

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

Radio Test Report

FCC Part 80, 90 and 95 and RSS 119 (216 MHz to 222 MHz)

Model: TD220Max

- COMPANY: GE MDS LLC 175 Science Parkway Rochester, NY 14620
- TEST SITE(S): NTS Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
- REPORT DATE: July 9, 2014
- RE-ISSUED DATE: July 29, 2014
- FINAL TEST DATES: June 23, 24, July 8 and 30, 2014

TOTAL NUMBER OF PAGES: 65

PROGRAM MGR / TECHNICAL REVIEWER:

Bar

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	July 9, 2014	First release	
1	July 30, 2014	Added mask measurements at 220.00625 MHz and 221.99875 MHz for Part 90 and highest channel in segment A and lowest channel in segment B for Part 95	dwb

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS	
FCC PART 90 AND RSS-119 (217-220 MHZ BAND)	6
FCC PART 90 AND RSS-119 (220-222 MHZ BAND)	
FCC PART 80	
FCC PART 95.	
EXTREME CONDITIONS MEASUREMENT UNCERTAINTIES	10
EQUIPMENT UNDER TEST (EUT) DETAILS GENERAL	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS	
TRANSMITTER MASK MEASUREMENTS	
FREQUENCY STABILITY	
TRANSIENT FREQUENCY BEHAVIOR:	
RADIATED EMISSIONS MEASUREMENTS INSTRUMENTATION	
INSTRUMENTATION FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS – RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	21
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C MASK CALCULATION	
END OF REPORT	65

SCOPE

Tests have been performed on the GE MDS LLC model TD220Max, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 80 (Stations In The Maritime Services), Subpart J—Public Coast Stations (AMTS)
- CFR 47 Part 90 (Private Land Mobile Radio Service), Subparts K and T
- CFR 47 Part 95 (Personal Radio Service), Subpart F 218-219 MHz Service
- Industry Canada RSS-Gen Issue 3, December 2010
- RSS-119, Issue 11, June 2011 (Radio Transmitters and Receivers Operating in the Land Mobile and Fixed Radio Services in the Frequency Range 27.41 to 960 MHz)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Silicon Valley test procedures:

ANSI C63.4:2009 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model TD220Max and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model TD220Max complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 90 and RSS-119 (217-220 MHz Band)

FCC	Canada	Description	Measured	Limit	Result
Transmitter M	odulation, output	power and other character	istics		
\$2.1033 (c) (5) \$90.35	RSP 100 7.2 (a) RSS 119	Frequency range(s)	217.00625 – 219.99375 MHz	217 – 220 MHz	Pass
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$90.205, \$90.259	-	RF power output at the antenna terminals	32.2 dBm to 32.2 dBm	33 dBm	Pass
-	RSP 100 7.2 (a) RSS-119	RF power output at the antenna terminals	32.2 dBm to 32.2 dBm	37 dBm	Pass
§2.1033 (c) (4)	RSP 100 7.2 (b)	Emission types	CPFSK (F1D, F2D, F3D)		
\$2.1047 \$ 90.210	(iii) RSS-119	Emission mask	Within Mask	FCC Mask C, RSS-119 Mask D	Pass
§2.1049 § 90.209		Occupied Bandwidth	9.47 kHz	11.25 kHz	Pass
Transmitter sp	urious emissions				
§2.1051 §2.1057		At the antenna terminals	All emissions < -25 dBm	-25 dBm	Pass
§2.1053 §2.1057		Field strength	-50.2 dBm	-25 dBm	Pass
Receiver spurio	ous emissions				
15.109	-	At the antenna terminals	-69.7 dBm @ 177.00 MHz (-12.7 dB)	2nW (-57dBm)	Pass
15.109	RSS GEN 7.2.3 Table 1	Field strength	23.0 dBuV/m	See limit table on page 21	Pass
Other details					
§2.1055 § 90.213	RSS-119	Frequency stability	0.3 ppm	1 ppm	
§2.1093	RS 102	RF Exposure			
§2.1033 (c) (8)	RSP 100 7.2 (a)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	13.8V, 6A	Information only	-
-	-	Antenna Gain	Maximum 16.5 dBi	Any allowed subject to licensing	Pass
Notes -					

FCC Part 90 and RSS-119 (220-222 MHz Band)

FCC	Canada	Description	Measured	Limit	Result
Transmitter M	odulation, output	power and other character	istics		
\$2.1033 (c) (5) \$ 90.35	RSP 100 7.2 (a) RSS 119	Frequency range(s)	220.00625- 221.99375 MHz	220-222 MHz	Pass
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$90.205, \$90.729	RSP 100 7.2 (a) RSS-119	ERP	33.4 dBm to 44.4 dBm Conducted (ERP based on licensing)	Varies according to antenna height and frequency up to 57 dBm	Pass
§2.1033 (c) (4)	RSP 100 7.2 (b)	Emission types	CPFSK (F1D)		
§2.1047 § 90.210	(iii) RSS-119	Emission mask	Within Mask	Mask F ³	Pass
§2.1049 § 90.209	RSS-119	Occupied Bandwidth	5.24 kHz	12.5 kHz ²	Pass
Transmitter sp	urious emissions				
\$2.1051 \$2.1057		At the antenna terminals	All emissions < -25 dBm	-25 dBm	Pass
§2.1053 §2.1057		Field strength	-50.2 dBm	-25 dBm	Pass
Receiver spurio	ous emissions				
15.109	-	At the antenna terminals	-69.7 dBm @ 177.00 MHz (-12.7 dB)	2nW (-57dBm)	Pass
15.109	RSS GEN 7.2.3 Table 1	Field strength	23.0 dBuV/m	See limit table on page 21	Pass
Other details					
§2.1055 § 90.213		Frequency stability	0.3 ppm	0.1 ppm ¹	
§2.1093	RS 102	RF Exposure			
§2.1033 (c) (8)	RSP 100 7.2 (a)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	13.8V, 6A	Information only	-
-	-	Antenna Gain	Maximum 16.5 dBi	Any allowed subject to licensing	Pass

Notes ¹ See letter from Keller and Heckman LLP regarding stability required for the 220-222 MHz band. ² Per FCC 90 and SRSP-512, 5 kHz segments may be aggregated to allow wider bandwidths. 3 See derivation of mask for aggregated channels in Appendix C.

FCC	Description	Measured	Limit	Result
Transmitter Modulati	on, output power and other character	istics		
§2.1033 (c) (5) §80.385	Frequency range(s)	216.00625 – 221.99375 MHz	216-220 MHz	Pass
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$80.215(h)(5)	RF power output at the antenna terminals	32.2 dBm to 44.6 dBm	47 dBm	Pass
§2.1033 (c) (4)	Emission types	CPFSK (F1D)		
§2.1047 §80.211	Emission mask	within Mask	Mask F	
§2.1049 §80.205	Occupied Bandwidth	5.24 kHz 9.47 kHz	20 kHz	Pass
Transmitter spurious	emissions			
§2.1051 §2.1057	At the antenna terminals	All emissions < -25 dBm	-25 dBm	Pass
§2.1053 §2.1057	Field strength	-50.2 dBm	-25 dBm	Pass
Receiver spurious emi	ssions			
15.111	At the antenna terminals	-69.7 dBm @ 177.00 MHz (-12.7 dB)	2nW (-57dBm)	Pass
15.109	Field strength	23.0 dBuV/m	See limit table on page 21	Pass
Other details				
§2.1055 §80.209	Frequency stability	0.3 ppm	5 ppm	Pass
§2.1093	RF Exposure			
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	13.8V, 6A	Information only	-
	Antenna Gain	Maximum 16.5 dBi	Any allowed subject to licensing	Pass

FCC Part 80

FCC	Description	Measured	Limit	Result
Transmitter Modulation	n, output power and other character			
§2.1033 (c) (5) §95.853	Frequency range(s)	218.00625 – 218.99375 MHz	218-219 MHz	
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$95.855	ERP	33.6 dBm to 43.0 dBm Conducted (ERP based on licensing)	43 dBm	Pass
§2.1033 (c) (4)	Emission types	CPFSK (F1D)		
\$2.1047 \$95.857	Emission mask	within Mask	95.857 Mask	
\$2.1049 \$95.857	Occupied Bandwidth	5.24 kHz 9.47 kHz	Emission must stay in frequency segment	Pass
Transmitter spurious er	nissions			
\$2.1051 \$2.1057	At the antenna terminals	All emissions < -25 dBm	-25 dBm	Pass
\$2.1053 \$2.1057	Field strength	-50.2 dBm	-25 dBm	Pass
Receiver spurious emiss	ions			
15.111	At the antenna terminals	-69.7 dBm @ 177.00 MHz (-12.7 dB)	2nW (-57dBm)	Pass
15.109	Field strength	23.0 dBuV/m	See limit table on page 21	Pass
Other details				
§2.1055	Frequency stability	0.3 ppm	Not specified, mask performed at worst case stability per 95.857(c)	-
§2.1093	RF Exposure			
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	13.8V, 6A	Information only	-
	Antenna Gain	Maximum 16.5 dBi	Any allowed subject to licensing	Pass

FCC Part 95

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30° C to $+50^{\circ}$ C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model TD220Max is a narrowband wireless transceiver which is designed to transmit and receive data in the 216 to 222 MHz bands. Normally, the EUT would be placed on a tabletop or in a rack during operation. The EUT was, therefore, placed on a table during emissions testing to simulate the end user environment. The electrical rating of the EUT is 13.8vdc, 6 Amps.

The sample was received on June 20, 2014 and tested on June 23, 24, July 8 and 30, 2014. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	TD220Max	Narrowband Data Transceiver	2539706	E5MDS-TD220MAX

ENCLOSURE

The EUT enclosure is primarily constructed of diecast aluminum. It measures approximately 14.0cm wide by 17.0cm deep by 5.0cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Sorensen	DHP60-166	DC Power Supply, 0-	S103C0035	-
		60V/0-33Am		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Dell	INSPIRON 2200	Laptop	28123497073	-
GE MDS	TD220/RCL220	DB25 to RJ11 Adapter	2098333	-
		Board		

EUT INTERFACE PORTS

The I/O cabling configuration during antenna port testing was as follows:

Dort	Port Connected		Cable(s)			
Polt	То	Description	Shielded or Unshielded	Length(m)		
Data	DB25 to RJ11 Adapter Board	Multiwire Flat	Unshielded	0.2		
Power Port	DC power supply	DC power cable	Unshielded	2.0		
Antenna	Test system	Coax	Shielded	1.0		
USB (Laptop)	DB9 to RJ11 cable	Multiwire	Unshielded	0.5		
DB9 to RJ11 cable	DB25-RJ11 Adapter Board	Multiwire	Unshielded	2.0		

The I/O cabling configuration during radiated spurious testing was as follows:

Port	Connected		Cable(s)	
Polt	То	Description	Shielded or Unshielded	Length(m)
Data	DB25 to RJ11 Adapter Board	DB25 (Extension cable)	Shielded	10.0
Power	DC power supply	DC power cable	Unshielded	2.0
Antenna	40 dB Attenuator	Coax	Unshielded	0.1
40 dB Attenuator	500hm terminator	Coax	Unshielded	0.1
Chassis	GND	Single wire (braid)	Unshielded	3.0
USB (Laptop)	DB9 to RJ11 cable	Multiwire	Unshielded	0.5
DB9 - RJ11 cable	DB25-RJ11 Adapter Board	Multiwire	Unshielded	3.0
DB25-RJ11 Adapter Board	DB25(Extension cable)	Multiwire Flat	Unshielded	0.2

EUT OPERATION

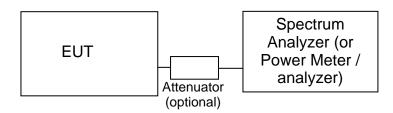
During emissions testing the EUT was set to transmit mode at the desired frequency and specified power in either unmodulated or modulated as required for testing.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the NTS Silicon Valley test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the NTS Silicon Valley Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Cita	Registratio	n Numbers	Leastian
Site	FCC	Canada	Location
			41039 Boyce Road
Chamber 7	A2LA Accredited	IC 2845B-7	Fremont,
			CA 94538-2435

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360° , the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

- R_c = Corrected Reading in dBuV/m
- L_s = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m
P = Power in Watts
G = Gain of isotropic antenna (numeric gain) = 1
D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS – RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

 $P_{EUT} = P_{S} - (E_{S} - E_{EUT})$

and

 $P_s = G + P_{in}$

where:

 P_S = effective isotropic radiated power of the substitution antenna (dBm)

 P_{in} = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

	Power and Spurious Emissions), 2			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Rohde & Schwarz Rohde & Schwarz	Power Meter, Single Channel Power Sensor 100 uW - 2 Watts	NRVS NRV-Z32	1290 1536	12/10/2014 12/19/2014
KUNUE & SCHWAIZ	(w/ 20 dB pad, SN BJ5155)	ININ V-232	1550	12/19/2014
Agilent Technologies	3Hz -44GHz PSA Spectrum	E4446A	2796	2/6/2015
, ig.io.it i connelogico	Analyzer			_, 0, _0.10
	30 - 2,300 MHz, 24-Jun-14			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/23/2014
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Sorensen	DC Power Supply, 0-60V/0- 33Am	DHP60-166	1734	N/A
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	2/13/2016
Com-Power	Preamplifier, 30-1000 MHz	PA-103	2465	9/13/2014
	Signal Substitution, 24-Jun-14			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Rohde & Schwarz Rohde & Schwarz	Power Meter, Single Channel Power Sensor 100 uW - 2 Watts	NRVS NRV-Z32	1422 1423	1/24/2015 9/17/2014
Runde & Schwarz	use with 20dB attenuator sn:1031.6959.00 only	NR V-232	1423	9/17/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	5/30/2015
Anritsu	Anritsu 68347C Signal	68347C	1785	5/30/2015
	Generator, 10MHz-20GHz			
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	2/13/2016
	s - AC Power Ports, 01-Jul-14			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
EMCO Rohde & Schwarz	LISN, 10 kHz-100 MHz, 25A Pulse Limiter	3825/2 ESH3 Z2	1292 1401	2/13/2015 5/15/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
		LOIDI	1000	12/14/2014
Radio Antenna Port (I	Power and Spurious Emissions), (08-Jul-14		
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Agilent Technologies	3Hz -44GHz PSA Spectrum	E4446A	2796	2/6/2015
	Analyzer			
Radio Antenna Port (I	Mask) 30- Jul-14			
Manufacturer	Description	Model #	Asset #	Cal Due
Agilent Technologies	PSA, Spectrum Analyzer	E4446A	2139	4/8/92015
5	, - 1/	-		

