Ultra Low Power WiFi SoC
03-Feb-2021
DA16200
Dialog Technical Publications
DA16200MOD Datasheet - Dialog Semiconductor
[1] ARM Cortex M4 Processor Technical Reference Manual. [2] ITU-T O.150, General Requirements for Instrumentation for Performance ...
Ultra Low Power WiFi SoC | 03-Feb-2021
© 2021 Dialog Semiconductor. DA16200MOD. Ultra Low Power Wi-Fi Module. ... [1] ARM Cortex M4 Processor Technical Reference Manual [2] ITU-T O.150, General...
Not Your Device? Search For Manuals or Datasheets below:
File Info : application/pdf, 60 Pages, 2.14MB
Document DEVICE REPORTDA16200MOD Datasheet Rev3v1DA16200MOD Ultra Low Power Wi-Fi Module Final General Description The DA16200MOD is a fully integrated Wi-Fi® module with ultra-low power consumption, best RF performance and easy development environment. Such low power operation can extend the battery life as longer as a year or more depending on the application. This module series included DA16200-00000A32, 40 MHz crystal oscillator, 32.768 KHz RTC clock, RF Lumped RF filter, 4 M-byte flash memory and chip antenna or u.FL connector. The DA16200MOD has chip antenna type (DA16200MOD-AAC4WA32) and u.FL connector type (DA16200MOD-AAE4WA32) for external antenna. The Module is built from the ground up for the Internet of Things (IoT) and is ideal for door locks, thermostats, sensors, pet trackers, asset trackers, sprinkler systems, connected lighting, video cameras, video door bells, wearables and other IoT devices. The modules certified Wi-Fi alliance for IEEE802.11b/g/n, Wi-Fi Direct, WPS functionalities and it has been approved by many countries including the United States (FCC), Canada (IC) and China (SRRC). Using the Wi-Fi Alliance transfer policy, the Wi-Fi Certifications can be transferred without being tested again. For more information on DA16200MOD, please refer to DA16200-00000A32 datasheet. Key Features Module variants Built-in 4-channel auxiliary ADC for sensor DA16200MOD-AAC4WA32 (chip Antenna) interfaces DA16200MOD-AAE4WA32 (u.FL cont.) Highly integrated ultra-low power Wi-Fi® system module 12-bit SAR ADC: single-ended four channels Provides dynamic auto switching function Sleep current: 3.5 uA, VBAT=3.3 V Supports various interfaces Best RF Performance eMMC/SD expanded memory Tx Power: +19 dBm, 1 Mbps DSSS SDIO Host/Slave function Rx Sensitivity: -98.5 dBm, 1 Mbps DSSS QSPI for external flash control Full offload: SoC runs full networking OS and Three UARTs TCP/IP stack SPI Master/Slave interface Wi-Fi processor I2C Master/Slave interface IEEE 802.11b/g/n, 1x1, 20 MHz channel I2S for digital audio streaming bandwidth, 2.4 GHz 4-channel PWM IEEE 802.11s Wi-Fi mesh Individually programmable, multiplexed Wi-Fi security: WPA/WPA2- GPIO pins Enterprise/Personal, WPA2 SI, WPA3 SAE, and OWE Vendor EAP types: EAP- TTLS/MSCHAPv2, PEAPv0/EAP- JTAG and SWD Wi-Fi Alliance certifications: Wi-Fi CERTIFIEDTM b, g, n MSCHAPv2, PEAPv1, EAP-FAST, and WPATM - Enterprise, Personal EAP-TLS WPA2TM - Enterprise, Personal Operating modes: Station, SoftAP, and WPA3TM - Enterprise, Personal Wi-Fi Direct® Modes (GO, GC, GO fixed) WPS-PIN/PBC for easy Wi-Fi provisioning RF Regulatory certifications Connection manager for autonomous and FCC, IC, CE, KC, TELEC, SRRC fast Wi-Fi connections Bluetooth coexistence CPU core subsystem Antenna switching diversity Arm® Cortex®-M4F core w/ clock frequency of 30~160 MHz Datasheet CFR0011-120-00 Revision 3.1 1 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final Hardware accelerators General HW CRC engine HW zeroing function for fast booting Pseudo random number generator (PRNG) ROM: 256 KB, SRAM: 512 KB, OTP: 8 KB, Retention Memory: 48 KB SPI flash Memory 32 M-bit / 4 M-byte External Clock source Complete software stack 40 MHz crystal (± 25 ppm) for master Comprehensive networking software stack clock (initial + temp + aging) Provides TCP/IP stack: in the form of network socket APIs 32.768 kHz crystal (± 250 ppm) for RTC clock Advanced security Supply Secure booting Secure debugging using JTAG/SWD and UART ports Operating voltage: 2.1 V to 3.6 V (typical: 3.3 V) 2 Digital I/O Supply Voltage: 1.8 V / 3.3 V Secure asset storage Black-out and brown-out detector Built-in hardware crypto engines for advanced Module Dimensions security 13.8 mm × 22.1 mm x 3.3 mm, 37 Pins, TLS/DTLS security protocol functions Operating temperature range Crypto engine for key deliberate generic security functions: AES (128,192,256), DES/3DES, SHA1/224/256, RSA, DH, ECC, CHACHA, and TRNG -40 °C to 85 °C Power management unit On-Chip RTC Wake-up control of fast booting or full booting with minimal initialization time Supports three ultra-low power sleep modes Datasheet CFR0011-120-00 Revision 3.1 2 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Applications DA16200MOD is a full offload SoC for IoT Applications, such as: Security systems Door locks Thermostats Garage door openers Blinds Lighting control Sprinkler systems Video camera security systems Smart appliances Video door bell Asset tracker System Diagram Final Figure 1: System Diagram Datasheet CFR0011-120-00 Revision 3.1 3 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final Contents General Description ............................................................................................................................ 1 Key Features ........................................................................................................................................ 1 Applications ......................................................................................................................................... 3 System Diagram .................................................................................................................................. 3 1 Terms and Definitions................................................................................................................... 8 2 References ..................................................................................................................................... 8 3 Block Diagram ............................................................................................................................... 9 4 Pinout ........................................................................................................................................... 11 4.1 Pin-out Description (37 pins)............................................................................................... 11 4.2 Pin Multiplexing ................................................................................................................... 13 5 Electrical Specification ............................................................................................................... 15 5.1 Absolute Maximum Ratings ................................................................................................ 15 5.2 Recommended Operating Conditions ................................................................................. 15 5.3 Electrical Characteristics..................................................................................................... 15 5.3.1 DC Parameters, 1.8 V IO..................................................................................... 15 5.3.2 DC Parameters, 3.3 V IO..................................................................................... 16 5.3.3 DC Parameters for RTC Block ............................................................................ 16 5.3.4 DC Parameters for Digital Wake-up .................................................................... 16 5.4 Radio Characteristics .......................................................................................................... 17 5.4.1 WLAN Receiver Characteristics .......................................................................... 17 5.4.2 WLAN Transceiver Characteristics...................................................................... 17 5.5 Current Consumption .......................................................................................................... 18 5.6 Radiation Performance ....................................................................................................... 19 5.7 ESD Ratings........................................................................................................................ 19 5.8 Clock Electrical Characteristics........................................................................................... 19 5.8.1 RTC Clock Source ............................................................................................... 19 5.8.2 Main Clock Source............................................................................................... 19 6 Power Management..................................................................................................................... 20 6.1 Power On Sequence ........................................................................................................... 20 6.2 Low Power Operation Mode ............................................................................................... 20 6.2.1 Sleep Mode 1....................................................................................................... 20 6.2.2 Sleep Mode 2....................................................................................................... 21 6.2.3 Sleep Mode 3....................................................................................................... 21 7 Core System ................................................................................................................................ 22 7.1 ARM Cortex-M4F Processor ............................................................................................... 22 7.2 Wi-Fi Processor................................................................................................................... 22 7.3 RTC ..................................................................................................................................... 22 7.3.1 Wake-up Controller.............................................................................................. 23 7.3.2 Retention I/O Function......................................................................................... 23 7.4 Pulse Counter ..................................................................................................................... 24 7.4.1 Introduction .......................................................................................................... 24 7.4.2 Functional Description ......................................................................................... 24 8 Peripherals ................................................................................................................................... 25 Datasheet CFR0011-120-00 Revision 3.1 4 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final 8.1 QSPI: Master with XIP Feature ........................................................................................... 25 8.2 SPI Master .......................................................................................................................... 27 8.3 SPI Slave ............................................................................................................................ 28 8.4 SDIO.................................................................................................................................... 30 8.5 I2C Interface........................................................................................................................ 32 8.5.1 I2C Master ........................................................................................................... 32 8.5.2 I2C Slave ............................................................................................................. 33 8.6 SD/SDeMMC....................................................................................................................... 35 8.6.1 Block Diagram ..................................................................................................... 35 8.7 I2S ....................................................................................................................................... 36 8.7.1 Block Diagram ..................................................................................................... 