

MQTT Publisher
(unencrypted)
for the S7-1500/
S7-1200 and S7-300

Blocks for S7-1500/ S7-1200, S7-300, Version 1.1

https://support.industry.siemens.com/cs/ww/en/view/109748872

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/109748872

Legal information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 2

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG (“Siemens”). They are non-
binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.

Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.

By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.

The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: http://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity

Table of contents

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 3

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of contents
Legal information ... 2

1 Introduction .. 4

1.1 Overview... 4
1.2 How it works ... 5
1.3 Components used .. 6

2 Engineering .. 7

2.1 Block description .. 7
2.1.1 Interface description "LMqtt_Publisher" ... 7
2.1.2 Data block "LMqtt_Data" .. 8
2.2 Integration into the User project ... 13
2.3 Parameter assignment and operation .. 14
2.4 Error handling ... 16

3 Useful information ... 18

3.1 Basics of MQTT .. 18
3.1.1 Terminology .. 18
3.1.2 Standard and architecture .. 19
3.1.3 Features ... 20
3.1.4 MQTT control packets .. 22
3.2 How the LMqtt_Publisher FB works ... 24
3.2.1 Requirements and implementation .. 24
3.2.2 State machine "TCP" .. 24
3.2.3 State machine "MQTT" ... 26
3.2.4 State machine "PUSH" ... 28
3.2.5 Function diagram .. 30

4 Appendix .. 31

4.1 Service and Support ... 31
4.2 Links and Literature .. 32
4.3 Change documentation .. 32

1 Introduction

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 4

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

1.1 Overview

Motivation

Digitization has a major impact on the economy and society and is progressing
inexorably. The "Internet of Things", short: IoT) is one of the main drivers of
digitization. The term "Internet of Things" is synonymous with one of the biggest
current dynamics of change: The increasing networking and automation of devices,
machines and products.

The protocol "Message Queue Telemetry Transport" (short: MQTT) is used in the
"Internet of Things" as a communication protocol. Its lightweight approach opens
up new possibilities for automation.

Slim and quick MQTT

The MQTT is a simple built-in binary publish and subscribe protocol at the TCP/IP
level. It is suitable for messaging between low-functionality devices and
transmission over unreliable, low-bandwidth, high-latency networks. With these
characteristics, MQTT plays an important role for IoT and in M2M communication.

Features of MQTT

The MQTT protocol is distinguished by the following features:

 Lightweight protocol with low transport overhead

 Minimal need for network bandwidth through push mechanism

 Reconnect function after termination of connection

 Resending of messages after disconnection

 Mechanism to notify interested parties of an unexpected connection abort of a
client

 Easy to use and implement with a small set of command commands

 Quality Assurance (QoS level) with different levels of message delivery
reliability

 Optional encryption of messages with SSL/TLS

 Authentication of publishers and subscribers with username and password

Applicative implementation

This application example offers you an adequate solution for implementing the
MQTT protocol in a SIMATIC S7 controller.

The application example provides you with one function block each for the
SIMATIC S7-1500/ SIMATIC S7-1200 and for the SIMATIC S7-300. The function
module "LMqtt_Publisher" integrates the MQTT client function and allows you to
transfer MQTT messages to a broker (publisher role).

1 Introduction

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 5

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 1-1

Note The MQTT client supports MQTT protocol version 3.1.

1.2 How it works

Schematic representation

The following figure shows the most important relationships between the
components involved and the steps required for MQTT communication.

Figure 1-2

Broker

MQTT-ServerSTEP 7 (TIA Portal)

S7-1500

(MQTT-Client)

Engineering

1

2

3
Topic y
Message

LMqtt_

Publisher

Connection

parameters

Publish

Topic x
Message

Topic z
Message

Topic y
Message

4

1 Introduction

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 6

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 1-1

Step Description

1 Install and configure the MQTT broker.

2 Create a project in STEP 7 (TIA Portal) with your CPU.

3 The function module "LMqtt_Publisher" takes over the role of the publisher
and sends MQTT messages to the broker.

4 The MQTT message is stored in the broker and distributed to the subscribers.

Note A more detailed functional description of the function block "LMqtt_Publisher"
and information on the MQTT protocol can be found in
Chapter 3.

1.3 Components used

The application example was created with these hardware and software
components:

Table 1-2

Component Number Article number Note

CPU 1513-1 PN 1 6ES7513-1AL01-0AB0 You can also use a different
CPU.

CPU 317-2 PN/DP 1 6ES7317-2EK14-0AB0 You can also use a different
CPU.

TIA Portal V15 - -

MQTT broker - -

This application example consists of the following components:

Table 1-3

Component File name

Library "LMqtt" and
"LMqttQdn" for
SIMATIC S7-1500

109748872_MqttClient_Publish_Unsecure_S71500_LIB_V1_1.zip

Library "LMqtt" for
SIMATIC S7-300

109748872_MqttClient_Publish_Unsecure_S7300_LIB_V1_1.zip

This document 109748872_MqttClient_Publish_Unsecure_DOKU_V1_1_en.pdf

Note To reach the broker over a static ip address, please use the library "LMqtt".
To reach the broker over a Qualified Domain Name (short: QDN), please use the
library "LMqttQdn".