Appendix B Test Data

T95356 Pages 24 - 62

EMC Test Data

WE ENGINEER SU	JCCESS	LI	
Client: 0	GE MDS LLC	Job Number:	J95325
Product	TD220Max	T-Log Number:	T95356
		Project Manager:	Christine Krebill
Contact: I	Dennis McCarthy	Project Coordinator:	-
Emissions Standard(s): I	FCC Parts 80, 90 and 95, RSS-119	Class:	-
Immunity Standard(s): I	EN 50121-3-2	Environment:	Radio

EMC Test Data

For The

GE MDS LLC

Product

TD220Max

Date of Last Test: 7/30/2014

EMC Test Data

Client:	GE MDS LLC	Job Number:	J95325
Model	TD220Max	T-Log Number:	T95356
MOUEI.	1 DZZUMAX	Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Coordinator:	-
Standard:	FCC Parts 80, 90 and 95, RSS-119	Class:	N/A

RSS 119 and FCC Parts 80, 90 and 95 Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

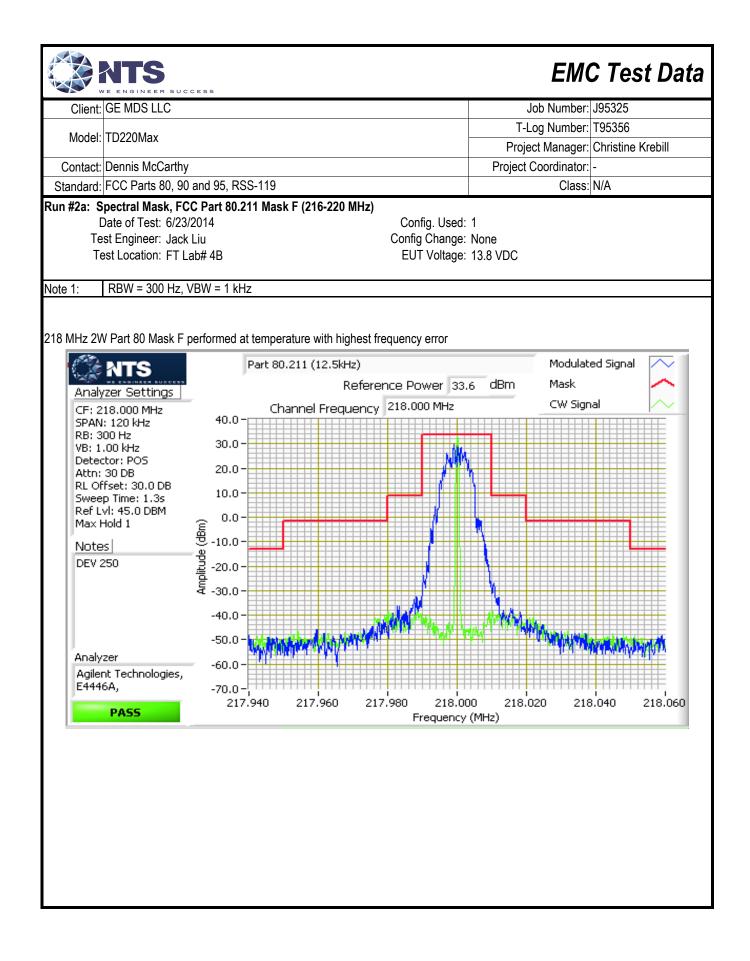
Test Specific Details

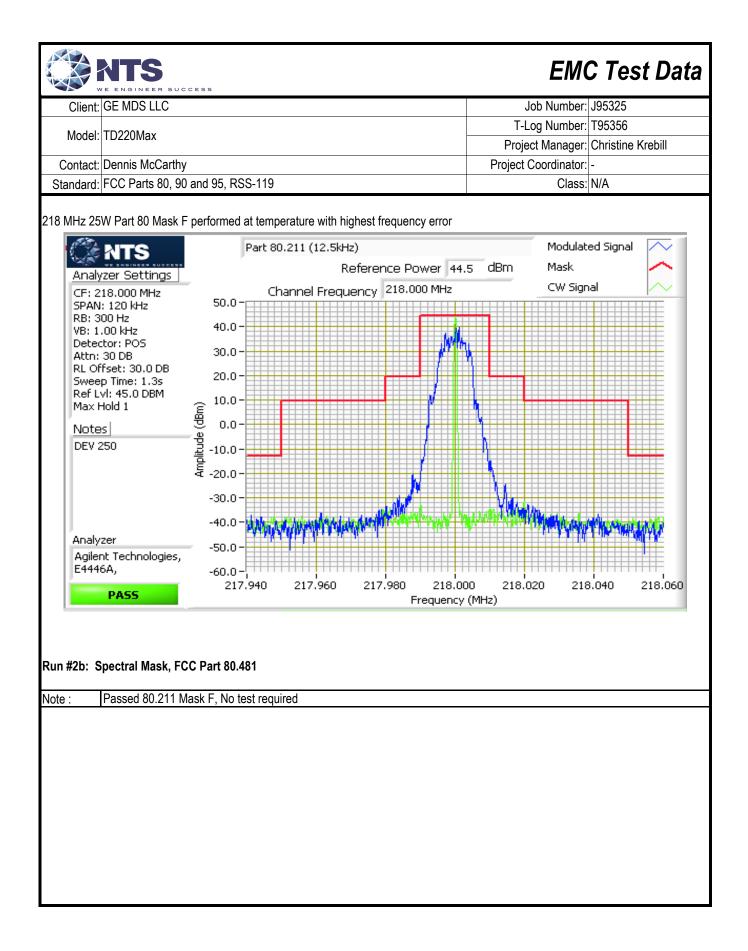
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

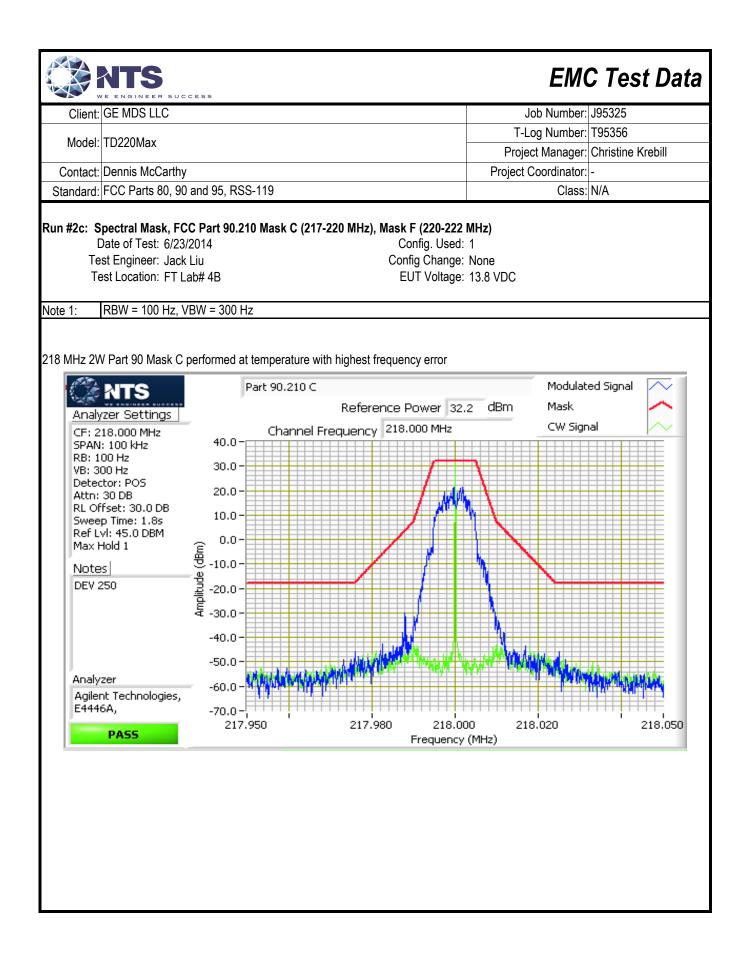
General Test Configuration

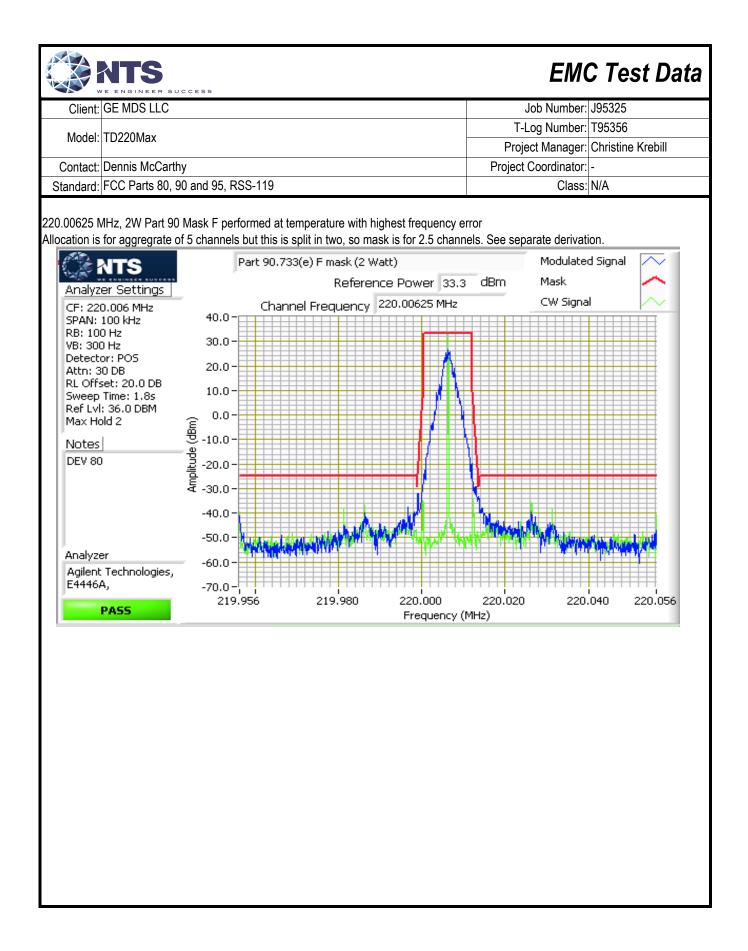
TS

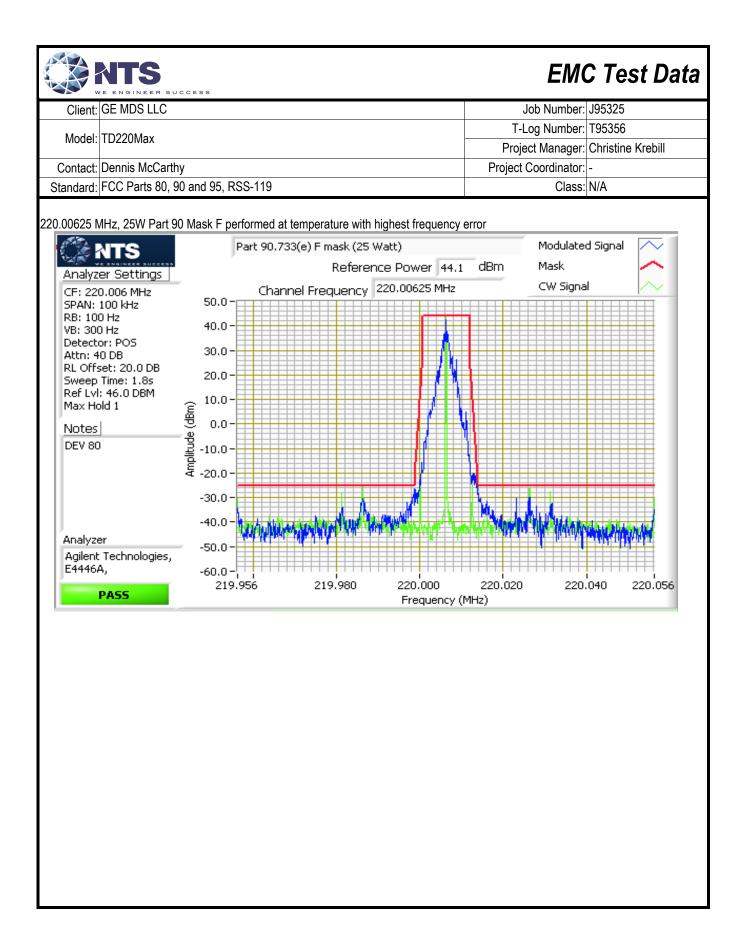
With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

