Ultra Low Power WiFi SoC

03-Feb-2021

DA16200

Dialog Technical Publications

DA16200MOD Datasheet - Dialog Semiconductor

[1] ARM Cortex M4 Processor Technical Reference Manual. [2] ITU-T O.150, General Requirements for Instrumentation for Performance ...

Ultra Low Power WiFi SoC | 03-Feb-2021

© 2021 Dialog Semiconductor. DA16200MOD. Ultra Low Power Wi-Fi Module. ... [1] ARM Cortex M4 Processor Technical Reference Manual [2] ITU-T O.150, General...

PDF Viewing Options

Not Your Device? Search For Manuals or Datasheets below:


File Info : application/pdf, 60 Pages, 2.14MB

Document DEVICE REPORTDA16200MOD Datasheet Rev3v1
DA16200MOD

Ultra Low Power Wi-Fi Module

Final

General Description
The DA16200MOD is a fully integrated Wi-Fi® module with ultra-low power consumption, best RF performance and easy development environment. Such low power operation can extend the battery life as longer as a year or more depending on the application.
This module series included DA16200-00000A32, 40 MHz crystal oscillator, 32.768 KHz RTC clock, RF Lumped RF filter, 4 M-byte flash memory and chip antenna or u.FL connector. The DA16200MOD has chip antenna type (DA16200MOD-AAC4WA32) and u.FL connector type (DA16200MOD-AAE4WA32) for external antenna.
The Module is built from the ground up for the Internet of Things (IoT) and is ideal for door locks, thermostats, sensors, pet trackers, asset trackers, sprinkler systems, connected lighting, video cameras, video door bells, wearables and other IoT devices.
The modules certified Wi-Fi alliance for IEEE802.11b/g/n, Wi-Fi Direct, WPS functionalities and it has been approved by many countries including the United States (FCC), Canada (IC) and China (SRRC). Using the Wi-Fi Alliance transfer policy, the Wi-Fi Certifications can be transferred without being tested again. For more information on DA16200MOD, please refer to DA16200-00000A32 datasheet.

Key Features

 Module variants

 Built-in 4-channel auxiliary ADC for sensor

 DA16200MOD-AAC4WA32 (chip Antenna) interfaces

 DA16200MOD-AAE4WA32 (u.FL cont.)
 Highly integrated ultra-low power Wi-Fi®
system module

 12-bit SAR ADC: single-ended four
channels
 Provides dynamic auto switching function

 Sleep current: 3.5 uA, VBAT=3.3 V

 Supports various interfaces

 Best RF Performance

 eMMC/SD expanded memory

 Tx Power: +19 dBm, 1 Mbps DSSS

 SDIO Host/Slave function

 Rx Sensitivity: -98.5 dBm, 1 Mbps DSSS

 QSPI for external flash control

 Full offload: SoC runs full networking OS and

 Three UARTs

TCP/IP stack

 SPI Master/Slave interface

 Wi-Fi processor

 I2C Master/Slave interface

 IEEE 802.11b/g/n, 1x1, 20 MHz channel

 I2S for digital audio streaming

bandwidth, 2.4 GHz

 4-channel PWM

 IEEE 802.11s Wi-Fi mesh

 Individually programmable, multiplexed

 Wi-Fi security: WPA/WPA2-

GPIO pins

Enterprise/Personal, WPA2 SI, WPA3 SAE, and OWE
 Vendor EAP types: EAP-
TTLS/MSCHAPv2, PEAPv0/EAP-

 JTAG and SWD  Wi-Fi Alliance certifications:
 Wi-Fi CERTIFIEDTM b, g, n

MSCHAPv2, PEAPv1, EAP-FAST, and

 WPATM - Enterprise, Personal

EAP-TLS

 WPA2TM - Enterprise, Personal

 Operating modes: Station, SoftAP, and

 WPA3TM - Enterprise, Personal

Wi-Fi Direct® Modes (GO, GC, GO fixed)




WPS-PIN/PBC for easy Wi-Fi provisioning

RF Regulatory certifications

 Connection manager for autonomous and

 FCC, IC, CE, KC, TELEC, SRRC

fast Wi-Fi connections

 Bluetooth coexistence

 CPU core subsystem

 Antenna switching diversity

 Arm® Cortex®-M4F core w/ clock
frequency of 30~160 MHz

Datasheet
CFR0011-120-00

Revision 3.1
1 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

 Hardware accelerators  General HW CRC engine  HW zeroing function for fast booting  Pseudo random number generator
(PRNG)

 ROM: 256 KB, SRAM: 512 KB, OTP: 8
KB, Retention Memory: 48 KB
 SPI flash Memory  32 M-bit / 4 M-byte
 External Clock source

 Complete software stack

 40 MHz crystal (± 25 ppm) for master

 Comprehensive networking software stack

clock (initial + temp + aging)

 Provides TCP/IP stack: in the form of
network socket APIs

 32.768 kHz crystal (± 250 ppm) for RTC
clock

 Advanced security

 Supply

 Secure booting
 Secure debugging using JTAG/SWD and
UART ports

 Operating voltage: 2.1 V to 3.6 V (typical:
3.3 V)
 2 Digital I/O Supply Voltage: 1.8 V / 3.3 V

 Secure asset storage

 Black-out and brown-out detector

 Built-in hardware crypto engines for advanced  Module Dimensions

security

 13.8 mm × 22.1 mm x 3.3 mm, 37 Pins,

 TLS/DTLS security protocol functions  Operating temperature range

 Crypto engine for key deliberate generic
security functions: AES (128,192,256), DES/3DES, SHA1/224/256, RSA, DH, ECC, CHACHA, and TRNG

 -40 °C to 85 °C

 Power management unit

 On-Chip RTC

 Wake-up control of fast booting or full
booting with minimal initialization time

 Supports three ultra-low power sleep
modes

Datasheet
CFR0011-120-00

Revision 3.1
2 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Applications
DA16200MOD is a full offload SoC for IoT Applications, such as:
 Security systems  Door locks  Thermostats  Garage door openers  Blinds  Lighting control  Sprinkler systems  Video camera security systems  Smart appliances  Video door bell  Asset tracker
System Diagram

Final

Figure 1: System Diagram

Datasheet
CFR0011-120-00

Revision 3.1
3 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

Contents
General Description ............................................................................................................................ 1
Key Features ........................................................................................................................................ 1
Applications ......................................................................................................................................... 3
System Diagram .................................................................................................................................. 3
1 Terms and Definitions................................................................................................................... 8
2 References ..................................................................................................................................... 8
3 Block Diagram ............................................................................................................................... 9
4 Pinout ........................................................................................................................................... 11 4.1 Pin-out Description (37 pins)............................................................................................... 11 4.2 Pin Multiplexing ................................................................................................................... 13
5 Electrical Specification ............................................................................................................... 15 5.1 Absolute Maximum Ratings ................................................................................................ 15 5.2 Recommended Operating Conditions ................................................................................. 15 5.3 Electrical Characteristics..................................................................................................... 15 5.3.1 DC Parameters, 1.8 V IO..................................................................................... 15 5.3.2 DC Parameters, 3.3 V IO..................................................................................... 16 5.3.3 DC Parameters for RTC Block ............................................................................ 16 5.3.4 DC Parameters for Digital Wake-up .................................................................... 16 5.4 Radio Characteristics .......................................................................................................... 17 5.4.1 WLAN Receiver Characteristics .......................................................................... 17 5.4.2 WLAN Transceiver Characteristics...................................................................... 17 5.5 Current Consumption .......................................................................................................... 18 5.6 Radiation Performance ....................................................................................................... 19 5.7 ESD Ratings........................................................................................................................ 19 5.8 Clock Electrical Characteristics........................................................................................... 19 5.8.1 RTC Clock Source ............................................................................................... 19 5.8.2 Main Clock Source............................................................................................... 19
6 Power Management..................................................................................................................... 20 6.1 Power On Sequence ........................................................................................................... 20 6.2 Low Power Operation Mode ............................................................................................... 20 6.2.1 Sleep Mode 1....................................................................................................... 20 6.2.2 Sleep Mode 2....................................................................................................... 21 6.2.3 Sleep Mode 3....................................................................................................... 21
7 Core System ................................................................................................................................ 22 7.1 ARM Cortex-M4F Processor ............................................................................................... 22 7.2 Wi-Fi Processor................................................................................................................... 22 7.3 RTC ..................................................................................................................................... 22 7.3.1 Wake-up Controller.............................................................................................. 23 7.3.2 Retention I/O Function......................................................................................... 23 7.4 Pulse Counter ..................................................................................................................... 24 7.4.1 Introduction .......................................................................................................... 24 7.4.2 Functional Description ......................................................................................... 24
8 Peripherals ................................................................................................................................... 25

Datasheet
CFR0011-120-00

Revision 3.1
4 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

8.1 QSPI: Master with XIP Feature ........................................................................................... 25 8.2 SPI Master .......................................................................................................................... 27 8.3 SPI Slave ............................................................................................................................ 28 8.4 SDIO.................................................................................................................................... 30 8.5 I2C Interface........................................................................................................................ 32
8.5.1 I2C Master ........................................................................................................... 32 8.5.2 I2C Slave ............................................................................................................. 33 8.6 SD/SDeMMC....................................................................................................................... 35 8.6.1 Block Diagram ..................................................................................................... 35 8.7 I2S ....................................................................................................................................... 36 8.7.1 Block Diagram ..................................................................................................... 37 8.7.2 I2S Clock Scheme ............................................................................................... 37 8.7.3 I2S Transmit and Receive Timing Diagram......................................................... 38 8.8 ADC (Aux 12-bit) ................................................................................................................. 39 8.8.1 Overview .............................................................................................................. 39 8.8.2 Timing Diagram ................................................................................................... 40 8.8.3 DMA Transfer ...................................................................................................... 40 8.8.4 Sensor Wake-up .................................................................................................. 41 8.8.5 ADC Ports ............................................................................................................ 41 8.9 GPIO ................................................................................................................................... 41 8.9.1 Antenna Switching Diversity ................................................................................ 41 8.10 UART ............................................................................................................................. 43 8.10.1 RS-232................................................................................................................. 44 8.10.2 RS-485................................................................................................................. 45 8.10.3 Baud Rate ............................................................................................................ 45 8.10.4 Hardware Flow Control ........................................................................................ 46 8.10.5 Interrupts.............................................................................................................. 46 8.10.6 DMA Interface ...................................................................................................... 47 8.11 PWM ............................................................................................................................. 48 8.11.1 Timing Diagram ................................................................................................... 48 8.12 Debug Interface................................................................................................................... 49 8.13 Bluetooth Coexistence ........................................................................................................ 50 8.13.1 Interface Configuration ........................................................................................ 50 8.13.2 Operation Scenario .............................................................................................. 50
9 Applications Schematic .............................................................................................................. 52
10 Package Information ................................................................................................................... 53 10.1 Dimension: DA16200MOD-AAC ......................................................................................... 53 10.2 Dimension: DA16200MOD-AAE ......................................................................................... 53 10.3 PCB Land Pattern ............................................................................................................... 54 10.4 4-Layer PCB Example......................................................................................................... 55 10.5 Soldering Information .......................................................................................................... 56 10.5.1 Condition for Reflow Soldering ............................................................................ 56
11 Ordering Information .................................................................................................................. 58
Revision History ................................................................................................................................ 59

Datasheet
CFR0011-120-00

Revision 3.1
5 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

Figures

Figure 1: System Diagram..................................................................................................................... 3

Figure 2: Hardware Block Diagram ....................................................................................................... 9

Figure 3: Software Block Diagram......................................................................................................... 9

Figure 4: DA16200MOD 37 pins Pin-out Diagram (Top View)............................................................ 11

Figure 5: TIS 3D

Figure 6: TRP 3D................................................................................... 19

Figure 7: Power on Sequence ............................................................................................................. 20

Figure 8: Pulse Counter Block Diagram .............................................................................................. 24

Figure 9: QSPI Master Block Diagram ................................................................................................ 26

Figure 10: QSPI Master Timing Diagram (Mode 0)............................................................................. 26

Figure 11: SPI Master Timing Diagram (Mode 0)................................................................................ 27

Figure 12: SPI Slave Block Diagram ................................................................................................... 28

Figure 13: 8-byte Control Type............................................................................................................ 28