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 7

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Engineering

Note The engineering in this chapter focuses on the MQTT client function, which
realizes this application example.
It is assumed that you have already installed and configured the MQTT broker.

2.1 Block description

2.1.1 Interface description "LMqtt_Publisher"

Note The function block "LMqtt_Publisher" is available in all libraries and is equal.

For the S7-1500, the function block is designed for "optimized block access".

The following section explains the input and output parameters of the function
block "LMqtt_Publisher".

Input parameters

Table 2-1

Parameter Data type Function

enable BOOL The function block is activated with a positive
edge. The function block is active as long as
"enable" has the status "true".

A negative edge terminates the function block
and the TCP and MQTT connection is
terminated.

publish BOOL A message is sent to the broker with a positive
edge.

tcpConnParam "typeTcpConnParam" Data area of the TCP connection information

mqttParam "typeMqttParam" Data area of the MQTT connection and
message information

Output parameters

Table 2-2

Parameter Data type Function

tcpConnected BOOL True if the TCP connection has been
established

mqttConnected BOOL True if the MQTT connection has been
established

published BOOL True, if the message has arrived successfully at
the broker. Only one cycle is on "true".

busy BOOL True, while a message or ping is sent to the
broker

error BOOL True if there is an error

statusID INT State that caused the error

status DWORD Error message

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 8

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.1.2 Data block "LMqtt_Data"

The following figure illustrates the declaration of the data block for the SIMATIC
S7-1500/ SIMATIC S7-1200:

Note The data block is designed for "optimized block access".

Figure 2-1

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 9

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following figure illustrates the declaration of the data block for the
SIMATIC S7-300:

Figure 2-2

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 10

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Overview of data types

To structure the data clearly, several data types have been created. The data types
used in the program are shown in the following list:

 "typeTcpConnParam"

 “typeMqttParam"; divided into

– "typeMqttConnectFlags"

– "typeMqttPublishFlags"

Data type "typeTcpConnParam"

This data type stores all information required to establish the TCP connection. You
can set these parameters according to your specifications.

The following table displays the parameters of the SIMATIC S7-1500/ SIMATIC S7-
1200:

Table 2-3

Parameter Data type Meaning

hwIdentifier HW_ANY HW ID of the PROFINET interface of the CPU

connectionID CONN_OUC ID of the TCP connection

ipAdressBroker Array[0..3] of BYTE

IP address of the broker, e.g. for the address
192.168.0.10.

ipAdressBroker[0] equal to "192"

ipAdressBroker[1] equal to "168"

ipAdressBroker[2] equal to "0"

ipAdressBroker[3] equal to "10"

localPort UINT Local port number in the CPU

mqttPort UINT Remote port on the MQTT broker

Note If you use the blocks from the library "LMqttQdn", then you find the parameter
"qdnAddressBroker" instead of the parameter "ipAddressBroker".

The following table displays the parameters of the SIMATIC S7-300:

Table 2-4

Parameter Data type Meaning

localDeviceID Byte Slot designation of the PROFINET interface of the CPU
(see Chapter 4.2)

connectionID CONN_OUC ID of the TCP connection

ipAdressBroker Array[0..3] of INT

IP address of the broker, e.g. for the address
192.168.0.10.

ipAdressBroker[0] equal to "192"

ipAdressBroker[1] equal to "168"

ipAdressBroker[2] equal to "0"

ipAdressBroker[3] equal to "10"

localPort UINT Local port number in the CPU

mqttPort UINT Remote port on the MQTT broker

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 11

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Data type "typeMqttParam"

This data type contains all the information about MQTT. The information you can
store here is shown in the following list:

 Flags for the connection

 Flags for sending messages

 Logon information at the broker

 Topic

 Message text

To display the large number of parameters in a more structured way, separate data
types have been created for the flags.

With the data type "typeMqttConnectFlags" you can determine the flags for
establishing the connection to the MQTT broker.

Table 2-5

Parameter Data type Meaning

cleanSession BOOL True if all data from a previous session should be deleted.

will BOOL Activates the "Last Will and Testament" feature.

willQoS_1 BOOL True if the QoS for last will is Level 1.

willQoS_2 BOOL True if the QoS for last will is Level 2.

willRetain BOOL True if the last will be saved as soon as it's sent.

password BOOL True if the MQTT broker requires a login (name and
password) of the client.

username BOOL True if the MQTT broker requires a login (name and
password) of the client.

You can use the data type "typeMqttPublishFlags" to determine the flags for the
MQTT message.

Table 2-6

Parameter Data type Meaning

qualityOfService INT Defines the QoS level for the MQTT message. Possible values
are:

 "0" for QoS level 0

 "1" for QoS level 1

 "2" for QoS level 2

retain BOOL True if the message should be saved to the broker.

