
cSRX Deployment Guide Kubernetes

Published

2020-09-30



Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks
are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cSRX Deployment Guide Kubernetes
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with)
Juniper Networks software. Use of such software is subject to the terms and conditions of the EndUser License Agreement
(“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you
agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/


Table of Contents

About the Documentation | v

Documentation and Release Notes | v

Documentation Conventions | v

Documentation Feedback | viii

Requesting Technical Support | viii

Self-Help Online Tools and Resources | ix

Creating a Service Request with JTAC | ix

Overview1
Understanding cSRX with Kubernetes | 11

Licensing | 12

Kubernetes Overview | 12

Junos OS Features Supported on cSRX | 14

Supported SRX Series Features on cSRX | 14

cSRX Installation on Kubernetes2
Requirements for Deploying cSRX on Kubernetes | 17

Platform and Server Requirements | 17

cSRX Environment Variables | 17

Adding License key File | 20

Setting Root Password | 21

Downloading cSRX Software | 22

Automate Initial Configuration Load with Kubernetes ConfigMap | 23

Loading Initial Configuration with Kubernetes ConfigMap | 23

cSRX PodWith External Network | 28

Understanding cSRX Pod with External Network | 28

Connecting cSRX to External Network | 29

Configuring Nodeport service for cSRX Pods | 33

cSRX PodWith Internal Network | 34

iii



cSRX Deployment in Kubernetes | 37

cSRX Installation on Kubernetes Linux Server | 38

Deploying cSRX Pod | 38

cSRX Image Upgrade Using Deployment Rollout | 43

cSRX Image Rollback | 44

Scaling cSRX Deployment | 44

Managing cSRX3
cSRX Service With Load Balancing Support | 46

Understanding cSRX as Kubernetes Service with Load Balancing Support | 46

Configuring Ingress Service for cSRX Pods | 48

Configuring cSRX4
cSRX Image with Packaged Pre-Installed Signatures | 52

Understanding Pre-Installed Signatures | 52

Repackaging cSRX Image with Signatures | 52

Downloading of Juniper Signature Pack | 53

Downloading Signature Pack through Proxy Server | 53

Configuring cSRX Using the Junos OS CLI | 55

iv



About the Documentation

IN THIS SECTION

Documentation and Release Notes | v

Documentation Conventions | v

Documentation Feedback | viii

Requesting Technical Support | viii

Use this guide to install and configure the cSRX Container Firewall on Kubernetes environment. This guide
also includes basic cSRX container configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further security feature configuration.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product
documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the
product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts.
These books go beyond the technical documentation to explore the nuances of network architecture,
deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Documentation Conventions

Table 1 on page vi defines notice icons used in this guide.

v

https://www.juniper.net/documentation/
https://www.juniper.net/books


Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware
damage.

Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Indicates helpful information.Tip

Alerts you to a recommended use or implementation.Best practice

Table 2 on page vi defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

ExamplesDescriptionConvention

To enter configuration mode, type
the configure command:

user@host> configure

Represents text that you type.Bold text like this

user@host> show chassis alarms

No alarms currently active

Represents output that appears on
the terminal screen.

Fixed-width text like this

• A policy term is a named structure
that defines match conditions and
actions.

• Junos OS CLI User Guide

• RFC 1997, BGP Communities
Attribute

• Introduces or emphasizes important
new terms.

• Identifies guide names.

• Identifies RFC and Internet draft
titles.

Italic text like this

vi



Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

Configure the machine’s domain
name:

[edit]
root@# set system domain-name
domain-name

Represents variables (options for
which you substitute a value) in
commands or configuration
statements.

Italic text like this

• To configure a stub area, include
the stub statement at the [edit
protocols ospf area area-id]
hierarchy level.

• The console port is labeled
CONSOLE.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy
levels; or labels on routing platform
components.

Text like this

stub <default-metric metric>;Encloses optional keywords or
variables.

< > (angle brackets)

broadcast | multicast

(string1 | string2 | string3)

Indicates a choice between the
mutually exclusive keywords or
variables on either side of the symbol.
The set of choices is often enclosed
in parentheses for clarity.

| (pipe symbol)

rsvp { # Required for dynamic MPLS
only

Indicates a comment specified on the
same line as the configuration
statement to which it applies.

# (pound sign)

community name members [
community-ids ]

Encloses a variable for which you can
substitute one or more values.

[ ] (square brackets)

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

}
}

}

Identifies a level in the configuration
hierarchy.

Indention and braces ( { } )

Identifies a leaf statement at a
configuration hierarchy level.

; (semicolon)

GUI Conventions

vii



Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

• In the Logical Interfaces box, select
All Interfaces.

• To cancel the configuration, click
Cancel.

Represents graphical user interface
(GUI) items you click or select.

Bold text like this

In the configuration editor hierarchy,
select Protocols>Ospf.

Separates levels in a hierarchy of
menu selections.

> (bold right angle bracket)

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either
of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper
Networks TechLibrary site, and do one of the following:

• Click the thumbs-up icon if the information on the page was helpful to you.

• Click the thumbs-down icon if the information on the page was not helpful to you or if you have
suggestions for improvement, and use the pop-up form to provide feedback.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name,
URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
If you are a customer with an active Juniper Care or Partner Support Services support contract, or are

viii

https://www.juniper.net/documentation/index.html
https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=


covered under warranty, and need post-sales technical support, you can access our tools and resources
online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTACUser
Guide located at https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Productwarranties—For productwarranty information, visit https://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week,
365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called
the Customer Support Center (CSC) that provides you with the following features:

• Find CSC offerings: https://www.juniper.net/customers/support/

• Search for known bugs: https://prsearch.juniper.net/

• Find product documentation: https://www.juniper.net/documentation/

• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

• Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

• Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

• Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool:
https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

• Visit https://myjuniper.juniper.net.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://support.juniper.net/support/requesting-support/.

ix

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/


1
CHAPTER

Overview

Understanding cSRX with Kubernetes | 11

Junos OS Features Supported on cSRX | 14



Understanding cSRX with Kubernetes

Containerized SRX (cSRX) is a virtual security solution based on Docker container to deliver agile, elastic
and cost-saving security services for comprehensive L7 security protection.

