
Introduction 1

GSDML configuration 2

Commissioning the DevKit 3

Preparation/configuration of
standard source files 4

Configuration of the
PROFIsafe driver 5

State machine 6

Embedding the PROFIsafe
driver into the F-device 7

Sequence diagrams 8

Program flow diagram 9

PROFIsafe functions 10

Integration of PROFIsafe
driver source files into the
application example

11

Mapping the error numbers 12

LED status of the DevKit 13

User LED output 14

References A

Application example for
implementation of the PROFIsafe
driver on the Evaluation Kit
EK-ERTEC 200P-2 V4.7

Getting Started

09/2022

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 11/2022 Subject to change
Copyright © Siemens AG 2020 - 2022.
All rights reserved

Legal information

Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 3

Preface

This document describes integration of the PROFIsafe driver into the software of the EK-
ERTEC200P-2 Evaluation Kit. A single-channel hardware architecture and a dual-channel
hardware architecture can be simulated in the implementation.
For the dual-channel implementation, the second microcontroller is simulated, as is the
second independent timer. The application example serves as an example of the firmware
implementation. However, with its existing hardware, it does not constitute a safety-oriented
module and has no safety certificate.
The GSDML has been configured for the PROFIsafe application example so that the fail-safe
telegrams conform to PROFIsafe Profile V2.6 MU1.
The user data is thus structured as follows:
• 1 byte user data (input and output)
• 1 byte status/control byte
• 4 bytes CRC
In addition, the implementation builds on the code of the Evaluation Kit. The user should
have a basic understanding of the Evaluation Kit before adding the PROFIsafe driver to it. The
basic functions of the Evaluation Kit are revisited and explained once again in this description.
The PROFIsafe driver supports multi-instance operation. This means that multiple (up to 32)
F-devices can be installed on one device. Only one instance is configured in this application
example.

NOTICE
Safety operation in a real F-application
The purpose of the application example is to present a possible implementation of the
PROFIsafe driver. The application example is not suitable for safety operation in a real F-
application.

4

1 Introduction.. 7
1.1 Requirements... 7

2 GSDML configuration.. 8
2.1 Preparation... 8
2.2 Extensions – Step by step.. 8
2.2.1 DAP (Device Access Point)... 8
2.2.2 Module (slot submodules)... 9
2.2.3 Optional changes.. 14
2.2.4 Integrating the GSDML file in the TIA Portal... 15

3 Commissioning the DevKit... 16
3.1 Installing tools.. 16
3.2 Configuration for Eclipse... 18
3.2.1 Setting up Eclipse for the DevKit.. 18
3.2.2 Replacing PSD-lib in C-files.. 20
3.2.3 Configuration for the debugger... 22
3.2.4 Configuration of USB terminal connection... 28
3.2.5 Build of application firmware "App_05.bin".. 28
3.2.6 Loading and starting the PSD F-application.. 30
3.3 Loading the application firmware into flash memory... 32
3.3.1 Preparation... 33
3.3.1.1 Application firmware.. 33
3.3.1.2 Configuring TcpFwLoader_EB200P.bat.. 33
3.3.2 Loading procedure.. 33
3.4 Reading out the firmware version data.. 36
3.5 F-address assignment (initialization)... 37
3.5.1 Writing the F-source address and F-destination address... 37

4 Preparation/configuration of standard source files.. 39
4.1 Preparation of standard source files... 39
4.2 Setting EXAMPL_DEV_CONFIG_VERSION... 39
4.3 Changes in the source file usriod_main.c... 40

5 Configuration of the PROFIsafe driver.. 43
5.1 Header file p_c_config.h... 43
5.1.1 NOF_INSTANCES... 43
5.1.2 REDUNDANT... 43
5.1.3 Length configuration.. 44

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Table of contents

5.1.4 Source/destination address; SIL class... 44
5.1.5 Telegram properties.. 44
5.2 Header file psd_interface.h... 45
5.2.1 Slot and subslot.. 45
5.2.2 Parameters for telegram properties... 45
5.2.3 Interface for BusEvents... 45
5.2.4 Diagnostics defines... 46
5.2.5 Diagnostics type DiagType.. 47

6 State machine... 48
6.1 Structure of state machine.. 48
6.2 State diagram... 49
6.3 Transition table... 50

7 Embedding the PROFIsafe driver into the F-device.. 52
7.1 Embedding the PROFIsafe driver into the F-device... 52

8 Sequence diagrams.. 54
8.1 Error-free sequence.. 54
8.1.1 Startup of configuration/parameter assignment... 54
8.1.2 Transition from STOP to RUN... 55
8.1.3 Cyclic data exchange.. 56
8.1.4 Stopping of PROFIsafe communication.. 57
8.2 Error scenarios.. 58
8.2.1 Errors during parameter assignment... 58
8.2.2 Telegram error in state "CYCLIC_DATAEX; DATAEX_OUT_RCV".. 59

9 Program flow diagram.. 60
9.1 PnUsr_DeviceSetup().. 61
9.2 PNIO_cbf_rec_write().. 62
9.3 PNIO_cbf_data_read()... 65
9.4 PNIO_cbf_data_write().. 68
9.5 PNIO_cbf_ar_connect_ind()... 71
9.6 DG_update()... 72

10 PROFIsafe functions.. 74
10.1 psd_InitInstance()... 74
10.2 psd_FParBuild()... 74
10.3 psd_Config()... 75
10.4 psd_Run()... 75
10.5 psd_Stop().. 76
10.6 psd_RecvFOutTele().. 76

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 5

Table of contents

10.7 psd_GetFOutData()... 77
10.8 psd_SetFInData().. 77
10.9 psd_SendFInTele().. 78

11 Integration of PROFIsafe driver source files into the application example.. 79
11.1 p_c_fapplication.c... 79
11.2 p_c_si.c.. 79
11.3 p_c_pseudo.c.. 80
11.4 DiagnosticManager.c.. 82
11.5 Psd_interface.c... 83
11.6 DevKit PnUsr_Api.c... 85
11.7 DevKit iodapi_event.c... 85
11.8 DevKit usriod_main.c.. 86

12 Mapping the error numbers... 87

13 LED status of the DevKit... 88

14 User LED output.. 89

A References.. 91

Glossary.. 92

6

Table of contents

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Introduction 1
1.1 Requirements

Basic understanding of the following is required:
• PROFIsafe Starter Kit V3.5.2 (6ES7195-3BF03-0YA0) (not required for commissioning)
• EvalKit ERTEC200P V4.7.0 (6ES7195-3BE00-0YA0)
• PROFIsafe_3192_V26MU1_Aug18.pdf
• profisafe_driver_v2_2_3 programming_manual_en-US.pdf and Evaluation Kit

EK‑ERTEC200P‑2 PN IO V4.7.0
– Interface_Description_PN_IO_DevKits_V4.7.0.pdf
– Guideline_EvalKit_ERTEC200P_V4.7.0.pdf
– Manual_ERTEC200P-2_V1_0.pdf
– Howto use J-link JTAG Debugger_on_EB200P_V1_1.pdf
– GSDML_GettingStarted_V1_5.pdf

• GSDML Specification
– GSDML-Spec_2352_V243_May22.pdf

• PROFINET communication
• C programming language
• J-Link debugger

Required software and tools
• TIA Portal V17

– Example project: Application_Example_PSD_DevKit_ERTEC200P_4.7
– GSDML-V2.35-Siemens-ERTEC200pEvalkit-20210601.xml (

...DevKit4.7_PSD_Image\contributions\GSDML\GSDML-V2.35-Siemens-
ERTEC200pEvalkit-20210601.xml)

NOTE
The enclosed GSDML with the V2.35 schema can no longer be used for PROFIsafe
certification. It serves here as an illustrative example and has to be converted to the
current GSDML schema for certification.

7
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 8

GSDML configuration 2
2.1 Preparation

To configure the DevKit as an F-device during the engineering, you need an extension in the
GSDML file.
The original GSDML file of the DevKit is located in folder "…\contributions\GSDML\(GSDML-
V2.35-Siemens-ERTEC200pEvalkit-20210601.xml)".
The extension of the GSDML is an integral component of the application example.
A TIA test project with GSDML PSD_DevKit_Testproduct_V16 that has been adapted for the
application example is available in subdirectory contributions\Simatic_TIA
The following tools and documentations served as the basis for the extension:
• GSDML_GettingStarted_V1_5.pdf
• PROFINET GSD Checker
• GSDML-Spec_2352_V243_May22.pdf
If no changes are made to DAP and submodules, items 2.2.1 to 2.2.4 are omitted.

NOTE
The GSDML-DeviceProfile-V2.35.xsd used serves as an example. An implementation of
the PROFIsafe device, including a new PROFINET device, must be made with the
currently valid GSDML-DeviceProfile, if a product is to be released with it.

2.2 Extensions – Step by step

2.2.1 DAP (Device Access Point)

Copy DAP3 from the GSDML, rename it to DAP9 and add the fail-safe functions to it (Standard
MRP PROFIsafe Profile V2.6.1).
Assign a unique ModuleIdentNumber for the F-device in DAP9.

The following figure shows an excerpt from the GSDML:

Figure 2-1 GSDML DAP9

You can configure the F-module in the F-device (DAP9) on slots 1 to 16.

Figure 2-2 GSDML ModuleItem

For configuration of the F-application, the ModuleIdentNumber is defined in a define in
header file "psd_interface.h" (see section 5.2 (Page 45)).

2.2.2 Module (slot submodules)

Submodule "ID_MOD_01" with one byte input and one byte output serves as the basis.

