

3-D SURFACE REMESHERS

CM2 SURFREMESH T3
&

CM2 SURFREMESH Q4

Series 4.6.x

TUTORIAL

AND

USER'S MANUAL

Computing Objects

25 rue du Maréchal Foch, F-78000 Versailles.
www.computing-objects.com

Revision of manual: June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

2 Copyright Computing Objects – June 2015

I – OVERVIEW OF THE MATH1 LIBRARY 7

Variable-size containers and fixed-size containers 8

Views of the variable-size containers 9

Fixed-size containers 10

STL-like iterators and the generic math library 10

Bound checking 11

Interoperability with other math containers 11

II – TUTORIAL 15

II-1 Getting started – Default mode remeshing 17

II-2 Limiting the range of the elements' size 27

II-3 User's specified punctual sizes 32

II-4 patches 35

II-5 Remeshing with quadrangles 39

II-6 Keeping the skeleton lines 43

III – USER'S MANUAL 51

III-1 Remeshers’ data 53

Points’ coordinates 53

Elements 53

Metric field 53

Neighbors 53

Ancestors 54

Shape qualities 54

Histograms 55

Hard faces 55

Skeleton edges of the initial mesh 55

Skeleton edges of the final mesh 55

Edges to exclude from skeleton edges 55

Hard edges 55

Hard nodes 56

Nodes to exclude from the hard nodes 56

Field to interpolate on the new mesh 56

Elements’ color 56

Skeleton edges’ color 56

Maximum error distance 57

Errors and warnings 57

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 3

Complementary information 57

III-2 Error and warning codes 59

Error codes 59

Warning codes 61

III-3 Options of the remeshers 63

Minimum size of the elements 63

Maximum size of the elements 63

Max gradation 63

Patch angle tolerance 63

Nodes merging tolerance 64

Strain tolerance 64

Geometric tolerance in final optimisation 64

Initial clean-up 64

Flag for solids 64

All-quad or quad-dominant mode (CM2 SurfRemesh Q4) 65

Remeshing 65

Flag to force parity along the skeleton lines 65

Node smoothing 65

Node inserting 65

Node removing 65

Shell remeshing 66

Final optimization 66

Only smooth nodes 66

Computation of the size-qualities histogram 66

Pattern for structured meshes (CM2 SurfRemesh T3) 66

Pattern for structured meshes (CM2 SurfRemesh Q4) 66

Limit on the number of nodes 67

Optimization level 67

Weight on shape quality 67

Weight on quadrangles (CM2 SurfRemesh Q4) 67

Minimum quad quality (CM2 SurfRemesh Q4) 67

Upper bound on edges length 68

Minimum number of edges along loops 68

Maximum number of edges along loops 68

Display handler 68

Interrupt handler 69

III-4 General scheme of the remeshers 73

IV – MESH GALLERY 75

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

4 Copyright Computing Objects – June 2015

Figures

Figure 1 – Views and data in variable-sized vectors. 9

Figure 2 – Initial mesh of the cylinder (H = 100, D = 100). 17

Figure 3 – The cylinder remeshed with default mode. 18

Figure 4 – Information output for the cylinder example. 21

Figure 5 – Part #1 - Initial mesh (bounding box X: 0.10, Y: 0.10, Z: 0.15). 25

Figure 6 – Part #1 remeshed with default mode 26

Figure 7 – Cylinder remeshed with min_h = 10 and max_h = 10 28

Figure 8 – Cylinder remeshed with min_h = 5 and max_h = 5 29

Figure 9 – Part #1 remeshed with min_h = 0.005 and max_h = DBL_MAX 30

Figure 10 – Part #1 remeshed with min_h = 0.005 and max_h = 0.005 31

Figure 11 – Part #1 remeshed with h = 0.001 at four nodes (min_h = 0.005, max_h = 0.005) 33

Figure 12 – Part #1 remeshed with user metrics on all initial nodes. 34

Figure 13 – Part #2 - Initial mesh 35

Figure 13 – Part #2 - Skeleton lines in the initial mesh (patch_angle_tolerance = 5) 37

Figure 14 – Part #2 remeshed with min_h = 10, max_h = 10 and patch_angle_tolerance = 5 37

Figure 15 – Part #2 - Skeleton lines in the initial mesh (patch_angle_tolerance = 20) 38

Figure 16 – Part #2 remeshed with min_h = 10, max_h = 10 and patch_angle_tolerance = 20 38

Figure 17 – Part #2 remeshed in quad-dominant mode 40

Figure 18 – Part #2 remeshed in all-quad mode 41

Figure 19 – Sphere. Initial mesh. 44

Figure 20 – Sphere remeshed with triangles. 45

Figure 21 – Sphere remeshed with quadrangles only (all-quad). 45

Figure 22 – Sphere remeshed with quads and triangles. 46

Figure 23 – Patches on the initial sphere (two patches). 47

Figure 24 – Patches on the remeshed sphere when G meridian is kept (four patches). 48

Figure 25 – Nodes and edges local numbering in triangles and quads. 54

Figure 27 – General scheme of the remeshers. 73

Tables

Table 1 – Vectors and matrices exported by the math1 library. 9

Table 2 – The surf_remesh_t3::mesher::data_type and
surf_remesh_q4::mesher::data_type structures (only the data members are shown). 58

Table 3 – Error codes for CM2 SurfRemesh T3 & Q4. 59

Table 4 – Error codes. 59

Table 5 – Warning codes for CM2 SurfRemesh T3 & Q4. 61

Table 6 – Warning codes. 61

Table 7 – The cm2::surf_remesh_t3::operating_mode_type structure (only the data
members are shown). 70

Table 8 – The cm2::surf_remesh_q4::operating_mode_type structure (only the data
members are shown). 71

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 5

This manual describes the 3-D surface remeshers of the CM2 MeshTools library: CM2 SurfRemesh T3
and CM2 SurfRemesh Q4 .

CM2 SurfRemesh T3 and CM2 SurfRemesh Q4 address the problem of regenerating a mesh on a 3-D
surface defined by a discrete representation. This initial discrete representation may have elements with
very high aspect ratio such as in STL meshes and even topological errors (degenerated elements, holes,
overlapping elements).

These remeshers can generate a mesh finer than the initial mesh (refinement) or coarser (decimation).
They can also be used to regularize a 3-D surface mesh (node-smoothing only, local node inserting, local
node removal…). Finally, they can be used to find out patches of connected triangles on a 3-D surface
that can be unfolded within a limited strain tolerance.
Though these remeshers usually generate automatically good meshes at first, several remeshings can
be chained and sometimes a few manual optimizations can be needed on the final mesh.

CM2 SurfRemesh Q4 can generate mixed quad-dominant meshes (the default) or all-quad meshes. The
former mode is recommended since it usually gives better meshes.

If the surface to be remeshed is closed, the tetrahedron mesh generator CM2 TetraMesh can be used
after CM2 SurfRemesh T3 to fill the domain with tetrahedrons. The reader can read more about
CM2 TetraMesh in the "3-D Mesh Generators - Tutorial and User's Manual".

Like all the other meshers of the library, CM2 SurfRemesh T3 and CM2 SurfRemesh Q4 are thread-safe
(several instances or the remeshers can be ran concurrently). In addition, CM2 SurfRemesh T3 and CM2
SurfRemesh Q4 are parallelized and can use several cores to speed up the remeshings.

The math1 library exports the vector and matrix classes needed to communicate with the meshers.
The additional libraries meshtools , meshtools1D , meshtools2D and meshtools3D can be used to
generate simple 1-D and 2-D meshes for the boundaries or to do some mesh transformations (translation,
rotations, concatenation, merging...)

For maximum performance, these software components are developed using the standard C++ language
with efficient object-oriented programming techniques.

The full sources are available and they have been ported to most major platforms.
With a binary license, these libraries are shipped as precompiled dynamic libraries - DLL Win32 or shared
Linux i386 - with .lib and C++ headers files.

The source code of CM2 MeshTools (full library) has been registered with the APP under Inter Deposit
number IDDN.FR.001.260002.00.R.P.1998.000.20700 (22/06/1998) and
IDDN.FR.001.250030.00.S.P.1999.000.20700 (16/06/1999) is regularly deposited since then.

The source code specific to CM2 SurfRemesh T3, together with this manual, has been registered with
the APP under Inter Deposit number IDDN.FR.001.450010.000.S.P.2007.000.20600 (9/11/2007) and is
regularly deposited since then.

The source code specific to CM2 SurfRemesh Q4, together with this manual, has been registered with
the APP under Inter Deposit number IDDN.FR.001.440018.000.R.P.2008.000.20700 (31/10/2008) and
is regularly deposited since then.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

6 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 7

I – OVERVIEW OF THE MATH1
LIBRARY

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

8 Copyright Computing Objects – June 2015

Before digging into the meshers, let us have a look into the math1 library which exports the types of
vector and matrix used by the meshers. We do not intend here to give a full description of this math1
library, nor the associated template libraries vecscal , vecvec , matscal , matvec , and matmat . We
will simply explain the basic traits of these math classes in order to use the meshers properly. A full
description can be found in the math1 API1.

The math1 library exports 16 types of vector, 14 types of rectangular matrix and 8 types of symmetric
matrix2.
They can be divided into two main categories: the variable-size containers, such as DoubleVec ,
DoubleMat , or DoubleSym , and the fixed-size containers, such as DoubleVec3 , DoubleMat2x2 or
DoubleSym2 .

� Following the C usage, all these math containers are zero based: a vector with size N extends from
index 0 to N-1.

Variable-size containers and fixed-size containers
Besides the fact that only the containers of the first category can be resized - automatically or manually -
they differ by the way the copy constructors and the copy operators work. The variable-size containers
are merely views to data arrays, whereas the fixed-size containers actually hold the data as a member.
The first category only holds a reference, and a copy implies only a copy of that reference, not the data
(shallow copy). A copy of a container of the second category actually copies the data (deep copy).

Example:

DoubleVec V1; // Empty vector.
DoubleVec V2(10, +1.0); // Vector of 10 values, all intitialized to 1.0

V1.push_back (3.0) // V1.size() == 1
V1.push_back (2.0) // V1.size() == 2

V1 = V2; // Shallow copy 3 (V1.size() == 10).
 // Previous values of V1 are lost (3.0 and 2.0).

V1[0] = 0.0; // V2[0] == 0.0 (because the data are shared).
V2.clear(); // V2.size() == 0 but V1 .size() == 10
 // The data are not dele ted because still viewed
 // from V1.

1math1.html or math1.chm.
2 Some other types are defined but not exported (they cannot be exchanged between dynamic libraries, only
between statically linked entities): vector_fixed<T,N>, matrix_fixed<T,M,N>, dense1D<T>, dense2D<T>
and symmetric_full<T>.
3 A deep copy can be obtained with the template function vecvec::copy :
 V1.resize (V2.size()); // Resize V1 to V2.size().
 vecvec::copy (V2, V1); // Copy all V2 values into V1.
or with the "copy" member:
 V1.copy (V2); // Resize V1 to V2.size() and copies the data.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 9

Vectors Rectangular matrices Symmetric matrices

DoubleVec DoubleMat DoubleSymMat

FloatVec FloatMat FloatSymMat

IntVec IntMat IntSym

UIntVec UIntMat UIntSym

DoubleVec2

DoubleVec3 DoubleMat3x1 DoubleSym2

DoubleVec4 DoubleMat2x2

DoubleVec6
DoubleMat3x2

DoubleMat2x3
DoubleSym3

DoubleVec8

DoubleVec9 DoubleMat3x3

UIntVec2

UIntVec3 UIntMat3x1 UIntSym2

UIntVec4 UIntMat2x2

UIntVec6
UIntMat3x2

UIntMat2x3
UIntSym3

UIntVec8

UIntVec9 UIntMat3x3

Table 1 – Vectors and matrices exported by the math1 library.