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of
containerized applications. With K8s support, cSRX can scale out in a cluster running as elastic firewall
service with smaller footprint when compared to virtual machines. cSRX running in K8s cluster provides
advantages such as:

• Runs services with smaller footprint

• Enables faster Scale out and scale in of cSRX

• Automated management and controlled workflow

Figure 1: cSRX Service in Kubernetes Linux

11



In K8s deployment, you can use Multus with both Flannel and Weave CNI.

To use Multus with Weave CNI, you can set environment variable CSRX_MGMT_PORT_REORDER to yes
to bind first interface as MGMT port and set to no to bind last interface as MGMT port.

To use Multus with Flannel CNI, you can set environment variable CSRX_MGMT_PORT_REORDER to no
to bind first interface as MGMT port and set to yes to bind last interface as MGMT port.

In case of multiple networks supported under K8s deployment, the environment variable
CSRX_MGMT_PORT_REORDER supports reordering of the interface mapping in cSRX.

The cSRX Container Firewall is a containerized version of the SRX Series Services Gateway with a low
memory footprint. cSRX provides advanced security services, including content security, AppSecure, and
unified threatmanagement in the formof a container. By using aDocker container the cSRX can substantially
reduce overhead as each container shares the Linux host’s OS kernel. Regardless of how many containers
a Linux server hosts, only one OS instance is in use. Also, because of the containers’ lightweight quality,
a server can host many more container instances than virtual machines (VMs), yielding tremendous
improvements in utilization. With its small footprint and Docker as a container management system, the
cSRX Container Firewall enables deployment of agile, high-density security service.

See “Junos OS Features Supported on cSRX” on page 14 for a summary of the features supported on
cSRX.

Licensing

The cSRX Container Firewall software features require a license to activate the feature. To understand
more about cSRX Container Firewall licenses, see Supported Features on cSRX, Juniper Agile Licensing
Guide, and Managing cSRX Licenses.

Kubernetes Overview

K8s is an open-source system for automating deployment, scaling, and management of containerized
applications. It groups containers that make up an application into logical units for easy management and
discovery.

K8s defines a set of building objects that collectively provide mechanisms that orchestrate containerized
applications across a distributed cluster of nodes, based on system resources (CPU, memory, or other
custom metrics). K8s masks the complexity of managing a group of containers by providing REST APIs for
the required functionalities.

12

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/juniper-agile-licensing-guide.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/juniper-agile-licensing-guide.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html


A node refers to a logical unit in a cluster, like a server, which can either be physical or virtual. In context
of Kubernetes clusters, a node usually refers specifically to a worker node. Kubernetes nodes in a cluster
are the machines that run the end user applications.

There are two type of nodes in a Kubernetes cluster, and each one runs a well-defined set of processes:

• head node: also called master, or master node, it is the head and brain that does all the thinking and
makes all the decisions; all of the intelligence is located here.

• worker node: also called node, or minion, it’s the hands and feet that conducts the workforce.

The nodes are controlled by the master in most cases.

The interfaces between the cluster and you is the command-line tool kubectl. It is installed as a client
application, either in the same master node or in a separate machine.

Kubernetes’s objects are:

• Pod

• Service

• Volume

• Namespace

• Replication

• Controller

• ReplicaSet

• Deployment

• StatefulSet

• DaemonSet

• Job

RELATED DOCUMENTATION

What is a Container?

Kubernetes Concepts

13

https://www.docker.com/what-container
https://kubernetes.io/docs/concepts/


Junos OS Features Supported on cSRX

cSRX provides Layer 4 through 7 secure services in a containerized environment.

Supported SRX Series Features on cSRX

Table 3 on page 14 provides a high-level summary of the feature categories supported on cSRX and any
feature considerations.

To determine the Junos OS features supported on cSRX, use the Juniper Networks Feature Explorer, a
Web-based application that helps you to explore and compare Junos OS feature information to find the
right software release and hardware platform for your network. See Feature Explorer.

Table 3: Security Features Supported on cSRX

ConsiderationsSecurity Features

Understanding AppTrackApplication Tracking (AppTrack)

Application Firewall OverviewApplication Firewall (AppFW)

Understanding Application Identification TechniquesApplication Identification (AppID)

Understanding Security BasicsBasic Firewall Policy

Brute force attack mitigation

DoS Attack Overview

DoS Attack Overview

DoS/DDoS protection

For SRX Series IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX Series

Intrusion Prevention System (IPS)

Understanding IPv4 Addressing

Understanding IPv6 Address Space

IPv4 and IPv6

Understanding Jumbo Frames Support for Ethernet InterfacesJumbo Frames

Understanding SYN Cookie ProtectionSYN cookie protection

14

https://apps.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html


Table 3: Security Features Supported on cSRX (continued)

ConsiderationsSecurity Features

Malformed packet protection

Includes support for all UTM functionality on the cSRX platform,
such as:

• Antispam

• Sophos Antivirus

• Web filtering

• Content filtering

For SRX Series UTM configuration details, see:

Unified Threat Management Overview

For SRX Series UTM antispam configuration details, see:

Antispam Filtering Overview

Unified Threat Management (UTM)

Includes support for all user firewall functionality on the cSRX
platform, such as:

• Policy enforcement with matching source identity criteria

• Logging with source identity information

• Integrated user firewall with active directory

• Local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

User Firewall

Understanding IP SpoofingZones and Zone based IP spoofing

15

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html


2
CHAPTER

cSRX Installation on Kubernetes

Requirements for Deploying cSRX on Kubernetes | 17

cSRX Environment Variables | 17

Downloading cSRX Software | 22

Automate Initial Configuration Load with Kubernetes ConfigMap | 23

cSRX Pod With External Network | 28

cSRX Pod With Internal Network | 34

cSRX Deployment in Kubernetes | 37



Requirements for Deploying cSRX on Kubernetes

IN THIS SECTION

Platform and Server Requirements | 17

This section presents an overview of requirements for deploying a cSRX container on Kubernetes:

Platform and Server Requirements

Table 4 on page 17 lists the requirements for deploying a cSRX container in a Kubernetes (Master and
Worker) node.

Table 4: Master and Worker Node Specifications

SpecificationComponent

Docker Engine 1.9 or later installed on the same compute node as the
cSRX

Docker Engine

2vCPUs

4 GBMemory

50 GB hard driveDisk space

16

The environment variable CSRX_PORT_NUM is set to=17.