Figure 14: 4-byte Control Type............................................................................................................ 28

Figure 15: SPI Slave Timing Diagram ................................................................................................. 30

Figure 16: SDIO Slave Block Diagram ................................................................................................ 31

Figure 17: SDIO Slave Timing Diagram .............................................................................................. 31

Figure 18: I2C Master Timing Diagram ............................................................................................... 32

Figure 19: I2C Slave Timing Diagram ................................................................................................. 34

Figure 20: SD/eMMC Block Diagram .................................................................................................. 35

Figure 21: SD/eMMC Master Timing Diagram .................................................................................... 35

Figure 22: I2S Block Diagram.............................................................................................................. 37

Figure 23: I2S Clock Scheme.............................................................................................................. 37

Figure 24: I2S Timing Diagram ........................................................................................................... 38

Figure 25: Left Justified Mode Timing Diagram................................................................................... 38

Figure 26: Right Justified Mode Timing Diagram ................................................................................ 38

Figure 27: I2S Transmit Timing Diagram ............................................................................................ 39

Figure 28: I2S Receive Timing Diagram ............................................................................................. 39

Figure 29: ADC Control Block Diagram............................................................................................... 40

Figure 30: 12-bit ADC Timing Diagram ............................................................................................... 40

Figure 31: Antenna Switching Internal Block Diagram ........................................................................ 42

Figure 32: Antenna Switching Timing Diagram ................................................................................... 43

Figure 33: DA16200 UART Block Diagram ......................................................................................... 44

Figure 34: Serial Data Format ............................................................................................................. 44

Figure 35: Receiver Serial Data Sampling Points ............................................................................... 45

Figure 36: UARTTXDOE Output Signal for UART RS-485 ................................................................. 45

Figure 37: UART Hardware Flow Control............................................................................................ 46

Figure 38: PWM Block Diagram .......................................................................................................... 48

Figure 39: PWM Timing Diagram ........................................................................................................ 48

Figure 40: JTAG Timing Diagram........................................................................................................ 49

Figure 41: Bluetooth Coexistence Interface ........................................................................................ 50

Figure 42: Application Schematic ........................................................................................................ 52

Figure 43: AAC Module Dimension ..................................................................................................... 53

Figure 44: AAE Module Dimension ..................................................................................................... 53

Figure 45: PCB Land Pattern (Top View) ............................................................................................ 54

Figure 46: PCB Land Pattern (Bottom View)....................................................................................... 54

Figure 47: 4-Layer PCB Example........................................................................................................ 55

Figure 48: Typical PCB Mounting Process Flow ................................................................................. 56

Figure 49: Reflow Condition ................................................................................................................ 57

Tables
Table 1: Pin Description ...................................................................................................................... 12 Table 2: DA16200MOD Pin Multiplexing ............................................................................................. 14 Table 3: Absolute Maximum Ratings................................................................................................... 15 Table 4: Recommended Operating Conditions ................................................................................... 15 Table 5: DC Parameters, 1.8 V IO ...................................................................................................... 15

Datasheet
CFR0011-120-00

Revision 3.1
6 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

Table 6: DC Parameters, 3.3 V IO ...................................................................................................... 16 Table 7: DC Parameters for RTC block, 3.3 V VBAT.......................................................................... 16 Table 8: DC Parameters for RTC block, 2.1 V VBAT.......................................................................... 16 Table 9: DC Parameters for Digital Wake-up, 3.3 V VBAT & 1.8/3.3 V IO ......................................... 16 Table 10: DC Parameters for Digital Wake-up, 2.1 V VBAT & 1.8 V IO ............................................. 17 Table 11: WLAN Receiver Characteristics .......................................................................................... 17 Table 12: WLAN Transmitter Characteristics ...................................................................................... 17 Table 13: Current Consumption in Active State .................................................................................. 18 Table 14: Current Consumption in Low Power Operation................................................................... 18 Table 15: ESD Performance................................................................................................................ 19 Table 16: Power on Sequence Timing Requirements......................................................................... 20 Table 17: RTC Pin Description ............................................................................................................ 22 Table 18: Wake-up Sources ................................................................................................................ 23 Table 19: I/O Power Domain ............................................................................................................... 24 Table 20: QSPI Master Timing Parameters ........................................................................................ 27 Table 21: SPI Master Pin Configuration .............................................................................................. 27 Table 22: SPI Master Timing Parameters ........................................................................................... 28 Table 23: Control Field of the 8-byte Control Type ............................................................................. 29 Table 24: Control Field of the 4-byte Control Type ............................................................................. 29 Table 25: SPI Slave Pin Configuration ................................................................................................ 29 Table 26: SPI Slave Timing Parameters ............................................................................................. 30 Table 27: SDIO Slave Pin Configuration ............................................................................................. 31 Table 28: SDIO Slave Timing Parameters .......................................................................................... 31 Table 29: I2C Master Pin Configuration .............................................................................................. 32 Table 30: I2C Master Timing Parameters ........................................................................................... 32 Table 31: I2C Slave Pin Configuration ................................................................................................ 33 Table 32: I2C Slave Timing Parameters ............................................................................................. 34 Table 33: SD/eMMC Master Pin Configuration ................................................................................... 35 Table 34: SD/eMMC Master Timing Parameters ................................................................................ 36 Table 35: I2S Pin Configuration .......................................................................................................... 36 Table 36: I2S Clock Selection Guide................................................................................................... 38 Table 37: I2S Transmit Timing Parameters......................................................................................... 39 Table 38: I2S Receive Timing Parameters.......................................................................................... 39 Table 39: DC Specification .................................................................................................................. 40 Table 40: ADC Pin Configuration ........................................................................................................ 41 Table 41: Control bits to enable and disable hardware flow control ................................................... 46 Table 42: UART Interrupt Signals ....................................................................................................... 47 Table 43: UART Pin Configuration ...................................................................................................... 47 Table 44: PWM Pin Configuration ....................................................................................................... 48 Table 45: PWM Timing Diagram Description ...................................................................................... 49 Table 46: JTAG Timing Parameters.................................................................................................... 49 Table 47: JTAG Pin Configuration....................................................................................................... 50 Table 48: Component for RTC POWER KEY ..................................................................................... 52 Table 49: Typical Reflow Profile (Lead Free): J-STD-020C................................................................ 57 Table 50: Ordering Information (Production)....................................................................................... 58

Datasheet
CFR0011-120-00

Revision 3.1
7 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

1 Terms and Definitions

API CRC DMA GPIO HW I2C I2S IoT JTAG LDO LLI NVIC NVRAM PLL PRNG PWM QSPI RTC SAR ADC SPI SW SWD UART XIP TAP

Application Programming Interface Cyclic Redundancy Check Direct Memory Access General Purpose Input/Output Hardware Inter-Integrated Circuit Inter-IC Sound Internet of Things Joint Test Action Group Low-dropout Regulator Linked-List Item Nested Vectored Interrupt Controller Non-Volatile RAM Phase-locked Loop Pseudo Random Number Generator Pulse Width Modulation Quad-lane SPI Real-time Clock Successive Approximation Analog-to-Digital Converter Serial Peripheral Interface Software Serial Wire Debug Universal Asynchronous Receivers and Transmitter eXecutein Place Test Access Port

Final

2 References
[1] ARM Cortex M4 Processor Technical Reference Manual [2] ITU-T O.150, General Requirements for Instrumentation for Performance Measurements on
Digital Transmission Equipment, 1996 [3] Arm® TrustZone® CryptoCell-312, Revision r1p1, Software Integrators Manual [4] IEEE Standard 1149.1, Test Access Port and Boundary-Scan Architecture [5] DA16200_SDK_Programmer_Guide.pdf [6] AMBA AHB bus specification, Rev 3.0 https://developer.arm.com/documentation/ihi0033/bb

Datasheet
CFR0011-120-00

Revision 3.1
8 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
3 Block Diagram
Figure 2 shows the DA16200MOD hardware (HW) block diagram.

Chip Antenna type DA16200MOD-AAC

2.4GHzRF filter & Matching

32.768KHz Crystal

External Antenna type (u.FL connector) DA16200MOD-AAE

RTC Control
40MHz Crystal
UART For debugging

4Mbyte Serial flash

Figure 2: Hardware Block Diagram Figure 3 shows the DA16200 SoC software (SW) block diagram.

PIN Mux Quad-SPI
SPI UART GPIOs PWM
I2C SD/eMMC
SDIO I2S
4ch 12bit ADC JTAG/

Final
VBAT_3V3 VDD_DIO1 VDD_DIO2

Application Service

User Application
Home Appliance/Sensor Network/Door Lock/Light, IoT.

Pr ovis ioning Protocol
NetX-APP

mDNS / xmDNS / DNS-SD / CoAP / Jason DHCP/ DNS/ HTTP1.0 / HTTP1.1

NetX-Duo

TLS / DTLS TCP/UDP IP

CLI HandlerAfafa

U

upper Level

Wi-Fi Supplicant

80211 Link Layer

802.11 Upper MAC

ThreadX RTOS

802.11 Lower MAC Wi-Fi PHY

Device Driver

Figure 3: Software Block Diagram

System Service

Datasheet
CFR0011-120-00

Revision 3.1
9 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

The following descriptions are about the SW block diagrams.
 Kernel layer  Real Time Operating System
 The Wi-Fi layer is divided into four layers:  Lower MAC ­ SW module to control/handle HW Wi-Fi MAC/PHY and interfaces with Upper MAC layer  Upper MAC ­ SW module to control/handle Wi-Fi control/handle to interface with supplicant ­ Wi-Fi Link Layer: Interface layer between Upper MAC and supplicant ­ Supplicant: SW module to control/management to operate Wi-Fi operation  Network subsystem layer ­ Used to control/handle network operation ­ Main protocols are IP, TCP, and UDP ­ Other necessary protocols are supported  Security Layer ­ Crypto operation engine is ported to use crypto HW engine
 TLS/TCP and DTLS/UDP APIs are supported to handle security operation:  User application layer ­ Variable sample codes are supported in SDK ­ sample codes use supported APIs ­ TCP Client/Server, UDP Client/Server, TLS Client/Server ­ HTTP/HTTPs download, OTA Update usage, and MQTT usage
Customer applications can be included and implemented easily in SDK

Datasheet
CFR0011-120-00

Revision 3.1
10 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

4 Pinout

4.1 Pin-out Description (37 pins)

NC

1

GN D

2

RTC_PWR_KEY 3

RTC_WAKE_UP 4

RTC_SENSOR

5

NC

6

JTAG_TMS

7

JTAG_TCLK

8

GPIOC8

9

GPIOC7

10

GPIOC6

11

UART0_TXD

12

UART0_RXD

13

DA16200MOD series GND
14 15 16 17 18 19 20 21 22 23

37

NC

36

NC

35 VBAT_3V3

34 VDD_DIO1

33

GPIOA0

32

GPIOA1

31

GPIOA2

30

GPIOA3

29

GPIOA4

28

GPIOA5

27

GPIOA6

26

GPIOA7

25

GPIOA8

24

GPIOA9

RTC_WAKE_UP2 VDD_DIO2 F_CS F_IO1 F_IO2 F_IO0 F_IO3 F_CLK GPIOA11 GPIOA10

Figure 4: DA16200MOD 37 pins Pin-out Diagram (Top View)

Datasheet
CFR0011-120-00

Revision 3.1
11 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

Table 1: Pin Description

#Pin Pin Name

Type

1

NC

NC

2

GND

GND

3

RTC_PWR_KEY DI

4

RTC_WAKE_UP DI

5

RTC_SENSOR

DO

6

NC

NC

7

JTAG_TMS

DIO

8

JTAG_TCLK

DIO

9

GPIOC8

DIO

10 GPIOC7

DIO

11 GPIOC6

DIO

12 UART_TXD

DO

13 UART_RXD

DI

14 RTC_WAKE_UP2 DI

15 VDD_DIO2

VDD

16 F_CSN 17 F_IO1 18 F_IO2 19 F_IO0 20 F_IO3 21 F_CLK 22 GPIOA11 23 GPIOA10 24 GPIOA9 25 GPIOA8 26 GPIOA7 27 GPIOA6 28 GPIOA5 29 GPIOA4 30 GPIOA3 31 GPIOA2 32 GPIOA1 33 GPIOA0 34 VDD_DIO1 35 VBAT_3V3 36 NC 37 NC

DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO AI/DIO AI/DIO AI/DIO AI/DIO VDD VDD NC NC

Drive(mA)
2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12
2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12

Reset State
I-PU I-PD I-PD I-PD I-PD O I
I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD

Description NOT CONNECT RF VDD RTC block enable signal RTC block wake-up signal Sensor control signal NOT CONNECT JTAG I/F, SWDIO JTAG I/F, SWCLK, General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O UART transmit data UART receive data RTC block wake-up signal Supply power for digital I/O GPIOC6~GPIOC8, TMS/TCLK, TXD/RXD External Flash Memory I/F External Flash Memory I/F (F_SI) External Flash Memory I/F (F_WP) External Flash Memory I/F (F_SO) External Flash Memory I/F (F_HOLD) External Flash Memory I/F General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O Aux.ADC input/General Purpose I/O Aux.ADC input/General Purpose I/O Aux.ADC input/General Purpose I/O Aux.ADC input/General Purpose I/O Supply power for digital I/O Supply power for integrated power amplifier NOT CONNECT NOT CONNECT

Datasheet
CFR0011-120-00

Revision 3.1
12 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Final

4.2 Pin Multiplexing
This device provides various interfaces to support many kinds of applications. It is possible to control each pin according to the required application in reference to the pin multiplexing illustrated in Table 2. Pin control can be realized through register setting. This device can use a maximum of 16 GPIO pins and each of the GPIO pins multiplexes signals of various functions. In particular, four pins from GPIOA0 to GPIOA3 multiplex analog signals, which also can be realized through register setting.

