:

./MyTestApp -test -flowin TestFlow_
input.json -flowout TestFlow_
output.json

where MyTestApp is the app binary, TestFlow_
input.json is the file containing the input data
to the flow and TestFlow_output.json is the
path to the JSON file you specify to hold the
output from the flow.

TIBCO Flogo® Enterprise User Guide

215 | App Development

Unit Testing
With unit testing, you can monitor the health of your application and detect errors in
individual flows or Activity levels.

While designing an application with multiple flows and activities, it becomes cumbersome
to detect runtime errors at the flow and Activity levels. Using unit testing the errors at
micro level are easily handled. You can run unit testing at any phase of the development
cycle to verify whether activities in the process are working as expected. Using testing
processes in the development stage (before you push the application to the production
environment), helps detect errors and identify issues at an early stage.

Terminologies in Unit Testing

1. Test case: A test case is the individual unit for testing a flow. For a given set of
inputs, the test case checks for a specific output for an Activity or the flow output.
The expected versus actual output is compared by adding assertions to the test
case.A test case can have multiple assertions added on activities and flow output.
The test case is considered as passed when all the assertions in that test case pass.

2. Assertion: An assertion is a logical expression that evaluates to a boolean value. The
expected versus actual output is compared by using an assertion expression. For the
passed assertion, the expression evaluates to true. A non-boolean expression always
evaluates to false.

3. Flow Input: Flow input is a set of input data used to run the test on the given flow.
Each test case has its own set of inputs.

4. Flow Output: Flow output is the output generated for the given flow for the given set
of inputs. Flow output can have one or more assertions.

5. Test Suite: A group of test cases make a test suite. An app can have multiple test
suites. The test suite is considered as passed when all the tests in the test suite are
successfully run.

6. Test Suite file: A test suite file is an exported file that contains all the test suites for
a given Flogo app. The file has .flogotest as its extension and can be exported from
the studio as well as the platform API. The test suite file along with the Flogo app
binary can be used to run the test cases in the stand-alone environment outside TCI.

7. Test Result File: A test result file with extension .testresult has the detailed
execution result of the test suites, the test cases under that test suite and the

TIBCO Flogo® Enterprise User Guide

216 | App Development

assertion execution result for each test case. The test result file is generated after
running the tests on the exported binary.

Role Requirements
l Admins and Users have full access to unit testing for the apps that they own.

l Admins cannot import unit test data for apps that they do not own.

l Users and read-only users have no access to unit testing for the apps that they do
not own.

l Any user role cannot access unit testing if the apps are created using the platform
API.

Creating and Running a Test Case
Unit testing in flogo tests smaller chunks of work in the process.

A test case is a basic building block of unit testing. A test case can have one or more
assertions on the activities in the main flow, activities in the error handler, or on the flow
output. One flow can have multiple test cases.

To enable the unit testing mode, click on the Unit Test palette that is available on the
Activities, Triggers, Unit test, Properties and Schema panel. Click the same palette to
get out of the unit testing mode.

Creating a Test Case
Before you start unit testing, you must create a test case. Perform the following procedure
to create a test case:

1. On the Flows page, click the flow that you want to run a unit test on. The flow design
page opens.

2. On the flow design page, click Unit Test.

3. On a pop-up layover, click Unit Tests to create a test case.

4. Provide Test Name and Description for your test case. Click Create.

You can create more test cases by clicking beside Test Cases.

TIBCO Flogo® Enterprise User Guide

217 | App Development

Defining Flow Input
For a particular Activity that has a flow input configured in the actual process, you must
assign the flow input parameters before you run a test case. You can add separate test
cases for each flow input.

Note: If the flow input is configured for the Activity, then you must define the
flow input value when running a test case, otherwise the test case fails.
However, if the flow input is not configured for the Activity, then you need not
define the flow input value when running a test case.

To define the flow input parameter, follow these steps:

1. On the Unit Test page, under Main Flow tab click Flow Input.

2. Provide the required flow input details and click Save.

Creating Assertions
To compare the actual vs expected output, you can add multiple assertions on an Activity
or a flow output. The assertion expression always evaluates to a boolean value.

Note: You cannot create assertions for the activities that do not return output.

To add unit test assertions for a test case, follow these steps:

1. Click the activity that you want to add an assertion on. The Mapper dialog opens.

2. In the mapper dialog, click New Assertion. On the new dialog, an assertion with
default name is created.

3. Map the Available Data from assertions dialog with the appropriate values and click

TIBCO Flogo® Enterprise User Guide

218 | App Development

Save.

Note: While asserting an object, it is recommended to assert on each property
instead of the whole object.

Creating Assertions for Flow Output

Note: You cannot create assertions for the flow output when it has no outputs.

To create assertions for flow output, follow these steps:

1. On the Unit Test page, under Main Flow tab, click Flow Output. The assertions
dialog for flow output opens.

2. In the assertions dialog, click New Assertion. On the new dialog, an assertion with
the default name is created.

3. Map the Available Data from assertions dialog with the appropriate values and click
Save.

TIBCO Flogo® Enterprise User Guide

219 | App Development

Creating Assertions for the Error Handler
You can also add test cases for the flow designed in the error handler. Unit test case
designed for the error handler flow is run to detect any run time exceptions or errors in the
flow implementation.

To create assertions for the error handler, see creating assertions.

Test Case Validation
Before you run a test case, Flogo auto validates the test cases when you land on the unit
testing mode.

If there are any errors in mapping expressions, an error sign pops up on the activity level
assertions, or on the mock data. If there are any errors in the mapping expressions the
error sign also pops up on the flow inputs and flow outputs.

To validate a test case:

1. Switch to unit testing mode to see if there any validation errors.

2. An error sign is displayed on the assertion level of the activity, flow input and flow
output.

Error sign is also displayed on the test case level of the particular activity that has
the errors.

Running a Test case
After you are done with creating a test case, the test case is ready to run.

1. To run a test case, click the Play icon next to the respective test case.

2. After the test case run is completed, the result is generated.

TIBCO Flogo® Enterprise User Guide

220 | App Development

The result window displays the total number of test cases, which include the number
of passed and failed test cases. It also displays the total number of assertions and
the number of passed and failed assertions on activities in the flow, activities in the
error handler, and in the flow output. The result for assertions on the flow output is
displayed only if the assertion is added to the flow output.

The icons on the result window are described as follows:

Icon Description

The assertion on the particular field has passed.

The assertion on the particular field has failed.

The assertion on the particular field is skipped.

TIBCO Flogo® Enterprise User Guide

221 | App Development

Tip:
l You need not close the result window to modify your test case. You need

to Minimize the window, make the changes, and Retest the case.

l You can enable the test cases to include in the Run all Test Cases. Disable
the test cases to exclude it from Run all Test Cases.

l You can edit, delete, or copy a test case or a test assertion at any point.

l For an active unit test case, if you change app level schemas or app
properties, close the session and rerun the test case.

Using Mock Data
In unit testing, you can mock the data for the unit that is being tested. This is useful during
unit testing so that the external dependencies are no longer a constraint to the unit under
test. Using Mock data the dependencies are replaced by closely controlled replacements
that simulate the behavior of the real ones.

You can use the mock data for the activities that have an output.

In unit testing, you can either use assertions or mock data to test the activities.

Note:
l When running a binary, the test suites or test cases are run by default

irrespective of whether they are enabled or disabled.

l When you export a .flogotest file, only the instance that you save (either
assertions or Mock data) is reflected in the file.

TIBCO Flogo® Enterprise User Guide

222 | App Development

Creating and Running a Test Suite
You can use the Test Suite feature to combine different test cases and run them at once.

Creating a Test Suite
To create a test suite, follow these steps:

1. On the Flows page, click Test Suite. The test suite dialog opens.

2. In the Test Suite dialog, click New Test Suite. A test suite with a default name gets
created.

3. You can add a test case by clicking Add test cases on the Test Suite pop-up modal.

4. Select the test cases to be added in the suite. Click Save and close the dialog.

Running a Test Suite
After you are done with creating a test suite, the test suite is ready to run.

TIBCO Flogo® Enterprise User Guide

223 | App Development

1. To run a test suite, click the Play icon next to the test suite.

2. After the test suite run is completed, the result is generated.

A result window displays the total number of test suites and test cases with the
number of passed and failed test suites and test cases.

The icons on the result window are described as follows:

Icon Description

The assertion on the particular field has passed.

The assertion on the particular field has failed.

The assertion on the particular field is skipped.

TIBCO Flogo® Enterprise User Guide

224 | App Development

Note:
l You can enable the test suites to include in the Run all Test Suites.

Disable the test suite to exclude it from Run all Test Suites.

l When engine is running in unit test mode, it does not fail fast and
continues on connection errors. The connections have a retry mechanism,
then the start up time considerably increases. If any activity that uses
connections is not mocked, the test case throws an error.

Exporting and Importing a Unit Test
Once you are done with designing the test cases and test suites, you can export the unit
test file and import it anytime to get the unit test data in a flogo application.

The exported file has the application version attached to it. You can maintain the unit test
files based on your application versions so that you import the correct version of the unit
test file matching your application versions to avoid any configuration issues.

Exporting a Unit Test
Perform the following procedure to export a unit test:

1. On the Apps page, under Flow, click the shortcut menu .

2. Go to Export > Unit Tests.

3. A .FLOGOTEST file is downloaded to your system.

Importing a Unit Test
To import a unit test:

1. On the Apps page, under Flows, click the shortcut menu .

2. Go to Import > Unit Tests.

3. Drag or upload a desired .FLOGOTEST file and click Upload.

TIBCO Flogo® Enterprise User Guide

225 | App Development

Note: The unit test file is dependent on the names of the flow and activities.
While importing, if the flow name or Activity name in the flow mismatches, then
the test cases of that flow and assertions on that Activity gets skipped.

Enabling On-premises Services in Unit Testing
You can enable on-premises services in unit testing to run the test cases or test suites on
the applications that are connecting to the on-premises services.

To enable services, while running a test Case or a test suite, first, you must provide the
access Key in the Access Key ID text box on the Unit Test page. The access key is stored
per application per browser session and gets auto-filled in unit test case and unit test suite
once filled.

Note:
l If there is no access Key provided, it is considered that there are no

activities connecting to the on-premises services.

l If you refresh the browser window, then the access Key is cleared from the
text box and you need to reenter the key.

To configure the hybrid agent and generate the access key, see . Configuring the hybrid
agent.

Unit Testing for the CI/CD

Note: The information in this section is applicable for an app executable only.

This feature allows you to unit test your Flogo app using the app executable. Once you
have built the executable for a Flogo app, you can run a unit test using the test command.
This feature is also useful to automate the testing process for activities in development in
CI/CD pipeline.

You can even generate the files using the platform API by following the below steps:

https://integration.cloud.tibco.com/docs/#tci/using/hybrid-agent/hybrid-proxy/db-service-hybrid-agent.html
https://integration.cloud.tibco.com/docs/#tci/using/hybrid-agent/hybrid-proxy/db-service-hybrid-agent.html

TIBCO Flogo® Enterprise User Guide

226 | App Development

1. Export the app JSON. For details, see exporting an app with the API.

2. Build an app executable. For details, see building an app executable.

3. Download the built app executable. For details, see downloading the app executable.

4. Export the test suite file. For details, see exporting a test suite file with API.

After you have downloaded the app executable file and the test suite file, you can build a
CI/CD pipeline to run the unit test using the below mentioned commands.

Before you begin
The app executable must be readily accessible on the machine from which you plan to test
it.

Follow these steps to get help on the test command:

1. Open a command prompt or terminal window depending on your platform.

2. Navigate to the folder where you stored the app executable.

3. Run the following command to get the online help on the test command:

l On Windows: <app-executable> --test --test-file

l On Macintosh: ./<app-executable> -test --test-file

l On Linux: ./<app-executable> -test --test-file

This command outputs the usage for the test command along with some examples.
see the test commands for details.

4. Run the command with the appropriate option to test your app.

The output of the command generates the .testresult file for the unit test suites or test
cases that are run.

The Test Commands
Use the test command in Flogo to run unit test on your Flogo app.

Syntax: ./<app-executable> --test --app <path to application json> --test-file
<path to flogotest file> --test-suites <testsuite1, testsuite2> --output-dir
<path to store .testresult file> --result-filename <custom name of .testresult
file>

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/apps/export-app.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/apps/build-app-exe.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/apps/downld-app-exe.html
https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/test-suites/export-flgo-test-suite.html

TIBCO Flogo® Enterprise User Guide

227 | App Development

Options Description and example

--test Runs a unit test on the specified <executable_filename> app.

--app

(Optional)

Application JSON path on which the unit testing is to be done.

If application JSON is not provided it takes the embedded app in the binary.

--test-file The .flogotest file that the user has obtained by exporting a unit test file.

--test-suites

(optional)

Test suite names that are to be run in unit testing.

If test suites are not provided, tests are executed for all test suites in the test
file.

Example: --test-suites testsuite1, testsuite2

--output-dir

(optional)

Output directory in which the test results are stored.

If the output directory is not provided it stores the test result in the working
directory.

--result-
filename

(optional)

Name of the unit testing output file.

If the test result file name is not provided it stores as <App
Name>.testresult.

TIBCO Flogo® Enterprise User Guide

228 | Deployment and Configuration

Deployment and Configuration
After you have created and validated your app, you can build an app executable to deploy
and run it.

Building an App Executable
This section instructs you on how to build an app executable.

Building the App
After you have created your app, you can build it anytime. When you build the app, its
deployable artifact gets created. You can download it to your local machine. Each
operating system has its build target. Select the right target for your operating system
when building the app. You can use the built artifact to run the app.

You can also use the TIBCO Cloud Integration API to build the app executable. For more
information on the APIs, see TIBCO Cloud™ Integration API.

Note: Building an app executable in TIBCO® Cloud Integration always builds the
app executable with the latest version of Flogo.

Before you begin
Make sure you have the following:

l The app for which an app executable needs to be created must have a trigger and a
flow in it. If the app does not have a trigger and flow, the app executable is not
created.

l Read through the Considerations.

Procedure

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/home.html

TIBCO Flogo® Enterprise User Guide

229 | Deployment and Configuration

1. Open the Apps page.

2. Click the app for which you want to build an app executable. The page for the
selected app opens.

3. On the page that opens, click Validate and resolve errors, if any.

4. Open the shortcut menu, click Build app, and select a build target option that is
compatible with your operating system (such as Darwin/amd64 for the Macintosh).

Note: If you have created or pushed an app using the tibcli or platform
API, the Build App option is not displayed as the apps are read-only apps.

The following build target options are available:

l Macintosh: Darwin/amd64

l 64-bit Linux: Linux/amd64

l 32-bit Linux: Linux/x86

l Microsoft Windows: Windows/amd64

The app begins to build. When it is built, the deployable artifact is downloaded to
your local machine.

5. To confirm whether the app executable is built successfully, go to the History tab
and check whether Action is displayed as APP BUILD.

Running the App
On the Macintosh and Linux

1. Open a terminal.

2. Run:

TIBCO Flogo® Enterprise User Guide

230 | Deployment and Configuration

chmod +x <app-file-name>

3. Run:

./<app-file-name>

On Microsoft Windows

At the command prompt, run:

<app-file-name>.exe

Considerations
l You cannot build an app executable if your app uses:

o TIBCO Cloud™ Mesh.
If your app includes an InvokeRESTService activity that is configured to use
services from TIBCO Cloud™ Mesh (by setting the Discover services from
TIBCO Cloud Mesh option to True), you cannot build an app executable.

o TIBCO Cloud™ Live Apps connectors.

o TIBCO Cloud™ AuditSafe connectors.

o Custom Golang code.

l SSL/TLS configuration is not enabled for inbound triggers such as GraphQL,
ReceiveHTTPMessage, and Websocket triggers. If you configure SSL for these triggers
in TIBCO Flogo® Enterprise and then import the app in TIBCO Cloud™ Integration, the
SSL configuration is not displayed in TIBCO Cloud™ Integration.

l For the Amazon S3 Get and Amazon S3 Put activities of TIBCO Flogo® Connector for
Amazon S3, Input Type/Output Type of File is not supported for a service or
operation object.
If you create the app in TIBCO Flogo® Enterprise and then import the app in TIBCO
Cloud™ Integration, the File option is not displayed in:

o Input Type of the Upload setting of Put activity.

o Output Type of single object operation setting of Get activity.

l You cannot build a docker image of an app using TIBCO Cloud™ Integration - Flogo®.
Instead, download the Linux app executable and then build the docker image.

TIBCO Flogo® Enterprise User Guide

231 | Deployment and Configuration

Overriding an App's JSON File in the App Binary
While running the app binary, you can override the app binary's embedded JSON file with
another JSON file by using the -app option. This saves you the time and effort of creating
an app binary if you only want to make minor configuration or mapping changes in the
app.

To do this, run the following command:

l On Windows: <app-filename>-windows_amd64 -app <new JSON file.json>

l On Macintosh: <app-filename>-darwin_amd64 -app <new JSON file.json>

l On Linux: <app-filename>-linux_amd64 -app <new JSON file.json>

Note: You can modify your activities, export the app.json again, and run it with
the same binary using the -app option. For example, you can make changes to
an existing activity. However, if you add an activity (of the same category or a
different category) and try to run it from the app binary, it does not work.

Changing the Log Level of a Running App Instance
When starting an app, you can set the log level for the app by using the FLOGO_LOG_
LEVEL environment variable. For more information, see FLOGO_LOG_LEVEL.

After the app starts, to change the log level of the running app instance without restarting
the app, you can use the GET and PUT curl commands. You can perform the operations on
the console or use an application such as Postman.

The Content-Type is always application/json, even if you have specified another
Content-Type.

When the log level is changed, a message is displayed on the console.

Example
1. Start the app as follows:

FLOGO_HTTP_SERVICE_PORT=<port> FLOGO_LOG_LEVEL=<log_level> ./<app_name>

TIBCO Flogo® Enterprise User Guide

232 | Deployment and Configuration

2. To get and display the log level on the console, use the GET curl command as
follows:

curl -i -X GET http://localhost:7777/app/logger

HTTP/1.1 200 OK

Content-Type: application/json

Date: Wed, 18 Aug 2021 00:17:57 GMT

Content-Length: 17

{"level":"INFO"}

3. To change the log level, use the PUT curl command as follows:

curl -i -X PUT -H "Content-Type: application/json" -d '
{"level":"DEBUG"}' http://localhost:7777/app/logger

HTTP/1.1 200 OK

Content-Type: application/json

Date: Wed, 18 Aug 2021 00:19:05 GMT

Content-Length: 35

{"msg":"Log level set to 'DEBUG'"}

Environment Variables
This section lists the environment variables that are associated with the Flogo Enterprise
runtime environment.

Environment
Variable Name

Default Values Description

FLOGO_
MAPPING_OMIT_
NULLS

True Used to omit all the keys in the activity
input evaluating to null.

FLOGO_
RUNNER_QUEUE

50 The maximum number of events from all
triggers that can be queued by the app

TIBCO Flogo® Enterprise User Guide

233 | Deployment and Configuration

Environment
Variable Name

Default Values Description

engine.

FLOGO_
RUNNER_
WORKERS

5 The maximum number of concurrent
events that can be executed by the app
engine from the queue.

FLOGO_HTTP_
SERVICE_PORT

N/A Used to set the port number to enable
runtime HTTP service which provides
APIs for healthcheck and statistics.

FLOGO_LOG_
LEVEL

INFO Used to set a log level for the Flogo app.
Supported values are:

l INFO

l DEBUG

l WARN

l ERROR

This variable is supported for Remote
Apps managed with the TIBCO Cloud
Integration Hybrid Agent.

FLOGO_
LOGACTIVITY_
LOG_LEVEL

INFO Used to control logging in the Log
activity. Values supported, in the order
of precedence, are:

l DEBUG

l INFO

l WARN

l ERROR

For example:

l If Log level is set to WARN, WARN
and ERROR logs are filtered and
displayed.

TIBCO Flogo® Enterprise User Guide

234 | Deployment and Configuration

Environment
Variable Name

Default Values Description

l If Log Level is set to DEBUG, then
DEBUG, INFO, WARN and
ERROR logs are displayed.

FLOGO_LOG_
FORMAT

TEXT Used to switch logging format between
text and JSON. For example, to use the
JSON format, set FLOGO_LOG_
FORMAT=JSON ./<app-name>

FLOGO_
MAPPING_SKIP_
MISSING

False When mapping objects if one or more
elements are missing in either the
source or target object, the mapper
throws an error when FLOGO_MAPPING_
SKIP_MISSING is set to false.

Set this environment variable to true, if
you would like to return a null instead of
receiving an error.

FLOGO_APP_
METRICS_LOG_
EMITTER_
ENABLE

False If you set this property to True, the app
metrics are displayed in the logs with
the values set in FLOGO_APP_METRICS_
LOG_EMMITTER_CONFIG. App metrics
are not displayed in the logs if this
environment variable is set to False. To
set it to True, run: export FLOGO_APP_
METRICS_LOG_EMITTER_ENABLE=true

FLOGO_APP_
METRICS_LOG_
EMITTER_
CONFIG

Both flow and Activity This property can be set to either flow
level or Activity level. Depending on
which level you set, the app metrics
displays only for that level. Also, you can
provide an (interval in seconds) at which
to display the app metrics.

For example to set the interval to 30
seconds and get the app metrics for

TIBCO Flogo® Enterprise User Guide

235 | Deployment and Configuration

Environment
Variable Name

Default Values Description

flow, run:

export FLOGO_APP_METRICS_LOG_
EMITTER_
CONFIG=‘{“interval”:“30s”,“type”:
[“flow”]}’

To set the interval for 10 seconds and
get the app metrics for both flow and
activities, run:

export FLOGO_APP_METRICS_LOG_
EMITTER_
CONFIG=‘{“interval”:“30s”,“type”:
[“flow”,“Activity”]}’

FLOGO_APP_
DELAYED_STOP_
INTERVAL

10 seconds When you scale down an instance, all
inflight jobs are lost because the engine
is stopped immediately. To avoid losing
the jobs, delay the stopping of the
engine by setting the FLOGO_APP_
DELAYED_STOP_INTERVAL variable to a
value less than 60 seconds. Here, when
you scale down the instance, if there are
no inflight jobs running, then the engine
stops immediately without any delay. In
case of inflight jobs:

l If there are any inflight jobs
running, then the engine stops
immediately after the inflight job
is completed.

l If the inflight job is not completed
within specified time interval, then
the job gets killed and engine
stops.

GOGC 100 Sets the initial garbage collection target
percentage.

TIBCO Flogo® Enterprise User Guide

236 | Deployment and Configuration

Environment
Variable Name

Default Values Description

Setting it to a higher value delays the
start of a garbage collection cycle until
the live heap has grown to the specified
percentage of the previous size.

Setting it to a lower value causes the
garbage collector to be triggered more
often as lesser new data can be
allocated to the heap before triggering a
collection.

App Configuration Management
Flogo allows you to externalize app configuration using app properties so that you can run
the same app binary in different environments without modifying your app. It integrates
with configuration management systems such as Consul and AWS Systems Manager
Parameter Store to get the values of app properties at runtime.

You can switch between configuration management systems without modifying your app.
You can do this by running the command to set the configuration-management-system-
specific environment variable from the command line. Since the environment variables are
set for the specific configuration management system, at runtime, the app connects to that
specific configuration management system to pull the values for the app properties.

Consul
The Consul provides a key/value store for managing app configuration externally. Flogo
Enterprise allows you to fetch values for app properties from Consul and override them at
runtime.

Note: This section assumes that you have set up Consul and know-how Consul is
used to storing service configuration. Refer to the Consul documentation for
consul-specific information.

TIBCO Flogo® Enterprise User Guide

237 | Deployment and Configuration

A Flogo app connects to the Consul server as its client by setting the environment variable,
FLOG_APPS_PROPS_CONSUL. At runtime, you must provide the Consul server endpoint for
your app to connect to a Consul server. You have the option to enter the values for the
Consul connection parameters. You can either type in their values as JSON strings or create
a file that contains the values and use the file as input.

Consul can be started with or without acl_token. If using an ACL token, make sure to have
the ACL configured in Consul.

Using Consul
Below is a high-level workflow for using Consul with your Flogo app.

Before you begin
You must have access to Consul.

Set up Consul and understand how Consul is used to storing service configuration. For
information on Consul, refer to the Consul documentation.
To use Consul to override app properties in your app (properties that were set in Flogo
Enterprise):

Procedure
1. Export your app binary from Flogo Enterprise. Refer to Exporting and Importing an

App for details on how to export the app.

2. Configure key/value pairs in Consul for the app properties whose values that you
want to override. At runtime, the app fetches these values from the Consul and uses
them to replace the default values that were set in the app.

3.
Important: When setting up the Key in Consul, make sure that the Key
name matches exactly with the corresponding app property name in the
Application Properties dialog in Flogo Enterprise. If the property name
does not match exactly, a warning message is displayed, and the app uses
the default value for the property that you configured in Flogo Enterprise.

4. Set the FLOGO_APP_PROPS_CONSUL environment variable to set the Consul server
connection parameters. See Setting the Consul Connection Parameters for details.

TIBCO Flogo® Enterprise User Guide

238 | Deployment and Configuration

Consul Connection Parameters
Provide the following configuration information during runtime to connect to the Consul
server.

Property
Name

Require
d

Description

server_
address

Yes Address of the Consul server, which could be run locally or elsewhere
in the cloud.

key_
prefix

No Prefix to be prepended to the lookup key. This is essentially the
hierarchy that your app follows to get to the Key location in the
Consul. This is helpful in case the key hierarchy is not fixed and may
change based on the environment during runtime. It is also helpful in
case that you want to switch to a different configuration service such
as the AWS param store. Although it is a good idea to include the app
name in the key_prefix, it is not required. key_prefix can be any
hierarchy that is meaningful to you.