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 12

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following table shows which other parameters of the data type
"typeMqttParam" you can specify for MQTT.

Table 2-7

Parameter Data type Meaning

keepAlive WORD Time interval of the KeepAlive function in seconds. The time is
given in hexadecimal format. A keepAlive with value "0"
disables the KeepAlive function. The maximum allowed time is
18h 12min 15 s.

packetIdentifier WORD Start value for packet numbers. The number is automatically
incremented in the program.

clientIdentifier String [23] Unique name of the client. This name identifies the client to
the broker when the connection is established.
The following is permitted:

 Numbers

 Uppercase and lowercase letters:

willTopic String [100] If the will-flag is set, then the topic for the last will must be
defined here.

willMessage String [100] If the will-flag is set, then the message for the last will must be
defined here.

userName String [20] If the password flag is set, the username for the login at the
broker must be defined here.

password String [20] If the password flag is set, the password for the login at the
broker must be defined here.

topic String [100] Name for the topic

message String Message text

Note Note the following regulations:

1. If you set the "will" flag to "true", you must set a string for the "willMessage"
and "willTopic" variables.

2. If you set the "will" flag to false, you must also set the following flags to false:

– "willQoS_1"

– "willQoS_2"

– "willRetain"

 3. If you set the flags "username" and "password" to "true", you must store a
string with the login data for the variables "userName" and "password". This
login data must match the login data that you have stored with the MQTT
broker.

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 13

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 Integration into the User project

Creating a TIA portal project:

Create a TIA Portal project with the CPU that you want to use for the application
example. Parameterize the Ethernet interface of the CPU with an IP address that
lies in the same subnet as the MQTT broker.

Connect the SIMATIC controller and the MQTT broker via Ethernet

Copying the blocks

The blocks "LMqtt_Publish" and "LMqtt_Data" as well as the required data types
are available in the library "LMqtt".

To copy the blocks into your TIA project, follow these instructions:

1. Extract the ZIP file from the download area of this application example
(see \ 1 \ in Chapter 4.2) to a local directory on your PC.

2. Open the library view in the TIA Portal. On the toolbar of the "Global library"
palette, click the "Open global library" icon.
The "Open global library" dialog is opened.

3. Navigate to your directory and select the global library "LMqtt". Click on
"Open".

4. Copy the contents of "Types" and "Master copies" into your project:

Call the function block and interconnect

If you have integrated the blocks into your project, you must still call and
interconnect the function block in your program.

1. Call the function module "LMqtt_Publisher" e.g. in OB 1 and assign an instance
data block to it.

2. Interconnect the input or output variables as required. Only the interconnection
of the input and output variables is specified:

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 14

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

– Input and output variable "tcpConnParam" with "LMqtt_Data".dataTCP

– Input and output variable "mqttParam" with "LMqtt_Data".dataMqtt

2.3 Parameter assignment and operation

Setting the parameters

Before you can test the application example, you must set the parameters for the
TCP connection and for MQTT according to your specifications.

All parameters that you can define yourself are in the "LMqtt-Data" data block. Set
the parameters in the "Start value" column.

Above all, you must enter your own value for the following parameters:

 IPv4 address or qualified domain name of the MQTT broker. The qualified
domain name must ends with a ".".

 remote port on which the MQTT broker receives the messages

 all MQTT parameters, e.g.

– Flags for the connection

– Flags for sending messages

– Logon information at the broker

– Topic

– Message text

Then load the project into your CPU.

Note If you use the library "LMqttQdn", then you must configure a DNS server in the
CPU.

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 15

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Operating the application example

Once you have set all the parameters, you can test the application example.

Before you test the application example, check the following points:

1. The project is loaded into the CPU.

2. The CPU and the MQTT broker are connected to each other and can be
reached via Ethernet.

3. The MQTT broker is properly configured and started.

4. Logging on to the MQTT broker is started as needed to support the logon of
the MQTT client and the publish mechanism.

If the above points are met, you can initiate MQTT communication between the
CPU and the MQTT broker. Set the variable "enable" on the function block
"LMqtt_Publisher" to the signal "1".

In the positive case, the internal state machines will loop through and establish a
TCP or MQTT connection to the MQTT broker. The output variables
"tcpConnected" and "mqttConnected" are set and signal an existing TCP or MQTT
connection.

Now you can send an MQTT message. To do this, trigger the input variable
"publish".

If the connection to the MQTT broker is not established, check the output variables
"status" and "statusID" to diagnose the error. The meaning of the values of the two
variables can be found in Chapter 2.4.

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 16

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4 Error handling

If an error occurs in the program, the current status of the state machines and the
cause of the error are written in the output parameters "statusID" and "status".

"statusID"

The number of the state in which the error occurred is output at the output
"statusID". The states are numbered have the following meanings.