37 8.7.2 I2S Clock Scheme ............................................................................................... 37 8.7.3 I2S Transmit and Receive Timing Diagram......................................................... 38 8.8 ADC (Aux 12-bit) ................................................................................................................. 39 8.8.1 Overview .............................................................................................................. 39 8.8.2 Timing Diagram ................................................................................................... 40 8.8.3 DMA Transfer ...................................................................................................... 40 8.8.4 Sensor Wake-up .................................................................................................. 41 8.8.5 ADC Ports ............................................................................................................ 41 8.9 GPIO ................................................................................................................................... 41 8.9.1 Antenna Switching Diversity ................................................................................ 41 8.10 UART ............................................................................................................................. 43 8.10.1 RS-232................................................................................................................. 44 8.10.2 RS-485................................................................................................................. 45 8.10.3 Baud Rate ............................................................................................................ 45 8.10.4 Hardware Flow Control ........................................................................................ 46 8.10.5 Interrupts.............................................................................................................. 46 8.10.6 DMA Interface ...................................................................................................... 47 8.11 PWM ............................................................................................................................. 48 8.11.1 Timing Diagram ................................................................................................... 48 8.12 Debug Interface................................................................................................................... 49 8.13 Bluetooth Coexistence ........................................................................................................ 50 8.13.1 Interface Configuration ........................................................................................ 50 8.13.2 Operation Scenario .............................................................................................. 50 9 Applications Schematic .............................................................................................................. 52 10 Package Information ................................................................................................................... 53 10.1 Dimension: DA16200MOD-AAC ......................................................................................... 53 10.2 Dimension: DA16200MOD-AAE ......................................................................................... 53 10.3 PCB Land Pattern ............................................................................................................... 54 10.4 4-Layer PCB Example......................................................................................................... 55 10.5 Soldering Information .......................................................................................................... 56 10.5.1 Condition for Reflow Soldering ............................................................................ 56 11 Ordering Information .................................................................................................................. 58 Revision History ................................................................................................................................ 59 Datasheet CFR0011-120-00 Revision 3.1 5 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final Figures Figure 1: System Diagram..................................................................................................................... 3 Figure 2: Hardware Block Diagram ....................................................................................................... 9 Figure 3: Software Block Diagram......................................................................................................... 9 Figure 4: DA16200MOD 37 pins Pin-out Diagram (Top View)............................................................ 11 Figure 5: TIS 3D Figure 6: TRP 3D................................................................................... 19 Figure 7: Power on Sequence ............................................................................................................. 20 Figure 8: Pulse Counter Block Diagram .............................................................................................. 24 Figure 9: QSPI Master Block Diagram ................................................................................................ 26 Figure 10: QSPI Master Timing Diagram (Mode 0)............................................................................. 26 Figure 11: SPI Master Timing Diagram (Mode 0)................................................................................ 27 Figure 12: SPI Slave Block Diagram ................................................................................................... 28 Figure 13: 8-byte Control Type............................................................................................................ 28 Figure 14: 4-byte Control Type............................................................................................................ 28 Figure 15: SPI Slave Timing Diagram ................................................................................................. 30 Figure 16: SDIO Slave Block Diagram ................................................................................................ 31 Figure 17: SDIO Slave Timing Diagram .............................................................................................. 31 Figure 18: I2C Master Timing Diagram ............................................................................................... 32 Figure 19: I2C Slave Timing Diagram ................................................................................................. 34 Figure 20: SD/eMMC Block Diagram .................................................................................................. 35 Figure 21: SD/eMMC Master Timing Diagram .................................................................................... 35 Figure 22: I2S Block Diagram.............................................................................................................. 37 Figure 23: I2S Clock Scheme.............................................................................................................. 37 Figure 24: I2S Timing Diagram ........................................................................................................... 38 Figure 25: Left Justified Mode Timing Diagram................................................................................... 38 Figure 26: Right Justified Mode Timing Diagram ................................................................................ 38 Figure 27: I2S Transmit Timing Diagram ............................................................................................ 39 Figure 28: I2S Receive Timing Diagram ............................................................................................. 39 Figure 29: ADC Control Block Diagram............................................................................................... 40 Figure 30: 12-bit ADC Timing Diagram ............................................................................................... 40 Figure 31: Antenna Switching Internal Block Diagram ........................................................................ 42 Figure 32: Antenna Switching Timing Diagram ................................................................................... 43 Figure 33: DA16200 UART Block Diagram ......................................................................................... 44 Figure 34: Serial Data Format ............................................................................................................. 44 Figure 35: Receiver Serial Data Sampling Points ............................................................................... 45 Figure 36: UARTTXDOE Output Signal for UART RS-485 ................................................................. 45 Figure 37: UART Hardware Flow Control............................................................................................ 46 Figure 38: PWM Block Diagram .......................................................................................................... 48 Figure 39: PWM Timing Diagram ........................................................................................................ 48 Figure 40: JTAG Timing Diagram........................................................................................................ 49 Figure 41: Bluetooth Coexistence Interface ........................................................................................ 50 Figure 42: Application Schematic ........................................................................................................ 52 Figure 43: AAC Module Dimension ..................................................................................................... 53 Figure 44: AAE Module Dimension ..................................................................................................... 53 Figure 45: PCB Land Pattern (Top View) ............................................................................................ 54 Figure 46: PCB Land Pattern (Bottom View)....................................................................................... 54 Figure 47: 4-Layer PCB Example........................................................................................................ 55 Figure 48: Typical PCB Mounting Process Flow ................................................................................. 56 Figure 49: Reflow Condition ................................................................................................................ 57 Tables Table 1: Pin Description ...................................................................................................................... 12 Table 2: DA16200MOD Pin Multiplexing ............................................................................................. 14 Table 3: Absolute Maximum Ratings................................................................................................... 15 Table 4: Recommended Operating Conditions ................................................................................... 15 Table 5: DC Parameters, 1.8 V IO ...................................................................................................... 15 Datasheet CFR0011-120-00 Revision 3.1 6 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final Table 6: DC Parameters, 3.3 V IO ...................................................................................................... 16 Table 7: DC Parameters for RTC block, 3.3 V VBAT.......................................................................... 16 Table 8: DC Parameters for RTC block, 2.1 V VBAT.......................................................................... 16 Table 9: DC Parameters for Digital Wake-up, 3.3 V VBAT & 1.8/3.3 V IO ......................................... 16 Table 10: DC Parameters for Digital Wake-up, 2.1 V VBAT & 1.8 V IO ............................................. 17 Table 11: WLAN Receiver Characteristics .......................................................................................... 17 Table 12: WLAN Transmitter Characteristics ...................................................................................... 17 Table 13: Current Consumption in Active State .................................................................................. 18 Table 14: Current Consumption in Low Power Operation................................................................... 18 Table 15: ESD Performance................................................................................................................ 19 Table 16: Power on Sequence Timing Requirements......................................................................... 20 Table 17: RTC Pin Description ............................................................................................................ 22 Table 18: Wake-up Sources ................................................................................................................ 23 Table 19: I/O Power Domain ............................................................................................................... 24 Table 20: QSPI Master Timing Parameters ........................................................................................ 27 Table 21: SPI Master Pin Configuration .............................................................................................. 27 Table 22: SPI Master Timing Parameters ........................................................................................... 28 Table 23: Control Field of the 8-byte Control Type ............................................................................. 29 Table 24: Control Field of the 4-byte Control Type ............................................................................. 29 Table 25: SPI Slave Pin Configuration ................................................................................................ 29 Table 26: SPI Slave Timing Parameters ............................................................................................. 30 Table 27: SDIO Slave Pin Configuration ............................................................................................. 31 Table 28: SDIO Slave Timing Parameters .......................................................................................... 31 Table 29: I2C Master Pin Configuration .............................................................................................. 32 Table 30: I2C Master Timing Parameters ........................................................................................... 32 Table 31: I2C Slave Pin Configuration ................................................................................................ 33 Table 32: I2C Slave Timing Parameters ............................................................................................. 34 Table 33: SD/eMMC Master Pin Configuration ................................................................................... 35 Table 34: SD/eMMC Master Timing Parameters ................................................................................ 36 Table 35: I2S Pin Configuration .......................................................................................................... 36 Table 36: I2S Clock Selection Guide................................................................................................... 38 Table 37: I2S Transmit Timing Parameters......................................................................................... 39 Table 38: I2S Receive Timing Parameters.......................................................................................... 39 Table 39: DC Specification .................................................................................................................. 40 Table 40: ADC Pin Configuration ........................................................................................................ 41 Table 41: Control bits to enable and disable hardware flow control ................................................... 46 Table 42: UART Interrupt Signals ....................................................................................................... 47 Table 43: UART Pin Configuration ...................................................................................................... 47 Table 44: PWM Pin Configuration ....................................................................................................... 48 Table 45: PWM Timing Diagram Description ...................................................................................... 49 Table 46: JTAG Timing Parameters.................................................................................................... 49 Table 47: JTAG Pin Configuration....................................................................................................... 50 Table 48: Component for RTC POWER KEY ..................................................................................... 52 Table 49: Typical Reflow Profile (Lead Free): J-STD-020C................................................................ 57 Table 50: Ordering Information (Production)....................................................................................... 58 Datasheet CFR0011-120-00 Revision 3.1 7 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 1 Terms and Definitions API CRC DMA GPIO HW I2C I2S IoT JTAG LDO LLI NVIC NVRAM PLL PRNG PWM QSPI RTC SAR ADC SPI SW SWD UART XIP TAP Application Programming Interface Cyclic Redundancy Check Direct Memory Access General Purpose Input/Output Hardware Inter-Integrated Circuit Inter-IC Sound Internet of Things Joint Test Action Group Low-dropout Regulator Linked-List Item Nested Vectored Interrupt Controller Non-Volatile RAM Phase-locked Loop Pseudo Random Number Generator Pulse Width Modulation Quad-lane SPI Real-time Clock Successive Approximation Analog-to-Digital Converter Serial Peripheral Interface Software Serial Wire Debug Universal Asynchronous Receivers and Transmitter eXecutein Place Test Access Port Final 2 References [1] ARM Cortex M4 Processor Technical Reference Manual [2] ITU-T O.150, General Requirements for Instrumentation for Performance Measurements on Digital Transmission Equipment, 1996 [3] Arm® TrustZone® CryptoCell-312, Revision r1p1, Software Integrators Manual [4] IEEE Standard 1149.1, Test Access Port and Boundary-Scan Architecture [5] DA16200_SDK_Programmer_Guide.pdf [6] AMBA AHB bus specification, Rev 3.0 https://developer.arm.com/documentation/ihi0033/bb Datasheet CFR0011-120-00 Revision 3.1 8 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 3 Block Diagram Figure 2 shows the DA16200MOD hardware (HW) block diagram. Chip Antenna type DA16200MOD-AAC 2.4GHzRF filter & Matching 32.768KHz Crystal External Antenna type (u.FL connector) DA16200MOD-AAE RTC Control 40MHz Crystal UART For debugging 4Mbyte Serial flash Figure 2: Hardware Block Diagram Figure 3 shows the DA16200 SoC software (SW) block diagram. PIN Mux Quad-SPI SPI UART GPIOs PWM I2C SD/eMMC SDIO I2S 4ch 12bit ADC JTAG/ Final VBAT_3V3 VDD_DIO1 VDD_DIO2 Application Service User Application Home Appliance/Sensor Network/Door Lock/Light, IoT. Pr ovis ioning Protocol NetX-APP mDNS / xmDNS / DNS-SD / CoAP / Jason DHCP/ DNS/ HTTP1.0 / HTTP1.1 NetX-Duo TLS / DTLS TCP/UDP IP CLI HandlerAfafa U upper Level Wi-Fi Supplicant 80211 Link Layer 802.11 Upper MAC ThreadX RTOS 802.11 Lower MAC Wi-Fi PHY Device Driver Figure 3: Software Block Diagram System Service Datasheet CFR0011-120-00 Revision 3.1 9 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final The following descriptions are about the SW block diagrams. Kernel layer Real Time Operating System The Wi-Fi layer is divided into four layers: Lower MAC SW module to control/handle HW Wi-Fi MAC/PHY and interfaces with Upper MAC layer Upper MAC SW module to control/handle Wi-Fi control/handle to interface with supplicant Wi-Fi Link Layer: Interface layer between Upper MAC and supplicant Supplicant: SW module to control/management to operate Wi-Fi operation Network subsystem layer Used to control/handle network operation Main protocols are IP, TCP, and UDP Other necessary protocols are supported Security Layer Crypto operation engine is ported to use crypto HW engine TLS/TCP and DTLS/UDP APIs are supported to handle security operation: User application layer Variable sample codes are supported in SDK sample codes use supported APIs TCP Client/Server, UDP Client/Server, TLS Client/Server HTTP/HTTPs download, OTA Update usage, and MQTT usage Customer applications can be included and implemented easily in SDK Datasheet CFR0011-120-00 Revision 3.1 10 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final 4 Pinout 4.1 Pin-out Description (37 pins) NC 1 GN D 2 RTC_PWR_KEY 3 RTC_WAKE_UP 4 RTC_SENSOR 5 NC 6 JTAG_TMS 7 JTAG_TCLK 8 GPIOC8 9 GPIOC7 10 GPIOC6 11 UART0_TXD 12 UART0_RXD 13 DA16200MOD series GND 14 15 16 17 18 19 20 21 22 23 37 NC 36 NC 35 VBAT_3V3 34 VDD_DIO1 33 GPIOA0 32 GPIOA1 31 GPIOA2 30 GPIOA3 29 GPIOA4 28 GPIOA5 27 GPIOA6 26 GPIOA7 25 GPIOA8 24 GPIOA9 RTC_WAKE_UP2 VDD_DIO2 F_CS F_IO1 F_IO2 F_IO0 F_IO3 F_CLK GPIOA11 GPIOA10 Figure 4: DA16200MOD 37 pins Pin-out Diagram (Top View) Datasheet CFR0011-120-00 Revision 3.1 11 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final Table 1: Pin Description #Pin Pin Name Type 1 NC NC 2 GND GND 3 RTC_PWR_KEY DI 4 RTC_WAKE_UP DI 5 RTC_SENSOR DO 6 NC NC 7 JTAG_TMS DIO 8 JTAG_TCLK DIO 9 GPIOC8 DIO 10 GPIOC7 DIO 11 GPIOC6 DIO 12 UART_TXD DO 13 UART_RXD DI 14 RTC_WAKE_UP2 DI 15 VDD_DIO2 VDD 16 F_CSN 17 F_IO1 18 F_IO2 19 F_IO0 20 F_IO3 21 F_CLK 22 GPIOA11 23 GPIOA10 24 GPIOA9 25 GPIOA8 26 GPIOA7 27 GPIOA6 28 GPIOA5 29 GPIOA4 30 GPIOA3 31 GPIOA2 32 GPIOA1 33 GPIOA0 34 VDD_DIO1 35 VBAT_3V3 36 NC 37 NC DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO DIO AI/DIO AI/DIO AI/DIO AI/DIO VDD VDD NC NC Drive(mA) 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 2/4/8/12 Reset State I-PU I-PD I-PD I-PD I-PD O I I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD I-PD Description NOT CONNECT RF VDD RTC block enable signal RTC block wake-up signal Sensor control signal NOT CONNECT JTAG I/F, SWDIO JTAG I/F, SWCLK, General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O UART transmit data UART receive data RTC block wake-up signal Supply power for digital I/O GPIOC6~GPIOC8, TMS/TCLK, TXD/RXD External Flash Memory I/F External Flash Memory I/F (F_SI) External Flash Memory I/F (F_WP) External Flash Memory I/F (F_SO) External Flash Memory I/F (F_HOLD) External Flash Memory I/F General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O General Purpose I/O Aux.ADC input/General Purpose I/O Aux.ADC input/General Purpose I/O Aux.ADC input/General Purpose I/O Aux.ADC input/General Purpose I/O Supply power for digital I/O Supply power for integrated power amplifier NOT CONNECT NOT CONNECT Datasheet CFR0011-120-00 Revision 3.1 12 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Final 4.2 Pin Multiplexing This device provides various interfaces to support many kinds of applications. It is possible to control each pin according to the required application in reference to the pin multiplexing illustrated in Table 2. Pin control can be realized through register setting. This device can use a maximum of 16 GPIO pins and each of the GPIO pins multiplexes signals of various functions. In particular, four pins from GPIOA0 to GPIOA3 multiplex analog signals, which also can be realized through register setting. Datasheet CFR0011-120-00 Revision 3.1 13 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD-AA series Ultra Low Power Wi-Fi Module Table 2: DA16200MOD Pin Multiplexing Pin Module default JTAG GPIOA0 GPIOA1 GPIOA2 GPIOA3 GPIOA4 GPIOA5 GPIOA6 GPIOA7 GPIOA8 GPIOA9 GPIOA10 GPIOA11 TCLK/ GPIOA15 TMS UART_TXD UART_RXD GPIOC8 GPIOC7 GPIOC6 GPIO GPIO GPIO GPIO UART1_TXD UART1_RXD WPS Factory_reset GPIO GPIO GPIO GPIO TCLK TMS UART0_TXD UART0_RXD GPIO GPIO GPIO TCLK TMS TDI TDO NTRST Note 1 Default Value: 8 mA Analog SPI master SPI slave I2C master I2C slave CH0 SPI_MISO I2C_SDA I2C_SDA CH1 SPI_MOSI I2C_CLK I2C_CLK CH2 SPI_CSB I2C_SDA CH3 SPI_CLK I2C_CLK I2C_SDA I2C_SDA I2C_CLK I2C_CLK SPI_CSB SPI_CSB I2C_SDA SPI_CLK SPI_CLK I2C_CLK SPI_DIO0 SPI_MISO I2C_SDA SPI_DIO1 SPI_MOSI I2C_CLK SPI_DIO2 SPI_MISO SPI_DIO3 SPI_MOSI SDIO slave CMD CLK D3 D2 D1 D0 SDeMMC BT coex WRP CMD CLK D3 D2 D1 BT_SIG0 D0 BT_SIG1 WRP BT_SIG2 I2S BCLK MCLK SDO LRCK BCLK MCLK SDO LRCK BCLK MCLK I2S_Clock UART1 CLK_IN TXD RXD TXD RXD TXD/RTS RXD/CTS TXD RXD CLK_IN UART2 TXD RXD Muxed Pin State w/Analog (nRESET=0) Driving Strength (Note 1) Yes I-PD 2/4/8/12mA Yes I-PD 2/4/8/12mA Yes I-PD 2/4/8/12mA Yes I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No I-PD 2/4/8/12mA No No No No RXD No TXD No I-PU 2/4/8/12mA O 2/4/8/12mA I 2/4/8/12mA I-PD 2/4/8/12mA I-PD 2/4/8/12mA I-PD 2/4/8/12mA Datasheet CFR0011-120-00 Revision 2.2 14 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 5 Electrical Specification 5.1 Absolute Maximum Ratings Table 3: Absolute Maximum Ratings Parameter VBAT_3V3 VDD_DIO1 VDD_DIO2 Pins 35 34 15 Operating temperature range (TA) Min VSS VSS VSS -40 Max 3.9 3.9 3.9 +85 Units V V V °C 5.2 Recommended Operating Conditions Table 4: Recommended Operating Conditions Parameter VBAT_3V3 VDD_DIO1 VDD_DIO2 Pins 35 34 15 Min 2.1 1.62 1.62 Operating temperature range (TA) -40 Typ Max Units 3.6 V 3.6 V 3.6 V +85 °C 5.3 Electrical Characteristics 5.3.1 DC Parameters, 1.8 V IO Table 5: DC Parameters, 1.8 V IO Parameter Symbol Condition Min Typ Input Low Voltage VIL Guaranteed logic Low level VSS Input High Voltage VIH Guaranteed logic High level 0.7 × DVDD Output Low Voltage VOL DVDD=Min. VSS Output High Voltage VOH DVDD=Min. 0.8 × DVDD Pull-up Resistor RPU VPAD=VIH, DIO=Min. Pull-down Resistor RPD VPAD=VIL, DIO=Min. Note 1 DVDD = 1.8 V, VDD_DIO1, VDD_DIO2 Logic Level Max 0.3 × DVDD DVDD 0.2 × DVDD DVDD 32.4 32.4 Units V V V V k Datasheet CFR0011-120-00 Revision 3.1 15 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 5.3.2 DC Parameters, 3.3 V IO Table 6: DC Parameters, 3.3 V IO Parameter Input Low Voltage Input High Voltage Symbol Condition VIL Guaranteed logic Low level VIH Guaranteed logic High level Min Typ VSS 2.0 Output Low Voltage VOL DVDD=Min. VSS Output High Voltage VOH DVDD=Min. 2.4 Pull-up Resistor RPU VPAD=VIH, DIO=Min. Pull-down Resistor RPD VPAD=VIL, DIO=Min. Note 1 DVDD= 3.3 V, VDD_DIO1, VDD_DIO2 Logic Level 5.3.3 DC Parameters for RTC Block There are several control pins in RTC block, see Section 7.3 RTC for detail. Table 7: DC Parameters for RTC block, 3.3 V VBAT Parameter Symbol Condition Min Typ Input Low Voltage VIL Guaranteed logic Low level VSS Input High Voltage VIH Guaranteed logic High level 2.2 (RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2) Table 8: DC Parameters for RTC block, 2.1 V VBAT Parameter Symbol Condition Min Typ Input Low Voltage VIL Guaranteed logic Low level VSS Input High Voltage VIH Guaranteed logic High level 1.6 (RTC block: RTC_PWR_KEY, RTC_WAKE_UP, RTC_WAKE_UP2) Max Units 0.8 V DVDD V 0.4 V DVDD V 19.4 k 16.0 Max 0.6 VBAT Units V V Max 0.3 VBAT Units V V 5.3.4 DC Parameters for Digital Wake-up Several GPIOs can be used for wake-up, see Section 7.3.1 Wake-up Controller for detail. To use Digital Wake-up, IO voltage should not be over VBAT. Table 9: DC Parameters for Digital Wake-up, 3.3 V VBAT & 1.8/3.3 V IO Parameter Symbol Condition Min Typ Max Input Low Voltage VIL Guaranteed logic Low level VSS 0.5 Input High Voltage VIH Guaranteed logic High level 1.4 DVDD (DVDD= 1.8/3.3V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be over VBAT) Units V V Datasheet CFR0011-120-00 Revision 3.1 16 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 10: DC Parameters for Digital Wake-up, 2.1 V VBAT & 1.8 V IO Parameter Symbol Condition Min Typ Max Input Low Voltage VIL Guaranteed logic Low level VSS 0.3 Input High Voltage VIH Guaranteed logic High level 1.3 DVDD (DVDD= 1.8V, VDD_DIO1, VDD_DIO2 Logic Level, DVDD should not be over VBAT) 5.4 Radio Characteristics 5.4.1 WLAN Receiver Characteristics TA = +25 °C, VBAT = 3.3 V, CH1(2412 MHz) Table 11: WLAN Receiver Characteristics Parameter Condition 1 Mbps DSSS 2 Mbps DSSS 11 Mbps CCK Sensitivity (8 % PER for 11b rates, 10 % PER for 11g/11n rates) 6 Mbps OFDM 9 Mbps OFDM 18 Mbps OFDM 36 Mbps OFDM 54 Mbps OFDM MCS0(GF) Maximum input level (8 % PER for 11b rates, 10 % PER for 11g/11n rates) MCS7(GF) 802.11b 802.11g Min -99.5 -95 -90 -91 -91 -89 -82 -76 -91 -73 -4 -10 Typ -98.5 -94 -89 -90 -90 -88 -81 -75 -90 -72 0 -4 Max -96.5 -92 -87 -88 -88 -86 -79 -73 -88 -70 0 -3 Units V V Units dBm 5.4.2 WLAN Transceiver Characteristics TA = +25 °C, VBAT = 3.3 V, CH1(2412 MHz) Table 12: WLAN Transmitter Characteristics Parameter Condition Min Typ Max Units 1 Mbps DSSS 16.5 19.0 20 2 Mbps DSSS 16.5 19.0 20 5.5 Mbps CCK 16.5 19.0 20 11 Mbps CCK 16.5 19.0 20 Maximum Output Power measured form IEEE spectral mask and EVM 6 Mbps OFDM 15.5 18.0 19 dBm 9 Mbps OFDM 15.5 18.0 19 12 Mbps OFDM 15.5 18.0 19 18 Mbps OFDM 15.5 18.0 19 24 Mbps OFDM 14.5 17.0 18 Datasheet CFR0011-120-00 Revision 3.1 17 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Parameter Condition Min Typ 36 Mbps OFDM 14.5 17.0 48 Mbps OFDM 13 15.5 54 Mbps OFDM 12 14.5 MCS0 OFDM 15.5 18.0 MCS7 OFDM 12 14.5 Transmit center frequency accuracy -25 5.5 Current Consumption TA = +25 °C, VBAT = 3.3 V, w/ CPU clock is 80 MHz. Table 13: Current Consumption in Active State Parameter Condition Min Typ 1 Mbps DSSS @ 19.0 dBm 260 280 6 Mbps OFDM @ 18.0 dBm 240 260 TX 54 Mbps OFDM @ 14.5 dBm 180 200 MCS7 @ 14.5 dBm 180 200 ACTIVE No signal (Note 1) 25 29 1 Mbps DSSS (Note 1) 26.5 30.5 RX 1 Mbps DSSS 27 37.5 54 Mbps OFDM 29 38.5 MCS7 29 38.5 Note 1 Low Power Mode& CPU clock 30 MHz TA = +25 °C, VBAT = 3.3 V Table 14: Current Consumption in Low Power Operation Parameter Condition Min Typ Sleep 1 0.2 Low Power Operation Sleep 2 1.8 Sleep 3 3.5 Max 18 16.5 15.5 19 15.5 +25 Max 320 300 240 240 51 53 54 54 54 Max Units ppm Units mA Units µA Datasheet CFR0011-120-00 Revision 3.1 18 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 5.6 Radiation Performance Figure 5: TIS 3D Figure 6: TRP 3D 5.7 ESD Ratings Table 15: ESD Performance Reliability Test Human Body Model (HBM) Charge Device Mode (CDM) Standards ANSI/ESDA/JEDEC JS-001-2017 ANSI/ESDA/JEDEC JS-002-2018 Test Conditions ± 2,000 V ± 500 V Result Pass Pass 5.8 Clock Electrical Characteristics DA16200MOD is including two clock sources. One is the 32.768 kHz clock used by the RTC block, and the other is the 40 MHz clock for the internal processor and Wi-Fi system. More specifically, the 40 MHz clock is used as a source clock for the internal PLL while the PLL output is used for the internal processor and Wi-Fi system block. 5.8.1 RTC Clock Source The 32.768 kHz RTC clock source is necessary for the free-running counter in the RTC block. The RTC block of the SoC contains an internal 32.768 kHz RC oscillator as well, which is used as a clock for chip initialization before the external 32.768 kHz crystal reaches the stable time in the initial stage. It is necessary to convert it into an external clock for accurate clock counting after the initialization stage. This process is executed through the register setting. 5.8.2 Main Clock Source DA16200MOD contains a crystal oscillator for the main clock source which supports the external crystal clock. Basically, the external clock is 40 MHz. Datasheet CFR0011-120-00 Revision 3.1 19 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 6 Power Management DA16200MOD has an RTC block which provides power management and function control for low power operation. In normal operation, the RTC block is always powered on when RTC_PWR_KEY is enabled. 6.1 Power On Sequence The sequence after the initial switching from power-off to power-on is shown in Figure 7. The RTC_PWR_KEY of DA16200 is a pin that enables the RTC block. Once RTC_PWR_KEY is enabled after VBAT power is supplied, all the internal regulators are switched on automatically in the sequence pre-defined by the RTC block. Once RTC_PWR_KEY is switched on, LDOs for both XTAL and digital I/O are switched on shortly and then the DC-DC regulator is switched on according to the pre-defined interval. The enabling intervals can also be modified in the register settings after initial power-up. VBAT 50% VBAT IO Voltage T0 50% IO POWER_KEY CLK_32K 50% VBAT T1 T2 T3 Figure 7: Power on Sequence Table 16: Power on Sequence Timing Requirements Name Description Min Typ Max Unit T0 VBAT power-on time from 10 % to 90% of VBAT ms T1 IO voltage and VCC supply 0 ms T2 RTC_PWR_KEY switch-on time from 50 % VBAT to 50 % 5*T0 ms POWER_KEY * Note 1 T3 Internal RC oscillator wake-up time 217 µs Note 1 If the T0 = 10 ms to switch on VBAT, the recommended T2 is 50 ms for the safe booting operation. It would be externally controlled by MCU or it would be implemented using RC filter at the input of RTC_PWR_KEY. The recommended C is 470 nF or 1uF (not to exceed 1 uF) and R value is chosen to have T2 delay. For example, R and C values will be 82 k and 1 uF when T0 = 10 ms. 6.2 Low Power Operation Mode DA16200MOD provides three Sleep modes as low power operation modes. 6.2.1 Sleep Mode 1 Sleep mode 1 is an operational mode in which the RTC_PWR_KEY is not switched to high yet. The RTC_PWR_KEY is in the low state and the DA16200MOD is only supplied with VBAT power. With all the internal blocks off in Sleep mode 1, only the leakage current from a minimal number of internal blocks connected to VBAT remains. Datasheet CFR0011-120-00 Revision 3.1 20 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 6.2.2 Sleep Mode 2 Sleep mode 2 is an operational mode in which the RTC_PWR_KEY is set to high and the RTC block is running. Sleep mode 2 is activated by setting RTC registers for controlling the power management unit via a command from the CPU. To switch Sleep mode 2 back to Sleep mode 1, RTC_PWR_KEY should be set to low. Changing the state of the device from Sleep mode 2 to an ACTIVE state happens in one of two ways: 1. The counter value that has been set by the CPU prior to entering Sleep mode 2 is reached. 2. An external wake-up event occurs via the RTC_WAKE_UP pin. 6.2.3 Sleep Mode 3 Sleep Mode 3 is a low power, but fully connected Wi-Fi mode of operation. Sleep Mode 3 checks for incoming Wi-Fi network data traffic at regular intervals set by the user, for example, every one second, three seconds, five seconds, and so on. The exact time interval is programmable. Sleep Mode 3 is activated by software commands. See the SDK documentation for more information. A device can come out of Sleep Mode 3 and into a fully ACTIVE state before the next targeted wakeup time interval via a GPIO wakeup. Datasheet CFR0011-120-00 Revision 3.1 21 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 7 Core System 7.1 ARM Cortex-M4F Processor The Cortex-M4F processor is a low-power processor that features low gate count, low interrupt latency, low-cost debug, and includes floating point arithmetic functionality. The processor is intended for deeply embedded applications that require fast interrupt response features. The features of the Cortex-M4F processor in DA16200 are summarized below: Operation clock frequency is up to 160 MHz 32-bit ARM Cortex-M4F architecture optimized for embedded applications Thumb-2 mixed 16/32-bit instruction set Hardware division and fast multiplication Includes Nested Vectored Interrupt Controller (NVIC) SysTick timer provided by Cortex-M4F processor Supports both standard JTAG (5-wire) and the low-pin-count ARM SWD (2-wire, TCLK/TMS) debug interfaces Cortex-M4F is binary compatible with Cortex-M3 For more information on the ARM Cortex-M4F, see the ARM Cortex-M4F r0p1 technical reference manual Error! Reference source not found.. 7.2 Wi-Fi Processor DA16200 includes an internal MCU (ARM Cortex-M4F) to completely offload the host MCU along with an 802.11 b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast and secure WLAN and Internet connections with 256-bit encryption. It supports the station, SoftAP, and Wi-Fi Direct modes. It also supports WPA/WPA2 personal and enterprise security, WPA2 SI, WPA3 SAE, OWE, and WPS 2.0. It includes an embedded IPv4 and IPv6 TCP/IP stack. 7.3 RTC Among the pins in DA16200MOD, four special pins are directly connected to the RTC block, which are RTC_PWR_KEY, RTC_GPO, RTC_WAKE_UP, and RTC_WAKE_UP2. Table 17: RTC Pin Description Pin Name Pin Number RTC_PWR_KEY 3 RTC_SENSOR 5 Description RTC_PWR_KEY represents a power key for the RTC block. When this pin is enabled, the RTC starts to work by following a predefined power-up sequence and eventually all the necessary power is supplied to all the sub-blocks including the main digital block in DA16200. When disabled, all blocks are powered off and this mode is defined as Sleep mode 1. Minimum leakage current in Sleep mode 1. This pin is an output and high level is 'VBAT'. It has three different functions. GPO function: output value can be set as 1 or 0 via register setting. It can keep the value even in Sleep mode Flash control function: when in Sleep mode, it becomes 0; when in Active mode, it is 1 Sensor wakeup function: when used in sensor wake-up function (Section 8.8.4), it provides a programmable periodic signal for an external device. Inside the RTC, there are registers for setting count values Datasheet CFR0011-120-00 Revision 3.1 22 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Pin Name RTC_WAKE_UP RTC_WAKE_UP2 Pin Number Description 4 This pin is an input pin for receiving an external event signal from an external device like a sensor. The RTC block detects an external event signal via this pin and wakes up DA16200 from 14 Sleep mode 2 or Sleep mode 3. RTC block has a 36-bit real time counter. Its resolution is equal to one clock period of 32.768 kHz. The count value can be read via the register read command. 7.3.1 Wake-up Controller The wake-up controller is designed to wake up DA16200MOD from a Sleep mode by an external signal. It detects an edge trigger of the wake-up signal and selects either the rising edge or the falling edge. Also, the wake-up signal must be maintained for at least 200 µs upon occurrence of transition on one side. When it comes to the source of wake-up, 11 digital I/Os in addition to the two pins directly connected to the RTC block can be used. Although up to 11 digital I/Os are available for use, the maximum number of digital I/Os that are simultaneously available is eight. Table 18 describes the digital I/Os that are available for simultaneous use. Table 18: Wake-up Sources Input Selection = 0 GPIOA4 GPIOA5 GPIOA6 GPIOA7 GPIOA8 GPIOA9 GPIOA10 GPIOA11 Input Selection = 1 X X X X X GPIOC6 GPIOC7 GPIOC8 For more on wake-up source selection, refer to input selection register: 0x50091008[25:16]. The wake-up controller is located in the RTC block. Several parameters can be set by RTC registers and they identify which pin is used to wake up the SoC by checking the status register after wake-up. DA16200MOD has another wake-up function using analog sources, which is described in Section 8.8.4. Using the Aux-ADC, DA16200 detects whether it exceeds the pre-defined threshold value. If it detects the wanted condition, it will wake up from a Sleep mode. Four ports (GPIOA[3:0]) are used for this function. 7.3.2 Retention I/O Function DA16200MOD I/O has a retention mode. During this mode, I/O cells retain the previous state values at the core side inputs. When it is required to maintain the value of a specific GPIO in Sleep mode, this function will be used. For example, in order to maintain HIGH value on GPIOA4 in Sleep mode, it is required to set the value of GPIOA4 to HIGH and set the register bit of RTC block (0x5009_1018:BIT[27:24]) to enable retention to the proper value described in Table 19 before going to the Sleep mode. For GPIOA4, BIT[25] should be set to HIGH, then GPIOA4 can keep the value HIGH during the Sleep mode. The retention enable register is comprised of three bits in total, and the I/O power domains covered by each of the bits are described in Table 19. Datasheet CFR0011-120-00 Revision 3.1 23 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 19: I/O Power Domain [25] DIO1 GPIOA[11:4] [26] DIO2 GPIOC[8:6] TCLK/TMS UART0_RXD/UART0_TXD [27] FDIO F_CLK F_CSN F_IO0 to F_IO3 7.4 Pulse Counter 7.4.1 Introduction The pulse counter is a module which counts the number of rising or falling edges of input signals. And this counter module can run even in Sleep mode. It includes one 32-bit up-counter. The input channel can be chosen by register setting among the 11 digital I/Os. It also has a glitch filter which is designed to remove the unwanted trigger of an input signal. 7.4.2 Functional Description CLK_32kHz Ext. Pad Mux. Mux_SEL Glitch Filter Gli_En Gli_Thresh Edge Select Edge_Sel Pulse PCLK Count Counter Int Int Pulse Edge Count_En Count_Rst Int_Clr Int_Thresh Figure 8: Pulse Counter Block Diagram 7.4.2.1 Input Available input channels are described in Table 18. It uses the same input sources with the wake-up controller. By register setting, input channels can be selected among 11 digital I/Os. 7.4.2.2 Clock The operation clock of the pulse counter is 32 kHz. 7.4.2.3 Counter As described in Figure 8, the pulse counter is activated by several counter control signals. By register setting, input signals can be selected on either the rising edges or falling edges. In order to enable the glitch filter module, Gli_En and Gli_Thresh register values need to be set. The pulses whose cycles are shorter than the Gli_Thresh value are removed. The counter is a 32-bit up-counter and the counter value can be reset to zero by Count_Rst. 7.4.2.4 Interrupts An interrupt occurs when the counter values reaches the Interrupt Threshold value (Int_Thresh). In Sleep mode, this interrupt can be used as a wake-up source. Datasheet CFR0011-120-00 Revision 3.1 24 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 8 Peripherals This section describes the peripherals that are supported by the DA16200MOD. 8.1 QSPI: Master with XIP Feature QSPI master supports 4-line SPI communication with commercial flash memory devices and uses Motorola SPI-compatible interface among SPI communication modes. The highest communication speed is the same as the AMBA bus clock, and the speed is adjustable in integer multiples. The designed QSPI supports 4-/2-/1-line types depending on the purpose. These types should be combined. Especially when the 1-line communication mode is used, it can be used as the SPI master. QSPI master is an IP for communication between the flash memory and AMBA AHB bus and is designed to support XIP. The features of the QSPI master are summarized as follows: Serial Flash Interface: SPI compatible serial bus interface Configurable SPI I/O modes: Single I/O mode Dual I/O mode Quad I/O mode JEDEC Standard: JESD216B 24-bit and 32-bit addressing Supports to access flash with XIP mode Read access without command Read access without address and command Programmable SPI clock phase and polarity Maximum number of SPI CS is four that can be operated AMBA Slave Interface Compliance to the AMBA AHB bus specification, Rev 3.0 [6] Direct code execution: directly addressable access without additional driver software Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16) Supports byte, half-word, and word transaction AMBA slave interface is optional to access configuration and status registers Simple timer is used to check the completion time of flash operation XIP path of QSPI master supports HW remapping function to execute selected boot image for over-the-air programming (OTA) AMBA Master Interface Compliance to the AMBA AHB bus specification, Rev 3.0 [6] Supports DMA operation to access serial flash devices Automatic copy of code image from serial flash to system RAM Automatic programming of code image from system RAM to serial flash Performs a mem-to-mem copy in units of 32 bits, regardless of the address and length Supports single and incrementing burst transfer (SINGLE, INCR, INCR4, INCR8, INCR16) Supports byte, half-word, and word transaction Figure 9 shows the QSPI Master Block Diagram. Datasheet CFR0011-120-00 Revision 3.1 25 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module AHB Bu sMatrix AHB S I-Cache Contr olle r M AHB Bu s Bu s AHB Bu s AHB Bu s XI P path S0 Co nfiguration QS PI S1 Master with XIP feature DMA M DMA External Se ri al NOR Flash Figure 9: QSPI Master Block Diagram Figure 10 shows the timing diagram for the QSPI master. QSPI_CSB TCLK.ON TDO.DLY QSPI_CLK QSPI_D[3:0] Figure 10: QSPI Master Timing Diagram (Mode 0) TDI.SU TCSB.OF F Datasheet CFR0011-120-00 Revision 3.1 26 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 20 lists the timing parameters for the QSPI master. Table 20: QSPI Master Timing Parameters Parameter Symbol Min Typ QSPI_CLK frequency QSPI_CLK clock duty FCLK 10 50 1st CLK active rising transition time TCLK.ON 0.5 ×TCLK QSPI_CSB non-active rising transition time TCSB.OFF 0 QSPI_D[3:0] input setup time TDI.SU 6 QSPI_D[3:0] output delay time TDO.DLY Note 1 TCLK = (FCLK× 106)-1 seconds Max 120 TCLK (Note 1) TCLK 2 Unit MHz % ns ns ns ns 8.2 SPI Master QSPI can use the SPI master by means of single line interface. Table 21 shows the pin definition of the SPI master interface. SPI signal timing is the same as QSPI. To use DA16200MOD as an SPI master, the CSB signal can be used with any of the GPIO pins. CSB [3:1] can be selected from GPIO special function by setting the registers in the GPIO. Table 21: SPI Master Pin Configuration Pin Name Pin Number GPIOx GPIOA6 27 GPIOA7 26 GPIOA8 25 GPIOA9 24 GPIOA10 23 GPIOA11 22 I/O Function Name O E_SPI_CSB[3:1] O E_SPI_CSB[0] O E_SPI_CLK I/O E_SPI_MOSI or E_SPI_D[0] I/O E_SPI_MISO or E_SPI_D[1] I/O E_SPI_D[2] I/O E_SPI_D[3] E_SPI_CSB TCLK.ON TDO.DLY TDI.SU TCSB.OF F E_SPI_CLK E_SPI_D[3:0] Figure 11: SPI Master Timing Diagram (Mode 0) Datasheet CFR0011-120-00 Revision 3.1 27 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 22: SPI Master Timing Parameters Parameter Symbol QSPI_CLK frequency FCLK QSPI_CLK clock duty 1st CLK active rising transition time TCLK.ON QSPI_CSB non-active rising transition time QSPI_D[3:0] input setup time QSPI_D[3:0] output delay time Note 1 TCLK = (FCLK× 106)-1 seconds TCSB.OFF TDI.SU TDO.DLY Min Typ 5 50 0.5 × TCLK 0 6 Max 60 TCLK (Note 1) TCLK 2 Unit MHz % ns ns ns ns 8.3 SPI Slave SPI slave interface supports the control of DA16200 by an external host. The range of SPI clock speed is the same as that of the internal bus clock speed. The SPI slave supports both the burst mode and non-burst mode. In the burst mode, SPI_CSB remains active from the start to the end of communication. In the non-burst mode, SPI_CLK remains active at every eight bits. Address Decoder SPI Signals Command Decoder APB bus Controller Data Decoder Figure 12: SPI Slave Block Diagram Communication protocols of the SPI slave interface use either 4-byte or 8-byte control signals. Between the two available communication protocols, the CPU chooses one before initiating the control. Figure 13 and Figure 14 shows the 8-byte and 4-byte control types. SPI_CSB SPI_CLK SPI_MOSI A [ 31 : 24 ] A [ 23 : 16 ] A [ 15 : 8 ] A [ 7 : 0 ] C [ 7 : 0 ] L [ 23 : 16 ] L [ 15 : 8 ] L [ 7 : 0 ] Figure 13: 8-byte Control Type D [ 7 : 0 ] D [ 15 : 8 ] D [ 23 : 16 ] D [ 31 : 24 ] SPI_CSB SPI_CLK SPI_MOSI A [ 15 : 8 ] A [ 7 : 0 ] C [ 7 : 0 ] L [ 7 : 0 ] D [ 7 : 0 ] D [ 15 : 8 ] Figure 14: 4-byte Control Type D [ 23 : 16 ] D [ 31 : 24 ] Datasheet CFR0011-120-00 Revision 3.1 28 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module The 8-byte control type uses 4-byte address, 1-byte control, and 3-byte length. The 4-byte address displays the address of registers subject to internal access. The 1-byte control is for communication control and 3-byte length shows the length of data subject to continuous access in bytes. Hence, when the 8-byte control type is applied, the maximal length of data subject to continuous access is 16 MB. The 4-byte control type uses 2-byte address, 1-byte control, and 1-byte length. The 2-byte address displays the address of registers subject to internal access. The 1-byte control is for communication control and 1-byte length shows the length of data subject to continuous access in bytes. Since the 32-bit address map is used internally, the 2-byte address is not enough to express everything. Thus, the upper 2-byte base address is designated, and then the lower 2-byte address is used. Table 23 and Table 24 shows the meaning of each bit in the 1-byte control in the 8-byte control type and the 4-byte control type, respectively. Table 23: Control Field of the 8-byte Control Type Control Bit Abr. Description 7 Auto Inc. 1 = Internal Address auto-increment 0 = Address fixed 6 Read/Write 1 = Read 0 = Write 5:0 Not used. Set all bits to `0' Table 24: Control Field of the 4-byte Control Type Control Bit Abr. Description 7 Auto Inc. 1 = Internal address auto-increment 0 = Address fixed 6 Read/Write 1 = Read 0 = Write 5 Common 1 = Refer base address as common area 0 = Refer base address 4 Length section 1 = Refer to register value 0 = Refer to length field 3:0 Length[12:8] Length field upper Table 25 shows the pin definition of the SPI slave interface. Table 25: SPI Slave Pin Configuration Pin Name Pin Number I/O GPIOA2 31 I GPIOA6 27 I GPIOA3 30 I GPIOA7 26 I GPIOA1 32 I GPIOA9 24 I GPIOA11 22 I GPIOA0 33 O GPIOA8 25 O GPIOA10 23 O Figure 15 shows the timing diagram for the SPI slave. Function Name SPI_CSB SPI_CLK SPI_MOSI SPI_MISO Datasheet CFR0011-120-00 Revision 3.1 29 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module SPI_CSB SPI_CLK (CPOL=0) SPI_CLK (CPOL=1) TSCLKOFF SPI_MOSI TSCLKON TMSU TMHD MSB TSCLKL TSCLKH TSCLKH TSCLKL TCSBOFF TSSU LSB SPI_MISO TTR Figure 15: SPI Slave Timing Diagram Table 26 lists the timing parameters for the SPI slave. Table 26: SPI Slave Timing Parameters Parameter Symbol Min Typ SCLK frequency SCLK clock duty FSCLK - - 40 Non active duration 1st CLK active rising transition time CSB non active rising transition time TSCLKOFF 400 - TSCLKL(CPOL=0) TSCLKON TSCLKH (CPOL=1) - TCSBOFF TSCLKH (CPOL=0) - TSCLKL (CPOL=1) MOSI setup time TMSU 8 - MOSI hold time TMHD 8 - MISO delay time TSSU - - MISO transition time(10% to 90% transition) TTR - 4 Note 1 TSCLK = 0.5 × (FSCLK x 106)-1 second LSB Max 50 - Unit MHz % ns ns - ns TSCLK ns (Note 1) TSCLK ns 8 ns 5 ns 8.4 SDIO SDIO is a full/high speed card suitable for memory card and I/O card applications with low power consumption. The full/high speed card supports SPI, 1-bit SD, and 4-bit SD transfer modes at the full clock range of 0 to 50 MHz. To be compatible with the serviceable SDIO clock, the internal BUS clock needs to be set to minimum 50 MHz. The CIS and CSA area is located inside the internal memory and the SDIO registers(CCCR and FBR) are programmed by the SD host. Datasheet CFR0011-120-00 Revision 3.1 30 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Command Decoder Fn0 / Fn1 Decoder APB bus Interface Response Generator DAT Decoder CRC Generator REG. Control 2 port Memory DMA Controller Figure 16: SDIO Slave Block Diagram Table 27 shows the pin definition of the SDIO interface. The GPIOA4 and GPIOA5 pins are set to SDIO CMD and CLK by default. If SDIO initialization is performed and SDIO communication is enabled, SDIO data pin setting is performed automatically. In other words, when the SDIO communication is detected, the pin used as the SDIO data among the GPIO pins is automatically activated in the SDIO use mode. However, the auto setting function is not supported for the F_xxx pin used as the flash function. Table 27: SDIO Slave Pin Configuration Pin Name Pin Number GPIOA4 29 GPIOA5 28 GPIOA9 24 GPIOA8 25 GPIOA7 26 GPIOA6 27 I/O Function Name I/O SDIO_CMD I SDIO_CLK I/O SDIO_D0 I/O SDIO_D1 I/O SDIO_D2 I/O SDIO_D3 Figure 17 shows the timing diagram for the SDIO slave. SDIO_CLK SDIO_D[3:0] TCO.DLY TDO.DLY TCI.SU TDI.SU SDIO_CMD Figure 17: SDIO Slave Timing Diagram Table 28 lists the timing parameters for the SDIO slave. Table 28: SDIO Slave Timing Parameters Parameter Symbol Min Typ SDIO_CLK frequency FSCLK - - SDIO_CLK clock duty 50 SDIO_CMD input setup time TCI.SU 3 Datasheet Revision 3.1 CFR0011-120-00 31 of 60 Max Unit 50 MHz % ns 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Parameter Symbol Min Typ SDIO_CMD output delay time TCO.DLY SDIO_D[3:0] input setup time TDI.SU 3 SDIO_D[3:0] output delay time TDO.DLY Note 1 SDIO signals can set previous output from half cycle. Max Unit 11 (Note 1) ns ns 11 (Note 1) ns 8.5 I2C Interface 8.5.1 I2C Master DA16200MOD includes an I2C master module. Three ranges of clock speed are supported: standard (100 kHz), fast (400 kHz), and high (1.0 MHz) speed mode. Table 29 shows the pin definition of the I2C master interface. Table 29: I2C Master Pin Configuration Pin Name Pin Number I/O GPIOA1 32 O GPIOA5 28 O GPIOA9 24 O GPIOA0 33 I/O GPIOA4 29 I/O GPIOA8 25 I/O Function Name I2C_CLK I2C_SDA Figure 18 shows the I2C timing diagram. The timing diagram is the same as that of I2C slave timing diagram. TR SDA SCL THD;STA S TLOW TR THD;DAT TSU;DAT THIGH TVD;ACK TBUF ... cont. ... SDA ... cont. SCL ... THD;STA TSU;STA Sr TSU;STO P S Figure 18: I2C Master Timing Diagram Table 30 lists the I2C master timing parameters. Table 30: I2C Master Timing Parameters Parameter Symbol Bus clock frequency Fop_clk Fast Mode Min Max 30 160 High Speed Mode Min Max 30 160 Unit MHz Datasheet CFR0011-120-00 Revision 3.1 32 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Parameter Symbol Fast Mode Min Max SCL clock frequency FSCLK 100 400 Clock Duty (Note 1) Hold time of START Low period of the SCL clock High period of the SCL clock Setup time for START condition Data hold time THD;STA TLOW THIGH TSU;STA THD;DAT 40 0.2 1.27 1.23 1.1 3x Top_clk (Note 4) Data setup time TSU;DAT - Rise time of both SDAand SCL TR (Note 3) 0.02 Setup time for STOP condition TSU;STO 0.36 Data valid acknowledge time TVD;ACK 3x Top_clk (Note 4) Buffer free time between START and STOP condition TBUF 0.5 Note 1 Note 2 Note 3 Note 4 Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/ FSCLK Max. clock = 1.0 MHz (clock period = 1000 ns) TR depends on a pull-up resistor value. Top_clk = (1 / Fop_clk) x 10^6 usec 60 - - TLOW - THD;DAT 0.3 - - - High Speed Mode Min Max 100 1000 (Note 2) 40 60 0.2 - 0.55 - 0.45 - 0.37 - 3x Top_clk - (Note 4) - TLOW - THD;DAT 0.05 0.05 0.45 - 3x Top_clk - (Note 4) 0.5 - Unit kHz % s s s s s s s s s s 8.5.2 I2C Slave I2C slave interface supports the control of DA16200MOD by an external host. Pin mux condition is defined in Table 31. Three ranges of clock speed are supported: standard (100 kHz), fast (400 kHz), and high (1.0 MHz) speed mode. Table 31: I2C Slave Pin Configuration Pin Name Pin Number GPIOA1 32 GPIOA3 30 GPIOA5 28 GPIOA7 26 GPIOA0 33 GPIOA2 31 GPIOA4 29 GPIOA6 27 I/O Function Name I I I2C_CLK I I I/O I/O I2C_SDA I/O I/O Datasheet CFR0011-120-00 Revision 3.1 33 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Figure 19 shows the I2C slave timing diagram. SDA SCL THD;STA S TR TLOW TR THD;DAT TSU;DAT THIGH SDA ... cont. SCL ... THD;STA TSU;STA Sr Figure 19: I2C Slave Timing Diagram TVD;ACK TBUF ... cont. ... TSU;STO P S Table 32 lists the I2C slave timing parameters. Table 32: I2C Slave Timing Parameters Parameter Symbol SCL clock frequency FSCLK Fast Mode Min Max 0 400 Clock Duty (Note 1) 40 60 Hold time of START Low period of the SCL clock High period of the SCL clock Setup time for START condition Data hold time Data setup time Rise time of both SDA and SCL Setup time for STOP condition Data valid acknowledge time Buffer free time between START and STOP condition THD;STA TLOW THIGH TSU;STA THD;DAT TSU;DAT TR TSU;STO TVD;ACK TBUF 0.6 - 1.3 - 0.6 - 0.6 - 0 - 100 - 20 300 0.6 - - - 1.3 - Note 1 Clock duty ratio = (THIGH /TSCLK) × 100[%], TSCLK = 1/FSCLK Note 2 Max. clock = 1.0 MHz (clock period = 1000 ns) High Speed Mode Unit Min Max 0 1000 kHz (Note 2) 40 60 % 0.26 - s 0.5 - s 0.26 - s 0.26 - s 0 - s 50 - ns - 120 ns 0.26 - s - - s 0.5 - s Datasheet CFR0011-120-00 Revision 3.1 34 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 8.6 SD/SDeMMC The SD/eMMC host IP provides the function for DA16200MOD to access SD or eMMC cards. This SD/eMMC host IP only supports a 4-bit data bus and the maximum clock rate is 50 MHz. The maximum data rate is 25 MB/s (200 Mbps) under the 4-bit data bus and 50 MHz clock. SD/eMMC pin mux condition is defined in Table 33. Table 33: SD/eMMC Master Pin Configuration Pin Name Pin Number I/O GPIOA4 29 I/O GPIOA5 28 O GPIOA9 24 I/O GPIOA8 25 I/O GPIOA7 26 I/O GPIOA6 27 I/O GPIOA10 23 I GPIOA1 32 I Function Name SD/eMMC_CMD SD/eMMC_CLK SD/eMMC_D0 SD/eMMC_D1 SD/eMMC_D2 SD/eMMC_D3 SD/eMMC_WRP 8.6.1 Block Diagram Figure 20 shows the block diagram of SD/eMMC host IP and it includes the control register, clock control, command/response pipe, data pipe, and AHB master interface blocks. AHB Slave 32 Control Registers Clock Control HCLK CMD/RSP Pipe HCMD AHB AHB Master FIFO 32 32 Figure 20: SD/eMMC Block Diagram Figure 21 shows the timing diagram for the SD/eMMC master. Data Pipe SD/eMMC_CLK SD/eMMC_D[3:0] TCO.DLY TDO.DLY TCI.SU HDATA[3:0] 4 TDI.SU SD/eMMC_CMD Figure 21: SD/eMMC Master Timing Diagram Datasheet CFR0011-120-00 Revision 3.1 35 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 34 lists the timing parameters for the SD/eMMC master. Table 34: SD/eMMC Master Timing Parameters Parameter Symbol Min Typ Max Unit SD/eMMC_CLK frequency FSCLK - SD/eMMC_CLK clock duty - 50 MHz 50 % SD/eMMC_CMD input setup time TCI.SU 8 SD/eMMC_CMD output delay time TCO.DLY SD/eMMC_D[3:0] input setup time TDI.SU 8 SD/eMMC_D[3:0] output delay time TDO.DLY ns 3 ns ns 8 ns 8.7 I2S DA16200MOD provides an I2S interface. Once an I2S block receives audio data through the DMA, it sends audio data to the external port according to the I2S standard. To use the external DAC, output through the GPIO port is possible through the register setting according to the pin configuration (Table 35). The I2S also provides a receive function. However, I2S transmission and reception functions cannot be used at the same time. The transmit and receive functions can be selected by register setting. If the I2S signal is input from outside after the reception function is set, the audio signal can be decoded, stored in the FIFO, and read out through the DMA. The decodable reception function provides 8/16/24/32-bit modes and can receive either mono or stereo. Using the I2S clock divider register, the internal PLL clock can be variably applied to the I2S clock source. The available I2S clock source is 24/48 MHz. There is also a way to apply the I2S clock source directly from outside using the GPIO pin. For accurate I2S audio sampling, I2S clock source can be input to external GPIO pins. It needs to select the GPIO pin setting as the I2S clock input and apply appropriate clock source. The available I2S clock pins are shown in Table 35. Table 35: I2S Pin Configuration Pin Name Pin Number GPIOA1 32 GPIOA5 28 GPIOA9 24 GPIOA0 33 GPIOA4 29 GPIOA8 25 GPIOA3 30 GPIOA7 26 GPIOA2 31 GPIOA6 27 GPIOA3 30 GPIOA10 23 I/O Function Name O O I2S_MCLK O O O I2S_BCLK O O I2S_LRCK O I/O I2S_SDO I/O I I2S_CLK_IN I Datasheet CFR0011-120-00 Revision 3.1 36 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 8.7.1 Block Diagram I2S has the following features: Master Clock Mode only I2S Data pin can work in either input mode or output mode Clock source can be "internal 480 MHz/N" (currently using 24 MHz) or "external clock source" Max Sampling Rate: 48 KHz Mono/Stereo Mode Figure 22: I2S Block Diagram 8.7.2 I2S Clock Scheme The I2S uses a 24 MHz clock as default from the RF reference clock (40 MHz), so it can support 46.875 KHz of sampling rate. External clock sources are needed to support the standard sampling rate. See Table 36. Datasheet CFR0011-120-00 Figure 23: I2S Clock Scheme Revision 3.1 37 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 36: I2S Clock Selection Guide Parameter LRCK Fs 8 12 BCLK 64Fs 0.512 0.768 MCLK 512Fs 4.096 6.144 Clk Div2 N (=1,2,3...) 6 4 16 1.024 8.192 24 32 44.1 1.536 2.048 2.8224 12.288 16.384 22.5792 3 2 2 1 I2S_CLK 24.576 24.576 24.576 24.576 32.768 22.5792 46.875 3 24 1 24 (Internal PLL) Units 48 KHz 3.072 MHz 24.576 MHz 1 24.576 MHz NOTE To confirm the exact LRCK operation, drive the Clock source at I2S_CLK. 8.7.3 I2S Transmit and Receive Timing Diagram I2S output is possible in the following three modes. The main clock (MCLK) always outputs in 512×fs. I2S Mode LRCK SCLK SDATA Left Channel MSB -1 -2 -3 +3 +2 +1 LSB Right Channel MSB -1 -2 -3 -4 +3 +2 +1 LSB Left Justified Mode Figure 24: I2S Timing Diagram LRCK SCLK SDATA Left Channel MSB -1 -2 -3 +3 +2 +1 LSB Right Channel MSB -1 -2 -3 -4 +3 +2 +1 LSB Figure 25: Left Justified Mode Timing Diagram Right Justified Mode LRCK SCLK SDATA Left Channel Right Channel 15 14 13 210 15 14 13 Figure 26: Right Justified Mode Timing Diagram 210 Datasheet CFR0011-120-00 Revision 3.1 38 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module I2S_BCLK T2 T3 fBCLK I2S_SDO (falling edge) I2S_SDO (rising edge) T4 T5 Figure 27: I2S Transmit Timing Diagram I2S_BCLK T4 T3 T2 fBCLK T5 I2S_SDO Figure 28: I2S Receive Timing Diagram Table 37: I2S Transmit Timing Parameters Description Timing Min Typ I2S_BCLK frequency fBCLK - High period of the BCLK clock T2 - Low period of the BCLK clock T3 - I2S_SDO output hold (falling edge) T4 160 I2S_SDO output hold (rising edge) T5 160 Table 38: I2S Receive Timing Parameters Description Timing Min Typ I2S_BCLK frequency fBCLK - High period of the BCLK clock T2 - Low period of the BCLK clock T3 - I2S_SDO input setup time T4 15 I2S_SDO input hold time T5 60 Max 3.072 ½ fBCLK ½ fBCLK - Max 3.072 ½ fBCLK ½ fBCLK - Unit MHz ns ns ns ns Unit MHz ns ns ns ns 8.8 ADC (Aux 12-bit) 8.8.1 Overview DA16200MOD includes a high precision, ultra-low power, and wide dynamic range SAR ADC with a 12-bit resolution. It has a 4-channel single-end ADC. Analog input is measured by four pins from GPIOA0 to GPIOA3, and pin selection is changed through the register setting. Figure 29 shows the control block diagram. Datasheet CFR0011-120-00 Revision 3.1 39 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module VI_N[1] VI_N[2] VI_N[3] VI_N[4] SWITCH ADC 12b Max : 1Ms CH_SEL Ready Switch ADC Controller Counter 16-bit Figure 29: ADC Control Block Diagram 8.8.2 Timing Diagram The input is digitized at a maximum of 1.0 Msps throughput rate. And the maximum input clock rate is 15 MHz. Figure 30 shows the conversion timing, and Table 39 describes DC specifications. CLK 15MHz AUXADC_EN OSC_EN SAMPLE 1M D<11:0> 15*CLK 15*CLK N 15*CLK N+1 15*CLK N+2 N N+1 15*CLK N+3 N+2 15*CLK N+4 N+3 CLKOUT 1M Figure 30: 12-bit ADC Timing Diagram Table 39: DC Specification Description Min Typ Max Resolution 4 12 12 Max clock input 15 Conversion frequency 1 Accuracy: SNR SNDR Analog input range 0 61.7 67.2 1.4 Unit Bits MHz MHz dB dB V 8.8.3 DMA Transfer There are four ADC channel settings available. Once the input data of each channel reaches the FIFO level, it is possible to read the data through the DMA path. Datasheet CFR0011-120-00 Revision 3.1 40 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 8.8.4 Sensor Wake-up DA16200MOD provides an external sensor wake-up function using the analog input signal through this Aux ADC. Even in Sleep modes, it detects the change of external analog signal, wakes up from a Sleep mode, and converts DA16200MOD into a normal operation. This function can be used in up to four channels. Also, when multiple external sensors are used, it detects analog signals while changing the channel automatically. For example, if it sets all four channels as input sources which have their threshold register respectively, in measures the channels sequentially from 0 to 3. If one of the four values exceed the allowed range of values set by the threshold register, DA16200MOD is awaken from Sleep modes. The setting value of input change can be of two types, over threshold and under threshold. 8.8.5 ADC Ports Table 40 shows the pin definition of the ADC. Table 40: ADC Pin Configuration Pin Name Pin Number GPIOA3 30 GPIOA2 31 GPIOA1 32 GPIOA0 33 I/O Function Name A Analog signal A Analog signal A Analog signal A Analog signal 8.9 GPIO All digital pads can be used as GPIO, and each GPIO port is mixed with a multi-functional interface. The GPIO features of DA16200MOD are listed below: Input or output lines in a programmable direction Word and half word read/write access Address-masked byte writes to facilitate quick bit set and clear operations Address-based byte reads to facilitate quick bit test operations Maskable interrupt generation based on input value change Possible to be output signal of PWM[3:0], external interrupt, QSPI_CSB[3:1], RF_SW[1:0], and UART_TXDOE[2:0] on the GPIO pins: It provides special functions for GPIO pin use. PWM [3:0], external interrupt, QSPI_CSB [3:1], RF_SW [1:0], and UART_TXDOE [2:0] signals can be output by selecting unused pins among the GPIO pins. It is possible to select the function to be output from the GPIO register setting and select the remaining GPIO pin without using it to output the specific function to the desired GPIO pins 8.9.1 Antenna Switching Diversity DA16200MOD-AAE4WA32 (u.FL connector type module) provides the antenna switching diversity function for performance improvement in multi-path environment. Phy block measures the RSSI of each antenna and selects the antenna with the largest RSSI. The selected antenna is also used for transmission. To use this function, an external switching element is required, and switching control is performed through the GPIO. Two GPIOs can be used for switching control, and any unused pins among the GPIO pins can be selected for this purpose. The control signal can be changed by register setting to suit the external switching device. Datasheet CFR0011-120-00 Revision 3.1 41 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Antenna1 RF RSFwSwitictchh Antenna2 DA16F2C009M0O5D0-AAE ANT GPIO 2 Figure 31: Antenna Switching Internal Block Diagram If the Antenna Switching Diversity function is enabled, the function is automatically done by PHY hardware block. The basic operation scheme is as follows: Antenna's RSSI decision is made for 11b PPDU, except for 11g/n PPDU When PHY hardware detects the existence of 11b PPDU, it stores RSSI After it switch to another antenna, the RSSI stored and decision is made which antenna has better RSSI This operation is done during 11b PPDU's preamble duration to protect corruption of 11b PPDU data reception The decided antenna is not changed until there is a new 11b PPDU Datasheet CFR0011-120-00 Revision 3.1 42 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Figure 32: Antenna Switching Timing Diagram For reference, this antenna switching diversity is different from MRC. (Maximum Ratio Combining) 8.10 UART DA16200MOD provides 3 UARTs, features of which are described below: Programmable use of UART (UART1 and UART2) Compliance to the AMBA AHB bus specification [6] for easy integration into SoC implementation Supports both byte and word access for reduction of bus burden Supports both RS-232 and RS-485 Separate 32×8 bit transmit and 32×12 bit receive FIFO memory buffers to reduce CPU interrupts Programmable FIFO disabling for 1-byte depth Programmable baud rate generator Standard asynchronous communication bits (start, stop and parity), which are added prior to transmission and removed on reception Independent masking of transmit FIFO, receive FIFO, and receive timeout Supports for DMA False start bit detection Programmable flow control (CTS/RTS, UART1) Fully programmable serial interface characteristics: Data can be of 5,6,7, or 8 bits Even, odd, stick, or no-parity bit generation and detection 1- or 2- stop bit generation Baud rate generation Datasheet CFR0011-120-00 Revision 3.1 43 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Figure 33: DA16200 UART Block Diagram 8.10.1 RS-232 As the serial communication between the UART and the selected device is asynchronous, additional bits (start and stop) are inserted to the data line to indicate the beginning and end. By these bits, two devices can be synchronized. This structure of serial data accompanied by start and stop bits is referred to as a character, as shown in Figure 34. Bit Time Data Start Data bits 5 - 8 Parity Stop 1- or 2- One Character Figure 34: Serial Data Format Datasheet CFR0011-120-00 Revision 3.1 44 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module An additional parity bit may be added to the serial character. This bit appears between the last data bit and the stop bit(s) in the character structure. It provides the UART with the ability to perform simple error checking on the received data. The UART Line Control Register is used to control the serial character characteristics. The individual bits of the data word are sent after the start bit, starting with the least significant bit (LSB). These are followed by the optional parity bit, followed by the stop bit(s), which can be 1 or 2. Serial Data In Start Data Bit 0 (LSB) Data Bit 1 8 16 16 Figure 35: Receiver Serial Data Sampling Points All the bits in the transmission are transmitted for exactly the same time duration. This is referred to as a Bit Period or Bit Time. One Bit Time equals 16 baud clocks. To ensure stability on the line, the receiver samples the serial input data at approximately the mid-point of the Bit Time, once the start bit has been detected. As the exact number of baud clocks that each bit was transmitted for is known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the mid-point sample of the start bit. Figure 35 shows the sampling points of the first couple of bits in a serial character. 8.10.2 RS-485 DA16200MOD UART supports RS-485. UART485EN register (0x054) is required to be assigned to one to enable the RS-485. In order to use RS-485, additional signal (UARTTXDOE) is required to notice TXD intervals. This signal can be an output by selecting any unused pins among the GPIO pins. Figure 36: UARTTXDOE Output Signal for UART RS-485 8.10.3 Baud Rate UART clock frequency (FUARTCLK) is fixed to 80 MHz. Baud Rate Divisor can be calculated as (FUARTCLK / (16 x Baud Rate)). Baud Rate Divisor is comprised of the integer part (UART_INTBRDIV) and fractional part (UART_FRABRDIV). The maximum baud rate of DA16200 UART is 2.5 MBaud. The following example shows how to calculate the divisor value. Example: If the required baud rate is 921600 with 80 MHz FUARTCLK, the Baud Rate Divisor becomes (8 x 107) / (16 x 921600) = 5.425. This means the integer value is 5 and the fractional value is 0.425. Then, the fraction part becomes integer ((0.425 x 64) + 0.5) = 27. Datasheet Revision 3.1 03-Feb-2021 CFR0011-120-00 45 of 60 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Then, generated baud rate divider is 5 + 27/64 = 5.422. Finally, generated baud rate becomes (8 x 107) / (16 x 5.422) = 922169. And the error between required baud rate and generated baud rate is (922169 921600) / 921600 x100 = 0.062%. 8.10.4 Hardware Flow Control Hardware flow control feature is fully selectable, and serial data flow is controlled by using nUARTRTS output and nUARTCTS input signals. Figure 37 shows how two different UART can communicate using hardware flow control. Figure 37: UART Hardware Flow Control When RTS flow control is enabled, nUARTRTS signal is asserted until the receive FIFO is filled up to programmed level. When CTS flow control is enabled, transmitter can transmit the data when nUARTCTS signal is asserted. CTSEn (CTS enable) and RTSEn (RTS enable) bits are determined by 14th (RTS) and 15th bit (CTS) of UARTCR register. Table 41: Control bits to enable and disable hardware flow control CTSEn RTSEn Description 1 1 Both RTS and CTS flow control are enabled 1 0 Only CTS flow control is enabled 0 1 Only RTS flow control is enabled 0 0 Both RTS and CTS flow control are disabled 8.10.5 Interrupts DA16200MOD UART block provides five interrupt signals by separate interrupt lines. Each interrupt conditions are Modem Status, Receive FIFO Request, Transmit FIFO Request, Receive Timeout and Reception Error. These conditions are logically OR'ed to provide a single combined interrupt, UARTINTR. Table 42 shows the interrupt signals. Datasheet CFR0011-120-00 Revision 3.1 46 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 42: UART Interrupt Signals Signal Name Description UARTMSINTR UART Modem Status Interrupt UARTRXINTR UART Receive FIFO Interrupt UARTTXINTR UART Transmit FIFO Interrupt UARTRTINTR UART Receive Timeout Interrupt UARTEINTR UART Error Interrupt UARTINTR UART Interrupt. Five Interrupt signals are combined by OR function 8.10.6 DMA Interface DA16200MOD UART block can generate DMA request signals with register settings by using DMA interrupt generator module to connect to DA16200 DMA Controller (DMA1). DMA operation of the UART is controlled using DMA Control Register. DA16200MOD UART provides four DMA signals and receives two DMA signals, two signals to transmit (TXDMASREQ, TXDMABREQ) which are cleared by TX clear signal (TXDMACLR) and two signals to receive (RXDMASREQ, RXDMABREQ), which are cleared by RX clear signal (RXDMACLR). When the DMA interface is not used, the TXDMACLR and RXDMACLR lines should be connected to a logic `0'. Table 43 shows the pin definition of the UART interface. Table 43: UART Pin Configuration Pin Name Pin Number I/O UART0_RXD 13 I UART0_TXD 12 O GPIOA7 26 I GPIOA5 28 I GPIOA3 30 I GPIOA1 32 I GPIOA6 27 O GPIOA4 29 O GPIOA2 31 O GPIOA0 33 O GPIOA5 28 I GPIOA4 29 O GPIOA11 22 I GPIOC7 10 I GPIOA10 23 O GPIOC6 11 O Datasheet CFR0011-120-00 Revision 3.1 47 of 60 Function Name UART0_RXD UART0_TXD UART1_RXD UART1_TXD UART1_CTS UART1_RTS UART2_RXD UART2_TXD 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 