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Next Generation Firewall (NGFW) is a very dynamic, demanding, and compute-intensive 
network security workload. This paper illustrates how technologies in 4th Gen Intel® 
Xeon® Scalable processors can be used so that NGFW runs optimally. 
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Executive Summary 
Next Generation Firewall (NGFW) is a network security workload that requires the ability to 
perform packet processing and decryption/encryption of traffic at line rate, while also 
performing deep packet inspection (DPI) all the way up to layer 7 of the OSI protocol stack 
to identify threats in network traffic. This DPI can include pattern matching, as well as 
inference using classical Machine Learning (ML) and/or Deep Learning (DL) models to 
identify applications and/or detect malware in the traffic. Furthermore, as we will see, 
depending on the deployment, and the traffic profile (which can change dynamically), the 
amount of processing to be done for different packets can vary significantly. This 
combination of low-level layer 3-4 packet processing, higher layer protocol processing, 
cryptographic processing, pattern matching, ML/DL inference, and layer 7 applications 
makes the NGFW a very dynamic and demanding workload.  

This paper demonstrates how platforms based on 4th Gen Intel® Xeon® Scalable 
processors are optimal for this demanding workload. We show how NGFW can use 
technologies in these processors, including Intel® QuickAssist Technology (Intel® QAT) for 
crypto acceleration, Intel® Advanced Matrix Extensions (Intel® AMX) for DL acceleration, 
Intel® Dynamic Load Balancer (Intel® DLB) for optimal dynamic load balancing of work 
across cores, as well as other features of the platform. 

In this document, we also briefly consider the evolution of network security from appliance-
or virtual appliance-based NGFW to cloud-delivered Firewall as a Service as part of the 
Secure (Access) Service Edge (SASE/SSE) architecture. Most of the features of 
processors that benefit NGFWs apply equally in this new manifestation. 

The target audience for this document includes Chief Information Security Officers 
(CISOs), System Architects, and those defining the architecture and platform for network 
security applications and appliances. 

This document is part of the Network and Edge Platform Experience Kits.  

 

Introduction 
According to Gartner [1], Next Generation Firewall (NGFWs) are “deep-packet inspection firewalls that move beyond 
port/protocol inspection and blocking to add application-level inspection, intrusion prevention, and bringing intelligence from 
outside the firewall.” Most commercial NGFWs today include a traditional stateful firewall enhanced with application 
awareness, integrated content inspection features such as intrusion prevention and malware detection, a security gateway for 
IPsec and other VPN protocols, and potentially a TLS intercepting proxy to allow end-to-end TLS encrypted content to be 
decrypted, inspected, and re-encrypted. They need to be able to perform all this processing at line rate, including decryption 

 
Solution Brief 
 

Next Generation Firewall – Optimizations 
with 4th Gen Intel® Xeon® Scalable 
Processor 

https://networkbuilders.intel.com/intel-technologies/experience-kits


Solution Brief | Next Generation Firewall – Optimizations with 4th Gen Intel® Xeon® Scalable Processor 
 

  2 

and encryption and various types of content inspection: deep packet inspection (DPI) using pattern matching or machine 
learning (ML) and/or deep learning (DL) models to identify applications and/or detect malware in the traffic.  

NGFWs are typically deployed as appliances or virtual appliances at the edge of the data center, on the boundary between 
networks of different trust levels (for example, the trusted LAN and the untrusted WAN).  

Over time, several trends are leading to changes in how network security is deployed. As Gartner described in [2], “more 
users, devices, applications, services and data [are] located outside of an enterprise than inside.” Gartner defined a new 
consolidated networking and security-as-a-service product category, delivered from the cloud, which they call Secure Access 
Service Edge (SASE). They subsequently noted [3] that some vendors’ offerings focus on cloud-delivered security 
capabilities without the networking, leading to a new product category that they call Secure Service Edge (SSE).  

This document is organized as follows: 
 We first describe the key features of a NGFW 
 We then describe the architecture of a typical NGFW, and of a sample NGFW that we built using open-source 

components for architectural analysis and benchmarking 
 We describe the use cases and key performance indicators (KPIs) of a NGFW 
 We describe some of the key system bottlenecks that limit the performance of the sample NGFW that we built 
 We introduce the technologies in the 4th Gen Intel Xeon Scalable processors that help alleviate these key bottlenecks, 

and show how they can improve the KPIs 
 We describe the evolution of network security from NGFW to SASE/SSE, including how these same technologies can be 

brought to bear on SASE to improve its KPIs as well 
 Finally, we present a summary 
 As an appendix, we provide the results of the benchmarking described earlier in this document 

 

Key Features  
As described in the original Gartner research note on NGFW [4], a NGFW should have the following attributes: 
 Basic stateful firewall capabilities, such as packet filtering, NAT, VPN capabilities 
 Integrated network intrusion prevention (IPS) 
 Application awareness (the ability to identify applications and make policy decisions based on the application) 

This definition explicitly excluded certain features such as data loss prevention (DLP), secure web gateways (SWGs) that do 
URL filtering, and antivirus. However, many NGFWs today do integrate some of these capabilities.  

Another key feature not discussed in that document but that many vendors implement is the ability to detect intrusions 
“hidden” in end-to-end encrypted traffic such as TLS or QUIC by decrypting, inspecting, and then re-encrypting the traffic. 
This feature can typically be implemented only in an enterprise environment or equivalent (for example, an educational 
campus), where the network operator can be trusted to perform this sort of TLS or QUIC interception on behalf of the clients. 

 

Architecture 
Every network security vendor’s NGFW has its own unique implementation, but there are some common aspects to how they 
are architected. Figure 1 shows a generic architecture. 
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Figure 1. NGFW Generic Architecture 

Within this architecture, we identify the following components: 
 There is typically a VPN layer that implements a VPN protocol such as IPsec, DTLS, or WireGuard.  
 There is typically a data plane that implements the stateful firewall features. This includes L2-L4 networking features 

including routing and network address translation (NAT). This typically also implements some form of access control lists 
(ACLs) to allow traffic to be filtered based on L3/L4 headers (IP addresses and TCP or UDP port numbers). These ACLs 
should be stateful, meaning that for example, connections initiated from the trusted network may be allowed, while those 
initiated from the untrusted network can be blocked. 

 In those environments where the network operator is trusted to perform TLS or QUIC interception, there is typically a TLS 
Proxy (or QUIC proxy) that implements the proxying. This includes intercepting the handshakes to negotiate separate 
connections with the client and the server, including dynamically generating and presenting a certificate to the client for 
the server being impersonated, signed by the proxy using a private key for which the clients have installed the 
corresponding public key as a trusted CA; and then performing the decryption and re-encryption of the content before 
and after inspection, respectively. 

 There is typically some component that performs application identification (App ID). There are many techniques used for 
App ID, including using: 
− Lookups based on packet metadata (for example, IP addresses, port numbers, and/or fields extracted from higher 

layers of the stack such as HTTP) 
− Pattern matching (including regular expression pattern matching) over the packet payload 
− Machine learning based on features extracted from the traffic, including the above but also such features as packet 

lengths and/or inter-arrival times 
− Deep learning over some or all of the packets themselves 

After the application has been identified (which is typically after seeing the first one or more packets of the flow), the 
NGFW can choose to apply different policies based on the identified application. For example, some applications may be 
considered “safe” or “trusted” and can bypass more detailed content inspection. 

 There is typically an Intrusion Prevention System (IPS) that integrates with this data plane, through which traffic is sent by 
default. After the application has been identified using App ID, a policy may be applied that determines whether future 
packets of the flow also need to be inspected by the IPS. 