Interfaces

cSRX Environment Variables

Docker allows you to store data such as configuration settings as environment variables. At runtime, the
environment variables are exposed to the application inside the container. You can set any number of

17



parameters to take effect when the cSRX image launches. You can pass configuration settings in the YAML
file or environment variables to the cSRX when it launches at boot time.

Table 5 on page 18 summarizes the list of available cSRX environment variables.

Table 5: Summary of cSRX Environment Variables

DescriptionMandatoryEnvironment Variable

Automatically configure cSRX ge-0/0/x IP address based on
IP address of cSRX container when the cSRX works in routing
mode.

Multus CNI is supports to create more Pod interfaces in
Kubernetes. If set to yes, the Pod interface IP address is
automatically assigned to cSRX revenue port.

OptionalCSRX_AUTO_ASSIGN_IP

If set to yes, the last Pod interface is changed to management
interface. Else, the first Pod interface is management interface.

OptionalCSRX_MGMT_PORT_REORDER

If set to yes, cSRX re-compute to correct TCP checksum in
packets.

OptionalCSRX_TCP_CKSUM_CALC

If set, license file is loaded through ConfigMap.OptionalCSRX_LICENSE_FILE

If set, initial configuration of cSRX is loaded through
ConfigMap.

OptionalCSRX_JUNOS_CONFIG

It is used to define SD server IP address or FQDN address.OptionalCSRX_SD_HOST

It is used to define SD server login account name.OptionalCSRX_SD_USER

It is used to define SD server login account password.OptionalCSRX_SD_PASSWORD

It is used to define cSRXmanagement IP address, which is used
by SD to connect to cSRX. Else it uses Port IP address.

OptionalCSRX_SD_DEVICE_IP

It is used to define cSRX management Port, which is used by
SD to connect to cSRX. Else it will use default port number 22.

OptionalCSRX_SD_DEVICE_PORT

It is used in traffic forwarding mode.

"routing" | "wire"

OptionalCSRX_FORWARD_MODE

It is used in Packet I/O driver.

"poll" | "interrupt"

OptionalCSRX_PACKET_DRIVER

18



Table 5: Summary of cSRX Environment Variables (continued)

DescriptionMandatoryEnvironment Variable

Initial root account password to log in to the cSRX container
using SSH.

No default root password

string

OptionalCSRX_ROOT_PASSWORD

CPU mask, indicating which CPU is running the cSRX control
plane daemons (such as nsd, mgd, nstraced, utmd, and so on).

No CPU affinity

hex value

OptionalCSRX_CTRL_CPU

CPU mask, indicating which CPU is running the cSRX data
plane daemon (srxpfe).

No CPU affinity

hex value

OptionalCSRX_DATA_CPU

ARP entry timeout value for the control plane ARP learning or
response.

decimal value

Same as the Linux host

OptionalCSRX_ARP_TIMEOUT

NDP entry timeout value for the control plane NDP learning
or response.

decimal value

Same as the Linux host

OptionalCSRX_NDP_TIMEOUT

Number of interfaces you need to add to container.

Default is 3, maximum is 17 (which means 1 management
interfaces and 16 data interfaces)

OptionalCSRX_PORT_NUM

19



Adding License key File

You can import saved local license key file to cSRX Pod using environment variable CSRX_LICENSE_FILE
using Kubernetes ConfigMaps.

1. Save the license key file in a text file.

2. Create ConfigMap in Kubernetes.

root@kubernetes-master:~#kubectl create configmap csrxconfigmap --from-file=<file
path>/var/tmp/csrxlicensing

3. Create cSRX using ConfigMaps to import the user defined configuration

---

deployment.spec.template.spec.containers.

 env:

   - name: CSRX_LICENSE_FILE

     value: "/var/local/config/.csrxlicense"

 volumeMounts:

 - name: lic

     mountPath: "/var/local/config"

deployment.spec.template.spec.

      volumes:

      - name: lic

 configMap:

   name: csrxconfigmap

   items:

     - key: csrxlicensing

       path: csrxlicensing

---

4. Run the following command to create cSRX deployment using yaml file.

root@kubernetes-master:~#kubectl apply -f csrx.yaml

5. Login to cSRX pods to verify the license installed

root@kubernetes-master:~#kubectl exec -it csrx bash

root@csrx:~#cli

root@csrx>show system license

20



Setting Root Password

You can set root password using Kubernetes secrets.

1. Create a generic secret in Kubernetes csrx home namespce.

root@kubernetes-master:~#kubectl create secret generic csrxrootpasswd --fromliteral=
CSRX_ROOT_PASSWORD=XXXXX

2. Run the following command to verify the password is created.

root@kubernetes-master:~#kubectl describe secret csrxrootpasswd

3. Run the following command to use Kubernetes Secrets to save root password in csrx deployment yaml
file.

---

deployment.spec.template.spec.containers.

env:

- name: CSRX_ROOT_PASSWORD

valueFrom:

secretKeyRef:

name: csrxrootpasswd

key: CSRX_ROOT_PASSWORD

---

4. Run the following command to create cSRX deployment using yaml file.

root@kubernetes-master:~#kubectl apply -f csrx.yaml

RELATED DOCUMENTATION

21



Downloading cSRX Software

To download the cSRX software:

1. Download the cSRX software image from the JuniperNetworkswebsite. The filenameof the downloaded
cSRX software image must not be changed to continue with the installation.

