
Introduction 
5G Open virtualized Radio Access Network (Open vRAN) architecture enables 
operators to deploy best-in-class products from multiple suppliers. Today, 
Mobile Network Operators (MNOs) and private operators can deploy Intel® 
FlexRAN™ Reference Architecture to enjoy the benefits of Open vRAN, while 
using cutting-edge deep learning technology in the baseband to enhance 
performance and efficiency. 

DeepSig’s expertise in artificial intelligence (AI) and machine learning (ML) 
applied to wireless signal processing has enabled development of embedded 
software that replaces multiple 5G NR signal processing algorithms with a 
precisely designed Deep Neural Network (DNN). This approach with DNN 
potentially requires less computation while significantly improving network 
capacity and resilience to interference by learning the real-world characteristics 
of the local wireless environment where the Radio Unit (RU) operates. These 
improvements reduce both capital expenditure and operating expenses, which 
increases Open vRAN’s value to MNOs. DeepSig and Intel collaborated to 
bring this transformational AI software to market as part of the Intel FlexRAN 
software suite.

Implementing the 5G NR radio access network is exponentially more complex 
than previous generations, particularly when seeking peak multi-user capacity 
gains afforded by Massive MIMO (mMIMO) and when applying many-element, 
multi-user processing techniques introduced in 5G. AI/ML advances deliver 
greater potential in 5G infrastructure by providing better service and capacity 
and by reducing computational load. This paper explains how DeepSig’s initial 
5G software release applies AI/ML uniquely within the upper-L1 baseband 
processing in the ORAN Distributed Unit (O-DU).

AI and Machine learning techniques are rapidly growing into core baseband 
signal processing, including the L1. Beyond the standards-transparent 
techniques described here, they will offer significant performance benefits 
in 5G advanced and 6G, increasingly relying on DNN processing to optimize 
RAN performance across the stack. While this work demonstrates immediate 
benefits within the Intel FlexRAN Reference Architecture 5G L1 stack, continued 
benefits will be realized in future versions, as well as through inclusion of deep 
learning and neural networks into Intel FlexRAN software as DNN enhance 
more traditional signal processing functions. Intel® Deep Learning Boost (Intel® 
DL Boost) processor extensions align perfectly to Deep Learning RAN (DL-RAN), 
providing low latency on-chip processor extensions to accelerate and optimize 
for DL inference. Additionally, the Advanced Matrix eXtensions (AMX) in the 
next-gen Intel® Xeon® processor – previously codenamed Sapphire Rapids – will 
continue to to increase neural network processing efficiency on Intel silicon, 
leading to an efficient convergence of RAN DSP and other signal processing 
applications all benefitting from enhanced DL inference extensions at scale.
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improve wireless performance and resource utilization of Distributed Unit (DU) 
Upper PHY software in 5G Open vRAN systems. 
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Background and Impact

5G Open vRAN leverages virtualized, general purpose 
compute resources from both Cloud and Edge-Cloud 
resource elements.  

This design greatly reduces cost, simplifies resource 
management and allows for sharing resources between 
RAN and application execution. In the 5G Open vRAN 
architecture, the RAN is decomposed (see Figure 1) into 
a number of virtualized components, including the Radio 
Unit (RU), which contains the analog to digital conversion, 
amplifiers, antennas and low-L1 implementation. The 
Distributed Unit (DU) implements the upper-L1 processing 
including channel estimation, antenna processing and 
MAC/RLC processing. The Central Unit (CU) performs 
upper layer RLC and protocol processing for numerous 
sectors and the Core, which manages central routing, 
authentication, control, etc. 

Intel® FlexRAN™ Reference Architecture
With the Intel FlexRAN Reference Architecture, Intel is 
offering a blueprint to quicken development of vRAN and 
Open RAN solutions, helping equipment manufacturers 
and operators reduce time, effort and cost. Intel FlexRAN 
Reference Architecture enables fast development of 
software-based LTE and 5G NR Base Stations that can 