Datasheet
CFR0011-120-00

Revision 3.1
13 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD-AA series
Ultra Low Power Wi-Fi Module

Table 2: DA16200MOD Pin Multiplexing

Pin

Module default

JTAG

GPIOA0 GPIOA1 GPIOA2 GPIOA3 GPIOA4 GPIOA5 GPIOA6 GPIOA7 GPIOA8 GPIOA9 GPIOA10 GPIOA11 TCLK/ GPIOA15
TMS UART_TXD UART_RXD
GPIOC8 GPIOC7 GPIOC6

GPIO GPIO GPIO GPIO UART1_TXD UART1_RXD WPS Factory_reset GPIO GPIO GPIO GPIO
TCLK
TMS UART0_TXD UART0_RXD
GPIO GPIO GPIO

TCLK TMS
TDI TDO NTRST

Note 1 Default Value: 8 mA

Analog

SPI master

SPI slave

I2C master

I2C slave

CH0

SPI_MISO I2C_SDA I2C_SDA

CH1

SPI_MOSI I2C_CLK I2C_CLK

CH2

SPI_CSB

I2C_SDA

CH3

SPI_CLK

I2C_CLK

I2C_SDA I2C_SDA

I2C_CLK I2C_CLK

SPI_CSB SPI_CSB

I2C_SDA

SPI_CLK SPI_CLK

I2C_CLK

SPI_DIO0 SPI_MISO I2C_SDA

SPI_DIO1 SPI_MOSI I2C_CLK

SPI_DIO2 SPI_MISO

SPI_DIO3 SPI_MOSI

SDIO slave
CMD CLK D3 D2 D1 D0

SDeMMC

BT coex

WRP

CMD CLK D3 D2 D1 BT_SIG0 D0 BT_SIG1 WRP BT_SIG2

I2S
BCLK MCLK SDO LRCK BCLK MCLK SDO LRCK BCLK MCLK

I2S_Clock UART1

CLK_IN

TXD RXD TXD RXD TXD/RTS RXD/CTS TXD RXD

CLK_IN

UART2
TXD RXD

Muxed Pin State w/Analog (nRESET=0)

Driving Strength (Note 1)

Yes

I-PD 2/4/8/12mA

Yes

I-PD 2/4/8/12mA

Yes

I-PD 2/4/8/12mA

Yes

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

I-PD 2/4/8/12mA

No

No

No

No

RXD

No

TXD

No

I-PU 2/4/8/12mA

O

2/4/8/12mA

I

2/4/8/12mA

I-PD 2/4/8/12mA

I-PD 2/4/8/12mA

I-PD 2/4/8/12mA

Datasheet
CFR0011-120-00

Revision 2.2
14 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

5 Electrical Specification

5.1 Absolute Maximum Ratings

Table 3: Absolute Maximum Ratings

Parameter VBAT_3V3 VDD_DIO1 VDD_DIO2

Pins 35 34 15

Operating temperature range (TA)

Min VSS VSS VSS -40

Max 3.9 3.9 3.9 +85

Units V V V °C

5.2 Recommended Operating Conditions

Table 4: Recommended Operating Conditions

Parameter VBAT_3V3 VDD_DIO1 VDD_DIO2

Pins 35 34 15

Min 2.1 1.62 1.62

Operating temperature range (TA)

-40

Typ

Max Units

3.6

V

3.6

V

3.6

V

+85

°C

5.3 Electrical Characteristics

5.3.1 DC Parameters, 1.8 V IO

Table 5: DC Parameters, 1.8 V IO

Parameter

Symbol Condition

Min

Typ

Input Low Voltage VIL

Guaranteed logic Low level

VSS

Input High Voltage VIH

Guaranteed logic High level

0.7 × DVDD

Output Low Voltage VOL

DVDD=Min.

VSS

Output High Voltage VOH

DVDD=Min.

0.8 × DVDD

Pull-up Resistor

RPU

VPAD=VIH, DIO=Min.

Pull-down Resistor RPD

VPAD=VIL, DIO=Min.

Note 1 DVDD = 1.8 V, VDD_DIO1, VDD_DIO2 Logic Level

Max 0.3 × DVDD
DVDD
0.2 × DVDD DVDD
32.4
32.4

Units V V V V
k

Datasheet
CFR0011-120-00

Revision 3.1
15 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

5.3.2 DC Parameters, 3.3 V IO

Table 6: DC Parameters, 3.3 V IO

Parameter Input Low Voltage Input High Voltage

Symbol Condition

VIL

Guaranteed logic Low level

VIH

Guaranteed logic High level

Min

Typ

VSS

2.0

Output Low Voltage VOL

DVDD=Min.

VSS

Output High Voltage VOH

DVDD=Min.

2.4

Pull-up Resistor

RPU

VPAD=VIH, DIO=Min.

Pull-down Resistor RPD

VPAD=VIL, DIO=Min.

Note 1 DVDD= 3.3 V, VDD_DIO1, VDD_DIO2 Logic Level

5.3.3 DC Parameters for RTC Block
There are several control pins in RTC block, see Section 7.3 RTC for detail.

Table 7: DC Parameters for RTC block, 3.3 V VBAT

Parameter

Symbol Condition

Min

Typ

Input Low Voltage VIL

Guaranteed logic Low level

VSS

Input High Voltage VIH

Guaranteed logic High level

2.2

(RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2)

Table 8: DC Parameters for RTC block, 2.1 V VBAT

Parameter

Symbol Condition

Min

Typ

Input Low Voltage VIL

Guaranteed logic Low level

VSS

Input High Voltage VIH

Guaranteed logic High level

1.6

(RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2)

Max

Units

0.8

V

DVDD

V

0.4

V

DVDD

V

19.4 k
16.0

Max 0.6 VBAT

Units V V

Max 0.3 VBAT

Units V V

5.3.4 DC Parameters for Digital Wake-up
Several GPIOs can be used for wake-up, see Section 7.3.1 Wake-up Controller for detail. To use Digital Wake-up, IO voltage should not be over VBAT.

Table 9: DC Parameters for Digital Wake-up, 3.3 V VBAT & 1.8/3.3 V IO

Parameter

Symbol Condition

Min

Typ

Max

Input Low Voltage VIL

Guaranteed logic Low level

VSS

0.5

Input High Voltage VIH

Guaranteed logic High level

1.4

DVDD

(DVDD= 1.8/3.3V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be over VBAT)

Units V V

Datasheet
CFR0011-120-00

Revision 3.1
16 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Table 10: DC Parameters for Digital Wake-up, 2.1 V VBAT & 1.8 V IO

Parameter

Symbol Condition

Min

Typ

Max

Input Low Voltage VIL

Guaranteed logic Low level

VSS

0.3

Input High Voltage VIH

Guaranteed logic High level

1.3

DVDD

(DVDD= 1.8V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be over VBAT)

5.4 Radio Characteristics

5.4.1 WLAN Receiver Characteristics
TA = +25 °C, VBAT = 3.3 V, CH1(2412 MHz)

Table 11: WLAN Receiver Characteristics

Parameter

Condition

1 Mbps DSSS

2 Mbps DSSS

11 Mbps CCK

Sensitivity
(8 % PER for 11b rates, 10 % PER for 11g/11n rates)

6 Mbps OFDM 9 Mbps OFDM 18 Mbps OFDM 36 Mbps OFDM

54 Mbps OFDM

MCS0(GF)

Maximum input level
(8 % PER for 11b rates, 10 % PER for 11g/11n rates)

MCS7(GF) 802.11b 802.11g

Min -99.5 -95 -90 -91 -91 -89 -82 -76 -91 -73
-4 -10

Typ -98.5 -94 -89 -90 -90 -88 -81 -75 -90 -72
0 -4

Max -96.5 -92 -87 -88 -88 -86 -79 -73 -88 -70
0 -3

Units V V
Units
dBm

5.4.2 WLAN Transceiver Characteristics
TA = +25 °C, VBAT = 3.3 V, CH1(2412 MHz)

Table 12: WLAN Transmitter Characteristics

Parameter

Condition

Min

Typ

Max

Units

1 Mbps DSSS

16.5

19.0

20

2 Mbps DSSS

16.5

19.0

20

5.5 Mbps CCK

16.5

19.0

20

11 Mbps CCK

16.5

19.0

20

Maximum Output Power measured form IEEE spectral mask and EVM

6 Mbps OFDM

15.5

18.0

19

dBm

9 Mbps OFDM

15.5

18.0

19

12 Mbps OFDM

15.5

18.0

19

18 Mbps OFDM

15.5

18.0

19

24 Mbps OFDM

14.5

17.0

18

Datasheet
CFR0011-120-00

Revision 3.1
17 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Parameter

Condition

Min

Typ

36 Mbps OFDM

14.5

17.0

48 Mbps OFDM

13

15.5

54 Mbps OFDM

12

14.5

MCS0 OFDM

15.5

18.0

MCS7 OFDM

12

14.5

Transmit center frequency accuracy

-25

5.5 Current Consumption
TA = +25 °C, VBAT = 3.3 V, w/ CPU clock is 80 MHz.

Table 13: Current Consumption in Active State

Parameter

Condition

Min

Typ

1 Mbps DSSS @ 19.0 dBm

260

280

6 Mbps OFDM @ 18.0 dBm

240

260

TX

54 Mbps OFDM @ 14.5 dBm

180

200

MCS7

@ 14.5 dBm

180

200

ACTIVE

No signal (Note 1)

25

29

1 Mbps DSSS (Note 1)

26.5

30.5

RX

1 Mbps DSSS

27

37.5

54 Mbps OFDM

29

38.5

MCS7

29

38.5

Note 1 Low Power Mode& CPU clock 30 MHz

TA = +25 °C, VBAT = 3.3 V

Table 14: Current Consumption in Low Power Operation

Parameter

Condition

Min

Typ

Sleep 1

0.2

Low Power Operation

Sleep 2

1.8

Sleep 3

3.5

Max 18 16.5 15.5 19 15.5 +25
Max 320 300 240 240 51 53 54 54 54
Max

Units ppm Units mA
Units µA

Datasheet
CFR0011-120-00

Revision 3.1
18 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module 5.6 Radiation Performance

Figure 5: TIS 3D

Figure 6: TRP 3D

5.7 ESD Ratings

Table 15: ESD Performance Reliability Test
Human Body Model (HBM) Charge Device Mode (CDM)

Standards ANSI/ESDA/JEDEC JS-001-2017 ANSI/ESDA/JEDEC JS-002-2018

Test Conditions ± 2,000 V ± 500 V

Result Pass Pass

5.8 Clock Electrical Characteristics
DA16200MOD is including two clock sources. One is the 32.768 kHz clock used by the RTC block, and the other is the 40 MHz clock for the internal processor and Wi-Fi system. More specifically, the 40 MHz clock is used as a source clock for the internal PLL while the PLL output is used for the internal processor and Wi-Fi system block.
5.8.1 RTC Clock Source
The 32.768 kHz RTC clock source is necessary for the free-running counter in the RTC block. The RTC block of the SoC contains an internal 32.768 kHz RC oscillator as well, which is used as a clock for chip initialization before the external 32.768 kHz crystal reaches the stable time in the initial stage. It is necessary to convert it into an external clock for accurate clock counting after the initialization stage. This process is executed through the register setting.
5.8.2 Main Clock Source
DA16200MOD contains a crystal oscillator for the main clock source which supports the external crystal clock. Basically, the external clock is 40 MHz.

