FCC Measurement/Technical Report on J6 VP3; J6 VP4 Automotive Infotainment Unit w/ Bluetooth FCC ID: 2AHPN-BE2815 Test Report Reference: MDE_HARMAN_1512FCCa #### **Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com # **Table of Contents** | 1 A | pplied Standards and Test Summary | 3 | |-----|---|----| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | 4 | | 1.3 | Measurement Summary / Signatures | 4 | | 2 A | dministrative Data | 8 | | 2.1 | Testing Laboratory | 8 | | 2.2 | Project Data | 8 | | 2.3 | Applicant Data | 8 | | 2.4 | Manufacturer Data | 8 | | 3 T | est object Data | 9 | | 3.1 | General EUT Description | 9 | | 3.2 | EUT Main components | 9 | | 3.3 | Ancillary Equipment | 10 | | 3.4 | Auxiliary Equipment | 10 | | 3.5 | EUT Setups | 10 | | 3.6 | Operating Modes | 10 | | 3.7 | Product labelling | 11 | | 4 T | est Results | 12 | | 4.1 | Occupied Bandwidth (20 dB) | 12 | | 4.2 | Peak Power Output | 15 | | 4.3 | Transmitter Spurious Radiated Emissions | 18 | | 4.4 | Band Edge Compliance Conducted | 24 | | 4.5 | Band Edge Compliance Radiated | 27 | | 4.6 | Channel Separation | 30 | | 4.7 | Dwell Time | 32 | | 4.8 | Number of Hopping Frequencies | 35 | | 5 T | est Equipment | 37 | | 6 P | hoto Report | 40 | | 7 S | etup Drawings | 41 | | R M | 42 | | ## 1 Applied Standards and Test Summary ### 1.1 Applied Standards #### Type of Authorization Certification for an Intentional Radiator. #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C – Intentional Radiators | § 15.201 | Equipment authorization requirement | |----------|---| | § 15.207 | Conducted limits | | § 15.209 | Radiated emission limits; general requirements | | § 15.247 | Operation within the bands 902-928 MHz, 2400-2483.5 MHz | #### Note 1: The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r03, 2015-06-09". ANSI C63.10–2013 is applied. #### Note 2: The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.10-2013 is applied. TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 3 of 42 ## **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. #### **1.2** FCC-IC Correlation Table # Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC ### **DTS** equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|---| | Conducted emissions on AC Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (2) | RSS-247 Issue 1: 5.2 (1) | | Peak conducted output power | § 15.247 (b) (3), (4) | RSS-247 Issue 1: 5.4 (4) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13 / 8.9/8.10;
RSS-247 Issue 1: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 / 8.9/8.10;
RSS-247 Issue 1: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 1: 5.5 | | Power density | § 15.247 (e) | RSS-247 Issue 1: 5.2 (2) | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | _ | # Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC ## **FHSS** equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|---| | Conducted emissions on AC Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (1) | RSS-247 Issue 1: 5.1 (2) | | Peak conducted output power | § 15.247 (b) (1), (4) | RSS-247 Issue 1: 5.4 (2) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13/8.9/8.10;
RSS-247 Issue 1: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 / 8.9/8.10;
RSS-247 Issue 1: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 1: 5.5 | | Dwell time | § 15.247 (a) (1) (iii) | RSS-247 Issue 1: 5.1 (4) | | Channel separation | § 15.247 (a) (1) | RSS-247 Issue 1: 5.1 (2) | | No. of hopping frequencies | § 15.247 (a) (1) (iii) | RSS-247 Issue 1: 5.1 (4) | | Hybrid systems (only) | § 15.247 (f);
§ 15.247 (e) | RSS-247 Issue 1: 5.3 | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | - | ## 1.3 Measurement Summary / Signatures ## 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) §15.247 | Occupied Bandwidth (20 dB) | | | | | |--|----------|----------|--------------|--| | The measurement was performed according to ANSI C63.10 | | Final Re | Final Result | | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | | Bluetooth BDR, high | Setup_01 | Passed | Passed | | | Bluetooth BDR, low | Setup_01 | Passed | Passed | | | Bluetooth BDR, mid | Setup_01 | Passed | Passed | | | Bluetooth EDR 2, high | Setup_01 | Passed | Passed | | | Bluetooth EDR 2, low | Setup_01 | Passed | Passed | | | Bluetooth EDR 2, mid | Setup_01 | Passed | Passed | | | Bluetooth EDR 3, high | Setup_01 | Passed | Passed | | | Bluetooth EDR 3, low | Setup_01 | Passed | Passed | | | Bluetooth EDR 3, mid | Setup_01 | Passed | Passed | | | | | | | | ## 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (b) (1) §15.247 | Peak Power Output | | | | |--|----------|----------|--------| | The measurement was performed according to ANSI (| C63.10 | Final Re | sult | | OP-Mode Radio Technology, Operating Frequency, Measurement method | Setup | FCC | IC | | Bluetooth BDR, high, conducted | Setup_01 | Passed | Passed | | Bluetooth BDR, low, conducted | Setup_01 | Passed | Passed | | Bluetooth BDR, mid, conducted | Setup_01 | Passed | Passed | | Bluetooth EDR 2, high, conducted | Setup_01 | Passed | Passed | | Bluetooth EDR 2, low, conducted | Setup_01 | Passed | Passed | | Bluetooth EDR 2, mid, conducted | Setup_01 | Passed | Passed | | Bluetooth EDR 3, high, conducted | Setup_01 | Passed | Passed | | Bluetooth EDR 3, low, conducted | Setup_01 | Passed | Passed | | Bluetooth EDR 3, mid, conducted | Setup_01 | Passed | Passed | TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 | (d) | | |---|----------|----------|--------| | Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C6. | 3.10 | Final Re | sult | | OP-Mode Radio Technology, Operating Frequency, Measurement range | Setup | FCC | IC | | Bluetooth BDR, high, 1 GHz - 26 GHz | Setup_02 | Passed | Passed | | Bluetooth BDR, high, 30 MHz - 1 GHz | Setup_02 | Passed | Passed | | Bluetooth BDR, low, 1 GHz - 26 GHz | Setup_02 | Passed | Passed | | Bluetooth BDR, low, 30 MHz - 1 GHz | Setup_02 | Passed | Passed | | Bluetooth BDR, mid, 1 GHz - 26 GHz | Setup_02 | Passed | Passed | | Bluetooth BDR, mid, 30 MHz - 1 GHz | Setup_02 | Passed | Passed | | Bluetooth BDR, mid, 9 kHz - 30 MHz | Setup_02 | Passed | Passed | | Bluetooth EDR 2, high, 1 GHz - 26 GHz | Setup_02 | Passed | Passed | | Bluetooth EDR 2, low, 1 GHz - 26 GHz | Setup_02 | Passed | Passed | | Bluetooth EDR 2, mid, 1 GHz - 26 GHz | Setup_02 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | (d) | | | Band Edge Compliance Conducted The measurement was performed according to ANSI C6: | 3.10 | Final Re | sult | | OP-Mode Radio Technology, Operating Frequency, Band Edge | Setup | FCC | IC | | Bluetooth BDR, high | Setup_01 | Passed | Passed | | Bluetooth BDR, low, low | Setup_01 | Passed | Passed | | Bluetooth EDR 2, high, high | Setup_01 | Passed | Passed | | Bluetooth EDR 2, low, low | Setup_01 | Passed | Passed | | Bluetooth EDR 3, high, high | Setup_01 | Passed | Passed | | Bluetooth EDR 3, low, low | Setup_01 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 | (d) | | | Band Edge Compliance Radiated The measurement was performed according to ANSI C6. | 3.10 | Final Re | sult | | | | | | TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 6 of 42 | OP-Mode Radio Technology, Operating Frequency, Band Edge | Setup | FCC | IC | |--|----------|-------------|--------| | Bluetooth BDR, high, high | Setup_02 | Passed | Passed | | Bluetooth EDR 2, high, high | Setup_02 | Passed | Passed | | Bluetooth EDR 3, high, high | Setup_02 | Passed | Passed | | 47 CFR CHAPTER I FCC
PART 15 Subpart C
§15.247 | § 15.247 | (a) (1) | | | Channel Separation
The measurement was performed according to ANSI C | 63.10 | Final Re | esult | | OP-Mode
Radio Technology | Setup | FCC | IC | | Bluetooth BDR | Setup_01 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | (a) (1) (ii | i) | | Dwell Time
The measurement was performed according to ANSI C | 63.10 | Final Re | esult | | OP-Mode
Radio Technology | Setup | FCC | IC | | Bluetooth BDR | Setup_01 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 | (a) (1) (ii | i) | | Number of Hopping Frequencies
The measurement was performed according to ANSI C | 63.10 | Final Re | esult | | OP-Mode
Radio Technology | Setup | FCC | IC | | | | | | N/A: Not applicable N/P: Not performed ## COMMENT: For this test report the variant J6 VP4 was used for testing. The variant J6 VP3 and J6 VP4 differ only in their memory size, therefore the tests for variant J6 VP3 were not repeated. layers 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 7#9 0 W (responsible for accreditation scope) Dipl. Ing. Marco Kullik (responsible for testing and report) B.Sc. Jens Dörwald Contact Person: ## 2 Administrative Data ## 2.1 Testing Laboratory | Company Name: | 7layers GmbH | |---|---| | Address: | Borsigstr. 11
40880 Ratingen
Germany | | This facility has been fully described in the registration number 96716. | a report submitted to the FCC and accepted under | | This facility has been fully described in registration number: Site# 3699A-1. | a report submitted to the IC and accepted under the | | The test facility is also accredited by the | ne following accreditation organisation: | | Laboratory accreditation no: | DAkkS D-PL-12140-01-01 | | Responsible for accreditation scope: | Dipl. Ing. Marco Kullik | | Report Template Version: | 2016-02-29 | | 2.2 Project Data | | | Responsible for testing and report: | B.Sc. Jens Dörwald | | Employees who performed the tests: | documented internally at 7Layers | | Date of Report: | 2016-03-18 | | Testing Period: | 2016-03-08 to 2016-03-11 | | 2.3 Applicant Data | | | Company Name: | Harman International Industries, Inc. | | Address: | 30001 Cabot Drive
Novi, MI 48377
