

Report No.: EED32O81173006 Page 1 of 57

TEST REPORT

Product : New Energy Vehicle Detection

Tool

Trade mark : SmartSafe

: iSmartEV P01 Model/Type reference

: N/A **Serial Number**

Report Number : EED32O81173006

FCC ID : 2AYANEVP01 Date of Issue : Sep. 23, 2022

47 CFR Part 15 Subpart E **Test Standards**

Test result PASS

Prepared for:

SHENZHEN SMARTSAFE TECH CO., LTD. 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Firazer. Lo

Reviewed by:

Date:

Tom Chen

Sep. 23, 2022

Aaron Ma

Frazer Li

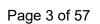
CLUON

Check No.: 5634020822

Page 2 of 57

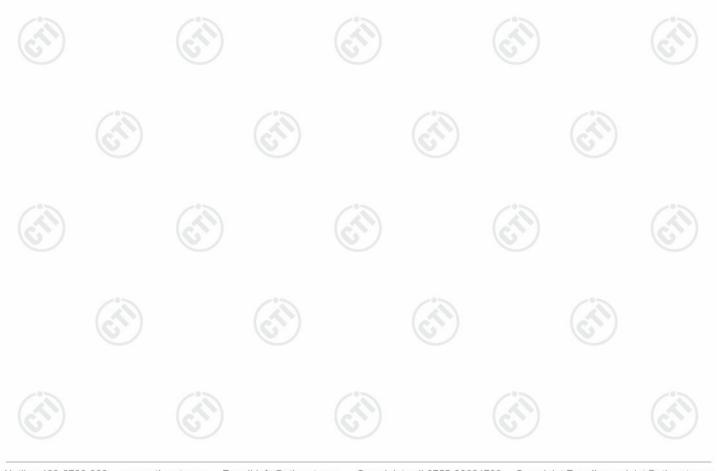
2 Content

1 COVER PAGE	•••••	•••••	•••••
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION	•••••		
5.1 CLIENT INFORMATION			
6 EQUIPMENT LIST		•••••	
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATIO	N		1
7.1 ANTENNA REQUIREMENT	NDWIDTH		
8 APPENDIX A	•••••		5
PHOTOGRAPHS OF TEST SETUP			5
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	s		5



3 Version

Version No. Date			Description	
00	Sep. 23, 2022		Original	_0
	(2)	(1)		


Report No. : EED32O81173006 Page 4 of 57

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
/ X % /	(#X) (#X)	182

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Applicant:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Manufacturer:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China
Factory :	SHENZHEN SMARTSAFE TECH CO., LTD.
Address of Factory :	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

5.2 General Description of EUT

Product Name:	New Energy	Vehicle Detection Tool			
Model No.:	iSmartEV P0	1			
Trade mark:	SmartSafe				
Product Type:	Portable				
Type of Modulation:	IEEE 802.11 IEEE 802.11	•	, 16QAM, 64QAM) BPSK, QPSK, 16QAM, 6 80/VHT160): OFDM (BF	•	
Operating Frequency	U-NII-1 : 515 U-NII-3:5745				
Antenna Type:	internal ante	nna			
Antenna Gain:		ND1: 3.09dBi ND4: 4.33dBi			
Power Supply:	Adapter:	Model: C1902XZ/C Input: 100-240V~50 Output: PD:5.0V,3.0 MAX:20.0W		7A,	
	Battery:	DC 3.8V,9360mAh,	35.568Wh	-05	
Test voltage:	DC 3.8V	41)		(41)	
Sample Received Date:	Aug. 19, 2022				
Sample tested Date:	Aug. 19, 2022 to Sep. 07, 2022				

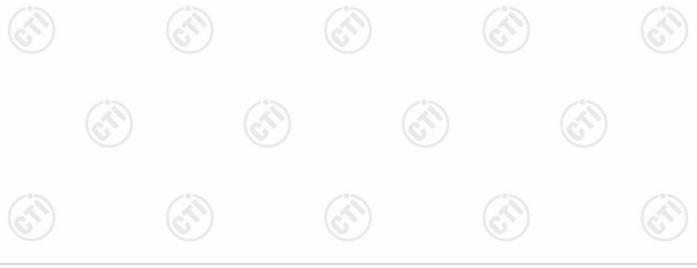
Page 6 of 57

Operation Frequency each of channel:

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel	Channel Frequency(MHz)		Frequency(MHz)	
36	36 5180		5745	
40	40 5200		5765	
44	44 5220		5785	
48	48 5240		5805	
- 6	. 60		5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


U-NII-1		U-NII-3		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
38	38 5190		5755	
46	5230	159	5795	

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel Frequency(MHz)		Channel Frequency(MHz	
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32O81173006 Page 7 of 57

5.3 Test Configuration

EUT Test Software Settings:	
Software:	SecureCRTPortable
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)
Use test software to set the lowe transmitting of the EUT.	est frequency, the middle frequency and the highest frequency keep
Test Mode:	
the EUT in transmitting operation	on and function in typical operation. All the test modes were carried out with on, which was shown in this test report and defined as follows: in lowest channel, and found the follow list which it
Mode	Data rate
802.11a	6 Mbps
802.11n(HT2	
002.1111(1112	20) MCS0
802.11n(HT4	10.0 / 10.0 / 10.0
	40) MCS0
802.11n(HT4	MCS0 Γ20) MCS0
802.11n(HT4 802.11ac(VHT	MCS0 Γ20) MCS0 Γ40) MCS0

5.4 Test Environment

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	-0-			
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Humidity:	50~55 % RH		(0,1)		(0,)
Atmospheric Pressure:	1010mbar				
	NT (Normal Temperature)		22~25.0 °C		
Temperature:	LT (Low Temperature)	/°	-10 °C	/°>	
	HT (High Temperature)	(6.72)	50.0 °C	(6.57)	
	NV (Normal Voltage)		DC3.80 V		
Working Voltage of the EUT:	LV (Low Voltage)		DC3.42 V		
	HV (High Voltage)		DC4.18V		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32O81173006 Page 8 of 57

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

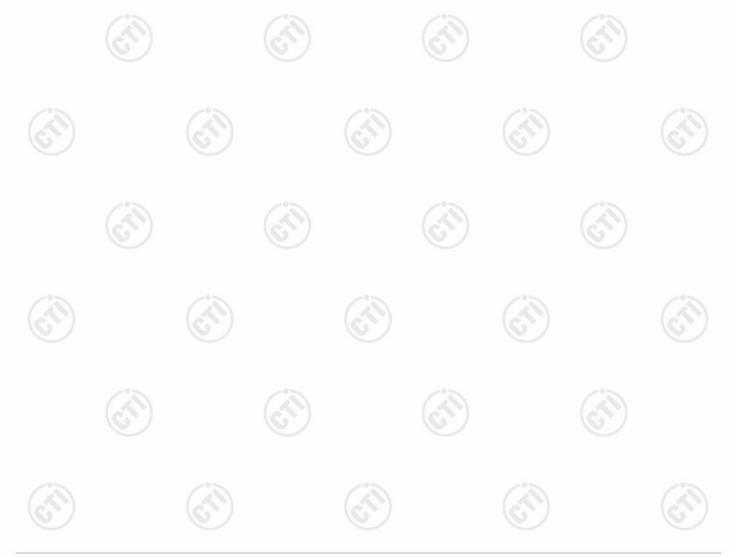
5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
	Kr power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
2	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
	(6,1,)	3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(6	<u></u>

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023		
Temperature/ Humidity Indicator	Defu	TH128	1				
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188		C)		



Report No.: EED32O81173006 Page 10 of 57

3M Semi-anechoic Chamber (2)- Radiated disturbance Test								
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date			
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025			
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023			
Multi device Controller	maturo	NCD/070/10711112	(B)	- (2				
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024			
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023			

