

# FCC RF Test Report

| APPLICANT      | : Quectel Wireless Solutions Co., Ltd. |
|----------------|----------------------------------------|
| EQUIPMENT      | : LTE-A Cat 12 M.2 Module              |
| BRAND NAME     | : Quectel                              |
| MODEL NAME     | : EM12-G                               |
| FCC ID         | : XMR201901EM12G                       |
| STANDARD       | : FCC 47 CFR Part 2, 90(R)             |
| CLASSIFICATION | : PCS Licensed Transmitter (PCB)       |

The product was received on Nov. 29, 2018 and completely tested on Jan. 18, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

James Huang

TESTING NVLAP LAB CODE 600155-0

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone, Jiangsu Province 215335, China





## TABLE OF CONTENTS

| RE | VISIOI | N HISTORY                                                       | 3  |
|----|--------|-----------------------------------------------------------------|----|
| SU | MMAR   | RY OF TEST RESULT                                               | 4  |
| 1  | GENE   | ERAL DESCRIPTION                                                | 5  |
|    | 1.1    | Applicant                                                       | 5  |
|    | 1.2    | Manufacturer                                                    |    |
|    | 1.3    | Feature of Equipment Under Test                                 |    |
|    | 1.4    | Maximum ERP Power, Frequency Tolerance, and Emission Designator |    |
|    | 1.5    | Testing Site                                                    |    |
|    | 1.6    | Applied Standards                                               |    |
| 2  | TEST   | CONFIGURATION OF EQUIPMENT UNDER TEST                           | 8  |
|    | 2.1    | Test Mode                                                       | 8  |
|    | 2.2    | Connection Diagram of Test System                               | 9  |
|    | 2.3    | Support Unit used in test configuration and system              | 9  |
|    | 2.4    | Measurement Results Explanation Example                         | 10 |
| 3  | CONI   | DUCTED TEST ITEMS                                               | 11 |
|    | 3.1    | Measuring Instruments                                           | 11 |
|    | 3.2    | Test Setup                                                      | 11 |
|    | 3.3    | Test Result of Conducted Test                                   | 11 |
|    | 3.4    | Conducted Output Power and ERP                                  |    |
|    | 3.5    | Occupied Bandwidth                                              | 13 |
|    | 3.6    | Conducted Band Edge Measurement                                 | 14 |
|    | 3.7    | Emission Mask                                                   |    |
|    | 3.8    | Conducted Spurious Emission Measurement                         |    |
|    | 3.9    | Frequency Stability Measurement                                 | 17 |
| 4  | RADI   | ATED TEST ITEMS                                                 | 18 |
|    | 4.1    | Measuring Instruments                                           | 18 |
|    | 4.2    | Test Setup                                                      | 18 |
|    | 4.3    | Test Result of Radiated Test                                    | 18 |
|    | 4.4    | Radiated Spurious Emission Measurement                          | 19 |
| 5  | LIST   | OF MEASURING EQUIPMENT                                          | 20 |
| 6  | UNCE   | ERTAINTY OF EVALUATION                                          | 21 |
| AP | PEND   | IX A. TEST RESULTS OF CONDUCTED TEST                            |    |
| AP | PEND   | IX B. TEST RESULTS OF RADIATED TEST                             |    |
| AP | PEND   | IX C. TEST SETUP PHOTOGRAPHS                                    |    |



# **REVISION HISTORY**

| REPORT NO. | VERSION | DESCRIPTION             | ISSUED DATE   |
|------------|---------|-------------------------|---------------|
| FG8N2911D  | Rev. 01 | Initial issue of report | Jan. 30, 2019 |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |
|            |         |                         |               |



| Report<br>Section | FCC Rule                                 | Description                                  | Limit                               | Result | Remark                                     |
|-------------------|------------------------------------------|----------------------------------------------|-------------------------------------|--------|--------------------------------------------|
| 3.4               | §2.1046                                  | Conducted Output Power                       | Reporting only                      | PASS   | -                                          |
| 3.4               | §90.542 (a)(7)                           | Effective Radiated Power                     | ERP < 3Watt                         | PASS   | -                                          |
| 3.5               | §2.1049                                  | Occupied Bandwidth                           | Reporting only                      | PASS   | -                                          |
| 3.6               | §2.1053<br>§90.543 (e)(2)(3)             | Conducted Band Edge<br>Measurement           | Refer standard                      | PASS   | -                                          |
| 3.7               | §2.1051<br>§90.210(n)                    | Emission Mask                                | Mask B                              | PASS   | -                                          |
| 3.8               | §2.1053<br>§90.543 (e)(3)                | Conducted Spurious Emission                  | < 43+10log <sub>10</sub> (P[Watts]) | PASS   | -                                          |
| 3.9               | §2.1055<br>§90.539 (e)                   | Frequency Stability<br>Temperature & Voltage | < ±1.25 ppm                         | PASS   | -                                          |
| 4.4               | §2.1053<br>§90.543 (e)(3)<br>§90.543 (f) | Radiated Spurious Emission                   | < 43+10log <sub>10</sub> (P[Watts]) | PASS   | Under limit<br>26.34 dB at<br>1586.000 MHz |



## **1** General Description

## 1.1 Applicant

#### Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

## 1.2 Manufacturer

#### **Quectel Wireless Solutions Co., Ltd.**

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

## **1.3 Feature of Equipment Under Test**

|                                 | Product Feature                              |  |  |  |
|---------------------------------|----------------------------------------------|--|--|--|
| Equipment                       | LTE-A Cat 12 M.2 Module                      |  |  |  |
| Brand Name                      | Quectel                                      |  |  |  |
| Model Name                      | EM12-G                                       |  |  |  |
| FCC ID                          | XMR201901EM12G                               |  |  |  |
| Tx Frequency                    | LTE Band 14: 790.5 MHz ~ 795.5 MHz           |  |  |  |
| Rx Frequency                    | LTE Band 14: 760.5 MHz ~ 765.5 MHz           |  |  |  |
| Bandwidth                       | 5MHz / 10MHz                                 |  |  |  |
| Maximum Output Power to Antenna | LTE Band 14: 23.10 dBm                       |  |  |  |
| Type of Modulation              | QPSK / 16QAM / 64QAM / 256QAM(Downlink only) |  |  |  |
|                                 | Conducted: 869710030006559                   |  |  |  |
| IMEI Code                       | Radiation: 869710030006542                   |  |  |  |
| HW Version                      | R1.0                                         |  |  |  |
| SW Version                      | EM12GPAR01A08M4G                             |  |  |  |
| EUT Stage                       | Identical Prototype                          |  |  |  |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



## 1.4 Maximum ERP Power, Frequency Tolerance, and Emission Designator

| LI          | TE Band 14                  |                                    | QPSK                            |                   | 16QAM                              |                                 |                   |  |  |
|-------------|-----------------------------|------------------------------------|---------------------------------|-------------------|------------------------------------|---------------------------------|-------------------|--|--|
| BW<br>(MHz) | Frequency<br>Range<br>(MHz) | Emission<br>Designator<br>(99%OBW) | Frequency<br>Tolerance<br>(ppm) | Maximum<br>ERP(W) | Emission<br>Designator<br>(99%OBW) | Frequency<br>Tolerance<br>(ppm) | Maximum<br>ERP(W) |  |  |
| 5           | 790.5~795.5                 | 4M52G7D -                          |                                 | 0.1726            | 4M49W7D                            | -                               | 0.1585            |  |  |
| 10          | 793                         | 9M07G7D                            | 0.0044                          | 0.1754            | 8M99W7D                            | -                               | 0.1419            |  |  |
| LI          | TE Band 14                  | 64QAM                              |                                 |                   |                                    |                                 |                   |  |  |
| BW<br>(MHz) | Frequency<br>Range<br>(MHz) |                                    | Designator<br>OBW)              |                   | y Tolerance<br>pm)                 | Maximum<br>ERP(W)               |                   |  |  |
| 5           | 790.5~795.5                 | 4M50                               | )W7D                            | -                 |                                    | 0.1596                          |                   |  |  |
| 10          | 793                         | 9M03                               | 3W7D                            |                   | -                                  | 0.1400                          |                   |  |  |



## 1.5 Testing Site

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0).

| Test Site                                                       | Sporton International (Kunshan) Inc. |                     |                                |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------------|---------------------|--------------------------------|--|--|--|--|
| No. 1098, Pengxi North Road, Kunshan Economic Development Zone, |                                      |                     |                                |  |  |  |  |
| Test Site Location                                              | Jiangsu Province 215335, China       |                     |                                |  |  |  |  |
|                                                                 | TEL : 86-512-57900158                |                     |                                |  |  |  |  |
|                                                                 | FAX : 86-512-57900958                |                     |                                |  |  |  |  |
|                                                                 | Sporton Site No.                     | FCC designation No. | FCC Test Firm Registration No. |  |  |  |  |
| Test Site No.                                                   | TH01-KS                              | CN5013              | 630927                         |  |  |  |  |
|                                                                 | 03CH06-KS                            | CN3013              | 030927                         |  |  |  |  |

## 1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, Part 90(R)
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

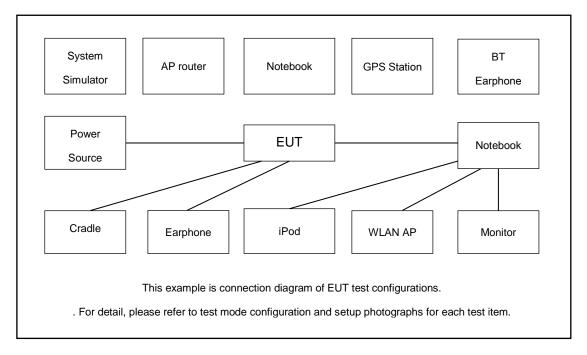
#### Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- **2.** This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.



## 2 Test Configuration of Equipment Under Test

## 2.1 Test Mode


Antenna port conducted and radiated test items listed below are performed with maximum output power.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to find the maximum emission.

| Conducted                                                                                                                                               | Band |                                                                                                                                                                                                  | В    | andwic | lth (MH | lz)   |        |         | Modulatio | n     |   | RB # |      | Test Channel |   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|---------|-------|--------|---------|-----------|-------|---|------|------|--------------|---|---|
| Test Cases                                                                                                                                              | Band | 1.4                                                                                                                                                                                              | 3    | 5      | 10      | 15    | 20     | QPSK    | 16QAM     | 64QAM | 1 | Half | Full | L            | м | н |
| Max. Output                                                                                                                                             | 14   | -                                                                                                                                                                                                | -    | v      | -       | -     | -      | v       | V         | v     | v | v    | v    | v            | v | v |
| Power                                                                                                                                                   | 14   | -                                                                                                                                                                                                | -    |        | V       | -     | -      | v       | v         | v     | v | v    | v    |              | v |   |
| 26dB and 99%                                                                                                                                            | 14   | -                                                                                                                                                                                                | -    | v      |         | -     | -      | V       | V         | v     |   |      | v    | v            | v | v |
| Bandwidth                                                                                                                                               | 14   | -                                                                                                                                                                                                | -    |        | v       | -     | -      | v       | V         | v     |   |      | v    |              | v |   |
| Conducted                                                                                                                                               | 14   | -                                                                                                                                                                                                | -    | v      |         | -     | -      | V       | V         | V     | v |      | v    | v            |   | v |
| Band Edge                                                                                                                                               | 14   | -                                                                                                                                                                                                | -    |        | V       | -     | -      | v       | V         | v     | v |      | v    |              | v |   |
| Emission Mask                                                                                                                                           | 14   | -                                                                                                                                                                                                | -    | v      |         | -     | -      | v       | V         | v     | v |      | v    | v            | v | v |
| LINISSION WASK                                                                                                                                          | 14   | -                                                                                                                                                                                                | -    |        | v       | -     | -      | v       | v         | v     | v |      | v    |              | v |   |
| Conducted                                                                                                                                               | 14   | -                                                                                                                                                                                                | -    | v      |         | -     | -      | v       | v         | v     | v |      |      | v            | v | v |
| Spurious<br>Emission                                                                                                                                    | 14   | -                                                                                                                                                                                                | -    |        | v       | -     | -      | v       | v         | v     | v |      |      |              | v |   |
| Frequency<br>Stability                                                                                                                                  | 14   | -                                                                                                                                                                                                | -    |        | v       | -     | -      | v       |           |       |   |      | v    |              | v |   |
| E.R.P                                                                                                                                                   | 14   | -                                                                                                                                                                                                | -    | v      |         | -     | -      | v       | v         | v     | v |      |      | v            | v | v |
| E.R.P                                                                                                                                                   | 14   | -                                                                                                                                                                                                | I    |        | v       | I     | -      | v       | V         | v     | v |      |      |              | v |   |
| Radiated<br>Spurious                                                                                                                                    | 14   | -                                                                                                                                                                                                | -    | v      |         | -     | -      | v       |           |       | v |      |      | v            | v | v |
| Emission                                                                                                                                                | 14   | -                                                                                                                                                                                                | -    |        | V       | -     | -      | v       |           |       | v |      |      |              | v |   |
| <ol> <li>The mark "v " means that this configuration is chosen for testing</li> <li>The mark "-" means that this bandwidth is not supported.</li> </ol> |      |                                                                                                                                                                                                  |      |        |         |       |        |         |           |       |   |      |      |              |   |   |
| Note                                                                                                                                                    |      | 3. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, |      |        |         |       |        |         |           |       |   |      |      |              |   |   |
|                                                                                                                                                         | OI   | nly the                                                                                                                                                                                          | wors | t case | e emis  | sions | are re | ported. |           |       |   |      |      |              |   |   |



## 2.2 Connection Diagram of Test System



## 2.3 Support Unit used in test configuration and system

| ltem | Equipment        | Trade Name | Model No. | FCC ID | Data Cable      | Power Cord        |
|------|------------------|------------|-----------|--------|-----------------|-------------------|
| 1.   | LTE Base Station | Anritsu    | MT8820C   | N/A    | N/A             | Unshielded, 1.8 m |
| 2.   | DC Power Supply  | GW INSTEK  | GPS-3030D | N/A    | N/A             | Unshielded, 1.8 m |
| 3.   | Test jig         | N/A        | N/A       | N/A    | N/A             | N/A               |
| 4.   | WWAN Antenna     | N/A        | N/A       | N/A    | N/A             | N/A               |
| 5.   | GNSS Antenna     | N/A        | N/A       | N/A    | N/A             | N/A               |
| 6.   | Adapter          | N/A        | N/A       | N/A    | Unshielded,1.2m | N/A               |



## 2.4 Measurement Results Explanation Example

#### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 4.1 dB.

Example :

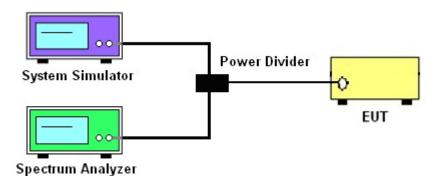
Offset(dB) = RF cable loss(dB).

= 4.1 (dB)

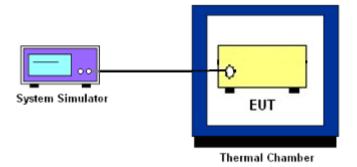


## 3 Conducted Test Items

## 3.1 Measuring Instruments


See list of measuring instruments of this test report.

## 3.2 Test Setup


#### 3.2.1 Conducted Output Power



#### 3.2.2 Occupied / 26dB Bandwidth ,Band-Edge and Conducted Spurious Emission



3.2.3 Frequency Stability



## 3.3 Test Result of Conducted Test

Please refer to Appendix A.

**Sporton International (Kunshan) Inc.** TEL : 86-512-57900158 FAX : 86-512-57900958 FCC ID: XMR201901EM12G



## 3.4 Conducted Output Power and ERP

# 3.4.1 Description of the Conducted Output Power Measurement and ERP Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 3 Watts for LTE Band 14.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$ , ERP = EIRP - 2.15, where

 $P_T$  = transmitter output power in dBm

 $G_T$  = gain of the transmitting antenna in dBi

 $L_C$  = signal attenuation in the connecting cable between the transmitter and antenna in dB

#### 3.4.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.



## 3.5 Occupied Bandwidth

#### 3.5.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

#### 3.5.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.4.
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.



## 3.6 Conducted Band Edge Measurement

#### 3.6.1 Description of Conducted Band Edge Measurement

For operations in the 758-768 MHz and the 788-798 MHz bands

- (1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log
- (P) dB in a 6.25 kHz band segment, for base and fixed stations.

(2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log

(P) dB in a 6.25 kHz band segment, for mobile and portable stations.

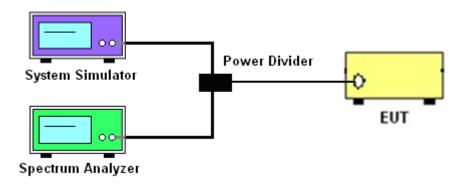
(3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

#### 3.6.2 Test Procedures

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Set spectrum analyzer with RMS detector.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 4. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$ 


= -13dBm.

#### 3.7 Emission Mask

#### 3.7.1 Test Procedures

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The power of the modulated signal was measured on a spectrum analyzer using an RMS and 10 second sweep time in order to maximize the level.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

#### 3.7.2 Test Setup





## 3.8 Conducted Spurious Emission Measurement

#### 3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least  $43 + 10 \log (P) dB$ .

It is measured by means of a calibrated spectrum analyzer and scanned from 30MHz up to a frequency including its 10<sup>th</sup> harmonic.

#### 3.8.2 Test Procedures

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- Make the measurement with the spectrum analyzer's, for under 1GHz RBW = 100kHz, VBW = 300kHz and for above 1GHz RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. Set spectrum analyzer with RMS detector.
- 7. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 8. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
  - = P(W) [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.



### 3.9 Frequency Stability Measurement

#### 3.9.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within  $\pm 1.25$  ppm of the center frequency.

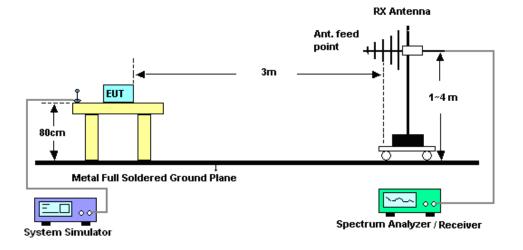
#### 3.9.2 Test Procedures for Temperature Variation

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

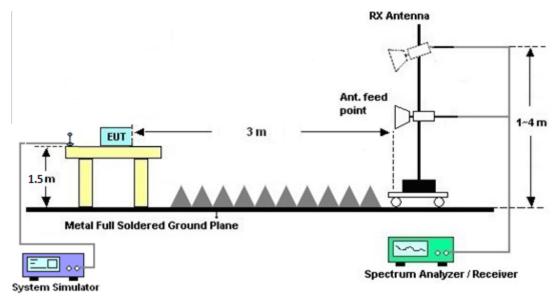
#### 3.9.3 Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.




## 4 Radiated Test Items

## 4.1 Measuring Instruments


See list of measuring instruments of this test report.

## 4.2 Test Setup

#### 4.2.1 For radiated test from 30MHz to 1GHz



#### 4.2.2 For radiated test above 1GHz



## 4.3 Test Result of Radiated Test

Please refer to Appendix B.

**Sporton International (Kunshan) Inc.** TEL : 86-512-57900158 FAX : 86-512-57900958 FCC ID: XMR201901EM12G



## 4.4 Radiated Spurious Emission Measurement

#### 4.4.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI C63.26.. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

#### 4.4.2 Test Procedures

- 1. The testing follows ANSI C63.26 Section 5.5.3 Measurement of spurious emissions using substitution method.
- 2. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 5. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 9. Taking the record of output power at antenna port.
- 10. Repeat step 7 to step 8 for another polarization.
- 11. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)

= -13dBm.

 EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP – 2.15



# 5 List of Measuring Equipment

| Instrument                   | Manufacturer | Model No.                      | Serial No.  | Characteristics         | Calibration<br>Date | Test Date                       | Due Date      | Remark                   |
|------------------------------|--------------|--------------------------------|-------------|-------------------------|---------------------|---------------------------------|---------------|--------------------------|
| Spectrum<br>Analyzer         | R&S          | FSV40                          | 101040      | 10Hz~40GHz              | Aug. 07, 2018       | Jan. 16, 2019~<br>Jan. 18, 2019 | Aug. 06, 2019 | Conducted<br>(TH01-KS)   |
| Thermal<br>Chamber           | Hongzhan     | LP-150U                        | H2014011440 | -40~+150°C<br>20%~95%RH | Jun. 27, 2018       | Jan. 16, 2019~<br>Jan. 18, 2019 | Jun. 26, 2019 | Conducted<br>(TH01-KS)   |
| EXA Spectrum<br>Analyzer     | Keysight     | N9010B                         | MY57471084  | 10Hz-44GHz              | Jun. 25, 2018       | Dec. 12, 2018                   | Jun. 24, 2019 | Radiation<br>(03CH06-KS) |
| Bilog Antenna                | TeseQ        | CBL6111D                       | 44483       | 30MHz-1GHz              | Jan. 29, 2018       | Dec. 12, 2018                   | Jan. 28, 2019 | Radiation<br>(03CH06-KS) |
| Double Ridge<br>Horn Antenna | ETS-Lindgren | 3117                           | 75957       | 1GHz~18GHz              | Oct. 20, 2018       | Dec. 12, 2018                   | Oct. 19, 2019 | Radiation<br>(03CH06-KS) |
| SHF-EHF Horn                 | Schwarzbeck  | BBHA 9170                      | BBHA170249  | 15GHz~40GHz             | Feb. 07, 2018       | Dec. 12, 2018                   | Feb. 06, 2019 | Radiation<br>(03CH06-KS) |
| Amplifier                    | SONOMA       | 310N                           | 187289      | 9KHz ~1GHZ              | Aug. 06, 2018       | Dec. 12, 2018                   | Aug. 05, 2019 | Radiation<br>(03CH06-KS) |
| Amplifier                    | MITEQ        | TTA1840-35<br>-HG              | 2014749     | 18~40GHz                | Feb. 08, 2018       | Dec. 12, 2018                   | Feb. 07, 2019 | Radiation<br>(03CH06-KS) |
| high gain<br>Amplifier       | MITEQ        | AMF-7D-00<br>101800-30-1<br>0P | 2025788     | 1Ghz-18Ghz              | Apr. 17, 2018       | Dec. 12, 2018                   | Apr. 16, 2019 | Radiation<br>(03CH06-KS) |
| Amplifier                    | Keysight     | 83017A                         | MY53270203  | 500MHz~26.5GHz          | Apr. 18, 2018       | Dec. 12, 2018                   | Apr. 17, 2019 | Radiation<br>(03CH06-KS) |
| AC Power<br>Source           | Chroma       | 61601                          | F104090004  | N/A                     | NCR                 | Dec. 12, 2018                   | NCR           | Radiation<br>(03CH06-KS) |
| Turn Table                   | ChamPro      | EM 1000-T                      | 060762-T    | 0~360 degree            | NCR                 | Dec. 12, 2018                   | NCR           | Radiation<br>(03CH06-KS) |
| Antenna Mast                 | ChamPro      | EM 1000-A                      | 060762-A    | 1 m~4 m                 | NCR                 | Dec. 12, 2018                   | NCR           | Radiation<br>(03CH06-KS) |

NCR: No Calibration Required



## 6 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of<br>Confidence of 95% (U = 2Uc(y)) | 2.5 dB |
|------------------------------------------------------------------------|--------|
|------------------------------------------------------------------------|--------|

#### Uncertainty of Radiated Emission Measurement (1GHz ~ 40GHz)

| Measuring Uncertainty for a Level of | 2.0 dB |
|--------------------------------------|--------|
| Confidence of 95% (U = 2Uc(y))       | 2.0 dB |



# **Appendix A. Test Results of Conducted Test**

# Conducted Output Power(Average power)

| LTE Band 14 Maximum Average Power [dBm] |         |           |        |        |        |         |  |  |  |
|-----------------------------------------|---------|-----------|--------|--------|--------|---------|--|--|--|
| BW [MHz]                                | RB Size | RB Offset | Mod    | Lowest | Middle | Highest |  |  |  |
| 5                                       | 1       | 0         |        | 22.95  | 21.03  | 21.11   |  |  |  |
| 5                                       | 1       | 12        |        | 23.03  | 22.95  | 23.03   |  |  |  |
| 5                                       | 1       | 24        |        | 22.86  | 22.90  | 23.00   |  |  |  |
| 5                                       | 12      | 0         | QPSK   | 22.09  | 22.97  | 22.86   |  |  |  |
| 5                                       | 12      | 7         |        | 22.10  | 21.97  | 21.95   |  |  |  |
| 5                                       | 12      | 13        |        | 22.03  | 22.00  | 21.98   |  |  |  |
| 5                                       | 25      | 0         |        | 22.00  | 22.01  | 21.90   |  |  |  |
| 5                                       | 1       | 0         |        | 22.36  | 22.00  | 21.95   |  |  |  |
| 5                                       | 1       | 12        |        | 22.31  | 22.66  | 22.61   |  |  |  |
| 5                                       | 1       | 24        |        | 22.24  | 22.59  | 22.45   |  |  |  |
| 5                                       | 12      | 0         | 16-QAM | 21.33  | 22.43  | 22.55   |  |  |  |
| 5                                       | 12      | 7         |        | 21.11  | 21.16  | 21.12   |  |  |  |
| 5                                       | 12      | 13        |        | 21.10  | 21.12  | 21.08   |  |  |  |
| 5                                       | 25      | 0         |        | 21.01  | 20.98  | 21.02   |  |  |  |
| 5                                       | 1       | 0         |        | 22.23  | 21.06  | 21.09   |  |  |  |
| 5                                       | 1       | 12        |        | 22.10  | 22.69  | 22.20   |  |  |  |
| 5                                       | 1       | 24        |        | 22.48  | 22.04  | 22.05   |  |  |  |
| 5                                       | 12      | 0         | 64QAM  | 21.15  | 22.42  | 21.99   |  |  |  |
| 5                                       | 12      | 7         |        | 21.11  | 21.10  | 21.02   |  |  |  |
| 5                                       | 12      | 13        |        | 21.00  | 21.11  | 21.09   |  |  |  |
| 5                                       | 25      | 0         |        | 21.03  | 20.87  | 21.05   |  |  |  |





| LTE Band 14 Maximum Average Power [dBm] |         |           |        |        |        |         |  |  |  |
|-----------------------------------------|---------|-----------|--------|--------|--------|---------|--|--|--|
| BW [MHz]                                | RB Size | RB Offset | Mod    | Lowest | Middle | Highest |  |  |  |
| 10                                      | 1       | 0         |        |        | 23.10  |         |  |  |  |
| 10                                      | 1       | 25        |        |        | 23.05  |         |  |  |  |
| 10                                      | 1       | 49        |        |        | 22.92  |         |  |  |  |
| 10                                      | 25      | 0         | QPSK   |        | 22.14  |         |  |  |  |
| 10                                      | 25      | 12        |        |        | 22.02  |         |  |  |  |
| 10                                      | 25      | 25        |        |        | 21.94  |         |  |  |  |
| 10                                      | 50      | 0         |        |        | 21.99  |         |  |  |  |
| 10                                      | 1       | 0         |        |        | 22.18  |         |  |  |  |
| 10                                      | 1       | 25        |        |        | 22.13  |         |  |  |  |
| 10                                      | 1       | 49        |        |        | 21.98  |         |  |  |  |
| 10                                      | 25      | 0         | 16-QAM |        | 21.18  |         |  |  |  |
| 10                                      | 25      | 12        |        |        | 21.14  |         |  |  |  |
| 10                                      | 25      | 25        |        |        | 21.06  |         |  |  |  |
| 10                                      | 50      | 0         |        |        | 21.06  |         |  |  |  |
| 10                                      | 1       | 0         |        |        | 22.05  |         |  |  |  |
| 10                                      | 1       | 25        |        |        | 22.12  |         |  |  |  |
| 10                                      | 1       | 49        |        |        | 21.82  |         |  |  |  |
| 10                                      | 25      | 0         | 64QAM  |        | 21.10  |         |  |  |  |
| 10                                      | 25      | 12        |        |        | 21.06  |         |  |  |  |
| 10                                      | 25      | 25        |        |        | 20.99  |         |  |  |  |
| 10                                      | 50      | 0         |        |        | 21.12  |         |  |  |  |

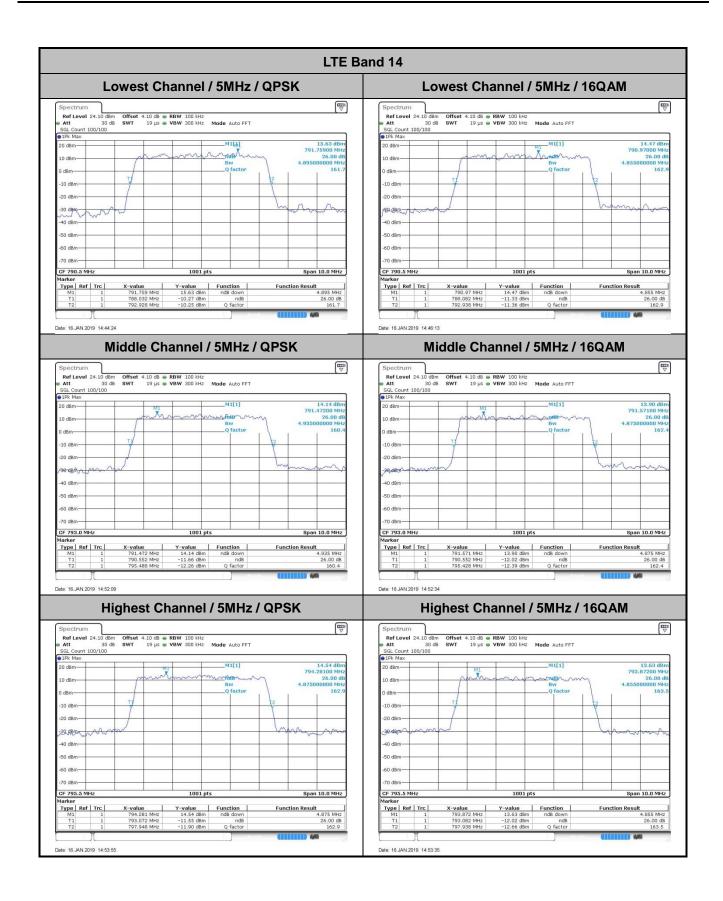


| ERP |
|-----|
|-----|

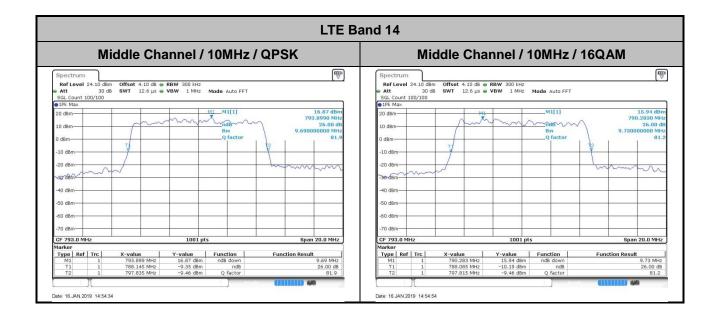
| LTE Band 14 ( $G_T$ - $L_c$ = 1.49 dBi) QPSK |        |        |        |        |        |  |  |  |  |  |
|----------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|--|
| Bandwidth                                    |        | 5M     |        | 10M    |        |  |  |  |  |  |
| Channel                                      | 23305  | 23330  | 23355  |        | 23330  |  |  |  |  |  |
| Channer                                      | (Low)  | (Mid)  | (High) | (High) |        |  |  |  |  |  |
| Frequency                                    | 790.5  | 793    | 795.5  |        | 793    |  |  |  |  |  |
| (MHz)                                        | 790.5  | 795    | 793.5  | 795.5  |        |  |  |  |  |  |
| Conducted Power<br>(dBm)                     | 23.03  | 22.95  | 23.03  |        | 23.10  |  |  |  |  |  |
| Conducted Power<br>(Watts)                   | 0.2009 | 0.1972 | 0.2009 |        | 0.2042 |  |  |  |  |  |
| ERP(dBm)                                     | 22.37  | 22.29  | 22.37  |        | 22.44  |  |  |  |  |  |
| ERP(Watts)                                   | 0.1726 | 0.1694 | 0.1726 |        | 0.1754 |  |  |  |  |  |

| LTE Band 14 (G <sub>T</sub> - L <sub>C</sub> = 1.49 dBi) 16QAM |        |        |        |     |        |  |  |  |  |  |
|----------------------------------------------------------------|--------|--------|--------|-----|--------|--|--|--|--|--|
| Bandwidth                                                      |        | 5M     |        | 10M |        |  |  |  |  |  |
| Channel                                                        | 23305  | 23330  | 23355  |     | 23330  |  |  |  |  |  |
| Channel                                                        | (Low)  | (Mid)  | (High) |     | (Mid)  |  |  |  |  |  |
| Frequency                                                      | 790.5  | 793    | 795.5  |     | 793    |  |  |  |  |  |
| (MHz)                                                          | 790.5  | 795    | 795.5  |     | 795    |  |  |  |  |  |
| Conducted Power<br>(dBm)                                       | 22.31  | 22.66  | 22.61  |     | 22.18  |  |  |  |  |  |
| Conducted Power<br>(Watts)                                     | 0.1702 | 0.1845 | 0.1824 |     | 0.1652 |  |  |  |  |  |
| ERP(dBm)                                                       | 21.65  | 22.00  | 21.95  |     | 21.52  |  |  |  |  |  |
| ERP(Watts)                                                     | 0.1462 | 0.1585 | 0.1567 |     | 0.1419 |  |  |  |  |  |

