

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

TABLET DEVICE

MODEL NUMBER: A1584

FCC ID: BCGA1584 IC: 579C-A1584

REPORT NUMBER: 14U19185-E1V3

ISSUE DATE: SEPTEMBER 11, 2015

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	09/03/2015	Initial Review	M. Mekuria
V2	09/08/2015	Addressed TCB Questions	E. Yu
V3	09/11/2015	Updated antenna gain	C. Pang

Page 2 of 95

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	LIBRATION AND UNCERTAINTY	7
4	.1.	MEASURING INSTRUMENT CALIBRATION	7
4	.2.	SAMPLE CALCULATION	7
4	.3.	MEASUREMENT UNCERTAINTY	7
5.	EQI	UIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	
5	5.2.	MAXIMUM OUTPUT POWER	8
-	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
-	5.4.	SOFTWARE AND FIRMWARE	
-	 5.5.	WORST-CASE CONFIGURATION AND MODE	
-	 5.6.	DESCRIPTION OF TEST SETUP	
-	 5.7.	TEST AND MEASUREMENT EQUIPMENT	
-			
6.	AN	TENNA PORT TEST RESULTS 18	
6	5.1.	ON TIME AND DUTY CYCLE	
6	6.2.	BASIC DATA RATE GFSK MODULATION	
	6.2. 6.2.		
	6.2.		
	6.2.		
	6.2.		
	6.2.		
	6.2.		-
6	5.3.	ENHANCED DATA RATE QPSK MODULATION	-
	6.3.	OUTPUT POWER	
6		ENHANCED DATA RATE 8PSK MODULATION	
	6.4. 6.4.		
	6.4.		
	6.4.		
	6.4.		
	6.4.		
	6.4.	7. CONDUCTED SPURIOUS EMISSIONS	3
7.	RA	DIATED TEST RESULTS	8
7	.1.	LIMITS AND PROCEDURE	8
		Page 3 of 95	
UL	VERIF	FICATION SERVICES INC. FORM NO: CCSUP47011	_

FCC ID:	BCGA1584	IC: 579C-A1584
7.2.	TRANSMITTER ABOVE 1 GHz	
7.2	.1. BASIC DATA RATE GFSK MODULATION	
7.2	.2. ENHANCED DATA RATE 8PSK MODULATION	
7.3.	WORST CASE CO-LOCATION	
7.4.	WORST-CASE BELOW 1 GHz	
7.5.	WORST-CASE ABOVE 18 GHz	83
8. AC	POWER LINE CONDUCTED EMISSIONS	
8.1.	EUT POWERED BY AC/DC ADAPTER VIA USB CABLE	
8.2.	EUT POWERED BY HOST PC VIA USB CABLE	
9. SE	TUP PHOTOS	

Page 4 of 95

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.				
EUT DESCRIPTION:	TABLET DEVICE				
MODEL:	A1584				
SERIAL NUMBER:	DLXQ1005GPCT (Radiated); DLXQ100	5GPCP (Conducted)			
DATE TESTED:	JULY 10, 2015 - AUGUST 19, 2015				
APPLICABLE STANDARDS					
ST	STANDARD TEST RESULTS				
		Dese			

INDUSTRY CANADA RSS-GEN Issue 4	Pass
INDUSTRY CANADA RSS-247 Issue 1	Pass
CFR 47 Part 15 Subpart C	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Chin Pany

CHIN PANG SENIOR ENGINEER UL VERIFICATION SERVICES INC.

Tested By:

ЪH

FRANCISCO GUARNERO EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 95

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	🛛 Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	🛛 Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 6 of 95

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 95

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a tablet with multimedia functions (music, application support, and video), IEEE 802.11a/b/g/n/ac radio, and Bluetooth radio. The rechargeable battery is not user accessible.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	10.22	10.52
2402 - 2480	DQPSK	11.98	15.78
2402 - 2480	Enhanced 8PSK	12.02	15.92

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Band (GHz)	Antenna Gain	
2.4	-0.60	

5.4. SOFTWARE AND FIRMWARE

The software installed in the EUT during testing was 13B72.

Page 8 of 95

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X/Y/Z, it was determined that Y (Landscape) orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in Y orientation.

Worst-case data rates were:

GFSK mode: DH5 8PSK mode: 3-DH5

DQPSK mode has been verified to have the lowest power.

For simultaneous transmission of multiple channels from the same antenna in BT/BLE and WLAN 5 GHz bands. Baseline testing was performed on various configurations to determine the worst case on radiated emissions.

The following configurations were investigated on AC line conducted test.

Configuration	Descriptions
1 EUT powered by AC/DC adapter via USB cable	
2	EUT powered by host PC via USB cable

There are two vendors of the WiFi/Bluetooth radio modules: variant 1 and variant 2 and they have the same mechanical outline, same on board antenna, matching circuit, antenna structure and same specification. Baseline testing was performed on all two variants to determine the worst case on all conducted power and radiated emissions.

Page 9 of 95

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC						
Laptop AC/DC adapter	Lenovo	92P1160	11S92P1160Z1ZBGH798B12	N/A		
Laptop	Lenovo	7659	L3-AL664 08/03	N/A		
Earphone	Apple	N/A	N/A	N/A		
EUT AC/CD adapter	Apple	A1385	D293062F3WVDHLHCF	N/A		

I/O CABLES (CONDUCTED TEST)

	I/O Cable List							
CablePort# of identicalNoports		Connector Type	Cable Type	Cable Length (m)	Remarks			
1	Antenna	1	SMA	Un-Shielded	0.2	To spectrum Analyzer		
2	USB	1	USB	Shielded	1	N/A		
3	AC	1	AC	Un-shielded	3	N/A		

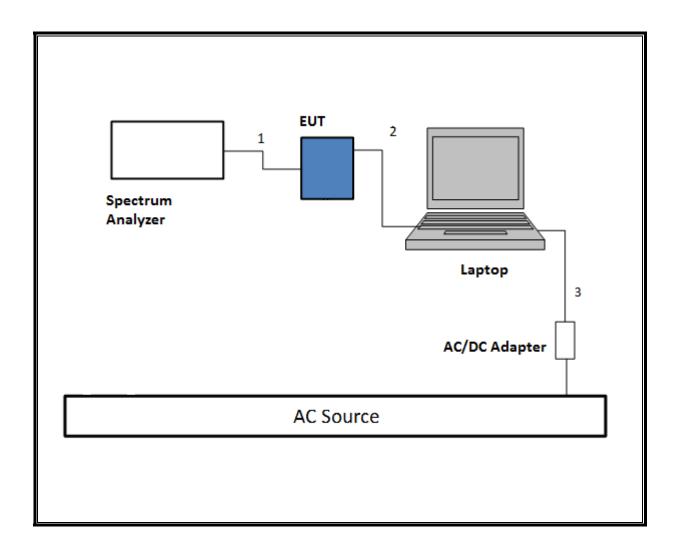
I/O CABLES (RADIATED ABOVE 1 GHZ)

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
None Us	sed						

I/O CABLES (RADAITED BELOW 1 GHZ)

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	Headphones Jack	1	3.5mm Audio	Shielded	0.9	N/A	
2	AC	1	AC	Un-shielded	3	N/A	

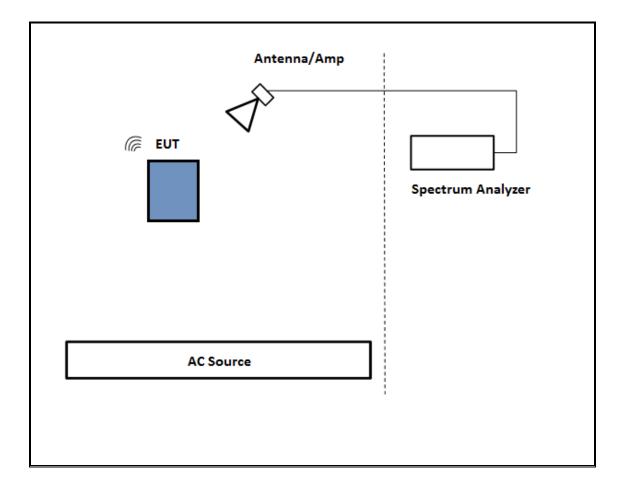
	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	Headphones Jack	1	3.5mm Audio	Shielded	0.9	N/A	
2	AC	1	AC	Un-shielded	3	N/A	


I/O CABLES (AC LINE CONDUCTED: LAPTOP CONFIGUARTION)

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	Headphones Jack	1	3.5mm Audio	Shielded	0.9	N/A	
2	USB	1	USB	Shielded	1	N/A	
3	AC	1	AC	Un-shielded	3	N/A	

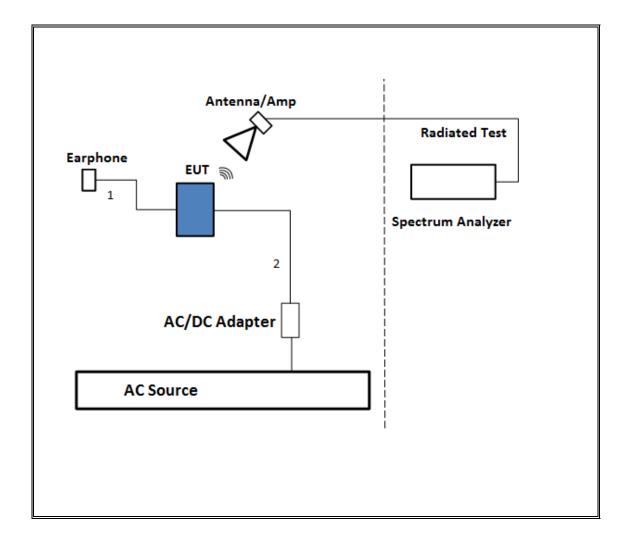
Page 11 of 95

The EUT was tested connected to a host Laptop via USB cable adapter and spectrum analyzer to antenna port. Test software exercised the EUT.


SETUP DIAGRAM

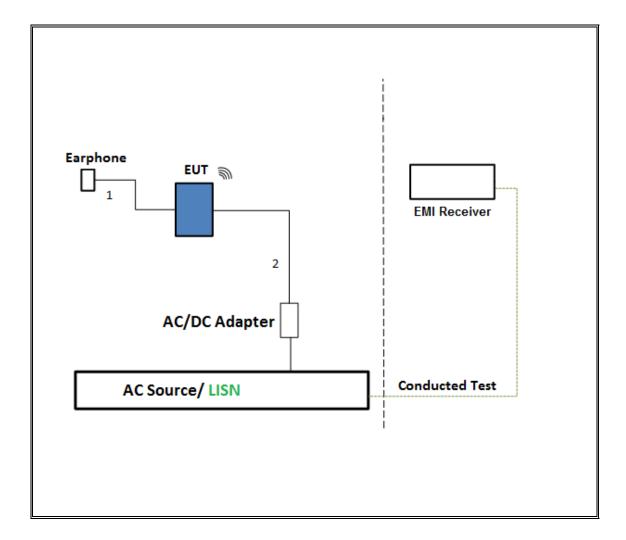
Page 12 of 95

The EUT was tested battery powered. Test software exercised the EUT.


SETUP DIAGRAM

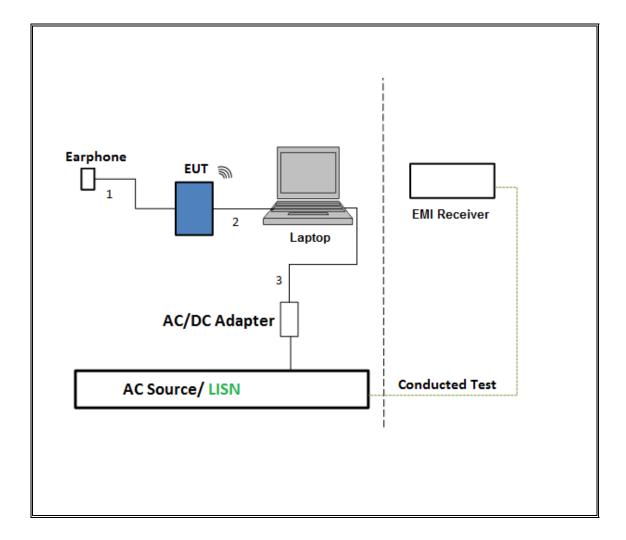
Page 13 of 95

The EUT was tested with earphone connected and powered by AC adapter. Test software exercised the EUT.


SETUP DIAGRAM

Page 14 of 95

The EUT was tested with earphone connected and powered by AC/DC adapter via USB cable. Test software exercised the EUT.


SETUP DIAGRAM

Page 15 of 95

The EUT was tested with earphone connected and powered by host PC via USB cable. Test software exercised the EUT.

SETUP DIAGRAM

Page 16 of 95

5.7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equ	ipment List					
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Horn 1-18GHz	ETS Lindgren	3117	00143448	2/10/2016			
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB3	A022813-1	1/14/2016			
Amplifier, 1 - 18GHz	Miteq	AFS42-00101800-25- S-42	1782158	1/26/2016			
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	171202	11/1/2015			
Spectrum Analyzer, PXA, 3Hz to 50GHz	Agilent	N9030A	MY52350427	9/13/2015			
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	325118	2/14/2016			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	MY52350675	3/16/2016			
Power Meter, P-series single channel	Agilent	N1911A	GB45100212	10/9/2015			
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Agilent	N1921A	MY53260010	4/7/2016			
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826	1049	12/17/2015			
Amplifier, 1 to 26.5GHz, 23.5dB Gain minimum	Agilent	8449B	3008A01114	10/4/2015			
Amplifier, 26 to 40GHz	Miteq	NSP4000-SP2	1029	9/3/2015			
	AC Line	Conducted					
EMI Test Receiver 9Khz-7GHz	Rohde & Schwarz	ESCI7	100935	9/16/2015			
LISN for Conducted Emissions CISPR-16	FCC	50/250-25-2	114	1/16/2016			
Power Cable, Line Conducted Emissions ANSI 63.4			N/A	7/28/2015			
	UL SOFTWARE						
*Radiated Software	UL	UL EMC Ver 9.5, July 22		22, 2014			
*Conducted Software	UL	UL EMC	Ver 2.2, March 31, 2015				
*AC Line Conducted Software	UL	UL EMC	Ver 9.5, Apı	il 3, 2015			

Note: * indicates automation software version used in the compliance certification testing

Page 17 of 95

6. ANTENNA PORT TEST RESULTS

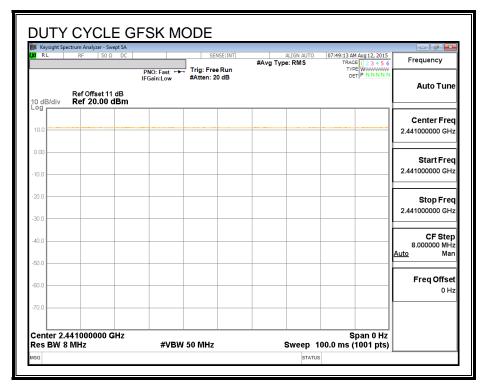
6.1. ON TIME AND DUTY CYCLE

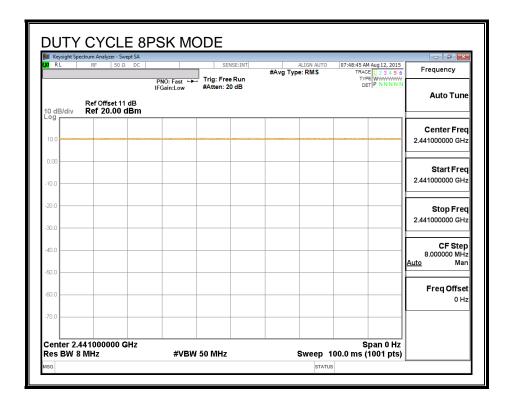
<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.


ON TIME AND DUTY CYCLE RESULTS


Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth GFSK	100.000	100.000	1.000	100.00%	0.00	0.010
Bluetooth 8PSK	100.000	100.000	1.000	100.00%	0.00	0.010

Page 18 of 95

DUTY CYCLE PLOTS

HOPPING OFF

Page 19 of 95

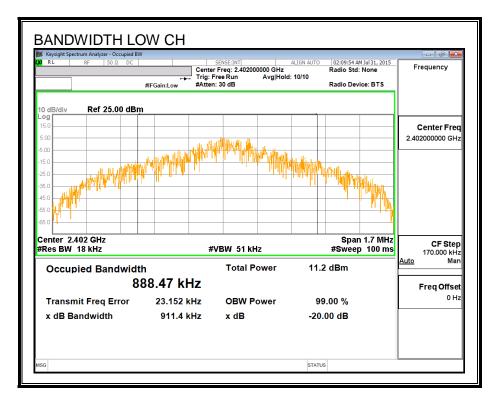
6.2. BASIC DATA RATE GFSK MODULATION

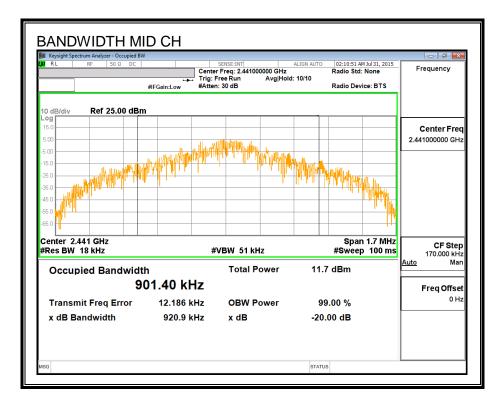
6.2.1. 20 dB AND 99% BANDWIDTH

LIMIT

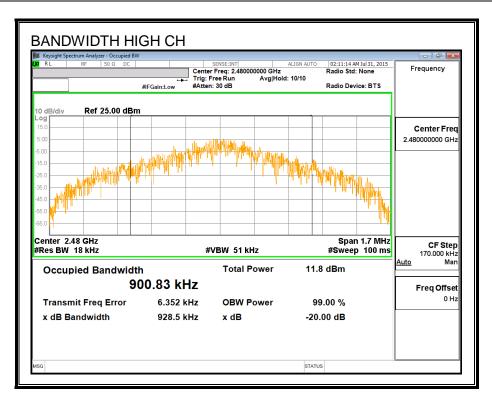
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(KHz)	(KHz)
Low	2402	911.4	888.47
Middle	2441	920.9	901.40
High	2480	928.5	900.83


Page 20 of 95

20 dB AND 99% BANDWIDTH

Page 21 of 95

Page 22 of 95

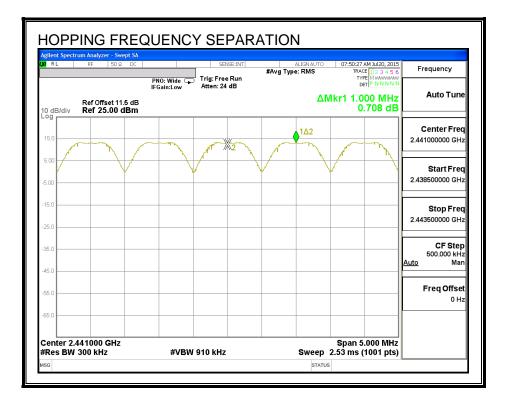
6.2.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

Page 23 of 95

6.2.3. NUMBER OF HOPPING CHANNELS

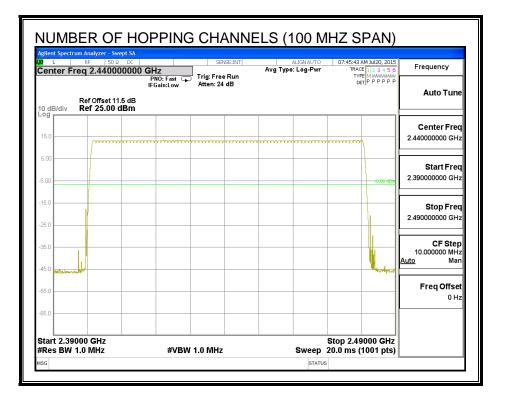
<u>LIMIT</u>

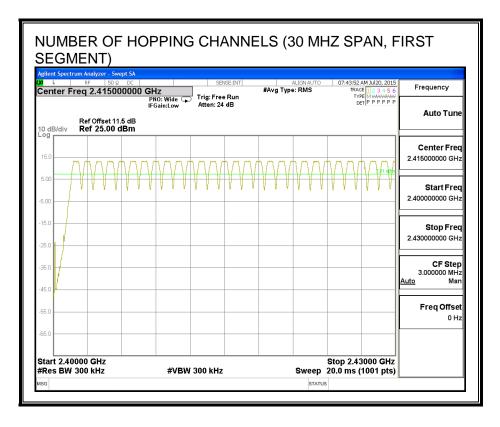
FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

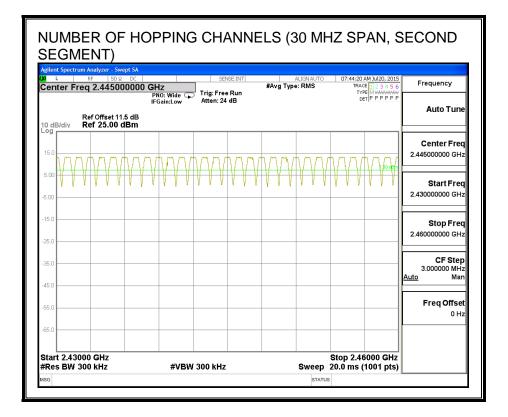
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

Normal Mode: 79 Channels observed.


Page 24 of 95


NUMBER OF HOPPING CHANNELS

Page 25 of 95

Page 26 of 95

6.2.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

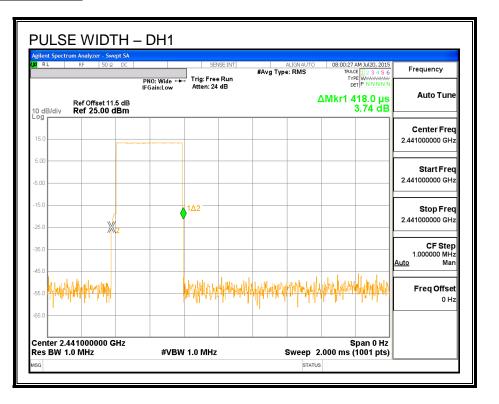
IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

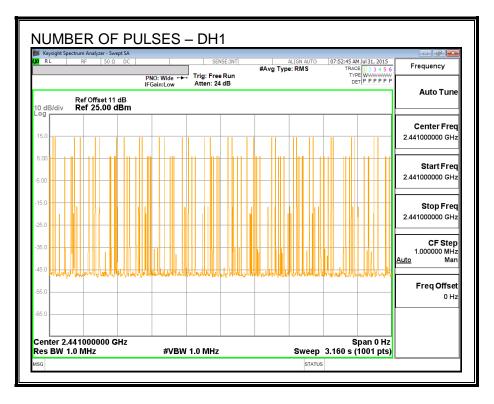
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