2. You can either download the cSRX image file normally using the browser or use the URL to download
the image directly on your device as in the following example:

Run the following command to downloaded images to a local registry using curl command or any other
http utility. The syntax for curl commands is:

root@csrx-ubuntu3:~csrx# curl -o <file destination path> <Download link url>

root@csrx-ubuntu3:/var/tmp# curl -o /var/tmp/images/junos-csrx-docker-20.3R1.10.img
“https://cdn.juniper.net/software/csrx/20.2R1.10/junos-csrx-docker-20.3R1.10.img?SM_USER=user&__gda__=1595350694_5dbf6e62442de6bf14079d05a72464d4”

% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current

                                 Dload  Upload   Total   Spent    Left  Speed

100  160M  100  160M    0     0  1090k      0  0:02:30  0:02:30 --:--:-- 1230k

3. Locate the cSRX image by using the ls Linux shell command.

root@csrx-ubuntu3:/var/tmp/images# ls

4. Load the downloaded cSRX image from the download site to the local registry using the following
command.

root@csrx-ubuntu3:/var/tmp/images# docker image load -i
/var/tmp/images/junos-csrx-docker-20.2R1.10.img

e758932b9168: Loading layer [==================================================>]

    263MB/263MB

23f7a9961879: Loading layer [==================================================>]

  14.51MB/14.51MB

1e4139e6fa81: Loading layer [==================================================>]

  270.3MB/270.3MB

10334b424f86: Loading layer [==================================================>]

   16.9kB/16.9kB

202ebb2f1137: Loading layer [==================================================>]

   2.56kB/2.56kB

bc4a16173327: Loading layer [==================================================>]

22

https://www.juniper.net/support/downloads/?p=csrx#sw


  1.536kB/1.536kB

8f9a9945544a: Loading layer [==================================================>]

  2.048kB/2.048kB

Loaded image: csrx:20.2R1.10

5. After the cSRX image loads, confirm that it is listed in the repository of Docker images.

root@csrx-ubuntu3:/var/tmp/images# docker images

REPOSITORY                      TAG                 IMAGE ID            CREATED

             SIZE

csrx                            20.2R1.10           88597d2d4940        2 weeks

 ago         534MB

Automate Initial Configuration Loadwith Kubernetes
ConfigMap

IN THIS SECTION

Loading Initial Configuration with Kubernetes ConfigMap | 23

Loading Initial Configuration with Kubernetes ConfigMap

ConfigMap is Kubernetes standard specification.

ConfigMaps allow you to decouple configuration artifacts from image content to keep containerized
applications portable. cSRX use ConfigMaps to load initial configuration file at cSRX container startup.

You can also add license from license key file using the steps similar to loading the initial configuration file
in kubernetes.

23



To create cSRX ConfigMap according to cSRX initial configurations:

24



1. Create the csrx.yaml file on Kubernetes-master and add the text content to deploy cSRX Pod with
ConfigMap:

-------- 

apiVersion: v1

kind: ConfigMap 

metadata: 

  name: csrx-config-map 

  data: 

     csrx_config: | interfaces { ge-0/0/0 { unit 0; } ge-0/0/1 { unit 0; } } 

security { policies { default-policy { permit-all; } } zones { security-zone 

trust { host-inbound-traffic { system-services { all; } protocols { all; } } 

interfaces { ge-0/0/0.0; } } security-zone untrust { host-inbound-traffic { 

system-services { all; } protocols { all; } } interfaces { ge-0/0/1.0; } } } }

root@kubernetes-master:~#kubectl create -f pod_with_configmap.txt

------------------

apiVersion: v1

kind: Pod

spec:

  containers:

  - name: csrx

    securityContext:

       privileged: true

    image: csrx-image:20.3

    env:

    - name: CSRX_ROOT_PASSWORD

      value: "xxxxx"

    - name: CSRX_HUGEPAGES

      value: "no"

    - name: CSRX_PACKET_DRIVER

      value: "interrupt"

    - name: CSRX_FORWARD_MODE

      value: "routing"

    volumeMounts:

    - name: disk

      mountPath: "/dev"

    - name: config

      mountPath: "/var/jail"

  volumes:

  - name: disk

    hostPath:

25



     path: /dev

     type: Directory

  - name: config

    configMap:

      name: csrx-config-map

      items:

      - key: csrx_config

        path: csrx_config

------------------

2. Run the following command to create csrx using yaml file.

root@kubernetes-master:~#kubectl apply -f csrx.yaml

3. Run the following command to start cSRX in CLI mode

root@kubernetes-master:~#kubectl exec -it csrx bash

root@csrx:~#cli

root@csrx#configure

Entering configuration mode

4. After cSRX Pod startup, you can check cSRX initial configuration from cSRX CLI.

root@csrx> show

## Last changed: 2019-10-18 01:53:36 UTC

version "20190926.093332_rbu-builder.r1057567 [rbu-builder]";

interfaces {

    ge-0/0/0 {

        unit 0 {

            family inet {

                address 20.0.0.11/24;

            }

        }

    }

    ge-0/0/1 {

        unit 0 {

            family inet {

                address 30.0.0.11/24;

            }

        }

26



    }

}

security {

    policies {

        default-policy {

            permit-all;

        }

    }

    zones {

        security-zone trust {

            host-inbound-traffic {

                system-services {

                    all;

                }

                protocols {

                    all;

                }

            }

            interfaces {

                ge-0/0/0.0;

            }

        }

        security-zone untrust {

            host-inbound-traffic {

                system-services {

                    all;

                }

                protocols {

                    all;

                }

            }

            interfaces {

                ge-0/0/1.0;             

            }

        }

    }

}

27



cSRX PodWith External Network

IN THIS SECTION

Understanding cSRX Pod with External Network | 28

Connecting cSRX to External Network | 29

Configuring Nodeport service for cSRX Pods | 33

Understanding cSRX Pod with External Network

You can connect cSRX with external network with two additional interfaces. Both of those interfaces are
attached into srxpfe and handled by FLOW.

cSRX can leverage Linux native CNI to connect to external network.

cSRX useMultus plugin to supportmultiple interfaces connect to the external network. Applicationswhich
monitor network traffic are directly connected to the physical network. You can use themacvlan network
driver to assign a MAC address to each container’s virtual network interface, making it appear to be a
physical network interface directly connected to the physical network. In this case, you need to designate
a physical interface on your Docker host to use for themacvlan, as well as the subnet and gateway of the
macvlan. You can even isolate your macvlan networks using different physical network interfaces.

28



Connecting cSRX to External Network

macvlan functions like a switch that is already connected to the host interface. A host interface gets
enslaved with the virtual interfaces sharing the physical device but having distinct MAC addresses. Since
each macvlan interface has its own MAC address, it makes it easy to use with existing DHCP servers
already present on the network.