be instantiated on any node of the wireless network 
from edge to core. The block diagram in Figure 2 shows 
the Intel FlexRAN software layer 1 (L1) PHY application, 
which takes radio signals from the RF front-end and 
performs real-time signal and physical layer processing 
on servers built with Intel® Xeon® Scalable processors. 
The architecture takes advantage of the Intel® Advanced 
Vector Extensions 512 (Intel® AVX-512) instruction set 
for efficient implementation of L1 signal processing 
tasks. The Intel FlexRAN Reference Architecture is 
optimized for NFVI cloud-native deployments by using 
DPDK based networking and the hardware capabilities 
of the Intel® Ethernet Network Adapters 700/800 series. 
The Intel FlexRAN Reference Architecture performs the 
entire 4G and/or 5G layer 3, 2, and 1 processing and 
utilizes Intel dedicated hardware accelerators for FEC 
(Intel® FPGA Programmable Acceleration Card N3000 
or Intel® vRAN Dedicated Accelerator ACC100 Adapter) 
as well as cryptographic accelerators (Intel® QuickAssist 
Technology). This in turn provides more processing 
power available to increase cell capacity and edge-based 
services and applications.

This approach is fundamentally about building 5G mobile 
networks using a fully programmable software-defined 
solution based on open interfaces that run on commercial 
off-the-shelf hardware (COTS) with open interfaces. 

Figure 1: 5G Open vRAN Architecture Components DeepSig’s Deep Neural Network is a software patch into Upper-L1 
processing of the DU.

Figure 2: Intel FlexRAN Reference Architecture Showing DeepSig Additions to the Intel FlexRAN software and Drop-In Usage 
in Reference PHY.
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Historically computational complexity of signal processing 
of Physical layer required designing costly custom 
silicon SoCs where PHY layer algorithms instantiated 
are tightly coupled between hardware capability of 
silicon and corresponding software components. This 
has changed with the introduction of Intel FlexRAN 
Reference Architecture, where general purpose CPUs are 
used to deliver PHY layer signal processing tasks in an          
efficient manner. 

This architecture enables:

1. disaggregation of hardware and software, benefiting 
speed of innovation cycles for both. 

2. networks that are more open, and thus a broader 
ecosystem of vendor options for MNOs 

3. the movement of previously silicon-specific 
design questions and capability to a flexible and 
agile software layer, with cheaper research and 
development cost

4. reduced time to market for Telecom Equipment 
Manufacturers (TEMs), replacing years of silicon 
design by allowing faster development of         
software upgrades

With this type of disaggregation, hardware used for 
instantiation of Base station nodes in MNO 5G network 
becomes the same as the rest of 5G network nodes 
between the Data Center, Core Network and Edge of the 
Network. Using a PHY layer in software makes the O-DU 
node fully software defined, which unlocks homogeneity 
of the entire 5G network to be defined in software, 
programmable from end-to-end, as well as in a unified 
control plane that controls it from top to bottom for all 
types of nodes. 

In addition to these benefits, orchestration of all network 
functions within the 5G network becomes possible using 
the same Cloud Native approaches. MNOs don’t need 
to deal with RAN nodes in a separate custom fashion 
anymore. This in turn helps to reduce overall management 
and operations costs and benefits economies of scale 
for deployment of RAN networks on the same unified 
hardware platform.    

Based on the deep learning revolution started from 
seminal work on ImageNet for computer vision in 20125, 
proliferation of machine learning algorithms into different 
domains and type of workloads is wide, robust and on 
an accelerating trend. Wireless commutation and PHY 
specifically are no exception here. 

A broad list of academic institutions, standards bodies 
such as 3GPP and commercial companies apply data-
driven ML approaches to 5G and PHY specific tasks. 
As a result, this becomes fruitful ground for significant 
innovations in wireless network operations, both today 
and in the future. Effective instantiation of ML inference 
within the PHY pipeline of the O-DU node of 5G networks 
becomes an important topic of consideration. On a 
technical level, this approach combines the complexity of 
classical signal processing algorithms with the complexity 
of machine learning techniques and data driven methods. 