USA | | Contact Person: | | | 2.4 Manufacturer Data | | | Company Name: | | | Address: | | | | | | | | TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 8 of 42 # 3 Test object Data ## 3.1 General EUT Description | Kind of Device product description | BT Transceiver operating in the 2.4 GHz ISM band using Frequency Hopping Spread Spectrum (FHSS) modulation. | |--|---| | Product name | J6 VP3 & J6 VP4 | | Туре | Automotive Infotainment Unit w/ Bluetooth | | Declared EUT data by | the supplier | | Voltage Type | DC | | Voltage Level | 12.0 V | | Tested Modulation Type | GFSK (1-DH1), n/4 DQPSK (2-DH1), 8-DPSK (3-DH1), GFSK (1-DH5), n/4 DQPSK (2-DH5), 8-DPSK (3-DH5) | | General product description | The EUT is automotive infotainment unit with Bluetooth. | | Specific product description for the EUT | The EUT is automotive infotainment unit, it is using Bluetooth radio technology in the 2.4 GHz ISM band to connect to other Bluetooth devices e.g. a mobile phone. It supports data rates up to 3 Mbps. | | The EUT provides the following ports: | DC, USB, FM-Antenna | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. ## 3.2 EUT Main components | Sample Name | Sample Code | Description | |------------------|-------------|------------------| | J6 VP4 | aa01 | conducted sample | | Sample Parameter | Valu | e | | Serial No. | 670033046 | | | HW Version | 15.41.00 | | | SW Version | 16.09.50 | | | Comment | | | | Sample Name | Sample Code | Description | |------------------|-------------|-----------------| | J6 VP4 | ab01 | radiated sample | | Sample Parameter | Value | e | | Serial No. | 670033046 | | | HW Version | 15.41.00 | | | SW Version | 16.09.50 | | | Comment | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 9 of 42 ## 3.3 Ancillary Equipment For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Device | Details
(Manufacturer, Type Model, OUT
Code) | Description | |--------|--|-------------| | - | - | - | ### 3.4 Auxiliary Equipment For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, HW, SW, S/N) | Description | |--------|--|-------------| | - | - | - | #### 3.5 EUT Setups This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |----------|------------------------|----------------------------------| | Setup_02 | J6 VP4 (Sample: ab01), | setup for radiated measurements | | Setup 01 | J6 VP4 (Sample: aa01), | setup for conducted measurements | #### 3.6 Operating Modes This chapter describes the operating modes of the EUTs used for testing. #### 3.6.1Test Channels BT Test Channels: Channel: Frequency [MHz] | 2.4 GHz ISM
2400 - 2483.5 MHz | | | | | | | |----------------------------------|--------------|------|--|--|--|--| | low | low mid high | | | | | | | 0 | 39 78 | | | | | | | 2402 | 2441 | 2480 | | | | | # 3.7 Product labelling #### 3.7.1FCC ID label Please refer to the documentation of the applicant. ## 3.7.2Location of the label on the EUT Please refer to the documentation of the applicant. #### 4 Test Results #### 4.1 Occupied Bandwidth (20 dB) Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.1.1Test Description The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: •Resolution Bandwidth (RBW): 1% to 5 % of the OBW •Video Bandwidth (VBW): 3 x RBW •Span: 2 to 5 times the OBW •Trace: Maxhold •Sweeps: 2000 •Sweeptime: 20 ms •Detector: Peak The technology depending measurement parameters can be found in the measurement plot. #### 4.1.2Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (2) For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i) The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii) The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 12 of 42 For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Implication by the test laboratory: Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power: 1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz 2. If the system output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW) The measured output power of the system is below 125 mW (21.0 dBm). For the results, please
refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz. #### 4.1.3Test Protocol Ambient 23°C temperature: Air Pressure: 1010 Pa Humidity: 0.32 BT GFSK (1-DH1) | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | |-------------|----------------|--------------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402.0 | 1.1 | 1500.0 | 1498.9 | | | 39 | 2441.0 | 1.1 | 1500.0 | 1498.9 | | | 78 | 2480.0 | 1.1 | 1500.0 | 1498.9 | # BT π/4 DQPSK (2-DH1) | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | |-------------|----------------|--------------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402.0 | 1.1 | 1500.0 | 1498.9 | | | 39 | 2441.0 | 1.1 | 1500.0 | 1498.9 | | | 78 | 2480.0 | 1.1 | 1500.0 | 1498.9 | TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 13 of 42 BT 8-DPSK (3-DH1) | (8 2:12) | | | | | | |-------------|----------------|--------------------|--------------------------|----------------|--------------------------| | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | | 2.4 GHz ISM | 0 | 2402.0 | 1.3 | 1500.0 | 1498.7 | | | 39 | 2441.0 | 1.3 | 1500.0 | 1498.7 | | | 78 | 2480.0 | 1.3 | 1500.0 | 1498.7 | Remark: Please see next sub-clause for the measurement plot. ## 4.1.4Measurement Plot (showing the highest value, "worst case") Radio Technology = Bluetooth EDR 3, Operating Frequency = high ## 4.1.5Test Equipment used Regulatory Bluetooth RF Test Solution #### **4.2** Peak Power Output Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.2.1Test Description The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Resolution Bandwidth (RBW): 1 MHzVideo Bandwidth (VBW): 3 MHz •Trace: Maxhold •Sweeps: 2000 •Sweeptime: 5 ms •Detector: Peak The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth) #### 4.2.2Test Requirements / Limits #### DTS devices: FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt. ==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used). #### Frequency Hopping Systems: FCC Part 15, Subpart C, §15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. FCC Part 15, Subpart C, §15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$ TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 15 of 42 #### **4.2.3Test Protocol** Ambient 23°C temperature: Air Pressure: 1010 Pa Humidity: 32 % BT GFSK (1-DH1) | Band | Channel
No. | Frequency
[MHz] | Peak Power [dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|----------------|--------------------|------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402.0 | 1.3 | 30.0 | 28.7 | | | 39 | 2441.0 | 1.1 | 30.0 | 28.9 | | | 78 | 2480.0 | 1.1 | 30.0 | 28.9 | ## BT π/4 DQPSK (2-DH1) | Band | Channel
No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|----------------|--------------------|---------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402.0 | 0.0 | 30.0 | 30.0 | | | 39 | 2441.0 | -0.2 | 30.0 | 30.2 | | | 78 | 2480.0 | -0.4 | 30.0 | 30.4 | # BT 8-DPSK (3-DH1) | Band | Channel
No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|----------------|--------------------|---------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402.0 | -0.2 | 30.0 | 30.2 | | | 39 | 2441.0 | -0.1 | 30.0 | 30.1 | | | 78 | 2480.0 | -0.5 | 30.0 | 30.5 | Remark: Please see next sub-clause for the measurement plot. ## 4.2.4Measurement Plot (showing the highest value, "worst case") Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted ### 4.2.5Test Equipment used Regulatory Bluetooth RF Test Solution #### 4.3 Transmitter Spurious Radiated Emissions Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.3.1Test Description The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. ## 1. Measurement up to 30 MHz The Loop antenna HFH2-Z2 is used. Step 1: pre measurement Anechoic chamber Antenna distance: 3 mDetector: Peak-Maxhold •Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz •Frequency steps: 0.05 kHz and 2.25 kHz •IF-Bandwidth: 0.2 kHz and 9 kHz •Measuring time / Frequency step: 100 ms (FFT-based) Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. ### **Step 2:** final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level. •Open area test side •Antenna distance: according to the Standard •Detector: Quasi-Peak •Frequency range: 0.009 - 30 MHz •Frequency steps: measurement at frequencies detected in step 1 •IF-Bandwidth: 0.2 - 10 kHz •Measuring time / Frequency step: 1 s ## 2. Measurement above 30 MHz and up to 1 GHz #### **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m - Detector: Peak-Maxhold / Quasipeak (FFT-based) - Frequency range: 30 – 1000 MHz - Frequency steps: 30 kHz TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa - IF-Bandwidth: 120 kHz - Measuring time / Frequency step: 100 ms - Turntable angle range: -180° to 90° - Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies - IF - Bandwidth: 120 kHz - Measuring time: 100 ms - Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### **Step 3:** Final measurement with QP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies - IF - Bandwidth: 120 kHz - Measuring time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted.
Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): Detector: Peak, AverageIF Bandwidth = 1 MHz #### Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies - IF - Bandwidth: 1 MHz - Measuring time: 1 s ### 4.3.2Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBμV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBμV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 20 of 42 ## 4.3.3Test Protocol Ambient temperature: 20–22 °C Air Pressure: 1000–1021 hPa Humidity: 31-33 % BT GFSK (1-DH1) | Ch.
No. | Ch. Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detector | RBW
[kHz] | Limit
[dBµV/m] | Margin
to Limit
[dB] | Limit
Type | |------------|------------------------------|----------------------------|-------------------------------|----------|--------------|-------------------|----------------------------|---------------| | 0 | 2402.0 | - | - | | - | - | - | RB | | 39 | 2441.0 | - | - | | - | - | - | RB | | 78 | 2480.0 | _ | - | | _ | _ | _ | RB | BT n/4 DQPSK (2- DH1) | Ch.