To connect cSRX with external network using macvlan:

Figure 2: Connecting cSRX to External Network with Macvlan Plugin

Figure 3: cSRX in External Network

29



1. Create the network-conf-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "macvlan",

      "master": "eth1",

      "mode": "bridge",

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "20.0.0.10/24",

    "gateway": "20.0.0.2"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" },

   { "dst": "30.0.0.0/24", "gw": "20.0.0.11" }

  ]

      }

    }'

2. Create the network-conf-1-1.yaml file and add the text content. .

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-1-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "macvlan",

      "master": "eth1",

      "mode": "bridge",

      "ipam": {

        "type": "static",

  "addresses": [

   {

30



    "address": "20.0.0.11/24",

    "gateway": "20.0.0.2"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" }

  ]

      }

    }'

3. Create the network-conf-2-1.yaml and add the text content. .

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-2-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "macvlan",

      "master": "eth2",

      "mode": "bridge",

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "30.0.0.11/24",

    "gateway": "30.0.0.2"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" }

  ]

      }

    }'

4. Create the network-conf-2.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-2

31



spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "macvlan",

      "master": "eth2",

      "mode": "bridge",

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "30.0.0.10/24",

    "gateway": "30.0.0.2"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" },

   { "dst": "20.0.0.0/24", "gw": "30.0.0.11" }

  ]

      }

    }'

5. Create the csrx.yaml file and add the text content.

apiVersion: v1

kind: Pod

metadata:

  name: csrx

  annotations:

    k8s.v1.cni.cncf.io/networks: network-conf-1-1,network-conf-2-1

spec:

  containers:

  - name: csrx

    securityContext:

       privileged: true

    image: csrx-images:20.2

    env:

    - name: CSRX_ROOT_PASSWORD

      value: "xxxxx"

    - name: CSRX_HUGEPAGES

      value: "no"

    - name: CSRX_PACKET_DRIVER

      value: "interrupt"

    - name: CSRX_FORWARD_MODE

32



      value: "routing"

    volumeMounts:

    - name: disk

      mountPath: "/dev"

  volumes:

  - name: disk

    hostPath:

     path: /dev

     type: Directory

Configuring Nodeport service for cSRX Pods

You can deploy cSRX with Nodeport service type. All the traffic will be forward to worker node by
Kubernetes in the external network.

To create a NodePort service:

1. Create the cSRX Pod yaml file and expose it as service on NodePort.

------------------

apiVersion: v1

kind: Service

metadata:

  name: csrx1

spec:

  selector:

    app: csrx1

  ports:

    - name: ssh

      port: 22

      nodePort: 30122

  type: NodePort

---

2. To access cSRX:

root@kubernetes-master:~#ssh -p 30122 root@192.168.42.81

33



cSRX PodWith Internal Network

With bridge plugin, all containers on the same host are plugged into a bridge (virtual switch) that resides
in the host network name space. The containers receive one end of the veth pair with the other end
connected to the bridge. An IP address is only assigned to one end of the veth pair in the container. The
bridge itself can also be assigned an IP address, turning it into a gateway for the containers. Alternatively,
the bridge can function in L2 mode and would need to be bridged to the host network interface (if other
than container-to-container communication on the same host is desired). The network configuration
specifies the name of the bridge to be used.

To connect cSRX with external network using bridge:

Figure 4: Connecting cSRX to Internal Network with Bridge Plugin

34



1. Create the network-conf-1-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-1-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "bridge",

      "bridge": "south-bridge",

      "promiscMode": true,

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "20.0.0.20/24",

    "gateway": "20.0.0.1"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" }

  ]

      }

    }'

2. Create the network-conf-2-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-2-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "bridge",

      "bridge": "north-bridge",

      "promiscMode": true,

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "20.0.0.30/24",

35



    "gateway": "20.0.0.1"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" }

  ]

      }

    }'

3. Create the srv-pod-1.yaml file and add the text content.

apiVersion: v1

kind: Pod

metadata:

  name: srv-pod-1

  annotations:

    k8s.v1.cni.cncf.io/networks: network-conf-1@north0

spec:

  containers:

  - name: srv-pod-1

    securityContext:

      privileged: true

    image: docker.io/centos/tools:latest

    command:

    - /sbin/init

4. Create the csrx.yaml file and add the text content.

apiVersion: v1

kind: Pod

metadata:

  name: csrx

  annotations:

    k8s.v1.cni.cncf.io/networks: network-conf-1-1,network-conf-2-1

spec:

  containers:

  - name: csrx

    securityContext:

       privileged: true

    image: csrx-images:20.2

    env:

    - name: CSRX_ROOT_PASSWORD

36



      value: "xxxxx"

    - name: CSRX_HUGEPAGES

      value: "no"

    - name: CSRX_PACKET_DRIVER

      value: "interrupt"

    - name: CSRX_FORWARD_MODE

      value: "wire"

    volumeMounts:

    - name: disk

      mountPath: "/dev"

  volumes:

  - name: disk

    hostPath:

     path: /dev

     type: Directory

5. Create the srv-pod-3.yaml file and add the text content.

apiVersion: v1

kind: Pod

metadata:

  name: srv-pod-3

  annotations:

    k8s.v1.cni.cncf.io/networks: network-conf-2@north0

spec:

  containers:

  - name: srv-pod-3

    image: docker.io/centos/tools:latest

    command:

    - /sbin/init

cSRX Deployment in Kubernetes

IN THIS SECTION

cSRX Installation on Kubernetes Linux Server | 38

Deploying cSRX Pod | 38

37



cSRX Image Upgrade Using Deployment Rollout | 43

cSRX Image Rollback | 44

Scaling cSRX Deployment | 44

cSRX Installation on Kubernetes Linux Server

Prerequisites

Following are the prerequisites required for installing cSRX on one master node and ’n’ number of worker
nodes. Before you begin the installation:

• Install kubeadm tool on both master and worker nodes to create a cluster. See Install Kubeadm

• Install and configure Docker on Linux host platform to implement the Linux container environment, see
Install Docker for installation instructions on the supported Linux host operating systems.

• Verify the system requirement specifications for the Linux server to deploy the cSRX, see “Requirements
for Deploying cSRX on Kubernetes” on page 17.

• Download cSRX software, see “Downloading cSRX Software” on page 22.

Deploying cSRX Pod

You can create cSRX as a Pod in routing mode and secure-wire mode to send traffic from one virtual
machine to another virtual machine. You can define multiple virtual networks and connect cSRX interfaces
to those virtual networks.

The network attachment definition is created with plugin ipam type as host-localwhich allocates IPv4 and
IPv6 addresses out of a specified address range to ensure the uniqueness of IP addresses on a single host.
The ipam type as static assigns IPv4 and IPv6 addresses statically to container.