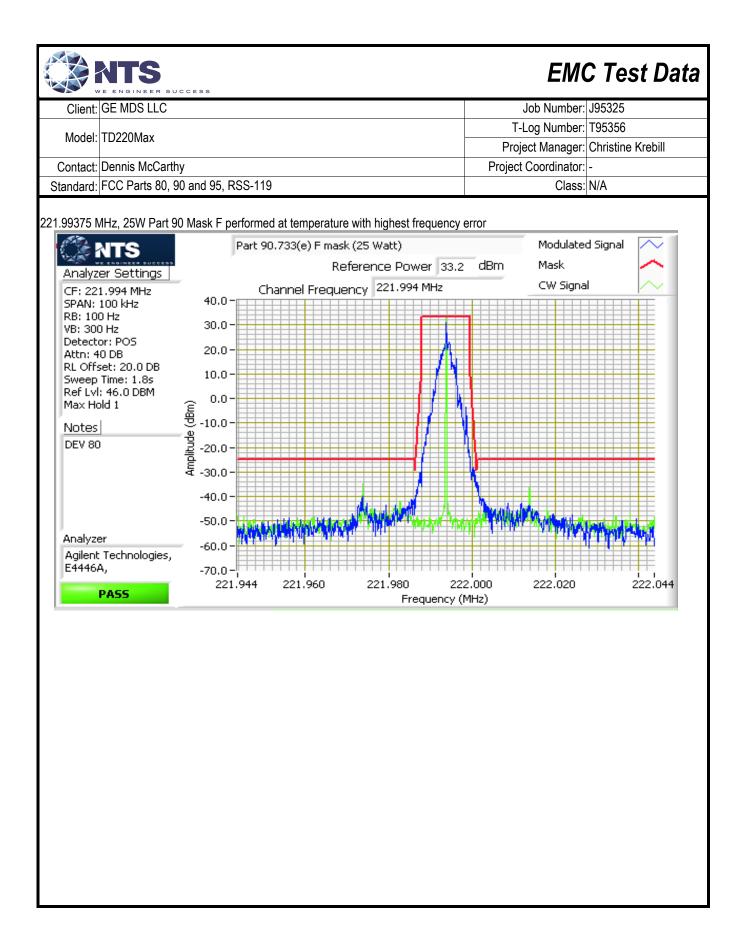

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

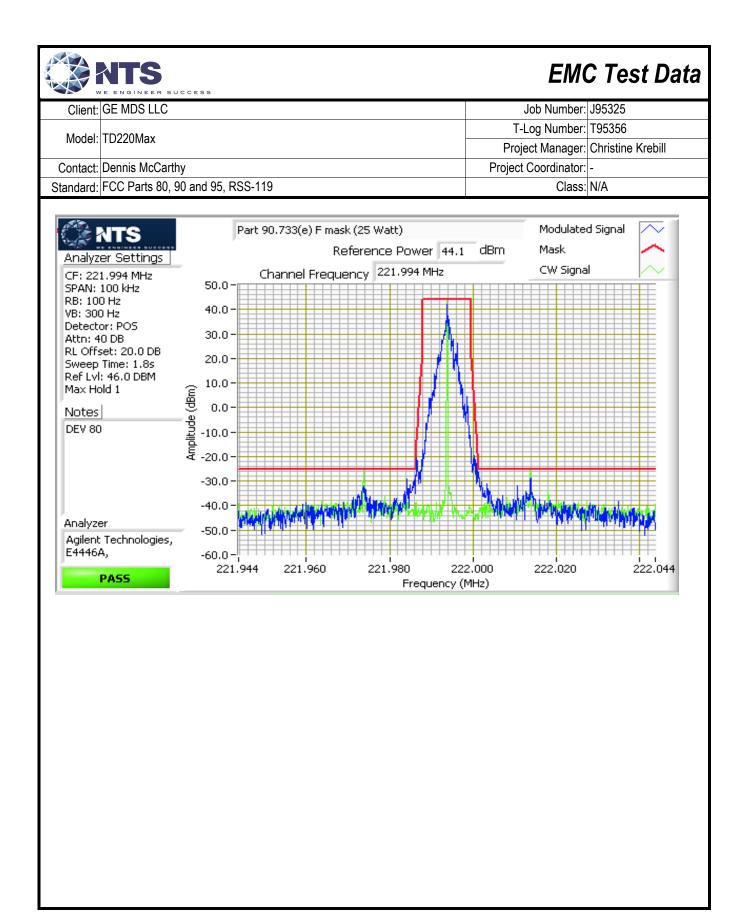

Ambient Conditions:	Temperature:	22.3 °C
	Rel. Humidity:	37 %

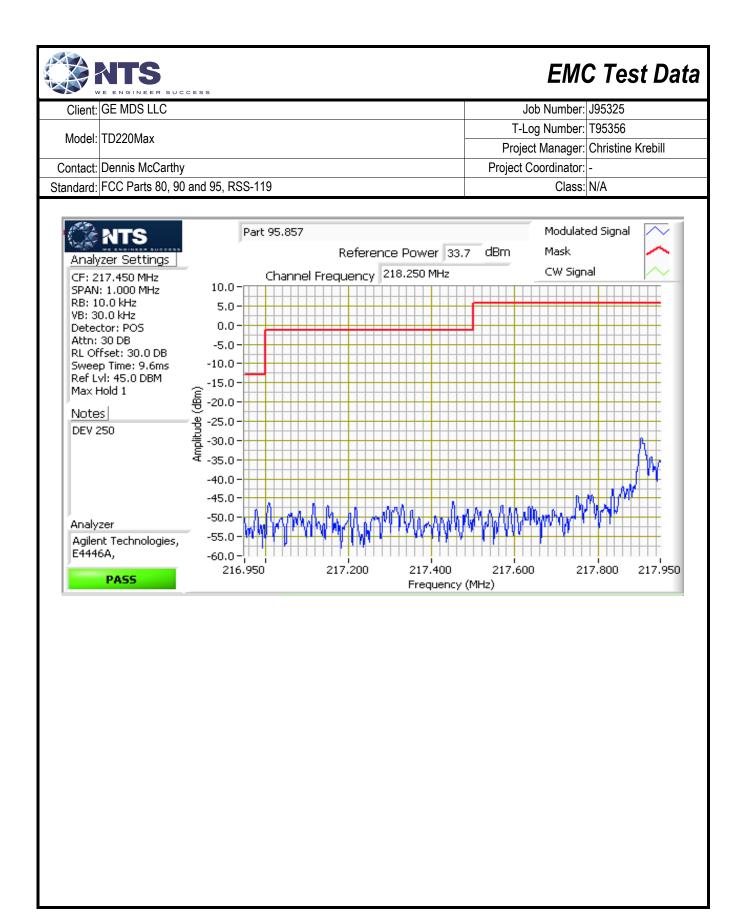

Summary of Results

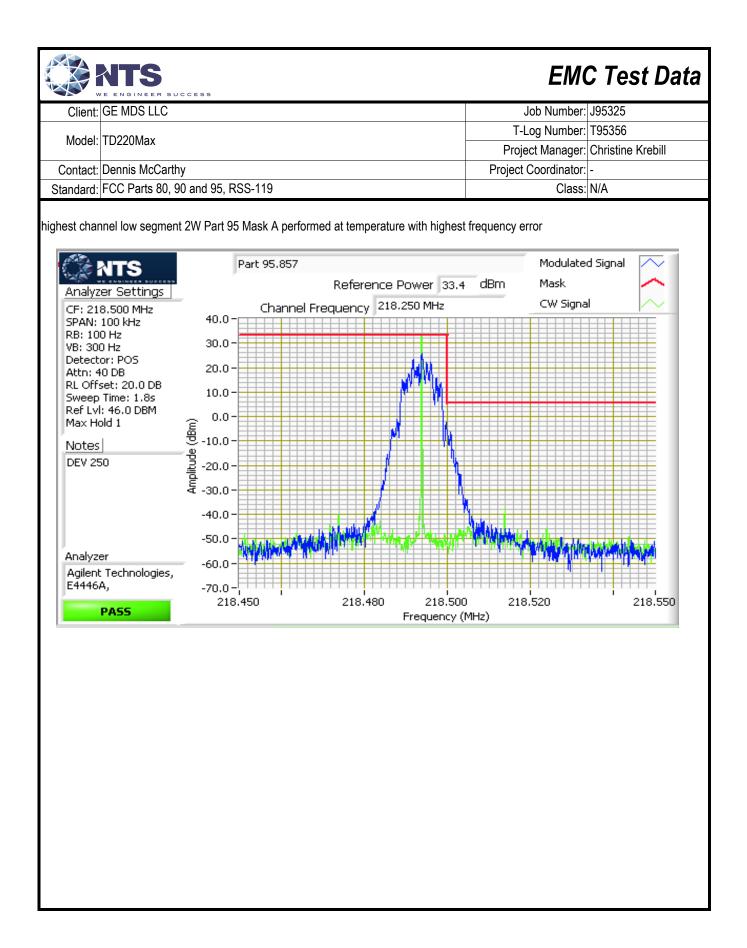

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
	Output Power	Part 80	Pass	44.6dBm
1	Output Power (217-220 MHz)	Part 90	Pass	32.2dBm
	Output Power (220-222 MHz)	Part 90	Pass	44.4dBm
	Output Power	Part 95	Pass	43.0dBm
2	Spectral Mask	Within Mask	Pass	Within Mask
3	99% or Occupied Bandwidth	less than authorized	Pass	5.24 kHz or 9.47kHz
4	Spurious Emissions (conducted)	Part 90	Pass	All emissions are <-25dBm
5	Spurious emissions (radiated)	Part 90	Pass	-50.2 dBm @ 438.01 MHz (-25.2 dB)
6	Frequency Stability	Depends on Rule part	Pass	0.3 ppm