Given the innovation rate of ML models alone, as well 
as specifics and constrains of PHY layer, an inference 
custom silicon SoC platform can become outdated 
pretty much on the day silicon design starts. However, 
COTS platforms are updated on a predictable cadence. 
Unlike purpose-built processors, they are designed for 
use cases requirements across many domains where ML 
inferencing is top of mind, such as Public Clouds, IOT and 
general software-defined networking. Selecting the right 
platform for the next generation of RAN becomes a very 
important and non-trivial task. It is easy to see that the 
cadence of innovation will accelerate, and a platform such 
as the CPU provides a reliable tool to address these types 
of challenges. In addition, continued advancements in 
instruction sets specific to AI/ML, as well as the growing 
ecosystem of ML-specific and wireless-specific tools, 
libraries and frameworks will be available to users as 
part of open source and Intel FlexRAN technology future 
releases. The unparalleled ecosystems of both wireless 
and machine learning give TEMs and MNOs the ability 
to focus on innovative work instead of dealing with the 
limitations of hardware capabilities and long design cycles 
of custom silicon. Other computation platforms that might 
be beneficial for ML acceleration itself are not a very good 
fit for RAN. Very often, these platforms simply are not 
deployable in RAN networks due to limits of size, power 
consumption and price. One of the greatest benefits of 
the CPUs is the preservation of homogeneity of the 5G 
network from Core to Edge to RAN in terms of hardware 
platform and full readiness for ML-specific algorithms.

DeepSig 5G AI 
DeepSig’s 5G AI embedded software provides a set of 
enhancements to the Intel FlexRAN software for DU, which 
fits into the existing Intel FlexRAN software development 
kit (SDK) and software architecture as shown in Figures 2 
and 3. This provides drop-in replacements to the PUSCH 
channel estimation SDK routines (for standard MIMO), 
and to SRS channel estimation and pre-coding routines 
(for mMIMO). DeepSig’s 5G AI software components can 
be readily leveraged by existing Intel FlexRAN software 
for DU vendors without the need for any additional 
changes in their hardware or software stack. Additionally, 
cloud services provide online learning and adaptation 
of these routines to continually enhance performance 
over time. Real-world data may be deployed alongside 
the runtime components in future versions co-located 
on the DU, in nearby RIC xAPPs or on other mobile edge              
compute platforms. 

The most critical performance considerations in 5G vRAN 
systems are power consumption, computational cost of 
processing radio units, spectral efficiency and realized 
throughput for mobile users. These crucial performance 
areas are dramatically enhanced through machine 
learning-based processing approaches within the DU, and 
specifically by the unique way that OmniPHY-5G changes 
Upper-L1 processing in the DU using a data-driven DNN.  
This results in two key benefits: processing efficiency and 
signal-to-interference and noise (SINR) improvements.
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By using an ML approach to L1 processing, less compute is 
required to process the uplink (PUSCH) signals in standard 
MIMO configurations, reducing the cost of operation and 
increasing the number of sectors per server.

OmniPHY-5G can attain significant improvement in 
computational kernel latency reduction in PUSCH 
processing on Intel Xeon Scalable processors in standard 
MIMO modes as evaluated on 3GPP TDL channel 
models for 38.104 testing. The ML-driven L1 processing 
improves SINR performance, a benefit which enables 
increased throughput and coverage, while optimizing 
the value and utilization of costly spectrum licenses and                      
band allocations. 

Because OmniPHY-5G can attain SINR improvements, 
MNO can benefit from bandwidth increases, user traffic 
latency reduction and the reduction of necessary 
interference margin for cell planning.

Impact
DeepSig’s 5G AI initial demonstration version provides 
overall computational efficiency improvement for a 
typical deployment scenario, along with throughput 
enhancement due to improved SINR. Leveraging existing 
DU hardware and DeepSig’s 5G AI provides significant 
notional cost per-bit reduction when considering both 
factors for 4 antenna systems. These critical AI software 
enhancements make Open vRAN significantly more 
performant and competitive to traditionally designed and 
optimized vRAN solutions.

Approximated maximum throughput rates can be derived 
from the Shannon-Hartley theorem4, which relates 
achievable data-rate with SINR for a specific channel 
width. By comparing relative throughputs for different 
SINR levels, the throughput percent increase impact for 
a range of baseline SINR levels is shown in Figure 6, with 
all other factors kept constant (i.e., channel bandwidth or 
resource block allocation size). Specifically, in cell-edge 
and low SINR cases, this can significantly help with 

throughput and wireless quality of service and allows 
for the use of higher modulation and coding rates (MCS) 
in many access situations to improve spectral efficiency.  
Figure 4 shows an example of the expected throughput 
impact for the range of measured SINR gains over a range 
of operating SINRs that may be seen in common UE 
deployment scenarios.  

