
https://support.industry.siemens.com/cs/ww/en/view/109478514

Application Example � 09/2015

User Guide

PROFINET Driver for Controller
PN Driver V1.0

https://support.industry.siemens.com/cs/ww/en/view/109478514

Warranty and Liability

PN Driver
Entry ID: 109478514, V1.0, 09/2015 2

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Warranty and Liability
Note The Application Examples are not binding and do not claim to be complete

regarding the circuits shown, equipping and any eventuality. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These Application Examples do not
relieve you of the responsibility to use safe practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice. If there are any deviations
between the recommendations provided in these Application Examples and
other Siemens publications – e.g. Catalogs – the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.
Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens AG.

Security
informa-

tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens' products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/?lc=en-DE

Table of Contents

PN Driver
Entry ID: 109478514, V1.0, 09/2015 3

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Table of Contents
Warranty and Liability .. 2
Preface .. 5
1 Task... 6
2 Solution... 7

2.1 Overview ... 7
2.2 Hardware and software components .. 7
2.2.1 Validity .. 7
2.2.2 Components used ... 7
2.3 Restrictions ... 8

3 Basics ... 9

3.1 Introduction to the PN Driver .. 9
3.1.1 What is the PN Driver? .. 9
3.1.2 PN Driver and user guide – complete overview 9
3.1.3 PN Driver and user guide – components .. 10
3.1.4 Executable compiled PN controller and generated hardware

configuration .. 10
3.1.5 PN Driver functions in the application example 11

4 Hardware Configuration in TIA Portal.. 13

4.1 Hardware configuration in TIA Portal V12... 13
4.2 Interrupt configuration .. 17

5 Principle of Operation and Structure of a Control Program 19

5.1 Introduction to the PN controller ... 19
5.2 Interaction options with PN devices .. 19
5.3 Starting, stopping and shutting down the PN controller 20
5.4 Cyclic program .. 21
5.5 Hardware interrupts ... 23

6 Installation and Startup .. 24

6.1 Installing the hardware ... 24
6.2 Startup .. 25

7 Operation of the Application .. 26

7.1 Overview of the user interface.. 26
7.2 Main menu .. 26
7.2.1 …ReadRange .. 26
7.2.2 …EngineKeypad.. 27
7.2.3 …ReadWrite .. 28
7.2.4 …SetSleeptimer .. 29

8 Appendix: Implementing your own PN Controller 30

8.1 Steps from the DVD to the executable program 30
8.2 Programming a cyclic program... 30
8.3 Tips and tricks ... 32
8.3.1 The PN device is not accessible .. 32
8.3.2 The PN device permanently indicates a fault or interrupt 32
8.3.3 The PN device alternately goes online and offline 32
8.3.4 Will the PN controller work on a diagnostic/mirror port of a

switch? .. 33
8.3.5 My network adapter is not detected when I restart the software 33
8.4 Characteristics of the PN Driver ... 33

Table of Contents

PN Driver
Entry ID: 109478514, V1.0, 09/2015 4

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

9 Appendix: Introduction to PROFINET.. 34

9.1 Overview ... 34
9.2 Device types .. 34
9.3 Basic functions .. 35

10 References .. 36
11 History .. 36

1 Task
2.1 Overview

PN Driver
Entry ID: 109478514, V1.0, 09/2015 5

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Preface
About the PN Driver

For simple automation tasks with low communication overheads, it is not always
economically efficient to purchase special controller software.
For these cases, Siemens offers the PROFINET Driver for Controller (PN Driver).
It allows you to develop PROFINET applications for standard PCs without special
hardware. Communication takes place via a standard PC Ethernet interface.
Using the PN Driver, a created application can even be ported to different
operating systems.
With an open XML interface and a cycle time of up to 1 ms, the PN Driver
increases flexibility and provides the desired performance at low cost.

About the user guide
To enable you to quickly and conveniently create your own application using the
PN Driver, this user guide offers a clearly structured starting point.
The user guide will guide you through the configuration and programming of an
application example that solves an automation task with standard use cases.
Within a use case, the console application example deals with the following topics:
motor control, HMI, interrupts, distributed I/O and analog and digital inputs and
outputs.
In addition, the user guide summarizes expert knowledge regarding all the
concepts necessary for the development using the PN Driver.

Structure of this document
Users and decision-makers will find information on the functionality of the
application example in chapters 3 (basics of the PN Driver), 6 (startup of the
example) and 7 (operation of the example).
Even if you do not start up the example, these chapters provide a good overview of
the capabilities of the PN Driver.

Developers should go through the entire document. Especially chapters 8 and 9 in
the appendix give you an overview of the necessary information and procedure for
developing your own PN controller.

1 Task
2.1 Overview

PN Driver
Entry ID: 109478514, V1.0, 09/2015 6

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

1 Task
Introduction

An illustrative use case is used to demonstrate the functionality of the PN Driver. It
combines the theory of the sample application with a specific practical application
and therefore helps the user better understand the driver.

Use case description
The aim is to control and monitor a continuously running oven.
· A drive moves a cake pan into the oven.
· When the cake pan is in the oven, the oven heats up.
· A Sonar-BERO checks whether a test cake has already fully risen.
· A temperature sensor is used to measure the oven temperature.
· When baking is complete, the cakes are moved out of the oven.
· Any motor faults must be acknowledged.