Datasheet
CFR0011-120-00

Revision 3.1
19 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

6 Power Management
DA16200MOD has an RTC block which provides power management and function control for low power operation. In normal operation, the RTC block is always powered on when RTC_PWR_KEY is enabled.

6.1 Power On Sequence
The sequence after the initial switching from power-off to power-on is shown in Figure 7.
The RTC_PWR_KEY of DA16200 is a pin that enables the RTC block. Once RTC_PWR_KEY is enabled after VBAT power is supplied, all the internal regulators are switched on automatically in the sequence pre-defined by the RTC block.
Once RTC_PWR_KEY is switched on, LDOs for both XTAL and digital I/O are switched on shortly and then the DC-DC regulator is switched on according to the pre-defined interval. The enabling intervals can also be modified in the register settings after initial power-up.

VBAT

50% VBAT

IO Voltage

T0
50% IO

POWER_KEY CLK_32K

50% VBAT

T1

T2

T3
Figure 7: Power on Sequence

Table 16: Power on Sequence Timing Requirements

Name Description

Min

Typ

Max

Unit

T0

VBAT power-on time from 10 % to 90% of VBAT

ms

T1

IO voltage and VCC supply

0

ms

T2

RTC_PWR_KEY switch-on time from 50 % VBAT to 50 %

5*T0

ms

POWER_KEY * Note 1

T3

Internal RC oscillator wake-up time

217

µs

Note 1

If the T0 = 10 ms to switch on VBAT, the recommended T2 is 50 ms for the safe booting operation. It would be externally controlled by MCU or it would be implemented using RC filter at the input of RTC_PWR_KEY. The recommended C is 470 nF or 1uF (not to exceed 1 uF) and R value is chosen to have T2 delay. For example, R and C values will be 82 k and 1 uF when T0 = 10 ms.

6.2 Low Power Operation Mode
DA16200MOD provides three Sleep modes as low power operation modes.

6.2.1 Sleep Mode 1
Sleep mode 1 is an operational mode in which the RTC_PWR_KEY is not switched to high yet. The RTC_PWR_KEY is in the low state and the DA16200MOD is only supplied with VBAT power. With all the internal blocks off in Sleep mode 1, only the leakage current from a minimal number of internal blocks connected to VBAT remains.

Datasheet
CFR0011-120-00

Revision 3.1
20 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
6.2.2 Sleep Mode 2
Sleep mode 2 is an operational mode in which the RTC_PWR_KEY is set to high and the RTC block is running. Sleep mode 2 is activated by setting RTC registers for controlling the power management unit via a command from the CPU.
To switch Sleep mode 2 back to Sleep mode 1, RTC_PWR_KEY should be set to low.
Changing the state of the device from Sleep mode 2 to an ACTIVE state happens in one of two ways:
1. The counter value that has been set by the CPU prior to entering Sleep mode 2 is reached. 2. An external wake-up event occurs via the RTC_WAKE_UP pin.
6.2.3 Sleep Mode 3
Sleep Mode 3 is a low power, but fully connected Wi-Fi mode of operation. Sleep Mode 3 checks for incoming Wi-Fi network data traffic at regular intervals set by the user, for example, every one second, three seconds, five seconds, and so on. The exact time interval is programmable. Sleep Mode 3 is activated by software commands. See the SDK documentation for more information. A device can come out of Sleep Mode 3 and into a fully ACTIVE state before the next targeted wakeup time interval via a GPIO wakeup.

Datasheet
CFR0011-120-00

Revision 3.1
21 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
7 Core System

7.1 ARM Cortex-M4F Processor
The Cortex-M4F processor is a low-power processor that features low gate count, low interrupt latency, low-cost debug, and includes floating point arithmetic functionality. The processor is intended for deeply embedded applications that require fast interrupt response features.
The features of the Cortex-M4F processor in DA16200 are summarized below:
 Operation clock frequency is up to 160 MHz  32-bit ARM Cortex-M4F architecture optimized for embedded applications  Thumb-2 mixed 16/32-bit instruction set  Hardware division and fast multiplication  Includes Nested Vectored Interrupt Controller (NVIC)  SysTick timer provided by Cortex-M4F processor  Supports both standard JTAG (5-wire) and the low-pin-count ARM SWD (2-wire, TCLK/TMS)
debug interfaces
 Cortex-M4F is binary compatible with Cortex-M3
For more information on the ARM Cortex-M4F, see the ARM Cortex-M4F r0p1 technical reference manual Error! Reference source not found..

7.2 Wi-Fi Processor
DA16200 includes an internal MCU (ARM Cortex-M4F) to completely offload the host MCU along with an 802.11 b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast and secure WLAN and Internet connections with 256-bit encryption. It supports the station, SoftAP, and Wi-Fi Direct modes. It also supports WPA/WPA2 personal and enterprise security, WPA2 SI, WPA3 SAE, OWE, and WPS 2.0. It includes an embedded IPv4 and IPv6 TCP/IP stack.

7.3 RTC
Among the pins in DA16200MOD, four special pins are directly connected to the RTC block, which are RTC_PWR_KEY, RTC_GPO, RTC_WAKE_UP, and RTC_WAKE_UP2.

Table 17: RTC Pin Description

Pin Name

Pin Number

RTC_PWR_KEY

3

RTC_SENSOR

5

Description
RTC_PWR_KEY represents a power key for the RTC block. When this pin is enabled, the RTC starts to work by following a predefined power-up sequence and eventually all the necessary power is supplied to all the sub-blocks including the main digital block in DA16200. When disabled, all blocks are powered off and this mode is defined as Sleep mode 1.
Minimum leakage current in Sleep mode 1.
This pin is an output and high level is 'VBAT'.
It has three different functions.
 GPO function: output value can be set as 1 or 0 via register setting. It can keep the value even in Sleep mode
 Flash control function: when in Sleep mode, it becomes 0; when in Active mode, it is 1
 Sensor wakeup function: when used in sensor wake-up function (Section 8.8.4), it provides a programmable periodic signal for an external device. Inside the RTC, there are registers for setting count values

Datasheet
CFR0011-120-00

Revision 3.1
22 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Pin Name RTC_WAKE_UP RTC_WAKE_UP2

Pin Number

Description

4

This pin is an input pin for receiving an external event signal from

an external device like a sensor. The RTC block detects an

external event signal via this pin and wakes up DA16200 from

14

Sleep mode 2 or Sleep mode 3.

RTC block has a 36-bit real time counter. Its resolution is equal to one clock period of 32.768 kHz. The count value can be read via the register read command.

7.3.1 Wake-up Controller
The wake-up controller is designed to wake up DA16200MOD from a Sleep mode by an external signal. It detects an edge trigger of the wake-up signal and selects either the rising edge or the falling edge. Also, the wake-up signal must be maintained for at least 200 µs upon occurrence of transition on one side.
When it comes to the source of wake-up, 11 digital I/Os in addition to the two pins directly connected to the RTC block can be used. Although up to 11 digital I/Os are available for use, the maximum number of digital I/Os that are simultaneously available is eight. Table 18 describes the digital I/Os that are available for simultaneous use.

Table 18: Wake-up Sources

Input Selection = 0 GPIOA4 GPIOA5 GPIOA6 GPIOA7 GPIOA8 GPIOA9 GPIOA10 GPIOA11

Input Selection = 1 X X X X X
GPIOC6 GPIOC7 GPIOC8

For more on wake-up source selection, refer to input selection register: 0x50091008[25:16].
The wake-up controller is located in the RTC block. Several parameters can be set by RTC registers and they identify which pin is used to wake up the SoC by checking the status register after wake-up.
DA16200MOD has another wake-up function using analog sources, which is described in Section 8.8.4. Using the Aux-ADC, DA16200 detects whether it exceeds the pre-defined threshold value. If it detects the wanted condition, it will wake up from a Sleep mode. Four ports (GPIOA[3:0]) are used for this function.

7.3.2 Retention I/O Function
DA16200MOD I/O has a retention mode. During this mode, I/O cells retain the previous state values at the core side inputs. When it is required to maintain the value of a specific GPIO in Sleep mode, this function will be used. For example, in order to maintain HIGH value on GPIOA4 in Sleep mode, it is required to set the value of GPIOA4 to HIGH and set the register bit of RTC block (0x5009_1018:BIT[27:24]) to enable retention to the proper value described in Table 19 before going to the Sleep mode. For GPIOA4, BIT[25] should be set to HIGH, then GPIOA4 can keep the value HIGH during the Sleep mode.
The retention enable register is comprised of three bits in total, and the I/O power domains covered by each of the bits are described in Table 19.

Datasheet
CFR0011-120-00

Revision 3.1
23 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Table 19: I/O Power Domain [25] DIO1
GPIOA[11:4]

[26] DIO2 GPIOC[8:6] TCLK/TMS UART0_RXD/UART0_TXD

[27] FDIO F_CLK F_CSN
F_IO0 to F_IO3

7.4 Pulse Counter

7.4.1 Introduction
The pulse counter is a module which counts the number of rising or falling edges of input signals. And this counter module can run even in Sleep mode. It includes one 32-bit up-counter. The input channel can be chosen by register setting among the 11 digital I/Os. It also has a glitch filter which is designed to remove the unwanted trigger of an input signal.

7.4.2

Functional Description

CLK_32kHz

Ext.

Pad



Mux. 

Mux_SEL

Glitch Filter
Gli_En Gli_Thresh

Edge Select
Edge_Sel

Pulse

PCLK

Count

Counter

Int

Int

Pulse Edge

Count_En Count_Rst

Int_Clr Int_Thresh

Figure 8: Pulse Counter Block Diagram

7.4.2.1 Input
Available input channels are described in Table 18. It uses the same input sources with the wake-up controller. By register setting, input channels can be selected among 11 digital I/Os.

7.4.2.2 Clock The operation clock of the pulse counter is 32 kHz.

7.4.2.3 Counter
As described in Figure 8, the pulse counter is activated by several counter control signals. By register setting, input signals can be selected on either the rising edges or falling edges. In order to enable the glitch filter module, Gli_En and Gli_Thresh register values need to be set. The pulses whose cycles are shorter than the Gli_Thresh value are removed. The counter is a 32-bit up-counter and the counter value can be reset to zero by Count_Rst.

7.4.2.4 Interrupts
An interrupt occurs when the counter values reaches the Interrupt Threshold value (Int_Thresh). In Sleep mode, this interrupt can be used as a wake-up source.

Datasheet
CFR0011-120-00

Revision 3.1
24 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
8 Peripherals
This section describes the peripherals that are supported by the DA16200MOD.
8.1 QSPI: Master with XIP Feature
QSPI master supports 4-line SPI communication with commercial flash memory devices and uses Motorola SPI-compatible interface among SPI communication modes. The highest communication speed is the same as the AMBA bus clock, and the speed is adjustable in integer multiples. The designed QSPI supports 4-/2-/1-line types depending on the purpose. These types should be combined. Especially when the 1-line communication mode is used, it can be used as the SPI master.
QSPI master is an IP for communication between the flash memory and AMBA AHB bus and is designed to support XIP. The features of the QSPI master are summarized as follows:
Serial Flash Interface:
 SPI compatible serial bus interface  Configurable SPI I/O modes: ­ Single I/O mode ­ Dual I/O mode ­ Quad I/O mode  JEDEC Standard: JESD216B  24-bit and 32-bit addressing  Supports to access flash with XIP mode ­ Read access without command ­ Read access without address and command  Programmable SPI clock phase and polarity  Maximum number of SPI CS is four that can be operated
AMBA Slave Interface
 Compliance to the AMBA AHB bus specification, Rev 3.0 [6]  Direct code execution: directly addressable access without additional driver software  Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16)  Supports byte, half-word, and word transaction  AMBA slave interface is optional to access configuration and status registers  Simple timer is used to check the completion time of flash operation  XIP path of QSPI master supports HW remapping function to execute selected boot image for
over-the-air programming (OTA)
AMBA Master Interface
 Compliance to the AMBA AHB bus specification, Rev 3.0 [6]  Supports DMA operation to access serial flash devices
 Automatic copy of code image from serial flash to system RAM  Automatic programming of code image from system RAM to serial flash  Performs a mem-to-mem copy in units of 32 bits, regardless of the address and length  Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16)  Supports byte, half-word, and word transaction
Figure 9 shows the QSPI Master Block Diagram.