38

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://docs.docker.com/engine/installation/


To deploy cSRX with Kubernetes:

Figure 5: Deploying cSRX

1. Create network attachment definition for cSRX-eth1, cSRX-eth2with type: bridge . For details on type:
bridge and type: macvlan networks, see “cSRX Pod With External Network” on page 28.

------------------

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "bridge",

      "bridge": "br-1",

      "isDefaultGateway": true,

      "promiscMode": true,

      "ipam": {

        "type": "host-local",

        "ranges": [

       [

       {

        "subnet": "10.10.0.0/16",

        "rangeStart": "10.10.1.20",

        "rangeEnd": "10.10.3.50"

       }

       ]

     ],

        "routes": [

            { "dst": "0.0.0.0/0" }

        ]   

      }   

39



    }'  

---------------------

------------------

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-1-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "bridge",

      "bridge": "br-2",

      "isDefaultGateway": true,

      "promiscMode": true,

      "ipam": {

        "type": "host-local",

        "ranges": [

       [

       {

        "subnet": "55.0.0.0/16",

        "rangeStart": "55.0.0.11",

        "rangeEnd": "55.0.0.21"

       }

       ]

     ],

        "routes": [

            { "dst": "0.0.0.0/0" }

        ]   

      }   

    }'  

------------------

To create network interfaces with type: macvlan.

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-1-1

spec:

  config: '{

      "cniVersion": "0.3.0",

40



      "type": "macvlan",

      "master": "eth1",

      "mode": "bridge",

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "20.0.0.11/24",

    "gateway": "20.0.0.2"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" }

  ]

      }

    }'

apiVersion: "k8s.cni.cncf.io/v1"

kind: NetworkAttachmentDefinition

metadata:

  name: network-conf-2-1

spec:

  config: '{

      "cniVersion": "0.3.0",

      "type": "macvlan",

      "master": "eth2",

      "mode": "bridge",

      "ipam": {

        "type": "static",

  "addresses": [

   {

    "address": "30.0.0.11/24",

    "gateway": "30.0.0.2"

   }

  ],

  "routes": [

   { "dst": "0.0.0.0/0" }

  ]

      }

    }'

2. Create the csrx-deployment.yaml file on Kubernetes-master using kind: Deployment. cSRX as kind:
Deployment is used to create ReplicaSet, Scaling, Rollout, Rollback in Kubernetes in this topic.

41



------------------

apiVersion: apps/v1

kind: Deployment

metadata:

  name: csrx-deployment

  labels:

    app: firewall

spec:

  replicas: 5

  selector:

    matchLabels:

      app: firewall

  template:

metadata:

  labels:

        app: firewall

      annotations:          

        k8s.v1.cni.cncf.io/networks: 

        network-conf-1, network-conf-1-1

spec:

  containers:

  - name: csrx

        securityContext:

 privileged: true       

    image: csrx-images:20.2

     env:

    - name: CSRX_SIZE

      value: "large"

    - name: CSRX_HUGEPAGES

      value: "no"

    - name: CSRX_PACKET_DRIVER

      value: "interrupt"

    - name: CSRX_FORWARD_MODE

      value: "routing"

    volumeMounts:

    - name: disk

      mountPath: "/dev"

  volumes:

  - name: disk

    hostPath:

      path: /dev

      type: Directory

------------------

3. View the cSRX deployment:

42



root@kubernetes-master:~#kubectl get deployment csrx-deployment

NAME                   READY   UP-TO-DATE   AVAILABLE   AGE

csrx-deployment        5/5     5            5           119m

cSRX Image Upgrade Using Deployment Rollout

You can upgrade the cSRX software image using Kubernetes Deployment rollout.

1. Run the following command to upgrade cSRX image using Kubernetes Deployment name in the cSRX
Pod:

root@kubernetes-master:~#kubectl set image deployment csrx-deployment csrx=<new-csrx-image>

NAME                   READY   UP-TO-DATE   AVAILABLE   AGE

csrx-deployment        5/5     5            5           119m

2. Run the following command to monitor rollout status:

root@kubernetes-master:~#kubectl rollout history deployment csrx-deployment

root@kubernetes-master:~#kubectl rollout status -w deployment csrx-deployment

Waiting for deployment "csrx-deployment" rollout to finish: 1 old replicas are

 pending termination...

Waiting for deployment "csrx-deployment" rollout to finish: 1 old replicas are

 pending termination...

deployment "csrx-deployment" successfully rolled out

You can verify the upgraded image version by logging into the newly created cSRX Pods.

43



cSRX Image Rollback

The cSRX image can be rolled back to previous version using Kubernetes Deployment rollout components.

1. Rollack cSRX image using Kubernetes Deployment rollout undo:

root@kubernetes-master:~#kubectl rollout history deployment csrx-deploy

2. Rollback to previous Deployment.

root@kubernetes-master:~#kubectl rollout undo deployment csrx-deploy

3. Rollback to a specified version.

root@kubernetes-master:~#kubectl rollout undo deployment csrx-deploy --to-version=2

4. Monitor the old cSRX Pods are terminated and new cSRX Pods are created.

root@kubernetes-master:~#kubectl rollout history deployment csrx-deploy

root@kubernetes-master:~#kubectl rollout status -w deployment csrx-deploy

You can verify the image version that has been rolled back by logging into the newly created cSRX Pod.

Scaling cSRX Deployment

To scale the cSRX deployment:

1. Ensure to have cSRX Pods created in kind: deployment running in Kubernetes cluster.

root@kubernetes-master:~#kubectl describe deployment csrx-deployment

2. Scale up or down by changing the replicas number:

root@kubernetes-master:~#kubectl scale deployment csrx-deployment --replicas=2

3. View the pods:

root@kubernetes-master:~#kubectl get pod

NAME                               READY   STATUS    RESTARTS   AGE

csrx-deployment-547fcf68dd-7hl7r   1/1     Running   0          8m8s

csrx-deployment-547fcf68dd-xbg4b   1/1     Running   0          35s

44



3
CHAPTER

Managing cSRX

cSRX Service With Load Balancing Support | 46



cSRX Service With Load Balancing Support

IN THIS SECTION

Understanding cSRX as Kubernetes Service with Load Balancing Support | 46

Configuring Ingress Service for cSRX Pods | 48

Understanding cSRX as Kubernetes Service with Load Balancing Support

cSRX Pod is identified with predefined selectors and exposed with supported load balancer to distribute
traffic among different cSRX Pods. The standard load balancer is ingress controller, external load balancer
or cluster IP.