For the purposes of benchmarking and analyzing the NGFW workload, we at Intel have instantiated a sample NGFW stack 
using open-source components. Figure 2 shows the logical view of this stack. Figure 3 shows the process view. 
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Figure 2. NGFW Sample Architecture - Logical View 

 

 

Figure 3. NGFW Sample Architecture - Process View 

The sample NGFW stack instantiation uses the following open-source components: 
 VPP (see [5]) acts as the data plane. This implements the basic stateful firewall including routing, NAT, stateful ACLs, and 

IPsec VPN. This is a multi-threaded process, with each VPP worker thread pinned to a dedicated CPU core or hardware 
thread (in the case of CPUs such as 4th Gen Intel Xeon Scalable processors that support SMT or hyper-threading).  

 Snort (see [6]) acts as the IPS. We use Snort 3, which supports multi-threading. Here again, Snort worker threads are 
pinned to dedicated CPU cores or hardware threads. 

 Snort and VPP are integrated using the Snort plugin to VPP. This uses a set of queue pairs for sending packets between 
VPP and Snort. The queue pairs, and the packets themselves, are stored in shared memory. The plugin includes the 
following subcomponents: 
− Two new VPP graph nodes:  

o snort-enq, which is implemented as a feature on the ip4-unicast feature arc. This makes a load-balancing decision 
about which Snort thread should process the packet and then enqueues the packet to the corresponding queue. 

o snort-deq, which is implemented as an input node that polls from multiple queues, one per Snort worker thread. 
− A new DAQ for Snort. This implements the Snort DAQ API functions to receive and transmit packets by reading from 

and writing to the relevant queues. 

Not shown in the diagrams is the TLS Proxy. This can be implemented in one of several different ways: 
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 Within the data plane process, for example, VPP 
 Within the IPS process, for example, Snort 
 Within a separate “external” process using a different open-source implementation, for example, Squid (see [7]), or 

NGINX (see [8]). This can be integrated with VPP via the VCL layer that implements the sockets API. 
 Using some combination of the above, for example using an external proxy to perform the TLS handshakes, after which 

the keys can be shared with VPP to “splice” or “cut through” the connections in the data plane. 
 

Use Cases and Key Performance Indicators 
We define three use cases within the NGFW workload. These are: 
 Cleartext Inspection: Firewall plus IPS 
 VPN Inspection: Firewall plus IPSec VPN plus IPS 
 TLS Inspection: Firewall plus TLS Proxy plus IPS 

Within each of these, we measure the following key performance indicators (KPIs), based on the recommendations in the 
IETF Benchmarking Working Group (BMWG) NGFW Benchmarking methodology document [9]. They include the following: 
 Inspected Throughput and Application Transactions per Second 
 Latency, as measured by TTFB and TTLB. For each, we report minimum, average, and maximum values. 
 TCP Connection Rate: The rate at which new TCP connections can be established 
 TLS Handshake Rate: The rate at which new TLS connections can be established (for TLS Inspection only) 
 Memory Bandwidth: Although not specified in [9], we also consider memory bandwidth to be a KPI, as this can be a system 

bottleneck in some configurations. 

[9] specifies that these are to be measured for the following traffic profiles: 
 A relevant Application Traffic Mix. The document does not define this mix, but notes that the details of this mix should be 

supplied along with the results, including the name of applications and L7 protocols, the percentage of emulated traffic for 
each, the percentage of encrypted traffic and used cipher suites and keys, and the used object sizes for each application 
and L7 protocol. For benchmarking our sample NGFW, Intel chose an Application Traffic Profile Mix called Enterprise Mix, 
which we generated using Ixia’s IxLoad AppLibrary (see [10]). The details of this traffic profile are described in Table 7 and 
Table 8 in Appendix A: Benchmarking Results. 

 HTTP/TCP for various object sizes from 1 KB to 256 KB. For our benchmarking, we focus on a single object size of 64 KB. 
 HTTPS/TLS or QUIC for various object sizes from 1 KB to 256 KB. For our benchmarking, we focus on a single object size 

of 64 KB. 
 

System Bottlenecks 
A selection of the results of our benchmarking of our sample NGFW can be found in Appendix A: Benchmarking Results.  

Based on this, we have identified the following aspects of the NGFW workload that consume a significant proportion of the 
compute cycles or other system resources and can therefore potentially bottleneck the system performance. In this section, 
we describe these, before going on to discuss how these can benefit from the Intel technologies described in Relevant Intel 
Technologies. 

Compute 

Content Inspection 

Content Inspection is typically far more compute-intensive than data plane processing as it requires inspection of the entire 
payload of the packets. In our benchmarking, we found Snort to be by far the most compute-intensive component of the 
NGFW, especially when running the Cleartext Inspection use case with Snort configured to use the registered ruleset (see 
[11]) and to use the Maximum Detection1 base policy (see [12]). For a typical traffic profile and ruleset, Snort may only be able 
to process traffic at rates in the order of a few hundreds of Mbps per core. By comparison, the data plane (VPP) may be able to 
process traffic at something in the order of 10 Gbps per core. As a result, we typically need to allocate far more cores to Snort 
processing than to VPP. This is true when all packets are processed by Snort; there may be scenarios in which the policy is 
such that certain flows do not need inspection. For more details, see [13], [14].  

Figure 4 illustrates a simple block diagram of the Snort processing stages, including packet decode, preprocessing, detection, 
and logging. Of these, the pattern matching mostly happens in the Detect stage. 

 
 
1 It should be noted that Maximum Detection base policy is not recommended for production deployment. We are investigating 
the impact on throughput of different base policies. Meanwhile, all benchmarks in this paper were carried out with this policy. 
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Figure 4. Snort Processing Stages 

Figure 5 shows the output of Linux “perf top” when running our Snort in-memory benchmark on 4th Gen Intel Xeon Scalable 
processor, with the Enterprise Mix traffic profile and the Snort registered ruleset. 
 

 

Figure 5. Performance Analysis of Snort using Default Search Engine ac-bnfa 

As can be seen from the figure, the main bottleneck in Snort processing, consuming more than two thirds of the compute 
cycles, is the ac-bnfa component, which is the default detection engine used in the Detect stage of Snort. This component 
performs pattern matching, including fixed or literal pattern matching as well as regular expression pattern matching. As we 
see below, Intel’s Hyperscan library has been integrated into Snort and provides a significant reduction in this aspect of the 
workload. 

Cryptography 

For the VPN Inspection and TLS Inspection use cases, where most of the traffic must be decrypted or encrypted (or both, in 
the case of TLS Inspection), then a significant amount of compute is required to perform this encryption and decryption at 
line rate. This uses symmetric (secret key) cryptography. As we see below, 4th Gen Intel Xeon Scalable processors have 
multiple options for accelerating or offloading this processing. 

In the case of TLS inspection, then every new connection also requires a TLS handshake to be negotiated, which uses 
asymmetric (public key) cryptography.  While the connection rates are lower than the packet rate, asymmetric (public key) 
cryptography is significantly more compute intensive than symmetric (secret key) cryptography, so this can consume a 
significant proportion of the CPU as well. Again, Intel has multiple solutions to address this potential bottleneck. 

Packet Decode Pre-
process Detect Log Verdict 
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ML/DL Inference 

Some NGFWs use ML and/or DL to do application identification, malware detection, or “fuzzy” URL inspection. This aspect of 
the workload is also highly compute intensive. Again, 4th Gen Intel Xeon Scalable processors include multiple technologies to 
boost the performance of ML and DL operations. 

Note that inference typically must be done once per flow, rather than once per packet. As a result, this tends to impact the 
Connection Rate KPI as well as the Inspected Throughput. 

Memory Bandwidth 
For the cleartext inspection use case, memory bandwidth on Intel® Xeon® Gold 6438N processor is less than 1% of the 
available memory bandwidth, so memory bandwidth is not a bottleneck for this use case. 

Preliminary data from the TLS inspection use case suggests that the memory bandwidth is much higher than this. This is due, 
at least in part, to the large number of buffer copies that happen as the data traverses the stack, including multiple separate 
processes (VPP, Snort, and an external proxy) and multiple traversals up and down the TCP/IP stack. 