9

GSDML configuration
2.2 Extensions – Step by step

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Using the structure of this submodule as a basis, create and configure the fail-safe-specific
extensions in the new submodule "ID_Mod_71". The new submodule can be found in the
configuration under "1 byte IO PSD 2.6.1".

Figure 2-3 GSDML module name

Specify the ID and "ModuleIdentNumber".

10
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

GSDML configuration
2.2 Extensions – Step by step

Excerpt from the GSDML:

Figure 2-4 ModuleIdentNumber

Change the "VirtualSubmoduleList" so that you can configure the DevKit as an F-device:

Figure 2-5 GSDML module

11

GSDML configuration
2.2 Extensions – Step by step

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 2-6 Resolving F-values

The most important elements are:
• "VirtualSubmoduleItem ID"
• "PROFIsafeSupported"
• "F-MessageTrailer5Byte"
• All properties that are listed under "F_ParameterRecordDataItem"
The bits under "Input" stand for the user data in the PROFIsafe telegram. The property "F-
MessageTrailer5Byte" adds a 5-byte long PROFIsafe trailer to the telegram. This consists of 1
byte status/control byte and 4 bytes CRC.
All properties under "F_ParameterRecordDataItem" stand for the F-parameters that are sent to
the DevKit when a connection is established.
As the final configuration step, provide diagnostics for the F-device. The diagnostics texts
have been standardized and are described in document "PROFIsafe-
Profile_3192_V261_Aug14.pdf", page 39.

12
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

GSDML configuration
2.2 Extensions – Step by step

Excerpt from the GSDML:

Figure 2-7 GSDML diagnostics texts

13

GSDML configuration
2.2 Extensions – Step by step

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 2-8 Resolving diagnostics texts of the GSDML

Open the GSDML file with the program "PROFINET GSD Checker". Select the "XML" tab and
run "Check". Normally, error messages regarding incorrect checksums are now displayed.

Figure 2-9 Error message of the GSD checker

Change the checksums so that the GSDML is executable.

2.2.3 Optional changes

Optionally, you can also change values such as "Text ID", "GraphicItemTarget", etc., in the
GSDML file. However, these values do not affect the technical behavior of the submodule.
Adapt the fail-safe-specific and general text IDs in the course of the implementation.

14
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

GSDML configuration
2.2 Extensions – Step by step

Excerpt from the GSDML file:

Figure 2-10 Excerpt of optional changes in GSDML

You can install the GSDML file in other PNO-compliant engineering systems. In this example,
the GSDML file was installed in TIA Portal V17.

2.2.4 Integrating the GSDML file in the TIA Portal

Integrate the GSDML file in the TIA Portal as follows:
1. In the TIA Portal, select menu "Options > Manage general station description files (GSD)".
2. In the "Manage general station description files" dialog, select the path to the GSDML file.
3. Click the "Install" button.
The DevKit can then be found under the following path:

Figure 2-11 Path in the hardware catalog

15

GSDML configuration
2.2 Extensions – Step by step

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 16

Commissioning the DevKit 3
3.1 Installing tools

Requirement
Carry out the following steps for the installation:
1. Copy the content of the Evaluation Kit CD to a local drive.
2. Call the file "install.bat" there.
3. Replace the curl version in the file "get_dependencies.ps1" (7.70) with the latest version

(7.84.0_3 or newer) as version 7.70 has been removed from the website
(https://curl.haxx.se/windows/).

Installing tools
Successful installation requires that the tools of the DevKit be installed using the file
"...\DevKit4.7_PSD_Image\setup\install.bat".
Carry out the following steps for installation of the toolchain:
1. Unpack the image.
2. Open the image with administrator rights cmd in the setup directory.
3. Then call the install.bat file.
You can find more information on the installation in the guideline
EvalKit_ERTEC200P_V4.7.0.pdf, sections 4.1.2 ... 4.1.4.
The default hardware settings are retained (see
Manual...P\DevKit4.7_PSD_Image\doc\HW\Tech_Doc\Manual_EB200P-2_V1_0_3.pdf, section
7 - Settings on the EB200P-2).

If the installation was successfully completed, you receive the following information:

Figure 3-1 Installation completed

17

Commissioning the DevKit
3.1 Installing tools

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

3.2 Configuration for Eclipse

3.2.1 Setting up Eclipse for the DevKit

Carry out the following steps to set up the DevKit:
1. In the subdirectory, open the file installed_tools\Eclipse\eclipse\eclipse.exe as

administrator. The following error may occur when opening Eclipse:
Failed to load the JNI shared library "C:\Program
Files(x86)\Zulu\zulu-8-jre\bin\client\jvm.dll".
The Eclipse version installed is a 64-bit version. Therefore a 64-bit Java version must also
be used. Please point to the corresponding Java version in the Path environment variable
of your system.

2. Create a new directory as workspace.
3. Select "Import existing projects".
4. As root directory subdirectory, select pn_ioddevkits\src\projects.

Figure 3-2 Importing Eclipse projects

NOTE
If the subdirectory contains the file pn_ioddevkits\src\projects\ecos_target\eb200p, you
must delete the directory eb200p_ecos_build completely.

18
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Open the ECOS project in Eclipse and run Build targets \ 1*32bit NOR-FLASH 32bit.

Figure 3-3 Compiling ECOS

Double-click the selected build.

Figure 3-4 Compile_successful

19

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

3.2.2 Replacing PSD-lib in C-files

The sources for the F-application example are located in subdirectory
pn_ioddevkits\src\application\App5_FAILSAFE_PSD.
The application example contains the PROFIsafe driver V3.5.2 only as a library compiled for
single-channel operation. If you would like to compile or debug the PROFIsafe sources for
other operating modes, you need the Starter Kit CD of PROFIsafe driver V3.5.2 or higher
(MLFB 1P-6ES7159-3BF030YA0).

Figure 3-5 Integrating source files

Integrating the sources
1. Copy the sources from the Starter Kit CD subdirectory Source to subdirectory

pn_ioddevkits\src\application\App5_FAILSAFE_PSD\PSD.
2. Copy the header files from the Starter Kit CD subdirectory Source\inc to subdirectory

pn_ioddevkits\src\application\App5_FAILSAFE_PSD\PSD_inc, with the exception of files
p_c_config.h and p_c_si.h.

3. Refresh the Eclipse project so that the source files are visible in the Project Explorer.

20
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Figure 3-6 Refresh Eclipse project

Removing PSD library files from Eclipse Linker settings
• In the shortcut menu, select project EK_ERTEC\Properties\C/C++Build\Settings\GCC C

Linker\Libraries
• Remove the libraries.

21

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 3-7 Removing PSD libraries from Linker settings

3.2.3 Configuration for the debugger

Debugger
1. Open the configuration in Eclipse using shortcut menu Run\Debug Configurations.
2. Select the file GDB Hardware Debugging\EK_ERTEC_EB200P_Size_EcosNative. Make the

settings as described in the following screenshots.
3. Download the driver for TUSB3410 here:

https://new.siemens.com/global/en/products/buildings/support/fire-safety-driver.html.
4. Debug configurations for SEGGER J-Link.

NOTE
You can find information on Segger J-Link at: https://www.segger.com/downloads/jlink
There you will also find the file "JLinkGDBServer.exe".

22
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Under "C/C++ Application:", press "Search Project..." and select "PNIO4ECOS" in the window.

Figure 3-8 Application

23

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 3-9 Debugger Configuration 1

24
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Figure 3-10 Debugger Configuration 2

The "GDB Command:" is located – dependent on your file structure – in the following folder:
${project_loc}\..\..\..\..\..\installed_tools\MinGW\msys\1.0\local\bin\arm-none-eabi-gdb.exe

25

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Startup

Figure 3-11 Debug Configurations_Startup

If you have installed the application example using the supplied "batch" file, the GDB
command must be configured relative to the project path.
Initialization commands
mon speed 12000
mon endian little
mon flash download = 1
mon flash breakpoints = 1
mon reset 1
mon mww 0x4000f078 0x00ffffff
mon mww 0x10d00004 0x40000080
mon mww 0x10d0000c 0x000003d0
mon mww 0x10d00010 0x3ffffff2
mon mww 0x10d00014 0x3ffffff2
mon mww 0x10d00018 0x3ffffff2
mon mww 0x10d0001c 0x3ffffff2
mon mww 0x10d00020 0x01974600
mon mww 0x10d00028 0x0
mon mww 0x10d0002c 0x0
mon mww 0x10d00030 0x42
mon mww 0x10d00008 0x00002521

26
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Source

Figure 3-12 Debug Configurations_Source

To load the firmware into RAM, open the "Debug" tab and select the configuration
"EB200P_Size_EcosNative".

27

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

3.2.4 Configuration of USB terminal connection

In order to change the configuration of the USB terminal connection, follow the procedure
described in document "Guideline_EvalKit_ERTEC200P_V4.7.0.pdf" (sections 4.1.3. and
4.2.2). In addition, you must install a terminal program (e.g. Tera Term) on the development
computer and configure it as follows: D:\Tools\TeraTerm\teraterm-4.106

Figure 3-13 Configuration of terminal program

3.2.5 Build of application firmware "App_05.bin"

An executable program must exist in order to create a build of the application firmware.
Right-click "EK_ERTEC".

28
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Then compile the EK_ERTEC project.

Figure 3-14 Creating a build

Select "Build Project".
The build process is output in the console window of Eclipse.

