
AOS-CX 10.07 REST v10.04 API
Guide

6100, 6200, 6300, 6400, 8320, 8325, 8360,

8400 Switch Series

Part Number: 5200-7883
Published: April 2021
Edition: 1

| 2

Copyright Information

©Copyright 2021 Hewlett Packard Enterprise Development LP.

Open Source Code

This product includes code licensed under theGNU General Public License, the GNU Lesser General Public
License, and/or certain other open source licenses. A completemachine-readable copy of the source code
corresponding to such code is available upon request. This offer is valid to anyone in receipt of this
information and shall expire three years following the date of the final distribution of this product version
by Hewlett Packard Enterprise Company. To obtain such source code, send a check ormoney order in the
amount of US $10.00 to:

Hewlett Packard Enterprise Company
6280 America Center Drive
San Jose, CA 95002
USA

Notices
The information contained herein is subject to changewithout notice. The only warranties for Hewlett
Packard Enterprise products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional warranty.
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Confidential computer software. Valid license fromHewlett Packard Enterprise required for possession, use,
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to theU.S. Government under
vendor's standard commercial license.

Links to third-party websites take you outside theHewlett Packard Enterprise website. Hewlett Packard
Enterprise has no control over and is not responsible for information outside theHewlett Packard
Enterprise website.

Contents

Contents

Contents 3

About this document 8
Applicable products 8
Latest version available online 8
Command syntax notation conventions 8
About the examples 9
Identifying switch ports and interfaces 10
Identifyingmodular switch components 11

Introduction to the AOS-CX REST API 12
REST API versions 12

Differences among REST API versions 12
AOS-CX Network Analytics Engine scripts 12
Interfaces and ports 12
GETmethod 12
Resource collections 13

REST API accessmodes 13
Read-write accessmode 13
Read-only accessmode 14

REST API URI 14
Parts of a URI 14

URI path, including path parameters 14
Query component 15

Resources 15
Resource collections and singletons 16

Collections 16
Subcollections 16
Singletons 16

Categories of resource attributes 17
Configuration attributes 17
Writable attributes 17
Status attributes 17
Statistics attributes 17
Attribute categoriesmight vary 17

Enabling Access to the REST API 19
Setting the admin password 19
Showing the REST API access configuration 20
Disabling access to the REST API 20
HTTPS server commands 21

https-server rest access-mode 21
https-server session close all 22
https-server vrf 22
show https-server 24

Accessing the AOS-CX REST API 26
Authenticating REST API sessions 26
User groups and access authorization 27

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 3

Contents | 4

AOS-CX REST API Reference (UI) 29
Accessing the REST API using the AOS-CX REST API Reference 29

Logging in and logging out using the AOS-CX REST API Reference 30
AOS-CX REST API Reference basics 30

AOS-CX REST API Reference homepage 30
Writemethods (POST, PUT, and DELETE) 34

Considerations whenmaking configuration changes 35
Considerations for ports and interfaces 35

Hardware (system) interfaces 35
LAG interfaces 35
VLAN interfaces 35

Writemethods (POST, PUT) supported in read-only mode 36
GETmethod usage and considerations 36

GETmethod parameters 36
Wildcard character support 37
Attributes parameter 37
Count parameter 38
Depth parameter 38
Filter parameter 39
Selector parameter 39

POSTmethod usage and considerations 41
PUTmethod usage and considerations 41

PUT request body requirements 42
PUT behavior 42
Exceptions to the PUT strict replace behavior 42
Best practice for building the PUT request body 42

DELETEmethod usage and considerations 42
REST requests and accounting logs 43
AOS-CX REST API reference summary 43

Switch REST API access default 43
Switch REST API default accessmode 43
Enabling access to theWeb UI and REST API 43
Setting the REST API accessmode to read-write 43
Showing the REST API access configuration 44
AOS-CX REST API Reference URL: 44
REST API versions and switch software versions 44
Getting REST API version information from a switch 44
Protocol 44
Port 44
Request and response body format 44
Session idle timeout 44
Session hard timeout 45
Authentication 45
HTTPS client sessions 45
VSX peer switch access 45

Using Curl Commands 46
About the curl command examples 46
Getting the REST API versions on the switch 47
Accessing the REST API using curl 47

Logging in using curl 48
Passing the cookie back to the switch 49
Logging Out Using Curl 50

Examples 51
Example: GETmethod 51
Example: Getting and deleting certificates using REST APIs 51

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 5

Getting a list of all certificates 51
Getting a certificate 52
Deleting a certificate 52

Example: Generating a self-signed certificate using REST APIs 53
Example: Getting and installing a signed leaf certificate using REST APIs 53
Example: Associating a leaf certificate with a switch feature using REST APIs 57
Example: Configurationmanagement using REST APIs 58

Downloading a configuration 58
Downloading the startup configuration: 58
Uploading a configuration 58
Copying a configuration 59

Example: Firmware upgrade using REST APIs 60
Uploading a file as the secondary firmware image 60
Booting the systemusing the secondary firmware image 60

Example: Log operations using REST APIs 61
Event logs 61
Accounting (audit) logs 61

Example: Ping operations using REST APIs 62
Example: Traceroute operations using REST APIs 62
Example: Usermanagement using REST APIs 63

Creating a user 63
Changing a password 63
Deleting a user 64

Example: Creating an ACL with an interface using REST APIs 64
Example: Creating a VLAN and a VLAN interface using REST APIs 66
Example: Enabling routing on an interface 66

VSX peer switches and REST API access 68
Examples of curl commands 68
Example: Interacting with a VSX peer switch 69

AOS-CX real-time notifications subsystem 71
SecureWebSocket Protocol connections for notifications 71

Notification topics as switch resource URIs 72
Rules for topic URIs 72
Notification security features 73
AOS-CX real-time notifications subsystem reference summary 73

Connection protocol 73
Port 73
Message format 73
Message types 73
Authorization 73
Notification resource URI 73
Session idle timeout 73
Session hard timeout 74
Subscription persistence 74
Configurationmaximums 74

Enabling the notifications subsystemon a switch 74
Establishing a secureWebSocket connection through aweb browser 74
Establishing a secureWebSocket connection using a script 74
Subscribing to topics 75
Unsubscribing from topics 76
Subscription throttling 77
Parts of a subscribemessage 79

Subscribemessage example 79
Components of a subscribemessage 79

Contents | 6

Parts of a subscription successmessage 80
Example successmessage 80
Components of subscription successmessage 80
Components of a topic 80

Parts of a notificationmessage 81
Notificationmessage examples 81
Components of a notificationmessage 82
Components of a topic 82

Example: Browser-basedWebSocket connection 83
About the example 83
Example screen 84
Example HTML source 84

Example: Getting information about current subscribers 86

Troubleshooting 88
General troubleshooting tips 88

Connectivity 88
Resources, attributes, and behaviors 88
GET, PUT, POST, and DELETEmethods 88

Aruba 8400 switch examples: 88
Aruba 8320 switch examples: 89

Hardware and other features 90
REST API response codes 90
Error "'admin' password is not set" 91

Symptom 91
Cause 92
Action 92

Error "certificate verify failed" returned from curl command 92
Symptom 92
Cause 92
Action 92

HTTP 400 error "Invalid Operation" 92
Symptom 92
Cause 92
Action 92

HTTP 400 error "Value is not configurable" 93
Symptom 93
Cause 93
Action 93

HTTP 401 error "Authorization Required" 93
Symptom 93
Solution 1 93

Cause 93
Action 93

Solution 2 93
Cause 93
Action 94

HTTP 401 error "Login failed: session limit reached" 94
Symptom 94
Cause 94
Action 94

HTTP 403 error "Forbidden" on awrite request 94
Symptom 94
Cause 94
Action 95

HTTP 403 error "Forbidden" on aGET request 95

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 7

Symptom 95
Cause 95
Action 95

HTTP 404 error "Page not found" when accessing the switch URL 95
Symptom 95
Cause 95
Action 95

HTTP 404 error "Object not found" on object with "ports/" or "interfaces/" in URI Path 95
Symptom 95
Cause 96
Action 96

HTTP 404 error "Object not found" returned from a switch that supportsmultiple REST API ver-
sions (10.04 and later) 96

Symptom 96
Cause 96
Action 96

HTTP 404 error "Object not found" when using awritemethod 96
Symptom 96
Cause 96
Action 96

HTTP 404 error "Page not found" when using awritemethod 97
Symptom 97
Cause 97
Action 97

Logout Fails 97

Support and Other Resources 98
Accessing Aruba Support 98
Accessing Updates 98

Aruba Support Portal 98
My Networking 99

Warranty Information 99
Regulatory Information 99
Documentation Feedback 99

Chapter 1
About this document

About this document
This document describes features of the AOS-CX network operating system. It is intended for administrators
responsible for installing, configuring, andmanaging Aruba switches on a network.

Applicable products
This document applies to the following products:

n Aruba 6100 Switch Series (JL675A, JL676A, JL677A, JL678A, JL679A)
n Aruba 6200 Switch Series (JL724A, JL725A, JL726A, JL727A, JL728A)
n Aruba 6300 Switch Series (JL658A, JL659A, JL660A, JL661A, JL662A, JL663A, JL664A, JL665A, JL666A,

JL667A, JL668A, JL762A)
n Aruba 6400 Switch Series (JL741A, R0X26A, R0X27A, R0X29A, R0X30A)
n Aruba 8320 Switch Series (JL479A, JL579A, JL581A)
n Aruba 8325 Switch Series (JL624A, JL625A, JL626A, JL627A)
n Aruba 8360 Switch Series (JL700A, JL701A, JL702A, JL703A, JL706A, JL707A, JL708A, JL709A, JL710A,

JL711A)
n Aruba 8400 Switch Series (JL375A, JL376A)

Latest version available online
Updates to this document can occur after initial publication. For the latest versions of product
documentation, see the links provided in Support and Other Resources.

Command syntax notation conventions

Convention Usage

example-text Identifies commands and their options and operands, code examples,
filenames, pathnames, and output displayed in a command window. Items that
appear like the example text in the previous column are to be entered exactly
as shown and are required unless enclosed in brackets ([]).

example-text In code and screen examples, indicates text entered by a user.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 8

About this document | 9

Convention Usage

Any of the following:
n <example-text>
n <example-text>
n example-text

n example-text

Identifies a placeholder—such as a parameter or a variable—that youmust
substitute with an actual value in a command or in code:

n For output formats where italic text cannot be displayed, variables are
enclosed in angle brackets (< >). Substitute the text—including the
enclosing angle brackets—with an actual value.

n For output formats where italic text can be displayed, variablesmight
ormight not be enclosed in angle brackets. Substitute the text
including the enclosing angle brackets, if any, with an actual value.

| Vertical bar. A logical OR that separates multiple items from which you can
choose only one.
Any spaces that are on either side of the vertical bar are included for
readability and are not a required part of the command syntax.

{ } Braces. Indicates that at least one of the enclosed items is required.

[] Brackets. Indicates that the enclosed item or items are optional.

… or
...

Ellipsis:
n In code and screen examples, a vertical or horizontal ellipsis indicates an

omission of information.
n In syntax using brackets and braces, an ellipsis indicates items that can be

repeated. When an item followed by ellipses is enclosed in brackets, zero
or more items can be specified.

About the examples
Examples in this document are representative andmight not match your particular switch or environment.

The slot and port numbers in this document are for illustration only andmight be unavailable on your
switch.

Understanding the CLI prompts
When illustrating the prompts in the command line interface (CLI), this document uses the generic term
switch, instead of the host name of the switch. For example:
switch>

The CLI prompt indicates the current command context. For example:
switch>

Indicates the operator command context.
switch#

Indicates themanager command context.
switch(CONTEXT-NAME)#

Indicates the configuration context for a feature. For example:
switch(config-if)#

Identifies the interface context.

Variable information in CLI prompts
In certain configuration contexts, the prompt may include variable information. For example, when in the
VLAN configuration context, a VLAN number appears in the prompt:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 10

switch(config-vlan-100)#

When referring to this context, this document uses the syntax:
switch(config-vlan-<VLAN-ID>)#

Where <VLAN-ID> is a variable representing the VLAN number.

Identifying switch ports and interfaces
Physical ports on the switch and their corresponding logical software interfaces are identified using the
format:
member/slot/port

On the 6100 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

On the 6200 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 8. The
primary switch is alwaysmember 1. If the switch is not amember of a VSF stack, thenmember is 1.

n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 onmember 1.

On the 6300 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 10. The
primary switch is alwaysmember 1. If the switch is not amember of a VSF stack, thenmember is 1.

n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 onmember 1.

On the 6400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of amodule in the switch chassis.

o Management modules are on the front of the switch in slots 1/1 and 1/2.
o Linemodules are on the front of the switch starting in slot 1/3.

n port: Physical number of a port on a linemodule.

For example, the logical interface 1/3/4 in software is associated with physical port 4 in slot 3 onmember 1.

On the 83xx Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not amodular switch, so there are no slots.
n port: Physical number of a port on the switch.

About this document | 11

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

If using breakout cables, the port designation changes to x:y, where x is the physical port and y is the lane when
split to 4 x 10G or 4 x 25G. For example, the logical interface 1/1/4:2 in software is associated with lane 2 on
physical port 4 in slot 1 onmember 1.

On the 8400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of amodule in the switch chassis.

o Management modules are on the front of the switch in slots 1/5 and 1/6.
o Linemodules are on the front of the switch in slots 1/1 through 1/4, and 1/7 through 1/10.

n port: Physical number of a port on a linemodule

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 onmember 1.

Identifying modular switch components
n Power supplies are on the front of the switch behind the bezel above themanagement modules. Power

supplies are labeled in software in the format:member/power supply:
o member: 1.
o power supply: 1 to 4.

n Fans are on the rear of the switch and are labeled in software as:member/tray/fan:
o member: 1.
o tray: 1 to 4.
o fan: 1 to 4.

n Fabricmodules are not labeled on the switch but are labeled in software in the format:member/module:
o member: 1.
o member: 1 or 2.

n The display module on the rear of the switch is not labeled with amember or slot number.

Chapter 2
Introduction to the AOS-CX REST API

Introduction to the AOS-CX REST API

The Aruba 6100 Switch Series only supports the default VRF and has no management port. Therefore, references
in this guide to other VRFs or the management port do no apply to the 6100 Switch Series. Configuration for these
switches should be done over an SVI having a physical port with access to the SVI, since the physical ports in the
6100 are not routed.

Switches running the AOS-CX software are fully programmablewith a REST (REpresentational State Transfer)
API, allowing easy integration with other devices both on premises and in the cloud. This programmability—
combined with the ArubaNetwork Analytics Engine—accelerates network administrator understanding of
and response to network issues.

The AOS-CX REST API is a web service that performs operations on switch resources using HTTPS POST, GET,
PUT, and DELETEmethods.

The AOS-CX REST API enables programmatic access to the AOS-CX configuration and state database at the
heart of the switch. By using a structuredmodel, changes to the content and formatting of the CLI output
do not affect the programs you write. The configuration is stored in a structured database, instead of a text
file, making it easier to roll back changes, and dramatically reducing the risk of downtime and performance
issues.

REST API versions
From the AOS-CX release 10.04, the AOS-CX switches support access throughmultiple versions of the REST
API. The REST API versions supported on the AOS-CX switches are v1 and v10.04. The REST API version
v10.04 is supported fromAOS-CX release 10.04 and later.

The version declared in the REST request must match one of the versions of the REST API supported on the
switch. The REST API version is included in theUniformResource Identifier (URI) used in REST requests.

In the following example, the REST API version is v10.04:
https://192.0.2.5/rest/v10.04/system

In the following example, the REST API version is v1:
https://192.0.2.5/rest/v1/system

Each REST API version has its own REST API Guide.

Differences among REST API versions
Resources, attributes, and behaviorsmight differ among the REST API versions and AOS-CX software release.

AOS-CX Network Analytics Engine scripts
URIs that specify monitors in Network Analytics Engine scriptsmust be REST v1 URIs.

Interfaces and ports
The REST v10.04 API provides the interfaces resource to configure and get information about switch ports
and interfaces of all types. The ports resource is not supported by the REST v10.04 API.

GETmethod

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 12

Introduction to the AOS-CX REST API | 13

TheGETmethod query parameters differ between REST v1 and REST v10.04:

n The REST v10.04 selector parameter includes a value of writable, which enables you to get only the
mutable attributes of a resource.

n The REST v1 depth parameter has a default of 0 and a range of 0 through 3.

The REST v10.04 depth parameter has a default of 1 and a range of 1 through 4. The REST v10.04
depth=1 is equivalent to the REST v1 depth=0, and so on.

Resource collections
In REST v10.04, themembers of a resource collection are represented as JSON objects, where the key is the
index and the value is the URI of the resource.

For example, the response to a GET request to /rest/v10.04/system/vrfs is as follows:
{
"default": "/rest/v10.04/system/vrfs/default",
"mgmt": "/rest/v10.04/system/vrfs/mgmt"

}

In contrast, the response to a GET request to /rest/v1/system/vrfs on the same switch is as follows:
[
"/rest/v1/system/vrfs/default",
"/rest/v1/system/vrfs/mgmt"

]

The Aruba 6100 Switch Series only supports the default VRF.

REST API access modes
The REST API supports two accessmodes:

n read-write (default)
n read-only

The default read-write accessmode is not displayed in the show running-configuration command. You
can change the accessmode to read-only using the https-server rest access-mode read-only CLI
command from the global configuration (config) context. You can validate themode set using the show
https-server command.

Read-write access mode
In the read-write accessmode:

n The AOS-CX REST API Reference showsmost of the supported read and writemethods for all switch
resources.

n The REST API can access and change every configurable aspect of the switch asmodeled in the
configuration and state database.

The REST API is powerful, but must be used with extreme caution: For most values, no semantic
validation is performed on the data that you write to the database, and configuration errors can
destabilize the switch.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 14

Read-only access mode
In the read-only accessmode:

n Most switch resources support only GETmethods, but some resources allow PUT or POSTmethods. For
example, you can use POST to log into the switch, use PUT to upload a new running configuration, or use
POST to upload a new firmware version.

n Formost switch resources, the AOS-CX REST API Reference does not show any writemethods (POST, PUT,
and DELETE) the resourcemight support. To show thosewritemethods, read-writemodemust be
enabled.

REST API URI
A switch resource is indicated by its UniformResource Identifier (URI). A URI is the location of a specific web
resource. A URI can bemade up of several components, including the host name or IP address, port
number, the path, and an optional query string.