Datasheet
CFR0011-120-00

Revision 3.1
25 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
AHB Bu sMatrix

AHB

S

I-Cache Contr olle r

M

AHB

Bu s

Bu s

AHB Bu s

AHB Bu s

XI P path S0

Co nfiguration

QS PI S1 Master with XIP feature

DMA

M DMA

External Se ri al
NOR Flash

Figure 9: QSPI Master Block Diagram

Figure 10 shows the timing diagram for the QSPI master.

QSPI_CSB

TCLK.ON

TDO.DLY

QSPI_CLK

QSPI_D[3:0]

Figure 10: QSPI Master Timing Diagram (Mode 0)

TDI.SU

TCSB.OF
F

Datasheet
CFR0011-120-00

Revision 3.1
26 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Table 20 lists the timing parameters for the QSPI master.

Table 20: QSPI Master Timing Parameters

Parameter

Symbol

Min

Typ

QSPI_CLK frequency QSPI_CLK clock duty

FCLK

10

50

1st CLK active rising transition time

TCLK.ON

0.5 ×TCLK

QSPI_CSB non-active rising transition time TCSB.OFF

0

QSPI_D[3:0] input setup time

TDI.SU

6

QSPI_D[3:0] output delay time

TDO.DLY

Note 1 TCLK = (FCLK× 106)-1 seconds

Max 120
TCLK (Note 1) TCLK
2

Unit MHz %
ns
ns ns ns

8.2 SPI Master
QSPI can use the SPI master by means of single line interface. Table 21 shows the pin definition of the SPI master interface. SPI signal timing is the same as QSPI.
To use DA16200MOD as an SPI master, the CSB signal can be used with any of the GPIO pins. CSB [3:1] can be selected from GPIO special function by setting the registers in the GPIO.

Table 21: SPI Master Pin Configuration

Pin Name

Pin Number

GPIOx

GPIOA6

27

GPIOA7

26

GPIOA8

25

GPIOA9

24

GPIOA10

23

GPIOA11

22

I/O

Function Name

O

E_SPI_CSB[3:1]

O

E_SPI_CSB[0]

O

E_SPI_CLK

I/O

E_SPI_MOSI or E_SPI_D[0]

I/O

E_SPI_MISO or E_SPI_D[1]

I/O

E_SPI_D[2]

I/O

E_SPI_D[3]

E_SPI_CSB

TCLK.ON

TDO.DLY

TDI.SU

TCSB.OF
F

E_SPI_CLK

E_SPI_D[3:0]

Figure 11: SPI Master Timing Diagram (Mode 0)

Datasheet
CFR0011-120-00

Revision 3.1
27 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Table 22: SPI Master Timing Parameters

Parameter

Symbol

QSPI_CLK frequency

FCLK

QSPI_CLK clock duty

1st CLK active rising transition time

TCLK.ON

QSPI_CSB non-active rising transition time QSPI_D[3:0] input setup time QSPI_D[3:0] output delay time Note 1 TCLK = (FCLK× 106)-1 seconds

TCSB.OFF TDI.SU TDO.DLY

Min

Typ

5

50

0.5 × TCLK

0 6

Max 60
TCLK (Note 1) TCLK
2

Unit MHz %
ns
ns ns ns

8.3 SPI Slave
SPI slave interface supports the control of DA16200 by an external host. The range of SPI clock speed is the same as that of the internal bus clock speed. The SPI slave supports both the burst mode and non-burst mode. In the burst mode, SPI_CSB remains active from the start to the end of communication. In the non-burst mode, SPI_CLK remains active at every eight bits.

Address Decoder

SPI Signals

Command Decoder

APB bus Controller

Data Decoder

Figure 12: SPI Slave Block Diagram
Communication protocols of the SPI slave interface use either 4-byte or 8-byte control signals. Between the two available communication protocols, the CPU chooses one before initiating the control.
Figure 13 and Figure 14 shows the 8-byte and 4-byte control types.

SPI_CSB SPI_CLK SPI_MOSI

A [ 31 : 24 ]

A [ 23 : 16 ]

A [ 15 : 8 ]

A [ 7 : 0 ]

C [ 7 : 0 ]

L [ 23 : 16 ]

L [ 15 : 8 ]

L [ 7 : 0 ]

Figure 13: 8-byte Control Type

D [ 7 : 0 ]

D [ 15 : 8 ]

D [ 23 : 16 ]

D [ 31 : 24 ]

SPI_CSB SPI_CLK SPI_MOSI

A [ 15 : 8 ]

A [ 7 : 0 ]

C [ 7 : 0 ]

L [ 7 : 0 ]

D [ 7 : 0 ]

D [ 15 : 8 ]

Figure 14: 4-byte Control Type

D [ 23 : 16 ]

D [ 31 : 24 ]

Datasheet
CFR0011-120-00

Revision 3.1
28 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

The 8-byte control type uses 4-byte address, 1-byte control, and 3-byte length. The 4-byte address displays the address of registers subject to internal access. The 1-byte control is for communication control and 3-byte length shows the length of data subject to continuous access in bytes. Hence, when the 8-byte control type is applied, the maximal length of data subject to continuous access is 16 MB.
The 4-byte control type uses 2-byte address, 1-byte control, and 1-byte length. The 2-byte address displays the address of registers subject to internal access. The 1-byte control is for communication control and 1-byte length shows the length of data subject to continuous access in bytes. Since the 32-bit address map is used internally, the 2-byte address is not enough to express everything. Thus, the upper 2-byte base address is designated, and then the lower 2-byte address is used.
Table 23 and Table 24 shows the meaning of each bit in the 1-byte control in the 8-byte control type and the 4-byte control type, respectively.

Table 23: Control Field of the 8-byte Control Type

Control Bit

Abr.

Description

7

Auto Inc.

1 = Internal Address auto-increment

0 = Address fixed

6

Read/Write

1 = Read

0 = Write

5:0

Not used. Set all bits to `0'

Table 24: Control Field of the 4-byte Control Type

Control Bit

Abr.

Description

7

Auto Inc.

1 = Internal address auto-increment

0 = Address fixed

6

Read/Write

1 = Read

0 = Write

5

Common

1 = Refer base address as common area 0 = Refer base address

4

Length section

1 = Refer to register value

0 = Refer to length field

3:0

Length[12:8]

Length field upper

Table 25 shows the pin definition of the SPI slave interface.

Table 25: SPI Slave Pin Configuration

Pin Name

Pin Number

I/O

GPIOA2

31

I

GPIOA6

27

I

GPIOA3

30

I

GPIOA7

26

I

GPIOA1

32

I

GPIOA9

24

I

GPIOA11

22

I

GPIOA0

33

O

GPIOA8

25

O

GPIOA10

23

O

Figure 15 shows the timing diagram for the SPI slave.

Function Name SPI_CSB SPI_CLK SPI_MOSI
SPI_MISO

Datasheet
CFR0011-120-00

Revision 3.1
29 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

SPI_CSB
SPI_CLK
(CPOL=0)
SPI_CLK
(CPOL=1)

TSCLKOFF

SPI_MOSI

TSCLKON
TMSU TMHD
MSB

TSCLKL TSCLKH TSCLKH TSCLKL

TCSBOFF
TSSU
LSB

SPI_MISO

TTR
Figure 15: SPI Slave Timing Diagram Table 26 lists the timing parameters for the SPI slave.

Table 26: SPI Slave Timing Parameters

Parameter

Symbol Min

Typ

SCLK frequency SCLK clock duty

FSCLK

-

-

40

Non active duration 1st CLK active rising transition time CSB non active rising transition time

TSCLKOFF 400

-

TSCLKL(CPOL=0)

TSCLKON TSCLKH (CPOL=1)

-

TCSBOFF TSCLKH (CPOL=0)

-

TSCLKL (CPOL=1)

MOSI setup time

TMSU

8

-

MOSI hold time

TMHD

8

-

MISO delay time

TSSU

-

-

MISO transition time(10% to 90% transition) TTR

-

4

Note 1 TSCLK = 0.5 × (FSCLK x 106)-1 second

LSB

Max 50
-

Unit MHz % ns
ns

-

ns

TSCLK ns
(Note 1)

TSCLK

ns

8

ns

5

ns

8.4 SDIO
SDIO is a full/high speed card suitable for memory card and I/O card applications with low power consumption. The full/high speed card supports SPI, 1-bit SD, and 4-bit SD transfer modes at the full clock range of 0 to 50 MHz. To be compatible with the serviceable SDIO clock, the internal BUS clock needs to be set to minimum 50 MHz. The CIS and CSA area is located inside the internal memory and the SDIO registers(CCCR and FBR) are programmed by the SD host.

Datasheet
CFR0011-120-00

Revision 3.1
30 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Command Decoder

Fn0 / Fn1 Decoder

APB bus Interface

Response Generator

DAT Decoder
CRC Generator

REG. Control

2 port Memory

DMA Controller

Figure 16: SDIO Slave Block Diagram
Table 27 shows the pin definition of the SDIO interface.
The GPIOA4 and GPIOA5 pins are set to SDIO CMD and CLK by default. If SDIO initialization is performed and SDIO communication is enabled, SDIO data pin setting is performed automatically. In other words, when the SDIO communication is detected, the pin used as the SDIO data among the GPIO pins is automatically activated in the SDIO use mode. However, the auto setting function is not supported for the F_xxx pin used as the flash function.

Table 27: SDIO Slave Pin Configuration

Pin Name

Pin Number

GPIOA4

29

GPIOA5

28

GPIOA9

24

GPIOA8

25

GPIOA7

26

GPIOA6

27

I/O

Function Name

I/O

SDIO_CMD

I

SDIO_CLK

I/O

SDIO_D0

I/O

SDIO_D1

I/O

SDIO_D2

I/O

SDIO_D3

Figure 17 shows the timing diagram for the SDIO slave.

SDIO_CLK SDIO_D[3:0]

TCO.DLY

TDO.DLY

TCI.SU

TDI.SU

SDIO_CMD

Figure 17: SDIO Slave Timing Diagram Table 28 lists the timing parameters for the SDIO slave.

Table 28: SDIO Slave Timing Parameters

Parameter

Symbol

Min

Typ

SDIO_CLK frequency

FSCLK

-

-

SDIO_CLK clock duty

50

SDIO_CMD input setup time

TCI.SU

3

Datasheet

Revision 3.1

CFR0011-120-00

31 of 60

Max

Unit

50

MHz

%

ns

03-Feb-2021

© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Parameter

Symbol

Min

Typ

SDIO_CMD output delay time

TCO.DLY

SDIO_D[3:0] input setup time

TDI.SU

3

SDIO_D[3:0] output delay time

TDO.DLY

Note 1 SDIO signals can set previous output from half cycle.

Max

Unit

11 (Note 1) ns

ns

11 (Note 1) ns

8.5 I2C Interface

8.5.1 I2C Master
DA16200MOD includes an I2C master module. Three ranges of clock speed are supported: standard (100 kHz), fast (400 kHz), and high (1.0 MHz) speed mode. Table 29 shows the pin definition of the I2C master interface.

Table 29: I2C Master Pin Configuration

Pin Name

Pin Number

I/O

GPIOA1

32

O

GPIOA5

28

O

GPIOA9

24

O

GPIOA0

33

I/O

GPIOA4

29

I/O

GPIOA8

25

I/O

Function Name I2C_CLK I2C_SDA

Figure 18 shows the I2C timing diagram. The timing diagram is the same as that of I2C slave timing diagram.
TR

SDA
SCL
THD;STA S

TLOW

TR THD;DAT

TSU;DAT THIGH

TVD;ACK TBUF

... cont. ...

SDA

...

cont.

SCL

...