8.11 PWM Pulse Width Modulation (PWM) is a modulation technique used to encode a message into a pulse signal. The blocks are designed to adjust output pulse duration by the CPU bus clock (HCLK). Figure 38 shows the structure of the PWM block. HCLK Counte r AHB Bus Matrix AHB Bus Register PWM Block 0 CounterP(WPerMiod)Block 1 CCoouunntteerrP((HWPiegrMhioDd)uBtylo) ck 2 CCoouunnteterrP(H(WPiegrhMioDdu)Btylo) ck 3 RCeCgooiusuntnetetrerr(H(PiegrhioDdu) ty) ReCgoiustnetrer (High Duty) Register Register PWM OUT PWM OUT PWM OUT PWM OUT Figure 38: PWM Block Diagram Table 44 shows the pin definition of the PWM interface. GPIOx means that PWM signals can go out through any GPIO pins via register setting. Table 44: PWM Pin Configuration Pin Name Pin Number GPIOx I/O Function Name PWM[3:0] output 8.11.1 Timing Diagram Table 45 shows the relation between the internal bus clock and PWM output wave patterns. Figure 39 show the conversion timing diagram. `a' and `b' can be adjusted through the register setting, and PWM wave patterns vary depending on the ratio. `a' controls the high width of pulses (nCycle High), while `b' controls the general cycle (nCycle Period). BUS CLK PWM a b Datasheet CFR0011-120-00 Figure 39: PWM Timing Diagram Revision 3.1 48 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 45: PWM Timing Diagram Description Time a b Description Bus Clock Period × (nCycle High + 1) Bus Clock Period × (nCycle Period + 1) 8.12 Debug Interface DA16200MOD supports both IEEE Standard 1149.1 JTAG (5-wire) and the low-pin-count ARM SWD (2-wire, TCLK/TMS) debug interfaces. The SWD protocol can handle the same debug features as the JTAG. The JTAG port is an IEEE standard that defines a test access port (TAP) and boundary scan architecture for digital integrated circuits and provides a standardized serial interface to control the associated test logic. For detailed information on the operation of the JTAG port and TAP controller, see [4]. Figure 40 shows the JTAG timing diagram. Figure 40: JTAG Timing Diagram Table 46 shows the JTAG timing parameters. Table 46: JTAG Timing Parameters Parameter Number Parameter J1 J2 J3 J4 J7 J8 J9 J10 J11 fTCK tTCK tCL tCH tTMS_SU tTMS_HO tTDI_SU tTDI_HO tTDO_HO Parameter Name Min Clock Frequency Clock Period Clock Low Period Clock High Period TMS Setup Time 1 TMS Hold Time 16 TDI Setup Time 1 TDI Hold Time 16 TDO Hold Time Max 15 1/fTCK tTCK/2 tTCK/2 Unit MHz ns ns ns 15 Datasheet CFR0011-120-00 Revision 3.1 49 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 47 shows the pin definition of the JTAG interface. Table 47: JTAG Pin Configuration Pin Name Pin Number I/O TMS 7 I/O TCLK 8 I GPIOC8 9 I GPIOC7 10 O GPIOC6 11 I Function Name Data Clock TDI: Data Input TDO: Data Output nTRST: Reset 8.13 Bluetooth Coexistence DA16200MOD provides the Bluetooth coexistence function to be properly aligned with external devices activated at 2.4 GHz. 8.13.1 Interface Configuration The following three pins can be set in pin multiplexing: BT_sig0 (oWlanAct) It indicates that Output, WLAN is currently active BT_sig1 (iBtAct) It indicates that Input, BT/BLE is currently active BT_sig2 (iBTPri) It indicates that Input (Optional), BT/BLE has a higher priority A variety of configurable settings are available, including active high/low, manual force mode, use status of the optional iBTPri function, and whether or not to switch oWlanAct to Active in the event of TX/RX/TRX. oWlanAct iBtAct iBtPri DA16200MOD BT/BLE Figure 41: Bluetooth Coexistence Interface 8.13.2 Operation Scenario The Bluetooth coexistence can be switched on/off by the configurable register, and the activation scenarios based on the status of each pin are described below: BT_sig0 (oWlanAct) When asserted, external BT/BLE is expected to stop occupying RF BT_sig1 (iBtAct) When asserted, DA16200MOD stops occupying RF BT_sig2 (iBTPri) It is optional and thus may not be used Datasheet Revision 3.1 03-Feb-2021 CFR0011-120-00 50 of 60 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module If it is used and DA16200's iBtAct = Active while iBTPri = Non-Active, DA16200 may ignore iBtAct Datasheet CFR0011-120-00 Revision 3.1 51 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 9 Applications Schematic Note : Rem ove R1 a nd C1 when MCU controls 'RTC_PWR_KEY' R1 Externa l Power C ontrol Externa l Wake-up Control RTC Sensor Out JTAG interface GPIO I nterface UART interface for debugging C1 4.7 K 1 NC 2 GND 3 RTC_PWR_KEY 4 RTC_WAKE_UP 5 RTC_SENSOR 6 NC 7 JTAG_TMS 8 JTAG_TCLK 9 GPIOC8 10 GPIO C7 11 GPIO C6 12 UART0_TXD 13 UART0_RXD D A1 620 0MO D NC 37 NC 36 VBAT_3V3 35 VDD_DIO1 34 GPIO A0 33 GPIO A1 32 GPIO A2 31 GPIO A3 30 GPIO A4 29 GPIO A5 28 GPIOA6 27 GPIO A7 26 GPIO A8 25 GPIO A9 24 10 uF 1uF VB AT_ 3V3 VDD_DIO1, (1.8V or 3.3V) GPIO I nterface U ART1_ TXD U ART1_ RXD WPS Factory_ re se t GPIO I nterface RTC_ WA KE_ UP 2 VDD_DIO2 F_CS F_I O1 F_I O2 F_I O0 F_I O3 F_CLK GPIO A11 GPIO A10 If the RTC_WAKE_UP2 function is not uesd, it can be connected to the GND 14 15 16 17 18 19 20 21 22 23 4.7 K 4.7 K 4.7 K If you use it a s GPIO function, you don't need full-up resistor 1uF Externa l Wake_up2 C ontrol VDD_DIO2 (1.8V or 3.3V) GPIO I nterface Figure 42: Application Schematic Table 48: Component for RTC POWER KEY Quantity Part Reference Value 1 R1 470 k 1 C1 1uF Description Remove when MCU control `RTC_PWR_KEY'. This value should be chosen by customer application to achieve the enough delay time depending on the power-on time of VBAT. For detail information, See 6.1 Remove when MCU control `RTC_PWR_KEY'. This value should be chosen by customer application to achieve the enough delay time depending on the power-on time of VBAT. Not to exceed 1uF. For detail information, See 6.1 Datasheet CFR0011-120-00 Revision 3.1 52 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 10 Package Information 10.1 Dimension: DA16200MOD-AAC Unit: mm Tolerance: 13.8(±0.2) x 22.1(±0.2) x 3.3(±0.1) Figure 43: AAC Module Dimension 10.2 Dimension: DA16200MOD-AAE Unit: mm Tolerance: 13.8(±0.2) x 22.1(±0.2) x 3.3(±0.1) Datasheet CFR0011-120-00 Figure 44: AAE Module Dimension Revision 3.1 53 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 10.3 PCB Land Pattern Unit: mm Figure 45: PCB Land Pattern (Top View) Figure 46: PCB Land Pattern (Bottom View) Ant GND is only needed on the bottom of the PCB. GND must be removed for all layers including the inner layer except the bottom. See Figure 47 for detail. Datasheet CFR0011-120-00 Revision 3.1 54 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 10.4 4-Layer PCB Example Figure 47: 4-Layer PCB Example Datasheet CFR0011-120-00 Revision 3.1 55 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 10.5 Soldering Information 10.5.1 Condition for Reflow Soldering Figure 48 shows the typical process flow for mounting surface mount packages to PCB. The reflow profile depends on the solder paste being used and the recommendations from the paste manufacture should be followed to determine the proper reflow profile. Figure 49 shows a typical reflow profile when a no-clean paste is used. Oven time above liquidus (260 °C for lead-free solder) is 20 to 40 seconds. The rework process involves the following steps: 1. Component removal 2. Site redress 3. Solder paste application 4. Component placement 5. Component attachment Figure 48: Typical PCB Mounting Process Flow Datasheet CFR0011-120-00 Revision 3.1 56 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Table 49: Typical Reflow Profile (Lead Free): J-STD-020C Profile Feature Lead Free SMD Average ramp up rate (Tsmax to Tp) 3 °C/s Max. Preheat Temperature Min (Tsmin) Temperature Max (Tsmax) Time (Tsmax to Tsmin) Time maintained above Temperature (TL) Time (tL) Peak/Classification temperature (Tp) Time within 5 °C of peak temperature (tp) 150 °C 200 °C 60 to 180 seconds 217 °C 60 to 150 seconds 260 °C 20 to 40 seconds Ramp down rate 6 °C/s Max. Time from 25 °C to peak temperature 8 minutes Max. Figure 49: Reflow Condition Datasheet CFR0011-120-00 Revision 3.1 57 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module 11 Ordering Information The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability, please consult Dialog Semiconductor's Website or your local sales representative. Table 50: Ordering Information (Production) Part Number Pins DA16200MOD-AAC4WA32 37 DA16200MOD-AAE4WA32 37 Size (mm) 13.8 x 22.1 x 3.3 13.8 x 22.1 x 3.3 Part Number Legend: DA16200MOD-AAC4WA32 AA: Module revision number C: Select module type [C] Chip antenna, [E] u.FL connector 4: Flash memory [4] 4Mbyte, [2] 2Mbyte W: Voltage range [W] 3.3 V, [L] 1.8 V A3: Package No. 2: T&R packing Shipment Form Reel Reel Pack Quantity MOQ: 500 pcs MOQ: 500 pcs Datasheet CFR0011-120-00 Revision 3.1 58 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Revision History Revision Date 3.1 03-Fab-21 3.0 23-Jul-20 2.0 08-May-20 0.4 07-Apr-20 0.3 23-Mar-20 0.2 22-Oct-19 0.1 03-Oct-19 Description Editorial Removed BOR part Added Note for Power on Sequence in the Section 6.1, Updated Figure 7 and Table 16 Section 8.7.3 Fixed typo Added Section 8.7.1 and 8.7.2 Updated Applications Schematic Sync with SoC datasheet v3.1 Modified Chapter 3 description to Network subsystem layer. Modified DA16200MOD pin Mux (Table 2) Added module default pin conditions I2C CLK GPIOA2 -> GPIOA3 Added chapter 5.3.3, 5.3.4 Modified Rx max input level in chapter 5.4.1(Table 11) Updated Chapter Note 1 Sleep mode description Updated RTC_PWR_KEY description and remove one sentence which leads to misunderstanding. Table 17 Modified I2C timing in table Table 30, Table 32 Added description of chapter 8.9.1 Updated Chapter 9 application schematics Changed Module dimension picture Error! Reference source not found., Error! Reference source not found. Removed F_xx pins Changed the link from customer support portal to Dialog website Added PCB land pattern Figure 46, Figure 47 Added Tolerance of dimension Added min/max Radio characteristics in Table 11, Table 12and Table 13 Modified Chapter 8.10.3 Baud rate Updated Reach and ROHS compliance Updated Key Features Modified DA16200MOD pin Mux Table 2 Chapter 7.4 Pulse Counter added Chapter 8.10.1 RS-232 added Added ESD performance, Table 15 AC characteristics and current consumption of data updated in Table 11, Table 12 and Table 13 Updated Key Features, about clock source & embedded memory Modified module size Preliminary datasheet Datasheet CFR0011-120-00 Revision 3.1 59 of 60 03-Feb-2021 © 2021 Dialog Semiconductor DA16200MOD Ultra Low Power Wi-Fi Module Status Definitions Revision 1.<n> Datasheet Status Target 2.<n> Preliminary 3.<n> Final 4.<n> Obsolete Product Status Development Qualification Production Archived Definition This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice. This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design. This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com. This datasheet contains the specifications for discontinued products. The information is provided for reference only. Disclaimer Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor. Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process. Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect. Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor. All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated. Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners. © 2021 Dialog Semiconductor. All rights reserved. Reach and RoHS Compliance Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of REACH and Directive 2015/863/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request. Module does not have to be HF. Contacting Dialog Semiconductor United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700 Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0 The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822 Email: [email protected] North America Dialog Semiconductor Inc. Phone: +1 408 845 8500 Japan Dialog Semiconductor K. K. Phone: +81 3 5769 5100 Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site: www.dialog-semiconductor.com Hong Kong Dialog Semiconductor Hong Kong Phone: +852 2607 4271 Korea Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen) Dialog Semiconductor China Phone: +86 755 2981 3669 China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058 Datasheet CFR0011-120-00 Revision 3.1 60 of 60 03-Feb-2021 © 2021 Dialog SemiconductorMicrosoft Word for Office 365