4th Gen Intel Xeon processors have significantly higher memory bandwidth than prior generations due to higher memory 
frequencies of up to 4800 MT/s, which can help with such high memory bandwidth applications.  

Note that we do not consider memory bandwidth further in this document. 

Power 
The power consumed by a processor running a workload depends on several factors: processor model, number of cores used, 
core frequency, fabric frequency, memory bandwidth, network bandwidth, workload power intensity, and temperature. Each 
processor model has a maximum power called TDP (thermal design power).  

There are two modes for core frequency:  

1) Fixed frequency: As described later, as part of Intel® Speed Select Technology – Performance Profile (Intel® SST-PP) 
technology, 4th Gen Intel Xeon Scalable processors offer three fixed frequency modes called performance profiles. Each 
mode has different fixed frequency, and a customer can choose the highest frequency through BIOS that gives the best 
performance for the application and still keeps processor power below the processor ‘s rated TDP. 

2) Turbo frequency: In this configuration, the processor autonomously manages core frequency and keeps it at the highest 
value for the processor TDP. In the process of achieving the best frequency, the processor measures power and adjusts 
the frequency in real time to keep power at TDP.  

We see below that when we run the NGFW workload using the default performance profile with fixed frequency, it consumes 
less power than TDP. This provides us opportunity to use either a performance profile with a higher fixed frequency, or turbo 
mode. In either case, we can achieve higher throughput. 

Other Bottlenecks 

Slow Packets 

We have observed significant variation in the compute cycles required to process different packets in Snort. The ratio of 
cycles taken by the slowest vs. the fastest packets varies with traffic profile and ruleset, but for the “default” combination we 
have chosen (Enterprise Mix traffic profile plus Registered rules), with the Maximum Detection base policy, we see a ratio of 
943:1, with the fastest packets consuming ~2.2K cycles and the slowest packets consuming ~2M cycles. The average (mean) 
is about 20K cycles. 

Figure 6 is a plot showing the packet cycles consumed by each packet, as measured using timestamps in the DAQ layer of 
Snort. It shows that, for this traffic profile, the packet cycles are clustered well below 100 thousand cycles, and just below a 
million cycles, with a few outliers up around two million cycles. 
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Figure 6. Packet Cycle Count for Enterprise Mix Traffic Profile 

The details of why some Snort packets are so slow is the subject of a planned future paper, but the short explanation is that at 
least some of the slowest packets tend to be upstream TCP ACKs that acknowledge a large amount of data sent in the 
downstream direction. When combined with certain Snort features that are enabled in our default configuration, these 
packets end up consuming significant compute cycles. For example: 

 File signature generation: This is enabled via the configuration parameter “file_id.enable_signature = true” in 
max_detect.lua. It is a malware detection feature that causes file signatures to be generated and logged on files being 
downloaded. This signature consists of a SHA256 hash. It is done incrementally; packets being downloaded are stored, 
and the hash is computed when the corresponding TCP ACK is seen going in the upstream direction. For the slowest 
packet in our Enterprise Mix traffic profile, we see 685 packets being acknowledged, resulting in a hash being computed 
over ~880 KB of data at a cost in software of ~2.9 cycles/Byte, or total of ~2. 5 M cycles. 

 JavaScript normalization: This is enabled via the configuration parameter “http_inspect.normalize_javascript = true” in 
max_detect.lua. It is another malware detection feature, and specifically a countermeasure against JS obfuscation 
techniques. Like file signature generation, this is done incrementally on seeing the upstream ACK and can result in 
significant cycles being consumed for individual packets. 

 File decompression: By default, Snort attempts to decompress (or inflate) compressed files that are downloaded. Like 
file signature generation, this is done incrementally on seeing the upstream ACK and can result in significant cycles being 
consumed for individual packets.  

 SSL certificate parsing: This is on by default. As a result of lazy initialization in the OpenSSL library, the first certificate to 
be parsed results in some extremely slow initialization code being invoked. This can be addressed by patching OpenSSL 
to do this initialization up front, rather than on the parsing of the first certificate. 

The implication is that, in the time taken to process one or more slow packets, thousands of packets can arrive, leading to a 
need for very deep queues, up to tens of thousands of packets in some cases.  

These deeper queues lead to one or more issues: 

 Significant memory capacity: We have chosen a DAQ queue depth of 8K packets. The current implementation of 
Snort/VPP integration uses separate queue pairs for each VPP thread and Snort thread, so there can be up to 2*v*s 
queue pairs, where: 

o v = number of VPP threads 

o  s = number of Snort threads 

For CPUs with a large number of hyper-threaded cores (for example, Intel Xeon 4th Gen Scalable processors have SKUs 
with up to 60 cores and 120 threads), we may end up with, for example, v in the order of 10 and s in the order of 100, which 
means ~2 K queues, and up to ~16 M queue entries. Not only do these queues themselves consume memory, but this also 
means that we need to allow for up to that many packets in flight, leading to very large buffer pools. 

 Inefficient cache utilization: Because of the high memory usage, most packets likely have been evicted from the L2 and 
L3 caches by the time they get processed. 

 Increased packet latency: Obviously, the “slow” packets themselves incur high latency, but so too do other packets that 
are being processed on the same thread. This is unavoidable in the case of other packets in the same flow, which must be 
processed in order, but may be avoidable for packets in other flows that happen to arrive on the same thread as the slow 
packets. 



Solution Brief | Next Generation Firewall – Optimizations with 4th Gen Intel® Xeon® Scalable Processor 
 

  9 

 Increased jitter: There may be a large variation in the latency incurred by different packets. 

 Lower throughput: If shallower queues are used, then throughput needs to be reduced to avoid overflowing these queues, 
which leads to packets being dropped. 

Poor Entropy 

By default, the VPP snort-enq graph node uses static load balancing to distribute traffic across the Snort threads. With this 
scheme, flows are “pinned” to specific queues (and hence specific cores or hardware threads) based on a hash calculated over 
the 5-tuple. Statistically, this gives good distribution, but only if certain criteria are met, including having a relatively large 
number of flows (realistically, at least 2000 flows per queue), and relatively “equal” flows, meaning that each flow should 
consume an approximately equal percentage of the core’s available CPU cycles. Exceptions to this can be categorized as 
“elephant flows” and “baby elephants”. 

 Elephant flows are flows where the packet rate and corresponding work exceed the capacity of a single core. Handling 
these requires the flow to be sprayed across multiple cores, which requires the packets to be reordered after processing 
and can be an issue if some or all of the processing needs to be done in order. 

 Baby elephants are those flows that consume a significant percentage of the cycles of a core (for example, more than 5% 
but less than 100%). Having just a few of these assigned to a single core may cause the capacity of that core to be 
exceeded. 

Poor entropy can be further exacerbated by the Slow Packets issue above. Even if the number of packets going to each Snort 
thread is about the same, the amount of work to be done on the different cores can vary more widely if some cores get more 
slow packets than others. 

In general, poor entropy leads to some cores receiving more work than others. To avoid dropping packets on these busiest 
cores, the traffic rate must be reduced to the rate at which these slowest cores can keep up. This means that other cores are 
underutilized. 

Of course, entropy can vary over time, and bursts of poor entropy can be addressed by deep queues to avoid packet drops, but 
this leads to the latency and other issues noted earlier. 

 

Relevant Intel Technologies 
The following Intel technologies can help alleviate some of the potential system bottlenecks identified earlier. 

We summarize how these Intel technologies can be used to alleviate the various potential system bottlenecks in Table 1 in the 
Summary section. 