THD;STA
TSU;STA Sr

TSU;STO

P

S

Figure 18: I2C Master Timing Diagram

Table 30 lists the I2C master timing parameters.

Table 30: I2C Master Timing Parameters

Parameter

Symbol

Bus clock frequency

Fop_clk

Fast Mode

Min

Max

30

160

High Speed Mode

Min

Max

30

160

Unit MHz

Datasheet
CFR0011-120-00

Revision 3.1
32 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Parameter

Symbol

Fast Mode

Min

Max

SCL clock frequency

FSCLK

100

400

Clock Duty (Note 1) Hold time of START Low period of the SCL clock High period of the SCL clock Setup time for START condition
Data hold time

THD;STA TLOW THIGH TSU;STA
THD;DAT

40 0.2 1.27 1.23 1.1 3x Top_clk (Note 4)

Data setup time

TSU;DAT

-

Rise time of both SDAand SCL

TR (Note 3)

0.02

Setup time for STOP condition

TSU;STO

0.36

Data valid acknowledge time

TVD;ACK

3x Top_clk (Note 4)

Buffer free time between START and STOP condition

TBUF

0.5

Note 1 Note 2 Note 3 Note 4

Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/ FSCLK Max. clock = 1.0 MHz (clock period = 1000 ns) TR depends on a pull-up resistor value. Top_clk = (1 / Fop_clk) x 10^6 usec

60 -
-
TLOW - THD;DAT
0.3 -
-
-

High Speed Mode

Min

Max

100

1000 (Note 2)

40

60

0.2

-

0.55

-

0.45

-

0.37

-

3x Top_clk

-

(Note 4)

-

TLOW

- THD;DAT

0.05

0.05

0.45

-

3x Top_clk -
(Note 4)

0.5

-

Unit
kHz % s s s s s
s s s s
s

8.5.2 I2C Slave
I2C slave interface supports the control of DA16200MOD by an external host. Pin mux condition is defined in Table 31. Three ranges of clock speed are supported: standard (100 kHz), fast (400 kHz), and high (1.0 MHz) speed mode.

Table 31: I2C Slave Pin Configuration

Pin Name

Pin Number

GPIOA1

32

GPIOA3

30

GPIOA5

28

GPIOA7

26

GPIOA0

33

GPIOA2

31

GPIOA4

29

GPIOA6

27

I/O

Function Name

I

I I2C_CLK
I

I

I/O

I/O
I2C_SDA I/O

I/O

Datasheet
CFR0011-120-00

Revision 3.1
33 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Figure 19 shows the I2C slave timing diagram.

SDA
SCL
THD;STA S

TR

TLOW

TR THD;DAT

TSU;DAT THIGH

SDA

...

cont.

SCL

...

THD;STA
TSU;STA Sr

Figure 19: I2C Slave Timing Diagram

TVD;ACK TBUF

... cont. ...

TSU;STO

P

S

Table 32 lists the I2C slave timing parameters.

Table 32: I2C Slave Timing Parameters

Parameter

Symbol

SCL clock frequency

FSCLK

Fast Mode

Min

Max

0

400

Clock Duty (Note 1)

40

60

Hold time of START Low period of the SCL clock High period of the SCL clock Setup time for START condition
Data hold time Data setup time Rise time of both SDA and SCL Setup time for STOP condition Data valid acknowledge time Buffer free time between START and STOP condition

THD;STA TLOW THIGH TSU;STA THD;DAT TSU;DAT
TR TSU;STO TVD;ACK
TBUF

0.6

-

1.3

-

0.6

-

0.6

-

0

-

100

-

20

300

0.6

-

-

-

1.3

-

Note 1 Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/FSCLK Note 2 Max. clock = 1.0 MHz (clock period = 1000 ns)

High Speed Mode

Unit

Min

Max

0

1000 kHz

(Note 2)

40

60

%

0.26

-

s

0.5

-

s

0.26

-

s

0.26

-

s

0

-

s

50

-

ns

-

120

ns

0.26

-

s

-

-

s

0.5

-

s

Datasheet
CFR0011-120-00

Revision 3.1
34 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

8.6 SD/SDeMMC
The SD/eMMC host IP provides the function for DA16200MOD to access SD or eMMC cards. This SD/eMMC host IP only supports a 4-bit data bus and the maximum clock rate is 50 MHz. The maximum data rate is 25 MB/s (200 Mbps) under the 4-bit data bus and 50 MHz clock.
SD/eMMC pin mux condition is defined in Table 33.

Table 33: SD/eMMC Master Pin Configuration

Pin Name

Pin Number

I/O

GPIOA4

29

I/O

GPIOA5

28

O

GPIOA9

24

I/O

GPIOA8

25

I/O

GPIOA7

26

I/O

GPIOA6

27

I/O

GPIOA10

23

I

GPIOA1

32

I

Function Name SD/eMMC_CMD SD/eMMC_CLK
SD/eMMC_D0 SD/eMMC_D1 SD/eMMC_D2 SD/eMMC_D3
SD/eMMC_WRP

8.6.1 Block Diagram
Figure 20 shows the block diagram of SD/eMMC host IP and it includes the control register, clock control, command/response pipe, data pipe, and AHB master interface blocks.

AHB Slave 32

Control Registers

Clock Control

HCLK

CMD/RSP Pipe

HCMD

AHB

AHB

Master

FIFO

32

32

Figure 20: SD/eMMC Block Diagram Figure 21 shows the timing diagram for the SD/eMMC master.

Data Pipe

SD/eMMC_CLK SD/eMMC_D[3:0]

TCO.DLY

TDO.DLY

TCI.SU

HDATA[3:0] 4
TDI.SU

SD/eMMC_CMD

Figure 21: SD/eMMC Master Timing Diagram

Datasheet
CFR0011-120-00

Revision 3.1
35 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Table 34 lists the timing parameters for the SD/eMMC master.

Table 34: SD/eMMC Master Timing Parameters

Parameter

Symbol

Min

Typ

Max

Unit

SD/eMMC_CLK frequency

FSCLK

-

SD/eMMC_CLK clock duty

-

50

MHz

50

%

SD/eMMC_CMD input setup time

TCI.SU

8

SD/eMMC_CMD output delay time

TCO.DLY

SD/eMMC_D[3:0] input setup time

TDI.SU

8

SD/eMMC_D[3:0] output delay time

TDO.DLY

ns

3

ns

ns

8

ns

8.7 I2S
DA16200MOD provides an I2S interface. Once an I2S block receives audio data through the DMA, it sends audio data to the external port according to the I2S standard. To use the external DAC, output through the GPIO port is possible through the register setting according to the pin configuration (Table 35).
The I2S also provides a receive function. However, I2S transmission and reception functions cannot be used at the same time. The transmit and receive functions can be selected by register setting. If the I2S signal is input from outside after the reception function is set, the audio signal can be decoded, stored in the FIFO, and read out through the DMA. The decodable reception function provides 8/16/24/32-bit modes and can receive either mono or stereo.
Using the I2S clock divider register, the internal PLL clock can be variably applied to the I2S clock source. The available I2S clock source is 24/48 MHz. There is also a way to apply the I2S clock source directly from outside using the GPIO pin. For accurate I2S audio sampling, I2S clock source can be input to external GPIO pins. It needs to select the GPIO pin setting as the I2S clock input and apply appropriate clock source. The available I2S clock pins are shown in Table 35.

Table 35: I2S Pin Configuration

Pin Name

Pin Number

GPIOA1

32

GPIOA5

28

GPIOA9

24

GPIOA0

33

GPIOA4

29

GPIOA8

25

GPIOA3

30

GPIOA7

26

GPIOA2

31

GPIOA6

27

GPIOA3

30

GPIOA10

23

I/O

Function Name

O

O

I2S_MCLK

O

O

O

I2S_BCLK

O

O I2S_LRCK
O

I/O I2S_SDO
I/O

I I2S_CLK_IN
I

Datasheet
CFR0011-120-00

Revision 3.1
36 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module 8.7.1 Block Diagram
I2S has the following features:
 Master Clock Mode only  I2S Data pin can work in either input mode or output mode  Clock source can be "internal 480 MHz/N" (currently using 24 MHz) or "external clock source"  Max Sampling Rate: 48 KHz  Mono/Stereo Mode
Figure 22: I2S Block Diagram
8.7.2 I2S Clock Scheme
The I2S uses a 24 MHz clock as default from the RF reference clock (40 MHz), so it can support 46.875 KHz of sampling rate. External clock sources are needed to support the standard sampling rate. See Table 36.

Datasheet
CFR0011-120-00

Figure 23: I2S Clock Scheme
Revision 3.1
37 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Table 36: I2S Clock Selection Guide

Parameter

LRCK

Fs

8

12

BCLK

64Fs

0.512 0.768

MCLK

512Fs 4.096 6.144

Clk Div2

N (=1,2,3...)

6

4

16 1.024 8.192

24

32

44.1

1.536 2.048 2.8224

12.288 16.384 22.5792

3

2

2

1

I2S_CLK

24.576 24.576 24.576 24.576 32.768 22.5792

46.875 3 24
1
24 (Internal
PLL)

Units 48 KHz 3.072 MHz 24.576 MHz 1
24.576 MHz

NOTE To confirm the exact LRCK operation, drive the Clock source at I2S_CLK.

8.7.3 I2S Transmit and Receive Timing Diagram
I2S output is possible in the following three modes. The main clock (MCLK) always outputs in 512×fs.
 I2S Mode

LRCK SCLK SDATA

Left Channel

MSB -1 -2 -3

+3 +2 +1 LSB

Right Channel

MSB -1 -2 -3 -4

+3 +2 +1 LSB

 Left Justified Mode

Figure 24: I2S Timing Diagram

LRCK SCLK SDATA

Left Channel

MSB -1 -2 -3

+3 +2 +1 LSB

Right Channel

MSB -1 -2 -3 -4

+3 +2 +1 LSB

Figure 25: Left Justified Mode Timing Diagram
 Right Justified Mode

LRCK SCLK SDATA

Left Channel

Right Channel

15 14 13

210

15 14 13

Figure 26: Right Justified Mode Timing Diagram

210

Datasheet
CFR0011-120-00

Revision 3.1
38 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

I2S_BCLK

T2

T3

fBCLK

I2S_SDO (falling edge)
I2S_SDO (rising edge)

T4 T5

Figure 27: I2S Transmit Timing Diagram

I2S_BCLK

T4

T3

T2

fBCLK

T5
I2S_SDO

Figure 28: I2S Receive Timing Diagram

Table 37: I2S Transmit Timing Parameters

Description

Timing

Min

Typ

I2S_BCLK frequency

fBCLK

-

High period of the BCLK clock

T2

-

Low period of the BCLK clock

T3

-

I2S_SDO output hold (falling edge)

T4

160

I2S_SDO output hold (rising edge)

T5

160

Table 38: I2S Receive Timing Parameters

Description

Timing

Min

Typ

I2S_BCLK frequency

fBCLK

-

High period of the BCLK clock

T2

-

Low period of the BCLK clock

T3

-

I2S_SDO input setup time

T4

15

I2S_SDO input hold time

T5

60

Max 3.072 ½ fBCLK ½ fBCLK
-
Max 3.072 ½ fBCLK ½ fBCLK
-

Unit MHz ns ns ns ns
Unit MHz ns ns ns ns

8.8 ADC (Aux 12-bit)

8.8.1 Overview
DA16200MOD includes a high precision, ultra-low power, and wide dynamic range SAR ADC with a 12-bit resolution. It has a 4-channel single-end ADC.
Analog input is measured by four pins from GPIOA0 to GPIOA3, and pin selection is changed through the register setting.
Figure 29 shows the control block diagram.

Datasheet
CFR0011-120-00

Revision 3.1
39 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
VI_N[1] VI_N[2] VI_N[3] VI_N[4]

SWITCH

ADC 12b Max : 1Ms

CH_SEL Ready

Switch ADC Controller

Counter 16-bit

Figure 29: ADC Control Block Diagram

8.8.2 Timing Diagram
The input is digitized at a maximum of 1.0 Msps throughput rate. And the maximum input clock rate is 15 MHz.
Figure 30 shows the conversion timing, and Table 39 describes DC specifications.