Intel Xeon processor architecture is continuing to improve 
DL and signal processing performance as architecture, 
execution, memory and bandwidth capacities grow with 
each generation. While most results in this paper are 
conducted on 2nd Gen Intel Xeon Scalable Processors 
SKU 6248 @ 2.5 GHz, Figure 5 shows the impact of an 
equivalent 3rd Gen Intel Xeon Scalable Processor SKU 
6338N also with VNNI (DL Boost) extensions at identical 
clock speeds. The graph shows 5-25% improvements 
in each case when moving to 3rd Gen, and significant 
further gains are expected on next-generation Intel Xeon 
processors with both VNNI and TMUL/AMX extensions in 
the future1. 

Intel® Xeon® Scalable Processors 

Figure 3: Intel® FlexRAN™ Reference Architecture PUSCH Processing Flow Graph Augmented with DeepSig NN Estimation, 
Equalization, and Compensation. 

Figure 4: Example of Notional Impact of OmniPHY on PUSCH 
Throughput.
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Scaling to Massive MIMO
mMIMO is rapidly gaining adoption within 5G networks 
and deployments due to its unprecedented spectral 
efficiency, multi-user capacity and improved coverage 
and throughput. However, improved implementations 
are needed to reduce cost, improve performance and 
accelerate deployments. While DeepSig’s AI driven L1 
optimization techniques described herein are initially 
provided for standard MIMO processing, the channel 
estimation, equalization and combining algorithms 
optimized here represent an even larger portion of the 
computational time and cost within mMIMO. An enhanced 
5G AI version for mMIMO L1 processing solution is under 
development and tests in DeepSig’s 5G AI Lab to provide 
even greater benefit in these key processing sections       
of mMIMO.

DeepSig expects Intel FlexRAN software’s computational 
reduction for a fully-loaded gNB in 4TRx mode SINR 
improvement obtained with standard MIMO to provide a 
substantial computational reduction in mMIMO processing 
(considering only the SRS and PUSCH acceleration cases), 
while providing additional SINR margin improvements, 
especially when including online learning in future 
releases. These improvements are only the first step in 
optimizing mMIMO with AI/ML. While 2TRx and 4TRx 
5G-NR MIMO systems today use purely accelerated 
DMRS/PUSCH processing, this can change in 32TRx and 
64TRx mMIMO modes. As a result, implementation of 
the mMIMO receiver can be notoriously complex and 
technically difficult to make efficient. Speedup from usage 
of ML in mMIMO can be expected from next areas: (1) how 
the SRS processing will be accelerated by ML, (2) how 
both SRS and PUSCH processing will both be accelerated 
together in a similar fashion, and (3) an approach where 
all three SRS, PUSCH and beamforming weight calculation 
(BF) are accelerated using a similar ML approach to 
provide even more significant compute reductions for 
Intel FlexRAN Reference Architecture’s Upper L1 without 
any addition or modification to hardware.

Testing and Validation
In the first quarter of 2021, DeepSig opened its 5G 
Wireless AI Lab using commercial products to construct 
an end-to-end 5G SA network based on Open vRAN 
architecture. With a mid-band FCC experimental license, 
DeepSig conducted 5G NR over-the-air (OTA) tests and 
model validations. Ongoing tests are demonstrating the 
ML efficacy and how it performs even better OTA than 
in DeepSig’s 3GPP measurements. Figure 6 illustrates a 
commercial 5G UE attaching to the DeepSig 5G system SA 
network and the internet. These measurements are taken 
along with signal quality performance numbers obtained 
using traditional estimation and equalization approaches 
(MMSE) alongside the neural network (NNEQ) approach to 
estimation and equalization OTA while running standard 
commercial UE apps and data services.

ML-Based Channel Processing
Key challenges

ML presents a key opportunity within the 5G and beyond-
5G vRAN to perform enhanced channel estimation, 
equalization and combining of maximal ratio. ML 
enables telcos to better preserve information versus 
today’s widely used implementations and does so at low 
complexity in order to minimize capital and operating 
costs. A high-level architecture of the neural network-
based approach is provided in Figure 7 to illustrate how 
and where this solution is realized.

Model Architecture

DeepSig’s model architecture has been designed with 
AutoML to take advantage of efficient Intel AVX-512 
extensions and optimized neural network layer primitives 
available within oneDNN. The primitives include 
convolutional layers, rectified linear units and numerous 
state-of-the-art network architecture and training 
techniques, which enable an inference architecture that 
is flexible to different PUSCH burst configurations. These 
are compact and have low complexity and latency to 
execute, and are accurate to provide excellent SINR, BER 
and FER statistics, resulting in improved user quality of 
experience (QoE). In contrast to many large computer 
vision networks, this solution can process input PUSCH 
resource block allocations and DMRS tones and attain 
these goals within a very compact architecture. The 
inputs can be executed in as little as 19 microseconds to 
recover equalized symbols and channel state, accelerating 
and improving Open RAN performance on Intel                    
Xeon processors. 