Parts of a URI
The twomain parts of a URI are the path and the (optional) query component.

URI path, including path parameters
The path is the part of the URI starting with the server URL and ending with the resource ID. In URIs that
have a query component, the path is everything before the questionmark (?). The path has a hierarchy. In a
path, the forward slash (/) indicates the hierarchical relationship between resources.

Because the forward slash has a special meaning, the forward slash characters that are part of the URI path
must be percent-encoded with the code %2F, which represents the forward slash. For example, the following
URI represents the resource utilization for themanagement module in slot 1/5:
https://192.0.2.5/rest/v10.04/system/subsystems/management_module,1%2F5?attributes=resource_
utilization

URI prefix

TheURI prefix is the systemURL and REST API version information. This information is specific to a
particular switch and REST API version, and is the same for every REST API request to that switch.

Script writers often create a variable for theURI prefix. Using a variable enables thewriter to update a script
or use the same script logic for a different switch by updating the value of the URI prefix variable.

TheURI prefix contains the following:

Server URL

Theweb server address of the switch.

Examples:

n https://192.0.2.5

n https://10.17.0.1

n https://myswitch.mycompany.com

If Virtual Switching Extension (VSX) is enabled, you can accessmost resources of the peer switch from this
switch by adding /vsx-peer in the URI path between the server URL and /rest. Formore information about
VSX, see VSX peer switches and REST API access.

For example:
GET https://192.0.2.5/vsx-peer/rest/v10.04/system/vsx?attributes=oper_status

Introduction to the AOS-CX REST API | 15

REST API and version identifier
For example: /rest/v10.04

Path parameters

A path parameter is a part of the URI path that can vary. Typically path parameters indicate a specific
instance of a resource in a collection, such as a specific VLAN in the vlans collection. The path can contain
several path parameters. Path parameters are indicated by braces {}.

For example, the AOS-CX REST API Reference displays the resource for specific VLAN as the following:
/system/vlans/{id}

When you send a request for VLAN 10, the URI you providemust substitute the VLAN ID, 10, for the {id}
query parameter. For example:
/system/vlans/10

In the AOS-CX REST API Reference, you enter the value of the path parameter in theValue field of the id
parameter.

Query component
In many cases, the unique identification of a resource requires a URI that contains both a path and a query
component. The query component is sometimes called the query string.

For example, CPU utilization is a resource represented by the following URI:
https://192.0.2.5/rest/v10.04/system/subsystems/management_module,1%2F5?attributes=resource_
utilization

In a URI, the questionmark (?) indicates the beginning of the query component. The query component
contains nonhierarchical data, and the format of the query string depends on the implementation of the
REST API.

The query component often contains "<key>=<value>" pairs separated by the ampersand (&) character.
Multiple attribute values are supported and are separated by commas. For example:
https://192.0.2.5/rest/v10.04/system/vlans?depth=2&attributes=id,name,type

"Dot" notation for Network Analytics Engine URIs only

When aURI defines amonitor in an ArubaNetwork Analytics Engine (NAE) script, attribute values in the
query string support an additional dot notation that theNetwork Analytics Engine uses to access additional
information. For example:
https://192.0.2.5/rest/v1/system/subsystems/management_module,1%2F5?attributes=resource_
utilization.cpu

The dot notation is supported for certain URIs that definemonitors only in NAE scripts. URIs in NAE scripts
must only be REST v1 URIs.

Resources
In a REST API, the primary representation of data is called a resource. A resource is a representation of an
entity in the system as a URI. The entities can include hardware objects, statistical information,
configuration information, and status information. TheURI might ormight not include a query component.
Resources are nouns—anything that can be named can be a resource.

Examples of resources:

n The resource utilization information:
https://192.0.0.5/rest/v10.04/system/subsystems?attributes=resource_utilization

n The list of configured VLANs:
https://192.0.2.5/rest/v10.04/system/vlans

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 16

n The list of all users:
https://192.0.2.5/rest/v10.04/system/users

n The user with the ID: myadmin:
https://192.0.2.5/rest/v10.04/system/users/myadmin

n The secondary firmware image:
https://192.0.2.5/rest/v10.04/firmware?image=secondary

Resource collections and singletons

Collections
A collection is a directory of resourcesmanaged by the server. Typically, a resource collection contains
multiple resource instances and the collection name is in the plural form.

For example:

n /system/vlans

n /system/users

n /fullconfigs

AGET request to a collection returns the set of JSON objects representing themembers of the collection.
The following curl example shows theGET request and response returned for the vlans collection:

$ curl -k GET -b /tmp/auth_cookie "https://192.0.2.5/rest/v1/system/vlans"
{
"1": "/rest/v10.04/system/vlans/1",
"10": "/rest/v10.04/system/vlans/10",
"20": "/rest/v10.04/system/vlans/20"

}

Each URI in the list represents a configured VLAN.

To get the JSON data for VLAN 10, youmust either send theGET request to theURI representing VLAN 10
("/rest/v10.04/system/vlans/10"), or youmust use the depth parameter to expand the list of URIs in the
vlans collection to get the JSON data for all the VLANs in the collection.

Subcollections
A single resource instance can also contain subcollections of resources.

n In the following example, vlans is a subcollection of the system resource:
/system/vlans

n In the following example, routes is a subcollection of the default VRF resource instance:
/system/vrfs/default/routes

Singletons
There are some resources that can only have one instance. These resources are called singletons and the
resource collection name is in the singular form.

For example:

n /system

n /system/vsx

n /firmware

Introduction to the AOS-CX REST API | 17

Because there is only one resource in a singleton collection, GET requests return the JSON representation of
the resource instead of a URI list of one item. In addition, you do not need to supply a resource ID in the
URL of a GET request. For example, the following GET request to the firmwareURI returns the JSON data
that represents the firmware resource:

$ curl -k GET -b /tmp/auth_cookie "https://192.0.2.5/rest/v1/firmware"
{
"current_version": "TL.10.00.0006E-686-g4a43ab9",
"primary_version": "TL.10.00.0006E-686-g4a43ab9",
"secondary_version": "",
"default_image": "primary",
"booted_image": "primary"

}

Categories of resource attributes
Resources can containmany attributes, and they are organized into the following categories to enablemore
efficient management:

Configuration attributes
Configuration attributes represent user-owned data. Although an attributemust be in the configuration
category to bemodified by a user, not all attributes in the configuration category can bemodified after
the resource instance is created. Configuration attributes that cannot be changed after the resource is
created are called immutable attributes. This distinctionmatters when using a PUT request, because
immutable attributes cannot be included in the request body.
For example, a VLAN ID is an immutable attribute. You cannot change the ID of the VLAN after the VLAN
is created. The VLAN name, in contrast, is amutable (writable) attribute. You can change the VLAN
name after the VLAN is created.

Writable attributes
Writable attributes are the subset of configuration attributes that aremutable. Writable attributes can
bemodified by a user after the resource is created. When using the PUTmethod to modify a resource,
only writable attributes can be included in the request body.
In REST v10.04 and later versions, the GETmethod selector parameter includes a value of writable,
which enables you to get only themutable configuration attributes of a resource.

Status attributes
Status attributes contain system-owned data such as the admin account and various status fields. You
cannot create ormodify instances of attributes in this category.

Statistics attributes
Statistics attributes contain system-owned data such as counters. You cannot create ormodify instances
of attributes in this category.

Attribute categories might vary
A given attribute need not necessarily be in the same category from resource to resource, or even resource
instance to resource instance. If the systemowns an instance of a resource, attributes of that resource
(whichmight be configuration attributes if a user owns the resource instance) become status attributes,
which cannot bemodified by users.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 18

For example, a user can create VLANs. However, the system can also create VLANs. System-owned VLANs
havemany attributes that are considered to be in the status category and not the configuration category.
The status category is used when the data is owned by the system and cannot be overwritten by a user.

Often a resource has a single attribute that indicates whether the resource is owned by the systemor by a
user. For example, for a VLAN, the type attribute indicates whether the VLAN was created by a user.

When this indicator attribute indicates that the resource is owned by the system, the other attributes that
might have been in the configuration category are categorized as status attributes. Likewise, when the
indicator attribute indicates that the resource is owned by a user, the other configuration attributes remain
available formodification by users. In other words, the categories for other attributes on the resource
follow the indicator attribute.

Chapter 3
Enabling Access to the REST API

Enabling Access to the REST API
The AOS-CX Web UI and AOS-CX real-time notifications subsystem rely on the REST API, therefore, all three
are enabled or disabled together.

To access the REST API, Web UI, or notifications subsystem, theHTTPS servermust be enabled on the
specified VRF. The VRF you specify determines fromwhich network the features can be accessed. You can
enable access onmultiple VRFs, including user-defined VRFs, by entering the https-server vrf command
for each VRF on which you want to enable access.

Prerequisites

n Youmust be in the global configuration context: switch(config)#.
n The password for the admin usermust be configured on the switch.

Procedure
Enable HTTPS server access for the specified VRF.

For example:

n To enable access on all data ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

The Aruba 6100 Switch Series only supports the default VRF.

n To enable access on theOOBM port (management interface IP address), specify themanagement VRF
(not applicable to the 6100):

switch(config)# https-server vrf mgmt

n To enable access on ports that aremembers of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

If the switch responds with the following error, the admin usermust have a valid password:
Failed to enable https-server on VRF mgmt. 'admin' password is not set

The switch is shipped from the factory with a default user named adminwithout a password. The admin user
must set a valid password before HTTPS servers can be enabled.

Setting the admin password
Use the following API to login as the admin.
POST /rest/v10.04/login?username=admin

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 19

Enabling Access to the REST API | 20

A new session is started and a response code 268 is returned along with themessage: "Session is
restricted. Administrator password must be set before continuing."

This session is valid only to change the admin password and logout from the REST API UI. Any other request will
return a Forbidden code (403).

Use the following API to change the admin password. Ellipses (...) represent data not included in the
example.
PUT /rest/v10.04/system/users/admin
{
...
"password": "<enter the password>"
...
}

After the password is changed successfully, the session restriction is removed.

Showing the REST API access configuration
To show the REST API access configuration, in themanager context (#) of the CLI, enter the show https-

server command.

For example:

switch# show https-server
HTTPS Server Configuration

VRF : mgmt, default
REST Access Mode : read-write

The Aruba 6100 Switch Series only supports the default VRF.

The command output lists the VRFs on which access to REST API is enabled and shows the current REST API
accessmode.

If access is not enabled on any VRF, the VRF configuration is displayed as <none>.

For example:

switch# show https-server
HTTPS Server Configuration

VRF : <none>
REST Access Mode : read-write

Disabling access to the REST API

The AOS-CX Web UI and AOS-CX real-time notifications subsystem rely on the REST API, therefore, all three are
enabled or disabled together.

Prerequisites
Youmust be in the global configuration context: switch(config)#.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 21

Procedure
Disable HTTPS server access for the specified VRF by using the no form of the https-server vrf command.

For example, the following command disables REST API access on the switch data ports in the default VRF:

switch(config)# no https-server vrf default

You can use the show https-server command to show the current configuration:

switch# show https-server

HTTPS Server Configuration

VRF : mgmt
REST Access Mode : read-write

HTTPS server commands

https-server rest access-mode

Syntax
https-server rest access-mode {read-only | read-write}

Description
Changes the REST API accessmode. The default mode is read-write.

Command context
config

Parameters
read-write

Selects the read/writemode. Allows POST, PUT, and DELETEmethods to be called on all configurable
elements in the switch database.

read-only

Selects the read-only mode. Write access to most switch resources through the REST API is disabled.

Authority
Administrators or local user groupmembers with execution rights for this command.

Usage
Setting themode to read-write on the REST API allows POST, PUT, and DELETEmethods to be called on all
configurable elements in the switch database.

By default, REST APIs in the device are in the read-writemode. Some switch resources allow POST, PUT, and
DELETE regardless of REST API mode. REST APIs that are required to support theWeb UI or theNetwork
Analytics Engine expose POST, PUT, or DELETE operations, even if the REST API accessmode is set to read-
only.

The REST API in read/writemode is intended for use by advanced programmers who have a good
understanding of the system schema and data relationships in the switch database.

Enabling Access to the REST API | 22

Because the REST API in read/write mode can access every configurable element in the database, it is powerful but
must be used with extreme caution: No semantic validation is performed on the data you write to the database,
and configuration errors can destabilize the switch.

On 6300 switches or 6400 switches, by default, the HTTPS server is enabled in read-writemode on the
mgmt VRF. If you enable theHTTPS server on a different VRF, theHTTPS server is enabled in read-only

mode.

Example

switch(config)# https-server rest access-mode read-only

https-server session close all

Syntax
https-server session close all

Description
Invalidates and closes all HTTPS sessions. All existingWeb UI and REST sessions are logged out and all real-
time notification featureWebSocket connections are closed.

Command context
Manager (#)

Authority
Administrators or local user groupmembers with execution rights for this command.

Usage
Typically, a user that has consumed the allowed concurrent HTTPS sessions and is unable to access the
session cookie to log out manually must wait for the session idle timeout to start another session. This
command is intended as aworkaround to waiting for the idle timeout to close an HTTPS session. This
command stops and starts the hpe-restd service, so using this command affects all existing REST sessions,
Web UI sessions, and real-time notification subscriptions.

Example

switch# https-server session close all

https-server vrf

Since the Aruba 6100 Switch Series only supports the default VRF, this command does not apply to the 6100.

Syntax
https-server vrf <VRF-NAME>
no https-server vrf <VRF-NAME>

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 23

Description
Configures and starts theHTTPS server on the specified VRF. HTTPS server features include the REST API
and theweb user interfaces.

The no form of the command stops any HTTPS servers running on the specified VRF and removes theHTTPS
server configuration.

Command context
config

Parameters
<VRF-NAME>

Specifies the VRF name. Required. Length: Up to 32 alpha numeric characters.

Authority
Administrators or local user groupmembers with execution rights for this command.

Usage
By using this command, you enable access to both theWeb UI and to the REST API on the specified VRF. You
can enable access onmultiple VRFs.

By default, 8320, 8325, 8360, and 8400 Switch Series have an HTTPS server enabled on the mgmt VRF.

By default, the 6200, 6300, and 6400 Switch Series have an HTTPS server enabled on the mgmt VRF and on
the default VRF.

When theHTTPS server is not configured and running, attempts to access theWeb UI or REST API result in
404 Not Found errors.

The VRF you select determines fromwhich network theWeb UI and REST API can be accessed.

For example:

n If you want to enable access to the REST API andWeb UI through theOOBM port (management IP
address), specify the built-in management VRF (mgmt).

n If you want to enable access to the REST API andWeb UI through the data ports (for "inband
management"), specify the built-in default VRF (default).

n If you want to enable access to the REST API andWeb UI through only a subset of data ports on the
switch, specify other VRFs you have created.

ArubaNetwork Analytics Engine scripts run in the default VRF, but you do not have to enable HTTPS server
access on the default VRF for the scripts to run. If the switch has customArubaNetwork Analytics Engine
scripts that require access to the Internet, then for those scripts to perform their functions, youmust
configure a DNS name server on the default VRF.

Examples

n To enable access on all ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

n To enable access on theOOBM port (management interface IP address), specify themanagement VRF:

Enabling Access to the REST API | 24

switch(config)# https-server vrf mgmt

n To enable access on ports that aremembers of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

n To enable access on themanagement port and ports that aremembers of the VRF named vrfprogs,
enter two commands:

switch(config)# https-server vrf mgmt
switch(config)# https-server vrf vrfprogs

The 6200 switches support only two VRFs. One management VRF and one default VRF. You cannot add another
VRF.

show https-server

Syntax
show https-server [vsx-peer]

Description
Shows the status and configuration of theHTTPS server. The REST API and web user interface are accessible
only on VRFs that have theHTTPS server features configured.

Command context
Manager (#)

Authority
Administrators or local user groupmembers with execution rights for this command.

Parameters
[vsx-peer]

Shows the output from the VSX peer switch. If the switches do not have the VSX configuration or the ISL
is down, the output from the VSX peer switch is not displayed. This parameter is available on switches
that support VSX.

Usage
Shows the configuration of theHTTPS server features.

VRF
Shows the VRFs, if any, for which HTTPS server features are configured.

REST AccessMode
Shows the configuration of the REST accessmode:

read-write

POST, PUT, and DELETEmethods can be called on all configurable elements in the switch database. This
is the default value.

read-only

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 25

Write access to most switch resources through the REST API is disabled.

Examples

switch# show https-server

HTTPS Server Configuration

VRF : default, mgmt
REST Access Mode : read-write

Max sessions per user : 6

Session timeout : 20

Chapter 4
Accessing the AOS-CX REST API

Accessing the AOS-CX REST API
You can access the REST API using any REST client interface that supports HTTPS requests, and supports
obtaining and passing a session cookie.

Examples of client interfaces include the following:

Scripts and programs that support HTTPS requests
A flexible way to access the AOS-CX REST API is to use a programming language that supports HTTPS
requests, such as Python, to write programs that automate network management tasks.

The curl command-line interface
You can use curl commands either interactively or within a script to make REST requests. Using curl
commands is a way to execute GET requests without writing a script. Using curl commands is a way to
test REST requests that you are considering to incorporate into an application.

Browser-based interfaces such as Postman or the AOS-CX REST API Reference
Examples of browser-based interfaces include Postman and the AOS-CX REST API Reference.
The AOS-CX REST API Reference documents the switch resources, parameters, and JSONmodels for each
HTTPSmethod supported by the resource. Because the AOS-CX REST API Reference is browser-based, it
can share the session cookie with aWeb UI session active in another browser tab. The AOS-CX REST API
Reference is not intended to be used as a configuration tool and is not required for day-to-day
operations.
The AOS-CX REST API Reference is oneway to execute GET requests without writing a script. The AOS-CX
REST API Reference can be used during script coding to help you construct the URIs—with their query
parameters—that you use in a script or curl command.

Authenticating REST API sessions
When you start a REST API session, you use the POSTmethod to access the login resource of the switch and
pass the username and password information as data. Ensure that HTTPS is configured to use port 443.
Requests to port 80 are redirected to port 443.

If the credentials are accepted, your authenticated session is started for that username, and the switch
returns a cookie containing encoded session information.

In subsequent calls to the API—including to the logout resource—the session cookie is passed back to the
switch.