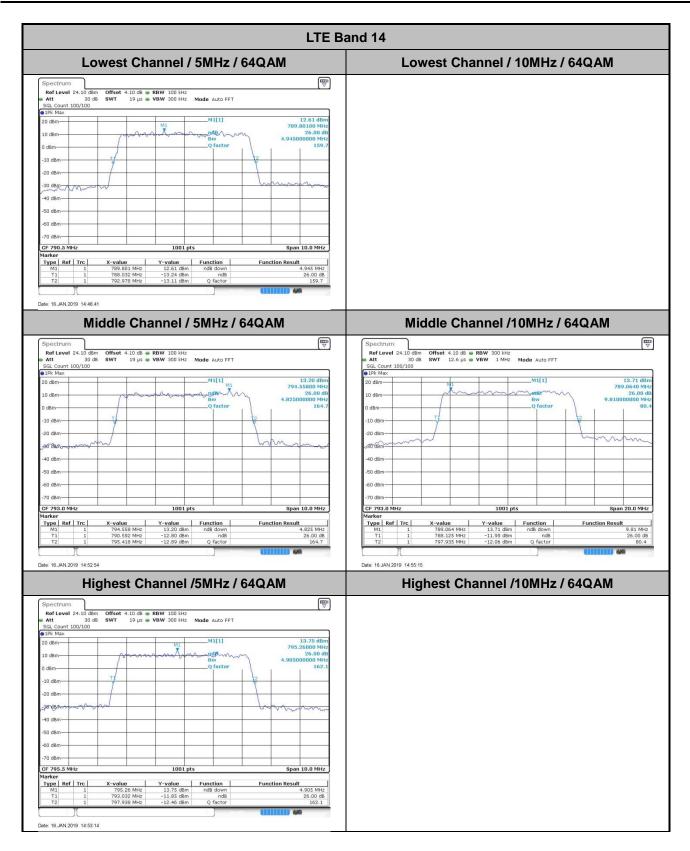



| LTE Band 14 (G <sub>T</sub> - L <sub>C</sub> = 1.49 dBi) 64QAM |        |        |        |     |        |  |  |  |  |  |
|----------------------------------------------------------------|--------|--------|--------|-----|--------|--|--|--|--|--|
| Bandwidth                                                      |        | 5M     |        | 10M |        |  |  |  |  |  |
| Channel                                                        | 23305  | 23330  | 23355  |     | 23330  |  |  |  |  |  |
| Channel                                                        | (Low)  | (Mid)  | (High) |     | (Mid)  |  |  |  |  |  |
| Frequency                                                      | 790.5  | 793    | 795.5  |     | 793    |  |  |  |  |  |
| (MHz)                                                          | 790.5  | 795    | 795.5  |     | 795    |  |  |  |  |  |
| Conducted Power<br>(dBm)                                       | 22.10  | 22.69  | 22.20  |     | 22.12  |  |  |  |  |  |
| Conducted Power<br>(Watts)                                     | 0.1622 | 0.1858 | 0.1660 |     | 0.1629 |  |  |  |  |  |
| ERP(dBm)                                                       | 21.44  | 22.03  | 21.54  |     | 21.46  |  |  |  |  |  |
| ERP(Watts)                                                     | 0.1393 | 0.1596 | 0.1426 |     | 0.1400 |  |  |  |  |  |




# 26dB Bandwidth

| Mode       |        | LTE Band 14 : 26dB BW(MHz) |             |       |       |       |       |       |       |       |       |       |
|------------|--------|----------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| BW         | 1.4MHz |                            | 1.4MHz 3MHz |       | 5MHz  |       | 10MHz |       | 15MHz |       | 20MHz |       |
| Mod.       | QPSK   | 16QAM                      | QPSK        | 16QAM | QPSK  | 16QAM | QPSK  | 16QAM | QPSK  | 16QAM | QPSK  | 16QAM |
| Lowest CH  | -      | -                          | -           | -     | 4.895 | 4.855 | -     | -     | -     | -     | -     | -     |
| Middle CH  | -      | -                          | -           | -     | 4.935 | 4.875 | 9.69  | 9.73  | -     | -     | -     | -     |
| Highest CH | -      | -                          | -           | -     | 4.875 | 4.855 | -     | -     | -     | -     | -     | -     |
| BW         |        |                            | 5M          | Hz    |       |       | 10MHz |       |       |       |       |       |
| Mod.       |        |                            | 64Q         | AM    |       |       | 64QAM |       |       |       |       |       |
| Lowest CH  |        | 4.945                      |             |       |       |       |       | -     |       |       |       |       |
| Middle CH  | 4.825  |                            |             |       |       |       | 9.81  |       |       |       |       |       |
| Highest CH |        |                            | 4.9         | 05    |       |       | -     |       |       |       |       |       |
















# **Occupied Bandwidth**

| Mode       |        | LTE Band 14 : 99%OBW(MHz) |          |       |      |       |       |       |       |       |       |       |
|------------|--------|---------------------------|----------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| BW         | 1.4MHz |                           | MHz 3MHz |       | 5MHz |       | 10MHz |       | 15MHz |       | 20MHz |       |
| Mod.       | QPSK   | 16QAM                     | QPSK     | 16QAM | QPSK | 16QAM | QPSK  | 16QAM | QPSK  | 16QAM | QPSK  | 16QAM |
| Lowest CH  | -      | -                         | -        | -     | 4.51 | 4.49  | -     | -     | -     | -     | -     | -     |
| Middle CH  | -      | -                         | -        | -     | 4.50 | 4.48  | 9.07  | 8.99  | -     | -     | -     | -     |
| Highest CH | -      | -                         | -        | -     | 4.52 | 4.49  | -     | -     | -     | -     | -     | -     |
| BW         |        |                           | 5M       | Hz    |      |       | 10MHz |       |       |       |       |       |
| Mod.       |        |                           | 64Q      | AM    |      |       | 64QAM |       |       |       |       |       |
| Lowest CH  |        | 4.50                      |          |       |      |       |       | -     |       |       |       |       |
| Middle CH  | 4.49   |                           |          |       |      |       | 9.03  |       |       |       |       |       |
| Highest CH |        |                           | 4.       | 50    |      |       | -     |       |       |       |       |       |