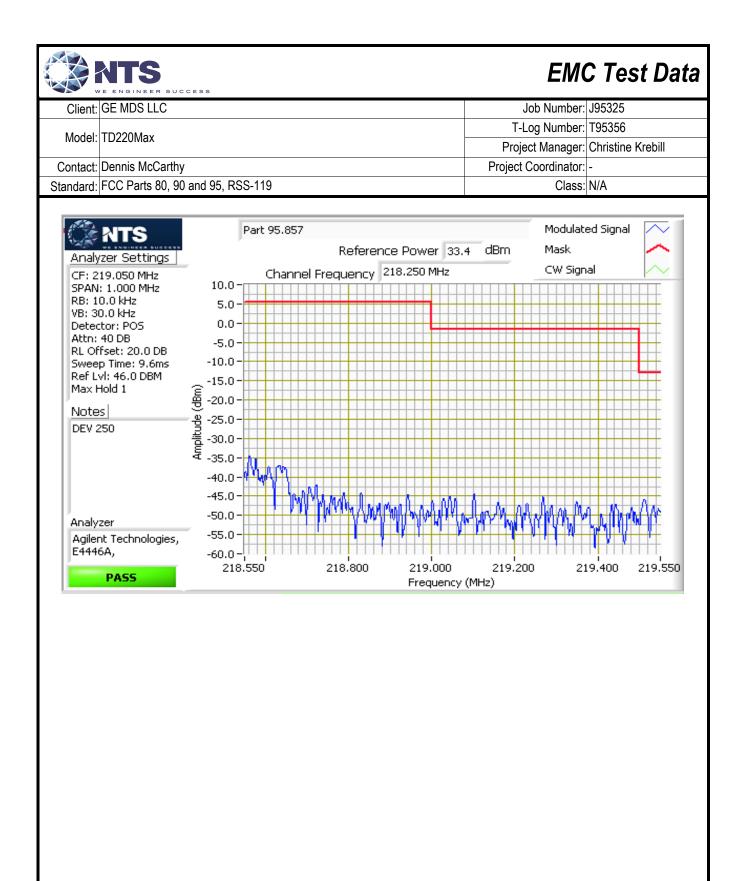

Client:	GE MDS LLC						Job Number	: J95325
						T-I	Log Number	: T95356
Model:	TD220Max						U	: Christine Krebill
Contact:	Dennis McCarthy					-	Coordinator	
	FCC Parts 80, 90 and 95	5, RSS-119				,	Class	
est Note wer and I rt 80 (216	s From The Standa hs were made from the re s Mask tests at lowest and 5-220 MHz, 25W), necess 0/11/25/6 for 217-220 MH	quirements of highest powers any bandwid	er settings th <= 16 kHz	, Part 90 (217				W), authorized
ן דנ Te Power	utput Power Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B	Outpu	t Power	Con El Antenna	onfig. Used: fig Change: UT Voltage: Result	None 13.8 VDC El	RP]
I Te Te Setting ²	Date of Test: 6/23/2014 est Engineer: Jack Liu		t Power mW	Con El	fig Change:	None 13.8 VDC	RP W]
I Te Te Setting ² art 80	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz)	Outpu (dBm) ¹	mW	Con El Antenna Gain (dBi)	fig Change: UT Voltage: Result	None 13.8 VDC EI dBm	W]
I Te To Power <u>Setting² irt 80 Low</u>	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625	Outpu (dBm) ¹ 33.7	mW 2344.2	Con El Antenna Gain (dBi) 16.5	fig Change: UT Voltage: Result Pass	None 13.8 VDC El dBm 50.2	W 104.7	880 215/b1/51
Te Te Power Setting ² rt 80 Low High	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz)	Outpu (dBm) ¹ 33.7 44.6	mW 2344.2 28840.3	Con El Antenna Gain (dBi) 16.5 12.0	fig Change: UT Voltage: Result <u>Pass</u> Pass	None 13.8 VDC El dBm 50.2 56.6	W 104.7 457.1	§80.215(h)(5)
Te Te Power Setting ² <u>rt 80 Low</u> High Low	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 216.00625	Outpu (dBm) ¹ 33.7	mW 2344.2	Con El Antenna Gain (dBi) 16.5	fig Change: UT Voltage: Result Pass	None 13.8 VDC El dBm 50.2 56.6 50.0	W 104.7 457.1 100.0	
Te Te Setting ² art 80 Low High High art 90	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.09375 219.99375	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4	mW 2344.2 28840.3 2238.7 27542.3	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0	fig Change: UT Voltage: Result Pass Pass Pass Pass	None 13.8 VDC El dBm 50.2 56.6 50.0	W 104.7 457.1 100.0 436.5	§80.215(h)(5)
Fower Setting ² Int 80 Low High Low High int 90 PWR 049	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 217.00625	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2	mW 2344.2 28840.3 2238.7 27542.3 1659.6	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0	fig Change: UT Voltage: Result Pass Pass Pass	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7	W 104.7 457.1 100.0 436.5 74.1	§80.215(h)(5)
I Te Te Setting ² art 80 Low High Low High art 90 PWR 049	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 216.00625 219.99375 219.99375 217.00625 219.99375	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0 16.5 16.5	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6	W 104.7 457.1 100.0 436.5 74.1 72.4	§80.215(h)(5)
Fower Setting ² art 80 Low High Low High art 90 PWR 049 PWR 049 Low	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 219.99375 219.99375 220.00625	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0 16.5 16.5 16.5	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0	§80.215(h)(5) §90.259 §90.259
Fower Setting ² art 80 Low High Low High art 90 PWR 049 PWR 049 Low High	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 219.99375 219.99375 220.00625 220.00625	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0 16.5 16.5 16.5 12.0	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5	§80.215(h)(5)
I Te Te Setting ² rt 80 Low High Low High rt 90 PWR 049 PWR 049 Low High Low	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 219.99375 219.99375 220.00625 220.00625 220.00625 221.99375	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4 33.4	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3 2187.8	Con El Antenna Gain (dBi) 16.5 12.0 16.5 16.5 16.5 16.5 16.5 12.0 16.5	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4 49.9	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5 97.7	§80.215(h)(5) §90.259 §90.259 §90.729
I Te Te Te Te Te Te Te Te Power Setting ² rt 80 Low High Low High Low High Low High	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 219.99375 219.99375 220.00625 220.00625	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0 16.5 16.5 16.5 12.0	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5	§80.215(h)(5) §90.259 §90.259
I Te Te Te Te Te Te Te Te Te Te Te Te Te	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 216.00625 219.99375 219.99375 217.00625 219.99375 220.00625 220.00625 221.99375 221.99375	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4 33.4 44.3	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3 2187.8 26915.3	Con El Antenna Gain (dBi) 16.5 12.0 16.5 16.5 16.5 12.0 16.5 12.0 16.5 12.0	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4 49.9 56.3	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5 97.7 426.6	§80.215(h)(5) §90.259 §90.259 §90.729
I Te Te Te Te Te Te Te Te Te Te Te Te Te	Date of Test: 6/23/2014 Isst Engineer: Jack Liu Isst Engineer: Jack Liu Isst Engineer: Jack Liu Isst Location: FT Lab# 4B Frequency (MHz) Image: Colored state stat	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4 33.4 44.3 33.6	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3 2187.8 26915.3 2290.9	Con El Antenna Gain (dBi) 16.5 12.0 16.5 12.0 16.5 16.5 16.5 12.0 16.5 12.0 16.5 12.0 9.0	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4 49.9 56.3 42.6	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5 97.7 426.6 18.2	§80.215(h)(5) §90.259 §90.259 §90.729 §90.729
I Te Te Te Te Te Te Te Te Te Te Te Te Te	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 219.99375 220.00625 220.00625 221.99375 221.99375 221.99375 221.99375	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4 33.4 44.3	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3 2187.8 26915.3	Con El Antenna Gain (dBi) 16.5 12.0 16.5 16.5 16.5 12.0 16.5 12.0 16.5 12.0	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4 49.9 56.3	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5 97.7 426.6	§80.215(h)(5) §90.259 §90.259 §90.729
I Te Te Te Te Te Te Te Te Te Te Te Te Te	Date of Test: 6/23/2014 est Engineer: Jack Liu est Location: FT Lab# 4B Frequency (MHz) 216.00625 219.99375 219.99375 219.99375 219.99375 220.00625 220.00625 220.00625 221.99375 221.99375 221.99375	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4 33.4 44.3 33.6 43.0	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3 2187.8 26915.3 2290.9 19952.6	Con El Antenna Gain (dBi) 16.5 12.0 16.5 16.5 16.5 16.5 16.5 12.0 16.5 12.0 16.5 12.0 9.0 0.0	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4 49.9 56.3 42.6	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5 97.7 426.6 18.2	§80.215(h)(5) §90.259 §90.259 §90.729 §90.729
I Te Te Te Te Te Te Te Te Te Te Te Te Te	Date of Test: 6/23/2014 Isst Engineer: Jack Liu Isst Engineer: Jack Liu Isst Engineer: Jack Liu Isst Location: FT Lab# 4B Frequency (MHz) Image: Colored state stat	Outpu (dBm) ¹ 33.7 44.6 33.5 44.4 32.2 32.1 33.5 44.4 33.4 44.3 33.4 44.3 33.6 43.0 using a peal	mW 2344.2 28840.3 2238.7 27542.3 1659.6 1621.8 2238.7 27542.3 2187.8 26915.3 2290.9 19952.6 k power meter	Con El Antenna Gain (dBi) 16.5 12.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	fig Change: UT Voltage: Result Pass Pass Pass Pass Pass Pass Pass Pas	None 13.8 VDC El dBm 50.2 56.6 50.0 56.4 48.7 48.6 50.0 56.4 49.9 56.3 42.6 43.0	W 104.7 457.1 100.0 436.5 74.1 72.4 100.0 436.5 97.7 426.6 18.2 20.0	§80.215(h)(5) §90.259 §90.259 §90.729 §90.729