The same session cookie is shared across browser tabs, and depending on the browser, multiple browser
windows. However, the same session cookie is not shared across devices and scripts. For example, if a user
logs into theWeb UI from a laptop, again with a tablet, and then uses the same user name in a curl
command, that user has three concurrent client sessions.

The maximum number of concurrent HTTPS sessions per user per switch is six. There is an upper limit of 48 total
sessions per switch. It is a best practice to log out of HTTPS sessions when you are finished using them.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 26

Accessing the AOS-CX REST API | 27

HTTPS sessions will automatically time out after 20 minutes of inactivity, and have a hard time limit of eight
hours, regardless of whether the session is active. You can run the https-server session close all

command to close all current HTTPS sessions. Formore information about using the command, see https-
server session close all .

Authentication throughmethods other than the session cookie, such as OAuth or certificates, is not
supported. The server uses self-signed certificates.

The procedure to pass the session cookie back and forth from the switch depends on how you access the
REST API.

For example:

n If you log in to the REST API using the AOS-CX REST API Reference or using theWeb UI and open the API
Reference in another browser tab, the browser handles the session cookie for you. You do not have to
save or otherwisemanage the session cookie.

n If you access the REST API using anothermethod, such as the curl tool, youmust do the following:
o Save the session cookie returned from the login request.
o Pass that saved cookie to the switch with every subsequent request youmake to the REST API,

including the logout resource.

Although it is possible to pass the user name and password information as a query string in the login
URL, browser logs or tools outside the switch might save the accessed URL in cleartext in log entries.
Instead, Hewlett Packard Enterprise recommends that you pass the credential information as data
when using programs such as curl to log in to the switch.

For examples of accessing the REST API using curl, see Accessing the REST API using curl.

User groups and access authorization
For switch resources, the access authorization granted to a user is determined by the group to which the
user belongs. Each user group is assigned a number that represents a privilege level. This number is used to
represent the user group in logs and in places in which the group name is too long to display.

The following predefined user groups are supported:

User group Privilege
level Description

operators 1 Authorized for read access to non-sensitive data.

administrators 15 Authorized for read and write access to all switch
resources. Write access also requires that the REST
API is in read-write access mode.

auditors 19 Authorized for read access to audit log (/logs/audit)
and event log (/logs/event) resources only.

All users can access the POSTmethod of the login and logout resources. However, the login requests fail if
the user is not amember of one of the predefined user groups. For example, login attempts fail when
attempted by amember of a user-defined local user group.

If a user attempts a request for which they are not authorized, the switch returns an HTTP 403 "Forbidden"
error.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 28

If an authorized user attempts awrite request but the REST API is in read-only mode, the switch returns an
HTTP 404 "Page not found" error.

Chapter 5
AOS-CX REST API Reference (UI)

AOS-CX REST API Reference (UI)
The AOS-CX operating system includes the AOS-CX REST API Reference, which is a web interface based on the
Swagger 3.0 UI. Formore information about Swagger, see https://swagger.io/.

The AOS-CX REST API Reference provides the reference documentation for REST API, including the switch
resources, parameters, errors, and JSONmodels for each HTTPSmethod supported by the resource. The
AOS-CX REST API Reference showsmost of the supported read and writemethods for all switch resources.

Since the AOS-CX REST API Reference is browser-based, it can share the session cookie with aWeb UI session
active in another browser tab. The AOS-CX REST API Reference is not intended to be used as a configuration
tool and is not required for day-to-day operations.

The AOS-CX REST API Reference is oneway to execute HTTP requests like GET, PUT, POST, and DELETE,
without writing a script. The AOS-CX REST API Reference can be used during script coding to help you
construct the URIs and data body (in the case of POST or PUT)—with their query parameters—that you use
in a script or curl command.

Accessing the REST API using the AOS-CX REST API
Reference

Although the AOS-CX REST API Reference interacts directly with the REST API, the AOS-CX REST API
Reference is not intended as amanagement or configuration interface. Use caution when using the
Submit button for POST or PUTmethods because this action can result in changes to your current
environment.

Prerequisites

n HTTPS server accessmust be enabled on the VRF fromwhich you are accessing the switch.
n With a few exceptions, using the PUT, POST, or DELETEmethods require the following conditions to be

true:
o The REST API accessmodemust be set to read-write.
o The user name you use to log inmust be amember of the administrators group.

Procedure

1. To view the reference documentation for the REST v10.04 API, access the following URL using a
browser: https://<IP-ADDR>/api/v10.04/

<IP-ADDR> is the IP address or hostname of your switch.

For example: https://192.0.2.5/api/v10.04/

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 29

https://swagger.io/

AOS-CX REST API Reference (UI) | 30

2. To open the reference for the REST v1 API, open a browser at: https://<IP-ADDR>/api/v1/ or at
https://<IP-ADDR>/api/

<IP-ADDR> is the IP address or hostname of your switch.

For example: https://192.0.2.5/api/v1/

Logging in and logging out using the AOS-CX REST API Reference

Prerequisites

n Access to the switch REST API must be enabled.
n Youmust have used a supported browser to access the switch at:

https://<IP-ADDR>/api/v10.04/

<IP-ADDR> is the IP address or hostname of your switch.

Procedure

1. Log in to the switch using the Login resource:
1. Expand the Login section.

The POSTmethod for the login resource is displayed.
2. Expand the resource by clicking POST or the resource name, /login.
3. Click Try it out.
4. Enter your user name in theUser name field.
5. Enter your password in the Password field.
6. Click Execute.

If the operation is successful, the REST API returns response code 200.
2. When you finish your session, log out by expanding the Logout resource and clicking Execute.

AOS-CX REST API Reference basics
This section provides information about the different components of the AOS-CX REST API user interface.

AOS-CX REST API Reference home page
The following is an example of a portion of the AOS-CX REST API Reference homepage for a switch running
AOS-CX software:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 31

n The link at the top of the page displays the JSON representation of the RESTful interface.
n The Servers drop-down lists the baseURL to access the REST API.
n The switch resource URIs are organized in groups. The group names are listed in alphabetical order on the

AOS-CX REST API Reference homepage.

The group namedoes not alwaysmatch the resource collection name. Use the group names as a navigation
aid only.
n Group names that are in gray have theURI entries—also called endpoints—collapsed. When you hover

over the group name, it turns black. Click the group name to expand it and show the list of methods and
URIs in the group.

The following example shows the list of themethods and URIs in the Subsystem group:

n Themethods that are shownmight depend on the REST API accessmode. Somemethodsmight not be
displayed if the REST API accessmode is read-only.

n Methods and resourcesmight be displayed that you do not have the authorization to access. For
example, users with operator rights are not authorized to make PUT or POST requests to most resources.

AOS-CX REST API Reference (UI) | 32

If you submit a request for which you are not authorized, the switch returns the following error: HTTP
error 403 "Forbidden"

n The resource collection name is subsystems (not Subsystem).
n Items in braces, such as {type} and {name}, are path parameters. If you submit a request to a resource

URI that includes a path parameter, you are required to supply a value for the parameter.

To showmore information about an itemon the list, click the URI path. The following example shows a part
of the information displayed when GET on /system/subsystems is selected:

You can use the browser scroll bar to navigate to information about the implementation of thismethod and
resource, including the required and optional parameters. Youmust click Try it out to edit the parameters.

n The required parameters are shownwith * required.

For example, the POSTmethod of the login resource requires a user name and password:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 33

n Path parameters, such as {id}, are listed as required parameters:

n The Execute button sends the request. Click Cancel to exit the edit modewithout sending the request.

Although the AOS-CX REST API Reference interacts directly with the REST API, the AOS-CX REST API Reference is not
intended as a management or configuration interface. Use caution when using the Execute button for POST or PUT
methods because this action can result in changes to your current environment.

In GET requests, there can bemultiple attributes and parameters you can use to filter results.

For example:

You can select multiple attributes:

n To select a range of attributes, click the first attribute, then press Shift, and then click the last attribute in
the range you want to select.

n To select attributes that are not adjacent in the list, press Ctrl, then click each attribute you want to
select.

The JSONmodel for the resource is described inModel and shownwith example values in Example Values
for eachmethod. The following example shows the JSONmodel and example values for PUTmethod of the
/system/subsystems/{type}/{name} resource:

AOS-CX REST API Reference (UI) | 34

After a request is submitted, the AOS-CX REST API Reference shows additional information, including the
following:

n The curl command equivalent of the submitted request
n The submitted request URL, including the specified parameters and values.
n The response body returned by the switch
n The response code returned by the switch
n The response headers returned by the switch

The curl command and request URLs are displayed using percent encoding for certain characters in the
query string portion of the URL:

Character Percent-encoded equivalent

, (comma) %2C

: (colon) %3A

/ (forward slash) %2F

When you enter curl commands or submit requests through othermeans, percent encoding is permitted
but not required in the query string of the URI.

Write methods (POST, PUT, and DELETE)
The supported writemethods are POST, PUT, and DELETE:

n POST creates a resource.
n PUT replaces a resource.
n DELETE removes a resource.

Not all resources support all writemethods. See the AOS-CX REST API Reference for themethods supported
by each resource. The REST API must be in read-writemode for the AOS-CX REST API Reference to show all
thewritemethods a resource supports.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 35

Considerations when making configuration changes
The REST API can access and change every configurable aspect of the switch asmodeled in the configuration
and state database. However, changing the configuration of a switch through the REST API can be different
than changing the configuration through the CLI.

A single configuration change to the switch can require changes to multiple resources in the configuration
and state database. Often these changesmust bemade in a specific order.

The CLI commands have been programmed to work "behind the scenes" to make the correct database
changes and to perform data validation checks on the user input. In contrast, when you use the REST API to
make a configuration change, youmust become familiar with the representational models of the switch
resources, the type and format of the data required, and the required order of write operations to various
resources.

The REST API is powerful but must be used with extreme caution: No semantic validation is performed on
the data you write to the database, and configuration errors can destabilize the switch. Hewlett Packard
Enterprise recommends that you refer to the tested examples when using the REST API to make
configuration changes.

Considerations for ports and interfaces
The REST v10.04 API provides the interfaces resource to configure and get information about switch ports
and interfaces of all types. You do not use the ports resource to manage ports.

Hardware (system) interfaces

n Hardware interfaces are of type system.
n Hardware interfaces are included in the database automatically.
n Interfaces of type system cannot be added or deleted.

LAG interfaces

n LAG interfaces are of type lag.
n You can use theDELETEmethod to delete a LAG interface.

Example of creating a LAG interfacewithmember ports 1/1/1 and 1/1/2:

Method and URI:
POST "/rest/v10.04/system/interfaces"

Request body:
{
"name": "lag50",
"vrf": "/rest/v10.04/system/vrfs/default",
"type": "lag",
"interfaces": [
"/rest/v10.04/system/interfaces/1%2F1%2F1",
"/rest/v10.04/system/interfaces/1%2F1%2F2"

]
}

VLAN interfaces

AOS-CX REST API Reference (UI) | 36

n VLAN interfaces are of type vlan.
n You can use theDELETEmethod to delete a VLAN interface.

Example of creating a VLAN interface:

Method and URI:
POST "/rest/v10.04/system/interfaces"

Request body:
{

"name": "vlan2",
"vlan_tag": "/rest/v10.04/system/vlans/2",
"vrf": "/rest/v10.04/system/vrfs/default",
"type": "vlan"

}

Write methods (POST, PUT) supported in read-only mode
The following switch resources support writemethods (POST, PUT, or both) even when the REST API access
mode is set to read-only:

n Configurationmanagement: */rest/v10.04/fullconfigs*
n Firmware: */rest/v10.04/firmware*
n User login and logout:

o */rest/v10.04/login

o */rest/v10.04/logout

n ArubaNetwork Analytics Engine and scripts: */rest/v10.04/system/nae_scripts*

The * indicatesmore text to be added in URI path.

GET method usage and considerations
TheGETmethod is a readmethod that gets the resource specified by theURI. Data is returned in JSON
format in the response body.

Using GET on a resource collection results in a list of URIs. Each URI in the list corresponds to a specific
resource in the collection.

Using GET on a specific resource returns the attributes of that resource.

GET method parameters
TheGETmethod supports the following parameters in the query string of the URI:

n attributes

n count

n depth

n filter

n selector

A path query parameter is specified as a "key=value" pair. When permitted, multiple values are separated by
the comma (,) character.

For example:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 37

n attributes=id,name,type

n count=true

n depth=2

n filter=type:static

n selector=writable

A path query parameter can be used alone or in combination with other parameters. The ampersand (&)
character separates each parameter in the string.

For example:
GET "https://192.0.2.5/rest/v1/system/vlans?depth=2&attributes=id,name,type"

The count and filter attributes and wildcard character are supported fromAOS-CX release 10.05 and later.

Wildcard character support
When you use theGETmethod, the URI can contain the asterisk (*) wildcard character instead of a
component in URI path. You can usewildcard characters inmultiple places in the path. You cannot use a
wildcard character as part of the query string.

Thewildcard charactermust replace the entire component in the path. Regular expressions are not
supported. For example, you can use awildcard to specify all VRFs, but you cannot use a regular expression
to specify all VRFs that begin with the letter r.

By using awildcard character in place of a component in the path, you can specify that GET return
information about multiple resources without requiring you to name each resource instance or to execute
multiple GET requests.

For example:

n The following URI specifies all routes regardless of VRF:
"https://192.0.2.5/rest/v10.04/system/vrfs/*/routes"

n The following URI specifies all ACL entries of type IPv4, regardless of the name of the ACL:
"https://192.0.2.5/rest/v10.04/system/acls/*,ipv4/cfg_aces"

n The following URI specifies the connection state of all BGP neighbors belonging to all BGP routers in the
"red" VRF:

"https://192.0.2.5/rest/v10.04/system/vrfs/red/bgp_routers/*/bgp_
neighbors/*?attributes=status"

Attributes parameter
The attributes parameter of the GETmethod reduces the returned data for each entry to include only the
attributes specified in the comma-separated list. The attribute names in theURI must match the attribute
names in the AOS-CX REST API Reference.

For a list of the available attributes for a resource, see theGETmethod of that resource in the AOS-CX REST
API Reference.

Example request:
GET "https://192.0.2.5/rest/v10.04/system/vlans?depth=2&attributes=id,name,type"

Example response:
{
{
"id": 1,
"name": "DEFAULT_VLAN_1",
"type": "default"

},
{
"id": 2,
"name": "VLAN2",

AOS-CX REST API Reference (UI) | 38

"type": "static"
},
{
"id": 3,
"name": "VLAN3",
"type": "static"

}
}

Count parameter
The count parameter of the GETmethod returns the number of entries that match the specified URI. The
count parameter can be useful when specifying resource collections or for getting statistical information.

You can specify the count parameter as either of the following:

n count

n count=true

Examples:

n Use the count parameter to get the total number of VLANs:
GET "https://192.0.2.5/rest/v10.04/system/vlans?count=true"

n Use the count parameter with the filter parameter to get the total number of interfaces in a down
administrative state:

GET "https://192.0.2.5/rest/v10.04/system/interfaces?count&filter=admin_state:down"

Depth parameter
The depth parameter of the GETmethod specifies to what level URIs in response bodies are to be expanded
and replaced by the JSON representation of that resource:

n Default: 1
n Maximum: 4

For each level of depth, the REST API expands one level of URIs into their JSON data representations in the
response body.

Using the depth parameter can result in large amounts of returned data, depending on the number of items in
the list and the amount of JSON data that represents each item.

For example, a GET request on the vlans resource returns a list of URIs (using the default depth=1). Example
request:
GET "https://192.0.2.5/rest/v10.04/system/vlans"

Example response:
{
"1": "/rest/v10.04/system/vlans/1",
"10": "/rest/v10.04/system/vlans/10",
"20": "/rest/v10.04/system/vlans/20"

}

To specify that thoseURIs also be expanded and replaced with the JSON data, specify depth=2 as a
parameter in theGET request.

Example request:
GET "https://192.0.2.5/rest/v10.04/system/vlans?depth=2"

Example response (ellipses represent data omitted from this example):

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 39

{
{
"id": 1,

"name": "DEFAULT_VLAN_1",
"type": "default",
…

"flood_enabled_subsystems": {
{

URI-of-first-subsystem
},
…
{

URI-of-last-subsystem
}

}
},

{ "id": 10,
"name": "vlan10",
"type": "static",
…

"flood_enabled_subsystems": {
{

URI-of-first-subsystem
},
…
{

URI-of-last-subsystem
}

}
}

}

Each VLAN in the preceding example includes an attribute, flood_enabled_subsystems, which contains a list
of URIs that represent the flood-enabled systems. To specify that thoseURIs also be expanded and
replaced with the JSON data, specify depth=3 as a parameter in theGET request.

Filter parameter
The filter parameter of the GETmethod reduces the returned data to include only those entries that
match the filter criteria. Specify the filter criteria in a comma-separated list of attribute name:value pairs.

Examples:

n Use the filter parameter to get only the static VLANS:
GET "https://192.0.2.5/rest/v10.04/system/vlans?filter=type:static"

n Use the filter parameter to get the BGP routes that have 1.1.1.1 as a peer:
GET "https://192.0.2.5/rest/v10.04/system/vrfs/default/bgp_routes?filter=peer:1.1.1.1"

Selector parameter
The selector parameter of the GETmethod filters the returned data to include only those attributes that
belong to the specified category. By using the selector parameter, you avoid having to list attributes
individually using the attributes parameter.

The default is to include all categories. Use a comma (,) to separatemultiple category values.

The selector categories are the following:
configuration

Contains user-owned information. Attributes in the configuration category can be supplied by users
through REST requests or through the switch CLI. Although an attributemust be in the configuration
category to bemodified by a user, not all attributes in the configuration category can bemodified after
the resource instance is created.

writable

AOS-CX REST API Reference (UI) | 40

Contains themutable (writable) configuration attributes.
statistics

Contains system-supplied data such as counters. Attributes in the statistics category cannot be
written by users.

status

Contains system-owned data such as the admin account and various status fields. Attributes in the
status category cannot bewritten by users.

For example, to get the configuration attributes of all VLANs, when you specify the URI of the GETmethod,
do the following:

n Specify depth=2 to direct the REST API return the JSON representations of each VLAN instead of theURI
of each VLAN in the list. If you do not specify depth=2, the REST API returns each VLAN represented as a
URI, which does not include the attributes of the individual VLANs.

n Specify the selector parameter with the value configuration.