Report No.: EED32O81173006 Page 11 of 57

(43)		(12)	(49)	1.6	77		
3M full-anechoic Chamber							
Equipment	Equipment Manufacturer		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	IS Longond I IS36 DSE		10166		-		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023		
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023		
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024		
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024		
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023		
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023		
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022		
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023		
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001				
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		-(1)		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>			
Cable line	Times	SFT205-NMSM-2.50M	393495-0001				
Cable line	Times	EMC104-NMNM-1000	SN160710	(3	·		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001				
Cable line	Times	SFT205-NMNM-1.50M	381964-0001				
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(A)	-(c/l)		
Cable line	Times	HF160-KMKM-3.00M	393493-0001				

Report No. : EED32O81173006 Page 12 of 57

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203
-----------------------	--------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is internal antenna. The best case gain of the antenna are 5G WIFI BAND1: 3.09dBi and 5G WIFI BAND4: 4.33dBi

Report No. : EED32O81173006 Page 13 of 57

7.2 AC Power Line Conducted Emissions

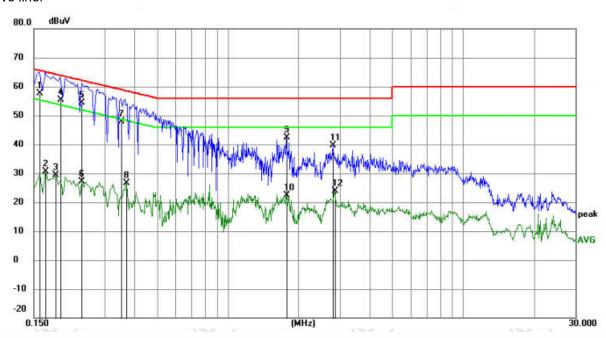
Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	[Limit (c	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarith	m of the frequency.					
	AC Mains LISN1	Ground Reference Plane					
Test Procedure:	 The mains terminal disturroom. The EUT was connected Impedance Stabilization Nimpedance. The power connected to a second LII plane in the same way multiple socket outlet stripsingle LISN provided the residue of the single LISN provided the residue of the horizontal ground reference plane. A placed on the horizontal ground reference with EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bot mounted on top of the grother closest points of the and associated equipment. 	I to AC power source Network) which provides cables of all other SN 2, which was bonded as the LISN 1 for the was used to connect a rating of the LISN was raced upon a non-metal and for floor-standing a round reference plane. It is a vertical ground reference of the plane was bonded N 1 was placed 0.8 m anded to a ground reference plane. The LISN 1 and the EUT.	through a LISN 1 (Lirs a 50Ω/50μH + 5Ω lines units of the EUT were do to the ground reference unit being measured. In the ference plane of the EUT was seen the second text of the ference plane. The rear and reference plane of the ference plane for LISN this distance was between the second the EUT was seen the second the second the EUT was set to the horizontal ground from the boundary of the ference plane for LISN this distance was between the second the EUT was set the second t				

5) In order to find the maximum emission, the relative positions of equipment

and all of the interface cables must be changed according to

Report No. : EED32O81173006 Page 14 of 57

	ANSI C63.10: 2013 on conducted measurement.
Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass



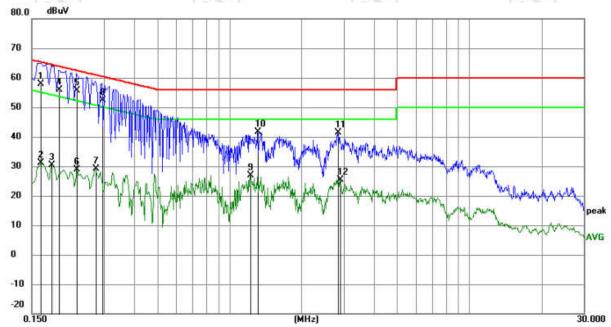
Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	47.73	9.87	57.60	65.52	-7.92	QP	
2		0.1680	20.83	9.87	30.70	55.06	-24.36	AVG	
3		0.1860	19.55	9.87	29.42	54.21	-24.79	AVG	
4		0.1949	45.63	9.87	55.50	63.83	-8.33	QP	
5	*	0.2400	44.55	9.95	54.50	62.10	-7.60	QP	
6		0.2400	17.18	9.95	27.13	52.10	-24.97	AVG	
7		0.3525	37.88	10.02	47.90	58.90	-11.00	QP	
8		0.3704	16.72	10.00	26.72	48.49	-21.77	AVG	
9		1.7745	32.54	9.80	42.34	56.00	-13.66	QP	
10		1.7745	12.53	9.80	22.33	46.00	-23.67	AVG	
11		2.8005	29.90	9.79	39.69	56.00	-16.31	QP	
12		2.8455	14.12	9.79	23.91	46.00	-22.09	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral line:

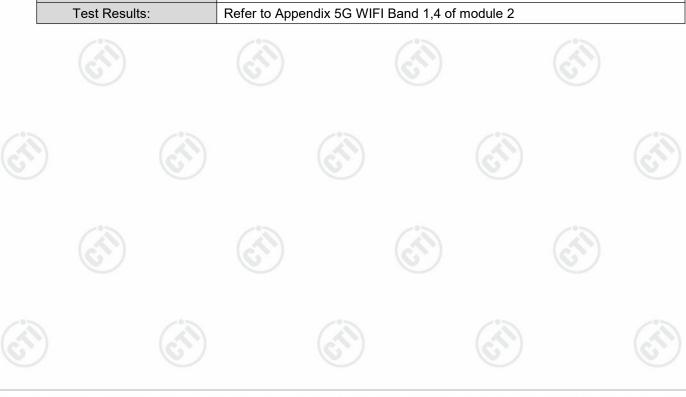
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1635	48.03	9.87	57.90	65.28	-7.38	QP	
	0.1635	21.15	9.87	31.02	55.28	-24.26	AVG	
	0.1815	20.49	9.87	30.36	54.42	-24.06	AVG	
	0.1949	45.93	9.87	55.80	63.83	-8.03	QP	
*	0.2310	45.77	9.93	55.70	62.41	-6.71	QP	
	0.2310	19.01	9.93	28.94	52.41	-23.47	AVG	
	0.2760	19.08	10.02	29.10	50.94	-21.84	AVG	
	0.2940	42.24	10.06	52.30	60.41	-8.11	QP	
	1.2210	17.11	9.82	26.93	46.00	-19.07	AVG	
	1.3110	31.71	9.82	41.53	56.00	-14.47	QP	
	2.8320	31.61	9.79	41.40	56.00	-14.60	QP	
	2.8860	15.69	9.79	25.48	46.00	-20.52	AVG	
	*	0.1635 0.1635 0.1815 0.1949 * 0.2310 0.2310 0.2760 0.2940 1.2210 1.3110 2.8320	0.1635 48.03 0.1635 21.15 0.1815 20.49 0.1949 45.93 * 0.2310 45.77 0.2310 19.01 0.2760 19.08 0.2940 42.24 1.2210 17.11 1.3110 31.71 2.8320 31.61	0.1635 48.03 9.87 0.1635 21.15 9.87 0.1815 20.49 9.87 0.1949 45.93 9.87 * 0.2310 45.77 9.93 0.2310 19.01 9.93 0.2760 19.08 10.02 0.2940 42.24 10.06 1.2210 17.11 9.82 1.3110 31.71 9.82 2.8320 31.61 9.79	0.1635 48.03 9.87 57.90 0.1635 21.15 9.87 31.02 0.1815 20.49 9.87 30.36 0.1949 45.93 9.87 55.80 * 0.2310 45.77 9.93 55.70 0.2310 19.01 9.93 28.94 0.2760 19.08 10.02 29.10 0.2940 42.24 10.06 52.30 1.2210 17.11 9.82 26.93 1.3110 31.71 9.82 41.53 2.8320 31.61 9.79 41.40	0.1635 48.03 9.87 57.90 65.28 0.1635 21.15 9.87 31.02 55.28 0.1815 20.49 9.87 30.36 54.42 0.1949 45.93 9.87 55.80 63.83 * 0.2310 45.77 9.93 55.70 62.41 0.2310 19.01 9.93 28.94 52.41 0.2760 19.08 10.02 29.10 50.94 0.2940 42.24 10.06 52.30 60.41 1.2210 17.11 9.82 26.93 46.00 1.3110 31.71 9.82 41.53 56.00 2.8320 31.61 9.79 41.40 56.00	0.1635 48.03 9.87 57.90 65.28 -7.38 0.1635 21.15 9.87 31.02 55.28 -24.26 0.1815 20.49 9.87 30.36 54.42 -24.06 0.1949 45.93 9.87 55.80 63.83 -8.03 * 0.2310 45.77 9.93 55.70 62.41 -6.71 0.2310 19.01 9.93 28.94 52.41 -23.47 0.2760 19.08 10.02 29.10 50.94 -21.84 0.2940 42.24 10.06 52.30 60.41 -8.11 1.2210 17.11 9.82 26.93 46.00 -19.07 1.3110 31.71 9.82 41.53 56.00 -14.47 2.8320 31.61 9.79 41.40 56.00 -14.60	0.1635 48.03 9.87 57.90 65.28 -7.38 QP 0.1635 21.15 9.87 31.02 55.28 -24.26 AVG 0.1815 20.49 9.87 30.36 54.42 -24.06 AVG 0.1949 45.93 9.87 55.80 63.83 -8.03 QP * 0.2310 45.77 9.93 55.70 62.41 -6.71 QP 0.2310 19.01 9.93 28.94 52.41 -23.47 AVG 0.2760 19.08 10.02 29.10 50.94 -21.84 AVG 0.2940 42.24 10.06 52.30 60.41 -8.11 QP 1.2210 17.11 9.82 26.93 46.00 -19.07 AVG 1.3110 31.71 9.82 41.53 56.00 -14.47 QP 2.8320 31.61 9.79 41.40 56.00 -14.60 QP