Views of the variable-size containers
Several variable-sized containers can have a view on the same array of data, but the view can be different
from each other. The beginning and the size in the array are specific to each container. For instance in
an array of 30 items, a first vector views items from 0 to 9 and a second one views items from 5 to 20.

Figure 1 – Views and data in variable-sized vectors .

Elements from 5 to 9 are accessible from the two vectors.
When a destructor is called on a variable-size container, the data are destroyed only when no other
container shares them anymore. A smart pointer mechanism is used to count the number of references
on the data and the deallocation actually occurs when the count reaches null. The memory management
is automatic (automatic garbage collection).

Example:

beg = 0
size = 10
data

beg = 5
size = 16
data

Data array

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

10 Copyright Computing Objects – June 2015

DoubleVec *V1 = new DoubleVec(10, -1.0);
DoubleVec *V2 = new DoubleVec(*V1); // Shallow copy (share the data).

delete V1; // The data are still referenced by V2 .
delete V2; // Now the data are destroyed too.

Fixed-size containers
The fixed-size math containers are deep-copy containers. The copy-constructor and the copy-operator
do not make the data to be shared anymore but leads to actually different arrays in memory. They are
simpler than the variable-size containers, and faster for short arrays, whereas the variable-size containers
are more suited for big arrays.

Example:

DoubleVec2 V1; // Vector of 2 unintitia lized values (double).
DoubleVec2 V2(+1.0); // Vector of 2 values in titialized to 1.0

V1[0] = 0.0;
V1[1] = -1.0;

V1 = V2; // Deep copy: V1 = {1, 1 }, V2 = {1, 1}.
V2[0] = 0.0; // V1 = {1, 1}, V2 = {0, 1}
V1[1] = 0.0; // V1 = {1, 0}, V2 = {0, 1}

STL-like iterators and the generic math library
All these math containers are optimized for numerical computation.
The vector containers - variable-size and fixed-size - are equipped with STL-like iterators begin() and
end() , to make them compatible with most of the STL algorithms. They also have access operators such
as operator[] , and the usual functions for a vector class: size() , empty() , front() , back() ...
The variable-size vectors are also equipped with members such as reserve , resize , push_back,
and pop_back .
Aside from the STL algorithms, one can also use the math-specific template functions of the vecscal ,
vecvec , matscal , matvec and matmat libraries (cf. math1 API).

Example:

DoubleVec V1(3), V2(3,-1.0);
DoubleMat M(3, 10, 0.0); // Matrix of doub les 3 by 10 set to 0.

vecvec::copy (V2, V1); // Hard copy of V 2 into V1 (sizes match).
vecvec::axpy (2.0, V1, V2); // V2 += 2 * V1
vecscal::mult (-1.0, V1); // V1 = -V1

The variable-size matrix types (DoubleMat , IntMat and UIntMat) have a behavior similar to the
vectors with respect to the memory management and the copy operators (and the copy-constructors). In
addition, the rows and the columns are equipped with iterators, just like the vectors, and the same
template functions can be used on them.

Example:

const unsigned N = 10;
const double PI = 3.14159;
DoubleMat pos(2, N); // Uninitialized 2xN matrix.
DoubleVec2 V; // Uninitialized vector of size 2.

// Points on a circle.
for (unsigned j = 0; j < N; ++j)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 11

{
 pos(0,j) = ::cos(j*2*PI/N);
 pos(1,j) = ::sin(j*2*PI/N);
}

// Set radius to 3.0
matscal::mult (3.0, pos);

// Copy column #2 to V (ok, dimensions match).
vecvec::copy (pos.col(2), V);

// Copy V to column #9 (the last one).
vecvec::copy (V, pos.col(9));

// Copy column #9 to column #0
vecvec::copy (pos.col(9), pos.col(0));

// Append V in a new column of pos (dimensions matc h).
pos.push_back (V); // pos.cols() == 1 1 after this line.

Bound checking
In debug mode (with macro _DEBUG defined), bound violations abort the program. In release mode
however, for best performance no check is performed and the user must take care not to out value the
limits of the vectors and matrices.

Interoperability with other math containers
The API of the MeshTools library use exclusively vectors and matrices of the math1 library (such as
DoubleMat , UIntMat , FloatVec ...). To use the meshers with other types of vectors and matrices, the
variable-size containers are equipped with constructors with raw pointers as arguments. Hence, they can
view the data in any other math containers as long as the latter provide a way to get a raw pointer to their
data, and that these data are contiguous in memory.
Remember that the variable-size containers implement shallow copies. This means that the arrays are
shared, not copied. Therefore the memory management becomes a point to take care of and the user
must keep in mind which library is responsible for deleting the memory upon exit. The default is that the
allocator of the array remains responsible for its deletion.

Example:

double buff1[100]; // Static raw C array.
double* buff2 = new double[100]; // Dynamic raw C array.
std::vector<double> buff3(100); // STL vector.

DoubleVec V1(50, buff1); // Views the fir st 50 elements in buff1.
DoubleVec V2(50, buff2); // Views the fir st 50 elements in buff2.
DoubleVec V3(50, buff3.begin()); // Views the fir st 50 elements in buff3.

V2.clear(); // buff2 is not deallocated.
V2 = V1; // buff2 is not deallocated.
V3.clear(); // buff3 is not deallocated.
delete[] buff2; // Dangerous but correct becau se buff2 is no longer
 // referenced by any DoubleVec .
buff3.clear(); // Dangerous: data in buff3 ma y have been deallocated.
 // Don't use V3 anymore.

Note that this can be done with the fixed-size containers of math1:

DoubleVec3 V3(1.0, 0.0, -1.0);
DoubleVec V(3, V1.begin()); // Views the elem ents in V3.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

12 Copyright Computing Objects – June 2015

The matrices of math1 can view also the data in an external container. In addition to the raw pointer to
the data, the user must provide the number of rows, the number of columns and the stride between two
columns (so-called leading dimension):

unsigned* buff = new unsigned[30];
UIntMat M(3, 10, /*ld=>*/ 3, buff);

As before, the matrix is not responsible for the deletion of the underlying buffer4.

In the case where a container constructed this way is subsequently resized, it may "point" to another
array of memory but the initial buffer remains valid:

double* buff = new double[6];
DoubleVec V(5, buff);

V.push_back (2.0); // Reallocation and copy perfo rmed.
 // buff is still alive, but V does not "point" to
 // it anymore.
V.clear_hard(); // The new array of V is deall ocated, not buff.

� As a rule of thumb, the lifetime of the external buffer must span the lifetime of the math1 container.

double* buff = new double[6];

{
 DoubleVec V(5, buff);
 ... // Use V here.
} // V is killed here but the buffer is spared.

delete[] buff; // So long with buff.

We have seen how to construct math1 variable-size container upon other containers or buffers. To do
the other way, we use the data() or begin() members to access the underlying data:

Example:

DoubleVec V(50, 0.0);
double* buff = V.data();
unsigned N = V.size(); // Equals to 50

for (unsigned i = 0; i < N; ++i, ++buff)
 *buff = double(i);

assert (V[10] == 10.); // Changes in bu ff have been seen in V.

DoubleMat P(3, 40);
double* buff = P.data();
unsigned M = P.rows(); // Equals to 3
unsigned N = P.cols(); // Equals to 40
unsigned LD = P.ld(); // Equals to 3 (here stride == rows).

for (unsigned j = 0; j < N; ++j)
 for (unsigned i = 0; i < M; ++i)
 buff[i + j*LD] = double(i + j*LD);

4 A default parameter "protect" in the constructors can be used to change this behaviour.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 13

assert (P(0,10) == 30.); // Changes in bu ff have been seen in P.

Here, the math1 vectors and matrices are responsible for the deletion of their data:

DoubleMat P(3, 40);
double* buff = P.data();

delete[] buff; // Don't do that !
P.resize (3, 80); // Crash now, or maybe later.. .

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

14 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 15

II – TUTORIAL

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

16 Copyright Computing Objects – June 2015

This chapter shows examples of surface remeshings illustrating along the way some of the major options
of the remeshers.

Each example starts with including the file stdafx.h (can be a precompiled header), giving access to
the classes and the routines of the libraries (API).

The main namespace cm2 has nested namespaces such as vecscal , vecvec , meshtools or
surf_remesh_t3 . The user can add “using namespace” directives in this stdafx.h . Keeping
namespaces in the user’s source code can however be useful to improve the legibility and to avoid name
conflicts.

File "stdafx.h":

// MESHTOOLS
#include "meshtools.h" // General purpose mesh routines.

// REMESHERS
#include "surf_remesh_t3.h" // 3-D surface triangle remesher.
#include "surf_remesh_q4.h" // 3-D surface quadrang le remesher.

Required libraries5:

cm2math1
cm2misc
cm2meshtools
cm2meshtools1d
cm2meshtools2d
cm2surf_remesh_t3
cm2surf_remesh_q4

5 On Windows, the lib names end with _Win32_45 or _x64_45. For instance cm2math1_x64_45.dll.
On Windows, file extensions for the librariess are .lib and .dll. On Linux/Unix/Mac OS platforms, file extensions are
usually .a (static archive), .so or .dylib (dynamic lib).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 17

II-1 GETTING STARTED – DEFAULT MODE
REMESHING

This first example is a regular cylinder with circular base. The diameter and the height of this cylinder are
100. The input mesh is a STL-mesh provided by a CAD modeler (Figure 2).

Figure 2 – Initial mesh of the cylinder (H = 100, D = 100).

Many triangles have high aspect ratio making this initial mesh not suited for FEM computations for
instance. The program to generate a new better mesh on this tessellated surface is shown below. Figure
3 shows the resulting mesh.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

18 Copyright Computing Objects – June 2015

Figure 3 – The cylinder remeshed with default mode.

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH (STL FORMAT).
 meshtools::STL_input ("cylinder.stl", data.pos, data.connectM);

 // REMESH THE SURFACE.
 the_remesher.run (data); // Remesh th e surface.

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACET3);

 return 0;
} // main

Let us explain this program line by line.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 19

Some declarations
the_remesher is an instance of remesher. data is a key structure for the remesher. It stores, among
others, the matrix pos which contains all the points’ coordinates and the matrix connectM which is the
connectivity matrix of the mesh.
data.pos stores all the nodes involved in the meshing process: the nodes of the initial mesh and the
nodes of the final mesh (some of them may be in both). It is stored as a DoubleMat matrix (variable-
sized matrix of doubles).
data.connectM stores the connectivity matrix of the meshes (first of the initial mesh then of the final
mesh after remeshing) as UIntMat matrices (natural integers). connectM(i,j) is the ith local node of
the jth initial element. This integer is the column number in matrix pos where the coordinates of this node
can be found6.

Authorization of the library
The library needs to be unlocked through a call to surf_remesh_t3::registration . Two strings
must be provided for each library: the name of your company or organization that has acquired the license
and a secret code - contact license@computing-objects.com for any licensing enquiry. Note that both
strings are case sensitive and the registration call must be made each time the library is loaded into
memory and before any run of the remesher.

surf_remesh_t3::registration ("Licensed to SMART In c.", "F5BEA10ABCWX");

The initial mesh
In this example, the initial mesh is read from a STL file (ASCII). The meshtools::STL_input function
reads the points’ coordinates, the node's indices of the triangles and merge together any coincident
nodes.

meshtools::STL_input ("cylinder.stl", data.pos, dat a.connectM);

The new mesh

the_remesher.run (data);

Upon exit, the matrix data.pos is bigger and contains the new nodes generated on the surface by the
remesher. These new points are appended to the original matrix. The initial points of the input mesh are
unchanged. The connectivity of the final mesh is stored in the matrix data.connectM , each column
storing the indices of the nodes for an element.

Output information
Printed information about the generated mesh and a MEDIT7 output file are obtained with:

data.print_info (&display_hdl);
meshtools::medit_output ("out.mesh", data.pos, data .connectM, CM2_FACET3);

Figure 4 shows the output of data.print_info (&display_hdl) :

The new mesh has 98 nodes and 192 triangles and its quality is much better. In the initial mesh, the
average quality was 0.042. In the final mesh, it is 0.88.

The max_error_distance is a measure of the geometric error between the two meshes. The nodes
of the new mesh are located exactly onto the initial surface. It is not always the case however for the
centroïd of the new elements or for the initial nodes. If the surface is not flat, the new mesh may indeed
be some distance away from it. The max_error_distance is a measure of this maximum distance
(see § III-1).

6 We recall that all matrix and vector indices are zero based (from 0 to N-1).7 MEDIT is a free vizualisation program
(http://www.ann.jussieu.fr/~frey/logiciels/medit.html). Other output formats are: VTK, Ensight, STL, FEMAP neutral,
Nastran and Wavefront OBJ.
7 MEDIT is a free vizualisation program (http://www.ann.jussieu.fr/~frey/logiciels/medit.html). Other output formats
are: VTK, Ensight, STL, FEMAP neutral, Nastran and Wavefront OBJ.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

20 Copyright Computing Objects – June 2015

The times spent in the several steps of the meshing process are given in seconds. The first step is for
cleaning the initial mesh (node merging and edges swapping).
In the second step, the mesh is analyzed to find out groups of connected triangles (called patches) that
can be remeshed individually. The boundaries of the patches are located where the angle between two
adjacent triangles is greater than a prescribed value8 (parameter patch_angle_tolerance – see § III-
3). The boundaries of these patches are called the skeleton lines. The singular nodes among the skeleton
lines (nodes connected to one or three or more skeleton lines) are called skeleton nodes. The skeleton
lines and the patches are remeshed during the third step. The skeleton nodes remain present in the new
mesh.
Finally, geometrical and topological optimizations are performed to improve the quality of the elements.

8 For the sake of clarity, we can consider that the angle between adjacent triangles is the only parameter used by
the algorithm (it is indeed not the only one, but the most important).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 21

**
********** CM2 SURFREMESH T3 ***********
**
Version : 4.6.0.0
Initial Mesh
 Nodes : 256
 Triangles : 508
 Surface : 4.711434E+004
 Qavg : 4.163685E-002
 Qmin : 2.128816E-002
New Mesh
 Nodes : 98
 Triangles : 192
 Surface : 4.613917E+004
 Qavg : 8.838215E-001
 Qmin : 7.037609E-001
Max error distance : 1.758797E+000
Cleaning time : 0.00 s
Analysis time : 0.04 s
Remesh time : 0.01 s
Optim time : 0.00 s
Total time : 0.05 s (3997.00 t/s)

************ HISTOGRAM QS ************
Total number of bins : 11
Total number of counts : 192
Number of larger values : 0
Number of smaller values : 0
V max : 9.987371E-001
V mean : 8.838215E-001
V min : 7.037609E-001

Bin number -- Bin boundaries -- Hits

 10 0.90 1.00 112
 9 0.80 0.90 32
 8 0.70 0.80 48
 7 0.60 0.70 0
 6 0.50 0.60 0
 5 0.40 0.50 0
 4 0.30 0.40 0
 3 0.20 0.30 0
 2 0.10 0.20 0
 1 0.01 0.10 0
 0 0.00 0.01 0

Figure 4 – Information output for the cylinder exam ple 9.

9 All runs are done on Windows 8 x64 with Intel Xeon E3 V2 1270 3.5 GHz, 1 thread, turbo boost disabled.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

22 Copyright Computing Objects – June 2015

Note that the initial connectivity matrix is overwritten by the new one in matrix data.connectM and some
nodes in data.pos are no longer referenced10. To keep the initial mesh, the following code should be
used instead:

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;
 UIntMat connectMi;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH (STL FORMAT).
 meshtools::STL_input ("cylinder.stl", data.pos, data.connectM);
 connectMi.copy (data.connectM); // Hard copy.

 // REMESH THE SURFACE.
 the_remesher.run (data); // Remesh th e surface.

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACET3);

 return 0;
} // main

The initial mesh is in connectMi and the new mesh in data.connectM . Indices in both matrices refer
to columns in data.pos (containing nodes of the old and the new mesh).

We can also shallow-copy the new mesh:

...// REMESH THE SURFACE.
 the_remesher.run (data); // Remesh the surface.
 UIntMat connectMr (data.connectM); // Shallo w copy.

...

Another way to do this could be:

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{

10. You can get ride of the nodes unused anymore with meshtools::simplify. Please refer to the Reference
Manual of CM2 MeshTools (HTML doc).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 23

 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;
 DoubleMat pos;
 UIntMat connectMi, connectMr;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH (STL FORMAT).
 meshtools::STL_input ("cylinder.stl", pos, connectMi);

 // REMESH THE SURFACE.
 data.pos = pos; // Shallow copy.
 data.connectM.copy (connectMi); // Hard copy.
 the_remesher.run (data); // Remesh th e surface.
 pos = data.pos; // Shallow copy.
 connectMr = data.connectM; // Shallow copy.

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", pos, connectMr, CM2_FACET3);

 return 0;
} // main

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

24 Copyright Computing Objects – June 2015

In the following example (called "part #1"), the skeleton lines found by the algorithm are the natural ridges
of the solid (and some lines inside the circular holes). Hence, most of the skeleton nodes are the corners
of the solid.
Here also, we do not specify any size value for the new mesh. We let the remesher compute default
values based on the distance between each skeleton node.

Concerning the program, the main difference with the previous one concerns the reading of the initial
mesh. The coordinates and the connectivity matrices are no longer in a STL format file, but are read with
matio::transpose_read from a "matrix-formatted" file.
Here the expected format for the matrices is:

n X m [
d0,0 d0,1 d 0,2 ... d 0,m-1
d1,0 d 1,1 d 1,2 ... d 1,m-1
...
dn-1,0 d n-1,1 d n-1,2 ... dn-1,m-1]

The format for each component of the matrix is free.
For instance for the coordinate matrix (4 nodes, 3 coordinates per node):

4 X 3 [
 0 0.5 2.0
 0 1 1
 1E-3 –7 1.0
 3.4 –2.1 –1.0]

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH.
 ifstream istrm (“part1.dat”);
 matio::transpose_read (istrm, data.pos);
 matio::transpose_read (istrm, data.connectM);

 // REMESHING THE SURFACE.
 the_remesher.run (data);

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACET3);

 return 0;
} // main

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 25

Figure 5 – Part #1 - Initial mesh
(bounding box X: 0.10, Y: 0.10, Z: 0.15).

Initial Mesh
 Nodes : 379
 Triangles : 782
 Surface : 4.428174E-002
 Qavg : 3.987199E-001
 Qmin : 9.139058E-004

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

26 Copyright Computing Objects – June 2015

Figure 6 – Part #1 remeshed with default mode

New Mesh
 Nodes : 3051
 Triangles : 6126
 Surface : 4.427879E-002
 Qavg : 8.308896E-001
 Qmin : 1.598984E-001

Max error distance : 1.947421E-004

In this example where most of the patches are flat, there is a very small geometric error between the two
meshes.

Note also the variations of the elements' size in the new mesh. It is a typical result in the default mode of
the surface remesher. The next section will address this point.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 27

II-2 LIMITING THE RANGE OF THE ELEMENTS' SIZE

Usually, the default elements' size does not give satisfactory meshes. They are either too fine or too
coarse. For this matter, the user can limit the range of the elements' size field with two parameters of the
operating mode: min_h and max_h. In the default mode min_h = 0 and max_h = DBL_MAX.

Let us use again the cylinder example. We now set the two bounds to the same value: 10.
This will give a uniform mesh in which all elements' edges have a length of 10 on average.

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH.
 ifstream istrm (“part1.dat”);
 matio::transpose_read (istrm, data.pos);
 matio::transpose_read (istrm, data.connectM);

 // REMESHING THE SURFACE.
 the_remesher.mode.min_h = 10.0;
 the_remesher.mode.max_h = 10.0;
 the_remesher.run (data);

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACET3);

 return 0;
} // main

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

28 Copyright Computing Objects – June 2015

Figure 7 – Cylinder remeshed with min_h = 10 and ma x_h = 10

Initial Mesh
 Nodes : 256
 Triangles : 508
 Area : 4.711434E+004
 Qavg : 4.163685E-002
 Qmin : 2.128816E-002
New Mesh
 Nodes : 554
 Triangles : 1104
 Area : 4.697452E+004
 Qavg : 9.381782E-001
 Qmin : 7.172157E-001
Max error dist. : 2.986012E-001

The values min_h = max_h = 5 give the mesh shown in Figure 8.

Note that the geometric error between the initial STL mesh and the new mesh decreases as it gets finer.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 29

Figure 8 – Cylinder remeshed with min_h = 5 and max _h = 5

Initial Mesh
 Nodes : 256
 Triangles : 508
 Area : 4.711434E+004
 Qavg : 4.163685E-002
 Qmin : 2.128816E-002
New Mesh
 Nodes : 2172
 Triangles : 4340
 Area : 4.708151E+004
 Qavg : 9.547583E-001
 Qmin : 7.996002E-001
Max error dist. : 6.471375E-002

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

30 Copyright Computing Objects – June 2015

Below are two resulting meshes for the "Part #1" example with different values for min_h and max_h:

Figure 9 – Part #1 remeshed
with min_h = 0.005 and max_h = DBL_MAX

Initial Mesh
 Nodes : 379
 Triangles : 782
 Area : 4.428174E-002
 Qavg : 3.987199E-001
 Qmin : 9.139058E-004
New Mesh
 Nodes : 1290
 Triangles : 2604
 Area : 4.427485E-002
 Qavg : 7.823978E-001
 Qmin : 1.598984E-001
Max error dist. : 4.184950E-004

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 31

Figure 10 – Part #1 remeshed
with min_h = 0.005 and max_h = 0.005

Initial Mesh
 Nodes : 379
 Triangles : 782
 Area : 4.428174E-002
 Qavg : 3.987199E-001
 Qmin : 9.139058E-004
New Mesh
 Nodes : 2136
 Triangles : 4296
 Area : 4.428039E-002
 Qavg : 8.711093E-001
 Qmin : 2.734789E-001
Max error dist. : 2.760341E-004

Note that in this last example where min_h = max_h, most of the domain is meshed uniformly. But due
to the constraints on patches it is not the case everywhere. Some areas – such as the high-curvature
zones - remain finer.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

32 Copyright Computing Objects – June 2015

II-3 USER'S SPECIFIED PUNCTUAL SIZES

Until now, we have seen two fields in the structure used to exchange data with the mesher:
• The pos matrix for the points’ coordinates.
• The connectM matrix for the connectivity of the 3-D meshes (same matrix used for the initial

mesh and for the final mesh).

We have seen also the effects of two global parameters of the operating mode: min_h and max_h. In a
more specific way, the user can set elements' size values at some nodes of the initial mesh. This is done
using the metrics field of the data structure.
To illustrate this feature, let us use again the "part #1" example with min_h = 0.05 and max_h =0.05. We
now specify a size value of 0.001 at nodes #68 and #7911. At these nodes, these values supersede the
operating mode bounds min_h and max_h and the new mesh follows locally these sizes.

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH.
 ifstream istrm (“part1.dat”);
 matio::transpose_read (istrm, data.pos);
 matio::transpose_read (istrm, data.connectM);

 // REMESHING THE SURFACE.
 the_remesher.mode.min_h = 0.005;
 the_remesher.mode.max_h = 0.005;
 data.metrics.resize (pos.cols(), 0.0);
 data.metrics[68] = 0.001;
 data.metrics[79] = 0.001;
 the_remesher.run (data);

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACET3);

 return 0;
} // main

The result is a new mesh with uniform size of 0.005 everywhere on the surface except near these four
nodes where the elements' size drops to 0.001.

11 The node IDs can also be found with the help of meshtools::node_detector. This class can find the closest node
to a point, or all nodes inside a box.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 33

User's specific mesh
sizes at corners.

Figure 11 – Part #1 remeshed with h = 0.001 at four nodes
(min_h = 0.005, max_h = 0.005)

Specific mesh sizes can be set on any node of the initial mesh. In the following example, we set a sinus
variation in data.metrics for all initial nodes (we used mesh at Figure 10 as initial mesh):

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

34 Copyright Computing Objects – June 2015

Figure 12 – Part #1 remeshed with user metrics on a ll initial nodes.

Hence, surface meshes can be coarsened in some areas and refined in some others.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 35

II-4 PATCHES

The algorithm of the remeshers has three major steps. First the initial mesh is split into
patches/subdomains (groups of connected triangles), second the patch boundaries (called "skeleton
lines" or "skeleton edges") are remeshed, and finally the patches are remeshed one by one. This third
step is divided into three sub steps: each patch of the initial mesh (called an initial patch) is unfolded to
the Z = 0 plane, remeshed into a new patch and then mapped back to the initial surface (called then a
final patch). Similarly, we define initial skeleton lines and final skeleton lines.

The algorithm to find out the patches is based mostly on the angle between adjacent triangles. Starting
from some element seeds, the patches are grown by neighboring traversal until the angle between two
adjacent triangles is greater than a fixed parameter (patch_angle_tolerance in the remeshers'
operating mode)12 or when a user-specified edge is encountered.
The value of patch_angle_tolerance is relevant when the 3-D surface has soft angles. When this
value is low, the patches tend to be small and the final mesh is close to the initial mesh (small geometric
error). The remesher can generate better meshes when the patches are big. This is the case when the
angle tolerance is high. The following example illustrates this point.

Figure 13 – Part #2 - Initial mesh

Initial Mesh
 Nodes : 86
 Triangles : 172
 Area : 5.352784E+004
 Qavg : 4.778100E-001
 Qmin : 1.452030E-002

We first set the value of patch_angle_tolerance to 5 degrees:

12 The strain induced by the unfolding of each patch must also be lesser than mode.strain_tolerance (see
§ III.3). Other special conditions can also stop the patch growth that are beyond the scope of this manual. We can
consider that only patch_angle_tolerance drives the algorithm.

« Curved » surfaces

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

36 Copyright Computing Objects – June 2015

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_t3::mesher the_remeshe r;
 surf_remesh_t3::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH.
 ifstream istrm (“part1.dat”);
 matio::transpose_read (istrm, data.pos);
 matio::transpose_read (istrm, data.connectM);

 // REMESHING THE SURFACE.
 the_remesher.mode.min_h = 10.0;
 the_remesher.mode.max_h = 10.0;
 the_remesher.mode.patch_angle_tolerance = 5.0;
 the_remesher.run (data);

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACET3);

 return 0;
} // main

The new mesh is close to the initial mesh. Many angles of the initial mesh remain in the new mesh (Figure
15).

With patch_angle_tolerance = 20, the patches are bigger. This gives a better and smoother new
mesh at the cost of a higher geometric error between the two meshes, i.e. chordal error (Figure 17).

With patch_angle_tolerance = 0, the initial mesh is divided into pure flat patches (can be limited to
only one element). In this case, there is no geometric error between the initial mesh and the new mesh.

The default value patch_angle_tolerance = 20 degrees is a good compromise in most cases. A
value of 45 degrees should be considered as a maximum.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 37

Figure 14 – Part #2 - Skeleton lines in the initial mesh
(patch_angle_tolerance = 5)

Figure 15 – Part #2 remeshed
with min_h = 10, max_h = 10 and patch_angle_toleran ce = 5

New Mesh
 Nodes : 659
 Triangles : 1318
 Area : 5.352579E+004
 Qavg : 8.621966E-001
 Qmin : 2.777585E-001
Max error dist. : 1.912226E-001

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

38 Copyright Computing Objects – June 2015

Figure 16 – Part #2 - Skeleton lines in the initial mesh
(patch_angle_tolerance = 20)

Figure 17 – Part #2 remeshed
with min_h = 10, max_h = 10 and patch_angle_toleran ce = 20

New Mesh
 Nodes : 653
 Triangles : 1306
 Area : 5.356828E+004
 Qavg : 8.813238E-001
 Qmin : 6.071915E-001
Max error dist. : 3.821892E-001

� Usually, the higher the angle tolerance, the better the mesh, the smaller the number of elements but
the higher the geometric error.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 39

II-5 REMESHING WITH QUADRANGLES

CM2 SurfRemesh Q4 can be used in place of CM2 SurfRemesh T3 to remesh with quadrangles instead
of triangles. From the previous example, simply changing the namespace changes the type of the
remesher:

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 surf_remesh_q4::mesher the_remesher;
 surf_remesh_q4::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_q4::registration ("Licensed to SMART Inc.", "0BEE4533 63E8");

 // READ THE INITIAL MESH.
 ifstream istrm (“part1.dat”);
 matio::transpose_read (istrm, data.pos);
 matio::transpose_read (istrm, data.connectM);

 // REMESHING THE SURFACE.
 the_remesher.mode.min_h = 10.0;
 the_remesher.mode.max_h = 10.0;
 the_remesher.run (data);

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM,
 CM2_FACE_MIX);

 return 0;
} // main

The default mode of this remesher is the quad-dominant mode: it generates mixed quadrangle-triangle
meshes. This is the reason why the output file is done here with the type CM2_FACE_MIX.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

40 Copyright Computing Objects – June 2015

Figure 18 – Part #2 remeshed in quad-dominant mode
(min_h = 10, max_h = 10, patch_angle_tolerance = 20)

New Mesh
 Nodes : 550
 Elements : 564
 Quadrangles : 536 (95.04 %, 97.92 %)
 Triangles : 28 (4.96 %, 2.08 %)
 Area : 5.356221E+004
 Qavg : 9.109910E-001
 Qmin : 5.229764E-001
Max error dist. : 3.824302E-001

An all-quad mesh can be generated by changing a setting in the remesher’s mode:

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 41

int main()
{
 surf_remesh_q4::mesher the_remeshe r;
 surf_remesh_q4::mesher::data_type data;

 // UNLOCK THE DLL.
 surf_remesh_q4::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // READ THE INITIAL MESH.
 ifstream istrm (“part1.dat”);
 matio::transpose_read (istrm, data.pos);
 matio::transpose_read (istrm, data.connectM);

 // REMESHING THE SURFACE.
 the_remesher.mode.min_h = 10.0;
 the_remesher.mode.max_h = 10.0;
 the_remesher.mode.all_quad_flag = true;
 the_remesher.run (data);

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", data.pos, d ata.connectM, CM2_FACEQ4);

 return 0;
} // main

Figure 19 – Part #2 remeshed in all-quad mode
(min_h = 10, max_h = 10, patch_angle_tolerance = 20)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

42 Copyright Computing Objects – June 2015

New Mesh
 Nodes : 706
 Elements : 706
 Quadrangles : 706 (100.00 %, 100.00 %)
 Triangles : 0 (0.00 %, 0.00 %)
 Area : 5.357723E+004
 Qavg : 8.113556E-001
 Qmin : 4.757265E-001
Max error dist. : 3.326376E-001

If triangles are tolerated, the quad-dominant mode (the default mode) should be preferred against the all-
quad mode. It gives usually better meshes, with fewer elements. The all-quad mode should be restricted
to very simple surfaces such as this one.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 43

II-6 KEEPING THE SKELETON LINES

Let us now consider the remeshing of a sphere (Figure 20):

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 const double R = 10.0;
 const unsigned N = 64;
 UIntVec indices;
 UIntMat connectE;
 DoubleMat pos;
 UIntMat connectMi, connectMr;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // THE INITIAL MESH.
 matvec::push_back (DoubleVec3(0.,0.,R), pos);
 meshtools1d::extrude_rotate (pos, 0u, DoubleVec3 (0.,0.,0.),
 DoubleVec3(0.,M_PI, 0.), N/2, indices);
 meshtools1d::indices_to_connectE2 (indices, conn ectE);
 meshtools2d::extrude_rotate_T3 (pos, connectE, D oubleVec3(0.,0.,0.),
 DoubleVec3(0.,0. ,2.*M_PI), N, 1,
 connectMi);

 // REMESHING THE SURFACE.
 surf_remesh_t3::mesher the_reme sher;
 surf_remesh_t3::mesher::data_type data;
 data.pos = pos;
 data.connectM.copy (connectMi); // Hard co py of connectMi
 the_remesher.mode.min_h = 1.0;
 the_remesher.mode.max_h = 1.0;
 the_remesher.run (data);
 pos = data.pos;
 connectMr = data.connectM;

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", pos, connec tMr, CM2_FACET3);

 return 0;
} // main

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

44 Copyright Computing Objects – June 2015

To generate the initial mesh we start with meshing a "Greenwich" meridian13:

matvec::push_back (DoubleVec3(0.,0.,R), pos);
meshtools1d::extrude_rotate (pos, 0u, DoubleVec3(0. ,0.,0.),
 DoubleVec3(0.,M_PI,0.) , N/2, indices);
meshtools1d::indices_to_connectE2 (indices, connect E);

This arc is then extruded into a triangle surface with a 2 π rotation:

meshtools2d::extrude_rotate_T3 (pos, connectE, Doub leVec3(0.,0.,0.),
 DoubleVec3(0.,0.,2. *M_PI), N, 1,
 connectMi);

Figure 20 – Sphere. Initial mesh.

Note that this way of generating the mesh leads to multiple coincident nodes (along the initial meridian)
and degenerated triangles at the poles. Fortunately, the remeshers are able to fix these issues and the
new meshes are perfectly closed (watertight) with no degenerated element.

13 For explanation on meshtools1D::extrude_rotate, meshtools1D::indices_to_connectE2 and
meshtools2D::extrude_rotate_T3 please refer to the Reference Manual of CM2 MeshTools (HTML doc).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 45

Figure 21 – Sphere remeshed with triangles.

Figure 22 – Sphere remeshed with quadrangles only (all-quad mode).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

46 Copyright Computing Objects – June 2015

Figure 23 – Sphere remeshed with quads and triangle s (mixed mode).

It appears that the remeshers divide the initial sphere into two patches (Figure 24) and that the initial G
meridian and the equator lines are lost in the remeshing process. Should we be interested in keeping
them, we have to put the edges of these lines into the edge connectivity matrix "skeleton_edges_in" as
shown in the following example14.

14 The meridian edges are readily available. However the equator edges need to be searched for (the code to do
that is not shown here).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 47

Figure 24 – Patches on the initial sphere (two patc hes).

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 const double R = 10.0;
 const unsigned N = 64;
 UIntVec indices;
 UIntMat connectE;
 DoubleMat pos;
 UIntMat connectMi, connectMr;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // THE INITIAL MESH.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

48 Copyright Computing Objects – June 2015

 matvec::push_back (DoubleVec3(0.,0.,R), pos);
 meshtools1d::extrude_rotate (pos, 0u, DoubleVec3 (0.,0.,0.),
 DoubleVec3(0.,M_PI, 0.), N/2, indices);
 meshtools1d::indices_to_connectE2 (indices, conn ectE);
 meshtools2d::extrude_rotate_T3 (pos, connectE, D oubleVec3(0.,0.,0.),
 DoubleVec3(0.,0. ,2.*M_PI), N, 1,
 connectMi);

 // REMESHING THE SURFACE.
 surf_remesh_t3::mesher the_reme sher;
 surf_remesh_t3::mesher::data_type data;
 data.pos = pos;
 data.connectM.copy (connectMi); // Hard co py of connectMi
 data.skeleton_edges_in = connectE; // Keep the meridian line.
 the_remesher.mode.min_h = 1.0;
 the_remesher.mode.max_h = 1.0;
 the_remesher.run (data);
 pos = data.pos;
 connectMr = data.connectM;

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", pos, connec tMr, CM2_FACET3);

 return 0;
} // main

Now the remesher divides the initial sphere into four patches in order to keep the constrained line.

Figure 25 – Patches on the remeshed sphere when G m eridian is kept
(four patches).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 49

Here the G meridian line (and by chance the equator line also) is kept in the final mesh. However it is
remeshed: the nodes and edges along it are different now. The geometry of the line is preserved but not
its mesh.
To keep the initial edges, we shall use the "hard_edges" field instead of "skeleton_edges_in":

#include "stdafx.h"

// Simple display handler.
static void display_hdl (void*, unsigned, const cha r* msg) { cout << msg; }

int main()
{
 const double R = 10.0;
 const unsigned N = 64;
 UIntVec indices;
 UIntMat connectE;
 DoubleMat pos;
 UIntMat connectMi, connectMr;

 // UNLOCK THE DLL.
 surf_remesh_t3::registration ("Licensed to SMART Inc.", "0BEE453363E8");

 // THE INITIAL MESH.
 matvec::push_back (DoubleVec3(0.,0.,R), pos);
 meshtools1d::extrude_rotate (pos, 0u, DoubleVec3 (0.,0.,0.),
 DoubleVec3(0.,M_PI, 0.), N/2, indices);
 meshtools1d::indices_to_connectE2 (indices, conn ectE);
 meshtools2d::extrude_rotate_T3 (pos, connectE, D oubleVec3(0.,0.,0.),
 DoubleVec3(0.,0. ,2.*M_PI), N, 1,
 connectMi);

 // REMESHING THE SURFACE.
 surf_remesh_t3::mesher the_reme sher;
 surf_remesh_t3::mesher::data_type data;
 data.pos = pos;
 data.connectM.copy (connectMi); // Hard copy of connectMi
 data.hard_edges = connectE; // Keep the edges along the meridian.
 the_remesher.mode.min_h = 1.0;
 the_remesher.mode.max_h = 1.0;
 the_remesher.run (data);
 pos = data.pos;
 connectMr = data.connectM;

 // SOME OUTPUT INFO (OPTIONAL).
 data.print_info (&display_hdl);

 // VISUALISATION (OPTIONAL).
 meshtools::medit_output ("out.mesh", pos, connec tMr, CM2_FACET3);

 return 0;
} // main

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

50 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 51

III – USER'S MANUAL

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

52 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 53

III-1 REMESHERS’ DATA

All data for a run of the remesher are gathered into a single structure of type data_type :

void surf_remesh_t3::mesher::run (surf_remesh_t3::m esher::data_type& data);
void surf_remesh_q4::mesher::run (surf_remesh_q4::m esher::data_type& data);

Some of the most important fields of these structures have already been seen in the previous chapter.
This one details all the fields.

Points’ coordinates
Matrix pos of size 3xN (IN and OUT).

It stores the coordinates of all points. The coordinates are stored column-wise. The column index is the
index of the node (zero-based, i.e. from 0 to N-1). The X-coordinates are in the first row, the Y-coordinates
in the second row, and the Z-coordinates in the third row.
Upon exit, the coordinates of the newly generated nodes are appended to the back of the matrix as new
columns. The initial columns are left unchanged15.

Elements
Matrix connectM (IN and OUT).

For the triangle remesher, the dimension of this matrix is always 3xNEFS (input and output). For the
quadrangle remesher, the dimension is 3xNEFS upon entry (only triangle mesh upon entry16) and
4xNEFS upon exit. In this case, the leading part of the matrix (from columns 0 to nefs_Q4-1) is the
connectivity of the quadrangle elements. The tailing part (from columns nefs_Q4 to nefs-1) is the
connectivity of the triangle elements, the fourth node ID in this part being CM2_NONE (unsigned(-1)).
The ordering of the elements in this matrix is irrelevant.
The initial connectivity is lost and overwritten by the new mesh connectivity, except when the remesher
fails.

Metric field
Vector metrics (IN).

The user can specify a target mesh size at each initial node. If the value for a node is zero - or negative
or not present – a default value will be used instead17. The new mesh is generated to fit best locally the
metric values. In the current release (4.0), there is no way to control more precisely the elements' size far
from the hard nodes. There is no "background mesh" option for instance.

Only the values for the hard nodes will be considered.

Neighbors
Matrix neighbors of dimension 3xM (OUT).
This matrix gives, for each element in the final mesh, the indices of the four neighboring elements
(CM2_NONE if none or several).

15 To keep only the nodes of the final mesh, use function cm2::meshtools::simplify after the remeshing:
cm2::meshtools::simplify (data.pos, data.connectM);
16 To remesh a all-quad or quad-dominant mesh, use meshtools2D::split_Q4_into_T3 to transform into a
all-triangle mesh prior to remeshing.
17 The default mesh size value at a hard node is the minimum distance to any other hard node caped by min_h
and max_h.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

54 Copyright Computing Objects – June 2015

neighbors(i,j) is the neighbor of the jth element sharing its ith edge. See Figure 26 for the local
numbering of the faces.

Figure 26 – Nodes and edges local numbering in tria ngles and quads.

Ancestors
ancestors is a vector of size N, i.e. the number of columns in the pos matrix upon exit (OUT).

This vector gives, for each node, the index of one of the elements in which it belongs (CM2_NONE if the
node is not in the final connectivity matrix).
Together with the neighbors matrix, this can make easy the design of search and traversal algorithms
(such as looking for all elements connected to a node).

Shape qualities
Vector shape_qualities of size equal to the number of columns in connectM upon exit (OUT).

This vector gives the shape quality of each element.

The formula for the shape quality of a triangle writes:

PL

S
Qs

max

34=

with:
S Surface of the triangle.
Lmax Length of the longest edge of the triangle.
P Perimeter of the triangle.

The formula for the shape quality of a 2-D quadrangle writes:

PL

S
Qs

max

min28=

with:

minS Minimum area of the four triangles.

maxL Max length of the four sides and the two diagonals.

P Perimeter of the quadrangle.

E1

E0
E2

1

0

2

E0

E3

E2
3

1
0

2

E1

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 55

The formula for the shape quality of a 3-D quadrangle writes:

w
D

s
D

s QQQ 23 =

with:

wQ

Warp quality of the quadrangle:

()()
π

3120 ,,,maxcos
1

NNNNa
Qw −=

Ni Normal to the quad at node i.

Histograms
Histograms histo_Qs_in , histo_Qs and histo_Qh (OUT).

histo_Qs_in is the histogram of the shape qualities in the initial mesh.
histo_Qs is the histogram of the vector shape_qualities in the final mesh.
histo_Qh is the histogram of the normalized edge lengths in the final mesh (computed only when the
option flag compute_Qh_flag is up, see § III-3).
Each histogram stores the minimum, the maximum and the average value as data members.

Hard faces
Vector hard_faces (IN).

Put in this vector the IDs of the initial triangles (column IDs in input matrix connectM) that must be kept
in the final mesh. Their edges and nodes will be considered as hard edges and hard nodes.

Skeleton edges of the initial mesh
Matrix skeleton_edges_in of dimension 2xNEski (IN-OUT).

These skeleton edges are the boundaries of the patches in the initial mesh. They are the "stitches" in the
initial mesh found by the algorithm. Upon entry, the user can specify some skeleton edges. This
constrains the algorithm to "cut" the 3D mesh along these edges. The skeleton lines (successively
connected skeleton edges) are remeshed in the final mesh.

Skeleton edges of the final mesh
Matrix skeleton_edges of dimension 2xNEskf (OUT).
These skeleton edges are the remeshed skeleton lines. They are the boundaries of the patches in the
final mesh.

Edges to exclude from skeleton edges
Matrix exclude_skeleton_edges of dimension 2xNExsk (IN).

This matrix contains the edges that should not be considered as skeleton edges, if possible. Only the
edges that violate the patch_angle_tolerance criterion can be excluded this way. The algorithm will
keep any skeleton edge if it violates any other criterion (strain_tolerance or if it is impossible to
remesh without this edge). The user can use this matrix to make the algorithm select bigger patches than
what it normally would.

Hard edges
Matrix hard_edges of dimension 2xNEhe (IN).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

56 Copyright Computing Objects – June 2015

Hard edges are skeleton edges that should not be remeshed. A "hard edge" is always considered as a
skeleton edge: it is a stitch in the initial mesh, and its vertices are considered as skeleton nodes (= hard
nodes).

Hard nodes
Vector hard_nodes (IN-OUT).

Upon entry, the user can put in this vector some node IDs to constrain them to remain in the final mesh.
Upon exit, this vector will contain in addition all the "skeleton" nodes, e.g. the topologically singular nodes
(nodes connected to one, three or more skeleton lines) and the nodes of the skeleton lines for which the
angle between coincident skeleton lines is greater than mode.patch_angle_tolerance . These
skeleton nodes are also kept from the initial mesh.

Nodes to exclude from the hard nodes
Vector exclude_hard_nodes (IN).

This vector contains the nodes that should not be selected as skeleton nodes, if possible.
Only the nodes that violate the patch_angle_tolerance criterion of the skeleton lines can be
excluded. The algorithm will keep any other skeleton nodes, as well as the user-defined hard nodes.

Field to interpolate on the new mesh
Matrix interpolate_field (IN-OUT).

This matrix contains nodal data to be interpolated to the new mesh (such as FEM data, textures...)
Data for node #i is at column #i (can be a single scalar or a vector).
As new nodes are appended to the coordinate matrix, new values are linearly interpolated and appended
to this matrix18.

Elements’ color
Vectors colors_in and colors (OUT).

The colors_in (resp. colors) vector gives the patch ID19 of the elements of the initial (resp. final)
mesh. This helps transferring information data (such as references to material properties) from the initial
mesh to the final mesh.

Skeleton edges’ color
Vectors skeleton_colors_in and skeleton_colors (OUT).
The skeleton_colors_in (resp. skeleton_colors) vector gives the skeleton line ID20 of the
skeleton edges of the initial (resp. final) mesh. This helps transferring information data (such as
references to beam material properties) from the initial mesh to the final mesh.

18 To eliminate the old nodes together with their data, use the following code snippet after the remeshing:
UIntMat connectM;
connectM.copy (data.connectM); // Copy of initial connectivity.
cm2::meshtools::simplify (data.pos, connectM); // Eliminate unused nodes.
cm2::meshtools::simplify (data.interpolate_field,
 data.connectM); // Eliminate unused data.
19 Patches are numbered consecutively starting from 0. Elements eliminated during the initial clean-up
and final optimization steps have no patch ID (equals to CM2_NONE).

20 Skeleton lines are numbered consecutively starting from 0. Elements eliminated during the initial clean-
up and final optimization steps have no ID (i.e. equals to CM2_NONE).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 57

Maximum error distance
Scalar (double) max_error_distance (OUT).

This is an approximate maximum distance between the initial mesh and the final mesh. This is a measure
of the geometric error between the two meshes.

Errors and warnings
Two enums, error_code and warning_code , give upon exit the error and warning codes. The string
msg1 holds explanations messages about the error/warning raised if any. In case of error, the meshing
process is aborted and the output mesh (connectM) is left unchanged (equal to the input mesh).
With a mere warning, the process goes to its end, though the final mesh may be of poor quality.
A correct run gives the CM2_NO_ERROR and CM2_NO_WARNING codes (zero values).
See § III-2 for more detailed explanations of the error and warning codes.

Complementary information
In this section are gathered the remaining fields of the data structure. They are all output values about
the initial and the final mesh:

• The number of elements in the initial and in the final mesh (also equals to the number of columns
in connectM upon entry and upon exit).

• The number of quads (always null with SurfRemesh T3) and the number of triangles (always null
with SurfRemesh Q4 in all-quad mode).

• The number of nodes in the initial and final meshes (less or equal to the number of columns in
pos upon entry and upon exit).

• The total number of points (i.e. columns) in matrix pos upon exit.
• The area of the initial and final mesh.
• The area of the quads (always null with SurfRemesh T3) and the area of the triangles (always

null with SurfRemesh Q4 in all-quad mode). The sum equals to the area of the mesh above.
• The worst shape quality of the elements in the initial and in the final mesh.
• The error and warning codes (see III-2).
• The error message.
• The times spent in the successive steps of the remesher.
• The total time spent in the remesher.
• The global speed of the remesher (number of generated elements per second).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

58 Copyright Computing Objects – June 2015

struct data_type
{
 DoubleMat pos;
 UIntMat connectM;
 DoubleVec metrics;

 UIntMat neighbors;
 UIntVec ancestors;
 DoubleVec shape_qualities;
 cm2::misc::histogram histo_Qs_in;
 cm2::misc::histogram histo_Qs;
 cm2::misc::histogram histo_Qh;

 UIntVec hard_faces;
 UIntMat skeleton_edges_in;
 UIntMat skeleton_edges;
 UIntMat exclude_skeleton_edges;
 UIntMat hard_edges;
 UIntVec hard_nodes;
 UIntVec exclude_hard_nodes;

 DoubleMat interpolate_field;

 UIntVec colors_in;
 UIntVec colors;
 UIntVec skeleton_colors_in;
 UIntVec skeleton_colors;

 double max_error_distance;

 unsigned nefs_in;
 unsigned nods_in;
 double surface_in;
 double Qmin_in;

 unsigned nefs;
 unsigned nefs_Q4;
 unsigned nefs_T3;
 unsigned nods;
 double area;
 double area_Q4;
 double area_T3;
 double Qmin;

 unsigned total_nods;

 double cleaning_time;
 double analysis_time;
 double remesh_time;
 double optim_time;
 double total_time;
 double speed;

 error_type error_code;
 warning_type warning_code;
 char msg1[256];
};

Table 2 – The surf_remesh_t3::mesher::data_type and
surf_remesh_q4::mesher::data_type structures

(only the data members are shown).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 59

III-2 ERROR AND WARNING CODES

Error codes
The error code is located in the structure data_type .

enum error_type
{
 CM2_NO_ERROR, // 0
 CM2_LICENSE_ERROR, // -100
 CM2_MODE_ERROR, // -101
 CM2_DATA_ERROR, // -102
 CM2_NODES_LIMIT_ERROR, // -103
 CM2_DEGENERATED_ELEMENT, // -107
 CM2_REMESHING_ERROR, // -108
 CM2_SYSTEM_MEMORY_ERROR, // -199
 CM2_INTERNAL_ERROR // -200
};

Table 3 – Error codes for CM2 SurfRemesh T3 & Q4.

CM2_NO_ERROR OK, no problem.

CM2_LICENSE_ERROR
The registration must occur before the instantiation of any
meshers. Check also your license. You may renew it.
Please, contact license@computing-objects.com

CM2_MODE_ERROR
The operating mode is not valid (see § III-3). Check the
positivity/range of scalar values such as
shape_quality_weight , patch_angl_tolerance ...

CM2_DATA_ERROR
The input data are not valid. Check the sizes of matrices, of
vectors, node indices in the connectivity matrices, look for insane
values…

CM2_NODES_LIMIT_
ERROR The limit on the number of nodes is too low.

CM2_DEGENERATED_
ELEMENT

At least one of the elements is invalid (null surface). Check the
input data.

CM2_REMESHING_ERROR
Can't generate a better mesh. Reduce parameter min_h , max_h,
patch_angle_tolerance , strain_tolerance ..

CM2_SYSTEM_MEMORY_
ERROR

Insufficient memory available. Mesh is too big to be generated
(over several tens millions elements).

CM2_INTERNAL_ERROR Unknown cause of error.

Table 4 – Error codes.

In case of error, the output mesh in field data.pos and data.connectM is identical to the input mesh.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

60 Copyright Computing Objects – June 2015

For error codes CM2_DEGENERATED_ELEMENT, CM2_REMESHING_ERROR and
CM2_INTERNAL_ERROR, save the data by calling data_type::save and send the zipped file to
support@computing-objects.com.

Example:

if (data.error_code != surf_remesh_t3::mesher::data _type::CM2_NO_ERROR)
{
 // Error, do something.
}

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 61

Warning codes
The warning code is located in the structure data_type .

enum warning_type
{
 CM2_NO_WARNING, // 0
 CM2_INTERRUPTION, // -10
 CM2_NODES_LIMIT_WARNING, // -11
 CM2_SHAPE_QUALITY_WARNING, // -12
 CM2_NON_MANIFOLD_SOLID_WARNING // -13
};

Table 5 – Warning codes for CM2 SurfRemesh T3 & Q4.

CM2_NO_WARNING OK, no problem.

CM2_NODES_LIMIT_
WARNING

The node limit has been reached and the mesh may be far from
optimal.

CM2_INTERRUPTION The user has aborted the run (through the interrupt handler). The
final mesh may be empty or valid but of poor quality.

CM2_SHAPE_QUALITY_
WARNING

The final mesh is valid but at least one of the elements is very bad
(shape quality < 0.01).
Reduce parameter min_h , max_h.
Increase parameters patch_angle_tolerance ,
strain_tolerance , optim_tolerance ..

CM2_NON_MANIFOLD_SOLID_
WARNING

The 3-D surface mesh could not be made watertight. This warning
can be raised only in the solid mode (solid_flag = true).

Table 6 – Warning codes.

Example:

if (data.warning_code ==
 surf_remesh_t3::mesher::data_type::CM2_SHAPE_QU ALITY_WARNING)
{
 // Warning, do something.
}

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

62 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 63

III-3 OPTIONS OF THE REMESHERS

CM2 SurfRemesh T3 & Q4 have several operating options that can change drastically its outputs. They
are gathered into a structure of type operating_mode_type as a public field of the remeshers:

cm2::surf_remesh_t3::mesher::operating_mode_type mode;
cm2::surf_remesh_q4::mesher::operating_mode_type mode;

Minimum size of the elements
min_h . Default = 0.0

Lower bound for the metric field used to generate the new mesh.
This value controls the size of the smallest elements21.
The user's specified values in metrics are not limited by this value.

Maximum size of the elements
max_h. Default = DBL_MAX

Upper bound for the metric field used to generate the new mesh.
This value controls the size of the largest elements.
The user's specified values in metrics are not limited by this value.

Max chordal error
max_chordal_error . Default = -0.05 (i.e. 5% of local radius)

Maximum chordal error allowed.
The mesh size is reduced locally to limit the chordal error between the mesh and the surface:
If negative, this value is relative to the local radii (for instance -0.01 => max chordal error < 1% of local
radii).
If positive, this value is absolute (for instance 0.1 => max chordal error < 0.1).

Max gradation
max_gradation . Positive value. Default = 0.5

This parameter controls the gradation of the elements size along the skeleton lines and inside the
patches towards the max_h mesh size.
A value close to 0 leads to a more progressive variation of mesh size (smoother).

Patch angle tolerance
patch_angle_tolerance . Default = 20.0

Parameter used to delimit the patches (groups of connected triangles in the initial mesh).
An angle between two adjacent triangles greater than this value will draw a limit between two patches
(we call such limit a "skeleton edge"). A small value tends to give numerous small patches and the final
mesh will be close to the initial mesh but may be of poor quality. A big value tends to give fewer bigger
patches. The remesher can do a better job on big patches but the final mesh may be more distant from
the initial mesh (increased geometric error).
A value of 45° should be considered as the maximum for this parameter.

21 However some elements may be smaller to satisfy geometric constraints.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

64 Copyright Computing Objects – June 2015

Initial fixing tolerance
fix_tolerance . Default = -0.0025 (i.e. 0.25% of min_h)

Controls the merging of nodes and the swapping of edges during the initial clean-up step.
This parameter is the maximum allowable distance (absolute or relative to min_h) that a node merging
or an edge swapping can induce on the initial surface.
If fix_tolerance > 0, fix_tolerance is taken as an absolute tolerance.
If fix_tolerance < 0, this is a relative tolerance. The distance of merging is then computed as the
product of -fix_tolerance and min_h , or if min_h is null, as the product of -fix_tolerance and a
mean of the lengths of the edges in the initial mesh.

This parameter should be used only to treat pathologically close nodes that are present in the initial mesh.
A value of 1% (i.e. -0.01) should be considered as the maximum for this parameter.

Final optimization tolerance
optim_tolerance . Default = -0.05 (i.e. 5% of min_h)

Controls the merging of nodes and the swapping of edges during the final optimization step.
This parameter is the maximum allowable distance (absolute or relative to min_h) that a node merging
or an edge swapping can induce on the final surface.
If optim_tolerance > 0, optim_tolerance is taken as an absolute tolerance.
If optim_tolerance < 0, this is a relative tolerance. The distance of merging is then computed as the
product of -optim_tolerance and min_h , or if min_h is null, as the product of -optim_tolerance
and a mean of the lengths of the edges in the initial mesh.

A value of 20% (i.e. -0.20) should be considered as the maximum for this parameter.

Strain tolerance
strain_tolerance . Default = 0.30

This is the maximum allowable strain for the elements in a patch when unfolded.
Set strain_tolerance = 0 if no strain is allowed. Only perfectly unfoldable patches will be selected in
this case (i.e. flat or simply curved patches). A small value tends to reduce the size of the patches. A
large value tends to give fewer bigger patches.
A value of 0.60 should be considered as the maximum for this parameter.

Initial clean-up
initial_cleanup_flag . Default = true

Flag to allow a clean-up of the initial mesh (node merging, gaps filling and topological fixing). The patch
ID of the elements (see data_type::patch_IDs) is computed after the initial clean-up.

Flag for solids
solid_flag . Default = false

Flag to tell if the 3-D surface should be considered as closed and simple (no internal faces) or not.
If true, a specific algorithm is used to correct the initial mesh in the cases when some elements are under-
connected or over-connected (edges not shared exactly by two elements). The remesher emits a warning
(CM2_NOT_SIMPLE_SOLID_WARNING) when it cannot enforce all edges in the initial mesh to be shared
by exactly two elements.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 65

All-quad or quad-dominant mode (CM2 SurfRemesh Q4)
all_quad_flag . Default = false

Flag to force the generation of an all-quad mesh (no triangle):

• false : generates a mixed triangle-quad mesh (the default).
• true : generate a all-quad mesh.

A good all-quad mesh can only be generated in simple cases. If possible, rather use the mixed quad-
dominant generation mode.
When this flag is set to false , parameter quadrangle_weight can be used to control the trade-off
between meshes with more numerous quads and meshes with more numerous triangles but of better
shape quality.

Remeshing
remesh_flag . Default = true.

This flag enables the remeshing of the patches. Set this flag to false if you don’t want to remesh but
only to optimize it (or simply to compute the patches in the initial mesh, the skeleton edges and the
skeleton nodes).
� Note that the initial clean-up and final optimization, if not disabled, may still modify the mesh.

Flag to force parity along the skeleton lines
force_even_flag . Default = false.

Flag to force the number of edges in the final skeleton lines to be even. This is always the case with CM2
SurfRemesh Q4 when all_quad_flag is set to true .

Node smoothing
node_smoothing_flag . Default = true .

This flag controls the node-smoothing scheme in the optimization step.
When remeshing_flag = false , node smoothing doesn't change the mesh connectivity, only the
coordinates of nodes.
This flag has no effect when the optimization step is skipped (optim_level = 0)

Node inserting
node_inserting_flag . Default = true .

This flag controls the node-inserting scheme in the optimization step.
When remeshing_flag = false , node inserting increases the number of nodes, changes the mesh
connectivity, but doesn't change the other nodes' coordinates.
This flag has no effect when the optimization step is skipped (optim_level = 0)

Node removing
node_removing_flag . Default = true .

This flag controls the node-removing scheme in the optimization step.
When remeshing_flag = false , node removing decreases the number of nodes, changes the mesh
connectivity, but doesn't change the other nodes' coordinates.
This flag has no effect when the optimization step is skipped (optim_level = 0)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

66 Copyright Computing Objects – June 2015

Shell remeshing
shell_remeshing_flag . Default = true .

This flag controls the local remeshing scheme in the optimization step.
When remeshing_flag = false , shell remeshing changes the mesh connectivity, but doesn't change
the number of nodes nor their coordinates.
This flag has no effect when the optimization step is skipped (optim_level = 0)

Final optimization
final_optimization_flag . Default = true.

Flag to allow the final inter-patch optimization scheme.
If true, nodes can be merged together if they are within the merging distance (optim_tolerance) and
edges can be swapped to improve the shape quality of the elements if the induced geometric error is
lower than optim_tolerance .

Only smooth nodes
node_smoothing_only_flag . Default = false .

This flag tells the remesher to keep the initial mesh connectivity and do only node smoothing on the
surface. When true, the other flags initial_cleanup_flag , solid_flag , remesh_flag ,
force_even_flag and final_optimization_flag are irrelevant (considered as false).

Computation of the size-qualities histogram
compute_Qh_flag . Default = false .

Before exiting the process, this flag tells the mesher to compute the histogram of the size quality of all
the edges in the new mesh.

Pattern for structured meshes (CM2 SurfRemesh T3)
structured_pattern . Default = -1.

This option controls the way the generators does the structured meshes when possible (on rectangular-
like patches).
It can take four values:

• -1: This is the default mode. The triangular meshes are always done with the frontal-
Delaunay algorithm. This usually gives “optimal” meshes.

• 0: When possible, generates structured left-oriented meshes (simply oriented pattern).

• +1: When possible, generates structured right-oriented meshes (simply oriented pattern).

• +2: When possible, generates structured UJ meshes (“Union Jack” pattern).

Pattern for structured meshes (CM2 SurfRemesh Q4)
structured_flag . Default = true .

This option controls the way the generators do the structured meshes when possible (on rectangular-like
patches):

• true : This is the default mode. When possible, generates structured (grid-like) meshes.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 67

• false : The quad meshes are always done with the frontal-Delaunay algorithm22.

Limit on the number of nodes
nodes_limit . Default = UINT_MAX.

When the mesh generator reaches this limit, the CM2_NODES_LIMIT_WARNING is issued and new nodes
are no longer created. In this case, the quality of some elements can be far from optimal. When the limit
is so low that the remesher cannot even insert all the skeleton nodes the CM2_NODES_LIMIT_ERROR is
raised and the mesh is aborted.

Optimization level
optim_level . Integer between 0 and 10. Default = 3

A null value makes the mesher to skip the optimization step. The speed is maximal but the quality may
be poor. From value 1 on, the optimizer algorithm uses several techniques to improve both the shape
quality and the size quality of the elements, such as node smoothing, edge swapping, node insertion and
node removal. Level 3 is usually a good trade-off between quality and speed.

Weight on shape quality
shape_quality_weight . Value between 0 and 1. Default = 0.6

This parameter controls the trade-off between shape optimization and size optimization. It is the weight
of the shape quality in the measure of the global quality of an element. The default value (0.6) gives a
slight preference to the shape quality over the size quality.

Weight on quadrangles (CM2 SurfRemesh Q4)
quadrangle_weight . Value between 0 and 1. Default = 0.70

Preference for quadrangles vs. triangles. Weight between 0 and 1 indicating the preference for
quadrangles over triangles, when a all-quad mesh cannot be generated (i.e. when there is no parity on
the boundaries, or all_quad_flag = false).
With quadrangle_weight = 0, quadrangles are never used.
With quadrangle_weight = 0.5, quadrangles are used only when they improve the quality of the mesh.
For values between 0.5 and 1, quadrangles are more and more used even if this lead to a lesser quality
of the mesh.
With quadrangle_weight = 1, the minimum number of triangles are used (but may not be null).
This parameter is used only when all_quad_flag = false .
This parameter is not the ratio between quads and triangles. Furthermore, there is no linearity between
this weight and the ratio between quads and triangles.

Minimum quadrangle quality (CM2 SurfRemesh Q4)
min_Q4_angle_quality . Double value between 0 and 1. Default = 0 (no minimum).

Minimum acceptable angle quality for the quadrangles.
This parameter is taken into account in mixed mode only (all_quad_flag = false).

22 This may give also structured meshes. The true option enforces this and is much faster whenever a
structured mesh can be generated. Since release 3.4 this flag is less useful because QuadMesh is able
to generate naturally a perfect mesh on rectangle domains, even with this flag off.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

68 Copyright Computing Objects – June 2015

This quality threshold is based on the angle quality of the quads (not the geometric quality which takes
the length ratios also into account). The angle quality is computed as the minimum of the four angles at
sommits23. Set min_Q4_angle_quality = 1 to allow rectangles only (quads with right angles only).
In this case, be aware that when boundaries are not straight very few rectangles may be generated
(mostly triangles).

Upper bound on edges length
length_upper_bound . Value greater than 0. Default = 1.414

This parameter is used to limit the length of the edges in the generated mesh (normalized length). This
is not a strict enforcement however. Most of the edges will be shorter than this limit, but some may remain
somewhat longer. The default value (1.414) gives the optimal meshes with respect to the size qualities.
With this default value, the average edge length tends to be 1 (optimal edge quality on average).
Sometimes, it can be useful to limit the length of the edges to a shorter value (usually between 1 and
1.414), and to accept an average value smaller than 1 (sub-optimal edge qualities on average).

Minimum number of edges along loops
min_NE_for_loops . Integer greater or equal to 3. Default = 6

This parameter can be useful when holes or loops need to be remeshed with a minimum number of
edges. Works only for surface domains, not solid domains.

Maximum number of edges along loops
max_NE_for_loops . Integer greater or equal to 3. Default = UINT_MAX

This parameter can be useful when holes or loops need to be remeshed with a limited number of edges.
Works only for surface domains, not solid domains.

Display handler

This user-supplied function is used to handle the messages issued by the mesher.

typedef void (*display_handler_type) (void* pass_th u,
 unsigned leve l, const char* msg);

The pass_thru parameter is the pointer set by the user in the operating mode structure.
The level parameter gives the importance of the message:

• +0 � important (for instance entering a major step of the process)
• +1 � somewhat important (minor step of the process)
• ≥ 2 � not serious (debug messages that should not be printed for end-users).

The msg parameter is the string message (length <= 255 characters).

Note:
This handler is not called in case of error or warning. At the end of the run, the user must check for an
error or a warning in the fields data_type::error_code and data_type::warning_code and then
(in case of error or warning) process the string data_type::msg1 .

Example:

void my_display_hdl (void* pass_thru, unsigned leve l, const char* msg)
{

23 The angle quality of a rectangle equals to 1 (perfect) whereas its geometric quality is only equal to 1
when the rectangle is a square.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 69

 window_type* my_window = static_cast<window_ty pe*> (pass_thru);
 my_window->show (msg);
}

cm2::surf_remesh_t3::mesher my_mesher;
cm2:: surf_remesh_t3::mesher::data_type my_data (p os, connectB);
window_type my_window; // A “window” instance.

my_mesher.mode.display_handler = &my_display_handle r;
my_mesher.mode.pass_thru = static_cast<void*> (&my_ window);
my_mesher.run (my_data); // Will call my_displ ay_hdl with “my_window”
 // in pass_thru param eter.

Interrupt handler
interrupt_hdl . Default = NULL. Used in all modes.

Can be useful for big meshes (over hundreds of thousands of elements).

typedef bool (*interrupt_handler_type)(void* pass_ thu, double progress);

This handler, if any, is called periodically by the remesher to check for a stop signal. When the handler
returns true , the remesher aborts its current step. If the interruption occurs early in the meshing stage -
for instance in the front mesh step - the mesh is invalid, so it is cleared. From the refine step on, however,
the user can get a valid mesh upon exit, though probably of poor quality.
An interruption also raises the CM2_INTERRUPTION warning.

The pass_thru parameter is a pointer set by the user in the operating mode structure (the same
parameter is also passed to the display handler).
The parameter progress (between 0 and 1) gives a hint about the progress of the remeshing.