As an example of a key_prefix, if you have an app property (for
example, Message) that has two different values depending on the
environment from which it is being accessed (for example, dev or test
environment), your <key_prefix> for the two values can be
/dev/<APPNAME>/ and /test/<APPNAME>/. At run time, the right value
for Message is picked up depending on which <key_prefix> you
specify in the FLOGO_APP_PROPS_CONSUL environment variable. Hence,
setting a <key_prefix> allows you to change the values of the app
properties at runtime without modifying your app.

acl_
token

No Use this parameter if you have key access protected by ACL. Tokens
specify which keys can be accessed from the Consul. You create the
token on the ACL tab in Consul.

During runtime, if you use the acl_token parameter, Key access to
your app is based on the token you specify.

To protect the token, encrypt the token for the key_prefix where your
Key resides and provides the encrypted value of that token by
prefixing the acl_token parameter with SECRET. For example, "acl_
token":

TIBCO Flogo® Enterprise User Guide

239 | Deployment and Configuration

Property
Name

Require
d

Description

"SECRET:QZLOrtN3gOEpXgUuud6jprgo/WzLR7j+Twv28/4KCp7573snZWo+h
GuQauuR2o/7TJ+ZLQ==". Note that the encrypted value follows the
key_prefix format.
Provide the encrypted value of the token as the SECRET. SECRETS get
decrypted at runtime. To encrypt the token, you obtain the token from
the Consul. Then, encrypt it using the app binary by running the
following command from the directory in which your app binary is
located:

./<app_binary> --encryptsecret <token_copied_from_Consul>

The command outputs the encrypted token that you can use as the
SECRET.

Note: Since special characters (such as `! | < > & `) are shell
command directives, if they appear in the token string when
encrypting the token, you must use a backslash (\) to escape such
characters.

insecure_
connecti
on

No Set to True if you want to connect to a secure Consul server without
specifying client certificates. This should only be used in test
environments.

Default: False

Setting the Consul Connection Parameters
You set the values for app properties that you want to override by creating a Key/Value
pair for each property in Consul. You can create a standalone property or a hierarchy that
groups multiple related properties.

Before you begin
This document assumes that you have access to Consul and are familiar with its use.
To create a standalone property (without hierarchy), you simply enter the property name
as the name of the Key when creating the Key in Consul. When you create a property
within a hierarchy, enter the hierarchy in the following format in the Create Key field in

TIBCO Flogo® Enterprise User Guide

240 | Deployment and Configuration

Consul: <key_prefix>/<key_name> where <key_prefix> is a meaningful string or hierarchy
that serves as a path to the key in Consul and <key_name> is the name of the app property
whose value you want to override.
For example, in dev/Timer/Message and test/Timer/Message, dev/Timer and test/Timer
are the <key_prefix> which could stand for the dev and test environments and Message is
the key name. During runtime, you provide the <key_prefix> value that tells your app the
location in Consul from where to access the property values.

Warning: The Key name in Consul must be identical to its counterpart in the
Application Properties dialog in Flogo Enterprise. If the key name does not
match exactly, a warning message is displayed, and the app uses the default
value that you configured for the property in Flogo Enterprise.

Warning: A single app property, for example, Message, is looked up by your app
as either Message or <key_prefix>/Message in Consul. An app property within a
hierarchy such as x.y.z is looked up as x/y/z or <key_prefix>/x/y/z in Consul.
Note that the dot in the hierarchy is represented by a forward slash (/) in Consul.

After you have configured the app properties in Consul, you need to set the environment
variable, FLOGO_APP_PROPS_CONSUL, with the Consul connection parameters for your app to
connect to the Consul. When you set the environment variable, it triggers the app to run,
which connects to the Consul using the Consul connection parameters you provided and
pulls the app property values from the key_prefix location you set by matching the app
property name with the key_name. Hence, the Key names must be identical to the app
property names defined in the Application Properties dialog in Flogo Enterprise.

You can set the FLOGO_APP_PROPS_CONSUL environment variable either by directly entering
the values as a JSON string on the command line or placing the properties in a file and
using the file as input to the FLOGO_APP_PROPS_CONSUL environment variable.

Entering the Consul Parameter Values as a JSON String

To enter the Consul parameters as a JSON string, enter the parameters as key/value pairs
using the comma delimiter. The following examples illustrate how to set the values as
JSON strings. You would run the following from the location where your app resides:

TIBCO Flogo® Enterprise User Guide

241 | Deployment and Configuration

An example when not using security without tokens enabled:

FLOGO_APP_PROPS_CONSUL="{\"server_
address\":\"http:\/\/127.0.0.1:8500\"}" ./Timer-darwin-amd64

Where Timer-darwin-amd64 is the name of the app binary.

An example when tokens are enabled and app properties are within a hierarchy:

FLOGO_APP_PROPS_CONSUL="{"server_address":"http://127.0.0.1:8500","key_
prefix":"/dev/Timer","acl_token":"SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"}"

Where /dev/Timer is the path and SECRET is the encrypted value of the token obtained
from the Consul.

This command directs your app to connect to the Consul at the server_address and pull
the values for the properties from the Consul and run your app with those values.

Refer to the Consul Connection Parameters section for a description of the parameters.
Refer to Encrypting Password Values for details on how to encrypt a value.

Setting the Consul Parameter Values Using a File

To set the parameter values in a file, create a .json file, for example, consul_config.json
containing the parameter values in key/value pairs. Here is an example:

{
"server_address": "http://127.0.0.1:32819",
"key_prefix": "/dev/<APPNAME>/",
"acl_token": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+"

}

Place the consul_config.json file in the same directory that contains your app binary.

Run the following from the location where your app binary resides to set the FLOGO_APP_
PROPS_CONSUL environment variable. For example, to use the consul_config.json file from
the example above, run:

FLOGO_APP_PROPS_CONSUL=consul_config.json ./<app_binary_name>

The command extracts the Consul server connection parameters from the file and connects
to the Consul to pull the app properties values from the Consul and runs your app with
those values.

TIBCO Flogo® Enterprise User Guide

242 | Deployment and Configuration

Consul properties can also be run using docker by passing the same arguments for the
docker image of a binary app. For more information, see Building the App.

AWS Systems Manager Parameter Store
AWS Systems Manager Parameter Store is a capability provided by AWS Systems Manager
for managing configuration data. You can use the Parameter Store to centrally store
configuration parameters for your apps.

Your Flogo app connects to the AWS Systems Manager Parameter Store server as its client.
At runtime, you are required to provide the Parameter Store server connection details by
setting the FLOGO_APP_PROPS_AWS environment variable for your app to connect to the
Parameter Store server. You have the option to enter the values for the Parameter Store
connection parameters either by typing in their values as JSON strings or by creating a file
that contains the values and using the file as input.

Using the Parameter Store
Below is a high-level workflow for using AWS Systems Manager Parameter Store with your
Flogo app.

Before you begin
This document assumes that you have an AWS account, have access to the AWS Systems
Manager, and know how to use the AWS Systems Manager Parameter Store. Refer to the
AWS documentation for the information on the AWS Systems Manager Parameter Store.

Overview

To use the Parameter Store to override app properties set in Flogo Enterprise:

1. Build an app binary that has the app properties already configured in Flogo
Enterprise. For more information on building an app binary, see Building the App.

2. Configure the app properties that you want to override in the Parameter Store. At
runtime, the app fetches these values from the Parameter Store and uses them to
replace the default values that were set in the app.

3. Set the FLOGO_APP_PROPS_AWS environment variable to set the Parameter Store

TIBCO Flogo® Enterprise User Guide

243 | Deployment and Configuration

connection parameters from the command line.

When you run the command for setting the FLOGO_APP_PROPS_AWS environment
variable, it runs your app, connects to the Parameter Store, and fetches the
overridden values for the app properties from the Parameter Store. Only the values
for properties that were configured in the Parameter Store are overridden. The
remaining app properties get their values from the Application Properties dialog.

See the Setting the Parameter Store Connection Parameters and Parameter Store
Connection Parameters sections for details.

Parameter Store Connection Parameters
To connect to the AWS Systems Manager Parameter Store, provide the configuration below
at runtime.

Property
Name

Required Data Type Description

access_
key_id

Yes String Access ID for your AWS account. To protect the
access key, an encrypted value can be provided in
this configuration. See Encrypting Password Values
section for information on how to encrypt a string.

Note: The encrypted value must be prefixed
with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

This configuration is optional if use_iam_role is
set to true.

secret_
access_key

Yes String Secret access key for your AWS account. This
account must have access to the Parameter Store.
To protect the secret access key, an encrypted
value can be provided in this configuration. See
the Encrypting Password Values section for
information on how to encrypt a string.

TIBCO Flogo® Enterprise User Guide

244 | Deployment and Configuration

Property
Name

Required Data Type Description

Note: The encrypted value must be prefixed
with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

This configuration is optional if use_iam_role is
set to true.

region Yes String Select a geographic area where your Parameter
Store is located. This configuration is optional if
use_iam_role is set to true and your Parameter
Store is configured in the same region as the
running service. When running in AWS services (for
example, EC2, ECS, EKS), this configuration is
optional if the Parameter Store is in the same
region as these services.

param_
prefix

No String This is essentially the hierarchy that your app
follows to get to the app property location in the
Parameter Store. It is the prefix to be prepended
to the lookup parameter. This is helpful in case the
parameter hierarchy is not fixed and may change
based on the environment during runtime.

This is also helpful in case that you want to switch
to a different configuration service such as the
Consul KV store.
As an example of a param_prefix, if you have an
app property (for example, Message) that has two
different values depending on the environment
from which it is being accessed (for example, dev
or test environment), your param_prefix for the
two values can be /dev/<APPNAME/ and
/test/<APPNAME/. At run time, the right value for
Message is picked up depending on which param_
prefix you specify in the FLOGO_APP_PROPS_AWS
environment variable. Hence, setting a param_
prefix allows you to change the values of the app

TIBCO Flogo® Enterprise User Guide

245 | Deployment and Configuration

Property
Name

Required Data Type Description

properties at runtime without modifying your app.

use_iam_
role

No Boolean Set to true if the Flogo app is running in the AWS
services (such as EC2, ECS, EKS) and you want to
use the IAM role (such as instance role or task role)
to fetch parameters from the Parameter Store. In
that case, access_key_id and secret_access_key
are not required.

Setting the Parameter Store Connection Parameters
You can use the AWS Systems Manager Parameter Store to override the property value set
in your Flogo app. You do so by creating the property in the Parameter Store and assigning
it the value with which to override the default value set in the app. You can create a
standalone property or a hierarchy (group) in which your property resides.

Before you begin
This document assumes that you have an AWS account and the Parameter Store and are
familiar with its use. Refer to the AWS documentation for more information on the
Parameter Store.
To create a standalone property (without hierarchy), you simply enter the property name
when creating it. To create a property within a hierarchy enter the hierarchy in the
following format when creating the property: <param_prefix>/<property_name>, where
<param_prefix> is a meaningful string or hierarchy that serves as a path to the property
name in Parameter Store and <property_name> is the name of the app property whose
value you want to override.
For example, in dev/Timer/Message and test/Timer/Message/dev/Timer and test/Timer
are the <param_prefix> which could stand for the dev and test environments respectively,
and Message is the key name. During runtime, you provide the <param_prefix> value,
which tells your app the location in the Parameter Store from where to access the property
values.

TIBCO Flogo® Enterprise User Guide

246 | Deployment and Configuration

Warning: The parameter name in the Parameter Store must be identical to its
counterpart (app property) in the Application Properties dialog in Flogo
Enterprise. If the parameter names do not match exactly, a warning message is
displayed, and the app uses the default value that you configured for the
property in Flogo Enterprise.

Warning: A single app property, for example, Message, is looked up by your app
as either Message or <param_prefix>/Message in the Parameter Store. An app
property within a hierarchy such as x.y.z is looked up as x/y/z or <param_
prefix>/x/y/z in the Parameter Store. Note that the dot in the hierarchy is
represented by a forward slash (/) in the Parameter Store.

After you have configured the app properties in the Parameter Store, you need to set the
environment variable, FLOGO_APP_PROPS_AWS, with the Parameter Store connection
parameters for your app to connect to the Parameter Store. When you set the environment
variable, it triggers your app to run, which connects to the Parameter Store using the
Parameter Store connection parameters you provided and pulls the app property values
from the param_prefix location you set by matching the app property name with the
param_name. Hence, the property names must be identical to the app property names
defined in the Application Properties dialog in Flogo Enterprise.

You can set the FLOGO_APP_PROPS_AWS environment variable either by manually entering
the values as a JSON string on the command line or placing the properties in a file and
using the file as input to the FLOGO_APP_PROPS_AWS environment variable.

If your Container is Not running on ECS or EKS

If the container in which your app resides is running external to ECS, you must enter the
values for access_key_id and secret_access_key parameters when setting the FLOGO_
APP_PROPS_AWS environment variable.

Entering the Parameter Store Values as a JSON string

To enter the Parameter Store connection parameters as a JSON string, enter the
parameters and their value using the comma delimiter. The following example illustrates
how to set the values as JSON strings. This would be run from the location where your app
resides:

TIBCO Flogo® Enterprise User Guide

247 | Deployment and Configuration

FLOGO_APP_PROPS_AWS="{"access_key_id":"SECRET:XXXXXXXXXXXXX",
"secret_access_key":"SECRET:XXXXXXXXXXX",
"region":"us-west-2",
"param_prefix":"/MyFlogoApp/Dev/"}"

Where /MyFlogoApp/Dev/ is the param_prefix (path to the properties) and SECRET is the
encrypted version of the key or key_id obtained from the Parameter Store.

This connects to the Parameter Store, pulls the values for the properties, and overrides the
default values that were set in the app.

Refer to the Parameter Store Connection Parameters section for a description of the
parameters.

Setting the Parameter Store values using a file

To set the parameter values in a file, create a .json file, for example, aws_config.json
containing the parameter values. Here is an example:

{
"access_key_id": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"param_prefix": "/MyFlogoApp/dev/",
"secret_access_key": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"region": "us-west-2",

}

Place the aws_config.json file in the same directory, which contains your app binary.

Run the following from the location where your app binary resides to set the FLOGO_APP_
PROPS_AWS environment variable. For example, to use the aws_config.json file from the
example above, run:

FLOGO_APP_PROPS_AWS=aws_config.json ./<app_binary_name>

This connects to the Parameter Store, pulls the overridden app properties values from the
Parameter Store, and runs your app with those values.

If your Container is running on ECS or EKS

In case your Flogo apps are running in ECS and intend to use the EC2 instance credentials,
set use_iam_role to true. The values for access_key_id and secret_access_key are
gathered from the running container. Ensure that the ECS task has permission to access
the param store.

TIBCO Flogo® Enterprise User Guide

248 | Deployment and Configuration

The IAM role that you use must have permissions to access the parameter(s) from the AWS
Systems Manager Parameter Store. The following policy must be configured for the IAM
role:

{
"Version":"2012-10-17",
"Statement":[

{
"Action":[

"ssm:GetParamaters",
"ssm:GetParamatersByPath",

],
"Effect":"Allow",
"Resource":"*"

}
]

}

The following is an example of how to set the FLOGO_APP_PROPS_AWS environment variable
when your container is running on ECS. Notice that the values for access_key_id and
secret_access_key are omitted:

FLOGO_APP_PROPS_AWS="{\"use_iam_role\":true, \"region\":\"us-west-2\"}"
./Timer-darwin-amd64

AWS AppConfig
AWS AppConfig is a feature provided by AWS System Manager, which lets you create,
manage, and quickly deploy application configurations. You can use AWS AppConfig to
simplify the task of configuring changes in application configuration, validating the
changed configurations, deploying the new configurations and monitoring it.

Using AWS AppConfig, you can override the Flogo app properties at runtime. Your Flogo
app retrieves configuration data by establishing the connection with AWS AppConfig. To
enable the connection between your Flogo app and AWS AppConfig, you are required to set
the value of FLOGO_APP_PROPS_AWS_APPCONFIG to True. Here, the session retrieves the
data from AppConfig only once at the start of the session.

TIBCO Flogo® Enterprise User Guide

249 | Deployment and Configuration

Using the AppConfig
Below is a high-level work flow for using AWS Systems Manager AppConfig with your Flogo
app.

Before you begin
This document assumes that you have an AWS account, have access to the AWS Systems
Manager, and know how to use the AWS Systems Manager AppConfig. Refer to the AWS
documentation for the information on the AWS Systems Manager AppConfig.

Overview

1. Build an app executable that has the app properties already configured in Flogo. For
more information on building an app executable, see Building an App Executable.

In case of TCI, for a new app, you need to set the engine variables for the Flogo app
before pushing it to TCI. For an existing app you can configure the engine variables
and push the updates to the app in the TCI.

2. Configure AWS AppConfig to work with your Flogo application. To define the
properties in AWS AppConfig:

A. Create an application in AWS Appconfig to organize and manage configuration
data.

B. Select the environment of the application in the Appconfig same as that of the
environment of your Flogo app.

C. Create a configuration profile.

A configuration profile enables AWS AppConfig to access your hosted
configuration versions in its stored location. You can store configurations in
YAML, JSON, or as text documents in the AWS AppConfig hosted configuration
store.

Refer to AWS documentation for detailed procedure to set up the
AWS AppConfig.

3. Configure the app properties that you want to override in the AppConfig. At runtime,
the app fetches these values from the AppConfig and uses them to replace the
default values that were set in your Flogo app.

4. Set the value of the parameter FLOGO_APP_PROPS_AWS_APPCONFIG to True to

TIBCO Flogo® Enterprise User Guide

250 | Deployment and Configuration

establish the connection between your Flogo app and AWS AppConfig.

Note: If you change the app properties values in AWS AppConfig, then you need
to repush the app to TCI or re-execute the app executable.

AppConfig Client Configuration
IAM role that you would be using to fetch the configuration details must have permissions
to access configurations from AWS AppConfig. For the same, Following policy must be
configured for IAM role:

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": [

"appconfig:GetLatestConfiguration",
"appconfig:StartConfigurationSession",
"appconfig:ListApplications",
"appconfig:GetApplication",
"appconfig:ListEnvironments",
"appconfig:GetEnvironment",
"appconfig:ListConfigurationProfiles",
"appconfig:GetConfigurationProfile",
"appconfig:GetConfiguration",
"appconfig:ListDeployments",
"appconfig:GetDeployment"

],
 "Resource": "*"

}
]

}

TIBCO Flogo® Enterprise User Guide

251 | Deployment and Configuration

To connect to the AWS Systems Manager AppConfig, provide below configuration at
runtime.

Property Name Required Data Type Description

FLOGO_APP_PROPS_AWS_
APPCONFIG

Yes Boolean Set this as True to
enable the
AWS AppConfig support
feature.

AWS_APPCONFIG_PROFILE_
NAME

Yes String This is name of the
configuration profile
created while defining
the properties in
AppConfig.

AWS_APPCONFIG_ENV_
NAME

Yes String This is name of the
environment provided
while creating
application in the
AppConfig.

AWS_APPCONFIG_APP_
IDENTIFIER_NAME

No String Set app identifier name
for AWS AppConfig. If
the name is not set, it
takes the name as that
of your Flogo app.

It is required only if your
AWS AppConfig app
identifier name does not
match with the Flogo
app name.

AWS_APPCONFIG_REGION No String Select AWS region where
your Appconfig is
located.

This field is not required
when your app binary
(executable) is running

TIBCO Flogo® Enterprise User Guide

252 | Deployment and Configuration

Property Name Required Data Type Description

on AWS EC2 instance in
the same region as that
of your AppConfig
region. For all other
cases, you must set the
region.

AWS_APPCONFIG_ACCESS_
KEY_ID

No String If the access key ID is
not provided, it is picked
up by following the AWS
default credentials
provider chain.

For flogo app
deployment on TCI, you
must provide this value.

AWS_APPCONFIG_SECRET_
ACCESS_KEY

No String If the secret access key
is not provided, it is
picked up by following
the AWS default
credentials provider
chain.

For flogo app
deployment on TCI, you
must provide this value.

AWS_APPCONFIG_SESSION_
TOKEN

No String Set this if you want to
use your session token
for AWS AppConfig API
calls.

AWS_APPCONFIG_
ASSUMEDROLE_ARN

No String Set the assume role ARN
if you want to use
assumed role to fetch
the values from AWS
AppConfig.

TIBCO Flogo® Enterprise User Guide

253 | Deployment and Configuration

Tip: For sensitive fields such as ACCESS_KEY_ID, SECRET_ACCESS_KEY, and
SESSION_TOKEN an encrypted value can be provided in this configuration. See
the Encrypting Password Values section for information on how to encrypt a
string.

Note: The encrypted value must be prefixed with SECRET: For example,
SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+

Environment Variables
Flogo Enterprise allows you to externalize the configuration of app properties using
environment variables.

Using environment variables with app properties is a two-step process:

1. Create one environment variable per app property.

2. Set the FLOGO_APP_PROPS_ENV=auto environment variable, which directs it to fetch
the values of the app properties for which you have created environment variables.

Note: App binaries that were generated from a version of Flogo Enterprise older
than 2.4.0 do not support app properties override using environment variables.
For example, if you attempt to run an older app binary from Flogo Enterprise
2.4.0 (which supports the environment variable functionality) and override app
properties in the app using environment variables, the binary runs normally but
the app property override gets ignored.

Using a JSON File to Override App Property Values
To override an app prop using a JSON file:

1. In the JSON file, make sure that the app property which you want to override is set
as follows:
"<property>":"<value>"
For example:

TIBCO Flogo® Enterprise User Guide

254 | Deployment and Configuration

{
"IntegerOverrideVal":453,
"StringOverridingValue":"hello",
"BoolValue":true
}

Note: Only for certificates, the format of the property must be:
"<property>":"<encoded_value>"
To get the encoded value of the contents, you can use
https://www.base64encode.org/ or any other base64 encoding tool.

2. Execute the binary of the app using the FLOGO_APP_PROPS_JSON environment variable
as follows:
FLOGO_APP_PROPS_JSON=/<filepath>/<JSON filename>.json ./<binary>

Example: Overriding a Certificate Using a JSON File
You can override a server key and certificate using an app property. You would, typically,
need to override a certificate if the existing certificate has expired or you want to use a
custom certificate. You can directly override the certificate at runtime instead of re-
configuring the app. In such a case:

1. In the JSON file, set the ServerKey and ServerCertificate app properties as
follows:

{

"ServerKey":"LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2Z0l",

"ServerCertificate":"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1J",

}

2. Execute the binary of the app using the FLOGO_APP_PROPS_JSON environment variable
as follows:
FLOGO_APP_PROPS_JSON=/home/john/Downloads/appPropOverride.json
./RestSSLService-linux_amd64

https://www.base64encode.org/

TIBCO Flogo® Enterprise User Guide

255 | Deployment and Configuration

Overriding Security Certificate Values
The use of environment variables to assign new values to your app properties at runtime is
a handy method that you can use to test your app with multiple data sets.

Warning: Using environment variables to override app properties in Lambda
apps is not currently supported.

Follow these steps to set up the environment variables and use them during app runtime.

Step 1: Create environment variables for your app properties

You start by creating one environment variable for each app property that you want to
externalize. To do so, run:

export <app-property-name>="<value>"

For example, if your app property name is username, run export username="abc@xyz.com"
or export USERNAME="abc@xyz.com"

A few things to note about this command:

l Since special characters (such as `! | < > &@ `) are shell command
directives, if they appear in value, enclosing the value in double-quotes tells the
system to treat such characters as literal values instead of shell command directives.

l The app-property-name must match the app property exactly or it can use all
uppercase letters. For example, the app property, Message, can either be entered as
Message or MESSAGE, but not as message.

l If you want to use a hierarchy for your app property, be sure to use underscores (_)
between each level instead of the dot notation. For example, for an app property
named x.y.z, the environment variable name should be either x_y_z or X_Y_Z.

Step 2: Set FLOGO_APP_PROPS_ENV=auto environment variable

To use the environment variables during app runtime, set the FLOGO_APP_PROPS_ENV=auto
environment variable.

TIBCO Flogo® Enterprise User Guide

256 | Deployment and Configuration

To do so, run:

FLOGO_APP_PROPS_ENV=auto ./<app-binary>

For example, FLOGO_APP_PROPS_ENV=auto MESSAGE="This is variable 1."
LOGLEVEL=DEBUG ./Timer-darwin-amd64

Note: When setting variables of type password be sure to encrypt its value for
security reasons. See the section, Encrypting Password Values, for more details.

Setting the FLOGO_APP_PROPS_ENV=auto directs your app to search the list of environment
variables for each app property by matching the environment variable name to the app
property name. When it finds a matching environment variable for a property, the app pulls
the value for the property from the environment variable and runs the app with those
values. Hence, it is mandatory that the app property name exactly matches the
environment variable name for the property.

App properties that were not set as environment variables pick up the default values set
for them in the app. A warning message similar to the following is displayed in the output:
<property_name> could not be resolved. Using default values.

Example: Overriding a Certificate Using an Environment
Variable
You can override a server key and certificate using an app property. You would, typically,
need to override a certificate if the existing certificate has expired or you want to use a
custom certificate. You can directly override the certificate at runtime instead of
reconfiguring the app. In such a case:

1. Export the base64 encoded values of the content of the file in the terminal itself as
follows:
export ServerCertificate=<base64encodedCertificateFileContent>
export ServerKey=<base64encodedKeyFileContent>

2. Set the FLOGO_APP_PROPS_ENV=auto environment variable as follows:
FLOGO_APP_PROPS_ENV=auto ./<app-binary>

TIBCO Flogo® Enterprise User Guide

257 | Deployment and Configuration

Encrypting Password Values
When entering passwords on the command line or in a file, it is always a good idea to
encrypt their values for security reasons. Flogo Enterprise has a utility that you can use to
encrypt passwords.

Before you begin
You must have the password to be encrypted handy to run the utility.
To encrypt a password, run the following:

Procedure
1. Open a command prompt or a terminal.

2. Navigate to the location of the app binary and run the following command:

./<app_binary> --encryptsecret <value_to_be_encrypted>

The command outputs the encrypted value, which you can use when setting the
password in a file or setting the password from the command line or using
environment variables. For example, export
PASSWORD="SECRET:t90Ixj+QYCMFbqCEo/UnELlPPhrClMzv".