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C S	ection 15.407 (a))				
Test Method:	KDB789033 D02 G	General UNII Test Procedures New Rules v02r01 Secti					
Test Setup:	6			6			
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test System Instrument				
Test Procedure:	General UNII Test	Procedures New	ent Procedure of KDB78 Rules v02r01 Section E, cted to the power meter	3, a			
	measurement. 3. Set to the maxin continuously.	num power settin	ensated to the results for grand enable the EUT transverse and record the results.	ansmit			
Limit:	6		(6)	(6)			
	Frequency band (MHz)	Limit					
	5150-5250	≤1W(30dBm) fo	or master device				
			≤250mW(24dBm) for client device				
	5250-5350	≤250mW(24dB	m) for client device or 11	dBm+10logB*			
	5470-5725	m) for client device or 11	dBm+10logB*				
	5725-5850	≤1W(30dBm)					
	Remark:	The maximum measured over	e 26dB emission bandwicconducted output power any interval of continuountation calibrated in terminge.	must be us transmission			
Test Mode:	Transmitting mode	with modulation	(i				
Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 2						



7.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Computer Power Poof Power Poof Attenuator Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 2

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	
	RF test System Flower Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 2

7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))			
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules v	02r01 Section F		
Test Setup:	(6	(6)				
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test System Instrument			
	1	. !	12.2			
	Remark: Offset=Ca					
Test Procedure: Limit:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue unti	receiver span to view the MHz, VBW ≥ 3*RBW, Sv I the trace stabilizes. Letermine the maximum a	weep time =		
	Frequency band (MHz)	Limit				
	5150-5250	≤17dBm in 1MF	dz for master device			
	(6)	≤11dBm in 1MH	Hz for client device	(6)		
	5250-5350	≤11dBm in 1Mh	dz for client device			
	5470-5725	≤11dBm in 1MF	Iz for client device			
	5725-5850	kHz				
	Remark:	a conducted en	power spectral density is nission by direct connection nstrument to the equipme	on of a		
	Transmitting mode with modulation					
Test Mode:	Transmitting mode	with modulation				

7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407	(g)	
Test Method:	ANSI C63.10: 2013	(3)	(3)
Test Setup:	(5.5)	(85)	
	Control Computer Power Supply Attenuato TEMPERATURE CABRIET Table	RF test System Instrument	
	1 1		
	Remark: Offset=Cable loss+ atten	uation factor.	
Test Procedure:	1.The EUT was placed inside the by nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the ch specified. d. Allow sufficient time (of the chamber to stabilize. 4. Repeat step 2 and 3 with the te temperature. 5. The test chamber was allowed of 30 minutes. The supply voltage 115% and the frequency record.	output to a spectrum amber to the highest approximately 30 min mperature chamber sto stabilize at +20 degwas then adjusted o	analyzer. temperature n) for the temperature set to the lowest gree C for a minimum n the EUT from 85% to
Limit:	The frequency tolerance shall be frequency over a temperature venormal supply voltage, and for a 85% to 115% of the rated supply v	ariation of 0 degree variation in the prima	s to 45 degrees C at ary supply voltage from
Test Mode:	Transmitting mode with modulatio	n	
Test Results:	Refer to Appendix 5G WIFI Band	1,4 of module 2	(0,

Report No. : EED32O81173006 Page 22 of 57

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Section	on 1	5 209 and 15	5 407 (b)							
Test Method:	ANSI C63.10 2013	011 1	0.200 and 10).407 (b)							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)										
Receiver Setup:	167	7	Detector	16.0	-	VBW	Remark				
rtooolvor ootup.	Frequency 0.009MHz-0.090MH										
			Peak	10kF		30kHz	Peak				
	0.009MHz-0.090MH		Average	10kH		30kHz	Average				
	0.090MHz-0.110MH		Quasi-peal			30kHz	Quasi-peak				
	0.110MHz-0.490MH		Peak	10kF		30kHz	Peak				
	0.110MHz-0.490MH		Average	10kF		30kHz	Average				
	0.490MHz -30MHz		Quasi-peal	- 0.5		30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peal	1.5	-	300kHz	Quasi-peak				
	Above 1GHz	ノ	Peak	1MH	z	3MHz	Peak				
	7,5575 15112		Peak	1MH	z	10kHz	Average				
Limit:	Frequency		d strength	Limit (dBuV/m)	R	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	24	00/F(kHz)	-		- (0)	300				
	0.490MHz-1.705MHz	240	00/F(kHz)	-		-	30				
	1.705MHz-30MHz		30	-		-	30				
	30MHz-88MHz	10	100	40.0	Qu	asi-peak	3				
	88MHz-216MHz	7	150	43.5	Qu	asi-peak	3				
	216MHz-960MHz		200	46.0	Qu	asi-peak	3				
	960MHz-1GHz		500	54.0	Qu	asi-peak	3				
	Above 1GHz		500	54.0	Α	verage	3				
	*(1) For transmitters of outside of the 5.15-5 dBm/MHz. (2) For transmitters open of the 5.15-5.35 GHz backs (3) For transmitters of outside of the 5.47-5. dBm/MHz. (4) For transmitters open (i) All emissions shall be above or below the backs or below the back	.35 eratir and eratir re lim nd e lim om dBm in li ying	GHz band Ing in the 5.25 Ishall not excepting in the GHz band Ing in the 5.72 Inited to a level of 15 Ishall not exception of 1	shall not 5-5.35 GH eed an e.i 5.47-5.72 shall no 25-5.85 GI el of -27 ng linearlom 25 MI e or belo band edge in the quasi-pea	ex e	and: All em of -27 dB GHz band: aceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz ne band e detector e	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. hissions e.i.r.p. of -27 hissions outside m/MHz. hissions e.i.r.p. of -27 hissions e.i				

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Note: (i) EIRP = $((E*d)^2) / 30$ where: E is the field strength in V/m; • d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to:

> $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

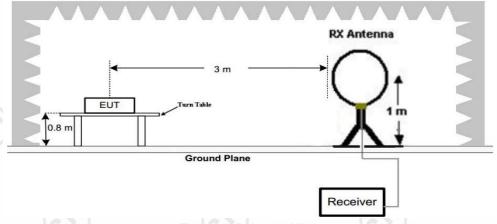


Figure 1. Below 30MHz

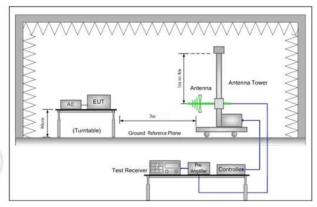


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

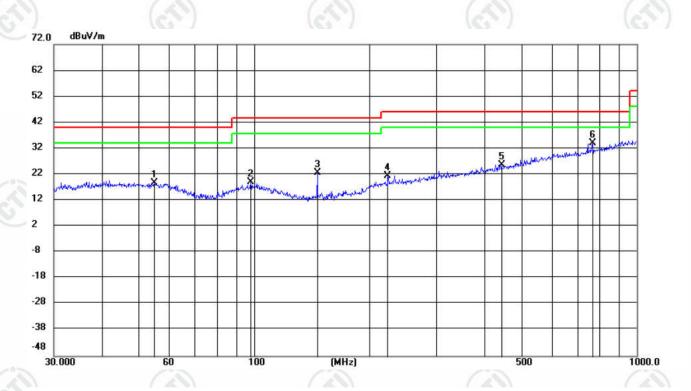
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No. : EED32O81173006 Page 24 of 57

	horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meters to 4 meters (for
	measurement.
	meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		54.8348	4.96	13.93	18.89	40.00	-21.11	QP	200	129	
2		98.1418	5.11	13.80	18.91	43.50	-24.59	QP	100	30	
3	- 1	146.3734	12.89	9.74	22.63	43.50	-20.87	QP	200	356	
4		223.7333	6.94	14.60	21.54	46.00	-24.46	QP	100	171	
5	9	443.2942	5.36	20.32	25.68	46.00	-20.32	QP	200	356	
6	*	766.0571	8.20	25.83	34.03	46.00	-11.97	QP	200	356	



No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	52.2078	5.93	14.11	20.04	40.00	-19.96	QP	100	356	
2	101.2885	4.85	13.87	18.72	43.50	-24.78	QP	200	4	
3	223.7333	7.53	14.60	22.13	46.00	-23.87	QP	200	49	
4	404.6665	4.81	19.49	24.30	46.00	-21.70	QP	200	59	
5	519.0649	5.18	22.01	27.19	46.00	-18.81	QP	100	46	
6 *	766.0571	7.87	25.83	33.70	46.00	-12.30	QP	100	356	

Report No.: EED32O81173006 Page 27 of 57

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

Mode):	8	02.11 a Tran	smitting		Chann	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1548.9549	2.01	39.51	41.52	68.20	26.68	PASS	Horizontal	PK
2	2562.1562	5.16	39.11	44.27	68.20	23.93	PASS	Horizontal	PK
3	3165.5666	6.92	39.20	46.12	68.20	22.08	PASS	Horizontal	PK
4	6906.5453	-11.97	57.34	45.37	68.20	22.83	PASS	Horizontal	PK
5	10437.2219	-6.36	52.41	46.05	68.20	22.15	PASS	Horizontal	PK
6	14371.5686	0.33	49.38	49.71	68.20	18.49	PASS	Horizontal	PK
7	1526.9527	1.81	39.47	41.28	68.20	26.92	PASS	Vertical	PK
8	2412.5413	4.47	39.64	44.11	68.20	24.09	PASS	Vertical	PK
9	3195.8196	6.96	39.11	46.07	68.20	22.13	PASS	Vertical	PK
10	8915.6958	-9.14	54.85	45.71	68.20	22.49	PASS	Vertical	PK
11	11920.2210	-5.32	53.46	48.14	68.20	20.06	PASS	Vertical	PK
12	14392.2696	0.56	49.68	50.24	68.20	17.96	PASS	Vertical	PK

Mode	:	8	02.11 a Tran	smitting		Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1400.4400	1.44	40.30	41.74	68.20	26.46	PASS	Horizontal	PK
2	2043.4543	4.81	39.91	44.72	68.20	23.48	PASS	Horizontal	PK
3	2816.2816	5.95	38.44	44.39	68.20	23.81	PASS	Horizontal	PK
4	8372.2936	-10.76	53.60	42.84	68.20	25.36	PASS	Horizontal	PK
5	9820.2160	-7.14	52.24	45.10	68.20	23.10	PASS	Horizontal	PK
6	14379.6190	0.42	49.11	49.53	68.20	18.67	PASS	Horizontal	PK
7	1402.6403	1.44	41.02	42.46	68.20	25.74	PASS	Vertical	PK
8	2391.6392	4.34	40.53	44.87	68.20	23.33	PASS	Vertical	PK
9	3316.2816	7.42	38.66	46.08	68.20	22.12	PASS	Vertical	PK
10	6933.5717	-11.88	56.23	44.35	68.20	23.85	PASS	Vertical	PK
11	8800.6900	-9.09	53.00	43.91	68.20	24.29	PASS	Vertical	PK
12	11906.9954	-5.40	52.98	47.58	68.20	20.62	PASS	Vertical	PK

Page 28 of 57

М	lode		80)2.11 a Tran	smittina	1 4	Channe	el:	5745MHz	
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1517.0517	2.05	39.67	41.72	68.20	26.48	PASS	Horizontal	PK
	2	2099.5600	5.63	39.31	44.94	68.20	23.26	PASS	Horizontal	PK
4	3	3166.6667	7.76	38.53	46.29	68.20	21.91	PASS	Horizontal	PK
	4	9737.8492	-7.42	53.17	45.75	68.20	22.45	PASS	Horizontal	PK
	5	11932.1955	-5.24	52.48	47.24	68.20	20.96	PASS	Horizontal	PK
	6	17014.0009	2.81	50.91	53.72	68.20	14.48	PASS	Horizontal	PK
	7	1442.7943	1.86	39.94	41.80	68.20	26.40	PASS	Vertical	PK
	8	1765.1265	3.69	39.10	42.79	68.20	25.41	PASS	Vertical	PK
	9	2799.2299	6.47	39.78	46.25	68.20	21.95	PASS	Vertical	PK
. 1	10	9218.0145	-7.69	52.25	44.56	68.20	23.64	PASS	Vertical	PK
1	11	11929.1286	-5.26	52.42	47.16	68.20	21.04	PASS	Vertical	PK
1	12	13895.7597	-0.90	49.85	48.95	68.20	19.25	PASS	Vertical	PK

Мо	de:		802.11 a Tran	smitting		Channe	el:	5785MHz	
NC	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1432.3432	1.85	40.60	42.45	68.20	25.75	PASS	Horizontal	PK
2	2041.2541	5.31	39.34	44.65	68.20	23.55	PASS	Horizontal	PK
3	3311.8812	8.30	38.29	46.59	68.20	21.61	PASS	Horizontal	PK
4	9750.8834	-7.37	52.59	45.22	68.20	22.98	PASS	Horizontal	PK
5	12618.4079	-4.61	52.67	48.06	68.20	20.14	PASS	Horizontal	PK
6	15549.5700	0.44	50.51	50.95	68.20	17.25	PASS	Horizontal	PK
7	1450.4951	1.87	39.92	41.79	68.20	26.41	PASS	Vertical	PK
8	2537.4037	5.54	38.56	44.10	68.20	24.10	PASS	Vertical	PK
9	3770.6271	9.05	36.32	45.37	68.20	22.83	PASS	Vertical	PK
10	9743.2162	-7.40	51.95	44.55	68.20	23.65	PASS	Vertical	PK
11	12444.3630	-4.13	51.65	47.52	68.20	20.68	PASS	Vertical	PK
12	15577.9385	0.42	50.17	50.59	68.20	17.61	PASS	Vertical	PK

_		-	
Page	29	ΩŤ	5/

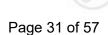
Mode	e:	80)2.11 a Tran	smitting		Channe	el:	5825MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1464.7965	1.88	40.24	42.12	68.20	26.08	PASS	Horizontal	PK
2	2104.5105	5.57	38.90	44.47	68.20	23.73	PASS	Horizontal	PK
3	2994.4995	7.13	39.02	46.15	68.20	22.05	PASS	Horizontal	PK
4	7766.6178	-11.29	54.26	42.97	68.20	25.23	PASS	Horizontal	PK
5	10253.0835	-6.62	52.38	45.76	68.20	22.44	PASS	Horizontal	PK
6	14428.6286	0.22	49.32	49.54	68.20	18.66	PASS	Horizontal	PK
7	1316.2816	1.67	40.34	42.01	68.20	26.19	PASS	Vertical	PK
8	2673.8174	6.01	38.90	44.91	68.20	23.29	PASS	Vertical	PK
9	3458.7459	8.28	38.05	46.33	68.20	21.87	PASS	Vertical	PK
10	7766.6178	-11.29	55.32	44.03	68.20	24.17	PASS	Vertical	PK
11	10291.4194	-6.32	52.59	46.27	68.20	21.93	PASS	Vertical	PK
12	13143.6096	-3.05	50.67	47.62	68.20	20.58	PASS	Vertical	PK

Mod	e:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1629.2629	2.62	39.65	42.27	68.20	25.93	PASS	Horizontal	PK
2	2102.8603	5.02	39.63	44.65	68.20	23.55	PASS	Horizontal	PK
3	4073.7074	9.55	36.40	45.95	68.20	22.25	PASS	Horizontal	PK
4	6919.7710	-11.93	56.86	44.93	68.20	23.27	PASS	Horizontal	PK
5	11011.6756	-5.89	52.45	46.56	68.20	21.64	PASS	Horizontal	PK
6	13723.5112	-1.90	51.09	49.19	68.20	19.01	PASS	Horizontal	PK
7	1395.4895	1.43	40.84	42.27	68.20	25.93	PASS	Vertical	PK
8	2398.2398	4.36	41.71	46.07	68.20	22.13	PASS	Vertical	PK
9	3362.4862	7.50	38.28	45.78	68.20	22.42	PASS	Vertical	PK
10	9230.8115	-7.68	52.50	44.82	68.20	23.38	PASS	Vertical	PK
11	11931.7216	-5.25	52.52	47.27	68.20	20.93	PASS	Vertical	PK
12	14394.5697	0.58	49.09	49.67	68.20	18.53	PASS	Vertical	PK

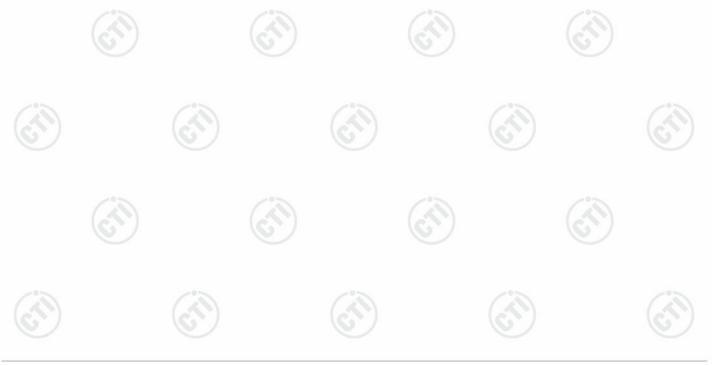
Page 30 of 57

Mode	:	80	2.11 n(HT4	0) Transmitti	ng	Channel:		5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1778.8779	3.32	40.17	43.49	68.20	24.71	PASS	Horizontal	PK
2	3086.3586	6.78	39.57	46.35	68.20	21.85	PASS	Horizontal	PK
3	3946.6447	9.15	37.08	46.23	68.20	21.97	PASS	Horizontal	PK
4	6973.2487	-11.76	58.13	46.37	68.20	21.83	PASS	Horizontal	PK
5	9217.5859	-7.70	53.08	45.38	68.20	22.82	PASS	Horizontal	PK
6	11980.0240	-4.95	52.45	47.50	68.20	20.70	PASS	Horizontal	PK
7	1428.4928	1.48	40.56	42.04	68.20	26.16	PASS	Vertical	PK
8	2031.9032	4.76	39.53	44.29	68.20	23.91	PASS	Vertical	PK
9	2938.3938	6.39	38.56	44.95	68.20	23.25	PASS	Vertical	PK
10	7708.1354	-11.20	53.50	42.30	68.20	25.90	PASS	Vertical	PK
11	11262.3881	-6.25	52.96	46.71	68.20	21.49	PASS	Vertical	PK
12	14365.8183	0.27	49.75	50.02	68.20	18.18	PASS	Vertical	PK

Mode):	80	2.11 n(HT4	0) Transmitti	ng	Channel:		5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1432.8933	1.85	40.48	42.33	68.20	25.87	PASS	Horizontal	PK
2	2292.0792	4.59	39.49	44.08	68.20	24.12	PASS	Horizontal	PK
3	2942.7943	7.08	39.47	46.55	68.20	21.65	PASS	Horizontal	PK
4	8347.7899	-10.85	54.01	43.16	68.20	25.04	PASS	Horizontal	PK
5	11826.3884	-6.00	54.42	48.42	68.20	19.78	PASS	Horizontal	PK
6	14381.0921	0.44	49.97	50.41	68.20	17.79	PASS	Horizontal	PK
7	1474.6975	1.89	40.14	42.03	68.20	26.17	PASS	Vertical	PK
8	2114.4114	5.45	39.62	45.07	68.20	23.13	PASS	Vertical	PK
9	3199.1199	7.82	38.57	46.39	68.20	21.81	PASS	Vertical	PK
10	7673.0782	-11.01	56.34	45.33	68.20	22.87	PASS	Vertical	PK
11	9663.4776	-7.48	52.75	45.27	68.20	22.93	PASS	Vertical	PK
12	11936.7958	-5.22	52.73	47.51	68.20	20.69	PASS	Vertical	PK



Mode	:	80	2.11 n(HT4	0) Transmitti	ng	Channel:		5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1456.5457	1.88	40.34	42.22	68.20	25.98	PASS	Horizontal	PK
2	2293.1793	4.59	39.63	44.22	68.20	23.98	PASS	Horizontal	PK
3	3387.2387	8.17	38.20	46.37	68.20	21.83	PASS	Horizontal	PK
4	8791.7194	-9.18	53.41	44.23	68.20	23.97	PASS	Horizontal	PK
5	10998.3332	-5.83	53.19	47.36	68.20	20.84	PASS	Horizontal	PK
6	14361.9241	0.23	50.14	50.37	68.20	17.83	PASS	Horizontal	PK
7	1394.9395	1.81	40.49	42.30	68.20	25.90	PASS	Vertical	PK
8	2153.4653	4.96	39.88	44.84	68.20	23.36	PASS	Vertical	PK
9	3192.5193	7.81	38.66	46.47	68.20	21.73	PASS	Vertical	PK
10	7726.7485	-11.23	56.56	45.33	68.20	22.87	PASS	Vertical	PK
11	11138.6426	-6.15	53.04	46.89	68.20	21.31	PASS	Vertical	PK
12	17665.7110	4.37	49.42	53.79	68.20	14.41	PASS	Vertical	PK


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

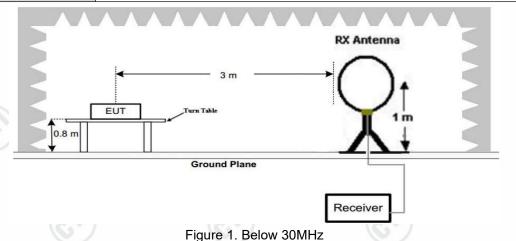
Final Test Level =Receiver Reading - Correct Factor

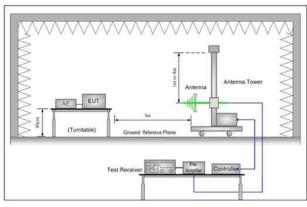
Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32O81173006 Page 32 of 57

7.9 Radiated Emission which fall in the restricted bands


Test Site: Receiver Setup: Limit:	ANSI C63.10 2013 Measurement Distance Frequency 0.009MHz-0.090MH 0.009MHz-0.110MH 0.110MHz-0.490MH	lz lz	(Semi-Anec	choic Char	1)	(4)		
Limit:	Frequency 0.009MHz-0.090MH 0.009MHz-0.090MH 0.090MHz-0.110MH	lz lz	Detector	1,000	1)	1.00		
Limit:	0.009MHz-0.090MH 0.009MHz-0.090MH 0.090MHz-0.110MH	łz		RBV		,			
*	0.009MHz-0.090MH 0.090MHz-0.110MH	łz	Peak		٧	VBW	Remark		
*	0.090MHz-0.110MH		i can	10kH	lz	30kHz	Peak		
*	(89.)	ı_	Average	10kF	lz	30kHz	Average		
*	0.110MHz-0.490MH	12	Quasi-pea	k 10kH	łz	30kHz	Quasi-peak		
*		łz	Peak	10kH	lz	30kHz	Peak		
*	0.110MHz-0.490MH	łz	Average	10kH	lz	30kHz	Average		
*	0.490MHz -30MHz	<u>z</u>	Quasi-pea	k 10kH	lz	30kHz	Quasi-peak		
*	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak		
*	Above 10Uz		Peak	1MH	lz	3MHz	Peak		
*	Above 1GHz		Peak	1MH	lz	10kHz	Average		
*	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark		Measurement distance (m)		
*	0.009MHz-0.490MHz		00/F(kHz)	-		-	300		
	0.490MHz-1.705MHz		00/F(kHz)	-		-	30		
	1.705MHz-30MHz		30 -		-		30		
	30MHz-88MHz	.")	100	40.0	Qua	asi-peak	3		
	88MHz-216MHz		150	43.5	Qua	asi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak		3		
	960MHz-1GHz		500	54.0	Quasi-peak		3		
	Above 1GHz	500		54.0	A۷	erage	3		
(: () a a e t t li	*(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are based or								



emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Note: (i) EIRP = $((E*d)^2) / 30$ where: • E is the field strength in V/m; · d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

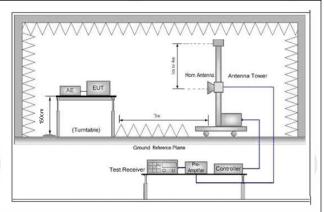


Figure 2. 30MHz to 1GHz

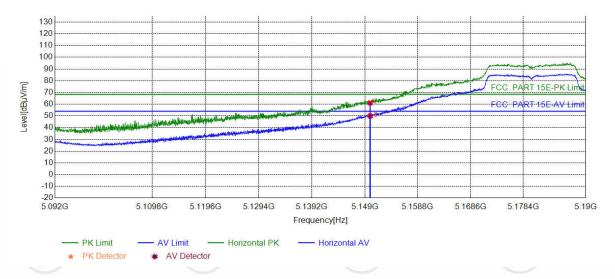
Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No. : EED32O81173006 Page 34 of 57

	Note: For the radiated emission test above 1GHz:
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving
	antenna, which was mounted on the top of a variable-height antenna tower.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	p. Test the EUT in the lowest channel, the Highest channel
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

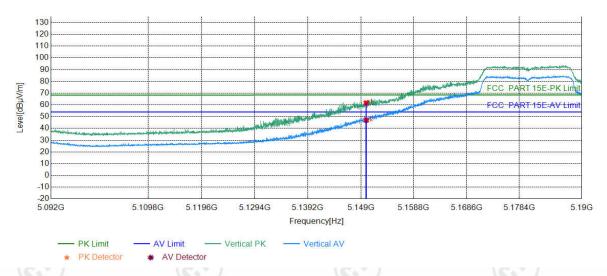


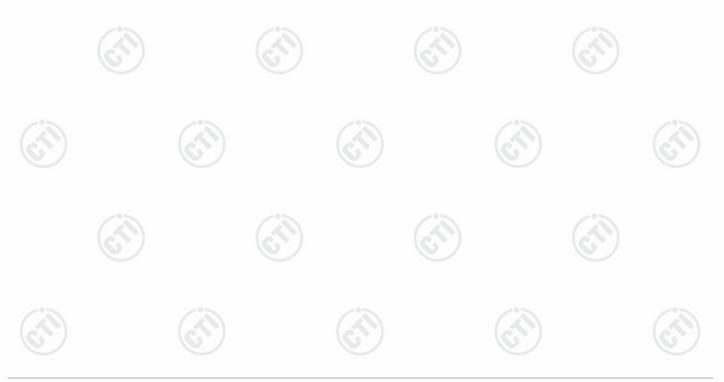
Test Data:

Mode:	802.11 a Transmitting	Channel:	5180
Remark:	(6)		(

Test Graph

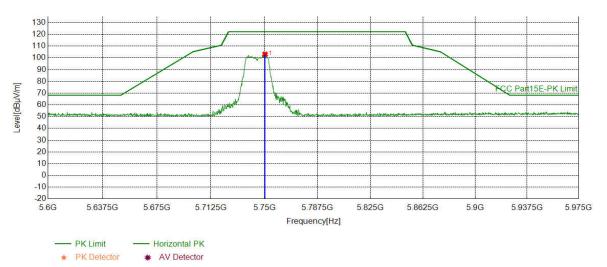
	Suspected List										
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150.0000	-15.08	76.18	61.10	68.44	7.34	PASS	Horizontal	PK	
	2	5150.0000	-15.08	65.05	49.97	54.00	4.03	PASS	Horizontal	AV	

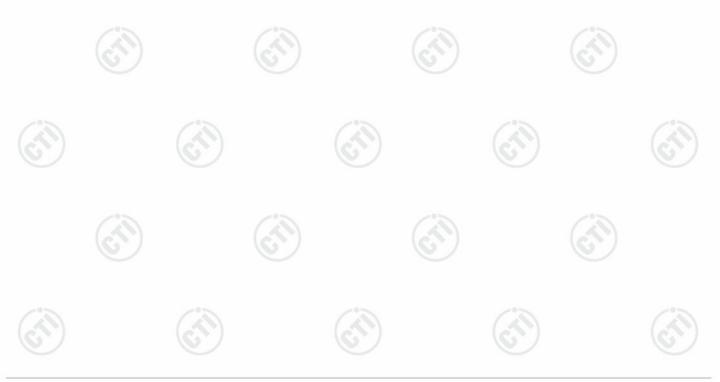



Page 36 of 57

Mode:	802.11 a Transmitting	Channel:	5180
Remark:		-0-	

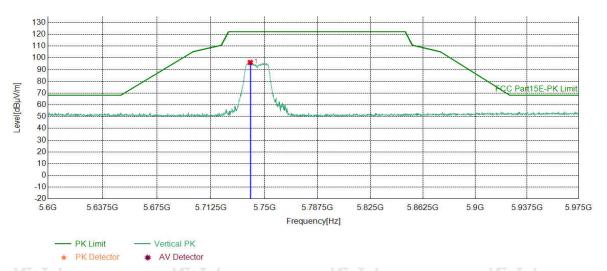
Test Graph

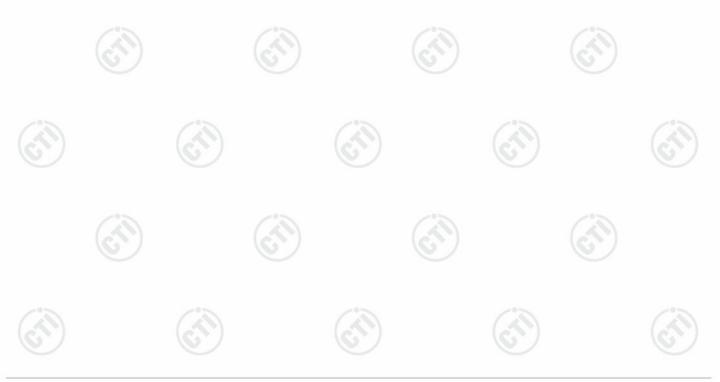

	Suspected List										
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
ò	1	5150.0000	-15.08	76.76	61.68	68.44	6.76	PASS	Vertical	PK	
	2	5150.0000	-15.08	62.01	46.93	54.00	7.07	PASS	Vertical	AV	



Page 37 of 57

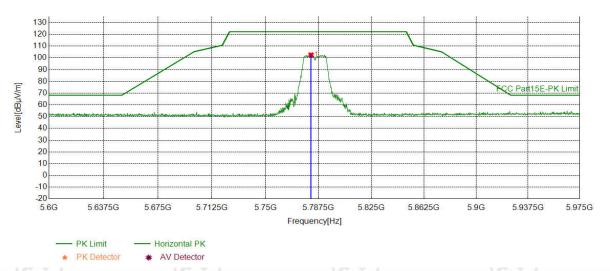
Mode:	802.11 a Transmitting	Channel:	5745
Remark:		-0-	


Sus	Suspected List											
NO	o	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1		5750.4502	13.86	89.25	103.11	122.20	19.09	PASS	Horizontal	PK		



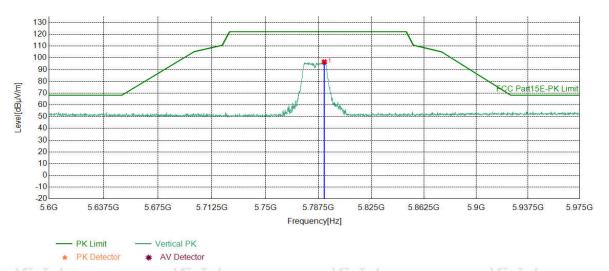
Page 38 of 57

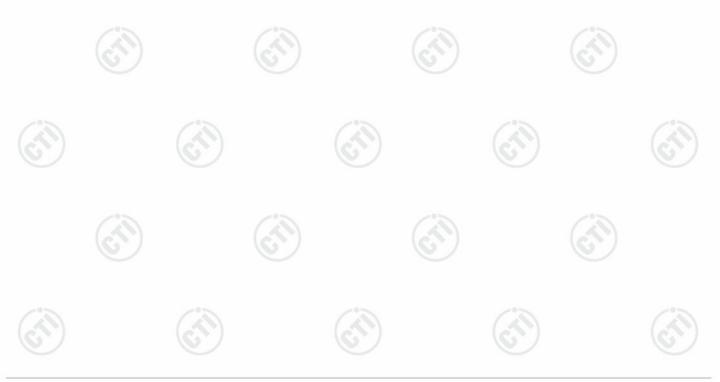
Mode:	802.11 a Transmitting	Channel:	5745
Remark:		-0-	


	Suspected List											
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	5740.1326	13.84	82.27	96.11	122.20	26.09	PASS	Vertical	PK		

Page 39 of 57

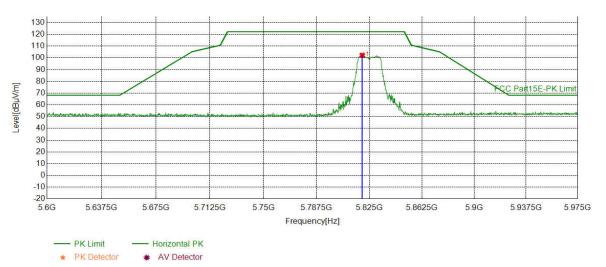
Mode:	802.11 a Transmitting	Channel:	5785
Remark:		-0-	

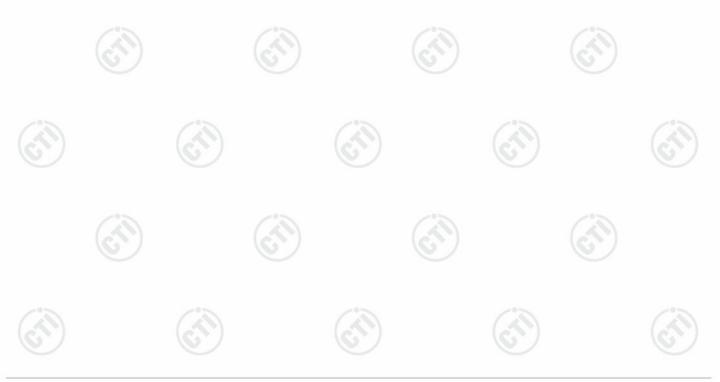

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5782.1536	13.91	88.55	102.46	122.20	19.74	PASS	Horizontal	PK			



Page 40 of 57

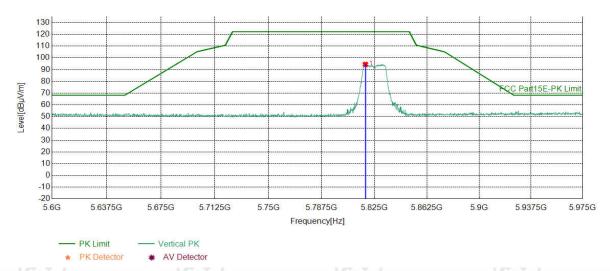
Mode:	802.11 a Transmitting	Channel:	5785
Remark:		-0-	

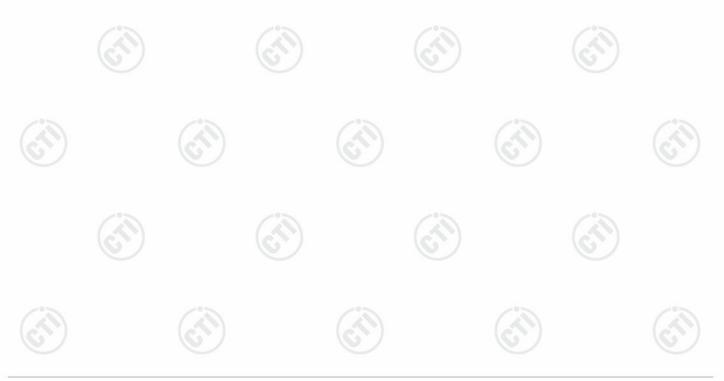

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5791.5333	13.93	82.58	96.51	122.20	25.69	PASS	Vertical	PK			



Page 41 of 57

Mode:	802.11 a Transmitting	Channel:	5825
Remark:		_0_	

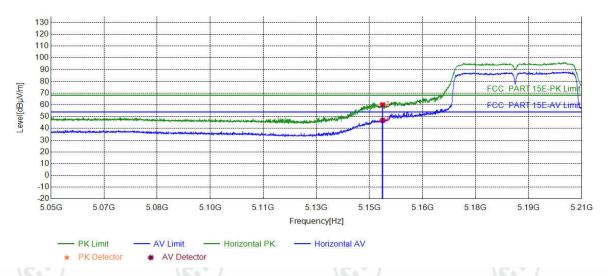

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5819.8599	14.01	88.27	102.28	122.20	19.92	PASS	Horizontal	PK			

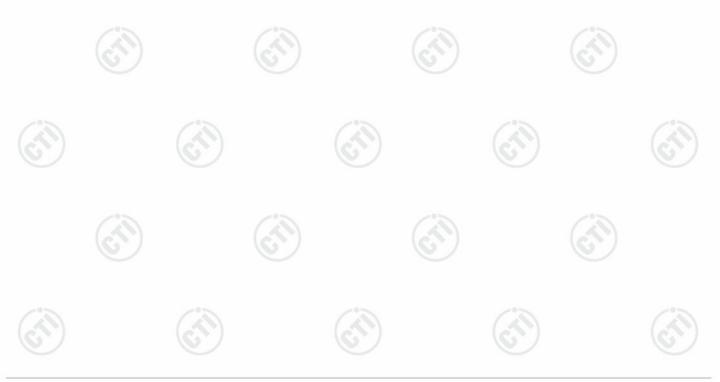


Page 42 of 57

Mode:	802.11 a Transmitting	Channel:	5825
Remark:		-0-	

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5818.5468	14.01	80.53	94.54	122.20	27.66	PASS	Vertical	PK			

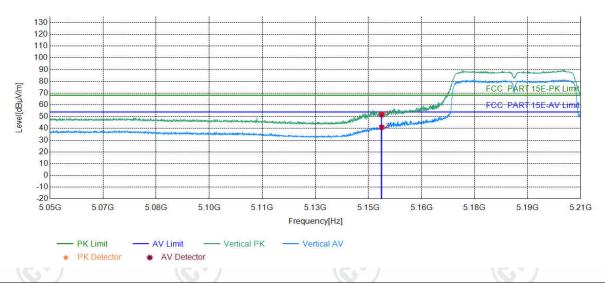




Page 43 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:		-0-	

	Suspected List											
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
Į.	1	5150.0000	12.36	47.69	60.05	68.20	8.15	PASS	Horizontal	PK		
	2	5150.0000	12.36	34.41	46.77	54.00	7.23	PASS	Horizontal	AV		



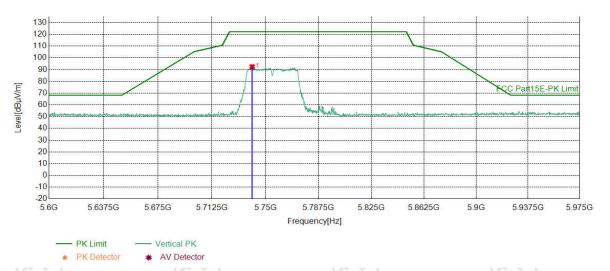
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:		-0-	

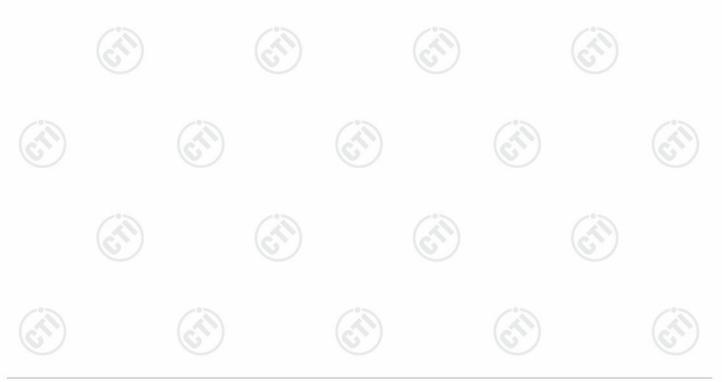
	Suspected List											
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5150.0000	12.36	39.31	51.67	68.20	16.53	PASS	Vertical	PK		
	2	5150.0000	12.36	28.61	40.97	54.00	13.03	PASS	Vertical	AV		

Page 45 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:		_0_	

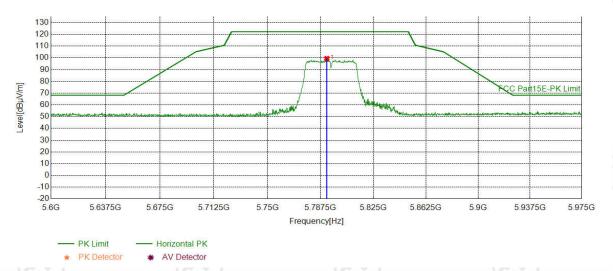
	Suspected List											
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
6	1	5766.7709	13.88	84.55	98.43	122.20	23.77	PASS	Horizontal	PK		





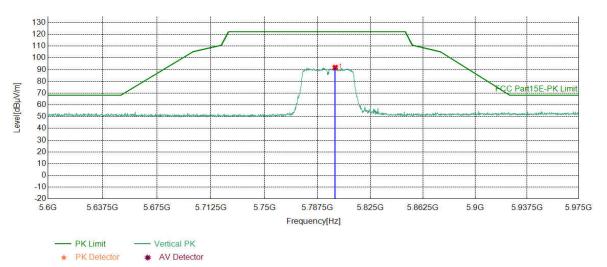
Page 46 of 57

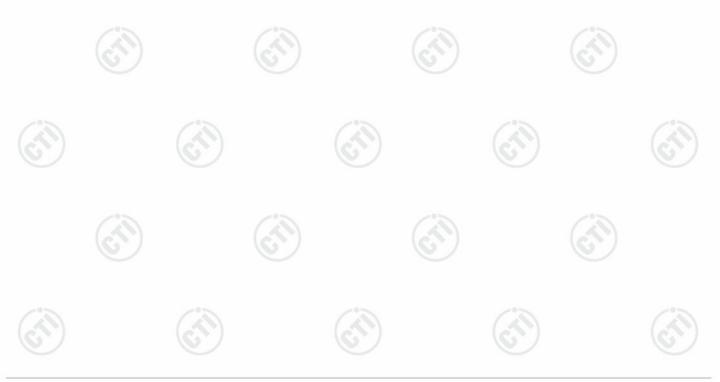
Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:		_0_	


Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5740.6953	13.84	78.66	92.50	122.20	29.70	PASS	Vertical	PK			

Page 47 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:		-0-	

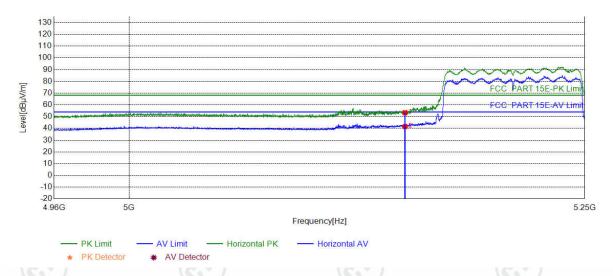

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5791.9085	13.93	85.51	99.44	122.20	22.76	PASS	Horizontal	PK			



Page 48 of 57

Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:		-0-	

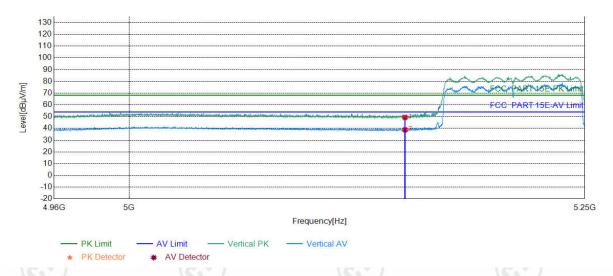
Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5799.9750	13.94	77.95	91.89	122.20	30.31	PASS	Vertical	PK			



Page 49 of 57

Mode:	802.11 ac(VHT80) Receiving	Channel:	5210
Remark:		-0-	

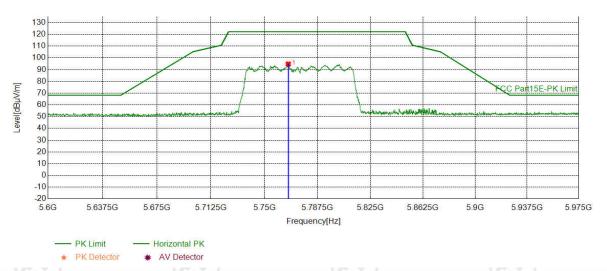
Suspected List										
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	41.00	53.36	68.20	14.84	PASS	Horizontal	PK
	2	5150.0000	12.36	29.24	41.60	54.00	12.40	PASS	Horizontal	AV

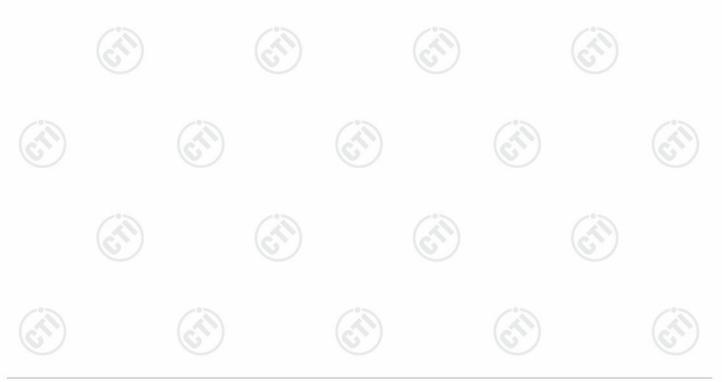


Page 50 of 57

Mode:	802.11 ac(VHT80) Receiving	Channel:	5210
Remark:		-0-	

Suspected List										
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	5150.0000	12.36	36.97	49.33	68.20	18.87	PASS	Vertical	PK
	2	5150.0000	12.36	26.42	38.78	54.00	15.22	PASS	Vertical	AV





Page 51 of 57

Mode:	802.11 ac(VHT80) Receiving	Channel:	5755
Remark:		-0-	

	Suspected List									
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5766.7709	13.88	80.89	94.77	122.20	27.43	PASS	Horizontal	PK



Page 52 of 57

Mode:	802.11 ac(VHT80) Receiving	Channel:	5755
Remark:		-0-	

Test Graph

	Suspected List									
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
V	1	5748.5743	13.85	73.88	87.73	122.20	34.47	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 53 of 57

8 Appendix A

Refer to Appendix: 5G WIFI of module 2 of EED32O81173006