Table 2-8

Value Description

-12 MQTT_ERROR

-11 MQTT_DISCONNECTED

-2 TCP_ERROR

-1 TCP_DISCONNECT

0 IDLE

1 TCP_PARAM

2 TCP_CONNECTING

3 TCP_CONNECTED

10 MQTT_CONNECT_FLAG_CHECK

11 MQTT_CONNECT

12 MQTT_CONNACK

13 MQTT_PUBLISH

14 MQTT_PUBACK

15 MQTT_DISCONNECT

16 MQTT_CONNECTED

17 MQTT_PING

18 MQTT_PINGRESP

19 MQTT_PUBREL

20 MQTT_PUBCOMP

20 TIME_MONITORING

2 Engineering

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 17

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

"status"

The output parameter "status" displays the error code:

Table 2-9

statusID status Description Remedy

-1 Status message from
the "TDISCON" block

See manual -

2 Status message from
the "TCON" block

See manual Check the availability of
the broker.
IP address, port,
firewall.

3 Status message from
the "TRCV" block

See manual Check network
connection

10 W#16#80F0

Error on "Will" flag

Flags of data type
"typeMqttConnectFlags"

check;

 W#16#80F1 Error on "WillQoS" flag

W#16#80F3 Error on "KeepAlive"
flag

KeepAlive must exceed
2 seconds.

11 Status message from
the "TSEND" block

See manual -

12 1 The broker does not
accept the MQTT
protocol level

Check access data in
data type
"typeMqttParam"

2 ClientIdentifier is not
accepted.

3 MQTT service not
available

4 Data in the
username/password are
incorrect

5 Client is not authorized

13 Status message from
the "TSEND" block

See manual -

14,19,20 W#16#80F2 Wrong PacketIdentifier
received

-

20 Status message from
the "TCON" or "TRCV"
block

Timeout Check connection
parameters

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 18

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Useful information

3.1 Basics of MQTT

Note A detailed description of MQTT can be found in the MQTT specification
description (see \ 3 \ in Chapter 4.2).

3.1.1 Terminology

The most important terms in the MQTT telemetry protocol are explained below.

MQTT message

A message with MQTT consists of several parts:

 A defined subject ("Topic")

 An assigned "Quality of Service" feature

 The message text

MQTT client

An MQTT client is a program or device that uses MQTT. A client always actively
establishes the connection to the broker. A client can perform the following
functions:

 Send messages with a defined subject ("Topic") in which other clients might be
interested to the broker (Publish mechanism)

 Subscribe messages which follow a certain topic (Subscriber mechanism) at
the broker

 Unsubscribe yourself from subscribed messages

 Disconnect from the broker

Note The function module "LMqtt_Publisher" in this application example supports the
following functions:

 Publish mechanism

 Unsubscribe from the broker.

MQTT broker

An MQTT broker is the central component of MQTT and can be a program or a
device. The broker acts as an intermediary between the sending MQTT client and
the subscribing MQTT client. The MQTT broker manages the topics including the
messages contained therein and regulates the access to the topics. The broker has
the following functions:

 Accept network connections from the clients

 Receive messages from an MQTT client

 Edit subscription requests from MQTT clients

 Forward messages to the MQTT clients that match your subscription

Note The MQTT broker is not part of this application example and is assumed to be
given.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 19

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Topics

MQTT messages are organized in topics. A topic "describes" a subject area. The
topics can be subscribed to by the MQTT clients (subscriber mechanism). The
sender of a message (publisher mechanism) is responsible for defining content and
topic when sending the message. The broker then takes care that the subscribers
get the news from the subscribed topics. The topics follow a defined scheme. They
are similar to a directory path and represent a hierarchy.

3.1.2 Standard and architecture

ISO standard

MQTT defines an OASIS or ISO standard (ISO/IEC PRF 20922).

Depending on the security protocols used, MQTT runs on different access ports.
Ports offered are:

 1883: MQTT, unencrypted

 8883: MQTT, encrypted

 8884: MQTT, encrypted, client certificate required

 8080: MQTT via WebSockets, unencrypted

 8081: MQTT via WebSockets, encrypted

Architecture

The MQTT is a publish and subscribe protocol. This mechanism decouples a client
sending messages (publishers) from one or more clients receiving the messages
(subscribers). This also means that the "publishers" know nothing about the
existence of the "subscribers" (and vice versa).
There is a third component in the MQTT architecture, the MQTT broker. The MQTT
broker is located between "publisher" and "subscriber". The MQTT broker controls
the communication.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 20

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.3 Features

MQTT offers quite useful features.

Quality of Service

The MQTT specification provides three levels for message transmission quality
assurance:

 QoS "0": The lowest level 0 is a "fire'n'forget" method. This means that there is
no guarantee that the message will arrive at all.

 QoS "1": The QoS level 1 ensures that the message ends up in the topic queue
at least once. The broker acknowledges receipt of the message.

 QoS "2": In the highest level 2, the broker guarantees by multiple handshake
with the client that the message is exactly filed once.