CLK 15MHz
AUXADC_EN OSC_EN
SAMPLE 1M
D<11:0>

15*CLK

15*CLK
N

15*CLK
N+1

15*CLK
N+2

N

N+1

15*CLK
N+3 N+2

15*CLK
N+4 N+3

CLKOUT 1M

Figure 30: 12-bit ADC Timing Diagram

Table 39: DC Specification

Description

Min

Typ

Max

Resolution

4

12

12

Max clock input

15

Conversion frequency

1

Accuracy:

 SNR  SNDR

Analog input range

0

 61.7  67.2
1.4

Unit Bits MHz MHz
 dB  dB V

8.8.3 DMA Transfer
There are four ADC channel settings available. Once the input data of each channel reaches the FIFO level, it is possible to read the data through the DMA path.

Datasheet
CFR0011-120-00

Revision 3.1
40 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

8.8.4 Sensor Wake-up
DA16200MOD provides an external sensor wake-up function using the analog input signal through this Aux ADC. Even in Sleep modes, it detects the change of external analog signal, wakes up from a Sleep mode, and converts DA16200MOD into a normal operation. This function can be used in up to four channels. Also, when multiple external sensors are used, it detects analog signals while changing the channel automatically. For example, if it sets all four channels as input sources which have their threshold register respectively, in measures the channels sequentially from 0 to 3.
If one of the four values exceed the allowed range of values set by the threshold register, DA16200MOD is awaken from Sleep modes. The setting value of input change can be of two types, over threshold and under threshold.

8.8.5 ADC Ports
Table 40 shows the pin definition of the ADC.

Table 40: ADC Pin Configuration

Pin Name

Pin Number

GPIOA3

30

GPIOA2

31

GPIOA1

32

GPIOA0

33

I/O

Function Name

A

Analog signal

A

Analog signal

A

Analog signal

A

Analog signal

8.9 GPIO
All digital pads can be used as GPIO, and each GPIO port is mixed with a multi-functional interface. The GPIO features of DA16200MOD are listed below:
 Input or output lines in a programmable direction  Word and half word read/write access  Address-masked byte writes to facilitate quick bit set and clear operations  Address-based byte reads to facilitate quick bit test operations  Maskable interrupt generation based on input value change  Possible to be output signal of PWM[3:0], external interrupt, QSPI_CSB[3:1], RF_SW[1:0], and
UART_TXDOE[2:0] on the GPIO pins:
 It provides special functions for GPIO pin use. PWM [3:0], external interrupt, QSPI_CSB [3:1],
RF_SW [1:0], and UART_TXDOE [2:0] signals can be output by selecting unused pins among the GPIO pins. It is possible to select the function to be output from the GPIO register setting and select the remaining GPIO pin without using it to output the specific function to the desired GPIO pins
8.9.1 Antenna Switching Diversity
DA16200MOD-AAE4WA32 (u.FL connector type module) provides the antenna switching diversity function for performance improvement in multi-path environment. Phy block measures the RSSI of each antenna and selects the antenna with the largest RSSI. The selected antenna is also used for transmission. To use this function, an external switching element is required, and switching control is performed through the GPIO. Two GPIOs can be used for switching control, and any unused pins among the GPIO pins can be selected for this purpose. The control signal can be changed by register setting to suit the external switching device.

Datasheet
CFR0011-120-00

Revision 3.1
41 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Antenna1

RF RSFwSwitictchh

Antenna2

DA16F2C009M0O5D0-AAE
ANT GPIO
2

Figure 31: Antenna Switching Internal Block Diagram
If the Antenna Switching Diversity function is enabled, the function is automatically done by PHY hardware block. The basic operation scheme is as follows:
 Antenna's RSSI decision is made for 11b PPDU, except for 11g/n PPDU  When PHY hardware detects the existence of 11b PPDU, it stores RSSI  After it switch to another antenna, the RSSI stored and decision is made which antenna has
better RSSI
 This operation is done during 11b PPDU's preamble duration to protect corruption of 11b PPDU
data reception
 The decided antenna is not changed until there is a new 11b PPDU

Datasheet
CFR0011-120-00

Revision 3.1
42 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Figure 32: Antenna Switching Timing Diagram For reference, this antenna switching diversity is different from MRC. (Maximum Ratio Combining)
8.10 UART
DA16200MOD provides 3 UARTs, features of which are described below:
 Programmable use of UART (UART1 and UART2)  Compliance to the AMBA AHB bus specification [6] for easy integration into SoC implementation  Supports both byte and word access for reduction of bus burden  Supports both RS-232 and RS-485  Separate 32×8 bit transmit and 32×12 bit receive FIFO memory buffers to reduce CPU interrupts  Programmable FIFO disabling for 1-byte depth  Programmable baud rate generator  Standard asynchronous communication bits (start, stop and parity), which are added prior to
transmission and removed on reception
 Independent masking of transmit FIFO, receive FIFO, and receive timeout  Supports for DMA  False start bit detection  Programmable flow control (CTS/RTS, UART1)  Fully programmable serial interface characteristics:
 Data can be of 5,6,7, or 8 bits  Even, odd, stick, or no-parity bit generation and detection  1- or 2- stop bit generation  Baud rate generation

Datasheet
CFR0011-120-00

Revision 3.1
43 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Figure 33: DA16200 UART Block Diagram

8.10.1 RS-232
As the serial communication between the UART and the selected device is asynchronous, additional bits (start and stop) are inserted to the data line to indicate the beginning and end. By these bits, two devices can be synchronized. This structure of serial data accompanied by start and stop bits is referred to as a character, as shown in Figure 34.
Bit Time

Data

Start

Data bits

5 - 8

Parity

Stop 1- or 2-

One Character

Figure 34: Serial Data Format

Datasheet
CFR0011-120-00

Revision 3.1
44 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
An additional parity bit may be added to the serial character. This bit appears between the last data bit and the stop bit(s) in the character structure. It provides the UART with the ability to perform simple error checking on the received data.
The UART Line Control Register is used to control the serial character characteristics. The individual bits of the data word are sent after the start bit, starting with the least significant bit (LSB). These are followed by the optional parity bit, followed by the stop bit(s), which can be 1 or 2.

Serial Data In

Start

Data Bit 0 (LSB)

Data Bit 1

8

16

16

Figure 35: Receiver Serial Data Sampling Points

All the bits in the transmission are transmitted for exactly the same time duration. This is referred to as a Bit Period or Bit Time. One Bit Time equals 16 baud clocks. To ensure stability on the line, the receiver samples the serial input data at approximately the mid-point of the Bit Time, once the start bit has been detected. As the exact number of baud clocks that each bit was transmitted for is known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the mid-point sample of the start bit. Figure 35 shows the sampling points of the first couple of bits in a serial character.

8.10.2 RS-485
DA16200MOD UART supports RS-485. UART485EN register (0x054) is required to be assigned to one to enable the RS-485. In order to use RS-485, additional signal (UARTTXDOE) is required to notice TXD intervals. This signal can be an output by selecting any unused pins among the GPIO pins.

Figure 36: UARTTXDOE Output Signal for UART RS-485

8.10.3 Baud Rate
UART clock frequency (FUARTCLK) is fixed to 80 MHz. Baud Rate Divisor can be calculated as (FUARTCLK / (16 x Baud Rate)). Baud Rate Divisor is comprised of the integer part (UART_INTBRDIV) and fractional part (UART_FRABRDIV). The maximum baud rate of DA16200 UART is 2.5 MBaud.
The following example shows how to calculate the divisor value.
Example:
If the required baud rate is 921600 with 80 MHz FUARTCLK, the Baud Rate Divisor becomes
(8 x 107) / (16 x 921600) = 5.425.
This means the integer value is 5 and the fractional value is 0.425.
Then, the fraction part becomes integer ((0.425 x 64) + 0.5) = 27.

Datasheet

Revision 3.1

03-Feb-2021

CFR0011-120-00

45 of 60

© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Then, generated baud rate divider is 5 + 27/64 = 5.422. Finally, generated baud rate becomes (8 x 107) / (16 x 5.422) = 922169. And the error between required baud rate and generated baud rate is (922169 ­ 921600) / 921600 x100 = 0.062%.
8.10.4 Hardware Flow Control
Hardware flow control feature is fully selectable, and serial data flow is controlled by using nUARTRTS output and nUARTCTS input signals. Figure 37 shows how two different UART can communicate using hardware flow control.

Figure 37: UART Hardware Flow Control
When RTS flow control is enabled, nUARTRTS signal is asserted until the receive FIFO is filled up to programmed level. When CTS flow control is enabled, transmitter can transmit the data when nUARTCTS signal is asserted. CTSEn (CTS enable) and RTSEn (RTS enable) bits are determined by 14th (RTS) and 15th bit (CTS) of UARTCR register.

Table 41: Control bits to enable and disable hardware flow control

CTSEn

RTSEn

Description

1

1

Both RTS and CTS flow control are enabled

1

0

Only CTS flow control is enabled

0

1

Only RTS flow control is enabled

0

0

Both RTS and CTS flow control are disabled

8.10.5 Interrupts
DA16200MOD UART block provides five interrupt signals by separate interrupt lines. Each interrupt conditions are Modem Status, Receive FIFO Request, Transmit FIFO Request, Receive Timeout and Reception Error. These conditions are logically OR'ed to provide a single combined interrupt, UARTINTR. Table 42 shows the interrupt signals.

Datasheet
CFR0011-120-00

Revision 3.1
46 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Table 42: UART Interrupt Signals Signal Name

Description

UARTMSINTR

UART Modem Status Interrupt

UARTRXINTR

UART Receive FIFO Interrupt

UARTTXINTR

UART Transmit FIFO Interrupt

UARTRTINTR

UART Receive Timeout Interrupt

UARTEINTR

UART Error Interrupt

UARTINTR

UART Interrupt. Five Interrupt signals are combined by OR function

8.10.6 DMA Interface
DA16200MOD UART block can generate DMA request signals with register settings by using DMA interrupt generator module to connect to DA16200 DMA Controller (DMA1). DMA operation of the UART is controlled using DMA Control Register.
DA16200MOD UART provides four DMA signals and receives two DMA signals, two signals to transmit (TXDMASREQ, TXDMABREQ) which are cleared by TX clear signal (TXDMACLR) and two signals to receive (RXDMASREQ, RXDMABREQ), which are cleared by RX clear signal (RXDMACLR).
When the DMA interface is not used, the TXDMACLR and RXDMACLR lines should be connected to a logic `0'.

Table 43 shows the pin definition of the UART interface.

Table 43: UART Pin Configuration

Pin Name

Pin Number

I/O

UART0_RXD

13

I

UART0_TXD

12

O

GPIOA7

26

I

GPIOA5

28

I

GPIOA3

30

I

GPIOA1

32

I

GPIOA6

27

O

GPIOA4

29

O

GPIOA2

31

O

GPIOA0

33

O

GPIOA5

28

I

GPIOA4

29

O

GPIOA11

22

I

GPIOC7

10

I

GPIOA10

23

O

GPIOC6

11

O

Datasheet
CFR0011-120-00

Revision 3.1
47 of 60

Function Name UART0_RXD UART0_TXD
UART1_RXD
UART1_TXD
UART1_CTS UART1_RTS UART2_RXD UART2_TXD
03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
8.11 PWM
Pulse Width Modulation (PWM) is a modulation technique used to encode a message into a pulse signal. The blocks are designed to adjust output pulse duration by the CPU bus clock (HCLK). Figure 38 shows the structure of the PWM block.

HCLK

Counte r

AHB Bus Matrix

AHB Bus

Register

PWM Block 0 CounterP(WPerMiod)Block 1
CCoouunntteerrP((HWPiegrMhioDd)uBtylo) ck 2 CCoouunnteterrP(H(WPiegrhMioDdu)Btylo) ck 3
RCeCgooiusuntnetetrerr(H(PiegrhioDdu) ty) ReCgoiustnetrer (High Duty)
Register
Register

PWM OUT PWM OUT PWM OUT PWM OUT

Figure 38: PWM Block Diagram
Table 44 shows the pin definition of the PWM interface. GPIOx means that PWM signals can go out through any GPIO pins via register setting.

Table 44: PWM Pin Configuration

Pin Name

Pin Number

GPIOx

I/O

Function Name

PWM[3:0] output

8.11.1 Timing Diagram
Table 45 shows the relation between the internal bus clock and PWM output wave patterns. Figure 39 show the conversion timing diagram. `a' and `b' can be adjusted through the register setting, and PWM wave patterns vary depending on the ratio. `a' controls the high width of pulses (nCycle High), while `b' controls the general cycle (nCycle Period).