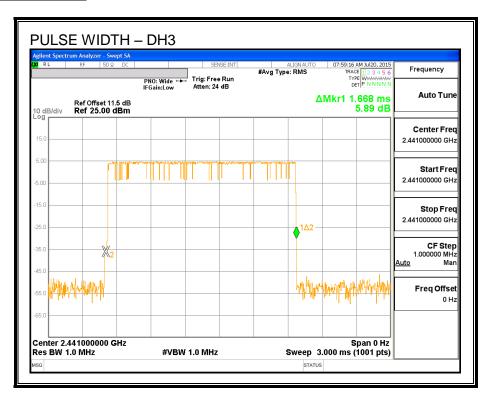

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

<u>RESULTS</u>

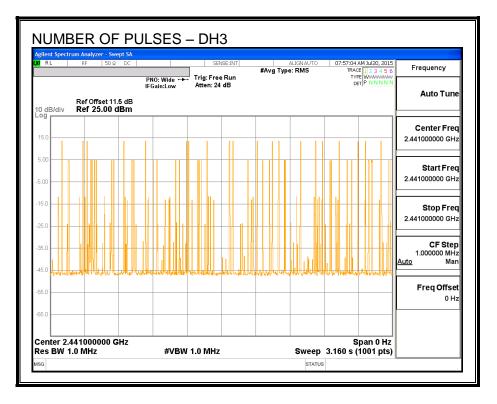

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width (msec)	Pulses in 3.16	of Occupancy (sec)	(sec)	(sec)
		seconds			
GFSK Norma	I Mode				
DH1	0.418	33	0.138	0.4	-0.262
DH3	1.668	20	0.334	0.4	-0.066
DH5	2.922	13	0.380	0.4	-0.020

Page 27 of 95

PULSE WIDTH - DH1

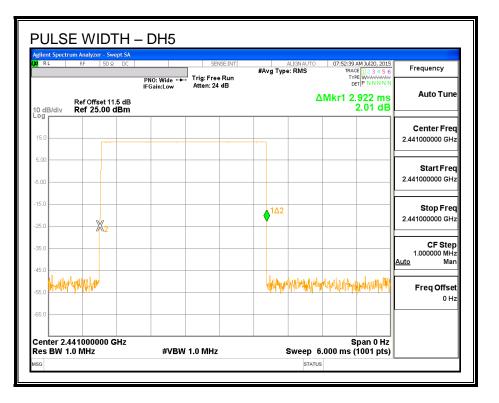


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

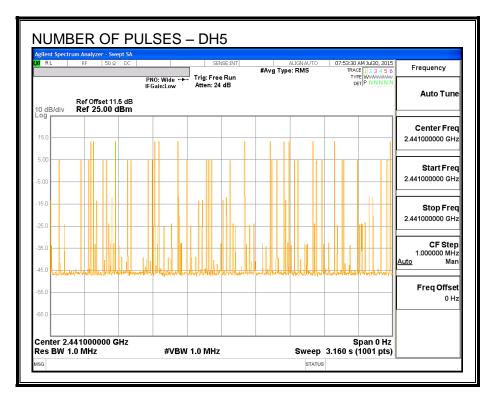


Page 28 of 95

PULSE WIDTH – DH3



NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3



Page 29 of 95

PULSE WIDTH – DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 30 of 95

6.2.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	10.16	30	-19.84
Middle	2441	10.18	30	-19.82
High	2480	10.22	30	-19.78

Page 31 of 95

6.2.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	9.97
Middle	2441	9.98
High	2480	10.00

Page 32 of 95

6.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

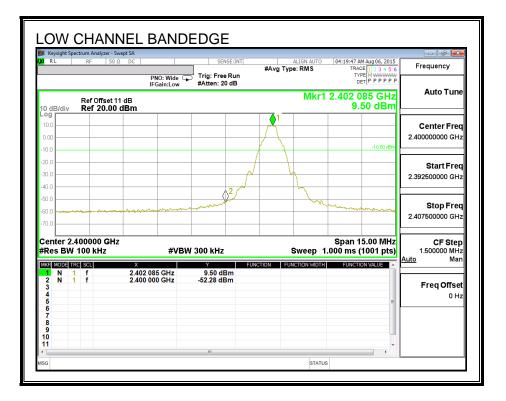
FCC §15.247 (d)

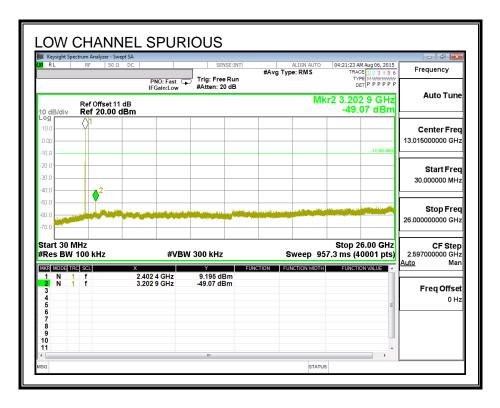
IC RSS-247 (5.5)

Limit = -20 dBc

TEST PROCEDURE

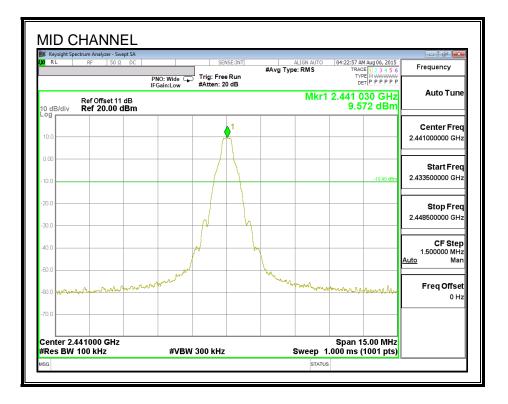
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

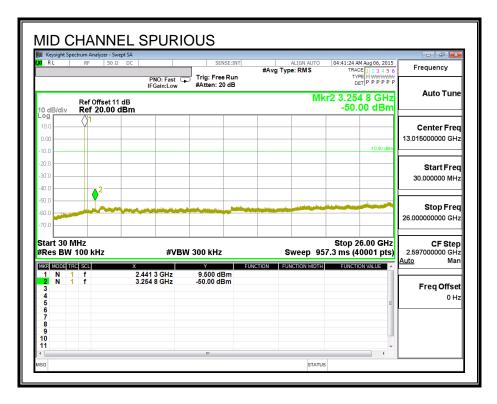

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

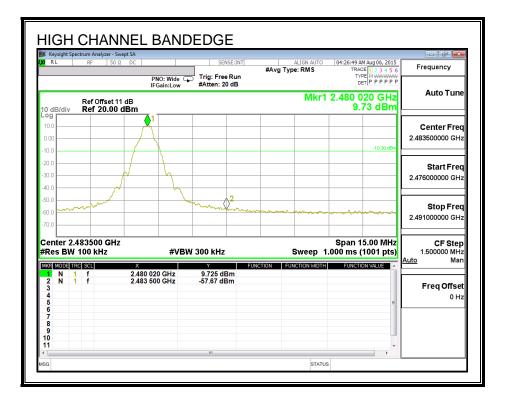
RESULTS

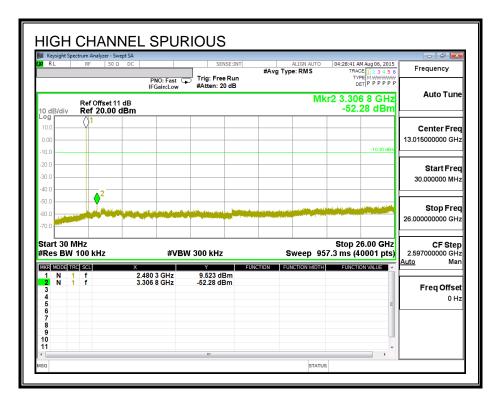
Page 33 of 95


SPURIOUS EMISSIONS, LOW CHANNEL

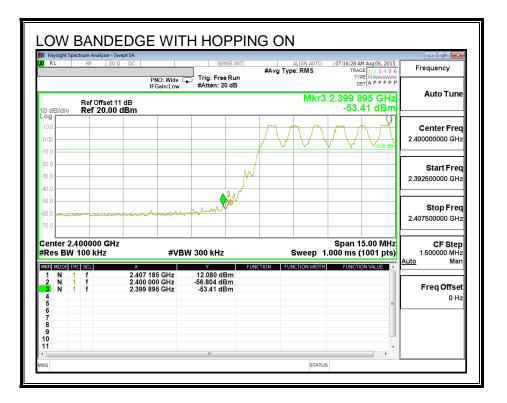


Page 34 of 95


SPURIOUS EMISSIONS, MID CHANNEL



Page 35 of 95


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 36 of 95

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 37 of 95

6.3. ENHANCED DATA RATE QPSK MODULATION

6.3.1. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.46	21	-9.51
Middle	2441	11.89	21	-9.08
High	2480	11.98	21	-8.99

Page 38 of 95

6.3.2. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	9.26
Middle	2441	9.84
High	2480	9.96

Page 39 of 95

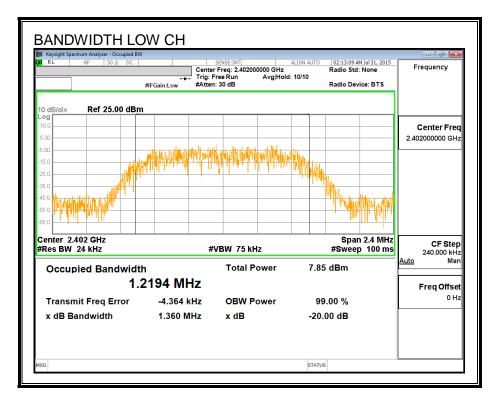
6.4. ENHANCED DATA RATE 8PSK MODULATION

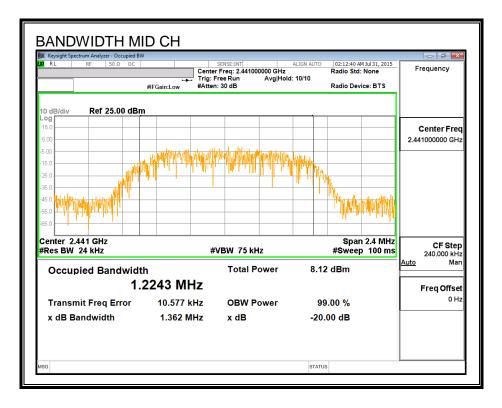
6.4.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

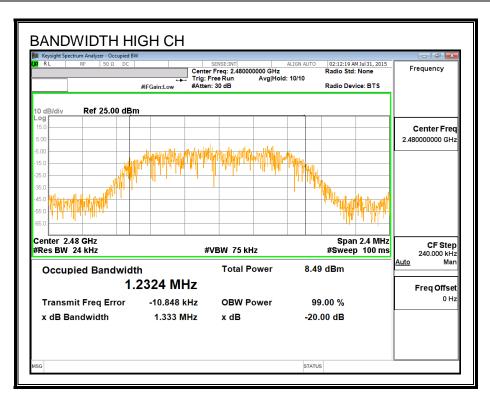
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(KHz)	(KHz)
Low	2402	1360.0	1219.4
Middle	2441	1362.0	1224.3
High	2480	1333.0	1232.4


Page 40 of 95

20 dB AND 99% BANDWIDTH

Page 41 of 95

Page 42 of 95

6.4.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

RL RF 50Ω DC	PNO: Wide	SENSE:INT	ALIGNAUTO #Avg Type: RMS	08:08:59 AM Jul 20, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
Ref Offset 11.5 dB 0 dB/div Ref 25.00 dBm	IFGain:Low	Atten: 24 dB	ΔΝ	Ikr1 1.005 MHz -0.02 dB	Auto Tune
og 15.0 www.www.merlinewertherhowertherhowert	varanne Jerarah	www.	1D2	Almonto and a strategy an	Center Fred 2.441000000 GHz
5.00					Start Free 2.438500000 GH;
					Stop Frec 2.443500000 GH:
5.0					CF Step 500.000 kH Auto Mar
6.0					Freq Offse 0 Ha
Senter 2.441000 GHz				Span 5.000 MHz	

Page 43 of 95

6.4.3. NUMBER OF HOPPING CHANNELS

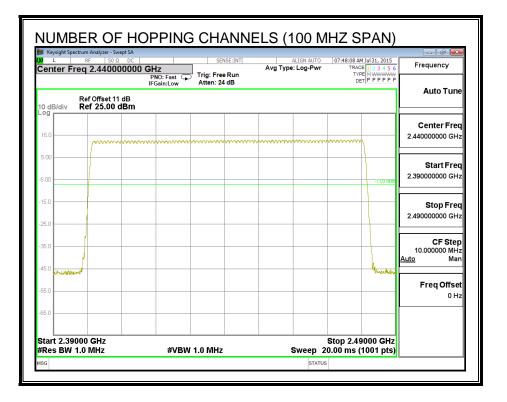
<u>LIMIT</u>

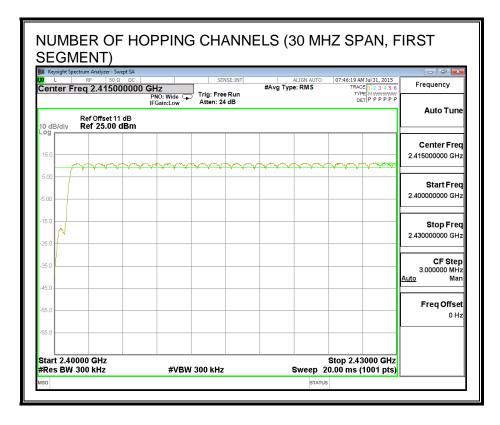
FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

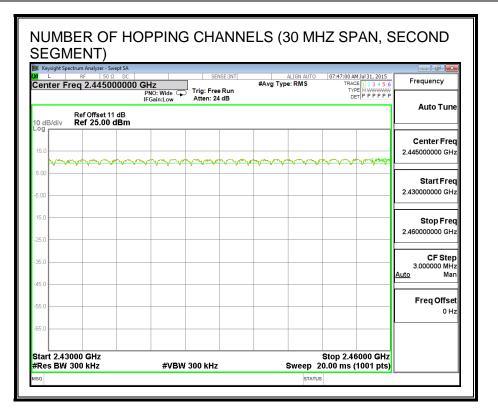
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

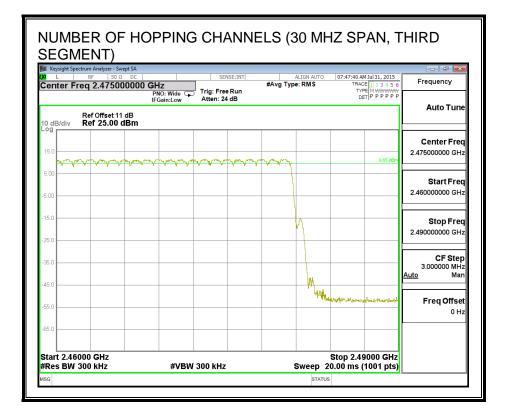
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS

Normal Mode: 79 Channels observed.


Page 44 of 95


NUMBER OF HOPPING CHANNELS

Page 45 of 95

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 46 of 95

6.4.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

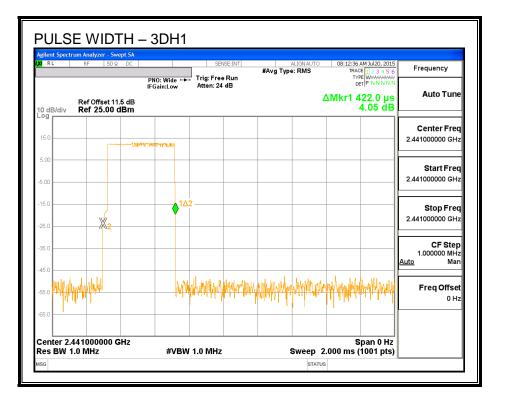
FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

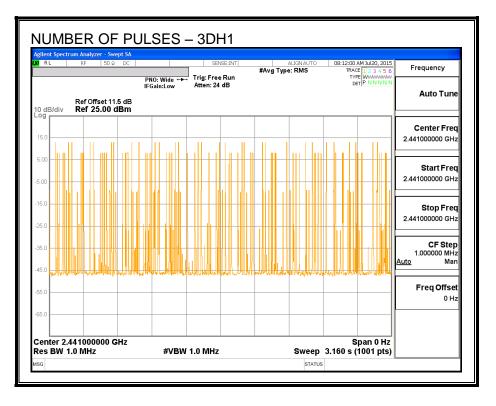
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

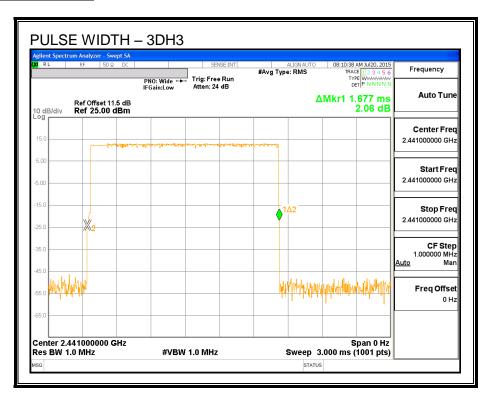

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

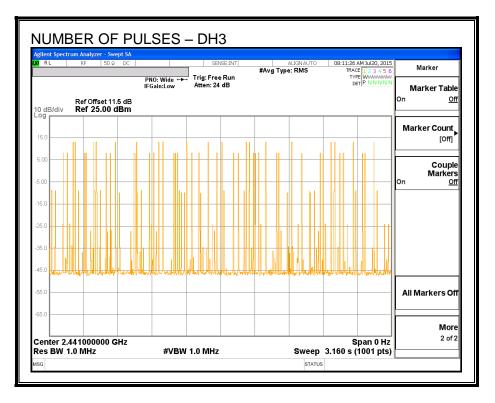

8PSK (EDR) Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16	Average Time of (sec)	Limit (sec)	Margin (sec)
	(11000)	seconds	(000)	(000)	(000)
3DH1	0.422	33	0.139	0.4	-0.261
3DH3	1.677	19	0.319	0.4	-0.081
3DH5	2.933	13	0.381	0.4	-0.019

Page 47 of 95

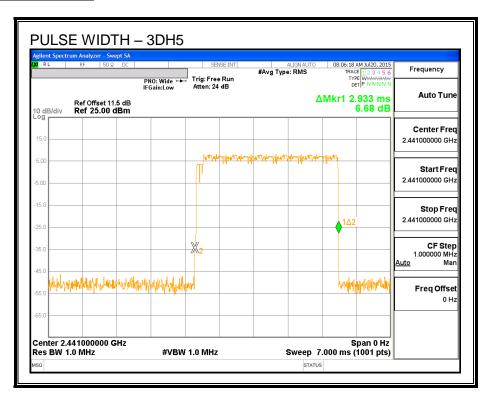


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - 3DH1

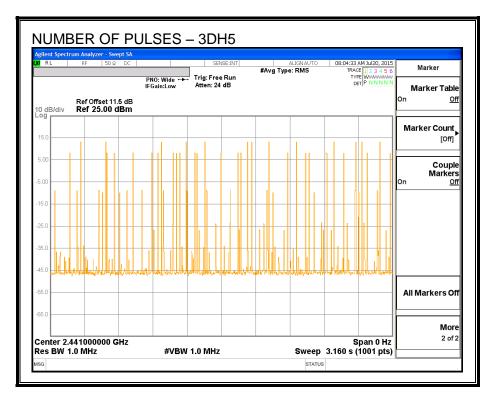


Page 48 of 95

PULSE WIDTH – 3DH3



NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – 3DH3



Page 49 of 95

PULSE WIDTH – 3DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – 3DH5

Page 50 of 95

6.4.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.52	21	-9.45
Middle	2441	11.91	21	-9.06
High	2480	12.02	21	-8.95

Page 51 of 95

6.4.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power			
	(MHz)	(dBm)			
Low	2402	9.29			
Middle	2441	9.85			
High	2480	10.00			

Page 52 of 95

6.4.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

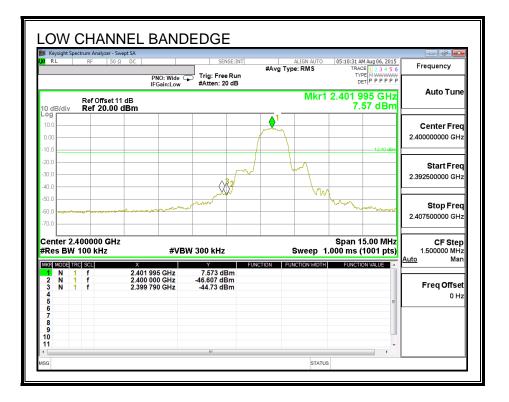
FCC §15.247 (d)

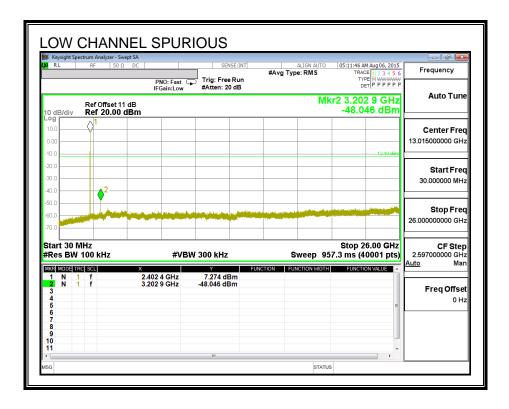
IC RSS-247 (5.5)

Limit = -20 dBc

TEST PROCEDURE

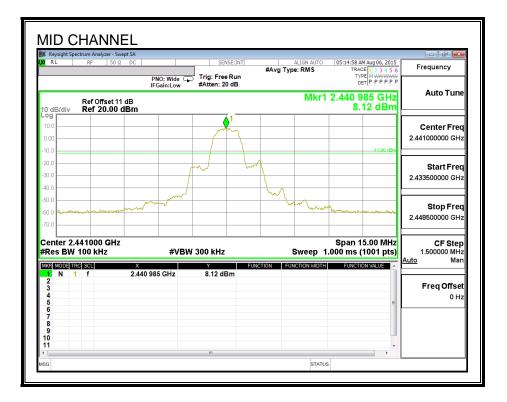
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

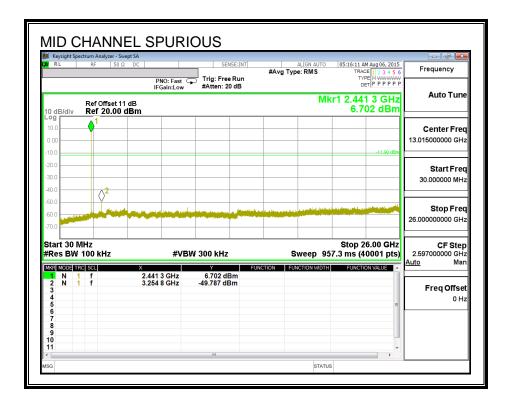

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

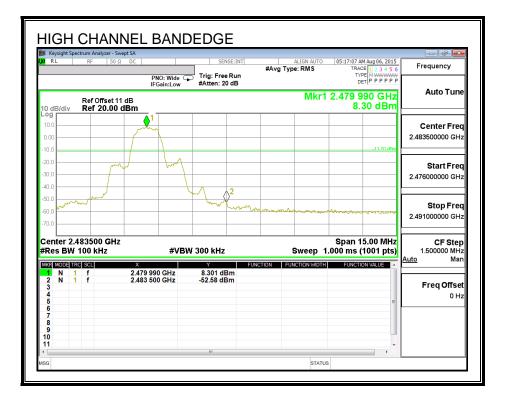
RESULTS

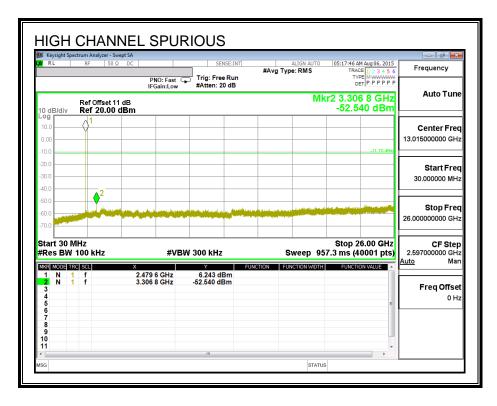
Page 53 of 95


SPURIOUS EMISSIONS, LOW CHANNEL

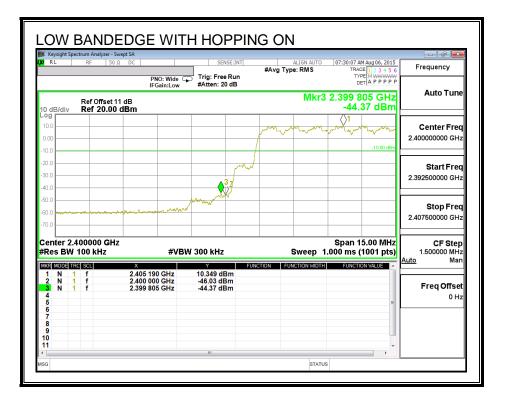


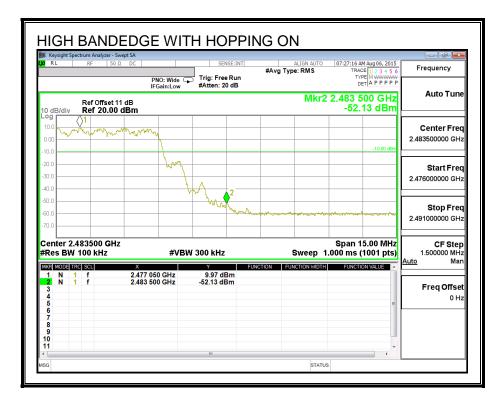
Page 54 of 95


SPURIOUS EMISSIONS, MID CHANNEL



Page 55 of 95


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 56 of 95

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 57 of 95

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

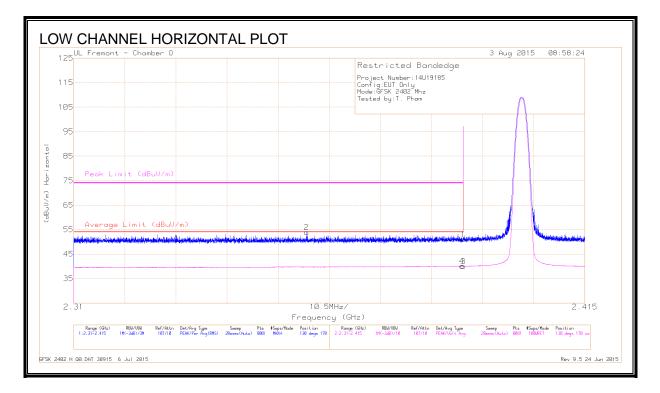
The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T (10 Hz) video bandwidth with peak detector for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


RESULTS

Page 58 of 95

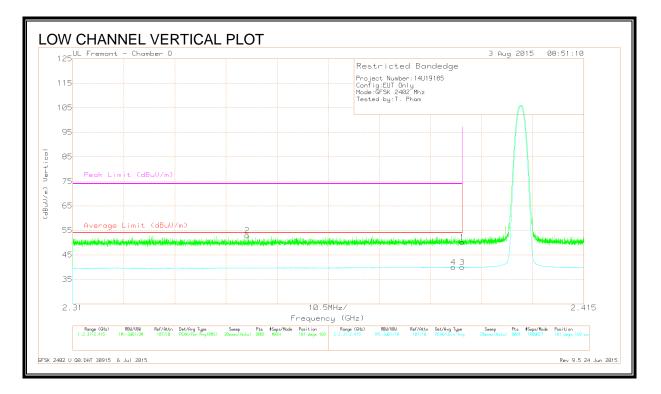
7.2. TRANSMITTER ABOVE 1 GHz

7.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	39.62	Pk	32.1	-20.7	51.02	-	-	74	-22.98	130	170	Н
2	* 2.358	42.8	Pk	32	-20.9	53.9	-	-	74	-20.1	130	170	Н
3	* 2.39	28.64	VA1T	32.1	-20.7	40.04	54	-13.96	-	-	130	170	Н
4	* 2.39	28.67	VA1T	32.1	-20.7	40.07	54	-13.93	-	-	130	170	Н


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

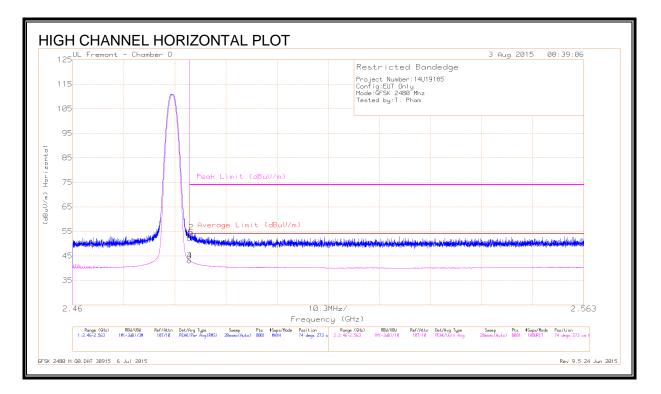
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 59 of 95

REPORT NO: 14U19185-E1V3 FCC ID: BCGA1584 RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	38.77	Pk	32.1	-20.7	50.17	-	-	74	-23.83	101	169	V
2	* 2.346	41.83	Pk	32	-20.9	52.93	-	-	74	-21.07	101	169	V
3	* 2.39	28.55	VA1T	32.1	-20.7	39.95	54	-14.05	-	-	101	169	V
4	* 2.388	28.67	VA1T	32.1	-20.8	39.97	54	-14.03	-	-	101	169	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

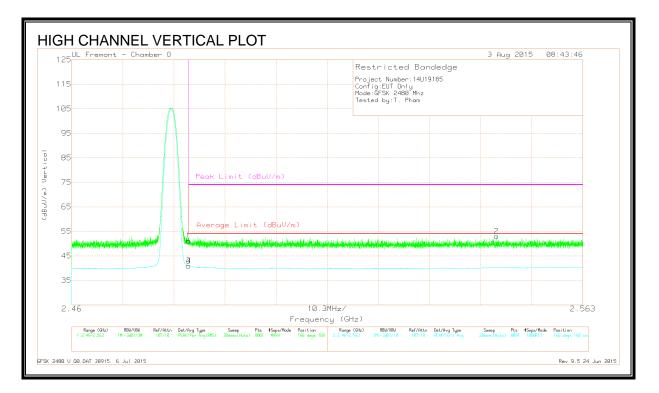
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 60 of 95

REPORT NO: 14U19185-E1V3 FCC ID: BCGA1584 RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.83	Pk	32.2	-20.8	52.23	-	-	74	-21.77	74	273	н
2	* 2.484	43.27	Pk	32.2	-20.8	54.67	-	-	74	-19.33	74	273	Н
3	* 2.484	31.7	VA1T	32.2	-20.8	43.1	54	-10.9	-	-	74	273	Н
4	* 2.484	31.69	VA1T	32.2	-20.8	43.09	54	-10.91	-	-	74	273	н


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

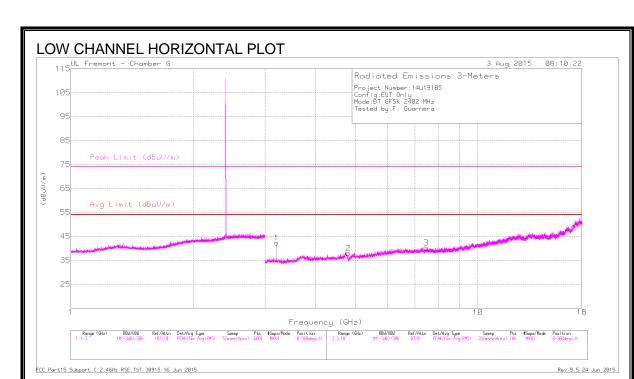
PK - Peak detector

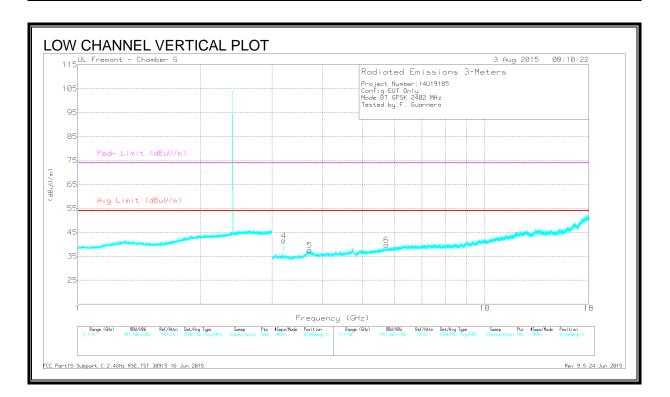
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 61 of 95

REPORT NO: 14U19185-E1V3 FCC ID: BCGA1584 RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATA


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	39.8	Pk	32.2	-20.8	51.2	-	-	74	-22.8	166	168	V
2	2.546	41.45	Pk	32.3	-20.7	53.05	-	-	74	-20.95	166	168	V
3	* 2.484	29.53	VA1T	32.2	-20.8	40.93	54	-13.07	-	-	166	168	V
4	* 2.484	29.53	VA1T	32.2	-20.8	40.93	54	-13.07	-	-	166	168	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

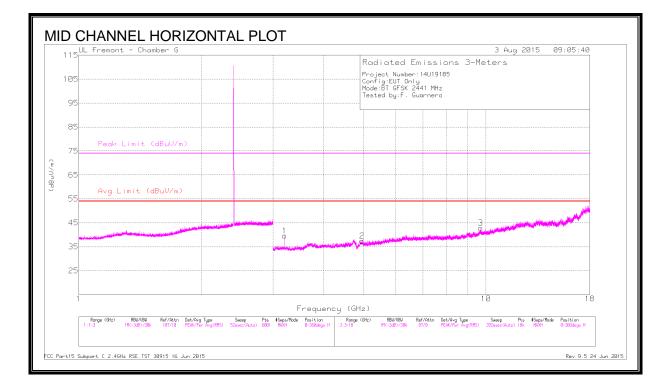
Page 62 of 95

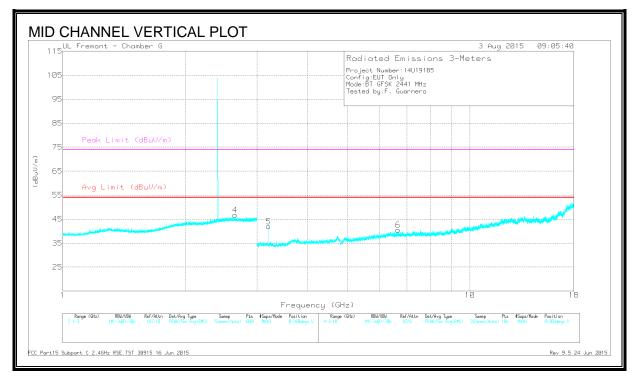
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 63 of 95

<u>DATA</u>

Markers	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	3.203	46.97	PK2	33.1	-33.3	46.77	-	-	-	-	239	299	Н
2	* 4.804	43.99	PK2	34	-32.7	45.29	-	-	74	-28.71	290	101	Н
	* 4.804	33.41	VA1T	34	-32.7	34.71	54	-19.29	-	-	290	101	н
3	* 7.467	41.53	PK2	35.5	-30.1	46.93	-	-	74	-27.07	12	217	н
	* 7.466	28.36	VA1T	35.5	-30.1	33.76	54	-20.24	-	-	12	217	Н
4	3.203	46.5	PK2	33.1	-33.3	46.3	-	-	-	-	302	100	V
5	* 3.712	41.86	PK2	33	-31.4	43.46	-	-	74	-30.54	128	158	V
	* 3.712	29.15	VA1T	33	-31.4	30.75	54	-23.25	-	-	128	158	V
6	5.727	41.94	PK2	35	-31.6	45.34	-	-	-	-	232	244	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak

VB10Hz - FHSS Method: 10Hz Video Bandwidth

Page 64 of 95

HARMONICS AND SPURIOUS EMISSIONS

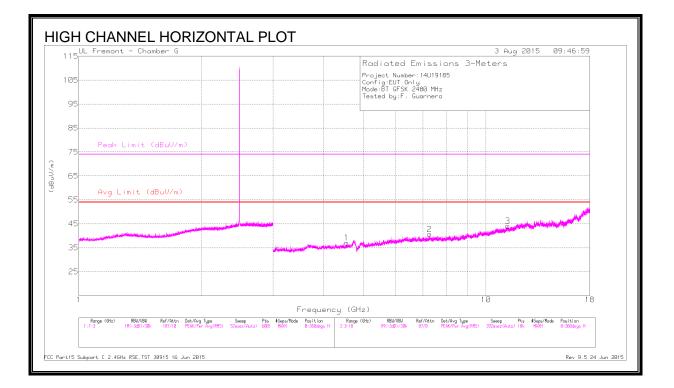
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

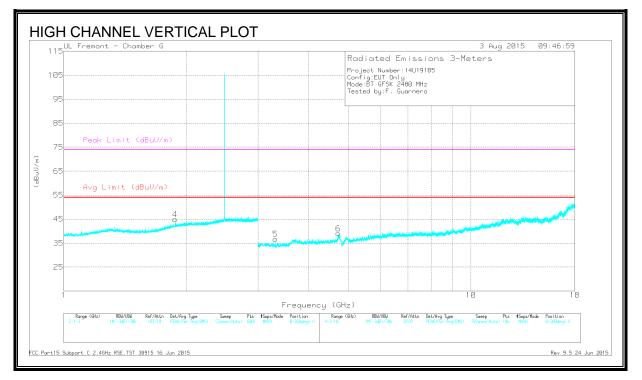
Page 65 of 95

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	3.203	46.55	PK2	33.1	-33.3	46.35	-	-	-	-	63	240	н
2	* 4.964	43.49	PK2	34.2	-32.4	45.29	-	-	74	-28.71	106	109	Н
	* 4.966	30.4	VA1T	34.2	-32.4	32.2	54	-21.8	-	-	106	109	н
3	9.702	39.23	PK2	36.8	-27.5	48.53	-	-	-	-	126	197	Н
4	2.651	44.19	PK2	32.4	-24.4	52.19	-	-	-	-	13	152	V
5	3.203	46.39	PK2	33.1	-33.3	46.19	-	-	-	-	128	102	V
6	6.656	41.4	PK2	35.7	-30.9	46.2	-	-	-	-	25	109	V

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak


VB10Hz - FHSS Method: 10Hz Video Bandwidth

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 66 of 95

HARMONICS AND SPURIOUS EMISSIONS

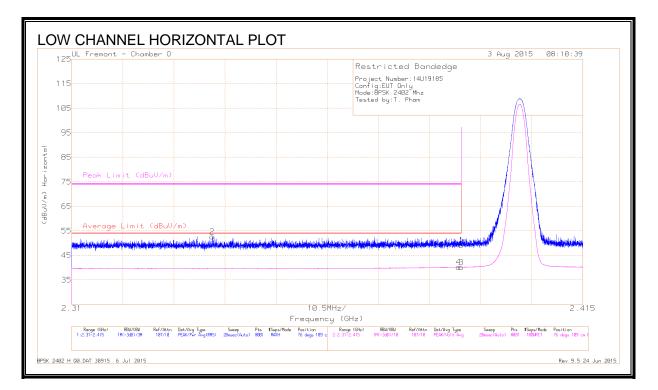
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 67 of 95

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.547	42.31	PK2	33.7	-32.6	43.41	-	-	74	-30.59	270	189	Н
	* 4.547	29.2	VA1T	33.7	-32.6	30.3	54	-23.7	-	-	270	189	Н
2	* 7.269	41.1	PK2	35.6	-29.9	46.8	-	-	74	-27.2	133	216	Н
	* 7.266	28.11	VA1T	35.6	-30	33.71	54	-20.29	-	-	133	216	Н
3	* 11.31	37.96	PK2	38	-25	50.96	-	-	74	-23.04	207	124	Н
	* 11.309	25.03	VA1T	38	-25.1	37.93	54	-16.07	-	-	207	124	Н
4	1.879	44.3	PK2	30.8	-25.1	50	-	-	-	-	34	126	V
5	3.307	44.38	PK2	32.7	-33.1	43.98	-	-	-	-	298	104	V
6	* 4.719	43.7	PK2	33.9	-32.3	45.3	-	-	74	-28.7	190	228	V
	* 4.72	31.3	VA1T	33.9	-32.3	32.9	54	-21.1	-	-	190	228	V

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak

VB10Hz - FHSS Method: 10Hz Video Bandwidth

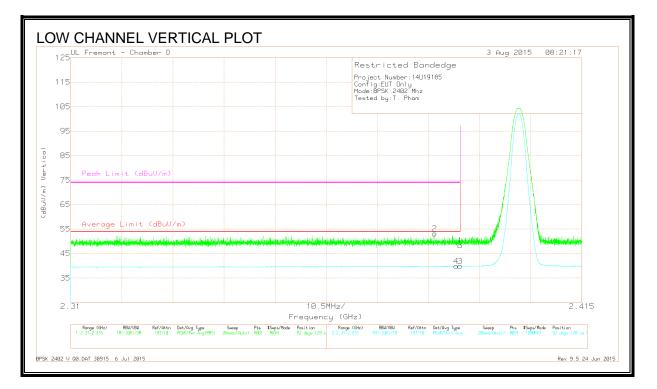
Page 68 of 95

7.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>DATA</u>

Marke	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	37.78	Pk	32.1	-20.7	49.18	-	-	74	-24.82	76	109	Н
2	* 2.339	41.57	Pk	32	-20.9	52.67	-	-	74	-21.33	76	109	Н
3	* 2.39	28.76	VA1T	32.1	-20.7	40.16	54	-13.84	-	-	76	109	Н
4	* 2.389	28.79	VA1T	32.1	-20.7	40.19	54	-13.81	-	-	76	109	Н


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

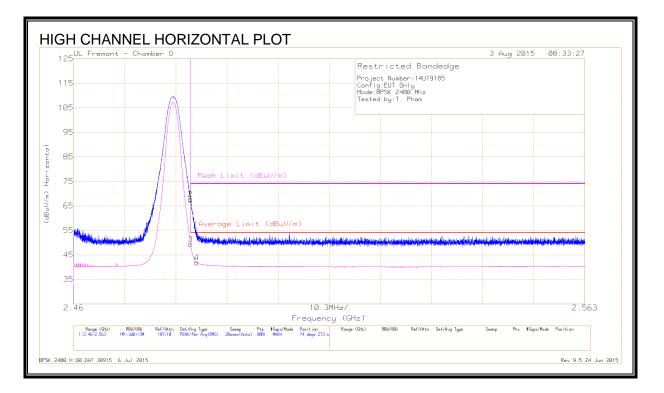
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 69 of 95

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	36.91	Pk	32.1	-20.7	48.31	-	-	74	-25.69	92	128	V
2	* 2.385	41.8	Pk	32.1	-20.8	53.1	-	-	74	-20.9	92	128	V
3	* 2.39	28.46	VA1T	32.1	-20.7	39.86	54	-14.14	-	-	92	128	V
4	* 2.389	28.46	VA1T	32.1	-20.7	39.86	54	-14.14	-	-	92	128	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

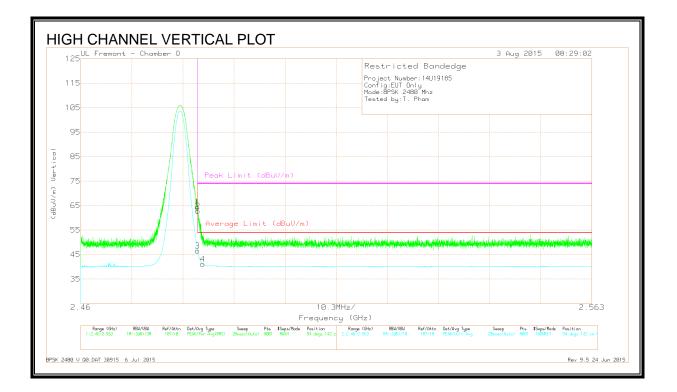
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 70 of 95

REPORT NO: 14U19185-E1V3 FCC ID: BCGA1584 RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	56.12	Pk	32.2	-20.8	67.52	-	-	74	-6.48	74	273	н
2	* 2.484	56.31	Pk	32.2	-20.8	67.71	-	-	74	-6.29	74	273	Н
3	* 2.484	38	VA1T	32.2	-20.8	49.4	54	-4.6	-	-	74	273	Н
4	* 2.485	30.4	VA1T	32.2	-20.8	41.8	54	-12.2	-	-	74	273	Н


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

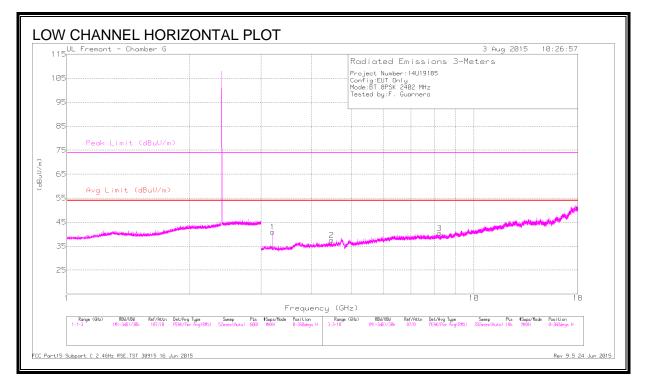
PK - Peak detector

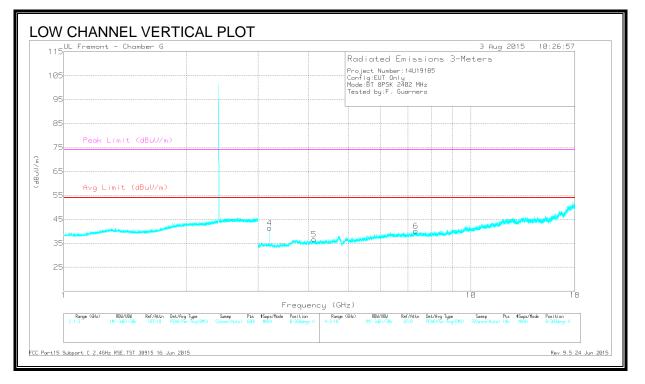
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 71 of 95

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATA


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	53.07	Pk	32.2	-20.8	64.47	-	-	74	-9.53	94	142	V
2	* 2.484	51.43	Pk	32.2	-20.8	62.83	-	-	74	-11.17	94	142	V
3	* 2.484	35.18	VA1T	32.2	-20.8	46.58	54	-7.42	-	-	94	142	V
4	* 2.485	29.66	VA1T	32.2	-20.8	41.06	54	-12.94	-	-	94	142	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.