Overview of the automation task
The figure below provides an overview of the automation task.
Figure 1-1

V C°

The figure below describes the numbered components.
Table 1-1

No. Description

1. Frequency inverter with motor
2. Passive temperature sensor
3. Sonar-BERO sensor

A motor-driven conveyor belt transports cakes into an oven.
When a baker sees that a cake is done, he has the next cake transported into the
oven. For this purpose, the baker checks the current cake’s expansion and
temperature visually, using the temperature sensor and the Sonar-BERO.

1 2 3

2 Solution
2.1 Overview

PN Driver
Entry ID: 109478514, V1.0, 09/2015 7

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

2 Solution
2.1 Overview

Diagrammatic representation
The diagrammatic representation below shows the most important components of
the solution:
Figure 2-1

1

V
C°

PROFINET IE

PN Driver
Controller 4

2 3

6

5

2.2 Hardware and software components

2.2.1 Validity

This application is valid for:
· STEP 7 V12 or higher (TIA Portal V12)
· Visual Studio 2012
· Windows 7
· WinPcap: Developer Resources V4.1.3

2.2.2 Components used

This application was created with the following components:

Hardware components
Table 2-1

No. Component Article number Explanation

1. PC station with PN
Driver

Includes the user program with the PN
controller as a console application.

2. Key Panel (HMI
KP8F)

1P 6AV3-3AF37-
0AX0

Allows the user to control the conveyor
belt of the oven.

2 Solution
2.3 Restrictions

PN Driver
Entry ID: 109478514, V1.0, 09/2015 8

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

No. Component Article number Explanation

3. Distributed I/O
(ET200SP)

6ES7155-
6AU00-0CN0

Used to control and read out the two
sensors (2 & 3).

4. Sonar sensor
(3RG6-14)

3RG6014-3AH00 Used to digitally determine the cake’s
degree of expansion.

5. Temperature sensor
(PT100)

Used for analog measurement of the
cake’s temperature.

6. Frequency inverter
(G120C)

6SL310-1KE18-
8AF1 A02

The motor is controlled via the control
words of the drive.

Software components
Table 2-2

Component Article number Note

TIA Portal V12 6ES7822-1A.02-
…

A free trial version is available for download.

Visual Studio
2012

A free version is available for download.

PN Driver for
Controller

6ES7195-
3AA00-0YA0

WinPcap:
Developer
Resources

The free pack is available for download.

Sample files and projects
The following list contains all files and projects that are used in this example.

Table 2-3

Component Note

109478514_PN_Driver_Guide_CODE_v10.zip This zip file contains the STEP 7 project.
109478514_PN_Driver_Guide_DOC_v10_e.pdf This document.

2.3 Restrictions

Version 1.0 of the PN Driver dealt with in this document neither supports nor
documents the following announced functionalities:

· Use of the PN Driver in Linux
· Porting Windows software to Linux or vice versa
· Creating the hardware configuration without TIA Portal V12
· Isochronous real-time communication via PROFINET

3 Basics
3.1 Introduction to the PN Driver

PN Driver
Entry ID: 109478514, V1.0, 09/2015 9

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

3 Basics
3.1 Introduction to the PN Driver

3.1.1 What is the PN Driver?

The PN Driver is a C/C++ library for programming a PN controller on a standard
PC.

3.1.2 PN Driver and user guide – complete overview

The figure below shows all the components of the PN Driver and the user guide.

Note Both the user guide and the PN Driver are supplied with documentation. This is
not shown in the following figure.

Figure 3-1

Executable PN Controller
.exe

Hardware
Configuration

.xml

PROFINET IE

Compile

User_Guide Application

PND_Test Application

PN Driver

WinPcap
C/C++ Library

P
N

D
R

IV
E

R
D

V
D

IO-Base
C/C++ Library

PN Driver
C/C++ Library

The individual components of the figure will be explained in the next section.

3 Basics
3.1 Introduction to the PN Driver

PN Driver
Entry ID: 109478514, V1.0, 09/2015 10

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

3.1.3 PN Driver and user guide – components

The list below follows the order of the items in the above figure.
Table 3-1

Component Description

User_Guide application This console application is a realistic application example
of the PN Driver. Parts of it are based on the functionality
of the PND test application.
This example is explicitly the bakery application described
above.

PND_Test application The purpose of this console application is to provide the
user with an overview of all the PN Driver functions
available. Compared to the user guide application, it does
not contain a self-contained automation example but only
individual functionalities. (Included in the scope of delivery)

PN Driver The PN Driver product is based on the following libraries:
PN Driver, IO-Base and WinPcap. However, WinPcap is
not included in the scope of delivery.

PN Driver C/C++ library An extension to the IO-Base library for programming a PN
controller. This is not a stand-alone library; it is part of the
IO-Base library.

IO-Base C/C++ library This library supports various PROFINET functionalities.
WinPcap C/C++ library Library for network packet processing. This library provides

the PN Driver with access to the network. This library is
used by the PN Driver library.

Note The application example supplied with the PN Driver (pnd_Test) differs from the
one of the user guide (user_guide).

3.1.4 Executable compiled PN controller and generated hardware
configuration

The following list describes the created results of the above figure.
Table 3-2

XML hardware configuration The individual PN devices are configured and compiled in
TIA Portal V12. The result is an XML hardware
configuration. Among other things, it includes information
on:

· IP addresses
· Hardware interrupts
· Memory addresses per module
· Network topology
· Module names
· Module types

Executable file (.exe) This file is the result of the compiled C/C++ automation
solution in Visual Studio. To be executed, the file requires
the XML HW Config.

3 Basics
3.1 Introduction to the PN Driver

PN Driver
Entry ID: 109478514, V1.0, 09/2015 11

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

3.1.5 PN Driver functions in the application example

The following PN Driver functions are used in the application example of this user
guide. In addition, we will show you the call path of the function in Visual Studio,
starting with the “user_guide.c” file that represents the entire application example.
Some of the functions were not used for the implemented standard use case.

Note This table is followed by another table that establishes the link between the
functions and the application example.

Paths that include “pnd_test” refer to the PND_Test application supplied with the
PN Driver. This test application is not the bakery control system described in this
document. However, parts of the bakery control system are based on the
PND_Test application.

Table 3-3

PN Driver functions User
guide

Call path

Management functions
PNIO_controller_open() X startPnController/pnd_test_controller_open
PNIO_register_cbf() X startPnController/pnd_test_register_devact_

cbf
PNIO_controller_close() X shutDownPnController/pnd_test_controller_c

lose
Mode functions
PNIO_set_mode() X */pnd_test_set_mode
PNIO_device_activate()
Read/write functions
PNIO_data_read() X read_data
PNIO_data_write() X write_data
Interface functions
PNIO_rec_read_req()
PNIO_rec_write_req()
Callback events (registered with PNIO_register_cbf)
PNIO_CBE_REC_READ_CONF
PNIO_CBE_DEV_ACT_CONF X startPnController/pnd_test_register_devact_

cbf
PNIO_CBE_ALARM_IND
PNIO_CBE_MODE_IND X startPnController

Note For more information on the functions, please refer to the
“PGH_IO-Base_76.pdf” supplied with the PN Driver. Furthermore, they will be
described in greater detail in a later chapter.

3 Basics
3.1 Introduction to the PN Driver

PN Driver
Entry ID: 109478514, V1.0, 09/2015 12

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

The following table establishes the link between the functions explained above and
the application example.
Table 3-4

PN Driver functions Meaning in the application example

PNIO_controller_open() (For initialization)
Registers the PN controller and its interrupts in the
IO-Base interface.

Note: The “SERV_CP_startup” method must be
called first. It configures the PN controller with the
information from the hardware configuration.

PNIO_register_cbf() (For initialization)
Registers a callback function for mode changes
(Start/Stop, etc.)

PNIO_controller_close() (For finalization)
Unregisters the PN controller in the IO-Base
interface.

PNIO_set_mode() (For initialization)
At the beginning, this function sets the current
mode of the PN controller to “Operate”; at the end,
it sets it to “Offline”

PNIO_data_read() (For ongoing operation)
Reads a byte out of the process image, either out
of an input or output address.

PNIO_data_write() (For ongoing operation)
Writes a byte to the process image, either to an
input or output address.

PNIO_CBE_DEV_ACT_CONF (For initialization)
Callback event type that triggers the call of any
function transferred to PNIO_register_cbf(). This
event is triggered when a connect error of the PN
controller occurs.

PNIO_CBE_MODE_IND (For initialization)
Callback event type that triggers the call of any
function transferred to PNIO_register_cbf(). This
event is triggered when the PN controller mode
changes, for example, from “Operate” to “Offline”.

Note Chapter 5 provides more information on how these functions are used in the
application example.

4 Hardware Configuration in TIA Portal
4.1 Hardware configuration in TIA Portal V12

PN Driver
Entry ID: 109478514, V1.0, 09/2015 13

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

4 Hardware Configuration in TIA Portal
4.1 Hardware configuration in TIA Portal V12

Note For the download links, please refer to the “References” chapter.

Table 4-1

No. Description

1. Download TIA Portal V12 and install it.
2. Download the HSP for TIA Portal V12 and install them.
3. Add the PN Driver from the hardware catalog.

4. Add the subnet.

The PN driver is automatically assigned:
· PN device name: “pn driver_1”
· IP address 192.168.0.1

4 Hardware Configuration in TIA Portal
4.1 Hardware configuration in TIA Portal V12

PN Driver
Entry ID: 109478514, V1.0, 09/2015 14

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

No. Description

5. In the Network view, add a distributed I/O module.

6. Add the new device to the PN Driver.

The second device is automatically assigned:
· PN device name: “io device_1”
· IP address 192.168.0.2

7. Insert the shown modules from the hardware catalog into the distributed I/O
module.

4 Hardware Configuration in TIA Portal
4.1 Hardware configuration in TIA Portal V12

PN Driver
Entry ID: 109478514, V1.0, 09/2015 15

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

No. Description

8. Download the GSDML files for the G120C frequency inverter:
https://support.industry.siemens.com/cs/en/en/view/60602080
Extract the .zip file.

9. Install the GSDML files from the .zip file in TIA Portal:

10. One after the other, insert the following modules in the Network view:
· 6AV3 688-3AF37-0XA0 (HMI/SIMATIC Key Panel/KP8F PN)
· 6SL3 210-1KExx-xxF1 (other field devices/Additional Ethernet

devices/PROFINET IO/Drives/Siemens AG/SINAMICS/Head
module)

The third device is automatically assigned:
· PN device name: “io device_2”

IP address 192.168.0.3

The fourth device is automatically assigned:
· PN device name: “io device_3”

IP address 192.168.0.4
11. In the Device view, click the G120C frequency inverter.

In the filtered view of the hardware catalog, double-click Standard telegram 1
to add it to the frequency inverter:

https://support.industry.siemens.com/cs/document/60602080/sinamics-g120c-profinet-gsdml-files?dti=0&lc=en-EC

4 Hardware Configuration in TIA Portal
4.1 Hardware configuration in TIA Portal V12

PN Driver
Entry ID: 109478514, V1.0, 09/2015 16

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

No. Description

12. In the Network view, the devices should now look as follows:

13. Now you can display all address ranges of the project, sorted by IO devices,
in the PN Driver.
To do this, double-click the PN Driver in any view.

14. Click the PN Driver and compile the entire project.

4 Hardware Configuration in TIA Portal
4.2 Interrupt configuration

PN Driver
Entry ID: 109478514, V1.0, 09/2015 17

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

No. Description

15. When the project has been compiled, the hardware configuration is saved in
an XML file.

Double-clicking the above line opens the folder with the XML file.
This file must later be located in the same folder as the compiled C/C++ PN
Driver automation program (.exe).

16. You can make changes to your hardware configuration at any time and
recompile the XML file. Then the PN controller adds the address ranges of
the added devices to its process image.
Provided that the old devices do not change, adding more devices does not
disrupt an already functioning automation program.

4.2 Interrupt configuration

In the application example, all standard interrupts (inserting, removing modules,
etc.) are automatically received by the PN Driver and displayed in the console
when they are received.
If you want to configure new interrupts (e.g., when there is a positive edge at an
addressable bit or a configured interrupt of an analog module), they can be
configured in TIA Portal in the usual manner. Using the generated XML hardware
configuration, they are automatically processed by the PN controller.
The following table shows how an interrupt can be configured in TIA Portal at a
digital input of a distributed I/O module.

4 Hardware Configuration in TIA Portal
4.2 Interrupt configuration

PN Driver
Entry ID: 109478514, V1.0, 09/2015 18

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Table 4-2

No. Step

1. Navigate to the hardware configuration of the I/O module.
2. In the properties of the DI module, select an input channel and set a hardware

interrupt at rising edge for this channel.

3. Now save and compile the hardware configuration.
4. Copy the generated XML hardware configuration file to the folder where you

have saved the executable file of the PN controller.
5. Now the interrupt will be executed when the interrupt’s memory address has

been read once.
The address can be found in the module properties, HW ID.

5 Principle of Operation and Structure of a Control Program
5.1 Introduction to the PN controller

PN Driver
Entry ID: 109478514, V1.0, 09/2015 19

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

5 Principle of Operation and Structure of a
Control Program

5.1 Introduction to the PN controller

The PN Driver library allows you to write your own PN controller. It manages a
process image (= large memory area that is cyclically updated) with multiple input
and output addresses. Some of these addresses are assigned to modules, control
words (for frequency inverters, etc.), sensors and actuators.
Input addresses are usually connected to sensors and output addresses are
connected to actuators.
Input address 112 corresponds to the 112th byte in the process image.
The status of the first bit of this address (112.0) could signify, for example, the
pressing of a button.
If the button is pressed, address 112.0 is assigned the value 1; if it is not pressed,
the switch is assigned the value 0.
The PN controller is mainly busy reading values from the process image and
writing other values to the process image.
Via the network, all connected and configured PN devices cyclically receive the
address values of the process image assigned to them.

5.2 Interaction options with PN devices

The PN controller programmed by you has the following options to access PN
devices:

1. Read address values from process image
2. Write address values to process image
3. Respond to (hardware) interrupt of PN device
4. Respond to status changes of PN device (e.g., “has error”)

Note It is explicitly not possible to process diagnostic data (outside of alarms and
interrupts) of PN devices. However, it can be viewed in the “Online & diagnostics”
function of TIA Portal in “Online access /<adapter>/<PN device>/Online &
diagnostics”.

5 Principle of Operation and Structure of a Control Program
5.3 Starting, stopping and shutting down the PN controller

PN Driver
Entry ID: 109478514, V1.0, 09/2015 20

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

5.3 Starting, stopping and shutting down the PN controller

The usual life cycle of a PN controller is enabled using the following methods of the
PN Driver library:
Table 5-1

No. Method Description

1. PNIO_controller_open() Registers and opens the PN controller. This sets the
controller to “Stop” mode and transfers parameters for
some callback functions that are monitored from this
time on.

2. PNIO_register_cbf() Directly after PNIO_controller_open, it is recommended
to register the callback functions.
In the functional example, the
“PNIO_CBE_DEV_ACT_CONF” callback function is
registered. It has the effect that the PN controller is
kept informed of the accessibility of the PN devices.

3. Load hardware
configuration

In the application example, the XML file is loaded using
the “loadHardwareConfig” method. It is recommended
to use this method as the structure of the XML file is
very complex.

4. PNIO_set_mode() The “PNIO_set_mode()” method allows you to change
the module’s mode (Start, Stop, Reset).
When switching on, the PN controller should also be
set to “Start” mode.
This is done with the following command:
“PNIO_set_mode(PNIO_MODE_OPERATE)”

5. PNIO_controller_close() Before this call,
“PNIO_set_mode(PNIO_MODE_OFFLINE);”
should be used to set the CP controller status to
“Offline”.
Then the PN controller can be unregistered using the
“PNIO_controller_close” command.

5 Principle of Operation and Structure of a Control Program
5.4 Cyclic program

PN Driver
Entry ID: 109478514, V1.0, 09/2015 21

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

5.4 Cyclic program

Flowchart
The following figure gives you a rough overview of the contents of the application
example’s main method.

Figure 5-1

Table 5-2

No. Name Explanation

1. ReadRange Read and display a range from the process image from a
start to an end address.

2. EngineKeypad Starts baking mode.
The example is controlled by keypad.
This routine can be compared to the cyclic operation of the
OB1 block of a Siemens PLC.

3. ReadWrite Starts a routine included in the PN Driver to manually read or
write any process image values.
This function is mainly used to debug the application.

4. SetSleepTimer After each read or write in the application example, a wait
time of 20 milliseconds is granted by default. When
debugging the application, this ensures that no interrupts are
lost (if the program works correctly, no interrupts will be lost;
this function is for debugging only).
Using this function, any value can be entered instead of 20
milliseconds.
When 0 is entered, no wait time is granted and real-time
mode starts.

NOTE If you want to trigger an interrupt manually, first read out the interrupt’s memory
address.

Normally, the value should be read once at the very beginning in the control
program to activate the interrupt.

41 2 3

5 Principle of Operation and Structure of a Control Program
5.4 Cyclic program

PN Driver
Entry ID: 109478514, V1.0, 09/2015 22

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Overview of the structure
The following screenshot shows the top level of the code structure of the bakery
application.
Figure 5-2

Table 5-3

No. Region Description

1. Includes Includes all libraries and header files used.
Worth mentioning:

· pniobase.h (=IO-Base library)
· pnd_test.h (=PND_Test application)
· eps_*.h (=PN Driver library)

Note: The “eps_*.h” includes contain a reference to the
WinPcap library. This means that all libraries from the chart
are available.

2. Global Definitions Global #define definitions.
3. Global Declarations Includes the declarations of the message structures used by

the callback functions for display in the console application.
4. Support Functions This area contains all functions that allow a cyclic

automation program.

Callback Notification Functions
· Triggered by the registered callbacks of the PN devices
· Use the structures from Global Declarations to display

messages in the console.

Callback Functions (of PNIO_Open_Controller)
· Interrupt callbacks are processed here
· Read/write callbacks are processed here

Callback Functions (of StartPNController)
· Sample callback function that can be filled as desired.

Triggered when the PN controller changes its status
(Start/Stop/Offline)

5 Principle of Operation and Structure of a Control Program
5.5 Hardware interrupts

PN Driver
Entry ID: 109478514, V1.0, 09/2015 23

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

No. Region Description
Flush Process Image Buffer
· Function that clears the process image buffer to start

the PN controller on a data consistent basis.

Read/Write Operations
· These two functions allow read/write operations from/to

the process image.
· These functions are very important for the main

program.

Load HW-Configuration, Start/Shut Down PN-Controller
· Contains the functions for loading the hardware

configuration and for starting and shutting down the PN
controller.

5. Cyclic PN-Controller
Bakery Application

Cyclic main program that controls the application example.
Will be described in greater detail in the next section.

6. Entry Point The “main” method is the entry point of this application.
In “main”, …

· ... the hardware configuration is loaded.
· … the PN controller is made ready to run.
· … the main menu is displayed.

· … the PN controller is closed when the user exits
the program.

5.5 Hardware interrupts

In the PN controller code, alarms and interrupts are registered and processed as
callback functions.
They can be registered either when starting the controller with the
“PNIO_controller_open” command as (up to 3) parameters or at any time in the
program code using “PNIO_register_cbf()”.
The implemented callback function for interrupts has all interrupts activated.
Currently, they are displayed as notifications in the console. The function that
handles the interrupts is callback_for_alarm_ind().

Note Interrupts that are not standard interrupts (such as inserting and removing
modules or cables) must be configured in TIA Portal in the hardware
configuration and registered in the PN controller.

The standard interrupts only need to be registered.

6 Installation and Startup
6.1 Installing the hardware

PN Driver
Entry ID: 109478514, V1.0, 09/2015 24

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

6 Installation and Startup
6.1 Installing the hardware

Figure showing the complete hardware configuration of the components:
Figure 6-1

PROFINET IE

M12M (0 V)

L+ (24 V)

The following table describes the components of the above figure.
Table 6-1

No. Description

1. SIMATIC IPC627C (Industrial PC)
2. SINAMICS G120C (frequency inverter)
3. SIMATIC HMI KP8F (keypad)
4. SIMATIC ET 200SP (distributed I/O module)
5. PT 100 (temperature sensor)
6. SONAR BERO (sonar)

The following table describes how to connect the modules.
Table 6-2

Action

1. Attach the individual modules to a suitable rack.
2. Connect the power supply to the power grid (230V AC).

Connect the frequency inverter and the motor to the appropriate three-phase
supply.

3. Connect the power supply to the PN devices. Ensure that the polarity is correct.
4. Connect the PROFINET interfaces of the PG/PC to the ones of the PN device.

1 2 3 4

5

6

6 Installation and Startup
6.2 Startup

PN Driver
Entry ID: 109478514, V1.0, 09/2015 25

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

6.2 Startup

This chapter describes the steps to start up the sample code.
These steps require that the hardware configuration be configured and that the
hardware be installed correctly.
1. Open the CD and copy the contents
2. Navigate to the *\source\pndriver\vs folder and
3. open the Visual Studio project (pndriver_test_w32.sln)
4. In the project structure, navigate to the pndriver_test_w32/pnd/test folder
5. and insert the “user_guide.c” file from the user guide .zip file
6. Open the “pnd_test.c” file
7. Press CTRL+A to select all lines
8. Press CTRL+K+C to comment out all lines (CTRL+K+U undoes this operation).

This overwrites the main method and makes the main method from the
“user_guide.c” file the current method.

9. Compile the code either as “release” (more efficient code) or “debug” (debug
options)

10. Now save the XML hardware configuration to the source folder. (For release
compilation, this is \source\pndriver\gen\release; for debug compilation,
\source\pndriver\gen\debug is the source folder)

11. Now run the pndriver_test_w32.exe file

7 Operation of the Application
7.1 Overview of the user interface

PN Driver
Entry ID: 109478514, V1.0, 09/2015 26

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

7 Operation of the Application
7.1 Overview of the user interface

The following figure shows the console user interface of the bakery program.

Figure 7-1

The top operation follows the structured chart of the previous chapter.
The system first loads the hardware configuration, then selects the network adapter
that has access to the PN devices and finally displays the program’s main menu
with its five options.

7.2 Main menu

The following section explains the functionalities of the five options:

7.2.1 …ReadRange

Figure 7-2

7 Operation of the Application
7.2 Main menu

PN Driver
Entry ID: 109478514, V1.0, 09/2015 27

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

After entering the start and end address, ReadRange allows the user to read a
number of input addresses out of the process image.
This functionality was added to the example for debugging purposes and for
activating configured hardware interrupts.

7.2.2 …EngineKeypad

This option starts the bakery application. It is controlled via an illuminated keypad
and via console messages.

Console view
Figure 7-3

Note The cycle time of 114 milliseconds was measured with a read/write delay of 20
milliseconds for both read/write in debug mode. This value does not reflect the
achievable speed of a PN Driver application (1 millisecond).

The following table describes the individual values:

Table 7-1

No. Value Description

5. Motor Control Word The 2-byte control word for the motor’s frequency inverter.
Among other things, it specifies whether and in which
direction the motor should turn.

6. Motor Control Value The 2-byte control value for the motor’s frequency inverter.
It allows you to adjust the motor speed.

7. Motor RPM The motor’s rotations per minute. This value is calculated
from the current control value of the frequency inverter.

8. Motor Status Status of the motor. This value is implied from the
inverter’s status word.

9. SONAR IN REACH Once the desired preset degree of expansion of a cake is
reached, this status is set to “True”.

10. Temperature Displays the temperature of the current cake.
11. CycleTime Displays the time of a completed cycle of the bakery

program.

7 Operation of the Application
7.2 Main menu

PN Driver
Entry ID: 109478514, V1.0, 09/2015 28

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Keypad
The following table explains the display and operation of the keypad.
When the application is not in the “EngineKeypad” function, all buttons of the
keypad are displayed in white.
Figure 7-4

FAULT
< >

⃠
ACK

||

Table 7-2

Button Meaning

Red Exit bakery application and re-enable for console application.
Blue Acknowledge frequency inverter fault (indicated by the flashing of one of

the two bottom left buttons on the keypad).
Green Start motor and run it at 10 rpm in counterclockwise direction. The cakes

are moved into or out of the oven.
Yellow Stop motor. Now the motor has 0 rpm. The cakes are in the oven.
White “<” Counterclockwise rotation of motor at 1500 rpm.
White “>” Clockwise rotation of motor at 1500 rpm.

7.2.3 …ReadWrite

This option starts a program of the PND_Test application for manually reading from
and writing to the process image. It is controlled via console inputs.
Figure 7-5

The figure shows the read operation from an output address; in this case, the read
value is “0x0” (response).
Read operations are automatically performed from output addresses, write
operations are automatically performed to the process image input addresses.

7 Operation of the Application
7.2 Main menu

PN Driver
Entry ID: 109478514, V1.0, 09/2015 29

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

This program mainly serves the purpose of developing a custom application.
The program allows you to test an idea step by step before hard-coding it in a
cyclic program.

7.2.4 …SetSleeptimer

This option starts a program for setting a wait time after each read and write
operation of the User_Guide application in milliseconds.
This wait time exists to ensure correct display of all interrupts while debugging a
cyclic application.
Figure 7-6

For a running cyclic program, a wait time of 0 milliseconds should always be set.
The displayed average cycle time is based on observed values from the
User_Guide application. For your custom program, the specified time would no
longer be accurate.
It is controlled via console inputs.

8 Appendix: Implementing your own PN Controller

PN Driver
Entry ID: 109478514, V1.0, 09/2015 30

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

8 Appendix: Implementing your own PN
Controller
This section provides a stand-alone description (independently of the application
example) of how to write your own PN controller.

8.1 Steps from the DVD to the executable program

The following table shows the specific steps for implementing a PN controller
application in a Windows operating system.
Table 8-1

No. Description

1. Download the free WinPcap Developer’s Pack and install it.
2. Copy the contents of the PN Driver DVD to your Windows file system.
3. Download TIA Portal 2012 and install it.
4. Download Visual Studio 2012 and install it.
5. Download the current HSP for TIA Portal V12 and install them.
6. Configure the hardware configuration of your PN controller in TIA Portal as

described in the previous chapter.
7. Open the Visual Studio project from your PN Driver DVD in Visual Studio.

To do this, open the following file:
\source\pndriver\vs\pndriver_test_w32.sln

8. If you want to write a complete custom application, create a new .c file in the
pndriver_test_w32/pnd/test folder. To use the ready-made functions, copy the
user_guide.c file to this folder.

9. Compile your written program and the hardware configuration in TIA Portal.
10. Save both the compiled .exe file and the generated xml file to one folder.
11. Run the program using the .exe file.

8.2 Programming a cyclic program

Requirements for creating the program

Note We recommend that you base your application on the functions of the
user_guide.c file. This is the bakery application example. We explicitly
recommend that you directly overwrite the EngineKeypad loop with your
application. In this way, you retain the full debugging capabilities of the
application and have a certain guarantee that the basic aspects of the program
should work from the start.

When you have completed the structure for loading the hardware configuration,
starting and stopping the PN controller and registering the callback functions (or
applied it from our example), you can create your cyclic program.

8 Appendix: Implementing your own PN Controller

PN Driver
Entry ID: 109478514, V1.0, 09/2015 31

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

Rules for a cyclic program
A cyclic program should follow the rules below:
1. (Large) loop calls within the main cycle should be avoided as otherwise an

acceptable cycle time can no longer be ensured.
2. To be able to terminate the application, the main cycle should have an end

condition that depends on the change of a single output address bit (protective
switch). This provides both an emergency stop option and a prerequisite for
forced troubleshooting in the event of a crash. In addition, stopping the main
cycle would be difficult in other cases as you would have to wait until a
condition is met that the user cannot influence.

3. At the end of the cycle, the main cycle is to move its current state to a desired
state using conditions (if-else/case). The aim is to avoid processing a state
over multiple cycles – as otherwise the real-time functionality could no longer
be ensured.

Typical structure of a cyclic program
Figure 8-1

Process Output
Image

Main Program

PN
De

vi
ce

s

Process Input
Image

IF(InputA == valueX)
{

OutputB = valueY;
}

Components State Machine

C

B

A

The left part of the figure shows that the process image must be stable at the start
and end of each cycle to ensure that the PN devices do not make errors.
The right part shows that a number of conditions must be met within a cycle and
queries without a specific result must no longer be present.
The blue main cycle (similar to the OB1 cycle) on the left side corresponds to a
loop. The loop itself specifies the clock of the main program. This means that the
PN controller is always provided with the current process image in real time –
therefore, the main cycle must be fast enough to detect the fastest relevant PN
device change.

8 Appendix: Implementing your own PN Controller

PN Driver
Entry ID: 109478514, V1.0, 09/2015 32

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

8.3 Tips and tricks

In this section, you will find help regarding frequent problems and general helpful
notes on working with the PN Driver.

8.3.1 The PN device is not accessible

How does the fault manifest itself?
· The PN device flashes. This indicates that there is no connection.
· Bad reads or writes.

Solution
1. Make sure that the PN controller is in “Operate” mode.

This is done with the following command:
pnd_test_set_mode(PNIO_MODE_OPERATE);

2. Make sure that you can see the device in the network with TIA Portal and that no IP
address conflict has occurred.
It is also possible that you have configured a module name in TIA Portal that has
not yet been assigned to the module.

3. To assign a name, go to the “Online & diagnostics” view of the module in TIA Portal
and go online. The “Assign name” menu item allows you to assign a PN name.

8.3.2 The PN device permanently indicates a fault or interrupt

How does the fault manifest itself?
· PN device indicates a fault
· PN device indicates an interrupt

Solution
Make sure that you have configured the correct modules with the correct firmware.
Furthermore, you can read out the diagnostic buffer in the “Online & diagnostics”
view to obtain more information.
In the case of interrupts, make sure that the interrupt is not triggered correctly.

8.3.3 The PN device alternately goes online and offline

How does the fault manifest itself?
· The PN device alternately goes online and offline

Solution
Check the configured cycle time on the device in the PN Driver’s hardware
properties in TIA Portal. It is possible that the cycle time of your program exceeds
the configured cycle time. In this case, you can configure a higher cycle time in the
PN Driver and move the generated hardware configuration to the PN-
Controller.exe folder.

8 Appendix: Implementing your own PN Controller

PN Driver
Entry ID: 109478514, V1.0, 09/2015 33

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

8.3.4 Will the PN controller work on a diagnostic/mirror port of a switch?

No. This configuration generates duplicated packets for the PN controller and can
cause communications problems.
Disable all mirror and monitor ports of your switches to ensure the correct
functionality of the PN controller.

8.3.5 My network adapter is not detected when I restart the software

How does the fault manifest itself?
In the console application, no – or a wrong – adapter is displayed in adapter
selection.

Solution
Try to restart the network packet filter (npf) service or check if it is running. This
service is required in order to process the PN packets. To do this, open a
command prompt with administrator rights, type “net stop npf” and then type “net
start npf”.
If the adapter is still not available, it might not be compatible or is not supported. In
this case, you can try to update the adapter drivers and restart the PN.

8.4 Characteristics of the PN Driver

Configured interrupts are only registered after reading their memory address
The interrupt addresses configured in the hardware configuration must first be read
by the PN controller before they can be triggered. This is a characteristic of PN
Driver version 1.0 and should be fixed with the next version.

PN Driver is only available in the hardware catalog
The project wizard cannot select the PN Driver as the S7 controller. It must be
selected separately in the hardware catalog in the TIA hardware configuration. This
is not an error. Regarding its device type, the PN Driver is a PC station. PC
stations are usually only available in the hardware catalog.

Some PN devices must be added as a GSD file in TIA Portal
In the case of some devices that are difficult to configure, for example motors, it is
possible that they can only be added as a GSD file. If available, they have to be
downloaded from Siemens Industry Online Support (SIOS) for each module.

Note Siemens Industry Online Support can be found here:
https://support.industry.siemens.com/cs/start?lc=en-DE

https://support.industry.siemens.com/cs/start?lc=en-DE

9 Appendix: Introduction to PROFINET

PN Driver
Entry ID: 109478514, V1.0, 09/2015 34

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

9 Appendix: Introduction to PROFINET

9.1 Overview

PROFINET is based on Ethernet. Actually, the only difference is that within an
Ethernet PDU, a PROFINET header is added at ISO/OSI layer 1. Therefore, the
entire functionality of Ethernet and the protocols based on it are also ensured by
PROFINET.
The following figure shows the visual assignment of PROFINET to the ISO/OSI
7-layer model:

Due to their importance, PDUs with IO data are always given priority in PROFINET
in the send cycle of the Ethernet port. This means that – provided that PROFINET
PDUs exist – they are prioritized over all other PDUs with less critical contents
(e.g., email, HTTP, IP, etc.) and forwarded by switches.
As is common at the two lower ISO/OSI layers, PROFINET communication is
based on the MAC address of devices.
Note: The fact that the configuration of PN devices with programming units is
performed via IP addresses is useful only to the user. Communication between the
devices is based (if not specified in this way with special blocks) on MAC
addresses.
Note: If you want to monitor your communication using network protocol analysis
tools such as Wireshark: “PROFINET Real-Time” PDUs can be reliably identified
by the “Type” Ethernet PDU field with the “0x8892” ID.