No. | Ch. Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detector | RBW
[kHz] | Limit
[dBµV/m] | Margin
to Limit
[dB] | Limit
Type | |------------|------------------------------|----------------------------|-------------------------------|----------|--------------|-------------------|----------------------------|---------------| | 0 | 2402.0 | = | - | | - | = | - | RB | | 39 | 2441.0 | - | - | | - | - | - | RB | | 78 | 2480.0 | - | - | | - | = | - | RB | $\label{lem:Remark: Please see next sub-clause for the measurement plot.}$ ## 4.3.4Measurement Plot (showing the highest value, "worst case") Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 24 GHz 4.3.5Test Equipment used **Radiated Emissions** ### 4.4 Band Edge Compliance Conducted Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.4.1Test Description For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: •Frequency Range 30 MHz – 25 GHz Detector: Peak Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz •Sweeptime: 330 s •Sweeps: 2 •Trace: Maxhold #### 4.4.2Test Requirements / Limits #### FCC Part 15.247 (d) "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ... If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))." For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..." TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa ## 4.4.3Test Protocol Ambient temperature: 23°C Air Pressure: 1010 Pa Humidity: 32 % ## BT GFSK (1-DH1) | Channel
No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurio
us
Level
[dBm] | Detector | RBW
[kHz] | Ref. Level
[dBm] | Limit
[dBµV/
m] | Marg
in to
Limit
[dB] | |----------------|---|--------------------------------|--------------------------------|----------|--------------|---------------------|-----------------------|--------------------------------| | 0 | 2402.0 | 2400.0 | -60.3 | PEAK | 100.0 | 1.3 | -18.7 | 41.6 | | 78 | 2480.0 | 2483.5 | -63.7 | PEAK | 100.0 | 0.9 | -19.1 | 44.6 | | hopping | hopping | 2400.0 | -52.5 | PEAK | 100.0 | -0.4 | -20.4 | 32.1 | | hopping | hopping | 2483.5 | 54.2 | | | | | | ## BT π/4 DQPSK (2-DH1) | Channel
No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurio
us
Level
[dBm] | Detector | RBW
[kHz
] | Ref. Level
[dBm] | Limit
[dBm] | Margi
n to
Limit
[dB] | |----------------|---|--------------------------------|--------------------------------|----------|------------------|---------------------|----------------|--------------------------------| | 0 | 2402.0 | 2400.0 | -62.8 | PEAK | 100.0 | -2.4 | -22.4 | 40.4 | | 78 | 2480.0 | 2483.5 | -63.4 | PEAK | 100.0 | -2.7 | -22.7 | 40.7 | | hopping | hopping | 2400.0 | -54.7 | PEAK | 100.0 | -3.9 | -23.9 | 30.8 | | hopping | hopping | 2483.5 | -54.5 | PEAK | 100.0 | -4.4 | -24.4 | 30.1 | #### BT 8-DPSK (3-DH1) | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margi
n to
Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|--------------------------------| | 0 | 2402.0 | 2400.0 | -61.9 | PEAK | 100.0 | -2.8 | -22.8 | 39.1 | | 78 | 2480.0 | 2483.5 | -63.9 | PEAK | 100.0 | -3.1 | -23.1 | 40.8 | | hopping | hopping | 2400.0 | -54.4 | PEAK | 100.0 | -4.1 | -24.1 | 30.3 | | hopping | hopping | 2483.5 | -54.7 | PEAK | 100.0 | -4.7 | -24.7 | 30.0 | Remark: Please see next sub-clause for the measurement plot. ## 4.4.4Measurement Plot (showing the highest value, "worst case") Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Band Edge = low #### 4.4.5Test Equipment used Regulatory Bluetooth RF Test Solution ### 4.5 Band Edge Compliance Radiated Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.5.1Test Description Please see test description for the test case "Spurious Radiated Emissions" ### 4.5.2Test Requirements / Limits #### A) FCC FCC Part 15 Subpart E, §15.407 (b)(1) For transmitters operating in the 5150-5250 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150-5350 MHz. FCC Part 15 Subpart E, §15.407 (b)(2) For transmitters operating in the 5250-5350 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150-5350 MHz. FCC Part 15 Subpart E, §15.407 (b)(3) For transmitters operating in the 5470–5725 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz. FCC Part 15 Subpart E, §15.407 (b)(4) For transmitters operating in the 5725-5850 MHz band: Limit: -17 dBm/MHz EIRP within the frequency ranges 5715-5725 and 5850-5860 MHz. #### B) IC Different frequency bands and limits apply, as compared to the FCC requirements. RSS-247, 6.2 (1), Emissions outside the band 5150-5250 MHz, indoor operation only: Limit: -27 dBm/MHz EIRP outside of the band 5150-5250 MHz. RSS-247, 6.2 (2), Emissions outside the band 5250-5350 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5250-5350 MHz. RSS-247, 6.2 (3), Emissions outside the bands 5470-5600 MHz and 5650-5725 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz. Note: No operation is permitted for the frequency range 5600–5650 MHz. RSS-247, 6.2 (4), Emissions outside the band 5725-5825 MHz: Limit: -17 dBm/MHz EIRP within the frequency ranges 5715-5725 and 5825-5835 MHz. #### C) FCC & IC FCC Part 15 Subpart E, §15.405 The provisions of §§ 15.203 and 15.205 are included. §15.407 (b)(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. TEST REPORT
REFERENCE: MDE_HARMAN_1512FCCa Page 27 of 42 ## §15.407 (b)(7) The provisions of §15.205 apply to intentional radiators operating under this section For band edges connected to a restricted band, the limits are specified in Section 15.209(a) #### FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBμV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBμV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ #### 4.5.3Test Protocol Ambient temperature: 20–22 °C Air Pressure: 1000–1021 hPa Humidity: 31-33 % BT GFSK (1-DH1) | Ch.
No. | Ch. Center
Freq.
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit
[dB] | Limit
Type | |------------|------------------------------|--------------------------------|-------------------------------|---------------|--------------|-------------------|----------------------------|---------------| | 78 | 2480.0 | 2483.5 | 50.8 | PEAK | 1000.0 | 74.0 | 23.2 | BE | | 78 | 2480.0 | 2483.5 | 40.2 | AV | 1000.0 | 54.0 | 13.8 | BE | # BT π/4 DQPSK (2-DH1) | Ch.
No. | Ch. Center
Freq.
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit
[dB] | Limit
Type | |------------|------------------------------|--------------------------------|-------------------------------|---------------|--------------|-------------------|----------------------------|---------------| | 78 | 2480.0 | 2483.5 | 51.1 | PEAK | 1000.0 | 74.0 | 22.9 | BE | | 78 | 2480.0 | 2483.5 | 40.0 | AV | 1000.0 | 54.0 | 14.0 | BE | BT 8-DPSK (3-DH1) | Ch.
No. | Ch. Center
Freq.
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit
[dB] | Limit
Type | |------------|------------------------------|--------------------------------|-------------------------------|---------------|--------------|-------------------|----------------------------|---------------| | 78 | 2480.0 | 2483.5 | 51.8 | PEAK | 1000.0 | 74.0 | 22.2 | BE | | 78 | 2480.0 | 2483.5 | 40.0 | AV | 1000.0 | 54.0 | 14.0 | BE | Remark: Please see next sub-clause for the measurement plot. ## 4.5.4Measurement Plot (showing the highest value, "worst case") Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high ## 4.5.5Test Equipment used Radiated Emissions #### 4.6 Channel Separation Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.6.1Test Description The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Detector: PeakTrace: MaxholdSpan: appr. 3 x OBW •Centre Frequency: a mid frequency of the used band •Resolution Bandwidth (RBW): appr. 3 % of channel spacing •Video Bandwidth (VBW): 3 x RBW •Sweep Time: 5 ms •Sweeps: 2000 The technology depending measurement parameters can be found in the measurement plot. ## 4.6.2Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### 4.6.3Test Protocol Ambient temperature: Air Pressure: Humidity: | Radio Technology | Channel Separation [kHz] | Limit [kHz] | Margin to Limit [kHz] | |------------------|--------------------------|-------------|-----------------------| | BT GFSK (1-DH1) | 1000 | 25.0 | 975.0 | Remark: Please see next sub-clause for the measurement plot. TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 30 of 42 ## 4.6.4Measurement Plot (showing the highest value, "worst case") ## Radio Technology = Bluetooth BDR ## 4.6.5Test Equipment used Regulatory Bluetooth RF Test Solution #### 4.7 Dwell Time Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.7.1Test Description The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The dwell time is independent from the modulation pattern. The dwell time is calculated by: The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s with: •hop rate = 1600 * 1/s for DH1 packets = 1600 s-1 •hop rate = 1600/3 * 1/s for DH3 packets = 533.33 s-1 •hop rate = 1600/5 * 1/s for DH5 packets = 320 s-1 •number of hopping channels = 79 •31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79 The highest value of the dwell time is reported. Analyzer settings: •Center Frequency: mid channel frequency Span: Zero spanDetector: PeakTrace: Maxhold •Resolution Bandwidth (RBW): ≤ channel separation •Trigger: Video #### 4.7.2Test Requirements / Limits For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i) If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period. TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 32 of 42 For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii) ...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds. #### 4.7.3Test Protocol Ambient temperature: Air Pressure: Humidity: | Radio Technology | Time Slot Length [ms] | Dwell Time
[ms] | Limit
[s] | Margin to Limit
[ms] | |------------------|-----------------------|--------------------|--------------|-------------------------| | BT GFSK (1-DH5) | 0.4 | 51.2 | 0.4 | 348.8 | Remark: Please see next sub-clause for the measurement plot. ## 4.7.4Measurement Plot (showing the highest value, "worst case") ## Radio Technology = Bluetooth BDR Title: Dwell time Comment A: CE M: 2441 MEZ Date: 8.MAR.2016 14:09:18 ## 4.7.5Test Equipment used Regulatory Bluetooth RF Test Solution ## 4.8 Number of Hopping Frequencies Standard 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 The test was performed according to: ANSI C63.10 #### 4.8.1Test Description The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Detector: PeakTrace: Maxhold •Centre frequency: 2442 MHz •Frequency span: Frequency band of operation •Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is maller) •Video Bandwidth (VBW): 3 x RBW •Sweep Time: 5 ms •Sweeps: 2000 The technology depending measurement parameters can be found in the measurement plot. #### 4.8.2Test Requirements / Limits For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i) If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. For the band: 2400 - 2483.5 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz
band shall use at least 15 channels. TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa Page 35 of 42 #### 4.8.3Test Protocol Ambient temperature: Air Pressure: Humidity: | Radio Technology | Number of Hopping Frequencies | Limit | Margin to Limit | |------------------|-------------------------------|-------|-----------------| | BT GFSK (1-DH1) | 79 | 15.0 | 64.0 | Remark: Please see next sub-clause for the measurement plot. ## 4.8.4Measurement Plot (showing the highest value, "worst case") Number of hopping frequencies Title: Comment A: CH H: Hopping 9.MAR.2016 08:12:27 Date: ## 4.8.5Test Equipment used Regulatory Bluetooth RF Test Solution # **5 Test Equipment** ## 1 Regulatory Bluetooth RF Test Solution Regulatory Bluetooth RF Tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Calibration Due | |---------|-------------------------|--|---|----------------------|------------------------| | 1.1 | СВТ | IL BT RF Test
Solution | Rohde &
Schwarz GmbH
& Co. KG | 100302 | 2016-08-20 | | 1.2 | EX520 | Digital
Multimeter 12
(Multimeter) | Extech Instruments Corp | 05157876 | 2018-02-03 | | 1.3 | SMIQ03B | Options:
B5
B11
B19
B20
B50
Battery Pack | Rohde &
Schwarz GmbH
& Co. KG | 832870/017 | 2016-06-21 | | 1.4 | Datum MFS | Rubidium
Frequency
Normal MFS | Datum GmbH | 002 | 2016-08-25 | | 1.5 | | | Rohde &
Schwarz GmbH
& Co. KG | 832695/007 | 2016-08-28 | | 1.6 | NRVD | Powermeter | Rohde &
Schwarz GmbH
& Co. KG | 832025/059 | 2016-08-19 | | 1.7 | TOCT Switching
Unit | | 7 layers, Inc | 040107 | | | 1.8 | Opus10 THI
(8152.00) | T/H Logger 15 | Lufft Mess- und
Regeltechnik
GmbH | 13985 | 2017-03-10 | | 1.9 | NRV Z1 A | Power Sensor | Rohde &
Schwarz GmbH
& Co. KG | 832279/013 | 2016-08-18 | | 1.10 | ADU 200 Relay Box
7 | used for
automated
testing (EMMI)
only | Ontrak Control
Systems Inc | A04380 | | | 1.11 | R&S CBT | | Rohde &
Schwarz | 100589 | 2018-01-21 | | 1.12 | KWP 120/70 | | Weiss | 592260121900
10 | 2016-03-12 | | 1.13 | NGSM 32/10 | | Rohde &
Schwarz GmbH
& Co. KG | 2725 | 2017-06-22 | | 1.14 | SMP02 | Signal
Generator | Rohde &
Schwarz GmbH
& Co. KG | 829076/017 | 2016-04-18 | ## 2 Radiated Emissions Lab to perform radiated emission tests TEST REPORT REFERENCE: MDE_HARMAN_1512FCCa | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Calibration Due | |---------|--------------------|-------------------------|------------------------|------------------------|------------------------| | 2.1 | 3160-09 | | EMCO Elektronic | | | | | | / Pyramidal | GmbH | | | | | | Horn Antenna | | | | | | | 26.5 GHz | | | | | 2.2 | WHKX 7.0/18G- | High Pass | Wainwright | 09 | | | | 8SS | Filter | | | | | 2.3 | Fully Anechoic | 8.80m x | Albatross | P26971-647- | | | | Room | | Projects | 001-PRB | | | | | 4.05m (l x w x | | | | | 2.4 | AM 4.0 | h)
Antenna mast | Matura Cmbll | AM4 0/100/110 | | | 2.4 | | | | AM4.0/180/119
20513 | | | 2.5 | ESR 7 | EMI Receiver / | | 101424 | 2016-11-13 | | | | | Schwarz | | | | 2.6 | | Analyzer | | | 2017 01 00 | | 2.6 | Anechoic Chamber | | Frankonia | none | 2017-01-09 | | 2.7 | ECID 26 | 6.00 m ³ | Dobdo 0 | 020402/004 | 2017 12 00 | | 2.7 | ESIB 26 | | Rohde & | 830482/004 | 2017-12-08 | | 2.8 | Tilt device Maturo | Analyzer Antrieb TD1.5- | Schwarz
Maturo CmbH | TD1.5- | | | 2.0 | (Rohacell) | 10kg | Maturo Gilibri | 10kg/024/3790 | | | | (Ronacen) | TONG | | 709 | | | 2.9 | AS 620 P | Antenna mast | HD GmbH | 620/37 | | | 2.10 | NRV-Z1 | Sensor Head A | | 827753/005 | 2016-05-11 | | | | | Schwarz | | | | 2.11 | JS4-18002600-32- | Broadband | Miteq | 849785 | | | | 5P | Amplifier 18 | | | | | | | GHz - 26 GHz | | | | | 2.12 | JS4-00101800-35- | | Miteq | 896037 | 2012-11-24 | | | 5P | Amplifier 30 | | | | | | | MHz - 18 GHz | | | | | 2.13 | HL 562 | _ | Rohde & | 830547/003 | 2018-06-30 | | | | | Schwarz GmbH | | | | 2 1 4 | Onwalo Tur | | & Co. KG | 12402 | 2017 02 10 | | 2.14 | Opus10 THI | | Lufft Mess- und | 12482 | 2017-03-10 | | | (8152.00) | Datalogger 12 (Environ) | GmbH | | | | 2.15 | JS4-00102600-42- | | Miteg | 619368 | | | [10 | 5A | Amplifier 30 | i iiccq | 019300 | | | | | MHz - 26 GHz | | | | | 2.16 | HFH2-Z2 | | Rohde & | 829324/006 | 2017-11-27 | | | | , | Schwarz GmbH | , | | | | | | & Co. KG | | | | 2.17 | FSW 43 | Spectrum | Rohde & | 103779 | 2016-11-17 | | | | Analyzer | Schwarz | | | | 2.18 | Opus10 TPR | | | 13936 | 2017-02-27 | | | (8253.00) | | Regeltechnik | | | | | | | GmbH | | | | 2.46 | 01 6 10 1 | (Environ) | 01 1 | 6.40.40004.50 | | | 2.19 | Chroma 6404 | AC Power | Chroma ATE | 64040001304 | | | | | Source | INC. | | | | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Calibration Due | |---------|-------------|---------------|-----------------|----------------------|------------------------| | 2.20 | 3160-10 | Standard Gain | EMCO Elektronik | 00086675 | | | | | / Pyramidal | GmbH | | | | | | Horn Antenna | | | | | | | 40 GHz | | | | | 2.21 | HF 907 | Double-ridged | Rohde & | 102444 | 2018-05-11 | | | | horn | Schwarz GmbH | | | | | | | & Co. KG | | | | 2.22 | DE 325 | Dreheinheit | HD GmbH | | | ## 3 R&S TS8997 EN300328/301893 Test Lab | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Calibration Due | |---------|-------------------------|--|---|--------------------|------------------------| | 3.1 | OSP120 | | Rohde &
Schwarz GmbH
& Co. KG | 101158 | 2016-08-21 | | 3.2 | A8455-4 | 4 Way Power
Divider (SMA) | | - | | | 3.3 | Opus10 THI
(8152.00) | . , , , | Lufft Mess- und
Regeltechnik
GmbH | 7482 | 2017-02-27 | | 3.4 | SMB100A | Generator 9 | Rohde &
Schwarz GmbH
& Co. KG | 107695 | 2017-06-06 | | 3.5 | VT 4002 | Climatic
Chamber | Vötsch | 585660021500
10 | 2016-03-11 | | 3.6 | FSV30 | Signal
Analyzer 10 Hz
- 30 GHz | Rohde &
Schwarz | 103005 | 2018-02-24 | | 3.7 | SMBV100A | Generator 9 | Rohde &
Schwarz GmbH
& Co. KG | 259291 | 2016-08-23 | | 3.8 | Voltcraft M-3860M | Digital
Multimeter 01
(Multimeter) | Voltcraft | 13096055 | | | 3.9 | 1515 / 93459 | | Weinschel
Associates | LN673 | | | 3.10 | Datum, Model:
MFS | Rubidium
Frequency
Standard | Datum-Beverly | 5489/001 | 2016-06-25 | # **6 Photo Report** Please see separate photo report. ## 7 Setup Drawings Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. # **8 Measurement Uncertainties** | Test Case | Parameter | Uncertainty | |--------------------------------------|--------------------|------------------------| | AC Power Line | Power | ± 3.4 dB | | Field Strength of spurious radiation | Power | ± 5.5 dB | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | Conducted Output Power | Power | ± 2.2 dB | | Band Edge Compliance | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | Frequency Stability | Frequency | ± 25 Hz | | Power Spectral Density | Power | ± 2.2 dB |