GET "https://192.0.2.5/rest/v1/system/vlans?depth=2&selector=configuration"

Example response:
{
{
"admin": "up",
"id": 1,
"mgmd_enable": {},
"mgmd_igmp_block_ports": [],
"mgmd_igmp_fastleave_ports": [],
"mgmd_igmp_forcedfastleave_ports": [],
"mgmd_igmp_forward_ports": [],
"mgmd_igmp_static_groups": [],
"mgmd_mld_block_ports": [],
"mgmd_mld_fastleave_ports": [],
"mgmd_mld_forcedfastleave_ports": [],
"mgmd_mld_forward_ports": [],
"mgmd_mld_static_groups": [],
"name": "VLAN1",
"type": "static"

},
{
"admin": "up",
"id": 10,
"mgmd_enable": {},
"mgmd_igmp_block_ports": [],
"mgmd_igmp_fastleave_ports": [],
"mgmd_igmp_forcedfastleave_ports": [],
"mgmd_igmp_forward_ports": [],
"mgmd_igmp_static_groups": [],
"mgmd_mld_block_ports": [],
"mgmd_mld_fastleave_ports": [],
"mgmd_mld_forcedfastleave_ports": [],
"mgmd_mld_forward_ports": [],
"mgmd_mld_static_groups": [],
"name": "VLAN10",
"type": "static"

},
{
"admin": "up",
"id": 20,
"mgmd_enable": {},
"mgmd_igmp_block_ports": [],
"mgmd_igmp_fastleave_ports": [],
"mgmd_igmp_forcedfastleave_ports": [],
"mgmd_igmp_forward_ports": [],
"mgmd_igmp_static_groups": [],

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 41

"mgmd_mld_block_ports": [],
"mgmd_mld_fastleave_ports": [],
"mgmd_mld_forcedfastleave_ports": [],
"mgmd_mld_forward_ports": [],
"mgmd_mld_static_groups": [],
"name": "VLAN20",
"type": "static"

}
}

POST method usage and considerations
The POSTmethod creates an instance of a resource in the collection specified by theURI:

n Not all resources support the POSTmethod. See the AOS-CX REST API Reference for themethods
supported by each resource. The REST API must be in read-writemode to see all the POSTmethods
supported.

n Some resources support the POSTmethod even when the REST API is in read-only mode.
n When you use the POSTmethod, the URI must point to the collection—not to the resource you are

creating. The resource you are creating is sent in JSON format in the request body.
o The JSON representationmust include all fields required by the JSONmodel of that resource.
o The JSON representation can contain only configuration attributes. It must not contain attributes in

the status or the statistics category.
n You can POST only one resource at a time.
n Most resources have a hierarchical relationship. Youmust create the parent before you can create the

child.

For example, to create an ACL entry:
1. The ACL must be created first by sending the JSON data of the ACL in the request body in a POST

request to theURI of the acls collection:
/system/acls

2. The entry can then be created by sending the JSON data of the entry in the request body in a POST
request to theURI of the ACL:
/system/acls/<ACL-name>,<ACL-type>/cfg_aces

PUT method usage and considerations
The PUTmethod updates an instance of a resource by replacing the existing resourcewith the resource
provided in the request body.

Configuration attributes that are set at the time a resource is created and that cannot be changed afterward
are called immutable attributes. Configuration attributes that can be changed after a resource is created
are calledmutable orwritable attributes. The PUTmethod is used replacewritable attributes only.

n Not all resources support the PUTmethod. For information about themethods supported for a
resource, see the AOS-CX REST API Reference. The REST API must be in read-writemode to see all the
PUTmethods supported.

n TheURI must specify a specific resource, not a collection.
n TheURI must specify a resource that currently exists.
n For almost all resources, the PUTmethod is implemented as a strict replace operation.

All mutable configuration attributes are replaced. Any mutable attribute that the JSON data in request
body does not include is either removed (if there is no default value) or reset to its default value.

AOS-CX REST API Reference (UI) | 42

PUT request body requirements
The JSON data in the request body must includemutable (writable) configuration attributes only.

The JSONmodel used for the PUTmethod request body is different from the JSONmodel used for theGET
or the POSTmethod.

The JSONmodel of a PUTmethod for a resource contains themutable attributes only. In contrast, the JSON
models for GET and POSTmethods can include bothmutable and immutable attributes.

See the AOS-CX REST API Reference for the JSONmodel of a PUTmethod for a resource.

PUT behavior
The PUT operation is a replace operation—not an update operation—because the resource instance in the
request body replaces every changeable configuration attribute of the existing resource. PATCH partial
updates are not supported.

Any mutable attribute that the JSON data in request body does not include is either removed (if there is no default
value) or reset to its default value.

For example:

n If you attempt a PUT operation on the System resource to change the host name, and you supply only
the host name, you will destabilize the switch because the other attributes will be reset to their defaults,
whichmight be empty.

n If you attempt to change the name of a VLAN and supply only the name in the PUT request, every other
attribute in that VLAN is set to its default of empty.

Exceptions to the PUT strict replace behavior
For Network Analytics Engine agents, the PUT behavior is not a strict replace implementation. You can
enable or disable agents without the supplying the entire set of configuration attributes in the PUT request
body. Formore information about theNetwork Analytic Engine resources, see theNetwork Analytics Engine
Guide.

Best practice for building the PUT request body
Hewlett Packard Enterprise recommends the following procedure for building the PUT request body.

1. Use theGETmethod with selector=writable to obtain thewritable (mutable) configuration
attributes for the resource you want to change.

For example:
GET "https://192.0.2.5/rest/v10.04/system/interfaces/vlan200?selector=writable"

2. Change the values of the attributes to match your wanted configuration.

Any attribute you do not include in the request body will be set to its default value, which could be
empty.

3. Use the resulting JSON data as the request body for the PUT request.

DELETE method usage and considerations
TheDELETEmethod deletes an instance of a resource.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 43

n Not all resources support the DELETEmethod. See the AOS-CX REST API Reference for themethods
supported by each resource. The REST API must be in read-writemode to see all the DELETEmethods
supported.

n TheURI must specify a specific resource instance. TheURI must not specify a collection.
n Child subcollections and resources are deleted when you delete the parent resource. For example, if you

delete an ACL, its ACL entries are deleted automatically.
n DELETE requests do not contain a request body.
n DELETE requests do not return a response body.

REST requests and accounting logs
All REST requests—including GET requests—are logged to the accounting (audit) log.

TheURI of the REST API resource for accounting logs is the following:
/rest/v10.04/logs/audit

In an accounting log entry for a REST request:

n service=https-server indicates that the log entry is a result of a REST API request or aWeb UI action.
n The string value of data identifies the REST API request that was executed.

Formore information about accounting log entries, see the description of the show accounting log CLI
command.

AOS-CX REST API reference summary
The following information is intended as a quick reference for experienced users. Values are not
configurable unless noted otherwise.

Switch REST API access default
8320, 8325, 8360, 8400 Switches Series: Disabled

6200, 6300, 6400 Switches Series: Enabled on the mgmt VRF

6100 Switch Series: Enabled on the default VRF

Switch REST API default access mode
Read-write

Enabling access to the Web UI and REST API
CLI command:
https-server vrf <VRF-NAME>

Example:

switch(config)# https-server vrf mgmt

Setting the REST API access mode to read-write
CLI command:
https-server rest access-mode read-write

Example:

AOS-CX REST API Reference (UI) | 44

switch(config)# https-server rest access-mode read-write

Showing the REST API access configuration
CLI command:
show https-server

Example:

switch(config)# show https-server

HTTPS Server Configuration

VRF : default, mgmt
REST Access Mode : read-write

AOS-CX REST API Reference URL:
REST v10.04 API: https://<IP-ADDR>/api/v10.04/

REST v1 API: https://<IP-ADDR>/api/v1 or https://<IP-ADDR>/api/

<IP-ADDR> is the IP address or hostname of your switch.

Example: https://192.0.2.5/api/v10.04/

REST API versions and switch software versions

REST API version Switch software version

v10.04 AOS-CX 10.04 and later

v1 AOS-CX 10.00 and later

Getting REST API version information from a switch
Method and URI to get the REST API versions supported on the switch:
GET "https://<IP-ADDR>/rest"

<IP-ADDR> is the IP address or hostname of your switch.

Protocol
HTTPS

Port
443

Request and response body format
JSON

Session idle timeout
20 minutes

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 45

Session hard timeout
Eight hours, regardless of whether the session is active.

Authentication
Session cookie from successful HTTPS login request.

HTTPS client sessions
n Maximumof 48 sessions per switch.
n Maximumof six concurrent client sessions per user.
n The same session cookie is shared across browser tabs and, depending on the browser, multiple browser

windows.
n The same session cookie is not shared across devices and scripts.

For example, if a user logs into theWeb UI from a laptop, again with a tablet, and then uses the same user
name in a curl command, that user has three concurrent client sessions.

VSX peer switch access
If Virtual Switching Extension (VSX) is enabled on both switches, and the ISL is up, you can access the VSX
peer switch from your connected switch. To access the peer VSX switch, insert /vsx-peer in the URI path
between the server URL and /rest. Not supported for login, Web UI, or AOS-CX REST API Reference access.
Formore information about VSX, see VSX peer switches and REST API access.

For example:

n Accessing a VSX switch:
https://192.0.2.5/rest/v10.04/…

n Accessing its VSX peer switch:
https://192.0.2.5/vsx-peer/rest/v10.04/…

Chapter 6
Using Curl Commands

Using Curl Commands
There are several tools available for accessing RESTful web service APIs, one of which is curl. The curl tool,
created by the cURL project, is a command-line application for transferring data using URL syntax.

For details on installing the curl application, see https://curl.haxx.se/download.html.

The curl application hasmany options, which are described in detail in the curl manual (run curl --manual)
and at https://curl.haxx.se/docs/manpage.html.

About the curl command examples
In the curl examples, theworkstation is running a Linux-based operating system and curl version 7.35 is
installed.

The curl examples generated by the AOS-CX REST API Referencemight use different options than in other
examples, and do not include cookie file handling because the cookie is handled by the browser.

Many examples of curl commands are formatted inmultiple lines for readability. The backslash (\)
continuation character at the end of the line indicates that the command continues on the next line.

The curl command examples in this document useminimal options. The following options are commonly
used in the curl command examples:

-b<cookie-file>

Specifies that the file <cookie-file>, which contains the session cookie, be passed with the request.
<cookie-file> specifies the path and name of the cookie file.
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, youmust save the cookie returned from the login request. Youmust provide the cookie
with every subsequent curl command.

-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates against
its list of certificate authorities, and attempts to verify self-signed certificates will fail. Therefore youmust
use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

--noproxy

Specifies that a web proxy is not required. The --noproxy option is appropriate where execution of curl
commands does not need a proxy to access the applications.
If your network is configured to require a proxy to access applications, use the --proxy option instead of
the --noproxy option.

-d '<string>'

Specifies that curl send the data in <string> in a POST request using the content-type application/x-
www-form-urlencoded.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 46

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

Using Curl Commands | 47

-X

Specifies amethod that curl would not use by default. Typically used with PUT, DELETE, and POST
methods only.

-H or --header <header>

Specifies an extra header in theHTTP request.

-D

Specifies that curl write the returned protocol headers to the standard output file. Used for debugging.
More options can be used to customize your experience for your environment. Formore information about
curl options, see:

https://curl.haxx.se/docs/manpage.html

Getting the REST API versions on the switch
To get information about the latest and all available REST API versions on a switch, execute a GET request to
the following URI:
"https://<IP-ADDR>/rest"

<IP-ADDR> is the IP address or hostname of your switch.

Examplemethod and URI:
GET "https://192.0.2.5/rest"

Example curl command:

$ curl -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest"

Example response body:
{
"latest": {
"version": "v10.04",
"prefix": "/rest/v10.04",
"doc": "/api/v10.04"

},
"v10.04": {
"version": "v10.04",
"prefix": "/rest/v10.04",
"doc": "/api/v10.04"

},
"v1": {
"version": "v1",
"prefix": "/rest/v1",
"doc": "/api/v1"

}
}

Accessing the REST API using curl
When you use curl, you log in at the beginning of your session and log out at the end of the session. When
you log in, youmust save the cookie returned from the login request so that you can pass that same cookie
value to the switch in subsequent curl commands.

Prerequisites

http://curl.haxx.se/docs/manpage.html

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 48

n Access to the switch REST API must be enabled.

Procedure

1. To access the AOS-CX REST API using curl, use curl version 7.35 or later. The examples provided in this
document are tested with version 7.35.

2. For all curl commands, use the -k option to disable certificate validation.

The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore
youmust use the –k option to disable attempts to verify self-signed certificates against a certificate
authority.

3. Start your session by logging in. When you log in, save the cookie file by specifying the -c option with
a file name.

4. In all subsequent curl commands—including logging out—pass the cookie value back to the switch by
specifying the -b option with the same file name.

5. At the end of the session, log out of the switch using curl.

Logging out at the end of the session is important because the number of concurrent HTTPS sessions per
client and per switch are limited, and session cookies are not shared across devices and scripts.

Logging in using curl

Prerequisites
Access to the switch REST API must be enabled.

Credential information (user name, password, domain, and authentication tokens) used in curl commands entered
at a command-line prompt might be saved in the command history. For security reasons, Hewlett Packard
Enterprise recommends that you disable command history before executing commands containing credential
information.

Procedure
Use the following curl command to access the login resource of the switch and provide your user name and
password as data:

Syntax:
curl [--noproxy <IP-ADDR>] -k -X POST
-c <COOKIE-FILE>=
-H 'Content-Type: multipart/form-data'
"https://<IP-ADDR>/rest/v10.04/login"-F 'username=<USER-NAME>' -F 'password=<PASSWORD>'

Options:
-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore you
must use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

-X

Using Curl Commands | 49

Specifies amethod that curl would not use by default. Typically, used only with POST, PUT, or DELETE
methods.

--noproxy IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a
proxy to access the applcations. If your network is configured to require a proxy to access applications,
use the --proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-C <COOKIE-FILE>

Specifies the file in which to store the session cookie. This session cookie is required when you execute
subsequent curl commands.

-H or --header <header>

Specifies an extra header in theHTTP request.
-F

Specifies that the curl command will emulate a filled-in form in which a user has pressed the submit
button for theHTTP protocol family. This causes curl to POST data using the Content-Type
multipart/form-data.

<USER-NAME>

Specifies the user name.
<PASSWORD>

Specifies the password for the user.

Although it is possible to pass the user name and password information as a query string in the login URI, system
logs save the accessed URI in cleartext in log entries. Hewlett Packard Enterprise recommends that you pass the
credential information as data instead of in the URI when using programs such as curl to log in to the switch.

Example:

$ curl --noproxy "192.0.2.5" -k -X POST \
-c /tmp/auth_cookie \-H 'Content-Type: multipart/form-data'
\"https://192.0.2.5/rest/v1/login" \
-F 'username=test' -F 'password=test'

Passing the cookie back to the switch

Prerequisites
Start a session by logging in to the REST API and save the cookie file.

Procedure
Use the following curl command to pass the cookie file back to the switch using the -b option.

Syntax:
curl [--noproxy <IP-ADDR>] -k GET
-b <COOKIE-FILE>
-H 'Content-Type:application/json'
-H 'Accept: application/json'
"https://<IP-ADDR>/rest/v10.04/system"

Options:
--noproxy <IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a proxy
to access the applications. If your network is configured to require a proxy to access applications, use the
--proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-k

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 50

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore you
must use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

-b <COOKIE-FILE>

Specifies that the file <cookie-file>, which contains the session cookie, be passed with the request. The
<cookie-file> specifies the path and name of the cookie file.
When you use curl, you log in at the beginning of your session and log out at the end of the session.
When you log in, youmust save the cookie returned from the login request. Youmust provide the cookie
with every subsequent curl command.

-H or --header <header>

Specifies an extra header in theHTTP request.
Example:

$ curl --noproxy -k GET
-b /tmp/auth_cookie \
-H 'Content-Type:application/json' \
-H 'Accept: application/json' \
"https://192.0.2.5/rest//system"

Logging Out Using Curl
Use the following curl command to access the logout resource of the switch:
Syntax:
curl [--noproxy <IP-ADDR>] -k -X POST
-b <COOKIE-FILE>
"https://<IP-ADDR>/rest/v10.04/logout"

Options:
-k

Specifies that the curl programnot attempt to verify the server certificate against the list of certificate
authorities included with the curl software.
The switch uses self-signed certificates. By default, the curl program attempts to verify certificates
against its list of certificate authorities, and attempts to verify self-signed certificates fail. Therefore you
must use the –k option to disable attempts to verify self-signed certificates against a certificate authority.

--noproxy<IP-ADDR>

Optional. The --noproxy option is appropriate where execution of curl commands does not need a proxy
to access the applications. If your network is configured to require a proxy to access applications, use the
--proxy option. <IP-ADDR> specifies the IP address or hostname of the switch.

-b <COOKIE-FILE>

Specifies the file that contains the session cookie.

When you use curl, you log in at the beginning of your session and log out at the end of the session. When you log
in, youmust save the cookie returned from the login request so that you can pass that same cookie value to the
switch in subsequent curl commands. When you log in, save the cookie file by specifying the -c option with a file
name.

In subsequent curl commands, pass the cookie value back to the switch by specifying the -b option with the same
file name.

-X

Using Curl Commands | 51

Specifies amethod that curl would not use by default. Typically, used only with POST, PUT, or DELETE
methods.

Example:

$ curl --noproxy "192.0.2.5" -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/logout"

Examples
The following examples show how you can use curl with ArubaOS-CX REST API. The response body might
vary based on the ArubaOS-CX switch series. For example, the 8320 and 6400 switches show VSX
information, whereas the 6300 and 6200 switches show VSF and PoE information.

As a best practice, before you perform aGET, PUT, POST, or DELETE operation, youmust login to create a
session and save the cookie file by specifying the -c option with a file name. After you perform the
operation, youmust logout to end the session and pass the cookie file back to the switch by specifying the -
b option with the same file name. The following examples assume that you are performing the step to login
before performing the operations in the example and logout after performing the operations. Formore
information, see Accessing the REST API using curl.

The request and response body in the following examples contain a truncated part of the actual data. The data
that you see after running the curl commands might vary. Ellipses (…) in the response body represent data not
shown in the example.

Example: GET method
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, youmust use the IP
address or hostname of that switch.

n Get the list of all VLANS:
GET "https://192.0.2.5/rest/v10.04/system/vlans"

n Expand the list of URIs in the vlans collection by one level, which replaces theURI for the VLAN with
the JSON data for that VLAN.