BUS CLK PWM

a b

Datasheet
CFR0011-120-00

Figure 39: PWM Timing Diagram
Revision 3.1
48 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
Table 45: PWM Timing Diagram Description Time a b

Description Bus Clock Period × (nCycle High + 1) Bus Clock Period × (nCycle Period + 1)

8.12 Debug Interface
DA16200MOD supports both IEEE Standard 1149.1 JTAG (5-wire) and the low-pin-count ARM SWD (2-wire, TCLK/TMS) debug interfaces. The SWD protocol can handle the same debug features as the JTAG.
The JTAG port is an IEEE standard that defines a test access port (TAP) and boundary scan architecture for digital integrated circuits and provides a standardized serial interface to control the associated test logic. For detailed information on the operation of the JTAG port and TAP controller, see [4].
Figure 40 shows the JTAG timing diagram.

Figure 40: JTAG Timing Diagram Table 46 shows the JTAG timing parameters.

Table 46: JTAG Timing Parameters

Parameter Number

Parameter

J1 J2 J3 J4 J7 J8 J9 J10 J11

fTCK tTCK tCL tCH tTMS_SU tTMS_HO tTDI_SU tTDI_HO tTDO_HO

Parameter Name

Min

Clock Frequency

Clock Period

Clock Low Period

Clock High Period

TMS Setup Time

1

TMS Hold Time

16

TDI Setup Time

1

TDI Hold Time

16

TDO Hold Time

Max 15 1/fTCK tTCK/2 tTCK/2

Unit MHz
ns ns ns

15

Datasheet
CFR0011-120-00

Revision 3.1
49 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Table 47 shows the pin definition of the JTAG interface.

Table 47: JTAG Pin Configuration

Pin Name

Pin Number

I/O

TMS

7

I/O

TCLK

8

I

GPIOC8

9

I

GPIOC7

10

O

GPIOC6

11

I

Function Name Data Clock
TDI: Data Input TDO: Data Output
nTRST: Reset

8.13 Bluetooth Coexistence
DA16200MOD provides the Bluetooth coexistence function to be properly aligned with external devices activated at 2.4 GHz.
8.13.1 Interface Configuration
The following three pins can be set in pin multiplexing:
 BT_sig0 (oWlanAct)  It indicates that Output, WLAN is currently active
 BT_sig1 (iBtAct)  It indicates that Input, BT/BLE is currently active
 BT_sig2 (iBTPri)  It indicates that Input (Optional), BT/BLE has a higher priority
A variety of configurable settings are available, including active high/low, manual force mode, use status of the optional iBTPri function, and whether or not to switch oWlanAct to Active in the event of TX/RX/TRX.

oWlanAct iBtAct iBtPri

DA16200MOD

BT/BLE

Figure 41: Bluetooth Coexistence Interface

8.13.2 Operation Scenario
The Bluetooth coexistence can be switched on/off by the configurable register, and the activation scenarios based on the status of each pin are described below:
 BT_sig0 (oWlanAct)  When asserted, external BT/BLE is expected to stop occupying RF
 BT_sig1 (iBtAct)  When asserted, DA16200MOD stops occupying RF
 BT_sig2 (iBTPri)  It is optional and thus may not be used

Datasheet

Revision 3.1

03-Feb-2021

CFR0011-120-00

50 of 60

© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
 If it is used and DA16200's iBtAct = Active while iBTPri = Non-Active, DA16200 may ignore
iBtAct

Datasheet
CFR0011-120-00

Revision 3.1
51 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
9 Applications Schematic

Note : Rem ove R1 a nd C1 when MCU controls 'RTC_PWR_KEY'
R1 Externa l Power C ontrol Externa l Wake-up Control
RTC Sensor Out
JTAG interface
GPIO I nterface
UART interface for debugging

C1 4.7 K

1 NC 2 GND 3 RTC_PWR_KEY 4 RTC_WAKE_UP 5 RTC_SENSOR 6 NC 7 JTAG_TMS 8 JTAG_TCLK 9 GPIOC8 10 GPIO C7 11 GPIO C6 12 UART0_TXD 13 UART0_RXD

D A1 620 0MO D

NC 37 NC 36
VBAT_3V3 35 VDD_DIO1 34
GPIO A0 33 GPIO A1 32 GPIO A2 31 GPIO A3 30 GPIO A4 29 GPIO A5 28 GPIOA6 27 GPIO A7 26 GPIO A8 25 GPIO A9 24

10 uF

1uF VB AT_ 3V3
VDD_DIO1, (1.8V or 3.3V)

GPIO I nterface

U ART1_ TXD U ART1_ RXD WPS Factory_ re se t
GPIO I nterface

RTC_ WA KE_ UP 2 VDD_DIO2 F_CS F_I O1 F_I O2 F_I O0 F_I O3 F_CLK GPIO A11 GPIO A10

If the RTC_WAKE_UP2 function is not uesd, it can be connected to the GND

14 15 16 17 18 19 20 21 22 23 4.7 K

4.7 K

4.7 K

If you use it a s GPIO function, you don't need full-up resistor

1uF

Externa l Wake_up2 C ontrol VDD_DIO2 (1.8V or 3.3V)
GPIO I nterface

Figure 42: Application Schematic

Table 48: Component for RTC POWER KEY

Quantity Part Reference

Value

1

R1

470 k

1

C1

1uF

Description
Remove when MCU control `RTC_PWR_KEY'. This value should be chosen by customer application to achieve the enough delay time depending on the power-on time of VBAT. For detail information, See 6.1
Remove when MCU control `RTC_PWR_KEY'. This value should be chosen by customer application to achieve the enough delay time depending on the power-on time of VBAT. Not to exceed 1uF. For detail information, See 6.1

Datasheet
CFR0011-120-00

Revision 3.1
52 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module
10 Package Information
10.1 Dimension: DA16200MOD-AAC
Unit: mm Tolerance: 13.8(±0.2) x 22.1(±0.2) x 3.3(±0.1)

Figure 43: AAC Module Dimension
10.2 Dimension: DA16200MOD-AAE
Unit: mm Tolerance: 13.8(±0.2) x 22.1(±0.2) x 3.3(±0.1)

Datasheet
CFR0011-120-00

Figure 44: AAE Module Dimension

Revision 3.1
53 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module 10.3 PCB Land Pattern
Unit: mm
Figure 45: PCB Land Pattern (Top View)

Figure 46: PCB Land Pattern (Bottom View)
Ant GND is only needed on the bottom of the PCB. GND must be removed for all layers including the inner layer except the bottom. See Figure 47 for detail.

Datasheet
CFR0011-120-00

Revision 3.1
54 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module 10.4 4-Layer PCB Example

Figure 47: 4-Layer PCB Example

Datasheet
CFR0011-120-00

Revision 3.1
55 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module 10.5 Soldering Information 10.5.1 Condition for Reflow Soldering
Figure 48 shows the typical process flow for mounting surface mount packages to PCB. The reflow profile depends on the solder paste being used and the recommendations from the paste manufacture should be followed to determine the proper reflow profile. Figure 49 shows a typical reflow profile when a no-clean paste is used. Oven time above liquidus (260 °C for lead-free solder) is 20 to 40 seconds. The rework process involves the following steps: 1. Component removal 2. Site redress 3. Solder paste application 4. Component placement 5. Component attachment
Figure 48: Typical PCB Mounting Process Flow

Datasheet
CFR0011-120-00

Revision 3.1
56 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD

Ultra Low Power Wi-Fi Module

Table 49: Typical Reflow Profile (Lead Free): J-STD-020C

Profile Feature

Lead Free SMD

Average ramp up rate (Tsmax to Tp)

3 °C/s Max.

Preheat

 Temperature Min (Tsmin)  Temperature Max (Tsmax)  Time (Tsmax to Tsmin) Time maintained above
 Temperature (TL)  Time (tL) Peak/Classification temperature (Tp)
Time within 5 °C of peak temperature (tp)

 150 °C  200 °C  60 to 180 seconds
 217 °C  60 to 150 seconds 260 °C 20 to 40 seconds

Ramp down rate

6 °C/s Max.

Time from 25 °C to peak temperature

8 minutes Max.

Figure 49: Reflow Condition

Datasheet
CFR0011-120-00

Revision 3.1
57 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

11 Ordering Information
The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability, please consult Dialog Semiconductor's Website or your local sales representative.

Table 50: Ordering Information (Production)

Part Number

Pins

DA16200MOD-AAC4WA32 37

DA16200MOD-AAE4WA32 37

Size (mm) 13.8 x 22.1 x 3.3 13.8 x 22.1 x 3.3

Part Number Legend: DA16200MOD-AAC4WA32 AA: Module revision number C: Select module type
[C] Chip antenna, [E] u.FL connector 4: Flash memory
[4] 4Mbyte, [2] 2Mbyte W: Voltage range
[W] 3.3 V, [L] 1.8 V A3: Package No. 2: T&R packing

Shipment Form Reel Reel

Pack Quantity MOQ: 500 pcs MOQ: 500 pcs

Datasheet
CFR0011-120-00

Revision 3.1
58 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Revision History

Revision Date

3.1

03-Fab-21

3.0

23-Jul-20

2.0

08-May-20

0.4

07-Apr-20

0.3

23-Mar-20

0.2

22-Oct-19

0.1

03-Oct-19

Description
 Editorial  Removed BOR part  Added Note for Power on Sequence in the Section 6.1, Updated Figure 7
and Table 16  Section 8.7.3 Fixed typo  Added Section 8.7.1 and 8.7.2  Updated Applications Schematic
 Sync with SoC datasheet v3.1  Modified Chapter 3 description to Network subsystem layer.  Modified DA16200MOD pin Mux (Table 2)
 Added module default pin conditions  I2C CLK GPIOA2 -> GPIOA3  Added chapter 5.3.3, 5.3.4  Modified Rx max input level in chapter 5.4.1(Table 11)  Updated Chapter Note 1 Sleep mode description  Updated RTC_PWR_KEY description and remove one sentence which leads to misunderstanding. Table 17  Modified I2C timing in table Table 30, Table 32  Added description of chapter 8.9.1  Updated Chapter 9 application schematics  Changed Module dimension picture Error! Reference source not found., Error! Reference source not found.  Removed F_xx pins  Changed the link from customer support portal to Dialog website  Added PCB land pattern Figure 46, Figure 47
 Added Tolerance of dimension  Added min/max Radio characteristics in Table 11, Table 12and Table 13  Modified Chapter 8.10.3 Baud rate  Updated Reach and ROHS compliance
 Updated Key Features  Modified DA16200MOD pin Mux Table 2  Chapter 7.4 Pulse Counter added  Chapter 8.10.1 RS-232 added
 Added ESD performance, Table 15  AC characteristics and current consumption of data updated in Table 11,
Table 12 and Table 13  Updated Key Features, about clock source & embedded memory
 Modified module size
 Preliminary datasheet

Datasheet
CFR0011-120-00

Revision 3.1
59 of 60

03-Feb-2021
© 2021 Dialog Semiconductor

DA16200MOD
Ultra Low Power Wi-Fi Module

Status Definitions

Revision 1.<n>

Datasheet Status Target

2.<n>

Preliminary

3.<n>

Final

4.<n>

Obsolete

Product Status Development Qualification
Production Archived

Definition
This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com.
This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Disclaimer
Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.
Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.
Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.
Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.
All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.
Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.
© 2021 Dialog Semiconductor. All rights reserved.
Reach and RoHS Compliance
Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of REACH and Directive 2015/863/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request. Module does not have to be HF.

Contacting Dialog Semiconductor

United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700
Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0
The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822
Email: [email protected]

North America Dialog Semiconductor Inc. Phone: +1 408 845 8500
Japan Dialog Semiconductor K. K. Phone: +81 3 5769 5100
Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222
Web site: www.dialog-semiconductor.com

Hong Kong Dialog Semiconductor Hong Kong Phone: +852 2607 4271
Korea Dialog Semiconductor Korea Phone: +82 2 3469 8200

China (Shenzhen) Dialog Semiconductor China Phone: +86 755 2981 3669
China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058

Datasheet
CFR0011-120-00

Revision 3.1
60 of 60

03-Feb-2021
© 2021 Dialog Semiconductor


Microsoft Word for Office 365

Search Any Device: