

RF EXPOSURE EVALUATION REPORT

For: Apple Inc.

Product: A2116

FCC ID: BCGA2116

RF Exposure Evaluation Report Serial No.: UL/REGA1/MPE12505086B

This RF Exposure Evaluation Report Is Issued Under The Authority Of Alan Binks, Head of Inspection:	
PP. Andrew Howe	
Written By: John Bellairs	Checked By: Andrew Hoare
1. Lellan	Andres Howe
Report Copy No: PDF01	Issue Date: 20 February 2019

This report may be reproduced in full. Partial reproduction may only be made with the written consent of UL

This page has been left intentionally blank.

RF Exposure Evaluation for the A2116

The A2116 is a desktop computer which contains 2.4GHz and 5GHz WIFI and 2.4GHz Bluetooth BR/ EDR and LE transmitters.

WLAN supports 3x3 MIMO operation with beam forming, and there can be simultaneous transmission between all of the transmitters.

The following FCC Rule Parts and procedures are applicable:

Part 1.1310 – Radiofrequency radiation exposure limits Part 2.1091 – Radiofrequency radiation exposure evaluation: mobile devices

KDB447498 D01 v06 - Mobile and Portable Devices RF Exposure Procedures and Equipment Authorisation Policies

KDB 662911 D01 v02 r01 - Multiple Transmitter Output

MAXIMUM TRANSMITTER POWER CONSIDERATIONS

From Tune Up tables (conducted power):

WLAN 2.4GHz:

Power (SISO) = 23.0dBm max

For non-beam forming MIMO, conducted power for each antenna:

Power (2x2MIMO) = 23.0dBm max (200mW)

Power (3x3 MIMO) = 22.0dBm max (158.5mW)

For BF MIMO:

Power (2x2MIMO) = 21.25dBm max (133.4mW)

Power (3x3MIMO) = 20.0dBm max (100.0mW)

ANTENNA GAINS:

Antenna Gain WF2: +4.32dBi (x2.7) Antenna Gain WF3: +4.77dBi (x3.0) Antenna Gain WF4: +3.72dBi (x2.36)

From KDB 662911 D01 v02 r01., Max. beamforming max antenna gain is calculated as: For 2x2MIMO = +7.6dBi (x5.75) For 3x3MIMO = +9.0dBi (x7.94)

RADIATED POWER:

EIRP_{SISO2} = 27.32dBm = 539.5 mW EIRP_{SISO3} = 27.77dBm = 598.4 mW* EIRP_{SISO4} = 26.72dBm = 469.9 mW

Power for non BF 2x2 MIMO operation using WF2 + WF3 antennas: $EIRP_{MIMO2} = 27.57dBm + 27.77dBm = 539.5mW + 598.4mW = 1.14W$ Power for BF 2x2 MIMO operation: $EIRP_{BF2} = 28.85dBm = 767.4mW$ Power for non BF 3x3 MIMO operation: $EIRP_{MIMO3} = 26.32dBm + 26.77dBm + 25.72dBm = 428.5mW + 475.3mW + 373.3.5mW = 1.28W*$ Power for BF 3x3 MIMO operation: $EIRP_{BF3} = 29dBm = 794mW$

*max power to be considered in calculations

WLAN 5GHz:

Power = 22.0dBm max (For SISO + 2x2 MIMO + 3x3MIMO + BF)

ANTENNA GAINS:

Antenna Gain WF2: +4.86dBi Antenna Gain WF3: +3.21dBi Antenna Gain WF4: +3.09dBi

From KDB 662911 D01 v02 r01., Max. beamforming max antenna gain is calculated as: For 2x2MIMO = +7.6dBi (x5.75) For 3x3MIMO = +9.0dBi (x7.94)

RADIATED POWER:

EIRP_{SISO2} = 26.86dBm = 485.3 mW* EIRP_{SISO3} = 25.21dBm = 331.9 mW EIRP_{SISO4} = 25.09dBm = 322.8 mW

Power for non BF 2x2 MIMO operation using WF2 + WF3 antennas: EIRP_{MIMO2} = 26.86dBm + 25.21dBm = 485.2mW + 331.9mW = 817.1mW

Power for BF operation:

 $EIRP_{BF2} = 29.6dBm = 912mW$

Power for non BF 3x3 MIMO operation:

EIRP_{MIMO3} = 26.86dBm + 25.21dBm + 25.09dBm = 485.2mW + 331.9mW + 322.8mW= 1.14W

Power for BF operation:

 $EIRP_{BF3} = 31.0dBm = 1.26W^*$

*max power to be considered in calculations

Bluetooth (Basic Rate, EDR & Low Energy) 2.4GHz

Power conducted = 13.0dBm Antenna Gain: 3.29dBi

EIRP = 16.29dBm = 42.56mW

MPE CALCULATIONS

The MPE calculation used to calculate the safe operating distance for the user is.

$S = EIRP/4 \pi R^2$

WhereS = Power densityEIRP = Effective Isotropic Radiated Power (EIRP = P x G)P = Conducted Transmitter PowerG = Antenna Gain (relative to an isotropic radiator)R = distance to the centre of radiation of the antenna (20cm requirement).

For WLAN 2.4GHz

<u>Values:</u> Transmitter frequency range = 2412 MHz to 2472MHz Max. EIRP_{SISO} = 598.4 mW EIRP_{MIMO} = 1.28W R = 20cm

Power Density Requirement

From table 1 (b) - Limits for General Population/ Uncontrolled Exposure of FCC Rule Part 1.1310 for 2.4GHz

S_{req1} = 1.0 mW/cm²

Calculation:

 $S = EIRP_{SISO} / 4 \pi R^{2}$ S = 598.4/(12.56 x 20²) S = 598.4/ (5024)

 $S_{1 \text{ SISO}} = 0.12 \text{mW/ cm}^2 (<1.0 \text{ mW/cm}^2)$ Similarly for MIMO: $S_{1 \text{ MIMO}} = 0.25 \text{mW/ cm}^2 (<1.0 \text{ mW/cm}^2)$

This equates to minimum safe operating distance (3x3 MIMO operation) of 10.1 cm at the RF exposure limit of 1.0 mW/cm²

For WLAN 5GHz

<u>Values:</u> Transmitter frequency range = 5150 MHz to 5850MHz Max. EIRP_{SISO} = 485.3 mW EIRP_{BF} = 1.26W R = 20cm

Power Density Requirement

From table 1 (b) - Limits for General Population/ Uncontrolled Exposure of FCC Rule Part 1.1310 for 5GHz

S_{req2} = 1.0 mW/cm²

Calculation:

 $S = EIRP_{SISO} / 4 \pi R^{2}$ S = 485.3/(12.56 x 20²) S = 485.3/(5024)

Similarly for BF: $S_{2 SISO} = 0.096 \text{mW/ cm}^2 (<1.0 \text{ mW/cm}^2)$ $S_{2 BF} = 0.25 \text{mW/ cm}^2 (<1.0 \text{ mW/cm}^2)$

For Bluetooth 2.4 GHz

Values:

Transmitter frequency range = 2402 MHz to 2480MHz

EIRP = 42.56 mW

R = 20cm

Power Density Requirement

From table 1 (b) - Limits for General Population/ Uncontrolled Exposure of FCC Rule Part 1.1310 for 5GHz

 $S_{req3} = 1.0 \text{ mW/cm}^2$

Calculation:

S = EIRP/4 π R² S = 42.56/(12.56 x 20²) S = 42.56/(5024)

S₃ = 0.0085mW/ cm² (<1.0 mW/cm²)

This equates to a minimum safe operating distance of 1.84cm at the RF exposure limit of 1.0 $\rm mW/cm^2$

KDB447498 D01 v05 Section 7.2 SIMULTANEOUS TRANSMISSION CONSIDERATIONS

Worst case summation of calculated MPE ratios for 2.4GHz/ 5GHz WLAN and 2.4GHz BT simultaneously transmitting transmitters from each respective antenna is:

ie: $\sum MPE_{ratios} = (S_{1 SISO}/S_{req1}) + (S_{2 SISO}/S_{req2}) + (S_{3 SISO}/S_{req3})$

= (0.12/1.0) + (0.096/1.0) + (0.0085/1.0) = 0.22

 Σ of MPE ratios<1.0, so in accordance with KDB447498 Section 7.2, simultaneous transmission test exclusion applies for the WLAN and Bluetooth transmitters.

Conclusion

The required 20cm RF exposure limits for General Population/ Uncontrolled Exposure will not be exceeded for the A2116 using antennas as specified.