GET "https://192.0.2.5/rest/v10.04/system/vlans?depth=2"

n Get the administrative state of interface 1/1/3:
https://192.0.2.5/rest/v10.04/system/interfaces/1%2F1%2F3?attributes=admin

n Use the attributes parameter to get all interfaces but show only the attributes name and ipv4_

address:
GET "https://192.0.2.5/rest/v10.04/system/interfaces?depth=2&attributes=name,ipv4_
address"

n Use the selector parameter to get all thewritable configuration attributes of VLAN 100:
GET "https://192.0.2.5/rest/v10.04/system/vlans/100?selector=writable"

n Use the selector parameter to get all the system attributes that are in the categories configuration
and status:

GET "https://192.0.2.5/rest/v10.04/system?selector=configuration,status"

Example: Getting and deleting certificates using REST APIs

Getting a list of all certificates

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 52

It is important to note that the certificate resources do not support the use of internationalized strings. Since UTF8
is the only supported encoding, a Subject Alternative Name (SAN) must be used instead.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/certificates"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates”

On successful completion, the switch returns response code 200 OK and a response body containing the
certificate resource URLs indexed by the certificate name. For example:
{
"my-cert-1": "/rest/v10.04/certificates/my-cert-1",
"my-cert-2": "/rest/v10.04/certificates/my-cert-2"

}

Getting a certificate
Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/certificates/my-cert-2"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates/my-cert-2"

On successful completion, the switch returns response code 200 OK and a response body containing the
certificate.

For example:
'{
"cert_name": "my-cert-2",
"cert_type": "regular"
"cert_status": "csr_pending",
"key_type": "RSA",
"key_size": 2048,
"subject": {
"common_name": "CX-8400",
"country": "US",
"locality: "el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba"
},

"certificate": "<certificate-in-PEM-format>"
}'

Deleting a certificate
Examplemethod and URI:
DELETE "https://192.0.2.5/rest/v10.04/certificates/my-cert-3"

Example curl command:

Using Curl Commands | 53

$ curl --noproxy 192.0.2.5 -k -X DELETE \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates/my-cert-3"

On successful completion, the switch returns response code 204.

Example: Generating a self-signed certificate using REST APIs
The following example generates a self-signed certificate.

Examplemethod and URI:
POST "https://192.0.2.5/rest/v10.04/certificates"

Example request body:
{
...
"certificate_name": "my-cert-1",
"subject": {
"country": "US",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
"common_name": "CX-8400"},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "self-signed"

...
}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/certificates”
–d '{
...
"certificate_name": "my-cert-1",
"subject": {
"country": "US",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
"common_name": "CX-8400"},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "self-signed"

...
}'

On successful completion, the switch returns response code 201 Created.

Example: Getting and installing a signed leaf certificate using REST
APIs
This example includes the step to create a trust anchor (TA) profile. If the TA profile had previously been
configured, that step of the examplewould be skipped. The TA profile is used to validate the signed
certificate when you import the certificate as part of the PUT request.

Formore information about certificates and certificatemanagement, see the Security Guide.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 54

1. Create a TA Profile
a. From the certificate authority (CA), get a copy of the certificate against which you will validate leaf

certificates.

The certificate you validate leaf certificates against can be a root certificate or an intermediate
certificate.

The steps to get the leaf certificate depend on the CA and the operating system you use.
b. Create a JSON object with a certificate key and a name key.

For example:
{
"name": "<profile-name>", "certificate": "<root-ca-cert>"
}

n For the value of the name key, replace <profile-name>with the name of the TA profile you
want to create.

n For the value of the certificate key, replace <root-ca-cert> by pasting the copied
certificate.

n After pasting, edit the text to ensure proper loading as a JSON object by doing the following:
o Ensure the certificate headers and footers are treated as separate lines by adding \n

characters after the header and before the footer.

The following example shows the \n characters in bold.
{

"name": "myta",
"certificate": "-----BEGIN CERTIFICATE-----\nMIIF2DCCA8CgAwIBAgIlCnL

MA0GCSqGSIb3DQEBCwUAMHkxCzAJBgNVBAYTAkdCMRAwDgYDVQQIDAdFbmdsYW5kMRIwEAYDVQDAl
...
PKj0FmJ1+Qzw9Bcm6HiPTyxOVozMeRQzSQhTZVlh3OvBw/cUwTIqFJCe/afNQCqa9XnvTpJvP/Q3z
...
S4L9sxrk/i3hKB88\n-----END CERTIFICATE-----"\
}

o Ensure that any private key headers and footers are treated as separate lines by adding \n
characters before and after them as needed.

For example:
\n-----BEGIN PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2CA

\n-----END PRIVATE KEY-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
IJ6L/UhEtH523nUkdV6gvAgoYaD83PswToAGv5VS8OMFTPttrn5/K
...
OgSecqZsG6arbx0ESaYBir1c/6rPspcjbx283iD1MWOpeoS2aEmOX=
\n-----END ENCRYPTED PRIVATE KEY-----\n

c. Use the POSTmethod to create the TA profile with the copied certificate. Include the JSON object
in the request body:

Examplemethod and URI:
POST "https://192.0.2.5/rest/v10.04/system/pki_ta_profiles"

Example curl commands:

$ curl --noproxy 192.0.2.5 -k -X POST \ -b /tmp/primary_auth_cookie \ -H 'Content-
Type:application/json' "https://192.0.2.5/rest/v10.04/system/pki_ta_profiles" -d '
{ "name": "myta", "certificate": "-----BEGIN CERTIFICATE-----

Using Curl Commands | 55

\nMIIF2DCCA8CgAwIBAgIJANkWgud1lCnL
MA0GCSqGSIb3DQEBCwUAMHkxCzAJBgNVBAYTAkdCMRAwDgYDVQQIDAdFbmdsYW5kMRIwEAYDVQQKDAl ...
PKj0FmJ1+Qzw9Bcm6HiPTyxOVozMeRQzSQhTZVlh3OvBw/cUwTIqFJCe/afNQCqa9XnvTpJvP/Q3ze6
S4L9sxrk/i3hKB88\n-----END CERTIFICATE-----" }

' On successful completion, the switch returns response code 201 Created.

2. Create a certificate with a pending certificate signing request (CSR).

For information about the required and optional items in the request body, see the JSONmodel for
the certificates resource in the AOS-CX REST API Reference.

Examplemethod and URI:
POST "https://192.0.2.5/rest/v10.04/certificates"

Example request body:
{
"certificate_name": "my-cert-name",
"subject": {
"common_name": "CX-8400"
"country": "US",
"locality":"el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "regular"

}

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/primary_auth_cookie \
-d '{
"certificate_name": "my-cert-name",
"subject": {
"common_name": "CX-8400"
"country": "US",
"locality":"el camino",
"state": "CA",
"org": "HPE",
"org_unit": "Aruba",
},

"key_type": "RSA",
"key_size": 2048,
"cert_type": "regular"

}'
"https://192.0.2.5/rest/v1/certificates"

On successful completion, the switch returns response code 201 Created.
3. Get the certificate you created in the previous step.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/certificates/my-cert-name"

Example curl command:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 56

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/certificates/my-cert-name"

On successful completion, the switch returns response code 200 OK and a response body containing
the CSR in PEM format.

4. Send the CSR to the CA for signing.

The steps to send the CSR depend on the CA and the operating system you use.

The CA returns the signed certificate in PEM format.
5. Import the signed certificate by using a PUT request to update the my-cert-name certificate with the

signed certificate you received from the CA.

The imported certificate datamust include all the intermediate CA certificates in the certificate chain
leading to the certificate that was imported into the specified TA profile.

If you copy and paste the certificate into a JSON object, youmust ensure that the certificate and
private key headers and footers are processed as separate lines by editing the text to add \n

characters as needed.

As part of the PUT request, the switch attempts to validate the certificate against the pool of all TA
profiles installed on the switch. The certificate is accepted if it is validated with one of the TA profiles.

Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/certificates/my-cert-name"

Example request body:
{
"certificate": "-----BEGIN CERTIFICATE-----\n

MIIFRDCCAyygAwIBAgQP8nS2Vp15u0xXMdkDJzANBgkqhkiG9w0Bv
...
1NGNm3NG03GqPScs/TF9bVyFA5BOS5lmmkfRYK8D/kMTfRreSdxis
YQ1u1NqShps=
\n-----END CERTIFICATE-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2+/
cb4=
\n-----END ENCRYPTED PRIVATE KEY-----"
}

Example curl commands:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/primary_auth_cookie \
-d '{
"certificate": "-----BEGIN CERTIFICATE-----\n

MIIFRDCCAyygAwIBAgQP8nS2Vp15u0xXMdkDJzANBgkqhkiG9w0Bv
...
1NGNm3NG03GqPScs/TF9bVyFA5BOS5lmmkfRYK8D/kMTfRreSdxis
YQ1u1NqShps=
\n-----END CERTIFICATE-----\n
\n-----BEGIN ENCRYPTED PRIVATE KEY-----\n
MIIFDjBABgkqhkiG9wBBQ0wMzAbBgqkw0QwwDQIpJMN7sVGwCAggA
...
iKnXnUMpVPfLc74ty2S41DtH0X9gf6aa1jStg+7cND9XfGtjaV2+/
cb4=
\n-----END ENCRYPTED PRIVATE KEY-----"

Using Curl Commands | 57

}'
"https://192.0.2.5/rest/v1/certificates/my-cert-name"

On successful completion, the switch returns response code 200 OK.

The certificate is installed and ready to be associated with switch features.

Example: Associating a leaf certificate with a switch feature using
REST APIs
The following example associates the signed certificate my-cert-namewith theHTTPS server switch feature.
For complete information about the switch features to which you can associate a leaf certificate, see the
AOS-CX Security Guide.

Procedure

1. Get the configuration attributes of the system resource:

Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/system?selector=configuration"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/system?selector=configuration"

On successful completion, the switch returns response code 200 and a JSON object containing the
configuration attributes.

2. In the portion of the response body that defines the certificate name for theHTTPS server, change
the value to: my-cert-name.

The certificate name associated with theHTTPS server is the value assigned to the https-server key,
which is under the certificate_association key. By default, the certificate name is: local-cert

The request body of a PUT request is permitted to include only themutable configuration attributes.
In the AOS-CX software releases to which this example applies, all the configuration attributes for the
system resource aremutable attributes, so you do not need to edit the JSON object to remove the
immutable attributes.

3. Using a PUT request, update the system resourcewith the edited JSON data as the request body.

Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/system"

Example request body:
{

"aaa": {
...

},
...

"certificate_association": {
"https-server": "my-cert-name",
"syslog-client": "local-cert"

},
...
}

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 58

Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/primary_auth_cookie \
-d '{

"aaa": {
...

},
...

"certificate_association": {
"https-server": "my-cert-name",
"syslog-client": "local-cert"

},
...
}'
"https://192.0.2.5/rest/v1/system"

On successful completion, the switch returns response code 200 OK.

Example: Configuration management using REST APIs

Downloading a configuration
Downloading the current configuration:

n Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/fullconfigs/running-config"

Downloading the startup configuration:

n Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/fullconfigs/startup-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/fullconfigs/startup-config"

On successful completion, the switch returns response code 200 OK and a response body containing the
entire configuration in JSON format.

Uploading a configuration
The following example shows uploading a configuration to become the running configuration. The running
configuration is the only configuration that can be updated using this technique, however, you can copy
other configurations. Formore information about copying configurations, see Copying a configuration.

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/fullconfigs/running-config"

Using Curl Commands | 59

The request body must contain the configuration—in JSON format—to be uploaded.
n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/fullconfigs/running-config" \
–d '{
…
}'

The configuration being uploaded—represented as ellipsis but not shown in this example—is in JSON
format in the body of the command (enclosed in braces).

On successful completion, the switch returns response code 200 OK.

Copying a configuration
To replace an existing configuration with another, use a REST PUT request to the destination configuration.
Use the from query string parameter to specify the source configuration.

n At least one of the source or the destination configurationmust be either running-config or startup-
config. You cannot copy a checkpoint to a different checkpoint.

n If you specify a destination checkpoint that exists, an error is returned. You cannot overwrite an existing
checkpoint.

The syntax of themethod and URI is as follows:
PUT "https://<IPADDR>/rest/v10.04/fullconfigs/<destination-config>?
from=/rest/v10.04/fullconfigs/<source-config>"

Copying the running configuration to the startup configuration:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/fullconfigs/startup-config?
from=/rest/v10.04/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/startup-config?
from=/rest/v1/fullconfigs/running-config"

Copying the startup configuration to the running configuration:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/fullconfigs/running-config?
from=/rest/v10.04/fullconfigs/startup-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/running-config?
from=/rest/v1/fullconfigs/startup-config"

Copying a checkpoint to the running configuration:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 60

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/fullconfigs/running-config?
from=/rest/v10.04/fullconfigs/MyCheckpoint"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/running-config?
from=/rest/v1/fullconfigs/MyCheckpoint"

Copying the running configuration to a checkpoint:

n Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/fullconfigs/MyCheckpoint?
from=/rest/v10.04/fullconfigs/running-config"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -D-
"https://192.0.2.5/rest/v1/fullconfigs/MyCheckpoint?
from=/rest/v1/fullconfigs/running-config"

Example: Firmware upgrade using REST APIs

Uploading a file as the secondary firmware image
In the following example, a curl command is used to upload the firmware image file from the local
workstation to the switch, as the secondary firmware image. The -F option specifies that the POSTmethod
is used to upload the file.

Examplemethod and URI:
POST "https://192.0.2.5/rest/v10.04/firmware?image=secondary"

The request body contains the switch firmware image file in binary format.

Example curl command:

$ curl --noproxy -k -b /tmp/auth_cookie \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-F "fileupload=@/myfirmwarefiles/myswitchfirmware_2020020905.swi" \
https://192.0.2.5/rest/v1/firmware?image=secondary

In the curl command, the POST request is handled as part of the -F option.

Booting the system using the secondary firmware image
Examplemethod and URI:
POST "https://192.0.2.5/rest/v10.04/boot?image=secondary"

Example curl command:

$ curl --noproxy -k -X POST -b /tmp/auth_cookie \
-H 'Content-Type: application/json' \

Using Curl Commands | 61

-H 'Accept: application/json' \
"https://192.0.2.5/rest/v1/boot?image=secondary"

Example: Log operations using REST APIs

Event logs
AGET request to /rest/v10.04/logs/eventURI returns all entries from all the event logs on the switch,
including logs from internal processes.

The information returned by this request was not optimized for human readability. If you want to examine
the log entries, Hewlett Packard Enterprise recommends that you use theWeb UI. TheWeb UI also provides
amethod to export log entries.

In the following example, the MESSAGE_ID parameter filters the output to include event logmessages only:

n 50c0fa81c2a545ec982a54293f1b1945 identifies event logmessages from the activemanagement
module.

n 73d7a43eaf714f97bbdf2b251b21cade identifies event logmessages from the standby management
module. Not all switches have a standby management module.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/logs/event?
limit=1000&
priority=4&
since=24%20hour%20ago&
MESSAGE_ID=50c0fa81c2a545ec982a54293f1b1945,73d7a43eaf714f97bbdf2b251b21cade"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/logs/event?
limit=1000&
priority=4&
since=24%20hour%20ago&
MESSAGE_ID=50c0fa81c2a545ec982a54293f1b1945,73d7a43eaf714f97bbdf2b251b21cade"

Accounting (audit) logs
AGET request to the /rest/v10.04/logs/auditURI returns all entries from the accounting logs on the
switch.

For a list of supported query parameters, see the AOS-CX REST API Reference.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/logs/audit?
since=24%20hour%20ago&
usergroup=administrators&
session=CLI"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/logs/audit?
since=24%20hour%20ago&

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 62

usergroup=administrators&
session=CLI"

Example: Ping operations using REST APIs
This example gets ping statistics for the ping target.

Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/ping?
ping_target=192.0.2.10&
is_ipv4=true&
ping_data_size=100&
ping_time_out=2&
ping_repetitions=1&
ping_type_of_service=0&
include_time_stamp=false&
include_time_stamp_address=false&
record_route=false&
mgmt=false"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/ping?
ping_target=192.0.2.10&
is_ipv4=true&
ping_data_size=100&
ping_time_out=2&
ping_repetitions=1&
ping_type_of_service=0&
include_time_stamp=false&
include_time_stamp_address=false&
record_route=false&
mgmt=false"

On successful completion, the switch returns response code 200 OK and a response body containing the
output string produced by the ping operation.

Example: Traceroute operations using REST APIs
Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/traceroute?
ip=192.0.2.10&
is_ipv4=true&
timeout=3&
destination_port=33434&
max_ttl=30&
min_ttl=1&
probes=3&
mgmt=false"

Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/traceroute?
ip=192.0.2.10&
is_ipv4=true&

Using Curl Commands | 63

timeout=3&
destination_port=33434&
max_ttl=30&
min_ttl=1&
probes=3&
mgmt=false"

On successful completion, the switch returns response code 200 OK and a response body containing the
output string produced by the traceroute operation.

Example: User management using REST APIs

Creating a user
Examplemethod and URI:
POST "https://192.0.2.5/rest/v10.04/system/users"

Example request body:
{
...
"name": "myadmin",
"password": "P@ssw0rd",
"user_group": "/rest/v10.04/system/user_groups/administrators",
"origin": "configuration"

...
}

Example curl command:

$ curl --noproxy -k -X POST \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/users”
–d '{
...
"name": "myadmin",
"password": "P@ssw0rd",
"user_group": "/rest/v1/system/user_groups/administrators",
"origin": "configuration"

...
}'

On successful completion, the switch returns response code 201 Created.

Changing a password
Examplemethod and URI:
PUT "https://192.0.2.5/rest/v10.04/system/users/myadmin"

Example request body:
{
"password": "P@ssw0rd2g"

}

Example curl command:

$ curl --noproxy -k -X PUT \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/users/myadmin”
–d '{

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 64

"password": "P@ssw0rd2g"
}'

On successful completion, the switch returns response code 200 OK.

Deleting a user
Examplemethod and URI:
DELETE "https://192.0.2.5/rest/v10.04/system/users/myadmin"

Example curl command:

$ curl --noproxy -k -X DELETE \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/users/myadmin"

On successful completion, the switch returns response code 204 No Content.