Last will

MQTT supports the "Last Will and Testament" feature. This feature is used to notify
other clients if the connection to a client has been disconnected accidentally.

Each client can specify its last will while connecting to the broker and notify the
broker. This last will is built like a normal MQTT message, including topic, QoS and
payload. The broker saves the last will. As soon as the broker notices that the
connection with the client in question has been abruptly terminated, the broker
sends the last will as an MQTT message to all subscribers who have registered for
the topic. In this way, the subscribers also learn that the client has been
disconnected.

KeepAlive

MQTT supports the KeepAlive feature. The KeepAlive feature ensures that the
connection is still open and the client and broker are connected.

For the KeepAlive, the clients define a time interval and communicate it to the
broker during their connection setup. This interval is the largest possible tolerated
time period in which the client and the broker may remain without contact. If the
time is exceeded, the broker must disconnect.

That means that, as long as the client periodically sends messages to the broker
within the KeepAlive interval, the client does not need to take any special action to
maintain the connection. However, if the client does not send any messages within
the KeepAlive interval, they must ping the broker before the deadline expires. With
this ping, the client signals to the broker that it is still available.

When a message or a ping packet has been sent to the broker, timing for the
KeepAlive interval begins again.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 21

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note The client determines the KeepAlive interval. It can therefore adjust the
interval of his environment, e.g. because of a slow bandwidth.

 The maximum value for the KeepAlive interval is 18 h 12 m 15 s

 When the client sets the KeepAlive interval to "0", the KeepAlive mechanism
is disabled.

Message persistence

If the connection to a client is interrupted, the broker can cache new messages for
this client for later delivery.

Retained messages

The first time an MQTT client subscribes to a topic, it usually gets a message only
when another MQTT client sends a message with the subscribed topic the next
time. With "Retained messages", the subscriber receives the last value sent to the
topic prior to its subscription request, delivered immediately.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 22

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.4 MQTT control packets

Most MQTT control packages work according to the handshake procedure. The
MQTT client is always the active element and places an order with the broker. The
broker confirms the request depending on the order.

The structure of an MQTT control packet is fixed. The following diagram shows the
structure.

Figure 3-1

Fixed header
Mandatory for all control packets

Variable header
Mandatory for some control packets

Payload
Mandatory for all control packets

The "Fixed header" always consists of the following elements:

 An identifier number for the MQTT control packet type

 An area for possible flags; if no flags are provided for the control packet, the
bits are marked as "reserved"

 The number of following bytes after the "Fixed header"

The "Variable header" is required only for some control packages. The content of
the variable header depends on the control packet type.

The payload is mandatory for most control packets. Again, the content depends on
the control packet type. For each type of control packet, there are clear rules with
what and in what order the payload can be filled.

Note A detailed description of MQTT control packets can be found in the MQTT
specification description (see \ 3 \ in Chapter 4.2).

The MQTT control packets from this application example are briefly explained
below.

MQTT Connection

An MQTT connection is always made between a client and the broker. A direct
client-client connection is not possible.

The connection is initiated by a client as soon as the client sends a "CONNECT"
packet to the broker. If positive, the broker replies with a "CONNACK" packet and a
status code.

The broker immediately closes the connection in the following cases:

 If the "CONNECT" packet is faulty

 If the structure of the "CONNECT" packet does not meet the specification

 If the connection takes too long

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 23

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

A "CONNECT" packet contains an area for flags in the "Variable Header". The
"CONNECT" flag byte contains a number of parameters that specify the behavior
of the MQTT connection. In addition, the "CONNECT" flag byte also shows which
optional fields are present in the "payload" or not.

The following fields are mandatory in the "payload":

 The "ClientID" is used to identify the client at the broker

 The connection type can be regulated with the "CleanSession"

 The KeepAlive time determines the time interval in which the client is obligated
to report to the broker. This can be done either by sending a message or a
PING command. If the client does not report in the time interval, the broker
disconnects from the client.

Examples of optional fields are username, password and information about the last
will.

MQTT-push mechanism

Once an MQTT client connects to the broker, it can send messages to the broker.
To do this, the client uses the "PUBLISH" packet. Because MQTT messages are
filtered and managed based on topics, each MQTT message must contain a topic.
The topic is part of the "Variable Header". The actual message text is contained in
the "payload".

Depending on the quality assurance setting ("QoS"), the push mechanism ends at
this point or other control packets are exchanged:

If QoS is equal to "0", the send job ends here.

With QoS equal to "1", the broker acknowledges the "PUBLISH" packet with a
"PUBACK".

With QoS equal to "2", the broker acknowledges the "PUBLISH" packet with a
"PUBREC". This is followed by another handshake between client and broker. The
client answers the "PUBREC" with a "PUBREL" packet. The broker completes the
double handshake with a "PUBCOM" packet.

Note You can find further information on Quality Assurance QoS in Chapter3.1.3.

MQTT-ping mechanism

If the KeepAlive function is active (the KeepAlive interval is greater than "0"), the
client must send at least one message to the broker within the KeepAlive interval. If
this is not the case, the broker must terminate the connection to the client. To
prevent this type of forced abort, the client must ping the broker before the
KeepAlive time expires. The control packet "PINGREQ" is used for this. The broker
responds with a "PINGRESP" packet and signals its availability to the client.

Note This application example assumes an active KeepAlive function. The KeepAlive
interval must be greater than two seconds.

MQTT disconnection

A client can close the connection to a broker by sending a "DISCONNECT" packet
to the broker. The broker then deletes all "Last Will and Testament" information. As
the client is actively and voluntarily connected, the broker does not send its last
wishes to the registered subscribers.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 24

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 How the LMqtt_Publisher FB works

3.2.1 Requirements and implementation

The following conditions must be fulfilled for a communication relationship between
an MQTT client and an MQTT broker:

1. A TCP connection to the MQTT broker has been successfully established
(status: "TCP_CONNECTED").

2. The function block "LMqtt_Publisher" has logged on to the broker via the
existing TCP connection as an MQTT client and has connected to it (status:
"MQTT_CONNECTED").

3. The trigger to send the message or to receive the MQTT connection
("KeepAlive") is active. Depending on the desired quality assurance, the
message is sent to the broker via the existing MQTT connection.

Note An MQTT connection setup is only possible if the TCP connection to the broker
is successfully established and then maintained.

An MQTT message or KeepAlive can only be sent if there is a TCP and MQTT
connection to the broker.

Overview

To fulfill the mentioned requirements, several state machines were realized in the
program:

 State machine "TCP": Management of the TCP connection

 State machine "MQTT": Management of the MQTT connection

 State machine "PUSH": Handling of the transfer

3.2.2 State machine "TCP"

The state machine "TCP" is started if a positive edge was detected at the input
parameter "enable". This state machine has the following functions:

 It controls the structure of the TCP connection

 It monitors the existing TCP connection for connection errors, e.g. cable
breakage

 If an error has occurred or no positive edge was detected at the "enable" input
parameter, it sets all static variables and the other state machines to a defined
state.

The state machine "TCP" contains the following states:

 IDLE

 TCP_PARAM

 TCP_CONNECTING

 TCP_CONNECTED

 TCP_DISCONNECT

 TCP_ERROR

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 25

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The meaning of the states is listed in the following table

Table 3-1

Status Description

IDLE In "IDLE" state, all parameters are reset.

The state machine waits in this state until it detects a positive edge
at the input parameter "enable". As soon as a positive edge is
applied to the input, the state machine is set to the "TCP_PARAM"
state.

TCP_PARAM All connection parameters are read in this state. The function block
changes to the state "TCP_CONNECTING" without a switching
condition.

TCP_CONNECTING The TCP connection to the MQTT broker is established in this
state. If the connection with "TCON" has been established
successfully, the FB changes to the "TCP_CONNECTED" state
and the output variable "tcpConnected" is set. The TCP connection
persists until it is terminated with "TDISCON".

If an error occurs during connection setup, the state machine
switches to the "TCP_ERROR" state.

TCP_CONNECTED In this state, the function module maintains the state until the
following events occur:

 The "TRCV" block detects a connection abort, e.g. by the
network cable being pulled out, and reports an error.

 The input parameter "enable" is reset and thus initiates the
disconnection.

If the "TRCV" block detects an error, the state machine changes to
the "TCP_ERROR" state.

The "TCP_CONNECTED" state is a prerequisite for the processing
of the state machine "MQTT".

TCP_DISCONNECT The TCP connection is disconnected in this state. If the
"TDISCON" block detects an error, the state machine changes to
the "TCP_ERROR" state.

TCP_ERROR If an error occurs in the state machine "TCP", the state
"TCP_ERROR" is the central point of contact. Here, the required
parameters (static variables and output variables) are set or reset
and the MQTT connection is aborted. In addition, the following
actions are carried out:

 The error message of the T-block involved is transferred at the
output "status".

 The number of the state in which the error occurred is output
at the output "statusID"

 The state machine returns to the "IDLE" state. If there is
already a TCP connection, it will be disconnected in advance.
The output variable "tcpConnected" is reset.

 The state machine "MQTT" is set to the state
"MQTT_DISCONNECTED".

Note The function block "LMqtt_Publisher" is not "self-healing" in the event of an error.
This means that the function block falls back into the "IDLE" state and remains
there until a new positive edge is detected at the "enable" input parameter.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 26

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.3 State machine "MQTT"

The state machine "MQTT" is automatically started when the state machine "TCP"
reaches the state "TCP_CONNECTED". This state machine has the following
functions:

 It controls the handshake procedure for setting up the MQTT connection

 It ensures the disconnection

 It manages the internal state machine "PUSH" to send messages

 It makes sure that a PING packet is sent before the KeepAlive interval expires.