A Service enables network access to a set of Pods in Kubernetes. Services select Pods based on their
labels. When a network request is made to the service, it selects all Pods in the cluster matching the
service's selector, chooses one of them, and forwards the network request to it. A deployment is responsible
for keeping a set of pods running.

Figure 6: Services and Labels

Service is to group a set of Pod endpoints into a single resource. By default, clients inside the cluster can
access Pods in the Service using cluster IP address. A client sends a request to the IP address, and the

46



request is routed to one of the Pods in the Service. The types of Services are ClusterIP (default), NodePort,
LoadBalancer, and ExternalName.

Figure 7: NodePort

When you set a service’s type to NodePort, that service starts to listen on a static port on every node in
the cluster. So, you can reach the service through any node’s IP address and the assigned port.

Figure 8: LoadBalancer

When you set a service’s type to Load Balancer, it exposes the service externally. However, to use it, you
need to have an external load balancer. The external load balancer needs to be connected to the internal
Kubernetes network on one end and opened to public-facing traffic on the other in order to route incoming
requests.

47



Figure 9: Ingress Controller

An Ingress Controller watches for new services within the cluster and is able to dynamically create routing
rules for them. An Ingress object is an independent resource, apart from Service objects, that configures
external access to service’s pods. You can define the Ingress, after the Service has been deployed, to
connect it to external traffic. This way You can isolate service definitions from the logic of how clients
connect to them. L7 routing is one of the core features of Ingress, allowing incoming requests to be routed
to the exact pods that can serve them based on HTTP characteristics such as the requested URL path.
Other features include terminating TLS, using multiple domains, and load balancing traffic.

Nginx ingress controller is supported to view the traffic distribution among different cSRX Pods. For more
details, see Set Up Ingress on Kubernetes Using Nginx Controller.

Configuring Ingress Service for cSRX Pods

Service is used by cSRX to connect application with cSRX Pods. cSRX Service is standard Kubernetes
service, in which, the load is balanced to different cSRX Pods, and the Pods are located at different work
nodes. It also monitors the backend cSRX Pod and selects working cSRX Pod according to Kubernetes
Pod labels. You can use YAML file to create a cSRX service.

48

https://devopscube.com/setup-ingress-kubernetes-nginx-controller/


To create a cSRX service:

1. Create the yaml file and add the following text content:

------------------

apiVersion: v1

kind: Service

metadata:

  labels:

    app: firewall 

  name: firewall

spec:

  selector:

    app:firewall

  ports:

  - name: port-1

    port: 80

    protocol: TCP 

    targetPort: 80

2. Define routing for cSRX Pods. Ingress will co-operate with Ingress controller to route outside traffic
into cSRX service, then into cSRX Pods. Create a file named ingress.yaml.

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

  name: web-ingress

  namespace: default

spec:

 rules:

 - host: foo.bar

   http:

    paths:

    - path: /

       backend:

         serviceName: firewall 

         servicePort: 80

Traffic routes to cSRX interface on ge-0/0/0.

3. View the cSRX service.

root@kubernetes-master:~#kubectl get svc -A

49



NAMESPACE       NAME            TYPE           CLUSTER-IP       EXTERNAL-IP   

PORT(S)                      AGE

default         csrx-service    ClusterIP      10.102.115.211   <none>        

80/TCP                       13d

default         kubernetes      ClusterIP      10.96.0.1        <none>        

443/TCP                      75d

default         nginx           NodePort       10.110.8.221     <none>        

80:31454/TCP                 18d

default         test-service    ClusterIP      10.108.236.26    <none>        

80/TCP                       11d

kube-system     kube-dns        ClusterIP      10.96.0.10       <none>        

53/UDP,53/TCP,9153/TCP       75d

4. View the Pod.

root@kubernetes-master:~#kubectl get pod -A

NAMESPACE       NAME                                                    READY 

  STATUS    RESTARTS   AGE

default         csrx-deployment-86f49b8dcf-7zzq9                        1/1   

  Running   0          11d

default         csrx-deployment-86f49b8dcf-dm6nv                        1/1   

  Running   0          11d

50



4
CHAPTER

Configuring cSRX

cSRX Image with Packaged Pre-Installed Signatures | 52

Configuring cSRX Using the Junos OS CLI | 55



cSRX Image with Packaged Pre-Installed Signatures

IN THIS SECTION

Understanding Pre-Installed Signatures | 52

Repackaging cSRX Image with Signatures | 52

Downloading of Juniper Signature Pack | 53

Downloading Signature Pack through Proxy Server | 53

Understanding Pre-Installed Signatures

To support pre-installed signatures package in cSRX image, a Docker file is placed in localhost repository
to help user compile cSRX with installed signatures. With the new image, you can launch cSRX Pod which
protects workload immediately after container is launched.

The supported functions for signature packaging are:

• Intrusion Detection and Prevention (IDP)

• Application Identification (AppID)

• Unified Threat Management (UTM)

Repackaging cSRX Image with Signatures

• Ensure to have the cSRX image placed in the local repository or any other Docker registry.

• Ensure to include license file together with Docker file.

To repackage cSRX image with signatures:

1. Create DockerFile.

root@host>cat Dockerfile

FROM localhost:5000/csrx

ARG CSRX_BUILD_WITH_SIG=yes

52



ENV CSRX_LICENSE_FILE=/var/local/.csrx_license

COPY csrx.lic $CSRX_LICENSE_FILE

RUN ["/etc/rc_build.local"]

CMD ["/etc/rc.local","init"]

2. Repackage image to include APPID and IDP signature.

root@host>docker build -t localhost:5000/csrx-sig

3. Push the image to the registry.

root@host>docker push localhost:5000/csrx-sig

The new cSRX image localhost:5000/csrx-sig:latest is ready to use.

Downloading of Juniper Signature Pack

You can download the signature pack from the Juniper Signature Repository directly when cSRX doesn’t
have a preinstalled signature pack.