Example: Creating an ACL with an interface using REST APIs
This example shows creating the following ACL and interface configuration on a switch at IP address
192.0.2.5:
access-list ip ACLv4

10 permit tcp 10.0.100.101 eq 80 10.0.100.102 eq 8000
interface 1/1/2

no shutdown
apply access-list ip ACLv4 out

1. Creating the ACL.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"cfg_version": 0,
"list_type": "ipv4",
"name": "ACLv4"}'
"https://192.0.2.5/rest/v1/system/acls"

2. Creating an ACL entry.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"action": "permit",
"dst_ip": "10.0.100.102/255.255.255.255",
"dst_l4_port_max": 8000,
"dst_l4_port_min": 8000,
"protocol": 6,
"sequence_number": 10,
"src_ip": "10.0.100.101/255.255.255.255",
"src_l4_port_max": 80,
"src_l4_port_min": 80}'
"https://192.0.2.5/rest/v1/system/acls/ACLv4,ipv4/cfg_aces"

3. Getting the ACL writable configuration attributes to use in the next step.

Using Curl Commands | 65

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/acls/ACLv4,ipv4?selector=writable"

Response body:
{
...
"cfg_aces": "/rest/v10.04/system/acls/ACLv4,ipv4/cfg_aces",
"cfg_version": 3738959816497071,
"vsx_sync": []

...
"list_type": "ipv4",
"name": "ACLv4"

...
}

4. Updating the ACL configuration using the return body received from theGET request performed in
the previous step.

Any writable attributes you do not include in the PUT request body are set to their defaults, which
could be empty.

The following example shows the request to update the ACL configuration:

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d '{
"cfg_aces":{"10":"/rest/v1/system/acls/ACLv4,ipv4/cfg_aces/10"},
"cfg_version":1}' \
"https://192.0.2.5/rest/v1/system/acls/ACLv4,ipv4"

5. Getting thewritable attributes of an interface.

TheGET response body includes only the configuration attributes that have been set.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/interfaces/1%2F1%2F2?selector=writable"

Response body:
{
...
"cdp_disable": false,
"description": null,
"lldp_med_loc_civic_ca_info": {},
"lldp_med_loc_civic_info": null,
"lldp_med_loc_elin_info": null,
"options": {},
"other_config": {
"lldp_dot3_macphy_disable": false,
"lldp_med_capability_disable": false,
"lldp_med_network_policy_disable": false,
"lldp_med_topology_notification_disable": false

},
"pfc_priorities_config": null,
"selftest_disable": false,
"udld_arubaos_compatibility_mode": "forward_then_verify",
"udld_compatibility": "aruba_os",
"udld_enable": false,
"udld_interval": 7000,

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 66

"udld_retries": 4,
"udld_rfc5171_compatibility_mode": "normal",
"user_config": {
"admin": "down"

...
}

6. Enabling the interface and adding the ACL information to the interface by using the return body
received from theGET request performed in the previous step. Themodified values are shown in the
following example.

$ curl --noproxy 192.0.2.5 -k -X PUT \
-b /tmp/auth_cookie -d
'{
...
"user_config": {"admin": "up" },
"aclv4_out_cfg":"/rest/v1/system/acls/ACLv4,ipv4",
"aclv4_out_cfg_version":1,
...
}' -D- \
"https://192.0.2.5/rest/v1/system/interfaces/1%2F1%2F2"

Example: Creating a VLAN and a VLAN interface using REST APIs
This example shows creating the following VLAN and interface configuration on a switch at IP address
192.0.2.5:
vlan 2

no shutdown
interface vlan 2

1. Creating the VLAN.

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"name":"vlan2",
"id":2,
"type":"static",
"admin":"up"}' \
"https://192.0.2.5/rest/v1/system/vlans"

2. Creating an interfacewith VLAN information

$ curl --noproxy 192.0.2.5 -k -X POST \
-b /tmp/auth_cookie -d '{
"vrf": "/rest/v1/system/vrfs/default",
"vlan_tag":"/rest/v1/system/vlans/2",
"name":"vlan2",
"type":"vlan"}' \
-D- "https://192.0.2.5/rest/v1/system/interfaces"

Example: Enabling routing on an interface
The following example shows how to enable routing on an interface.
interface 1/1/1

routing

Using Curl Commands | 67

1. Getting thewritable configuration information for the interface.

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/auth_cookie \
-H 'Content-Type:application/json'
-H 'Accept: application/json'
"https://192.0.2.5/rest/v1/system/interfaces/1%2F1%2F1?selector=writable"

Response body:

TheGET response body includes only the configuration attributes that have been set.

{
...
"routing": false,
"udld_arubaos_compatibility_mode": "forward_then_verify",
"udld_compatibility": "aruba_os",
"udld_enable": false,
"udld_interval": 7000,
"udld_retries": 4,
"udld_rfc5171_compatibility_mode": "normal",
"user_config": {}
"vlan_mode": null,
"vlan_tag": null,
"vlan_translations": {},
"vlan_trunks": [],
"vlans_per_protocol": {},
"vrf": null,

...
}

2. Update the interface using the return body received from theGET request, modifying the routing
attribute to be: "routing": true.

Any writable attributes you do not include in the PUT request body are set to their defaults, which
could be empty.

$ curl --noproxy -X PUT \
-b /tmp/auth_cookie \
-H 'Content-Type: application/json'
-H 'Accept: application/json'
-d '{
...
"routing":true,
...
}'
"https://192.0.2.5/rest/v1/system/interfaces/1%2F1%2F1"

Chapter 7
VSX peer switches and REST API access

VSX peer switches and REST API access
If Virtual Switching Extension (VSX) is enabled, you can access the REST API of a peer switch without having
to separately log into ormanage a session cookie from that peer switch.

To access a peer REST API from your connected switch, insert /vsx-peer in the URI path after the server URL
and before the REST API and version identifier.

For example:
https://192.0.2.5/vsx-peer/rest/v10.04/...

The following uses of /vsx-peer in the URI path are not supported:

n You cannot specify the login resource. Requests to /vsx-peer/rest/v10.04/login are not required
because logging in to one device automatically gives you access to the peer device.

n You cannot access the Web UI of a VSX peer switch. Setting the browser address to https://<connected_
switch_ip>/vsx-peer is not supported.

n You cannot specify a VSX peer switch in the URIs in topic subscriptionmessages in the real-time notifications
framework. However, you can access the real-time notifications framework on the VSX peer switch by setting
the connection address to the following:

wss://<connected_switch_ip>/vsx-peer/rest/v10.04/notification

Please note the following points when using REST API with VSX.

n VSX must be enabled on both switches, and the interswitch link (ISL) must be up.
n REST API accessmust be enabled on the switch to which you are connected.
n For write access, the REST API accessmodemust be set to read-write on the switch to which you are

connected.
n Youmust be logged in to the switch to which you are connected. For example, if you are connected to the

primary VSX switch, youmust be logged in to the primary switch.
n When configuration synchronization is enabled, supported configuration changes on the primary VSX

switch are replicated on the secondary VSX switch. Changing the configuration of a secondary VSX switch
might cause the configurations to be out of synchronization.

n Audit messages are logged on the peer switch, with the user information from the switch to which the
user is connected.

Examples of curl commands
n Getting the VSX status of the secondary VSX switch while connected to the primary VSX switch at IP

address 192.0.2.5:

$ curl --noproxy "192.0.2.5" -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/vsx?attributes=oper_status"

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 68

VSX peer switches and REST API access | 69

n Getting the VSX status of the primary VSX switch while connected to the secondary VSX switch at IP
address 192.0.2.6:

$ curl --noproxy "192.0.2.6" -k GET \
-b /tmp/secondary_auth_cookie \
"https://192.0.2.6/vsx-peer/rest/v1/system/vsx?attributes=oper_status"

n Getting the names and IP addresses of interfaces on secondary VSX switch while connected to the
primary VSX switch at IP address 192.0.2.5:

$ curl --noproxy "192.0.2.5" -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-
peer/rest/v1/system/interfaces?depth=2&attributes=name,ipv4_address"

Formore information about VSX, see the Virtual Switching Extension (VSX) Guide.

Example: Interacting with a VSX peer switch
In the following examples, Virtual Switching Extension (VSX) is enabled, the primary VSX switch IP address is
192.0.2.5, and the secondary VSX switch IP address is 192.0.2.6.

Getting the list of all VLANS on the connected switch at IP address 192.0.2.5:

n Examplemethod and URI:
GET "https://192.0.2.5/rest/v10.04/system/vlans"

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/rest/v1/system/vlans"

Getting the list of all VLANs on the peer VSX switch:

n Examplemethod and URI:
GET "https://192.0.2.5/vsx-peer/rest/v10.04/system/vlans

n Example curl command:

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/vlans"

Getting the VSX status of the secondary VSX switch while connected to the primary VSX switch at IP address
192.0.2.5:

n Examplemethod and URI:
GET “https://192.0.2.5/vsx-peer/rest/v10.04/system/vsx?attributes?oper_status"

n Example curl command:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 70

$ curl --noproxy 192.0.2.5 -k GET \
-b /tmp/primary_auth_cookie \
"https://192.0.2.5/vsx-peer/rest/v1/system/vsx?attributes?oper_status"

You can also get the VSX status of the primary VSX switch while connected to the secondary VSX switch.

Chapter 8
AOS-CX real-time notifications

subsystem

AOS-CX real-time notifications subsystem
The AOS-CX REST API, combined with built-in databases that provide configuration, state, statistical data, and
time-series data for the features and protocols running in the switch, provides a flexiblemeans for switch
programmability. Each resource or collection of resources inside the switch is uniquely identified by its URI.

Clients can use the REST API to request information about resources. However, this polling ability does not
address the specific use cases in which network management systems need to receive live data or real-time
events from the switch. There is a need to have a live notification subsystem that provides the remote
network management systemwith real-time information about any changes that occur in the switch. Timely
information about changes is important for troubleshooting and statistical data analyses, as well as for the
immediate reaction to real-time events.

The AOS-CX real-time notifications subsystem enables external clients to connect to the switch through a
secureWebSocket Protocol connection and to receive real-time notifications about the switch resources,
configuration changes, state changes, and statistical information of their interest.

TheWebSocket Protocol was selected based on latency, throughput, resource utilization, network overhead,
and security requirements. The handshake part of theWebSocket protocol uses HTTPS, so there is no need
to open a new port on the switch side, and there is no need to provide a new authenticationmechanism.
Multiple clients and connections are supported.

AOS-CX notificationmessages use JSON encoding. The JSON encoding was designed to align with REST
payloads, which enable clients to use combined REST and notification solutions.

The ability to subscribe to these push notifications about a variety of types of information about the switch,
combined with the structured nature of the JSON data reported by the switch database, enables a form of
network monitoring commonly called telemetry streaming.

Interested clients, known as subscribers, might include the following:

n Web clients such as the AOS-CX Web UI
n Network management systems
n Monitoring scripts

Secure WebSocket Protocol connections for notifications
You subscribe to and receive notifications from the switch through a secureWebSocket Protocol (wss://)
connection.

A secureWebSocket Protocol connection is a secure, persistent, and full-duplex connection between a client
and a server. Either the client or the server can send data in the form of messages at any time.

The handshake part of theWebSocket Protocol uses HTTPS, so there is no need to open a new port on the
switch side, and there is no need to provide a new authenticationmechanism. When you connect to a switch
through a secureWebSocket Protocol connection, you pass the session cookie received from logging in to
the REST API. SecureWebSocket Protocol connections to switches running AOS-CX software remain active
until the connection is closed, even after the session cookie expires. Multiple clients and connections are
supported.

Formore information about theWebSocket Protocol see RFC 6455: The WebSocket Protocol at:
https://tools.ietf.org/html/rfc6455

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 71

https://tools.ietf.org/html/rfc6455

AOS-CX real-time notifications subsystem | 72

Notification topics as switch resource URIs
When you subscribe to notifications, you subscribe to notifications about specific topics. A topic is the URI
of a specific switch resource. That URI can contain a query string that specifies particular attributes of that
resource.

For example, specifying the following URI as a topic results in notifications being sent when the
administrative state or link state of any interface changes, but not when some other attribute of an
interface changes:
/rest/v1/system/interfaces?depth=2&attributes=admin_state,link_state

The AOS-CX REST API Reference lists all the switch resources. You can use theGETmethod of the resource in
the AOS-CX REST API Reference to determine theURI for that switch resource, including the query string to
specify an attribute or list of attributes.

Rules for topic URIs
A topic is the URI of a switch resource:

Not all switch resource URIs are supported as notification topics.

The Implementation Notes section of the GETmethod of the resource in the AOS-CX REST API Reference
indicates if the resource is not supported by the notifications subsystem.

n Wildcard characters (*) are supported. In this example, you can subscribe to all VLANS:

```dita
/rest/v10.04/system/vlans/*
```

n Specifying a resource on a peer VSX switch, by including /vsx-peer in the URIs for topic subscription
messages, is not supported.

To specify a peer switch, include /vsx-peer in the URL of theWSS connection. For example, to get
notifications about VLANs on a peer, first open a connection to wss://192.0.2.5/vsx-

peer/rest/v10.04/notification and then subscribe to /rest/v10.04/system/vlans as the topic name.

You can specify a specific resource instance or a collection of resources. Examples of specific resource
instances:

n /rest/v10.04/system/vrfs/default

n /rest/v10.04/system/vlans/1

Examples of resource collections:

n /rest/v10.04/system/vrfs/default/bgp_routers

n /rest/v10.04/system/vlans

The depth query parameter is supported, with amaximum value of 2, only with resource collections. For
example:

n Correct: /rest/v10.04/system/vlans?depth=1
n Incorrect: /rest/v10.04/system/vlans?depth=3.

The attributes query parameter is supported. You can specify a comma-separated list of attribute names
in the query string for either resource collections or resource instances. If attributes are specified, then the
subscriber receives notificationmessages only when the value of one of the specified attributes changes.
For example:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 73

The following URI specifies the administrative state and link state of all interfaces on the switch:

/rest/v10.04/system/interfaces?attributes=admin_state,link_state

The following URI specifies the names of the VLANs:
/rest/v10.04/system/vlans?depth=2&attributes=name

The names of the attributesmust match the names as documented in the AOS-CX REST API Reference for
theGETmethod of the resource.

Notification security features
The notification feature uses secureWebSocket connections based on the TLS v1.2 protocol (Transport
Layer Security version 1.2), which is the same protocol used for the REST HTTPS connections.

The switch uses self-signed certificates. To avoid certificate verification errors, disable certificate verification
when establishing the connection.

AOS-CX real-time notifications subsystem reference summary
The following information is intended as a quick reference for experienced users. Values are not
configurable unless noted otherwise.

Connection protocol
WebSocket secure (wss://)

Port
443

Message format
JSON

Message types
The following are the supportedmessage types:

n subscribe

n unsubscribe

n success

n error

n notification

Authorization
Session cookie from successful HTTPS login request

Notification resource URI
wss://<IP-ADDR>/rest/v10.04/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v10.04/notification

Session idle timeout
None

AOS-CX real-time notifications subsystem | 74

Session hard timeout
None

Subscription persistence
Subscriptions are active only while theWebSocket secure connection is open.

Configuration maximums

n Maximumnumber of subscribers per switch: 50
n Maximumnumber of topics in one subscriptionmessage: 2000

Enabling the notifications subsystem on a switch
The AOS-CX real-time notifications subsystem relies on the REST API, so the REST API must be enabled on
the switch and VRF fromwhich you want to receive notifications.

HTTPS servermust be enabled on the specified VRF. The VRF you specify determines fromwhich network
theHTTPS server can be accessed. You can enable access onmultiple VRFs, including user-defined VRFs.

Establishing a secure WebSocket connection through a
web browser
Prerequisites

n Access to the switch REST API must be enabled. The REST API accessmode can be either read-only or
read/write.

n Theweb browser you usemust support the secureWebSocket Protocol.

Procedure

1. Open aweb browser page and log in to the switchWeb UI or the REST API.

The session cookie ismanaged by the browser and is shared among browser tabs.
2. From a different tab in the same browser, open the page that contains theWebSocket interface.

For example, many browsers have a plugin for secureWebSocket connections.
3. Connect to the switch at the following URL:

wss://<IP-ADDR>/rest/v10.04/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v10.04/notification

After the connection is established, you can use the interface to send subscribe or unsubscribemessages
and to view the responses and notificationmessages.

Establishing a secure WebSocket connection using a script
Access to the switch REST API must be enabled. The REST API accessmode can be either read-only or
read/write.

n If you are using a script, youmust include the actions to log in, get the session cookie, store the session
cookie, and pass the session cookie with the secureWebSocket connection request.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 75

When you create the secureWebSocket connection, use the following URL:
wss://<IP-ADDR>/rest/v10.04/notification

<IP-ADDR> is the IP address of the switch.

For example:
wss://192.0.2.5/rest/v10.04/notification

n The exact methods to use to create connections and handle notificationmessages depend on the
scripting language and library module you choose.

Subscribing to topics
Prerequisites

n Youmust have a secureWebSocket connection to the switch.
n Access to the switch REST API must be enabled. The REST API accessmode can be either read-only or

read/write.

Procedure
Using theWebSocket secure connection, send a subscribemessage that contains the topics to which you
want to subscribe.

Some resource attributes—typically in the statistics category—are not populated until a client requests the
information.

For example:

{
"type": "subscribe",
"topics": [
{
"name": "/rest/v10.04/system/vrfs"

},
{
"name": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_reason"

}
]

}

If there is an error in the syntax of the subscribemessage, an errormessage is sent back to the client with
the description of the error. For example, for the following incorrect subscribemessage:

...
{"topics":[{"name":"/rest/v10.04/system/vrfssss"}],"type":"subscribe"}
...

The corresponding errormessage is sent:

{
"type":"error",
"message": "resource or attribute vrfssss not found",
"data": null

}

AOS-CX real-time notifications subsystem | 76

If the subscriber already has a subscription to the specified topic, the following error is returned:

{
"type":"error",
"message":"The topic or combination of topics have been already subscribed."

}

Example of amessage returned by a successful subscription attempt:

{
"type": "success",
"data": [
{
"topicname": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_reason",
"resources": [
{
"operation": "",
"uri": "/rest/v10.04/system/vlans/1",
"values": {
"admin": "up",
"oper_state_reason": "no_member_port"

}
}

]
},
{
"topicname": "/rest/v10.04/system/vrfs",
"resources": [
{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/default",
"values": {}

},
{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/mgmt",
"values": {}

}
]

}
],
"subscriber_name": "4bcf8uka90ki",

}

Unsubscribing from topics
Prerequisites

n Youmust have a secureWebSocket connection to the switch.
n The switchmust have REST API access enabled. The REST API accessmode can be either read-only or

read/write.