PK - Peak detector

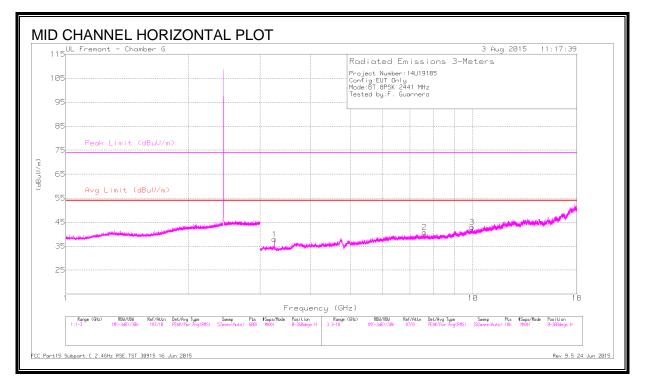
VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

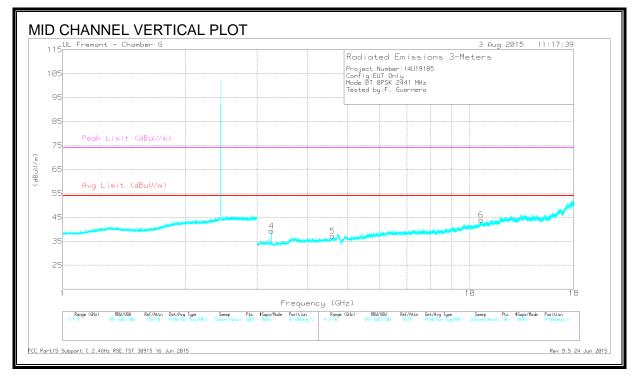
Page 72 of 95

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 73 of 95

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	3.203	48.3	PK2	33.1	-33.3	48.1	-	-	-	-	62	240	Н
2	4.467	42.92	PK2	33.6	-32.8	43.72	-	-	-	-	273	235	Н
3	* 8.236	40.48	PK2	35.7	-30	46.18	-	-	74	-27.82	258	111	Н
	* 8.234	27.46	VA1T	35.7	-30	33.16	54	-20.84	-	-	258	111	Н
4	3.203	47.44	PK2	33.1	-33.3	47.24	-	-	-	-	131	103	V
5	* 4.111	42.44	PK2	33.3	-32.7	43.04	-	-	74	-30.96	69	209	V
	* 4.114	29.66	VA1T	33.3	-32.7	30.26	54	-23.74	-	-	69	209	V
6	* 7.329	41.23	PK2	35.6	-30.7	46.13	-	-	74	-27.87	151	229	V
	* 7.326	28.45	VA1T	35.6	-30.6	33.45	54	-20.55	-	-	151	229	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak

VB10Hz - FHSS Method: 10Hz Video Bandwidth

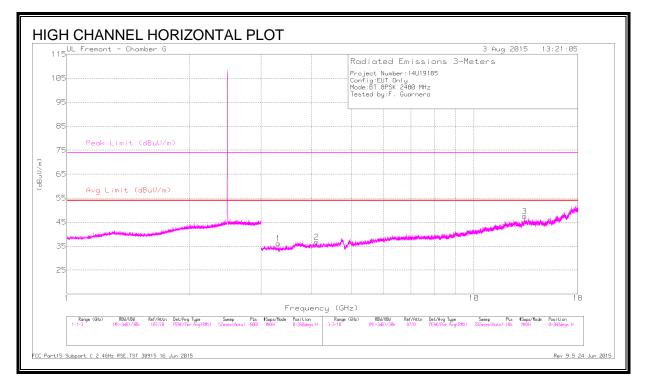
Page 74 of 95

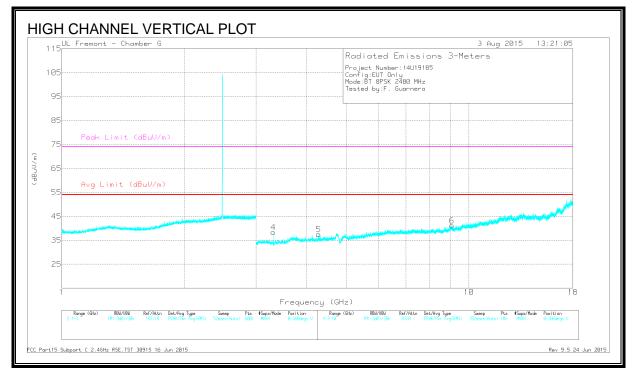
HARMONICS AND SPURIOUS EMISSIONS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 75 of 95

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	3.255	46.6	PK2	32.9	-33.1	46.4	-	-	-	-	69	253	Н
2	* 7.608	40.54	PK2	35.6	-29.9	46.24	-	-	74	-27.76	170	210	Н
	* 7.606	27.69	VA1T	35.6	-29.9	33.39	54	-20.61	-	-	170	210	Н
3	9.953	38.86	PK2	37	-27.4	48.46	-	-	-	-	53	114	Н
4	3.255	46.01	PK2	32.9	-33.1	45.81	-	-	-	-	129	101	V
5	* 4.59	42.43	PK2	33.8	-32.5	43.73	-	-	74	-30.27	111	213	V
	* 4.593	29.63	VA1T	33.8	-32.5	30.93	54	-23.07	-	-	111	213	V
6	* 10.647	38.48	PK2	37.8	-26	50.28	-	-	74	-23.72	59	156	V
	* 10.647	25.3	VA1T	37.8	-26	37.1	54	-16.9	-	-	59	156	V


* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak

VB10Hz - FHSS Method: 10Hz Video Bandwidth

Page 76 of 95

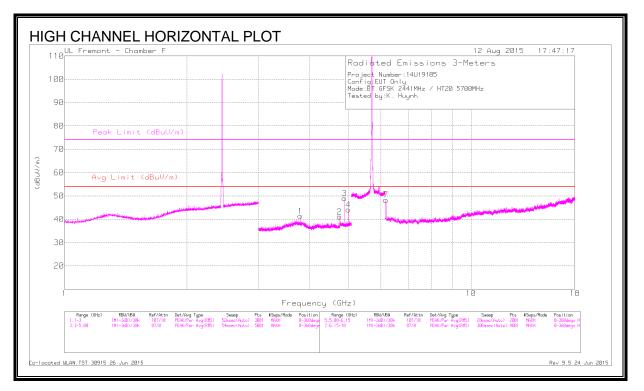
HARMONICS AND SPURIOUS EMISSIONS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 77 of 95

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	3.307	44.56	PK2	32.7	-33.1	44.16	-	-	-	-	318	233	Н
2	* 4.105	42.51	PK2	33.3	-32.7	43.11	-	-	74	-30.89	4	231	Н
	* 4.104	29.52	VA1T	33.3	-32.7	30.12	54	-23.88	-	-	4	231	Н
3	* 13.329	39.22	PK2	39.6	-25.4	53.42	-	-	74	-20.58	94	161	Н
	* 13.328	25.78	VA1T	39.6	-25.3	40.08	54	-13.92	-	-	94	161	Н
4	3.307	44.57	PK2	32.7	-33.1	44.17	-	-	-	-	294	110	V
5	* 4.276	41.89	PK2	33.5	-32	43.39	-	-	74	-30.61	160	238	V
	* 4.279	29.04	VA1T	33.5	-32	30.54	54	-23.46	-	-	160	238	V
6	* 9.076	39.39	PK2	36.2	-28.4	47.19	-	-	74	-26.81	144	258	V
	* 9.075	26.79	VA1T	36.2	-28.4	34.59	54	-19.41	-	-	144	258	V

* - indicates frequency in CFR 47, Part 15 and Industry Canada RSS-Restricted Band.


PK3 - FHSS Method: Maximum Peak


VB10Hz - FHSS Method: 10Hz Video Bandwidth

Page 78 of 95

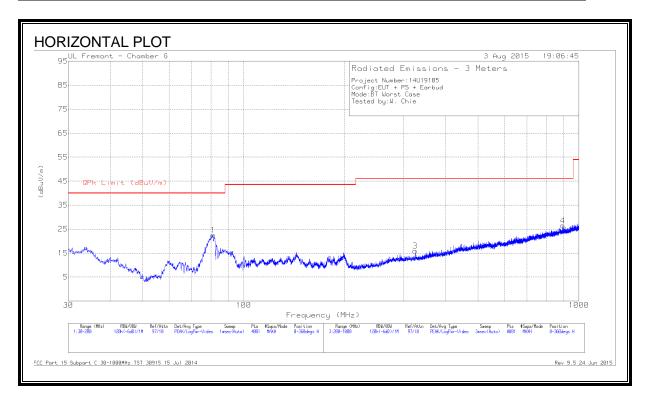
7.3. WORST CASE CO-LOCATION

BLUETOOTH AND 802.11 HT20 2Tx CDD MODE IN THE 5.6GHz BAND

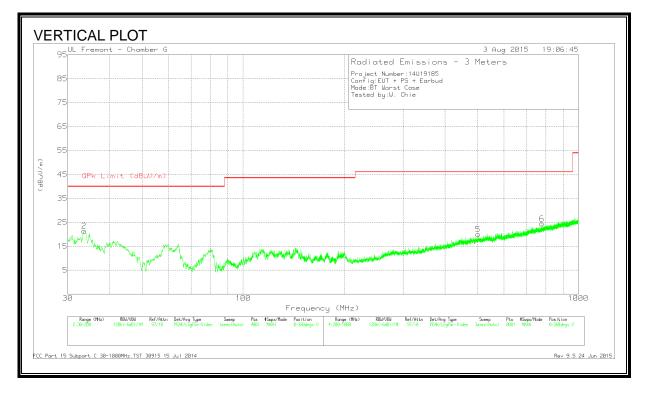
Page 79 of 95

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 3.8	39.82	PK	34.1	-28.9	45.02	-	-	74	-28.98	151	103	Н
	* 3.8	31.14	VB1T	34.1	-28.9	36.34	53.97	-17.63	-	-	151	103	Н
2	* 4.75	39.83	PK	34.1	-28.4	45.53	-	-	74	-28.47	18	116	Н
	* 4.75	32.03	VB1T	34.1	-28.4	37.73	53.97	-16.24	-	-	18	116	Н
3	* 4.882	43.9	PK	34.1	-27.9	50.1	-	-	74	-23.9	38	204	Н
	* 4.882	38.72	VB1T	34.1	-27.9	44.92	53.97	-9.05	-	-	38	204	Н
4	* 4.987	42.84	PK	34.1	-28.9	48.04	-	-	74	-25.96	98	102	Н
	* 4.987	35.75	VB1T	34.1	-28.9	40.95	53.97	-13.02	-	-	98	102	Н
5	3.255	41.93	PK	33.2	-29.1	46.03	-	-	74	-27.97	120	159	V
	3.255	30.71	VB1T	33.2	-29.1	34.81	53.97	-19.16	-	-	120	159	V
6	* 11.403	38.03	PK	38.4	-22.4	54.03	-	-	74	-19.97	99	151	V
	* 11.4	26.14	VB1T	38.4	-22.5	42.04	53.97	-11.93	-	-	99	151	V
7	6.171	44.71	PK	35.7	-26.7	53.71	-	-	74	-20.29	139	181	Н
	6.172	34.65	VB1T	35.7	-26.7	43.65	53.97	-10.32	-	-	139	181	Н

* - indicates frequency in CFR15.205/IC8.10 Restricted Band


PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet


Page 80 of 95

7.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 81 of 95

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T899 (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	81.0425	45.68	Pk	7.6	-30.7	22.58	40	-17.42	0-360	201	Н
2	33.57	33.46	Pk	19.2	-31.3	21.36	40	-18.64	0-360	100	V
3	* 324.9	30.9	Pk	13.8	-28.7	16	46.02	-30.02	0-360	100	Н
4	895.4	30.52	Pk	22	-26	26.52	46.02	-19.5	0-360	401	Н
5	502.1	30.2	Pk	17.7	-27.9	20	46.02	-26.02	0-360	100	V
6	777.7	30.5	Pk	20.9	-26.9	24.5	46.02	-21.52	0-360	301	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 82 of 95

7.5. WORST-CASE ABOVE 18 GHz

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL)

UL EMC	4 Aug 2015 08:18:31
	RF Emissions
5	Order Number:14U19185 Configuration:EUT Only Mode:BT Worst Case Tested by / SN:T. Phom
5	
Peak Limit (dBuV/m)	
5	
Avg Limit (dBuV/m)	
P	
5	
2	2 1
sperial and a second	manual market and the second and the
zelotaduerrelakyösisterel. Matasunusi junatovariarter	man and a man provide and the second
5 	money and the second of the se
- 2 yr yr ywraith yn ywr y y yn ywr yn ywr	mana de mande antiparte de la companya de la company
- 5 Hordreendah jaadin Militan ya ay ya disana kata 5	manual manual the second and the sec
- 5 Hordreendah jaadin Militan ya ay ya disana kata 5	normal and the second sec
- 5454	

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, VERTICAL)

35UL EMC						4 Aug 2015	08:18:31
,0				RF Emiss	ions		
95				Order Numbe Configurati Mode:BT Wor Tested bu /	n:14U19185 on:EUT Only st Case 'SN:T. Pham		
35					SHEET FIGHT		
75 Peak Limit	(dBuV/m)						
55							
Avg Limit ((dBuV/m)						
5 Avg Limit ((dBuV/m)						
						-5	
						-5	whiteman
						5	wandaparta
				unnannan		5	W Malan Kal
45 35						5	ur many man
45 35		un personal a brailea	Manahu Jerurahaanan		4 Managarahan		Welfredalenskak
15 35 25 5		un personal a brailea	Manahu Jerurahaanan	an marine and	4 Managarahan		Werdenkankankankankankankankankankankankankan
45 35		un personal a brailea	danaha jerenakanap	un managemen	4 Managarahan		w ^{.,}
15 25 18			danaha jerenakanap	an marine and	hanne de gande de server		

Page 83 of 95

Data

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	20.398	40.5	Pk	32.6	-25.1	-9.5	38.5	54	-15.5	74	-35.5
2	24.022	42.07	Pk	33.3	-24.2	-9.5	41.67	54	-12.33	74	-32.33
3	25.001	41.73	Pk	34.2	-24.6	-9.5	41.83	54	-12.17	74	-32.17
4	23.415	40.43	Pk	33.3	-24.4	-9.5	39.83	54	-14.17	74	-34.17
5	24.015	44.17	Pk	33.3	-24.3	-9.5	43.67	54	-10.33	74	-30.33
6	25.061	43.67	Pk	34	-25	-9.5	43.17	54	-10.83	74	-30.83

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 84 of 95

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted	Limit (dBµV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 85 of 95

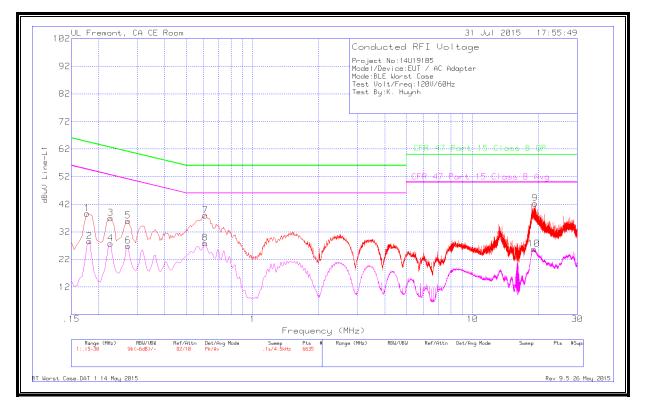
8.1. EUT POWERED BY AC/DC ADAPTER VIA USB CABLE

6 WORST EMISSIONS

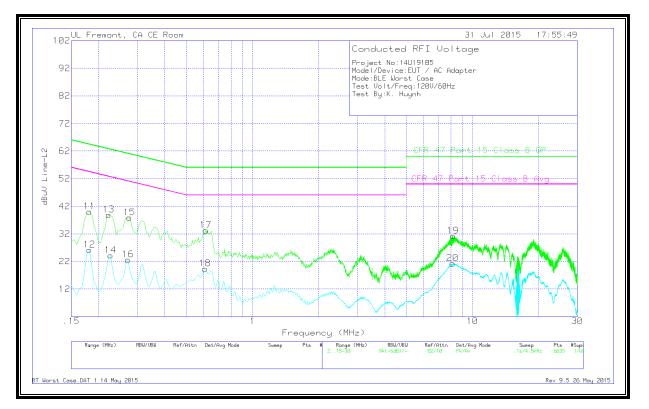
Range 1: Line-L1 .15 - 30MHz

7	Frequency	Meter	Det	T24 IL	LC	Corrected	CISPR	Margin	CISPR	Margin
	(MHz)	Reading		L1	Cables	Reading	22 Class	(dB)	22 Class	(dB)
		(dBuV)			1&3	dBuV	B QP		B Avg	
1	.177	37.5	Pk	1.1	0	38.6	64.63	-26.03	-	-
2	.1815	27.5	Av	1.1	0	28.6	-	-	54.42	-25.82
3	.2265	36.17	Pk	.8	0	36.97	62.58	-25.61	-	-
4	.2265	26.97	Av	.8	0	27.77	-	-	52.58	-24.81
5	.2715	35.38	Pk	.6	0	35.98	61.07	-25.09	-	-
6	.2715	26.33	Av	.6	0	26.93	-	-	51.07	-24.14
7	.61125	37.64	Pk	.3	0	37.94	56	-18.06	-	-
8	.609	27.67	Av	.3	0	27.97	-	-	46	-18.03
9	19.2525	41.78	Pk	.3	.2	42.28	60	-17.72	-	-
10	19.0275	25.27	Av	.3	.2	25.77	-	-	50	-24.23

Range 2: Line-L2 .15 - 30MHz


Marker	Frequency	Meter	Det	T24 IL	LC	Corrected	CISPR	Margin	CISPR	Margin
	(MHz)	Reading		L2	Cables	Reading	22 Class	(dB)	22 Class	(dB)
		(dBuV)			2&3	dBuV	B QP		B Avg	
11	.1815	38.8	Pk	1.2	0	40	64.42	-24.42	-	-
12	.1815	25.01	Av	1.2	0	26.21	-	-	54.42	-28.21
13	.222	38.01	Pk	.9	0	38.91	62.74	-23.83	-	-
14	.2265	23.3	Av	.9	0	24.2	-	-	52.58	-28.38
15	.276	37.14	Pk	.7	0	37.84	60.94	-23.1	-	-
16	.2715	21.95	Av	.7	0	22.65	-	-	51.07	-28.42
17	.6135	32.95	Pk	.3	0	33.25	56	-22.75	-	-
18	.609	19.04	Av	.3	0	19.34	-	-	46	-26.66
19	8.16	30.91	Pk	.2	.1	31.21	60	-28.79	-	-
20	8.124	20.96	Av	.2	.1	21.26	-	-	50	-28.74

Pk - Peak detector


Av - Average detection

Page 86 of 95

LINE 1 RESULTS

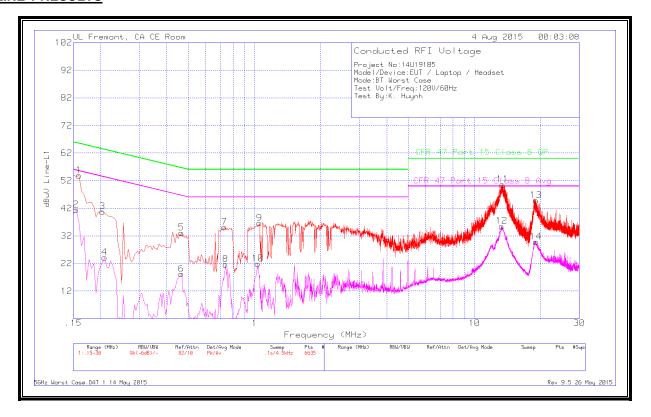
LINE 2 RESULTS

Page 87 of 95

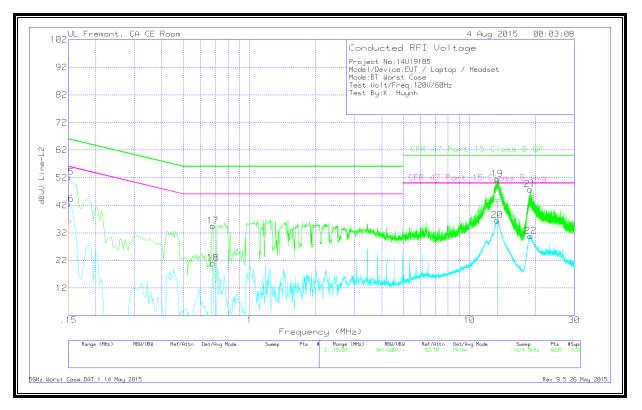
EUT POWERED BY HOST PC VIA USB CABLE 8.2.

<u>6 WORST EMISSIONS</u>

Marker	Frequency	Meter	Det	T24 IL	LC	Corrected	CISPR	Margin	CISPR	Margin
	(MHz)	Reading		L1	Cables	Reading	22 Class	(dB)	22 Class	(dB)
		(dBuV)			1&3	dBuV	B QP		B Avg	
1	.159	52.59	Pk	1.3	0	53.89	65.52	-11.63	-	-
2	.1545	40.09	Av	1.3	0	41.39	-	-	55.75	-14.36
3	.204	39.91	Pk	.9	0	40.81	63.45	-22.64	-	-
4	.2085	23.24	Av	.9	0	24.14	-	-	53.26	-29.12
5	.465	32.72	Pk	.4	0	33.12	56.6	-23.48	-	-
6	.465	17.77	Av	.4	0	18.17	-	-	46.6	-28.43
7	.7305	34.85	Pk	.3	0	35.15	56	-20.85	-	-
8	.7395	21.3	Av	.3	0	21.6	-	-	46	-24.4
9	1.0545	36.36	Pk	.2	0	36.56	56	-19.44	-	-
10	1.0365	21.69	Av	.2	0	21.89	-	-	46	-24.11
11	13.4385	50.2	Pk	.2	.2	50.6	60	-9.4	-	-
12	13.308	35.06	Av	.2	.2	35.46	-	-	50	-14.54
13	19.014	44.27	Pk	.3	.2	44.77	60	-15.23	-	-
14	19.032	29.32	Av	.3	.2	29.82	-	-	50	-20.18


Range 2: Line-L2 .15 - 30MH

Marker	Frequency	Meter	Det	T24 IL	LC	Corrected	CISPR	Margin	CISPR	Margin
	(MHz)	Reading		L2	Cables	Reading	22 Class	(dB)	22 Class	(dB)
		(dBuV)			2&3	dBuV	B QP		B Avg	
15	.15	50.58	Pk	1.5	0	52.08	66	-13.92	-	-
16	.15	40.96	Av	1.5	0	42.46	-	-	56	-13.54
17	.681	34.18	Pk	.3	0	34.48	56	-21.52	-	-
18	.681	20.72	Av	.3	0	21.02	-	-	46	-24.98
19	13.3845	51.12	Pk	.2	.2	51.52	60	-8.48	-	-
20	13.3845	36.07	Av	.2	.2	36.47	-	-	50	-13.53
21	18.9195	47.19	Pk	.3	.2	47.69	60	-12.31	-	-
22	18.969	30.32	Av	.3	.2	30.82	-	-	50	-19.18


Pk - Peak detector

Av - Average detection

Page 88 of 95

LINE 2 RESULTS

Page 89 of 95