Figure 3-15 Console output following a successful build

If the build was completed successfully, proceed as follows:
• Copy the binary file ecos.bin from subdirectory

pn_ioddevkits\src\projects\pnio_proj\ertec\EB200P_Size_EcosNative to subdirectory
Tools\TcpFwLoader

• Rename the copied binary ecos.bin to ecos200p_app_05.bin

29

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 3-16 Copying the binary

3.2.6 Loading and starting the PSD F-application

Before you begin loading and starting the PSD F-application, the IP address and the PROFINET
device name must be assigned by the TIA Portal.
Otherwise, no connection to the ERTEC will be detected.
If a PSD F-application has not yet been loaded, you must load this into the RAM of the
ERTEC200P DevKit once via the Segger J-Link. To do this, create the firmware as described in
section "Build of application firmware" and start the firmware with the "Launch" button.
For the debugging you must configure the SEGGER J-Link (sections 8.1 to 8.5 of file
"Guideline_EvalKit_ERTEC200P_V4.7.0.pdf").

Figure 3-17 Loading the PSD F-application into RAM and starting it

30
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.2 Configuration for Eclipse

Starting the debug
1. Step:

– Start the SEGGER J-Link GDB Server.
2. Step:

– In the Project Explorer, select the file "EB200P_Debug_EcosNative".
– Press "Run". The "Debug Configurations" window opens.
– Select the "Startup" tab.
– Then press the "Debug" button.

Figure 3-18 Debugger START

31

Commissioning the DevKit
3.2 Configuration for Eclipse

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

In parallel with this, start the console program (Tera Term). Establish a connection to the PC
via a USB interface. After correct Power On of the PSD F-application, the terminal console
should look like this:

Figure 3-19 Terminal console after successful Power On of the PSD F-application

If you have not yet transferred any F-parameters, the section including " **** F-Parameter
received **** " is omitted, and the Sync LED flashes at a frequency of 2 Hz. No F-parameter
assignment is required to load the PSD F-applications into flash memory. The console
message " **** F output OK **** " indicates that PSD F-application is exchanging process
data.

3.3 Loading the application firmware into flash memory
To load a new firmware version onto the board, you must carry out the following steps:
1. Copy the binary file (ecos200p_app_05.bin) and rename it.
2. Adapt the TcpFwLoader batch file.
3. Start Tera Term and TcpFwLoader.
4. Load the firmware.
5. Restart the DevKit board.

32
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.3 Loading the application firmware into flash memory

3.3.1 Preparation

3.3.1.1 Application firmware

An executable program with build must exist.
If you have performed the steps in section 3.1.4 Build of application firmware "App_05.bin",
you will find the build in directory
pn_ioddevkits\src\projects\pnio_proj\ertec\EB200P_Size_EcosNative.
1. Copy the binary ecos.bin from subdirectory

pn_ioddevkits\src\projects\pnio_proj\ertec\EB200P_Size_EcosNative to subdirectory
Tools\TcpFwLoader.

2. Rename the binary ecos.bin to ecos200p_app_05.bin.

3.3.1.2 Configuring TcpFwLoader_EB200P.bat

You must adapt the file "TcpFwLoader_EB200P.bat" in folder "Tools\TcpFwLoader".
Transfer parameter 1 for the tcpFwLoader function contains the designation of the binary file
of the firmware. In this case: "ecos200p_app_05.bin"
Transfer parameter 2 contains the IP address of the F-device (DevKit board). In this
implementation, the address is 192.168.0.51. The address was assigned during engineering.
You must permanently assign transfer parameter 3 with 999.

Figure 3-20 Setting the file "TcpFwLoader_EB200P.bat"

3.3.2 Loading procedure

This section shows the procedure for loading the firmware graphically.

33

Commissioning the DevKit
3.3 Loading the application firmware into flash memory

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Since two separate interfaces (TCP/IP and USB) are used for the firmware update process, you
can also load the firmware update via a PC. The following figure shows two PCs.

Figure 3-21 Loading the application firmware into flash memory

Start the application firmware in the debugger. If the firmware has already been loaded in the
DevKit board, this step is omitted.
Open the terminal console window (Tera Term) and enter an "f".

Figure 3-22 Starting firmware update console

Then load the application firmware ("ecos200p_app_05.bin") onto the DevKit board. To do
this, call "TcpFwLoader_EB200P.bat" (left PC). A CMD window opens. The loading progress is
displayed in this window and in the terminal console.
When the terminal console stops, enter a "1" to select the flash type (NOR flash) and confirm
your input.

34
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.3 Loading the application firmware into flash memory

The following steps are required to load the firmware.
1. Start the Tera Term console.
2. Start the TcpFwLoader.
3. Enter an "f" in the Tera Term console.

Figure 3-23 Stop of firmware update for entry of the flash type

35

Commissioning the DevKit
3.3 Loading the application firmware into flash memory

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

After a successful update, the command line and terminal should display the following:

Figure 3-24 Firmware update successfully completed

To activate the new firmware, you must disconnect the supply voltage from the DevKit board.
Then reconnect the DevKit board to the supply voltage.
The flash content is copied into RAM and started. In this case, the executable firmware is
"ecos200p_app_05.bin"
After each firmware update, you must load the F‑source address and F‑destination address
into non-volatile RAM of the deviceF-address assignment (initialization) (Page 37)

3.4 Reading out the firmware version data
To call the version data of the F-application in the terminal console, write a "V" in the Tera
Term console. The firmware CRC and the version are then output in the console.

36
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.4 Reading out the firmware version data

Figure 3-25 Firmware version console output

PSD-CRC corresponds to the CRC of PROFIsafe driver sources defined in "p_c_config.h"
(depending on single channel or multi-channel PSD build variant). The CRCs have been
defined according to "source_code_CRC.md" in the PSD directory. The version corresponds to
the VersionId specified in "p_c_config.h".

Figure 3-26 Definition of CRC and firmware version in p_c_config.h

3.5 F-address assignment (initialization)
The F-addresses must match the addresses configured in the TIA Portal.
Once the F-addresses have been loaded, a Power Off/On is required.

3.5.1 Writing the F-source address and F-destination address

F-source address and F-destination address

F-source address
Open the Tera Term console and enter an "A".
The instruction to type in the F-source address in hex format follows. Type this in hex format
into the console. See figure "Initialization" below.

37

Commissioning the DevKit
3.5 F-address assignment (initialization)

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

F-destination address
The instruction to type in the F-destination address in hex format follows. Type this in hex
format into the console. See figure "Initialization" below.

Figure 3-27 Initialization

38
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Commissioning the DevKit
3.5 F-address assignment (initialization)

Preparation/configuration of standard source files 4
4.1 Preparation of standard source files

In order for the DevKit to also match the extended GSDML (section 2), you must change the
source code.
• To do this, copy the directory "App1_STANDARD".
• Rename it to "App5_FAILSAFE_PSD_2_6_1".

4.2 Setting EXAMPL_DEV_CONFIG_VERSION
The "EXAMPL_DEV_CONFIG_VERSION" defined in App_common\usrapp_cfg.h specifies the
example application to be compiled.
In this case: "App5_FAILSAFE_PSD_2_6_1". The definition takes place on a continuing basis
and builds on the existing applications of the DevKit.

Figure 4-1 Setting of define EXAMPL_DEV_CONFIG_VERSION

39
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 4-2 Path usrapp_cfg.h

To prevent function duplications, all "App5_FAILSAFE_PSD_2_6_1"-specific codes are
referenced as follows:

Figure 4-3 Define, to eliminate conflicts (function duplications)

4.3 Changes in the source file usriod_main.c
Directory "App5_FAILSAFE_PSD_2_6_1" contains the source file "usriod_main.c", in which the
global variable "IoSubList" has been declared and initialized.

40
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Preparation/configuration of standard source files
4.3 Changes in the source file usriod_main.c

The settings/defines that are changed here must match the GSDML (DAP,
ModuleIdentNumber SubModule, etc.). The settings defined here match the example GSDML
of the TIA project contained in DevKit 4.7.

Figure 4-4 Variable IoSubList with entries adapted to the GSDML

The same applies to the global variable "IoSubList" in header file "usrapp_cfg.h".

Figure 4-5 Define of the DAP

41

Preparation/configuration of standard source files
4.3 Changes in the source file usriod_main.c

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

The number for the definition "MODULE_ID_DAP_FAILSAFE_2_6_1" can be found in the
GSDML under the name "ModuleIdentNumber" in the DAP (see Figure 2-1 (Page 8)).

Figure 4-6 Define of the module

The number for the definition "IO_MODULE_FAILSAFE_2_6_1" has been defined in the GSDML
under the name "ModuleItemTarget" in the DAP (see Figure 2-2 (Page 8)).

42
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Preparation/configuration of standard source files
4.3 Changes in the source file usriod_main.c

Configuration of the PROFIsafe driver 5
The "Application example for implementation of the PROFIsafe driver on the Evaluation Kit
EK-ERTEC 200P-2 V4.7" corresponds with single-channel operation of the PROFIsafe driver.
Changes to the configuration of the PROFIsafe driver require integration of the sources from
the StarterKit CD, as described in section 3.1.2 Configuration for the debugger.

5.1 Header file p_c_config.h

5.1.1 NOF_INSTANCES

Set the define "NOF_INSTANCES" in this implementation to 1 since the PROFIsafe driver is
implemented with one instance.

Figure 5-1 Define for PROFIsafe instances

See profisafe_driver_v2_2_2_programming_manual_en-US.pdf (section 5.1).

5.1.2 REDUNDANT

You can set or comment out the define "REDUNDANT". Both operating modes are supported
by this implementation.

Figure 5-2 Define for REDUNDANT operating mode

Dual-channel operation
With the define "REDUNDANT", the PROFIsafe driver operates as in a dual-channel controller
architecture. The DevKit has a single-channel hardware design. The necessary dual-channel
architecture is simulated in the existing application (App_05). For this purpose, the functions
psd_OutTransfer(), psd_OutSync(), psd_InTransfer() and psd_InSync() are provided by the
application to synchronize the "two" software controllers. You can find a description of the
functions in profisafe_driver_v2_2_2_programming_manual_en-US.pdf (section 4.4).

Single-channel operation
Without the define "REDUNDANT", the PROFIsafe driver operates as a single-channel driver.
The inverse functions are called in this case. See

43
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

profisafe_driver_v2_2_2_programming_manual_en-US.pdf (section 5.2 for redundancy,
section 4.5.8 for single-channel operation).

5.1.3 Length configuration

The defines "OUTDATA_MAX_LEN_INST_01" and "INDATA_MAX_LEN_INST_01" define the
user data length of the F-telegram. Change the defines to match the settings in the GSDML.
(see Optional changes (Page 14))
In this implementation, the user data of the F-telegrams has a length of 1 byte.
The other instances are set to 0 as they are not being used.

Figure 5-3 Setting of the length configuration

5.1.4 Source/destination address; SIL class

These parameters specify the fail-safe address assignment and the safety integrity level (SIL)
of the F-module.
The define "F_DEST_ADD" matches the destination address. Since the DevKit has neither a DIP
switch nor a coding element for setting the address, the destination address is permanently
set to 0x0001.
The F-source address is taken from the configuration parameters. The SIL class has been
permanently set to SIL3 in the F-application ("Fapp_Init" function in "PSD\p_c_pseudo.c").

NOTE
You must configure the PROFIsafe destination address and SIL as defined in the application
during engineering. Different settings result in a parameter error.

5.1.5 Telegram properties

The defines "IN_TELE_LEN" and "OUT_TELE_LEN" define the length of the F-telegrams with
user data (1 byte), control/status byte (1 byte) and CRC (4 bytes).

44
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Configuration of the PROFIsafe driver
5.1 Header file p_c_config.h

The define "FPAR_LEN" is defined with a length of 14 bytes and 2 bytes optional WD2. This
configuration has been defined in the GSDML file (see sectionModule (slot submodules)
(Page 9), figure 2-5)).
The settings/defines must match the GSDML.
You can find more information on the F-parameter structure in the document PROFIsafe-
Profile_3192_V261_Aug14.pdf (section 8.1.9.).

5.2 Header file psd_interface.h
The file "psd_interface.h" can be found under
"..\DevKit4.7_PSD_Image\pn_ioddevkits\src\application\App5_FAILSAFE_PSD". It contains all
the declarations used for the PROFIsafe implementation.

5.2.1 Slot and subslot

The defines "FAPP5_SLOT_NR" == 1 and "FAPP5_SUBLSOT_NR" == 1 correspond with a
modeling with one slot and one subslot. See section 2.2.2 Module (slot submodules).

5.2.2 Parameters for telegram properties

The defines "F_PAR_DS" and "F_PAR_LEN" define the data record and telegram length of the F-
parameters.
You can find more information on the F-parameter structure in the document PROFIsafe-
Profile_3192_V261_Aug14.pdf (section 8.1.9.).
The defines "I_PAR_DS", "I_PAR_LEN" and "I_PAR_USER_DATA" define the data record and
telegram length of the I-parameters. I-parameters are not used in the F-application of this
implementation.
You can find more information on the I-parameter structure in the document PROFIsafe-
Profile_3192_V261_Aug14.pdf (section 8.2.).

5.2.3 Interface for BusEvents

The structure BusEvents defines control events for the state machine of the F-application. The
events are set or reset, depending on their state, both in the F-application of the PSD and
from the DevKit interface.

45

Configuration of the PROFIsafe driver
5.2 Header file psd_interface.h

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

The type BusEvents is declared as follows:

Figure 5-4 Type BusEvents

5.2.4 Diagnostics defines

Defines such as "FAPP_F_DEST_ADD_MISMATCH" are error codes that are displayed by the F-
host. For security reasons, the PROFIsafe driver uses Hamming codes as return values for its
functions. The return values must be mapped onto the standardized error codes by the
application.
The mapping is described in section 12 Mapping the error numbers (Page 87).
You need defines such as "NO_ELEMENT_ACTIVE" and "NOT_QUITTED" for diagnostics
handling.

46
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Configuration of the PROFIsafe driver
5.2 Header file psd_interface.h

5.2.5 Diagnostics type DiagType

The diagnostics type "DiagType" has been defined as follows:

Figure 5-5 Diagnostics structure

The diagnostics type is needed for diagnostics handling.
Explanation of the variables:

isDiagCreateQuitted TRUE: Create – Acknowledgment

isDiagDeleteQuitted TRUE: Delete – Acknowledgment

activeErrorCode Mapped error number

diagQueue Diagnostic buffer

47

Configuration of the PROFIsafe driver
5.2 Header file psd_interface.h

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 48

State machine 6
The state machine described below is used for the F-application. The application state
machine is controlled by events and states from the PSD. The implementation of the F-
application is based on sources of PROFIsafe StarterKit V3.5.1 (6ES7195-3BF03-0YA0).

6.1 Structure of state machine
A dedicated state machine is used for the F-application.
The variables "fApp_State", "param_state", "conf_state" and "com_state", which contain the
status of the state machine, have been declared globally for this purpose. The variables have
been declared in file "p_c_pseudo.c" in directory "App5_FAILSAFE_PSD\PSD" and initialized as
follows:

Figure 6-1 Declaration and initialization of the state machine

The F-application "f_app_state" has three states:

INITIALIZE State after Power On, application has not yet been initialized

NO_CYCLIC_DATAEX F-application has been initialized but not yet parameterized. No process data exchange
is taking place.

CYCLIC_DATAEX F-application has been parameterized, and a plausibility check of the F-parameters was
OK. Cyclic data exchange is active

Parameter assignment "param_state" (F-parameters received) is signaled with the following
states:

INITIALIZE No F-parameters have been received yet

PARAM_FPAR_OK Check of F-parameters was OK

PARAM_FPAR_NOT_OK Error detected during check of F-parameters

States of F-telegram length configuration "conf_state" are:

INITIALIZE No length configuration received yet

CONFIG_OK Length configuration received and result of telegram length check matches sum of pro
cess data length and PSD trailer

CONFIG_NOT_OK Error detected during check of length configuration; discrepancy in process data length
or length of PROFIsafe trailer

The cyclic F-process data exchange "com_state" has the following states:

INITIALIZE No process data exchange is taking place yet (after Power On).

DATAEX_OUT_RCV F-application is ready to receive the next output telegram.

DATAEX_OUT_GET A new valid output telegram has been received from the F-host.

DATAEX_IN_SET F-application is ready to set the input data.

DATAEX_IN_SEND Input data has been set, F-application is ready to send the input telegram to the F-host.

6.2 State diagram

Figure 6-2 State diagram

49

State machine
6.2 State diagram

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

6.3 Transition table
START → INITIALIZE
After Power On, the F-application initializes with default values. The state machine is set to
INITIALIZE state.
INITIALIZE → NO_CYCLIC_DATAEX
Once the PROFINET device has received its configuration data, the application and PROFIsafe
driver are initialized with call of psd_InitInstance().
After error-free completion (return value: "INIT_INSTANCE_OK"), the state machine is in
NO_CYCLIC_DATAEX state.
NO_CYCLIC_DATAEX
When the F-parameter data record is received (in this application: data record number 128),
the function psd_FParBuild() is called. If executed successfully (return value:
FPAR_BUILD_OK), the PROFIsafe driver goes to param_state PARAM_FPAR_OK; if an error is
detected, it goes to PARAM_FPAR_NOT_OK.
After receipt of new length configuration user data from the F-host, the function
"psd_Config()" is called. This sets "conf_state" to CONFIG_OK if the check is error-free and to
CONFIG_NOT_OK if an error is detected.
Besides process data, the cyclically called DevKit function PNIO_cbf_data_read()
(iodapi_event.c) supplies the io controller provider status (IOPS). This sets the event
processDataOutputIsDisabled using interface function psdInterfaceProcessDataReceived()
(psd_interface.c).
When processDataOutputIsDisabled = 1, the function FApp_Get_Communication_State()
(p_c_pseudo.c) called in the state machine supplies return value "STOP"; when
processDataOutputIsDisabled = 0, "RUN" is returned.
NO_CYCLIC_DATAEX → CYCLIC_DATAEX
If no error is present (event errorState = 0), parameter assignment was successful
(param_state = PARAM_FPAR_OK), length check was error-free (conf_State = CONFIG_OK)
and communication is in "RUN" state (IOPS value 0x80), the state machine changes to
CYCLIC_DATAEX state. The subsequent call of FApp_Start_Communication (p_c_pseudo.c)
sets com_state to DATAEX_OUT_RCV and starts the cyclic process data exchange via
PROFIsafe.
CYCLIC_DATAEX
When com_state = DATAEX_OUT_RCV, the F-application is ready to receive a new process
data telegram. Event procDatReceived = 1 starts the interface function
psdInterfaceReceiveProcessData (psd_interface.c). This copies the process output data
received from the F-host. The subsequent call of FApp_Read_FOutput_Telegram checks the
output data and, if OK, sets com_state to DATAEX_OUT_GET. If the output telegram is error-
free, the data is copied to the process data buffer and switched to the corresponding output
LED ports. com_state changes to DATAEX_IN_SET. The function psd_SetFInData
(p_c_pseudo.c) prepares the next input data telegram for the F-host. com_state changes to
DATAEX_IN_SEND and thereby signals readiness to send the input telegram.
psdInterfaceSendProcessData (psd_interface.c) copies the data of the input telegram to the
data record buffer and sets the event procDatSendRequ. When com_state =
DATAEX_OUT_RCV, the cyclic process data exchange via PROFIsafe restarts.
CYCLIC_DATAEX → NO_CYCLIC_DATAEX
Besides process data, the cyclically called DevKit function PNIO_cbf_data_read()
(iodapi_event.c) supplies the io controller provider status (IOPS). This sets the event
processDataOutputIsDisabled using interface function psdInterfaceProcessDataReceived()
(psd_interface.c).

50
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

State machine
6.3 Transition table

When processDataOutputIsDisabled = 1, the function FApp_Get_Communication_State()
(p_c_pseudo.c) called in the state machine supplies return value "STOP". When
FApp_Stop_Communication() (p_c_pseudo.c) is called, the PROFIsafe communication stops,
process data becomes 0 and the state machine switches to NO_CYCLIC_DATAEX state.
... → HARD_FAIL
If a PROFIsafe function supplies impermissible return values, the function Fapp_Hard_Error()
is called. This sets event errorState = 1. User data including relevant GPIOs are set to fail-safe
values and the PROFIsafe communication is stopped. The HARD_FAIL state can be assumed
from any state of the state machine.

51

State machine
6.3 Transition table

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 52

Embedding the PROFIsafe driver into the F-device 7
7.1 Embedding the PROFIsafe driver into the F-device

Figure 7-1 Embedding the F-device in redundant operation

Figure 7-2 Embedding the F-device in non-redundant operation

NOTE
Implementation on single-channel and dual-channel architecture is described in section
2.1 of manual "PROFIsafe Driver V2.2.3 for F-Slaves" (link to manual:
https://support.industry.siemens.com/cs/ww/en/view/109769384)

53

Embedding the PROFIsafe driver into the F-device
7.1 Embedding the PROFIsafe driver into the F-device

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 54

Sequence diagrams 8
8.1 Error-free sequence

8.1.1 Startup of configuration/parameter assignment

Figure 8-1 Startup of application

8.1.2 Transition from STOP to RUN

Figure 8-2 Startup of communication

55

Sequence diagrams
8.1 Error-free sequence

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

8.1.3 Cyclic data exchange

Figure 8-3 Cyclic data exchange

56
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Sequence diagrams
8.1 Error-free sequence

8.1.4 Stopping of PROFIsafe communication

Figure 8-4 Stop of PROFIsafe communication

57

Sequence diagrams
8.1 Error-free sequence

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

8.2 Error scenarios

8.2.1 Errors during parameter assignment

Figure 8-5 Incorrect parameter assignment

58
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Sequence diagrams
8.2 Error scenarios

8.2.2 Telegram error in state "CYCLIC_DATAEX; DATAEX_OUT_RCV"

* An error can occur if the telegram is corrupted during transmission or if there is an error during copying in the
memory (inconsistency).

Figure 8-6 Telegram error

59

Sequence diagrams
8.2 Error scenarios

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 60

Program flow diagram 9
The following legend applies to all diagrams in section 9

Figure 9-1 Legend

The functions shown in the program flow diagram are presented in more detail below based
on the PROFIsafe driver.
The diagnostics is examined separately since it is processed in its own thread.
PROFIsafe properties of the application are initialized (corresponding to FW parameters).
The outputs are initialized to zero (fail-safe values)

The figure below shows the program flow diagram of the DevKit:

Figure 9-2 Flow of application - new

9.1 PnUsr_DeviceSetup()
The function "PnUsr_DeviceSetup()" is called when the DevKit is started.

61

Program flow diagram
9.1 PnUsr_DeviceSetup()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

PowerOn DevKit

psd_InitInstance()

FApp_Hard_Error()

error_state = TRUE

PNIO_cbf_rec_write()

TRUE

f_app_state =

NO_CYCLIC_DATAEX

FALSE

PnUsr_DeviceSetup()

psdInterfaceInit()

 DG_startup()

 initSystemTimer()

 FApp_Init()

result == INIT_INSTANCE_OK

Figure 9-3 PnUsr_DeviceSetup()

The PROFIsafe driver is initialized in this function with the instance 1.

9.2 PNIO_cbf_rec_write()

Evaluating F-parameters
If a record data record is received, this function is called.
In the example application, only the F-parameters are evaluated. The F-parameters are sent
by the F-host with data record 128.

62
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Program flow diagram
9.2 PNIO_cbf_rec_write()

Figure 9-4 Evaluation of F-parameters

63

Program flow diagram
9.2 PNIO_cbf_rec_write()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Length configuration of process data
This block is called in NO_CYCLIC_DATAEX state of the state machine.

Figure 9-5 Configuration

64
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Program flow diagram
9.2 PNIO_cbf_rec_write()

9.3 PNIO_cbf_data_read()

F-host status
The IOPS is generated by the F-host and shows whether the F-host is in RUN or STOP state:
IOPS 0x80 (GOOD) = F-host in RUN
IOPS 0x60 (BAD) = F-host in STOP

Figure 9-6 F-host status

65

Program flow diagram
9.3 PNIO_cbf_data_read()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Communication - psd_RecvFOutTele()
The time values are read in using the function OsGetTime_ms() and passed to the function
psd_RecvFOutTele().
The function psd_RecvFOutTele() expects two independently generated time values. Only
one time value is generated for the application example.

PNIO_cbf_data_read()

psd_RecvFOutTele()

Fapp_Hard_Error()

F
A

LS
E

T
R

U
E

FALSE

f_app_state == CYCLIC_DATAEX

&& com_state == DATAEX_OUT_RCV

&&procDatReceived == 1

!me1; !me2 =

OsGetTime_ms()

Fapp_Cycle()

psdInterfaceProcessDataReceived()

procDatReceived

Result ==RECV_FOUT_TELE_OK

psdInterfaceReceiveProcessData()

Figure 9-7 Communication - psd_RecvFOutTele()

66
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Program flow diagram
9.3 PNIO_cbf_data_read()

Communication - psd_GetFOutData()

Figure 9-8 Communication - psd_GetFOutData()

The process data memory OutDataArray is passed to the function psd_GetFOutData(). Once
the telegram has been verified in the function psd_GetFOutData(), the user data is activated
or, if an error is detected, overwritten with zero.

67

Program flow diagram
9.3 PNIO_cbf_data_read()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

9.4 PNIO_cbf_data_write()

Communication - psd_SetFInData()

 Fapp_Cycle

psd_SetFInData()

result ==

SET_FIN_DATA_OK

T
R

U
E

F
A

LS
E

FALSE

write quality of output-

hardware into first Inputbyte

f_app_state == CYCLIC_DATAEX

&& com_state == DATAEX_IN_SET

&&error_state == FALSE

com_state =

DATAEX_IN_SEND

FApp_Hard_Error()

write PSD status

(PROFIsafe trailer)

FApp_Set_FInput_Data()

 Fapp_Cycle

Figure 9-9 Communication - psd_SetFInData()

68
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Program flow diagram
9.4 PNIO_cbf_data_write()

Communication - psd_SendFInTele()

 Fapp_Cycle

psd_SendFInTele()

result ==

SEND_FIN_TELE_OK

T
R

U
E

T
R

U
E

FALSE

f_app_state == CYCLIC_DATAEX

&& com_state == DATAEX_IN_SEND

&&error_state == FALSE

write PSD CRC (PROFIsafe trailer)

FApp_Send_FInput_Telegram()

 Fapp_Cycle

FApp_Hard_Error()

com_state =

DATAEX_OUT_RCV

procDatSendRequ

==0

psdInterfaceSendProcessData()

T
R

U
E

FALSE

write input buffer

procDatSendRequ=1

Figure 9-10 Communication - psd_SendFInTele()

69

Program flow diagram
9.4 PNIO_cbf_data_write()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Communication - PNIO_cbf_data_write()

Figure 9-11 PNIO_cbf_data_write()

PNIO_cbf_data_write is called if an input telegram is sent from the DevKit to the F-host.
Here, the process input data preassigned in the p_fApp_PNIO_Send buffer (status of F-
outputs + PROFIsafe status + PROFIsafe crc) is copied to the output buffer and the event
procDatSendRequ is reset.
Event procDatSendRequ = 0 signals to the F-application to copy new process input data into
the p_fApp_PNIO_Send buffer for the next com_state == DATAEX_IN_SEND.

70
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Program flow diagram
9.4 PNIO_cbf_data_write()

9.5 PNIO_cbf_ar_connect_ind()

PNIO_cbf_ar_connect_ind()

Figure 9-12 PNIO_cbf_ar_connect_ind()

This block is not shown in the general chart since it can occur at any time.
The function is called when the F-host is disconnected from the DevKit.
The pointers that point to the PROFINET telegrams are set to zero since no telegrams are
received from that moment on.

71

Program flow diagram
9.5 PNIO_cbf_ar_connect_ind()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

9.6 DG_update()

Diagnostic buffer

DG_update()

diagnos c buffer

empty

ac ve coming

diagnosis event

sendOK =

PNIO_diag_channel_add()

con nue

DG_update()

TRUE

sendOK =

pnpb_diag_channel_remove()

clear send request event on

diagnos c buffer

clear send request event on

diagnos c buffer

clear diagnosis event on

diagnos c buffer

sendOK == 1 sendOK == 1 FALSEFALSE

Figure 9-13 Diagnostic buffer

The diagram describes how the DG_update() task handles diagnosis events.

72
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Program flow diagram
9.6 DG_update()

In the event of incoming diagnosis events, the diagnostic buffer is filled with incoming
diagnosis events from the function "DG_setEvent()". "DG_clearEvent()" sets the state of the
diagnosis event as outgoing.
The data structure of the diagnostic buffer "diagEvents_" has been defined in
DiagnosticManager.h as follows:

Figure 9-14 DiagnosticManager

ID corresponds with the diagnosis event ID, sendToBus describes the state of the diagnosis
event.
• sendToBus =0: Diagnosis event has already been sent to the bus or, if ID = 0, the

diagnostic buffer is empty
• sendToBus =1: Incoming diagnosis event
• sendToBus =2: Outgoing diagnosis event

73

Program flow diagram
9.6 DG_update()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 74

PROFIsafe functions 10
10.1 psd_InitInstance()

psd_InitInstance()

Source file: p_c_pseudo.c

Function: Fapp_Init

Transfer parameters

INST_01 Instance 1

DYNAMIC_TELE_LEN_CONF_ON Dynamic telegram length configuration active.

Evaluation of return value:
If the return value is "INIT_INSTANCE_OK", the state "NO_CYCLIC_DATAEX" is assumed.
If the return value is "INIT_INSTANCE_NOT_OK", the function FApp_Hard_Error() is called.

10.2 psd_FParBuild()

psd_FParBuild()

Source file: p_c_pseudo.c

Function: FApp_Param

Transfer parameters

INST_01 Instance 1

fParameterData "Firmware parameters" such as destination address,
source address and SIL are stored in this variable.

fParameterDataLength Length of data structure of F-parameter.

iParameterCrc16 I-parameters are not supported in this example.

iParameterCrc32 I-parameters are not supported in this example.

Evaluation of return value:
Based on the return value of psd_FParBuild() (error detected), a diagnosis event is sent to the
thread DiagnoseHandling() with the function addDiagnose().
The return values are mapped onto the error numbers from the GSDML file and passed to the
function addDiagnose().
If execution of the function is successful, the state "PARAM_FPAR_OK" is assumed.

10.3 psd_Config()

psd_Config()

Source file: p_c_pseudo.c

Function: Fapp_LenConfig

Transfer parameters

INST_01 Instance 1

Evaluation of return value:
If an error is detected, the F-application changes to safe state with FApp_Hard_Error().
If the check is successful, the state "conf_state = CONFIG_OK" is assumed.

NOTE
For the length configuration, a length of 1 byte was entered for
OUTDATA_MAX_LEN_INST_01 and INDATA_MAX_LEN_INST_01 in header file "p_c_config.h",
since it was defined this way in the GSDML file of the DevKit. (see Length configuration (Page
44))
For the function psd_GetConfigPtr(), the telegram lengths were determined and passed.
Here, the telegram has a length of 6 bytes (1 byte user data + 1 byte status byte + 4 bytes
CRC). The telegram length was defined in section Interface for BusEvents (Page 45).

10.4 psd_Run()

psd_Run()

Source file: p_c_pseudo.c

Function: FApp_Start_Communication

Transfer parameters

INST_01 Instance 1

Evaluation of return value:
If the return value is "PSD_DATAEX", the state "f_app_state = CYCLIC_DATAEX" is assumed. As
a result, the F-application changes to state PROFIsafe process data exchange.

75

PROFIsafe functions
10.4 psd_Run()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

If an error is detected, the F-application changes to safe state with FApp_Hard_Error().

NOTE
After the DevKit has received a PROFINET frame, the IOPS status is read out. If this is 0x80 (F-
host in Run) and param_state == PARAM_FPAR_OK, conf_state == CONFIG_OK and
error_state == FALSE, the F-application changes to state CYCLIC_DATAEX (process data
exchange).

10.5 psd_Stop()

psd_Stop()

Source file: p_c_pseudo.c

Function: FApp_Start_Communication

Transfer parameters

INST_01 Instance 1

Evaluation of return value:
Return value PSD_PARAM is not evaluated in the example.
The F-application changes to NO_CYCLIC_DATAEX state and stops the PROFIsafe process data
exchange. PSD com_state changes to INITIALIZE state.

NOTE
The IOPS status is read out after every receipt of a PROFINET telegram by the DevKit. If IOPS is
0x60 (F-host in Stop), the event "processDataOutputIsDisabled" is set. The event is evaluated
multiple times in FApp_Cycle. When Event = 1 (active), psd_Stop is called using
Fapp_Stop_Comunication().

10.6 psd_RecvFOutTele()

psd_RecvFOutTele()

Source file: p_c_pseudo.c

Function: FApp_Read_FOutput_Telegram

Transfer parameters

INST_01 Instance 1

time1 Time stamp in ms

time2 Time stamp of simulated CPU 2 in ms

76
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

PROFIsafe functions
10.6 psd_RecvFOutTele()

Evaluation of return value:
If the return value of function psd_RecvFOutTele() is not "RECV_FOUT_TELE_OK", the F-
application changes to safe state with FApp_Hard_Error().

NOTE
The transfer parameters "time1" and "time2" should be generated by 2 independent timers.
However, since only one F-device is being simulated here, both values are the same (see
section "Embedding the PROFIsafe driver into the F-device (Page 52)").

10.7 psd_GetFOutData()

psd_GetFOutData()

Source file: p_c_pseudo.c

Function: FApp_Get_FOutput_Data

Transfer parameters

INST_01 Instance 1

& FOutputDataCB Buffer for PSD control bytes

& OutDataArray Buffer for process output data

OUTDATA_MAX_LEN_INST_01 User data length without PROFIsafe trailer, here:
1 byte

Evaluation of return value:
Based on the return value of psd_GetFOutData (error detected), an "incoming" diagnosis
event is sent using \DG_setEvent(event ID) if an error is detected.
The return values are mapped onto the error numbers from the GSDML file. If the check is
error free, the state com_state = DATAEX_IN_SET is assumed (prepare process input data and
status byte for F-host input telegram).

10.8 psd_SetFInData()

psd_SetFInData()

Source file: p_c_pseudo.c

Function: FApp_Set_FInput_Data

Transfer parameters

INST_01 Instance 1

77

PROFIsafe functions
10.8 psd_SetFInData()

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

& FInputDataSB Buffer for PSD status byte

& InDataArray Buffer for process input data

INDATA_MAX_LEN_INST_01 User data length without PROFIsafe trailer, here: 1 byte

Evaluation of return value:
If the return value of function psd_SetFInData() is not SET_FIN_DATA_OK, the F-application
changes to safe state with FApp_Hard_Error().
If no error is detected, the state com_state = DATAEX_IN_SEND is assumed (send process
input data to the F-host).

10.9 psd_SendFInTele()

psd_SendFInTele()

Source file: p_c_pseudo.c

Function: FApp_Send_FInput_Telegram

Transfer parameters

INST_01 Instance 1

Evaluation of return value:
If the return value of function psd_SendFInTEle() is not "SEND_FIN_TELE_OK", the F-
application changes to safe state with FApp_Hard_Error().
If no error is detected, the state com_state = DATAEX_OUT_RCV is assumed (receipt of F-
output data from the F-host).

78
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

PROFIsafe functions
10.9 psd_SendFInTele()

Integration of PROFIsafe driver source files into the
application example 11

If you want to debug the function of the PROFIsafe driver on the DevKit, you must use the
original sources files of the PROFIsafe driver. Three source files ("p_c_pseudo.c",
"p_c_fapplication.c" and "p_c_si.c") have been provided for this purpose on the CD of the
PROFIsafe Starter Kit V3.5.1 (6ES7194-3BF03-0YA0) in folder "Example".

11.1 p_c_fapplication.c

psd_OutTransfer(), psd_OutSync(), psd_InTransfer(), psd_InSync()
The functions psd_OutTransfer(), psd_OutSync(), psd_InTransfer() and psd_InSync() simulate
a data exchange between two processors with the static variable SyncValues. These functions
are only called when the define "REDUNDANT" has been set.
In this application example, the two processors are emulated on one processor, and the
synchronization functions are therefore executed without errors.

disable_int()
No changes were made here since the PROFIsafe driver can also operate without an interrupt
disable in this application.

enable_int()
No changes were made here since the PROFIsafe driver can also operate without an interrupt
disable in this application.

11.2 p_c_si.c

psd_SetFParPtr()
This function copies the F-parameters received from the F-host into the static parameter
buffer prm_fpar defined in the same file.

psd_GetFParPtr()
This function returns a pointer that points to the F-parameters.
This has been stored in a global variable "prm_fpar" in the same file.

79
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

psd_GetConfigPtr()
This function returns a pointer to the PROFIsafe telegram length.
This has been stored in a global variable "io_range" in the same file.

psd_GetInputBuffer()
This function returns the pointer to the array with the cyclic process input data.
This has been stored in a global variable "InDataArray" in "p_c_pseudo.c".

psd_InputSendAck()
The return value is always "FIN_TELE_UPDATE_OK".

psd_GetOutputTelegram()
This function returns the pointer to the array with the cyclic process output data.
This has been stored in a global variable "OutDataArray" in "p_c_pseudo.c".

11.3 p_c_pseudo.c

calcFParCRC()
This function calculates a 16-bit CRC for the console output following a CRC error.
Terminal programs such as Tera Term or similar tools can be used for the console output.

Fapp_Process_Dat_Out()
This function switches process output data to the output LEDs of the DevKit.

Fapp_New_FPar_available()
This function evaluates the events "hasNewParameter" and "hasNewFParameter" and returns
"TRUE" when an event is active. The events are reset at the same time.

Fapp_Get_Communication_State()
This function evaluates the event processDataOutputIsDisabled and returns "STOP" when the
event is active. When Event = 0, the return value is "RUN".

80
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Integration of PROFIsafe driver source files into the application example
11.3 p_c_pseudo.c

Fapp_Hard_Error()
This function calls all error handlers (stop PROFIsafe communication, stop process data
output, switch fail-safe values, console output of line number and FileID) and sets the
errorState event.

main()
The main() function is replaced by the MainAppl() function in this implementation example.
The definition is made in usriod_main.c.

Fapp_Cycle()
The state machine of the PSD has been adapted to the firmware of the DevKit (see State
machine (Page 48)).

Fapp_Init()
This function initializes all application-specific data of the PSD during Power On and has been
adapted to the firmware of the DevKit. The initialization of interface events and specific F-
parameters, such as source address, destination address and SIL, has been added.
If an error occurs during initialization of the PSD instance, the F-application goes to safe state
with FApp_Hard_Error().
If initialization is completed without errors, f_app_state changes to NO_CYCLIC_DATAEX (wait
for parameters).
(see flow diagrams Startup of configuration/parameter assignment (Page 54) and
PnUsr_DeviceSetup() (Page 61))

Fapp_Param()
This function is called when interface event hasNewFParameter is active in f_app_state
NO_CYCLIC_DATAEX; it checks the F-parameters received from the bus.
Depending on the return value of the called FParBuild(), an "incoming" diagnosis event is sent
using DG_setEvent(event ID) if an error is detected. Event IDs are mapped onto error numbers
of the GSDML. If the check is error-free, then param_state = PARAM_FPAR_OK.
(see flow diagrams Startup of configuration/parameter assignment (Page 54) and Errors
during parameter assignment (Page 57-58)).

Fapp_Read_FOutput_Telegram()
This function checks the output telegram received from the F-host. For the time stamps time1
and time2 (timeout check), the same timers are read by the operating system of the DevKit.
(see diagrams Cyclic data exchange Cyclic data exchange (Page 55), Telegram error in state
"CYCLIC_DATAEX; DATAEX_OUT_RCV" Telegram error in state "CYCLIC_DATAEX;
DATAEX_OUT_RCV" (Page 58) and Communication - psd_RecvFOutTele()
PNIO_cbf_data_read() (Page 64) and the description of the psd_RecvFOutTele() function
psd_RecvFOutTele() (Page 76))

81

Integration of PROFIsafe driver source files into the application example
11.3 p_c_pseudo.c

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Fapp_GetFoutData()
This function gets the checked output data as well as bit information of the control byte for
the process data output.
Depending on the return value of the called psd_GetFOutData(), an "incoming" diagnosis
event is sent using DG_setEvent(event ID) if an error is detected. Event IDs are mapped onto
error numbers of the GSDML. If the check is error free, then com_state = DATAEX_IN_SET
(prepare process input data and status bytes for F-host input telegram).
See diagrams Cyclic data exchange Cyclic data exchange (Page 55), Telegram error in state
"CYCLIC_DATAEX; DATAEX_OUT_RCV" Telegram error in state "CYCLIC_DATAEX;
DATAEX_OUT_RCV" (Page 58) and Communication - psd_GetFOutData()
PNIO_cbf_data_read() (Page 64) and the description of the psd_GetFOutData() function
psd_GetFOutData() (Page 77).

Fapp_Set_FInput_Data()
This function assigns process input data and the PSD status byte for the F-host with function
call psd_SetFInData(). If the return value of function psd_SetFInData() is not
SET_FIN_DATA_OK, the F-application changes to safe state with FApp_Hard_Error().
If no error is detected, then state com_state = DATAEX_IN_SEND (send process input data to
the F-host).
See diagrams Cyclic data exchangeCyclic data exchange (Page 55) and Communication –
psd_SetFInData() PNIO_cbf_data_write() (Page 67) and the description of the
psd_SetFInData() function psd_SetFInData() (Page 77)

Fapp_Send_FInput_Telegram()
This function prepares the F-input telegram for the F-host with function psd_SendFInTele(). If
the return value of function psd_SendFInTEle() is not SEND_FIN_TELE_OK, the F-application
changes to safe state with FApp_Hard_Error().
If no error is detected, then state com_state = DATAEX_OUT_RCV (receive F-output data from
the F-host).
See diagrams Cyclic data exchange Cyclic data exchange (Page 55) and Communication –
psd_SetFInTele() PNIO_cbf_data_write() (Page 67) and the description of the
psd_SetFInTele() function psd_SendFInTele() (Page 78)

11.4 DiagnosticManager.c

DG_setEvent()
This function enters diagnosis event numbers in the diagnostic buffer as "incoming".
The error number that was defined together with its diagnostics text in the GSDML is needed
as transfer parameter.

82
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Integration of PROFIsafe driver source files into the application example
11.4 DiagnosticManager.c

DG_clearEvent()
This function removes diagnosis event numbers from the diagnostic buffer. "Outgoing
diagnosis event".
The error number that was defined together with its diagnostics text in the GSDML is needed
as transfer parameter.

DG_update()
This function is called cyclically as a task; it processes all diagnostics entered in the buffer. See
diagram for DG_update() task for handling diagnosis events DG_update() (Page 71)

11.5 Psd_interface.c
All functions implemented in the file "Psd_interface.c" serve as an interface between the
ERTEC 200P DevKit software and PROFIsafe F-application. The DevKit and F-application cycles
run asynchronously. Therefore, the program flow is controlled using events.

psdInterfaceInit()
This function, which is called from DevKit PnUser_DeviceSetup() during Power On, initializes
the PROFIsafe driver, diagnostics manager and F-application. Return value is PNIO_OK or, if an
error is detected, PNIO_NOT_OK.
See diagram Startup of configuration/parameter assignment (Page 54).

psdInterfaceSetLED()
This function, which is called in F-application Fapp_Process_Dat_Out(), switches process
output data (or 0, if an error is detected) to the LEDs of the DevKit.

psdInterfaceF_App_Cycle()
This function, which is called from DevKit MainAppl(), implements the F-application. It is
processed cyclically (see State machine (Page 48))

psdInterfaceReceiveRecord()
This function is called from DevKit PNIO_cbf_rec_write() when a data record is received.
Depending on the data record number, control events (hasNewFParameter, faultInsertionTest
etc.) are set for the F-application and the data is copied to the relevant buffer of the F-
application. (see diagram PNIO_cbf_rec_write()). Return value is PNIO_OK or, if an error is
detected, PNIO_NOT_OK.

83

Integration of PROFIsafe driver source files into the application example
11.5 Psd_interface.c

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

psdInterfaceSendRecord()
This function is called from DevKit PNIO_cbf_rec_read() following a read data record request
(F-parameter, Trace, fault insertion test). Depending on the data record number, the data of
the F-application is copied to the transfer buffer of the DevKit. Return value is PNIO_OK or, if
an error is detected, PNIO_NOT_OK.

psdInterfaceSetProcessData()
This function is called from DevKit PNIO_cbf_ar_connect_ind() during initialization after
Power On; it sets the process data pointer of the F-application to the corresponding buffer of
the DevKit.
See diagram PNIO_cbf_ar_connect_ind() (Page 70).

psdInterfaceProcessDataReceived()
This function, which is called from DevKit PNIO_cbf_data_read() upon receipt of process data,
sets the event procDatReceived and, depending on IOPS, the event
processDataOutputIsDisabled.
See diagrams "F-Host Status" and PNIO_cbf_data_read() (Page 64) "Communication –
psd_RecvFOutTele()" PNIO_cbf_data_read() (Page 64)

psdInterfaceReceiveProcessData()
This function, which is called from F-application Fapp_Cycle() following event
procDatReceived, copies process output data from the buffer of the DevKit to the process
data buffer of the F-application.
See diagram "Communication – psd_RecvFOutTele()"PNIO_cbf_data_read() (Page 64)

psdInterfaceSetProcessData()
This function, which is called from F-application Fapp_Cycle(), copies process input data from
the process data buffer of the F-application to the transfer buffer of the DevKit and sets the
event procDatSendRequ.
See diagram "Communication – psd_SendFInTele()".PNIO_cbf_data_write() (Page 67)

psdInterfaceProcessDataSend()
This function, which is called from DevKit PNIO_cbf_data_write, resets the event
procDatSendRequ after successful sending of the process input data to the F-host, thereby
releasing the DevKit transfer buffer for new process input data of the F-application.
See diagram "Communication – PNIO_cbf_data_write()" PNIO_cbf_data_write() (Page 67)

84
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Integration of PROFIsafe driver source files into the application example
11.5 Psd_interface.c

11.6 DevKit PnUsr_Api.c

PnUsr_DeviceSetup()
The initialization function psdInterfaceInit() of the F-application interface is called here.

PNIO_cbf_rec_read()
This function is extended to record indices 240 (Fatal Error Report) and 201 (PSD Trace
Report); it calls the interface function psdInterfaceSendRecord().

Figure 11-1 PNIO_cbf_rec_read()

PNIO_cbf_rec_write()
This function is extended to record indices 128, 129 and 240; it calls the interface function
psdInterfaceReceiveRecord().

Figure 11-2 PNIO_cbf_rec_write()

11.7 DevKit iodapi_event.c

PNIO_cbf_data_write()
Call of the interface function psdInterfaceProcessDataSend(). See description of interface
functionPsd_interface.c (Page 83).

85

Integration of PROFIsafe driver source files into the application example
11.7 DevKit iodapi_event.c

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

PNIO_cbf_data_read()
Call of the interface function psdInterfaceProcessDataReceived(). See description of interface
functionPsd_interface.c (Page 83).

PNIO_cbf_ar_connect_ind()
Call of the interface function psdInterfaceSetProcessData(). See description of interface
functionPsd_interface.c (Page 83).

11.8 DevKit usriod_main.c

MainAppl()
Call of the interface function psdInterfaceF_App_Cycle(). See description of interface
functionPsd_interface.c (Page 83).

86
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

Integration of PROFIsafe driver source files into the application example
11.8 DevKit usriod_main.c

Mapping the error numbers 12
Since the return values of psd_FParBuild() and psd_GetFOutData() do not correspond with
the error numbers defined in the GSDML together with their error texts, the return values are
mapped onto the PROFIsafe-specific error numbers.
The diagnostics texts have been standardized and are contained in PROFIsafe profile
"PROFIsafe-Profile_3192_V261_Aug14.pdf", page 39.
The table below presents an overview of the transformed error numbers:

Hex Number PSD return values
Hex

Description psd_FParBuild() psd_GetFOutData()

0x40 64 0x4A Mismatch of safety destination
address (F_Dest_Add)

X

0x41 65 0x41 Safety destination address not valid
(F_Dest_Add)

X

0x42 66 0x54 / 0x2C Safety source address not valid or
mismatch (F_Source_Add)

X

0x43 67 0x79 Safety watchdog time value is 0 ms
(F_WD_Time, F_WD_Time_2)

X

0x44 68 0x86 Parameter "F_SIL" exceeds SIL from
specific device application

X

0x45 69 0x98 Parameter "F_CRC_Length" does not
match the generated values

X

0x46 70 0xAB Version of F-Parameter set incorrect X

0x47 71 0xB5 Data inconsistent in received F-Para
meter block (CRC1 error)

X

0x48 72 0xCD / 0x72 Device specific or unspecified dia
gnosis information, see manual

X

0x4B 75 0xE0 Inconsistent iParameters (iParCRC
error)

X

0x4C 76 0x1F F_Block_ID not supported X

0x4D 77 0x67 Transmission error: data inconsistent
(CRC2 error)

X

0x4E 78 0x79 Transmission error: timeout
(F_WD_Time or F_WD_Time_2
elapsed)

X

The right side of the table indicates which function sends which diagnoses.

87
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 88

LED status of the DevKit 13
Various LEDs are controlled in this implementation to enable you to better identify an error
source.

LEDs

SYNC ERROR MAINT

Meaning Remedy

Flashes
On

Flashes
Hard error situation Power Off/ Power On

Off
Flashes

Off Incoming diagnosis event act
ive

Evaluate diagnostics and
handle the error

Flashes
Off Off No parameter assignment In case of sustained flashing,

check the parameter assign
ment in the TIA Portal.

On
Off Off Cyclic data exchange ---

User LED output 14
LEDs are located above port X50 (Figure 18) of the DevKit. These are representative of
outputs that are switched.
In this application, only the first 4 LEDs or, in non-redundant operating mode, the last 4 LEDs
are switched. Which LED is switched depends on the first 4 bits of the process data.
The left-most LED is the LSB and the fourth LED from the left is the MSB.
In non-redundant operating mode, the last 4 LEDs are additionally switched starting from the
right inversely to the left 4 LEDs.

blue Status LED (connector for GPIOs connected)

red LEDs for output of user data (left LSB, right MSB)

green LEDs for output of user data (in non-redundant operating mode)

Figure 14-1 User LEDs of the DevKit

NOTE
The first LED from the left is always lit because it merely indicates whether the connector for
user GPIOs has been plugged in.

89
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

Figure 14-2 Connector for user GPIOs

The connector for user GPIOs must have been plugged in (Port X42, Pin 9, 10) so that the
GPIOs can be controlled by the application.

90
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7

Getting Started, 09/2022,

User LED output

References A
1.

PDF file: Component of
PROFIsafe-Profile_3192_V26MU1_Aug18.pdf Part of the PROFIsafe Starter Kit V3.5.2

profisafe_driver_v2_2_3_programming_manual_
en-US.pdf

Part of the PROFIsafe Starter Kit V3.5.2

Interface_Description_PN_IO_DevKits_V4.7.0 Part of EvalKit_ERTEC200P

Guideline_EvalKit_ERTEC200P_V4.7.0.pdf Part of EvalKit_ERTEC200P

Manual_ERTEC200P-2_V1_0.pdf Part of EvalKit_ERTEC200P

Howto use J-link JTAG
Debugger_on_EB200P_V1_1.pdf

Part of the application example

GSDML_GettingStarted_V1_5.pdf Part of the application example

GSDML-Spec_2352_V243_May22.pdf Current version available on profibus.com

91
Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022,

CRC
Cyclic Redundancy Check

DevKit
Evaluation Kit EK-ERTEC200P PN IO V4.3

Embedded Software
Colloquial term for firmware.
Hardware-level software that is installed on the F-device.

F-device
Passive communication partner that is able to execute the PROFIsafe protocol and that is
prompted by the F-host to exchange data.

F-host
Data processing unit that is able to execute the PROFIsafe protocol and that prompts the F-
device to exchange data.

FIT
Fault Insertion Test

F-parameter
PROFIsafe parameter

FW
Firmware, also "embedded software"

GPIO
General Purpose Input Output
Pins that can be used as output or input.

GSDML
General Station Description Markup Language

HW
Hardware

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 92

Glossary

PROFIsafe trailer
Composed of status/control byte and the security information.

PSD
PROFIsafe driver for F-device

SIL
Safety Integrity Level

WD
Watchdog for runtime monitoring

Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
Getting Started, 09/2022, 93

Glossary

	Application example for implementation of the PROFIsafe driver on the Evaluation Kit EK-ERTEC 200P-2 V4.7
	Legal information
	Preface
	Table of contents
	1 Introduction
	1.1 Requirements

	2 GSDML configuration
	2.1 Preparation
	2.2 Extensions – Step by step
	2.2.1 DAP (Device Access Point)
	2.2.2 Module (slot submodules)
	2.2.3 Optional changes
	2.2.4 Integrating the GSDML file in the TIA Portal

	3 Commissioning the DevKit
	3.1 Installing tools
	3.2 Configuration for Eclipse
	3.2.1 Setting up Eclipse for the DevKit
	3.2.2 Replacing PSD-lib in C-files
	3.2.3 Configuration for the debugger
	3.2.4 Configuration of USB terminal connection
	3.2.5 Build of application firmware "App_05.bin"
	3.2.6 Loading and starting the PSD F-application

	3.3 Loading the application firmware into flash memory
	3.3.1 Preparation
	3.3.1.1 Application firmware
	3.3.1.2 Configuring TcpFwLoader_EB200P.bat

	3.3.2 Loading procedure

	3.4 Reading out the firmware version data
	3.5 F-address assignment (initialization)
	3.5.1 Writing the F-source address and F-destination address

	4 Preparation/configuration of standard source files
	4.1 Preparation of standard source files
	4.2 Setting EXAMPL_DEV_CONFIG_VERSION
	4.3 Changes in the source file usriod_main.c

	5 Configuration of the PROFIsafe driver
	5.1 Header file p_c_config.h
	5.1.1 NOF_INSTANCES
	5.1.2 REDUNDANT
	5.1.3 Length configuration
	5.1.4 Source/destination address; SIL class
	5.1.5 Telegram properties

	5.2 Header file psd_interface.h
	5.2.1 Slot and subslot
	5.2.2 Parameters for telegram properties
	5.2.3 Interface for BusEvents
	5.2.4 Diagnostics defines
	5.2.5 Diagnostics type DiagType

	6 State machine
	6.1 Structure of state machine
	6.2 State diagram
	6.3 Transition table

	7 Embedding the PROFIsafe driver into the F-device
	7.1 Embedding the PROFIsafe driver into the F-device

	8 Sequence diagrams
	8.1 Error-free sequence
	8.1.1 Startup of configuration/parameter assignment
	8.1.2 Transition from STOP to RUN
	8.1.3 Cyclic data exchange
	8.1.4 Stopping of PROFIsafe communication

	8.2 Error scenarios
	8.2.1 Errors during parameter assignment
	8.2.2 Telegram error in state "CYCLIC_DATAEX; DATAEX_OUT_RCV"

	9 Program flow diagram
	9.1 PnUsr_DeviceSetup()
	9.2 PNIO_cbf_rec_write()
	9.3 PNIO_cbf_data_read()
	9.4 PNIO_cbf_data_write()
	9.5 PNIO_cbf_ar_connect_ind()
	9.6 DG_update()

	10 PROFIsafe functions
	10.1 psd_InitInstance()
	10.2 psd_FParBuild()
	10.3 psd_Config()
	10.4 psd_Run()
	10.5 psd_Stop()
	10.6 psd_RecvFOutTele()
	10.7 psd_GetFOutData()
	10.8 psd_SetFInData()
	10.9 psd_SendFInTele()

	11 Integration of PROFIsafe driver source files into the application example
	11.1 p_c_fapplication.c
	11.2 p_c_si.c
	11.3 p_c_pseudo.c
	11.4 DiagnosticManager.c
	11.5 Psd_interface.c
	11.6 DevKit PnUsr_Api.c
	11.7 DevKit iodapi_event.c
	11.8 DevKit usriod_main.c

	12 Mapping the error numbers
	13 LED status of the DevKit
	14 User LED output
	A References
	Glossary