Procedure
Use the secureWebSocket connection to send an unsubscribemessage that specifies the topic or topics
fromwhich you no longer want notifications.

Use a comma to separate topics in a list of topics.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 77

Youmust be connected as the same subscriber that subscribed to the topic. For example, youmust be using
the sameweb browser session or be passing the same session cookie with the request.

For example, to unsubscribe notifications about the default VRF, send the followingmessage through the
WebSocket secure connection:

{
"type": "unsubscribe",
"topics": [
{
"name": "/rest/v10.04/system/vrfs/default"

}
]

}
If the subscriber does not have a subscription to that topic, the following message
is returned:

{
"type": "error",
"message": "subscription /rest/v10.04/system/vrfs doesn't exist"
"data": null

}

The error can indicate that you have already unsubscribed, the connection was lost, or you attempted to
unsubscribe from a different subscriber.

If the request is successful, the followingmessage is returned:

{
"type": "success",
"message": "Successfully unsubscribe."

}

Subscription throttling
Throttling is an optional parameter that can be passed in the subscriptionmessage to specify the
notification interval in seconds. Notifications are only sent if there are any changes during the specified
interval of time.

Showing a subscription for all VLANswith an interval of 5 seconds:

{
"type": "subscribe",
"interval": 5,
"topics": [

{
"name":"/rest/v10.04/system/vlans?depth=2"

}
]

}

With the throttling above, the systemwill send notifications for all VLANs every 5 seconds if there are any
changes to the VLANs.

In Figure 1, the system sent a notification because a changewasmade to the description and voicewas
enabled for one of the VLANs during the specified interval of time.

AOS-CX real-time notifications subsystem | 78

Figure 1 Subscription throttling notifications

Subscription throttling can also be used to handle notifications for resource attributes that only provide
interval-based notifications, known as on-demand attributes.

Showing a subscription for an on-demand attributes with an interval of 10 seconds:

{
"type": "subscribe",
"interval": 10,
"topics": [

{
"name":"/rest/v10.04/system/interfaces/1%2F14?attributes=aclv4_out_
 statistics,policy_out_statistics"

}
]

}

In Figure 2, the system sent a notification for the on-demand attributes during the interval specified in the
example above.

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 79

Figure 2 Subscription throttling notifications for on-demand attributes

Parts of a subscribe message
A subscribemessage is themessage sent when a subscriber requests a subscription to a topic on a switch.
The subscribemessage is in JSON format.

Subscribe message example

{
"type": "subscribe",
"topics": [
{
"name": "/rest/v10.04/system/vrfs"

},
{
"name": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_reason"

}
]

}

Components of a subscribe message
type

Required. For a subscribemessage, youmust specify the following value: subscribe
topics

Required. The value is a comma-separated list of one ormore topics in JSON key-value format. A topic
includes one component:
name

Required. The name of the topic, identified by theURI of the switch resource, including the optional
query string.

AOS-CX real-time notifications subsystem | 80

Parts of a subscription success message
When a subscription request is successful, a subscription successmessage is returned. The subscription
successmessage is in JSON format.

Example success message

{
"type": "success",
"data": [
{
"topicname": "/rest/v10.04/system/vlans/1?attributes=admin,oper_state_reason",
"resources": [
{
"operation": "",
"uri": "/rest/v10.04/system/vlans/1",
"values": {
"admin": "up",
"oper_state_reason": "no_member_port"

}
}

]
},
{
"topicname": "/rest/v10.04/system/vrfs",
"resources": [
{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/default",
"values": {}

},
{
"operation": "",
"uri": "/rest/v10.04/system/vrfs/mgmt",
"values": {}

}
]

}
],
"subscriber_name": "4bcf8uka90ki",

}

Components of subscription success message
type

Identifies the type of message. Successmessages have the type: success
subscriber_name

Contains a unique identifier that represents the name of the subscriber.
data

Contains a comma-separated list of one ormore topics in JSON format.

Components of a topic
In a subscription successmessage, each topic in the data contains the following components:
topicname

Contains the name of the topic, identified by theURI of the switch resource, including the optional query
string.

resources

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 81

Contains a comma-separated list of one ormore resources in JSON format. When theURI of a topic is a
resource collection, a topic includesmultiple resources. In the examplemessage, the vrfs resource
includes two VRF instances:default and mgmt.
Each resource includes the following components:
operation

The value of operation is empty for successmessages. This component is used for notification
messages only.

uri

Contains theURI of the resource instancewithin the resource collection. If the topicname is a
resource instance instead of a collection, urimatches the path portion of the URI in topicname

values

Contains the names and current values of the attributes that were specified in the query string of
topicname.

Parts of a notification message
A notificationmessage is themessage sent to the subscriber when there is a change to a switch resource
that is the topic of a subscription. The notificationmessage is in JSON format.

The content of a notificationmessage depends on the type of change that occurred.

Notification message examples
For the following examples, assume that the following subscribemessagewas used:

{
"type": "subscribe",
"topics": [
{
"name": "/rest/v10.04/system/vlans?depth=2&attributes=name"

}
]

}

The subscriber receives a notification when the name of any VLAN changes:

In the following example, VLAN7 has been added to the switch configuration:

{
"type": "notification",
"data": [
{
"topicname": "/rest/v10.04/system/vlans?depth=2&attributes=name",
"resources": [
{
"operation": "inserted",
"uri": "/rest/v10.04/system/vlans/VLAN7",
"values": {
"name": "VLAN7"

}
}

]
}

]
}

AOS-CX real-time notifications subsystem | 82

In the following example, VLAN7 has been deleted from the configuration:

{
"type": "notification",
"data": [
{
"topicname": "/rest/v10.04/system/vlans?depth=2&attributes=name",
"resources": [
{
"operation": "deleted",
"uri": "/rest/v10.04/system/vlans/VLAN7",
"values": {}

}
]

}
]

}

In the following example, the subscriber has subscribed to the following topic:
/rest/v10.04/system/interfaces/1%2F1%2F2?attributes=name,admin_state

If either the name or the administrative state of interface 1/1/2 changes, a notificationmessage is sent. If
attributes other than name or administrative state changes, no notificationmessage is sent.

In the following example, the administrative state of the interface changed to up.

{
"type": "notification",
"data": [
{
"topicname": "/rest/v10.04/system/interfaces/1%2F1%2F2?attributes=name,admin_

state",
"resources": [
{
"operation": "modified",
"uri": "/rest/v10.04/system/interfaces/1%2F1%2F2",
"values": {
"admin_state": "up"

}
}

]
}

]
}

Components of a notification message

type

Identifies the type of message. Notificationmessages have the type: notification

data

Contains a comma-separated list of one ormore topics in JSON format.

Components of a topic
In a notificationmessage, each topic in the data contains the following components:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 83

topicname

Contains the name of the topic, identified by theURI of the switch resource, including the optional query
string.

resources

Contains a comma-separated list of one ormore resources in JSON format. When theURI of a topic is a
resource collection, a topic includesmultiple resources.
Each resource includes the following components:
operation

For notificationmessages, operation is one of the following values:
inserted

The resource or resource attributewas added to the configuration of the switch.
deleted

The resource or resource attributewas deleted from the switch.
modified

The resource or resource attribute changed.

uri

Contains theURI of the resource instancewithin the resource collection. If the topicname is a resource
instance instead of a collection, urimatches the path portion of the URI in topicname.

values

The content of values depends on the operation:

n When the operation value is deleted, values is empty.
n When the operation value is inserted, values contains the current names and values of the

attributes specified in the query portion of the topicname. If no query string was included in
topicname, all attributes and values for that resource are included.

n When the operation value is modified, values contains the name and current value of the attribute
in the query string that changed value:
o If no query string was included in topicname, all attributes and values for that resource are

included.
o If multiple attributes are included in the query string of a topic and only some of those attribute

values changed, only the changed attributes are included.
o If an attribute that was not included in the query string changes, no notificationmessage is sent

because that attribute is not part of the subscription.

Example: Browser-based WebSocket connection

About the example
The following example, websocket-client.html, uses HTML and Javascript to create awebpage that you
can use to establish aWSS connection and send and receive notificationmessages.

n Access to the switch REST API must be enabled on the VRF through which this browser will connect to the
switch.

AOS-CX real-time notifications subsystem | 84

n Before you can use theHTML page, youmust log in to the switchWeb UI or REST API from a separate tab
in the sameweb browser session. The browser shares the session cookie between tabs.

n When the browser page is open, in Server Location, substitute the switch IP address for {IPAddress} in
wss://{IPAddress}/rest/v10.04/notification, then click Connect.

n Enter the subscriptionmessage in Request and click Send.
n Responses and notifications are shown in Response.

Example screen

Example HTML source
<!DOCTYPE html>
<html lang="en">
<head>

<title>Web Socket Client Example</title>
<script type="text/javascript">

window.onload = function () {
var conn;
var log = document.getElementById("log");
var msg = document.getElementById("msg");

function appendLog(item) {
var doScroll = log.scrollTop === log.scrollHeight - log.clientHeight;
log.appendChild(item);
if (doScroll) {

log.scrollTop = log.scrollHeight - log.clientHeight;
}

}

document.getElementById("connect").onclick = function () {
var server = document.getElementById("wsURL");
conn = new WebSocket(server.value);
if (window["WebSocket"]) {

if (conn) {
conn.onopen = function (evt) {

document.getElementById("disconnect").disabled = false
document.getElementById("sendMsg").disabled = false
document.getElementById("connect").disabled = true
document.getElementById("status").innerHTML = "Connection

opened"
}
conn.onclose = function (evt) {

document.getElementById("status").innerHTML = "Connection
closed"

document.getElementById("connect").disabled = false
};
conn.onmessage = function (evt) {

var messages = evt.data.split('\n');
for (var i = 0; i < messages.length; i++) {

var item = document.createElement("pre");

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 85

item.innerText = messages[i];
appendLog(item);

}
}

}
} else {

var item = document.createElement("pre");
item.innerHTML = "Your browser does not support WebSockets.";
appendLog(item);

}
};

document.getElementById("disconnect").onclick = function () {
conn.close()
document.getElementById("sendMsg").disabled = true
document.getElementById("connect").disabled = false
document.getElementById("disconnect").disabled = true
document.getElementById("status").innerHTML = "Connection closed"

};

document.getElementById("form").onsubmit = function () {
if (!conn) {

return false;
}
if (!msg.value) {

return false;
}
conn.send(msg.value);
var item = document.createElement("pre");
item.classList.add("subscribeMsg");
item.innerHTML = msg.value;
appendLog(item);
return false;

};
};

</script>
<style type="text/css">

html {
overflow: hidden;

}

body {
overflow: hidden;
padding: 0;
margin: 0;
width: 100%;
height: 100%;
background: gray;

}

#log {
background: white;
margin: 0;
padding: 0.5em 0.5em 0.5em 0.5em;
top: 1.5em;
left: 0.5em;
right: 0.5em;
bottom: 3em;
overflow: auto;
position: absolute;
height: 530px;

}

#form {
padding: 0 0.5em 0 0.5em;

AOS-CX real-time notifications subsystem | 86

margin: 0;
position: absolute;
bottom: 3em;
top: 5em;
left: 8px;
width: 100%;
overflow: hidden;

}

#serverLocation {
padding-top: 0.3em;

}

#requestSection {
height: 38px;

}

#responseMsgSection {
height: 570px;
position: relative;

}
</style>

</head>
<body>
<fieldset>

<legend>Server Location</legend>
<div>

<input type="button" value="Connect"/>
<input type="button" value="Disconnect" disabled/>
<input type="text" value="wss://{IPAddress}/rest/v10.04/notification" size="64">

</div>
</fieldset>
<fieldset>

<legend>Request</legend>
<form>

<input type="submit" value="Send" ; disabled/>
<input type="text" size="80"/>

</form>
</fieldset>
<fieldset>

<legend>Response</legend>
<div></div>

</fieldset>
</body>
</html>

Example: Getting information about current subscribers
To get information about the subscribers receiving notifications from a switch, youmust use the REST API.

Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, youmust use the IP
address or hostname of that switch.

Prerequisites
Youmust be logged in to the switch REST API.

Procedure
To get the list of current subscribers, send aGET request to the notification_subscribers resource.

For example:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 87

GET "https://192.0.2.5/rest/v10.04/system/notification_subscribers"

The response body is a list of URIs. The identifier at the end of theURI string is the subscriber name.

For example:
[
"rest/v10.04/system/notification_subscribers/z6901beisjgf",
"rest/v10.04/system/notification_subscribers/18l9g87erb42"

]

Chapter 9
Troubleshooting

Troubleshooting

General troubleshooting tips

Connectivity
Connectivity is often the first issue you encounter. Ensure that you have enabled https-server on the VRF
you are trying to use.

n To connect to the REST API through themanagement (OOBM) port, REST API accessmust be enabled on
themanagement VRF.

n To connect to the REST API through a data port, REST API accessmust be enabled on the default VRF or a
user-created VRF that includes that data port.

Resources, attributes, and behaviors
Resources, attributes, and behaviorsmight differ between different versions of the switch software.

If you are getting errors whenmaking requests to switches with different software versions, use the AOS-CX
REST API Reference on each switch to compare theURI paths and attributes for the resource. Youmight
need to alter your code to handle the different software versions.

Resources, attributes, and behaviorsmight differ between different versions of the REST API, and the switch
supports access throughmultiple versions of the REST API.

GET, PUT, POST, and DELETE methods
Most resources do not allow POST, PUT, or DELETEmethods and do not display thosemethods in the AOS-
CX REST API Reference unless the REST accessmode is set to read-write.

The JSONmodel of a resource can vary by method used. The JSON data you receive from theGETmethod is
not the same as the JSON data you can ormust providewith the POST or PUTmethods:

n TheGETmethodmodel contains all the attributes.
n The POSTmethodmodel contains only the configuration attributes.
n The PUTmethodmodel contains only themutable (changeable) configuration attributes. If you do not

provide all themutable attributes in the request body of the PUT request, those attributes you do not
provide are set to their defaults, which could be empty. If you attempt to provide an immutable attribute
in a PUT request, an error is returned.

Use theGETmethod with the selector=configuration parameter to get only the configuration attributes
of a resource. Using the REST v10.04 API, you can also use theGETmethod with the selector=writable
parameter to get only themutable configuration attributes of a resource.

You can use the AOS-CX REST API Reference to view information about the supportedmethods and resource
models. You can obtain additional platform-specific information through GET requests for product
information attributes or subsystem collections.

Aruba 8400 switch examples:

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 88

Troubleshooting | 89

Example request:
GET "https://192.0.2.5/rest/v10.04/system/subsystems"

Example response body:

{
"chassis,1": "/rest/v10.04/system/subsystems/chassis,1",
"line_card,1/3": "/rest/v10.04/system/subsystems/line_card,1%2F3",
"management_module,1/5": "/rest/v10.04/system/subsystems/management_module,1%2F5"

}

Example request:
GET "https://192.0.2.5/rest/v10.04/system/subsystems/chassis,1?attributes=product_info"

Example response body:

{
"product_info": {
"base_mac_address": "00:00:5E:00:53:00",
"device_version": "",
"instance": "1",
"number_of_macs": "512",
"part_number": "JL375A",
"product_description": "8400 8-slot Chassis/3xFan Trays/18xFans/Cable

Manager/X462 Bundle",
"product_name": "8400 Base Chassis/3xFT/18xFans/Cbl Mgr/X462 Bundle",
"serial_number": "SG00A2A00A",
"vendor": "Aruba"

}
}

Aruba 8320 switch examples:
Example request:
GET "https://192.0.2.5/rest/v10.04/system/subsystems

Example response body:

{
"chassis,1": "/rest/v10.04/system/subsystems/chassis,1",
"line_card,1/1": "/rest/v10.04/system/subsystems/line_card,1%2F1 ",
"management_module,1/1": "/rest/v10.04/system/subsystems/management_module,1%2F1"

}

Example request:
GET "https://192.0.2.5/rest/v10.04/system/subsystems/chassis,1?attributes=product_info"

Example response body:

{
"product_info": {
"base_mac_address": "00:00:5E:00:53:01",
"device_version": "",
"instance": "1",
"number_of_macs": "74",
"part_number": "JL479A",
"product_description": "8320",
"product_name": "8320",
"serial_number": "TW00000000",

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 90

"vendor": "Aruba"
}

}

Hardware and other features
Different switches have different hardware and features. For example, themanagement module resource
ID is 1/1 for some switches, and 1/4 or 1/5 for other switches. To get information about the switchmodel,
use theGETmethod request with theURI for the platform_name system attribute.

For example:
GET "https://192.0.2.5/rest/v10.04/system?attributes=platform_name"

The following is an example of a response body for an Aruba 8320 switch:

{
"platform_name": "8320"

}

The following is an example of a response body for an Aruba 8400 switch:

{
"platform_name": "8400X"

}

Thewords "port" and "interface" havemeanings that are different fromother network operating systems.
In the AOS-CX operating system:

n A port is the logical representation of a port.
n An interface is the hardware representation of a port.

You can enable debugging logs by using the debug command. Themodule name is rest. You can specify all
severity log levels or aminimum severity log level.

Example specifying all severity log levels:

switch# debug rest all

Example specifying aminimum severity log level of error:

switch# debug rest all severity error

REST API response codes
The following table describes the different categories of the response codes.

Category Description

2xx Indicates that the request was accepted successfully.

Troubleshooting | 91

Category Description

4xx Returns the client-side error response with the error message.

5xx Returns the server-side error response with the error message.

The following are some response codes that you will see in the REST API.

Response code Status Description

200 OK Returned from GET and PUT operations, and non-
configuration API calls such as Login or Logout when
the request is successfully completed.

201 Created Returned from POST operations when a new resource
was successfully created.

204 No Content Returned from a PUT, POST, or DELETE operation
when the request was successfully processed and
there is no content to return.

400 Bad request A problem with the request body, such as invalid
syntax, incorrectly formatted JSON, or data violating a
database constraint.

401 Unauthorized No active session for this client (the login API has not
been called) or too many sessions already created
from this client.

403 Forbidden The client session is valid, but does not have
permissions to access the requested resource.

404 Not found The resource does not exist, or the URI is incorrect for
the desired resource. Can also occur when accessing
the POST, PUT, or DELETE API while the REST access-
mode is set to read-only.

500 Internal server error An unexpected error has occurred in processing the
request. View the logs on the device for details.