Note that the password value is enclosed in double-quotes. Since special characters
(such as `! | <, >, &, `) are shell command directives, if such characters appear in the
encrypted string, using double quotes around the encrypted value directs your
system to treat them as literal characters. Also, the encrypted value must be
preceded by SECRET:

Keep in mind that when you run the env command to list the environment variables,
the command does not output the environment variable for the password.

Container Deployments
You can run Flogo apps as containerized apps in Docker containers and use Kubernetes to
deploy, manage and scale the apps.

TIBCO Flogo® Enterprise User Guide

258 | Deployment and Configuration

Kubernetes
You can package a Flogo app binary in a docker image, then push the docker image to a
container registry and run the Flogo apps on a Kubernetes cluster as a pod.

For information on deploying apps in a Kubernetes environment, see Deploying Flogo apps
to a Kubernetes.

Deploying Flogo Apps to Kubernetes
You can deploy your Flogo apps to a Kubernetes Cluster running locally on bare metal
servers, on VMs in hybrid cloud environments, or on fully managed services provided by
various cloud providers such as Amazon EKS, Azure Container Service, or Google
Kubernetes Engine. Refer to the Kubernetes documentation for more information. To do so,
you must create a docker image locally for your app, then push the image to a container
registry. When you apply the appropriate app deployment configuration to the Kubernetes
cluster, one or more docker containers get created from the docker image that is
encapsulated in one or more Kubernetes pods based on the deployment configuration.

Before you begin
You must have:

l The Kubernetes cluster running on your choice of environment

l Docker 1.18.x or greater installed on your machine

l kubectl installed on your machine

Procedure
1. Build a docker image for your app. You can use one of the following ways to build a

docker image:

l Using the UI:

a. Build a docker image using the Flogo Enterprise UI. For details, see
Building the App.

b. Tag the generated docker image from the command line:

TIBCO Flogo® Enterprise User Guide

259 | Deployment and Configuration

docker tag <image-id> <app-name>:<version>

the app tag must be in the format, <app-name>:<app-version>.

l From a Linux binary:

a. Build a Linux binary using the Linux/amd64 option. For details, see
Building the App.

b. Provide run permission to the app binary: chmod +x <app-binary>

c. Create a docker file. For example:

FROM <OS-version> # for example, FROM alpine:3.7
WORKDIR /app
ADD <app-binary> <path-to-app-in-docker-container> # for example, ADD
flogo-rest-linux_amd64 /app/flogo-rest
CMD ["/app/flogo-rest"]

d. Build the docker image using the docker file. Run the following command:

docker build -t <app-tag> -f <path-to-Dockerfile> .

the app tag must be in the format <app-name>:<app-version>

l From the CLI:

a. Export your app as a JSON file (for example, flogo-rest.json) by clicking
Export app on the flow details page.

b. Build a Linux binary for the app from the CLI. Open a command prompt
and change directory to <FLOGO_HOME>/<version>/bin and run:

builder-<platform>_<arch> build -p linux/amd64 -f <path-
to-the-.json-file>

This generates a linux app binary.

c. Provide run permission to the app binary:

chmod +x <app-binary>

TIBCO Flogo® Enterprise User Guide

260 | Deployment and Configuration

d. Create a docker file. For example:

FROM <OS-version> # for example, FROM alpine:3.7
WORKDIR /app
ADD <app-binary> <path-to-app-in-docker-container> # for example, ADD
flogo-rest-linux_amd64 /app/flogo-rest
CMD ["/app/flogo-rest"]

e. Build the docker image using the docker file. Run the following command:

docker build -t <app-tag> -f <path-to-Dockerfile> .

The app tag must be in the format <app-name>:<app-version>

2. Run the docker image locally to verify that all looks good:

docker run -it -p 9999:9999 <app-tag>

3. Authenticate docker with the container registry where you want to push the docker
image.

4. Tag the docker image by running the following command:

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>

the app tag must be in the format, <app-name>:<app-version>

5. Push the local docker image to the container registry by running the following
command:

docker push <CONTAINER_REGISTRY_URI>/<app-tag>

Note: Refer to the documentation for your container registry for the exact
commands to authenticate docker, tag docker image, and push it to the
registry.

6. To deploy your app on Kubernetes, run your app by creating a Kubernetes
deployment object. Follow these steps to do so:

a. Create a YAML file. For example, the YAML file below describes a deployment

TIBCO Flogo® Enterprise User Guide

261 | Deployment and Configuration

that runs the gcr.io/<GCP_PROJECT_ID>/<docker-image-name>:<tag> docker
image on the Google Cloud.

apiVersion: apps/v1 # for versions before 1.9.0 use
apps/v1beta2
kind: Deployment
metadata:

name: flogo-app-deployment
spec:

selector:
matchLabels:

app: flogo-app
replicas: 2 # tells deployment to run 2 pods matching the

template
template:

metadata:
labels:
app: flogo-app

spec:
containers:
- name: flogo-app
image: gcr.io/<GCP_PROJECT_ID>/<docker-image-

name>:<tag>
ports:

- containerPort: 9999

b. Create a Kubernetes deployment by running the following command:

kubectl apply -f deployment.yaml

Using ConfigMaps with a Flogo App
Flogo apps running in Kubernetes can use ConfigMaps for the app configuration through
environment variables. When you bind the ConfigMap with your pod, all the properties in
the ConfigMap get injected into the pod as environment variables. If your pod has multiple
containers, you can specify the container into which you want to inject the environment
variables in the .yml file of the app. When running the app in Kubernetes, you use the
ConfigMap. You can create a ConfigMap using a .property file that was exported from your
Flogo app.

TIBCO Flogo® Enterprise User Guide

262 | Deployment and Configuration

To create a ConfigMap when running your app in Kubernetes:

Important: If you update the app properties in Flogo Enterprise, you must
recreate the ConfigMap and repush the app for your changes to take effect in
Kubernetes.

Procedure
1. Export the Flogo app properties to a .properties file. Refer to the section Exporting

App Properties to a File for details.

2. Update the generated .properties file as desired.

3. Create a ConfigMap using the .properties file. Run the following command:

kubectl create configmap <name-of-configmap-file-to-be-created> --from-env-
file=<exported-app-prop-filename>.properties

For example, if your exported file name is Timer-env.properties and you want the
generated ConfigMap to be called flogo-rest-config the command would be
similar to the following:

kubectl create configmap flogo-rest-config --from-env-file=Timer-
env.properties

4. Update the Kubernetes deployment configuration YAML file for the app to let your
app know that you want to use environment variables. Add the following:

env:
- name: "FLOGO_APP_PROPS_ENV"

value: "auto"
envFrom:
- configMapRef:

name: <name-of-the-configmap>

Note: Refer to the Kubernetes documentation for instructions on how to
configure a pod to use ConfigMaps.

5. Build the docker image for the app binary by running the following command:

TIBCO Flogo® Enterprise User Guide

263 | Deployment and Configuration

docker build -t <CONTAINER_REGISTRY_URI>/<app-tag>

6. Push the resulting image to the container registry using the following command:

kubectl apply -f <appname>.yaml

Managing Sensitive Information Using Kubernetes
Secrets
You can resolve the values of the app properties in a Flogo app deployed on Kubernetes
using Kubernetes Secrets. Kubernetes secret object lets you store and manage sensitive
information like passwords or keys. This section explains how a secret can be used with a
Kubernetes pod.

For more information on Kubernetes secrets, refer to the Kubernetes documentation.

Configuring the Secrets
To use the Kubernetes secrets in a Flogo app, you must set FLOGO_APP_PROPS_K8S_VOLUME
with the volume_path configuration parameter at runtime:

l The secret key name must match the app property name. For example, if the
property is DB_PASS, the secret key name must be DB_PASS. For example:

echo -n 'flogo123>./DB_PASS.txt
kubectl create secret generic my-first-secret --from-file=./DB_
PASS.txt'

where DB_PASS.txt contains the password for the database and DB_PASS is set as a
property in the Flogo app.

l If you want to use a hierarchy for your app property, ensure that you use an
underscore (_) between each level instead of the dot notation in the name of the
secret. For example, for an app property named x.y.z, the name of the secret must be
x_y_z.

TIBCO Flogo® Enterprise User Guide

264 | Deployment and Configuration

Specifying the Path of the Volume Where the Secrets are
Mounted
To specify the path to the volume where the secrets are mounted, you can specify the
volume_path parameter in a JSON file or as a JSON string.

In a JSON File

1. Set the volume_path parameter in a .json file. For example, k8s_secrets_
config.json contains:

{
"volume_path": "/etc/test"

}

2. Set the path to the .json file in the FLOGO_APP_PROPS_K8S_VOLUME environment
variable. For example:

FLOGO_APP_PROPS_K8S_VOLUME=k8s_secrets_config.json

As a JSON String

Set the FLOGO_APP_PROPS_K8S_VOLUME environment variable as a JSON string as follows:

FLOGO_APP_PROPS_K8S_VOLUME="{\"volume_path\":\"\/etc\/test\"}"

Sample YAML File

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

TIBCO Flogo® Enterprise User Guide

265 | Deployment and Configuration

labels:
app: sampleapp

name: sampleapp
namespace: default

spec:
template:

metadata:
labels:
app: sampleapp

spec:
containers:
-

env:
-
name: FLOGO_APP_PROPS_K8S_VOLUME
value: "{\"volume_path\": \"/etc/test\"}"

-
name: FLOGO_APP_PROPS_ENV
value: auto

envFrom:
-
configMapRef:
- name: first-configmap

image: "gcr.io/<project_name>/sampleapp:latest"
imagePullPolicy: Always

- name: sampleapp
volumeMounts:

-
mountPath: /etc/test
name: test
readOnly: true

volumes:
-

name: test
secret:

secretName: my-first-secret

Amazon Elastic Container Service (ECS) and Fargate
You can package a Flogo app binary in a docker image, push the docker image to Amazon
ECR, then run, manage, and scale the Flogo app in Docker containers using Amazon ECS
and AWS Fargate.

TIBCO Flogo® Enterprise User Guide

266 | Deployment and Configuration

Deploying a Flogo App to Amazon ECS and Fargate

Procedure
1. Build a Flogo app as a docker image.

2. Push the Flogo docker image to Amazon Elastic Container Registry (ECR) as follows:

a. Authenticate Docker to the ECR Registry using the following command. For
more information, refer to the AWS documentation available at
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#reg
istry_auth.

aws ecr get-login

b. Tag the Flogo app Docker image with the ECR registry, repository, and optional
image tag name combination:

docker tag <flogo_app_docker_image> <aws_account_
id>.dkr.ecr.<region>.amazonaws.com/<ecr_repository_name>:<tag>

c. Push the tagged Docker image to the ECR registry:

docker push <aws_account_
id>.dkr.ecr.<region>.amazonaws.com/<ecr_repository_name>:<tag>

3. Create a cluster in which to run your apps. For more information on how to create an
Amazon ECS Cluster, refer to the AWS documentation available at
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html.

4. Create a task definition. The task definition defines what docker image to run and
how to run it. For more information on how to create a task definition, refer to the
AWS documentation available at
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-
definition.html.

5. Run the app in containers. After creating the task definition, you can open the app
containers either by manually running tasks or by creating a service using the
Amazon ECS Service Scheduler. For more information on how to create a service,
refer to the AWS documentation available at
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service.html.

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-service.html

TIBCO Flogo® Enterprise User Guide

267 | Deployment and Configuration

Pivotal Cloud Foundry
You can deploy a Flogo app binary to the Pivotal Application Service (PAS) of Pivotal Cloud
Foundry (PCF) using the Binary Buildpack. For more information, see the section Deploying
a Flogo App to Pivotal Application Service.

Deploying a Flogo App to Pivotal Application Service
After installing the Cloud Foundry Command Line Interface (cf CLI), you can push a Flogo
app to the Pivotal Application Service. For more information on Pivotal Cloud Foundry,
Pivotal Application Service, and its CLI, refer to the Pivotal Cloud Foundry documentation.

Before you begin
l Run the following command to ensure that the Cloud Foundry command-line client is

installed successfully:

$ cf version

This command returns information about the currently installed version of the Cloud
Foundry command-line client. For example:

cf version 6.42.0+0cba12168.2019-01-10

l Run the following command to authenticate yourself in the Pivotal Cloud Foundry:

$ cf login

Building a Linux Binary

From the UI

To build a Linux binary from the UI:

1. From the UI, build a Linux binary using the Linux/amd64 option. See the Building the
App section for details.

TIBCO Flogo® Enterprise User Guide

268 | Deployment and Configuration

2. Provide run permission to the app binary: chmod +x <app-binary>

3. Follow the steps in the appropriate section below.

From the CLI

To build a Linux binary from the CLI:

1. Export your app as a JSON file (for example, flogo-rest.json) by clicking Export
app on the flow details page.

2. Build a Linux binary for the app from the CLI. Open a command prompt and change
the directory to <FLOGO_HOME>/<version>/bin and run:

builder-<platform>_<arch> build -p linux/amd64 -f <path-to-
the-.json-file>

This generates a Linux app binary.

3. Provide run permission to the app binary: chmod +x <app-binary>

4. Follow the steps in the appropriate section below.

Without Using a manifest.yml File

Procedure
1. Create a temporary folder.

2. Copy the linux/amd64 binary of the app, which you had created in Building a Linux
Binary and save it to the temporary folder created in step 1.

Note:
l Ensure that you do not save the binary to a path that already

contains other files and directories.

l In your Flogo app, for a REST trigger, ensure that the port is set to
8080 in the trigger configuration.

3. In a command window, navigate to the path where you saved the binary and run the
following command:

TIBCO Flogo® Enterprise User Guide

269 | Deployment and Configuration

$ cf push <NAME_IN_PCF> -c './<APP_BINARY_NAME>' -b binary_
buildpack -u none

For example:

cf push test1 -c ./Timer-linux_amd64 -b binary_buildpack -u none

For the -u argument, depending on the health check, provide value as none, port,
http, or process. For example, if the app is a REST API exposing an HTTP endpoint,
use port after -u.

Note: In your Flogo app, for a REST trigger, ensure that the port is set to
8080 in the trigger configuration.

4. After successfully deploying the app to the Pivotal Application Service, you can check
the log of the app using the following command:

$ cf logs <APP_NAME_IN_PCF> --recent

Using a manifest.yml File

Procedure
1. Create a temporary folder.

2. Copy the linux/amd64 binary of the app, which you had created in Building a Linux
Binary and save it to the temporary folder created in step 1.

Note: In your Flogo app, for a REST trigger, ensure that the port is set to
8080 in the trigger configuration.

You have two options:

l If you do not mention Path in the manifest.yml file, you must have both
manifest.yml and the app binary in the same directory.

l If you have the manifest.yaml file and the app binary in different directories,
you must mention the following in the manifest.yml file:

TIBCO Flogo® Enterprise User Guide

270 | Deployment and Configuration

path: <app binary path>

3. Create a manifest file in YAML. The following manifest file illustrates some YAML
conventions:

this manifest deploys REST APP to Pivotal Cloud Foundry

applications:
- name: REST_APP

memory: 100M
instances: 1
buildpack: binary_buildpack
command: ./REST-linux_amd64
disk_quota: 100M
health-check-type: port

Note: REST-linux_amd64 indicates the name of app binary.

4. Save the manifest.yml file and run the following command in the same directory:

$ cf push

Result
The Flogo app is successfully pushed to the Pivotal Cloud Foundry.

Using Spring Cloud Configuration to Override App Properties
You can use Spring Cloud Configuration to override the properties of Flogo apps running
on Pivotal Cloud Foundry.
To do so:

1. Create a Repository and Properties File on Github

2. Setup Spring Cloud Configuration on Pivotal Cloud Foundry

3. Use Spring Cloud Configuration Service with Flogo

TIBCO Flogo® Enterprise User Guide

271 | Deployment and Configuration

Create a Repository and Properties File on Github

Procedure
1. Create a repository on Github.

2. In the repository created in step 1 above, create properties file with the following file
naming convention:

<APP_NAME>-<PROFILE>.properties

For example, if a Flogo app name is PCFAPP and the profile name is DEV, the
properties file name must be PCFAPP-DEV.properties.

3. Populate the <APP_NAME>-<PROFILE>.properties file with the key-value pairs for the
overridden app properties.

Note:
l The name of the property must match the name of the app property.

For example, if the app property is named Message, define the
property in the properties file as:

Message="<value>"

l If the properties are in a group, define the property as:

<groupname>.<propertyname> = <value>

For example, if a property, username, is under the email group and
its value is xyz@abc.com, define the property in the .properties file
as:

email.username=xyz@abc.com

Setup Spring Cloud Configuration on Pivotal Cloud Foundry
Set up an instance of Config Server for Pivotal Cloud Foundry with the Git repository
created above using Spring Cloud Services on Pivotal Cloud Foundry. Refer to Spring Cloud
Services for PCF documentation for detailed instructions.

TIBCO Flogo® Enterprise User Guide

272 | Deployment and Configuration

Using Spring Cloud Configuration Service with Flogo

Procedure
1. Bind the service instance of Spring Cloud Config Server to your Flogo app.

2. Navigate to the setting of the pushed app.

3. Under User Provided Env Variables, add the following environment variable:

FLOGO_APP_PROPS_SPRING_CLOUD = {"profile":"<PROFILE_NAME>"}

4. Restage the app and see the logs using the following command:

$ cf logs <APP_NAME_IN_PCF> --recent

Microsoft Azure Container Instances
You can deploy a Flogo app to a Microsoft Azure container instance using a Flogo app
docker image. For more information, refer to the section, Deploying Flogo Apps to
Microsoft Azure Container Instances.

Deploying a Flogo App to a Microsoft Azure Container
Instance

Before you begin
l Create a Microsoft Azure account.

l Download and install Microsoft Azure CLI.

l Create a docker image of the Flogo app that needs to be deployed to the Microsoft
Azure Container Instance.

l For information on Microsoft Azure commands, refer to the Microsoft Azure
documentation.

Procedure

TIBCO Flogo® Enterprise User Guide

273 | Deployment and Configuration

1. Create a new resource group using the following command:

az group create -l <location> -n <name-of-group>

2. If you have not created an Azure Container Registry, create one using the following
command. This Azure Container Registry stores all the images that are pushed to the
registry.

az acr create -n <name-of-registry> -g <name-of-group> --sku
<pricing-tier-plan> --admin-enabled true

Note: You must set --admin-enabled to true.

3. Log in to Azure Container Registry using the following command:

az acr login -n <name-of-registry>

4. Tag and push the Flogo app docker image to Azure Container Registry using the
following commands:

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>
docker push <CONTAINER_REGISTRY_URI>/<app-tag>

5. Create an Azure Container instance using the following command:

az container create
-g <name-of-resource-group>
--name <name-of-container>
--image <name-of-image>
--environment-variables <name=value name=value FLOGO_APP_PROPS_
ENV=auto>
--dns-name-label <dns-name-label-for-container-group>
--ip-address Public
--ports <port-to-open>
--registry-login-server <name-of-container-image-registry-login-
server>
--registry-username <username>
--registry-password <password>
#NOTE: If--environment-variables FLOGO_APP_PROPS_ENV=auto is not

TIBCO Flogo® Enterprise User Guide

274 | Deployment and Configuration

set, the environment variables are not detected at Flogo runtime.
#NOTE: IP Address must be explicitly set to Public.

For example:

az container create
-g flogodemo
--name flogoapp
--image flogoacr.azurecr.io/acs_flogo:latest
--environment-variables prop_str=azure FLOGO_APP_PROPS_ENV=auto --
dns-name-label flogoappazure
--ip-address Public
--ports 9999
--registry-login-server flogoacr.azurecr.io
--registry-username <username>
--registry-password <password>
#where prop_str is the app property defined in the flogo app which
is being overridden from this command

6. Get container logs using the following commands:

az container logs --resource-group <name-of-resource-group> --name
<name-of-container>

Deploying a Flogo App to a Microsoft Azure Container
Instance Using a YAML File

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

Procedure
1. Create a YAML file as follows:

--- apiVersion: 2018-10-01
location: <location>

TIBCO Flogo® Enterprise User Guide

275 | Deployment and Configuration

name: <name-of-YAML-file>
properties:
containers:
-
name: fe-app-yaml
properties:
environmentVariables:
-
name: <name-of-app-property>
value: <value-of-app-property>
-
name: <name-of-app-property>
value: <value-of-app-property>
-
name: <name-of-app-property>
secureValue: <value-of-app-property>
#NOTE: secureValue must be used for passwords
-
name: FLOGO_APP_PROPS_ENV
value: auto
#NOTE: If the environment variable FLOGO_APP_PROPS_ENV is not set
to "auto", the environment variables are not detected at Flogo
runtime.
image: "<image>"
ports:
-
port: <port-number>
resources:
requests:
cpu: 1
memoryInGb: <memory>
imageRegistryCredentials:
-
password: <password>
server: <server>
username: <username>
ipAddress: <IP-address>
ports:
-
port: <port-number>
protocol: <protocol>
type: Public
#NOTE: IP Address must be explicitly set to Public.

TIBCO Flogo® Enterprise User Guide

276 | Deployment and Configuration

osType: <OS>
tags: ~
type: <type>

2. Run the following commands:

az container create --resource-group <name-of-resource-group> --
file <name-of-YAML-file>
az container show -g <name-of-resource-group> -n <name-of-
container>

3. After the app is deployed, you can access the app endpoint by accessing the public IP
address of the Azure container instance followed by the resource path.

<IP-address>:<port>/<resource-path>

Google Cloud Run
You can package a Flogo app binary in a docker image, push the image to Google
Container Registry, then deploy the app to Google Cloud Run.

Note: Only apps with REST and GraphQL triggers work in Google Cloud Run.

Deploying a Flogo App to Google Cloud Run

Before you begin
l A Google Cloud account.

For more information, see https://cloud.google.com/.

l Setup the Google Cloud command-line tool.

Create or import REST app

Design a new REST app using the UI or import an existing one into the UI.

https://cloud.google.com/

TIBCO Flogo® Enterprise User Guide

277 | Deployment and Configuration

Build and push a docker image to the container registry

1. From the UI:

a. Create a Docker image of the app.

b. Push the Docker image to Google Container Registry.

For more information, see https://cloud.google.com/container-
registry/docs/pushing-and-pulling.

2. From CLI:

a. Build a Linux/Amd64 binary using the CLI. For more information, see Building
the App from the CLI.

b. Create a Docker file of the app and copy it along with the app binary.

c. From the directory where the binary and docker files are placed, run the
following command:

gcloud builds submit --tag gcr.io/[PROJECT-ID]/[IMAGE_NAME]:
[IMAGE_TAG]

For example:

gcloud builds submit --tag gcr.io/227xxx/flogo-helloworld:1.0

Deploy app on Cloud Run

You can deploy the app to Cloud Run using the CLI or the Console. This section describes
how to deploy the app using the CLI. For more information on deploying the app using the
Console, refer to https://cloud.google.com/run/docs/.

1. Deploy the Flogo app using the following command:

gcloud beta run deploy --image gcr.io/[PROJECT-ID]/[IMAGE_NAME]:
[IMAGE_TAG]

For example:

gcloud beta run deploy --image gcr.io/227xxx/flogo-helloworld:1.0

https://cloud.google.com/container-registry/docs/pushing-and-pulling
https://cloud.google.com/container-registry/docs/pushing-and-pulling
building-the-app-fro.htm#top
building-the-app-fro.htm#top
https://cloud.google.com/run/docs/

TIBCO Flogo® Enterprise User Guide

278 | Deployment and Configuration

Please specify a region:

[1] us-central1

[2] cancel

Please enter your numeric choice: 1

To make this the default region, run `gcloud config set run/region
us-central1`.

Service name (helloworld):

Allow unauthenticated invocations to [helloworld] (y/N)? y
##NOTE: At this prompt, only if you enter Y, you are allowed to
hit an endpoint without authentication.

Deploying container to Cloud Run service [helloworld] in project
[227xxx] region [us-central1]

✓ Deploying new service... Done.

✓ Creating Revision...

✓ Routing traffic...

✓ Setting IAM Policy...

Done.

Service [helloworld] revision [helloworld-695fa56d-97d2-46b9-b037-
2dfada50aca5] has been deployed and is serving traffic at
https://helloworld-pae7vs5yaq-uc.a.run.app

2. Make a call using the URL returned in the output. For example, you can make a call

TIBCO Flogo® Enterprise User Guide

279 | Deployment and Configuration

to the following URL returned in step 2:

https://helloworld-pae7vs5yaq-uc.a.run.app/greetings/Flogo

Red Hat OpenShift
You can package a Flogo app binary in a docker image, then push the docker image to a
container registry and run the Flogo apps on Red Hat OpenShift.

Deploying a Flogo App to Red Hat OpenShift

Before you begin
l Ensure that you have a Red Hat Openshift account and that the Red Hat OpenShift

environment is set up to deploy the app.

l Ensure that the Red Hat OpenShift CLI is installed on your machine.

l Ensure that the image of the Flogo app is pushed to the Red Hat Openshift internal
registry or any other public registry such as Docker Hub.

Procedure
1. Build a docker image for your app. You can build a docker image in one of the

following ways.

l Using the UI:

a. Build a docker image.

b. Tag the generated docker image from the command line: docker tag
<image-id> <app-name>:<version> The app tag must be in the format
<app-name>:<app-version>

l From a Linux binary:

a. Build a Linux binary using the Linux/amd64 option. See Building the App
section for details.

b. Provide execute permission to the app binary: chmod +x <app-binary>

TIBCO Flogo® Enterprise User Guide

280 | Deployment and Configuration

c. Create a docker file. For example:

FROM <OS-version> # for example, FROM alpine:3.7
WORKDIR /app
ADD <app-binary> <path-to-app-in-docker-container> # for example, ADD
flogo-rest-linux_amd64 /app/flogo-rest
CMD ["/app/flogo-rest"]

d. Build the docker image using the docker file. Run the following command:

docker build -t <app-tag> -f <path-to-Dockerfile> .

The app tag must be in the format <app-name>:<app-version>

l From the CLI:

a. Export your app as a JSON file (for example, flogo-rest.json) by clicking
Export app on the flow details page.

b. Build a Docker image containing the app using the builder command from
the CLI. Open a command prompt and change directory to <FLOGO_
HOME>/<version>/bin and run:

builder-<platform>_<arch> build -f <path-to-the.json-file>
-docker -n <docker_image_name>:<tag>

For example:

builder_linux_amd64 build -f flogo-rest.json -docker -n
flogo-rest:v1

For more information on the builder command, refer to the section,
Builder command.

2. Run the docker image locally to verify that everything is fine:

docker run -it -p 9999:9999 <app-tag>

3. Authenticate docker with the container registry where you want to push the docker
image.

4. Tag the docker image. Run:

builder-command.htm

TIBCO Flogo® Enterprise User Guide

281 | Deployment and Configuration

docker tag <app-tag> <CONTAINER_REGISTRY_URI>/<app-tag>

The app tag must be in the format <app-name>:<app-version>

5. Push the local docker image to the container registry by running the following
command:

docker push <CONTAINER_REGISTRY_URI>/<app-tag>

Note: Refer to the documentation for your container registry for the exact
commands to authenticate docker, tag docker image, and push it to the
registry.

6. Login to Openshift from command line:

oc login --token=<Your token> --server=https://<host
address>:<port>

For example:

oc login --token=<Your token> --server=https://api.ca-central-
1.starter.openshift-online.com:6443

7. Create a project in Red Hat OpenShift:

oc new-project <PROJECT_NAME>

8. Deploy the app on Red Hat Openshift using a YAML file. For a sample YAML file, see
Sample YAML File: Red Hat OpenShift.

oc create -f <YAML filename>

9. To get information about pods, run the following command:

oc get pods

The following is a sample output of the command:

TIBCO Flogo® Enterprise User Guide

282 | Deployment and Configuration

10. To get the logs of a particular pod, run the following command:

oc logs <pod name>

The following is a sample output of the command:

11. To access the endpoint of an app, run the following command:

oc get svc -o wide

The following is a sample output of the command:

12. From the output, note the external IP and port. Access the endpoint using the
following URL:

http:<external IP>:<port>/<resource_context_path>

TIBCO Flogo® Enterprise User Guide

283 | Deployment and Configuration

Sample YAML File: Red Hat OpenShift

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

The following is a sample YAML file for a REST app:

apiVersion: v1
kind: Service
metadata:

name: flogo-rest
labels:

app: flogo-rest
spec:

type: LoadBalancer
ports:
- port: 80

targetPort: 9999
name: app

selector:
app: flogo-rest

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: flogo-rest
spec:

replicas: 1
template:

metadata:
labels:
app: flogo-rest

spec:
containers:
- name: flogo-rest
image: <DOCKER_REPOSITORY_NAME>/<APP_IMAGE_NAME>
ports:
- containerPort: 9999

TIBCO Flogo® Enterprise User Guide

284 | Deployment and Configuration

Serverless Deployments

Developing for Lambda
AWS Lambda is a serverless compute service provided by Amazon Web Services (AWS).
Lambda functions automatically run pieces of code in response to specific events while
also managing the resources that the code requires to run. Refer to the AWS
documentation for more details on AWS Lambda.

Creating a Connection with the AWS Connector
You must create AWS connections before you use the Lambda trigger or Activity in a flow.

Note: AWS Lambda is supported on the Linux platform only.

To create an AWS connection:

1. In Flogo Enterprise, click Connections to open its page.

2. Click the AWS Connector card.

3. Enter the connection details. Refer to the section AWS Connection Details for details
on the connection parameters.

4. Click Save.

Your connection gets created and is available for you to select in the drop-down menu
when adding a Lambda Activity or trigger.

AWS Connection Details
To establish the connection, you must specify the following configurations in the AWS
Connector dialog.

The AWS Connector dialog contains the following fields:

aws-connection-detai.htm

TIBCO Flogo® Enterprise User Guide

285 | Deployment and Configuration

Field Description

Name Specify a unique name for the connection that you are creating. This is
displayed in the connection drop-down list for all the activities.

Description A short description of the connection.

Custom Endpoint (Optional) To enable the AWS connection to an AWS or AWS compatible
service running at the URL specified in the Endpoint field, set this field to
True.

This field is not supported in TIBCO Flogo® Connector for Amazon Glacier.

Endpoint This field is available only when Custom Endpoint is set to True.

Enter the service endpoint URL in the following format:
<protocol>://<host>:<port>. For example, you can configure a MinIO cloud
storage server endpoint.

Region Region for AWS connection.

Authentication
Type

Select one of the following authentication types as required:

• AWS Credentials: Use this authentication to connect to AWS
resources using access key, secret key, and assumed role.

• Default Credentials: Use this authentication to use a role
configured AWS resource such as EC2, ECS, or EKS without
configuring the AWS credentials. Credentials are loaded using the
AWS default credentials provider chain.

Note: To use Default Credentials as the Authentication Type in
TIBCO Flogo® Connector for Amazon SQS and AWS Lambda, create an
AWS connection using the Authentication Type as AWS Credentials
and override AWS Credentials to Default Credentials at runtime.

Access key ID Access key ID of the AWS account (from the Security Credentials field of
IAM Management Console).

For more information, see the AWS documentation.

TIBCO Flogo® Enterprise User Guide

286 | Deployment and Configuration

Field Description

Secret access key Enter the secret access key. This is the access key ID that is associated
with your AWS account.

For more information, see the AWS documentation.

Session token (Optional) Enter session token if you are using temporary security
credentials. Temporary credentials expire after a specified interval. For
more information, see the AWS documentation.

Use Assume Role This enables you to assume a role from another AWS account. By default,
it is set to False (indicating that you cannot assume a role from another
AWS account).

When set to True, provide the following information:

l Role ARN - Amazon Resource Name of the role to be assumed

l Role Session Name - Any string used to identify the assumed role
session

l External ID - A unique identifier that might be required when you
assume a role in another account

l Expiration Duration - The duration in seconds of the role session.
The value can range from 900 seconds (15 minutes) to the
maximum session duration setting that you specify for the role

For more information, see the AWS documentation.

Creating a Flow with Receive Lambda Invocation Trigger
The Receive Lambda Invocation trigger allows you to create a Flogo flow to create and
deploy as a Lambda function on AWS.

Refer to the "Receive Lambda Invocation Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details on the trigger.

To create a flow with the Receive Lambda Invocation trigger:

1. Create an app in Flogo.

2. Click the app name on the Apps page to open it.

TIBCO Flogo® Enterprise User Guide

287 | Deployment and Configuration

3. Click Create a Flow.

The Create a Flow dialog box opens.

4. Enter a name for the flow in the Flow Name text box.

Flow names within an app must be unique.

5. Optionally, enter a brief description of what the flow does in the Description text box
and click Save.

A flow gets created. Click the flow name to open the flow page.

6. From the Triggers palette, select Receive Lambda Invocation and drag it to the
triggers area.

7. To configure a trigger, enter the JSON schema or JSON sample data for the
operation. This is the schema for the request payload.

8. Click Continue.

A flow beginning with the ReceiveLambdaInvocation trigger gets created.

9. Click the ReceiveLambdaInvocation trigger tile and configure its properties. See the
"ReceiveLambdaInvocation" section in the TIBCO Flogo® Enterprise Activities, Triggers,
and Connections Guide for details.

Deploying a Flow as a Lambda Function on AWS
After you have created the flow, you can deploy it as a Lambda function on AWS.

Before you begin
The flow should be configured with the ReceiveLambdaInvocation trigger.
To deploy a flow as a Lambda function on AWS:

Procedure
1. Build your Flogo app (<myApp>) with the Linux/amd64 target. This is because Lambda

deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function. Refer to Building the
App for details on how to build an app.

2. Add execution permission to the native Linux/amd64 executable file that you built.
Run chmod +x <myApp>-linux_amd64

TIBCO Flogo® Enterprise User Guide

288 | Deployment and Configuration

3. You can deploy the <myApp>-linux_amd64 in one of two ways:

l If you are using a Linux environment to design, build, and deploy your apps, you
can directly run the following command:

<LambdaTriggerBinary> --deploy lambda --aws-access-key <secret_key>

For example, myApp-Linux64 --deploy lambda --aws-access-key xxxxxxxxx

Note: Make sure that the aws-access-key is identical to the one
configured in the Flogo UI for the selected AWS Connection. This is
used for validation with the aws-access-key configured as part of the
AWS Connection within the UI and the value provided here does not
overwrite the aws-access-key used while designing the app.

This approach of deploying to AWS Lambda works only on Linux platforms.

l If you are using a non-Linux environment to design, build and deploy your apps,
then use this approach:

a. Compress the executable file and name it <myApp>-linux_amd64.zip in
preparation for deploying to AWS Lambda.

b. Create your Lambda function with go1.x runtime using the AWS Lambda
console.

c. Upload the .zip from step 3 to the Lambda function being created.

d. Name the function handler the same as your executable name, <myApp>-
linux_amd64.

Refer to the AWS documentation for more details.

l To override app properties used in a Lambda app during runtime, create a
.properties or .json file containing the properties and their values to

override, then use the command
./<Lambda-app-name> --deploy --env-config <app-property-file-
name>.properties.
For example:
./MyLambdaApp --deploy --env-config MyLambdaApp-env.properties

where MyLambdaApp is the Lambda app name and
MyLambdaApp-env.properties is the properties file name.

All properties in the .properties or .json file are passed to Lambda as

TIBCO Flogo® Enterprise User Guide

289 | Deployment and Configuration

environment variables.

Deploying a Flow as a Lambda Function on AWS using AWS CLI

1. Build your Flogo app (<myApp>) with the Linux/amd64 target. This is because Lambda
deployments are Linux-based and building the binary for Linux/amd64 generates the
appropriate artifact to deploy in your AWS Lambda function. Refer to Building the
App for details on how to build an app.

2. Compress the executable and name it <myApp>-linux_amd64.zip in preparation for
deploying to AWS Lambda.

3. Deploy the app as a Lambda function using AWS CLI. For more information, see
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html.

4. Override app properties:

a. Create each app property entry as a Lambda environment variable.

b. Create FLOGO_APP_PROPS_ENV=auto as an additional Lambda environment.

Creating a Flow with AWS API Gateway Lambda Trigger
The AWS API Gateway Lambda trigger allows you to invoke Lambda functions as REST
APIs. A flow created in an app using the AWS API Gateway trigger is deployed as a Lambda
function.

Refer to the "AWS API Gateway Lambda Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details on the trigger.

To create a flow with the AWS API Gateway Lambda trigger:

1. Create an app in Flogo.

2. Click the app name on the Apps page to open it.

3. Click Create a Flow.

The Create a Flow dialog box opens.

4. Enter a name for the flow in the Flow Name text box.

Flow names within an app must be unique.

5. Optionally, enter a brief description of what the flow does in the Description text box

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html

TIBCO Flogo® Enterprise User Guide

290 | Deployment and Configuration

and click Next.

A flow gets created. Click the flow name to open the flow page.

6. From the Triggers palette, select Receive Lambda Invocation and drag it to the
triggers area.

7. Provide the method, resource path, and JSON schema for the operation.

8. Click Continue.

A flow beginning with the AWSAPIGatewayLambda trigger is created.

9. Click Copy schema or Just add the trigger.

10. Click the AWSAPIGatewayLambda trigger tile and configure its properties. See the
"AWS API Gateway Lambda Trigger" section in the TIBCO Flogo® Enterprise Activities,
Triggers, and Connections Guide for details.

What to do next
Deploy the flow on AWS. For instructions on how to do so, see Deploying a Flow as a
Lambda Function on AWS.

Creating a Flow with S3 Bucket Event Lambda Trigger
The S3 Bucket Event Lambda trigger allows you to create a flow using the operations or
events that are performed on an S3 bucket trigger, a Lambda function.

Note: Creating a new event or updating an existing event in the S3 Bucket Event
Lambda trigger and re-pushing the app deletes existing Events on AWS S3.

Refer to the "S3 Bucket Event Lambda Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details on the trigger. To create a flow with
the S3 Bucket Event Lambda trigger:

Procedure
1. Create an app in Flogo Enterprise.

2. Click the app name on the apps page to open its page.

3. Click Create a Flow.

TIBCO Flogo® Enterprise User Guide

291 | Deployment and Configuration

The Create a Flow dialog box opens.

4. Enter a name for the flow in the Flow Name text box.

Flow names within an app must be unique. An app cannot contain two flows with the
same name.

5. Optionally, enter a brief description of what the flow does in the Description text box
and click Next.

6. Click Start with a trigger.

7. Under Choose a trigger to add, click S3 Bucket Event Lambda Trigger.

8. Provide the bucket name, event name, and the list of events to be performed. See
the "S3 Bucket Event Lambda Trigger" section in the TIBCO Flogo® Enterprise
Activities, Triggers, and Connections Guide for details.

TIBCO Flogo® Enterprise User Guide

292 | Deployment and Configuration

9. Provide any prefix or suffix object filters.

10. Click Continue.

A flow beginning with the S3 Bucket Event Lambda trigger is created.

11. Click Copy schema or Just add the trigger.

12. Click the S3 Bucket Event Lambda trigger tile and configure its properties. See the
"S3 Bucket Event Lambda Trigger" section in the TIBCO Flogo® Enterprise Activities,

TIBCO Flogo® Enterprise User Guide

293 | Deployment and Configuration

Triggers, and Connections Guide for details.

13. Create a flow containing the Business logic of the Lambda function that you want to
trigger using the S3 Bucket Event Lambda trigger.

What to do next
Deploy the flow on AWS. For instructions, see Deploying a Flow as a Lambda Function on
AWS.

S3 Bucket Event Lambda Trigger
Use the S3 Bucket Event Lambda trigger to trigger a Lambda function when a supported
event occurs on the associated S3 bucket.

Trigger Settings

Note:

l Creating a new event or updating an existing event in the S3 Bucket Event
Lambda trigger and re-pushing the app deletes existing Events on AWS S3.

l You can have only one S3 trigger in an app. An app that has an S3 trigger
cannot contain any other triggers including another S3 trigger. The S3
trigger supports multiple handlers (flows), so you can have multiple flows
in the app that are attached to the same S3 trigger. You can also have
blank flows in the app which can serve as subflows for the flows that are
attached to the S3 trigger.

l For overriding app properties, use the FLOGO_APP_PROPS_JSON
environment variable only. You cannot override app properties using the
FLOGO_APP_PROPS_ENV environment variable.

Field Description

AWS
Connection
Name

(Mandatory) Name of the AWS connection that you want to use for deploying
the flow.

TIBCO Flogo® Enterprise User Guide

294 | Deployment and Configuration

Field Description

Execution
Role Name

Permission of the Lambda function to execute. The role must be assumable
by Lambda and must have CloudWatch logs permission execution role.

By default, Cloud watching is enabled.

Bucket Name of the S3 bucket with which the trigger is to be associated. This bucket
must be an existing one.

Event name Name of the S3 bucket event notification.

Event list A list of operations to be performed on the S3 bucket. Supported operations
are POST, PUT, COPY, and DELETE.

Object prefix
filter

(Optional) The prefix is to be used to filter the S3 bucket.

For example, images/

Object suffix
filter

(Optional) The suffix is to be used to filter the S3 bucket.

For example, .jpg

Map to Flow Inputs

Map the flow output to the trigger reply on this tab. The tab displays the following fields.

Field Description

Function Information about the Lambda function

Context Envelope information about this invocation

Identity Identity for the invoking users

ClientApp Metadata about the calling app

S3Event Default schema of S3 bucket event trigger. It can be mapped with the flow
input to pass the key values to the flow.

TIBCO Flogo® Enterprise User Guide

295 | Deployment and Configuration

Deploying a Flogo App to Microsoft Azure Functions
After you have designed a Flogo app or imported an existing one, you can deploy it to
Microsoft Azure Functions as a custom Docker container. You can do this by using the
Microsoft Azure portal or do it by using the CLI.

Before you begin
Make sure you have a Microsoft Azure account with an active subscription and you can log
in to https://portal.azure.com. For more information on getting a Microsoft Azure account,
see https://azure.microsoft.com/.

Creating the Azure Function App in the Azure Portal

Before you begin
Install the following:

l To push images to the Azure Container registry, install the latest version of Azure CLI.

l Install Docker. For the supported versions, see the Readme.

Procedure
1. Build a Docker image of your Flogo app.

2. If you are using an Azure container registry, log in to the repository created on the
Azure container registry.

3. Tag and push the Docker image of the Flogo app to the repository in the Azure
container registry. For example:

docker tag flogo/hello-world:latest myregistry.azurecr.io/flogo-
hello-world:latest

4. In the Azure portal, create a new Azure Function app. While creating the Azure
Function app, in the Instance details dialog box, select Docker Container as the
Publish mode.

5. After the Azure Function app is created, go to Settings > Container Settings
(Classic) on the left navigation pane.

https://portal.azure.com/
https://azure.microsoft.com/

TIBCO Flogo® Enterprise User Guide

296 | Deployment and Configuration

6. On the right pane, select the image Source, enter other details, and click Save.

Tip: If you select Registry Settings > Registry Source as Azure Container
Registry, and you face issues while selecting the Registry, verify the
Repository permissions for the repository created for the Flogo app.
Update the Azure Container Registry and enable Admin user; this enables
the Azure function to access the images in the repositories.

7. If you are using a trigger port other than 80 or 8080, navigate to Settings >
Configuration and click New application setting. Specify:

l Name: WEBSITES_PORT

l Value: <your trigger port>

8. Click Save. The app is restarted and changes made are reflected in the app.

9. To copy the URL for your app and check whether it is working, go to the Overview
menu.

Note: Do NOT add the port declared in the trigger settings to the URL. If
the URL does not work, restart the app manually.

10. For an app with app properties, to override the app properties, add the following to
Configuration > Application settings:

l All the app properties

l FLOGO_APP_PROPS_ENV=auto

11. Save the settings. The app restarts when you save the properties.

Creating the Azure Function App from the Azure CLI

Before you begin
Install the following:

l Visual Studio Code: For more information, see https://code.visualstudio.com/.

l Azure Functions extension for Visual Studio Code: For more information, see
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions

TIBCO Flogo® Enterprise User Guide

297 | Deployment and Configuration

azurefunctions.

l Azure Functions Core Tools (version 3.x or higher): For more information, see
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local.

Procedure
1. Create a new directory (for example, flogo-func-project) and open it.

cd flogo-func-project

2. Create a new function project using the following command:

func init --worker-runtime custom --docker

The --docker option generates a Dockerfile for the project.

3. Add a new function from a template using the following command:

func new --name <your-app-name> --template "HTTP trigger"

Here:

--name argument is the unique name of your function

--template argument specifies the template based on which the function is created

Example:

func new --name hello-world --template "HTTP trigger"

4. Download or build the binary for your HTTP trigger app and copy it into the directory
you created earlier.

For example, copy hello-world.json to the flogo-func-project directory.

5. If it is not an executable file, make it executable by running the following command:

chmod +x <binary-filename>

6. Add the following script to your project folder with the name start.sh:

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

TIBCO Flogo® Enterprise User Guide

298 | Deployment and Configuration

start.sh

#!/usr/bin/env sh
echo "Starting function..."
PORT=${FUNCTIONS_CUSTOMHANDLER_PORT} ./hello-world-linux_amd64

7. Make it executable by running the following command:

chmod +x start.sh

8. To update the default app prefix from api to your prefix, edit the function.json file.
For example, you can change the prefix to hello-world.

function.json

{
"bindings":

[
{

 "authLevel": "anonymous",
 "type": "httpTrigger",
 "direction": "in",
 "name": "req",
 "methods": ["get", "post"],
 "route": "books/{bookID}"
 },

{
 "type": "http",
 "direction": "out",
 "name": "res"
 }
]
}

9. To add customHeaders in the extensions, edit the host.json file:

host.json

TIBCO Flogo® Enterprise User Guide

299 | Deployment and Configuration

Caution: Code snippets in the PDF could have undesired line breaks due
to space constraints and should be verified before directly copying and
running it in your program.

{
 "version": "2.0",
 "logging":

{
 "applicationInsights":

{
 "samplingSettings":

{
 "isEnabled": true,
 "excludedTypes": "Request"
 }
 }
 },

 "extensionBundle":
{

 "id": "Microsoft.Azure.Functions.ExtensionBundle",
 "version": "[2.*, 3.0.0)"
 },

 "customHandler":
{

 "description":
{

 "defaultExecutablePath": "start.sh",
 "workingDirectory": "",
 "arguments": []
 },
 "enableForwardingHttpRequest": true
 },

 "extensions":
{

 "http":
{

 "routePrefix": ""
 }

TIBCO Flogo® Enterprise User Guide

300 | Deployment and Configuration

 }
}

10. To change the path, edit the Dockerfile:

Dockerfile

FROM mcr.microsoft.com/azure-functions/dotnet:3.0-appservice
ENV AzureWebJobsScriptRoot=/home/site/wwwroot \
AzureFunctionsJobHost__Logging__Console__IsEnabled=true
COPY . /home/site/wwwroot

Your folder structure should now look similar to the following:

.
├── Dockerfile
├── hello-world-app
│ └── function.json
├── hello-world-rest-trigger-linux_amd64
├── host.json
├── local.settings.json
└── start.sh

11. Test your app locally by running the following command:

func start

The output returns an URL for the app.

12. Test whether the app works by navigating to the URL provided in the output. For
example:

http://localhost:7071/hello-world

13. Publish your app to Microsoft Azure. For more information, see Publish the project to
Azure.

https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-other?tabs=go%2Clinux#publish-the-project-to-azure
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-other?tabs=go%2Clinux#publish-the-project-to-azure

TIBCO Flogo® Enterprise User Guide

301 | Deployment and Configuration

Deploying a Flogo App in Knative
You can create and deploy a Flogoapp as a Knative service. For information on Knative, see
the Knative documentation.

A Flogoapp running inside a Docker container is called by a Knative service. For the app to
be called by the Knative service, the app must be exposed over an HTTP port. In this
section, a REST Trigger is used to expose the app over an HTTP port.

Before you begin
Make sure you meet the following requirements:

l Install the following components by using the instructions from Getting Started with
Knative:

o Kind (Kubernetes in Docker)

o Kubernetes CLI (kubectl)

o Knative CLI (kn)

o Knative "Quickstart" environment

l Create a Knative service and make sure you can ping the service endpoint. For
details, see Deploying your first Knative Service and Ping your Knative Service.

Note: This section uses a Knative on Kind setup to explain the procedure.
However, you can also set it up on minikube and Docker Desktop. For more
information, see Setup Knative on Minikube and Setup Knative on Docker
Desktop.

Procedure
1. Configure a sample Flogo app with a REST Trigger exposed with a port. You can use

the default REST Trigger port, 9999.

https://knative.dev/docs/
https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/first-service/
https://knative.dev/docs/getting-started/first-service/#ping-your-knative-service
https://github.com/csantanapr/knative-minikube
https://github.com/csantanapr/knative-docker-desktop
https://github.com/csantanapr/knative-docker-desktop

TIBCO Flogo® Enterprise User Guide

302 | Deployment and Configuration

Important:
l Only apps with HTTP endpoints can be deployed as a Knative

service. Hence, a REST Trigger is used in this procedure.

l An app with multiple endpoints on different ports cannot be
deployed as a Knative service.

2. Build the Flogo app for Linux/amd64 platform and save the binary file locally. For
more information on building the app binary, see Building the App.

3. Give executable permissions to the app binary:

chmod a+x <app_executable>

4. Build a Docker image for the Flogo app and tag it:

docker build --file Dockerfile -t dev.local/flogoknative:1.0.0 .

5.
Note: Make sure you tag the image in the following format:
dev.local/<image name>:<tag>
Instead of the latest tag, use a tag such as 1.0.0.

Here is the sample Dockerfile used in the above command:

TIBCO Flogo® Enterprise User Guide

303 | Deployment and Configuration

FROM alpine:3.8
RUN apk add --no-cache ca-certificates
WORKDIR /app
ADD <app_executable> /app/flogoapp
RUN chmod a+x /app/flogoapp
ENTRYPOINT ["/app/flogoapp"]

The Docker image is built:

6. Confirm that the Docker image is built successfully:

docker images | grep knative

The details of the flogoknative image are displayed:

7. To test the Docker image:

docker run -it -p 9999:9999 dev.local/flogoknative:1.0.0

The Flogo runtime logs should be displayed as follows:

TIBCO Flogo® Enterprise User Guide

304 | Deployment and Configuration

8. Load the Docker image into the default knative cluster:

kind load docker-image dev.local/flogoknative:1.0.0 --name knative

The Flogo Docker image is loaded inside the knative cluster and is used by Knative
to create the service.

9. Create the Knative service:

kn service create helloflogo --image dev.local/flogoknative:1.0.0 -
-port 9999 --revision-name=<any revision name>

Note: The port should be the same as what the Flogo is listening to. In this
case, 9999.

A service is created and an URL is generated. You should see messages similar to the
following:

The networking layer, routes, ingress, and load balancer are configured for the
Knative service.

To see a list of services, execute the following command:

TIBCO Flogo® Enterprise User Guide

305 | Deployment and Configuration

kn service list

NOTE: If you notice errors during any of these steps, the service is not created
successfully. For troubleshooting tips, see Troubleshooting Tips.

10. Append the REST Trigger endpoint path (specified in step 1) to the generated service
URL and hit the endpoint using a browser or curl. For curl, the format of the
command is curl <URL returned in previous step>/hello/knative.
You should see the Flogo return message as the response:

Troubleshooting Tips

Error Message Probable Solution

Errors while creating a kn service:

l configuration does not have any
ready revision

l RevisionMissing

Check whether executable permissions
are given to the Flogo app before building
the Docker image.

Error while creating a kn service:

IngressNotConfigured/reconciled

Delete your Knative cluster and recreate it
using the following command:

kind delete cluster --name knative

After deleting the cluster, to reinstall it,
follow the steps mentioned in Getting
Started with Knative.

https://knative.dev/docs/getting-started/
https://knative.dev/docs/getting-started/

TIBCO Flogo® Enterprise User Guide

306 | Deployment and Configuration

Error after creating the kn service and running
the kn service list command:

RevisionMissing

Make sure you tag the image in the
following format:

dev.local/<image name>:<tag>

Instead of the latest tag, use a tag such
as 1.0.0.

After you tag the image, load it in kind
and then create the service again.

Pushing Apps to TIBCO Cloud
You can push apps that were created in Flogo Enterprise to TIBCO Cloud Integration using
the TIBCO Cloud - Command Line Interface (tibcli).
You must download the TIBCO Cloud Integration artifacts to use TIBCO Cloud CLI to push
the apps.

Before you begin
You must have the TIBCO Cloud CLI installed on your local machine before you follow this
procedure. Refer to the "Downloading TIBCO Cloud Integration Tools" and "Installing the
TIBCO®Cloud - Command Line Interface" sections in the TIBCO Cloud Integration
documentation for details on how to download the TIBCO Cloud CLI and install it.

Note: For REST apps, be sure to change the port to 9999 before downloading the
artifacts.

To push the app using the TIBCO Cloud CLI, follow this procedure:

Procedure
1. On the app details page, click Export.

2. Select TIBCO Cloud Integration artifacts.

The manifest.json and flogo.json files are downloaded. The manifest.json
contains the manifest details such as the endpoints, memory resource details, and so

TIBCO Flogo® Enterprise User Guide

307 | Deployment and Configuration

on. The flogo.json contains the app itself. These are the artifacts needed to push
the app directly from Flogo Enterprise using TIBCO Cloud CLI.

3. Create a temporary directory on your machine.

4. Move the downloaded flogo.json and the manifest.json files into a temporary
directory.

Note: The tibcli or tibcli.exe executable should not be in the same
directory (the temporary directory you created) as the app you are
pushing.

5. Open a terminal or command prompt and navigate to the temporary directory.

6. Run the following command to push the app:

tibcli app push <app-name>

Important: If there is an existing app with an identical name as the app
that you are trying to push to the cloud, the existing app is overwritten
with the newly pushed app. You do not get a warning about it.

Result
The app is pushed to TIBCO Cloud Integration. You can see the progress of the app push
on the UI. After the app is pushed, the app implementation details on the Flowtab are
replaced with the actual flow.

TIBCO Flogo® Enterprise User Guide

308 | Monitoring

Monitoring
This section contains information about how to monitor your apps.

About the TIBCO Flogo® Enterprise Monitoring
App
Using the Flogo Enterprise Monitoring app, you can monitor Flogo Enterprise apps that are
running in your environment. The Flogo Enterprise Monitoring app collects metrics of flows
and triggers from all running apps that are registered with it. In the UI of the app, you can
visualize the metrics.

The Flogo Enterprise Monitoring app can also be used with TIBCO Flogo® Flow State
Manager to collect information about the state of all run flows of a Flogo app. For more
information on how to use the Flogo Enterprise Monitoring app with TIBCO Flogo® Flow
State Manager, see About TIBCO Flogo® Flow State Manager .

How to Set Up and run the Flogo Enterprise Monitoring App

The Flogo Enterprise Monitoring app is available as a ZIP file. It can run as a standalone
app or in a container, such as Docker or Kubernetes. However, you must run the Flogo
Enterprise Monitoring app on the same container platform where the Flogo Enterprise apps
are running.

How Registration Works in the Flogo Enterprise Monitoring App

Flogo Enterprise apps must be registered with the Flogo Enterprise Monitoring app to be
able to view its app metrics. After an app is registered, the Flogo Enterprise Monitoring app
can monitor and fetch the instrumentation statistics for the app.

The Flogo Enterprise Monitoring app stores the app registration details in a data store.
Currently, the only data store supported is of the type File. The app registration details
include app name, app host, app instrumentation port, app version, runtime version under

TIBCO Flogo® Enterprise User Guide

309 | Monitoring

which the app is running, and app tags. App tags are custom tags that help you provide
additional information about the app. You can set them specific to an app.

Note:

l A Flogo app can have one or more instances and they can be registered
with the Flogo Enterprise Monitoring app.

l Each app instance is identified as unique based on the app name and app
version.

API Key for Additional Security

For additional security, the Flogo Enterprise Monitoring app can also be started using a
secret key called the API key. The API key must be provided while starting the Flogo
Enterprise Monitoring app and the same API key must also be provided while starting the
Flogo app. The Flogo app registers with the Flogo Enterprise Monitoring app using the API
key provided. If an API key is not provided, the Flogo app is not registered with the Flogo
Enterprise Monitoring app.

Using the Flogo Enterprise Monitoring App
Using the Flogo Enterprise Monitoring app to monitor Flogo apps involves the following
steps:

1. Run the Flogo Enterprise Monitoring app. You can run the app in one of two ways:

l Run the app as a standalone app. See Running the Flogo Enterprise Monitoring
App.

l Run the app in Docker. See Running the Flogo Enterprise Monitoring App on
Docker.

2. Register the Flogo app to be monitored using the Flogo Enterprise Monitoring app.
See Registering an App with the Flogo Enterprise Monitoring App.

3. Access the UI of the Flogo Enterprise Monitoring app by using a browser and view the
statistics of the Flogo apps. See Viewing Statistics of Apps.

TIBCO Flogo® Enterprise User Guide

310 | Monitoring

Running Flogo Enterprise Monitoring as a
Standalone App
You can run the Flogo Enterprise Monitoring app as a standalone app or in a container
such as Docker or Kubernetes. This section explains how to run the Flogo Enterprise
Monitoring app as a standalone app.

Before you begin
The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO
Flogo® Enterprise Monitoring App" section of TIBCO Flogo® Enterprise Installation.

Procedure
1. Navigate to the flogomon/bin folder.

2. Run startup.sh (on macOS or Linux) or startup.bat (on Windows).

Result
The web server for the Flogo Enterprise Monitoring app is started.

What to do next
Register the Flogo app to be monitored with the Flogo Enterprise Monitoring app. See
Registering a Flogo App with the Flogo Enterprise Monitoring App.

Running the TIBCO Flogo® Enterprise Monitoring
App On Docker
You can run the Flogo Enterprise Monitoring app as a standalone app or in a container
such as Docker or Kubernetes. This section explains how to run the Flogo Enterprise
Monitoring app on Docker.

Before you begin
The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO
Flogo® Enterprise Monitoring App" section of the TIBCO Flogo® Enterprise Installation Guide.

TIBCO Flogo® Enterprise User Guide

311 | Monitoring

Procedure
1. Navigate to the flogomon folder.

2. Build the Docker image by running the Dockerfile command or Dockerfile_alpine
command as follows:

docker build -t flogomon -f Dockerfile .

docker build -t flogomon -f Dockerfile_alpine .

3. To get a list of the most recently created Docker images, run:

docker images

4. Run the Flogo Enterprise Monitoring app using the following commands. For a list of
configuration properties that can be used while running these commands, refer to
Configuring the Flogo Enterprise Monitoring App.

l With persistent volumes and API key:

docker run -e FLOGO_MON_DATA_DIR=<path where applist.json file
must be stored> -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>
-v <path to persistent volumes>:/opt/flogomon/data -e FLOGO_
MON_API_KEY=<secret API key> -it -p 7337:7337 <name of Docker
image of Flogo Enterprise Monitoring application>

Here, -p specifies the port on which the Flogo Enterprise Monitoring app must
be started. The default port is 7337 and it can be configured using the FLOGO_
MON_SERVER_PORT property.

Note: Use -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> only
if you want to use TIBCO Flogo® Flow State Manager.

For example:

docker run -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://localhost:9091 -v
/home/testuser/flogo:/opt/flogomon/data -it -p 7337:7337

TIBCO Flogo® Enterprise User Guide

312 | Monitoring

flogomon:latest

docker run -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://192.168.4.12:9091 -v
/home/testuser/flogo:/opt/flogomon/data -it -p 7337:7337
flogomon:latest

l Without persistent volumes and API key:

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> -it -
p 7337:7337 <name of Docker image of Flogo Enterprise
Monitoring application>

Here, -p specifies the port on which the Flogo Enterprise Monitoring app must
be started. The default port is 7337 and it can be configured using the FLOGO_
MON_SERVER_PORT property.

Note: Use -e FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port> only
if you want to use the TIBCO Flogo® Flow State Manager.

For example:

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091 -it
-p 7337:7337 flogomon:latest

docker run -e FLOGO_FLOW_SM_ENDPOINT=http://192.168.4.12:9091 -
it -p 7337:7337 flogomon:latest

Result
The web server for the Flogo Enterprise Monitoring app is started.

What to do next
Register the app to be monitored with the Flogo Enterprise Monitoring app. See Registering
an App with the Flogo Enterprise Monitoring App.

TIBCO Flogo® Enterprise User Guide

313 | Monitoring

Running the Flogo Enterprise Monitoring
Application On Kubernetes
You can run the Flogo Enterprise Monitoring app as a standalone app or as a container on
Kubernetes. This section explains how to run the Flogo Enterprise Monitoring app on
Kubernetes.

When the Flogo Enterprise Monitoring app is started on Kubernetes, it monitors Flogo apps
added to a Kubernetes cluster. If a Flogo app is found, the app is registered with the Flogo
Enterprise Monitoring app. The YAML file of the app must include some configuration
details required for registering the app with the Flogo Enterprise Monitoring app. For
details, refer to Configurations in the Flogo App's YAML File. After a Flogo app is registered,
the Flogo Enterprise Monitoring app is available in the App List on the Summary page.

Before you begin
The Flogo Enterprise Monitoring app is installed as described in the "Installing TIBCO Flogo®
Enterprise Monitoring App" section of the TIBCO Flogo® Enterprise Installation guide.

An overview of the procedure is given below:

Procedure
1. Grant Access Using ClusterRole.

2. Configure the ServiceAccount.

3. Link the ServiceAccount to the ClusterRole using ClusterRoleBinding.

4. Link the Flogo App to the Flogo Enterprise Monitoring Application.

5. Specify configurations in the Flogo App's YAML File.

Granting Access Using ClusterRole
To monitor pods registered in the Kubernetes cluster, the Flogo Enterprise Monitoring app
requires access to the List, Watch, and Get verbs for all pods across all namespaces. To
grant access, and update the YAML file as shown in the following sample file.

Sample YAML file showing ClusterRole

Cluster

TIBCO Flogo® Enterprise User Guide

314 | Monitoring

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: flogo-mon-cluster-role
rules:
- apiGroups: ["*"]

resources: ["pods"]
verbs: ["list","get","watch"]

Configuring the Service Account
Configure a service account for a pod as shown in the following sample YAML file.

Sample YAML file showing ServiceAccount

Service

apiVersion: v1
kind: ServiceAccount
metadata:

name: flogo-mon-service-account

Linking the ServiceAccount to the ClusterRole
Link the ServiceAccount to the ClusterRole using ClusterRoleBinding as shown in the
following sample YAML file.

Sample YAML file to add a ClusterRoleBinding

Deployment

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: flogo-mon-service
subjects:
- kind: ServiceAccount

TIBCO Flogo® Enterprise User Guide

315 | Monitoring

name: flogo-mon-service-account
namespace: default

roleRef:
kind: ClusterRole
name: flogo-mon-cluster-role
apiGroup: rbac.authorization.k8s.io

Linking the Flogo App to the Flogo Enterprise Monitoring
Application

1. Link the Flogo Monitoring Deployment to the service account created in the previous
steps. See the sample deployment YAML.

2. In the Flogo Monitoring Deployment YAML, provide the FLOGO_APP_SELECTOR label
with a value as a key-value pair. For example, appType=flogo.

Note: All Flogo apps which are required to be linked with the Flogo
Enterprise Monitoring app must specify this label.

Sample YAML file for Deployment

Deployment

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

apiVersion: apps/v1
kind: Deployment
metadata:

name: flogo-mon-service
spec:

selector:
matchLabels:

app: flogo-mon-service
replicas: 1
template:

metadata:

TIBCO Flogo® Enterprise User Guide

316 | Monitoring

labels:
app: flogo-mon-service

spec:
containers:
- name: flogo-mon-service

image: flogomon:v1
imagePullPolicy: Never
env:

- name: "FLOGO_APP_SELECTOR"
value: "appType=flogo"

ports:
- containerPort: 7337

serviceAccountName: flogo-mon-service-account

Configurations in the Flogo App’s YAML File
To register an app with the Flogo Enterprise Monitoring app, provide the following
configuration details in the app's YAML file.

l Labels: The deployment must have a label with the same value provided in the
FLOGO_APP_SELECTOR environment variable. For example, if FLOGO_APP_SELECTOR has
the value as appType=flogo, the Flogo app must have a label with the key as appType
and Name as flogo. The Flogo Enterprise Monitoring app attempts to register the
app with this label only. If the label is not provided, the app is ignored.

l Annotations: The following annotations are mandatory:

o app.tibco.com/metrics: Setting this annotation to true registers the app with
the Flogo Enterprise Monitoring app and enables the metrics collection on the
app. Setting the annotation to false deregisters it from the Flogo Enterprise
Monitoring app and turns off the metrics collection.

o app.tibco.com/metrics-port: Provide the HTTP port for the app. This port
must be the same as the one specified by the FLOGO_HTTP_SERVICE_PORT
environment variable. If an invalid value is set, the app is ignored.

TIBCO Flogo® Enterprise User Guide

317 | Monitoring

Sample YAML File

App

Caution: Code snippets in the PDF could have undesired line breaks due to
space constraints and should be verified before directly copying and running it
in your program.

apiVersion: v1
kind: Service
metadata:

name: flogoapp
labels:

app: flogoapp
spec:

type: LoadBalancer
ports:

- port: 9999
protocol: TCP
name: appport
targetPort: 9999

selector:
app: flogoapp

apiVersion: apps/v1
kind: Deployment
metadata:

name: flogoapp
spec:

selector:
matchLabels:

app: flogoapp
replicas: 2
template:

metadata:
labels:
app: flogoapp
appType: flogo

annotations:
app.tibco.com/metrics: 'true'
app.tibco.com/metrics-port: '7777'

spec:
containers:
- name: flogoapp

TIBCO Flogo® Enterprise User Guide

318 | Monitoring

image: flogoapp:v1
imagePullPolicy: Never
ports:

- containerPort: 9999
- containerPort: 7777

env:
- name: "FLOGO_HTTP_SERVICE_PORT"
value: "7777"

Configuring the Flogo Enterprise Monitoring App
The following properties can be set when running the Flogo Enterprise Monitoring app as
described in Running the Flogo Enterprise Monitoring App.

Note: These properties can also be set in the flogomon/config/config.env file.
If you have set the properties while starting the app, the values in the
config.env file are ignored, and the values specified during the startup take
precedence.

Property Description

FLOGO_MON_DATA_DIR The Flogo Enterprise Monitoring app uses a file-based data
store. This property provides the folder where the
applist.json file must be stored. If you run a Docker app with
persistent volumes, the applist.json is created at the location
specified as persistent volume.

Default value: User Home

FLOGO_MON_RETRY_
INTERVAL

The interval (in seconds) after which the Flogo Enterprise
Monitoring app retries to ping all instances of the Flogo app
registered with the Flogo Enterprise Monitoring app. For
example, if an app is down or the network is slow, the Flogo
Enterprise Monitoring app tries to collect monitoring data after
the value specified in this property.

Default value: 30s

TIBCO Flogo® Enterprise User Guide

319 | Monitoring

Property Description

FLOGO_MON_RETRY_
COUNT

Number of times the Flogo Enterprise Monitoring app retries to
ping all the instances before removing the instance from the
datastore.

For example, if an app is down or the network is slow, the
Flogo Enterprise Monitoring app tries to collect monitoring
data the number of times specified in this property.

Default value: 5

FLOGO_MON_API_KEY The API Key that is used by the Flogo app to register with the
Flogo Enterprise Monitoring app. The API key must be provided
when starting the Flogo Enterprise Monitoring app and the
same API key must also be provided when starting the app.
The app registers with the Flogo Enterprise Monitoring app
using the API key provided. If an API key is not provided, the
app is not registered with the Flogo Enterprise Monitoring app.

Default value: Blank

FLOGO_MON_SERVER_PORT The port on which the Flogo Enterprise Monitoring app must
be started.

Default value: 7337

FLOGO_MON_LOG_LEVEL The log level for the Flogo app.

Default value: INFO

Properties related to TIBCO Flogo® Flow State Manager

FLOGO_FLOW_SM_
ENDPOINT

The endpoint of Flogo Flow State Manager. The format to set
the property is:

FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>

For example:

FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091

Note: This property needs to be set when starting the app
binary after Flogo Flow State Manager is up and running.

TIBCO Flogo® Enterprise User Guide

320 | Monitoring

Registering a Flogo App with the Flogo Enterprise
Monitoring App
After a Flogo app is registered with the Flogo Enterprise Monitoring app, the collection of
instrumentation statistics starts automatically. To register a Flogo app with the Flogo
Enterprise Monitoring app, start the app with the following properties:

l FLOGO_HTTP_SERVICE_PORT=<instrumentation port>: This property specifies the
port required to enable the app instrumentation.

l FLOGO_APP_MON_SERVICE_CONFIG: This property specifies details of the Flogo
Enterprise Monitoring app to the Flogo app.

FLOGO_APP_MON_SERVICE_CONFIG={\"host\":\"<Host of Flogo Enterprise
Monitoring app>\",\"port\":\"<Port of Flogo Enterprise Monitoring
app>\",\"tags\":[\"<Tag 1>\",\"<Tag 2>\"],\"apiKey\":\"<API Key>\"}

Option Description

Host Host of the Flogo Enterprise Monitoring app.

Port Port of the Flogo Enterprise Monitoring app.

Tags
(Optional)

Custom tags that help you provide additional information about the
Flogo app; you can set them specific to an app. For example, you can
specify whether it is a REST app or whether it is running in Kubernetes,
and so on.

apiKey
(Optional)

For additional security, the Flogo Enterprise Monitoring app can also be
started using a secret key called API key. The API key must be provided
while starting the Flogo Enterprise Monitoring app and the same API key
must also be provided while starting the Flogo app. The app registers
with the Flogo Enterprise Monitoring app using the API key provided. If
an API key is not provided, the app is not registered with the Flogo
Enterprise Monitoring app.

TIBCO Flogo® Enterprise User Guide

321 | Monitoring

Examples
l If the Flogo Enterprise Monitoring app is running on localhost on port 7337 and the

app instrumentation port is 7777, start the Flogo app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\"}" ./App1

l If the Flogo Enterprise Monitoring app is running on localhost on port 7337, the app
instrumentation port is 7777, and you want to start the Flogo Enterprise Monitoring
app based on an API Key APIkey1, start the app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"apiKey\":\"<value
specified when starting the Flogo Enterprise Monitoring app>\"}"
./app_linux_amd64

l If the Flogo Enterprise Monitoring app is running on localhost on port 7337, the app
instrumentation port is 7777, and you want to provide additional tags (named
onpremise and testing), start the app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"tags\":
[\"onpremise\",\"testing\"]}" ./App1

l On Microsoft Windows, if the Flogo Enterprise Monitoring app is running on
localhost on port 3000 and the app instrumentation port is 7775, start the app as:

set FLOGO_HTTP_SERVICE_PORT=7775
set FLOGO_APP_MON_SERVICE_CONFIG=
{"host":"localhost","port":"3000","appHost":"instance1"}
flogo-windows_amd64.exe

l On Linux and Mac, if the Flogo Enterprise Monitoring app is running on localhost on
port 7337, the app instrumentation port is 7777, start the app as:

$FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"localhost\",\"port\":\"7337\",\"apiKey\":\"<value

TIBCO Flogo® Enterprise User Guide

322 | Monitoring

specified when starting the Flogo Enterprise Monitoring app>\"}"
./app_linux_amd64

What to do next: View the statistics of the app on the UI of the Flogo Enterprise
Monitoring app. See Viewing Statistics of Apps.

About TIBCO Flogo® Flow State Manager
Using Flogo® Flow State Manager and the TIBCO Flogo® Enterprise Monitoring App, you can
collect information about the state of all executed flows of a Flogo app.

Flogo Flow State Manager acts as an interface between a Flogo app and the TIBCO Flogo®
Enterprise Monitoring application. It collects data from a Flogo app and then persists the
collected data to a supported database (currently, PostgreSQL). When it receives a request
from the TIBCO Flogo® Enterprise Monitoring application, Flogo Flow State Manager
collects data from the database and passes it on to the TIBCO Flogo® Enterprise Monitoring
application for displaying on the UI.

Flogo Flow State Manager is available as a compressed file. For more information about
installing Flogo Flow State Manager, see TIBCO Flogo® Enterprise Installation Guide.

For more information about TIBCO Flogo® Enterprise Monitoring App, see About the TIBCO
Flogo® Enterprise Monitoring App

TIBCO Flogo® Enterprise User Guide

323 | Monitoring

Using Flogo Flow State Manager

Before you begin
Make sure you meet the following requirements:

l Install the PostgreSQL database. For more information, see
https://www.postgresql.org/.

l Optionally, download and install a PostgreSQL management tool such as PGAdmin.
For more information, see https://www.pgadmin.org/.

Using Flogo Flow State Manager involves the following steps:

Procedure
1. Configure the PostgreSQL database as described in Using Flogo Flow State Manager.

2. Run Flogo Flow State Manager. You can run the app in one of two ways:

l Run the app as a standalone app. See Running Flogo Flow State Manager as a
Standalone App.

l Run the app in Docker. See Running Flogo Flow State Manager on Docker.

3. Start the Flogo Enterprise Monitoring app by specifying the host and port of the
Flogo Flow State Manager. See Starting Flogo Enterprise Monitoring with Details of
Flogo Flow State Manager.

4. Start the Flogo app binary. Information about the state of all executed flows of a
Flogo app is displayed on the Executions Page.

Configuring the PostgreSQL Database
All execution data from the Flogo app is stored in the PostgreSQL database. Set up the
PostgreSQL database for accepting data from the Flogo app as follows:

Procedure

https://www.postgresql.org/
https://www.pgadmin.org/

TIBCO Flogo® Enterprise User Guide

324 | Monitoring

1. Start the PostgreSQL service as docker container. For example:

docker run -d --name my_postgres -v my_dbdata1:/var/lib/postgresql/data -
p 54320:5432 -e POSTGRES_PASSWORD=<password> -e POSTGRES_USER=<user>
postgres

2. Start the PGAdmin portal as a Docker container:
docker run -p 9990:80 -e PGADMIN_DEFAULT_EMAIL=<email address> -e
PGADMIN_DEFAULT_PASSWORD=<pgadmin_password> -d dpage/pgadmin4

3. Configure the PostgreSQL server in the PGAdmin admin portal with the following
details. Note that you must use the same parameter values while configuring
config.json for Flogo Flow State Manager.

l Host: IP of the local machine

l PORT: 54320 (same host and port used while starting PostgreSQL service as
docker container)

l User: <user> (configured while starting PostgreSQL server)

l Password: <password> (configured while starting PostgreSQL server)

l Maintenance database: same as <user> (if not specifically mentioned while
starting PostgreSQL server)

4. Create the steps table by using <flogo_flow_state_
manager.tar>\config\postgres\steps.sql.

Note: If you are running the steps.sql script in a terminal, convert the
script content to a single continuous line.

5. Create the flowstate table by using <flogo_flow_state_
manager.tar>\config\postgres\flowstate.sql.

6.
Note: If you are running the flowstate.sql script in a terminal, convert
the script content to a single continuous line.

TIBCO Flogo® Enterprise User Guide

325 | Monitoring

Running Flogo Flow State Manager as a Standalone
App

Procedure
1. Start Flogo Flow State Manager by executing the binary for your operating system:

l flowstatemanager-windows_amd64 (Windows executable)

l flowstatemanager-linux_amd64 (Linux executable)

l flowstatemanager-darwin_amd64 (Mac executable)

2. Copy the <flogo_flow_state_manager.tar>\config\postgres\config.json into the
bin directory. If the config.json file exists in any other directory, you can also set
the FLOW_STATE_CONFIG environment variable to point to the location as follows:

FLOW_STATE_CONFIG=<file path>

3. Update the values in config.json as follows:

Caution: Code snippets in the PDF could have undesired line breaks due
to space constraints and should be verified before directly copying and
running it in your program.

{

"exposeRecorder": true,

"port": "<The port on which you want to start the flow state manager
binary>",

"persistence": {

"type":"postgres",

"name": "pg-server-1",

"description": "",

"host": "<The IP address where Postgres is running>",

"port": "<port on which the Postgres database server is running>",

"databaseName": "postgres",

"user": "<user value configured while starting PostgreSQL server)>",

TIBCO Flogo® Enterprise User Guide

326 | Monitoring

"password": "<password value configured while starting PostgreSQL server>",

"Maintenance database": <same as <user>, if not specifically
mentioned while starting postgreSQL>

"maxopenconnection": "0",

"maxidleconnection": "2",

"connmaxlifetime": "0",

"maxconnectattempts": "3",

"connectionretrydelay": "5",

"tlsparam": "VerifyCA",

"cacert": "",

"clientcert": "",

"clientkey": ""

}

}

Running Flogo Flow State Manager on Docker
To run the Flogo Flow State Manager in a Docker container:

1. Update <flogo_flow_state_manager.tar>\config\postgres\config.json as per
your Postgres installation.

Important: Postgres is not accessible over 'localhost' when Flogo Flow
State Manager is running on Docker. You must use the machine's IP
address.

2. Go to the root folder (packaging) and run:

docker build -t flogostatemanager:1.0.0 -f ./deployments/Dockerfile
.

3. Start the Flogo Flow State Manager service by mounting a volume for config.json:

docker run -p 8099:8099 -v <parent

TIBCO Flogo® Enterprise User Guide

327 | Monitoring

absolutepath>/flowstatemanager/packaging/config/postgres/config.jso
n:/opt/flogo/sm/config.json flogostatemanager:1.0.0

Running Flogo Flow State Manager on Kubernetes
1. Update <flogo_flow_state_manager.tar>\config\postgres\config.json as per

your Postgres installation.

Important: Postgres is not accessible over 'localhost' when Flogo Flow
State Manager is running on Docker. You must use the machine's IP
address.

2. Go to the root folder (packaging) and run:

docker build -t flogostatemanager:1.0.0 -f ./deployments/Dockerfile
.

3. Push the Flogo Flow State Manager Docker image to the Docker registry.

4. Update the <flogo_flow_state_manager.tar>/deployments/k8s/deployment.yml as
per the required configuration. For example, image name, version, port values, and
so on.

5. Deploy the Flogo Flow State Manager service in the Kubernetes cluster:

<flogo_flow_state_manager.tar>/deployments/k8s/deploy.sh

This command creates the required configmap and applies the deployment.yml
configuration to define the deployment and service component for Kubernetes.

6. To undeploy the Flow State Manager service in k8s cluster:

<flogo_flow_state_manager.tar>/deployments/k8s/undeploy.sh

TIBCO Flogo® Enterprise User Guide

328 | Monitoring

Configuring Flogo Flow State Manager

Property Description

FLOGO_FLOW_SM_
ENDPOINT

The endpoint of Flogo Flow State Manager. The format to set
the property is:

FLOGO_FLOW_SM_ENDPOINT=http://<host>:<port>

For example:

FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091

Note: This property needs to be set when starting the app
binary after Flogo Flow State Manager is up and running. It
also needs to be set when running the Flogo Enterprise
Monitoring app.

FLOGO_FLOW_STATE_
ASYNC_INVOCATION

Specifies whether the Flogo Flow State Manager must be
invoked asynchronously or not. Enabling the property also
helps to increase the throughput of the app. The format to set
the property is:

FLOGO_FLOW_STATE_ASYNC_INVOCATION=true

Note: This property needs to be set when starting the app
binary after Flogo Flow State Manager is up and running.

Default value: false

Starting Flogo Enterprise Monitoring with Details of
Flogo Flow State Manager
Start Flogo Enterprise Monitoring with the host and port details of the Flogo Flow State
Manager:

Procedure
1. Start the TIBCO Flogo® Enterprise Monitoring app. When starting the app, use the

FLOGO_FLOW_SM_ENDPOINT environment variable to specify the host and port of the

TIBCO Flogo® Enterprise User Guide

329 | Monitoring

Flogo Flow State Manager. For example:

docker run -it -e FLOGO_MON_DATA_DIR=/opt/flogomon/data -e FLOGO_
FLOW_SM_ENDPOINT=http://<host>:<port> -v ~/temp:/opt/flogomon/data -p
7337:7337 <fe-mon docker image name>

Procedure
1. Check the console log to verify that a successful connection has been established

with Flogo Flow State Manager.
If you notice a connection error in the log, verify whether the Flogo Flow State
Manager is running and the host/port details are configured correctly.

Starting the App Binary
Start the app binary after Flogo Flow State Manager is up and running.

export FLOGO_FLOW_SM_ENDPOINT=http://localhost:9091
FLOGO_HTTP_SERVICE_PORT=7777
FLOGO_APP_MON_SERVICE_CONFIG="
{\"host\":\"<IP address>\",\"port\":\"<port>\"}"
./app-binary

Result
Information about the state of all executed flows of a Flogo app is displayed on the
Executions Page.

Viewing Statistics by Using Flogo Enterprise
Monitoring app

Before you begin
l The Flogo Enterprise Monitoring app must be running. See Running the Flogo

Enterprise Monitoring App or Running the Flogo Enterprise Monitoring App on

TIBCO Flogo® Enterprise User Guide

330 | Monitoring

Docker.

l The Flogo app to be monitored must be registered with the Flogo Enterprise
Monitoring app. See Registering a Flogo App with the Flogo Enterprise Monitoring
App.

Procedure
1. In the UI of the Flogo Enterprise Monitoring app, go to the following URL to monitor

the app:
http://<URL of Flogo Enterprise Monitoring app>:<port of Flogo Enterprise
Monitoring app>

For example:

http://localhost:7337

The Apps page is displayed as shown below:

The Apps page shows all the Flogo apps registered with the Flogo Enterprise
Monitoring app. For details, see Apps Page.

2. Click an app name.

The Metrics page is displayed. The instrumentation statistics are displayed in two
tabs - Flow and Triggers. For details, see Metrics Page.

Apps Page
The Apps page shows all the Flogo apps registered with the Flogo Enterprise Monitoring
app.

Note: The apps list on this page is not refreshed automatically. Click to
refresh the list manually.

TIBCO Flogo® Enterprise User Guide

331 | Monitoring

For each running app, you can view the following details:

Item Description

Name Name of the app.

Click the name of an app to get more details of the app. For example, in the
above screenshot, you can click HTTPService1 to get more details about the
service. The details of HTTPService1 are displayed on the Metrics page.

Version Version of the app.

Flogo
Version

The version in which the app was created.

Instances Number of instances registered per app.

Tags Tags of the app. These tags help you provide additional information about the
app. For example, you can specify whether it is a REST app or whether it is
running in Kubernetes, and so on.

From the Apps page, you can also:

l Click the heading in the list to sort the apps. For example, to sort the list by name,
click the heading Name. Click the same heading again to toggle between the
ascending or descending order of listing the apps.

l The Search control above the list enables you to find apps by name.

Metrics Page
The Metrics page displays the instrumentation statistics of flows and triggers.

TIBCO Flogo® Enterprise User Guide

332 | Monitoring

Select an instance ID from the instance ID list in the upper-left corner of the page. The
instrumentation statistics of flows and triggers are displayed on the Triggers tab and Flow
tab.

Triggers Tab

Select a trigger from the list on the left to see its details. You can also search for a trigger
in the list.

The following information is displayed on the right:

Name Description

Total Trigger Executions (count)

Started Total number of trigger instances started

Completed Total number of trigger instances completed

Faulted Total number of trigger instances failed

Handler Execution (count)

Handler Name of the trigger handler

TIBCO Flogo® Enterprise User Guide

333 | Monitoring

Name Description

Config Configuration of the trigger handler. For example:

method: POST
path: /arrayfilter

Started Total number of trigger handlers started

Completed Total number of trigger handlers completed

Faulted Total number of trigger handlers failed

Flow Tab

Select a flow from the list on the left to see its details. You can also search for a flow in the
list.

The following information is displayed in the work area on the right:

Name Description

Flow Instances (count)

TIBCO Flogo® Enterprise User Guide

334 | Monitoring

Name Description

Started Total number of flow instances started

Completed Total number of flow instances completed

Faulted Total number of flow instances failed

Flow Execution Time (in milliseconds)

Average Average execution time of the flow for
successful executions

Maximum Maximum execution time for the flow

Minimum Minimum execution time for the flow

Activity Execution (count)

Note: If an Activity is rerun, Activity Execution (count) also includes the rerun counts. You
can find out whether an Activity has been rerun through the difference in the trigger and
flow metric counts.

Activity Name Name of Activity

Started Total number of times a given Activity has
started

Completed Total number of times a given Activity has
been completed

Faulted Total number of times a given Activity has
failed

Activity Execution Time (in milliseconds)

Activity Name Name of Activity

TIBCO Flogo® Enterprise User Guide

335 | Monitoring

Name Description

Average Average execution time of a given Activity for
successful executions

Maximum Maximum execution time for a given Activity

Minimum Minimum execution time for a given Activity

Executions Page
The Executions page displays information about the state of all run flows of a Flogo app.
Details of a trigger are not captured.

From this page, you can:

l Persist execution data: Select Persist Execution Data to persist execution data to
the supported database (currently, PostgreSQL).

TIBCO Flogo® Enterprise User Guide

336 | Monitoring

Note: If Persist execution data is disabled, any new execution data is not
saved to the database. The Rerun flow from this Activity feature is also
disabled for all flow executions.

l Filter based on app version: You can use the filer to choose the app version for
which the data must be displayed.

l Filter based on time frame: Use the All drop-down to filter based on time frame.
For example: in the last 1 hour, last week, last 30 days, and so on.

l Filter based on flow: If you have multiple flows, use the All Flows drop-down to
filter based on flows.

l Filter based on status: Use the All Statuses drop-down to filter based on the status
of the flow.

l Refresh data: Use to refresh the data in the table.

l View execution data: The following data is displayed in a tabular format.

Name Description

Status Status

Flow Name Name of the flow.

Execution ID Instance ID of the flow.

App Instance ID Instance ID of the app.

Duration (ms) Duration for which the flow was running.

Start Time (UTC) Time when the flow was started, based on Coordinated
Universal Time (UTC).

End Time (UTC) Time when the flow ended, based on Coordinated Universal
Time (UTC).

l View details of a flow: For each flow, you can view its details by clicking View
Details. A list of activities executed is displayed:

TIBCO Flogo® Enterprise User Guide

337 | Monitoring

l Rerun the flow from a specific Activity: You can rerun the flow from a specific
Activity. You cannot modify the input data; you can only rerun the Activity.

Note: If you rerun an Activity, the previous execution record for the
Activity is overwritten in the database. Past execution records of the
Activity that was rerun and all subsequent activities in the flow are
deleted.

Important: Exercise caution while re-running a flow attached to the App
Startup Trigger and App Shutdown Trigger. These triggers, typically,
include logic for creating data or cleaning up data. Such flows might
impact the running instances of the app.

To rerun the flow from a specific Activity:

1. On the View Details page, click the expand icon and then click Input & Output
Data.

The input and output for the selected Activity are displayed.

TIBCO Flogo® Enterprise User Guide

338 | Monitoring

2. Click Rerun flow from this Activity.

Note:
o Rerun flow from this Activity disappears for activities that

are a part of subflows. Rerun flow from this Activity also
disappears if Persist Execution Data is disabled.

o If the version of the app running instance is not same as that
of the selected version, you cannot rerun the activities.

After the rerun of the activity, the rerun is indicated by . The Executions

page is also updated with the latest data. Click to refresh the changes on

the Executions page.

App Metrics
For REST APIs, the following methods can be used to enable and disable app metrics at
runtime.

TIBCO Flogo® Enterprise User Guide

339 | Monitoring

Method Description Status Code

POST /app/metrics Enable instrumentation
metrics collection

200 - If successfully enabled

409 - If the metrics collection is
already enabled

DELETE /app/metrics Disable metrics collection 200 - If successfully disabled

404 - If metrics collection is not
enabled

GET /app/metrics/flows Retrieve metrics for all flows 200 - Successfully returned
metrics data

404 - If the metrics collection is
not enabled

500 - If there is an issue when
returning metrics data

GET
/app/metrics/flow/
<flowname>

Retrieve metrics for a given
flow

200 - Successfully returned
metrics data

400 - If the flow name is
incorrect

404 - If the metrics collection is
not enabled

500 - If there is an issue
returning metrics data

GET
/app/metrics/flow/
<flowname>/activities

Retrieve metrics for all
activities in a given flow

200 - Successfully returned
metrics data

400 - If the flow name is
incorrect

404 - If the metrics collection is
not enabled

500 - If there is an issue
returning the metrics data

TIBCO Flogo® Enterprise User Guide

340 | Monitoring

Enabling App Metrics
Set the FLOGO_HTTP_SERVICE_PORT environment variable to point to the port number of the
HTTP service that provides APIs for collecting app metrics. This enables the runtime HTTP
service.

Procedure
1. Run the following:

FLOGO_HTTP_SERVICE_PORT=<port> ./<app-binary>

2. Run the curl command for the appropriate REST method. Refer to App Statistics for
details on each method. Some examples are:

curl -X POST http://localhost:7777/app/metrics
curl -X GET http://localhost:7777/app/metrics/flows
curl -X DELETE http://localhost:7777/app/metrics

Enabling statistics collection using environment
variables
To enable metrics collection through an environment variable:

Procedure
1. Run the following:

FLOGO_HTTP_SERVICE_PORT=<port> FLOGO_APP_METRICS=true ./<appname>

2. Run the curl command for the appropriate REST method. Refer to App Statistics for
details on each method. Some examples are:

curl -X GET http://localhost:7777/app/metrics/flows
curl -X DELETE http://localhost:7777/app/metrics/flows

TIBCO Flogo® Enterprise User Guide

341 | Monitoring

Example: retrieve specific metrics for an app
The following is an example of how you would run the above steps for a fictitious app
named REST_Echo.

FLOGO_HTTP_SERVICE_PORT=7777 FLOGO_APP_METRICS=true ./REST_Echo-darwin-
amd64

curl -X GET http://localhost:7777/app/metrics/flows

{"app_name":"REST_Echo","app_version":"1.0.0","flows":
[{"started":127639,"completed":126784,"failed":0,"avg_exec_time":0,
"min_exec_time":0,"max_exec_time":4,"flow_name":"PostBooks"}]}

curl -X GET http://localhost:7777/app/metrics/flow/PostBooks/activities
{"app_name":"REST_Echo","app_version":"1.0.0","tasks":
[{"started":127389,"completed":126908,"failed":0,"avg_exec_time":0,
"min_exec_time":0,"max_exec_time":4,"flow_name":"PostBooks","task_
name":"Return"}]}

Logging App Metrics
You can record app metrics of flows and activities to the console logs. To enable the
logging of app metrics, use the following environment variables:

Environment
Variable Name

Default
Values

Description

FLOGO_APP_
METRICS_LOG_
EMITTER_
ENABLE

False This property can be set to either True or False:

l True: App metrics are displayed in the logs with the
values set in FLOGO_APP_METRICS_LOG_EMMITTER_
CONFIG.

l False: App metrics are not displayed in the logs.

If this variable is not provided, the default values are used.

TIBCO Flogo® Enterprise User Guide

342 | Monitoring

Environment
Variable Name

Default
Values

Description

FLOGO_APP_
METRICS_LOG_
EMITTER_
CONFIG

Both flow
and
Activity

This property can be set to either flow level or Activity
level. The format for setting the property is:

{"interval":"<interval_in_seconds>","type":
["flow","Activity"]}

where:

l interval is the time interval (in seconds) after which
the app metrics are displayed in the console.

l type is the level at which the app metrics are to be
displayed - flow or Activity. Depending on which
level you set, the app metrics are displayed only for
that level.

For example:

{"interval":"1s","type":["flow","Activity"]}

For a list of fields or app metrics returned in the response, refer to Fields returned in the
response.

Fields returned in the response
The following table describes the fields that can be returned in the response.

Flow

Name Description

app_name Name of the app

app_version Version of the app

#GUID-0C7E835C-5166-41A8-A7EE-1058E6682070
#GUID-0C7E835C-5166-41A8-A7EE-1058E6682070

TIBCO Flogo® Enterprise User Guide

343 | Monitoring

Name Description

flow_name Name of the flow

started Total number of times a given flow is started

completed Total number of times a given flow is completed

failed Total number of times a given flow has failed

avg_exec_time Average execution time of a given flow for successful executions

min_exec_time Minimum execution time for a given flow

max_exec_time Maximum execution time for a given flow

Activity

Name Description

app_name Name of the app

app_version Version of the app

flow_name Name of the flow

Activity_name Name of the Activity

started Total number of times a given Activity is started

completed Total number of times a given Activity is completed

failed Total number of times a given Activity has failed

avg_exec_time Average execution time of a given Activity for successful executions

min_exec_time Minimum execution time for a given Activity

max_exec_time Maximum execution time for a given Activity

TIBCO Flogo® Enterprise User Guide

344 | Monitoring

Prometheus
Flogo apps support integration with Prometheus for app metrics monitoring. Prometheus is
a monitoring tool that helps in analyzing the app metrics for flows and activities.

Prometheus servers scrape data from the HTTP /metrics endpoint of the apps.

Prometheus integrates with Grafana, which provides better visual analytics.

Flogo apps expose the following flow and Activity metrics to Prometheus. These metrics
are measured in milliseconds:

Labels Description

flogo_flow_execution_count: Total number of times the flow is started, completed, or failed

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

State State of the flow. One of the following states:

l Started

l Completed

l Failed

flogo_flow_execution_duration_msec: Total time (in ms) taken by the flow for successful
completion or failure

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

State State of the flow. One of the following states:

l Completed

l Failed

TIBCO Flogo® Enterprise User Guide

345 | Monitoring

Labels Description

flogo_Activity_execution_count: Total number of times the Activity is started, completed, or
failed

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of Activity

State State of the Activity. One of the following
states:

l Started

l Completed

l Failed

flogo_Activity_execution_duration_msec: Total time (in ms) taken by the Activity for
successful completion or failure

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of Activity

State State of the Activity. One of the following
states:

l Completed

l Failed

Note: Deprecated in Flogo Enterprise 2.10.0.

TIBCO Flogo® Enterprise User Guide

346 | Monitoring

Labels Description

flogo_flow_metrics: Used for flow-level queries

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

Started Total number of times flow is started

Completed Total number of times flow is completed

Failed Total number of times flow is failed

Note: Deprecated in Flogo Enterprise 2.10.0.

flogo_Activity_metrics: Used for Activity-level queries

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of Activity

Started Total number of times Activity is started in
given flow

Completed Total number of times Activity is completed
in given flow

Failed Total number of times Activity is failed in
given flow

For a list of some often-used flow-level queries, refer to the section, Often-Used Queries.

TIBCO Flogo® Enterprise User Guide

347 | Monitoring

Using Prometheus to Analyze Flogo App Metrics
To enable Prometheus monitoring of Flogo apps, run the following:

FLOGO_HTTP_SERVICE_PORT=7779 FLOGO_APP_METRICS_PROMETHEUS=true ./<app-
binary>

Setting FLOGO_APP_METRICS_PROMETHEUS variable to true enables Prometheus monitoring
of Flogo apps. The variable, FLOGO_HTTP_SERVICE_PORT is used to set the port number on
which the Prometheus endpoint is available.

Use the following endpoint URL in Prometheus server configuration:

http://<APP_HOST_IP>:<FLOGO_HTTP_SERVICE_PORT>/metrics

For example:

http:// 192.0.2.0:7779/metrics

Often-Used Queries
Prometheus uses the PromQL query language. This section lists some of the most often-
used queries at the flow level.

To Get this Metric Use this Query

Total number of flows that got successfully
executed per app

count(flogo_flow_execution_count
{State="Completed"}) by (AppName,
FlowName)

Total number of flows that failed per app count(flogo_flow_execution_count
{State="Failed"}) by (AppName,
FlowName)

Total number of flows that executed
successfully across all apps

(when you are collecting metrics for multiple

count(flogo_flow_execution_count
{State="Completed"})

Flow-level Queries

TIBCO Flogo® Enterprise User Guide

348 | Monitoring

To Get this Metric Use this Query

apps)

Total number of flows that failed across all
apps

(when you are collecting metrics for multiple
apps)

count(flogo_flow_execution_count
{State="Failed"})

Total time taken by flows which got executed
successfully

sum(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName)

Total time taken by flows which failed sum(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName)

Minimum time taken by the flows that got
executed successfully

(what was the minimum time taken by a flow
from amongst the flows that executed
successfully)

min(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName)

Minimum time taken by flows which failed min(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName)

Maximum time taken by flows which executed
successfully

min(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName)

Maximum time taken by flows which failed max(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName)

Average time taken by flows which executed
successfully

avg(flogo_flow_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName)

Average time taken by flows which failed avg(flogo_flow_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName)

TIBCO Flogo® Enterprise User Guide

349 | Monitoring

To Get this Metric Use this Query

Total number of activities that got
successfully executed per flow and app

count(flogo_Activity_execution_count
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Total number of activities that failed per
flow and app

count(flogo_Activity_execution_count
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Total number of activities that executed
successfully across all apps

(when you are collecting metrics for
multiple apps)

count(flogo_Activity_execution_count
{State="Completed"})

Total number of activities that failed
across all apps

(when you are collecting metrics for
multiple apps)

count(flogo_Activity_execution_count
{State="Failed"})

Individual time taken by activities which
got executed successfully per app and
flow

sum(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Individual time taken by activities which
failed per app and flow

sum(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Minimum time taken by the Activity that
got executed successfully within a given
flow and app

min(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Minimum time taken by a failed Activity
within a given flow and app

min(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Maximum time taken by an Activity
which executed successfully within a
given flow and app

max(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Activity-level Queries

TIBCO Flogo® Enterprise User Guide

350 | Monitoring

To Get this Metric Use this Query

Maximum time taken by an Activity
which failed within a given flow and app

max(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

Average time taken by an Activity which
executed successfully within a given flow
and app

avg(flogo_Activity_execution_duration_msec
{State="Completed"}) by (AppName,
FlowName,ActivityName)

Average time taken by an Activity which
failed within a given flow and app

avg(flogo_Activity_execution_duration_msec
{State="Failed"}) by (AppName,
FlowName,ActivityName)

OpenTelemetry Collector
Flogo supports integration with OpenTelemetry (OT) Collector. The goal of this collector is
to create standard software development kit for tracing, metrics and logging which
different vendors like Jaeger, Zipkin, Datadog, Prometheus adopt. You have the flexibility
to switch vendors without changing the application logic with OpenTelemetry.

Note: To use this feature for TIBCO Cloud Integration deployments, ensure that
the OpenTelemetry Collector is reachable from app containers.

Architecture

This is the schematic view of how the OT collector works:

TIBCO Flogo® Enterprise User Guide

351 | Monitoring

Note: You can use the same architecture for Distributed tracing as well. For
more information, see Tracing Apps by Using OpenTelemetry Collector.

Configuration

The parameters listed below are required for the configuration of the OT collector:

Name Required Default Description

FLOGO_
OTEL_
METRICS

Yes False Enable OpenTelemetry metrics for Flogo app

FLOGO_
OTEL_
METRICS_
ATTRIBUTES

No None Add one or more custom attributes to the metrics.
For example, FLOGO_OTEL_METRICS_
ATTRIBUTES="deployment_type=flogo"

FLOGO_
OTEL_OTLP_
ENDPOINT

Yes None OpenTelemetry protocol (OTLP) receiver endpoint
configured for OpenTelemetry Collector.
For gRPC protocol, set <host>:<otlp_grpc_port>
For http protocol, set https://<host>:<otlp_http_
port>

TIBCO Flogo® Enterprise User Guide

352 | Monitoring

Name Required Default Description

FLOGO_
OTEL_OTLP_
HEADERS

No None Set one or more custom gRPC/HTTP headers in the
request to the collector.
For example, FLOGO_OTEL_OTLP_
HEADERS="Authorization=Bearer <token>,API_
KEY=<api_key_value>".

FLOGO_
OTEL_TLS_
SERVER_
CERT

No None Set PEM encoded Server/CA certificate when TLS is
enabled for OTLP receiver. You can configure a path
to the certificate or use base64 encoded certificate
value. A file path must be prefixed with "file://".
e.g. FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/opentelemetry/certs/cert.
pem" or FLOGO_OTEL_TLS_SERVER_CERT=<base64_
encoded_server_certificate>.
When this certificate is not set, unsecure connection
is established with the collector.

Monitor Flogo apps metrics using OpenTelemetry

You can see the number of flows and activities executed in the app as per the below
metrics:

Metrics Label Description

flogo_activity_executions_
total

- Total number of times the activity is
started, completed, or failed.

app_name Name of application

app_version Version of application

flow_name Name of flow

activity_name Name of activity

state State of activity - Started, Completed or
Failed

TIBCO Flogo® Enterprise User Guide

353 | Monitoring

Metrics Label Description

host_name Name of the host or app instance ID

flogo_flow_executions_
total

- Total number of times the flow is
started, completed or failed

app_name Name of application

app_version Version of application

flow_name Name of flow

state State of flow - Started, Completed or
Failed

host_name Name of the host or app instance ID

Example
Prometheus

FLOGO_OTEL_METRICS=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" FLOGO_OTEL_
METRICS_ATTRIBUTES="deployment=local,product=flogo" ./<app-executable>

Distributed Tracing
Distributed tracing allows you to log information about an app's behavior during its
execution. It shows the path an app takes from start to finish. You can then use the
information to troubleshoot performance bottlenecks, errors, and debugging failures in the
app execution.

As the app travels through different services, each segment is recorded as a span. A span is
a building block of a trace and represents work done with time intervals and associated
metadata. All the spans of an app are combined into a single trace to give you a picture of
an entire request. A trace represents an end-to-end execution; made up of single or
multiple spans. A Tracer is the actual implementation that records the spans and publishes
them.

TIBCO Flogo® Enterprise User Guide

354 | Monitoring

Distributed tracing is used to help you identify issues with your app (performance of the
app or simply debugging an issue) instead of going through stack traces. The use of
distributed tracing is particularly useful in a distributed microservice architecture
environment where each app is instrumented by a tracing framework and while the tracing
framework runs in the background, you can monitor each trace in the UI. You can use that
to track any abnormalities or issues to identify the location of the problem.

Some Considerations

Keep the following in mind when using the distributed tracing capability in Flogo
Enterprise:

l At any given point in time, only one tracer can be registered - if you try to register
multiple tracers, only the first one that you register is accepted and used at run time
to trace all the activities of the flow.

l All the traces start at the flow level. There are two relations between spans - a span
is either the child of a parent span or the span is a span that follows (comes after)
another span. You should be able to see all the operations and the traces for the
flows and activities that are part of an app. Traces of the triggers used in the app are
not shown.

l Tracing can be done across apps bypassing the tracing context from one app to
another. To trace across multiple apps, you must make sure that all apps are
instrumented with similar tracing frameworks, such as Jaeger semantics so that they
understand the framework language. Otherwise, you can't get a holistic following of
the entire trace through multiple services.

l When looping is enabled for an Activity, each loop is considered one span, since each
loop calls the server which triggers a server flow.

l If a span is passed on to the trigger, that span becomes the parent span. You should
be able to see how much time is taken between the time the event is received by the
trigger and the time the trigger replies. This only works for triggers that support the
extraction of the context from the underlying technology, for instance, triggers those
support HTTP headers.