9.2 Device types

Furthermore, the PROFINET header distinguishes between the following device
types:

Table 9-1

Device
type

Header type

IO
controller

An automation controller, usually a PLC.
In the case of the PROFINET IO Driver, the used computer with the driver
becomes the IO controller.

IO device A field device controlled by the IO controller. It consists of modules and
submodules which in turn have inputs and outputs (for example, I0.0 or
O10.5). In fact, these are all modules that are not the controller itself.

IO
supervisor

A programming unit that parameterizes and diagnoses IO devices
Furthermore, it usually loads the automation program to the IO controller.

9 Appendix: Introduction to PROFINET

PN Driver
Entry ID: 109478514, V1.0, 09/2015 35

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

9.3 Basic functions

The basic functions that can be accessed via the PROFINET header at layer 1 are
the following ones:

Table 9-2

Function Name Description Protocol Addressing

Cyclic I/O IO Data
CR

The actual IO data at the inputs and
outputs. In each cycle, the current
data is exchanged between the IO
device and the IO controller.

Ethernet MAC
address

Parameters Record
Data CR

For acyclic parameterization,
diagnostics and configuration.
Designed for rare one-time
communication that is not an
emergency.

UDP/IP IP address

Alarms Alarm
CR

Acyclic, time-critical emergency
notifications. Transmitted in real time,
reception must be confirmed;
otherwise, the notifications will be
resent.

Ethernet MAC
address

10 References

PN Driver
Entry ID: 109478514, V1.0, 09/2015 36

ã
S

ie
m

en
s

A
G

20
15

A
ll

rig
ht

s
re

se
rv

ed

10 References
Table 10-1

Subject Title

\1\ Siemens Industry Online
Support

http://support.automation.siemens.com

\2\ Download page of the
entry

https://support.industry.siemens.com/cs/ww/en/view/109478514

\3\ WinPcap Developer
Resources
download page

https://www.winpcap.org/devel.htm

\4\ TIA Portal V12
download page

https://support.industry.siemens.com/cs/ww/en/view/67639464

\5\ Visual Studio 2012
Express download page

https://www.microsoft.com/en-
us/download/details.aspx?id=34673

\6\ Download page for the
HSP for TIA Portal that
include the PN Driver

https://support.industry.siemens.com/cs/en/de/view/72341852

11 History

Table 11-1

Version Date Modifications

V1.0 09/2015 First version

https://support.industry.siemens.com/cs/?lc=en-DE
https://support.industry.siemens.com/cs/ww/en/view/109478514
https://www.winpcap.org/devel.htm
https://support.industry.siemens.com/cs/ww/en/view/67639464
https://www.microsoft.com/en-us/download/details.aspx?id=34673
https://www.microsoft.com/en-us/download/details.aspx?id=34673
https://support.industry.siemens.com/cs/document/72341852/support-packages-for-the-hardware-catalog-in-the-tia-portal-%28hsp%29?dti=0&lc=en-DE

	User Guide PROFINET Driver for Controller
	Warranty and Liability
	Preface
	1 Task
	2 Solution
	2.1 Overview
	2.2 Hardware and software components
	2.2.1 Validity
	2.2.2 Components used

	2.3 Restrictions

	3 Basics
	3.1 Introduction to the PN Driver
	3.1.1 What is the PN Driver?
	3.1.2 PN Driver and user guide – complete overview
	3.1.3 PN Driver and user guide – components
	3.1.4 Executable compiled PN controller and generated hardware configuration
	3.1.5 PN Driver functions in the application example

	4 Hardware Configuration in TIA Portal
	4.1 Hardware configuration in TIA Portal V12
	4.2 Interrupt configuration

	5 Principle of Operation and Structure of a Control Program
	5.1 Introduction to the PN controller
	5.2 Interaction options with PN devices
	5.3 Starting, stopping and shutting down the PN controller
	5.4 Cyclic program
	5.5 Hardware interrupts

	6 Installation and Startup
	6.1 Installing the hardware
	6.2 Startup

	7 Operation of the Application
	7.1 Overview of the user interface
	7.2 Main menu
	7.2.1 …ReadRange
	7.2.2 …EngineKeypad
	7.2.3 …ReadWrite
	7.2.4 …SetSleeptimer

	8 Appendix: Implementing your own PN Controller
	8.1 Steps from the DVD to the executable program
	8.2 Programming a cyclic program
	8.3 Tips and tricks
	8.3.1 The PN device is not accessible
	8.3.2 The PN device permanently indicates a fault or interrupt
	8.3.3 The PN device alternately goes online and offline
	8.3.4 Will the PN controller work on a diagnostic/mirror port of a switch?
	8.3.5 My network adapter is not detected when I restart the software

	8.4 Characteristics of the PN Driver

	9 Appendix: Introduction to PROFINET
	9.1 Overview
	9.2 Device types
	9.3 Basic functions

	10 References
	11 History