The state machine "MQTT" contains the following states

 MQTT_DISCONNECTED

 MQTT_CONNECT_FLAG_CHECK

 MQTT_CONNECT

 MQTT_CONNACK

 MQTT_CONNECTED

 MQTT_DISCONNECT

 MQTT_ERROR

The meaning of the states is listed in the following table:

Table 3-2

Status Description

MQTT_DISCONNECTED As long as there is no TCP connection, the state is always
"MQTT_DISCONNECTED".

Only when a TCP connection has been established is the
switching condition automatically activated for the status
"MQTT_CONNECT_FLAG_CHECK".

MQTT_CONNECT_FLA
G_CHECK

n this state, the flags and parameters for the MQTT
connection setup are read in and validated. If there are
discrepancies during the check, the state machine changes
to the state "MQTT_ERROR" and a corresponding error
message is output at the output parameter "status". In the
error-free state, the state machine switches to the state
"MQTT_CONNECT" without a switching condition.

MQTT_CONNECT The MQTT connection to the MQTT broker is established in
this state. For this a "CONNECT" packet with the read in
parameters is assembled and sent to the broker with the
"TSEND" block.

If an error occurs while sending the "CONNECT" packet, the
state machine will change to the "MQTT_ERROR" state.
If the "CONNECT" packet has been sent successfully, the
state machine changes to the "MQTT_CONNACK" state.

MQTT_CONNACK The state machine maintains this state until the "TRCV"
block receives a message. It is checked whether it is a
"CONNACK" packet. If the broker has confirmed the
connection request with "CONNACK", the state machine
changes to the state "MQTT_CONNECTED" and the output
variable "mqttConnected" is set. The KeepAlive interval is
started if necessary.

If the "TRCV" block detects an error, the state machine
changes to the "MQTT_ERROR" state.

MQTT_CONNECTED In this state, the function module maintains the state until the
MQTT connection or TCP connection is cleared. In the
"MQTT_CONNECTED" state, the following points are
checked cyclically:

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 27

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Status Description

 Is there a send impulse for an MQTT message?

 Will the KeepAlive interval soon end and a PING
command have to be sent to the broker?

Depending on the outcome of the check, the internal state
machine "PUSH" is set to the appropriate state to execute
the desired routine.

MQTT_DISCONNECT If the input parameter "enable" is reset, the MQTT
connection is cleared. For this a "DISCONNECT" packet is
assembled and sent with the "TSEND" block to the broker.

If an error occurs while sending the "DISCONNECT" packet,
the state machine will change to the "MQTT_ERROR" state.
If the "DISCONNECT" packet has been sent successfully,
the state machine changes to the
"MQTT_DISCONNECTED" state. At the same time, the
state machine "TCP" is set to the "TCP_DISCONNECT"
state. This also ends the TCP connection.

MQTT_ERROR If an error occurs in the state machine "MQTT", the state
"MQTT_ERROR" is the central point of contact. Here, the
required parameters (static variables and output variables)
are set or reset. In addition, the following actions are carried
out:

 The error message of the MQTT command involved is
transferred at the output "status".

 The number of the state in which the error occurred is
output at the output "statusID"

 The state machine returns to the
"MQTT_DISCONNECTED" state.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 28

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.4 State machine "PUSH"

The state machine "PUSH" is only run through when the state machine "MQTT" is
in the "MQTT_CONNECTED" state. This is because it is decided here from which
point the state machine "PUSH" is started. If there is a send impulse for a MQTT
message, then the send routine becomes active. If the KeepAlive time is ending
soon, the PING routine starts.

The state machine "PUSH" contains the following states:

 IDLE

 MQTT_PUBLISH

 MQTT_PUBACK

 MQTT_PUBREL

 MQTT_PUBCOMP

 MQTT_PING

 MQTT_PINGRESP

Status Description

IDLE As long as there is no transmission impulse or the KeepAlive
interval is not expiring, the state is always "IDLE".

MQTT_PUBLISH

If a positive edge was detected at input parameter "publish" in state
"MQTT_CONNECTED", the internal state machine "PUSH" is set
to state "MQTT_PUBLISH". The transmission routine starts here
depending on the quality assurance QoS.

First, a "PUBLISH" packet with the given parameters, the topic and
the message text is assembled and then it is sent to the broker with
the "TSEND" block.

If an error occurs while sending the "PUBLISH" packet, the state
machine "MQTT" changes to state "MQTT_ERROR" and the state
machine goes back to "IDLE".
If the "PUBLISH" packet has been sent successfully, the next step
depends on the selected QoS:

 If QoS is equal to "0", the transmission process ends here and
this state machine returns to "IDLE". The KeepAlive interval is
restarted if necessary.

 With QoS equal to "1" and QoS equal to "2", this state
machine changes to the state "MQTT_PUBACK" to receive an
acknowledgment from the broker.

MQTT_PUBACK If the QoS is greater than "0", the client expects the broker to be
acknowledged on the "PUBLISH" packet.