The ReceiveHTTPMessage REST trigger and InvokeRESTService Activity are
supported for this release where the REST trigger can extract the context from the
request and InvokeRESTService Activity can inject the context into the request. If
two Flogo apps are both Jaeger-enabled, when one app calls the other, you can see
the chain of events (invocation and how much time is taken by each invocation) in

TIBCO Flogo® Enterprise User Guide

355 | Monitoring

the Jaeger UI. If app A is calling app B, the total request time taken by app A is the
cumulative of the time taken by all activities in app A plus the time taken by the
service that it calls. If you open up each invocation separately, you can see the
details of how much time was taken by each Activity in that invocation.

l Triggers that support span (for instance the REST trigger) are always the parent, so
any flows that are attached to that trigger are always the children of the trigger span.
Trigger span is completed only after the request goes to the flow and the flow
returns.

l A subflow becomes a child of the Activity from which it is called.

Tracing Apps Using Jaeger
Flogo apps provide an implementation of the OpenTracing framework using the Jaeger
backend. The Flogo app binary is built with Jaeger implementation and can be enabled by
setting the FLOGO_APP_MONITORING_OT_JAEGER environment variable to true. You can track
how the flow went through, the execution time for each Activity, or in case of failure, the
cause of the failure.

Each app is displayed as a service in the Jaeger UI. In a Flogo app, each flow is one
operation (trace) and each Activity in the flow is a span of the trace. A trace is the
complete lifecycle of a group of spans. The flow is the root span and its activities are its
child spans.

Prerequisites: The following prerequisites must be met before using the tracing capability
in Flogo Enterprise:

l By default, Jaeger is not enabled in Flogo, hence tracing is not enabled. To enable
Jaeger, set the FLOGO_APP_MONITORING_OT_JAEGER environment variable to true.

l Ensure that the Jaeger server is installed, running, and accessible to the Flogo app
binary.

l If your Jaeger server is running on a machine other than the machine on which your
app resides, be sure to set the JAEGER_ENDPOINT=http://<JAEGER_HOST>:<HTTP_
TRACE_COLLECTOR_PORT>/api/traces environment variables. Refer to the
https://github.com/jaegertracing/jaeger-client-go#environment-variables page for the
environment variables that you can set.

https://github.com/jaegertracing/jaeger-client-go#environment-variables

TIBCO Flogo® Enterprise User Guide

356 | Monitoring

Flogo Enterprise-Related Tags in Jaeger

In OpenTracing, each trace and span have their tags. Tags are useful for filtering traces, for
example, if you want to search for a specific trace or time interval.

Note: Adding your custom tags for any one span (Activity) only is currently not
supported. Any custom tags that you create are added to all spans and traces.

Flogo Enterprise introduces the following Flogo-specific tags:

For flows

flow_name Name of the flow

flow_id Unique instance IDs that are generated by the Flogo engine. They are
used to identify specific instances of a flow (such as when the same flow
is triggered multiple times)

For activities

flow_name Name of the flow

flow_id Unique instance IDs that are generated by the Flogo engine. They are
used to identify specific instances of a flow (such as when the same flow
is triggered multiple times)

task_name Name of Activity

taskInstance_id Unique instance ID that is generated by the Flogo engine. This identity is
used to identify the specific instance of an Activity when an Activity is
iterated multiple times. This ID is used in looping constructs such as
iterator or Repeat while true.

For subflows

parent_flow Name of the parent flow

TIBCO Flogo® Enterprise User Guide

357 | Monitoring

parent_flow_id Unique ID of the parent flow

flow_name Name of the subflow

flow_id Unique instance IDs that are generated by the Flogo engine. They are
used to identify specific instances of a flow (such as when the same flow
is triggered multiple times)

The tag values are automatically generated by the Flogo Enterprise runtime. You cannot
override the default values. You have the option to set custom tags by setting them in the
environment variable JAEGER_TAGS as key/value pair. Keep in mind that these tags are
added to all spans and traces.

Refer to the https://github.com/jaegertracing/jaeger-client-go#environment-variables page
for the environment variables that you can set.

Tracing Apps by Using AWS X-Ray
If you are running your Flogo app on the cloud or in your local environment, you can track
your app performance or troubleshoot issues by using AWS X-Ray. For more information
about AWS X-Ray, refer to https://docs.aws.amazon.com/xray/index.html.

When you use AWS X-Ray for tracing, your app sends trace data to AWS X-Ray. X-Ray
processes the data to generate a service map and searchable trace summaries. For each
flow, subflow, and Activity, details such as execution time are displayed on the AWS X-Ray
dashboard.

The following example shows the trace details of the InvokeRest_InvokeLambdaApp-
v1.0.0 app. It includes details such as activities that were invoked, and their execution
time and status.

https://github.com/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES
https://docs.aws.amazon.com/xray/index.html

TIBCO Flogo® Enterprise User Guide

358 | Monitoring

Before you begin
Make sure that you meet the following requirements:

l Knowledge of AWS X-Ray: For more information, refer to
https://docs.aws.amazon.com/xray/index.html.

l For an app containing a non-Lambda trigger:

o AWS X-Ray daemon: You must have an AWS X-Ray daemon running on your
machine to send trace data to the AWS X-Ray service. Alternatively, your app
must have access to another machine where the daemon is running. Download
the AWS X-Ray daemon from the AWS website and run the AWS X-Ray daemon.

o Environment variable: If the AWS X-Ray daemon and app are running on two
different machines, set the environment variable AWS_XRAY_DAEMON_ADDRESS to
the IP address where the AWS X-Ray daemon is running for receiving traces.
You need not set this variable if the daemon and app are running on the same
machine.

l For an app containing a Lambda trigger:

o To trace the app end-to-end, TIBCO recommends that you enable the Active
Tracing option in AWS along with the Flogo tracing feature. Active Tracing
provides all the details of the app while the Flogo tracing feature provides
details specific to the Flogo app. For example, details such as how long it took
to initialize the container, are provided by Active Tracing. Details specific to

https://docs.aws.amazon.com/xray/index.html

TIBCO Flogo® Enterprise User Guide

359 | Monitoring

the Flogo implementation (such as the flows, sub-flows, or activities executed)
are provided by the Flogo tracing feature.

o For an app containing a Lambda trigger, you need not run the AWS X-Ray
daemon. This is because AWS X-Ray is integrated with AWS Lambda.

o Add the following permissions to the execution role. For more information on
how to add the permissions, refer to the AWS Documentation.

n xray:PutTraceSegments

n xray:PutTelemetryRecords

Note: The AWS API Gateway Lambda and S3 Bucket Event Lambda
triggers are not supported.

Enabling Tracing Using AWS X-Ray
To enable tracing using AWS X-Ray, set the FLOGO_AWS_XRAY_ENABLE environment variable to
true. The default is false.

Search Using Annotations
You can search based on predefined Flogo annotations. The following annotation is
available in this release:

flogo_flow_name: Name of the flow

Here is an example of using annotations to search:

annotation.flogo_flow_name="sampleFlow"

Metadata
The following metadata about an app is stored in the flogo namespace:

l flow_name: Name of the flow

l Activity_name: Name of the Activity

https://docs.aws.amazon.com/xray/

TIBCO Flogo® Enterprise User Guide

360 | Monitoring

This metadata can be used when debugging. You can use the metadata to identify the
exact errors, stack traces, flow name, Activity name, and so on. Note that the metadata
cannot be used for searching traces.

Tracing Apps by Using OpenTelemetry Collector
By using OpenTelemetry Collector, you can capture traces from your Flogo app and send
them to observability vendor tools such as Jaeger, Zipkin, and Datadog. This gives you the
flexibility to switch between observability vendor tools without changing the logic of your
app. For more information about OpenTelemetry Collector, see OpenTelemetry
documentation.

When you use this feature, traces of the Flogo app are sent to the OpenTelemetry
Collector. OpenTelemetry Collector has vendor-specific configurations that allow you to
send these traces to supported observability vendor tools. For example, you can specify
Zipkin-specific configurations in the otel-zipkin-collector-config.yaml configuration
file for the traces to be displayed on the Zipkin dashboard.

The following screenshots show traces from one Flogo app on two different observability
vendor tools, Jaeger and Zipkin.

https://opentelemetry.io/
https://opentelemetry.io/

TIBCO Flogo® Enterprise User Guide

361 | Monitoring

Figure 1: Jaeger output of a Flogo app

Figure 2: Zipkin output of a Flogo app

Enabling Tracing for OpenTelemetry Collector

Before you begin
Make sure that you meet the following requirements:

TIBCO Flogo® Enterprise User Guide

362 | Monitoring

l Ensure that you can connect to the OpenTelemetry Collector.
Note:

o To use this feature for TIBCO Cloud Integration deployments, ensure that the
OpenTelemetry Collector is reachable from app containers.

o If the connection to OpenTelemetry Collector is lost, traces during that time
duration are not collected.

l Install an observability vendor tool of your choice: Jaeger, Zipkin, Datadog, and so
on.

Mandatory Configuration Parameters

To enable tracing by using OpenTelemetry Collector, set the following mandatory
parameters:

Name Default Description

FLOGO_OTEL_TRACE False Enables tracing by using
OpenTelemetry Collector.

FLOGO_OTEL_OTLP_ENDPOINT None Specifies the OpenTelemetry
protocol (OTLP) receiver endpoint for
OpenTelemetry Collector.

Supported protocols are:

l gRPC: Set to <host>:<otlp_
grpc_port>.

l HTTP: Set to
https://<host>:<otlp_http_
port>.

Optional Configuration Parameters

You can also use some optional configuration parameters when tracing apps using
OpenTelemetry Collector. Here are some commonly used parameters and their
descriptions:

TIBCO Flogo® Enterprise User Guide

363 | Monitoring

Name Default Description

FLOGO_
OTEL_
TRACE_
ATTRIBUTES

None Add one or more custom attributes to the trace. The format is key-
value pairs separated by commas. For example, to filter based on
the deployment type and deployment cluster, you can use:

FLOGO_OTEL_TRACE_
ATTRIBUTES="deployment.type=staging,deployment.cluster=sta
ging3"

FLOGO_
OTEL_OTLP_
HEADERS

None Set one or more custom gRPC or HTTP headers in the request to
the OpenTelemetry Collector. The format is key-value pairs
separated by commas. For example:

FLOGO_OTEL_OTLP_HEADERS="Authorization=Bearer <token>,API_
KEY=<api_key_value>"

FLOGO_
OTEL_TLS_
SERVER_
CERT

None If TLS is enabled for OpenTelemetry protocol receiver, set PEM-
encoded server or CA. You can configure a path to the certificate or
use base64-encoded certificate value. A file path must be prefixed
with "file://".

For example:

l FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/opentelemetry/certs/cert.pem"

l FLOGO_OTEL_TLS_SERVER_CERT=<base64_encoded_server_
certificate>

You can also encrypt base64 encoded certificate value by using
either TIBCO Cloud Integration platform API or by using app
executable and set it to the environment variable with prefix
"SECRET:"

For example:

l FLOGO_OTEL_TLS_SERVER_CERT=SECRET:<encrypted_base64_
encoded_cert_value>

For details about encryption, see Encryption using App executable
or Encryption using TIBCO Cloud Platform API

When this certificate is not set, an unsecure connection is
established with OpenTelemetry Collector.

https://integration.cloud.tibco.com/docs/#Subsystems/tci-api/utils/encrypt-values-fe.html?TocPath=TIBCO%2520Cloud%25E2%2584%25A2%2520Integration%2520API%257C_____11

TIBCO Flogo® Enterprise User Guide

364 | Monitoring

Tracing With OpenTelemetry Collector

Using OpenTelemetry Collector with Jaeger

The Jaeger Docker image includes OpenTelemetry Collector. So, you need not run
OpenTelemetry Collector separately.

docker run --name jaeger -p 13133:13133 -p 16686:16686 -p 4317:55680 -d
--restart=unless-stopped jaegertracing/opentelemetry-all-in-one

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317" FLOGO_
OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo" ./TimerOTel-
darwin_amd64

Using OpenTelemetry Collector with Zipkin

1. Start Zipkin as follows:

docker run -it --rm -p 9411:9411 -d --name zipkin openzipkin/zipkin

2. Update the OpenTelemetry Collector configuration file for Zipkin, otel-zipkin-
collector-config.yaml, as follows:

receivers:
otlp:
protocols:
http:

exporters:
zipkin:
Change IP
endpoint: "http://xxx.xxx.x.x:xxxx/api/v2/spans"
format: proto

processors:
batch:

service:

TIBCO Flogo® Enterprise User Guide

365 | Monitoring

pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [zipkin]

3. Start OpenTelemetry Collector with Zipkin Exporter as follows:

docker run -d --rm -p 4318:4318 -v "${PWD}/otel-zipkin-collector-
config.yaml":/otel-collector-config.yaml --name otelcol
otel/opentelemetry-collector:0.35.0 --config otel-collector-
config.yaml

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="https://localhost:4318"
FLOGO_OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo"
./TimerOTel-darwin_amd64

Using OpenTelemetry Collector with Zipkin (with TLS)

1. Update server-cert-gen.sh as follows:

openssl req -newkey rsa:2048 \
-new -nodes -x509 \
-days 3650 \
-out cert.pem \
-keyout key.pem \
-extensions san \
-config <(echo '[req]'; echo 'distinguished_name=req';
echo '[san]'; echo 'subjectAltName=DNS:localhost,DNS:127.0.0.1') \
-subj
"/C=US/ST=California/L=Sunnyvale/O=TIBCO/OU=Flogo/CN=localhost"

2. Start Zipkin.

docker run -it --rm -p 9411:9411 -d --name zipkin openzipkin/zipkin

3. Update the OpenTelemetry Collector configuration file for Zipkin, otel-zipkin-
collector-config.yaml, as follows:

TIBCO Flogo® Enterprise User Guide

366 | Monitoring

receivers:
otlp:
protocols:
grpc:
tls_settings:
cert_file: /var/certs/cert.pem
key_file: /var/certs/key.pem

exporters:
zipkin:
endpoint: "http://xxx.xxx.x.x:xxxx/api/v2/spans"
format: proto

processors:
batch:

service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [zipkin]

4. Create a certs directory under the current directory and copy cert.pem and key.pem
in the certs directory.

5. Start OpenTelemetry Collector with Zipkin Exporter as follows:

docker run -d --rm -p 4317:4317 -v "${PWD}/otel-zipkin-collector-
config.yaml":/otel-collector-config.yaml -v
"${PWD}/certs":/var/certs --name otelcol otel/opentelemetry-
collector:0.35.0 --config otel-collector-config.yaml

For example:

FLOGO_OTEL_TRACE=true FLOGO_OTEL_OTLP_ENDPOINT="localhost:4317"
FLOGO_OTEL_TLS_SERVER_
CERT="file:///Users/dev/Installations/OpenTelemetry/zipkin/certs/cert.pe
m"
FLOGO_OTEL_TRACE_ATTRIBUTES="deployment=local,product=flogo"
./TimerOTel-darwin_amd64

TIBCO Flogo® Enterprise User Guide

367 | Monitoring

Flogo Related Attributes in OpenTelemetry Collector
In OpenTelemetry, each trace has its own attributes. These attributes are useful for filtering
traces, for example, if you want to search for a specific trace or time interval.

Note:
l Adding your custom attributes for only one span (Activity) is currently not

supported. Any custom tags that you create are added to all traces

l The prefix 'flogo' is added to tags with product-specific attributes only.

The following attributes specific to Flogo are available:

For flows

flogo.event.id The event ID is the unique ID of a single request, job or a
action initiated by the user.

flogo.flow.id Unique instance IDs that are generated by the Flogo
engine. They are used to identify specific instances of a
flow (such as when the same flow is triggered multiple
times)

flogo.flow.name Name of the flow

For activities

flogo.flow.name Name of the flow

flogo.flow.id Unique instance IDs that are generated by the Flogo
engine. They are used to identify specific instances of a
flow (such as when the same flow is triggered multiple
times)

flogo.task.name Name of Activity

flogo.taskInstance.id Unique instance ID that is generated by the Flogo engine.
This identity is used to identify the specific instance of an
Activity when an Activity is iterated multiple times. This ID

TIBCO Flogo® Enterprise User Guide

368 | Monitoring

is used in looping constructs such as iterator or Repeat
while true.

For subflows

flogo.parent.flow Name of the parent flow

flogo.flogo.parent.flow.id Unique ID of the parent flow

flogo.flow.name Name of the subflow

flogo.flow.id Unique instance IDs that are generated by the Flogo
engine. They are used to identify specific instances of a
flow (such as when the same flow is triggered multiple
times)

The attribute values are automatically generated at runtime. You cannot override the
default values. You have the option to set attributes by setting them in the environment
variable FLOGO_OTEL_TRACE_ATTRIBUTES as key/value pair. Keep in mind that these tags are
added to all traces.

Using APIs
You can obtain the runtime statistics of the Go language in Flogo Enterprise.

Healthcheck API
Flogo Enterprise runtime allows you to enable healthcheck for a Flogo app that is running.

To enable healthcheck for your running app:

1. Set FLOGO_HTTP_SERVICE_PORT to enable runtime HTTP Service as follows:

FLOGO_HTTP_SERVICE_PORT=<port> ./<app_name>

2. Run the following command:

TIBCO Flogo® Enterprise User Guide

369 | Monitoring

curl http://localhost:<port>/ping

Note: Currently, healthcheck endpoint returns HTTP status 200 only when all
triggers in the app are successfully started. Otherwise, it returns HTTP status
500.

Go Language Runtime Statistics and Profiling
Flogo Enterprise allows you to gather runtime system statistics for a Flogo app that is
running.

Warning: Your management port must be set for the Flogo app, to call the API
to gather Go language runtime statistics. To set a different management port for
your Flogo app, run FLOGO_HTTP_SERVICE_PORT=<port>./<app-name>/You can
use curl to call this API.

To obtain the system statistics on your running app:

1. From the folder in which your app binary resides, enable the HTTP service using the
following command:

FLOGO_HTTP_SERVICE_PORT=<port> ./<app_name>

2. Run the following command:

curl http://localhost:<port>/debug/vars

The command returns the following statistics:

System Metric
Name

Description

cmdline Command-line arguments passed to the app binary

TIBCO Flogo® Enterprise User Guide

370 | Monitoring

System Metric
Name

Description

cpus Number of logical CPUs usable by the current process

goroutines The number of Go routines that currently exist

memstats Memory statistics for the current process. See the Golang
documentation for details.

processid System process ID

version Go language version used to build the app

Profiling your app runtime

You can collect and visualize runtime profiling data for Flogo apps using the pprof tool in
Golang.

Endpoint Description

/debug/pprof List all profiles

/debug/pprof/profile Profile current CPU usage. By default, it is profiled for every 30
seconds. To change the profiling interval, set the seconds query
parameter to a desired value. For example,

go tool pprof
http://localhost:
<port>/debug/pprof/profile?seconds=15

/debug/pprof/heap A sampling of memory allocations of live objects. For example,

go tool pprof
http://localhost:<port>/debug/pprof/heap

/debug/pprof/goroutine Stack traces of all current Go routines. For example,

TIBCO Flogo® Enterprise User Guide

371 | Monitoring

Endpoint Description

go tool pprof
http://localhost:<port>/debug/pprof/goroutine

/debug/pprof/trace A trace of execution of the current program. For example,

go tool pprof
http://localhost:<port>/debug/pprof/trace

CPU and Memory Profiling
If you observe low throughputs or high memory usage, you can enable CPU and/or Memory
profiling for your Flogo app. Enabling this profiling impacts performance. Hence, we do not
recommend enabling them in a production environment.

Before you begin
l You must have GO version 1.9.0 or higher installed.

l Make sure that the pprof tool is installed on your machine. Refer to
https://github.com/google/pprof for more details on the pprof tool.

Enabling CPU Profiling

To enable CPU profiling:

1. Open a command prompt or terminal.

2. Change the directory to the folder in which your app binary is located.

3. Run the following command:

./<app_binary> -cpuprofile <file>

where <file> is the profile file. For example, ./StockService -cpuprofile
/home/users/StockService_cpu.prof

https://github.com/google/pprof

TIBCO Flogo® Enterprise User Guide

372 | Monitoring

Enabling Memory Profiling

To enable memory profiling:

1. Open a command prompt or terminal.

2. Change the directory to the folder in which your app binary is located.

3. Run the following command:

./<app_binary> -memprofile <file>

where <file> is the profile file. For example, ./StockService -memprofile
/home/users/StockService_mem.prof

Enabling CPU and Memory Profiling in a Single Command

To enable CPU and memory profiling in a single command:

1. Open a command prompt or terminal.

2. Change the directory to the folder in which your app binary is located.

3. Run the following command:

./<app_binary> -memprofile <file> -cpuprofile <file>

Analyzing your profiling data

Once you capture the profiling data, analyze it using pprof by running the following
command:

go tool pprof <profile file>

Monitoring and Managing Enterprise Apps in
TIBCO Cloud Integration
With the TIBCO Cloud Integration - Hybrid Agent, you can now monitor Remote apps and
perform various operations through the TIBCO Cloud Integration user interface, such as

TIBCO Flogo® Enterprise User Guide

373 | Monitoring

scaling the app instances, updating application and engine variables, starting or stopping
an app, and monitoring app metrics. Remote apps are auto-discovered by the Hybrid
Agent.

For detailed information, see . Configuring Remote Apps.

https://integration.cloud.tibco.com/docs/#Subsystems/flogo/flogo-all/remote-app-mgmt.html?TocPath=TIBCO%2520Flogo%25C2%25AE%2520Apps%257CDeployment%2520and%2520Configuration%257CMonitoring%257C_____8

TIBCO Flogo® Enterprise User Guide

374 | Best Practices

Best Practices
TIBCO recommends some best practices stated below for the efficient development of
Flogo apps.

Development

Flow Design

l Re-use with subflows

If you are executing the same set of activities within multiple flows of the Flogo app,
you should put them in a subflow instead of adding the same logic in multiple flows
again and again. For example, error handling and common logging logic.

Sub-flows can be called from other flows, thus enabling the logic to be reused. A
subflow does not have a trigger associated with it. It always gets triggered from
another flow within the same app.

l Terminate the flow execution using a Return Activity

Add a Return Activity at the end of the flow, when you want to terminate the flow
execution and the flow has some output that needs to be returned to either the
trigger (in the case of REST flows) or the parent flow (in the case of a branch flow).
An Error Handler flow must also have a Return Activity at the end.

l Copying a flow or an Activity

In scenarios where you want to create a flow or an Activity that is very similar to an
existing flow in your app, you can do so by duplicating the existing flow, then making
your minimal changes to the flow duplicate. You need not create a new flow. For
details on how to duplicate a flow, see Duplicating a Flow. You can also copy
activities. For details on how to copy an Activity, see Duplicating an Activity.

l Use of ConfigureHTTPResponse Activity

If you define a response code in your REST trigger, ReceiveHTTPMessage, configure
the return value for the response code in the ConfigureHTTPResponse Activity.

The Return Activity is a generic Activity to return data to a trigger. However, when
developing a REST/HTTP API, you may need to use different schema for different

TIBCO Flogo® Enterprise User Guide

375 | Best Practices

HTTP response codes. You can configure the ReceiveHTTPMessage trigger to use
different schema for different response codes by either using the Swagger 2.0 or
OpenAPI 3.0 specification or manually adding them to the trigger configuration.

In such a scenario, you should add the ConfigureHTTPResponse Activity in the flow
before the Return Activity, to construct the response data for a specific response
code. ConfigureHTTPResponse Activity allows you to select a response code,
generate the input based on the schema defined on the trigger for that code, and
map data from the upstream activities to the input.

You can then map the output of the ConfigureHTTPResponse Activity to the Return
Activity to return the data and response code.

When you call a REST API from a Flow using the InvokeRESTService Activity, you can
enable the 'Configure Response Codes' option to handle the response codes returned
by the API. You can add specific codes, for example, 200, 404, and define a schema
for each of them using this option. You can also define the status code range in a
format such as 2xx if the same schema is being used for all codes in that range.

l Reserved keywords

Flogo Enterprise uses some words as keywords or reserved names. Do not use these
words in your schema. For a complete list of the keywords to be avoided, see the
section, Reserved Keywords to be Avoided in Schemas.

Mapper

l Synchronizing schema

If you make any changes to the trigger configuration after the trigger was created,
you must click Sync for the schema changes to be propagated to the flow
parameters. Refer to the section, Synchronizing Schema Between Trigger and Flow
for more details.

l Using Expressions and Functions

Within any one flow, use the mapper to pass data between the activities, between
the trigger and the activities, or the trigger and the flow. When mapping, you can use
data from the following sources:

o Literal values - Literal values can be strings or numeric values. These values can
either be manually typed in or mapped to a value from the output of the
trigger or a preceding Activity in the same flow. To specify a string, enclose the
string in double-quotes. To specify a number, type the number into the text

TIBCO Flogo® Enterprise User Guide

376 | Best Practices

box for the field. Constants and literal values can also be used as input to
functions and expressions.

o Direct mapping of an input element to an element of the same type in the
Upstream Output.

o Mapping using functions - The mapper provides commonly used functions that
you can use in conjunction with the data to be mapped. The functions are
categorized into groups. Click a function to use its output in your input data.
When you use a function, placeholders are displayed for the function
parameters. You click a placeholder parameter within the function, then click
an element from the Upstream Output to replace the placeholder. Functions
are grouped into logical categories. Refer to the Using Functions section for
more details

o Expressions - You can enter an expression whose evaluated value is mapped to
the input field. Refer to the section, Using Expressions for more details.

l Complex data mappings

o Using the array.forEach() mapper function, you can map complex nested
arrays, filter elements of an array based on a condition and map array elements
to non-array elements or elements of another array with a different structure.
See the following sections for details:

n Mapping complex arrays - Using the array.forEach() Function

n Mapping Array Child Elements to Non-Array Elements or to an Element in
a Non-Matching Array

n Filtering Array Elements to Map Based on a Condition

n Mapping an Identical Array of Objects

o You can extract a particular element from a complex JSON object. The
json.path() function takes JSONPath expression as an argument. JSONPath is
an XPATH like query language for querying an element from JSON data. Refer
to Using the json.path() function for more details.