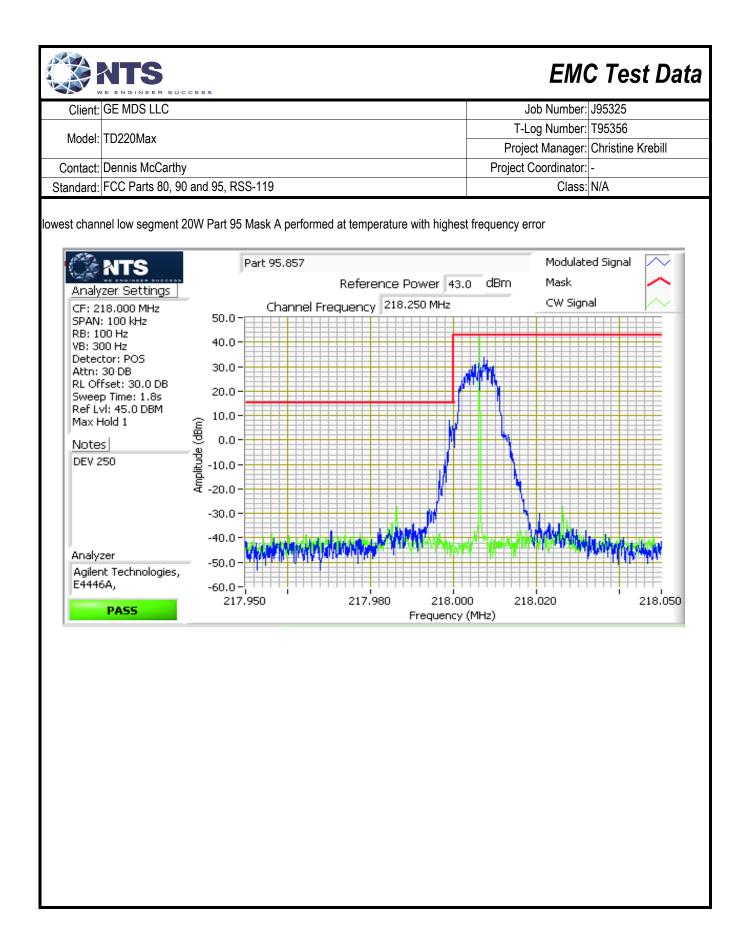


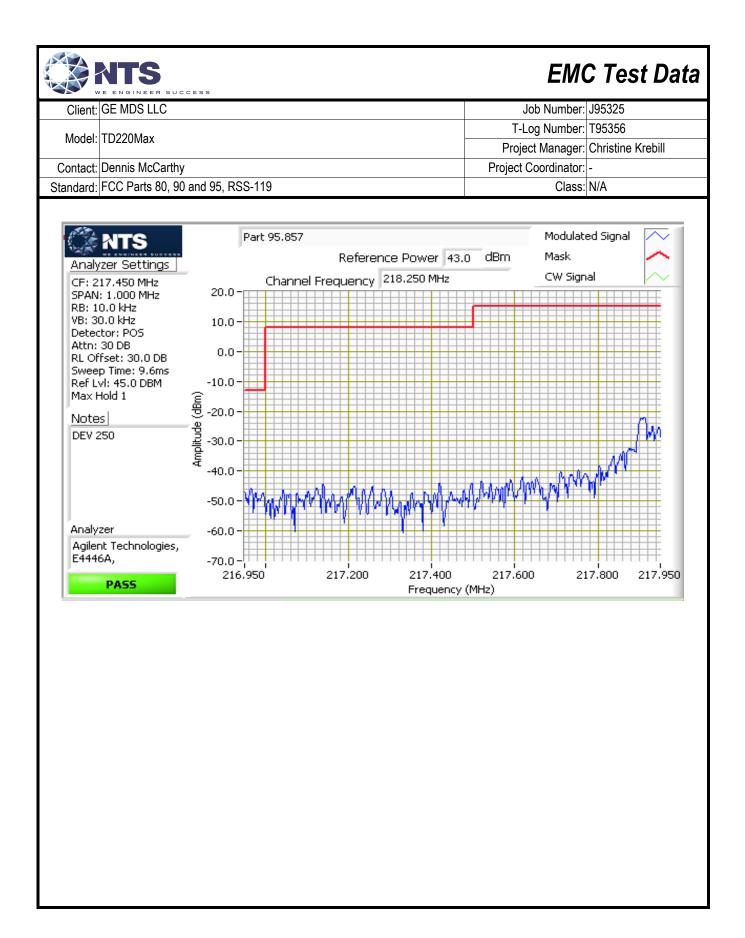


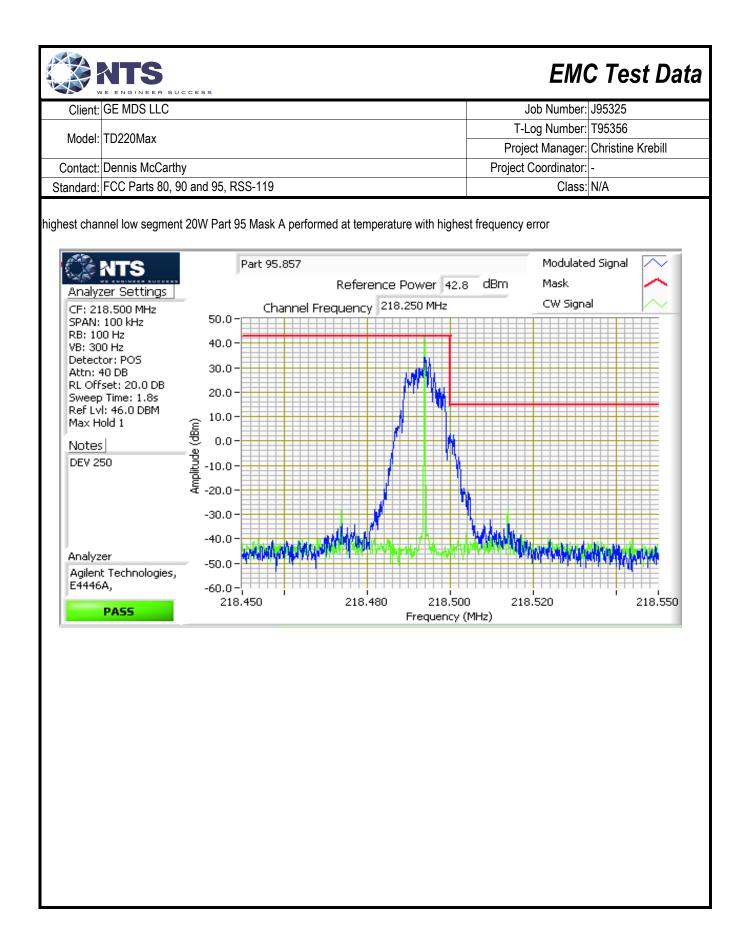


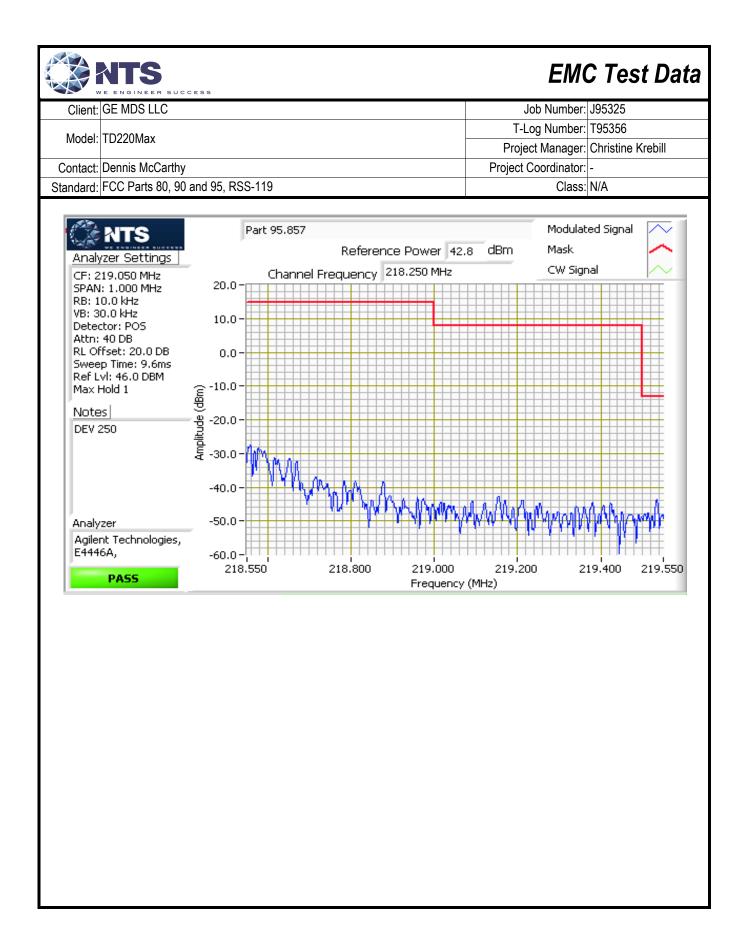


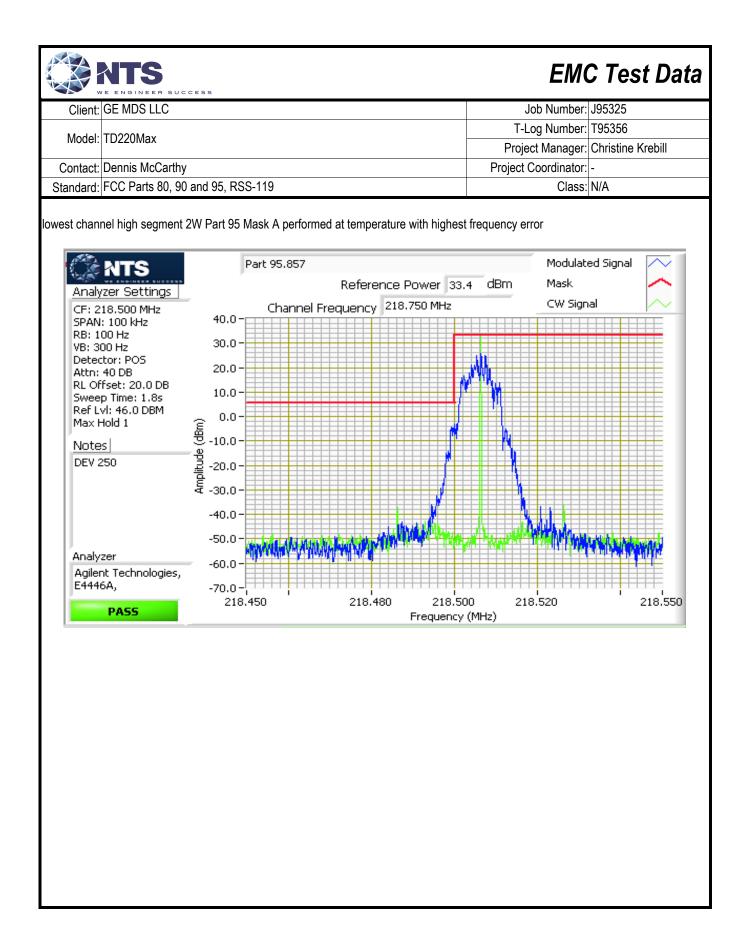


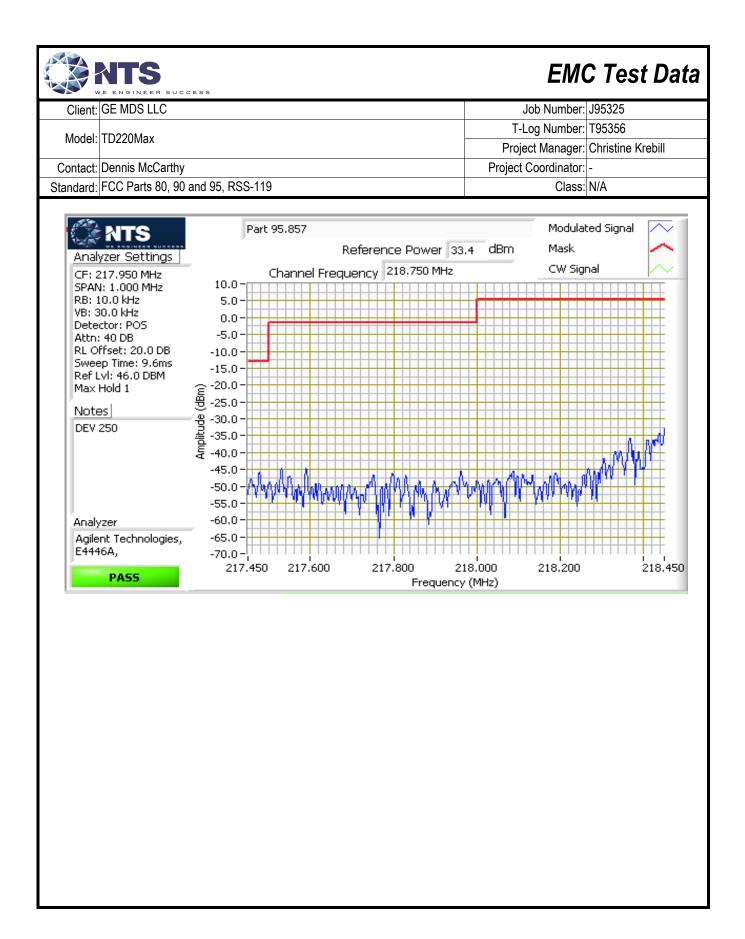


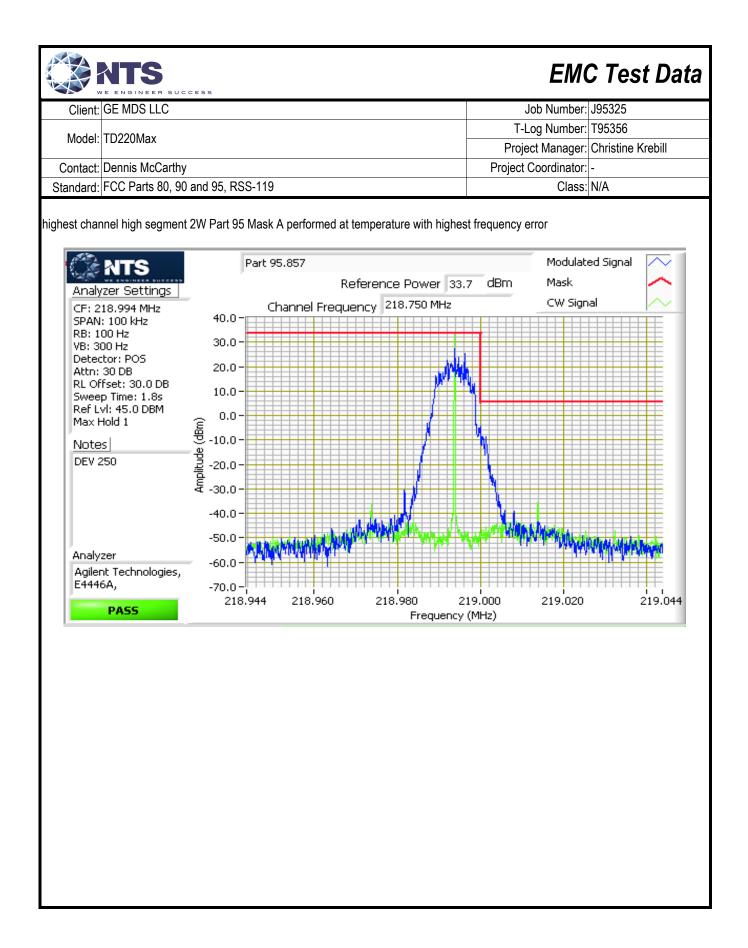

Client: GE MDS LLC							Job	Number:	J95325	
Model: TD220Max								Number:		
								-	Christine	Krebill
ontact: Dennis McCart		0 110				Pro	oject Coo	ordinator:	- N1/A	
ndard: FCC Parts 80,	90 and 95, KS	5-119						Class:	N/A	
#2d: Spectral Mask,			18-219 MHz							
Date of Test: 6/2 Test Engineer: Ja					ig. Used: Change:					
Test Location: F1		Dale		-	Voltage:		C			
					-					
	z, VBW = 300H									
These are the	ency in plots re closest frequer			-		requend	cies were	210.000	25 and 2	10.99375
			ginent euge							
st channel low segmen	nt 2W Part 95 M	lask A perform	ned at temp	erature with	n highest f	irequenc	cy error			
the second		Part 95.857					_	Modulate	d Signal	
KTS		Part 95.057	Pofo	rence Pov		7 dBr		Mask	su biyriai	\sim
Analyzer Settings		Cla avera al		_		/ ubi		CW Sign	al	
CF: 218.000 MHz SPAN: 100 kHz	40.0-	Channel	Frequenc	y 210.23						
RB: 100 Hz VB: 300 Hz	30.0-									
Detector: POS	20.0									
Attn: 30 DB	20.0-					MM,				
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s	20.0 - 10.0 -					WW.				
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM	10.0-					M M				
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref LvI: 45.0 DBM Max Hold 1	10.0-]					
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 Notes	10.0-				/					
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref LvI: 45.0 DBM Max Hold 1	10.0-				ļ					
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 Notes	- 10.0 0.0 - (mg) - 10.0 - عو				1					
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 Notes	10.0-									
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 Notes	- 10.0 - 0.0 - 10.0 - 10.0 - 20.0 - 30.0 - 40.0 - 40.0							Multine at		
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 <u>Notes</u> DEV 250	- 10.0 - 0.0 - 10.0 - 20.0 - 30.0 - 40.0 - 50.0							Many and		
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 <u>Notes</u> DEV 250 Analyzer	10.0 - 0.0 - (mgp) -10.0 - pp: -20.0 - ¥ -30.0 - -40.0 - -50.0 -		, www.w		/ /			Mulay ya		
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 <u>Notes</u> DEV 250	10.0 - (unp) -10.0 -) -10.0 -) -10.0 - -20.0 - -30.0 - -40.0 - -50.0 - s, -70.0 -		in the second							
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 Notes DEV 250 Analyzer Agilent Technologies	10.0 - (ugp) -10.0 -) -10.0 -) -20.0 - -20.0 - -30.0 - -40.0 - -50.0 - s,		217		218.00		218.0	20		218.050
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 <u>Notes</u> DEV 250 Analyzer Agilent Technologies E4446A,	10.0 - (unp) -10.0 -) -10.0 -) -10.0 - -20.0 - -30.0 - -40.0 - -50.0 - s, -70.0 -		217		218.00 equency		218.0	20		218.050
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 <u>Notes</u> DEV 250 Analyzer Agilent Technologies E4446A,	10.0 - (unp) -10.0 -) -10.0 -) -10.0 - -20.0 - -30.0 - -40.0 - -50.0 - s, -70.0 -		217				218.0	20		218.050
Attn: 30 DB RL Offset: 30.0 DB Sweep Time: 1.8s Ref Lvl: 45.0 DBM Max Hold 1 <u>Notes</u> DEV 250 Analyzer Agilent Technologies E4446A,	10.0 - (unp) -10.0 -) -10.0 -) -10.0 - -20.0 - -30.0 - -40.0 - -50.0 - s, -70.0 -		217				218.0	20		218.050