Hyperscan 
Hyperscan (see [15]) is a high-performance multiple regex matching library available as open source with a C API. Hyperscan 
uses hybrid automata techniques to allow simultaneous matching of large numbers of regular expressions across streams of 
data. Hyperscan also takes advantage of the latest Intel® Advanced Vector Extensions 512 (Intel® AVX-512) vectorized bit 
manipulation instructions (vBMI) available on both the 3rd and 4th Gen Intel Xeon Scalable processors. 

Hyperscan can be used to help alleviate the following potential system bottlenecks in NGFW: 

 Compute/Snort/Pattern Matching: Hyperscan has been integrated with Snort to provide a significant boost in 
performance compared to the default search engine.  

 Figure 7 shows the output of the “perf top” utility for Snort using Hyperscan as the search engine. Compare this to Figure 
5, which shows the output with the default engine (ac-bnfa). The ac-bnfa detection engine consumes a significantly 
higher percentage of the CPU cycles. By reducing the cycles consumed performing pattern matching, Snort achieves a 
significantly higher throughput.  
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Figure 7. Perf Analysis of Snort using Search Engine Hyperscan 

Intel® QuickAssist Technology (Intel® QAT) and Software Crypto 
Intel QAT is a technology for accelerating data encryption/decryption, public key cryptography for key exchange, as well as 
compression/decompression. This acceleration technology is integrated into 4th Gen Intel Xeon Scalable processors, 
supporting rates of up to 400 Gbps for common cryptographic ciphers and up to 160 Gbps verified compression. You can 
learn more about Intel QAT at  [16].  

The 4th Gen Intel Xeon Scalable processor also inherits the Intel AVX-512 instruction accelerations. The relevant encryption 
instructions to boost cryptographic operation performance include VPMADD2 (vector instruction that does integer multiply 
accumulate and can optimize various public key cryptography operations), vAES (vector version of the AES-NI instructions), 
vPCLMUL (vectorized carry-less multiply, used to optimize AES-GCM), and SHA-NI (secure hash algorithm new 
instructions). Intel has previously published details of how it was possible to achieve over 1 Tbps of IPsec performance using 
these instructions in 3rd Gen Intel Xeon Scalable processors; see [17]. These instructions are further enhanced in 4th Gen 
Intel Xeon Scalable processors by the 19% Instructions Per Cycle (IPC) performance improvement of general-purpose 
instructions over the prior generation. 

Intel also provides software libraries to simplify use of these instructions, including the Intel® QuickAssist Technology Engine 
for QAT OpenSSL* (Intel® QAT Engine for OpenSSL*) (see [18]) and the Intel® Multi-Buffer Crypto for IPsec library (see 
[19]). 

Intel QAT can be used to help alleviate the following potential system bottlenecks in NGFW: 

 Compute/Cryptography/Symmetric: Intel QAT has been integrated with VPP via the DPDK cryptodev API to improve 
the performance of IPsec by up to 5x for AES256-CBC+HMAC-SHA256, and up to 1.6x for AES256-GCM, according to 
internal measurements by Intel. We have also measured up to 5.9x increase in throughput for WireGuard using 
ChaCha20-Poly1305, as described in [20]. 

 Compute/Cryptography/Asymmetric: Intel QAT has been integrated with OpenSSL via the QAT engine. Using the Intel 
QAT hardware, TLS handshake performance for the cipher suite NGINX ECDHE-x25519-RSA2K improves by up to 6.3x 
vs. unoptimized software at 1c1t, and by up to 1.68x vs. optimized software at 12c24t, as described in [21]. 

As potential future work, we also plan to look at using Intel QAT to potentially accelerate the following: 

 Compute/Snort/File signature generation: Intel QAT could also be used to accelerate the SHA256 hashing of larger data 
blocks in Snort.  

 Compute/Snort/File decompression: Intel QAT could also be used to accelerate the decompression of compressed files 
in Snort. 
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Intel® Deep Learning Boost (Intel® DL Boost) 
Intel DL Boost was first introduced in the 2nd Gen Intel® Xeon® Scalable processors with the addition of Intel AVX512 VNNI, 
an extension to the Intel AVX-512 instruction set. It brings accelerated performance to demanding AI workloads without 
discrete add-on accelerators. It can significantly improve performance for common AI inferencing and training workload. 4th 
Gen Intel Xeon Scalable processors add support for Intel® Advanced Matrix Extensions (Intel® AMX), a new component of 
Intel DL Boost technology. This built-in accelerator is dedicated to the matrix multiplication at the heart of deep learning 
workloads. Intel AMX combines a new instruction set that operates on large matrices in a single operation with two-
dimensional register files that store larger chunks of data for each core. For more information on Intel DL Boost, including Intel 
AMX, see [22]. 

Intel DL Boost can be used to help alleviate the following potential system bottleneck in NGFW: 

 Compute/ML/DL Inference: For network security applications that use Deep Learning inference, whether to detect 
malware, identify anomalies, or for other use cases, using Intel DL Boost technology including Intel AMX can significantly 
improve the performance of this component of the workload. For example, as described in [22], by applying IPEX static 
post-training quantization and using Intel AMX on 4th Gen Intel Xeon Scalable processors (specifically the Intel Xeon 
Gold 6428N processor), the performance of the BERT model – which can be trained for cybersecurity applications – can 
get 7.09 X ~ 8.36 X performance improvement compared to the 3rd  Gen Intel Xeon Scalable processor (specifically, the 
Intel® Xeon® Gold 6338N processor). 

Intel® Dynamic Load Balancer (Intel® DLB) 
Intel DLB is a hardware managed system of queues and arbiters connecting producers and consumers. These producers and 
consumers are typically software threads running on different cores or threads. Intel DLB is a PCI device in the CPU package. 
It implements load balancing features including lock-free multi-producer/multi-consumer operation, multiple priorities for 
varying traffic types, and various distribution schemes including unordered, ordered, and atomic. For details, see [23]. 

Intel DLB can be used to help alleviate the following potential system bottlenecks in NGFW: 

 Queue Management: In a CPU with a large number of threads, if the enqueue/dequeue rates are sufficiently high, the 
queue management itself may be a significant portion of processing cycles due to time wasted polling empty queues, lock 
contention, and cross core snoop latencies. Intel DLB can greatly reduce these costs by removing locks/multi-queues and 
eliminating cross core snoops. 

 Other Bottlenecks/Slow Packets: With static load balancing, flows are “pinned” to specific cores. While slow packets are 
being processed, other packets from the same flow, and those from other flows assigned to that core, build up on the 
queue. With Intel DLB, packets from other flows can be dynamically load balanced to other cores, thereby reducing 
latency incurred by those other flows. 

 Other Bottlenecks/Poor Entropy:  

o Elephant flows can be dealt with in one of the following ways: 

• For packets that can be processed out of order but need to be sent in-order, this can be achieved using ordered 
queues. 

• For packets that need to be processed in order, these can be handled by breaking the processing into multiple 
stages with only a subset of the processing – the “critical section” – needing to be done in-order. This part can 
then be handled using atomic queues, while the other parts can use ordered queues. 

• For an example of how this can be done for IPsec traffic, see [24]. 

o Baby elephants can be dealt with similarly to how it is described for Slow Packets. 

Intel Speed Select Technology – Performance Profiles (Intel SST-PP) and Intel Turbo Boost 
Technology 
Intel SST-PP provides customers with multiple processor configurations within a single device, allowing the customer to 
select between an optimal balance of core count, base frequency, and thermal design point (TDP). Different profiles can be 
selected based on the workload.  

Table 4 shows two different available profiles for the Intel® Xeon® Platinum 8470N. Meanwhile, Figure 12 compares the 
throughput and power for these two different modes. We can see that in the default Network mode, with a core frequency of 
1.7 GHz, we have 30W of “headroom”. By configuring the processor in Compute mode, with a core frequency of 2.1 GHz, the 
throughput increases by 21% while the power remains below the 300 W TDP. 

As noted earlier, it is also possible to increase the operating frequency by enabling Intel Turbo Boost Technology. In this case, 
the processor dynamically selects the highest frequency for the cores while keeping the operating power at TDP.  Figure 11 
shows a 21% performance gain with turbo enabled due to the increase in base frequency from 1.8 GHz to 2.2 GHz for a 
different SKU, namely the Intel Xeon Gold 6428N, taking advantage of the power headroom at the fixed base frequency. This 
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is the same performance benefit as we see with the SST-PP compute profile on the Platinum SKU above. However, 
configuring the Intel SST-PP compute profile sets the frequency to a fixed value, whereas with turbo the frequency can vary, 
which can lead to jitter. 

Figure 9 shows 1.26x performance improvement for 4th Gen Intel Xeon Gold network processor versus 3rd Gen Intel Xeon 
Gold network processor using turbo mode for both generations.   

The key take-away here is that the NGFW Cleartext Inspection use case has power headroom when running at default 
network mode fixed frequency. By using either a higher frequency profile or turbo frequency, it is possible to increase 
performance by up to 21%.2  

 

Evolution to SASE/SSE 
As noted earlier, network security deployments are evolving from appliance-based NGFWs to cloud-delivered SASE/SSE 
solutions. Some of the key differences include: 

 Maturity: NGFW is a mature technology, having been deployed for over a decade. SASE/SSE is still an evolving product 
category. 

 Deployment: NGFWs are typically deployed in an appliance or virtual appliance form factor, on the boundary between 
networks with a different level of trust. SASE/SSE is delivered as a service from the cloud and assumes zero trust. 

 Development: NGFWs tend to be developed as monolithic applications, consisting of tightly coupled components. They 
are typically deployed on bare metal or in virtual machines (VMs) on dedicated hardware or general-purpose servers. 
SASE/SSE is intended to be developed using cloud native principles, “built on microservices with the ability to scale out 
as needed” (per [2]) and deployed in containers. 

 Functionality: While both NGFW and SASE/SSE are, at some level, collections of network security functions, SASE 
includes additional functions not typically included in NGFW, including CASB, SWG, RBI, ZTNA, WAAP/WAF, DNS 
Protection. 

Despite these differences, the same Intel technologies that improve the KPIs of NGFW in an appliance or virtual appliance 
deployment are expected to be mostly applicable to SASE/SSE cloud-based deployments, as well. 

 

Summary 
Table 1 maps the various potential system bottlenecks to the KPIs that they impact and the relevant Intel technologies that 
can alleviate them. 

Table 1. Mapping Bottlenecks, KPIs, and Relevant Intel Technologies 

Bottleneck  KPI Relevant Intel Technologies 
Compute Snort/Pattern Matching Inspected Throughput Hyperscan 

Cryptography/Symmetric Inspected Throughput Intel QAT and Software Crypto 
Cryptography/Asymmetric TLS Handshake Rate Intel QAT and Software Crypto 
Snort/File Signature Generation Inspected Throughput Intel QAT and Software Crypto 
Snort/File Decompression Inspected Throughput Intel QAT and Software Crypto 
ML/DL Inference Inspected Throughput, 

Connection Rate, Latency 
Intel DL Boost 

Power   Intel SST-PP and Intel Turbo Boost 
Technology 

Other 
Bottlenecks 

Slow Packets  Intel DLB 
Poor Entropy/Elephant Flows  Intel DLB 
Poor Entropy/Baby Elephants  Intel DLB 

Terminology 

Table 2. Terminology 

Abbreviation Description 
1C2T One Core 2 Threads (HT enabled) 

 
 

2 Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. 

http://www.intel.com/PerformanceIndex
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Abbreviation Description 
ACL Access Control List 

App ID Application Identification 

BERT Bidirectional Encoder Representations from Transformers 

BW Bandwidth 

CA Certificate Authority 

DAQ Data AcQuisition, a library for packet input/output in Snort 

DL Deep Learning 

DLP Data Loss Prevention 

DPDK Data Plane Development Kit 

DPI Deep Packet Inspection 

DTLS Datagram Transport Layer Security 

HT Hyper-Threading; also known as Symmetric Multi-Threading (SMT) 

IPC Instructions Per Cycle 

IPS Intrusion Prevention System 

JS JavaScript 

KPI Key Performance Indicator 

ML Machine Learning 

MSR Model Specific Register 

NAT Network Address Translation 

NGFW Next Generation Firewall  

OSI Open Systems Interconnection 

PDR Partial Drop Rate 

QUIC A secure, general purpose, connection-oriented transport protocol as defined by IETF RFC 9000 

SASE/SSE Secure (Access) Service Edge 

SMT Symmetric Multi-Threading; also known as Hyper-Threading (HT) 

SWG Secure Web Gateway 

TCP Transmission Control Protocol 

TDP Thermal Design Power/Thermal Design Point 

TLS Transport Layer Security 

TTFB, TTLB Time to First Byte, Time to Last Byte 

UDP User Datagram Protocol 

vBMI Vectorized Bit Manipulation Instructions 

VCL VPP Comms Library 

VPP Vector Packet Processing 

 

Document Revision History 

Revision Date Description 
001 February 2023 Initial release. 
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Appendix A: Benchmarking Results 
Note that at this time, we have not completed the VPN Inspection or TLS Inspection benchmarks. We present the results of 
our Cleartext Inspection benchmarking only. 

NGFW: Cleartext Inspection3 

Block Diagram and Test Setup 

Figure 8 shows what the test setup looks like. The details of the platforms, including the processors, Ethernet Adapters, and 
configuration, are available in Table 16 and Table 17. 

 

 

Figure 8: NGFW Test Setup 

Summary of Generation to Generation Performance  

In this section, we compare the performance of some specific SKUs of the 4th Gen Intel Xeon Scalable processor versus the 
prior generation. We first compare the performance of some Network Gold SKUs shown in Table 3. We then look at the 
impact of different profiles/modes using a Network Platinum SKU, as shown in Table 4, before going on to compare the “top-
of-stack” SKUs shown in Table 5. Note that some network security appliance vendors tend to use these “top of stack” SKUs 
for their high-end appliances. 

Table 3: Network Gold SKUs 

Processor SKU 3rd Gen 4th Gen 
SKU Name Intel Xeon Gold 6338N Intel Xeon Gold 6428N 
TDP (W) 185 185 
Core Count 32 32 
Base Core Frequency (GHz) 2.2 1.8 
All-Core Turbo Frequency (GHz) for 
NGFW workload 

2.4 2.2 

Uncore Frequency (GHz)4 1.6 1.6 

 

 
 

3 For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary. 
4 The uncore frequency was explicitly set using MSRs. 

http://www.intel.com/PerformanceIndex
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Table 4: Network Platinum SKU Performance Profiles 

Processor SKU Intel Xeon Gold 8470N (4th Gen) 
Profile/Mode Network (Default) Compute 
TDP (W) 300 300 
Core Count 52 52 
Base Core Frequency (GHz) 1.7 2.1 
Uncore Frequency (GHz)5 1.6 1.4 

Table 5. "Top of Stack" SKUs 

Processor SKU 3rd Gen 4th Gen 
SKU Name Intel Xeon Platinum 8380 Intel Xeon Platinum 8490H 
Profile (aka Mode) n/a Network 
TDP (W) 270 350 
Core Count 40 60 
Base Core Frequency (GHz) 2.3 1.7 

The first three charts that follow compare the socket-level performance of the network SKUs at base core frequency and at 
turbo core frequency.  

 Figure 9 shows a performance gain of 11%.  

 Figure 10 shows a performance gain of 26%.  

 Figure 11 shows a turbo boost of 21% for the Intel Xeon Gold 6428N.  
 

 

Figure 9. NGFW Gen to Gen Performance with Base Frequency (Results may vary. See Table 19 for configuration details) 

 

 
 

5 The uncore frequency was explicitly set using MSRs 



Solution Brief | Next Generation Firewall – Optimizations with 4th Gen Intel® Xeon® Scalable Processor 
 

  17 

 

Figure 10. NGFW Gen to Gen Performance with Turbo Frequency (Results may vary. See Table 19 for configuration details) 

 

 

Figure 11. Performance at Base Frequency vs. Turbo Frequency on Intel Xeon Gold 6428N (Results may vary. See Table 19 
for configuration details) 

Next, we compare the socket-level performance of two different profiles of the Intel Xeon 8470N processor SKU.  Figure 12 
shows that we can achieve an additional 21% performance boost by configuring the processor with the “compute” 
mode/profile while remaining under the 300W TDP of the processor SKU. 



Solution Brief | Next Generation Firewall – Optimizations with 4th Gen Intel® Xeon® Scalable Processor 
 

  18 

 

Figure 12. Performance of Intel Xeon Platinum 8470 with Different Performance Profiles (Results may vary. See Table 19 for 
configuration details) 

Finally, we compare the socket-level performance of top-of-stack SKUs at base frequency and at turbo frequency. Figure 13 
shows that we can achieve approximately 50% more performance from the 4th Gen part, largely due to the 50% increase in 
the core count (from 40c to 60c). The relative IPC improvements of the cores are negated by the lower frequency of the 4th 
Gen part.  

 

Figure 13. Performance at Base Frequency for "Top of Stack" SKUs (Results may vary. See Table 20 for configuration details) 

Raw Results 

Table 6, Table 7, and Table 8 show the raw performance data behind the charts above. For each platform, it shows the 
throughput, the corresponding number of cores and threads running VPP and Snort, the operating core and uncore 
frequencies, the memory bandwidth, the CPU power, and some other derived numbers. From Table 6, the CPU power results 
show that there is a higher TDP headroom on the 4th Gen products compared to the 3rd Gen, which allows the frequency to 
be increased above the base frequency while staying within the TDP envelope. The memory bandwidth and Memory BW per 
core is very small for the Clear text inspection case.   

Note that all benchmarks were run with the Enterprise Mix traffic profile and the Snort registered ruleset. The details of these 
can be found in Traffic Profile and Snort Ruleset Overview. 

Table 6. NGFW Cleartext Inspection Socket Level Performance Raw Data for N SKUs 

Metric Units Base Frequency Turbo Frequency 

SKU 
 

Intel Xeon Gold 
6338N 

Intel Xeon Gold 
6428N 

Intel Xeon Gold 
6338N 

Intel Xeon Gold 
6428N 
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Metric Units Base Frequency Turbo Frequency 

Throughput (Max) Gbps 10.16 11.25 10.84 13.66 
Relative Throughput 

 
1 1.11 1 1.26 

No. of VPP cores 
 

4C8T 3C6T 4C8T 3C6T 
No. of Snort cores 

 
26C52T 27C54T 26C52T 27C54T 

Throughput per Core Gbps 0.34 0.38 0.36 0.46 
Throughput per Snort Core Gbps 0.39 0.42 0.42 0.51 
CPU Power Watt 179 156 184 184 
Core Freq GHz 2.2 1.8 2.4 2.2 
Uncore freq GHz 1.6 1.6 1.6 1.6 
Memory BW GB/s 5.9 5.9 6.6 7.5 

Memory BW per Core GB/s 0.20 0.20 0.22 0.25 

Table 7. NGFW Cleartext Inspection Socket Level Performance Raw Data Comparing Intel SST-PP Profiles on 8470N 

Metric Units Intel Xeon Platinum 8470N 
Profile 

 
NFV profile 

(1.7GHz) 
Compute Profile  

(2.1 GHz) 

Throughput (Max) Gbps 16.28 19.63 

Relative Throughput 
 

1.00 1.21 

No. of VPP cores 
 

4C8T 4C8T 

No. of Snort cores 
 

46C92T 46C92T 

CPU Power Watt 270 297 

Core Freq GHz 1.7 2.1 

Uncore freq GHz 1.6 1.4 

Table 8. NGFW Cleartext Inspection Socket Level Performance Raw Data Comparing Top-End SKUs 

Metric Units Base Frequency 
SKU 

 
Intel Xeon 

Platinum 8380 
Intel Xeon Platinum 

8490H 

Throughput (Max) Gbps 13.90 21.29 

Relative Throughput 
 

1.00 1.53 

No. of VPP cores 
 

4C8T 4C8T 

No. of Snort cores 
 

34C68T 54C108T 

CPU Power Watt 227 305 

Core Freq GHz 2.3 1.9 

Uncore freq GHz 1.6 1.6 

Configuration 

Traffic Profile and Snort Ruleset Overview 

Table 9. Traffic Profile Details 

Attribute Units Value 
Name  Enterprise Mix 

Source  Ixia IxLoad (v9.00) AppLibrary 

Summary   
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Attribute Units Value 
Number of Flows  25,594 

Number of Packets  999,835 

Average Packet Size Bytes 349 

PCAP file size MB 364 

Table 10. Traffic Profile Details: Applications 

Protocol Port Application 
Num 

Flows 
Flows (%) Packets (%) 

TCP 1521 Oracle Database 5027 19.6% 29.5% 

22 Secure Shell (SSH) 4678 18.3% 50.0% 

80 HTTP 241 0.9% 1.3% 

139 NetBIOS Session Service 125 0.5% 1.3% 

6881 BitTorrent 94 0.4% 2.9% 

443 HTTPS 81 0.3% 2.3% 

1494 Citrix Independent Computing 
Architecture (ICA) 

79 0.3% 3.9% 

8426 (Not Specified) 77 0.3% 1.6% 

21 File Transfer Protocol (FTP) 61 0.2% 1.0% 

25 Simple Mail Transfer Protocol (SMTP) 27 0.1% 0.2% 

Others Various (one flow each) 248 1.0% 3.1% 

UDP 9875 Session Announcement Protocol 
(SAP) 

7464 29.2% 1.5% 

17771 LogMeIn Hamachi VPN 7392 28.9% 1.5% 

Total 
  

25594 100.0% 100.0% 

Table 11. Snort Rules Details 

 Attribute Value 
Name Registered Rules 
Source https://www.snort.org/downloads#rules  
Version snortrules-snapshot-31110.tar.gz 
Number of Rules 44040 
Number of PCREs 11193 

Core and Thread Mapping 

The mapping of software threads to hardware cores and threads for each platform is found in the following tables. 

Table 12. Legend Used for Core Pinning 

  OS core (isolated) 

  VPP main and Snort main threads 

  VPP worker threads 

  Snort worker threads 

Table 13. Core Mapping for Intel Xeon Gold 6338N (32C64T) 

Logical Core 0 Logical Core 1 

0 8 16 24 0 8 16 24 

1 9 17 25 1 9 17 25 

2 10 18 26 2 10 18 26 

https://www.snort.org/downloads#rules
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3 11 19 27 3 11 19 27 

4 12 20 28 4 12 20 28 

5 13 21 29 5 13 21 29 

6 14 22 30 6 14 22 30 

7 15 23 31 7 15 23 31 

Table 14. Core Mapping for Intel Xeon Gold 6428N (32C64T) 

Logical Core 0 Logical Core 1 

0 8 16 24 0 8 16 24 

1 9 17 25 1 9 17 25 

2 10 18 26 2 10 18 26 

3 11 19 27 3 11 19 27 

4 12 20 28 4 12 20 28 

5 13 21 29 5 13 21 29 

6 14 22 30 6 14 22 30 

7 15 23 31 7 15 23 31 

Table 15. Core Mapping for Intel Xeon Platinum 8470N (52C104T) 

Logical Core 0 Logical Core 1 

0 13 26 39 0 13 26 39 

1 14 27 40 1 14 27 40 

2 15 28 41 2 15 28 41 

3 16 29 42 3 16 29 42 

4 17 30 43 4 17 30 43 

5 18 31 44 5 18 31 44 

6 19 32 45 6 19 32 45 

7 20 33 46 7 20 33 46 

8 21 34 47 8 21 34 47 

9 22 35 48 9 22 35 48 

10 23 36 49 10 23 36 49 

11 24 37 50 11 24 37 50 

12 25 38 51 12 25 38 51 

Table 16. Core Mapping for Intel Xeon Platinum 8380 (40C80T) 

Logical Core 0 Logical Core 1 

0 10 20 30 0 10 20 30 

1 11 21 31 1 11 21 31 

2 12 22 32 2 12 22 32 

3 13 23 33 3 13 23 33 

4 14 24 34 4 14 24 34 

5 15 25 35 5 15 25 35 

6 16 26 36 6 16 26 36 

7 17 27 37 7 17 27 37 

8 18 28 38 8 18 28 38 

9 19 29 39 9 19 29 39 
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Table 17. Core Mapping for Intel Xeon Platinum 8490H (60C120T) 

Logical Core 0 Logical Core 1 

0 15 30 45 0 15 30 45 

1 16 31 46 1 16 31 46 

2 17 32 47 2 17 32 47 

3 18 33 48 3 18 33 48 

4 19 34 49 4 19 34 49 

5 20 35 50 5 20 35 50 

6 21 36 51 6 21 36 51 

7 22 37 52 7 22 37 52 

8 23 38 53 8 23 38 53 

9 24 39 54 9 24 39 54 

10 25 40 55 10 25 40 55 

11 26 41 56 11 26 41 56 

12 27 42 57 12 27 42 57 

13 28 43 58 13 28 43 58 

14 29 44 59 14 29 44 59 

 

VPP Command Line and Configuration 

Following is the VPP startup file and the corresponding command lines needed to bring up VPP.  The command lines are used 
to define addresses and neighbors for the Home and External Network. 
 

unix {   
  log /var/log/vpp.log 
  exec vpp_setup 
    cli-listen /run/vpp/vpp.sock   
} 
cpu { 
  main-core 1 
  corelist-workers 2,66 
} 
buffers { buffers-per-numa 1048576 } 
dpdk { 
  dev default { 
    num-rx-queues 2 
    num-tx-queues 2 
    num-rx-desc 1024 
    num-tx-desc 1024 
  } 
  # DPDK interfaces represent Home and External interfaces 
  dev 0000:3d:00.0 { name eth1 } 
  dev 0000:3d:00.1 { name eth0 } 
  no-multi-seg 
} 

Figure 14. VPP Startup Config 

 
set int state eth0 up 
set int state eth1 up 
set int ip address eth0 100.100.100.1/24 
set int ip address eth1 200.200.200.1/24 
set int promiscuous on eth0 
 
ip route add 0.0.0.0/0 via 200.200.200.2 eth1 
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set ip neighbor eth0 100.100.100.2 b4:96:91:ad:8d:61 
set ip neighbor eth1 200.200.200.2 40:a6:b7:19:06:f0 
 
set dpdk rss key port 0 key 
6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6d5a6
d5a6d5a 
exec snort_setup 

Figure 15. VPP Startup Config 

Snort Command Line Parameters 

Snort was invoked with the following command line: 
% $SNORT_PATH/snort -A none --daq-dir $DAQ_DIR --daq vpp --daq-var input_mode=polling --daq-var 
socket_path=/run/vpp -i vpp1:daq0 -c $LUA_DIR/snort.lua -R $RULES_DIR/snort-registered.rules --
tweaks max_detect -Q --max-packet-threads=1 

Some of these parameters are described in more detail in Table 18. 

Table 18. Snort Command Line Parameters 

Parameter Comments 
-Q Runs Snort in “inline” mode (intrusion prevention), as distinct from passive mode (intrusion 

detection) 
--tweaks 
max_detect 

Uses Maximum Detection base policy. As noted earlier in this paper, Maximum Detection base policy 
is not recommended for production deployment. We are investigating the impact on throughput of 
different base policies. Meanwhile, all benchmarks in this paper were carried out with this policy. 
Note that the snort.lua file has been updated to "include max_detect.lua” so this parameter does not 
need to be specified. 

<none> Hyperscan is enabled as the default detection engine. This is implemented via a patch to snort.lua. 

Grub Command Line 
rw hugepagesz=1G hugepages=16 isolcpus=1-59,61-119,121-179,181-239 default_hugepagesz=1G 
rcu_nocbs=1-59,61-119,121-179,181-239 nohz_full=1-59,61-119,121-179,181-239 panic=30 
init=/sbin/init net.ifnames=0 image_name=/images/pma-seed-20220510-082122.cpio.gz nmi_watchdog=0 
audit=0 nosoftlockup hpet=disable mce=off tsc=reliable numa_balancing=disable 
memory_corruption_check=0 workqueue.power_efficient=false module_blacklist=ast 
modprobe.blacklist=ice,qat_4xxx,intel_qat init_on_alloc=0 initrd=/kernel/initrd.img-5.15.0-27-
generic 

System Configuration  

Table 19. DUT System Configuration – Network SKUs 

Name 
Intel Xeon Gold 
6338N  

Intel Xeon Gold 6428N Intel Xeon Platinum 8470N 

Time Wed Nov 9 12:21:01 
PM UTC 2022 

Thu Nov 17 09:44:04 AM UTC 2022 Mon Oct 31 04:38:38 AM UTC 2022 

System Supermicro 
SuperServer 

Intel Corporation ArcherCity Intel Corporation M50FCP 

Baseboard Supermicro X12DPG-
QT6 

Intel Corporation ArcherCity Intel Corporation M50FCP 

Chassis Supermicro Main 
Server Chassis 

Rack Mount Chassis Rack Mount Chassis 

CPU Model Intel(R) Xeon(R) Gold 
6338N CPU @ 
2.20GHz 

Intel(R) Xeon(R) Gold 6428N Intel(R) Xeon(R) Platinum 8470N 

Microarchitecture ICX SPR SPR 

Sockets 2 2 2 

Cores per Socket 32 32 52 

Hyper-threading Enabled Enabled Enabled 

CPUs 128 128 208 

Intel Turbo Boost Enabled Disabled Disabled 
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Name 
Intel Xeon Gold 
6338N  

Intel Xeon Gold 6428N Intel Xeon Platinum 8470N 

Base Frequency 2.2GHz 1.8GHz 1.7GHz 

All-core Maximum 
Frequency 

2.7GHz 2.5GHz 2.7GHz 

Maximum 
Frequency 

3.5GHz 3.8GHz 1.7GHz 

NUMA Nodes 2 2 2 

Prefetchers L2 HW, L2 Adj., DCU 
HW, DCU IP 

L2 HW, L2 Adj., DCU HW, DCU IP L2 HW, L2 Adj., DCU HW, DCU IP 

Accelerators QAT:0, DSA:0, IAA:0 QAT:0, DSA:2, IAA:0 QAT:8, DSA:8, IAA:0 

Installed Memory 512GB (16x32GB 
DDR4 3200 MT/s 
[2666 MT/s]) 

512GB (16x32GB  4800 MT/s [4000 MT/s]) 512GB (16x32GB  4800 MT/s [4800 
MT/s]) 

Hugepagesize 1048576 KB 1048576 KB 1048576 KB 

Transparent Huge 
Pages 

madvise madvise madvise 

Automatic NUMA 
Balancing 

Disabled Disabled Disabled 

Ethernet Adapter  1x Intel Ethernet 
Network 
Adapter E810-
CQDA2  

1x Intel Ethernet Network Adapter E810-
CQDA2  

1x Intel Ethernet Network Adapter E810-
CQDA2  

Disk 1x 223.6G INTEL 
SSDSC2BW240H6, 
1x 240M Disk 

1x 223.6G INTEL SSDSC2KB240G8 1x 223.6G INTEL SSDSC2KB240G8, 1x 
240M Disk 

BIOS 1.4 EGSDREL1.SYS.9207.P03.2211041113 SE5C7411.86B.8805.D02.2209220021 

Microcode 0xd000375 0x2b000111 0x2b000081 

OS Ubuntu 22.04 LTS Ubuntu 22.04 LTS Ubuntu 22.04.1 LTS 

Kernel 5.15.0-27-generic 5.15.0-27-generic 5.15.0-27-generic 

TDP 185 watts 185 watts 300 watts 

Power & Perf 
Policy 

Performance Performance Performance 

Frequency 
Governor 

Performance Performance Performance 

Frequency Driver acpi-cpufreq acpi-cpufreq intel_pstate 

Max C-state 1 1 1 

SST-PP Profile N/A Auto (NFV) Auto (NFV)/Compute 

 

Table 20. DUT System Configuration - Top of Stack SKUs 

Name Intel Xeon Platinum 8380 Intel Xeon Platinum 8490H 
Time Wed Nov 23 12:25:22 PM UTC 

2022 
Tue Nov 22 06:07:53 AM UTC 2022 

System Supermicro SuperServer Intel Corporation ArcherCity 

Baseboard Supermicro X12DPG-QT6 Intel Corporation ArcherCity 

Chassis Supermicro Main Server Chassis Rack Mount Chassis 
CPU Model Intel(R) Xeon(R) Platinum 8380 

CPU @ 2.30GHz 
Intel(R) Xeon(R) Platinum 8490H 

Stepping D2 E5 

Microarchitecture ICX SPR 

Sockets 2 2 

Cores per Socket 40 60 
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Name Intel Xeon Platinum 8380 Intel Xeon Platinum 8490H 
Hyper-threading Enabled Enabled 

CPUs 160 240 

Intel Turbo Boost Disabled/Enabled Disabled/Enabled 

Uncore RAPL Enabled/Disabled Enabled/Disabled 

Base Frequency 2.3GHz 1.9GHz 

All-core Maximum Frequency 3.0GHz 2.9GHz 

Maximum Frequency 2.3GHz 1.9GHz 

NUMA Nodes 2 2 

Prefetchers L2 HW, L2 Adj., DCU HW, DCU 
IP 

L2 HW, L2 Adj., DCU HW, DCU IP 

Accelerators QAT:0, DSA:0, IAA:0, DLB:0 QAT:8, DSA:8, IAA:8, DLB:8 
Installed Memory 256GB (16x16GB DDR4 3200 

MT/s [3200 MT/s]) 
512GB (16x32GB DDR5 4800 MT/s [4800 MT/s]) 

Hugepagesize 1048576 KB 1048576 KB 
Transparent Huge Pages madvise madvise 
Automatic NUMA Balancing Disabled Disabled 
Ethernet Adapter 1x Ethernet Network Adapter 

E810-C for QSFP 
1x Ethernet Network Adapter E810-C for QSFP 

Ethernet Adapter Firmware  4 4 

Disk 1x 223.6G INTEL 
SSDSC2BW240H6 

1x 223.6G INTEL SSDSC2KB240G8 

BIOS 1.4 EGSDREL1.SYS.9207.P03.2211041113 
Microcode 0xd000375 0x2b000111 

OS Ubuntu 22.04 LTS Ubuntu 22.04 LTS 

Kernel 5.15.0-27-generic 5.15.0-27-generic 

TDP 270 watts 350 watts 

Power & Perf Policy Performance Performance 

Frequency Governor Performance Performance 

Frequency Driver intel_pstate acpi-cpufreq 

Max C-state 1 1 

 
Baseline1: Test by Intel as of 11/9/22. 1-node, 2x Intel(R) Xeon(R) Platinum 6338N, 32 cores, HT 
On, Turbo On/Off, Total Memory 512GB (16x32GB 3200 MT/s [2667 MT/s]), BIOS 1.4, microcode 
0xd000375, 1x Intel Ethernet Controller E810-CQDA2 , 1x 223.6G INTEL SSDSC2KB240G8, 1x 240M 
Disk, Ubuntu 22.04 LTS, 5.15.0-27-generic, GCC 11.3, NGFW 21.09-1, score=10.84Gb/s 

Baseline2: Test by Intel as of 11/23/22. 1-node, 2x Intel(R) Xeon(R) Platinum 8380, 40 cores, HT 
On, Turbo Off, Total Memory 256GB (16x16GB 3200 MT/s [3200 MT/s]), BIOS 1.4, microcode 
0xd000375, 1x Intel Ethernet Controller E810-CQDA2 , 1x 223.6G INTEL SSDSC2KB240G8, 1x 240M 
Disk, Ubuntu 22.04 LTS, 5.15.0-27-generic, GCC 11.3, NGFW 21.09-1, score=13.90Gb/s 

New1: Test by Intel as of 10/31/22. 1-node, 2x Intel(R) Xeon(R) Platinum 8470N, 52 cores, HT On, 
Turbo Off, Total Memory 512GB (16x32GB 4800 MT/s [4800 MT/s]), BIOS 
SE5C7411.86B.8805.D02.2209220021, microcode 0x2b000081, 1x Intel Ethernet Controller E810-CQDA2 
, 1x 223.6G INTEL SSDSC2KB240G8, 1x 240M Disk, Ubuntu 22.04 LTS, 5.15.0-27-generic, GCC 11.3, 
NGFW 21.09-1, score=19.3Gb/s  

New2: Test by Intel as of 11/17/22. 1-node, 2x Intel(R) Xeon(R) Platinum 6428N, 32 cores, HT On, 
Turbo On/Off, Total Memory 512GB (16x32GB 4800 MT/s [4000 MT/s]), BIOS 
EGSDREL1.SYS.9207.P03.2211041113, microcode 0x2b000111, 1x Intel Ethernet Controller E810-CQDA2 
, 1x 223.6G INTEL SSDSC2KB240G8, 1x 240M Disk, Ubuntu 22.04 LTS, 5.15.0-27-generic, GCC 11.3, 
NGFW 21.09-1, score=13.66Gb/s  

New3: Test by Intel as of 11/22/22. 1-node, 2x Intel(R) Xeon(R) Platinum 8490H, 60 cores, HT On, 
Turbo Off, Total Memory 512GB (16x32GB 4800 MT/s [4800 MT/s]), BIOS 
EGSDREL1.SYS.9207.P03.2211041113, microcode 0x2b000111, 1x Intel Ethernet Controller E810-CQDA2 
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, 1x 223.6G INTEL SSDSC2KB240G8, 1x 240M Disk, Ubuntu 22.04 LTS, 5.15.0-27-generic, GCC 11.3, 
NGFW 21.09-1, score=21.29Gb/s 

 

Test Case Configuration 

Table 21. Device Under Test Software Configuration 

Software Version 
NGFW 22.09-01 

VPP v22.06.0-16 

Snort  3.1.36.0 

DAQ  3.0.9 

LuaJIT   2.1.0-beta3 

OpenSSL  1.1.1f  31 Mar 2020 

libpcap 1.10.1 (with TPACKET_V3) 

PCRE 8.45 2021-06-15 

ZLIB 1.2.11 

Hyperscan 5.4.0 2021-01-26 

LZMA 5.2.5 

Snort Rules Snort Registered Rules 

Pcap EntmIx Pcap (captured from IxLoad) 

Measurement 
Methodology 

PDR (0.00001%) 

DAQ mode Polling 

num-rx-queues 1 queue per VPP thread 

num-tx-queues 1 queue per VPP thread 

num-rx-descs 1024 

num-tx-descs 1024 

buffers-per-numa 1048576 

DAQ queue-size 8192 

Packet Generation Platform Configuration 

Table 22. Packet Generation Platform Configuration 
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