Branches

l Branch conditions

You can design conditional flows by creating one or more branches from an Activity

TIBCO Flogo® Enterprise User Guide

377 | Best Practices

and defining the branch types as well as the conditions for executing these branches.
Refer to the Creating a Flow Execution Branch section for details on how to create
branches, the type of branches you can create, and the order in which the branches
get executed in a flow.

Error handling

Errors can be handled at the Activity level or at the flow level. To catch errors at the
Activity level, use an error branch. In this case, the flow control transfers to the main
branch when there is an error during Activity execution. Refer to the section, Catching
Errors for more details on error handling. To catch errors at the flow level (when you want
to catch all errors during the flow execution regardless of the activities from which the
errors are thrown), use the Error Handler at the bottom left on the flow page to create an
error flow. Since this flow must have a Return Activity at the end, the flow execution gets
terminated after the Error Handler flow executes. The control never goes back to the main
flow. Refer to the section, Catching Errors, for more details.

To handle network faults, Flogo Enterprise provides the ability to configure the Timeout
and Retry on Error settings for some specific activities such as InvokeRESTService and
TCMMessagePublisher. Refer to the "General Category Triggers and Activities" section of
the TIBCO Flogo® Enterprise Activities, Triggers, and Connections Guide for details on each
General category Activity and trigger.

Deployment and Configuration

Memory considerations

When Flogo apps are deployed in TIBCO Cloud™ Integration, keep in mind that a maximum
1GB of memory is allocated to each app instance. If the Flogo app flow execution is
memory heavy, the container is aborted due to lack of required memory and the following
error message is displayed:

502 Bad Gateway Error

Using environment variables

When deploying a Flogo app, you can override the values of the app properties using
environment variables. For details on using environment variables, see the section on
Environment Variables.

Externalize configuration using app properties

TIBCO Flogo® Enterprise User Guide

378 | Best Practices

When developing Cloud-Native microservices, we recommend that you separate the
configuration from the app logic. You should avoid hard-coding values for configuration
parameters in the Flogo app and use the app properties instead.

The use of app properties allows you to externalize the app configuration. Externalizing the
configuration in turn allows you to change the value for any property without having to
update the app. This is particularly useful when testing your app with different
configurations and automating deployments across multiple environments as part of the
CI/CD strategy configurations and automating deployments across multiple environments
as part of the CI/CD strategy. For details on using app properties, see the section, App
Properties.

Generating and using SSL certificates

When generating an SSL certificate, it is recommended that you use Public DNS as a
Common Name. Also, when using an SSL certificate, use Public DNS instead of IP address.

Building Engine binary

For multiple apps that have a common set of functionality, you can build a generic Flogo
Enterprise binary instead of building a separate binary for each app.

TIBCO Flogo® Enterprise User Guide

379 | Performance Tuning

Performance Tuning
This section provides guidelines that can be used to understand your performance
objectives and fine-tune the app environment to optimize performance.

The performance of an app affects stability, scalability, throughput, latency, and resource
utilization. For optimal performance of the app, it is important to understand the various
levels at which the tuning methods and best practices can be applied to the components.
This section includes the different tuning parameters, steps required to configure the
parameters, and design techniques for better performance.

This section must be used along with other product documentation and project-specific
information to achieve the desired performance results. The goal is to assist in tuning and
optimizing the runtime for the most common scenarios. At the same time, one must focus
on real-life scenarios to understand the issue and the associated solution.

Note: The performance tuning and configurations in this section are provided
for reference only. They can be reproduced only in the exact environment and
under workload conditions that existed when the tests were done. The numbers
in the document are based on the tests conducted in the performance lab and
may vary according to the components installed, the workload, the type and
complexity of different scenarios, hardware, and software configuration, and so
on. The performance tuning and configurations should be used only as a
guideline, after validating the customer requirements and environment. TIBCO
does not guarantee its accuracy.

Tuning Environment Variables
This section lists the environment variables associated with the TIBCO Flogo environment.
Details such as the default value of environmental variables and how we can change them
are also included.

TIBCO Flogo® Enterprise User Guide

380 | Performance Tuning

FLOGO_RUNNER_TYPE
This variable defines how events are handled by the Flogo engine.

l Supported values: DIRECT and POOLED.

l Default: POOLED

POOLED Mode
In this mode, the engine handles events in a flow-controlled way.

The following pictorial diagram explains the handling of events in POOLED mode.

Figure 3: Events in POOLED mode

Sets of workers are created to handle events received by all the triggers in the given Flogo
app. In golang terms, one worker corresponds to one go-routine. The events received are
added to the worker queue before the workers can pick these events from the worker
queue.

Once an event is picked from the queue, the corresponding action (for example, flow) is
triggered and the worker continues to execute that action until completion (that is, until
the action is successful or fails). An event that is picked up from the queue is removed to
allow the next event to be added to the queue.

When the queue is full, all trigger handlers that are adding new events to the queue are
blocked until workers pick up the next set of events from the queue. Once the worker
starts executing the action, it never interleaves the action until its completion. So, the total
number of events processed at a time is directly proportional to the time taken by the
action to complete and the number of workers in the pool. Hence, for better concurrency,

TIBCO Flogo® Enterprise User Guide

381 | Performance Tuning

gradually increase the value of queues and workers based on the available compute
resources (such as CPU and memory).

Configurations in POOLED mode:

You can configure the workers and the queue size by setting FLOGO_RUNNER_WORKERS
and FLOGO_RUNNER_QUEUE respectively.

l FLOGO_RUNNER_WORKERS variable determines the maximum number of concurrent
events that can be executed by the app engine from the queue. FLOGO_RUNNER_
WORKERS execute a finite number of tasks or concurrent events uninterrupted and
then yield to the next ready job. FLOGO_RUNNER_WORKERS can be tuned to the
optimum value by starting with a default value set and increasing it as per
requirement until the maximum CPU is reached.

The default value is FLOGO_RUNNER_WORKERS=5.

l FLOGO_RUNNER_QUEUE variable specifies the maximum number of events from all
triggers that can be queued by the app engine. FLOGO_RUNNER_QUEUE can be
tuned to the optimum value by starting with a default value set and increasing it as
per requirement. You can change the variable value if you anticipate having more
than default value events queued at the same time.

The default value is FLOGO_RUNNER_QUEUE=50.

The CPU and memory resources must be measured under a typical processing load to
determine if the default variable value is suitable for the environment. If the user load is
more than the default set value, the user can change the runner worker variable as per the
requirement to expedite the execution of the concurrent events. Set variable values
according to your processing volumes, number of CPUs, and allocated memory.

Deploying the app to your environment
Set the variable value as follows:

FLOGO_RUNNER_WORKERS=75 FLOGO_RUNNER_QUEUE =150 ./<app_binary>

docker run -it -e FLOGO_RUNNER_WORKERS=75 -e FLOGO_RUNNER_QUEUE=150
<docker-image>

TIBCO Flogo® Enterprise User Guide

382 | Performance Tuning

Case Study
While setting up the FLOGO_RUNNER_TYPE as POOLED, Flogo runner workers and Flogo
runner queues are used to handling events received by the trigger. You can increase the
Flogo runner worker and queue values gradually to reach the app performance. Set
variable values according to your processing volumes concerning your number of CPUs and
allocated memory.

It is recommended that you set the queue size greater than or equal to the number
of workers.

TIBCO Flogo® Enterprise User Guide

383 | Performance Tuning

DIRECT Mode
In this mode, every event delivered by the handler triggers a corresponding action. Unlike
the POOLED mode, the handling of events is unbounded. All the events are processed
concurrently. This might lead to CPU saturation or out-of-memory errors.

The following pictorial diagram explains the handling of events in DIRECT mode.

TIBCO Flogo® Enterprise User Guide

384 | Performance Tuning

Deploying the app to your environment
Set the variable value as follows:

FLOGO_RUNNER_TYPE=DIRECT ./<app_binary>

docker run -it -e FLOGO_RUNNER_TYPE=DIRECT <docker-image>

Case Study
This case study illustrates the app performance when Flogo event handling mode is set to
DIRECT.

Figure 4: App under test - FLOGO_RUNNER_TYPE

While setting up the FLOGO_RUNNER_TYPE as DIRECT, all the events sent to the trigger are
processed concurrently. As you keep on increasing the concurrency, you can observe the
linear increase in resources, that is, CPU and memory utilization.

TIBCO Flogo® Enterprise User Guide

385 | Performance Tuning

Figure 5: Flogo Engine - Direct Mode

FLOGO_LOG_LEVEL
This environment variable is used to set a log level for an app.

l Supported values: INFO, DEBUG, WARN, and ERROR.

l Default: INFO

You can increase or decrease the logging of the app using this environment variable. To
increase the logging of the app to debug, change FLOGO_LOG_LEVEL to DEBUG. To skip
detailed logging and to just log an error, set FLOGO_LOG_LEVEL to ERROR. Changes to the
log level are reflected after restarting the Flogo app in your environment and by pushing
the Flogo app again to the cloud environment.

Deploying the app to your environment

Set the variable value as follows:

FLOGO_LOG_LEVEL=ERROR ./<app_binary>

docker run -it -e FLOGO_LOG_LEVEL=ERROR <docker-image>

TIBCO Flogo® Enterprise User Guide

386 | Performance Tuning

Figure 6: Log level - ERROR

Figure 7: Log level - INFO

Figure 8: Log level - DEBUG

TIBCO Flogo® Enterprise User Guide

387 | Performance Tuning

Case Study
This use case illustrates the app logging impact on the performance of the app.

Figure 9: App under test - for FLOGO-LOG-LEVEL

Performance lab results have shown that the performance of the app depends on the app
log level that is set, request payload, and app latency. Set the log level to DEBUG
functional issues and to ERROR for performance scenarios because setting the logging to
DEBUG might impact the performance of the app.

Maximum throughput was achieved with a Log Level set as ERROR.

GOGC
The GOGC variable sets the initial garbage collection target percentage. A collection is
triggered when the ratio of freshly allocated data to live data remaining after the previous
collection reaches this percentage.

Garbage collection refers to the process of managing heap memory allocation: free the
memory allocations that are no longer in use and keep the memory allocations that are
being used. Garbage collection significantly affects the performance of your app.

Deploying the app to your environment

Set the variable value as follows:

GOGC=150 ./<app_binary>

docker run -it -e GOGC=150 <docker-image>

The default is 100. This means that garbage collection is not triggered until the heap has
grown by 100% since the previous collection. Setting the variable to a higher value (for

TIBCO Flogo® Enterprise User Guide

388 | Performance Tuning

example, GOGC=200) delays the start of a garbage collection cycle until the live heap has
grown to 200% of the previous size. Setting the variable to a lower value (for
example, GOGC=20) increases the frequency of garbage collection as less new data can be
allocated on the heap before triggering a collection.

Case Study
This use case illustrates the impact of the GOGC variable on performance.

Figure 10: App under test - GOGC

In this low latency scenario, you can observe significant improvement in-app performance
while increasing the GOGC variable value from 100 to 1600. It is advisable to test this value
for the specific scenario and understand its impact before tuning. You can get the best-
suited value by running the performance test in your test environment.

GOGC value can be tuned based on the workload and available resources after
validating your test environment.

TIBCO Flogo® Enterprise User Guide

389 | Performance Tuning

Figure 11: Performance comparison with different GOGC values

CPU and Memory Monitoring

Top Command

Note: The top command works on Linux platforms only.

The top command is used for memory and CPU monitoring.

The top command produces an ordered list of running processes selected by user-specified
criteria. The list is updated periodically. By default, ordering is by CPU usage and it shows
the processes that consume maximum CPU. The top command also shows how much
processing power and memory are being used, as well as the other information about the
running processes.

The top command output monitors the memory as well as the CPU utilization of the TIBCO
Flogo app binary.

The sample output is as follows:

TIBCO Flogo® Enterprise User Guide

390 | Performance Tuning

Docker Stats Command
The docker stats command returns a live data stream for running containers. To limit
data to one or more specific containers, specify a list of container names or ids separated
by a space.

The docker stats command output monitors the memory as well as the CPU utilization of
the TIBCO Flogo Enterprise app container and TCI Flogo app container.

l CPU % is the percentage of the host’s CPU the container is using.

l MEM USAGE / LIMIT is the total memory the container is using and the total amount
of memory, it is allowed to use.

Runtime Statistics and Profiling
The Go language provides CPU and memory profiling capabilities. With the profiling tools
provided by Go, one can identify and correct the specific bottlenecks. You can make your
app run faster and with less memory.

The pprof package writes runtime profiling data in the format expected by the pprof
visualization tool. There are many commands available from the pprof command line.
Commonly used commands include top.

For details about profiling, see the “Go Language Runtime Statistics and Profiling” section
of TIBCO Flogo® Enterprise User Guide.

TIBCO Flogo® Enterprise User Guide

391 | Samples

Samples
When creating apps in TIBCO Flogo® Enterprise, you can import and customize any of the
predefined samples provided in the tci-flogo GitHub repository. These samples
demonstrate how to develop, test, and deploy a Flogo app using various out-of-the-box
capabilities. In the GitHub repository, the samples are organized by category and each
sample folder contains a readme. Follow the instructions in the readme to import the
sample to your local workspace and use it. The following samples are currently available:

Flow Design Concepts

Includes Hello World, Branching, Error Handling,
Loops, Subflows, and Shared Data samples

API Development

Includes REST, graphQL, and gRPC
samples

Array Mapping and Filtering

Includes array.forEach, json.path, and JavaScript
Activity samples

Connectors

Includes Flogo connector samples for
CRM, DB Connectors, Messaging, and more

Serverless

Includes sample for deploying a Flogo app as an Azure function

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Flow-Design-Concepts
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/API-Development
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Mapping-Arrays
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Connectors
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/Serverless/Azure-Functions

TIBCO Flogo® Enterprise User Guide

392 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

Documentation for TIBCO Flogo® Enterprise is available on the TIBCO Flogo® Enterprise
Product Documentation page.

The following documents for this product can be found on the TIBCO Documentation site:

l TIBCO Flogo® Enterprise Release Notes

l TIBCO Flogo® Enterprise Installation

l TIBCO Flogo® Enterprise Quick Start

l TIBCO Flogo® Enterprise User Guide

l TIBCO Flogo® Enterprise Activities, Triggers, and Connections

l TIBCO Flogo® Enterprise Security Guide

l TIBCO Flogo® Enterprise Transition Guide

l TIBCO Flogo® Enterprise Mapper Functions Guide

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-flogo-enterprise
https://docs.tibco.com/products/tibco-flogo-enterprise

TIBCO Flogo® Enterprise User Guide

393 | TIBCO Documentation and Support Services

extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO Flogo® Enterprise User Guide

394 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, and Flogo are either registered trademarks or trademarks
of Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO Flogo® Enterprise User Guide

395 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2016-2023. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction
	Concepts
	Creating Your First REST API
	Procedure

	App Development
	Creating and Managing a Flogo App Using the UI
	Creating an App
	Creating an App from a Saved Specification
	Creating a New App Using an OpenAPI Specification
	Creating a New App Using GraphQL Schema

	Validating your App
	Important Considerations

	Editing an App
	Auto-Upgrade of Activities, Triggers, and Connections
	Considerations for Auto-Upgrade

	Renaming an App
	Editing the Version of an App
	Using App Tags
	Using Notes
	Switching Between Display Views On the App Page
	Deleting an App
	Exporting and Importing an App
	Exporting an App
	Exporting an App's JSON File

	Importing an App
	Importing Your App to a New App
	Importing Your App to an Existing App
	Changes in Suffixes Used in the Mapper
	Resolving Missing Activities and Triggers

	App File Persistence

	Creating Flows and Triggers
	Flows
	Creating a Flow
	Selecting a Trigger When Creating a New Flow
	Creating a Flow Starting with a Trigger
	Creating a Flow Attached to a REST Trigger
	Creating a Flow attached to the GraphQL Trigger
	Creating a Flow Attached to Other Triggers

	Creating a Blank Flow (Flow without a Trigger)
	Flow Input & Output Tab
	Attaching a Flow to One or More Triggers

	Catching Errors
	Creating an Error Handler Flow
	Viewing Errors and Warnings

	Using Subflows
	Creating Subflows

	Creating a Flow Execution Branch
	Joining or merging branches
	Types of Branch Conditions
	Order in which Branches are Run
	Setting Branch Conditions
	Deleting a Branch

	Duplicating a Flow
	Editing a Flow
	Switching Between Flows in an App
	Deleting a Flow
	Adding an Activity
	Searching for a Category or Activity
	Configuring an Activity
	Duplicating an Activity
	Using the Loop Feature in an Activity
	Accumulating the Activity Output for All Iterations
	Accessing the Activity Outputs in Repeat While True Loop

	Using the Retry On Error Feature in an Activity
	Deleting an Activity

	Triggers
	Creating a Trigger without a Flow
	Deleting a Trigger

	Synchronizing a Schema Between Trigger and Flow

	Data Mappings
	Data Mappings Interface
	Mapping Data from the Data Mappings Interface
	Scopes in Data Mappings
	Data Types
	Supported data types
	Unsupported data types

	Reserved Keywords to be Avoided in Schemas
	Mapping Different Types of Data
	Mapping an Enum value
	Mapping a Single Element of Primitive Data Type
	Mapping an Object
	Mapping Arrays
	Mapping an Array of Primitive Data Types
	Mapping Complex Arrays
	Mapping of unmapped arrays
	Add Items to Array
	Mapping Identical Arrays of Objects
	Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-...
	Mapping Nested Arrays
	Mapping Child Elements within a Nested Array Scope
	Mapping a Nested Array Child Element Outside the Nested Array Scope
	Mapping an Element from a Parent Array to a Child Element in a Nested Array w...
	Filtering Array Elements to Map Based on a Condition

	Mapping JSON Data with the json.path() Function
	Constructing the any, param, or object Data Type in Mapper
	Coercing of Activity Input, Output, and Trigger Reply Fields
	Important Considerations

	Clear Mapping of Child Elements in Objects and Arrays
	Ignoring Missing Object Properties when Mapping Objects

	Mapping Data by Using if/else Conditions
	Considerations when using conditions:
	To delete an If condition that has Else-if and Else conditions:

	Using Functions
	Using Expressions
	Supported Operators

	Developing APIs
	Using an OpenAPI Specification
	Configuring the REST Reply
	Testing the Deployed App
	Downloading the API Specification Used

	Using GraphQL Schema

	Using App Properties and Schemas
	App Properties
	Creating App Properties
	App Properties Dialog Box Views
	Creating a Standalone App Property
	Creating a Group

	Deleting a Group or Property
	Using App Properties in a Flow
	Using App Properties in the Mapper
	Unlinking an App Property from a Field Value

	Using App Properties in Connections
	Editing an App Property
	Changing the Default Value of a Property from the App Properties Dialog Box
	Changing the Name or Data Type of an App Property after Using It

	When Importing an App
	Exporting App Properties to a File
	Overriding an App Property Value While Testing a Flow

	App Schemas
	Defining an App-Level Schema
	Editing an App-Level Schema
	Deleting an App-Level Schema
	Using an App-Level Schema
	Flow Input & Output Tab
	Input or Output Settings Tab of an Activity
	Output or Reply Settings Tab of a Trigger

	Using Connectors
	Creating Connections
	Editing Connections
	Deleting Connections

	Using Extensions
	Important Considerations
	Creating Extensions
	Step 1: Generate a basic framework
	Step 2: Update the Metadata
	Step 3: Build the Logic
	Step 4: Perform Unit Testing
	Step 5: Upload the Activity in the Flogo App

	Uploading Extensions
	Pulling Extensions from an Open Source Public Git Repository
	Deleting Extensions or Extension Categories

	Flow Tester
	Testing Flows from the UI
	What is a Launch Configuration?
	Creating and Using a Launch Configuration
	Creating Subsequent Launch Configurations
	What can you do using the Flow Tester?
	Configuring a Launch Configuration
	Exporting a Launch Configuration
	Importing a Launch Configuration
	Cloning a Launch Configuration
	Deleting a Launch Configuration

	Testing Flows from the CLI
	Using the test command to test your flow from the CLI
	The test Command

	Unit Testing
	Terminologies in Unit Testing
	Role Requirements
	Creating and Running a Test Case
	Creating a Test Case
	Defining Flow Input
	Creating Assertions
	Creating Assertions for Flow Output
	Creating Assertions for the Error Handler

	Test Case Validation
	Running a Test case
	Using Mock Data

	Creating and Running a Test Suite
	Creating a Test Suite
	Running a Test Suite

	Exporting and Importing a Unit Test
	Exporting a Unit Test
	Importing a Unit Test

	Enabling On-premises Services in Unit Testing
	Unit Testing for the CI/CD
	The Test Commands

	Deployment and Configuration
	Building an App Executable
	Building the App
	Running the App
	Considerations
	Overriding an App's JSON File in the App Binary
	Changing the Log Level of a Running App Instance
	Example

	Environment Variables
	App Configuration Management
	Consul
	Using Consul
	Consul Connection Parameters
	Setting the Consul Connection Parameters

	AWS Systems Manager Parameter Store
	Using the Parameter Store
	Parameter Store Connection Parameters
	Setting the Parameter Store Connection Parameters

	AWS AppConfig
	Using the AppConfig
	AppConfig Client Configuration

	Environment Variables
	Using a JSON File to Override App Property Values
	Example: Overriding a Certificate Using a JSON File

	Overriding Security Certificate Values
	Example: Overriding a Certificate Using an Environment Variable

	Encrypting Password Values

	Container Deployments
	Kubernetes
	Deploying Flogo Apps to Kubernetes
	Using ConfigMaps with a Flogo App

	Managing Sensitive Information Using Kubernetes Secrets
	Configuring the Secrets
	Specifying the Path of the Volume Where the Secrets are Mounted
	Sample YAML File

	Amazon Elastic Container Service (ECS) and Fargate
	Deploying a Flogo App to Amazon ECS and Fargate

	Pivotal Cloud Foundry
	Deploying a Flogo App to Pivotal Application Service
	Building a Linux Binary
	Without Using a manifest.yml File
	Using a manifest.yml File
	Using Spring Cloud Configuration to Override App Properties
	Create a Repository and Properties File on Github
	Setup Spring Cloud Configuration on Pivotal Cloud Foundry
	Using Spring Cloud Configuration Service with Flogo

	Microsoft Azure Container Instances
	Deploying a Flogo App to a Microsoft Azure Container Instance
	Deploying a Flogo App to a Microsoft Azure Container Instance Using a YAML File

	Google Cloud Run
	Deploying a Flogo App to Google Cloud Run

	Red Hat OpenShift
	Deploying a Flogo App to Red Hat OpenShift
	Sample YAML File: Red Hat OpenShift

	Serverless Deployments
	Developing for Lambda
	Creating a Connection with the AWS Connector
	AWS Connection Details

	Creating a Flow with Receive Lambda Invocation Trigger
	Deploying a Flow as a Lambda Function on AWS
	Deploying a Flow as a Lambda Function on AWS using AWS CLI

	Creating a Flow with AWS API Gateway Lambda Trigger
	Creating a Flow with S3 Bucket Event Lambda Trigger
	S3 Bucket Event Lambda Trigger

	Deploying a Flogo App to Microsoft Azure Functions
	Creating the Azure Function App in the Azure Portal
	Creating the Azure Function App from the Azure CLI

	Deploying a Flogo App in Knative
	Troubleshooting Tips

	Pushing Apps to TIBCO Cloud

	Monitoring
	About the TIBCO Flogo® Enterprise Monitoring App
	Using the Flogo Enterprise Monitoring App
	Running Flogo Enterprise Monitoring as a Standalone App
	Running the TIBCO Flogo® Enterprise Monitoring App On Docker
	Running the Flogo Enterprise Monitoring Application On Kubernetes
	Granting Access Using ClusterRole
	Configuring the Service Account
	Linking the ServiceAccount to the ClusterRole
	Linking the Flogo App to the Flogo Enterprise Monitoring Application
	Configurations in the Flogo App’s YAML File

	Configuring the Flogo Enterprise Monitoring App
	Registering a Flogo App with the Flogo Enterprise Monitoring App
	Examples

	About TIBCO Flogo® Flow State Manager
	Using Flogo Flow State Manager
	Configuring the PostgreSQL Database
	Running Flogo Flow State Manager as a Standalone App
	Running Flogo Flow State Manager on Docker
	Running Flogo Flow State Manager on Kubernetes
	Configuring Flogo Flow State Manager
	Starting Flogo Enterprise Monitoring with Details of Flogo Flow State Manager
	Starting the App Binary

	Viewing Statistics by Using Flogo Enterprise Monitoring app
	Apps Page
	Metrics Page
	Executions Page

	App Metrics
	Enabling App Metrics
	Enabling statistics collection using environment variables
	Example: retrieve specific metrics for an app

	Logging App Metrics
	Fields returned in the response
	Prometheus
	Using Prometheus to Analyze Flogo App Metrics
	Often-Used Queries

	OpenTelemetry Collector

	Distributed Tracing
	Tracing Apps Using Jaeger
	Tracing Apps by Using AWS X-Ray
	Enabling Tracing Using AWS X-Ray
	Search Using Annotations
	Metadata

	Tracing Apps by Using OpenTelemetry Collector
	Enabling Tracing for OpenTelemetry Collector
	Tracing With OpenTelemetry Collector
	Flogo Related Attributes in OpenTelemetry Collector

	Using APIs
	Healthcheck API
	Go Language Runtime Statistics and Profiling

	CPU and Memory Profiling
	Monitoring and Managing Enterprise Apps in TIBCO Cloud Integration

	Best Practices
	Performance Tuning
	Tuning Environment Variables
	FLOGO_RUNNER_TYPE
	POOLED Mode
	Deploying the app to your environment
	Case Study

	DIRECT Mode
	Deploying the app to your environment
	Case Study

	FLOGO_LOG_LEVEL
	Case Study

	GOGC
	Case Study

	CPU and Memory Monitoring
	Top Command
	Docker Stats Command
	Runtime Statistics and Profiling

	Samples
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