Figure 5: Neural Network Acceleration by Intel® Xeon® 
Processor Architecture.

* Zero is baseline, not absolute performance. For exact specifications, see Footnote 1.

Figure 6: DeepSig 5G-AI Lab, Hardening ML Software Over 
the Air.
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Intel® Xeon® Scalable Processors 

All 2nd Gen Intel Xeon Scalable processors and later 
feature Intel AVX-512 and Intel DL Boost, which can help 
accelerate machine-learning training and inference. 3rd 
Gen Intel Xeon Scalable processors feature enhanced 
Intel DL Boost with the industry’s first x86 support of 
Brain Floating Point 16-bit (bfloat16 supported on 4 
socket parts) and Vector Neural Network Instructions 
(VNNI), which provide enhanced AI inference and training 
performance. Depending on the AI workload, for example, 
these technologies in the 3rd Gen Intel Xeon Scalable 
processor can deliver up to 1.93 percent more AI training 
performance2 and 1.87X more AI inference performance3 
compared to the previous generation.

ML Performance Generalization and Deployment 
Considerations

The performance measurement comparisons shown 
for differing Standard-MIMO antenna configurations in 
Figure 5 are conducted using industry standard 3GPP 
TDL channel models for machine learning model training 
and test, which are equivalent to those used for radio 
frequency conformance tests (RCTs). These training and 
test data sets are large and distinct (i.e., not re-used), 
but they are drawn from the same statistical distribution 
of the channel model (i.e., fixed parameters of each 
standard channel fading profile such as TDL-A-30-10, 
TDL-B-100-400, TDL-C-300-100) along with randomized 
PUSCH frame data and DMRS references to avoid any 
unfair model overfitting. 

One key consideration in all ML systems is that of 
“generalization,” i.e., how well the training data and 
training process enable the resulting inference ML 
model to perform on real data that will be seen 
during deployment at inference time. In some cases, 
performance can be degraded in a machine learning 
model if the generalization is poor. This is a major and 
often overlooked problem in early proof of concept works 
which are not trained, tested and hardened with fair and 
realistic assumptions. It is also a key focus of DeepSig’s 
efforts in hardening this ML approach for production.  

Ensuring generalization and performance in production 
is a critically important consideration when comparing 
ML-based approaches, such as this one, to closed form 
expressions such as the MMSE equalizer, which does 
not rely on specific training data sets. Instead, they 
encapsulate their own set of assumptions at design time. 
Therefore, closed-form approaches such as MMSE are 
not expected to encounter this form of generalization 
issue as long as the design-time assumptions hold. The 

closed-form approaches are unable to adapt and leverage 
additional statistical information after design-time to 
improve performance from data in the way that ML 
approaches can.   

Results from OTA measurement in Figure 6 are a key 
point in this work to demonstrate the ability of the ML 
approach. The model used here is similarly trained on a 
standard 3GPP TDL fading model in simulation, but then 
evaluated using OTA data collected from DeepSig’s 5G 
SA n78 Intel FlexRAN software-based OpenRAN system. 
The system uses PUSCH emissions from commercial UE 
containing previously unseen data and channel responses 
(and in fact, also an unseen slot configuration, resource 
block allocation size and DMRS configuration). In this case, 
significant performance advantages are retained with 
the approach in both inference time and attained SINR. 
This key result shows that ML models can be used and 
generalize well in some cases.  