The state machine maintains this state until the "TRCV" block
receives a message. It is checked whether it is a "PUBACK"
packet.

If the broker has confirmed receipt of the message, the next step
depends on the chosen QoS:

 If QoS is equal to "1", the transmission process ends here and
this state machine returns to "IDLE". The KeepAlive interval is
restarted if necessary.

 If QoS is equal to "2", this state machine changes to the state
"MQTT_PUBREL to confirm the acknowledgment input.

If the "TRCV" block detects an error, the state machine changes to
the "MQTT_ERROR" state and the state machine returns to
"IDLE".

MQTT_PUBREL If QoS is equal to "2", there will be a double handshake with the
broker.

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 29

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Status Description

After the client has received the "PUBACK", it is confirmed by the
"PUBREL" packet. For this purpose, a "PUBREL" packet is
assembled and then sent to the broker with the "TSEND" block. If
an error occurs while sending the "PUBREL" packet, the state
machine "MQTT" changes to state "MQTT_ERROR" and the state
machine goes back to "IDLE".
If the "PUBREL" packet has been sent successfully, the state
machine changes to the "PUBCOMP" state.

MQTT_PUBCOMP This state is the last part of the dual handshake procedure at QoS
equal to "2". The client expects the broker to acknowledge the
"PUBREL" packet.

The state machine maintains this state until the "TRCV" block
receives a message. It is checked whether it is a "PUBCOMP"
packet.

If the broker has acknowledged receipt of the message, this state
machine will return to IDLE and the KeepAlive interval will be
restarted if necessary. The handshake procedure is now complete.
If the "TRCV" block detects an error, the state machine changes to
the "MQTT_ERROR" state and this state machine returns to
"IDLE".

MQTT_PING If it is determined in the "MQTT_CONNECTED" state that the
KeepAlive interval is expiring, the internal state machine is set to
the "MQTT_PING" state. This is where the ping routine starts.

First a "PING" packet is assembled and then sent to the broker with
the "TSEND" block.

If an error occurs while sending the "PING" packet, the state
machine "MQTT" changes to state "MQTT_ERROR" and this state
machine goes back to "IDLE".

MQTT_PINGRESP After the "PING" packet, the client expects the broker to be
acknowledged.

The state machine maintains this state until the "TRCV" block
receives a message. It is checked whether it is a "PINGRESP"
packet.

When the broker has confirmed receipt of the message, the state
machine goes back to "IDLE". The KeepAlive interval is restarted.

If the "TRCV" block detects an error, the state machine changes to
the "MQTT_ERROR" state and this state machine returns to
"IDLE".

3 Useful information

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 30

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.5 Function diagram

The following figure shows the diagram of the operation with the three state
machines:

Fig. 3-2

4 Appendix

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 31

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Appendix

4.1 Service and Support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:
https://support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts. Please send queries
to Technical Support via Web form:
www.siemens.com/industry/supportrequest

SITRAIN – Training for Industry

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:
www.siemens.com/sitrain

Service offer

Our range of services includes the following:

 Plant data services

 Spare parts services

 Repair services

 On-site and maintenance services

 Retrofitting and modernization services

 Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:
https://support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for Apple iOS, Android and Windows
Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
http://www.siemens.com/industry/supportrequest
http://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/en/sc/2067

4 Appendix

MQTT_Publish_unsecure
Entry ID: 109748872, V1.1, 08/2018 32

 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Links and Literature

Table 4-1

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to this entry

https://support.industry.siemens.com/cs/ww/en/view/109748872

\3\ MQTT specification
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

\4\ Information on local_device_id
https://support.industry.siemens.com/cs/ww/en/view/51339682

4.3 Change documentation

Table 4-2

Version Date Modifications

V1.0 03/2018 First version

V1.1 08/2018 Insert Library "LMqttQdn" for SIMATIC S7-1500

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109748872
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://support.industry.siemens.com/cs/ww/en/view/51339682

	MQTT Publisher (unencrypted) for the S7-1500/ S7-1200 and S7-300
	Legal information
	1 Introduction
	1.1 Overview
	1.2 How it works
	1.3 Components used

	2 Engineering
	2.1 Block description
	2.1.1 Interface description "LMqtt_Publisher"
	2.1.2 Data block "LMqtt_Data"

	2.2 Integration into the User project
	2.3 Parameter assignment and operation
	2.4 Error handling

	3 Useful information
	3.1 Basics of MQTT
	3.1.1 Terminology
	3.1.2 Standard and architecture
	3.1.3 Features
	3.1.4 MQTT control packets

	3.2 How the LMqtt_Publisher FB works
	3.2.1 Requirements and implementation
	3.2.2 State machine "TCP"
	3.2.3 State machine "MQTT"
	3.2.4 State machine "PUSH"
	3.2.5 Function diagram

	4 Appendix
	4.1 Service and Support
	4.2 Links and Literature
	4.3 Change documentation