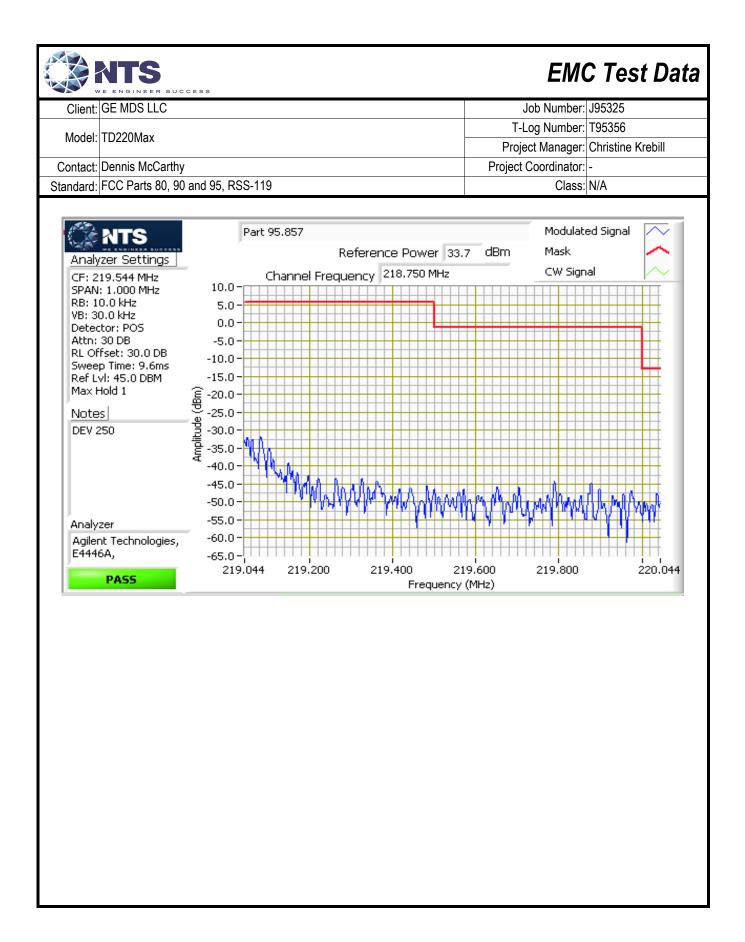


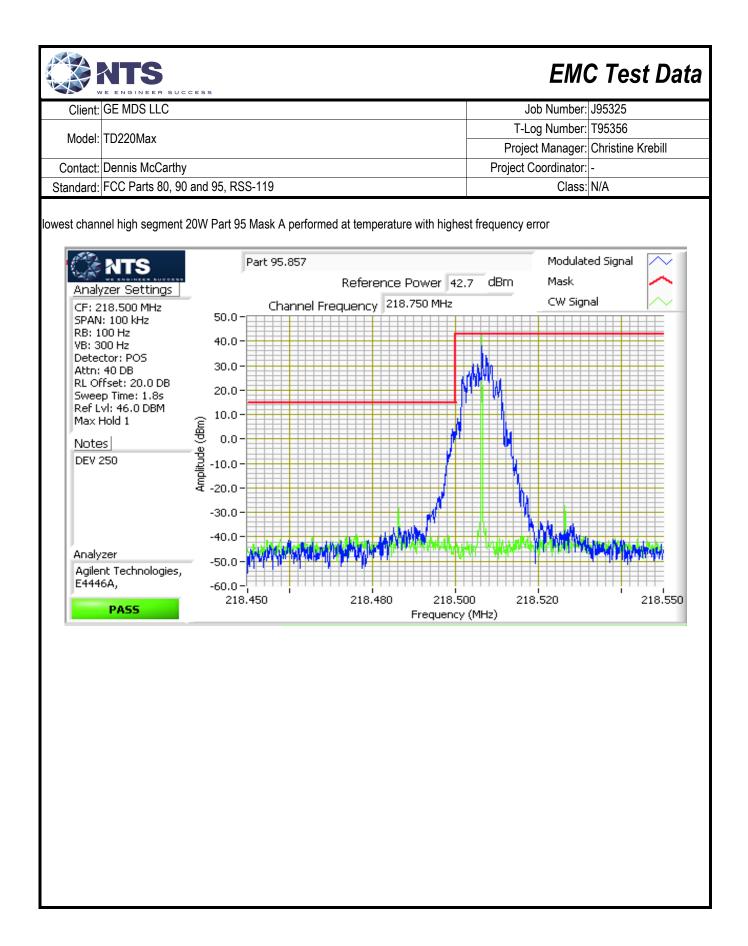


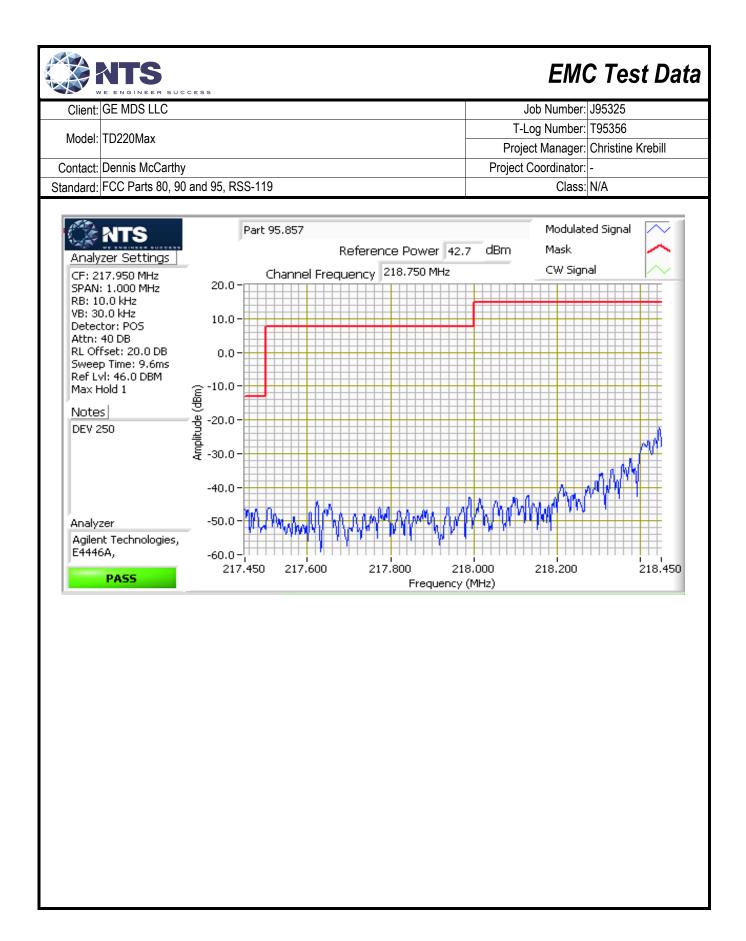


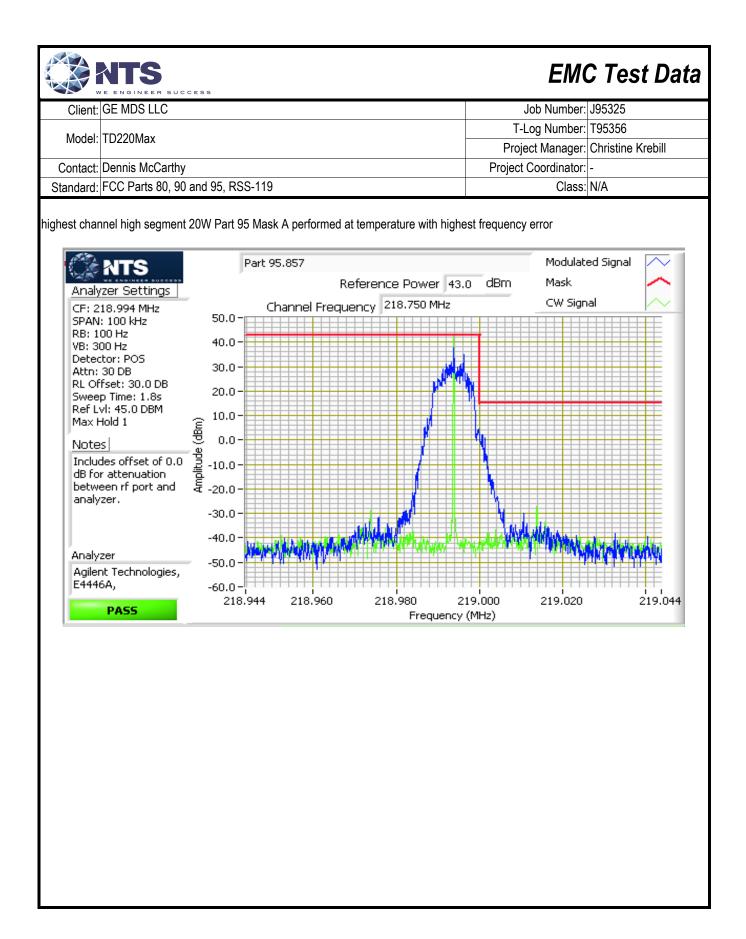


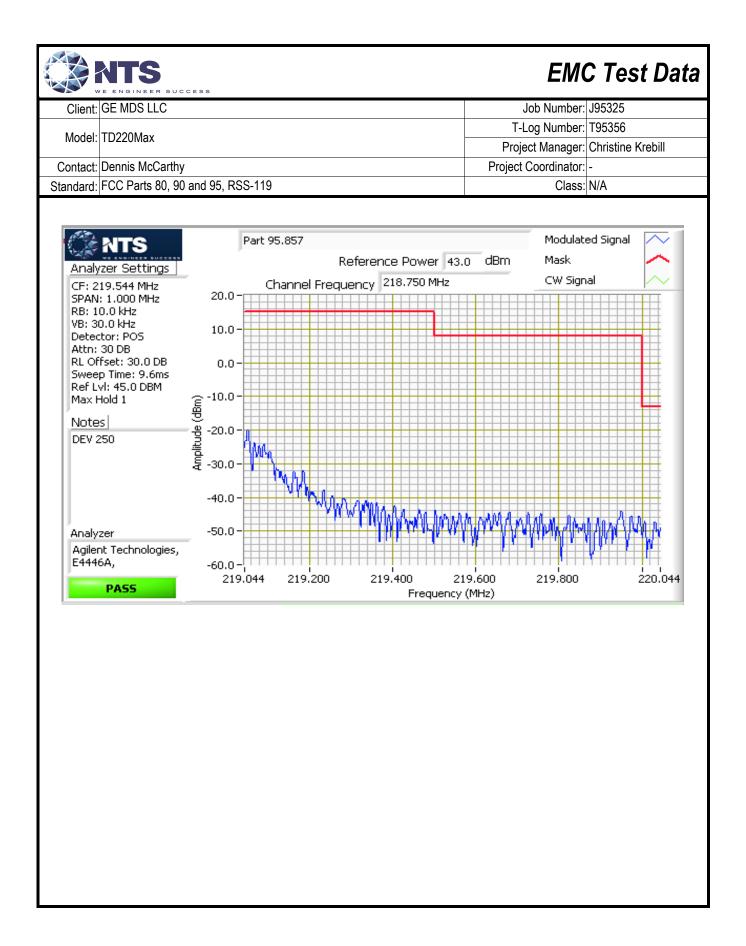


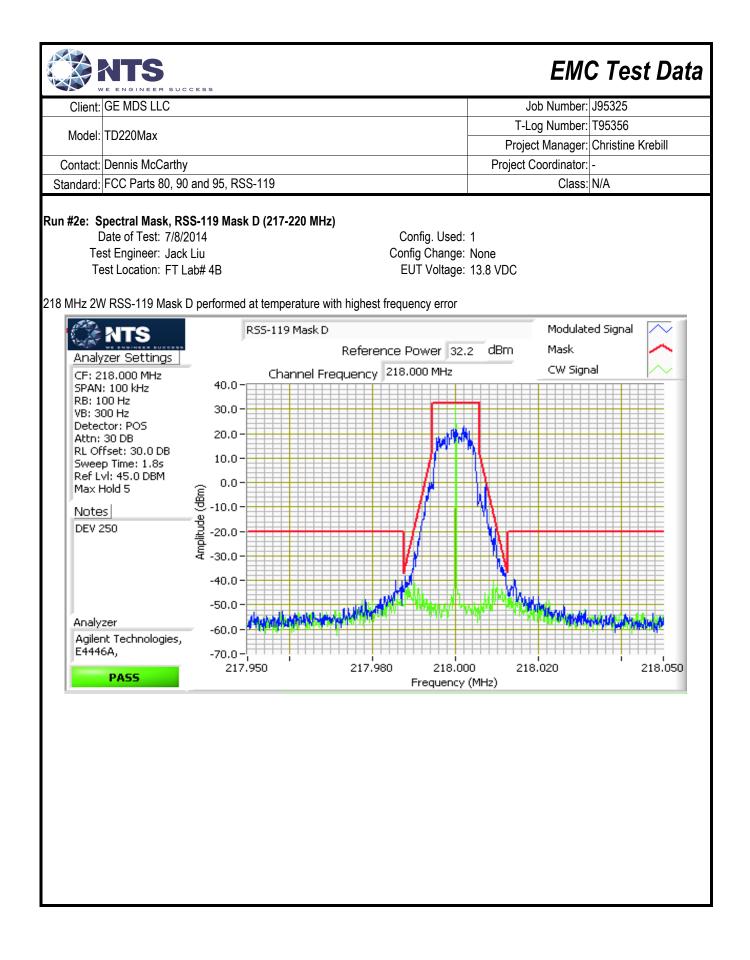


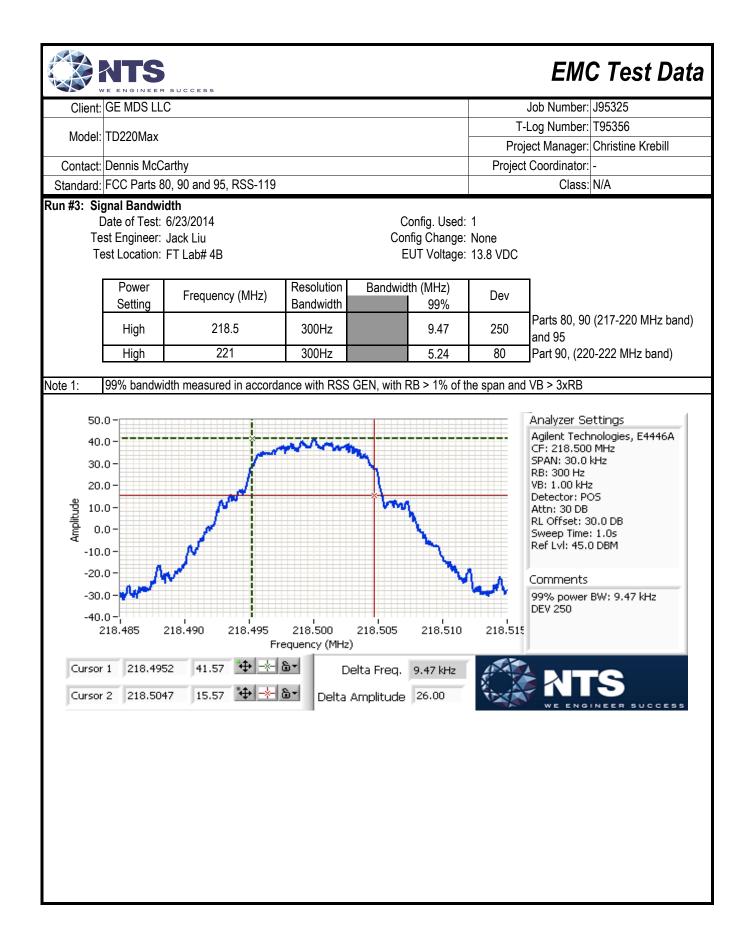


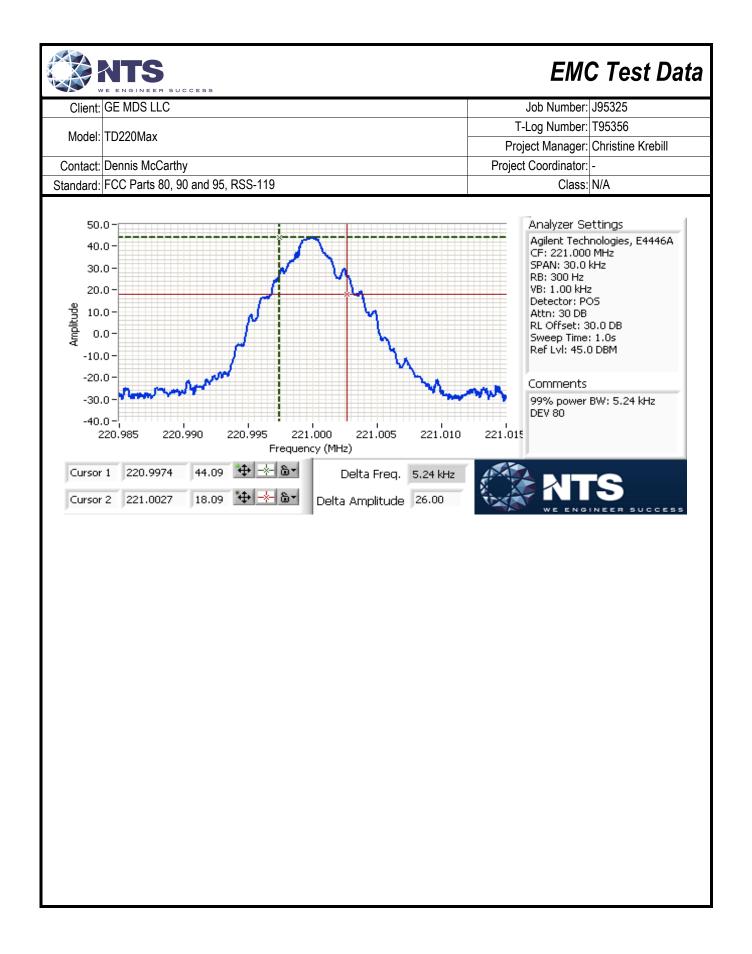


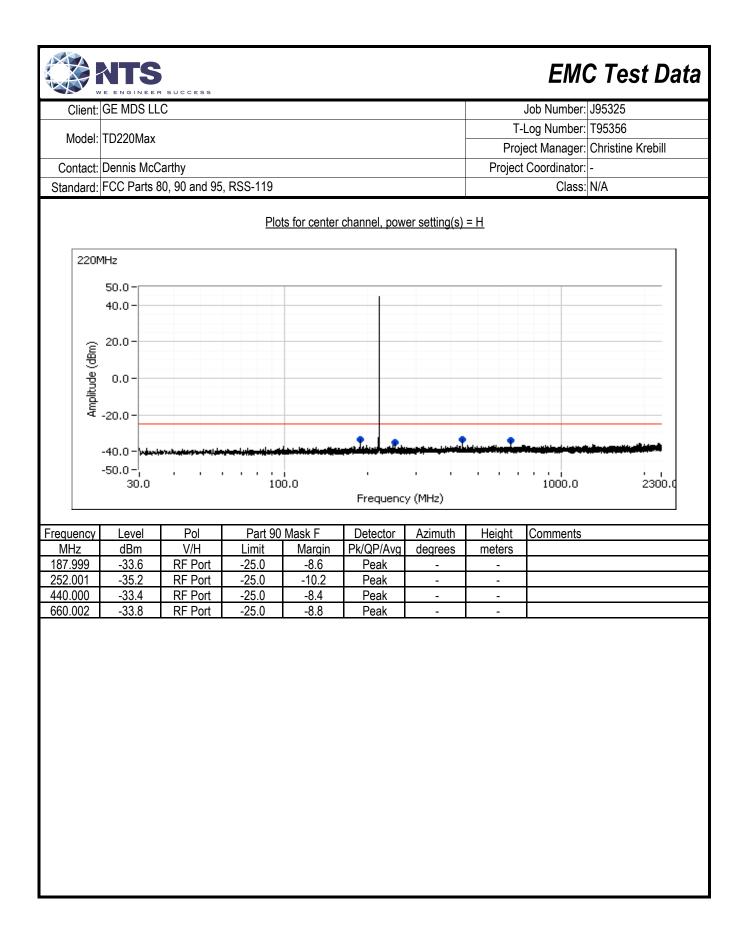


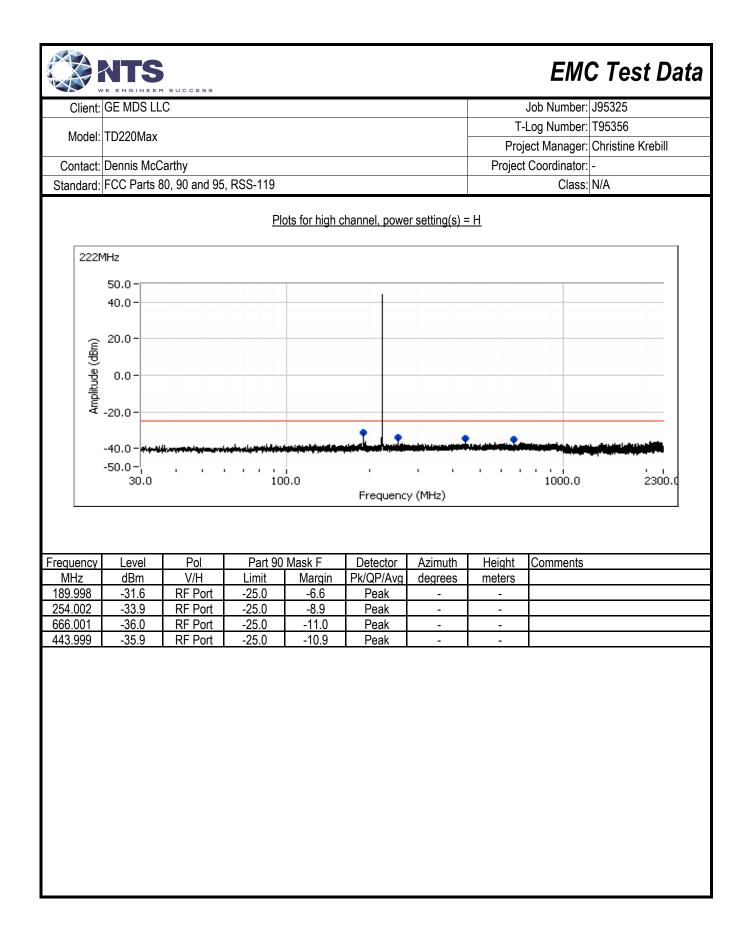


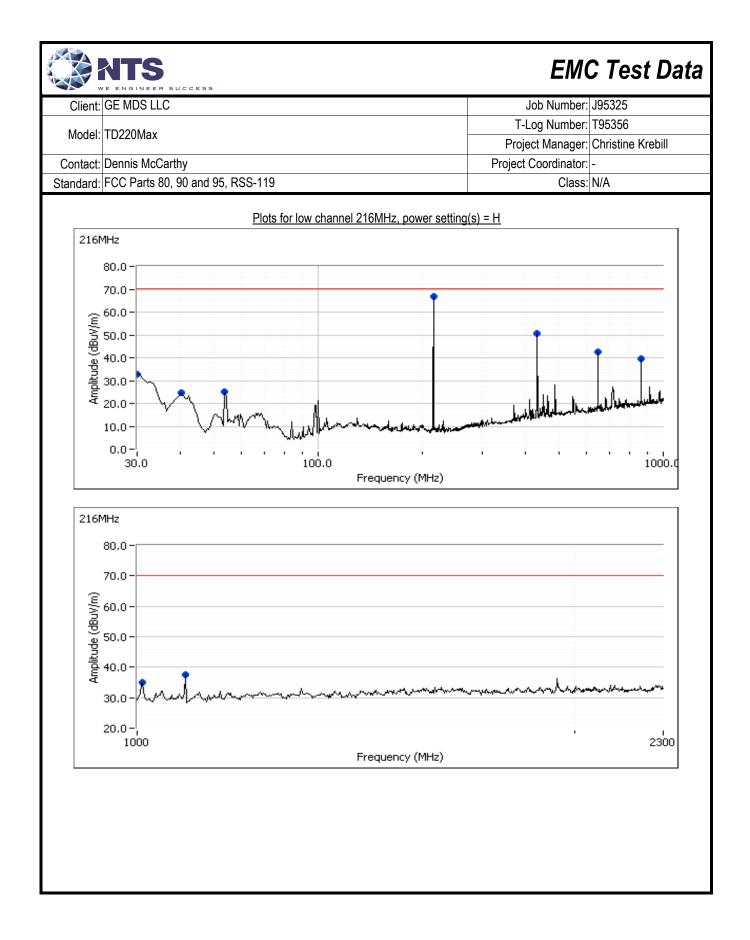


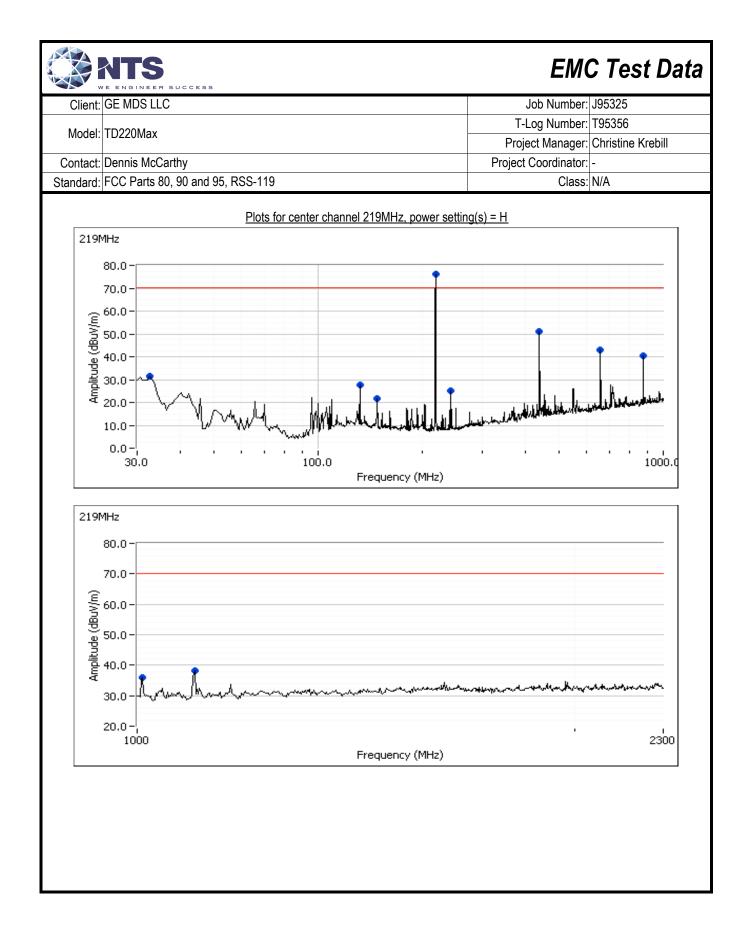


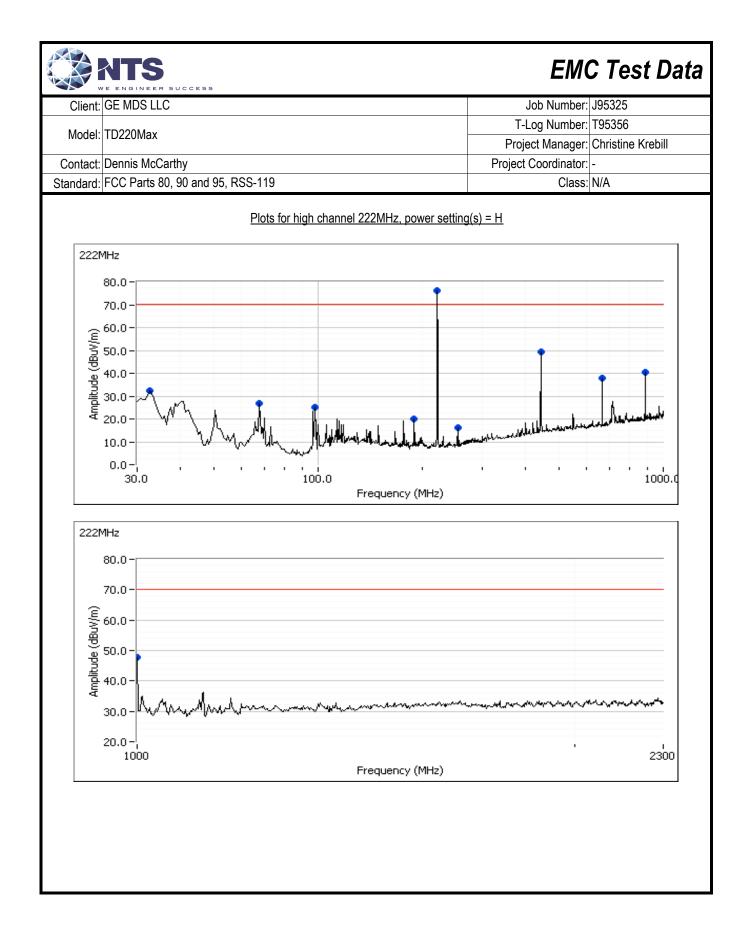







Client:	GE MDS LLC							Job Number:	J95325
							Ţ.	Log Number:	T95356
Model:	TD220Max			Pro	ject Manager:	Christine Krebill			
Contact:	: Dennis McC	Carthy				t Coordinator:			
		80, 90 and 95	, RSS-119		Class:				
		purious Emi		nducted					
	Date of Test:		,			onfig. Used:			
	est Engineer:					fig Change:			
Te	est Location:	FT Lab# 4B			E	UT Voltage:	13.8 VDC		
		Power					-		1
		Setting	Frequen	cy (MHz)	Lir	nit	R	esult	
		High	2	16	-25 (dBm	P	ass	1
		High		20	-25 (ass	
		High	22	22	-25 (dBm	P	ass	
	Toot Out of	Dand Courie	n Emissions	with don	d engt pd 0 s	otting			
e : limit is t 2161		CC Part 90 M		·	hannel, powe	r setting(s) =	<u>H</u>		
limit is t	MHz 50.0 - 40.0 -	CC Part 90 M		·	hannel, powe	<u>r setting(s) =</u>	<u>H</u>		
limit is t	MHz 50.0 - 40.0 -	CC Part 90 M		·	hannel, powe	r setting(s) =	<u>H</u>		
limit is t	MHz 50.0 - 40.0 -	CC Part 90 M		·	hannel, powe	r setting(s) =	<u>H</u>		
limit is t	MHz 50.0 - 40.0 - 20.0 - 0.0 -			·	hannel, powe	r setting(s) =			
limit is t	MHz 50.0 - 40.0 - 20.0 - -20.0 -		<u>Pl</u>	ots for low o	t				
limit is t	MHz 50.0 - 40.0 - 20.0 - 0.0 -		<u>Pl</u>	ots for low o	1			1000.0	2300.0
limit is t	MHz 50.0 - 40.0 - 20.0 - -20.0 - -40.0 -		<u>Pl</u>	ots for low o	t				
limit is t 216r (ugp) Wblitnde (dgw)	MHz 50.0 - 40.0 - 20.0 - -20.0 - -40.0 - -50.0 - 30.0		<u>Pl</u>	ots for low o	Frequenc	y (MHz)		1000.0	
limit is t 216r (wgp) Hublithde guency	MHz 50.0 - 40.0 - 20.0 - -20.0 - -40.0 - -50.0 - 30.0	Pol	<u>Pl</u>	ots for low o	Frequence	y (MHz)	Height		
limit is t 216r (wgp) guency MHz	MHz 50.0 - 40.0 - 20.0 - -20.0 - -20.0 - -40.0 - -50.0 - 30.0 Level dBm	Pol	<u>Pl</u>	ots for low o	Frequence Detector Pk/QP/Avg	y (MHz)		1000.0	
limit is t	MHz 50.0 - 40.0 - 20.0 - -20.0 - -40.0 - -50.0 - 30.0	Pol	<u>Pl</u>	ots for low o	Frequenc	y (MHz)	Height	1000.0	
limit is t 216r (ugp) guency MHz 4.003	MHz 50.0 - 40.0 - 20.0 - -20.0 - -20.0 - -40.0 - -40.0 - -30.0 Level dBm -33.1	Pol V/H RF Port	<u>Pl</u>	ots for low of the second seco	Frequence Detector Pk/QP/Avg Peak	y (MHz)	Height	1000.0	



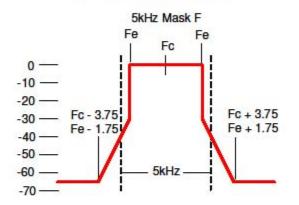


	VE ENGINEER	SUCCESS							C Test Data
Client:	GE MDS LL	С			Job Number:	J95325			
								Log Number:	T95356
Model:	TD220Max			Project Manager:					
Contact:	Dennis McC	arthy		-	t Coordinator:				
	FCC Parts 8	-	RSS-119				110,000	Class:	
	ut of Band S			diatad				01000.	14/7 (
λuπ#J. Οι	it of Dallu S	purious Em	15510115, Mal	lialeu					
		Conducted	l limit (dBm):	-25					
A	Approximate		• • •						
	TT	J							
he limit is t	aken from FC	CC Part 90 N	lask F						
	Preliminary n		its						
	Date of Test:					onfig. Used:			
	est Engineer:					ifig Change:			
Te	est Location:	FT Chambe	r #7		E	UT Voltage:	13.8VDC		
Frequency	Level	Pol	FC	C 90	Detector	Azimuth	Height	Comments	Chann
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	216
30.038	32.8	V	70.2	-37.4	Peak	2	1.0		216
40.258	24.7	V	70.2	-45.5	Peak	16	1.0		216
432.007	50.6	Н	70.2	-19.6	Peak	203	1.5		216
647.994	42.4	Н	70.2	-27.8	Peak	203	1.5		216
216.010	66.6	Н	N/A	-	Peak	209	2.0	Fundamenta	al 216
863.992	39.7	Н	70.2	-30.5	Peak	290	1.0		216
53.335	25.2	V	70.2	-45.0	Peak	349	1.0		216
1008.040	35.1	Н	70.2	-35.1	Peak	278	1.6		216
1080.040	37.7	V	70.2	-32.5	Peak	189	1.0		216
20 702	24.4	14	70.0	20.0	Deals	4.4	1.0		
32.723	31.4	V	70.2	-38.8	Peak	44	1.0		219