Generalization and real-world tests will continue to be 
a critical consideration when comparing adoption of 
ML-based vs. non-ML-based approaches in L1 signal 
processing as ML methods are increasingly adopted to 
take advantage of their attractive performance benefits. 
Extensive and rigorous testing and realistic operating 
assumptions will continue to be critical for vetting the 
performance of ML-based approaches across a wide range 
of conditions. As with many applications of ML, mature 
validation, test, generalization capabilities and tracking 
and improvements of failure modes and conditions 
over time will be important to continue to harden the 
approach and ensure its performance in production. To 
address hardening of DeepSig’s approach against all real-
world operating conditions, a number of techniques are 
employed, including:

• Fail safes

• Online model training and management of channel 
data and models across various environments in the 
network

• Continued improvements to the ML models and 
training processes

• Data handling processes to continue improvements 
to generalization robustness and to performance over 
time  

The techniques underscore focus on evaluation and 
measurement with 5G hardware in the loop, rather than 
pure reliance on statistical models. 3GPP TDL channel 
models (or trivial Gaussian or Rayleigh channel models 
used by some other academic works) do not represent all 
possible channel responses and can be seen in real world 
operating deployments. DeepSig will continue to scale and 
accelerate these aspects of OmniPHY 5G and ML Model 
enhancement and validation rapidly over the coming 
months. Continued field testing and field hardening of the 
model, training and deployment components will continue 
to mature as these efforts expand to ensure model 
generalization and model performance in a wider range 
of real-world operating conditions, ensuring performance 
and robustness of the approach. 

Figure 7: High Level ML Estimation and Equalization Pipeline.
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ML Software Platform
Training and Validation Data Generation

Data is the core of any machine learning approach. 
DeepSig engaged several sources to provide effective, 
high-speed training and validation against known vetted 
receiver compliance and 3GPP test cases and validation 
on OTA test data in order to cover all three critical 
areas. The DeepSig 5G SIM delivered high-speed data 
generation, while Intel FlexRAN software’s existing Radio 
Conformance Tests (RCT) cases supported validation. 
Lastly, Deep Sig’s 5G SA lab system provided initial OTA 
validation and test.

Training 

Training couples high-speed generation of NR frame data 
and channel simulation plus effects with state-of-the-art 
neural network design. The DeepSig EQ Training process 
uses PyTorch to train a compact custom convolutional 
neural network (CNN) architecture to provide both 
channel estimation and equalization functions within 
the L1 on uplink DMRS reference tones within the 
PUSCH. Then the DeepSig AutoML Optimizer assists 
with architecture and parameter selection and an INT8 
Quantization tool built on top of PyTorch to obtain a highly 
performant neural network.

Inference

High performance inference utilizes the DeepSig Realtime 
Inference library, which leverages Intel® oneAPI Deep 
Neural Network Library (oneDNN) inference kernels and 
provides low-latency accurate full network inference. It is 
then linked directly into the Intel FlexRAN software, where 
it can be used by the Intel FlexRAN software L1 App, 
TestApp and other test cases.    

Inference Hardware Considerations

The way the ML model is instantiated in the O-DU system 
has significant impact on system-level performance 
indicators, such as inference time and O-DU power 
consumption. It can also provide additional requirements 
for the hardware platforms that deploy the Radio Access 
Network. In addition, ML training and optimization steps 
can be quite different depending on what target hardware 
block performs ML inference in the system (i.e., CPU, GPU, 
FPGA, dedicated ML accelerator). This requires additional 
engineering effort to fine tune the model for given 
hardware blocks and can increase overall complexity, 

time to market and cost. Overall benefits obtained from 
deploying the ML model for channel estimation and 
equalization should be evaluated against those important 
factors. Total cost of ownership (TCO) of a deployed O-DU 
solution may be impacted based on the approach taken. 

The ideal approach for Independent Software Vendors 
(ISVs), as well as MNOs, would be to get the benefits of AI/
ML without any additional downside to key parameters 
of the O-DU as it is deployed in the field. This can be 
achieved today with Intel Xeon Scalable processors, 
where the same software engineering techniques and 
tools used for field-proven Intel FlexRAN software-based 
deployments can be used to instantiate the very best 
ML methods in a high-performance and cost-effective 
way. Adding extra hardware components specifically for 
ML model inference introduces more inefficiencies on 
several levels: extra complexity of project development 
phase; extra complexity of deployment configurations; 
degradation of performance per watt and performance 
per unit of space; and power consumption increase. As a 
result, TCO is significantly impacted. When it comes to ML, 
VNNI instruction sets are already available and deployed 
in most of Open vRAN deployments and have proven very 
effective for ML inference in this work.    