Example:

bool my_interrupt_handler (void* pass_thu, double p rogress)
{
 clock_t* t_limit = static_cast<clock_t*> (pass _thru);
 return clock() > (*t_limit);
}

cm2::surf_remesh_t3::mesher my_mesher;
cm2::surf_remesh_t3::mesher::data_type my_data (pos , connectB);
clock_t my_limit (clock() + 1E3* CLOCKS_PER_SEC);

my_mesher.mode.interrupt_handler = &my_interrupt_ha ndler;
my_mesher.mode.pass_thru = static_cast<clock_t*> (& my_limit);
my_mesher.run (my_data); // Will stop if du ration > 1000 s.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

70 Copyright Computing Objects – June 2015

struct operating_mode_type
{
 double min_h;
 double max_h;
 double max_gradation;
 double patch_angle_tolerance;
 double fix_tolerance;
 double optim_tolerance;
 double strain_tolerance;
 bool initial_cleanup_flag;
 bool solid_flag;
 bool remesh_flag;
 bool force_even_flag;
 bool node_smoothing_flag;
 bool node_inserting_flag;
 bool node_removing_flag;
 bool shell_remeshing_flag;
 bool final_optimization_flag;
 bool node_smoothing_only_flag ;
 bool compute_Qh_flag;
 int structured_pattern;
 unsigned nodes_limit;
 unsigned optim_level;
 double shape_quality_weight;
 double length_upper_bound;
 unsigned min_NE_for_loops;
 unsigned max_NE_for_loops;
 display_handler_type display_hdl;
 interrupt_handler_type interrupt_hdl;
 void* pass_thru;
};

Table 7 – The cm2::surf_remesh_t3::operating_mode_type structure
(only the data members are shown).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 71

struct operating_mode_type
{
 double min_h;
 double max_h;
 double max_gradation;
 double patch_angle_tolerance;
 double fix_tolerance;
 double optim_tolerance;
 double strain_tolerance;
 bool initial_cleanup_flag;
 bool solid_flag;
 bool remesh_flag;
 bool all_quad_flag;
 bool force_even_flag;
 bool node_smoothing_flag;
 bool node_inserting_flag;
 bool node_removing_flag;
 bool shell_remeshing_flag;
 bool final_optimization_flag;
 bool node_smoothing_only_flag ;
 bool compute_Qh_flag;
 bool structured_flag;
 unsigned nodes_limit;
 unsigned optim_level;
 double shape_quality_weight;
 double quadrangle_weight;
 double min_Q4_angle_quality;
 double length_upper_bound;
 unsigned min_NE_for_loops;
 unsigned max_NE_for_loops;
 display_handler_type display_hdl;
 interrupt_handler_type interrupt_hdl;
 void* pass_thru;
};

Table 8 – The cm2::surf_remesh_q4::operating_mode_type structure
(only the data members are shown).

Most useful fields are “min_h”, “max_h”, “optim_level”, “all_quad_flag” (for CM2 SurfRemesh Q4) and
possibly the handlers. Users can also adapt “patch_angle tolerance” to the specificity of his/her surfaces.
Other parameters are rarely useful and should be left to expert users only.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

72 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 73

III-4 GENERAL SCHEME OF THE REMESHERS

Figure 27 – General scheme of the remeshers.

REMESH SKELETON LINES
(if mode.remesh_flag)

 (using mode.force_even_flag)

INITIALIZATION

PATCH DETECTION
Computes patches, skeleton lines and skeleton nodes

(using mode.patch_angle_tolerance , mode.strain_tolerance,
mode.max_chordal_error)

FINAL OPTIMIZATION
(if mode.final_optimization_flag)

Inter-patches optimizations
(using mode.optim_tolerance, mode.optim_level)

FINALIZATION

INITIAL CLEANING
(if mode.initial_cleanup_flag)

Merge nodes too close to each other and swap pathological edges

(using mode.fix_tolerance)

REMESH AND OPTIMIZE PATCHES
Unfold patches, remesh patches (if mode.remesh_flag) ,
optimize within each patch (using mode.optim_level,

mode.node_smoothing_flag, mode.node_inserting_flag,
mode.node_removing_flag, mode.shell_remeshing_flag),

map back to the initial surface.

METRICS
Set the mesh-size at skeleton nodes if missing

(using data.metrics , mode.min_h , mode.max_h ,
mode.max_chordal_error)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

74 Copyright Computing Objects – June 2015

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 75

IV – MESH GALLERY

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

76 Copyright Computing Objects – June 2015

Initial mesh

Nodes : 202
Triangles : 400
Area : 1.7722E+05
Qavg : 4.0583E-01
Qmin : 6.8572E-02

New mesh (CM2 SurfRemesh T3)

Nodes : 940
Triangles : 1876
Area : 1.7670E+05
Qavg : 9.176E-01
Qmin : 1.706E+00

Cleaning time : 0.00 s
Analysis time : 0.03 s
Remesh time : 0.02 s
Optim time : 0.00 s
Total time : 0.05 s (39987 t/s)

The output information given here are only
indicative. All runs were done with x64 CM2 libs
(Visual Studio 2010 MD build) on Windows 8 x64
with Intel Xeon E3-1270 V2 3.5 GHz (1 thread,
turbo boost disabled).

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 77

New mesh (CM2 SurfRemesh Q4 in all-
quad mode)

Nodes : 948
Elements : 946
 Quadrangles : 946
 (100.00 %, 100.00 %)
 Triangles : 0
 (0.00 %, 0.00 %)
Area : 1.7662E+05
Qavg : 8.437E-01
Qmin : 2.539E-01

Cleaning time : 0.00 s
Analysis time : 0.03 s
Remesh time : 0.05 s
Optim time : 0.00 s
Total time : 0.08 s (12100 e/s)

New mesh (CM2 SurfRemesh Q4 in quad-
dominant mode)

Nodes : 811
Elements : 825
 Quadrangles : 793
 (96.12 %, 98.34 %)
 Triangles : 32
 (3.88 %, 1.66 %)
Area : 1.7659E+05
Qavg : 9.128E-01
Qmin : 5.049E-01

Cleaning time : 0.00 s
Analysis time : 0.03 s
Remesh time : 0.04 s
Optim time : 0.00 s
Total time : 0.06 s (13306 e/s)

The percent figures indicate the ratio between the
number of quads and triangles, and the ratio
between the surfaces of quads and triangles.

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

78 Copyright Computing Objects – June 2015

Initial mesh

Nodes : 1152
Triangles : 2316
Area : 8.7787E+04
Qavg : 3.76E-01
Qmin : 3.23E-04

New mesh (CM2 SurfRemesh T3)

Nodes : 4234
Triangles : 8480
Area : 8.7642E+04
Qavg : 8.72E-01
Qmin : 2.46E-02

Cleaning time : 0.01 s
Analysis time : 0.24 s
Remesh time : 0.13 s
Optim time : 0.05 s
Total time : 0.44 s
(19405 t/s)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 79

New mesh (CM2 SurfRemesh Q4 in
all-quad mode)

Nodes : 4852
Elements : 4858
 Quadrangles : 4858
 (100.00 %, 100.00 %)
 Triangles : 0
 (0.00 %, 0.00 %)
Area : 8.7656E+04
Qavg : 6.98E-01
Qmin : 1.07E-03

Cleaning time : 0.02 s
Analysis time : 0.25 s
Remesh time : 0.41 s
Optim time : 0.03 s
Total time : 0.70 s
(6910 e/s)

=> Some quads have a very bad shape
quality: rather use the quad-dominant mode.

New mesh (CM2 SurfRemesh Q4 in
quad-dominant mode)

Nodes : 3825
Elements : 3937
 Quadrangles : 3725
 (94.62 %, 97.95 %)
 Triangles : 212
 (5.38 %, 2.05 %)
Area : 8.7643E+04
Qavg : 8.21E-01
Qmin : 3.14E-02

Cleaning time : 0.02 s
Analysis time : 0.25 s
Remesh time : 0.23 s
Optim time : 0.03 s
Total time : 0.53 s
(7414 e/s)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

80 Copyright Computing Objects – June 2015

Initial mesh

Nodes : 2674
Triangles : 5364
Area : 8.9217E+05
Qavg : 3.6672E-01
Qmin : 2.0704E-04

New mesh (CM2 SurfRemesh T3)

New Mesh
Nodes : 11304
Triangles : 22624
Area : 8.9197E+05
Qavg : 8.60E-01
Qmin : 3.34E-02

Cleaning time : 0.03 s
Analysis time : 0.61 s
Remesh time : 0.61 s
Optim time : 0.17 s
Total time : 1.44 s
(15732 t/s)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 81

New mesh (CM2 SurfRemesh Q4
in all-quad mode)

Nodes : 13317
Elements : 13325
 Quadrangles : 13325
 (100.00 %, 100.00 %)
 Triangles : 0
 (0.00 %, 0.00 %)
Area : 8.9269E+05
Qavg : 6.83E-01
Qmin : 2.01E-03

Cleaning time : 0.03 s.
Analysis time : 0.61 s.
Remesh time : 4.69 s.
Optim time : 0.13 s.
Total time : 5.47 s.
(2437 e/s)

Some quads have a very bad shape
quality: => rather use the quad-
dominant mode.

New mesh (CM2 SurfRemesh Q4
in quad-dominant mode)

Nodes : 10160
Elements : 10413
 Quadrangles : 9923
 (95.29 %, 98.63 %)
 Triangles : 490
 (4.71 %, 1.37 %)
Area : 8.9200E+05
Qavg : 8.37E-01
Qmin : 3.345E-02

Cleaning time : 0.01 s
Analysis time : 0.61 s
Remesh time : 1.03 s
Optim time : 0.13 s
Total time : 1.80 s
(5795 e/s)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

82 Copyright Computing Objects – June 2015

Initial mesh

Nodes : 406
Triangles : 812
Area : 6.8760E+04
Qavg : 3.0524E-01
Qmin : 2.5909E-03

New mesh
(CM2 SurfRemesh T3)

Nodes : 993
Triangles : 1986
Area : 6.8620E+04
Qavg : 7.79E-01
Qmin : 1.50E-01

Cleaning time : 0.00 s
Analysis time : 0.05 s
Remesh time : 0.03 s
Optim time : 0.01 s
Total time : 0.09 s
(21355 t/s)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

 Copyright Computing Objects – June 2015 83

New mesh (CM2 SurfRemesh Q4
in all-quad mode)

Nodes : 1487
Elements : 1487
 Quadrangles : 1487
 (100.00 %, 100.00 %)
 Triangles : 0
 (0.00 %, 0.00 %)
Area : 6.8609E+04
Qavg : 5.72E-01
Qmin : 7.04E-02

Cleaning time : 0.00 s
Analysis time : 0.05 s
Remesh time : 0.14 s
Optim time : 0.00 s
Total time : 0.19 s
(7952 e/s)

New mesh (CM2 SurfRemesh Q4
in quad-dominant mode)

Nodes : 909
Elements : 938
 Quadrangles : 880
 (93.82 %, 98.04 %)
 Triangles : 58
 (6.18 %, 1.96 %)
Area : 6.8593E+04
Qavg : 7.74E-01
Qmin : 1.50E-01

Cleaning time : 0.02 s
Analysis time : 0.05 s
Remesh time : 0.06 s
Optim time : 0.00 s
Total time : 0.13 s
(7504 e/s)

CM2 SurfRemesh T3 - CM2 SurfRemesh Q4 - V 4.6

84 Copyright Computing Objects – June 2015