242.815 219.008	25.1 76.0	H	70.2 N/A	-45.1	Peak Peak	51 188	2.0 2.0	Fundamenta	219 al 219
438.005	51.2	H	70.2	-19.0	Peak	200	1.5		219
657.011	42.8	H	70.2	-19.0	Peak	200	1.5		219
876.011	40.6	H	70.2	-29.6	Peak	200	1.0		219
5.5.511	27.7	H	70.2	-42.5	Peak	356	1.5		219
132.093	21.5	H	70.2	-48.7	Peak	356	1.5	1	219
132.093 148.037		H	70.2	-32.0	Peak	157	1.0		219
132.093 148.037 1095.040	38.2								-

Client:	GE MDS LLC	;		Job Number: J95325							
Model.	I: TD220Max							T-Log Number: T95356			
wouer.	TDZZOWIAX			-	ect Manager: Christir	ne Krebill					
Contact: Dennis McCarthy Standard: FCC Parts 80, 90 and 95, RSS-119								Project Coordinator: - Class: N/A			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	216		
887.997	40.6	H	70.2	-29.6	Peak	30	1.5		222		
189.676	19.9	Н	70.2	-50.3	Peak	40	1.5		222		
98.510	25.1	Н	70.2	-45.1	Peak	52	4.0		222		
67.496	26.7	V	70.2	-43.5	Peak	136	1.5	1	222		
222.001	76.1	Н	N/A	-	Peak	188	2.0	Fundamental	222		
254.011	16.2	Н	70.2	-54.0	Peak	216	1.0		222		
444.009	10 E	Н	70.0		D. I	000					
	49.5		70.2	-20.7	Peak	292	1.5		222		
666.000	37.7	Н	70.2	-20.7 -32.5	Peak Peak	294	1.5		222		
666.000 32.717	37.7 32.2	H V	70.2 70.2				1.5 1.0				
666.000 32.717 1000.010 ote 1:	37.7 32.2 47.8 The field stree propagation e for erp limits,	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	I in the standard using presence of the grou als with less than 20	222 222 222 g the free spac nd plane and,		
666.000 32.717 1000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free space nd plane and,		
666.000 32.717 1000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac nd plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac nd plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac nd plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
566.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
566.000 32.717 000.010 te 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
566.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
566.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
566.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac nd plane and,		
666.000 32.717 000.010 ote 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac nd plane and,		
366.000 32.717 000.010 te 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		
366.000 32.717 000.010 te 1:	37.7 32.2 47.8 The field strer propagation e for erp limits, relative to this	H V V equation: E= the dipole g s field streng	70.2 70.2 70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de	-32.5 -38.0 -22.4 bove was ca This limit is has not bee etermined us	Peak Peak Peak Iculated from conservative - n included. T ing substitutio	294 329 197 the erp/eirp I it does not o he erp or eirp	1.5 1.0 1.3 imit detailec consider the p for all sign	presence of the grou	222 222 222 g the free spac ind plane and,		

		SUCCESS						EMO	C Test	Data
Client:	GE MDS LL	С						Job Number:	J95325	
	TD0004							_og Number:	T95356	
Model:	TD220Max							Project Manager: Christine		ebill
Contact:	Dennis McC	arthy		Project Coordinator: -						
	FCC Parts 8		RSS-119				1 10,000	Class:		
	Final Field S			n Maasuran	onte			01000.		
	Date of Test:		Substitutio			onfig. Used:	1			
	Test Engineer: Rafael Varelas Config Change									
	est Location:					UT Voltage:				
EUT Field S	Strength					-				
Frequency	Level	Pol	FC	C 90	Detector	Azimuth	Height	Comments		Channel
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
432.007	50.6	Н	70.2	-19.6	Peak	203	1.5			216
438.005	51.2	Н	70.2	-19.0	Peak	200	1.5			219
Note 1: Note 2:	for erp limits relative to th	, the dipole g	jain (2.2dBi) gth limit is de	has not beer termined usi	conservative - n included. T ng substitutic	he erp or eirp	p for all signa	•	• •	
Substitutio Horizontal	n measurem	ents								
Frequency	Substit	ution measur	ements	Site	EU	r measureme	ents	eirp Limit	erp Limit	Margin