Solution Validation

Validation is important on many levels for the use of AI/
ML within the L1 and the receive chain, which must be 
resilient and performant during all operating conditions. 
First, validation is run on existing Intel FlexRAN software 
5G NR RCT tests using existing TestAPP and Test MAC 
infrastructure to ensure compliance with all existing tests.  
Second, tests use a high-speed simulator, which produces 
millions of 3GPP-compliant frame configurations and 
millions of random 5G-NR TDL channel instantiations to 
provide complete channel performance validation across 
billions of possible operating modes. Finally, test and 
validation are completed on the ML-driven L1 on top of 
commercial Open vRAN hardware and software stacks 
to ensure proper operation over the air with hardware-
in-the-loop. This arrangement allows validation and 
measurement of performance with a commercial UE (CUE), 
putting the software and algorithms to the ultimate test 
under local harsh, urban mid-band operating conditions.

Field-deployed live macro-cell testing and performance 
validation begins in 2022, and customer trials will follow. 
Also, integration is underway in DeepSig’s 5G Wireless 
AI Lab, with additional Open vRAN hardware and 
software stack components to validate more end-to-end 
architectures and bring AI-native performance benefits to 
public and private Open vRAN mobile network operators.

Conclusion 
This joint effort by DeepSig and Intel has demonstrated a 
unique and effective approach to upper PHY acceleration 
in the DU on Intel Xeon processors to enhance virtualized 
RAN performance through software upgrade alone. This 
approach will benefit both computational and signal 
quality, resulting in decreased cost-per-bit in some 

Figure 8: Training, Quantization, and Inference software 
stack.
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3. Up to 1.87x higher AI Inference performance with 3rd Gen Intel® Xeon® Scalable processor supporting Intel® Deep Learning Boost (Intel® DL Boost) with BF16 vs. prior generation 
using FP32 on ResNet50 throughput for image classification – New: 1-node, 4x 3rd Gen Intel® Xeon® Platinum 8380H processor (pre-production 28C, 250W) on Intel Reference 
Platform (Cooper City) with 384 GB (24 slots / 16GB / 3200) total memory, ucode 0x700001b, HT on, Turbo on, with Ubuntu* 20.04 LTS, Linux* 5.4.0-26,28,29-generic, Intel 800GB 
SSD OS Drive, ResNet-50 v 1.5 Throughput, https://github.com/Intel-tensorflow/tensorflow -b bf16/base, commit #828738642760358b388d8f615ded 0c213f10c99a, Modelzoo: 
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0x4002f00, HT on, Turbo on, with Ubuntu* 20.04 LTS, Linux 5.4.0-26,28,29-generic, Intel 800GB SSD OS Drive, ResNet-50 v 1.5 Throughput, https://github.com/Intel-tensorflow/
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cases today, along with improved link-level margins 
for deployments. The test results are expected to 
improve on next-gen Intel Xeon architectures, which are 
especially optimized to enhance neural network inference 
performance and data movement.   

The Intel Xeon Scalable processor family has many 
features, including Intel AVX-512 and Intel DL Boost. 
They also feature software tools, such as oneDNN 
library and optimized version of ML frameworks such as 
PyTorch. These tools provide a powerful and convenient 
environment for RAN software vendors to develop, train 
and deploy AI/ML-improved wireless solutions for Open 
RAN/vRAN networks. 

DeepSig’s OmniPHY AI-enhanced DU processing has 
shown how it can dramatically reduce the TCO and 
improve the performance and user experience of 5G vRAN 
deployments. It accomplishes this through the use of deep 
learning within the very low latency DU algorithms and by 
better exploiting data to improve baseband processing. 
While the focus has been on improving the DU in 5G vRAN 
with transparent and 3GPP-compliant processing, AI 
holds the promise of further improving the efficiency and 
performance of RU processing, fronthaul transport, low 

latency CU resource control and higher latency RIC-based 
resource and network control and allocation. Finally, AI 
has become increasingly recognized as the key enabler 
for 6G RAN, and DeepSig strongly believes the path to 
6G begins with incrementally leveraging AI/ML within 5G 
vRAN. By continually leveraging more data and enhancing 
additional functions in real world systems, it is expected 
that incremental, robust and low-cost software upgrades 
will play an important role in the evolutionary path to 6G.

About 
DeepSig Inc. is a venture-backed and product-centric 
technology company developing revolutionary wireless 
software solutions using unique, high-performance 
machine learning techniques to transform critical 
baseband processing tasks, wireless sensing and other 
key wireless applications.

Learn More
Intel® Xeon® Processors: https://www.intel.com/xeon

One-DNN: https://github.com/oneapi-src/oneDNN

DeepSig: https://www.deepsig.ai/
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