503 Service unavailable The device is receiving more requests than it can
process and is defensively rejecting requests to
protect resources.

Error "'admin' password is not set"

Symptom
An attempt to enable theHTTPS server using the https-server vrf command fails and the following error
is returned:
Failed to enable https-server on VRF <VRF>. 'admin' password is not set

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 92

Cause
The switch is shipped from the factory with a default user named adminwithout a password. The admin user
must set a valid password before HTTPS servers can be enabled.

Action
From the global configuration context, set a valid password for the admin user.

For example:
switch(config)# user admin password
Changing password for user admin
Enter password:************
Confirm password:************

Error "certificate verify failed" returned from curl
command

Symptom
A curl command to the switch URL fails with an error similar to the following:
SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

Cause
The curl program could not verify the switch server certificate against the CA certificate bundle that comes
with the curl installation, and you did not include the -k option in the curl command.

Action
Retry the command with the -k option included.

The switch HTTPS server uses self-signed certificates, which cannot be verified against a certificate authority.
The -k option disables curl certificate validation.

For example:

$ curl -k --noproxy "192.0.2.5" GET /tmp/auth_cookie \
"https://192.0.2.5/rest/v1/system/vlans"

HTTP 400 error "Invalid Operation"

Symptom
A REST request returns response code 400 and the response body contains the following text string:
Invalid operation

Cause
Themethod used for this REST request is not supported for the specified resource. For example, the
Invalid operation response is returned if you attempt a DELETE request on the system resource.

Action
Use amethod supported by the resource.

Troubleshooting | 93

The AOS-CX REST API Reference displays themethods supported by each resource.

HTTP 400 error "Value is not configurable"

Symptom
A PUT or POST request returns response code 400 and the response body contains the following text string:
Value <value> is not configurable

Cause
The JSON data in the POST or PUT request body contains non-configuration or immutable attributes.

Action
Retry the request with the correct JSON resourcemodel for that PUT or POSTmethod.

To determine the configuration attributes of a resource, you can send aGET request with the
selector=configuration query parameter to the resource. Using the REST v10.04 API, you can also use the
GETmethod with the selector=writable parameter to get only themutable configuration attributes of the
resource.

You can also use the AOS-CX REST API Reference to verify the JSONmodel of the PUT or POSTmethod of
the resource.

The category an attribute belongs to can depend on whether that instance of the resource is owned by the
systemor owned by a user. Configuration attributes can become status attributes in resource instances
that are owned by the system. Status attributes can not bemodified by users.

In addition, some configuration attributes cannot be changed after a resource is created. These immutable
attributes cannot be included in a PUT request.

HTTP 401 error "Authorization Required"

Symptom
A REST request returns response code 401 and the response body contains the following text string:
Authorization Required

This responsemeans that no valid session was found for the session token passed to the API.

Solution 1

Cause
The user attempting the request is not logged into the REST API for one of the following reasons:

n The user has not yet logged in.
n The user logged in but the session has expired.

Action
Log in to the REST API.

Solution 2

Cause

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 94

The user attempting the request is not logged in to the REST API because the user did not pass the correct
session cookie to the API. Typically, incorrect session cookies are not a causewhen accessing the REST API
through a browser because the browser automatically handles the session cookie.

Action

1. Ensure that you save the session cookie returned from the login request.
2. Ensure that you pass the same cookie back to the switch with every REST API request, including the

request to log out.

HTTP 401 error "Login failed: session limit reached"

Symptom
A REST request orWeb UI login attempt returns response code 401 and the response body contains the
following text string:
Login failed: session limit reached

Cause
A user attempted to log into the REST API or theWeb UI, but that user already has themaximumnumber of
concurrent sessions running.

Action
1. Log out fromone of the existing sessions.

Browsers share a single session cookie acrossmultiple tabs or even windows. However, scripts that
POST to the login resource and later do not POST to the logout resource can easily create the
maximumnumber of concurrent sessions.

2. If the session cookie is lost and it is not possible to log out of the session, then wait for the session
idle time limit to expire.

When the session idle timeout expires, the session is terminated automatically.
3. If it is required to stop all HTTPS sessions on the switch instead of waiting for the session idle time

limit to expire, you can stop all HTTPS sessions using the https-server session close all

command.

This command stops and starts the hpe-restd service, so using this command affects all existing REST
sessions andWeb UI sessions.

HTTP 403 error "Forbidden" on a write request

Symptom
A POST, PUT, or DELETE REST request returns response code 403 and the response body contains the
following text string:
Forbidden

Cause
The user attempting the request is not amember of the administrators group.

Troubleshooting | 95

Action
Log in to the REST API with a user name that has administrator rights as part of the administrators group.

The usermust be amember of the predefined administrators group. POST requests to the login resource
fail formembers of a user-defined local user group.

HTTP 403 error "Forbidden" on a GET request

Symptom
AGET REST request returns response code 403 and the response body contains the following text string:
Forbidden

Cause
The user attempting the request is amember of the Auditors group, and theGET request specified a switch
resource that users with auditor rights are not permitted to access.

Action
Log in to the REST API with a user name that has operator or administrator rights.

HTTP 404 error "Page not found" when accessing the
switch URL

Symptom
The switch is operational and you are using the correct URL for the switch, but attempts to access the REST
API orWeb UI result in an HTTP 404 "Page not found" error.

Cause
REST API access is not enabled on the VRF that corresponds to the access port you are using. For example,
you are attempting to access the REST API orWeb UI from themanagement (OOBM) port, and access is not
enabled on the mgmt VRF.

Action
Use the https-server vrf command to enable REST API access on the specified VRF.

For example:

switch(config)# https-server vrf mgmt

HTTP 404 error "Object not found" on object with "ports/"
or "interfaces/" in URI Path

Symptom
A request wasmadewith an URI that contains rest/v10.04/ and ports/ or interfaces/ in the URI path,
and the request returns response code 404 and the response body contains the following text string:
Object not found

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 96

Cause
The resource does not exist in the system. TheURI in the request is incorrect.

The ports collection does not exist in the REST v10.04 API schema.

Action
Change the request to a request that is valid for the REST v10.04 API.

HTTP 404 error "Object not found" returned from a switch
that supports multiple REST API versions (10.04 and later)

Symptom
A switch that supportsmultiple REST API versions returns response code 404 and the response body
contains the following text string:
Object not found

Cause
The resource does not exist in the system. TheURI in the request is incorrect for the version of the REST API
specified in the request.

Action
Verify the URI of the resource and retry the request.

The schema for resources accessed through the REST v1 API can differ from the schema for the resources
accessed through the REST v10.04 API.

For example, a REST request with the following URI will fail because the interfaces collection does not exist in
the REST v1 API:
/rest/v1/system/interfaces/lag50

The correct URI for the lag50 resource in the REST v1 API is the following:
/rest/v1/system/ports/lag50

HTTP 404 error "Object not found" when using a write
method

Symptom
A PUT or DELETE request returns response code 404 and the response body contains the following text
string:
Object not found

Cause
The resource does not exist in the system. TheURI in the request is incorrect or the resource has not been
added to the configuration.

Action
Verify the URI of the resource you are attempting to change or delete and retry the request.

Troubleshooting | 97

HTTP 404 error "Page not found" when using a write
method

Symptom
Using theGETmethod is successful, but attempting a POST, PUT, or DELETEmethod results in an HTTP 404
"Page not found" error.

Cause
The REST API accessmode is set to read-only.

Action
Set the REST API accessmode to read-write.

switch(config)# https-server rest access-mode read-write

Enabling the read-writemode on the REST API allows POST, PUT, and DELETE operations to be called on all
configurable elements in the switch database.

Logout Fails
Symptom
An attempt to log out of the REST API from a script or curl command fails.

Cause
The session cookie was not supplied or does not contain the correct session token.

Action

1. Repeat the command and send the correct session cookie ormodify the script to send the correct
session cookie.

2. If the session cookie has been lost and it is not possible to log out of the session, wait for the session
idle time limit to expire.

When the session idle timeout expires, the session is terminated automatically.

Chapter 10
Support and Other Resources

Support and Other Resources

Accessing Aruba Support

Aruba Support Services https://www.arubanetworks.com/support-services/

Aruba Support Portal https://asp.arubanetworks.com/

North America telephone 1-800-943-4526 (US & Canada Toll-Free Number)

+1-408-754-1200 (Primary - Toll Number)

+1-650-385-6582 (Backup - Toll Number - Use only when all other
numbers are not working)

International telephone https://www.arubanetworks.com/support-services/contact-
support/

Be sure to collect the following information before contacting Support:

n Technical support registration number (if applicable)
n Product name,model or version, and serial number
n Operating systemname and version
n Firmware version
n Errormessages
n Product-specific reports and logs
n Add-on products or components
n Third-party products or components

Other useful sites
Other websites that can be used to find information:

Airheads social forums and Knowledge
Base

https://community.arubanetworks.com/

Software licensing https://lms.arubanetworks.com/

End-of-Life information https://www.arubanetworks.com/support-services/end-of-life/

Aruba software and documentation https://asp.arubanetworks.com/downloads

Accessing Updates
You can access updates from the Aruba Support Portal or theHPEMy NetworkingWebsite.

Aruba Support Portal

AOS-CX 10.07 REST v10.04 API Guide | 6100, 6200, 6300, 6400, 8320, 8325, 8360, 8400 Switch Series 98

https://www.arubanetworks.com/support-services/
https://asp.arubanetworks.com/
https://www.arubanetworks.com/support-services/contact-support/
https://www.arubanetworks.com/support-services/contact-support/
https://community.arubanetworks.com/
https://lms.arubanetworks.com/
https://www.arubanetworks.com/support-services/end-of-life/
https://asp.arubanetworks.com/downloads

Support and Other Resources | 99

https://asp.arubanetworks.com/downloads

If you are unable to find your product in the Aruba Support Portal, youmay need to searchMy Networking,
where older networking products can be found:

My Networking
https://www.hpe.com/networking/support

To view and update your entitlements, and to link your contracts and warranties with your profile, go to the
Hewlett Packard Enterprise Support CenterMore Information on Access to Support Materials page:
https://support.hpe.com/portal/site/hpsc/aae/home/

Access to some updatesmight require product entitlement when accessed through theHewlett Packard
Enterprise Support Center. Youmust have an HP Passport set up with relevant entitlements.

Some software products provide amechanism for accessing software updates through the product
interface. Review your product documentation to identify the recommended software updatemethod.

To subscribe to eNewsletters and alerts:

https://asp.arubanetworks.com/notifications/subscriptions (requires an active Aruba Support Portal (ASP)
account to manage subscriptions). Security notices are viewablewithout an ASP account.

Warranty Information
To viewwarranty information for your product, go to https://www.arubanetworks.com/support-
services/product-warranties/.

Regulatory Information
To view the regulatory information for your product, view the Safety and Compliance Information for Server,
Storage, Power, Networking, and Rack Products, available at https://www.hpe.com/support/Safety-
Compliance-EnterpriseProducts

Additional regulatory information
Aruba is committed to providing our customers with information about the chemical substances in our
products as needed to comply with legal requirements, environmental data (company programs, product
recycling, energy efficiency), and safety information and compliance data, (RoHS andWEEE). Formore
information, see https://www.arubanetworks.com/company/about-us/environmental-citizenship/.

Documentation Feedback
Aruba is committed to providing documentation that meets your needs. To help us improve the
documentation, send any errors, suggestions, or comments to Documentation Feedback (docsfeedback-
switching@hpe.com). When submitting your feedback, include the document title, part number, edition,
and publication date located on the front cover of the document. For online help content, include the
product name, product version, help edition, and publication date located on the legal notices page.

https://asp.arubanetworks.com/downloads
https://www.hpe.com/networking/support
https://support.hpe.com/portal/site/hpsc/aae/home/
https://asp.arubanetworks.com/notifications/subscriptions
https://www.arubanetworks.com/support-services/product-warranties/
https://www.arubanetworks.com/support-services/product-warranties/
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
https://www.arubanetworks.com/company/about-us/environmental-citizenship/
mailto:docsfeedback-switching@hpe.com
mailto:docsfeedback-switching@hpe.com

	Contents
	About this document
	Applicable products
	Latest version available online
	Command syntax notation conventions
	About the examples
	Identifying switch ports and interfaces
	Identifying modular switch components

	Introduction to the AOS-CX REST API
	REST API versions
	Differences among REST API versions
	AOS-CX Network Analytics Engine scripts
	Interfaces and ports
	GET method
	Resource collections

	REST API access modes
	Read-write access mode
	Read-only access mode

	REST API URI
	Parts of a URI
	URI path, including path parameters
	Query component

	Resources
	Resource collections and singletons
	Collections
	Subcollections
	Singletons

	Categories of resource attributes
	Configuration attributes
	Writable attributes
	Status attributes
	Statistics attributes
	Attribute categories might vary

	Enabling Access to the REST API
	Setting the admin password
	Showing the REST API access configuration
	Disabling access to the REST API
	HTTPS server commands
	https-server rest access-mode
	https-server session close all
	https-server vrf
	show https-server

	Accessing the AOS-CX REST API
	Authenticating REST API sessions
	User groups and access authorization

	AOS-CX REST API Reference (UI)
	Accessing the REST API using the AOS-CX REST API Reference
	Logging in and logging out using the AOS-CX REST API Reference

	AOS-CX REST API Reference basics
	AOS-CX REST API Reference home page

	Write methods (POST, PUT, and DELETE)
	Considerations when making configuration changes
	Considerations for ports and interfaces
	Hardware (system) interfaces
	LAG interfaces
	VLAN interfaces

	Write methods (POST, PUT) supported in read-only mode

	GET method usage and considerations
	GET method parameters
	Wildcard character support
	Attributes parameter
	Count parameter
	Depth parameter
	Filter parameter
	Selector parameter

	POST method usage and considerations
	PUT method usage and considerations
	PUT request body requirements
	PUT behavior
	Exceptions to the PUT strict replace behavior
	Best practice for building the PUT request body

	DELETE method usage and considerations
	REST requests and accounting logs
	AOS-CX REST API reference summary
	Switch REST API access default
	Switch REST API default access mode
	Enabling access to the Web UI and REST API
	Setting the REST API access mode to read-write
	Showing the REST API access configuration
	AOS-CX REST API Reference URL:
	REST API versions and switch software versions
	Getting REST API version information from a switch
	Protocol
	Port
	Request and response body format
	Session idle timeout
	Session hard timeout
	Authentication
	HTTPS client sessions
	VSX peer switch access

	Using Curl Commands
	About the curl command examples
	Getting the REST API versions on the switch
	Accessing the REST API using curl
	Logging in using curl
	Passing the cookie back to the switch
	Logging Out Using Curl

	Examples
	Example: GET method
	Example: Getting and deleting certificates using REST APIs
	Getting a list of all certificates
	Getting a certificate
	Deleting a certificate

	Example: Generating a self-signed certificate using REST APIs
	Example: Getting and installing a signed leaf certificate using REST APIs
	Example: Associating a leaf certificate with a switch feature using REST APIs
	Example: Configuration management using REST APIs
	Downloading a configuration
	Downloading the startup configuration:
	Uploading a configuration
	Copying a configuration

	Example: Firmware upgrade using REST APIs
	Uploading a file as the secondary firmware image
	Booting the system using the secondary firmware image

	Example: Log operations using REST APIs
	Event logs
	Accounting (audit) logs

	Example: Ping operations using REST APIs
	Example: Traceroute operations using REST APIs
	Example: User management using REST APIs
	Creating a user
	Changing a password
	Deleting a user

	Example: Creating an ACL with an interface using REST APIs
	Example: Creating a VLAN and a VLAN interface using REST APIs
	Example: Enabling routing on an interface

	VSX peer switches and REST API access
	Examples of curl commands
	Example: Interacting with a VSX peer switch

	AOS-CX real-time notifications subsystem
	Secure WebSocket Protocol connections for notifications
	Notification topics as switch resource URIs
	Rules for topic URIs
	Notification security features
	AOS-CX real-time notifications subsystem reference summary
	Connection protocol
	Port
	Message format
	Message types
	Authorization
	Notification resource URI
	Session idle timeout
	Session hard timeout
	Subscription persistence
	Configuration maximums

	Enabling the notifications subsystem on a switch
	Establishing a secure WebSocket connection through a web browser
	Establishing a secure WebSocket connection using a script
	Subscribing to topics
	Unsubscribing from topics
	Subscription throttling
	Parts of a subscribe message
	Subscribe message example
	Components of a subscribe message

	Parts of a subscription success message
	Example success message
	Components of subscription success message
	Components of a topic

	Parts of a notification message
	Notification message examples
	Components of a notification message
	Components of a topic

	Example: Browser-based WebSocket connection
	About the example
	Example screen
	Example HTML source

	Example: Getting information about current subscribers

	Troubleshooting
	General troubleshooting tips
	Connectivity
	Resources, attributes, and behaviors
	GET, PUT, POST, and DELETE methods
	Aruba 8400 switch examples:
	Aruba 8320 switch examples:

	Hardware and other features

	REST API response codes
	Error 'admin' password is not set
	Symptom
	Cause
	Action

	Error certificate verify failed returned from curl command
	Symptom
	Cause
	Action

	HTTP 400 error Invalid Operation
	Symptom
	Cause
	Action

	HTTP 400 error Value is not configurable
	Symptom
	Cause
	Action

	HTTP 401 error Authorization Required
	Symptom
	Solution 1
	Cause
	Action

	Solution 2
	Cause
	Action

	HTTP 401 error Login failed: session limit reached
	Symptom
	Cause
	Action

	HTTP 403 error Forbidden on a write request
	Symptom
	Cause
	Action

	HTTP 403 error Forbidden on a GET request
	Symptom
	Cause
	Action

	HTTP 404 error Page not found when accessing the switch URL
	Symptom
	Cause
	Action

	HTTP 404 error Object not found on object with ports/ or interfaces/ in URI Path
	Symptom
	Cause
	Action

	HTTP 404 error Object not found returned from a switch that supports multiple...
	Symptom
	Cause
	Action

	HTTP 404 error Object not found when using a write method
	Symptom
	Cause
	Action

	HTTP 404 error Page not found when using a write method
	Symptom
	Cause
	Action

	Logout Fails

	Support and Other Resources
	Accessing Aruba Support
	Accessing Updates
	Aruba Support Portal
	My Networking

	Warranty Information
	Regulatory Information
	Documentation Feedback

	Bookmarks
	Subscrip
	Subscrip2