1. To download the signature pack from Juniper Signature Repository:

root@host> request services application-identification download

root@host> request security idp security-package download

Downloading Signature Pack through Proxy Server

You can download the signature pack through a proxy server. AppIDD and IDPD processes first connects
to the configured proxy server. The proxy server then communicates with the signature pack download
server and provides the response to the process running on the device.

To download the signature pack through the proxy server:

1. Configure the proxy server so that the IP address of the proxy server is reachable from cSRX.

2. Run the following command to enter the configuration mode from the CLI.

root@host> configure

53

https://signatures.juniper.net/cgi-bin/index.cgi
https://signatures.juniper.net/cgi-bin/index.cgi


Entering configuration mode

[edit]

root@host#

3. Configure the proxy server profile on cSRX using the IP address and port of the proxy server.

root@host#set services proxy profile appid_sigpack_proxy protocol http host 4.0.0.1

root@host#set services proxy profile appid_sigpack_proxy protocol http port 3128

4. Attach the profile to AppID and IDP.

root@host#set services application-identification download proxy-profile appid_sigpack_proxy

root@host#set security idp security-package proxy-profile appid_sigpack_proxy

5. Commit the configuration.

root@host#commit and-quit

commit complete

Exiting configuration mode

6. Download the IDP and APPID signature pack through proxy server.

root@host>request services application-identification download

root@host>request security idp security-package download

54



To verify that the download is happening through the proxy server:

1. Verify the logs in the proxy server.

[root@srxdpi-lnx39 squid]# cat /var/log/squid/access.log

1593697174.470   1168 4.0.0.254 TCP_TUNNEL/200 5994 CONNECT 

signatures.juniper.net:443 - HIER_DIRECT/66.129.242.156 -

1593697175.704   1225 4.0.0.254 TCP_TUNNEL/200 11125 CONNECT 

signatures.juniper.net:443 - HIER_DIRECT/66.129.242.156 -

1593697176.950   1232 4.0.0.254 TCP_TUNNEL/200 5978 CONNECT 

signatures.juniper.net:443 - HIER_DIRECT/66.129.242.156 -

1593697178.195   1236 4.0.0.254 TCP_TUNNEL/200 11188 CONNECT 

signatures.juniper.net:443 - HIER_DIRECT/66.129.242.156 -

1593697198.337   1243 4.0.0.254 TCP_TUNNEL/200 6125 CONNECT 

signatures.juniper.net:443 - HIER_DIRECT/66.129.242.156 -

In cSRX, the TLS protocol is used and traffic the through proxy server is encrypted.

Configuring cSRX Using the Junos OS CLI

This section provides basic CLI configurations that can be used for configuring cSRX containers. For more
details see, Introducing the Junos OS Command-Line Interface.

To configure the cSRX container using the Junos OS CLI:

1. Log in to the cSRX container using SSH which is accessed by cSRX exposed service port.

root@csrx-ubuntu3:~/csrx#ssh -p 30122 root@192.168.42.81

2. Start the CLI as root user.

NOTE: When a cSRX container is launched, if you specified to log into the cSRX container
with an initial root password, access to the cSRX container using SSH will be enforced with
user name and password.

root#cli

55

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html


root@>

3. Verify the interfaces.

root@> show interfaces

Physical interface: ge-0/0/1, Enabled, Physical link is Up

  Interface index: 100

  Link-level type: Ethernet, MTU: 1514

  Current address: 02:42:ac:13:00:02, Hardware address: 02:42:ac:13:00:02

Physical interface: ge-0/0/0, Enabled, Physical link is Up

  Interface index: 200

  Link-level type: Ethernet, MTU: 1514

  Current address: 02:42:ac:14:00:02, Hardware address: 02:42:ac:14:00:02

4. Enter configuration mode.

configure
[edit]
root@#

5. Set the root authentication password by entering a cleartext password, an encrypted password, or an
SSH public key string (DSA or RSA).

[edit]
root@# set system root-authentication plain-text-password
New password: password
Retype new password: password

6. Configure the hostname.

[edit]
root@# set system host-name host-name

7. Configure the two traffic interfaces.

[edit]
root@# set interfaces ge-0/0/0 unit 0 family inet address 192.168.20.2/24
root@# set interfaces ge-0/0/1 unit 0 family inet address 192.168.10.2/24

56



8. Configure basic security zones for the public and private interfaces and bind them to traffic interfaces.

[edit]
root@# set security zones security-zone untrust interfaces ge-0/0/0.0
root@# set security zones security-zone trust interfaces ge-0/0/1.0
root@# set security policies default-policy permit-all

9. Verify the configuration.

[edit]
root@# commit check
configuration check succeeds

10.Commit the configuration to activate it on the cSRX instance.

[edit]
root@# commit
commit complete

11. (Optional) Use the show command to display the configuration for verification.

RELATED DOCUMENTATION

Junos OS for SRX Series

Introducing the Junos OS Command-Line Interface

57

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/srx-series/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

	Table of Contents
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC


	Overview
	Understanding cSRX with Kubernetes
	Licensing
	Kubernetes Overview

	Junos OS Features Supported on cSRX
	Supported SRX Series Features on cSRX


	cSRX Installation on Kubernetes
	Requirements for Deploying cSRX on Kubernetes
	Platform and Server Requirements

	cSRX Environment Variables
	Adding License key File
	Setting Root Password

	Downloading cSRX Software
	Automate Initial Configuration Load with Kubernetes ConfigMap
	Loading Initial Configuration with Kubernetes ConfigMap

	cSRX Pod With External Network
	Understanding cSRX Pod with External Network
	Connecting cSRX to External Network
	Configuring Nodeport service for cSRX Pods

	cSRX Pod With Internal Network
	cSRX Deployment in Kubernetes
	cSRX Installation on Kubernetes Linux Server
	Deploying cSRX Pod
	cSRX Image Upgrade Using Deployment Rollout
	cSRX Image Rollback
	Scaling cSRX Deployment


	Managing cSRX
	cSRX Service With Load Balancing Support
	Understanding cSRX as Kubernetes Service with Load Balancing Support
	Configuring Ingress Service for cSRX Pods


	Configuring cSRX
	cSRX Image with Packaged Pre-Installed Signatures
	Understanding Pre-Installed Signatures
	Repackaging cSRX Image with Signatures
	Downloading of Juniper Signature Pack
	Downloading Signature Pack through Proxy Server

	Configuring cSRX Using the Junos OS CLI