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB
432.007	-0.6	5.9	104.4	99.1	50.6	-48.5	-50.7		-25.0	-25.7
438.005	-0.6	6.0	104.6	99.2	51.2	-48.0	-50.2		-25.0	-25.2
Note 1:		out power (dl			tenna					
Note 2:		ain (dBi) for								
Note 3:					he substitutio		1	- Dura		
Note 4: Note 5:		ength as me			a field strengt	n in aBuv/m	to an eirp in	abm.		

Client:	GE MDS LLC			Job Number:	J95325
	TD00014			T-Log Number:	T95356
Model:	TD220Max			Project Manager:	
Contact:	Dennis McCarthy			Project Coordinator:	
	FCC Parts 80, 90 and 95, F	RSS-119		Class:	
	, ,				
un #8: Fre	equency Stability				
	Date of Test: 6/23/2014		Config. Used		
	st Engineer: Rafael Varelas	5	Config Change		
Te	est Location: FT Lab# 4B		EUT Voltage	e: 13.8 VDC	
	Nominal Frequency:	218.5 MHz			
	Stability Over Temperatur				
	s soaked at each temperate		0 minutes prior to making	g the measurements to ens	ure the EUT and
hamber had	d stabilized at that temperat	ure.			
[emperature]	Frequency Measured		Drift	7	
(Celsius)	(MHz)	<u>U</u> (Hz)		-1	
-30	218.500035	35	(ppm) 0.2	-1	
-30	218.500025	25	0.2	-	
-10	218.500058	58	0.3	-	
0	218.500035	35	0.2	-	
10	218.500033	33	0.2	1	
20	218.500075	75	0.3	7	
30	218.500023	23	0.1]	
40	218.500013	13	0.1		
50	218.500017	17	0.1	_	
	Worst case:	75	0.3		
	Stability Over Input Voltag Itage is 13.8Vdc. Frequency Measured		Drift	-	
(DC)	(MHz)	<u>D</u> (Hz)		-	
85%	218.500075	75	(ppm) 0.3	11.7 V	
	218.500075				
115%		75	0.3		
0 5 0/		75	0.3	11.7 V 15.9 V	


Appendix C Mask Calculation

FCC Mask F Calculations:

Part 90.209 states that the channel spacing for 220-222MHz is 5kHz and the authorized BW is 4kHz.

Part 90.210 emission mask F states that any emission must be attenuated below the power (P) as follows:

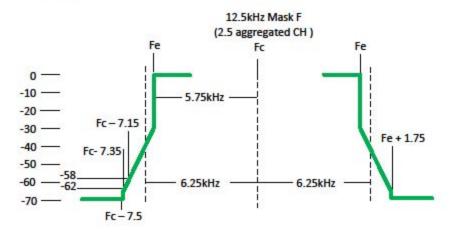
- On any freq from the center Fo to the edge of the authorized bw, Fe (2kHz); 0dB.
- On any frequency removed from the center of the authorized bw by a displacement frequency (Fd in kHz) of more than 2kHz (Fe) up to and including 3.75kHz: 30 + 20(Fd -2) dB or 55 + 10 log (P), or 65 dB whichever is less.
- On any freq beyond 3.75kHz removed from the center of the authorized bw Fd: At least 55 + 10 log (P)dB.

Subpart T 90.733e states that for aggregated channels in the 220MHz range mask F must be met only at the channel edges. So we will take the edge of the 5kHz mask F and move it to coincide with the edge of the aggregated channels.

For the 5kHz mask F, the channel edge is 2.5kHz from the center and Fe is 2kHz from the center. So Fe is .5kHz from the channel edge.

For a 12.5kHz channel the channel edge is 6.25kHz from the center and Fe will be 6.25 - .5kHz = 5.75kHz from center.

The rules for the mask become:


- 1. On any freq from the center Fo to the edge, 5.75kHz; 0dB.
- On any frequency removed from the center of the authorized bw by a displacement frequency (Fd in kHz) of more than 5.75kHz (Fe) up to and including 7.5kHz: 30 + 20(Fd –5.75) dB or 55 + 10 log (P), or 65 dB whichever is less.
- On any freq beyond 7.5kHz removed from the center of the authorized bw Fd: At least 55 + 10 log (P)dB.

For low power radios the maximum attenuation will be determined by 55 + 10 log (P). (90.210F sub 2)

For a 2 watt radio that equals 55 + 10 log (2). Equals 58dB. Which meets the sloping line when 30 + 20 (Fd -5.75) = 58. At Fd = 7.15kHz For a 5 watt radio that equals 62dB. Which meets the sloping line when Fd = 7.35kHz For a 10 watt radio that equals 65dB. Which meets the sloping line when Fd = 7.5kHz

For any higher power radio this is the limit where the sloping line ends. For Fd > 7.5kHz then $55 + 10 \log (P)$ dB. For 25 watts this is $55 + 10 \log (25)$ dB = 69dB.

The final mask F for a 25 watt radio using 2.5 aggregated channels (12.5kHz) looks like this:

End of Report

This page is intentionally blank and marks the last page of this test report.